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Preface

This volume contains articles based on presentations at the 11th workshop on
model-oriented data analysis and optimum design (mODa) in Hamminkeln-
Dingden, Germany, during June 2016. The 11th workshop was organized by the
Department of Statistics of the TU Dortmund and supported by the Collaborative
Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823)
of the German Research Foundation (DFG).

The mODa series of workshops focuses on nonstandard design of experiments
and related analysis of data. The main objectives are:

• To promote new advanced research areas as well as collaboration between
academia and industry.

• Whenever possible, to provide financial support for research in the area of
experimental design and related topics.

• To give junior researchers the opportunity of establishing personal contacts and
working together with leading researchers.

• To bring together scientists from different statistical schools – particular empha-
sis is given to the inclusion of scientists from Central and Eastern Europe.

The mODa series of workshops started at the Wartburg near Eisenach in the
former GDR in 1987 and has continued as a tri-annual series of conferences. The
locations and dates of the former conferences are as follows:

• mODa 1: Eisenach, former GDR, 1987,
• mODa 2: St. Kyrik, Bulgaria, 1990,
• mODa 3: Peterhof, Russia, 1992,
• mODa 4: Spetses, Greece, 1995,
• mODa 5: Luminy, France, 1998,
• mODa 6: Puchberg/Schneeberg, Austria, 2001,
• mODa 7: Heeze, The Netherlands, 2004,
• mODa 8: Almagro, Spain, 2007,
• mODa 9: Bertinoro, Italy, 2010,
• mODa 10: Łagów Lubuski, Poland, 2013.

v



vi Preface

The articles in this volume provide an overview of current topics in research on
experimental design. The topics covered by the papers are:

• designs for treatment combinations (Atkinson; Druilhet; Grömping and Bailey),
• randomisation (Bailey; Ghiglietti; Shao and Rosenberger),
• computer experiments (Curtis and Maruri-Aguilar; Ginsbourger, Baccou, Cheva-

lier and Perales),
• designs for nonlinear regression and generalized linear models (Amo-Salas,

Jiménez-Alcázar and López-Fidalgo; Burclová and Pázman; Cheng, Majumdar
and Yang; Mielke; Radloff and Schwabe),

• designs for dependent data (Deldossi, Osmetti and Tommasi; Gauthier and
Pronzato; Prus and Schwabe),

• designs for functional data (Aletti, May and Tommasi; Zang and Großmann),
• adaptive and sequential designs (Borrotti and Pievatolo; Hainy, Drovandi and

McGree; Knapp; Lane, Wang and Flournoy),
• designs for special fields of application (Bischoff; Fedorov and Xue; Graßhoff,

Holling and Schwabe; Pepelyshev, Staroselskiy and Zhigljavsky),
• foundations of experimental design (Müller and Wynn; Zhigljavsky, Golyandina

and Gillard).

In this time of Big Data, it is often not emphasized in public discourse that
experimental design remains extremely important. The mODa series of workshops
wishes to raise public awareness of the continuing importance of experimental
design. In particular, the papers from various fields of application show that
experimental design is not a mathematical plaything, but is of direct use in the
sciences.

Since the first workshop in Eisenach, optimal design for various situations has
been at the heart of the research covered by mODa. Sequential design is another
long-standing topic in the mODa series. It is clear that computer experiments,
designs for dependent data, and functional data become increasingly feasible. For
causal inference in particular, old-fashioned methods like randomization, blinding,
and orthogonality of factors remain indispensable. In addition to the importance of
the research covered here, we think that the articles in this volume show the beauty
of mathematical statistics, which should not be forgotten.

For the editors, it was a pleasure reading these research results. We would like
to thank the authors for submitting such nice work and for providing revisions in
time, wherever a revision was necessary. Last, but not least, we want to thank the
referees who provided thoughtful and constructive reviews in time, helping to make
this volume a fine addition to any statistician’s bookshelves.

Dortmund, Germany Christine Müller
Joachim Kunert

Anthony Atkinson
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On Applying Optimal Design of Experiments
when Functional Observations Occur

Giacomo Aletti, Caterina May, and Chiara Tommasi

Abstract In this work we study the theory of optimal design of experiments when
functional observations occur. We provide the best estimate for the functional
coefficient in a linear model with functional response and multivariate predictor,
exploiting fully the information provided by both functions and derivatives. We
define different optimality criteria for the estimate of a functional coefficient. Then,
we provide a strong theoretical foundation to prove that the computation of these
optimal designs, in the case of linear models, is the same as in the classical theory,
but a different interpretation needs to be given.

1 Introduction

In many statistical contexts data have a functional nature, since they are realizations
from some continuous process. For this reason functional data analysis is an
interest of many researchers. Reference monographs on problems and methods for
functional data analysis are, for instance, the books of [6, 12] and [7].

Even in the experimental context functional observations can occur in several
situations. In the literature many authors have already dealt with optimal design for
experiments with functional data (see, for instance, [1, 3, 9, 10, 13, 14, 16]). Some-
times the link between the infinite-dimensional space and the finite-dimensional
projection is not fully justified and may unknowingly cause errors. In this work
we offer a theoretical foundation to obtain the best estimates of the functional
coefficients and the optimal designs in the proper infinite-dimensional space, and
its finite-dimensional projection which is used in practice.

When dealing with functional data, derivatives may provide important additional
information. In this paper we focus on a linear model with functional response and
multivariate (or univariate) predictor. In order to estimate the functional coefficient,

G. Aletti (�) • C. Tommasi
Università degli Studi di Milano, Milano, Italy
e-mail: giacomo.aletti@unimi.it; chiara.tommasi@unimi.it

C. May
University of Eastern Piedmont, Novara, Italy
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J. Kunert et al. (eds.), mODa 11 - Advances in Model-Oriented Design
and Analysis, Contributions to Statistics, DOI 10.1007/978-3-319-31266-8_1

1

mailto:caterina.may@uniupo.it
mailto:chiara.tommasi@unimi.it
mailto:giacomo.aletti@unimi.it


2 G. Aletti et al.

we exploit fully the information provided by both functions and derivatives,
obtaining a strong version of the Gauss-Markov theorem in the Sobolev space H1.

Since our goal is precise estimation of the functional coefficients, we define some
optimality criteria to reach this aim. We prove that the computation of the optimal
designs can be obtained as in the classical case, but the meaning of the of A- and
D- criteria cannot be traced back any more to the confidence ellipsoid. Hence we
give the right interpretation of the optimal designs in the functional context.

2 Model Description

We consider a linear regression model where the response y is a random function
which depends on a vector (or scalar) known variable x through a functional
coefficient, which needs to be estimated. Whenever n experiments can be performed
the model can be written in the following form, for t 2 � ,

yi.t/ D f.xi/
Tˇ.t/C "i.t/ i D 1; : : : ; n; (1)

where yi.t/ denote the response curve for the i-th value of the regressor xi; f.xi/

is a p-dimensional vector of known functions; ˇ.t/ is an unknown p-dimensional
functional vector; "ij.t/ is a zero-mean error process. This model is a functional
response model described, for instance, in [7].

In a real world setting, the functions yi.t/ are not directly observed. By a
smoothing procedure from the original data, the investigator can reconstruct both
the functions and their derivatives, obtaining y. f /

i .t/ and y.d/i .t/, respectively. Hence
we can assume that the model for the reconstructed functional data is8<: y. f /

i .t/ D f.xi/
Tˇ.t/C "

. f /
i .t/

y.d/i .t/ D f.xi/
Tˇ0.t/C "

.d/
i .t/

i D 1; : : : ; n; (2)

where all the n couples f". f /
i .t/; ".d/i .t/g are zero-mean identically distributed

processes, each process being independent of all the other processes, with
E.k". f /

ij .t/k2L2 C k".d/ij .t/k2L2 / < 1.

Note that the investigator might reconstruct each function y. f /
i .t/ and its deriva-

tive y.d/i .t/ separately. In this case, the terms of the second equation of (2) are not

the derivative of the terms of the first equation. The particular case when y.d/i .t/ is

obtained deriving y. f /
i .t/ is the most simple situation in model (2) and can be seen

as model (1).
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Let us consider an estimator Ǒ .t/ of ˇ.t/, formed by p random functions in the
Sobolev space H1 D H1.�/. Recall that a function g.t/ is in H1 if g.t/ and its
derivative function g0.t/ belongs to L2. Moreover, H1 is a Hilbert space with inner
product

hg1.t/; g2.t/iH1 D hg1.t/; g2.t/iL2 C hg0
1.t/; g

0
2.t/iL2

D
Z

g1.t/g2.t/dt C
Z

g0
1.t/g

0
2.t/dt; g1.t/; g2.t/ 2 H1:

Definition 1 We define the H1-generalized covariance matrix ˙ Ǒ of Ǒ .t/ as the
p � p matrix whose .l1; l2/-th element is

Eh Ǒ
l1 .t/ � ˇl1 .t/; Ǒ

l2 .t/ � ˇl2 .t/iH1 : (3)

Definition 2 In analogy with classical settings, we define the H1-functional best
linear unbiased estimator (H1-BLUE) as the estimator with minimal (in the sense
of Loewner Partial Order) H1-generalized covariance matrix (3), in the class of the
linear unbiased estimators of ˇ.t/.

Given a couple fy. f /.t/; y.d/.t/g 2 L2 � L2, a linear continuous operator on H1

may be defined as follows

�.h/ D hy. f /; hiL2 C hy.d/; h0iL2 ; 8h 2 H1:

From the Riesz representation theorem, there exists a unique Qy 2 H1 such that

hQy; hiH1 D hy. f /; hiL2 C hy.d/; h0iL2 ; 8h 2 H1: (4)

Definition 3 We call Qy 2 H1 in (4) the Riesz representative of the couple
.y. f /.t/; y.d/.t// 2 L2 � L2.

This definition will be useful to provide a nice expression for the functional OLS
estimator Ǒ .t/. Actually the Riesz representative synthesizes, in some sense, the
information of both y. f /.t/ and y.d/.t/ in H1.

The functional OLS estimator for the model (2) is

Ǒ .t/ D arg min
ˇ.t/

� nX
iD1

ky. f /
i .t/� f.xi/

Tˇ.t/k2L2 C
nX

iD1
ky.d/i .t/ � f.xi/

Tˇ0.t/k2L2
�

D arg min
ˇ.t/

nX
iD1

�
ky. f /

i .t/ � f.xi/
Tˇ.t/k2L2 C ky.d/i .t/ � f.xi/

Tˇ0.t/k2L2
�
:
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The quantity

ky. f /
i .t/ � f.xi/

Tˇ.t/k2L2 C ky.d/i .t/ � f.xi/
Tˇ0.t/k2L2

resembles

kyi.t/ � f.xi/
Tˇ.t/k2H1 ;

because y. f /
i .t/ and y.d/i .t/ reconstruct yi.t/ and its derivative function, respectively.

The functional OLS estimator Ǒ .t/minimizes, in this sense, the sum of the H1-norm
of the unobservable residuals yi.t/ � f.xi/

Tˇ.t/.

3 Infinite and Finite-Dimensional Results

This section contains the fundamental theoretical results for estimation of functional
linear models given in Sect. 2; they can be proved as particular cases of the theorems
contained in [2].

Theorem 1 Given the model in (2),

(a) the functional OLS estimator Ǒ .t/ can be computed by

Ǒ .t/ D .FTF/�1FT Qy.t/; (5)

where Qy.t/ D fQy1.t/; : : : ; Qyn.t/g is the vector whose components are the Riesz
representatives of the replications, and F D Œf.x1/; : : : ; f.xn/�

T is the n � p
design matrix.

(b) The estimator Ǒ .t/ is unbiased and its generalized covariance matrix is

˙ Ǒ D �2.FTF/�1;

where �2 D E.kyi.t/ � f.xi/
Tˇ.t/k2

H1 /.

The functional OLS estimator obtained in Theorem 1 by means of the Riesz
representatives is also the best linear unbiased estimator in the Sobolev space, as
stated in the next theorem, which is a functional version of the well known Gauss-
Markov theorem.

Theorem 2 The functional OLS estimator Ǒ .t/ for the model (2) is a H1-functional
BLUE, when the Riesz representatives of the eigenfunctions of the error terms are
independent.

In a real world context, we work with a finite dimensional subspace S of H1. Let
S D fw1.t/; : : : ;wN.t/g be a base of S . Without loss of generality, we may assume
that hwh.t/;wk.t/iH1 D ık

h, where ık
h is the Kronecker delta symbol, since a Gram-

Schmidt orthonormalization procedure may always be applied. More precisely,
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given any base QS D f Qw1.t/; : : : ; QwN.t/g in H1, the corresponding orthonormal base
is given by:

for k D 1, define w1.t/ D Qw1.t/
kQw1.t/kH1

,

for k � 2, let Owk.t/ D Qwk.t/�Pn�1
hD1h Qwk.t/;wh.t/iH1wh.t/; and wk.t/ D Owk.t/

k Owk.t/kH1
:

With this orthonormalized base, the projection Qy.t/S on S of the Riesz
representative Qy.t/ of the couple fy. f /.t/; y.d/.t/g is given by

Qy.t/S D
NX

kD1
hQy.t/;wk.t/iH1 � wk.t/

D
NX

kD1

�
hy. f /.t/;wk.t/iL2 C hy.d/.t/;w0

k.t/iL2

�
wk.t/;

(6)

where the last equality comes from the definition (4) of the Riesz representative.
Now, if ml D .ml;1; : : : ;ml;n/

T is the l-th row of .FTF/�1FT , then

h Ǒ
l.t/;wk.t/iH1 D

nX
iD1

hml;iyi.t/;wk.t/iH1

D
nX

iD1
ml;ihyi.t/;wk.t/iH1 ; for any k D 1; : : : ;N;

Ǒ
l.t/S D mT

l y.t/S ;

hence Ǒ .t/S D .FTF/�1FTy.t/S .
Let us note that, even if the Riesz representative (4) is implicitly defined, its

projection on S can be easily computed by (6). From a practical point of view,
the statistician can work with the data fy. f /

ij .t/; y
.d/
ij .t/g projected on a finite linear

subspace S and the corresponding OLS estimator Ǒ .t/S is the projection on S of
the obtained H1-OLS estimator Ǒ .t/. As a consequence of Theorem 2, Ǒ .t/S is also
H1-BLUE in S , since it is unbiased and the projection is linear. For the projection,
it is crucial to take a base of S which is orthonormal in H1.

It is straightforward to prove that the estimator (5) becomes

Ǒ .t/ D .FTF/�1FTy. f /.t/;

in two cases: when we do not take into consideration y.d/, or when y.d/ D y0. f /. In
both cases, from the results obtained, Ǒ is an L2-BLUE. To our knowledge, this is
the most common situation considered in the literature.



6 G. Aletti et al.

4 Optimal Designs

Assume we work in an experimental setup. Therefore, xi, with i D 1; : : : ; n, are
not observed auxiliary variables; they can be freely chosen by an experimenter on
the design space X . The set of experimental conditions fx1; x2; : : : ; xng is called
an exact design. A more general definition is that of a continuous design, as a
probability measure � with support on X (see, for instance, [8]). The choice of
� may be made with the aim of obtaining accurate estimates of the model functional
parameters.

From Theorem 2, Ǒ .t/ given in (5) is the H1-BLUE for the model (2). This
optimal estimator can be further improved by a “clever” choice of the design. By
analogy with the criteria proposed in the finite-dimensional theory (see for instance,
[4, 11, 15]) we define a functional optimal design as a design which minimizes
an appropriate convex function of the generalized covariance matrix ˙ Ǒ given in
Definition 1. In particular, we define the following optimality criteria.

Definition 4 A functional D-optimum design is a design ��
D which minimizes

det.˙ Ǒ ); a functional A-optimum design is a design ��
A which minimizes trace.˙ Ǒ );

a functional E-optimum design is a design ��
E which minimizes the maximum

eigenvalue of ˙ Ǒ .

Observe that Definition 4 may be applied also in the case of functional non-linear
models. When we deal in particular with models (1) or (2), part (b) of Theorem 1
shows that

˙ Ǒ / .FTF/�1;

and, from the definition of continuous design,

FTF /
Z

X
f.x/f.x/Td�.x/:

Hence we have proved that, in the case of models (1) and (2), a functional optimal
design can be computed as in the classical theory.

4.1 Interpretation

We describe here the meaning of the optimality criteria given by Definition 4 in the
functional context. Observe that these interpretations are strongly connected to the
definition of generalized covariance matrix given in Definition 1.
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4.1.1 Functional D-Optimum Designs

Let Ǒ .t/ be an unbiased estimator for a functional parameter ˇ.t/ having H1-genera-
lized covariance matrix˙ Ǒ according to Definition 1. Then, for � in Rp, the equation

�T ˙ Ǒ � � constant (7)

defines an ellipsoid of Rp such that the linear combinations

�T Ǒ .t/ D
pX

iD1
�i

Ǒ
i.t/; (8)

with � in the ellipsoid (7), have H1-generalized variance bounded by the same
arbitrary constant:

˙
�T Ǒ D E.k

pX
iD1

�i
Ǒ
i.t/ �

pX
iD1

�i ˇi.t/k2H1 / � constant:

A functional D-optimum design maximizes the volume of ellipsoid (7) and hence
the estimate of ˇ.t/ is more accurate since the “volume” of linear combinationsPp

iD1 �i
Ǒ
i.t/ with bounded variance is greater.

4.1.2 Functional A-Optimum Designs

A functional A-optimum design minimizes the trace of ˙ Ǒ ; it can be proved that
this is equivalent to minimizingZ

k�k�1
�T ˙ Ǒ � d�:

Observe that �T ˙ Ǒ � is the H1-generalized variance of the linear combinations (8).

In other words, a functional A-optimum design minimizes the mean H1-generalized
variance of the linear combinations

Pp
iD1 �i

Ǒ
i.t/ with coefficients on the unit ball

k�k � 1. We are able to prove that this can be also achieved with coefficients on the
unit sphere k�k D 1.

4.1.3 Functional E-Optimum Designs

Finally, the E-optimality criterion has the following interpretation: a functional
E-optimum design minimizes the maximum H1-generalized variance of the linear
combinations

Pp
iD1 �i

Ǒ
i.t/ with the constraint k�k � 1 or k�k D 1.
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5 Future Developments

The advantages of applying the theory discussed in this paper are shown
in [2] in a real example, where a linear model with functional response
and vectorial predictor is used for an ergonomic problem, as proposed in
[13]. To forecast the motion response of drivers within a car (functional
response), different locations are chosen (experimental conditions). The original,
non-optimal design adopted provides a D-efficiency equal to 0:3396; this
D-efficiency is raised to 0:9779 through a numerical algorithm for optimal designs.

Regression models with functional variables can cover different situations: we
can have functional responses, or functional predictors, or both. In this work we have
considered optimal designs for the case of functional response and non-functional
predictor. A future goal is to develop the theory of optimal designs also for the
scenarios with functional experimental conditions (see also [5]).
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Optimal Designs for Implicit Models

Mariano Amo-Salas, Alfonso Jiménez-Alcázar, and Jesús López-Fidalgo

Abstract In this paper the tools provided by the theory of the optimal design of
experiments are applied to a model where the function is given in implicit form.
This work is motivated by a dosimetry problem, where the dose, the controllable
variable, is expressed as a function of the observed value from the experiment. The
best doses will be computed in order to obtain precise estimators of the parameters
of the model. For that, the inverse function theorem will be used to obtain the Fisher
information matrix. Properly the D-optimal design must be obtained directly on the
dose using the inverse function theorem. Alternatively a fictitious D-optimal design
on the observed values can be obtained in the usual way. Then this design can be
transformed through the model into a design on the doses. Both designs will be
computed and compared for a real example. Moreover, different optimal sequences
and their D-effiencies will be computed as well. Finally, c-optimal designs for the
parameters of the model will be provided.

1 Introduction

This paper is focused on the case of nonlinear models where the explanatory variable
is expressed as a function of the dependent variable or response and this function is
not invertible. That is, we consider the model

y D �.x; �/C "; " � N.0; �/; (1)
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where y is the dependent variable, x is the explanatory variable, � is the vector
of parameters of the model and 	.y; �/ D ��1.x; �/ has a known expression,
but a mathematical expression of �.x; �/ is not available. The challenge of this
situation is to find optimal experimental designs for the explanatory variable when
the expression of the function �.x; �/ is unknown. This situation is presented in
a dosimetry study which will be used as case study in this work. Firstly, the
description of the case study and a general introduction to the theory of Optimal
Experimental Design is given. In Sect. 2 the inverse function theorem is applied to
compute the information matrix. Finally, in Sect. 3 D-optimal designs are computed
and compared for the case study proposed. Moreover, arithmetic and geometric
optimal sequences, c-optimal designs and their D-effiencies are computed.

1.1 Case Study Background

The use of digital radiographs has been a turning point in dosimetry. In particular,
radiochromic films are very popular nowadays because of their near tissue equiva-
lence, weak energy dependence and high spatial resolution. In this area, calibration
is frequently used to determine the right dose. The film is irradiated at known
doses for building a calibration table, which will be used to fit a parametric model,
where the dose plays the role of the dependent variable. The nature of this model is
phenomenological since the darkness of the movie is only known qualitatively. An
adjustment is necessary to filter noise and interpolate the unknown doses.

Ramos-García and Pérez-Azorín [9] used the following procedure. The
radiochromic films were scanned twice. The first scanning was made when a
pack of films arrived and the second 24 h after being irradiated. With the two
recorded images the optical density, netOD, was calculated as the base 10 logarithm
of the ratio between the means of the pixel values before (PV0) and after (PV)
the irradiation. They used patterns formed by 12 squares of 4 � 4 cm2 irradiated
at different doses. This size is assumed enough to ensure the lateral electronic
equilibrium for the beam under consideration. A resolution of 72 pp, without color
correction and with 48-bit pixel depth was used for the measurements. The pixel
values were read at the center of every square. Then, the mean and standard error
were calculated. The authors assumed independent and normally distributed errors
with constant variance as well as we do in this paper.

To adjust the results to the calibration table the following model was used:

netOD D �.D; �/C ";

where D is the dose and the error " will be assumed normally distributed with mean
zero and constant variance, �2. The expression of the function �.D; �/ is unknown
but the mathematical expression of the inverse is known

��1.D; �/ D 	.netOD; �/ D ˛ netOD C ˇ netOD
 ; D 2 Œ0;B�; (2)
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where � D .˛; ˇ; 
/T are unknown parameters to be estimated using maximum
likelihood (MLE).

1.2 Optimal Experimental Design: General Background

Let a general nonlinear regression model be given by Equation (1). An exact
experimental design of size n consists of a planned collection of points xi; i D
1; : : : ; n, in a given compact design space, X . Some of these points may be repeated
and a probability measure can be defined assigning to each different point the
proportion of times it appears in the design. This leads to the idea of extending the
definition of experimental design to any probability measure (approximate design).
It can be seen that, from the optimal experimental design viewpoint, we can restrict
the search to finite designs of the type

� D
�

x1 x2 : : : xk

p1 p2 : : : pk

�
;

where xi; i D 1; : : : ; k are the support points and �.xi/ D pi is the proportion of
experiments made at point xi. Thus, pi � 0 and

Pk
iD1 pi D 1.

For the exponential family of distributions the Fisher Information Matrix (FIM)
of a design � is given by

M.�; �/ D
X
x��

I.x; �/�.x/; (3)

where I.x; �/ D @�.x;�/
@�

@�.x;�/
@�T is the FIM at a particular point x. If the model is

nonlinear, in the sense that function �.x; �/ is nonlinear in the parameters, the FIM
depends on the parameters and nominal values for them have to be provided.

It can be proved that the inverse of this matrix is asymptotically proportional
to the covariance matrix of the parameter estimators. An optimal design criterion
aims to minimize the covariance matrix in some sense and therefore the inverse
of the information matrix, ˚ŒM.�; �/�. For simplicity ˚.�/ will be used instead
of ˚ŒM.�; �/�. In this paper two popular criteria will be used, D-optimality and
c-optimality. The D-optimality criterion minimizes the volume of the confidence
ellipsoid of the parameters and is given by ˚D.�/ D det M�1=m.�; �/, where m
is the number of parameters in the model. The c-optimality criterion is used to
estimate a linear combination of the parameters, say cT� , and is defined by ˚c.�/ D
cTM�.�; �/c. The superscript “�” stands for the generalized inverse class of the
matrix. Although the generalized inverse is unique only for nonsingular matrices the
value of cTM.�; �/�c is constant for any representative of the generalized inverse
class if and only if cT� is estimable with the design. These criterion functions are
convex and non-increasing. A design that minimizes one of these functions ˚ over
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all the designs defined on X is called a ˚-optimal design, or more specifically, a
D- or c-optimal design. It is worth to mention here that c-optimality raises important
difficulties in nonlinear models when the optimal matrix is singular. In particular the
actual covariance matrix may be different from the one predicted ([8], chap. 5).

The goodness of a design is measured by its efficiency, defined by

eff˚.�/ D ˚.��/
˚.�/

:

In order to check whether a particular design is optimal or not there is a celebrated
equivalence theorem [4] for approximate designs and convex criteria. This theorem
consists in verifying that the directional derivative is non–negative in all directions.
More details on the theory of optimal experimental designs may be found, e.g., at
[3, 7] or [1].

2 Inverse Function Theorem for Computing the FIM

In the general theory, the experiments are designed for the explanatory variable, x,
assumed under the control of the experimenter. In the case studied in this work,
the function �.x; �/ is unknown but we know 	.y; �/ D ��1.x; �/. Therefore the
FIM should be defined in terms of y instead of x. The FIM is then given by (3), in
particular, for one point the FIM is

I.x; �/ D @�.x; �/

@�

@�.x; �/

@�T
:

We can calculate the FIM in terms of the response variable y through the inverse
function theorem. Differentiating the equation

x D 	.y; �/ D 	Œ�.x; �/; ��;

we obtain

0 D
�
@	.y; �/

@y

�
yD�.x;�/

@�.x; �/

@�
C
�
@	.y; �/

@�

�
yD�.x;�/

:

Then

@�.x; �/

@�
D �

�
@	.y; �/

@y

��1

yD�.x;�/

�
@	.y; �/

@�

�
yD�.x;�/

: (4)

Using this result the FIM can be computed and therefore optimal designs on the
explanatory variable may be obtained. This is the same model to be used for design
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when the variable y is heteroscedastic instead of homoscedastic with a sensitivity
function (inverse of the variance),ˇ̌̌̌

ˇ
�
@	.y; �/

@y

��1

yD�.x;�/

ˇ̌̌̌
ˇ :

This makes sense since assuming the response is a trend model plus some error
with constant variance implies a trend model for x, which is the inverse of the
original trend model plus an error with a non-constant variance coming from the
transformation of the model.

3 Optimal Designs for the Case Study

In this section, the model proposed by the case study is considered. In this model,
function �.D; �/ is unknown but ��1.D; �/ D 	.netOD; �/ is known and defined
by Equation (2). Computing the regressors vector with (4),

@�.D; �/

@�
D
24 1

˛0 C ˇ0
0netOD
0�1

0@ netOD
netOD
0

ˇ0netOD
0 log.netOD/

1A35
netODD�.D;�/

;

where ˛0; ˇ0; 
0 are some nominal values assumed for the parameters to compute
the optimal design. Thus, the FIM for a design � is

M.�I �0/ D
X

i

�.Di/I.DiI �0/;

where �T
0 D .˛0; ˇ0; 
0/ and

I.DI �0/ D @�.D; �/

@�

@�.D; �/

@�T
: (5)

Now, the function of the original model, �.D; �/, needs to be plugged into these
formulas instead of netOD, but it cannot be inverted analytically. Using the results
of [9], the design space will be XD D Œ0;B� D Œ0; 972� and the following nominal
values for the parameters will be considered: ˛0 D 690; ˇ0 D 1550; 
0 D 2. For
these values the inverse function will be computed numerically when needed.

Assuming the D-optimal design is a three–point design, it should have equal
weights at all of them. Since D-optimality is invariant for reparametrizations, the
D-optimal design is computed for variable netOD using matrix (5). Computing the
determinant of the information matrix for an equally weighted design, �netOD D
fnetOD1; netOD2; netOD3g, and minimizing ˚D.�netOD/ for values of netOD1,
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netOD2 and netOD3 in the interval XnetOD D Œ0; b� D Œ0; 0:6� the following
design is obtained: �netOD D f0:091; 0:348; 0:6g : The equivalence theorem states
numerically that this design is actually D-optimal.

Transforming the three points through the equation model	.netOD; �/, with the
previous nominal values of the parameters, D D 690netOD C 1550netOD2; the
optimal design on D is �D D f75:6; 427:8; 972g :

Now a design for netOD will be computed in the usual way for the function
	.netOD; �/. This is the optimal design for a wrong MLE from the explicit inverse
model. Then this design will be compared with the right one checking the loss of
efficiency. We will consider netOD as the explanatory variable and after computing
the optimal design for netOD, we will invert it to compute the design for D. That is,
we consider 	.netOD; �/ as the function of the original model. Using the previous
nominal values the design space is then XnetOD D Œ0; 0:6�, and the D-optimal design
is obtained in a similar way as above, �I

netOD D f0:137; 0:409; 0:6g :
The equivalence theorem states numerically that this design is actually D-

optimal. At this point a design for the response, D, can be obtained by trans-
forming the design points again using the equation model 	.netOD; �/, �I

D D
f123:4; 541:0; 972g :

Apparently the design is quite different, e.g. the first points, 75.6 and 123.4, are
quite different. But the efficiency of this design with respect to the optimal one, �D,
is rather high,

effD.�
I
D/ D

�
˚D.�D/

˚D.�
I
D/

� 1
3 D 0:924:

Usually experimenters do not like extremal designs with a few different points
(three in this case). Before obtaining the data there is always a reasonable doubt
about the right model to be used and therefore more different points provide more
safety (frequently just subjective). In practice, it is common to find designs dis-
tributing the points equidistantly (arithmetic sequence) or with geometric decreasing
or increasing distances. This is usually made in a reasonable way taking into
account the experience and intuition of the experimenter, but sometimes they can
be far from optimal among the different possibilities. López Fidalgo and Wong
[6] optimized different types of sequences according to D-optimality, including
arithmetic, geometric, harmonic and an arithmetic inverse of the trend model. In the
example considered in this paper we knew by personal communication that there
was particular interest in arithmetic sequences. Optimal sequences of ten points are
considered for both variables, netOD and D.

Table 1 shows the equally weighted optimal sequence designs, including the
fixed equidistant designs with the corresponding D-efficiencies. Subscripts stand
for the variable in which the sequence is computed (A = arithmetic, G = geometric
and E = equidistant). The last point is always the upper extreme of the design space.

The geometric sequence is quite efficient while the equidistant sequence is by far
the worst design.
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Table 1 Suboptimal designs according to different patterns and efficiencies (last point, 975, is
omitted)

Design points D-eff (%)

�A
netOD 49.0 107.3 176.6 257.1 348.5 451.1 564.7 689.4 825.1 78.1

�A
D 57.2 158.8 260.5 362.1 463.7 565.4 667. 768.7 870.3 75.5

�G
netOD 55.6 73.3 97.2 130.2 176.3 241.4 334.9 471. 671.8 76.9

�G
D 52.9 73.1 101.1 139.7 193.0 266.7 368.5 509.1 703.4 77.8

�E
netOD 0.0 52.8 119.5 200.0 294.2 402.2 524 659.5 808.8 71.1

�E
D 0 108 216 324 432 540 648 756 864 64.9

Table 2 c-efficiencies (%) of
the D-optimal design for
estimating each parameter


 56.7

˛ 42.4

ˇ 65.2

Table 3 Efficiencies (%) of the optimal designs with respect to the nominal value of 



 �D �˛D �
ˇ
D �



D �A

netOD �A
D �G

netOD �G
D

1.8 99.5 95.5 99.6 98.2 98.6 99.2 98.9 98.9

2.2 99.4 95.6 99.5 98.0 99.7 99.3 98.8 98.9

In the example considered here, there is special interest in accurately estimating
the parameter 
 . Elfving’s method [2] is a graphical procedure for calculating c-
optimal designs. Although the method can be applied to any number of parameters
it is not used directly for more than two parameters. López-Fidalgo and Rodríguez-
Díaz [5] proposed a computational procedure for finding c-optimal designs using
Elfving’s method for more than two dimensions.

The c-optimal designs to estimate each of the parameters of the model are

�˛D D
�
46:25 439:36 972

0:742 0:186 0:0717

�
; �

ˇ
D D

�
170:7 972

0:622 0:378

�
;

�


D D

�
46:25 439:36 972

0:476 0:359 0:165

�
:

Table 2 shows the c-efficiencies of the D-optimal design for estimating each
parameter. These efficiencies are low, specifically the c
 -efficiency is lower than
60 %. The c�optimal design for ˇ is a singular two–point one.

Table 3 displays the efficiencies of the different designs computed with respect
the misspecification of parameter 
 . This parameter can be considered as the most
important parameter. Its nominal value is 
0 D 2. The sensitivity analysis has
been performed considering a deviation of ˙10% from this value. The efficiencies
from Table 3 show that the optimal designs are rather robust with respect to the
misspecification of this parameter.
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4 Concluding Remarks

This work deals with the problem of a model where the function is given in implicit
form. In this case the FIM could not be computed in the usual way because the
expression of the function of the model is unknown. Using the inverse function
theorem, the FIM can be obtained and the D-optimal design may be computed. The
D-optimal design was also determined directly on the dependent variable and then
it was transformed into a design on the explanatory variable. This design displayed
a moderate loss of efficiency when compared with the right one in this particular
case.

Dependent errors or other distribution for them can be treated as well and it is
one the future research lines.

Since three–point designs may be not acceptable from a practical point of view,
ten different points were forced to be in the design restricting them to follow
a regular sequence. In particular, arithmetic, geometric and inverse (through the
trend model) sequences were considered. All of them were more efficient than
the sequence used by the researchers. The geometric sequence achived the highest
efficiency.

Finally, c-optimal designs for estimating the parameters of the model were
computed. The c-efficiencies of the D-optimal design were lower than 70 % and
specifically the c
 -efficiency was lower than 60 %.
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Optimum Experiments with Sets of Treatment
Combinations

Anthony C. Atkinson

Abstract Response surface designs are investigated in which points in the design
region corresponds to single observations at each of s distinct settings of the
explanatory variables. An extension of the “General Equivalence Theorem” for
D-optimum designs is provided for experiments with such sets of treatment
combinations. The motivation was an experiment in deep-brain therapy in which
each patient receives a set of eight distinct treatment combinations and provides a
response to each. The experimental region contains sixteen different sets of eight
treatments.

1 Introduction

The scientific motivation is an experiment in deep-brain therapy in which each
patient receives a set of eight treatment combinations and provides a response to
each. The structure of such experiments is more easily seen in a response surface
setting where each choice of an experimental setting provides a response at each of s
distinct settings of the explanatory variables. Throughout the focus is on D-optimum
designs for homoskedastic linear models.

The paper starts in Sect. 2 with numerical investigation of designs for a first-order
model with two continuous explanatory variables. The numerical results suggest an
extension of the “General Equivalence Theorem” of [9] which is presented in Sect. 3
along with references to related results. Some discussion of numerical algorithms is
in Sect. 4. The paper concludes in Sect. 5 with consideration of extensions including
that to Generalized Linear Models and a discussion of experimental design in the
motivating medical example.
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2 A Simple Response Surface Example

The simple response surface model in two variables is

yi D ˇ0 C ˇ1x1i C ˇ2x2i C ˇ12x1ix2i C �i; (1)

where the independent errors �i have constant variance �2 and the design region X
is the unit square Œ�1; 1�2. Estimation of ˇ is by least squares.

As is standard in the theory of optimum experimental design, an experimental
design � places a fraction wi of the experimental trials at the conditions xi. A design
with n points of support is written as

� D
�

x1 x2 : : : xn

w1 w2 : : :wn

�
; (2)

where wi > 0 and
Pn

iD1 wi D 1. Any realisable experimental design for a total of
N trials will require that the weights are ratios of integers, that is wi D ri=N, where
ri is the number of replicates at condition xi. The mathematics of finding optimal
experimental designs and demonstrating their properties is greatly simplified, as in
this paper, by the consideration of continuous designs in which the integer restriction
is ignored.

In general, the linear model (1) is written

yi D ˇT f .xi/C �i: (3)

The parameter vector ˇ is p � 1, with f .xi/ a known function of the explanatory
variables xi.

The information matrix for the design � with n support points is written

M.�/ D
nX

iD1
wif .xi/f .xi/

T D FTWF; (4)

where F is the n � p extended design matrix, with ith row f T.xi/ and W is a diagonal
matrix of weights.

D-optimum designs, minimizing the generalized variance of the estimates of ˇ,
maximize the determinant jFTWFj over the design region X through choice of the
optimum design ��. For the two variable model (1) the D-optimum design is the 22

factorial with support at the corners of X , so that wi D 0:25; .i D 1; : : : ; 4/.
That this design is D-optimum can be shown by use of the “general equivalence

theorem” for D-optimality [9] which provides conditions for the optimality of a
design � which depend on the sensitivity function

d.x; �/ D f T.x/M�1.�/f .x/: (5)
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Table 1 D-optimum design for two variable model with sets of two points

Obs. Set x1 x2 wi wSET
i d.xi/ dAVE.xi/

1 1 �1:0 �1:0 0:125 0:25 4:42 4:00

2 1 �0:9 �0:9 0:125 0:25 3:58 4:00

3 2 1:0 �0:9 0:125 0:25 4:44 4:00

4 2 0:9 �0:8 0:125 0:25 3:56 4:00

5 3 �0:7 1:0 0:125 0:25 3:96 4:00

6 3 �0:9 0:8 0:125 0:25 4:04 4:00

7 4 1:0 0:9 0:125 0:25 4:69 4:00

8 4 0:8 0:8 0:125 0:25 3:31 4:00

9 5 0:3 0:3 0:0 0:0 1:22 1:16

10 5 0:2 0:2 0:0 0:0 1:09 1:16

11 6 0:4 �0:4 0:0 0:0 1:43 1:31

12 6 0:4 �0:1 0:0 0:0 1:19 1:31

For the optimum design Nd.x; ��/, the maximum value of the sensitivity function over
X , equals p, the number of parameters in the linear predictor. These values occur
at the points of support of the design xi. For the 22 factorial it is straightforward to
show that these maximum values are four.

Instead of single observations, now suppose that the experimental design consists
of the choice of pairs of experimental conditions. An example is in Table 1. There
are twelve observations, grouped into the six sets in column 2. The design problem
is to find the six weights for these sets that give the D-optimum design.

The structure of the design is exhibited in Fig. 1. The black dots are close to the
four design points of the 22 factorial, optimum for single observations. The four
crosses, combined with the conditions at their nearest dot, form the first four sets
in the table. The remaining two sets of points, represented by open circles, have
been chosen to be at conditions close to the centre points typically used in response
surface work for model checking.

The observation numbers are in the first column of Table 1, with the membership
of the sets of two observations in column 2. Columns 3 and 4 give the values of the
two explanatory variables. The D-optimum weights at the 12 points of potential
observation are given in the fifth column of the table, with the weights for the
sets in column six. The design, like the design for individual observations, has
four points of support, the last two sets having zero weight. The weights for the
four sets included in the design are 0.25, as they are for the 22 factorial for single
observations.

The most interesting results are the values of the sensitivity functions in the
last two columns of the table. There are four parameters in the model, so the D-
optimum design for individual observations had a value of four for the sensitivity
function at the points of the optimum design. Here, for three of the first four sets,
the near optimum point had a value slightly greater than four, with the related point,
represented by a cross, having a value slightly less than four. The implication is, if it
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Fig. 1 Sets of points: the black circles are close to or at the support points of the 22 factorial, with
the nearby X the second in each set of observations. The unfilled circles denote two further pairs
of points

were possible, that the ‘crosses’ should be moved closer to the ‘dots’. The exception
is set three, where both values of the sensitivity function are close to four since the
‘dot’ and the ‘cross’ are a similar distance from the support point of the 22 factorial.
The values of the sensitivity functions for the other two sets are not much above
one, an indication that readings close to the centre point are not informative about
parameters other than ˇ0.

The last column gives the average values of the sensitivity functions for each set.
These are exactly four for the four sets which are included in the optimum design.
The implications for a generalization of the equivalence theorem are considered in
the next section.

3 Equivalence Theorem

The numerical results for designs with sets of points suggest that an equivalence
theorem applies that is an extension of that for individual observations.
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Some notation is needed. Let Si denote the ith set of observations, taken at points
xi1; xi2; : : : ; xis and let

dAVE.i; �/ D
X
j2Si

d.xij; �/=s: (6)

Further, let NdAVE.�/ be the maximum over X of dAVE.i; �/.
Then the Equivalence Theorem states the equivalence of the following three

conditions on ��:

1. The design �� maximizes jM.�/j;
2. The design �� minimizes NdAVE.�/;
3. The value of NdAVE.�

�/ D p, this maximum occurring at the points of support of
the design.

As a consequence of 3, we obtain the further condition:

4. For any non-optimum design the value of NdAVE.�/ > p:

The proof of this theorem follows from the additive nature of the information matrix.
Standard proofs of the equivalence theorem, such as those in [10, §5.2] and [7,
§2.4.2] depend on the directional derivative at a point in X . Here, with the extension
to a set of observations, the directional derivative is the sum of the derivatives for
the individual observations.

The result also follows immediately by considering the s observations in each
set as a single multivariate observation. In the customary multivariate experiment,
observation i consists of measurements of s different responses taken at the point
xi. Here the same response is measured at the set of s conditions defined by Si.
However, standard results such as those in Theorem 1 and the first line of Table 1
of [4] not only prove the equivalence theorem but show how to handle correlation
between observations in the same set.

The assumption in this paper is that all sets contain the same number, s, of design
points. With sets containing different numbers of observations, standardization by
the number of design points allows comparison of the efficiency of individual points
in a set, as in Table 1. However, this aspect of optimality is not always the major
concern.

In a pharmacokinetic experiment described by [7, §7.3.1] interest is in the effect
of sampling at fewer than the total possible number of time points, in their case
16. Dropping a few non-optimal design points will move the normalized design �16
towards optimality. But the variances of the parameter estimates from fewer than
16 observations will be increased. The question is by how much? Standardization
by the number of sampling points is then appropriate. In this example, an eight-
point design leads to only a slight increase in the variances of virtually all of
the parameter estimates and results in reduced sampling costs. Such costs can
be introduced explicitly; [6] formulated optimum design criteria when costs are
included in experiments with individual observations. Fedorov and Leonov [7,
Chapter 7] presents several pharmacokinetic applications.



24 A.C. Atkinson

4 Algorithms

Numerical algorithms are essential for the construction of any but the simplest opti-
mum designs. Much of the discussion in the literature, for example [7, Chapter 3],
stresses the desirability of using algorithms that take account of the specific structure
of optimum designs. However, the design for this paper was found using a general
purpose numerical algorithm.

There are often two sets of constraints in the maximization problem of finding an
optimum design. The first is on the design weights which must be non-negative and
sum to one. The other is on the design points, which must be within X . However,
in the design of this paper, X contained six specified pairs of potential support
points, so that only the weights had to be found. Atkinson et al. [3, §9.5] suggest
search over an unconstrained space 
 , using a transformation to polar co-ordinates
to calculate weights wi that satisfy the required constraints. Here use was made of a
simpler approach.

The search variables are  i. Taking

wi D  2i =

nX
iD1

 2j (7)

provides weights that satisfy the required constraints. Of course, the wi are in n � 1

dimensions, so that (7) is not unique; the same weights are obtained when all  i are
replaced by a i; .a ¤ 0/:

A related transformation takes advantage of the upper and lower constraints on
variables in the R function optim. Now let

wi D  i=

nX
iD1

 j (8)

with 0 �  j � 1, which again provides weights that satisfy the constraints. As
before, the weights are not a unique function of  .

Comparisons for a small number of design problems, including generalized
linear models, did not reveal situations in which the Quasi-Newton BGFS algorithm
in optim had difficulty in converging. However, convergence with the weights (8)
was always better than that with (7).

5 Extensions

There are several ways in which the results of this paper on sets of observations can
be extended, for example through the use of other criteria of design optimality. A
straightforward extension is to generalized linear models, where the design criteria
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are weighted versions of those for regression. Some examples for logistic regression
are given by [2] who includes plots of the design in the induced design region [8].
See [5] for a survey of recent results in designs for such models with individual
observations.

However, the most important application may well be in simplifying the study of
optimum designs in the medical experiment in deep-brain therapy that provided
motivation for this paper. In this experiment there are two factors, stimulation
at three levels and conditions at four levels. There are thus twelve treatment
combinations. However, for safety reasons, it is not possible to expose each
patient to all twelve. Instead, it was proposed to take measurements at only eight
combinations; sixteen such sets were chosen. The design region thus contained
sixteen distinct points, each of which would give a set of eight measurements from
one patient.

A design question is, which of the sixteen sets should be used and in what
proportions? Since the linear model for the factors contains only six parameters,
it is unlikely that all sixteen points in the design region need to be included in the
experiment. Even if an optimum design satisfying the equivalence theorem does
include all sixteen, it may not be unique; there may be optimum designs requiring
fewer distinct design points of which the sixteen-point design is a convex linear
combination.

The equivalence theorem also provides a method of treatment allocation in
clinical trials in which patients arrive sequentially. In the experiment in deep-brain
therapy there is a prognostic factor, initial severity of the disease. The effect of this
variable is not the focus of the trial, so that it would be considered a nuisance factor.
Sequential construction of the DS-optimum design for the treatment effects would
aim for balance over the prognostic factor and lead to the most efficient inference
about the treatments. However, such deterministic allocation rules are unacceptable
in clinical trials, where they may lead to selection bias. A randomized rule based on
D-optimality, such as those described by [1], should instead be used.

For such data, the assumption of independent errors might with advantage be
replaced by a linear mixed model, as described in [11], that allows for correlation
between observations from individual patients. Recent references on optimum
design for such models can be found in [7, Chapter 7].
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Design Keys for Multiphase Experiments

R.A. Bailey

Abstract Desmond Patterson introduced the design key in 1965 in the context
of rotation experiments in agriculture. When there are many factors involved, the
design key gives an algorithm for constructing the design and for keeping track of
confounding. Here I extend the idea to multiphase experiments, using one design
key for each phase.

1 Experiments with a Single Phase

In [12], Patterson introduced the design key as an aid to the design and evaluation of
experiments in crop rotation. In such experiments, the set � of treatments and the set
˝ of experimental units both have complicated factorial structure. The design key
provides, first, an algorithm for constructing the design and, secondly, an algorithm
for identifying the confounding of factorial treatment effects with factorial effects
of experimental units.

In the simplest case, every factor has p levels, where p is prime. The levels
are identified with the integers modulo p. Factors on the same set are combined
in the way introduced by Fisher in [7], except that additive notation is used. As
explained in [5, Chapter 1], there is a set F of treatment factors, giving one potential
treatment for each combination of levels of the factors in F . Similarly, there is one
experimental unit for each combination of levels of the unit factors in set G .

Each treatment factor F is converted by the design key ˚ to a factor ˚.F/ on the
experimental units, which is a linear combination of the factors in G , the coefficients
being in Zp. For example, if G D fG1; : : : ;Gmg then there are elements ˇ1, . . . , ˇm

of Zp such that ˚.F/ D ˇ1G1 C � � �CˇmGm. Denote by Gi.!/ the level of factor Gi

on experimental unit !. The design key ˚ specifies that the level of treatment factor
F on ! is ˇ1G1.!/C � � � C ˇmGm.!/. Applying this rule to all treatment factors in
F gives the complete description of the treatment allocated to experimental unit !.
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Example 1 (Graeco-Latin square) The experimental units form a 5�5 square array
of plots defined by two five-level factors, Rows and Columns, which are abbreviated
to R and C. The 25 treatments are all combinations of levels of two other five-
level factors, Variety of Wheat (W) and Quantity of Nitrogen (N). The convention
is that each factor is represented by a single letter, and that these letters are all
different.

The constraints on the design are that all combinations of levels of W and N
should occur, and that W and N should both be orthogonal to both Rows and
Columns. We use the design key ˚ , where ˚.W/ D R C C and ˚.N/ D R C 2C.
Figure 1 shows how the plots are identified by the levels of R and C, how these
levels are combined to give W.!/ D R.!/ C C.!/, shown as the first entry
on each plot, and N.!/ D R.!/ C 2C.!/, shown as the second entry on each
plot.

The second use of the design key is to identify confounding. Each non-zero
linear combination of factors in F corresponds to p � 1 degrees of freedom (df)
for contrasts among treatments, all for the same treatment effect: see [7]. Moreover,
if one linear combination is a non-zero multiple of another, then they correspond
to the same df; otherwise, the corresponding sets of contrasts are orthogonal to
each other. When the experimental units have a poset block structure defined by the
factors in G , there is a similar result: each non-zero linear combination of factors
in G corresponds to p � 1 df in the same stratum: see [1]. In Example 1, R gives
4 df for Rows, C gives 4 df for Columns, and the 16 df for the Rows-by-Columns
interaction can be grouped into four orthogonal sets of four, one set corresponding
to each of the linear combinations R C C, R C 2C, R C 3C and R C 4C. The 24 df
for treatment contrasts are broken down similarly, using linear combinations of W
and N.

Suppose that F D fF1; : : : ;Fng. Because all addition is done modulo p,
˚ becomes a homomorphism from a group of order pn to a group of order pm.
Thus if ˛1F1 C � � � C ˛nFn is any linear combination of treatment factors then

˚.˛1F1 C � � � C ˛nFn/ D ˛1˚.F1/C � � � C ˛n˚.Fn/:

The design key method ensures that the p � 1 treatment df corresponding to the
linear combination ˛1F1 C � � � C ˛nFn are completely confounded with the p � 1 df
for experimental units given by ˛1˚.F1/C � � � C ˛n˚.Fn/.

Fig. 1 Graeco-Latin square
given by ˚.W/ D R C C and
˚.N/ D R C 2C; the first
entry on each plot is the level
of W, the second is the level
of N

C
R 0 1 2 3 4

0 0, 0 1, 2 2, 4 3, 1 4, 3
1 1, 1 2, 3 3, 0 4, 2 0, 4
2 2, 2 3, 4 4, 1 0, 3 1, 0
3 3, 3 4, 0 0, 2 1, 4 2, 1
4 4, 4 0, 1 1, 3 2, 0 3, 2
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Table 1 Confounding in Example 1

Unit Unit Treatment Treatment

effect linear combination df linear combination effect

Rows R 4 W C 2N Interaction

Columns C 4 W C 4N Interaction

Rows-by-Columns R C C 4 W Wheat-variety main

R C 2C 4 N Quantity-of-nitrogen main

R C 3C 4 W C 3N Interaction

R C 4C 4 W C N Interaction

In Example 1, ˚.W/ and ˚.N/ both have non-zero coefficients of both R and
C, so the main effects of W and N are completely confounded with orthogonal
parts of the Rows-by-Columns interaction. For part of the Wheat-by-Nitrogen
interaction,

˚.W C 2N/ D ˚.W/C 2˚.N/ D R C C C 2.R C 2C/ D 3R � R;

so these four df are totally confounded with the main effect of Rows. Here we
write “�” to mean “represents the same contrasts as”. The confounding is shown in
full in Table 1, where horizontal lines indicate the decomposition into factorial unit
effects.

If a factor has pr levels, where r � 2, then it is represented by r pseudofactors,
each with p levels. The convention is that these pseudofactors are written with the
same single letter and subscripts 1, . . . , r. A further complication is that the factors
in G may not be completely crossed. To identify the factorial effect corresponding
to a linear combination of factors or pseudofactors: (i) write down all the letters
which occur, ignoring subscripts; (ii) if factor C is nested in factor D and letter C
occurs then include letter D; (iii) remove any duplicate letters. The set of letters
remaining gives the factorial effect (different authors have different conventions for
punctuating this, such as CD or CŒD�).

Example 2 (Factorial design in blocks) There are four 2-level treatment factors: S,
T, U and V . The 16 experimental units are arranged in four blocks of four plots
each, so there are pseudofactors B1 and B2 for blocks and P1 and P2 for plots within
blocks. We want a design in which all treatment main effects, and as many treatment
two-factor interactions as possible, are orthogonal to blocks. This can be achieved
with the design key ˚ , where

˚.S/ D P1; ˚.T/ D P2; ˚.U/ D B1 C P1 C P2; ˚.V/ D B2 C P1 C P2:

This gives the design in Fig. 2.
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Fig. 2 Factorial design in
incomplete blocks given by
˚.S/ D P1, ˚.T/ D P2,
˚.U/ D B1 C P1 C P2 and
˚.V/ D B2 C P1 C P2

Block 1 Block 2 Block 3 Block 4
B1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
P1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
P2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
S 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
T 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
U 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
V 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

Now ˚.S C T C U/ D B1, ˚.S C T C V/ D B2 and ˚.U C V/ D B1 C B2, so
the treatment interactions S#T#U, S#T#V and U#V are confounded with Blocks
while all the other treatment factorial effects are confounded with Plots within
Blocks.

More information about design keys for experiments with a single phase can
be found in [5, 6, 8, 10, 12, 14]. As these references show, experience with both
design of experiments and use of the design key is needed in order to choose a
suitable design key. Alternatively, the software planor [9] described in [11] may be
used.

2 Two-Phase Experiments

In the first phase of a two-phase experiment, the treatments in � are allocated to
the experimental units in ˝1. In the second phase, produce from each unit in ˝1

is allocated to one or more units in ˝2, which is the set of experimental units for
that phase. Typically, responses are measured on each unit of ˝2, but not on units
of ˝1.

We assume that elements of � , ˝1 and ˝2 are defined by sets F , G1 and G2 of
factors or pseudofactors, each with p levels, in addition to any nesting relationships
between factors on the same set. Each set of factors, with its nesting relationships,
can be shown on a panel diagram like those introduced in [3].

Suppose that a design key ˚ is used to allocate treatments to units in the first
phase, and a design key 
 is used to allocate first-phase units to second-phase units.
Then the composite function
ı˚ becomes a design key between� and˝2, and the
confounding rules already given make it surprisingly easy to find the confounding
between factorial effects of treatments and those of experimental units in each phase.
In turn, this shows how to decompose the ANOVA table as described in [4]. If both
˝1 and˝2 give random effects with spectral components of variance defined by the
randomization, as in [2], then the skeleton ANOVA table can be expanded to show
expected mean squares, which are helpful for evaluating the design.

Example 3 (Proteomics) In a proteomics experiment described by Kathy Ruggiero
of the University of Auckland, � consists of all combinations of two Interventions
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with two types of Tissue. The first phase uses eight Cages of two Animals each.
Interventions must be allocated to whole cages. After these have been given time to
take effect, two body Positions are selected within each animal, and a tissue of each
type extracted, one per position.

In the second phase, two samples from each tissue are analysed in the laboratory.
Eight samples are processed in each of eight Runs of the machine. In each run, the
samples are identified by eight different coloured dyes, which we here call Labels.
Figure 3 shows the three panel diagrams.

The factors and pseudofactors, all with two levels, are I and T for F ; C1, C2, C3,
A and P for G1; and R1, R2, R3, L1, L2 and L3 for G2. There is no loss of generality
in putting ˚.I/ D C1. Amongst the normalized treatment effects, the main effect
of I probably has the biggest variance in the first phase, so we should confound C1
with the lowest-variance effect in the second phase, which is probably the Runs-
by-Labels interaction. To avoid losing df for the relevant residual for I, we should
also confound C2 and C3 with this interaction. Thus we put 
.Ci/ D Ri C Li for
i D 1, 2, 3. Then 
.˚.I// D R1 C L1. Finally, we would like Tissues and the
Interventions-by-Tissues interaction to be orthogonal to both Runs and Labels. This
can be achieved by putting 
.A/ D R1, 
.P/ D L2 and ˚.T/ D C3 C P. Then
˚.I C T/ D C1 C C3 C P, 
.˚.T// D R3 C L2 C L3 and 
.˚.I C T// D R1 C
R3 C L1 C L2 C L3.

The skeleton ANOVA is in Table 2. Here Animals[C]1 denotes the single df for
A, which is confounded with R1. The single df for C1 C A is also part of the effect

Fig. 3 Panel diagrams in
Example 3 2 Interventions

2 Tissues

8 Cages

2 Animals in C

2 Positions in A, C

8 Runs

8 Labels

Table 2 Skeleton analysis of variance in Example 3

Lab units Animal-bits Treatments

Source df Source df Source df EMS

Runs 7 Animals[C]1 1 �R C 2�CA

Positions[A,C]1 2 �R C 2�CAP

Residual 4 �R

Labels 7 Animals[C]2 1 �L C 2�CA

Positions[A,C]2 2 �L C 2�CAP

Residual 4 �L

R#L 49 Cages 7 Interventions 1 �RL C 2�C C q.I/

Residual 6 �RL C 2�C

Animals[C]3 6 �RL C 2�CA

Positions[A,C]3 12 Tissues 1 �RL C 2�CAP C q.T/

I#T 1 �RL C 2�CAP C q.IT/

Residual 10 �RL C 2�CAP

Residual 24 �RL
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of Animals within Cages; it is confounded with L1 and is denoted Animals[C]2. The
remaining six df for Animals within Cages are confounded with the Runs-by-Labels
interaction and are denoted Animals[C]3. The effect of Positions within Animals and
Cages is decomposed into three pieces in a similar way.

Full horizontal lines show the decomposition into factorial effects of the second-
phase units. Each of these is further decomposed by the factorial effects of the first-
phase units, as shown by incomplete horizontal lines. For example R1 D 
.A/,
R2 D 
.C2 C P/ and R1 C R2 D 
.C2 C A C P/ while the remaining contrasts for
Runs are orthogonal to the effects of first-phase units are so are denoted Residual.
Some second-phase effects are even further decomposed by the factorial treatment
effects.

The final column shows expected mean squares (EMS). Here �R, �L and �RL

are the spectral components of variance associated with Runs, Labels and Runs-
by-Labels in ˝2, while �C, �CA and �CAP are the analogous spectral components
of variance for ˝1. Appropriate quadratic forms in the fixed main effects of
Interventions and Tissues, and their interaction I#T, are shown as q.I/, q.T/ and
q.IT/.

Example 4 (Field then laboratory) Ruth Butler of the New Zealand Institute for
Crop and Food Research Limited discussed another example where the output
from the first phase is analysed in the laboratory. In the first phase, 27 Varieties
of cereal are grown in 81 Plots, arranged in three Rows crossed with three Columns.
In the second phase, one sample of grain is taken from each plot; the samples
are analysed in Batches of nine. Suitable factors and pseudofactors, all with three
levels, are V1, V2 and V3 for F ; R, C, P1 and P2 for G1; and B1, B2, S1 and S2 for
G2.

In the first phase, no treatment effect should be confounded with Rows or
Columns, but then at least two treatment df must be confounded with the interaction
R#C. Without loss of generality, ˚.V1/ D P1, ˚.V2/ D P2 and ˚.V3/ D
R C C.

Likewise, in the second phase, at least two treatment df must be confounded
with Batches. Table 3 shows three possible design keys for this phase, with the
corresponding skeleton ANOVA tables, which help us to assess these designs. The
notation is similar to that in Table 2, and V ` V3 means all variety effects orthogonal
to V3.

There can never be more than two residual df to compare the effect of V3 with.
The first design key gives a larger EMS for this residual. In the other two designs,
V1 also has few residual df, both with the same EMS. There are more residual df for
V1 in the last design, so this should be preferred.
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Table 3 Three possible designs keys, with consequent skeleton ANOVA tables, in Example 4

Design key Skeleton ANOVA table


.R/ D B1

.C/ D B2

.P1/ D S1

.P2/ D S2

Samples Plots Varieties

Source df Source df Source df EMS

Batches 8 Rows 2 �B C �R

Columns 2 �B C �C

R#C 4 V3 2 �B C �RC C q.V3/

Residual 2 �B C �RC

Samples[B] 72 Plots[R,C] 72 V ` V3 24 �BS C �RCP C q.V ` V3/

Residual 48 �BS C �RCP


.R/ D B1

.C/ D S1

.P1/ D B2

.P2/ D S2

Samples Plots Varieties

Source df Source df Source df EMS

Batches 8 Rows 2 �B C �R

Plots[R,C]1 6 V1 2 �B C �RCP C q.V1/

Residual 4 �B C �RCP

Samples[B] 72 Columns 2 �BS C �C

R#C 4 V3 2 �BS C �RC C q.V3/

Residual 2 �BS C �RC

Plots[R,C]2 66 V ` V1 ` V3 22 �BS C �RCP C q.V ` V1 ` V3/

Residual 44 �BS C �RCP


.R/ D
B1 C S2


.C/ D S1

.P1/ D B2

.P2/ D S2

Samples Plots Varieties

Source df Source df Source df EMS

Batches 8 Plots[R,C]1 8 V1 2 �B C �RCP C q.V1/

Residual 6 �B C �RCP

Samples[B] 72 Rows 2 �BS C �R

Columns 2 �BS C �C

R#C 4 V3 2 �BS C �RC C q.V3/

Residual 2 �BS C �RC

Plots[R,C]2 64 V ` V1 ` V3 22 �BS C �RCP C q.V ` V1 ` V3/

Residual 42 �BS C �RCP

3 Generalizations

One possible generalization increases the number of phases. If, in each phase i,
material from the units in phase i � 1 is allocated to the new experimental units
using a design key but no further treatments are applied, then the foregoing ideas
can be applied recursively, and no new concepts are involved.

A different generalization keeps two phases but has two sets of treatments �1
and �2 defined by sets F1 and F2 of factors and pseudofactors. In the first phase,
treatments in �1 are allocated to units in˝1 by a design key ˚ . In the second phase,
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not only is produce from units in˝1 allocated to units in˝2 by a design key 
 , but
treatments in �2 are also allocated to units in˝2 by a design key�. Then treatment
effects from �1 and �2 may be either totally confounded or orthogonal, depending
on their confounding with effects of second-phase units, and it is also possible to
identify interactions between �1 and �2.

The third generalization permits more than one prime to be involved. Unlike [13],
we split each design key into separate keys, one for each prime, so that the algorithm
for identifying confounding in Sect. 1 still works for each prime separately. Suppose
that the primes include p1, . . . , pk. For i D 1, . . . , k, let Ti be a linear combination
of treatment factors or pseudofactors with pi levels. Then Ti belongs to an effect
defined by a subset Si of the initial letters of the genuine treatment factors. It can
be shown the

Qk
iD1.pi � 1/ degrees of freedom for the interaction between T1, . . . ,

Tk all belong to the effect defined by the subset S1 [ � � � [ Sk.

Example 5 (Potato storage) In the first phase of an experiment described in [3], all
combinations of four potato Cultivars and three Fungicides are grown in a complete-
block design with three Blocks of twelve Units each. In the second phase, potatoes
are harvested and stored on Pallets on Shelves, there being twelve pallets on each of
twelve shelves. Potatoes from each unit in the first phase are put onto four different
pallets on the same shelf, where they are stored for four different lengths of Time.
See the panel diagrams in Fig. 4.

The left-hand side of Table 4 shows one way of allocating pseudofactors to the
two primes involved. Then the design in [3] can be made with the design keys
in the right-hand side of Table 4, where the subscripts show the primes. Now

2.˚2.Ci// D Si for i D 1, 2, so Cultivars are confounded with Shelves but
orthogonal to Blocks, which are also confounded with Shelves. Also, 
3.˚3.F// D
P3 and �2.Ti/ D Pi for i D 1, 2: therefore Fungicides, Times and their interaction
are confounded with Pallets within Shelves and are also orthogonal to Blocks.
Continuing like this, the skeleton ANOVA table can easily be calculated.

4 Cultivars
3 Fungicides

3 Blocks
12 Units in B

12 Shelves
12 Pallets in S 4 Times

Fig. 4 Panel diagrams and design keys in Example 5

Table 4 Factors, pseudofactors and design keys in Example 5

Prime �1 ˝1 ˝2 �2 ˚ 
 �

2 C1, C2 U1, U2 S1, S2, P1, P2 T1, T2 ˚2.C1/ D U1 
2.U1/ D S1 �2.T1/ D P1
˚2.C2/ D U2 
2.U2/ D S2 �2.T2/ D P2

3 F B, U3 S3, P3 ˚3.F/ D U3 
3.B/ D S3

3.U3/ D P3
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On Designs for Recursive Least Squares
Residuals to Detect Alternatives

Wolfgang Bischoff

Abstract Linear regression models are checked by a lack-of-fit (LOF) test to
be sure that the model is at least approximatively true. In many practical cases
data are sampled sequentially. Such a situation appears in industrial production
when goods are produced one after the other. So it is of some interest to check
the regression model sequentially. This can be done by recursive least squares
residuals. A sequential LOF test can be based on the recursive residual partial sum
process. In this paper we state the limit of the partial sum process of a triangular
array of recursive residuals given a constant regression model when the number of
observations goes to infinity. Furthermore, we state the corresponding limit process
for local alternatives. For specific alternatives designs are determined dominating
other designs in respect of power of the sequential LOF test described above. In this
context a result is given in which e�1 plays a crucial role.

1 Introduction

In order to guarantee the quality of each delivery of contract goods, companies
take samples to decide whether the quality is or is not constant. If the goods are
sequentially produced this problem can be modelled by the regression model

Y.t/ D g.t/C �.t/; t 2 Œ0; 1�; (1)

where g is the true, but unknown mean function of the quality, �.t/ is a real
random variable with expectation 0 and variance �2 > 0, and Œ0; 1� is the period of
production. Since our results keep true when �2 is replaced by a consistent estimator
for �2 we can put �2 D 1 without loss of generality.

We consider the problem more generally. We want to test if the model (1) is a
linear model with respect to known and linearly independent functions f1; : : : ; fd; i.e.
if there exist suitable constants ˇ1; : : : ; ˇd 2 R such that g.t/ D Pd

iD1 ˇifi.t/; t 2
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Œ0; 1�. Hence, we look for a test of the null hypothesis

H0 W g D
dX

iD1
ˇifi D f >ˇ for some ˇ D .ˇ1; : : : ; ˇd/

> 2 Rd; (2)

where f > D . f1; : : : ; fd/, against the alternative that model (1) is not a linear model
with respect to f1; : : : ; fd; that is (2) is not fulfilled.

In quality control we are interested in testing

H0 W g.t/ D ˇ D 1Œ0;1�.t/ˇ; t 2 Œ0; 1�; ˇ 2 R unknown constant; (3)

where 1Œ0;1� is the function identically 1 on Œ0; 1�, against the alternative

K W g ¤ constant: (4)

Such a function g under the alternative has typically the following form:

g.t/ D ˇ for t 2 Œ0; t0�; g increasing or decreasing for t 2 .t0; 1�:

This form of g means that the quality keeps constant up to a fixed, known or
unknown change–point t0 2 .0; 1/, then the quality is getting worse or is getting
better.

In the literature on ‘detecting changes’ in regression models, it is common
to consider (recursive) residual partial sum processes or variants thereof; see for
instance, Gardner [8], Brown, Durbin and Evans [5], Sen and Srivastava [17],
MacNeill [13, 14], Sen [16], Jandhyala and MacNeill [9–11], Watson [19], Bischoff
[1], Jandhyala, Zacks and El-Shaarawi [12], Bischoff and Miller [3], Xie and
MacNeill [20], Bischoff and Somayasa [4], Bischoff and Gegg [2]. The asymptotics
of the partial sum of recursive residuals is investigated by Sen [16] only. Sen [16],
however, assumed a time series sampling for his asymptotic result. For our problem
we need a triangular array approach.

In Sect. 2 we discuss some asymptotic results for the partial sum process of
recursive least squares residuals. Assuming a constant regression model we state
such a result for a triangular array of design points on one hand if the null
hypothesis (3) is true and on the other hand under certain assumptions if a local
alternative (4) is true. With this we are in the position to establish an asymptotic
size ˛ test to test the null hypothesis (3). Furthermore, in Sect. 3, we can discuss
the power of this test for certain alternatives. There, we determine designs that have
uniformly more power than other designs. For one of the results e�1 occurs as crucial
constant.
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2 Recursive Residuals

Recursive (least squares) residuals were described in Brown et al. [5], for some
history see Farebrother [7]. Brown et al. considered recursive residuals for a linear
regression model given a time series sampling. To this end let t1 < t2 < : : : be a
sequence of (design) points (in time), let "1; "2; : : : be iid real random variables with
E."i/ D 0 and Var."i/ D 1, let n 2 N; n > d; be the number of observations where
d is the number of known regression functions. Moreover, we put

Xi D . f .t1/; : : : ; f .ti//
>; d � i � n;

where f D . f1; : : : ; fd/>. So we get n � d C 1 linear models, namely for the first i,
d � i � n, observations each

Yi D .Y1; : : : ;Yi/
> D Xiˇ C .�1; : : : ; �i/

>; d � i � n:

Let t1; : : : ; td be chosen in such a way that rank.Xd/ D d. Then, for each i � d we
estimate ˇ by the least squares estimate Ǒ

i using the first i observations Yi. Now we
can define n � d recursive residuals

ei D Yi � f .ti/> Ǒ
i�1�

1C f .ti/>.X>
i�1Xi�1/�1f .ti/

	1=2 ; i D d C 1; : : : ; n:

To state Sen’s and our result it is convenient to define the partial sum operator Tn W
Rn �! CŒ0; 1�; a D .a1; : : : ; an/

> 7! Tn.a/.z/; z 2 Œ0; 1�; where

Tn.a/.z/ D
Œnz�X
iD1

ai C .nz � Œnz�/aŒnz�C1; z 2 Œ0; 1�:

Here we used Œs� D maxfn 2 N0 j n � sg and
P0

iD1 ai D 0. Let a D
.a1; : : : ; an/

> 2 Rn; bi D a1 C : : : C ai; i D 1; : : : ; n; then the function Tn.a/.�/
is shown in Fig. 1.

By Donsker’s Theorem the stochastic process 1p
n
Tn.."1; : : : ; �n/

>/ converges
weakly to Brownian motion B for n ! 1. For recursive residuals Sen [16] proved
the following result.

Theorem 1 (Sen [16]) For the regression model given in (2) let en D
.edC1; : : : ; en/

>. If H0 given in (2) is true, then under certain assumptions

1p
n � d

Tn�d.en/.z/ converges weakly to B.z/; z 2 Œ0; 1�; for n ! 1:

Sen, however, could not determine the limit process for a local alternative.
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Fig. 1 The function Tn.a/.�/

The time series sampling approach described above cannot be applied to prob-
lems of experimental design. Instead we need the asymptotic result for a triangular
array of design points under the null hypothesis and under local alternatives. To this
end let n0 2 N, n0 > d, be the number of observations. We assume that the data are
taken at the design points 0 � tn01 � tn02 � : : : � tn0n0 � 1: These design points
can be embedded in a triangular array of design points: 0 � tn1 � tn2 � : : : �
tnn � 1; n 2 N: Furthermore, let "n1; : : : ; "nn; n 2 N; be a triangular array of real
random variables where "n1; : : : ; "nn are iid with E."ni/ D 0 and Var."ni/ D 1 for
each n 2 N. Accordingly, we get a corresponding triangular array of observations
for model (1):

Ynj D g.tnj/C �nj; 1 � j � n; n 2 N:

We put

"n
i D ."n1; : : : ; "ni/

>; d � i � n;

Xn
i D . f .tn1/; : : : ; f .tni//

>; d � i � n:

So we get n � d C1 linear models under the null hypothesis H0 given in (2), namely
for the first i, d � i � n, observations each

Yn
i D .Yn1; : : : ;Yni/

> D Xn
i ˇ C "n

i :

Let tn1; : : : ; tnd for all n � d be chosen in such a way that rank.Xn
d/ D d. Moreover,

let Ǒn
i ; d � i; be the least squares estimate for ˇ using the first i observations Yn

i .
Then the n � d recursive least squares residuals for the triangular array are defined
by

eni D Yni � f .tni/
> Ǒn

i�1�
1C f .tni/>.X>

ni�1Xni�1/�1f .tni/
	1=2 ; i D d C 1; : : : ; n:
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Assuming the constant regression model the next result states the limit of the
recursive residual partial sum process if H0, see (3), is true and if a local alternative
is true. When (3) is true, the location of the design points has no influence. So the
result is true for any triangular array of design points. If a local alternative is true,
we give the result for a uniform array of design points only to avoid further technical
notation. This result will be sufficient for our purposes below.

Theorem 2 (Master Thesis Rabovski [15] under the supervision of the author
and Frank Miller) For the constant regression model let en D .endC1; : : : ; enn/

>
be the vector of the n�d recursive residuals of a triangular array of design points.

(a) If H0 given in (3) is true, then for any triangular array of design points

1p
n � d

Tn�d.en/.z/ converges weakly to B.z/; z 2 Œ0; 1�; for n ! 1:

(b) Let g W Œ0; 1� ! R; g ¤ constant, have bounded variation and let the triangular
array of design points be given by a uniform design

tn1 D 0; tn2 D 1

n � 1
; tn3 D 2

n � 1 ; : : : ; tnn D 1; n 2 N:

Then, if the local alternative 1p
n�d

g is true,

1p
n � d

Tn�d.en/.z/ converges weakly to h.z/C B.z/; z 2 Œ0; 1�; for n ! 1;

where

h.z/ D
Z z

0

g.t/dt �
Z z

0

1

s

Z s

0

g.t/dtds; z 2 Œ0; 1�:

Theorem 2 part (a) can be used to establish an asymptotic size ˛ test of
Kolmogorov(-Smirnov) or Cramér-von Mises type. As an example we state a
one-sided test of Kolmogorov type, to detect a negative deviation h from Brownian
motion.

Theorem 3 For the constant regression model let en D .endC1; : : : ; enn/
> be the

vector of the n � d recursive residuals of an arbitrary triangular array of design
points. Then an asymptotic size ˛ test is given by

reject H0 given in (3) ” 9t 2 Œ0; 1� W 1p
n � d

Tn�d.en/.t/ < ˚�1.
˛

2
/;

where ˚�1. ˛
2
/ is the ˛=2 quantile of the standard normal distribution.
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Proof Since P.9t 2 Œ0; 1� W B.t/ < ˚�1. ˛
2
// D ˛, see, for instance, Shorack [18]

p.314, the theorem is proved.

The above test is not constructed sequentially. The test statistic 1p
n�d

Tn�d.en/.t/
can be calculated sequentially for each new recursive residual eni and so the null
hypothesis can be rejected as soon as the test statistic is less than ˚�1. ˛

2
/.

3 Designs for Detecting Alternatives

We look for designs being useful for the quality problem discussed in the introduc-
tion. Therefore we consider the constant regression model. Usually in the context of
quality control certain properties of the alternative are often known.

We begin with the alternative

gt0 .t/ D gt0Ic0;c1 .t/ D c01Œ0;t0�.t/C c11.t0;1�.t/; t 2 Œ0; 1�; (5)

where c0; c1 2 R are unknown constants and the change-point t0 2 .0; 1/ is a known
or unknown constant. We assume c0 > c1 to get a negative trend h, see Theorem 4.
(Note that Theorem 3 states a test for detecting negative trends h.) Let a triangular
array of design points be given with

q WD lim
n!1

number of ftnijtni � t0; 1 � i � ng
n

2 .0; 1/:

We call such a triangular array of design points an asymptotic q-design. The proof
of the following result is given in the next section.

Theorem 4 For a constant regression model let en D .endC1; : : : ; enn/
> be the

vector of the n�d recursive residuals of a triangular array of design points forming
an asymptotic q-design. Let the alternative gt0 given in (5) be true. Then, we have
for the local alternative 1p

n�d
gt0:

1p
n � d

Tn�d.en/.z/ converges weakly to h.z/C B.z/; z 2 Œ0; 1�; for n ! 1;

where

h.z/ D q.c1 � c0/.ln.z/ � ln.q//1.q;1�.z/; z 2 Œ0; 1�:
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For an asymptotic q-design the power of the test given in Theorem 3 with respect to
the alternative (5) is given by

P
�
9z 2 Œ0; 1� W B.z/� q.c0 � c1/.ln.z/� ln.q//1.q;1�.z/ � ˚�1.

˛

2
/
�
:

Therefore, we call an asymptotic q�-design uniformly better than an asymptotic q-
design if for all z 2 .0; 1�

� q�.ln.z/ � ln.q�//1.q�;1�.z/ � �q
�

ln.z/� ln.q/
	
1.q;1�.z/ (6)

with 0 <0 at least for one z 2 Œ0; 1�:

The proof of the following result is given in the next section.

Theorem 5 Let the situation considered in Theorem 4 be given and let q1; q2 2
Œe�1; 1/. Then an asymptotic q1-design is uniformly better than an asymptotic q2-
design, if q1 < q2.

The author does not know whether the result stated above has some relation to the
famous e�1-law for the best choice problem, see, for instance, Bruss [6]. For n0
design points we consider the design d� with the fractional part of about e�1 design
points as near as possible at 0 (let t�1 be the largest of these design points) and the
fractional part of about 1 � e�1 design points as near as possible at 1 (let t�2 be
the smallest of these design points). Then, by Theorem 5, d� is asymptotically the
uniformly best applicable design, if t�1 < t�2 and t�1 � t0.

Finally, we consider the alternative

g.t/ D c01Œ0;t0�.t/C .c0 C c1t0 � c1t/1.t0;1�.t/; t 2 Œ0; 1�; (7)

where t0 2 Œ0; 1/ is a known or unknown constant and c0 2 R; c1 2 .0;1/ are
unknown constants. The last result follows in an analogous way as above.

Theorem 6 The asymptotic 0-design which is uniformly distributed on Œt0; 1� is
uniformly better with respect to the alternative (7) than an asymptotic q-design,
q 2 .0; 1/, whose fractional part of design points on Œt0; 1� is uniformly distributed.

For an unknown change-point t0 the above result is of theoretical interest only.

4 Some Proofs

The following relation between an arbitrary design and a uniform design is crucial
for the next proof. To this end let the alternative (5) and an arbitrary triangular array
of design points tn1; : : : ; tnn with 0 � tn1 � : : : � tns � t0 < tnsC1 � : : : � tnn � 1
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be given. Moreover, let q WD s=n. Then we have

gt0 .tni/ D gq

�
i � 1

n � 1
�
; i D 1; : : : ; n:

Thus instead of analyzing the alternative gt0 and an arbitrary design with s design
points equal to or less than t0, we can analyze the alternative gq with the change-
point q D s=n and a uniform design.

Proof (of Theorem 4) By the above considerations the limit process of the recursive
residual partial sum process with respect to the local alternative 1p

n�d
gq and a

uniform design coincides with the limit process with respect to the local alternative
1p
n�d

gt0 and an asymptotic q-design. The trend h given in Theorem 2 part (b)

can be obtained for the local alternative 1p
n�d

gq and a uniform design after some
calculations:

h.z/ D 0; z 2 Œ0; q�;
h.z/ D R z

q c1 � 1
s .qc0 C .s � q/c1/ds D q.c1 � c0/.ln.z/ � ln.q//; z 2 .q; 1�:

Proof (of Theorem 5) For z D 1 the expression �q
�

ln.z/�ln.q/
	
1.q;1�.z/ considered

in (6) takes on its minimum for q D e�1 and, furthermore, it is strictly increasing
on Œe�1; 1/.

Let e�1 � q1 < q2 < 1. Then we have for all z 2 .q2; 1�
d

dz

�
� q1

�
ln.z/ � ln.q1/

	� D �q1
z
> �q2

z
D d

dz

�
� q

�
ln.z/� ln.q/

	�
:

This together with the first result of the proof justifies the statement of Theorem 5.
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A Multi-objective Bayesian Sequential Design
Based on Pareto Optimality

Matteo Borrotti and Antonio Pievatolo

Abstract Complexity arises in different fields of application. The increasing
number of variables and system responses used to describe an experimental problem
limits the applicability of classical approaches from Design of Experiments (DOE)
and Sequential Experimental Design (SED). In this situation, more effort should
be put into developing methodological approaches for complex multi-response
experimental problems. In this work, we develop a novel design technique based
on the incorporation of the Pareto optimality concept into the Bayesian sequential
design framework. One of the crucial aspects of the approach involves the selection
method of the next design points based on current information and the chosen
system responses. The novel sequential approach has been tested on a simulated
case study.

1 Introduction

Current research and development at both academic and industrial level is tackling
the design and characterisation of sophisticated systems, where the presence of a
high number of factors and variables limits the complete experimental screening
towards actual optimisation. A possible example is the separation process for
recycling waste electrical and electronic equipments (WEEE) [4]. In order to plan
the process operating conditions (i.e., variables) for a given multi-material mixture
under treatment, several technological and economic criteria should be jointly
considered. Therefore, the outcomes (i.e., system responses) of the process to be
considered in order to find the best process operating conditions are more than one,
leading to a multi-objective problem. Usually, a multi-objective problem involves
minimising or maximising multiple system responses subject to a set of constraints.
Examples can be found in all applications where an optimal solution (or a set of
optimal solutions) is sought with trade-offs between two or more conflicting system
responses.
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DOE is one of the most important tools in scientific research, and applications
can be found in all industries. In fact, DOE enables investigators to conduct better
experiments and collect data efficiently. However, current DOE techniques are based
usually on linear models and one response variable, limiting their applicabilty in
multi-objective problems. Few examples of multi-objective approaches used in DOE
can be found in literature for optimising different optimal criteria simultaneously
[5, 7, 8].

In this work, we propose a Bayesian sequential DOE approach for multi-
objective designs. The novelty resides in the combination of the Bayesian paradigm
and the unprocessed multiple responses. The classical theory of optimal exper-
imental design has been completely transferred into the Bayesian world, where
possible. For example D-optimal, I-optimal, A-optimal designs, and others, all have
their Bayesian counterpart [2]. As far as Bayesian design is concerned, the latest
developments involve sequential methods, with new methodology mainly motivated
by clinical trials (adaptive design) [3], whereas frequent applications are motivated
by specific industrial problems [6].

Our approach has been tested in a simulated example related to the optimisation
of electrostatic separation processes in recycling [1], showing promising initial
results.

2 Some Concepts from Multi-objective Optimisation

Multiple objectives in design optimisation pose the problem of identifying the
trade-offs between competing system responses. The result of multi-objective
optimisation is no longer a single optimal design point (i.e., optimal combination of
operating conditions), as in single-objective optimisation, but rather a set of design
points that are not worse than any other design point and strictly better in at least
one of the system responses.

More precisely, for the bi-objective optimisation problem of maximising two
objectives, candidate design points are evaluated according to an objective function
vector � D .�1; �2/. �1 determines the value for the first system response (y1)
given a specific design point and �2 the value for the second system response (y2).
Given two design points s and s�, we say that s dominates s� iff �1.s/ � �1.s�/
and �2.s/ � �2.s�/. If no s� exists such that s� dominates s, the design point s is
called Pareto-optimal. In this context, the goal of the optimisation is to determine
(or approximate) the set of all Pareto-optimal design points, whose image in the bi-
objective space is called the Pareto front [5]. In Fig. 1, an example of a Pareto front
is shown.
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Fig. 1 Example of Pareto
front (black dots) in which
both objectives have to be
maximised

3 The Multi-objective Bayesian Sequential DOE Approach

The main goal of our approach is to sequentially design an experiment in order
to find the best compromise between d competitive system responses. More
precisely, in this first attempt to develop a multi-objective Bayesian sequential DOE
approach, we consider a general problem described by k experimental variables,
x D .x1; : : : ; xk/, and d objective functions, � D .�1; : : : ; �d/, each of which is used
to calculate the respective system response forming the vector y D .y1; : : : ; yd/. The
ultimate aim is to simultaneously maximise all the d objective functions. In order
not to not put emphasis on one special objective function, 'i, while doing multi-
objective optimization, it may be necessary to normalise the system response values.
In our example they all lie in the interval [0, 1] so no further action is required.

In this setting, the proposed approach can be described as follows:

(1) Select a first initial design matrix X composed by n design points and evaluate
them. In this first attempt, the initial set of design points is randomly selected.
Randomness allows the exploration of the space in areas not anticipated by prior
knowledge but where interesting new effects may possibly arise.

(2) Create the matrix K composed by the initial design matrix X and the related
matrix of system responses Y. At this step, matrix K has n rows and k C d
columns.

(3) Calculate the d Bayesian one-dimensional utility functions (one for each
system response) for the whole search space, based on the marginal predictive
distribution of the response conditional on K.

(4) Identify the Pareto front based on the d Bayesian one-dimensional utilities.
(5) Select the design point with the minimun Euclidean distance from the utopia

point [5]. For instance, the utopia point is the ideal point in a bi-objective space
with the maximum value of the two system responses in the Pareto front.

(6) Evaluate the selected design point and add it to the matrix K with the related
vector of system responses.
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(7) Repeat steps 3, 4, 5 and 6 until a certain stopping criterion is satisfied. A usual
technique to determine a stopping criterion is to calculate the maximum number
of design points allowed by the available budget.

3.1 The Proposed Bayesian Utility Function

We will refer to Ui.xnC1jX/ as the i-th component of the multidimensional Bayesian
utility function, where i D 1; : : : ; d and xnC1 is the feasible design point in the
design space that may be chosen for the next experimental step.

The use of Ui.xnC1jX/ has been inspired by the work of Verdinelli and
Kadane [9].

Ui.xnC1jX/ D
Z
Œ˛ ynC1;i C ˇ ln p.� jy1W.nC1/;i;X; xnC1/� �

�p.ynC1;i; � jy1Wn;i;X; xnC1/dynC1d�;

where .y/1W.nC1/ collects n C1 d-dimensional system responses and � parameterises
the likelihood. Furthermore, ˛ and ˇ are non-negative weights, which express the
relative contribution that the experimenter is willing to attach to the two components
of Ui. The number of system responses, d, is not higher than the dimension of y,
which is the vector of response values. Generally, the posterior distribution of �
depends on all y.

The i-th utility function can be expanded as follows:

Ui.xnC1jX/ D ˛

Z
ynC1;i p.ynC1;i; � jy1Wn;i;X; xnC1/ dynC1;i C

Cˇ ln p.� jy1W.nC1/;i;X; xnC1/ �
� p.ynC1;i; � jy1Wn;i;X; xnC1/ dynC1;i d�

D ˛ EŒynC1;ijy1Wn;i;X; xnC1� C

C ˇ

Z
ln p.� jy1W.nC1/;i;X; xnC1/ �

� p.ynC1;i; � jy1Wn;i;X; xnC1/ dynC1;i d�:

The second term is related to the expected gain in Shannon information, obtained
from adding the new design point to X, conditional on y1Wn. The simplest model for
y1Wn;i is the following:

y1Wn;i D X �i C �1Wn;i; (1)
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where �i � N .�0; �
2R�1

0 /, �
2 is known and �1Wn;i is a vector of iid N .0; �2/

random variables.
We know there are d system responses, each with its own Ui. However, without

loss of generality, we can consider just one system response in the following steps.
We then obtain:

y1Wn D X � C �1Wn: (2)

Notice that the entries of Y are conditionally independent given � .
We can now calculate the joint distribution of ynC1 and � :

p.ynC1; � jy1Wn;X; xnC1/ D p.ynC1j�; xnC1/ p.� jy1Wn;X/; (3)

and

� jy1Wn;X � N f.XTX C R0/
�1 .XTy1Wn C R0�0/; �

2 .XTX C R0/
�1g; (4)

which is the posterior distribution after observing y1Wn.
From Eqs. 3 and 4, we obtain the two terms of the utility function. The factor

multiplying ˇ is:Z
ln p.� jy1W.nC1/;X; xnC1/ p.ynC1; � jy1Wn;X; xnC1/ dynC1 d�

D � k

2
ln.2�/ � k

2
C 1

2
ln detf��2 .x.nC1/xT

.nC1/ C R/g;

where R D .XTX C R0/.
The predictive mean multiplying ˛ is:

E.ynC1jy1Wn/ D E.�TxnC1 C �nC1 j y1Wn/

D E.� j y1Wn/T xnC1
D Œf.XTX/C R0g�1 .XTy1Wn C R0�0/�

T xnC1:

4 Simulated Case Study

Our simulated case study is based on the work of Borrotti et al. [1]. The authors
consider the problem of separating metal and nonmetal particles derived from
WEEE by using the Corona electrostatic separation (CES) process. CES is mainly
used to separate conductors from insulators, like copper from plastics, in shredded
multi-material mixtures. Briefly, in a CES machine, particles are transported by a
feeder on a rotating drum, and are charged as they pass through an electrostatic field.
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At this point, particles receive a discharge of electricity, which gives the nonmetals
a high surface charge, causing them to be attracted to the rotor surface until they are
brushed down into a bin, ideally on one side of the machine. Metal particles do not
become charged, as the charge rapidly dissipates through the particles to the earthed
rotor, so they fall into the bin on the other side of the machine under the effect
of the centrifugal and gravitational forces. Ideally, if the separation process were
perfectly accurate, all the particles would be correctly classified. However, because
of the presence of mixed non-liberated particles and due to random particle impacts,
a non-classified material flow is generated (middlings) consisting of particles that
drop into a central bin.

A typical industrial CES machine with fixed design parameters depends on the
following controllable parameters (i.e., variables):

(1) Electrostatic potential (x1), or voltage, which ranges between �35:000 to
�25:000V;

(2) Drum speed (x2), or simply speed, which ranges between 32 to 128 rpm;
(3) Feed rate (x3), which ranges between 0.0028 to 0.028 kilograms per second

(kg/s).

As system responses of the process we consider the recovery of conductive products
(Rc;c) and the grade of conductive products (Gc;c) in the collecting box defined as
follows:

Rc;c D mc;c

mc;c C mc;m C mc;nc
; (5)

where mc;c is the mass of conductive products in its collecting box, mc;m is the mass
of conductive products in the middling box and mc;nc is the mass of conductive
products in the non-conductive box. Instead, the grade is:

Gc;c D mc;c

mc;c C mnc;c
; (6)

where mnc;c is the mass of non-conductive products in the conductive box. Both the
system responses lie in the range Œ0; 1� and should be simultaneously maximised in
order to optimise the performance of a CES process.

From available data, we estimated two multiple regression models, �1 and �2, in
order to simulate the responses Rc;c and Gc;c over the whole search space. Given a
discretisation of the domain of the variables x1, x2 and x3, we determined a search
space of size 103 and deploying �1 and �2 we calculated the two system responses,
from now on Oy1 and Oy2.

At this point, it was possible to calculate the real Pareto front of the whole search
space obtaining a Pareto front of size 10. This result has been used to evaluate the
performance of the multi-objective Bayesian sequential DOE approach.
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4.1 Performance Indicators

When comparing the performance of multi-objective approaches, classical indi-
cators are not suitable for understanding which approach is reaching the best
Pareto front. However some possible indicators are: hypervolume distance and equal
number of points index.

The hypervolume distance (hd) is the Euclidean distance between two hypervol-
ume indicators. A hypervolume indicator measures the area of the response space
that is dominated by the considered Pareto front. The larger this area, the better the
set of design points in the Pareto front. If the real Pareto front is available, it is
possible to calculate the hypervolume distance between the real Pareto front and the
optimised Pareto front.

The equal number of points (enp) is the number of points lying in both the real
Pareto front and the optimised one.

4.2 Results

Since we consider a randomly chosen initial design matrix, we computed B D 50

Monte-Carlo runs. The sample size n of the initial design was fixed to 20. A run was
stopped after T D 30 iterations. Furthermore, we set R0 as the identity matrix and �2

to 1. The values of ˛ and ˇ were varied in order to understand the contribution of the
two terms in the Bayesian utility functions, Ui.xnC1jX/. In Table 1, the performance
indicators are reported. The two indicators are the average values of hd and enp
calculated over the 50 Monte-Carlo runs.

From Table 1, we notice that the larger the value of ˛ the better the performance
of the multi-objective Bayesian sequential DOE approach. This behaviour indicates
that the first term of Ui.xnC1jX/, which is the one devoted to maximising the
expected system responses, is more important than the second term, which is related
to the expected gain in Shannon information [2]. When .˛; ˇ/ D .1:0; 0:0/, we
obtain an average equal number of points close to 8 out of 10 and an average
hypervolume indicator close to 0. However, this behaviour can lead to an early
convergence on locally optimal solutions with more complex search spaces. A
compromise between ˛ and ˇ is probably then preferable.

Table 1 Average
performance indicators with
Monte-Carlo standard
deviation in parentheses

.˛; ˇ/ hd enp

.0:00; 1:00/ 0.06 (0.03) 1.48 (0.79)

.0:20; 0:80/ 0.06 (0.02) 1.70 (1.76)

.0:50; 0:50/ 0.01 (0.01) 1.38 (0.87)

.0:80; 0:20/ 0.01 (0.01) 2.38 (0.78)

.0:90; 0:10/ 0.01 (0.01) 3.80 (1.03)

.1:00; 0:00/ 0.01 (0.01) 8.40 (3.32)
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5 Conclusions

In this work, we proposed a multi-objective Bayesian sequential DOE approach and,
more precisely, we concentrated our effort on a bi-objective problem derived from
a simulated case study concerning the problem of separating metal and nonmetal
particles recycled from waste electrical and electronic equipments (WEEE).

The novel approach is applied in a sequential manner and is based on the
combination of the Bayesian paradigm and the Pareto front concept. We proposed
a Bayesian one-dimensional utility function, which represents a trade-off between
the expected system responses and the expected gain in Shannon information for
the posterior distribution. At each step, the Bayesian optimal utilities are used to
compute the Pareto front. The design point with the minimum Euclidean distance to
the utopia point is selected for the next experiment.

The multi-objective Bayesian sequential DOE approach has shown promising
results but it still needs further improvement. The Bayesian framework should
be generalised to a non-linear setting. Furthermore, the sampling technique for
the initial design and the selection method of the next design points need to be
investigated in greater depth.

From the results, we observed that the tuning of the two non-negative weights ˛
and ˇ is important. Furthermore, we need to compare the multi-objective Bayesian
sequential DOE approach with other methods in order to understand the real power
of the method.
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Optimum Design via I-Divergence for Stable
Estimation in Generalized Regression Models

Katarína Burclová and Andrej Pázman

Abstract Optimum designs for parameter estimation in generalized regression
models are usually based on the Fisher information matrix (cf. Atkinson et al.
(J Stat Plan Inference 144:81–91, 2014) for a recent exposition). The corresponding
optimality criteria are related to the asymptotic properties of maximum likelihood
(ML) estimators in such models. However, in finite sample experiments there can be
problems with identifiability, stability and uniqueness of the ML estimate, which are
not reflected by information matrices. In Pázman and Pronzato (Ann Stat 42:1426–
1451, 2014) and in Chap. 7 of Pronzato and Pázman (Design of Experiments in
Nonlinear Models. Asymptotic Normality, Optimality Criteria and Small-Sample
Properties. Springer, New York, 2013) is discussed how to solve some of these
estimability issues at the design stage of an experiment in standard nonlinear
regression. Here we want to extend this design methodology to more general models
based on exponential families of distributions (binomial, Poisson, normal with
parametrized variances, etc.). The main tool is the information (or Kullback-Leibler)
divergence, which is closely related to ML estimation.

1 Introduction

With each design point x 2 X , the design space, we associate an observation y
(a random variable or vector), which is distributed according to the density of an
exponential form

f .y j �; x/ D exp
˚� .y/C t> .y/ 
 � � .
/




D
.x;�/ ; (1)

with the unknown parameter � taking values from a given parameter space � 	
R

p. This density is taken with respect to a measure � .�/ on Y, the sample space
of y. Usually Y 	 R

s and � is the Lebesgue measure, or Y is finite or countable
and � .fyg/ D 1 for every y 2 Y; then f .y j �; x/ is simply the probability of y.
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Well known examples are the one-dimensional normal density

f . y j �; x/ D 1

.2�/1=2 � .x; �/
exp

"
�fy � 	 .x; �/g2

2�2 .x; �/

#
I y 2 R

or the binomial probability distribution

f .y j �; x/ D
 

n

y

!
� .x; �/y f1 � � .x; �/gn�y I y 2 f0; 1; : : : ; ng : (2)

Consider an exact design X D .x1; : : : ; xN/, where xi 2 X and the
observations yx1 ; : : : ; yxN are independent. The ML estimator for � is O� D
arg max�2�

PN
iD1 ln f .yxi j �; xi/. For large N, and under some regularity assump-

tions, O� is approximately normally distributed with mean � and covariance matrix

M�1 .X; �/, where M .X; �/ D PN
iD1 M .xi; �/, and M .x; �/ D E�

n
� @2 ln f .yj�;x/

@�@�>

o
is the elementary information matrix at x. Hence within this asymptotic
approximation, a design X is (locally) optimal if it maximizes ˚

˚
M
�
X; �0

	

,

where �0 is a guess for the true (but unknown) value of � . Here ˚ .�/ stands for
det1=p.�/ in case of D-optimality, etc. This is the standard way to optimize designs
in generalized regression models.

Alternatively to the information matrix, we take here for design purposes the
I-divergence (the information or Kullback-Leibler divergence, cf. [4]), which for any
two points �0; � 2 � is equal to IX

�
�0; �

	 D PN
iD1 Ixi

�
�0; �

	
with the elementary

I-divergence defined by

Ix
�
�0; �

	 D E�0

(
ln

f
�
y j �0; x	

f . y j �; x/

)
: (3)

As is well known, Ix
�
�0; �

	 � 0 and is equal to zero if and only if f
�
y j �0; x	 D

f .y j �; x/. In general, the I-divergence measures well the sensitivity of the data y
to the shift of the parameter from the value �0 to the value � , even when � and �0

are distant, while the information matrix M
�
x; �0

	
is doing essentially the same,

but only for � which is close to �0 (see Sect. 3). Hence the I-divergence may allow
a more global characterization of the statistical properties of the model than the
information matrix. An important fact is also that we can compute it easily (avoiding
integrals) in models given by (1). Notice that for the normal model with �2 .x; �/ �
1, one has 2IX

�
�0; �

	 D PN
iD1

˚
	
�
xi; �

0
	 � 	 .xi; �/


2
, an expression, which is

largely used in [6] and in Chap. 7 of [7].
We note that in [5] the I-divergence has been used in optimal design for model

discrimination, which, however, corresponds to a different objective than the one
considered here.
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2 Basic Properties of Model (1)

It is clear that t .y/ is a sufficient statistic in model (1), so we can suppose, at
least in theory, that we observe t . y/ instead of y. Denote by � .x; �/ its mean. For

 D 
.x; �/ we have

� .x; �/ D
Z

Y
t.y/ exp

n
� .y/C t>.y/
 � � .
/

o

D
.x;� /

d�.y/ D
�
@� .
/

@


�

D
.x;� /

:

(4)

To be able to do this derivative at any 
 , we suppose that the set
˚

 WR

Y exp
˚� .y/ C t> .y/ 




d� .y/ < 1


is open. Then the model (1) is called
regular, and regular models are standard in applications. Taking the second order

derivative in (4) we obtain @2�.
/

@
@
> D Var
 ft .y/g, which for 
 D 
 .x; �/ will be

denoted by ˙ .x; �/. By a reduction of the linearly dependent components of the
vector t .y/ one can always achieve that ˙ .x; �/ is nonsingular, and we obtain
from (4) that @�.x;�/

@�> D ˙ .x; �/ @
.x;�/
@�> .

The functions � 2 � ! � .x; �/ (the mean-value function) and � 2 � !

 .x; �/ (the canonical function) are useful dual representations of the family of

densities (1) (cf. [3]). From (1) and (4) it follows that Ex;�

n
@ ln f .yjx;�/

@�

o
D 0, and

consequently the elementary information matrix is equal to

M .x; �/ D Varx;�

�
@ ln f .y j x; �/

@�

�
D @�> .x; �/

@�
˙�1 .x; �/

@� .x; �/

@�> : (5)

The elementary I-divergence is, according to (3) and (1),

Ix
�
�0; �

	 D �> �x; �0	 ˚
 �x; �0	 � 
 .x; �/
C � f
 .x; �/g � �
˚


�
x; �0

	

:

For more details on exponential families see [2].

3 Variability, Stability and I-Divergence

In this section we consider observations according to an “exact” design X D
.x1; : : : ; xN/. The joint density of y D .yx1 ; : : : ; yxN /

> is equal to ef .y j �/ DQN
iD1 f .yxi j �; xi/.
The variability of the ML estimate O� in the neighborhood of N� , the true value

of � , is well expressed by the information matrix M
�
X; N�	, since its inverse is

the asymptotic covariance matrix of O� . But the same can be achieved by the I-
divergence, since in model (1) it satisfies the following property.
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Lemma 1 If for any x 2 X the third-order derivatives of Ix
� N�; �	 with respect to

� are bounded on a neighborhood of N� , then we have

IX
� N�; �	 D 1

2

�
� � N�	> M

�
X; N�	 �� � N�	C o

���� � N���2� : (6)

It is sufficient to prove this equality for the elementary I-divergence and elemen-

tary information matrix. We have Ix
� N�; N�	 D 0;

@Ix. N�;�/
@�

j�D N�D 0;
@2Ix. N�;�/
@�@�> j�D N�D

M
�
x; N�	, so by the Taylor formula we obtain (6).

On the other hand, we can have important instabilities of the ML estimate O�
when, with a large probability, lnef .y j �/ is close to lnef �y j N�	 for a point � distant
from N� . However, at the design stage we do not know the value of y, so we cannot
predict the value of the difference lnef .y j �/�lnef �y j N�	. But we can at least predict
its mean.

Lemma 2 For any � 2 � we have E N�
˚
lnef �y j N�	 � lnef .y j �/
 D IX

� N�; �	.
This equality is evident from (3).

As a consequence of Lemmas 1 and 2 we have that the I-divergence IX
� N�; �	 can

express simultaneously both the variability of the ML estimate O� in a neighborhood
of N� and the danger of instability of the ML estimation due to the possibility of
“false” estimates which are very distant from the true value N� .

4 Extended Optimality Criteria

According to the principle mentioned in Sect. 3, the design based on the I-divergence
should minimize the variability of O� (related to the information matrix) and protect
against instabilities coming from a value � which is distant from the true value N� .
This requirement can be well reflected by extended optimality criteria (cf. [6, 7]
for classical nonlinear regression). To any design (design measure or approximate
design) � on a finite design space X we define the extended criteria by a form

�ext
�
�; �0

	 D min
�2�

X
x2X

2Ix
�
�0; �

	 � 1

�2 .�0; �/
C K

�
� .x/ ; (7)

where K � 0 is a tuning constant chosen in advance, �0 is a guess for the (unknown)
value of � , �

�
�0; �

	
is a distance measure (a norm or a pseudonorm) not depending

on the design �. When �
�
�0; �

	 D ���0 � �
��, the Euclidean norm, we have the

extended E-optimality criterion, denoted by �eE
�
�; �0

	
. When �

�
�0; �

	 D ˇ̌
h
�
�0
	�

h .�/
ˇ̌
, with h .�/ 2 R, a given function of � , we have the extended c-optimality

criterion, denoted by �ec
�
�; �0

	
. When �

�
�0; �

	 D maxx2X

ˇ̌
˛
�
x; �0

	� ˛ .x; �/
ˇ̌
,

with x 2 X !˛ .x; �/ 2 R, the regression function of interest, we have the
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extended G-optimality criterion, denoted �eG
�
�; �0

	
. Notice that usually ˛ .x; �/

is equal to 
 .x; �/ or to � .x; �/, but not necessarily. The names of the criteria are
justified by the following theorem.

Theorem 1 Let B
�
�0; ı

	
be a sphere centred at �0 with diameter ı, and

M
�
�; �0

	 D P
x2X M

�
x; �0

	
�.x/. Then

lim
ı!0

min
�2B.�0;ı/

X
x2X

2Ix
�
�0; �

	 � 1

�2 .�0; �/
C K

�
� .x/

is equal to

• �min
˚
M
�
�; �0

	

, the minimal eigenvalue, when �

�
�0; �

	 D ���0 � ���,

•
˚
c>M�1 ��; �0	 c


�1
with c D

n
@h.�/
@�

o
�D�0 if M

�
�; �0

	
is nonsigular and if

�
�
�0; �

	 D ˇ̌
h
�
�0
	 � h .�/

ˇ̌
,

•
˚
maxx2X f > .x/M�1 ��; �0	 f .x/


�1
with f .x/ D

n
@˛.x;�/
@�

o
�D�0 if M

�
�; �0

	
is

nonsingular and if �
�
�0; �

	 D maxx2X

ˇ̌
˛
�
x; �0

	 � ˛ .x; �/ˇ̌.
When the model is normal, linear, with unit variances of observations, h .�/ is a
linear function of � and ˛ .x; �/ D � .x; �/ is linear, then �ext

�
�; �0

	
coincides with

the corresponding well known optimality criterion in linear models.

Proof The proof follows from Lemma 1 and from known expressions: �min fMg D
minu

˚
u>Mu=u>u



, c>M�1c D maxuW u¤0

n�
c>u

	2
=u>Mu

o
(if M is nonsingular). In

a normal linear model with unit variances we use that 
 .x; �/ D � .x; �/ D f > .x/ �
and

P
x2X 2Ix

�
�0; �

	
� .x/ D �

� � �0	> ˚Px2X f .x/ f > .x/ � .x/

 �
� � �0	. ut

If K is chosen very large, then the extended criterion gives the same optimum
design as the classical criterion. On the other hand, when K is very small, then
1=�2

�
�0; �

	
is the dominating term within the braces in (7), and (7) becomes small

simply because � and �0 are very distant points.

Remark 1 We can write (7) in the form

�ext
�
�; �0

	 D min
�2�

X
x2X

H
�
x; �0; �

	
� .x/ ; (8)

with an adequately chosen H
�
x; �0; �

	
. It follows that the function � ! �ext

�
�; �0

	
is concave, hence it has a directional derivative, and the “equivalence theorem” can
be formulated, exactly as in [6].

Remark 2 When the design space X is finite, X D ˚
x1; : : : ; xk



, we can consider

the task of computing the optimum design, �� D arg max� �ext
�
�; �0

	
as an

“infinite-dimensional” linear programming (LP) problem. Namely, we have to find
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the vector
�
t; �

�
x1
	
; : : : ; �

�
xk
		

, which maximizes t under the linear constraintsX
x2X

H
�
x; �0; �

	
� .x/ � t for every � 2 � ;

X
x2X

� .x/ D 1; � .x/ � 0 for every x 2 X :

As in [6], the solution can be approached by solving a sequence of LP problems,
including a stopping rule (see the ‘Numerical Example’ below).

Illustrative Example Consider the binomial model (2), which can be written in
the exponential form (1):

f .y j �; x/ D exp

"
ln

 
n

y

!
C y
 .x; �/ � n ln

n
1C e
.x;�/

o#

with 
 .x; �/ D ln Œ� .x; �/ = f1 � � .x; �/g�, and with the mean of y D t. y/ equal to
� .x; �/ D n� .x; �/ D ne
.x;�/=

˚
1C e
.x;�/



(the logistic function). In the example

we take n D 10 and consider the regression model (similar to that in [6])


 .x; �/ D 2 cos .t � u�/ I x D .t; u/> ;

with two observations, one at x1 D .0; u/> and the second at x2 D .�=2; u/>,
where u 2 �

0; 11
6
�



is to be chosen optimally for the estimation of the unknown
parameter � 2 Œ0; 1�. For the case of u D 11

6
� we can see the circular “canon-

ical surface”
n
.
 .x1; �/ ; 
 .x2; �//

> I � 2 Œ0; 1�
o

in Fig. 1a and the “expectation

surface”
n
.� .x1; �/ ; � .x2; �//

> I � 2 Œ0; 1�
o

in Fig. 1b (which is no longer circular

due to the nonlinearity of the logistic function). The information “matrix” Mu .�/ �
M .x1; �/ C M .x2; �/ is computed according to (5), and for �0 D 0 it is equal
to Mu

�
�0
	 D nu2. It follows that the classical locally optimal design maximizing

γ(x1,θ)

γ(
x 2

,θ
)

θ = 0

θ = 1

η(x1,θ)

η(
x 2,θ

)

θ = 0

θ = 1
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Fig. 1 (a) The canonical surface, (b) the expectation surface, (c) I
�
�0; � I u

	
=
�
� � �0

	2
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Mu
�
�0
	

is obtained when u D 11
6
� . We see even from Fig. 1a, b that under this

design, the ML estimate O� .y/ can be, with a large probability, in the neighborhood
of � D 1, hence the estimator is unstable when �0 D N� D 0.

On the other hand, take the I-divergence I
�
�0; � I u

	 � Ix1

�
�0; �

	 C Ix2

�
�0; �

	
with

Ix
�
�0; �

	 D n

"
�
�
x; �0

	
ln
�
�
x; �0

	
� .x; �/

C ˚
1 � �

�
x; �0

	

ln
1 � �

�
x; �0

	
1 � � .x; �/

#
(9)

and consider the extended criterion �ext
�
u; �0

	 D min�2Œ0;1� I
�
�0; � I u

	
=
�
� � �0

	2
.

Numerical computation gives that arg maxu2Œ0; 116 �� �ext
�
u; �0

	 :D � , and for this

choice of u the probability of a false O� . y/ is negligible, because then the values
of .
 .x1; �/ ; 
 .x2; �//

> for � D 0 and � D 1 are as distant as possible. The
same holds for .� .x1; �/ ; � .x2; �//

>. Here we took the tuning constant K D 0,
the optimal u would be between � and 11

6
� for K positive. In Fig. 1c we present the

dependence of I
�
�0; � I u

	
=
�
� � �0

	2
on � for different values of u.

Numerical Example The aim of this example is to show that in case of a finite
X D ˚

x1; : : : ; xk


, we can compute the extended E-optimum design by solving

a sequence of LP problems—see Remark 2. The expected value of an observed
variable is as in [6], Example 2, i.e. the mean of yx, observed at the design point
x D .x1; x2/

>, is equal to

� .x; �/ D n� .x; �/ D n

6

˚
1C �1x1 C �31 .1� x1/C �2x2 C �22 .1 � x2/



: (10)

However, the error structure is quite different. Instead of an error component not
depending on � D .�1; �2/

>, we consider here a binomial model with yx distributed
according to (2), with n D 10 and � .x; �/ given by (10). Consequently, in the
extended criterion (7) we use the binomial I-divergence (9) and �2

�
�0; �

	 D���0 � ���2. We choose �0 D .1=8; 1=8/>, x 2 X D f0; 0:1; : : : ; 0:9; 1g2, � 2
� D Œ�1; 1� � Œ0; 2�.

The iterative algorithm presented below follows the same lines as in [6].

1. Take any vector
�
�.0/

�
x1
	
; : : : ; �.0/

�
xk
		

such that
P

x2X �.0/.x/ D 1 and
�.0/.x/ � 0 8 x 2 X , choose � > 0, set �.0/ D ; and n D 0. Construct a
finite grid G .0/ in �.

2. Set�.nC1/D�.n/[˚�.nC1/
, where �.nC1/D arg min�2�
P

x2X H
�
x; �0; �

	
�.n/.x/

is computed as follows:

(a) Compute O�.nC1/ D arg min�2G .n/
P

x2X H
�
x; �0; �

	
�.n/.x/.

(b) Perform a local minimization over � initialized at O�.nC1/, denote by �.nC1/
the solution and set G .nC1/ D G .n/ [ ˚

�.nC1/
.
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Table 1 �eE-optimal designs for K D 0 and K D 5, and corresponding values of �eE, see (7), for
K D 0 and K D 5

K �� �eE

�
��; �0

	
for K D 0 �eE

�
��; �0

	
for K D 5

0

(
.0; 0/> .0; 1/> .1; 1/>

0:345 0:029 0:626

)
0:0215 0:0249

5

(
.0; 0/> .1; 0/> .0; 1/> .1; 1/>

0:247 0:072 0:197 0:484

)
0:0165 0:1972

3. Use an LP solver to find
�
t.nC1/; �.nC1/ �x1	 ; : : : ; �.nC1/ �xk

		
to maximize t.nC1/

with the constraints:

• t.nC1/ > 0; �.nC1/.x/ � 0 8 x 2 X ;
P

x2X �.nC1/.x/ D 1,
•
P

x2X H
�
x; �0; �

	
�.nC1/.x/ � t.nC1/ 8� 2 �.nC1/.

4. Set �.nC1/ D t.nC1/ ��ext
˚
�.nC1/; �0



, if�.nC1/ < �, take �.nC1/ as an �-optimal

design and stop, else set n C 1 for n and continue from Step 2.

The computations were performed in Matlab computing environment and we used
the linprog function with the default interior point algorithm to solve LP problems.
When the grid G .0/ was taken as a random Latin hypercube design with 10,000
points renormalized to �, � D 10�10, and �.0/ put mass uniformly to each x in X ,
the algorithm stopped after 20 iterations for K D 0 and after 47 iterations for K D 5.
The numerical results are summarized in Table 1.
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On Multiple-Objective Nonlinear Optimal
Designs

Qianshun Cheng, Dibyen Majumdar, and Min Yang

Abstract Experiments with multiple-objectives form a staple diet of modern
scientific research. Deriving optimal designs with multiple-objectives is a long-
standing challenging problem with few tools available. The few existing approaches
cannot provide a satisfactory solution in general: either the computation is very
expensive or a satisfactory solution is not guaranteed. There is need for a general
approach which can effectively derive multi-objective optimal designs. A novel
algorithm is proposed to address this literature gap. We prove convergence of this
algorithm, and show in various examples that the new algorithm can derive the true
solutions with high speed.

1 Introduction

With the development of computational technology, nonlinear models have become
more feasible and popular. An optimal/efficient design can improve the accuracy of
statistical inferences with a given sample size or reduce the sample size needed for
a pre-specified accuracy.

A common approach to study optimal designs is to use locally optimal designs,
which are based on the best guess of the parameters [3]. The selection of an optimal
design depends on the goals of the experiment. In practice, it is common for an
experimenter to have multiple objectives. An optimal design based on one specific
objective could be a disaster for other objectives. As in a multiple comparison study,
a design with maximum power for one of the hypotheses may not have good power
for other tests.

There are two ways of formulating the multiple-objective optimal design prob-
lem. One is based on compound optimality criteria and the other is based on
constrained optimality criteria. Here we focus on constrained optimization, which
is to maximize one objective function subjected to all other objective functions
satisfying certain efficiencies.
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There are two numerical approaches in the literature for constrained optimiza-
tion: the grid search and the sequential approach. For the grid search approach,
the number of grid points increases exponentially with the number of objectives,
and can be huge even for a moderate number of objectives. With three objectives,
Huang and Wong [7] proposed a sequential approach for finding the weights. The
basic idea is to consider the objective functions in pairs and sequentially add more
constraints. While this seems to have given reasonable answers in their examples,
there lacks theoretical justification. Consequently this approach will generally not
yield satisfactory solution even for the three-objective problem.

The goal of this paper is to propose a novel algorithm for deriving optimal
designs for multiple objective functions. For a given constrained optimization
problem, if the solution exists, we prove that the new algorithm guarantees to find
the optimum weights. The new algorithm is also fast.

2 Set Up and Notation

We adopt the same notation as that of [8]. Denote the information matrix of design
� as I� . Let ˚0.�/; : : : ; ˚n.�/ be the values of n C 1 smooth objective functions for
design �. Ideally, we hope we can find a �� which can maximize ˚0.�/; : : : ; ˚n.�/

simultaneously among all possible designs. An ideal solution does not exist in
general. One commonly used way of formulating a multiple objective design
problem is the constrained optimization approach, which specifies one objective
as the primary criteria and maximizes this objective subject to constraints on the
remaining objectives [4, 6]. Formally, this approach can be written as

Maximize
�2�

˚0.�/ subject to ˚i.�/ � ci; i D 1; : : : ; n; (1)

where c D .c1; : : : ; cn/ are user-specified constants which reflect minimally desired
levels of performance relative to optimal designs for these n objective functions. To
make this problem meaningful, throughout this paper, we assume there is at least
one design satisfying the constrains, which means an optimal solution exists.

Unfortunately, in a restricted optimality set up, the constrained optimization
problem cannot be solved directly. We have to solve (1) through the corresponding
compound optimal design. Let

L.�;U/ D ˚0.�/C
nX

iD1
ui.˚i.�/ � ci/; (2)

where ui � 0, i D 1; : : : ; n. Let U D .u1; : : : ; un/.
To establish the relationship between constrained optimal design problems and

compound optimal design problems, we need the following assumptions, which are
adapted from [4]. Assume that
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1. ˚i.�/, i D 0; : : : ; n are concave on � .
2. ˚i.�/, i D 0; : : : ; n are differentiable and the directional derivatives are

continuous in x
3. If �n converges to �, then ˚i.�n/ converges to ˚i.�/, i D 0; : : : ; n
4. There is at least one design � in � such that the constrains (1) are satisfied.

Clyde and Chaloner [4] generalized a result of [6] and showed the equivalence of
the constrained optimization approach and the compound optimality approach. The
result demonstrates that a numerical solution for the constrained design problem (1)
can be derived by using an appropriate compound optimality criterion. In fact,
almost all numerical solutions for constrained design problems use this strategy.
The big challenge is how to find the desired U� for a given constrained design
problem (1). There are two approaches to handle this: a grid search and a sequential
approach. Both approaches utilize the weighted optimal design problem, which is
equivalent to a compound optimal design approach.

However, both a grid search and a sequential approach have their own problems.
Consequently they cannot serve as a general solution for the constrained optimal
design problem (1). A general and efficient algorithm should be based on the
characterization of U�. To derive theoretical results, we need the following two
assumptions. The first one is

˚0 is a strong concave function on the set of information matrices; (3)

and the second one is

u�
i 2 Œ0;Ni/ where Ni is pre-specified, i D 1; : : : ; n: (4)

Due to space limitation, we skip the characterization of U�, which can be
found in [2]. For easy presentation, we denote �U as a design which maximizes
the Lagrangian L.�;U/ for a given weight vector U D .u1; � � � ; un/ and O̊ i.�/ as
˚i.�/ � ci, i D 1; : : : ; n.

3 Algorithm

For a given constrained design problem (1), the new algorithm aims to find the
desired U�. In each step, we need to derive an optimal design for a compound
optimal design problem (2) with U being given, which can be derived based on
the optimal weight exchange algorithm (OWEA) proposed by [8]. Here we only
present the main algorithm.
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The Main Algorithm

The strategy of the algorithm is to search from the simplest case (no constraint is
active) to the most complicated case (all constraints are active). The algorithm can
be described as following:

Step 1 Set a D 0, derive �� D argmax�f˚0.�/g and check whether ˚i.�
�/ � ci

for i D 1; � � � ; n. If all constrains are satisfied, stop and �� is the desired design.
Otherwise set a D 1 and go to Step 2.

Step 2 Set i D 1, consider �� D argmax�f˚0.�/C ui˚i.�/g. Adjust the value of

ui using the bisection technique on Œ0;Ni� to obtain u�
i such that O̊ i.�

�/ D 0.
During the bisection process, the upper bound, instead of the median, of the
final bisection interval will be picked as the right value for u�

i . If O̊ i.�
�/ > 0

when ui D 0, set u�
i D 0. If O̊ i.�

�/ < 0 when ui D Ni, set u�
i D Ni. For

�� D argmax�f˚0.�/C u�
i ˚i.�/g, check whether O̊ j.�

�/ � 0 for j D 1; � � � ; n. If
all constraints are satisfied, stop and �� is the desired design; otherwise change i
to i C 1 and repeat this process. After i D n is tested and no desired �� is found,
then set a D 2 and proceed to Step 3.

Step 3 Find all subsets of f1; � � � ; ng of size a, choose one out of these subsets.
Denote it as S.

Step 4 Let .s1; : : : ; sa/ be the indexes of the elements in US. To find the right
value U�

S for US, we follow a recurrent process. For each time a given value of
usa , first use the bisection technique to find the corresponding us1 ; � � � ; usa�1 . The
full weight vector U can be constructed with us1 ; � � � ; usa by setting all the other
weight elements in U as 0’s, which we later denote by U D fUS; 0g. Then adapt
the value of usa as follows:

– If O̊sa.�U/ > 0 when usa is assigned as 0, set u�
sa

D 0.

– If O̊sa.�U/ < 0 when usk is assigned as Na, set u�
sa

D Na.

– Otherwise use the bisection technique to find u�
sa

such that O̊sa.�U/ D 0.

Record u�
sa

and the corresponding values for fu�
s1
; � � � ; u�

sa�1
g as U�

S . For the
bisection process in each dimension, the upper bound of the final bisection
interval will be picked as the right value for the corresponding element in
weight vector U�

S . Then the full weight vector U� can be constructed using
U� D fU�

S ; 0g.
Step 5 For the U�

S and �U� derived in Step 4, check O̊ i.�U�/, i D 1; : : : ; n. If
all constraints are satisfied, stop and �U� is the desired design. Otherwise, pick
another a-element subset in Step 3, and go through Step 4 to Step 5 again. If all
a-element subsets are tested, go to Step 6.

Step 6 Change a to a C 1, go through Step 3 to Step 5, until a D n. If no suitable
design �U� is found, the implication is that there is no solution for the constrained
optimal design (1).
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Table 1 Comparison of calculation cost

Three objectives Four objectives

Mesh grid size 0.01 0.001 0.01 0.001

Grid search 5050 500,500 171,700 167,167,000

New algorithm 265 525 4320 12,058
a Numbers in the table are counts of weighted optimal designs calculated to solve the constrained
design problem for each technique

3.1 Convergence and Computational Cost

Whether an algorithm is successful mainly depends on two properties: convergence
and computational cost. We first establish the convergence of the proposed algo-
rithm. The proof can be found in [2].

Theorem 1 For the constrained optimal design problem (1), under Assumptions (3)
and (4), the proposed algorithm converges to ��.

Table 1 shows the comparison of computational costs between the new algorithm
and a grid search under different grid sizes and numbers of constraints.

As for the sequential approach, the computational cost is significantly less than
those of grid search and the new algorithm. However, as we will demonstrate in the
next section, the sequential approach in general cannot find a satisfactory solution.

4 Numerical Examples

In this section, we will compare the performances (accuracy and the computing
time) of the new algorithm, the grid search and the sequential approach. The
sequential approach was introduced in [7]. This approach first reorders ˚0; � � � ; ˚n

as ˚s1 ; � � � ; ˚snC1
according to a robustness technique. In this paper, we test all

possible orders and pick the best design. Certainly it includes the special choice
in [7].

All three approaches utilize the OWEA algorithm to derive optimal designs for
given weighted design problems.

Example I: Atkinson et al. [1] derived Bayesian designs for a compartmental
model which can be written as

y D �3.e
��1x � e��2x/C � D �.x; �/C �: (5)

where � is assumed to follow the normal distribution with mean zero and variance
�2 and y represents the concentration level of the drug at time point x. Clyde
and Chaloner [4] derived multiple objective optimal designs under this model with
parameter values �T D .�1; �2; �3/ D .0:05884; 4:298; 21:80/ and design space X
is Œ0; 30�. Interest is in estimating � as well as the following quantities:
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• Area under the curve (AUC),

h1.�/ D �3

�1
� �3

�2

• Maximum concentration,

cm D h2.�/ D �.tmax; �/;

where tmax D 1:01.

Let ��
0 D argmin

�2�
jI�1.�/j, ci be the gradient vector of hi.�/ according to the

parameter vector � and ��
i D argmin

�2�
tr.cT

i I�1.�/ci/, i D 1; 2. The corresponding

objective functions can be written as:

˚0.I.�// D �. jI�1.�/j
jI�1.��

0 /j
/
1
3 ; and

˚i.I.�// D � tr.cT
i I�1.�/ci/

tr.cT
i I�1.��

i /ci/
; i D 1; 2:

Consider the following three-objective optimal design problem:

Maximize
�

Effi˚0.�/

subject to Effi˚i.�/ � 0:4; i D 1; 2:

Utilizing the new algorithm, we find the corresponding compound optimal design is

L.�;U�/ D ˚0 C 0:0916˚1 C 0:0854˚2:

Table 2 shows the efficiencies and computational time comparisons of the
constrained optimal designs derived using grid search, sequential approach and new
algorithm. The table clearly shows that both the new algorithm and the grid search
produce a satisfactory solution. But the grid search takes around eighteen times

Table 2 Example I: relative efficiency of constrained optimal design based on different techniques

Efficiency

Techniques ˚0 ˚1 ˚2 Time cost (seconds)

Grid search 0.9761 0.4042 0.4009 1047

Sequential approach Fails

New algorithm 0.9761 0.4008 0.4046 59
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calculation time as that of the new algorithm. On the other hand, for the sequential
approach, all possible orders are tested and they all fail to provide a satisfactory
solution.

5 Discussion

While the importance of multiple objective optimal designs is well recognized
in scientific studies, their applications are still underdeveloped due to a lack of
a general and efficient algorithm. The combination of the OWEA algorithm for
compound optimal design problems and the new algorithm provides an efficient
and stable framework for finding general multiple-objective optimal designs.

To guarantee convergence of the new algorithm, strict concavity of the objective
function˚0 is required. However, various cases are tested and convergence holds for
virtually all situations based on our experience. The new algorithm is implemented
under local optimal designs context for all examples. It is possible to extend the
results to other settings, like to the cases discussed in [5].

For optimal designs with no more than four objective functions, the new
algorithm can efficiently derive the satisfactory solution. When there are five or
more objective functions, it is unlikely that all constraints are active. If only less
than four constraints are active, the new algorithm can still solve the optimal design
problem efficiently. However, in the rare situation where there are four or more
active constraints, the computational time can become lengthy. More research work
is needed to deal with these cases.

Due to space limitation, many results in this paper are referred to [2]. The report
can be accessed through the webpage:

http://homepages.math.uic.edu/~minyang/research.htm.
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Design for Smooth Models over Complex
Regions

Peter Curtis and Hugo Maruri-Aguilar

Abstract Smooth supersaturated models are a modelling alternative for computer
experiments. They are polynomial models that behave like splines and allow fast
computations. In this contribution we use a boxing approach together with Gram-
Schmidt orthogonalization to model over complex regions. We then perform a
two stage design and modelling strategy and apply our methodology in a complex
example taken from the literature of soap film smoothing.

1 Introduction

Interpolating splines are the solution y.x/ that minimizes a measure of roughness

m. y/ D R b

a fy.m/.x/g2dx when searching among all interpolating functions for a
given data set. The solution y.x/ is an interpolating polynomial spline of degree
2m � 1, which for the case involving second derivatives is a cubic spline [6].
Thin-plate splines extend the theory of splines for multivariate x. They minimize
an extension of the criterion 
2 above, which in the bivariate case is 
2. y/ DR R ��

@2y
@x21

�2 C 2
�

@2y
@x1@x2

�2 C
�
@2y
@x22

�2�
dx1dx2; where the integral is computed over

all R
2, see [9]. If interpolation is not required, spline smoothing may be used

to model and the criterion to minimize is a linear combination of the roughness
measure and the residual sum of squares. The literature for spline modelling and
smoothing is vast, we refer the reader to [6, 14].

This paper is concerned with smooth supersaturated models (SSM) which are
polynomial interpolators that minimize the same measure of roughness used for
splines [4]. SSM are polynomials of high degree with more terms than the number
of observations, and those extra degrees of freedom are used to achieve a spline-
like behavior over a specified smoothing region X . The smoothing region X
for SSM can be arbitrarily defined to allow modelling over non-standard regions.
Convergence of SSM to splines is guaranteed asymptotically [2], although in
practice a good approximation is achieved after adding a few extra terms.
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In this contribution we study SSM over a non-standard smoothing region X . We
compute over X defined as the union of rectangular intervals and build orthogonal
bases using standard Gram-Schmidt method. This has the benefit of stabilizing
computations. We design for smoothness using a response independent criterion.
This paper is a first attempt to use SSM for non-standard regions, where spline
and smoothing methodology is still largely under development, [12, 15, 16]. To the
best of our knowledge no attempts on design have been produced for non-standard
regions, and in this we differ from the literature on designs for spline models [8, 17].

The order of the paper is as follows. In Sect. 2 we review the multivariate SSM
method. We discuss in Sect. 3 alternatives to tailor SSM for non-standard smoothing
regions. We establish our design approach and illustrate it with an example in
Sect. 4. This example is reworked to compare with soap film smoothing [16] where
instead of 
2, a distortion measure is averaged over a region of interest:

J. y/ D
Z Z �

@2y

@x21
C @2y

@x22

�2
dx1dx2: (1)

2 Smooth Supersaturated Model (SSM)

Consider the problem of finding an interpolator to n data points that minimizes
a measure of roughness. Instead of searching over the space of functions with
second derivatives, we use polynomial functions and thus the existence of second
derivatives is guaranteed. Indeed the vector spaces implied by our models are
Sobolev spaces [14]. They admit a seminorm induced by 
2 as shown below.

2.1 Univariate Polynomial Formulation

The available data are .x1; y1/; : : : ; .xn; yn/, where no two design points are repeated.
Let the interpolator be the univariate polynomial in x with real coefficients y.x/ D
f .x/T� D PN�1

iD0 �ixi; with f .x/T D .1; x; x2; : : : ; xN�1/ and �T D .�0; : : : ; �N�1/.
We assume that N > n, i.e. the model has more terms than data points and the
design-model matrix X is of size n � N. To compute 
2 we need the following
definition.

Definition 1 Let X 	 R be a closed, compact and bounded region; let s.x/ and
t.x/ be univariate polynomial functions. We define hs; ti WD R

X s00.x/t00.x/dx.

The roughness of a polynomial y.x/ is 
2. y/ D hy; yi. The following Lemma
establishes the roughness of y.x/. We omit the proof.

Lemma 1 Let y.x/; � and f .x/ be as above. Let K be the matrix of inner products
hxi; xji for i; j D 0; : : : ;N � 1. Then
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1. The roughness of y.x/ is 
2. y/ D �TK� , and
2. The matrix K is of the form K D DDMDTDT where M is the usual moment matrix

of terms in f .x/, computed over the region X . The matrix D is a square matrix of
size N with zero entries apart from entry DiC1;i that equals i for i D 1; : : : ;N �1.

2.2 Multivariate Polynomial Formulation

For multiple input variables, we use hierarchical polynomials, i.e. if a term is
included in the polynomial, all its divisors are also included. For k input variables
x1; : : : ; xk, a monomial is the power product x˛ WD x˛11 � � � x˛k

k where ˛1; : : : ; ˛k are
non-negative integer exponents collected in the exponent vector ˛. A hierarchical
multivariate polynomial is written as

y.x/ D
X
˛2L

�˛x˛; (2)

where L is a list of N exponents satisfying the hierarchy restriction and �˛ is the coef-
ficient of monomial term x˛ . For example, the list L D f.0; 0/; .1; 0/; .0; 1/; .1; 1/g
implies f .x/T D .1; x1; x2; x1x2/ which with coefficients �T D .�00; �10; �01; �11/

defines the bivariate polynomial f .x/T� D �00 C �10x1 C �01x2 C �11x1x2:
The measure of roughness is extended to


2. y/ D
Z

X

trfH. y/2gdx (3)

where H. y/ is the Hessian matrix of y and X is a closed, compact, fully
dimensional and bounded region X 	 R

k. The restriction over the smoothing
region X is required to use standard Riemann integration. As X is finite, the
criterion 
2. y/ corresponds to minimal energy splines rather than to thin-plate
splines [10].

The inner product of Definition 1 generalizes to

hs; ti WD
Z

X

X
i;j

@2s.x/

@xi@xj

@2t.x/

@xi@xj
dx; (4)

where the sum is performed over all pairs i; j taking values from 1; : : : ; k. Lemma 1
can be generalized with K extending to inner products between terms in (2), i.e. the
elements of K are hx˛; xˇi for all pairs ˛; ˇ 2 L; model roughness is the familiar

2. y/ D hy; yi D �TK� and K can be computed from moment matrix M.

The bilinear form h�; �i satisfies symmetry and non-negativity properties. How-
ever it is not a full scalar product over the space of polynomials as it is possible that
this form equals zero despite using non-zero polynomial functions, e.g. h1; x1i D 0:
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For our purposes, this fact does not mean that we cannot include terms with zero
roughness, as the identifiability of such terms is guaranteed by the design-model
matrix X under mild conditions.

2.3 Fitting the Interpolator to Data

The SSM is fitted to data YT D . y1; : : : ; yn/ by solving the linear system�
0 X

XT K

��
�

�

�
D
�

Y
0

�
: (5)

Here the design has been extended using non replicated multivariate design points;
the basis L is chosen so that the design-model matrix X is full rank and � is a vector
of Lagrange multipliers for the interpolation constraints X� D Y, see [2]. Existence
of the solution of (5) is straightforward when K and X are full rank. When K is not
full rank, a condition is imposed on the rank of X. This mild condition does not
restrict the applicability of SSM. The inverse of the above matrix can be written as

�
0 X

XT K

��1
D
��Q HT

H P

�
; (6)

where Q;H and P are matrices that satisfy XH D In, XP D 0n;N XTHT C KP D
IN , XTQ D KH and In; IN are identity matrices of sizes n and N. The parameter
estimates are �� D HY; the fitted SSM is y�.x/ D f .x/T�� and the minimum value
of roughness achieved by this polynomial model is 
�

2 D YT QY D ��TK��.

3 Smoothing over Complex Regions

Computer experiments often involve design regions which are products of simple
intervals for each input so that the design region is a mutidimensional cube in
R

k. After linearly transforming individual variables to the unit interval, design and
analysis is done over Œ0; 1�k.

The SSM methodology requires the smoothing region X to be bounded and fully
dimensional, but it does not require that the design and smoothing regions coincide.
Indeed the SSM method can be used in cases when there is interest in smoothing
over a different region from that where the experiment was performed. However
we restrict attention to cases where we design and smooth over the same region.
We briefly comment on possible approaches to deal with different scenarios of
smoothing region X . The region may consist of several disconnected components
but each component is bounded and fully dimensional.
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3.1 Boxing the Region

If X is not specified, a solution is to linearly transform each design variable to
Œ�1; 1� so the design lies in X D Œ�1; 1�k. We then replace each monomial x˛ in
the interpolator by the product of univariate Legendre polynomials with degrees
given by entries of ˛. This linear change of basis from Equation (2) induces a
checkerboard pattern in matrix K and has proved in practice to be numerically stable.

Alternatively, we compute K over each of a finite collection of non-overlapping
“boxes” X1; : : : ;XM . Each box is a k-dimensional rectangle for which moments
are computed using closed formulæ and the matrix K is the sum of the matrices
computed for each box. If the region X is a union of boxes X D SM

iD1 Xi, then this
method gives exact results. If X has an irregular shape, a cover of boxes can be used
to approximate computations. In the simplest case, a single box would contain X
and this coincides with translating to Œ�1; 1�k. We advocate a coarse cover with a few
boxes to include the smoothing region so that X 	 SM

iD1 Xi. Model oscillations
close to the border of X can be dampened when smoothing over a larger region
than the region of interest; after this initial approximation, there is no additional
gain in refining the cover.

3.2 Polyhedral Regions

When X is a convex polyhedron, a triangulation method can be used so that X
becomes the union of a finite number of simplices and computations over each
simplex are added to obtain K. The use of triangulations is standard practice when
fitting minimal energy splines [10] and a software implementation is available for
polynomial integration over convex polyhedra, see [7]. When the region X is an
arbitrary, non-convex polytope, triangulation may still be performed in some cases
although this can be a much harder problem than over a convex region, see [1].

3.3 Gram-Schmidt Orthogonalization of SSM Bases

The linear system at the core of SSM can be improved depending on the choice
of polynomial bases, and a more stable or sparse version of Equation (5) can be
achieved by linearly transforming the basis. If the region can be transformed to
X D Œ�1; 1�k, natural bases are products of Legendre polynomials. For a complex
region such as a union of boxes, we create orthogonal polynomial bases using
monomial terms of degree greater than or equal to two as input to a Gram-Schmidt
algorithm that uses the inner product h�; �i of Equation (4). After orthogonalization,
the matrix K becomes a diagonal matrix.
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4 Designing for SSM in Complex Regions

Space filling designs such as Latin hypercubes are commonly used in computer
experiments when the design region X can be transformed into the unit cube.
Sampling from a larger cube and rejecting inadequate samples not in X can be
useful when X is not very small relative to the cube generating the samples. A
recent space-filling proposal for non-standard regions is to generate a large number
of random points and the centroids of Ward’s clustering method become design
points. Designs built with this approach are termed FFF designs, see [11].

In order to design for smoothness criterion, recall that the observed roughness
of the SSM is 
�

2 D YTQY with Q as in (6). A simple proposal to design for
smoothness is to minimize a function �.Q/ of the eigenvalues of the matrix Q and
we suggest �.Q/ D �max.Q/, i.e. to minimize the largest eigenvalue of Q, see [2].
The computation of matrix Q and its eigenvalues does not depend on the actual data
values Y and there are at least two design alternatives. One is to select a design with
points that minimize �.Q/. The alternative we pursued is that, given an initial design
that is kept fixed, select a number of additional points that minimize �.Q/.

In the examples below we used the Ramsay horseshoe function [12, 16]. For our
computations, the region X was covered with three coarse boxes, see Fig. 1 (left).

4.1 Design Using Roughness �2

An initial FFF design over X with n D 35 points was used to fit an SSM to data
using N D 140 terms. The model we used has the 136 monomials of degree less
than or equal to 15 and four monomials of degree 16. At this stage, 200 new FFF
points were used to obtain an empirical measure of model fit with validation errors
which produced RMSE D 0:119. This RMSE amounts to 1:43% of the data range,
well within an informal rule of thumb of 5%.

To generate 5 new design points, a set of 200 FFF points, different from the
validation set, was used as a pool to generate a sample of size five. The value
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of criterion �.Q/ was recorded and the procedure repeated 10;000 times and the
best set of extra points was kept. The SSM with same number of terms and
augmented design and data was validated using the same 200 validation points to
yield RMSE D 0:015, around 0:18% of the data range. See Fig. 1 (centre) for
depiction of the model at this stage.

4.2 Design for Distortion J

The distortion criterion J. y/ for soap film smoothing of Equation (1) defines a
seminorm h�; �i. We applied SSM techniques using this criterion with the same initial
design and model terms as Sect. 4.1. The initial fit yielded validation RMSE D
0:709, still relatively high as it is 8:5% of data range. A search such as in Sect. 4.1
produced five new design points with RMSE D 0:515 for the updated model (6:17%
of data range), see Fig. 1 (right).

A non-sequential soap film smoother [16] is superior with RMSE D 0:0868

(1:04% of data range). The performance of SSM under distortion J suffers from
the fact that the matrix K for J has very low rank compared with the K matrix
for roughness 
2. This phenomenon creates aliasing of terms as very few terms
are being used to minimize distortion and the method is thus both inefficient and
prone to instability. In addition to this, our SSM-J procedure does not address the
boundary conditions of soap film so this underperformance is to be expected. A
potential solution to this is to use Hermite interpolators [5], which is possible when
the boundary is an algebraic variety.

5 Discussion and Future Work

We provided a simple, response independent sequential design for smoothness. Our
proposal uses orthonormal bases to enable the SSM method to be applied in non-
standard regions. Coarse boxing provides the other element to achieve a simple and
effective way of fitting SSM which worked well in the examples we tried.

The SSM method does not provide direct uncertainty quantification. An option
is to perform polynomial regression under smoothness constraints [3]. Recent
polynomial work by [13] could be alternatively adapted to embed SSM bases in
a stochastic model, thus enabling quantification of uncertainty.
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PKL-Optimality Criterion in Copula Models
for Efficacy-Toxicity Response

Laura Deldossi, Silvia Angela Osmetti, and Chiara Tommasi

Abstract In recent years, there has been an increasing interest in developing dose
finding methods incorporating both efficacy and toxicity outcomes. It is reasonable
to assume that efficacy and toxicity are associated; therefore, we need to model their
stochastic dependence. Copula functions are very useful tools to model different
kinds of dependence with arbitrary marginal distributions. We consider a binary
efficacy-toxicity response with logit marginal distributions. Since the dose which
maximizes the probability of efficacy without toxicity (P-optimal dose) changes
depending on different copula functions, we propose a criterion which is useful for
choosing between the rival copula models but also protects patients against doses
that are far away from the P-optimal dose. The performance of this compromise
criterion (called PKL) is illustrated for different choices of the parameter values.

1 Introduction

This work is focused on dose-finding designs based on joint models for both efficacy
and toxicity. Such designs are known as phase I-II because they combine two phases
of the clinical evaluation of a drug which are usually separate and consecutive.
Phase I clinical trial designs aim at identifying the maximum tolerable dose of
the drug on the basis of the toxicity. In phase I efficacy outcomes are observed
but not used and only in phase II clinical trials, the efficacy of the drug is studied
in order to decide whether further evaluation of the drug is warranted. In recent
years, there has been an increasing interest in developing dose finding methods
incorporating both efficacy and toxicity outcomes. According to this approach drug
doses are acceptable only if they are safe and efficacious. Then, in general, the
typical goal is to find the best dose which maximizes the probability of efficacy
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without toxicity. Herein, this dose is called P-optimal dose. In this context the
relationship between the dose and the bivariate efficacy-toxicity response has to
take into account the possible association between the two responses. For this
purpose we explore copula functions which provide a rich and flexible class of
dependence structures to obtain joint distributions for multivariate data, especially
when standard multivariate distributions are not applicable. Differently from other
dose-finding methods incorporating efficacy and toxicity outcome (see [3, 5, 10]
among others) in this work we do not assume a specific dependence structure. We
develop a robustness study to assess whether the P-optimal dose changes according
to two different dependence structures. Since this occurs, we propose a compromise
criterion (called PKL) which enables us to find doses which not only are good to
discriminate between the rival copula models but also are not “far away” from the
optimal dose for the patients.

The paper is organized as follows. In Sect. 2 the bivariate copula model is
introduced and the main definitions are given. Section 3 describes the binary model
for efficacy-toxicity response through copula functions. In Sect. 4, KL-optimality
criterion is recalled and a compromise PKL-criterion is introduced. Finally, in
Sect. 5 we study the robustness of the P-optimal dose with respect to a misspecified
dependence structure and we compute the PKL-optimum design as the P-optimal
dose is not robust.

2 Bivariate Copula-Based Model

Let .Y1;Y2/ be a bivariate response variable with marginal distributions FY1 .y1I˛/
and FY2 .y2Iˇ/, which depend on the unknown parameter vectors ˛ and ˇ, respec-
tively. If there is an association between them, it is necessary to define a joint model
for (Y1,Y2). In this paper a copula function is used to evaluate efficacy and toxicity
simultaneously.

A bivariate copula is a function C W I2 ! I, with I2 D Œ0; 1��Œ0; 1� and I D Œ0; 1�,
that, with an appropriate extension of the domain in R2, satisfies all the properties
of a cumulative distribution function (cdf). In particular, it is the cdf of a bivariate
random variable .U1;U2/, with uniform marginal distributions in Œ0; 1�:

C.u1; u2I �/ D P.U1 � u1;U2 � u2I �/; 0 � u1 � 1 0 � u2 � 1;

where � is a parameter measuring the dependence between U1 and U2. The
importance of copulae in statistical modelling stems from Sklar’s theorem [8].
Let ı D .˛; ˇ/; according to Sklar’s theorem, given a bivariate random variable
.Y1;Y2/ with joint cdf FY1;Y2 .y1; y2I ı; �/ and marginals FY1 .y1I˛/ and FY2 .y2Iˇ/,
there exists a copula function C W I2 ! I such that

FY1;Y2 .y1; y2I ı; �/ D C
˚
FY1 .y1I˛/;FY2 .y2Iˇ/I �



y1; y2 2 R: (1)
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If FY1 .y1I˛/ and FY2 .y2Iˇ/ are continuous functions then the copula C.�; �I �/ is
unique. Conversely, if C.�; �I �/ is a copula function and FY1 .y1I˛/ and FY2 .y2Iˇ/
are marginal cdfs, then FY1;Y2 .y1; y2I ı; �/ given in (1) is a joint cdf.

This theorem states that each joint distribution can be expressed in terms of
marginal distributions and a function C.�; �I �/ that binds them together and so pro-
vides a general mechanism to construct new multivariate models in a straightforward
manner. Thus, a copula captures the dependence structure between the marginal
probabilities. This construction allows researchers to consider marginal distributions
and the dependence between them as two separate but related issues. For each
copula there exists a relationship between the parameter � and the Kendall’s � or
the Spearman � coefficients (see [8] pp. 158–170) and between � and the lower and
upper tail dependence parameters �l and �u (which measure the association in the
tails of the joint distribution; see [8] pp. 214–216).

3 Binary Model for Efficacy and Toxicity

Let .Y1;Y2/ be a binary efficacy-toxicity response variable; both Y1 and Y2 take
values in f0; 1g (1 denotes occurrence and 0 denotes no occurrence). Let �1.xI˛/ D
P.Y1 D 1jxI˛/ and �2.xIˇ/ D P.Y2 D 1jxIˇ/ be the marginal success probabilities
of efficacy and toxicity and x 2 X denotes the dose of a drug. In this work, we
consider a logistic model for both Y1 and Y2.

It is commonly accepted that efficacy and toxicity increase with dose. How-
ever, for efficacy, to allow a wide variety of possible dose-response relationships
(including non-monotonic functions) a logistic model with a quadratic term is
reasonably flexible [10]. Then, we assume the following logistic models for efficacy
and toxicity:

logitf�1.xI’/g D ˛0 C ˛1x C ˛2x
2; ’ D .˛0; ˛1; ˛2/; (2)

logitf�2.xI “/g D ˇ0 C ˇ1x; “ D .ˇ0; ˇ1/: (3)

A copula approach is applied to define a bivariate binary logistic model for the
efficacy-toxicity response. Let

pC
y1;y2 .xI ı; �/ D P.Y1 D y1;Y2 D y2jxI ı; �/ for y1; y2 D 0; 1; (4)

be the joint probability of (Y1,Y2) for a given experimental condition x. The
superscript C denotes a copula family. From the copula representation (1), we define

pC
11.xI •; �/ D P.Y1 D 1;Y2 D 1jxI •; �/ D C

˚
�1.xI’/; �2.xI “/I �
; (5)
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Table 1 Copula functions and corresponding lower and upper tail dependence parameters (�l; �u)

Copula C.u1; u2I �/ � 2 � �l, �u

Clayton .u��
1 C u��

2 � 1/�1=� .0;1/ �l D 2.�1=�/, �u D 0

Gumbel exp
�
� �f� ln.u1/g� C f� ln.u2/g�


1=��
Œ1;1/ �l D 0, �u D 2� 2.1=�/

where C is a copula function which models the dependence between �1.xI’/ and
�2.xI “/ given in (2) and (3), respectively. Equation (5) actually defines a class of
models for the binary response: specifing C.�; �I �/ it provides a particular model.

From equation (5) we have that the probability of efficacy without toxicity, for a
given experimental condition x, is

pC
10.xI •; �/ D P.Y1 D 1;Y2 D 0jxI •; �/ D �1.xI’/ � pC

11.xI •; �/: (6)

Clinicians are interested in finding the P-optimal dose, which maximizes the
probability of efficacy without toxicity, i.e.

x�
p D arg max

x2X
pC
10.xI •; �/: (7)

This is a deterministic problem that can be solved whenever the model for the
data is known. For a fixed parameter vector • (a scenario), however, the P-optimal
dose could change for different copula functions and/or for different values of the
dependence parameter � .

Several bivariate copulae have been proposed in the literature (see for instance
[8]). In this paper we consider only Clayton and Gumbel copulae, which have been
already applied by [2] and [9] in the context of Optimal Design. Both these copulae
allow only for positive association between variables even if they exhibit strong
left and strong right tail dependence, respectively. Their main characteristics are
summarized in Table 1.

Before finding the P-optimal dose, it is necessary at first to identify the correct
dependence structure C.�; �I �/ in (5) and then to estimate the parameters of the
chosen model. In the following section we propose a criterion to reach the first
goal of model identification.

4 PKL-Optimality Criterion

An approximate design � is a discrete probability measure on a compact experi-
mental domain X ; �.x/ represents the amount of experimental effort at the support
point x. An optimal design maximizes a concave optimality criterion function which
reflects an inferential goal.

Let .Cl;G/ denote Clayton and Gumbel copulae and let .�Cl; �G/ be the corre-
sponding dependence parameters. From now on, we assume that nominal values
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for both model and dependence parameters (i.e. • and �) are available; hence, we
compute locally optimum designs. In order to discriminate between the two rival
copulae, we could use the following geometric mean of KL-efficiencies:

˚KL.�I •; �Cl; �G/ D fEffG;Cl.�I �Cl/g
1 � fEffCl;G.�I �G/g1�
1 0 � 
1 � 1;

where

Effi;j.�I �j/ D Ii;j.�I �j/

Ii;j.�
�
i;jI �j/

; ��
ij D arg max

�
Ii;j.�I �j/; i; j D Cl;G: (8)

The function

Ii;j.�I �j/ D inf
�i

X
x2X

I fpj
y1y2 .xI ı; �j/; p

i
y1y2 .xI ı; �i/g �.x/; (9)

is the KL-criterion proposed by [6]. Here I fpj
y1y2 .xI ı; �j/; pi

y1y2 .xI ı; �i/g denotes
the Kullback-Leibler divergence between the true model pj

y1y2.xI ı; �j/ and the rival
one pi

y1y2 .xI ı; �i/, with i; j D Cl;G.
Since the KL-criterion is invariant with respect to linear transformation of the

design space (see [1]), we standardize the dose x as

d D x � .xmin C xmax/=2

.xmax � xmin/=2
: (10)

Hence, the design region X becomes the interval D D Œ�1; 1� and the intermediate
dose x corresponds to d D 0. In clinical trials, xmin and xmax in (10) usually are the
minimum effective dose (MED) and the maximum tolerated dose (MTD), i.e. the
extremes of a therapeutic region (of course MED and MTD depend on the nominal
value for model parameter vector ı). From now on we consider design in D .

Doses which are optimal for discrimination purposes, however, could be very
different from the best dose for the patients. Therefore, we propose to penalize
criterion ˚KL.�I •; �Cl; �G/ through the following geometric mean of P-efficiencies:

˚P.�I •; �Cl; �G/ D ˚
EffP

Cl.�I �Cl/


2 � ˚EffP

G.�I �G/

1�
2

; 0 � 
2 � 1; (11)

where a P-efficiency is defined as

0 � EffP
C.�I •; �C/ D ˚P

C.�I •; �C/

˚P
C.�

�
p I •; �C/

D ˚P
C.�I •; �C/

pC
10.d

�
p I •; �C/

� 1 (12)

and

˚P
C.�I •; �C/ D

X
d2D

pC
10.dI •; �C/ �.d/; C D Cl;G
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is the probability of efficacy without toxicity (see [7]). The P-efficiency EffP
C.�I •; �/

measures the goodness of a design � with respect to ��
p D arg max� ˚P

C.�I •; �C/; let
us remark that ��

p D �d�
p

, that is the design with the whole mass at the P-optimal

dose d�
p D arg max

d2D
pC
10.dI •; �C/ (this justifies the second equality in (12)).

In other terms, in order to discriminate between the two rival copulae, it is
ethically more convenient to consider the following compromise criterion (called
PKL):

˚.�I •; �Cl; �G/ D f˚KL.�I •; �Cl; �G/g
3 � f˚P.�I •; �Cl; �G/g1�
3 ; 0 � 
3 � 1:

(13)

The corresponding PKL-optimum design, i.e.

�� D arg max
�
˚.�I ı; �Cl; �G/;

can be computed applying the first order algorithm (see [4], §3.2). The directional
derivative of the PKL-criterion can be obtained using [6] and [7]. Mathematical
details are available upon request by contacting the third author. The PKL-criterion
should ensure that doses, which are good for discrimination purposes, are also
“near” to the best dose for the patients.

If a researcher wants to consider both the problems of model discrimination and
parameter estimation (see [9]) at the same design stage, then a DKL-criterion should
be used (see [11]). Even in this case we suggest to penalize with respect to (11).

5 Simulation

In order to assess whether P-optimal doses depend on the assumed dependence
structure, we apply (7) using Clayton and Gumbel copulae, respectively, and
different values of the dependence parameter. Table 2 lists the considered values
for � , along with the corresponding Kendall � and Spearman’s � coefficients and
the lower and upper tail dependence coefficients, �l and �u.

These computations are developed for 6 different choices of ı D .˛0; ˛1; ˛2,
ˇ0; ˇ1/. Scenario 1: ı D .�1; 1; 0;�2:5; 0:5/; Scenario 2: ı D .�1; 3; 0;�1; 4/;
Scenario 3: ı D .�0:5; 1; 0; 0; 1/; Scenario 4 : ı D .�1; 3;�5;�1:5; 3/; Scenario
5: ı D .0:5; 3;�3;�1:5; 3/; Scenario 6: ı D .3; 2;�1; 1; 1/.

In this Section, we report only the results for Scenarios 2 and 3, for which the
P-optimum dose d�

p changes under the two rival copulae and the different values of
the dependence parameter.

Let d�̆ be the P-optimal dose corresponding to the product copula ˘ (inde-
pendence copula). In order to assess the effect of the dependence structure on the
P-optimal dose, in Table 3 we compute the P-efficiency of �d�

˘
with respect to the

P-optimal doses under both the rival copulae.
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Table 2 Copula parameter
values and the related
dependence and tail
dependence coefficients

Copula � � � �l �u

Clayton 2 0:500 0:683 0:707 0:000

8 0:800 0:941 0:917 0:000

20 0:909 0:987 0:966 0:000

Gumbel 2 0:500 0:683 0:000 0:586

5 0:800 0:943 0:000 0:851

10 0:900 0:986 0:000 0:928

Table 3 P-optimal dose d�
p , success probability pC

10.�/ and efficiency EffP
C.�d�

˘
/

Copula �
Scenario 2 Scenario 3
d�

p pC
10.d

�
p I ı; �/ EffP

C.�d�
˘
/ d�

p pC
10.d

�
p I ı; �/ EffP

C.�d�
˘
/

Clayton 2 0:325 0:090 0:971 1 0:084 0:828

8 �0:318 0:032 0:518 1 0:017 0:394

20 �0:356 0:031 0:062 1 0:001 0:120

Gumbel 2 0:037 0:113 0:918 �0:187 0:076 0:959

5 �0:156 0:052 0:580 �0:936 0:015 0:749

10 �0:276 0:036 0:235 �0:999 0:002 0:433

Independence copula 0:199 0:221 1 0:250 0:192 1

Table 4 P-efficiency of d�
p obtained under a misspecified copula function

Scenario 2 Scenario 3

Copula false Clayton Gumbel Clayton Gumbel

true � 2 8 20 2 5 10 2 8 20 2 5 10

Clayton 2 1 0.548 0.514 0.867 0.696 0.586 1 1 1 0.654 0.373 0.353

8 0.493 1 0.995 0.656 0.905 0.993 0.999 1 1 0.202 0.063 0.058

20 0.038 0.993 1 0.218 0.751 0.965 1 1 1 0.032 0.004 0.004

Gumbel 2 0.761 0.720 0.675 1 0.900 0.771 0.740 0.740 0.740 1 0.889 0.872

5 0.351 0.922 0.888 0.864 1 0.956 0.477 0.477 0.477 0.890 1 0.999

10 0.083 0.993 0.977 0.583 0.938 1 0.206 0.206 0.206 0.624 0.975 1

In addition, in order to study the “robustness” of the P-optimal dose when a
wrong dependence structure is assumed, Table 4 provides the P-efficiency of the
P-optimal dose obtained under the misspecified copula with respect to the P-optimal
dose under the true one.

From Tables 3 and 4, we may conclude that there are losses in P-efficiency when
we do not take into account the dependence structure and also when we misspecify
it. As a consequence, it seems relevant to discriminate between the rival copulae.
Since the support points of the KL-optimum design are frequently “far away” from
the P-optimal dose, we compute the PKL-optimum design ��. Table 5 reports �� for
different values of �Cl and �G (for which we have the same association level) and for

1 D 
2 D 1=2 and 
3 D 1=3. In addition, both the KL- and P-efficiencies of �� are
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Table 5 PKL-optimal designs and their efficiencies with respect to the KL- and P-optimum
designs

�Cl �G
Scenario 2 Scenario 3

�� Eff G;Cl Eff Cl;G EffP
Cl Eff P

G �� Eff G;Cl Eff Cl;G Eff P
Cl Eff P

G

2 2

(
�0:10 0:651
0:568 0:432

)
0.766 0.641 0.766 0.663

(
�1 1

0:409 0:591

)
0.911 0.998 0.735 0.794

8 5

(
�0:250 0:850
0:689 0:311

)
0.746 0.717 0.871 0.672

(
�1 1

0:435 0:565

)
0.927 0.973 0.590 0.704

20 10

(
�0:3 1

0:739 0:261

)
0.585 0.681 0.737 0.772

(
�1 1

0:481 0:519

)
0.985 0.967 0.521 0.589

given. We observe that the compromise optimum design �� seems to perform quite
well both to discriminate between dependence structures and to guarantee a quite
high probability of efficacy without toxicity.
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Efficient Circular Cross-over Designs for Models
with Interaction

Pierre Druilhet

Abstract Cross-over designs are widely used in many areas such as clinical trials
or agricultural field experiments. In addition to the effect of the treatment applied
to a given period, a residual effect of the previous treatment is often observed. In
that case, the effect observed depends on both treatments. When the aim of the
experiment is to select a single treatment, it is natural to consider the effect of a
treatment preceded by itself, also called the total effect. We consider universally
optimal or efficient circular cross-over designs for total effects under a model
with interaction between treatment and carry-over effects. The optimal designs are
obtained from the theory of approximate designs developed by Kushner (Ann Stat
25:2328–2344, 1997).

1 Introduction

In cross-over designs, each experimental unit or subject receives successively
several treatments. The main advantage is to reduce or eliminate the subject
variability in the estimation of treatment effects. However, each response may be
perturbed by a residual or carry-over effect induced by the treatment applied to
the previous period. Neglecting this interference in the analysis may cause bias or
extra-variability under randomization in the estimation of direct treatment effects:
[2] and [16] showed that cross-over designs with neighbor balance properties may
reduce this bias or variability. There are several ways to incorporate carry-over
effects in the model. The most parsimonious is through an additive effect. Many
results on optimal designs under this model are available, e.g. [14, 17, 20, 21] or
[26] for designs without pre-period; for circular designs, we can cite [3, 5, 9, 10, 15]
or [8].

To be more accurate, one may incorporate in the model a specific effect when
a treatment is preceded by itself, such as in [1, 6, 7, 18, 19] or [25]. For a full
interaction between carry-over and treatment effects, [24] and [22] propose optimal
designs for the estimation of direct treatment effects, i.e. the effect of a treatment
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averaged over the interaction with all the carry-over effects. In that case, direct
treatment effects depend on the other treatments through the interactions. When
the aim of the experiment is to select a single treatment, it may be more relevant
to consider total effects, i.e. effects of treatments preceded by themselves, which
do not depend on the other treatments. Bailey and Druilhet [4], abbreviated by BD
in the following, obtained optimal non-circular designs for the estimation of such
effects under the same model.

In this paper, we consider circular designs that are optimal for the estimation
of total effects. In Sect. 2, we give the main ideas of the method proposed by [20]
and its generalizations. To make the logical flow easier to follow, we skip technical
results. Instead, we refer to equivalent results in BD since the proofs are similar even
if the permutation group involved in the circular case is slightly different than that of
the non-circular one. In Sect. 3, we construct optimal designs by solving a minimax
problem. In Sect. 4, we give some examples of optimal sequences and optimal or
efficient designs.

2 Interaction Repeated Measurement Models
and Information Matrices

Denote by ˝t;n;p the set of circular cross-over designs with t treatments, n subjects
and k periods. Let d.i; j/ be the treatment assigned by the design d in ˝t;n;k in the
jth period to the ith subject, 1 � i � n and 1 � j � k. The pre-period corresponds
to j D 0 and the circularity condition is given by d.i; 0/ D d.i; k/.

The interaction model for the response yij is:

yij D ˇi C �d.i;j/;d.i;j�1/ C "ij; (1)

where ˇi is the effect of subject i and �uv is the effect of treatment u when preceded
by treatment v. We omit here a period effect in the model, which will be shortly
discussed in Sect. 3. The residual errors "ij are assumed to be independent identically
distributed with expectation 0 and variance �2. Denote by � the vector

� D .�11; �12; ::; �1t; �21; : : : ; �tt/
0:

Let �u be the total effect of treatment u, that is the effect of treatment u which is
preceded by itself. We have �u D �uu and in vector notation

� D K0�;

where K is the t2 � t matrix with entries Kw
uv D 1 if u D v D w and 0 otherwise, for

u; v;w D 1; : : : ; t, where w is the single index for the columns and uv is the double
index for the rows, similar to the double index for the vector �.
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In vector notation, Model (1) can be written:

Y D Bˇ C Xd� C ";

where Y is the nk-vector of responses with entries yij in lexicographic order, Xd is
the nk � t2 design matrix, ˇ is the n-vector of subject effects and B D In ˝ 1k with
In the identity matrix of order n and 1k is the k-vector of ones.

The information matrix Cd Œ�� for the estimation of vector � is given by (see e.g.
[13]):

Cd Œ�� D X0
d !

?
B Xd:

where !?
B D Ink � B .B0B/�1 B0 D Ink ˝ Qk with Qk D Ik � Jk=k and Jk the k � k

matrix of ones. Note that !?
B Xd1t2 D !?

B 1nk D 0, and so

Cd Œ�� 1t2 D 0: (2)

Let S be the set of all possible sequences of k treatments. For s in S, we denote
by Xs the design matrix associated to s and CsŒ�� D X0

sQkXs the corresponding
information matrix. One key idea of Kushner’s [20] methods is to express Cd Œ�� as
a linear combination of CsŒ��:

Cd Œ�� D n
X
s2S

�d.s/ CsŒ�� D n
X
s2S

�d.s/ X0
s Qk Xs; (3)

where�d.s/ is the proportion of subjects that receive the sequence s of treatments. In
regard to the information matrix, an exact design is characterized by the proportions
�d.s/ which are necessarily proportional to n�1. The second key idea of Kushner’s
methods is to relax this constraint and to seek an optimal design among approximate
designs d in ˝t;n;k which are defined by their proportions �d.s/, s in S, with 0 �
�d.s/ � 1 and

P
s2S �d.s/ D 1.

The information matrix CdŒ�� of � may be obtained from CdŒ�� by the extremal
representation (see [11] or [23, p. 62]):

Cd Œ�� D Cd
�
K0�


 D min
L2LK

L0Cd Œ�� L; (4)

where LK D fL 2 Rt2�t j L0K D Itg and the minimum is taken relative to the
Loewner ordering. It can be shown that CdŒ��1t D 0 (see Lemma 1 in BD). Denoting
by L�

d a matrix L that achieves the minimum in (4), we have

CdŒ�� D L�0 Cd Œ�� L� D n
X
s2S

�d.s/ L�0 CsŒ�� L�: (5)

For a sequence s in S, we denote by s� the sequence obtained from s by permuting
the treatment labels according to the permutation � . A design d is said to be
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symmetric if, for any sequence s and any permutation � , �d.s� / D �d.s/. From
a design d, the symmetrized design Nd is defined by

�Nd.s/ D 1

tŠ

X
�2St

�d.s� /; 8s 2 S ; (6)

where St is the set of all permutations on f1; : : : ; tg. To a permutation � of the
treatment labels corresponds a permutation Q� of the indices of � where Q�.u; v/ D
.�.u/; �.v//. An important requirement to apply Kushner’s methods is that the
matrix K that defines the parameter of interest � must satisfy PQ�KP� D K which
is the case here (note that this is also the case for direct treatment effects). A first
consequence is that a symmetrized design Nd has an information matrix for � which
is completely symmetric and whose trace is at least as large as that of d (see Lemma
3 in BD). This implies that a universally optimal approximate design may be sought
among symmetric designs. The second consequence is that the matrix L�

d defined
in (5) has a simple parameterized form when d is symmetric. This considerably
simplifies the minimization problem. Indeed, for a symmetric design, the entries
of L�

d can be chosen constant on the triple orbits of the permutation group St on

f1; : : : ; tg, i.e. Lw
uv D L�.w/�.u/�.v/, for all � 2 St (see Lemma 4 in BD). So, L�

d can be
written as a linear combination of 5 matrices:

L�
d D

5X
qD1

xdq L.q/ (7)

where Lu
.1/uu D 1 for u D 1; : : : ; t and 0 otherwise; Lu

.2/uv D 1, Lv.3/uv D 1 and
Lv.5/uu D 1 for u; v D 1; : : : ; t, u ¤ v and 0 otherwise; Lw

.4/uv D 1 for u; v;w D
1; : : : ; t, u ¤ v ¤ w ¤ u and 0 otherwise. The constraint L�0

d K D It can be written
xd1 D 1 and xd5 D 0 and therefore L�

d depends only on three free parameters.

3 Universally Optimal Approximate Designs

From [12], a sufficient condition for a design d to be universally optimal over a class
D of design is that CdŒ�� is completely symmetric and maximizes the trace over D.
We saw in Sect. 2 that a symmetric design with maximal trace will be universally
optimal among all possible approximate designs. So, let d be a symmetric design.
Combining (4), (5) and (7), we have

tr.CdŒ��/ D n min
x2;:::;x4

X
s2S

�d.s/
4X

pD1

4X
qD1

xpxq cspq with x1 D 1; (8)

where cspq D tr
�

L0
.p/CsŒ��L.q/

�
.



Efficient Circular Cross-over Designs for Models with Interaction 91

We say that two sequences are equivalent if one may be obtained from the other
one by permutation of the treatment labels and/or by circular permutation of the
periods. The coefficient s is the same for two sequences in the same equivalence
class, so (8) can be written

tr.CdŒ��/ D n min
x2;:::;x4

X
`2L

�d.`/

4X
pD1

4X
qD1

xpxq c`pq with x1 D 1; (9)

where L is the set of equivalence classes and �d.`/ is the proportion of sequences
in design d that belong to the equivalence class `. So, a symmetric d� is uni-
versally optimal if its proportions �d�.`/, ` 2 L , maximize (9). To solve this
problem we consider the following procedure derived from [20]. Let h`.
/ DP4

pD1
P4

qD1 xpxqc`pq with 
 D .x2; x3; x4/ and h�.
/ D max` h.`/.

Step 1 Find 
� that minimizes the function h�.
/ and let h� D h�.
�/ denote the
minimum.

Step 2 Select the classes ` of sequences such that h`.
�/ D h� and let C � denote
this set.

Step 3 Solve in f�` j ` 2 C �g the linear system,
P

`2C � �`
d h`
d
 .


�/ D 0, for
0 < �` < 1 and

P
`2C �` D 1; denote by �� D f� �̀ j ` 2 C �g the solution (not

necessarily unique).
Step 4 Give the symmetric designs such that �` D � �̀ for ` 2 C � and �` D 0

otherwise; these designs are universally optimal.

Let now assume that there are period effects in the model. A design is said to be
strongly balanced on the period if, for any given period, each treatment is preceded
by itself equally often, and is preceded by any other treatment equally often. For a
approximate design, “equally often” must be replaced by “in the same proportion”.
As in BD (Prop. 8 and following remark) a symmetric exact or approximate design
which is optimal under the model without period effect and which is strongly
balanced on the period is also optimal under the model with period effects.

4 Examples of Optimal Designs

We give here some examples of optimal sequences.

4.1 k = 4, t = 4

An optimal design is generated by the sequence .1 1 2 2/. For example, the
following design obtained by considering all the possible permutations of treatment
labels from the optimal sequence is symmetric and strongly balanced on the periods,
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and so is universally optimal0BB@
1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 2 2 2 3 3 3 4 4 4

2 3 4 1 3 4 1 2 4 1 2 3

2 3 4 1 3 4 1 2 4 1 2 3

1CCA :
Since the sequences .a a b b/ are equivalent, we can reduce the design to0BB@

1 1 1 2 2 3

1 1 1 2 2 3

2 3 4 3 4 4

2 3 4 3 4 4

1CCA :
However, this design is no longer optimal under the model with period effects.

4.2 k = 5, t = 5

The optimal design is generated by the sequences .1 1 2 2 2/ and .1 1 2 2 3/ with
proportions respectively 7=10 and 3=10. A symmetric design with these proportions
needs 480 subjects. So, it may be preferable to consider a symmetric design
generated by a single sequence. A symmetric design generated by the first sequence
has an efficiency factor equal to 0:97 and requires at least 20 subjects. A symmetric
design generated by the second sequence has an efficiency factor equal to 0:92 and
requires 60 subjects.

4.3 k = 6, t = 6

The optimal design is generated by the sequences .1 1 1 2 2 2/ and .1 1 2 2 3 3/
with proportions respectively 3=77.63� 16

p
14/ 
 0:12 and 16=77.3

p
14 � 7/ 


0:88. A symmetric design generated by the first sequence has an efficiency factor
equal to 0:92. For the second sequence, it is 0:999.

4.4 k = 7, t = 7

The optimal design is generated by the single sequence .1 1 1 2 2 3 3/. A symmetric
design generated by this sequence require 210 subjects. The following design has
only 42 subjects and a completely symmetric information matrix. Its efficiency
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factor for the estimation of the total effects is 0.989 for model (1) with or without
period effects. The method of construction of such designs can be found in BD (p.
2296)0BBBB@

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7

2 3 4 5 6 7 3 4 5 6 7 1 4 5 6 7 1 2 5 6 7 1 2 3 6 7 1 2 3 4 7 1 2 3 4 5 1 2 3 4 5 6

2 3 4 5 6 7 3 4 5 6 7 1 4 5 6 7 1 2 5 6 7 1 2 3 6 7 1 2 3 4 7 1 2 3 4 5 1 2 3 4 5 6

3 5 7 2 4 6 4 6 1 3 5 7 5 7 2 4 6 1 6 1 3 5 7 2 7 2 4 6 1 3 1 3 5 7 2 4 2 4 6 1 3 5

3 5 7 2 4 6 4 6 1 3 5 7 5 7 2 4 6 1 6 1 3 5 7 2 7 2 4 6 1 3 1 3 5 7 2 4 2 4 6 1 3 5

3 5 7 2 4 6 4 6 1 3 5 7 5 7 2 4 6 1 6 1 3 5 7 2 7 2 4 6 1 3 1 3 5 7 2 4 2 4 6 1 3 5

1CCCCA :

4.5 k = 8, t = 4

The optimal design is generated by the single sequence .1 1 1 2 2 2 3 3/.
In comparison, [24] consider optimal designs for the estimation of direct effects
defined by 1

t

Pt
jD1 �ij, i D 1; : : : ; t. They propose optimal designs based on the

sequence .1 4 2 3 3 2 4 1/ with 4 subjects. A symmetric design based on this
sequence has an efficiency of 40 % for the estimation of total effects.
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Survival Models with Censoring Driven
by Random Enrollment

Valerii V. Fedorov and Xiaoqiang Xue

Abstract In clinical studies with time-to-event end points we face uncertainties
caused by the enrollment process that can often be viewed as a stochastic process.
The observed endpoints are randomly censored and the amount of gained informa-
tion is random and its actual value is not known at the design stage but becomes
known only after the study completion. To take this fact into account we develop a
method that maximizes the average information. We derive the average elemental
Fisher information matrices for a few scenarios to illustrate the approach, assuming
that enrollment can be modeled by a Poisson process.

1 Introduction

The design of experiments in survival analysis attracted attention from the “optimal
design of experiments” community relatively recently and examples of publications
include: [13] considered optimal design for the proportional hazard models, for
a two-parameter linear regression model with exponentially distributed survival
times and uniformly distributed patient enrollment time, [12] continued with the
proportional hazard model and introduced censoring due to dropout. Other examples
include [10] and [14]. The latter publication contains a survey section that covers
most of the developments in this area. All these papers are focused on specific cases
and derive the respective equivalence theorems complemented either by numerical
procedures or by analytic solutions for relatively simple scenarios. In this paper
similarly to [1] and [5] we develop a rather universal approach that is based on the
concept of the elemental information matrix. It allows us to generate optimal designs
in a routine manner for a variety of hazard models accepted in clinical studies.
Additionally, we try to combine the traditional optimal design with operational
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aspects of clinical trials and, in particular, with the enrollment of subjects. In our
notation and terminology we mainly follow [1] and [3].

2 Model

2.1 Assumptions and Notation

Let us start with a diagram of subject arrivals and the respective observations or
censoring, see Fig. 1, compare with [3, Ch. 1] or [6, Ch. 10]. In this diagram tj stands
for the arrival time of the j-th subject, enrollment stops at Te and follow up continued
till Ts (study completion). Each subject j is observed during a time interval �j . We
assume that all censoring happens at a t D Ts and thus do not consider censoring
related to dropouts either informative or not, cf. [2] and [11, Ch. 1].

Enrollment may be stopped either at the pre-fixed time Te D Ts � Tf , where Tf

is a fixed follow-up period, or at T.ns/ when a required number ns of subjects is
enrolled, or at a moment T.Rs/ when the needed number Rs of events has occurred.
Various combinations of these stopping rules were discussed in the literature on life-
testing experiments, see [2] for a summary of results and further references. In this
paper the focus is on the stopping by time case.

We assume that:

• Time-to-event is random and its probability density is '.�; �/.
• Elemental parameters � depend on variables (controls) x 2 X , i.e. � D �.x; �/.
• Response functions �.x; �/ are given, finite for all x 2 X and twice differentiable

with respect to � 2 ˝ .
• Design region X and˝ are compact.

0 t

Fig. 1 Staggered entry, tj stands for arrival time, �j exposure time; enrollment starts at t D 0 and
stops at t D Te; ı indicates censoring; � indicates an event; a trial stops at t D Ts; Tf is a minimal
follow-up period
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• Arrival times are generated by a homogeneous Poisson process with rate � if it is
not stated otherwise. “Total” enrollment n.t/ at moment t is Poisson distributed
with parameter�.t/ D �t.

• On arrival subjects are randomized across doses fxigN
1 with probabilities fpigN

1 ,PN
iD1 pi D 1.

To identify a subject and related outcomes we will use subscripts ij. At the study
completion, the following values become known:

• Number of subjects ni assigned to dose xi and all arrival times tij.
• The outcomes fyijgni

1 D f�ij; ıijgni
1 , where ıij D 1 if �ij � Ts � tij and ıij D 0

otherwise.

Most of the distributions that are popular in survival analysis, cf. [3], depend on
one or two parameters. The objective of design is to find doses x�

i and respective
p�

i that minimize a pre-selected function of the variance-covariance matrix of the
maximum likelihood estimator O� of unknown parameters. The more detailed and
more accurate definition will be given later. To address the problem we follow the
path introduced in [1] and [5, Ch. 2] with some additions that take into account
censoring and randomness of the arrival times. To do this we are to define and find
the analogue of the elemental information matrix that is essential for the approach.

In what follows we use the following notation:

• Distribution function:˚.�; �/ D R �
0
'.t; �/dt:

• Survival function: S.�; �/ D 1 � ˚.�; �/:

• Hazard function: h.�; �/ D '.�; �/=S.�; �/ D �@ ln S.�; �/=@�:
• Integrated hazard function: H.�; �/ D R �

0
h.t; �/dt:

In survival analysis, the selection of a hazard function is often a starting point of
model building. Note that S.�; �/ D e�H.�;�/ and '.�; �/ D h.�; �/e�H.�;�/:

2.2 Elemental Information Matrix in Survival Analysis Setting

We confine ourselves to maximum likelihood estimators and do not consider partial
maximum likelihood estimators. There are two reasons: in general the use of partial
maximum likelihood estimators leads to loss of information and the respective
information matrices contain a random number of terms even in the case of a fixed
sample size, cf. [3, Ch. 8.4 and 8.5]. The latter makes the design problem more
complicated and is beyond of the scope of our paper.

To derive the respective Fisher information matrix (FIM) of a single observation
for parameters � , let us start with the FIM for the original/elemental parameters �,
which in [1] was called the elemental Fisher information matrix (elemental FIM).
For observations with the censoring time � the elemental FIM can be calculated
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using either one of two formulae:

�.�; �/ D
Z �

0

@ ln '.t; �/

@�

@ ln '.t; �/

@�> '.t; �/dt C S.�; �/
@ ln˚.�; �/

@�

@ ln˚.�; �/

@�>
(1)

or

�.�; �/ D
Z �

0

@ ln h.t; �/

@�

@ ln h.t; �/

@�> '.t; �/dt; (2)

see, for instance, [7] and [8].
The role of elemental FIM can be appreciated if, as in [5, Ch. 1.6], we verify that

the total FIM can be presented as

M.ftijg;Ts; �/ D
NX

iD1

niX
jD1

Fi�.Ts � tij; �.xi; �//F
>
i ; (3)

where �ij D Ts � tij and Fi D F.xi; �/ D @�>.xi; �/=@� . Note that F.x; �/ is
an .m � k/ matrix, where m D dim �; and k D dim �. Thus, the knowledge
of an elemental information matrix for a given density '.t; �/ or hazard function
h.t; �/ allows us to build the information matrix for O� as soon as the function
�.x; �/ is selected. Matrix 	.x; �; �/ D F.x; �/�.�; �.x; �//F>.x; �/ can be viewed
as the FIM of a single observation performed at x with exposure time � D Ts � t.
Values fnig and f�ijg are realizations of random variables and become known at the
completion of a study. Only their distributions are known at the design stage.

3 Random Subject Accrual

In a typical clinical trial arrival times ftijg are known only after enrollment
completion. Unfortunately one has to select doses and randomization rates prior
to enrollment. In what follows we assume that arrival times can be modeled with a
Poisson process with (rate) intensity �.t/. The latter is assumed to be known at any
time interval used in all formulae that follow. Let us assume for simplicity that the
enrollment stops at predefined Te.

Unlike those of the traditional design theory, the design � D fpi; xigN
1 is intrinsi-

cally connected to the operational aspects of clinical studies and, in particular, to the
randomization that should carefully follow a study protocol. It is worth mentioning
the two most popular :

• Complete randomization: at each arrival the subject is assigned with probability
pi to treatment xi, i D 1; 2; : : : ;N.
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• Permuted block design: randomization in blocks. For instance, for p1 D p2 D
1=2 the j-th subject is assigned either to dose x1 or dose x2 with probability 1=2
and the . j C 1/-th subject is assigned to the respective complementary dose.

While for larger sample sizes the randomization type is not important for the smaller
sample sizes it may lead to a noticeable impact.

Let us confine ourselves to the first randomization type in this case. As arrival
times are generated by a homogeneous Poisson process with rate �, the randomized
assignment of subjects to different doses splits this process in N Poisson processes
and arrival times at each dose xi follow the Poisson process with rate �i D pi�.
This fact is an immediate corollary of the “Colouring Theorem”, also known as the
“Thinning Theorem”, see [9, Ch. 5].

Arrival times and the number of enrolled subjects at each dose are not known
at the design stage and we have to find a reasonable approximation of the total
information matrix (3). Let us introduce

˙i D
niX

jD1
�
�
Ts � tij; �.xi; �/

	 D
niX

jD1
�
�
Te C Tf � tij; �.xi; �/

	
: (4)

One may recall that Tf stands for a follow up time. Matrices ˙i and �
�
Ts �

tj; �.xi/
	

are random non-negative definite. Using (2) one can verify that for any
0 � tj < Te

�
�
Ts � tj; �.xi; �/

	 � �
�
Ts; �.xi; �/

	
; (5)

where the ordering should be understood in the Loewner sense.
From Campbell’s Theorem, see [9, Ch. 3.2], it follows that (for a while xi; � will

be skipped):

EŒ˙i� D �i

Z Te

0

�.Te C Tf � t; �/dt D �iTe

Z Te

0

�.Te C Tf � t; �/
1

Te
dt

and similarly

Var
�
˙i;˛ˇ


 D �i

Z Te

0

�2i;˛ˇ.Te C Tf � t; �/dt D �iTe

Z Te

0

�2i;˛ˇ.Te C Tf � t; �/
1

Te
dt;

where �˛ˇ is the element of matrix � that corresponds to �˛ and �ˇ respectively. One
may recall that �iTe is the expected number of patients that assigned to dose xi.

Note that the relative standard deviation of elements of matrix ˙i is of order
1=

p
�iTe and for the majority of clinical trials �iTe is several hundreds. Therefore,

the expected value of ˙ is a “reasonable” replacement of ˙ itself. The integral

�.Te;Tf ; �/ D
Z Te

0

�.Te C Tf � t; �/
1

Te
dt: (6)
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can be viewed as an expectation of the elemental information matrix when t is
uniformly distributed on Œ0;Te�, i.e.

�.Te;Tf ; �/ D E
�
�.Te C Tf � t; �/



: (7)

A similar remark is valid for the integral (6). Combining (3), (4) and (6) we get

M.�;Te;Tf ; �/ D E
�
M.ftijg;Te;Tf ; �/


 D �Te

NX
iD1

pi	
�
Te;Tf ; �.xi; �/

	
; (8)

where

	
�
Te;Tf ; �.x; �/

	 D F.x; �/�
�
Te;Tf ; �.x; �/

	
F>.x; �/ and � D fpi; xigN

1 :

Introducing (average) normalized FIM

��1T�1
e M.�;Te;Tf ; �/ D M.�;Te;Tf ; �/ D

NX
iD1

pi	
�
Te;Tf ; �.xi; �/

	
; (9)

we come to the following optimization (design) problem for given Te;Tf ; � :

��.�;Te;Tf ; �/ D arg min
�


�
�TeM.�;Te;Tf ; �/



: (10)

For homogeneous criteria 
 , cf. [5, Ch. 2.3], optimization problem (10) is
equivalent to

��.Te;Tf ; �/ D arg min
�


�
M.�;Te;Tf ; �/



(11)

and in this case the optimal design �� does not depend on the enrollment rate �.
As soon as either matrix � or 	 is defined the design problem can be addressed
in the framework of the classical (standard) design theory as in [1], [5, Ch.5.4] by
replacing � or 	 by � and	 respectively. However there is one significant difference
of (11) from the standard case: now locally optimal design ��.Te;Tf ; �/ depends on
Te;Tf and � . One can extend the optimization problem and look for the optimal
enrollment duration and the optimal follow up period:

.T�
e ;T

�
f / D arg min

Te;Tf



�
M
�
��.Te;Tf ; �/;Te;Tf ; �

	

; C.�;Te;Tf / � C�; (12)

where C.�;Te;Tf / is a cost function that is defined by operational characteristics of
a clinical study.
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4 Example: Proportional Hazard Family

Let us consider the proportional hazard model, cf. [3, Ch.5.3], for this model the
hazard function, the integrated hazard, the survivor function and density are:

h.�; �/ D �h0.�/; H.�/ D �H0.�/ D �

Z �

0

h0.t/dt; (13)

S.�; �/ D e��H0.�/; '.�; �/ D �h0.�/e
��H0.�/:

From (2) and (13) it immediately follows that for the proportional hazard family
the elemental FIM (actually it is a scalar in the case considered) for observations
censored at � is

�.�; �/ D 1

�2
Œ1 � e��H0.�/� D 1

�2
˚.�; �/; (14)

and for the enrollment that can be described by a homogeneous Poisson process the
average elemental FIM is

N�.Te;Tf ; �/ D 1

�2

Z Te

0

1

Te
˚.Te C Tf � t; �/dt D 1

�2
N̊ .Te C Tf ; �/: (15)

Let

�.x; �/ D e�
>f .x/ and F.x; �/ D �.x; �/f >.x/: (16)

Combining (7), (8) and (14), (15) one can verify that the average normalized FIM (9)
for this model is

M.�/ D M.�;Te;Tf ; �/ D
NX

iD1
pi!.xi/f .xi/f

>.xi/; (17)

where !.x/ D N̊ .Te C Tf ; �.x; �//. Thus, given Te;Tf ; � matrix (17) has exactly the
same structure as in the traditional case and the whole “optimal design” machinery
may be implemented to build optimal designs. For example, for the D-criterion (i.e.
minimization of ln jM�1.�/j) the familiar inequality

!.x/d.x; ��/ D !.x/f >.x/M�1.��/f .x/ � m D dim �; for all x 2 X

provides the necessary and sufficient condition that �� D arg min� jM�1.�/j. If one
can verify that �� has exactly m support points .N� D m/ then p�

i � 1=m, see [4,
Ch 2], to the great relief of those who run clinical studies: equal randomization rates
are operationally preferable.
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While other analytic niceties from optimal design theory stay valid for our
problem, the most important fact is that we can apply numerous and well developed
numerical algorithms. However one should not forget that optimization prob-
lem (12) needs the multiple computations of (11).

5 Conclusion

We extended the results of [1] to the case of randomly censored observations that
are typical for clinical trials with time-to-event endpoints. As in that paper the
collection of results presented here will allow streamlining of the practical aspects
of clinical study design and it will lead to the development of software that can
incorporate multiple specific cases in one menu driven toolkit. We considered only
one enrollment stopping rule: stopping by time. Stopping rules based on the number
of enrolled subjects or on the number of events are beyond the scope of this paper
and we hope to present the respective results in subsequent publications.

Acknowledgements We thank the referees for their many helpful comments and insightful
suggestions leading to an improved paper.
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Optimal Design for Prediction in Random Field
Models via Covariance Kernel Expansions

Bertrand Gauthier and Luc Pronzato

Abstract We consider experimental design for the prediction of a realization of
a second-order random field Z with known covariance function, or kernel, K.
When the mean of Z is known, the integrated mean squared error of the best
linear predictor, approximated by spectral truncation, coincides with that obtained
with a Bayesian linear model. The machinery of approximate design theory is
then available to determine optimal design measures, from which exact designs
(collections of sites where to observe Z) can be extracted. The situation is more
complex in the presence of an unknown linear parametric trend, and we show how a
Bayesian linear model especially adapted to the trend can be obtained via a suitable
projection of Z which yields a reduction of K.

1 Introduction

We consider a centered second-order random field .Zx/x2X indexed over X , a
compact subset X of Rd, d � 1, with covariance function EfZxZx0g D K.x; x0/ D
K.x0; x/. We also consider a �-finite measure � on X which will be used to define
the Integrated Mean Squared Error (IMSE) for prediction, see (1). We assume that
	.X / D 1 without any loss of generality. We suppose that K W X � X ! R is
continuous and thus belongs to L2���.X �X /. This framework is now classical for
computer experiments, where .Zx/x2X represents the output of a computer code
with input variables x 2 X , in the sense that it forms a prior on the possible
behavior of the code when x vary in X , see in particular [10]. The design problem
then consists in choosing n sites x1; : : : ; xn where to observe Zx without error (i.e., n
inputs values for the computer code) in order to predict at best the realization of Zx
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over X . Note that the objective concerns prediction of one instance of the random
field, based on a finite set of error-free observations.

The best linear predictor of Zx, unbiased and in terms of mean squared error (the
simple kriging predictor), based on the vector of observations zn D .Zx1 ; : : : ;Zxn/

>
obtained with the design Dn D .x1; : : : ; xn/, is given by k>.x/K�1zn, where k.x/ D
.K.x1; x/; : : : ;K.xn; x//> and the matrix K has elements fKgij D K.xi; xj/. Its Mean
Squared Error (MSE) is MSE.xI Dn/ D K.x; x/� k>.x/K�1k.x/.

The IMSE will be computed for the measure �, which weighs the importance
given to the precision of predictions in different parts of X ,

IMSE.Dn/ D
Z

X
MSE.xI Dn/ d�.x/ : (1)

Choosing a design Dn with minimum IMSE is then a rather natural objective;
however, IMSE-optimal designs are considered as difficult to compute, see [10].
The introduction of the following integral operator on L2�.X / yields a spectral
representation of the IMSE and is at the core of the design approach presented in
this paper.

For all f 2 L2�.X / and x 2 X , we define

T�Œ f �.x/ D
Z

X
f .t/K.x; t/ d�.t/ :

From Mercer’s theorem, there exists an orthonormal set fe�k; k 2 Ng of eigenfunc-
tions of T� in L2�.X / associated with nonnegative eigenvalues, the eigenfunctions
corresponding to non-zero eigenvalues being continuous on S�, the support of �.
Moreover, for x; x0 2 S�, K has the representation K.x; x0/ D P1

kD1 �k e�k.x/e�k.x0/,
where the �k denote positive eigenvalues that we assume to be sorted by decreasing
values, and the convergence is uniform on compact subsets of S�. As shown below,
see (2), the integration over X in (1) can then be replaced by a summation over k,
the index of eigenvalues. There is a slight technicality here, due to the fact that S�

may be strictly included in X , so that the eigenfunctionse�k, which are only defined
�-almost everywhere, may not be defined at a general design point xi 2 X . This is
the case for instance when � is a discrete measure supported at a finite set of points
XQ 	 X (thus in particular when the IMSE is approximated via a quadrature
rule) and Dn is not a subset of XQ. A general way to avoid this difficulty is via the
introduction of the canonical extensions

�k D .1=�k/T�Œe�k� ; �k > 0 ;

which are defined on the whole set X and satisfy �k.x/ D e�k.x/ on S�. Note that
the �k are continuous since we assumed that K.�; �/ is continuous. One may refer to
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[4] for more details. Then, K.x; x0/ D P1
kD1 �k �k.x/ �k.x0/ for all x; x0 in X and

IMSE.Dn/ D � �
1X

kD1
�2k �

>
k

K�1�
k
; (2)

where � D P1
kD1 �k and �

k
D .�k.x1/; : : : ; �k.xn//

>. A spectral truncation that
uses only the ntrc largest eigenvalues yields an approximation of IMSE.Dn/,

IMSEtrc.Dn/ D �trc �
ntrcX
kD1

�2k �
>
k

K�1�
k

D trace.ƒtrc �ƒtrcˆ
>
trcK

�1ˆtrcƒtrc/ ;

(3)

with �trc D Pntrc
kD1 �k, ˆtrc the n � ntrc matrix with elements fˆtrcgik D �k.xi/

and ƒtrc D diagf�1; : : : ; �ntrc g. This satisfies IMSEtrc.Dn/ � IMSE.Dn/ �
IMSEtrc.Dn/C �err, where �err D � � �trc D P

k>ntrc
�k, see [4, 6].

Following [2, 13], we recall below (Sect. 2) how, using its Karhunen-Loève
decomposition, .Zx/x2X can be interpreted as a Bayesian Linear Model (BLM)
with correlated errors having the eigenfunctions �k, k D 1; : : : ; ntrc, as regressors,
and for which the IMSE of prediction coincides with IMSEtrc.Dn/. A similar
decomposition has been used in [3], but for the estimation of trend parameters
(or equivalently, for the prediction of the mean of Zx). The IMSE for a BLM
with uncorrelated errors takes the form of a Bayesian A-optimality criterion,
which opens the way for the construction of approximate optimal designs (design
measures) by convex optimization, see [8]. Exact designs Dn, that is, collections of
sites where to observe Z, can be extracted from these optimal measures, see Sect. 3.
However, replacing correlated errors by uncorrelated ones, in order to be able to use
the approximate design machinery, introduces an additional approximation (besides
spectral truncation). Whereas the approximation in [13] relies on an homoscedastic
model, the one we propose in Sect. 2 uses a more accurate heteroscedastic model.
The situation is more complex when a linear parametric trend is present, and
in Sect. 4 we show how a suitable projection of .Zx/x2X on the linear subspace
spanned by the trend, equivalent to a kernel reduction, yields a BLM with smaller
errors than the direct approach of [13] that uses the original kernel K.

2 Bayesian Linear Models

Exact BLM The Karhunen-Loève decomposition of Zx yields

Zx D
ntrcX
kD1

ˇk�k.x/C "x ; (4)
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where "x, x 2 X , is a centered random field with covariance given by

Ef"x"x0g D Kerr.x; x
0/ D K.x; x0/ � Ktrc.x; x

0/;

with Ktrc.x; x0/ D Pntrc
kD1 �k�k.x/�k.x0/ and where the ˇk are mutually uncorrelated

centered r.v., orthogonal to "x for all x 2 X , with var.ˇk/ D �k. No approx-
imation is involved at this stage, and this BLM gives an exact representation of
.Zx/x2X . Consider the predictor bZx D Pntrc

kD1 Ǒ
k�k.x/ D �>

trc
.x/b̌, with �

trc
D

.�1.x/; : : : ; �ntrc.x//
> and b̌D .ˆ>

trcK�1
errˆtrc Cƒ�1

trc /
�1ˆ>

trcK�1
errzn the estimator that

minimizes the regularized LS criterion J.ˇ/ D .zn � ˆtrcˇ/
>K�1

err.zn � ˆtrcˇ/ C
ˇ>ƒ�1

trc ˇ (b̌ coincides with the posterior mean of ˇ when Zx is Gaussian). Direct

calculation shows that the IMSE ofbZx equals IMSEtrc.Dn/ given by (3) and can also
be written as

IMSEtrc.Dn/ D traceŒ.ˆ>
trcK�1

errˆtrc Cƒ�1
trc /

�1� :

Approximate BLM with uncorrelated errors In [13], the correlated errors "x

of (4) are replaced by uncorrelated homoscedastic errors having variance �2 D
�err D � � �trc. A more accurate approximation of the exact model (4) is obtained
when using uncorrelated but heteroscedastic errors, with the same variance �2.x/ D
Kerr.x; x/ as "x. We shall call this model the heteroscedastic BLM and denote by
†err the diagonal matrix diagfKerr.x1; x1/; : : : ;Kerr.xn; xn/g. The curve (solid line)
on the top of Fig. 3-Right shows �2.x/, x 2 Œ0; 1�, for the Matérn 3/2 kernel
K.x; x0/ D C3=2;10.jx � x0j/, where

C3=2;# .t/ D .# t C 1/ exp.�# t/ ; (5)

with ntrc D 10. The first 4 eigenfunctions �k for this kernel are plotted in Fig. 2-
Left. The strongly oscillating behavior of �2.x/, due to the form of eigenfunctions
in Ktrc, motivates the use of the heteroscedastic BLM instead of an approximate
model with homoscedastic errors. This seems important within the framework of
computer experiments, but would be less critical, however, in presence of additive
uncorrelated measurement errors, as considered in [13]; in that case, the errors "x

due to spectral truncation are even neglected in [3]. The IMSE for prediction with
the heteroscedastic BLM is

IMSEhBLM
trc .Dn/ D traceŒ.ˆ>

trc†
�1
errˆtrc Cƒ�1

trc /
�1� : (6)
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3 Optimal Design

The IMSE (6), considered as a function of the exact design Dn, has the form of an
A-optimality criterion for the Bayesian information matrix ˆ>

trc†
�1
errˆtrc Cƒ�1

trc , see
[8]. For � a probability measure on X (i.e., a design measure), let

M.�/ D
Z

X
��2.x/�

trc
.x/�>

trc
.x/ d�.x/ ;

which satisfies IMSEhBLM
trc .Dn/ D traceŒ.nM.�n/ C ƒ�1

trc /
�1�, with �n the empirical

measure .1=n/
Pn

iD1 ıxi associated with Dn. For any ˛ � 0, the Bayesian A-
optimality criterion

 ˛.�/ D traceŒ.˛M.�n/Cƒ�1
trc /

�1�

is a convex function of � which can easily be minimized using an algorithm for
optimal design, see, e.g., [9, Chap. 9]. The solution is much facilitated when (i) �
is a discrete measure with finite support XQ (a quadrature approximation is used to
compute the IMSE) and (ii) only design measures � dominated by � are considered
(design points are chosen among quadrature points in XQ). Indeed, only the valuese�k.xj/ for xj 2 XQ are then used in all calculations, without having to compute the
canonical extensions �k D .1=�k/T�Œe�k�, see Sect. 1, and the e�k.xj/ are obtained by
the spectral decomposition of a Q � Q matrix, with Q D jXQj, see [4, 5]. Once an
optimal design measure � �̨ minimizing  ˛.�/ has been determined, we still have to
extract from it an exact design Dn with n points (and no repetitions since there are no
observation errors). We have tried several procedures; all are based on the selection
of n points among the support of � �̨, S��

˛
D .x.1/; : : : ; x.m// say, and involve some

trial and error for tuning values of ˛ and ntrc in order to facilitate extraction of an
n-point design when n is given a priori. They are listed below:

1. Keep the n points x.i/ of S��
˛

with largest weight � �̨.x.i//.
2. Perform a greedy (one-point-at-a-time) minimization of the IMSE using the finite

set S��
˛

as design space.
3. Perform a minimum-spanning-tree clustering of S��

˛
, with the metric�.x; x0/ D

K.x; x/CK.x0; x0/�2K.x; x0/ induced by K, with n clusters (the xi then correspond
to the barycenters of x.j/ in clusters, with weights the � �̨.x.j//).

Choosing ˛ and ntrc of the same order of magnitude as n seems reasonable. Note
that while 1. and 2. maintain the xi within XQ when � has finite support XQ

and � �̨ is dominated by �, this is not the case for 3. and canonical extensions
�k D .1=�k/T�Œ Q�k� must then be computed (which requires summations over XQ).
After extraction of a n-point design Dn, a local minimization of IMSE.Dn/ (a
problem in Rn�d) can be performed using any standard algorithm for unconstrained
optimization (e.g., conjugate gradient, variable metric), since optimal points for
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Fig. 1 The 20 squares
correspond to the support of
��
˛ when the vertex-exchange

algorithm is stopped (the
directional derivative of
 ˛.�/ exceeds �10�4), the
associated minimum
spanning-tree identifies
n D 12 clusters, the stars
indicate the optimal 12-point
design obtained by local
minimization of the IMSE

observation of Zx need to be as correlated as possible with points within X , and
therefore lie in the interior of X . Here also canonical extensions must be computed.

An illustration of procedure 3. is presented in Fig. 1 for X D Œ0; 1�2 and
K.x; x0/ D C3=2;10.kx � x0k/, see (5), with ntrc D ˛ D 10; � is the uniform measure
on a regular grid XQ of Q D 33 � 33 points and a vertex-exchange algorithm with
Armijo-type line search [1] is used to determine � �̨ supported on XQ.

4 Kernel Reduction for Models with Parametric Trend

Consider now the random field Yx D g>.x/� C Zx, where Zx is as in Sect. 1, g.x/ D
.g1.x/; � � � ; gp.x//> is a vector of (known) real-valued trend functions defined on
X and where � D .�1; : : : ; �p/ 2 Rp is an unknown vector of parameters. The Best
Linear Unbiased Predictor (BLUP) of Yx (the universal kriging predictor), based
on observations yn D .Yx1 ; : : : ;Yxn/

>, is g>.x/b� C k>.x/K�1.yn � Gb�/, whereb� D .G>K�1G/�1G>K�1yn with G the n � p matrix with elements fGgij D gj.xi/

(we assume that G has full column rank). Its MSE is

MSE.xI Dn/ D K.x; x/ � k>.x/K�1k.x/

CŒg.x/ � G>K�1k.x/�>.G>K�1G/�1Œg.x/ � G>K�1k.x/� ;

see, e.g., [11, Chaps. 3,4], and IMSE.Dn/ D R
X MSE.xI Dn/ d�.x/.

Similarly to Sect. 2, we can consider an exact BLM Yx D f>.x/
 C "x, where

f>.x/ D .g>.x/; �>
trc
.x// and 
 D .�>; ˇ>/>. The predictor of Yx is then bYx D

f>.x/b
 , whereb
 D .F>K�1
errF C $�1/�1F>K�1

erry, with F D .G; ˆtrc/ and $�1 D
diagf0; : : : ; 0; ��1

1 ; : : : ; �
�1
ntrc

g where there are p zeros. Its IMSE coincides with the
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truncated version of IMSE.Dn/ and is given by

IMSEtrc.Dn/ D traceŒ.F>K�1
errF C $�1/�1U� ;

where U D .fjf>/L2� D
Z

X
f.x/f>.x/ d�.x/ D

 
.gjg>/L2� .gj�>

trc
/L2�

.�
trc

jg>/L2� Idntrc

!
;

with Idntrc the ntrc-dimensional identity matrix. Note that U does not depend on
Dn. Approximation of Yx by a heteroscedastic BLM where uncorrelated errors
with variance �2.x/ D Kerr.x; x/ are substituted for "x, gives a predictor with
IMSEhBLM

trc .Dn/ D trŒ.F>†�1
errF C $�1/�1U�, i.e., a Bayesian L-optimality criterion

which can be minimized following the same lines as in Sect. 3. However, in general
the realizations of .Zx/x2X are not orthogonal to the linear subspace T spanned
by the trend functions g, so that, roughly speaking, this direct approach involves
unnecessarily large error variances �2.x/.

Denote by p the orthogonal projection of L2�.X / onto T : for any f 2 L2�.X /,
pf D g>.gjg>/�1

L2�
.gjf /L2� . Suppose for simplicity that the sample realizations of

.Zx/x2X belong to L2�.X / and define pZx D g>.x/.gjg>/�1
L2�

R
X g.t/Zt d�.t/, so

that Yx D g>.x/�CZx D g>.x/�CpZx CqZx D g>.x/� 0 CqZx ;where q D idL2�
�p

and � 0 D � C .gjg>/�1
L2�

R
X g.t/Zt d�.t/. The covariance kernel of .qZx/x2X , called

reduction of the kernel K in [12], is

Kq.x; x0/ D Ef.qZx/.qZx0/g D K.x; x0/C g>.x/Sg.x0/� b>.x/g.x0/� g>.x/b.x0/ ;

where S D .gjg>/�1
L2�
.T�Œg�jg>/L2� .gjg>/�1

L2�
and b.x/ D .gjg>/�1

L2�
T�Œg�.x/. A key

property here is that, for a given design Dn, the two random fields g>.x/� C Zx and
g>.x/� C qZx with unknown � yield the same BLUP and same IMSE. This can be
related to results on intrinsic random functions, see [7]; notice, however, that the
kernel reduction considered here applies to any linear parametric trend and is not
restricted to polynomials in x.

Figure 2 presents the first four eigenfunctions for the kernels K.x; x0/ (Left)
and Kq.x; x0/ (Right) for a one-dimensional random process on Œ0; 1� with Matérn
3/2 covariance function, see (5), and trend functions g.x/ D .1; x; x2/>. The
eigenfunctions oscillate at higher frequency for Kq.x; x0/ than for K.x; x0/: in some
sense, kernel reduction has removed from K the energy which can be transferred to
the slowly varying trend functions. This is confirmed by Fig. 3-Left which shows
the first 20 eigenvalues for both kernels. One can thus expect that for the same
number ntrc of eigenfunctions, an heteroscedastic BLM will be more accurate when
based on Kq than when based on K. This is confirmed by Fig. 3-Right where
�2.x/ D Kerr.x; x/ is plotted for both kernels when ntrc D 10.
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Fig. 2 First 4 eigenfunctions �k.x/, x 2 X D Œ0; 1�, for the kernel K.x; x0/ D C3=2;10.jx � x0j/
(Left) and for Kq.x; x0/ adapted to the trend functions g.x/ D .1; x; x2/> (Right)
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Fig. 3 Left: first 20 eigenvalues (sorted by decreasing values) for the kernel K.x; x0/ D
C3=2;10.jx�x0 j/ (top, solid line) and for Kq.x; x0/ adapted to the trend functions g.x/ D .1; x; x2/>

(bottom, dashed line). Right: �2.x/, x 2 X D Œ0; 1�, for the heteroscedastic BLM with K.x; x0/

(top, solid line) and with Kq.x; x0/ (bottom, dashed line); ntrc D 10 in both cases
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Asymptotic Properties of an Adaptive Randomly
Reinforced Urn Model

Andrea Ghiglietti

Abstract In the design of experiments, urn models have been widely used as
randomization devices to allocate subjects to treatments and incorporate ethical
constraints. We propose a new adaptive randomly reinforced urn design, in a clinical
trial context. The design consists of a randomly reinforced urn wherein a sequential
allocation of patients to treatments is performed and the associated responses are
collected. The model is based on two stochastic sequences representing random
and time-dependent thresholds for the urn proportion process. These thresholds
are defined as functions of the estimators of unknown parameters modeling the
response distributions, so that they change any time a new response is collected.
First and second-order asymptotic results under different conditions have been
investigated. Specifically, we present the limit, the rate of convergence and the
asymptotic distribution of the proportion of subjects assigned to the treatments.

1 Introduction

This paper presents some recent developments concerning the asymptotic properties
of an important class of urn designs that can be adopted in several areas of
application. In particular, the framework here considered is represented by clinical
trials aimed at comparing two competing treatments (T1 and T2) where the subjects
that sequentially enter the experiment are randomly assigned to one of the two
treatments, according to the color of the balls sampled from an urn. The use of
urn designs to construct randomized procedures is very common in applications to
clinical trials, since their flexibility covers a large class of models and this guarantees
the achievement of multiple objectives (e.g. see [6, 12, 13, 17]). Specifically, I
consider response-adaptive urn models, in which the probability of assignment
depends on the treatment performances (for a review, see [5, 12]). In the response-
adaptive urn models the composition of the urn is sequentially updated taking into
account the responses to treatments of the patients. The choice of the updating rule
determines the type of urn model adopted in the experiment and hence the statistical
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properties of the design. This paper focuses on randomly reinforced designs, in
which only the composition of the color sampled from the urn is updated by a
positive random quantity. First, I consider the randomly reinforced urn (RRU)
design (see [14, 16]); then, I introduce an adaptive version of the RRU (ARRU)
(see [4, 10]), that is able to target any desired allocation. For both these urn models,
a complete description of the asymptotic behavior of the proportion of subjects
assigned to the treatments is provided: results of consistency, rate of convergence
and asymptotic distributions are presented for both equal and different means of the
responses to the treatments.

2 Randomly Reinforced Urn Design

We now describe the RRU model. The responses of the subjects to treatments T1

and T2 are modeled by two sequences �1 D f�1;nI n � 1g and �2 D f�2;nI n � 1g,
respectively, of i.i.d. random variables. Denote by S a set that includes the supports
of �1;n and �2;n and let u W S ! Œa; b�, 0 < a � b < 1, be a utility function chosen
to obtain the reinforcements from the response. Initially, consider an urn containing
y1;0 > 0 red balls and y2;0 > 0 white balls, that in general may not be integers. At
time n D 1, a ball is sampled from the urn and its color is observed. Let X1 D 1 if
the sampled ball is red, while X1 D 0 if the sampled ball is white. We assume X1
to be independent of the sequences �1 and �2 and hence X1 is Bernoulli distributed
with parameter z0 WD y�1

0 y1;0, where y0 D y1;0 C y2;0. If X1 D 1, the first subject
receives treatment T1 and the response �1;1 is observed; then, the extracted ball is
returned on the urn together with D1;1 D u .�1;1/ new red balls. While if X1 D 0, the
first subject receives treatment T2, the response �2;1 is observed and the extracted
ball is returned on the urn together with D2;1 D u .�2;1/ new white balls. Formally,
the sampled ball is always replaced in the urn together with X1D1;1 C .1� X1/D2;1

new balls of the same color; hence, the urn composition is updated as follows8<:
Y1;1 D y1;0 C X1D1;1

Y2;1 D y2;0 C .1 � X1/D2;1I

thus, set Y1 D Y1;1 C Y2;1, Z1 D Y�1
1 Y1;1 and the process is repeated for all n � 1.

Define the �-algebra Fn generated by the allocations and the responses observed
up to time n, i.e.

Fn WD �
�
X1;X1u.�1;1/C .1 � X1/ u.�2;1/; : : : ;Xn;Xnu.�1;n/C .1 � Xn/ u.�2;n/

	
:

At time n C 1 when a ball is sampled, let XnC1 D 1 if the ball is red and XnC1 D
0 otherwise. If XnC1 D 1, subject n C 1 receives treatment T1 and the response
�1;nC1 is observed; while, if XnC1 D 0, subject n C 1 receives treatment T2 and
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the response �2;nC1 is observed. Then, the ball is returned on the urn together with
XnC1D1;nC1 C .1 � XnC1/D2;nC1 balls of the same color, where D1;nC1 D u .�1;nC1/
and D2;nC1 D u .�2;nC1/. Hence, the urn composition is updated as follows8<:

Y1;nC1 D y1;0 CPnC1
iD1 XiD1;i;

Y2;nC1 D y2;0 CPnC1
iD1 .1 � Xi/D2;i:

Finally, set YnC1 D Y1;nC1 C Y2;nC1 and ZnC1 D Y1;nC1=YnC1. Note that XnC1,
conditionally on the �-algebra Fn, is Bernoulli distributed with parameter Zn, since
XnC1 is conditionally on Fn assumed to be independent of �1 and �2.

2.1 Asymptotic Results for an RRU Design

Here, the main asymptotic results concerning the proportion of subjects assigned to
the treatments for an RRU design are presented. Let N1n WD Pn

iD1 Xi be the number
of subjects that receives treatment T1 up to time n. Denote by m1 WD EŒD1;1� and
m2 WD EŒD2;1� the reinforcement means. The convergence of the urn proportion for
an RRU was proved in [7] for binary responses and extended in [16] for continuous
responses as follows:

Zn D Y1;n
Y1;n C Y2;n

a:s:!

8̂̂<̂
:̂
1 if m1 > m2;

Z1 if m1 D m2;

0 if m1 < m2;

(1)

where Z1 is a non-degenerate random variable with support .0; 1/. While for
binary responses Z1 is Beta-distributed (see [7]), the properties of Z1 for general
responses were studied in [1, 2]. Specifically, it was shown in [1] that, when
m1 D m2, P.Z1 D x/ D 0 for any x 2 Œ0; 1�. From (1), one can deduce the
convergence of N1;n=n to the same limit of the urn proportion Zn.

We now focus on the second-order asymptotic properties of N1;n=n for an RRU
model. In the case m1 ¤ m2, the rate of convergence and the limit distribution
was established in [7] for binary responses and extended in [14] for continuous
responses. Specifically, letting m1 > m2, the authors showed that

n1�
m2
m1

�
1 � N1n

n

�
d! �2;

where �2 is a positive random variable.
In the case m1 D m2, it was established in [4] that the rate of convergence isp

n and the asymptotic distribution of
p

n
�N1n

n � Z1
	
, conditionally on the limiting
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proportion Z1, is Gaussian. Formally, this result is concerned with the concept of
stable convergence (see [11]), that is recalled as follows: denoting by fXnI n � 1g a

random sequence on a probability space .˝;F ;P/, we say that Xn
d! X (stably)

if, for every point x of continuity for the cumulative distribution function of X and
for every event E 2 F ,

lim
n!1 P .Xn � x;E / D P .X � x;E / :

Hence, the central limit theorem for the RRU is expressed in the following result (see
Theorem 2.6 in [4]), in which a stable convergence with F D �.Z1/ is presented.

Theorem 1 Consider an RRU model. Assume m1 D m2 D m and let �21 WD
VarŒD1;1� and �22 WD VarŒD2;1�. Then,

p
n

�
N1n

n
� Z1

�
d! N .0;˙/; .stably/

where

˙ WD
 
1C 2 Ṅ

m2

!
Z1.1 � Z1/; Ṅ WD .1 � Z1/�21 C Z1�22 : (2)

It is worth highlighting that the limiting distribution obtained in Theorem 1 is
Gaussian only conditionally on Z1, otherwise it represents a mixture of normal
distributions weighted by the probability law of Z1. Note also that, in the case
of deterministic reinforcements, i.e. Pòlya’s urn, the asymptotic variance ˙ in (2)
reduces to Z1.1 � Z1/.

3 Adaptive Randomly Reinforced Urn Design

In an RRU model, when T1 (T2) is the superior treatment, i.e. m1 > m2 (m1 < m2),
the asymptotic proportion of subjects assigned to treatment T1 (T2) is always 1.
Although this represents a good ethical aspect, the statistical properties associated
with such a design are typically quite poor (e.g. low power). For this reason, in [3]
the RRU model has been modified by using two fixed thresholds, 0 < �2 � �1 < 1,
such that: if Zn < �2, no white balls are replaced in urn, while if Zn > �1, no red
balls are replaced in the urn. The consistency for this modified RRU (MRRU) in the

case m1 ¤ m2 was established in [3]: Zn
a:s:! �1 when m1 > m2, and Zn

a:s:! �2 when
m1 < m2. Moreover, a second order result for Zn, namely the asymptotic distribution
of Zn after appropriate centering, was derived in [8]. An application of the MRRU
to construct efficient two-sample tests aimed at comparing the response means was
proposed in [9].
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Although the MRRU model provides an asymptotic allocation proportion, �1
or �2, in .0; 1/, it is common in clinical trials to target specific values in order
to accomplish certain objectives (see [12]). Hence, �1 and �2 should depend on
the unknown parameters .�1;�2/ 2 � that characterize the distributions of D1;1

and D2;1, respectively. To this end, in [10] an adaptive RRU (ARRU) model was
introduced, in order to use accruing statistical information to skew the proportion
towards arbitrary values. This model is defined by two continuous functions f1 W
� ! .0; 1/ and f2 W � ! .0; 1/, such that f1 .�/ � f2 .�/ for any � 2 �. The
quantities �1 WD f1 .�/ and �2 WD f2 .�/ represent the desired limiting allocations for
N1;n=n, when the superior treatment is T1 (m1 > m2) or T2 (m1 < m2), respectively.
The implementation of the ARRU model requires a sequence of random variables

defined as O�1;n WD f1
� O�1;n

�
and O�2;n WD f2

� O�2;n
�

for any n � 0, where O�1;n and O�2;n
indicate the corresponding adaptive estimators of the parameters.

The sequences f O�1;nI n � 1g and f O�2;nI n � 1g are random thresholds for the
process of the urn proportion. Indeed, for any n � 0, at any time n C 1 the updating
rule is now changed as follows. If XnC1 D 1 and Zn � O�1;n, the extracted ball
is returned on the urn together with D1;nC1 D u .�1;nC1/ new red balls. While, if
XnC1 D 0 and Zn � O�2;n, the extracted ball is returned on the urn together with
D2;nC1 D u .�2;nC1/ new white balls. If XnC1 D 1 and Zn > O�1;n, or if XnC1 D 0

and Zn < O�2;n, the urn composition is not modified. To ease notation, let denote
W1;n D 1fZn� O�1;ng and W2;n D 1fZn� O�2;ng. Formally, the sampled ball is returned on
the urn together with XnC1D1;nC1W1;n C .1 � XnC1/D2;nC1W2;n balls of the same
color; hence, the urn composition is updated as follows8<:

Y1;nC1 D y1;0 CPnC1
iD1 XiD1;iW1;i�1;

Y2;nC1 D y2;0 CPnC1
iD1 .1 � Xi/D2;iW2;i�1:

Finally, set ZnC1 D Y1;nC1=YnC1 and YnC1 D Y1;nC1 C Y2;nC1. We now present the
asymptotic results for an ARRU.

3.1 Consistency for an ARRU Model

The following result (see Theorem 2.3 in [4]) shows the consistency of the urn
proportion Zn for any values of m1 and m2, when the random thresholds O�1;n and
O�2;n converge with probability one.

Theorem 2 Assume

O�1;n a:s:! �1; O�2;n a:s:! �2: (3)
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Then,

Zn
a:s:!

8̂̂<̂
:̂
�1 if m1 > m2;

Z1 if m1 D m2;

�2 if m1 < m2;

(4)

where Z1 is a random variable such that P.Z1 2 Œ�2; �1�/ D 1, and, for any
x 2 .�2; �1/, we have P.Z1 D x/ D 0.

From (4), one can deduce the consistency of N1;n=n to the same limit as Zn. Note
that (3) is satisfied when the adaptive estimators O�1;n and O�2;n are consistent since
the ARRU satisfies the assumptions of Theorem 3.1 in [15].

3.2 Asymptotic Distribution for an ARRU Model

We now focus on the asymptotic distribution for the proportion of sampled balls
in an ARRU model. For the case m1 D m2, it was established in [4] that,
conditionally on Z1 ¤ f�2; �1g, the limiting distribution of the urn proportion is
the same as an RRU (see Theorem 1). To this end, focus on those processes for
which asymptotically, fZn 2 Ang, where fAnI n � 1g is a sequence of random
sets such that [n�1An D .�2; �1/. For instance, in [4] the authors considered
An WD .�2 C CY�˛

n ; �1 � CY�˛
n /, with 0 < C < 1 and 0 < ˛ < 1=2. Thus,

the asymptotic distribution for the ARRU model is expressed in the following result
(see Theorem 2.7 in [4]).

Theorem 3 Assume (3) with �1 > �2 and m1 D m2 D m. Let �21 WD VarŒD1;1� and
�22 WD VarŒD2;1�. Then, on the sequence of sets fZn 2 Ang, n � 1, we have

p
n

�
N1n

n
� Z1

�
d! N .0;˙/; .stably/

where, as in (2),

˙ D
 
1C 2 Ṅ

m2

!
Z1.1� Z1/; Ṅ D .1 � Z1/�21 C Z1�22 :

It is worth noticing that the limiting distribution obtained in Theorems 1 and 3 is not
Gaussian but a mixture distribution.

The asymptotic distribution for N1n
n in the case m1 ¤ m2 has been investigated

in [10]. Without loss of generality, let m1 > m2. Frequent changes to the thresholds
O�1;n make the sequence N1;n

n too erratic to obtain a stable distribution, so consider
thresholds that are updated “slowly” at exponential times f�qi



; i � 0g, with q > 1.
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Formally, for any n � 0, O�j;n is replaced by

Q�j;n WD O�j;Œqi�; as
�
qi

 � n <

�
qiC1
 ; i 2 N: (5)

Thus, the limiting distribution is established in the following result (see Theorem 2.2
in [10]) by assuming that the convergence of the thresholds is exponentially fast.

Theorem 4 Consider an ARRU model with thresholds defined as in (5). Assume
that for any � > 0, there exists 0 < c1 < 1 such that

P .j O�1;n � �1j > �/ � c1 exp
��n�2

	
; (6)

for large n. Then, letting N�1;n D
Pn

iD1 Q�1;i�1
n , if m1 > m2

p
n

�
N1;n

n
� N�1;n

�
d! N

�
0; �1.1 � �1/

	
:

Note that Theorem 3 expresses the CLT for the MRRU with N�1;n D �1 for any n � 1.

3.3 Conclusions

This paper presents a collection of results that completely describes the asymptotic
behavior of N1n=n for a wide class of reinforced urn models used as response-
adaptive designs for clinical trials. In particular, the urn models here considered
are (i) the RRU design and (ii) the ARRU design.

Table 1 gathers the consistency results. Note that, when m1 > m2, the RRU
asymptotically targets the best treatment, while the ARRU achieves any allocation
defined as a function of the response distribution’s parameters. For both these
models, when m1 D m2 the urn proportion converges to a random variable Z1.

Table 2 gathers the second-order asymptotic results of N1n=n. When m1 D m2,
the asymptotic distribution is a mixture of Gaussian distributions determined by Z1.
When m1 > m2, the rate of convergence is n1�m2=m1 for an RRU, while it is alwaysp

n for an ARRU. In fact, in the RRU the convergence rate of N1;n=n reflects the
rate of Zn, which depends on m1 and m2 (see [14]), while in the ARRU, since some
subjects are assigned when the urn composition does not change, the convergence

Table 1 Consistency results
of N1n=n for the RRU and the
ARRU designs

Consistency RRU ARRU

m1 D m2
N1n

n

a:s:! Z1 2 .0; 1/
N1n

n

a:s:! Z1 2 Œ�2; �1�

(see [7, 16]) (cf. Theorem 2)

m1 > m2
N1n

n

a:s:! 1
N1n

n

a:s:! �1

(see [7, 16]) (cf. Theorem 2)
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Table 2 Asymptotic distribution and rate of convergence of N1n=n for the RRU and the ARRU
design

Asymptotic distribution RRU ARRU

m1 D m2

p
n
�N1n

n � Z1

	
On the sets .fZn 2 Ang; n � 1/

d! N .0; ˙/
p

n
� N1n

n � Z1

	 d! N .0; ˙/

(cf. Theorem 1) (cf. Theorem 3)

m1 > m2 n1�
m2
m1
�
1� N1n

n

	 d! �2
p

n
�

N1;n
n � N�1;n

�
d! N .0; �1 .1� �1//

(see [14]) (cf. Theorem 4)

rate of N1;n=n and Zn may be different. In [10] it was discussed that the rate of Zn

in the ARRU is an open problem and it depends on the behavior of O�1;n and O�2;n.
However, when the threshold sequence is defined as in (5) and it converges as in (6),
it is possible to show (Theorem 3) that for N1;n=n the convergence rate is

p
n and the

asymptotic distribution does not depend on m1 and m2. It is worth highlighting that a
CLT for Zn with convergence rate n was established for the case of fixed thresholds
(MRRU) in [8]. However, since the fixed thresholds satisfy (5) and (6), the CLT for
N1;n=n is the same in the MRRU and ARRU model.
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Design of Computer Experiments Using
Competing Distances Between Set-Valued Inputs

David Ginsbourger, Jean Baccou, Clément Chevalier, and Frédéric Perales

Abstract In many numerical simulation experiments from natural sciences and
engineering, inputs depart from the classical moderate-dimensional vector set-up
and include more complex objects such as parameter fields or maps. In this case,
and when inputs are generated using stochastic methods or taken from a pre-existing
large set of candidates, one often needs to choose a subset of “representative”
elements because of practical restrictions. Here we tackle the design of experiments
based on distances or dissimilarity measures between input maps, and more specif-
ically between inputs of set-valued nature. We consider the problem of choosing
experiments given dissimilarities such as the Hausdorff or Wasserstein distances but
also of eliciting adequate dissimilarities not only based on practitioners’ expertise
but also on quantitative and graphical diagnostics including nearest neighbour
cross-validation and non-Euclidean structural analysis. The proposed approaches
are illustrated on an original uncertainty quantification case study from mechanical
engineering, where using partitioning around medoids with ad hoc distances gives
promising results in terms of stratified sampling.
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1 Introduction

Here we consider a function f W x 2 D �! f .x/ 2 R stemming from some
expensive deterministic computer experiment, where the input space D can possibly
be a subset of Rq or some more complicated set of structured objects such as
curves, maps, or trees. A main prerequisite is that D is endowed with a distance
d, or more generally with a dissimilarity ı W .x; y/ 2 D � D �! R, a function
satisfying 8x; y 2 D; ı.x; y/ � 0; ı.x; x/ D 0, and that reflects to some extent how
different the outcome is supposed to be for any given couple of inputs. Here we also
require the symmetry condition 8x; y 2 D; ı.x; y/ D ı.y; x/ [11]. Depending on
the context, ı may either be prescribed by expert knowledge, learnt based on data,
or a combination of both. Here we are interested in the use of such dissimilarities
for the design of experiments, with a mechanical engineering case study serving
as motivating example, and a main focus on two interrelated questions. The first
question, assuming that several candidate dissimilarity functions are available, is
how to choose the most relevant one in order to model and predict the response of
interest. Addressing it will lead us to consider some quantitative and graphical diag-
nostics. The second one, assuming ı is given, is how to extract a sub-sample from a
sample of inputs, with the aim to suitably represent the distribution of responses.
Our proposed approach consists in appealing to a clustering algorithm such as
Partitioning Around Medoids (PAM) with respect to the chosen ı. In the considered
test case, inputs are modelled as point sets, and several candidate distances between
sets (Hausdorff, Wasserstein, and variants thereof) are considered. We appeal to
non-Euclidean structural analysis concepts from spatial statistics [4] and also to
nearest-neighbour approaches for studying the adequacy of dissimilarities and
diagnosing what may reasonably be expected when appealing to “distance methods”
based on a reference sample and candidate dissimilarities. The paper is organized as
follows. In Sect. 2, we describe the motivating case study. In Sect. 3, we review a few
selected distance methods and present the specific dissimilarities (distances between
point sets) considered for the case study. In Sect. 4, we first consider a dissimilarity-
based variography framework and display experimental results obtained on test case
data. Then a nearest-neighbour approach serves to produce additional diagnostics.
The candidate distances are used to perform stratified subsampling relying on PAM.
Conclusions and perspectives as well as a list of references are presented in Sect. 5.

2 Motivating Case Study

In the framework of a research program at the French Institute for Radiological
Protection and Nuclear Safety, mechanical simulations are performed with the
CASTEM code [2] in order to calculate equivalent stresses on biphasic materials
subjected to uni-axial traction. The system, an elastoplastic matrix containing elastic
inclusions, is modelled as a unit square containing p circular inclusions, all with the
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Fig. 1 Two randomly drawn CASTEM inputs with associated equivalent stress responses

same radius R. Macroscopic calculations are done by averaging over a large number
of squares with random inclusion locations. Two examples of inclusion patterns with
response values of equivalent von Mises stress are sketched on Fig. 1.

Simulations were all performed with input media containing p D 10 randomly
distributed inclusions with constant radii (R D 0:056419). In such a context, an
input configuration x D fc1; : : : ; cpg is parametrized by a set of 2-dimensional
points ci 2 Œ0; 1�2 (1 � i � p). Given two arbitrary configurations x and y, we aim
at finding a relevant distance between them and making predictions of equivalent
stress at inputs for which the simulation outcome is unknown, based on available
simulation results. Of course, there are many ways of defining distances between
such x and y; and this richness can turn into a drawback when facing a choice
between numerous candidates. In the next section, we principally focus on four
candidate distances for the design of CASTEM simulations. The main application-
driven objectives pursued here concern parsimoniously choosing sub-samples of
inputs by relying on distance methods in order to get an empirical distribution of
responses in the sub-sample close to the empirical distribution of responses in the
larger sample.

3 Distance Methods: Basics and Considered Distances

Before focusing on the specifics of our test case, let us give a brief overview of
distance methods from machine learning to spatial statistics. One of the most simple
and yet efficient distance-methods for classification and prediction is the k-nearest
neighbors algorithm (kNN). Assuming that the response of interest was observed
for N instances x1; : : : ; xN of the input, predicting the response at an arbitrary
x 2 D by kNN consists in averaging the responses of x’s k nearest neighbors
(among x1; : : : ; xN and in the sense of the chosen distance d), where k � 1 is
a parameter of the algorithm. Beyond kNN, further distance methods have been
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proposed for data analysis, including multi-dimensional scaling, phylogenetic trees,
spectral clustering and more (see, e.g., [6] and references therein for an overview).

Distances are also key in spatial statistics [3, 5]. A spatially varying measurement
of interest, say z W x 2 D �! R, is modelled as one realization of a random
field Z D fZx.!/gx2D (! 2 ˝ , ˝ standing for the underlying probability space).
Assuming that Z’s increments are squared integrable, 
 W .x; y/ 2 D2 �! 
.x; y/ D
1
2

VarŒZx � Zy� 2 R exists and is called semi-variogram of Z.
p
2
 then defines

over D the so-called canonical distance associated with Z [1]. Given an arbitrary
fixed distance d over D, when Z’s mean is constant and 
.x; y/ depends on .x; y/
through d.x; y/, Z and 
 are called isotropic. Estimating how 
 depends on d based
on data is a difficult step, often referred to as empirical variography. In Sect. 4,
we investigate distance methods and empirical variography in the case where x is
point set (“configuration”) and the underlying distances are chosen accordingly, as
discussed now.

In our motivating case study we consider four candidate distances between input
configurations, namely the Hausdorff [8] and Wasserstein [10] distances, together
with ad hoc symmetrizations of them. In all cases, the configurations are represented
by the locations of their respective centers. Denoting by c0

1; : : : ; c
0
p the centers of the

configuration y, the Hausdorff distance between x and y is defined in our case by

dH.x; y/ D max

�
max
1�i�p

min
1�j�p

dR2.ci; c0
j/; max

1�j�p
min
1�i�p

dR2 .ci; c0
j/

�
(1)

where dR2 denotes the Euclidean distance over R2. The Hausdorff distance is quite
popular in probability theory as it comes with a number of seminal mathematical
results, but also in applied fields such as computer vision. Beyond dH , another
family of distances considered here, related to optimal transportation, are the so-
called Wasserstein distances. Unlike Hausdorff distances, Wasserstein (or “earth
mover’s”) distances do not only quantify the closeness of points of configurations to
those of the other one, but also incorporate some more “physical” information on the
cost to transform one configuration into the other one. Configurations (e.g., x and y)
are seen as “patterns” (i.e. finite support measures), and the distance between two
patterns is calculated by pairing their respective points in such a way that each point
of be in correspondence with a unique point of the other pattern. The distance is then
defined based on the minimal value, over all possible pairings, of the average (be it
in the L2 sense or other) or maximal “ambient” (Euclidean, here) distances between
paired points. We consider the following instance of this family of distances:

dW.x; y/ D min
�2Sp

vuut1

p

pX
iD1

d2
R2

�
ci; c0

�.i/

�
; (2)

where Sp is the set of permutations of f1; : : : ; pg. Additionally, some simple
physical knowledge was used to design symmetrized distances dedicated to the test
case. As the vertical force applied to the micro-structure is symmetrical with respect
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to the .x1 D 0:5/-axis, f is known to be invariant under the axial flip v W .x1; x2/ 2
Œ0; 1�2 �! .1 � x1; x2/ 2 Œ0; 1�2. So we designed the corresponding symmetrized
(or quotient) versions of dL (L 2 fW;Hg): dLsym.x; y/ D min fdL.x; y/; dL.x; v.y//g.

4 Application Results

Data Sets and Preliminary Results We consider two data sets, a preliminary 900-
element one (data set A) and the main one (data set B), consisting of 404 instances of
numerical simulation input/output tuples. Data set A was generated by sequentially
drawing inclusion centers uniformly over Œ0; 1�2 with rejection in case of overlap
between new and already included inclusions. While A was judged satisfactory in
terms of space-fillingness, results (not displayed here by space limitation) from the
targeted distance-based methods happened to be disappointing precisely because
configurations turn out to be too “far” from each other to produce exploitable results,
a consequence of the curse of dimensionality (see [9] and references therein). In
order to get around this and produce a more informative data set (especially with
respect to empirical variograms presented next), we conducted a new batch of
simulations (data set B) with a more exploitable design. Data set B was generated
by first sampling 116 random configurations following the same procedure as for
data set A. Then the remaining configurations were generated by applying local
perturbations (scrambling of randomly selected centers, with small to medium –i.e.
10�3–10�2– orders of magnitude). While there is some arbitrariness in the way B
was designed, it has to be kept in mind that identifying modes of relevance (resp. of
failure) of the proposed approaches fully falls in the objectives of this study. Besides
this, we are interested in investigating which distance works best and how to uncover
and/or quantify it based on empirical diagnostics. Diagnostics obtained on data set
B via empirical variography and cross-validated kNN predictions are presented and
discussed next. The section then presents some further results in stratification.

Diagnostics Based on Structural Analysis vs. kNN Cross-validated Predictions
The first graphical diagnostic considered here is a set of four non-Euclidean
empirical variograms based on the respective candidate distances. Denoting by d
any arbitrary distance from dH ; dW ; dHsym; dWsym, we plot in Fig. 2 the corresponding
empirical semi-variogram (Matheron estimator, see [3]) values:

b
.h`/ D 1

2]N.h`/

X
.xi;xj/2N.h`/

�
f .xi/� f .xj/

	2
; (3)

where N.h`/ D ˚
.xi; xj/ W d.xi; xj/ 2 Œmax.0; h` ��/; h` C��



with a given toler-

ance parameter � > 0, and ]N.h`/ is the number of couples in N.h`/. In Fig. 2,
empirical semi-variograms are plotted with common values of h` (here 1 � ` � 10)
for the four candidate distances; the coloured numbers near the points stand for the
corresponding ]N.h`/ values. A first comment regarding the left panel (Hausdorff



128 D. Ginsbourger et al.

0.00 0.05 0.10 0.15 0.20

0e
+

00
1e

+
09

distance

M
at

he
ro

n 
es

tim
at

or

4184
734

42
64

2088

1347

4184
734

42
24

908

6964

Hausdorff sym
Hausdorff

Empirical semi−variograms

0.00 0.05 0.10 0.15 0.20

0e
+

00
1e

+
09

distance

M
at

he
ro

n 
es

tim
at

or

4916 44
708

7826
34172 5322

4916 44

3846 16626 42724
136

Wasserstein sym
Wasserstein

Empirical semi−variograms

Fig. 2 Empirical variograms with respect to the four candidate distances (Hausdorff vs. Wasser-
stein, with possible symmetrization) of the equivalent constraint depending on inclusion centers

distances) is that taking the symmetry into account does not seem to affect things
at short distances, while a slight departure is observed at the penultimate bin center.
Focusing on the number of elements in the bins, the central regions of the empirical
semi-variograms appear to be based on little information, and thus more faith should
be put on their ends. As for Wasserstein distances (right panel), even if the central
region creates the impression of a chaotic behaviour –especially for the dW green
curve–, it appears that the number of points at low distance is greater than in the
Hausdorff case, a worthwhile piece of information for forthcoming considerations.

A second approach, investigated next for quantifying and graphically diagnosing
how the candidate distances absolutely and comparatively perform, is based on
cross-validated kNN predictions. For the four distances and a number of neighbours
k ranging from 1 to 20, the following is implemented: for all i 2 1; : : : ;N leave xi

out and predict it both by kNN and by taking the arithmetic average of the N � 1

remaining responses. Finally, evaluate kNN’s relative performance by taking either
the ratio of the mean kNN error over the mean error when predicting by the mean,
or the ratio of the median kNN error over the median error when predicting by
the mean. Results are represented in Fig. 3. For the first criterion, symmetrizing the
Hausdorff distance appears to lead to improved performances. In median, however,
all distances perform similarly, and well compared to the prediction by the mean.

Distance-based Stratification We finally appeal to a clustering method, Parti-
tioning Around Medoids (PAM), in order to select “representative” sub-samples
of fx1; : : : ; xNg and approximate the cumulative distribution function of associated
responses. This time, the letter k refers to the subsample size, which is in turn here
the number of medoids in the PAM method. We rely on the Kolmogorov-Smirnov
(K-S) statistic in order to assess and compare the performances of the different
considered approaches. In addition to the PAM approach with the four candidate
distances, we also consider uniform random sampling of k among N configurations.
Values of the K-S statistic for the four candidate strategies versus 500 replications
of the random strategy are plotted as a function of k in the left panel of Fig. 4. It
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Fig. 3 Leave-one-out compared performances of kNN prediction versus naive prediction by the
mean, both in terms of ratios of average errors and of median errors
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appears that for most values of k, the K-S statistic is smaller than the median K-
S under the random scenario, whatever the candidate distance. Stratification with
PAM hence appears as an appealing alternative to random sampling, as it avoids
its variability. As an illustration, the empirical CDF obtained by PAM with the
Wasserstein distance and k D 20 –approx. 5% of the total budget– is represented
(in green) against the empirical CDF of the full sample of responses. To finish with,
a number of other approaches based on dissimilarity matrices may be beneficially
applied to this problem; in particular, maximin and minimax distance designs [7]
appear as credible alternatives for choosing representative sub-samples out of a
reference sample.
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5 Conclusion and Perspectives

We have investigated distance methods for the design of computer experiments
with a view toward subsampling. A case study in mechanical engineering, where
inputs are parametrized by point sets and four distances are in competition, has
served as our basis. While non-Euclidean variography appeared appealing, results
obtained on the test case did not shed much light on which distance was best
suited for distance-based modelling. On the other hand, one of the two diagnostics
based on kNN highlighted the potential interest of symmetrizing the Hausdorff
distance. Nevertheless, all distances gave decent stratification results. While not
suffering from the variability inherent in random subsampling, using the PAM
algorithm with any of these distances and for most considered subsample sizes
also delivered subsample distributions closer to the full sample distribution than
obtained in median via random subsampling. However, these results have to be
tempered for several reasons. First, all tests rely on a single data set with a specific
structure, so that more studies with alternative data sets are necessary for validating
and refining the conclusions by exploring their degree of generality. From the point
of view of variogram design, it would be worthwhile to search for admissible
models with respect to the Hausdorff and/or Wasserstein distances considered here
(Gaussian and exponential models are not, according to numerical tests), but also to
question the intrinsic stationarity assumption which was quietly made here. Besides
this, the distances considered were almost off-the-shelf, and it would probably
be beneficial to investigate further candidate distances for this or other test cases,
taking available expertise into account [5]. Further perspectives include using this
framework to adaptively refine the subsample, e.g., in order to foster the exploration
of distributional tails.
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9. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in

high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)
10. Schuhmacher, D., Xia, A.: A new metric between distributions of point processes. Adv. Appl.

Probab. 40, 651–672 (2008)
11. von Luxburg, U.: Statistical learning with similarity and dissimilarity functions. Ph.D. thesis,

Technische Universität Berlin (2004)



Optimal Design for the Rasch Poisson-Gamma
Model

Ulrike Graßhoff, Heinz Holling, and Rainer Schwabe

Abstract Many tests, measuring human intelligence, yield count data. Often, these
data can be analyzed by the Rasch Poisson counts model which incorporates
parameters representing the ability of the respondents and the difficulty of the items.
In a generalized version, the so-called Rasch Poisson-Gamma counts model, the
ability parameter is specified as random with an underlying Gamma distribution.
We will develop locally D-optimal calibration designs for an extended version of
this model which includes two binary covariates in order to explain the difficulty of
an item.

1 Introduction

Many intelligence tests allow for measuring memory, creativity and mental speed.
The items of these tests consist of several stimuli. The number of correctly solved
stimuli of such an item often follows a Poisson distribution. Especially for mental
speed items this property has already been shown by Rasch [3] or later by e.g.
Verhelst and Kamphuis [4]. Recently, Doebler and Holling [1] presented a rule-
based mental speed test which stimulated the development of optimal designs
to efficiently calibrate this test. Here, the Rasch Poisson-Gamma model, which
incorporates random effects related to the test persons proved to be an adequate
framework.
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Mental speed refers to the human ability to carry out mental processes, required
for the solution of many cognitive tasks. Usually, mental speed is measured by
elementary tasks with low cognitive demands in which speed of response is primary.
These tasks represent items which may contain numerical, verbal or symbolic
stimuli. Furthermore, these items can be differentiated by rules or conditions that
determine the difficulty or easiness of an item.

The principle of a typical mental speed item will be explained by the following
numerical item. This item consists of a set of 100 numbers between 1000 and
5000, e.g. 1245, 2246, 3673, 4345, . . . , 2681. Here, the numbers represent stimuli.
According to the instruction, a respondent has to mark those stimuli (numbers) that
are divisible by 2 as fast as possible within a certain time, e.g. 20 s. Thus, this item
is characterized by one rule, divisibility by 2. The stimuli are generated in such a
way that only the surface of an item is changed but the difficulty is not affected or
only by a negligible amount. Then stimuli are called incidentals. The score of such
an item is represented by all correctly identified stimuli.

The difficulty of the item just outlined can be increased by adding further rules.
From the following three rules, (a) the number has to be greater than 1621, (b) the
number has to be less than 3456 or (c) the number has to contain two identical
digits, a subset can be selected. When a subset of rules is added to the basic rule,
i.e. divisibility by 2, a new item has been generated. Items defined in this way, i.e.
by a set of rules and incidentals, establish a so-called item family. A lot of item
families containing different numerical, verbal or symbolic stimuli have meanwhile
been created for measuring mental speed (Doebler and Holling [1]).

Nowadays, such rule-based items are generated by computers on the fly, item
banks are no longer necessary. Therefore, test security is increased as well as the
economy of item generation. Furthermore, optimal design is an important means to
alleviate the calibration of this kind of items. Therefore, the influence of the rules
on the difficulty has to be determined.

2 The Poisson-Gamma Model for Count Data

In the Rasch Poisson counts model the number of solved tasks in a test is assumed to
follow a Poisson distribution with mean (intensity) �� , where the person parameter
� represents the ability of the respondent and the item parameter � specifies the
easiness of the test item. The ability and the easiness can be estimated in a two step
procedure: first, in a calibration step, the item parameter is estimated conditional on
known person parameters; and in a second step, the person parameter is estimated
based on the item parameters previously obtained. In these two steps the items and
the persons may be investigated separately. As in Graßhoff et al. [2] we will consider
here the calibration step, but we will now allow the ability � of a respondent to be
random with known prior distribution. Usually in this context a Gamma distribution
is assumed for the ability, which leads to the Poisson-Gamma model (see e.g.
Verhelst and Kamphuis [4]).
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To be more specific the conditional distribution of the number Y of correct
answers given the ability � D � is Poisson with mean �� , and the ability � is
Gamma distributed with shape parameter A > 0 and inverse scale parameter B > 0.

Then the unconditional probabilities of Y can be obtained by integration of the
joint density .��/y

yŠ e��� � BA

� .A/ �
A�1 exp.�B�/ with respect to � . It is well-known that

the resulting distribution is (generalized) negative binomial with success probability
B=.� C B/ and (generalized) number of successes A which for integer A models
the number of failures before the Ath success occurs The corresponding probability
function is P.Y D y/ D � .yCA/

yŠ� .A/

�
B

�CB

	A � �
�CB

	y
with expectation E.Y/ D A

B� and

variance Var.Y/ D �CB
B E.Y/. Thus the negative binomial is a common distribution

to model overdispersion in count data. For the expectation A
B� fixed, the limiting

distribution is again Poisson when B tends to infinity.
As in the Poisson count model, the easiness � will be connected with the linear

predictor based on the rules applied by the log link, � D expff.x/>ˇg, where x is the
experimental setting which may be chosen from a specific experimental region X ,
f D . f1; : : : ; fp/> is a vector of known regression functions, and ˇ the p-dimensional
vector of unknown parameters to be estimated. Hence, the number of correct
answers Y.x/ is Poisson-Gamma distributed with EfY.x/g D A

B expff.x/>ˇg.
The items are generated in such a way that K different rules may be applied or

not. Thus the explanatory variables xk are binary, where xk D 1, if the kth rule
is applied, and xk D 0 otherwise, k D 1; : : : ;K. The experimental settings x D
.x1; : : : ; xK/ 2 f0; 1gK constitute a binary K-way layout. In the particular case x D 0
a basic item is presented. We specify the vector of regression functions by f.x/ D
.1; x1; x2; : : : ; xK/

>. This means that there are no interactions of the form xk � x`
or higher which would describe synergy or antagonist effects of the rules. For this
model the parameter vector ˇ D .ˇ0; ˇ1; : : : ; ˇK/

> of dimension p D KC1 consists
of a constant term ˇ0 and the K main effects ˇk related to the application of the kth
rule, respectively. In the present application it will be further assumed that ˇk � 0

for the main effects because the application of a rule will typically increase the
difficulty and, hence, decrease the easiness of an item.

Additionally we only consider the situation that each test person receives exactly
one item in order to ensure independence of the observations.

3 Information and Design

The impact of an experimental setting on the quality of the maximum likelihood
estimator of the parameter vector ˇ is measured by the Fisher information matrix
M.xI ˇ/. Similarly to generalized linear models, the calculation of the Fisher
information results in M.xI ˇ/ D �.xI ˇ/f.x/f.x/>, which depends on the particular



136 U. Graßhoff et al.

setting x and additionally on ˇ through the intensity

�.xI ˇ/ D A
expff.x/>ˇg

expff.x/>ˇg C B
: (1)

Consequently, for an exact design � consisting of N design points x1; : : : ; xN , the
normalized information matrix equals M.�I ˇ/ D 1

N

PN
iD1 M.xiI ˇ/. For analytical

ease we will use approximate designs � with mutually different design points
x1; : : : ; xn, say, and corresponding (real valued) weights wi D �.fxig/ � 0 withPn

iD1 wi D 1. This approach is apparently appropriate, as typically the number N of
items presented may be quite large. The information matrix is then more generally
defined as

M.�I ˇ/ D Pn
iD1wi�.xiI ˇ/f.xi/f.xi/

>: (2)

The information matrix and, hence, optimal designs will depend on the parameter
vector ˇ through the intensity. For measuring the quality of a design we will use the
popular D-criterion: a design � will be called locally D-optimal at ˇ if it maximizes
the determinant of the information matrix M.�I ˇ/.

We can factorize the information matrix M.�I ˇ/ D AM0.�I ˇ/, where M0.�I ˇ/

is the information in the standardized situation for which the original values of A, ˇ0
and B are replaced by 1, 0 and B exp.�ˇ0/, respectively. Hence, only detfM0.�I ˇ/g
has to be optimized, and we assume the standardized case (A D 1 and ˇ0 D 0)
without loss of generality throughout the remainder of the paper.

4 Two Binary Predictors

To begin with we note that for the situation of only one rule (K D 1) there are
only two possible settings x D 1 of application of the rule and x D 0 of the basic
item. As there are two parameters in the model both settings have to be used and all
such designs are saturated, i.e. the number of parameters and the number of settings
coincide. For saturated designs it is well-known that the (locally) D-optimal design
assigns equal weights (w�

i D 1=2) to each of the settings whatever the value of
ˇ is because the information matrix factorizes into a diagonal matrix containing
the weights and some square matrices related to the settings and the corresponding
intensities.

When K D 2 rules are present, the four possible settings are .1; 1/, where
both rules are applied, .1; 0/ and .0; 1/, where either only the first or the second
rule is used, respectively, and .0; 0/ for the basic item. Hence, any design �

is completely determined by the corresponding weights w11, w10, w01 and w00,
respectively. Further we denote by �x1x2 D �f.x1; x2/I ˇg the related intensities for
given parameter B > 0. It is worth-while noting that the information matrix (2)
of any design depends on the parameters only through the intensities. Hence all
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optimality results can be stated in terms of the intensities and can be transferred to
any such model with binary predictors.

It looks natural to consider designs which use only the easiest settings .0; 0/,
.1; 0/ and .0; 1/ in which at most one rule is applied. These designs are saturated,
and among those the equireplicated design �0 which assigns equal weights 1=3 to the
three settings is the best with respect to the D-criterion, independently of the value
of ˇ. Based on the equivalence theorem Graßhoff et al. [2] derived a condition on
the intensities under which the design �0 is D-optimal for the pure Poisson model
without a random effect. For non-positive values ˇk � 0 this condition can be
reformulated in terms of the inverse intensities as follows.

Theorem 1 The design �0 is locally D-optimal if and only if

��1
00 C ��1

10 C ��1
01 � ��1

11 : (3)

The condition (3) is only based on the form of the information matrix (2) and the
regression function f.x/ D .1; x1; x2/> but does not depend on how the intensities
are generated. Hence this condition carries over to the present situation of the
Poisson-Gamma model and can be rephrased as

ˇ2 � log

�
Bf1� exp.ˇ1/g

2 exp.ˇ1/C Bf1C exp.ˇ1/g
�

(4)

in terms of the parameters. If the condition is not satisfied then items also have to
be used in which both rules are applied. The parameter regions of ˇ1 and ˇ2, where
the saturated design �0 is locally D-optimal, are displayed in Fig. 1a for particular
values of B. If the point .ˇ1; ˇ2/ lies below the corresponding line, then �0 is optimal.
It is easy to see that the boundary condition (4) tends to the Poisson case, ˇ2 �
logŒf1 � exp.ˇ1/g=f1C exp.ˇ1/g�, when B tends to infinity.
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Fig. 1 (a): Dependence of regions for locally D-optimal designs on .ˇ1; ˇ2/ for B D 0:1 (dashes
and dots), B D 1 (long dashes), B D 4 (short dashes), and B D 1 (Poisson; solid line); (b):
optimal weights w�

11 D w�
01 � 0:25 and w�

10 D w�
00 � 0:25 for B D 0:1 (dashes and dots), B D 1

(dashed line) and B D 1 (Poisson; solid line) in the case ˇ1 D 0
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For illustrative purposes we will consider two particular parameter constellations,
where optimal weights can be determined explicitly even when condition (3) is not
satisfied. First we consider the situation of equal effect sizes, ˇ1 D ˇ2 D ˇ � 0

indicated by the dotted line in Fig. 1a. Due to symmetry considerations with respect
to interchanging the predictors, we can conclude that the optimal weights satisfy
w�
10 D w�

01. For given parameter B > 0, condition (3) yields that �0 is optimal if
ˇ � ˇc D logŒfp2B.B C 1/ � Bg=.B C 2/�. For 0 � ˇ > ˇc all four settings
have to be presented in an optimal design. In that case the optimal weights can be
calculated from

w�
10 D w�

01 D 4
 C 2
p

2 C 12�0�1

3.4�0�1 � 
2/ ; (5)

where �0 D �10=�00 and �1 D �10=�11 are intensity ratios, 
 D �0 C �1 � 4,

w�
00 D 1

2
� w�

10 C 1

4
.�1 � �0/w

�
10

and w�
11 D 1

2
� w�

10 � 1

4
.�1 � �0/w

�
10: (6)

For the Poisson-Gamma model the dependence of the optimal weights on ˇ is
displayed in Fig. 2 for various values of B. It can be seen that the equally weighted
four point design N� (with Nwx1;x2 D 1=4) is found to be optimal for the case of zero
effects (ˇ D 0).

Alternatively, when one of the effects vanishes, say ˇ1 D 0, which corresponds
to the vertical axis in Fig. 1a, the intensities are constant in the first component.
Then, because of symmetry, the optimal weights are also constant in x1 and can be
calculated to be

w�
11 D w�

01 D
2�00 � �11 �

q
�200 � �00�11 C �211

6.�00 � �11/ (7)
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Fig. 2 Optimal weights w�
00 (left panel), w�

10 D w�
01 (middle panel) and w�

11 (right panel) for
B D 0:1 (dashes and dots), B D 1 (dashed line) and B D 1 (Poisson; solid line) in the case
ˇ1 D ˇ2 D ˇ
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and w�
10 D w�

00 D 1=2 � w�
11. For the Poisson-Gamma model Fig. 1b exhibits these

weights as functions of ˇ2 for various values of B. The weights w�
11 D w�

01 decrease,
when these items become more difficult, and approach 1=6 for ˇ2 ! �1. Hence,
more observations will be allocated to the items with lower difficulty.

5 Efficiency

Locally D-optimal designs may show poor performance, if erroneous initial values
are specified for the parameters. As in Graßhoff et al. [2], we will perform a
sensitivity analysis for the Poisson-Gamma model which is additionally influenced
by the value of B.

We consider the parameter constellations of the preceding section for which we
can determine the optimal weights explicitly. For the case of equal effect sizes
(ˇ1 D ˇ2 D ˇ) we display the D-efficiency of the saturated design �0 in the
left panel and the efficiency of the equally weighted four point design N� that is
optimal for ˇ1 D ˇ2 D 0 in the right panel of Fig. 3 for various values of B. If
ˇ � logŒfp2B.B C 1/ � Bg=.B C 2/�, the design �0 is locally D-optimal and has,
hence, efficiency 100%. When ˇ increases beyond this critical value, the efficiency
of �0 decreases to 83% for ˇ D 0 for all B. Moreover, for �0 the efficiency decreases
when B gets smaller. For N� the efficiency obviously equals 100% for ˇ D 0 and
decreases to 75% when ˇ tends to �1. Here the efficiency increases when B gets
smaller which seems to be reasonable because for small values of B the intensities
are nearly constant as in the corresponding linear model, where N� is D-optimal.

Similarly, for the case ˇ1 D 0 we display the D-efficiency of the saturated design
�0 in the left panel and the efficiency of the equally weighted four point design N� in
the right panel of Fig. 4 for various values of B. For �0 the efficiency again attains
the minimal value of 83% for the situation of no effects (ˇ2 D 0) and approaches
100% when ˇ2 ! �1 for all B. For N� the efficiency goes from 100% for ˇ2 D 0
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Fig. 3 Efficiency of �0 (left panel) and N� (right panel) for B D 0:1 (dashes and dots), B D 1

(dashed line) and B D 1 (Poisson; solid line) in the case ˇ1 D ˇ2 D ˇ
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Fig. 4 Efficiencies of �0 (left panel) and N� (right panel) for B D 0:1 (dashes and dots), B D 1

(dashed line) and B D 1 (Poisson; solid line) in the case ˇ1 D 0
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Fig. 5 Efficiency of ��
m for B D 0:1 (dashes and dots), B D 2 (dashed line) and B D 1 (Poisson;

solid line) in the case ˇ1 D ˇ2 D ˇ (left panel) and ˇ1 D 0 (right panel)

to 94% when ˇ ! �1 for all B. It can again be noticed that for fixed ˇ2 the
efficiency of �0 decreases and of N� increases when B gets smaller.

From these figures we may conclude that in the case of equal effects ˇ1 D ˇ2 D
ˇ the minimal efficiency is 83% for �0 and 75% for N� , where the minimum is
attained at ˇ D 0 for �0 and at ˇ ! �1 for N� , respectively.

The maximin efficient design ��
m can be obtained by easy but tedious com-

putations. It turns out that ��
m is the same for all B and allocates equal weights

w�
00 D w�

10 D w�
01 D 0:31 to the settings of the saturated design �0 and the remaining

weight w�
11 D 0:07 to the setting in which both rules are applied. More precisely,

the maximin efficient design ��
m D .111 �0 C 44 N�/=155 is a mixture of the two

limiting locally optimal designs �0 and N�, where the coefficients do not depend on
B. Moreover, ��

m is also maximin efficient in the Poisson model. As can be seen from
Fig. 5 (left panel) the minimal efficiency of ��

m equals 93% for all B and is attained
both for ˇ D 0 and ˇ ! �1. Additionally it appears that ��

m is locally optimal
for some ˇ which varies with B. Moreover, as shown in the right panel of Fig. 5 the
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efficiency of ��
m is also at least 93% when one of the effects vanishes. Hence, we

conjecture that ��
m is maximin efficient for all ˇ1; ˇ2 � 0.

6 Discussion

As pointed out, the performance of a design is completely determined in a model
with binary predictors by the intensities for the single settings. Thus optimal
designs can be obtained, in general, in terms of these intensities computed from the
parameters using the model equations or, vice versa, conditions on the intensities
can be transferred back to these parameters.

The designs outlined above can be used for calibrating mental speed items
incorporating two rules. But, item families often contain more than two rules. Thus,
extensions to higher dimensions are under consideration and require, in general,
higher order conditions.
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Regular Fractions of Factorial Arrays

Ulrike Grömping and R.A. Bailey

Abstract For symmetric arrays of two-level factors, a regular fraction is a well-
defined concept, which has been generalized in various ways to arrays of s-level
factors with s a prime or prime power, and also to mixed-level arrays with arbitrary
numbers of factor levels. This paper introduces three further related definitions of a
regular fraction for a general array, based on squared canonical correlations or the
commuting of projectors. All classical regularity definitions imply regularity under
the new definitions, which also permit further arrays to be considered regular. As a
particularly natural example, non-cyclic Latin squares, which are not regular under
several classical regularity definitions, are regular fractions under the proposed
definitions. This and further examples illustrate the different regularity concepts.

1 Introduction

An array is an N �n (N rows, n columns) table of symbols, for which the ith column
contains si symbols. The columns are also called factors, the symbols are also called
levels. If s1 D � � � D sn, the array is called symmetric, otherwise mixed-level or
asymmetric. A full factorial would have (a multiple of) s1 � � � � � sn rows; we
consider a fraction with N rows. In a balanced array, each column contains each
of its symbols equally often. If in addition each pair of columns contains each of
its pairs of symbols equally often, the array is an orthogonal array (OA). We only
consider balanced arrays, and in most cases OAs. Now we consider three established
regularity definitions in more detail:

Cyclic group regularity or Abelian group regularity refers to arrays for which the
si levels of the ith factor can be given in terms of the cyclic group Z=siZ or,
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more generally, an Abelian group of order si, such that the fraction is a coset of
a subgroup of the direct product of all these groups (i.e., of the full factorial).

Pseudo-factor regularity refers to arrays created using defining relations among
prime-level pseudo-factors: any factor with non-prime number of levels is viewed
as a full factorial in so-called pseudo-factors whose numbers of levels are primes.
These arrays can also be characterized by the existence of a coding based on
pseudo-factors such that the rows form a coset of a subgroup of an Abelian group,
i.e., they are a special case of Abelian group regular arrays. Kobilinsky et al. [12]
recently described algorithms for creating such arrays; these are implemented in
the R package planor [11].

GF regularity refers to symmetric arrays with all factors at q levels, q a prime
power, that can be created through defining equations for fractionating, also
called generators, based on additive contrasts in the Galois field GF.q/. If q is
prime, addition in GF.q/ coincides with addition modulo q, while it is different
otherwise, see e.g. [5]. Equivalently, GF regularity can be characterized by
labeling the q levels of each factor such that the rows form an affine subspace
of the n-dimensional affine space over GF(q). This is the concept discussed by
Bose [3] and implies all other types of regularity.

For symmetric 2-level or 3-level arrays, all these regularity types are equivalent.
With more than three levels, they need no longer coincide, not even for symmetric
arrays with number of levels a prime power. For example, the 4-level array, arranged
as a Latin square in Table 1, is Abelian group regular but not GF or pseudo-factor
regular. Latin squares also provide examples for which it appears anti-intuitive
to consider them non-regular, but which are not regular according to the classic
criteria: the 5-level array in Table 1 (the first array from Eendebak and Schoen [6])
is neither GF regular nor pseudo-factor regular nor Abelian group regular (but will
be considered regular according to our proposed criteria).

Regularity is closely related to orthogonality. OAs are a widely known orthogonal
structure; an even weaker one was introduced by Tjur [15] and termed “Tjur block
structure” by Bailey [1]. Tjur block structures consist of factors orthogonal in the
sense that projectors onto the corresponding subspaces commute, with the trivial
1-level factor and the supremum of any pair of factors always included (see Table 4
for an example of the supremum). All OAs are Tjur block structures, but the reverse

Table 1 Two Latin squares: a cyclic one for 4-level factors and a non-cyclic one for 5-level
factors; entries show the level of factor C for each AB combination

4-level factors B 5-level factors B

0 1 2 3 0 1 2 3 4
A 0 0 1 2 3 A 0 0 1 2 3 4

1 1 2 3 0 1 1 0 3 4 2

2 2 3 0 1 2 2 3 4 0 1

3 3 0 1 2 3 3 4 1 2 0

4 4 2 0 1 3
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is not true (see e.g. Table 4). If the supremum is not included, it can be added without
destroying orthogonality, so that closure under suprema is a lesser issue, and we will
call a structure that requires addition of suprema a weak Tjur block structure. All
examples in this paper are at least weak Tjur block structures.

We propose a regularity definition based on commuting projectors, called “geo-
metric regularity”. The recent work by Grömping and Xu [9] offers the possibility
for two further regularity definitions, based on model matrices but nevertheless
coding-invariant. One definition, called “CC-regularity”, is based on the individual
so-called squared canonical correlations (SCCs) for the main effect of each factor,
whereas a stricter definition (“R2 regularity”) requires that the average R2 value for
explaining each degree of freedom for a main effect be either 0 or 1. The building
blocks of CC-regularity and R2 regularity are introduced in the next section, before
the three new regularity definitions and their interrelations are presented in Sect. 3.
Section 4 summarizes the relations among the criteria and discusses practical issues
regarding their assessment.

2 Generalized Word Length Patterns, SCCs, and R2 Values

Definition 1 defines notation regarding model matrices and projectors. Definition 2
defines concepts in connection with the generalized word length pattern (GWLP),
which was introduced by Xu and Wu [16] and generalizes the well-known word
length pattern (WLP) for symmetric 2-level arrays.

Definition 1 Consider an N � n array with the ith column at si levels for i D
1; : : : ; n.

(i) 1N denotes a column of ones.
(ii) For j D 0; : : : ; n, a j-factor set is a subset of j columns of the array, and

Sj D fS � f1; : : : ; ng W jSj D jg denotes the set of all j-factor sets.
(iii) For S 2 Sj, XS denotes the N�cfull model matrix of a full model with all main

effects and interactions up to degree j, where cfull D Q
i2S si; XS consists of

suitably assembled rows of the matrix that would be used in the full factorial.
The first column of XS is assumed to be 1N , and Xfg D 1N .

(iv) PS D XS.X0
SXS/

�X0
S is the orthogonal projector onto the column span of XS.

(v) For factor i, Xfig denotes the N �si model matrix including 1N , and Xi denotes
the N � .si � 1/ sub-matrix without 1N . The columns of Xi are centered.

(vi) Factor i is said to be in normalized orthogonal coding if X0
iXi D NIsi�1.

(vii) The full model matrix XS is said to be in normalized orthogonal coding, if
all individual factors are in normalized orthogonal coding and interaction
columns are constructed as products of main effects columns.

(viii) The matrix of the
Q

i2S .si � 1/ highest order interaction columns from XS

in normalized orthogonal coding is called XI .S/. Thus XI .fig/ D Xi in
normalized orthogonal coding, and XI .fg/ D 1N .
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Definition 2 Consider an N � n array with the ith column at si levels for i D
1; : : : ; n.

(i) For S 2 Sj, aj.S/ D .10
NXI .S//.10

NXI .S//
0=N2 denotes the projected aj value.

(ii) The Generalized Word Length Pattern (GWLP) .A0;A1;A2; : : : ;An/ of the
array is defined by Aj D P

S2Sj
aj.S/ for j D 0; : : : ; n.

(iii) The resolution R of the array is the smallest j such that j > 0 and Aj > 0.
(iv) A j-factor subset with resolution j is called a full resolution subset.

All OAs have resolution at least 3. Therefore, the GWLP for OAs is usually
specified starting with A3. For resolution 3 arrays, main effects can be estimated
orthogonally to each other but may be confounded with interactions of two or more
factors. For resolution R > 3, main effects are also orthogonal to interactions among
up to R � 2 factors. As one usually assumes lower order effects likely to be stronger
than higher order effects, the entry AR of the GWLP is the most important one. As
it is the sum of the projected aR values aR.S/ over all R-factor sets S, these deserve
attention. Grömping and Xu [9] provided two statistical interpretations for these,
which are given below. Note that R without square always denotes the resolution,
while R2 denotes the coefficient of determination.

Lemma 1 Let S 2 SR. For a particular i 2 S, aR.S/ is the sum of

(i) the si � 1 SCCs between the main effects model matrix Xi and the full model
matrix XS�fig;

(ii) the si � 1 R2 values from regressing the si � 1 columns of Xi on XS�fig, where
Xi is in normalized orthogonal coding.

While the sums in Lemma 1 are identical, no matter which factor i in S is chosen,
the individual summands can be different (see Table 2, where the sum is 1 for all
factors). The individual R2 values in (ii) also depend on the choice of normalized
orthogonal coding and are therefore not further considered. Note that the SCCs
are closely related to the canonical efficiency factors introduced by James and
Wilkinson [10]; the latter are used in the literature on incomplete block designs
and are implemented in the R package dae by Brien [4].

According to [9], a factor i in a resolution R array is fully confounded within an
R-factor set S, if the respective aR.S/ is equal to si � 1. This is the case exactly if
all SCCs are 1 for this factor singled out as the main effects factor, or, equivalently,
if all R2 values from explaining the columns of Xi through XS�fig are 1. On the

Table 2 Non-regular 16� 3 resolution 3 array from Eendebak and Schoen [6] (transposed)

The transposed array Squared canonical correlations

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 for A and B for C

A 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 First 0.5 1

B 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 Second 0.5

C 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 Third 0



Regular Fractions of Factorial Arrays 147

other hand, if all SCCs are zero, or, equivalently, if all R2 values from explaining the
columns of Xi through XS�fig are 0, the set S does not contribute anything to AR.

Consider factor i in a j-factor set S. If all SCCs between Xi and XS�fig are in
f0; 1g then there is a coding for factor i such that each column of Xi is either fully
explained by or uncorrelated with XS�fig. Contrary to most results stated in [9],
this insight applies to any j-factor set S regardless of its resolution. This makes the
idea of using the SCCs for the assessment of array regularity worth pursuing. Also,
the average R2 value from regressing the columns of Xi (regardless of coding) onto
those of XS�fig is 1 or 0 exactly if the entire factor is fully explained or not explained
at all by the factors in S � fig, i.e. this is a stricter variant of no partial confounding.
These two versions of regularity are now formally defined, along with geometric
regularity.

3 The New Regularity Definitions

Definition 3 A balanced N �n array is CC regular, if the following holds: for every
subset S of at least two of the n factors, for every i 2 S, all SCCs between Xi and
XS�fig are 0 or 1 only.

Definition 4 A balanced N � n array is R2 regular, if the following holds: for every
subset S of at least two of the n factors, for every i 2 S, the R2 values obtained from
regressing the columns of Xi on XS�fig are all 0 or all 1.

The expressions “CC regular” and “R2 regular” have been inspired by their
correspondence to 0/1 only SCC frequency tables and average R2 frequency tables,
as proposed in [7].

Theorem 1 The following relations hold.

(i) R2 regularity implies CC regularity.
(ii) For symmetric 2-level arrays, R2 regularity and CC regularity are equivalent.

Proof Consider a set S � f1; : : : ; ng, and a factor i 2 S.

(i) R2 regularity implies that the span of Xi is either contained in the span of
XS�fig (which implies that all SCCs are 1), or is orthogonal to that space (which
implies that all SCCs are 0).

(ii) The single R2 value equals the single SCC for each pair Xfig and XS�fig. ut
Definition 4 is equivalent to each factor’s average R2 value being 0 or 1,

respectively. Note that R2 regularity is possible only for symmetric arrays, as
the sum of SCCs is the same for all factors in a set and coincides with the
sum of R2 values in the case of full resolution; this restriction does not hold for
trivial cases, i.e. for mixed-level arrays that are obtained by crossing or nesting
R2 regular symmetric arrays with different numbers of levels. Furthermore, note
that CC regularity and R2 regularity request the 0/1 property for all sets of factors,
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Table 3 24� 13 array of resolution 3 from Kuhfeld [13] (transposed)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

B 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2

C 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2

D 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2

E 2 1 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 2 1 1 2 2 2 1

F 1 1 2 2 2 1 2 1 2 1 1 2 1 2 2 1 2 1 2 1 1 1 2 2

G 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 1 2

H 2 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 2 2 2 1 1 2 1

J 1 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 1 2 1 2 1 2

K 2 2 1 2 1 1 1 1 2 2 1 2 1 2 1 1 2 2 2 2 1 2 1 1

L 2 2 1 1 2 1 2 1 1 1 2 2 1 1 2 2 2 1 2 1 2 2 1 1

M 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1

N 7 6 3 5 2 11 8 4 12 9 10 1 1 10 9 12 4 8 11 2 5 3 6 7

Squared canonical correlations

for 3 factor sets for 4 factor sets of resolution 4

SCC Frequency SCC Frequency

0 1320 1=9 1980

1 198

which is much more than was investigated for generalized resolution (see [9]),
where considerations for resolution R arrays were restricted to R-factor sets. Table 3
gives an example of a resolution 3 array that has regular 3-factor sets only, but
contains partial confounding for 4-factor sets of resolution 4. Thus, it is not sufficient
to restrict attention to R-factor sets when assessing CC regularity. We conjecture
that it is sufficient to check all full resolution sets. For R2 regularity, the proof is
straightforward: for a full resolution set S and i 2 S, all SCCs between Xi and XS�fig
are 1; moreover, for T � S, all SCCs between Xi and XT�fig are 1; for k 2 T � S,
either all SCCs between Xk and XT�fkg are 0, or k is part of another full resolution
set which is independently assessed. For CC regularity, we have so far not found a
proof for the conjecture.

We now define geometric regularity, using the fact that two projectors commute
if and only if their column spans are geometrically orthogonal in the sense of [15]. It
is a more lenient variant of the orthogonal block structures introduced by Bailey [1].

Definition 5 A balanced N�n array is geometrically regular, if the following holds:
for any two subsets S and T of the n factors, PS and PT commute.

S � T implies PSPT D PTPS D PS, i.e., such pairs of sets need not be checked.
The following theorem, which follows from equivalence of 0/1 canonical correla-
tions to projector commuting, shows the close relationship between CC regularity
and geometric regularity.
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Theorem 2 Let i 2 f1; : : : ; ng, and ; ¤ S;T � f1; : : : ; ng. A balanced N � n
array

(i) is CC regular iff Pfig and PS commute for all pairs i and S with i … S;
(ii) is R2 regular iff PfigPS 2 f0;Pfigg for all pairs i and S with i … S;

(iii) is geometrically regular iff all SCCs between XS and XT are in f0; 1g for all
pairs S and T.

Proof All parts of the theorem follow from two linear algebra results: projectors
commute iff the eigenvalues of their product are all in f0; 1g (follows from Fact
3.9.16 in [2] and Prop. 18.11 in [14]), and the non-zero SCCs of two column-
centered matrices M and N coincide with the non-zero eigenvalues of the product
of the corresponding orthogonal projectors PMPN (also in Prop. 18.11 in [14]). ut

Theorem 2 shows that geometric regularity implies CC regularity. The reverse
is not true: geometric regularity is stricter than CC regularity in that it requires
orthogonality (in the geometric or 0/1 canonical correlation sense) between all
effects, not only between main effects and other effects. For example, a CC regular
(and even R2 regular) but not geometrically regular array can be constructed as a
Latin cube from the 5-level Latin square of Table 1 by crossing a 5-level height
factor H (levels 0–4) with the Latin square and modifying the original Latin square
factor C by taking its sum with H modulo 5; for this Latin cube, the projectors
PfH;Ag and PfB;Cg do not commute, even though it is CC regular and R2 regular. For
symmetric 2-level arrays, however, geometric regularity is equivalent to the other
regularity definitions.

The next example illustrates the generality of the proposed regularity concepts.
Table 4 shows an array that has resolution 2 only (no OA) and is a weak Tjur
block structure; the main effects of the two 4-level factors have one completely
confounded df each (0/1 vs 2/3 for A is confounded with 0/1 vs 2/3 for B); these give
rise to the two SCCs of 1. Thus, this array is CC regular and pseudo-factor regular.
As the overlap between A and B main effects splits into a parallel portion and a
portion orthogonal to it, projectors onto the spaces spanned by A and B commute.
All other projectors commute as well so that the array is geometrically regular. It is
also Abelian group regular, but not R2 regular or GF regular.

Table 4 CC regular and geometrically regular resolution 2 array

The transposed array Squared canonical correlations

Run 1 2 3 4 5 6 7 8 SCC Frequency

A 0 0 1 1 2 2 3 3 0 12

B 0 1 0 1 2 3 2 3 1 2

C 0 1 1 0 0 1 1 0

The supremum of factors A and B

H 0 0 0 0 1 1 1 1
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4 Final Remarks

We have extended GF regularity, pseudo-factor regularity and cyclic/Abelian group
regularity with three new regularity definitions. The following hierarchy holds: GF
regularity ) pseudo-factor regularity ) Abelian group regularity ) geometric
regularity) CC regularity. Furthermore, GF regularity ) R2 regularity ) CC
regularity. The reverse is not true: this is obvious for GF regularity and pseudo-
factor regularity, or R2 regularity and CC regularity, and follows from the examples
discussed throughout the paper for the other implications. The new proposals thus
provide weaker regularity requirements than the established ones. Their weakness
is welcome, because it allows us to consider the 5-level Latin square of Table 1 as
a regular array. Whether or not one also wants to consider as regular the Latin cube
that can be constructed from it yields the distinction between CC or R2 regularity on
the one hand, and geometric regularity on the other hand.

All three new regularity definitions can be checked post-hoc without knowledge
of the array construction principle. However, even with a moderate number of fac-
tors, the effort can be tremendous; nevertheless, checking remains more manageable
than trying to verify construction-based regularity for unknown construction and
level labeling. We mentioned that R2 regularity can be established by considering
only full resolution sets, and conjectured the same to hold for CC regularity.
For feasibility reasons, the R package DoE.base [8] includes a check for R2 or
CC regularity based on full resolution sets only. Should the conjecture prove wrong,
this check only provides for CC regularity within all lowest order factor sets. Checks
for geometric regularity have so far not been implemented. Work is in progress on
technical conditions, in addition to excluding pairs of subsets related by inclusion,
that would reduce the computational burden of checking all pairs of subsets.

Acknowledgements Ulrike Grömping’s initial work was supported by Deutsche Forschungsge-
meinschaft (Grant GR 3843/1-1). Ulrike Grömping wishes to thank Hongquan Xu for fruitful
discussions on an earlier version of this work. The collaboration with Rosemary Bailey was
initiated at a workshop funded by Collaborative Research Center 823 at TU Dortmund University.

References

1. Bailey, R.A.: Orthogonal partitions in designed experiments. Des. Codes Cryptogr. 8, 54–77
(1996)

2. Bernstein, D.S.: Matrix Mathematics. Princeton University Press, Princeton (2005)
3. Bose, R.C.: Mathematical theory of the symmetrical factorial design. Sankhya 8, 107–166

(1947)
4. Brien, C.: dae: functions useful in the design and ANOVA of experiments. R package

version 2.7-2. http://CRAN.R-project.org/package=dae (2015)
5. Dey, A., Mukerjee, R.: Fractional Factorial Plans. Wiley, New York (1999)
6. Eendebak, P., Schoen, E.: Complete series of non-isomorphic orthogonal arrays. http://

pietereendebak.nl/oapage/ (2010)

http://pietereendebak.nl/oapage/
http://pietereendebak.nl/oapage/
http://CRAN.R-project.org/package=dae


Regular Fractions of Factorial Arrays 151

7. Grömping, U.: Frequency tables for the coding invariant ranking of orthogonal arrays. http://
www1.beuth-hochschule.de/FB_II/reports/ (2013)

8. Grömping, U.: DoE.base: Full factorials, orthogonal arrays and base utilities for DoE
packages. R package version 0.27-1, http://CRAN.R-project.org/package=DoE.base (2015)

9. Grömping, U., Xu, H.: Generalized resolution for orthogonal arrays. Ann. Stat. 42, 918–939
(2014)

10. James, A.T., Wilkinson, G.N.: Factorization of the residual operator and canonical decomposi-
tion of nonorthogonal factors in the analysis of variance. Biometrika 58, 279–294 (1971)

11. Kobilinsky, A., Bouvier, A., Monod, H.: planor: Generation of regular factorial designs.
R package version 0.2-3. http://CRAN.R-project.org/package=planor (2015)

12. Kobilinsky, A., Monod, H., Bailey, R.A.: Automatic generation of generalised regular factorial
designs. Preprint Series 7, Isaac Newton Institute, Cambridge (2015)

13. Kuhfeld, W.: Orthogonal arrays. http://support.sas.com/techsup/technote/ts723.html (2010)
14. Puntanen, S., Styan, G.P.H., Isotalo, J.: Matrix Tricks for Linear Statistical Models. Springer,

Heidelberg (2011)
15. Tjur, T.: Analysis of variance models in orthogonal designs. Int. Stat. Rev. 52, 33–81 (1984)
16. Xu, H., Wu, C.F.J.: Generalized minimum aberration for asymmetrical fractional factorial

designs. Ann. Stat. 29, 1066–1077 (2001)

http://support.sas.com/techsup/technote/ts723.html
http://CRAN.R-project.org/package=planor
http://CRAN.R-project.org/package=DoE.base
http://www1.beuth-hochschule.de/FB_II/reports/
http://www1.beuth-hochschule.de/FB_II/reports/


Likelihood-Free Extensions for Bayesian
Sequentially Designed Experiments

Markus Hainy, Christopher C. Drovandi, and James M. McGree

Abstract When considering a Bayesian sequential design framework, sequential
Monte Carlo (SMC) algorithms are a natural approach. However, these algorithms
require the likelihood function to be evaluated. Therefore, they cannot be applied
in cases where the likelihood is not available or is intractable. To overcome this
limitation, we propose likelihood-free extensions of the standard SMC algorithm.
We also investigate a specific simulation-based approximation of the likelihood
known as the synthetic likelihood. The algorithms are applied and tested on a well-
studied sequential design problem for estimating a non-linear function of linear
regression parameters.

1 Introduction

Conducting statistical experiments sequentially allows the use of information
provided by previously obtained data to improve the efficiency of future data
collection. When considering a Bayesian design framework as in [2], sequential
Monte Carlo (SMC) algorithms are a natural approach. However, these algorithms
require evaluation of the likelihood function. Therefore, they cannot be applied in
cases where the likelihood is not available or is intractable.

To overcome this limitation, we propose likelihood-free extensions of the
standard SMC algorithm. These methods are simulation-intensive, and require
large amounts of simulated data to be generated from the model of interest in a
reasonable amount of time; see [7]. We also investigate a specific simulation-based
approximation of the likelihood known as the synthetic likelihood [8].
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To test the algorithms, we apply them to a well-studied sequential design problem
for estimating a non-linear function of linear regression parameters introduced by
[4], and compare the results between algorithms.

2 Estimation Procedure

2.1 Sequential Monte Carlo Sampling for Sequential Design

A total of T independent observations is to be collected over time. At time t
(t D 1; : : : ;T), the target distribution is

�t.� jy1Wt; d1Wt/ / f .y1Wtj�; d1Wt/ �.�/;

where y1Wt 2 Y t denotes the observations collected until t at design points d1Wt 2
D t, � 2 � are the model parameters, f .y1Wtj�; d1Wt/ D Qt

jD1 f .yjj�; dj/ denotes the
likelihood function, �.:/ is the prior distribution, and �t.:jy1Wt; d1Wt/ is the posterior
distribution at time t.

Assume that the posterior distribution at time t�1 is approximated by a weighted
sample f� i

t�1;Wi
t�1gN

iD1, the so-called particle set, where the Wi
t�1 are the normalised

importance weights (i.e.,
PN

iD1 Wi
t�1 D 1). The unnormalised posterior sample

weights at time t can be obtained by computing

wi
t D Wi

t�1 f .ytj� i
t�1; dt/:

Over time, the effective sample size (ESS), see [6], of this posterior sample
degenerates because of increasing imbalances in the weights. Therefore, it is
necessary to resample the particles according to their weights when the ESS drops
below a minimally acceptable threshold ESSmin. The resampled particles will have
equal weights, but there will also be duplicated particles. To diversify the particle
set, a move step is performed for each particle using a Markov chain Monte Carlo
(MCMC) kernel. The MCMC kernel is applied Rt times to increase the chance that
the particle is actually moved, where Rt might be determined dynamically by the
acceptance rate of a previous move step (for details see [3]). Pseudo-code for the
basic SMC sampler for Bayesian sequential design is given in Algorithm 1.

Line 3 of Algorithm 1, where the next design point is selected, demands a
more detailed discussion. In myopic sequential design, the next optimal design
point is found conditional on the previously collected observations. Therefore, to
obtain dtC1, we aim to optimise the expected utility function, which quantifies the
amount of information expected to be provided by the experiment. It can be defined
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Algorithm 1 SMC sampler for Bayesian sequential design

1. Draw � i
0 	 �.:/ and set Wi

0 D 1=N for i D 1; : : : ;N
2. for t in 1 to T do
3. Select the next design point, dt, which optimises the expected utility function

(see text)
4. Collect a new observation, which is assumed to follow yt 	 f .:j�true; dt/

given the “true” parameter �true

5. Re-weight: wi
t D Wi

t�1 f .ytj� i
t�1; dt/ for i D 1; : : : ;N

6. Normalise Wi
t D wi

t=
PN

jD1 wj
t and set � i

t D � i
t�1 for i D 1; : : : ;N

7. Compute ESS D 1=
PN

iD1.W
i
t /
2

8. if ESS < ESSmin or t D T then
9. Compute the tuning parameters of the MCMC proposal according to

the current particle set
10. Resample according to the normalised weights to obtain f� i

t ; 1=NgN
iD1

11. for i in 1 to N do
12. Move particle i with an MCMC kernel Rt times with invariant distribu-

tion �t.� jy1Wt; d1Wt/

13. end for
14. end if
15. end for

as follows:

U.djy1Wt; d1Wt/ D
Z

z2Y
u.z; djy1Wt; d1Wt/ f .zjy1Wt; d1Wt; d/ dz;

where u.z; djy1Wt; d1Wt/ is the utility function of the future observation z collected at
design point d and f .zjy1Wt; d1Wt; d/ is the posterior predictive distribution of z given
the previous observations. We will approximate the expected utility U.djy1Wt; d1Wt/
by Monte Carlo integration. Given a sample fzkgK

kD1 from the posterior predictive
distribution, one can estimate U.djy1Wt; d1Wt/ by

OU.djy1Wt; d1Wt/ D 1

K

KX
kD1

u.zk; djy1Wt; d1Wt/:

Sampling from zk � f .:jy1Wt; d1Wt; d/ can be achieved by sampling � k from the current
particle set f� i

t ;W
i
t gN

iD1 and then zk � f .:j� k; d/.
The utility function u.z; djy1Wt; d1Wt/ depends on the objective of data collection,

i.e., estimation, prediction, or model selection. In the example of this contribution,
the inferential goal is to estimate the posterior distribution of a function of the
parameters. Thus, the aim is to find the design point which leads to posterior
distributions which are, on average, as narrow as possible. Suitable utility functions
would be the Kullback-Leibler divergence between posterior and prior distribution
or the posterior precision. These utility functions are functionals of the posterior
�.� jy1Wt; z; d1Wt; d/. In order to estimate u.z; djy1Wt; d1Wt/, one therefore needs a sample
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from �.� jy1Wt; z; d1Wt; d/. This is easily obtained by updating the weights from the
particle set f� i

t ;W
i
t gN

iD1:

w.z; d/i D Wi
t f .zj� i

t ; d/:

To find the optimal design dtC1, we will simply discretise the design space D and
compute OU.djy1Wt; d1Wt/ for all d 2 D . The algorithm for selecting the next design
point is given by Algorithm 2.

2.2 Modifications for Intractable Likelihoods

If the likelihoods are intractable, the re-weighting in Line 5 of Algorithm 1 and in
Line 5 of Algorithm 2 is not possible. Furthermore, standard MCMC in Line 12 of
Algorithm 1 is also precluded. We therefore propose to resort to concepts known
as approximate Bayesian computation (ABC) (see [7]) and to replace the likelihood
f .yj�; d/ by the ABC likelihood

f".yj�; d/ D
Z

y�2Y
K"
�
d
�
s.y/; s.y�/

	

f .y�j�; d/ dy�;

where y� are pseudo-data simulated from the likelihood f .:j�; d/, K"Œ:� is a kernel
function with bandwidth parameter ", and d

�
s.y/; s.y�/

	
gives the discrepancy

between the summary statistics s.:/ of y and y�. The ABC posterior resulting from
this approximation of the likelihood is

�".� jy; d/ / f".yj�; d/�.�/:

Algorithm 2 Selecting the next design point
1. We have particles at current time t, f� i

t ;W
i
t gN

iD1

2. for d 2 D do
3. for k in 1 to K do
4. Simulate zk from the posterior predictive distribution:

� k 	 f� i
t ;W

i
t gN

iD1 and zk 	 f .:j� k; d/
5. Compute importance weights w.zk ; d/i D Wi

t f .zkj� i
t ; d/ for i D 1; : : : ;N

6. Normalise W.zk; d/i D w.zk; d/i=
PN

jD1 w.zk ; d/j for i D 1; : : : ;N

7. Use f� i
t ;W.z

k; d/igN
iD1 to estimate u.zk ; djy1Wt; d1Wt/

8. end for
9. Estimate the expected utility OU.djy1Wt; d1Wt/ D .1=K/

PK
kD1 u.zk ; djy1Wt; d1Wt/

10. end for
11. Set dtC1 to the design point d 2 D which optimises OU.djy1Wt ; d1Wt/
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It is an approximation of the true posterior distribution and depends on the choices of
�, K"Œ:�, and s.:/. If s.:/ is a sufficient summary statistic, then �".� jy; d/ ! �.� jy; d/
as " ! 0.

If it is possible to simulate the sample y�
m � f .:j�; d/, m D 1; : : : ;M, then one

can compute an unbiased estimate of the ABC likelihood,

f".yj�; d/ 
 1

M

MX
mD1

K"
�
d
�
s.y/; s.y�

m/
	

;

and use this estimate instead of the true likelihood in the re-weighting steps, as has
been proposed by [5]. In particular, Line 5 of Algorithm 1 could be replaced by the
two steps

• Simulate y�i
m � f .:j� i

t�1; dt/ for m D 1; : : : ;M and i D 1; : : : ;N
• Re-weight: wi

t D Wi
t�1

PM
mD1 K"

�
d
�
yt; y�i

m

	

for i D 1; : : : ;N

Line 5 of Algorithm 2 is correspondingly substituted by

• Simulate z�i
m � f .:j� i

t ; d/ for m D 1; : : : ;M and i D 1; : : : ;N
• Re-weight: w.zk; d/i D Wi

t

PM
mD1 K"

�
d
�
zk; z�i

m

	

for i D 1; : : : ;N

Since we assume that observations are collected one at a time, we can employ
the identity function as our summary statistic in the re-weighting steps. Following
[5], in Algorithm 2 the simulation burden can be reduced by re-using the sample
ffz�i

m gM
mD1gN

iD1 to update all the particle weights for all zk � f .:jy1Wt; d1Wt; d/.
For the MCMC steps in Line 12 of Algorithm 1, we suggest to employ the

likelihood-free extension of the standard MCMC sampler presented in [7]. The
ABC-MCMC kernel has the invariant distribution

�".�; y
�
1Wtjy1Wt; d1Wt/ / K"

�
d
�
s.y1Wt/; s.y�

1Wt/
	


f .y�
1Wtj�; d1Wt/ �.�/:

The marginal distribution with respect to � is the ABC posterior given y1Wt and d1Wt.
The proposal distribution is chosen such that the likelihood terms cancel out in the
acceptance ratio (for details see [7]). The acceptance probabilities are usually very
small for likelihood-free MCMC, so it is expected that many MCMC repetitions are
necessary to move a particle. Thus, Rt has to be set to a very high value compared
to the standard SMC sampler.

To mitigate the curse of dimensionality when operating on the whole sample
y1Wt (see [1]), we have to choose a low-dimensional summary statistic s.y1Wt/. In
general, this summary statistic will not be sufficient, so the target ABC posterior in
the resampling step will not converge to the true posterior distribution when " ! 0.
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2.3 Synthetic Likelihood

A special form of approximation to the likelihood was proposed by [8]. The
distribution of the summary statistic s.y/ is approximated by a normal distribution
known as the synthetic likelihood:

f
�
s.y/j�; d	 
 N

�
s.y/j O	� ; Ȯ

�



:

The parameters O	� and Ȯ
� of the synthetic likelihood can be estimated by

simulating pseudo-data y�
m � f .:j�; d/ for m D 1; : : : ;M and computing the sample

mean vector and variance-covariance matrix of fs.y�
m/gM

mD1. The advantage of the
SL ABC approach is that there is no need to choose an ABC tolerance, ". The major
disadvantage is that the true likelihood is approximated by a normal likelihood,
which might not always be appropriate.

For the SL ABC sampler, we have to replace Line 5 of Algorithm 1 by

• Simulate y�i
m � f .:j� i

t�1; dt/ for m D 1; : : : ;M and i D 1; : : : ;N
• Compute O	i

�t�1
and O�2;i�t�1

from the sample fy�i
m gM

mD1 for i D 1; : : : ;N

• Re-weight: wi
t D Wi

t�1 N
�
ytj O	i

�t�1
; O�2;i�t�1



for i D 1; : : : ;N

and Line 5 of Algorithm 2 by

• Simulate z�i
m � f .:j� i

t ; d/ for m D 1; : : : ;M and i D 1; : : : ;N
• Compute O	i

�t
and O�2;i�t

from the sample fz�i
m gM

mD1 for i D 1; : : : ;N

• Re-weight: w.zk; d/i D Wi
t N

�
zkj O	i

�t
; O�2;i�t



for i D 1; : : : ;N

As for the standard ABC algorithm, we can take s.y/ D y for the re-weighting steps
and re-use the sample ffz�i

m gM
mD1gN

iD1 for all zk.
Finally, the invariant distribution for the MCMC steps in Line 12 of Algorithm 1

is proportional to

N
�
s.y1Wt/j O	� ; Ȯ

�



�.�/;

where O	� and Ȯ
� are the mean vector and the variance-covariance matrix of the

simulated sample fs.y�
m;1Wt/gM

mD1 and y�
m;1Wt � f .:j�; d1Wt/.

3 Example

3.1 Example Setup

The example we use to demonstrate our algorithms is a sequential design problem
first investigated by [4] in a classical design setting.
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The observations yt follow a normal distribution:

yt � N
�
: j	 D �1dt C �2d

2
t ; �

2 D 1


; t D 1; : : : ;T:

This is a simple linear regression model with one quadratic factor dt, no intercept,
and a fixed variance of 1. The design space is D D Œ�1; 1�, and the goal is to
efficiently estimate the maximum or minimum of the response curve, given by the
function g.�/ D �0:5�1=�2. Therefore, it is a nonlinear design problem. Ford and
Silvey [4] prove that the limiting sequential design for this problem converges to the
optimal design measure. If jgj � 0:5, the optimal design measure puts probability
0:5 C g at d D C1 and 0:5 � g at d D �1, while if jgj > 0:5, it puts probability
0:5C 0:25 � g�1 at d D C1 and 0:5 � 0:25 � g�1 at d D �1.

The likelihood function is available for this example, so we can assess the
accuracy and the efficiency of the likelihood-free extensions compared to the
likelihood-based sequential design algorithm of [2]. Moreover, we can easily check
the plausibility of the results by contrasting them to the analytic solution for the
classical design problem.

3.2 Settings

We will consider three settings for the true parameters: .�1; �2/true D .1; 1/, .1; 2/,
and .1; 4/. These were also analyzed by [4]. Furthermore, we will assume uniform
prior distributions: �1 � UŒ0; 5� and �2 � UŒ0:001; 5�.

In accordance with the original design criterion used by [4], we take the
precision of the posterior distribution �.g.�/jy1Wt; z; d1Wt; d/ to be the utility function
u.z; djy1Wt; d1Wt/. The objective at time t is to select the design point that maximises
the expected posterior precision. This design problem is comparable to the classical
design problem studied by [4], so we expect to obtain similar results.

For the MCMC move steps, we use random walk proposal distributions with
normal increments. The proposal’s variance-covariance matrix is given by the
empirical variance-covariance matrix of the current particle set.

As summary statistics for the MCMC move steps, we take the ordinary least
squares (OLS) estimates of the parameters if the design matrix is invertible; that is,
if observations have been collected at more than one design point. The discrepancy
function is the Mahalanobis distance between s.y1Wt/ and s.y�

1Wt/ using the variance-
covariance matrix of the OLS estimator. When all observations have been collected
at only one design point, we take the mean of these observations as the single
summary statistic.

We choose a uniform kernel for the standard ABC sampler, i.e., K"
�
d
�
s.y/; s.y�/

	

/ 1 if d

�
s.y/; s.y�/

	 � " and K"
�
d
�
s.y/; s.y�/

	
 D 0 if d
�
s.y/; s.y�/

	
> ".

The tolerance level " is set to 0:1 for the re-weighting steps and for the MCMC
steps using the Mahalanobis distance of the OLS estimates, while " is set to 0:1=

p
t

for the MCMC steps using the sample means.
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In all examples, we have a particle set of size N D 1000. When searching for
the next optimal design point, we obtain a sample of size K D 1000 from the
posterior predictive distribution for each d 2 D to perform Monte Carlo integration.
Furthermore, for the standard ABC and SL ABC algorithms, we set the size of the
simulated observation samples to M D 1000. Data are collected for T D 100 time
points as in [4]. The design space is discretised between �1 and 1 with a spacing of
0:1, so at each t there are 21 candidate design points to be evaluated for determining
the next design point.

3.3 Results

For each setting for the true parameter �true (.�1; �2/true D .1; 1/; .1; 2/; .1; 4/)
and for each method, we conducted a simulation study comprising 30 simulation
runs. Table 1 reports the average posterior means of the final posterior samples,
fg.� i

tD100/gN
iD1, over the 30 runs for all settings and methods. The standard deviations

of the posterior means are given in parentheses. One can see from Table 1 that the
distributions of the posterior means are almost identical for all methods and they
are all centered around the true values g.�true/. The standard deviations of the final
posterior distributions for g.�tD100/ are also very similar across all methods (not
reported). Therefore, for this example, all three methods attain the same level of
quality of statistical inference after T D 100 observations.

Next, for each method and setting, we compare the distribution of design points
visited during data collection to the theoretical asymptotic results derived by [4] for
the classical design problem. Almost all design points which were visited during
the simulation runs were either equal or close to �1 or 1. Hence, for each method
and setting, we consider the average proportion of negative design points over all
30 runs and compare it to the theoretical fraction of observations taken at d D �1.
The results are given in Table 2. It can be seen that the fractions obtained by our
simulation-based methods for a finite sample closely correspond to the theoretical
fractions. Furthermore, the differences between the standard SMC sampler and the
likelihood-free extensions are very small. The SMC sampler with the standard ABC
extensions exhibits a slightly higher variation of the proportion of negative design
points than the other samplers.

Table 1 Average posterior means of g.�tD100/ over the 30 simulation runs for different settings
and methods. Standard deviations in parentheses

True �2 g.�true/ Standard SMC SMC with ABC SMC with SL ABC

1 � 0.5 � 0.500 (0.052) � 0.512 (0.057) � 0.526 (0.070)

2 � 0.25 � 0.241 (0.022) � 0.252 (0.026) � 0.251 (0.022)

4 � 0.125 � 0.125 (0.013) � 0.124 (0.013) � 0.126 (0.013)
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Table 2 Theoretical fraction at d D �1 and average fractions of design points <0 visited during
data collection over the 30 simulation runs for different settings and methods. Standard deviations
in parentheses

True �2 Theoretical Standard SMC SMC with ABC SMC with SL ABC

1 1 0.863 (0.035) 0.829 (0.046) 0.857 (0.036)

2 0.75 0.733 (0.028) 0.720 (0.037) 0.744 (0.028)

4 0.625 0.627 (0.018) 0.631 (0.028) 0.622 (0.022)

4 Conclusion

In this paper, we have presented approaches for performing sequential design
for models with intractable likelihoods by extending the sequential Monte Carlo
framework of [2]. A well-known linear regression example was discussed as a
proof-of-concept. Future work will consider motivating applications and more
sophisticated methods for optimising the utility at each iteration.
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A Confidence Interval Approach
in Self-Designing Clinical Trials

Guido Knapp

Abstract In self-designing clinical trials, a special case of adaptive group sequen-
tial experiments, a confidence interval for the difference of normal means is derived,
in which the results of the respective study stages are combined using the weighted
inverse normal method. During the course of the self-designing trial, the sample
sizes as well as the number of study stages can be simultaneously determined in
a completely adaptive way. Practical rules for updating sample sizes and assigning
weights to the study stages are presented. The implementation of the self-designing
trial and the resulting confidence interval are demonstrated using real data.

1 Introduction

Let the difference of two normal means be the effect size of interest in a
clinical examination for a new agent to a standard agent with regard to (at least)
non-inferiority. In the analysis, the confidence interval approach is of particular
attractiveness, see [3], since the position of the final confidence interval determines
the kind of result of the study, independently of the question whether originally the
study was planned as a non-inferiority or a superiority trial.

In the following, we consider flexible adaptive group sequential trials in the sense
that, besides the adaptive choice of the sample sizes for the different stages, the
number of stages can be determined in an adaptive way, known as self-designing as
introduced in [4, 9].

In the self-designing approach, one decides adaptively after each interim-analysis
whether exactly one or at least two further study stages will be performed using
unblinded results of all already conducted interim-analyses. The self-designing
trial ends when the (finite) variance of an a priori fixed final test statistic has
been ‘used up’. Self-designing rules are derived in [5] where the weighted inverse
normal method is used for combining p-values of the study stages with independent
samples. Simultaneously, the weights and the sample sizes can be chosen adaptively.
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In a self-designing trial, a confidence interval for difference of two normal
means is constructed in [2], where the variance parameter is assumed to be known.
As in [9], the sequence of possible sample sizes is fixed in advance and just the
weights assigned to the stages of the trial are really chosen adaptively. For unknown
variance, an approximate solution is given in [2]. Extending the methodology
in [5, 6] to the combination of parameterized p-values, we will derive an exact
confidence interval for the difference of normal means with unknown variance.
Suitably combined learning rules provide an effective chance to choose both sample
sizes and weights simultaneously in an adaptive way. In our approach, we consider
parameterized pivotal t-statistics involving the unknown parameter and combine
them using the weighted inverse normal method from meta-analysis, see [7].

The outline of the paper is as follows. In Sect. 2, the basics for a self-designing
study of comparing normal outcomes are summarized. The construction of a
confidence interval for the mean difference is described in Sect. 3. Section 4 contains
the adaptive planning for sample sizes and weights when the difference of means is
the parameter of interest. In Sect. 5, an example is considered in which the methods
presented so far are illustrated.

2 Basic Principles of a Self-Designing Study

Let XE and XC be independent normally distributed random variables with mean 	E

in an experimental group E, mean 	C in an (active) control group C, and common
variance �2 > 0, that is, succinctly

XE � N .	E; �
2/ and XC � N .	C; �

2/ : (1)

A comparative trial is consecutively carried out in a number of, say k, stages
with independent samples, denoted by stg.1/; : : : ; stg.k/. In the i-th stage, we
observe responses of the random quantities XEij, j D 1; : : : ; nEi > 1, and XCij,
j D 1; : : : ; nCi > 1, where nEi and nCi are the sample sizes in the respective groups.
The mean difference in stg.i/ is then

Yi D 1

nEi

nEiX
jD1

XEij � 1

nCi

nCiX
jD1

XCij D NXEi � NXCi; i D 1; : : : ; k: (2)

The variance parameter �2 is estimated in the i-th stage by the pooled estimator

S2i D 1

nEi C nCi � 2

8<:
nEiX
jD1
.XEij � NXEi/

2 C
nCiX
jD1
.XCij � NXCi/

2

9=; ; i D 1; : : : ; k;

(3)



A Confidence Interval Approach in Self-Designing Clinical Trials 165

which follows a scaled �2-distribution with nEi C nCi � 2 degrees of freedom, that
is,

.nEi C nCi � 2/
S2i
�2

� �2nEiCnCi�2: (4)

An estimator of the variance of Yi in the i-th stage is given by

cVar.Yi/ D
�
1

nEi
C 1

nCi

�
S2i ; (5)

and Yi and S2i are stochastically independent, i D 1; : : : ; k. Let yi and s2i denote the
realizations of the random variables.

Let us assign a positive normed weight, say wi > 0, to each stage i, i D 1; : : : ; k,
with

Pk
iD1 wi D 1. Based on considerations in [2, 4–6, 9], the sample sizes as well as

the weights may be chosen in a completely adaptive way. All the information of the
unblinded data of previous stages can be used to choose simultaneously the sample
size and the weight for the next stage. Let stg.0/ denote a priori information and/or
external restrictions, we express the adaptive choice of sample sizes and weights as

ni D On.i � 1/ D Onfstg.0/; stg.1/; : : : ; stg.i � 1/g; ni D nEi C nCi; (6)

and

wi D Ow.i � 1/ D Owfstg.0/; stg.1/; : : : ; stg.i � 1/g; (7)

where wi � 1 � w˙.i � 1/, w˙.i/ D Pi
jD1 wi, w˙.0/ D 0, w˙.k/ D 1, wi > 0,

i D 1; : : : ; k.
Note that the number k of performed stages is random and will be realized during

the course of the sequential trial subject to the choice of weights. Of course, k
has to be finite (almost surely), and for practical reasons, k should be bounded by
some reasonable constant. Introducing a minimum weight for a stage, say wmin,
0 < wmin < 1, we obtain the boundary as k � 1=wmin. A minimum sample size, say
nmin, may also be introduced, so that

ni � nmin � 4 and wi � wmin > 0; i D 1; : : : ; k: (8)

The use of minimum weight and minimum sample size leads to useful conditions
to stop the trial and can adjust some non-practicable suggestions of the (automatic)
learning rules for choosing ni and wi discussed in Sect. 4.
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3 A Confidence Interval for the Mean Difference

Let�0 � 0 be an a priori defined non-inferiority bound. We are interested in testing

H0;� W 	E � 	C �� versus H1;� W 	E > 	C �� ; 0 � � � �0; (9)

at a given level ˛, 0 < ˛ < 1=2. The alternative hypothesis H1;� means .��/non-
inferiority for 0 < � � �0 and superiority of E with regard to C for � D 0.

Let # D 	E � 	C denote the difference of means unbiasedly estimated by Yi in
stg.i/, i D 1; : : : ; k, see (2). In the i-th stage, let us define the parameterized pivotal
t-statistic

Ti.#/ D Yi � #q
.1=nEi C 1=nCi/ S2i

� tnEiCnCi�2 ; (10)

that is, Ti.#/ follows a t-distribution with nEi C nCi � 2 degrees of freedom given # .
Let Ft.�/ denote the cumulative distribution function of a t-variate with � degrees

of freedom and ˚�1 the inverse of the standard normal distribution function ˚ we
obtain

Zi.#/ D ˚�1ŒFt.nEiCnCi�2/fTi.#/g� � N .0; 1/ ; i D 1; : : : ; k: (11)

Although, the Zi.#/ from (11) are not independent, k is random, and sample
sizes and weights may be chosen adaptively as described in (6) and (7), the final
combining statistic follows a specified test distribution, that is,

Zk;fin.#/ D
kX

iD1

p
wi Zi.#/ � N .0; 1/ with w˙.k/ D

kX
iD1

wi D 1; (12)

see [4, 5, 9] for various proofs of (12).
The continuous distribution functions Ft.�i/.�/ as well as the inverse distribution

function ˚�1.�/ are (strictly) monotone increasing functions in their arguments.
The pivotal statistic Ti.#/ from (10) is monotone decreasing in # , implying that
˚�1fFt.�i/ŒTi.#/�g is monotone decreasing in # . Hence, the function Zk;fin.#/ is
monotone decreasing in # .

So we can define the following confidence interval on # ,

CI.#/ D ˚
d 2 R j ˚�1.˛/ � Zk;fin.d/ � ˚�1.1 � ˛/


 D Œ #L ; #U �; (13)

where #L and #U are the unique solutions of the equations:

Zk;fin.#L/ D ˚�1.1 � ˛/ and Zk;fin.#U/ D �˚�1.1 � ˛/:



A Confidence Interval Approach in Self-Designing Clinical Trials 167

The confidence coefficient of CI.#/ is 1 � 2˛, 0 < ˛ < 1=2. Since the solutions
in (13) are unique, they can easily be found iteratively using standard statistical
software packages.

Let us now apply the confidence interval to the test problem (9). We reject the
null hypothesis at level ˛ for the alternative H1;�, � 2 Œ0 ; �0�, if �� lies below
CI.#/. However, we do not reject H0;�0 , if CI.#/ covers ��0, more succinctly, with
#L from (13),

if �� < #L ; then reject H0;�;

if ��0 � #L ; then stay with H0;�0 :
(14)

4 Adaptive Planning for Sample Sizes and Weights

The confidence interval CI.#/ in (13) is computed after k � 1 interim analyses
based on unblinded data. In cases when an unexpectedly favourable parameter
constellation has been observed up to stage j and provided that w˙. j/ < 1, this
may lead to considerations to switch from showing non-inferiority to showing
superiority. The trial is then continued by further planning with� D 0. On the other
hand, originally planned as a superiority trial, a first interim analysis may reveal that
an unexpectedly large number of subjects would be required. In case of an active
control, one may then decide to switch from showing superiority to showing non-
inferiority, and to reduce the sample size of the rest of the trial by choosing some
� > 0 in the further planning. Note that in this situation, a non-inferiority bound
�0 should have been defined at the beginning of the study, see also the discussion
in [3]. In the following, we present some learning rules for choosing sample sizes
and weights adaptively with the possibility of switching in the planning between
non-inferiority and superiority.

For given type I and II error rates ˛, 0 < ˛ < 1, and ˇ, 0 < ˇ < 1, respectively,
let us consider, for ease of presentation, the approximate normal sample size
spending function. Two steering parameters uj and vj will be introduced for each
stage j in order to cover a wide range of reasonable updating possibilities, whose
realizations would then depend on a given practical situation. We plan with equal
sample sizes for both groups at each stage. Based on information up to stage j, an
estimate Aj.�/ > 0 of the standardized mean difference .# C�/=� may be given,
where Aj.�/ is defined below. The power is considered at the point #C� D �Aj.�/

in the alternative H1;�. For testing H0;� from (9) by use of a t-test of level ˛ at stage
jC1, a power of 1�ˇ is approximately attained when the total sample size for both
groups at stage j C 1 is chosen as

fj.˛; ˇ;�/ D 4 Œmaxf0 ; ˚�1.1 � ˛/C ˚�1.1� ˇ/g�2
Aj.�/2

; j D 0; 1; : : : ; k;

(15)
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with estimate

Aj.�/ D uj

jX
iD1

QniPj
hD1 Qnh

�
yi C�

si

�
C .1 � uj/

	E0 � 	C0 C�

vj s. j/C .1 � vj/ s0
> 0; � � 0;

s. j/ D
 

jX
iD1

ni � 2Pj
hD1 nh � 2j

s2i

!1=2
; Qni D 2

1=nEi C 1=nCi

;

ni D nEi C nCi ; 0 � uj � 1; u0 D 0; and 0 � vj � 1; v0 D 0;

where 	E0 � 	C0 C� > 0 denotes a predefined value from the alternative H1;� at
stg.0/ and s20 > 0 a supposed value for �2. An unrealistically small value in (15)
may be replaced by some reasonable sample size, for instance, by nmin from (8).

Let us briefly comment on the role of the two steering parameters uj and vj,
0 � uj � 1 and 0 � vj � 1. By choosing uj D 0 and vj D 0, we get a purely
prior information based sample size plan with respect to the parameters. The choice
uj D 0 and vj > 0 leads to adaptive plans that only use updated variances, where
s. j/2 is the pooled estimate of �2 up to stg. j/. For uj D 1, involving Qni, the harmonic
mean of realized sample sizes, the term Aj.�/ is a short-cut version of the meta-
analytical combination of standardized mean differences.

Let us assume that up to stg. j�1/ we have determined sample sizes and weights
where w˙. j � 1/ < 1, by planning with �1; : : : ; �j�1 2 Œ0;�0� and at stg. j/ we
want to plan with �j, that is, we have in mind to reject H0;�j , �j 2 Œ0;�0�, see (9).
With the realized sample sizes nEi and nCi , i D 1; : : : ; j � 1, j � 2, and defining
Z0.��j/ D 0, we compute the combination statistic up to stg. j � 1/, see (11),

Z˙j�1.��j/ D
j�1X
iD1

p
wi Zi.��j/ ; j � 1: (16)

Suppose we want to obtain a significant result after the next stage by assigning
the full remaining weight 1� w˙. j � 1/ to this stage. Then, by use of the projected
p-value, say Opj;m, the following combination statistic

Zj;m.��j/ D Z˙j�1.��j/C
p
1 � w˙. j � 1/ ˚�1.1 � Opj;m/; j � 1; (17)

should attain the critical value ˚�1.1 � ˛/, that is,

Opj;m D 1 � ˚
h˚
˚�1.1 � ˛/ � Z˙j�1.��j/


 ıp
1 � w˙. j � 1/

i
; j � 1:

(18)
This projected p-value is gained with the (conditional) power 1 � ˇ at # C �j D
�Aj�1.�j/ > 0 by choosing the sample size for the next stage j according to (15) as

mj D mj.ˇ/ D fj�1.Opj;m; ˇ;�j/; j � 1: (19)
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In the above procedure, the full weight is used up and stage j is the last one.
In those cases when estimates of the parameters are not yet stable, only a part of
mj.ˇ/ should be used as sample size nj, that is nj D "j mj.ˇ/, with 0 < "j � 1.
The remaining weight after stage . j � 1/ is also divided proportionally to assign the
weight wj D "j f1 � w˙. j � 1/g to stage j, that is, summarized,

wj D "j f1 � w˙. j � 1/g; nj D "j mj.ˇ/; nEj D nCj 
 nj=2; j � 1: (20)

The choice of wj means a proportional partition of the remaining variance of the
final N .0; 1/-test distribution.

Choosing a smaller power .1 � ˇj/, a possible choice of "j is provided by

"j D "j.ˇj/ D mj.ˇj/

mj.ˇ/
; mj.ˇj/ D fj�1.Opj;m; ˇj; �j/; ˇ � ˇj < 1; j � 1: (21)

Note that ˇj is only a lower bound of the type II error rate in stage j as long as
wj < 1� w˙. j � 1/. A similar basic idea is discussed in [5] and applied in a 3-stage
self-designing clinical trial with normal outcomes in [6].

5 An Example Showing Switching from Non-inferiority
to Superiority

In [8], a controlled clinical trial concerning patients with acne papulopustulosa was
discussed assuming the distributional properties from Sect. 2. An adaptive 3-stage
group sequential test of Pocock type was used, which led to early stopping for
superiority of E with respect to C after the second stage at the one-sided overall
significance level of ˛ D 0:005. The response variable was the reduction of bacteria
(after 6 weeks of treatment) from baseline, examined on agar plates and measured
as log CFU/cm2, CFU: colony forming units. We have used the parameter estimates
as presented in Table 1. The non-inferiority margin may be predefined as �0 D 0:1.

The test level is chosen as ˛ D 0:005 and the power as 1 � ˇ D 0:80. Each
stage is planned with equal sample sizes in both groups. Planning with �1 D 0:1

Table 1 Self-designing two-stage clinical trial concerning patients with acne papulopustulosa:
data and confidence intervals on the treatment difference # D 	E � 	C and on the standard
deviation �

Adaptive Adaptive Treatment Standard p-value

Stage sample size weight difference deviation pi.��/
0 — — 0:8 1:0 pi.�0:1/ pi.0/

1 24
p
0:4 D 0:63 1:549 1:316 0:0028 0:0043

2 12
p
0:6 D 0:77 1:580 1:472 0:0381 0:0463
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for showing non-inferiority, we get the prior guess A0.�1/ D 0:9 using the prior
guesses of # and � from Table 1. With the critical value ˚�1.0:995/ D 2:576, we
obtain the total sample size for a one-stage trial using (15)

m1 D f0.0:005; 0:2; 0:1/ D 57:6:

Note that, for the superiority test with � D 0, the total sample size would be 73.
It was intended to start with a .1=3/m1. But, by randomizing medications in

blocks of size 6, the first sample was chosen as n1 D 24, that is, "1 D n1=m1 D
0:4 D w1, see (20). The trial started and we obtained y1 D 1:549 and s1 D 1:316,
leading to the small p-value p1.�0:1/ D 0:0028. Consequently, we decided to
switch to showing superiority. That means, we chose �2 D 0.

First, we computed Z1.��2/ D p
0:4 ˚�1.1 � 0:0043/ D 1:66 and then the

projected p-value, see (18),

Op2;m D 1 �˚f.2:576 � 1:66/=p0:6g D 1 � ˚.1:18/;

leading to, see (19), with �2 D 0,

m2 D 4 .1:18C 0:84/2

.1:549 = 1:316/2
D 11:7:

We put uj D 1 in (15) because the prior guesses turned out as too cautious. So it
was decided to finish the trial by assigning the full remaining weight to the second
stage, w2 D 0:6, and to choose the sample size n2 D 12.

By the results of the second stage, see Table 1, we obtain

Z2;fin.0/ D 0:63 � 2:63C 0:77 � 1:68 D 2:95 > 2:576;

and equating Z2;fin.#/ to 2.576 and to �2:576 we obtained the 99 %-confidence
interval CI.#/ D Œ0:231; 2:894�. This led to rejection of the one-sided null
hypothesis in favour of superiority. Note that the final approximative repeated
confidence interval was Œ0:21; 2:92� in [8] leading to the same test decision as in
our case.

6 Discussion

In Sect. 4, we proposed learning rules for updating sample sizes and study weights
in a self-designing trial. Incorporating the minimal weight from (8) in the rules leads
to a maximum number of study stages to be undertaken.

In the adaptive planning of sample sizes, we used a normal approximation in (15)
for a t-variate with .n � 2/ degrees of freedom. Nearly exact values can be achieved
by replacing n by ncorr D n.n�2/=.n�4/, n � 5. Moreover, we assume equal sample
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sizes for both groups in (19). This assumption may be relaxed when applying ideas
of response-adaptive randomized trials, see [10], in this framework. Note that the
adaptive weights in (20) mainly depend on the total sample sizes in the study stages
and are not affected by the allocation scheme.

We used the inverse normal method for combining parameterized p-values of test
statistics following a continuous distribution. The recursive combination tests based
on the inverse normal method exhaust the type I error rate in this case, see [1], and
consequently, the confidence interval in (13) is an exact one. For non-continuous
distributions, the conditional distribution of the parameterized p-value in each stage
given all p-values of previous stages must be stochastically larger than or equal to the
uniform distribution on Œ0; 1�, briefly p-clud, so that the recursive combination tests
keep the predefined type I error. Following the strategy in Sect. 3 for a parameterized
pivotal statistic, fulfilling the p-clud condition, instead of Ti.#/ in (10) would yield
a confidence interval for the parameter of interest with confidence coefficient of at
least .1 � 2˛/. Explicit learning rules for updating samples size and study weights
are then context-dependent and may still have to be developed.

Acknowledgements This paper is based on some earlier joint work with Joachim Hartung.
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Conditional Inference in Two-Stage Adaptive
Experiments via the Bootstrap

Adam Lane, HaiYing Wang, and Nancy Flournoy

Abstract We study two-stage adaptive designs in which data accumulated in the
first stage are used to select the design for a second stage. Inference following such
experiments is often conducted by ignoring the adaptive procedure and treating the
design as fixed. Alternative inference procedures approximate the variance of the
parameter estimates by approximating the inverse of expected Fisher information.
Both of these inferential methods often rely on normal distribution assumptions in
order to create confidence intervals. In an effort to improve inference, we develop
bootstrap methods that condition on a non-ancillary statistic that defines the second
stage design.

1 Introduction

In many experiments, the evaluation of designs with respect to a specific objective
requires knowledge of the true model parameters. Examples include optimal designs
for the estimation of nonlinear functions of the parameters in linear models; optimal
designs for the estimation of linear functions of parameters in nonlinear models; and
dose-finding designs where it is desired to treat patients at a pre-specified quantile of
the response function. In the absence of perfect knowledge of the model parameters,
it is appealing to update initial parameter estimates using data accumulated from all
previous stages and to allocate observations in the current stage by an assessment
of designs evaluated at these estimates. Such procedures result in designs that are
functions of random variables whose distributions depend on the model parameters,
i.e., the designs are not ancillary statistics.
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In practice it is common to conduct inference ignoring the adaptive nature of
the experiment and treating the design as if it were an ancillary statistic. The
potential issues resulting from such procedures are well known; see [1]. Briefly,
when a design is ancillary, it is non-informative with respect to model parame-
ters. Analysing adaptive experiments with non-ancillary designs as if the design
were ancillary does not account for all the information contained in the design.
An alternative often suggested is to approximate the variance of the maximum
likelihood estimate (MLE) with an approximation of the inverse of the expected
Fisher information (defined below). Regardless of the method, the distribution of
the MLE resulting from adaptive experiments are often assumed to follow a normal
distribution when used to create confidence intervals.

We develop three bootstrap procedures that approximate the distribution of the
MLE conditional on a non-ancillary statistic that defines the second stage design.
The bootstrap reduces the reliance on the assumption of normality. A bootstrap
procedure in the context of adaptive experiments with binary outcomes, primarily
in the context of urn models, has been developed previously [7].

2 The Model and an Illustration of the Problem

Consider an experiment conducted to measure a constant � . Suppose it is possible to
obtain unbiased observations y of � from two sources; each source k D r; s produces
errors from a N .0; �2k /, where �2r ¤ �2s are known constants. Throughout this
paper Y and y denote the random variable and its observed realization, respectively.
A function  .�/ is defined to determine which of the two sources should be used
based on maximizing efficiency, ethics, cost or other considerations. For illustration,
we use  .�/ D r if � < c and s otherwise, given some constant c.

The adaptive procedure is as follows: obtain an initial cohort of n1 independent
observations, y1 D .y11; : : : ; y1n1 /, from source r. Evaluate  at the MLE of �
based on first stage observations; O�1 D y1 D Pn1

jD1 y1j=n1. The function  .y1/
determines the source from which a second cohort of n2 independent observations,
y2 D .y21; : : : ; y2n2 /, will be obtained and induces a correlation between Y1 and Y2.
This model has been used to illustrate conditional inference in experiments with
ancillary designs; see [2] and [4]. Here we use the model to illustrate conditional
inference with non-ancillary designs in adaptive experiments.

Let N D n1 C n2 represent the total sample size; and let Sr D .�1; c/ and Ss D
.c;1/ be the regions of the parameter space that selects the second stage source.
The second stage design is completely determined by the non-ancillary variable
I.Y1 2 Sk/, k D r; s, where I.�/ is the indicator function. Therefore, Y2jY1 2 Sk

is independent of Y1, k D r; s. The log likelihood is l� D �n1 .y1 � �/2 =2�2r �
n2 .y2 � �/2 =2�2 .y1/C constant. Defining w.y1/ D .n1=�2r Cn2=�2 .y1//

�1, the MLE

based on both stages is O� D w.y1/.n1y1=�
2
r C n2y2=�

2
 .y1/

/.
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To approximate the distribution of O�.Y1;Y2/jY1 2 Sk, k D r; s, three boot-
strap methods are developed. Resulting parameter estimates and confidence inter-
vals are compared to analyses where the variance of the MLE is approximated
using the inverse of the observed and expected Fisher information: I . O�/ D
�Œ@2l�=@�2��D O� D w�1.y1/ and F� D EŒI . O�/�, respectively. Confidence intervals
for comparative methods are then constructed using normal quantiles. If the design
were ancillary, then the variance of the MLE would be w.y1/. Using F�1

� to
approximate the variance, does not treat the design as ancillary. But it is a function
of � and must be estimated; F�1

O� is used here. In contrast, since Y2jY1 2 Sk is

independent of Y1, O�.Y1;Y2/jY1 2 Sk has variance

Var
h O�.Y1;Y2/jY1 2 Sk

i
D w2k

�
n21
�4r

Var
�
Y1jY1 2 Sk


C n2
�2k

�
;

where wk D .n1=�2r C n2=�2k /
�1. The design of the second stage is completely

determined by I.Y1 2 Sk/. Therefore f .Y1/jY1 2 Skg D k. The function w.Y1/
depends on Y1 only through  .Y1/. Hence fw.Y1/jY1 2 Skg D wk, for k D r; s.

Let pk D P.Y1 2 Sk/, Ek D EŒ O�.Y1;Y2/jY1 2 Sk�, Vk D VarŒ O�.Y1;Y2/jY1 2 Sk�

and Ik D I . O�/, k D r; s for short.
From a series of 10,000 simulations, Table 1 presents, for k D r; s, pk, Ek, Nbse2

and tail probabilities, PŒ� < Cl� and PŒ� > Cu�, where bse2 is either VarŒ O�.Y1;Y2/�,
Vk, I �1

k or F�1
� ; Cl D O� � Z1�˛=2bse, Cu D O� C Z1�˛=2bse and Z˛ is the ˛ quantile

of the standard normal distribution. Values of � D 1, �r D 1, �s D 3, n1 D 50,
n2 D 150, c D � C 1=

p
n1 and ˛ D 0:05 are used throughout. Both I �1

k and
F�1
� are significantly greater than Vk, k D r; s. Both Vk, k D r; s, are significantly

less than VarŒ O�.Y1;Y2/�. If Y1 2 Sr, then Er is nearly unbiased, and despite slightly
unbalanced tail probabilities, overall coverage would be adequate if Vr were known
and could be used. When Y1 2 Ss, the bias is considerable and the coverage is
unacceptable. We focus throughout on improvements when Y1 2 Ss.

Table 1 Conditional probability, conditional expectation, variance approximation method along
with its estimate and tail probabilities by the source of the second stage observations

Source pk Ek Variance approximation Nbse2 PŒ� < Cl� PŒ� > Cu�

r 0.77 0.99 Vr 0.88 0.02 0.04

VarŒ O�.Y1; Y2/� 1.77 0.00 0.01

I �1
r 1.00 0.01 0.03

F�1
� 1.47 0.00 0.01

s 0.23 1.14 Vs 1.24 0.39 0.00

VarŒ O�.Y1; Y2/� 1.77 0.26 0.00

I �1
s 3.00 0.10 0.00

F�1
� 1.47 0.33 0.00



176 A. Lane et al.

3 Conditional Bootstrap Inference

In an effort to improve inference following adaptive experiments, three bootstrap
methods are developed. We begin with a straightforward and intuitive conditional
bootstrap procedure. Unfortunately, as will be discussed, the conditions required for
this procedure to give accurate inference are extremely restrictive.

Conditional Bootstrap Method 1 (BM1)

1. Construct a probability distribution, OFi, by putting mass 1=ni at each point
yi1; : : : ; yini , i D 1; 2. With fixed OF1 and OF2, draw random samples of size n1
and n2 from OF1 and OF2, respectively. Denote the vector of bootstrap samples as
y�

i ; i D 1; 2.
2. Repeat step 1 B times. For the bootstrap samples satisfying y�

1 2 S .y1/, use Ny�
1

and Ny�
2 to find O��. Use .Cl;Cu/ D .Q�̨

=2;Q
�
1�˛=2/ as the .1 � ˛/ confidence

interval, where Q�̨ is the ˛ quantile of the bootstrapped sample distribution
O��.Y�

1 ;Y
�
2 /jY�

1 2 S .y1/.

Let P� be the empirical probability measure given Y1 and let Œ��b represent the
bth sampled bootstrap. Then P�.Y�

1 2 S .y1// 
 PB
bD1 I.Œy�

1 �b 2 S .y1//=B is the
probability the mean of a bootstrap sample is in S .y1/.

Table 2 presents the simulation results ps, Es, Vs, Cl, Cu, PŒ� < Cl� and
PŒ� > Cu�. The first row results are for the distribution of O�.Y1;Y2/jY1 2 Ss. The
second and third row results use I �1

s and F�1
O� , and tail probabilities found using

Table 2 Results are conditional on the region Y1 2 Ss. Method describes the procedure by which
the approximate distribution was obtained; ps is approximated by

PB
bD1 I.Œy�

1 �b 2 Ss/=B for

the bootstrap and by P.Y1 2 Ssj� D O�/ for the expected information. Es, Vs, the confidence
limits and tail probabilities are also provided. All values are averages from 10,000 simulations
except the column ps which uses the median. “True” refers to either the empirical distribution of
O�.Y1; Y2/jY1 2 Ss or Q�.Y1; Y2/jY1 2 Ss obtained from simulation

Estimate Method ps Es N*Vs Cl Cu PŒ� < Cl� PŒ� > Cu�

O� True 0.23 1.14 1.24 0.99 1.30 – –
O� F�1

O�
0.59 1.14 2.17 0.93 1.34 0.14 0.00

O� I �1
s – 1.14 3.00 0.90 1.38 0.10 0.00

O�� BM1 0.67 1.19 1.87 1.02 1.39 0.63 0.00
O�C BM2 0.25 1.13 1.36 0.99 1.30 0.41 0.00
Q� True 0.23 1.00 5.25 0.66 1.28 – –
Q� � Q� 0.74 1.00 6.47 0.65 1.35 0.02 0.01
Q�C BM3 0.25 0.98 5.60 0.65 1.29 0.02 0.02
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quantiles of the standard normal distribution. The fourth row results are from BM1
using B D 1000 bootstrap samples. All values are averages except ps whose values
are skewed and for which the median provides a better summary of the data. Both
P�.Y�

1 2 Ss/ and P.Y1 2 Ssj� D O�/ are significantly greater than ps. The methods
BM1 and F�1

O� produce similar variances, both of which are less than I �1
s . All

three approximations are significantly greater than Vs. However, the mean of the
bootstrap distribution has greater bias than O� . Thus BM1 does not improve inference
in comparison to using F�1

O� .

3.1 Technical Details for the Conditional Bootstrap

In this section we consider the MLE conditional on an indicator function of the first
stage sample mean. This illustrates the implications of conditioning in two-stage
adaptive experiments with non-ancillary designs and why the inference produced by
BM1 was poor. Let Tk D .ak; dk/, where ak D � C a0

k=
p

n1, dk D � C d0
k=

p
n1, a0

k
and d0

k are constants. This is a slightly more general division of the parameter space
than Sk which has only one of a0

k and d0
k finite. Note, we consider the parameter

space defined in a local neighborhood of � . This is done so that P.Y1 2 Sk/, k D r; s
has positive probability not equal to 1 for large n1; otherwise the design would be
deterministic for large first stage sample sizes and not adaptive. Consider

P�
hp

n1
�

Y
�
1 � Y1

�
< xjpn1

�
Y

�
1 � Y1

�
2 p

n1.ak � �; dk � �/
i

D
P�
h
fpn1

�
Y

�
1 � Y1

�
< xg \ fpn1.Y

�
1 � Y1/ 2 p

n1.ak � �; dk � �/g
i

P�
hp

n1.Y
�
1 � Y1/ 2 p

n1.ak � �; dk � �/
i

D P
�fpn1

�
Y1 � �

	
< xg \ fpn1.Y1 � �/ 2 p

n1.ak � �; dk � �/g
C o.1/

P
�p

n1.Y1 � �/ 2 p
n1.ak � �; dk � �/


C o.1/

D P
�p

n1
�
Y1 � �	 < xjpn1

�
Y1 � �

	 2 p
n1.ak � �; dk � �/
C o.1/;

(1)

where x 2 R, and the equalities hold almost surely under P. Note, from the left hand
side of equation (1), that a conditional bootstrap should include bootstrap samples

satisfying
p

n1
�

Y
�
1 � Y1

�
2 p

n1.ak ��; dk ��/, i.e., Y
�
1 2 .ak �"1; dk �"1/, where

"1 D Y1 � � . BM1 considers bootstrap samples satisfying Y
�
1 2 .ak; dk/ and hence
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its poor performance. Unfortunately, � is unknown and must be estimated. In (1), if
one can replace � with an estimator (say Q�) that converges to � at a rate faster thanp

n1, then

P� hpn1
�

Y
�
1 � Y1

�
< xjpn1

�
Y

�
1 � Y1

�
2 p

n1.ak � Q�; dk � Q�/
i

D P
�p

n1
�
Y1 � �

	
< xjpn1

�
Y1 � �

	 2 p
n1.ak � �; dk � �/
C oP.1/:

(2)

In a single stage experiment this would not be possible. However, in a two-
stage adaptive experiment in which n1 D o.n2/, such an estimator may exist.
Theoretically this is somewhat unsatisfactory, but practically this is interesting
especially since it has been shown that two-stage experiments are optimized when
n1 D O.

p
n2/; see [5] and [6]. It is also common, for practical or logistical reasons,

that a small pilot study precedes a much larger follow-up.
Note Y1jY1 2 Tk � TN .�; �2k =n1I Tk/, where TN denotes a truncated normal

distribution. Suppose an estimator, Q� , exists as described and let QTk D .ak � Q"1; dk �
Q"1/, where Q"1 D Y1 � Q� . Then (2) implies fY

�
1 jY�

1 2 QTkg can be approximated by a
TN .y1; �

2
k =n1I QTk/ and therefore

E�
Y1

h
Y

�
1 jY�

1 2 QTk

i

 Y1 C b1k. Q�/I (3)

VarY1

h
Y

�
1 jY�

1 2 QTk

i

 �2k

n1

�
1C
 Q� .ak/�f
 Q� .ak/g � 
 Q� .dk/�f
 Q� .dk/g

U

�
�
n
b1k. Q�/

o2
:

where b1k.�/ D �k Œ�f
�.ak/g � �f
�.dk/g� =.pn1U/, 
� .ak/ D p
n1.ak � �/=�k,

U D ˚f
�.b/g � ˚f
� .a/g; �.�/ and ˚.�/ represent the probability density
function (PDF) and cumulative distribution function (CDF) of the standard normal
distribution, respectively. Note a conditional bootstrap leads to an additional bias
term in the expectation in equation (3). This must be accounted for in any
conditional bootstrap procedure.

4 Adjusted Conditional Bootstrap Methods

The bootstrap methods developed in this section are predicated on the existence
of an estimator that converges to � at a rate faster than

p
n1. Provided standard

regularity conditions hold and n1 D o.n2/, such an estimator will always exists in
the form of the second stage MLE conditional on the second stage design. However,
in cases where the bias has an explicit form, it is possible to obtain Q� by adapting
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the bias reduction method suggested in [8]. Note

E
h O�.Y1;Y2/jY1 2 Sk

i
D wkE

�
n1Y1=�

2
k C n2Y2=�

2
k jY1 2 Sk



D wk

�
n1=�

2
r C n2=�

2
k

	
� C wkn1b1k.�/=�

2
r

D � C wkn1b1k.�/=�
2
r :

Let bk.�/ D wkn1b1k.�/=�
2
r . Then a bias corrected estimate of � is Q� D O� � bk. Q�/.

The Newton-Raphson method was used to solve this equation. One iteration was
sufficient, that is, Q� D O� � �k. O�/, where �k. O�/ D bk. O�/=Œ1C .@bk.�/=@�/�D O� � was
used for analytic expressions and numeric calculations.

Now we develop a bootstrap method that adjusts the conditioning region per
the discussion in Sect. 3.1. Let QSr D f�1; c � Q"1g and QSs D fc � Q"1;1g, where
Q"1 D Y1 � Q� .

Adjusted Conditional Bootstrap Method (BM2): Repeat BM1 keeping only
bootstrap samples satisfying y�

1 2 QS .y1/. Let O�C D O�� � b .y1/.
Q�/ and

.CC
l ;C

C
u / D .QC

˛=2;Q
C
1�˛=2/ as the .1 � ˛/ confidence interval, where QC̨ is

the ˛ quantile of the bootstrap sample distribution of O�C.Y�
1 ;Y

�
2 /jY�

1 2 QS .y1/.
Note O�C is used in place of O�� to correct for the additional bias term previously

discussed.
A concern in inference when the variance of the MLE depends on the parameter

estimates is how sensitive the approximate distribution is to this estimate. Figure 1
(top left) plots the histogram of the simulated distribution of f O�.Y1;Y2/jY1 2 Ssg �
Es (solid line). In the same figure, for simulations that correspond to the 0.025,
0.50 and 0.975 quantiles of O� , histograms of the bootstrap sample distributions of
f O�C.Y�

1 ;Y
�
2 /jY�

1 2 QSsg � O� (dotted, dashed and dot-dashed line) are plotted. This
figure illustrates how well BM2 works across the domain of � at approximating the
distribution O�.Y1;Y2/jY1 2 Ss. Compare this to Fig. 1 (top right) which plots the
PDF of N .0;F�1

O� / for F�1
O� evaluated at the same quantiles of O� . The bootstrap

distribution is less sensitive to the value of O� than N.0;F�1
O� / and it provides a better

approximation to the shape of the target distribution.
The fifth row of Table 2 shows that with BM2 P�.Y�

1 2 QSs/ is nearly equal to ps;
E�Œ O�C.Y�

1 ;Y
�
2 /jY�

1 2 QSs� is approximately equal to Es; Var�Œ O�C.Y�
1 ;Y

�
2 /jY�

1 2 QSs�

is only slightly greater than Vs; and the confidence interval endpoints correspond
to the quantiles of O� . It is clear that BM2 provides a more accurate representation
of the conditional distribution of O� than the alternatives. However, BM2 still fails
to provide adequate coverage. This is not a problem with the bootstrap but rather a
problem with the distribution of O� being tightly centered around the wrong value.
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Considering the poor coverage of BM2, we develop a bootstrap procedure for the
bias corrected estimator Q� . Recall Q� D O� � �k. O�/, k D r; s; is simply a function of
O� . Thus BM2 can be adapted to estimate its distribution. Because the distribution of
the bias is skewed, bias corrected bootstrap confidence intervals were used; see [3].

Bias Adjusted Conditional Bootstrap Method (BM3): Replace O�C in BM2
with Q�C D O�C � � .y1/.

O�C/. Use .Cl;Cu/ D Œ bCDF�1f˚.2v0 C
Z˛=2/g; bCDF�1f˚.2v0�Z˛=2/g�, where bCDF.t/ D P�Œ Q�C.Y�

1 ;Y
�
2 /jY�

1 2 QS .y1/ <
t� and v0 D ˚�1

bCDF. Q�/.
Since Q� is a function of O� , for comparison we approximate the variance of Q�

with � Q� D Œf@.� � � .y1/.�//=@�g2F�1
� �

�D O� . Figure 1 (bottom left) plots the

histogram of the simulated distribution of f Q�.Y1;Y2/jY1 2 Ssg � EŒ Q�.Y1;Y2/jY1 2
Ss� (solid line). In the same figure, for simulations that correspond to the 0.025,
0.50 and 0.975 quantiles of Q� , histograms of the bootstrap sample distributions
of f Q�C.Y�

1 ;Y
�
2 /jY�

1 2 QSsg � Q� (dotted, dashed and dot-dashed line) are plotted.
For comparison, Fig. 1 (bottom right) plots the probability density functions of a
N .0;� Q� / with � Q� evaluated at the same quantiles of Q� . Once again we see that
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Fig. 1 Histograms of bootstrap distributions f O�C.Y
�

1 ; Y
�

2 /jY�

1 2 QSsg � O� (top left) and

f Q�C.Y
�

1 ; Y
�

2 /jY�

1 2 QSsg � Q� (bottom left). Probability density functions of N.0;F�1
O�
/ (top right)

and N.0; � Q� / (bottom right). The dotted, dot dashed and dashed lines correspond to the bootstrap

distribution or expected information for the 0.025, 0.50, and 0.975 of quantiles of O� or Q� . In
each case the solid line is the histogram of the distribution of f O�.Y1; Y2/jY1 2 Ssg � Es or
f Q�.Y1; Y2/jY1 2 Ssg � EŒ Q�.Y1; Y2/jY1 2 Ss�
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Table 3 Mean square error
(MSE) for the true
distribution of O� and Q� along
with the bootstrap MSE of
O�C or Q�C for the case when
Y1 2 s

Estimate Method MSE
O� True 4.92
O�C BM2 4.98
Q� True 5.25
Q�C BM3 5.71

the BM3 well approximates the distribution Q�.Y1;Y2/jY1 2 Ss across most of the
domain of Q� , perhaps with the exception of the 0.025 quantile.

The sixth row of Table 2 shows the simulation results the distribution of
Q�.Y1;Y2/jY1 2 Ss. The seventh and eighth rows are results for � Q� and BM3,
respectively. BM3 provides an unbiased estimate of the mean; slightly overestimates
the VarŒ Q�.Y1;Y2/jY1 2 Ss�; and provides confidence limits which coincide with the
correct quantiles of Q� . Coverage is slightly less than the nominal level, but is a
significant improvement over inference methods for O� . Note using � Q� significantly
overestimates VarŒ Q�.Y1;Y2/jY1 2 Ss� and slightly skews the confidence limits.

The performance of O�C and Q�C reflects the bias versus variance tradeoff. Table 3
compares the mean square error (MSE) for the simulated distribution of O� and Q�
along with the bootstrap MSE of O�C and Q�C for the case when  .y1/ D s. Despite
the shortcomings of the procedure for O�C, it still provides a lower MSE than Q�C in
this example.
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Study Designs for the Estimation of the Hill
Parameter in Sigmoidal Response Models

Tobias Mielke

Abstract Sigmoidal models are frequently considered for the description of the
dose-response relationship in dose-finding studies. Designs for these models depend
on unknown parameters, which enter the model in a nonlinear way. A particular
problem in frequentistic analysis using the sigmoid EMax model is the estimation of
the Hill parameter, which may be problematic to estimate. The estimation problem
for the Hill parameter and a model-based design approach to limit this problem will
be examined in this paper.

1 Introduction

The sparse adoption of innovative design and analysis methods into dose finding
practice served as a motivation for the EMA qualification opinion on the MCPMod
approach for the model based design and analysis of dose-finding studies (CHMP
[2]). Optimal design theory improves the information content of the study and may
be used to evaluate the efficiency of study designs under model misspecification
(Bretz et al. [1]). Dragalin et al. [4] describe the sigmoid EMax model as a
flexible model in dose-finding, which might be used instead of examing multiple
models with the full MCPMod approach. The sigmoid EMax model is considered
as a reasonable model for dose-finding, having a number of different motivations
and parameterizations (Goutelle et al. [6]). Thomas et al. [9] describe a meta
analysis of dose-finding trials from a pharmaceutical company, which leads to the
conclusion that EMax models describe the data of most dose-finding problems very
well. Unfortunately, maximum likelihood estimators for sigmoidal models have
similar limitations as in the binomial response model considered by Silvapulle [8].
Separated low-response and high-response dose-ranges may not allow the descrip-
tion of the increasing part of the dose response curve. The maximum likelihood
estimator for the Hill parameter will then tend to high values, which in turn leads to
computationally singular information matrices. Regulaziation techniques, Bayesian
modelling and bootstrapping limit this problem related to sigmoidal models from
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an analysis perspective. Alternatively, study designs may be optimized to improve
the distribution of the Hill parameter estimator. The target of this publication is
the examination of study designs for sigmoidal models, with an application to the
sigmoid EMax model. In the second section, the statistical model will be introduced
with the definition of the sigmoid EMax model and the definition of study designs.
The estimation problem for the Hill parameter will be displayed using an example.
A similar estimation problem will be examined in section three for piecewise linear
models. These considerations will lead to design recommendations for sigmoidal
models, which will be compared to standard design criteria using a simulation study
for a sigmoid EMax model. Section five will close the article with a discussion of
the results.

2 Response Model and Problem Setting

The average response of ni subjects on the i-th dose group di is considered to be
normally distributed

Yi D �.di; �/C �i � N

�
�.di; �/;

1

ni
�2
�
; i D 1; : : : ;G:

The error �i in the considered dose response model might include uncertainty on
individual effects, which may be modeled via patient-wise varying intercepts. The
dose-response relation is assumed to follow a sigmoid EMax model

�.di; �/ WD �1 C �2 � d�4i

�
�4
3 C d�4i

: (1)

Note, that the sigmoid EMax and the Logistic model coincide up to the scale of the
dose and parameters

�.exp.d/; �/ D �1 C �2 � exp

�
d � log.�3/

��1
4

��
1C exp

�
d � log.�3/

��1
4

���1
:

The sigmoid EMax model is popular among practitioners and the derivation of
optimum experimental designs for the sigmoid EMax model is as simple as for
the logistic model, such that this paper will focus the sigmoid EMax model in the
following.

The parameter �1 in the sigmoid EMax model describes the placebo response,
whereas �2 describes the maximum asymptotic effect above placebo. The parameter
�3 specifies the location of the dose with 50% of the maximum asymptotic effect
above placebo and is referred to as the ED50-parameter. The Hill parameter is given
by �4 > 0 and defines the steepness of the dose-response curve. Values of �4 below
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1 lead to a high increase for low doses, whereas values of �4 above 1 lead to the
characteristic sigmoidal shape, which gets steeper with increasing values of �4. The
standard EMax model is a special case of the sigmoid EMax model with �4 D 1.

Approximate study designs on a discrete dose range are considered, targeting the
relative allocation of patients to G admissible dose groups

x WD
 

d1 : : : dG

!1 : : : !G

!
;

GX
iD1

!i D 1:

A generalization of the results to a continuous dose range X using available
optimum design algorithms is straight forward (e.g. Fedorov and Leonov [5]). Given
an appropriate study design x, the asymptotic normality of the ML-estimator is
generally considered

p
N. O� � �/ L! N

�
0;M� .x/�1

	
; N ! 1;

where N is the total sample size and M� .x/ denotes the Fisher Information matrix

M� .x/ WD 1

�2

GX
iD1

!i
@�.di; �/

@�

@�.di; �/

@�> :

Due to the nonlinear dependence of the sigmoid EMax model on the shape
parameters, the information matrix will depend on the unknown parameters.

We consider as an example a dose-finding study with equal randomization into
4 active dose groups and a placebo group. A simulated dataset is displayed on the
left-hand side of Fig. 1. Observations were simulated with a standard deviation of
� D 100 and a maximum effect of 100 in the maximum dose group. A high standard
deviation in comparison to the effect size is not uncommon in early phases of drug
development.

The situation displayed in Fig. 1 demonstrates the typical problem with sigmoidal
model fits. The best fitting curve is close to a step function, where the increase
crosses the observation at dose 50. This common problem may lead for an
unbounded parameter space to missing likelihood estimates due to computationally
singular matrices. Note that the value of the likelihood remains almost unchanged
when increasing the value of the Hill parameter from �4 D 20 to �4 D 30, given a
value of �3 D 45. The likelihood-function is here very flat around the maximum.

The simulated data were based on a dose finding study with N D 200 patients.
Data were simulated from a sigmoid EMax model with true ED50 at 50 and Hill
parameter �4 D 4 using the R package DoseFinding. Parameters were constrained
to be located within the range of 0.1 and 150 for the ED50 and 0.1 and 60 for the
Hill parameter. The joint distribution of the ED50 and Hill parameter estimator is
displayed on the right-hand side of Fig. 1. Given the scatter plot, the estimates of the
ED50 are clustered around the values 50 and 25. These clusters are generated by the
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Fig. 1 Left-hand side: Simulated data and fitted models with different constraints on the Hill
parameter (�4 � 5; 10; 20; 30) and corresponding likelihood function. Right-hand side: Joint
distribution of the ED50 and Hill parameter estimates for a design with 200 subjects

design and the resulting underlying distribution and are not related to the nonlinear
least squares algorithm. Each of the points in the two clusters represents a situation
as displayed on the left-hand side of Fig. 1. Moving the examined doses higher, e.g.
25–35 and 50–60 will also move the location of the clusters to 35 and 60.

The probability of running into the encountered problem depends on the sample
size. The estimator of the Hill parameter will exceed the value 10 with simulated
39% probability, when using the considered study design with N D 200. Increasing
the sample size does little to improve this probability (33% with N D 500 and
25% with N D 1000). These simulated probabilities differ from the values resulting
with the normal approximation (12%, 3%, 0:5%, for N D 200, 500, 1000). The
problem is not specific to the sigmoid EMax model. The same behaviour may be
observed for the estimator corresponding to �4 in the Logistic model. Given the
situation described in Fig. 1, it is obvious that the selection of study doses is of high
importance when using the sigmoidal models in dose finding.

3 Design Considerations

The Hill parameter defines together with the ED50 the increasing part of the
dose-response curve. Miller et al. [7] describe designs for the examination of an
interesting part of the dose response curve in a similar model. We will here focus on
another range of interest, namely the doses which provide 25–75 % of the maximum
response.

The estimation problem in the sigmoid EMax model is related to a flat likelihood
function around the maximum. Design criteria target, via the Fisher information
matrix M� , the expected curvature of the likelihood function around the true
parameters and are hence reasonable for the problem at hand. However, optimal
designs are generally constructed under the assumption of asymptotic normality.
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As Fig. 1 displays, the distribution of the parameter estimator might not be close
to a normal distribution for limited sample sizes. In the following, a piecewise
linear model will be examined as an approximation to general sigmoidal shapes.
The estimation problem may be well described using this piecewise linear model.
This problem description in the simple model will support the definition of study
designs improving the probability of fitting success for nonlinear sigmoidal models.

3.1 Designs for the Piecewise Linear Function

Consider as an approximation to the sigmoid EMax model the piecewise linear
function, which is defined by

�1.x; �/ WD

8̂̂<̂
:̂
�1 x � �3

�1 C �2.x � �3/ �3 < x < �4

�1 C �2.�4 � �3/ x � �4

:

Unknown parameters for �1 are the changepoints �3 and �4, the mean response on
the low range �1 and the slope �2 of the increasing part. Fitting the piecewise linear
model to the data is as problematic as fitting a sigmoidal model to the data, with the
slight difference that the ML-estimator might not be well-defined. See Fig. 2 for an
example on a variety of shapes described by model �1, which will all fit the data
equally well. The situation in Fig. 2 leads also for the sigmoid EMax model to a
problematic model fit. Any curve with high increase between the doses will lead
to almost the same prediction value at the examined doses. For simplicity, we will
consider balanced designs on 4 doses in the following.

Remark 1 Consider a balanced allocation to 4 support points x1 D a, x4 D b and
x2; x3 2 .a; b/ with average responses y1; : : : ; y4 and a common variance. The least
squares-estimator for the changepoints �3 and �4 of �1.xI �/ is well-defined on the
interval .a; b/ if, and only if,

(i) Responses are strictly monotone increasing (decreasing) and
(ii) y2.x3 � x1/ � y3.x2 � x1/ � y1.x3 � x2/ < 0 (> 0) and

(iii) y3.x4 � x2/ � y4.x3 � x2/ � y2.x4 � x3/ > 0 (< 0).

This remark may be proven easily for the direction from the conditions to the
well-defined estimator. The other direction is more tedious. The main part of
the proof from the uniqueness to conditions (i), (ii) and (iii) is based on the
unique representation of the increasing part. This leads to the existence of the two
changepoints, which need to be located within the intervals (x1, x2) and (x3,x4).
Given this result and an assumed direction for the slope, condition (i) on monotone
responses follows. The results on conditions (ii) and (iii) are proven using the well-
defined changepoints and considerations on the best fit for the monotone data. The



188 T. Mielke

l

l

l

l

0 20 40 60 80 100

0
20

40
60

80
Piecewise linear fits

Dose

R
es

po
ns

e

l

l

l

l

Probability of ML Existence

Dose 2

D
os

e 
3

 0.05 
 0.1 

 0.15 
 0.2 

 0.25 
 0.3 

 0.35 
 0.4 

 0.45 
 0.5 

 0.55 

 0.6 

 0.65 

0.0 0.1 0.2 0.3 0.4 0.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 2 Left-hand side: Multiple piecewise model fit with the same likelihood and sigmoid EMax
fit. Right-hand side: Probability for a well-defined MLE for different support points of the design

unique estimator in the remark is given by

b�1 WD y1; b�2 WD y3 � y2
x3 � x2

; b�3 WD x2 C y1 � y2
O�2

; b�4 WD x2 C y4 � y2
O�2

:

The increasing part of �1 is defined by the two points (x2,y2) and (x3,y3). The
constant parts are on the levels y1 and y4, such that the sum of squares is zero.

Given the equivalence in Remark 1, support points of the study design may be
optimized to target via conditions (i), (ii) and (iii) a maximized probability for a
unique least squares estimator. An example is given in the right-hand side of Fig. 2.
The underlying shape assumption is a sigmoid EMax model with ED50 at 50 and Hill
parameter 4, as we target the design optimization for the sigmoid EMax model. The
dose with 33% of the maximum effect is given for this model at 41, whereas the dose
with 66% of the maximum effect is given at 57. The maximum probability (66%)
for a unique least squares estimator is attained when allocating patients to doses 40
and 57. The influence of the design on the uniqueness probability is relatively high.
A balanced allocation to 0, 33, 66 and 100 will attain only a probability of 54%.

3.2 Design Criteria for the Sigmoid EMax Model

We will compare the changepoint design (CP) with standard design criteria ˚ ,
defined as

˚DISI� .x/ WD log jSM� .x/�1S>j and ˚LI� .x/ WD tr LM� .x/�1:

D-optimality (S D I4, D) is of interest in dose-finding given the implications on
the MSE due to the equivalence with G-optimality. Given the problem of the Hill
parameter estimation, a focus on the increasing part of the curve using DS optimality
for �3 and �4 will be considered (DS). Linear criteria for the minimization of the
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variance of a certain parameter
�
e.g. �4, (L„4 )

	
or for the optimization of the dose

estimation will be studied. Asymptotic normality assumptions together with the
�-method lead to a matrix L, which defines the criterion of interest. The EDp-
optimality is derived with the use of the �-method (Dette et al. [3]). The EDp

is defined as the dose leading to p% of the maximum effect on the examined
dose range. An ED50 optimal design shall hence minimize the variance on the
ED50 estimation (ED50). Only locally optimal designs will be considered. We will
examine two versions of the criteria to verify, whether designs should be optimized
under the true parameter or using the expected parameter values for the problematic
Hill parameter case.

4 Design Evaluation

The simulation and design model is a sigmoid EMax model as given in formula 1,
where the ED50 parameter is given by 50 and the Hill parameter is set to 4. We
consider a placebo effect of 0 and a maximum effect of 100. The standard deviation
is given by � D 100. The design will be evaluated for a total sample size of N D 200

subjects. Designs were optimized on the discrete dose-range of integers in Œ0; 100�.
The average MSE on the full dose range (MSE), the average MSE on the range
from the true ED25 to the true ED75 (MSE25;75), the probability that the ED50-
estimator is located between the true ED25 and the true ED75 (P.ED50/) and the
probability that the estimator of the Hill parameter is below 10 (P. O�4 < 10/) were
the studied operating characteristics. Given the simulation results in Table 1, the
design considerations using the approach via the piecewise linear CP are promising.
The design for the piecewise linear model targets doses the 33% and 66% effect
quantiles. This will increase robustness in the estimation of the Hill parameter as
compared to the locally optimal designs with the true Hill parameter of �4 D 4.
The DS-optimal design is the most promising optimality-criterion, although the
performance of CP for the Hill parameter is not reached. Note that the ED50-optimal

Table 1 Design characteristics for locally optimal designs with �4 D 4 and �4 D 10

Design.�4D4/ L�4 ED50 DS D CP

P. O�4 < 10/ 0.697 0.526 0.787 0.755 0.825

P.ED50/ 0.779 0.795 0.892 0.857 0.893

MSE 245.52 332.20 198.82 212.31 185.81

MSE25;75 339.17 534.16 253.38 371.45 215.25

Design.�4D10/ L�4 ED50 DS D CP

P. O�4 < 10/ 0.829 0.508 0.806 0.800 0.832

P.ED50/ 0.889 0.515 0.830 0.849 0.910

MSE 214.27 340.09 212.65 207.78 190.58

MSE25;75 158.40 509.09 175.69 194.02 224.02
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design were very weak in getting the ED50 right. Allocation for the ED50-optimal
design is concentrated on the doses around the true ED50, which will limit the
accuracy on the whole dose range.

5 Discussion

Problems in the analysis of dose-finding studies with the sigmoidal models were
examined from the design perspective. The estimator for the Hill parameter in
the sigmoid EMax model will generally not follow a normal distribution. Design
considerations using piecewise linear models may help to construct robust designs
for Hill parameter estimation. Alternatively, locally optimal designs on extreme
values for the model parameters may add value to the estimation of the Hill
parameter, as studied in Sect. 4. Additional considerations will help to examine the
robustness of the proposed approach under model-uncertainty.
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Controlled Versus “Random” Experiments: A
Principle

Werner G. Müller and Henry P. Wynn

Abstract The contrast and tension between controlled experiment and passive
observation is an old area of debate to which philosophers of science have made
contributions. This paper is a discussion of the issue in the context of modern
Bayesian optimal experimental design. It is shown with simple examples that a
mixture of controlled and less controlled experiments can be optimal, and this is
stated as a general principle. There is a short discussion of a wider theory in the last
section.

1 The Principle

The distinction between controlled experiment and passive observation is a long-
standing theme in the history of experimentation and the philosophy of science.
Francis Bacon [1] and John Stuart Mill [8] emphasize controlled experimentation.
Bacon classifies experiments into different types such as the experimentum cruxis
(experiment at the cross roads) and Mill distinguishes “artificial experiments” and
“spontaneous” experiments. Claude Bernard [2] writes at length on the distinction.

This distinction has become important in a type of product design, promoted by
the Japanese engineer, Genichi Taguchi and sometimes now given the generic term
robust engineering design (RED), cf. [11]. The idea is that experiments on product
prototypes need to set different levels not just of “design factors” but also “noise
factors”, which may affect the product in manufacturing or actual use.

In medicine, economics and the social sciences the randomized trial attempts
to guard against external factors, which may bias the inference. In the literature
on the methodology in (experimental) economics there is real concern about the
distinction (cf. e.g. [6]), probably greater than in the natural sciences, because of the
difficulty of describing and controlling the populations and subpopulations about

W.G. Müller (�)
Department of Applied Statistics, Johannes Kepler University, Linz, Austria
e-mail: werner.mueller@jku.at

H.P. Wynn
Department of Statistics, London School of Economics, London, UK
e-mail: h.wynn@lse.ac.uk

© Springer International Publishing Switzerland 2016
J. Kunert et al. (eds.), mODa 11 - Advances in Model-Oriented Design
and Analysis, Contributions to Statistics, DOI 10.1007/978-3-319-31266-8_22

191

mailto:h.wynn@lse.ac.uk
mailto:werner.mueller@jku.at


192 W.G. Müller and H.P. Wynn

which inference is made. This may affect the portability of models to unobserved
populations. Note that despite its relevance the topic of experimental design has
gained little attention in the field of behavioral or experimental economics, see [7]
and [4] for exceptions.

The above issue has become important in the study of causation, for example
when a controllable (intervention) variable X affects a variable Y, but where there
is an intermediate (mediation) variable M. In that case one may simply investigate
the effect of X on Y, in some sense ignoring M. For example one may endeavour
to randomize in such a way to obtain a sample in which there is a representative
population of M-values, without actually measuring M. Alternatively, or in addition,
one may bring M into the experiment, keep the X values fixed but control the M
values to an experimental range. It may even be the case that in a laboratory setting
a controlled experiment may use a wider range of values of the independent variable
than is found in a less controlled environment; accelerated life-testing is an example.
In modern discussions of causation the distinction colours debate about whether
elucidation of causation requires intervention (cf. e.g. [10]).

The aim of this note is simply stated in terms of establishing a principle. We will
not describe fully where the principle is to be applied, but we will certainly show in
some basic examples that it holds. The principle is that

a mixture of a controlled and a passive experiment may be optimal.

The argument for the principle can be given in a heuristic way, and the examples
above may be useful in this regard. There may be some key parameters in a
system which are well estimated with a controlled experiment, but if the model
is to operate in, be portable to, a wider environment then part of the experiment
should favour the estimation of parameters relevant to that environment. If the
principle is accepted then discussions of whether controlled experiments are better
than more passive observation should include assessment of the extent to which
experiments should reflect the operating environment. The issue is well recognized
in mainstream statistics modelling via the distinction between fixed, random effect
and mixed models (see e.g. [9]). However, the distinction is less well analyzed in
optimal experimental design. We will adopt a Bayesian optimal experimental design
framework, see [3] for fundamentals.

2 A Simple Example

We consider an example in which Y D .Y1; : : : Yn1 / is a vector of observations from
what we will call the controlled experiment and Z D .Z1; : : : ;Zn2 / is a vector of
observations from what we will call the random experiment. We will then investigate
the relative size of n1 and n2 satisfying some optimum allocation problem. There are
two parameters � and � and, following a Bayesian approach, these will be taken as
random, with independent prior distributions. There will also be random errors of
observation f�ig.
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The model is

Yi D � C �i; i D 1; : : : ; n1; (1)

Zj D � C � C ıj; j D n1 C 1; : : : ; n1 C n2: (2)

We assume that f�1; : : : ; �n1g are iid N.0; �21 /, fın1C1; : : : ; ın1Cn2g are iid N.0; �22 /
and that � � N.	1; �21 / and � � N.	2; �22 /, with �1; �2; 	1; 	2; �1; �2 all known.
We also assume that the f�i; ıjg; � and � are all independent.

The interpretation of this model is that equation (1) is a system which applies in
a laboratory setting where we can simply try to measure � . Equation (2) represents
some kind of less controllable operational environment with an additional random
component �.

It is assumed that our inference concerns � and �. The posterior analysis is
straightforward. We first write down the covariance matrix between the two sample
means, Y and Z, which are jointly sufficient statistics, and the parameters:

cov
�
Y;Z; �; �

	 D

0BBBB@
�21
n1

C �21 �21 �21 0

�21
�22
n2

C �21 C �22 �
2
1 �

2
2

�21 �21 �21 0

0 �22 0 �22

1CCCCA : (3)

The posterior (conditional) covariance matrix of �; � is

�
�21 0

0 �22

�
�
�
�21 �

2
1

0 �22

� �21
n1

C �21 �21

�21
�22
n2

C �21 C �22

!�1 �
�21 0

�21 �
2
2

�
: (4)

We consider the Bayesian D-optimum case or, equivalently in this Gaussian
example, the Shannon information case. This means we need to minimize, with
respect to the choice of n1; n2, the following quantity:

detfcov.�; �jY;Z/g D �21 �
2
2 �

2
1 �

2
2

n1n2�21 �
2
2 C n1�22 �

2
1 C n2�21 �

2
1 C n2�21 �

2
2 C �21 �

2
2

: (5)

To set this up as an optimisation problem we assume that every observation has
the same cost and the total sample size to be fixed at n D n1 C n2. We rewrite this,
ignoring the discreteness as n1 D pn; n2 D .1 � p/n, where 0 � p � 1, and p
represents the proportion of experimental effort on experiment (1).

The inverse of the criterion detfcov.�; �jY;Z/g is quadratic in p, with a maxi-
mum at

p� D 1

2
.1 � R/;
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where

R D 1

n

�
�21

�21
C �21

�22
� �22

�22

�
:

There are various situations, dependent on the values of p�:

1. R � 1 implies all controlled W n1 D 0; n2 D n
2. R � �1 implies all “random” W n1 D n; n2 D 0

3. �1 � R � 1 implies the mixture principle W 0 < n1; n2 < 1
4. R ! 0 implies a mixture with p ! n

2

The distinction between random and controlled experiment is seen to be depen-
dent on a single parameter R involving the balance between (subjective) prior

knowledge and sample noise expressed via �21
�21

, �22
�22

and �21
�22

which could be called

signal to noise ratios. In terms of optimal design this is a very restricted problem
because once the base experiments have been set the optimization is only in terms
of a single mixing parameter. This mixing is familiar in the optimal design of
experiments as will, perhaps, be clearer from the next section.

3 The General Regression Case

We extend the material in Sect. 2 to the general linear model case. Let � and � be r-
and s-dimensional vectors, respectively. Let f .1/i ; i D 1; : : : ; n1, f .2/i ; i D 1; : : : ; n2,

be r-vectors and f .3/i ; i D 1; : : : ; n2, s-vectors of independent variables. The model
is

Yi D �T f .1/i C �i; i D 1; : : : ; n1 (6)

Zj D �T f .2/j C �T f .3/j C ıj; j D n1 C 1; : : : ; n1 C n2; (7)

where the assumptions on the �i and ıj are as before but now � � N.0;˙1/ and
� � N.0;˙2/, and �; � and the f�i; ıjg are all independent. With obvious notation
the matrix version is

Y D F1� C � (8)

Z D F2� C F3� C ı: (9)

With the notation C.U/ and C.UjV/ for covariance matrices we have the determi-
nental result

detfC.U;V/g D detfC.U/gdet.VjU/: (10)
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If we take logarithms we have, except for constants the familiar addition property
of Shannon information. Expanding now in two ways we have:

detfC.Y;Z; �; �/g D detfC.�; �/gdetfC.Y;Zj�; �/g;
detfC.Y;Z; �; �/g D detfC.Y;Z/gdetfC.�; �jY;Z/g;

giving

detfC.�; �jY;Z/g D detfC.�; �/gdetfC.Y;Zj�; �/g
detfC.Y;Z/g : (11)

The marginal covariance matrix of Y;Z is

C.Y;Z/ D
�

F1˙1FT
1 C �21 In1 F1˙1FT

2

F2˙1FT
1 F2˙1FT

2 C F3˙2FT
3 C �22 In2

�
:

As we saw in the last section it is easier to work with the inverse determinant. Using
a standard determinental identity we have

detfC.�; �jY;Z/g�1 D det

( �
˙�1
1 0

0 ˙�1
2

�
C
 

1

�21
FT
1F1 C 1

�22
FT
2F2 1

�22
FT
2F3

1

�22
FT
3F2

1

�22
FT
3F3

!)
:

We can appeal to the familiar principle of continuous optimal design by
considering the normalized moment matrices Mij D 1

n FT
i Fj. Then we introduce the

proportion p as in the last section and seek to maximize, with respect to p:

detfC.�; �jY;Z/g�1 D det

(�
˙�1
1 0

0 ˙�1
2

�
C
 pn
�21

M11 C .1�p/n
�22

M22
.1�p/n
�22

M23

.1�p/n
�22

M32
.1�p/n
�22

M33

!)
:

We see that  . p/ D logŒdetfC.�; �jY;Z/g�1� is concave in p. Maximising over
p is, as explained, a simplified optimal design problem. But we are first interested
in establishing conditions for mixing. Using concavity we have three cases which
depend on the derivative,  0. p/, of  . p/:

1.  0.0/ � 0;  0.1/ � 0 ) n1 D n; n2 D 0

2.  0.0/ � 0;  0.1/ � 0 ) n1 D 0; n2 D n
3.  0.0/ � 0;  0.1/ � 0 ) 0 < n1; n2 < n; (mixing)

Using the standard formula for @
@p log.det/ we can compute

 0.0/ D tr

(�
˙�1 C n

�22
M2

��1 � n

�21
M1 � n

�22
M2

�)
;
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 0.1/ D tr

(�
˙�1 C n

�21
M1

��1 � n

�21
M1 � n

�22
M2

�)
;

where˙ D
�
˙1 0

0 ˙2

�
, M1 D

�
M11 0

0 0

�
, M2 D

�
M22 M23

M32 M33

�
.

The quantity

p� D arg max
p
 . p/

can also be used to establish the conditions, as in the last section, but there is in
general no closed form expression for p�. However, with considerable additional
assumptions we can give a closed form. This is similar to classical optimal
design where we can find explicit solutions to optimum design problems in highly
structured cases.

Thus, let .i/ ˙1 D �21 Ir; ˙2 D �22 Is; .ii/ M11 D Ir;M22 D Is;M23 D M32 D 0.
In terms of experimental design conditions .ii/ can be thought of as orthogonality
conditions. Then

detfC.�; �jY;Z/g�1 D
�
1

�21
C pn

�21

�r �
1

�22
C .1 � p/n

�22

�s

:

Taking the logarithm, differentiating with respect to p and solving we obtain:

p� D r

r C s

�
1 � QR	 ;

where

QR D 1

n

�
�21

�21
� �22

�22

�
:

We have conditions rather similar to the last case, but not quite a generalisation
because M23 D M32 D 0 did not hold there. These conditions are:

1. QR � 1 implies all controlled W n1 D 0; n2 D n
2. QR � � s

r implies all “random” W n1 D n; n2 D 0

3. � s
r � R � 1 implies the mixture principle W 0 < n1; n2 < 1

4. QR ! 0 implies a mixture with p ! r
rCs

Although this is a considerable simplification it reveals the role played by the model
dimensions r and s (which can be thought of as model degrees of freedom), the
sample size and two simple signal to noise ratios. We trust this may help with
intuition in more sophisticated problems.
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4 Future Research

In [5] the general problem of learning in the context of design of experiments
is discussed. It is seen that the notion of a convex information functional on
prior distributions provides a background to the choice of the objective function.
It is pointed out that an experiment can be considered as a choice of sampling
distribution. The convexity discussed here is convexity over this choice.

Thus a generic version of the current work would consider a parameter � with
prior distribution �.�/ and two fixed base experiments with multivariate sampling
distributions f1.y1j�/ and f2.y2j�/, respectively. The base experiments would be
replicated independently with sample sizes n1 and n2 respectively.

If y1 and y2 represent the fully replicated experiments and �.�/ a suitable
information functional then:

 .n1; n2/ D EY1;Y2 E� jY1;Y2�f�.� jY1;Y2/g;

would be the preposterior expected information. Then with our substitution n1 D
pn; n2 D .1�p/n we seek to show concavity in the proportion p. Some progress has
been made with Shannon information when �.�/ is log.�/.

With a general result of this kind one could cover the current case when one
experiment is more controlled than another. But by induction one could also
cover mixtures of many different experiments, for example when there are more
complex intervention strategies in the medical and social sciences. In such cases,
we conjecture the derivation of special formulae based on sums and differences
of signal to noise ratios, as in our examples, provided the individual component
experiments are simple.
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Adaptive Designs for Optimizing Online
Advertisement Campaigns

Andrey Pepelyshev, Yuri Staroselskiy, and Anatoly Zhigljavsky

Abstract We investigate the problem of adaptive targeting for real-time bidding in
online advertisement using independent advertisement exchanges. This is a problem
of making decisions based on information extracted from large data sets related
to previous experience. We describe an adaptive strategy for optimizing the click
through rate which is a key criterion used by advertising platforms to measure the
efficiency of an advertisement campaign. We also provide some results of statistical
analysis of real data.

1 Introduction

Online advertisement is a growing area of marketing where advertisements can
be personalized depending on user’s behaviour. To determine user preferences,
advertising platforms record data with visited webpages, previous impressions (i.e.
ads shown), clicks, conversions, geographical information derived from IP address
and then use these data to design strategies when, where and to whom to show
some advertisements. Online advertisement has two main forms: one is related to
leading technology companies like Google and another is processed by independent
ad exchanges [13].

Ad exchanges use auctions with Real-Time Bidding (RTB), which is a magnifi-
cent way of delivering online advertising. As mentioned in [3], spending on RTB in
the US during 2014 reached $10 billion. The participants of auctions are demand
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A user visits a webpage of a web site.

The web site via the ad exchange 
notifies several demand partners that 
there is a possibility to show an ad via 
bid request containing information 
about user (user id, time of request, IP, 
geo, user agent) and information about 
the site (site, url, minimal bid). The 
demand partners can store the 
information about requests.

If a demand partner opts for delivering 
an ad for the given request, it responds 
with a bid. 

The website via the ad exchange decides which demand 
partner won the auction. 

If a demand partner wins, it delivers the ad and can store 
information about ad delivery in order to analyze historical 
efficiency.

If the user clicks on the delivered ad, the demand partner can 
store the information about clicks. 
If the user visits the advertised site, the demand partner can 
store the information about the visit and can use it to optimize 
campaign efficiency further. 
If the user buys a product on the advertised site, the demand 
partner can store the purchase information to update 
optimization strategies on historical data. 

Fig. 1 Process of RTB and actions of a demand partner for delivering an ad

partners, which are essentially advertising platforms whose core business is the
design of bidding strategies for ad requests for delivery advertisements. Specifically,
each time when an ad exchange sends information about a user visiting a webpage,
the demand partner can identify the prospectiveness of the request depending on
the parameters (e.g., user id, webpage visited, IP address, user browser agent) and
behaviour data (e.g., track record of the user over the latest few months) and propose
a bid to compete in the auction with other demand partners. Thus, RTB enables
a demand side to find a favourable ad campaign and submit a bid for a request
depending on parameters of the request and behaviour data. Supposedly, online
advertising brings customers at lower cost which is achieved by targeting narrow
groups of users.

The process of showing online advertisements through the RTB systems occurs
billions of times every day and consists of the steps displayed in Fig. 1.

The demand partner has to solve the problem of maximizing either the click
through rate (CTR, i.e. the proportion of the number of clicks to the number of
impressions) or the conversion rate (i.e. the proportion of the number of purchases to
the number of impressions) by bidding on a set of requests under several constraints:

C1: Budget (total amount of money available for advertising);
C2: Number of impressions Ntotal (the total amount of ad exposures);
C3: Time (ad campaign is restricted to a certain time period).

In practice, the demand partner designs a strategy which cleverly chooses 5–500
million requests out of 50 billion available ones. To construct a good strategy, the
demand partner has to use all log records.

General principles of adaptive designing are considered in [2, 4–6]. The design
problem for optimizing the CTR has the following specifics compared to assump-
tions of the standard response surface methodology.

A1: The demand partner cannot choose requests with desired conditions but can
leave an auction or suggest a bid for a user currently visiting a webpage.
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A2: The design space is very complicated compared to typical Œ0; 1�d and f0; 1gd

cases. Usually, the demand partner considers about 20 categorical factors;
some factors (e.g. website, city, behaviour category) have hundreds of levels
as well as other factors typically have about 10 levels.

A3: We observe the binary outcome but we have to consider the CTR as a function
of the request.

The problem of adaptive targeting for ad campaigns was discussed in dozens
of papers, see e.g. [10, 12, 16]. Some papers, for example [1, 15], use the look-
alike idea implying that a new request will lead to the click/conversion if the new
request is similar to (looks like one of) the previous successful requests. In 2014
two contests were organized at the Kaggle platform (www.kaggle.com), see [8] and
[9], on algorithms for predicting the CTR using a dataset with subsampled non-click
records so that the CTR for the dataset is about 20 % while for a typical advertising
campaign the CTR is about 0.4 % or less. The algorithms, which were proposed by
many teams are publicly available and give approximately the same performance
with respect to the logarithmic loss criterion

log.loss/ D �
NX

iD1

n
yi log.pi/C .1 � yi/ log.1 � pi/

o
=N;

where N is the size of the data set, pi is the predicted probability of a click for the
i-th request, and yi D 1 if the i-th request leads to a click and yi D 0 otherwise.
This criterion, however, does not look very sensible when the probabilities pi are
very small as it pays equal weights to type I and type II error probabilities (as noted
above, typical values of pi’s are in the vicinity of 0.004 or even less).

In this paper, we provide a unified approach which comprises the popular
methodologies, give a short review of these methodologies and make a comparison
of several methods on real data.

2 Formal Statement of the Problem

Suppose that the advertisement we want to show is given and first assume that the
price for showing a given ad is fixed; we shall also ignore the time constraint C3.
Then the problem can be thought of as an optimization problem for a single
optimality criterion which is the CTR. We discuss a generic adaptive targeting
strategy which should yield the decision whether or not to show the ad to a request
from a webpage visited by a user. If the strategy decides to show the ad, it then has
to propose a bid.

An adaptive decision should depend on the current dataset of impressions and
clicks which include all the users to whom we have shown the ad before and those
who have clicked on the ad. Note that the dataset size N grows with time. We can
increase the size of the dataset by including all our previous impressions of the

www.kaggle.com
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same or similar advertisements (perhaps applying some calibration to decrease the
influence of past ad campaigns), so that N could be very large.

Denote the i-th request by Xi D .xi;1; : : : ; xi;m/, i D 1; : : : ;N, where m is the
number of features (factors); these features include the behavioural characteristics
of the user, characteristics of the website, time of exposure, the device used (e.g.
mobile telephone, tablet, PC , etc.), see the assumption A2. Let K be the number
of the requests leading to a click on the ad, say, Xj1 ; : : : ;XjK , where 1 � j1 <
: : : < jK � N, among N requests of the current dataset of impressions. Note that K
depends on N. The running performance criterion of the advertising campaign is the
CTR defined by PN D K=N. It is clear that the CTR changes as N grows.

We impose the following assumption of independence: if we choose a request
X D .x1; : : : ; xm/ then the probability of a click is p.X/; different events (‘click’ or
‘no click’) are independent. The assumption of independence obviously fails on the
set of users that have already made a click on the ad at an earlier time (these users
comprise the set L.0/ defined in Sect. 4) but it seems a reasonable assumption for
the general set of users.

We also assume that all possible vectors X D .x1; : : : ; xm/ belong to some set X,
which is either partly or fully discrete (see the assumption A2) and whose structure
is difficult for determining a distance between different elements of X. We also
assume that for any two points X and X0 2 X, we can define a similarity measure
d.X;X0/ which does not have to satisfy mathematical axioms of the distance
function.

If X is a discrete set with all possible requests X D .x1; : : : ; xm/ 2 X given on
the nominal scale then we can use the Hamming distance

d.X;X0/ D
mX

jD1
ı.xj; x

0
j/; ı.xj; x

0
j/ D

(
1 xj D x0

j;

0 xj ¤ x0
j;

or the weighted Hamming distance d.X;X0/ D Pm
jD1 wjı.xj; x0

j/, where the coeffi-
cients wj are positive and proportional to the importance of the j-th feature (factor),
j D 1; : : : ;m. These weight coefficients can be chosen on the basis of the analysis
of previous data of similar advertising campaigns, see Table 1 below.

Alternative ways of defining the similarity measure d.X;X0/ are a logistic model
for pX (as is done in the so-called ‘field-aware factorization machines’ (FFM), see
[14]) or to use sequential splitting of the set X based on the values of the most
important factors of X (‘gradient boosting machines’ (GBM), see [7]). For FFM,
the distance is defined on the space of parameters of the logistic model but in GBM
d.X;X0/ is small if d.X;X0/ belongs to the same subset of X and it is large if the
subsets which X and X0 belong to have been split at early stages of the sequential
splitting algorithm (that is, the values of the most influential features are very
different).
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Table 1 The CTR multiplied by 104 for several sets L.r/ with T D 2015-02-08 and different
choices of factors. Abbreviation of factors are Be:behaviour category, We:website, Ex:ad exchange,
Ci:city, Po:postcode, De:device type, Ag:user agent

Set of used factors, S CTR[L.0/jS] CTR[L.1/jS] CTR[L.2/jS] fi Ifi

Be,We,Ex,Ci,Po,De,Ag 15:3 5.01 2.36

We,Ex,Ci,Po,De,Ag 5:13 2.43 2.35 Be 0:71

Be, Ex,Ci,Po,De,Ag 11:69 2.81 2.35 We 0:25

Be,We, Ci,Po,De,Ag 12:29 3.89 2.31 Ex 0:09

Be,We,Ex, Po,De,Ag 7:62 2.46 2.32 Ci 0:51

Be,We,Ex,Ci, De,Ag 14:96 2.45 2.32 Po 0:26

Be,We,Ex,Ci,Po, Ag 15:27 5.09 2.38 De 0:0003

Be,We,Ex,Ci,Po,De 4:87 3.37 2.20 Ag 0:58

2.1 Field-Aware Factorization Machines (FFM)

FFM describes the probability pX by some sigmoidal parametric function, for
example, the logistic function

pX D 1

1C e�m.X;�/
;

where � is a vector of parameters and m.X; �/ is linear in the parameters. For
example, the second-order function m.X; �/ is given by

m.X; �/ D �0 C
mX

iD1

niX
kD1

�i;kı.xi; li;k/C
m�1X
iD1

niX
kD1

mX
jDiC1

njX
sD1

ˇi;kIj;sı.xi; li;k/ı.xj; lj;s/;

where ˇi;kIj;s D Pq
zD1 �i;k;z�j;s;z describes a factorization procedure, li;k are all

possible levels of the ith factor, i D 1; : : : ;m, k D 1; : : : ; ni, ı.xi; li;k/ equals 1 if
xi D li;k and 0 otherwise. The vector of parameters � consists of �0; �i;k; �i;k;z and is
estimated by an iterative use of the gradient descent method for the logarithmic loss
criterion, see [14].

A similar approach is the follow-the-regularized-leader (FTRL) methodology,
where the function m.X; �/ has a simpler expression, see [11].

2.2 Gradient Boosting Machines (GBM)

GBM is a method of iterative approximation of the desired function pX by a function
of the form

p.k/X D
kX

jD1
˛jT.X; �k/;
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where the vector �k is estimated at the k-th iteration, through minimizing the
loss criterion [7]. Tree-based GBM considers the function T.X; �/ as the indicator
function of the form

T.X; �/ D
(
�in; �i;low � xi � �i;up; i D 1; : : : ;m;

�out; otherwise,

where � D .�in; �out; �1;low; �1;up; : : : ; �m;low; �m;up/. Note that levels of categorical
variables are encoded by integer numbers.

3 Generic Adaptive Strategy for Maximizing the CTR
of an Advertising Campaign

The purpose of the strategy for maximizing the CTR is to employ the training set
of past records for the new requests we will be showing the ad, to increase PN as N
increases.

We can always assume that Ntotal defined in the assumption C2 is very large.
Mathematically, we can then assume that N ! 1. If we assume that the bid price
is the same (that is, we ignore C1) and there is no time constraint (here we ignore
C3) then formally our aim becomes devising a strategy such that limN!1 PN is
maximum. This is simply an optimization problem of pX; x 2 X. The algorithms
solving this problem do this either in the parameter space (for the factorization
machines) or in the original space X (for GBM and the look-alike strategies).

The main problems for applying these algorithms are as follows:

• Factorization machines: the number of parameters is of the order of billions. In
practice, this number is reduced by confounding parameters.

• Gradient boosting: the number of observations with certain ranges of levels for
several factors is small.

• Computational time grows very fast for all approaches as the size of training data
increases. Consequently, in practice training data are often subsampled.

• All approaches have several tuning parameters which should be carefully chosen.

By the nature of the methods, the look-alike approach is applicable in practice
if the number of observed clicks K is at least a few dozens, the GBM approach is
applicable if K is at least several hundreds and the FFM approach is applicable if K
is at least several thousands.

A generic adaptive strategy is an evolutionary one which chooses new requests
in the vicinity of the requests that were successful previously; in marketing these
kinds of methods are called look-alike methods. To define the preference criterion,
for all N we need an estimator OpN.X/ of the function p.X/, which is defined for all
X 2 X. We do not need to construct the function OpN.X/ explicitly; we just need to
compute values of OpN.X/ for a given X, where X is a request which is currently on
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offer for a demand partner. We hence suggest the following estimator OpN.X/ :

OpN.X/ D
PK

kD1 !jk expf��Nd.X;Xjk/gPN
iD1 !i expf��Nd.X;Xi/g

C "N ; (1)

where �N and "N are some positive constants (possibly depending on N) and !i is
the weight of the i-th observation made after a calibration of the data is made (the
possibility of making such calibration has been mentioned above). The sum in the
numerator in (1) is taken over all users who have clicked on the ad. If all these
(good) requests are far away from X then the value OpN.X/ will be very close to zero.
The constant "N is a regularization constant. As "N > 0 there is always a small
probability assigned to each X, even if in the past there were no successful requests
that were similar to X. Theoretically, as N ! 1, we may assume that "N ! 0:

Note that an estimator OpN.X/ for p.X/ is implicitly constructed in the factoriza-
tion machines and in gradient boosting machines too. Using an estimator OpN.X/, we
can suggest how much the demand partner can offer for the request X in the bidding
procedure (that is, we stop optimizing p.X/ and take into account the constraint C2).
For example, the demand partner can offer larger bids if OpN.X/ � p�, where p� is
the desired probability we want to reach. Another possible use of an estimator OpN.X/
can be based on the following idea: the amount of money the advertising platform
offers for X is proportional to the difference OpN.X/ � K=N, if this difference is
positive, and a very small bid, if the difference is negative. For these strategies
we do not obtain limN OpN.X/ D maxX p.X/ but we construct effective strategies
which take into account not only the constraint C2 but also C1 and C3. Note in this
respect that it is always a good idea to offer very small bids to the users with small
values of OpN.X/ for the following reasons: (a) learning about p.X/ in the subregions
of X where we perhaps do not have much data, (b) the difference (ratio) between
large values of probabilities p.X/ for ‘good’ X and ‘bad’ X can be smaller than the
difference of the option prices for these ‘good’ and ‘bad’ X’s, (c) the constraint C3
is easier to satisfy, and (d) by saving some funds on cheap X’s we can afford higher
prices on X’s with large values of OpN.X/.

4 Analysis of Real Data

In the present section we analyze an ad campaign which was executed by Crimtan
from 2015-02-01 to 2015-02-17, the number of impressions is slightly above 3
millions and the number of clicks is slightly above 700, so that the CTR Op Š
2:4 � 10�4, thus the FFM approach is not applicable.

To investigate the performance of the strategies for the database of requests for
the ad campaign, we split the database of impressions into 2 sets: the training set
Xp.T/ of past records with dates until a certain time T (where T is interpreted as the
present time) and the test set Xf .T/ of future records with dates from the time T.



206 A. Pepelyshev et al.

ll l

l
l l

l l l
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

C
TR

 (1
0^

−4
)

number of largest predicted values

   
   

0
 1

00
00

0
 2

00
00

0
 3

00
00

0
 4

00
00

0
 5

00
00

0
 6

00
00

0
 7

00
00

0
 8

00
00

0
 9

00
00

0
10

00
00

0
11

00
00

0
12

00
00

0
13

00
00

0
14

00
00

0
15

00
00

0
16

00
00

0
17

00
00

0
18

00
00

0
19

00
00

0

 2

 3
 4

 6
 8
10

15

Fig. 2 The CTR for favorable samples of requests of certain sizes for the look-alike approach
(squares) and the GBM approach (dots), T D 2015-02-08, 7 factors are used

We now compare GBM and the look-alike approach by comparing the CTR for the
samples of most favorable requests with the highest chances to click in Fig. 2.

To form the sample of most favourable requests for the look-alike approach, we
define the set

L.r/ D fXj from Xf .T/: minclicked QXi2Xp.T/
d.Xj; QXi/ � rgI

that is, L.r/ is a set of requests where we have shown the ad and the minimal distance
to the set of clicked requests from the set of past records is not greater than r. In
other words, the set L.r/ is an intersection of the set of our requests with the union
of balls of radius r centered around the clicked past requests. We consider Xj with 7
factors: website, ad exchange, city, postcode, device type, user agent, user behaviour
category. In Fig. 2 the points corresponding to the look-alike approach are given by�
size of L.r/, CTR for L.r/

	
, r D 0; : : : ; 4.

To form the sample of most favourable requests for the GBM approach, we
construct the GBM model using the training set Xp.T/ and then apply this model
to predict the probability to click for each request from the test set Xf .T/. Now we
can sort the predicted probabilities and create samples of requests with the highest
predicted probabilities to click.

In Fig. 2 we can see that the look-alike approach and the GBM approach have
similar possibilities to increase the CTR for the considered ad campaign.

Let us perform a sensitivity analysis of the CTR for the sets L.r/. In Table 1 we
show the CTR for several sets L.r/ with T D 2015-02-08 and different choices of
factors, and the index of the influence of the ith factor

Ifi D
2X

rD0

�
1 � CTRŒL.r/j f1; : : : ; fi�1; fiC1; : : : ; fm�

CTRŒL.r/j f1; : : : ; fm�

�2
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where CTRŒL.r/j f1; : : : ; fm� is the CTR for the set L.r/ with requests containing
only factors f1; : : : ; fm. We can observe that IDe D 0:0003 and IEx D 0:09; that is, the
device type has no influence and the ad exchange has a small influence on the CTR;
consequently such factors can be removed from the model (and computations). The
postcode has no influence on the CTR for the set L.0/ but has some influence on the
CTR for the set L.1/.

In contrast, the user agent, the user behaviour category, and the city are very
influential factors. It is rather surprising that the postcode has no influence but the
city has a big influence on the CTR for the set L.0/.
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Interpolation and Extrapolation in Random
Coefficient Regression Models: Optimal Design
for Prediction

Maryna Prus and Rainer Schwabe

Abstract The problem of optimal design for the prediction of individual param-
eters in random coefficient regression in the particular case of a given population
mean was considered by Gladitz and Pilz (Statistics 13:371–385, 1982). In the more
general situation, where the population parameter is unknown, D- and L-optimal
designs were discussed in Prus and Schwabe (J R Stat Soc Ser B, 78:175–191).
Here we present analytical results for designs which are optimal for prediction in
the case of interpolation as well as extrapolation of the individual response.

1 Introduction

Hierarchical random coefficient regression models are very popular in many fields
of statistical applications. The subject of this paper is the problem of finding optimal
designs for interpolation and extrapolation in such models. Optimal designs for
interpolation and extrapolation in fixed effects models were considered in detail
in Kiefer and Wolfowitz [7] and [8]. Some theory for determining Bayesian optimal
designs, which are also optimal for the prediction of individual deviations from
the population mean in random coefficients regression models (see Prus [9], ch. 5),
was developed by Chaloner [3] (see also Chaloner [2]). The problem of optimal
designs for the prediction of individual parameters in random coefficient regression
models was considered in Prus and Schwabe [11] for the linear and the generalized
D-criteria. Here we deal with the c-criterion for the prediction and formulate the
optimality condition for approximate designs. We consider the problem of optimal
designs for interpolation and extrapolation as a particular case of the c-criterion for
the straight line regression model and illustrate the results by a numerical example.

The paper has the following structure. In the second part the hierarchical random
coefficient regression model is specified and the best linear unbiased prediction of
the individual parameters is introduced. The third part provides analytical results
for c-optimal designs. In the fourth part optimal designs for interpolation and
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extrapolation are considered. The last section presents some discussion and an
outlook.

2 Model Specification and Prediction

In the hierarchical random coefficient regression model the j-th observation of
individual i is given by

Yij D 	i.xij/C "ij; xij 2 X ; j D 1; ::;mi; i D 1; ::; n; (1)

at the individual level, where n denotes the number of individuals, mi is the number
of observations on individual i, 	i.x/ are the response functions of the form	i.x/ D
f.x/>ˇi, f D . f1; ::; fp/> is the vector of known regression functions, and ˇi D
.ˇi1; ::; ˇip/

> is the individual parameter vector specifying the individual response.
The experimental settings xij may be chosen from a given experimental region X .
Within an individual the observations are assumed to be uncorrelated given the
individual parameters. The observational errors "ij have zero mean E."ij/ D 0 and
are homoscedastic with common variance var."ij/ D �2.

The individual random parameters ˇi are assumed to have an unknown popu-
lation mean E.ˇi/ D ˇ and a given covariance matrix Cov.ˇi/ D �2D, where
the dispersion matrix D is assumed to be regular. All individual parameters and all
observational errors are assumed to be uncorrelated.

We consider the particular case of the model (1) where the number of observa-
tions as well as the experimental settings are the same for all individuals (mi D m
and xij D xj).

We investigate the predictor of the individual parameters ˇ1; : : : ;ˇn. This
predictor is also sometimes called the estimator of the random parameters and can
be viewed as an empirical Bayes estimator.

As exhibited in Prus and Schwabe [10] the best linear unbiased predictor Ǒ
i of

the individual parameter ˇi is a weighted average of the individualized estimate
Ǒ

iIind D .F>F/�1F>Yi, based on the observations on individual i, and the estimator

of the population mean Ǒ D .F>F/�1F> NY,

Ǒ
i D Df.F>F/�1 C Dg�1 Ǒ

iIind C .F>F/�1f.F>F/�1 C Dg�1 Ǒ : (2)

Here F D .f.x1/; : : : ; f.xm//
> denotes the individual design matrix, which is equal

for all individuals, Yi D .Yi1; : : : ;Yim/
> is the observation vector for individual i,

and NY D 1
n

Pn
iD1 Yi is the average response across all individuals.
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The performance of the prediction (2) may be measured in terms of the mean

squared error matrix of . Ǒ >
1 ; : : : ;

Ǒ >
n /

>. The latter matrix has the form

MSE D �2f.In � 1
n 1n1>

n /˝ .F>F C D�1/�1 C . 1n 1n1>
n /˝ .F>F/�1g; (3)

where In is the n � n identity matrix, 1n is a n-dimensional vector of ones and “˝”
denotes the Kronecker product of matrices. The mean squared error matrix (3) is a
weighted average of the corresponding covariance matrix in the fixed effects model
and the Bayesian one.

Note that the response functions 	i.x0/ D f.x0/>ˇi may be predictable for x0
from the experimental region X even if the design matrix F is not of full rank and
consequently the matrix F>F is singular, as long as f.x0/ belongs to the column
space of F>. However, the individual parameters ˇi themselves are not predictable
if the design matrix is not full rank (see Prus [9], ch. 5).

3 c-Optimal Design

The mean squared error matrix of a prediction depends crucially on the choice
of the observational settings x1; : : : ; xm, which can be chosen by the experimenter
to minimize the mean squared error matrix and which constitute an exact design.
Typically the optimal settings will not necessarily all be distinct. Then a design

� D
�

x1 ; : : : ; xk

w1 ; : : : ; wk

�
(4)

can be specified by its distinct settings x1; : : : ; xk, k � m, say, and the corresponding
numbers of replications m1; : : : ;mk or the corresponding proportions wj D mj=m.

For analytical purposes, we make use of approximate designs in the sense of
Kiefer (see e.g. Kiefer [6]) for which the integer condition on mwj is dropped and
the weights wj � 0may be any real numbers satisfying

Pk
jD1 wj D 1 or equivalentlyPk

jD1 mj D m. For these approximate designs the standardized information matrix
for the model without random effects (ˇi D ˇ, i.e. D D 0) is defined as

M.�/ D Pk
jD1wjf.xj/f.xj/

> D 1
m F>F: (5)

Further we introduce the standardized dispersion matrix of the random effects � D
mD for notational ease. With this notation, we define the standardized mean squared
error matrix for the prediction of individual parameters as

MSE .�/ D .In � 1
n 1n1>

n /˝ fM.�/C ��1g�1 C . 1n 1n1>
n /˝ M.�/�1: (6)
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For any exact design � all mwj are integer. Then the matrix MSE .�/ coincides with
the mean squared error matrices (3) up to a multiplicative factor �2=m.

In this paper, we focus on the extended c-criterion for prediction (see Prus [9],
ch. 5 or Prus and Schwabe [11]), which is defined as the sum of the variances of
c> Ǒ

i � c>ˇi across all individuals, where c is a specified vector of dimension p:

cˇ.�/ D
nX

iD1
var .c> Ǒ

i � c>ˇi/: (7)

Using (6), the standardized c-criterion ˚ˇ D m
�2

cˇ can be represented as

˚ˇ.�/ D c>M.�/�1c C .n � 1/ c>fM.�/C ��1g�1c; (8)

which is a weighted sum of the c-criterion in the fixed effects model and the
Bayesian c-criterion.

With the general equivalence theorem (see e.g. Silvey [13], ch. 3), we obtain the
following characterization of an optimal design.

Theorem 1 The approximate design �� with non-singular information matrix
M.��/ is c-optimal for the prediction of individual parameters if and only if

ff.x/>M.��/�1cg2 C .n � 1/ Œf.x/>fM.��/C ��1g�1c�2

� c>M.��/�1 c C .n � 1/ c>fM.��/C ��1g�1M.��/fM.��/C ��1g�1c (9)

for all x 2 X .
For any experimental setting xj of �� with wj > 0 equality holds in (9).

Note that optimal designs, which result in singular information matrices, may
also exist.

4 Optimal Designs for Interpolation and Extrapolation

For models without random effects the interpolation and extrapolation problem was
considered in detail by Kiefer and Wolfowitz [7] and [8]. The Bayesian optimal
designs were discussed in Chaloner [3] (see also Chaloner [2]).

In this section we examine the straight line regression

Yij D ˇi1 C ˇi2xj C "ij (10)

on the experimental region X D Œ0; 1�. The settings xj can be interpreted as time
or dosage and x D 0 means a measurement at baseline. We assume uncorrelated
components such that the dispersion matrix D D diag .d1; d2/ of the random effects
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is diagonal with entries d1 and d2 for the variance of the intercept and slope,
respectively. The variance of the intercept is assumed to be small, d1 < 1=m.

The problem of optimal designs for interpolation and extrapolation of the
response functions 	i.x0/ D f.x0/>ˇi at some given point x0 2 X D Œ0; 1�

and x0 … X D Œ0; 1�, respectively, may be recognized as a special case of the
c-criterion (8) for prediction with c D f.x0/ D .1; x0/>.

It follows from Theorem 1 that for c D .1; x0/> the c-optimal designs (with non-
singular information matrices) only take observations at the endpoints x D 0 and
x D 1 of the design region, since the sensitivity function, given by the left hand side
of inequality (9), is then a polynomial in x of degree 2 with positive leading term.
Hence, the optimal design �� is of the form

�w D
�

0 1

1 � w w

�
; (11)

and only the optimal weight w� has to be determined. For designs �w the criterion
function (8) is calculated with 
k D 1=.m dk/ for k D 1; 2 as

˚ˇ.�w/ D x20 � 2wx0 C w

w.1 � w/
C .n � 1/x20.1C 
1/� 2wx0 C w C 
2

.1C 
1/.w C 
2/ � w2
: (12)

To obtain numerical results, the number of individuals and the number of
observations on each individual are fixed to n D 100 and m D 10. For the variance
d1 of the intercept, we use the value 0:001. Figure 1 illustrates the dependence of the
optimal weight w� on the rescaled variance parameter � D d2=.1C d2/, which in
a way mimics the intraclass correlation and has the advantage of being bounded, so
that the whole range of slope variances d2 can be shown. We use the values 0:9, 0:5
and 0:3 for the interpolation point and the values 1:2, 2 and 100 for the extrapolation
point x0. Note that, for � D 0, the optimal weights w� for both interpolation and
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Fig. 1 Optimal weights w� for interpolation (left panel) at x0 D 0:9 (solid line), x0 D 0:5 (dashed
line) and x0 D 0:3 (dotted line) and extrapolation (right panel) at x0 D 1:2 (solid line), x0 D 2

(dashed line) and x0 D 100 (dotted line) as functions of �Dd2=.1Cd2/
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Fig. 2 Efficiency of the optimal designs in fixed effects model for interpolation (left panel) at
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Fig. 3 Efficiency of the Bayesian optimal designs for interpolation (left panel) at x0 D 0:9 (solid
line), x0 D 0:5 (dashed line) and x0 D 0:3 (dotted line) and extrapolation (right panel) at x0 D 1:2

(solid line), x0 D 2 (dashed line) and x0 D 100 (dotted line) as functions of �Dd2=.1Cd2/

extrapolation are the same as those in the model without random effects, namely:
w� D x0 and w� D x0=.2x0 � 1/, respectively (see e.g. Schwabe [12], ch. 2).

In Fig. 2 the efficiency eff .�/ D ˚ˇ.�w�/=˚ˇ.�w/ is plotted for the optimal
designs �w with w D x0 and w D x0=.2x0 � 1/ in the fixed effects model for
interpolation and extrapolation, respectively.

Figure 3 represents the efficiency of the Bayesian optimal designs. The efficiency
has been computed as eff .�/ D ˚ˇ.�w�/=˚ˇ.�wB/, where �wB denotes the Bayesian
optimal designs. Note that the latter designs are optimal for the prediction of
individual deviations bi D ˇi � ˇ from the population mean in the random
coefficient regression model (1) (see Prus [9], ch. 5).
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5 Discussion and Outlook

We have proposed an analytical method for determining optimal interpolation and
extrapolation designs for the prediction of individual parameters in hierarchical
random coefficient regression. This problem was considered as a particular case of
the c-criterion for prediction. The criterion function of the c-criterion is a weighted
sum of the c-criterion in the fixed effects models and the Bayesian c-criterion and
can be recognized as a special case of a compound criterion (see e.g. Cook and
Wong [4] or Atkinson et al. [1], ch. 21).

It was established that the optimal two-point designs in the fixed effects models
are in general not optimal for prediction. Note that the one-point designs, which take
all observations at point x0 and are also optimal for estimation in models without
random effects, result in even larger values of the criterion function than the two-
points designs mentioned above and perform hence worse. In the numerical example
for the straight line regression with a diagonal dispersion matrix the Bayesian
optimal designs show a similar behavior as the optimal designs for prediction. They
lead, however, for x0 ! 1 to a singular information matrix and cannot be used for
prediction.

The optimality condition for the c-criterion proposed here was formulated for
approximate designs, which are not directly applicable and the optimal weights
have to be appropriately rounded. The analytical results presented in this paper
are based on the assumption that all individuals (observational units) get the same
treatment. In one of the next steps of the research, the design optimality problem
will be considered for a more general case of the hierarchical random coefficient
regression, where different designs are allowed for different individuals.
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Invariance and Equivariance in Experimental
Design for Nonlinear Models

Martin Radloff and Rainer Schwabe

Abstract In this note we exhibit the usefulness of invariance considerations in
experimental design in the context of nonlinear models. Therefor we examine the
equivariance of locally optimal designs and their criteria functions and establish
the optimality of invariant designs with respect to robust criteria like weighted or
maximin optimality, which avoid parameter dependence.

1 Introduction

Invariance and equivariance are powerful tools in the construction of optimal
experimental designs. In this context equivariance means that simultaneous transfor-
mations on the design region and on the design considered leave the performance
of the design unchanged. In particular, this implies that an optimal design on the
original design region will be transformed to an optimal design on the transformed
design region. If a design problem is additionally invariant with respect to a whole
group of transformations (symmetries), then the search for an optimal design can be
restricted to the invariant (symmetrized) ones.

For standard linear models these properties are well-known and widely investi-
gated (see e.g. Pukelsheim [7, Chapter 13], Gaffke and Heiligers [4] or Schwabe
[10, Chapter 3]). In nonlinear setups, however, additional features occur which
need some clarification. In particular, because of the parameter dependence of
the information matrix, the introduction of an additional transformation on the
parameter space is required. Starting with this parameter transformation, Ford
et al. [3] introduced in their seminal paper equivariance under the name canonical
transformation in the context of generalized linear models. Using this concept
Ford et al. [3] could characterize locally optimal designs for arbitrary pre-specified
parameter values on the basis of standardized models. This approach can readily
be extended to other nonlinear situations as long as the intensity function of the
information depends only on the value of the linear predictor.
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Here we put their approach bottom-up and start with transformation of the
design region which makes the arguments more straightforward. First we introduce
the model specifications and exhibit the local optimality of transformed designs
in Sect. 2. In Sect. 4 we establish the optimality of invariant designs with respect
to robust criteria like weighted or maximin optimality, which avoid parameter
dependence, under the natural additional assumption that also the weight function
or the parameter region of interest, respectively, are invariant.

2 Model, Transformation and Local Optimality

In the following sections it is required that the one-support-point information matrix
M.x; ˇ/ can be written in the form

M.x; ˇ/ D �
˚
f .x/>ˇ



f .x/f .x/>;

with an intensity function � which only depends on the value of the linear predictor.
The design point x is in the design region X � R

k and the parameter ˇ is in
B � R

p. f W X ! R
p is the regression function.

Hence the information matrix of the (generalized) design � with independent
observations is

M.�; ˇ/ D
Z
X

M.x; ˇ/�.dx/ D
Z
X

�
˚
f .x/>ˇ



f .x/f .x/>�.dx/:

In generalized linear models (see McCulloch and Searle [6]) or for example in
censored data models (see Schmidt and Schwabe [9]) this prerequisite is fulfilled.

Let g be a one-to-one-mapping of the design region X . If there is a p � p matrix
Qg with f fg.x/g D Qgf .x/ for all x 2 X , g induces a linear transformation of the
regression function f and f is linearly equivariant.

These one-to-one-mappings of the design region X provide a group G, if every
g 2 G induces a linear transformation of the regression function f . One example is
the orthogonal group O.k/ or subgroups of it for a k-dimensional circle.

Here we only want to focus on finite groups of transformation, like the group
generated by a 90ı rotation in a 2-dimensional space.

The linear predictor f .x/>ˇ should be equivariant with respect to the transfor-
mation g of the design space. So it is necessary to transform the parameter space as
well and to find an analogous parameter transformation Qg with

f fg.x/g> Qg.ˇ/ D f .x/>ˇI

Qg.ˇ/ D .Q>
g /

�1ˇ is such a transformation for regular Qg.
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If not only the parameter but also the design points are transformed in this way,
the information matrix has the form

Mf�g; Qg.ˇ/g D
Z
X

Mfx; Qg.ˇ/g�g.dx/

D
Z
X

�
˚
f .x/> Qg.ˇ/
 f .x/f .x/>�g.dx/

D
Z
X

�
�
f fg.x/g> Qg.ˇ/
 f fg.x/gf fg.x/g>�.dx/

D
Z
X

�
�fQgf .x/g>.Q>

g /
�1ˇ



Qgf .x/fQgf .x/g>�.dx/

D
Z
X

�
˚
f .x/>Q>

g .Q
>
g /

�1ˇ



Qgf .x/f .x/>Q>
g �.dx/

D
Z
X

�
˚
f .x/>ˇ



Qgf .x/f .x/>Q>

g �.dx/

D Qg

Z
X

�
˚
f .x/>ˇ



f .x/f .x/>�.dx/ Q>

g

D QgM.�; ˇ/Q>
g :

In linear models it is commonly known, that optimality criteria ˚ are invariant,

˚ŒMf�g; Qg.ˇ/g� D ˚fQgM.�; ˇ/Q>
g g D ˚fM.�; ˇ/g;

if the information matrix is transformed by the matrices Qg or the group G satisfying
special properties. So, for example, ˚q-optimality, 0 � q � 1, is invariant if
the transformation matrix Qg is orthonormal (see Schwabe [10, Chapter 3]). In
the special case of D-optimality it is enough to have unimodal matrices Qg, i.e.
j det.Qg/j D 1.

Local optimality is not invariant, in general, because the information matrix
depends on the parameter ˇ.

There are two consequences. If � is a locally optimal design for ˇ with respect
to ˚ then �g is locally optimal for Qg.ˇ/. Otherwise, if there is a better design �� for
Qg.ˇ/, .��/g�1

will be better for ˇ—contradiction.
And, in situations, where Qg.ˇ/ D ˇ for all Qg, the local criterion ˚ is invariant

at ˇ:

˚fM.�g; ˇ/g D ˚ŒMf�g; Qg.ˇ/g� D ˚fM.�; ˇ/g for all g 2 G:
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By defining the symmetrized design of � with respect to the finite group G

� WD 1

#G

X
g2G

�g ;

which is an invariant design (with respect to G, �
g D � for all g 2 G), it can be

shown, as in the theory of linear models (see Schwabe [10, Chapter 3]), that for a
concave and (with respect to G) invariant criterion function ˚ , ˚.�/ � ˚.�/ for
every possible design �. Hence locally optimal designs can be found in the class of
invariant designs. This is in particular the case when ˇ D 0, which is not surprising,
because then the local criterion coincides with that in the corresponding linear model
without intensity function.

The first consequence is illustrated in a small example.

3 Example

In Russell et al. [8] a theorem to find locally D-optimal designs for Poisson
regression on a cuboid is given. We only want to consider the 2-dimensional case
with f .xi/

>ˇ D .1; x1i; x2i/.ˇ0; ˇ1; ˇ2/
> D ˇ0 Cˇ1x1i Cˇ2x2i on the square design

region Œ�1; 1�2. With an initial guess . Q̌
0; 1; 2/, Q̌

0 arbitrary, for the parameter vector
ˇ a (locally) D-optimal design is given by the 3 equally weighted support points
.1; 1/, .�1; 1/ and .1; 0/.

A 90ı rotation g of the design space induces a transformation of f with f fg.x/g D
Qg f .x/ and

Qg D
0@1 0 0

0 0 �1
0 1 0

1A :
Because .Q>

g /
�1 D Qg, Qg.ˇ/ D Qgˇ D .ˇ0;�ˇ2; ˇ1/> and the transformed

initial guess Qgf. Q̌
0; 1; 2/

>g D .ˇ0;�2; 1/>. The transformed design contains the
3 equally weighted support points .�1; 1/, .�1;�1/ and .0; 1/, which is identical to
the (locally) D-optimal design given by Russell et al. [8].

4 Weighted Optimality and Maximin Designs

Locally optimal designs depend on the initial values of the parameter ˇ. A wrong
choice, like an initial guess which is too far from the real parameter, may show a
bad performance. So we regard two concepts to avoid this problem: the weighted
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optimality or (pseudo)-Bayesian designs and the maximin approach. (see Atkinson
et al. [1])

If a prior (probability) distribution � on the parameter space B with �-algebra
�B is available, a Bayesian optimal design can be found by maximizing


�.�/ D
Z
B

˚fM.�; ˇ/g�.dˇ/

with a criterion function ˚ on the space of all information matrices.
If moreover˚ is invariant for all g 2 G, used in .
/, the Bayesian design criterion

is equivariant, too. In this case it means, if � is optimal with respect to the prior
distribution � , the transformed design �g will be optimal for � Qg.


� Qg.�
g/ D

Z
B

˚fM.�g; ˇ/g� Qg.dˇ/

D
Z
B

˚.MŒ�g; QgfQg�1.ˇ/g�/� Qg.dˇ/

.�/D
Z
B

˚ŒMf�; Qg�1.ˇ/g�� Qg.dˇ/

D
Z

Qg�1.B/

˚fM.�; ˇ/g.� Qg/Qg�1

.dˇ/

.��/D
Z
B

˚fM.�; ˇ/g�.dˇ/

D 
�.�/:

One assumption used in .

/ is that the parameter space B is invariant under Qg or
Qg�1, that is Qg�1.B/ D B.

The prior distribution � is invariant under g, respectively Qg, if � Qg D � , or to be
precise, �fQg�1.B/g D �.B/ for all B 2 �B. As a consequence the Bayesian design
is invariant under transformations of G, i.e. 
�.�g/ D 
�.�/.

In the case of the Bayesian D-criterion


D.�/ D
Z
B

logŒdetfM.�; ˇ/g��.dˇ/;

which is concave according to Firth and Hinde [2], the prerequisites in Sect. 2 for
the symmetrization are fulfilled. Hence the optimal designs can be found in the class
of invariant designs.
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The second possibility to avoid the dependence of designs on the unknown
value of the parameter ˇ is the maximin design which corresponds to the invariant
criterion ˚ and maximizes


.�/ WD inf
ˇ2B

˚fM.�; ˇ/g:

If B is also invariant under Qg, or equivalently under Qg�1, then


.�g/ D inf
ˇ2B

˚fM.�g; ˇ/g D inf
ˇ2B

˚.MŒ�g; QgfQg�1.ˇ/g�/

D inf
ˇ2B

˚ŒMf�; Qg�1.ˇ/g� D inf
ˇ2Qg�1.B/

˚fM.�; ˇ/g D inf
ˇ2B

˚fM.�; ˇ/g

D 
.�/:

Graßhoff and Schwabe [5] used this fact, not in the direct sense of optimality, but
of efficiency of maximin designs for the Bradley-Terry paired comparison model.
The efficiency with respect to ˇ corresponding to the criterion ˚ has the form

eff˚.�; ˇ/ D hŒ˚fM.�; ˇ/g�
hŒ˚fM.� �̌; ˇ/g� ;

with a special concave function h and the locally (with respect to ˇ) ˚-optimal
design � �̌. The function h is chosen so that h ı˚ is homogeneous, i.e. hf˚.aM/g D
ahf˚.M/g for all information matrices M and a 2 R. For example in the D-optimal

case h.x/ D x1=p and so effD.�; ˇ/ D � detfM.�;ˇ/g
detfM.��

ˇ ;ˇ/g

1=p

.

If the criterion function ˚ is concave, then the corresponding efficiency
eff˚.�; ˇ/ is obviously also concave in � for every ˇ. As pointed out in Graßhoff
and Schwabe [5], then the criterion of maximin efficiency shares the property of
concavity. This together with the invariance of the maximin efficiency criterion


eff˚ .�/ D inf
ˇ2B

hŒ˚fM.�; ˇ/g�
hŒ˚fM.� �̌; ˇ/g�

establishes that each design � is dominated by its symmetrization � . Hence, globally
maximin efficient designs can be found in the class of invariant designs if the
parameter region B is invariant.

The invariance of the maximin efficiency criterion can easily be seen by


eff˚ .�
g/ D inf

ˇ2B

hŒ˚fM.�g; ˇ/g�
hŒ˚fM.� �̌; ˇ/g� D inf

ˇ2B

h.˚ŒMf�g; Qg.ˇ/g�/
h.˚ŒMf��

Qg.ˇ/; Qg.ˇ/g�/

D inf
ˇ2B

h.˚ŒMf�g; Qg.ˇ/g�/
h.˚ŒMf��g

ˇ ; Qg.ˇ/g�/ D inf
ˇ2B

hŒ˚fM.�; ˇ/g�
hŒ˚fM.� �̌; ˇ/g� D 
eff˚ .�/:
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5 Example (Continued)

We want to revisit the example in Sect. 3—the 2-dimensional Poisson regression
without interactions. But the focus is to find a Bayesian D-optimal design containing
exactly 3 equally weighted support points on the design region Œ�1; 1�2. However,
we do not want to find an optimal design over all possible designs. The prior
distributions for ˇ1 and ˇ2 should be a uniform distribution being symmetrical
around 0, that is ˇ1; ˇ2 � U.�a; a/, i.i.d., with a 2 .0;1/. The prior distribution
for ˇ0 can be any distribution. Then it can be shown that these 3 points have the form
f.�1; 1/; .�1;�1/; .1; d/g, f.�1;�1/; .1;�1/; .d; 1/g, f.1;�1/; .1; 1/; .�1; d/g or
f.1; 1/; .�1; 1/; .d;�1/g with d 2 Œ�1; 1�.

Consider the group G generated by the 90ı rotation g90 W R
2 ! R

2,
g90.x1; x2/ D .�x2; x1/, and the reflection gref W R2 ! R

2, gref.x1; x2/ D .�x1; x2/.
Then there are 8 transformations in G. The design space is invariant under g
and the prior distribution of the parameter space is invariant under Qg for all
g 2 G. So the designs f.�1; 1/; .�1;�1/; .1; d/g, f.�1; 1/; .�1;�1/; .1;�d/g,
f.�1;�1/; .1;�1/; .d; 1/g, f.�1;�1/; .1;�1/; .�d; 1/g, f.1;�1/; .1; 1/; .�1; d/g,
f.1;�1/; .1; 1/; .�1;�d/g, f.1; 1/; .�1; 1/; .d;�1/g and f.1; 1/; .�1; 1/; .�d;�1/g
with fixed d 2 Œ�1; 1� have the same value of the Bayesian criterion function. And
if one of these designs is optimal (in the set of all 3-point designs), then all of these
designs are optimal (in the set of all 3-point designs).

Changing only the design region to f�1; 1g2, the group G of transformations
is only generated by g90 and the Bayesian D-optimal 3-point designs are
f.�1; 1/; .�1;�1/; .1;�1/g, f.�1;�1/; .1;�1/; .1; 1/g, f.1;�1/; .1; 1/; .�1; 1/g
and f.1; 1/; .�1; 1/; .�1;�1/g. The symmetrized design consists of the 4 equally
weighted support points .1; 1/, .�1; 1/,.�1;�1/ and .1;�1/. This is the only
invariant design with respect to G, so it is optimal over all possible designs.

6 Discussion

Although locally optimal designs are not invariant, in general, symmetry consider-
ations can be useful for weighted optimality or maximin criteria, when the weight
function or the parameter region is invariant. This may substantially simplify the
optimization problem since attention may be restricted to the class of invariant
(symmetric) designs and helps to find analytical and numerical/algorithmic solutions
of the design problem.

The above findings may be extended to infinite transformation groups like rota-
tions on a circle or on a k-dimensional sphere. Then the averaging (symmetrization)
has to be performed by the corresponding Haar (Lebesgue) measure which is
uniform on the orbits. The resulting invariant designs are continuous and have to be
discretized. For rotations this can typically be achieved without loss of information.



224 M. Radloff and R. Schwabe

References

1. Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS.
Oxford University Press, Oxford (2007)

2. Firth, D., Hinde, J.: On Bayesian D-optimum design criteria and the equivalence theorem in
non-linear Models. J. R. Stat. Soc. Ser. B Methodol. 59, 793–797 (1997)

3. Ford, I., Torsney, B., Wu, C.F.J.: The use of a canonical form in the construction of locally
optimal designs for non-linear problems. J. R. Stat. Soc. Ser. B Methodol. 54, 569–583 (1992)

4. Gaffke, N., Heiligers, B.: Approximate designs for polynomial regression: invariance, admis-
sibility, and optimality. In: Ghosh, S., Rao, C.R. (eds.) Handbook of Statistics, vol. 13,
pp. 1149–1199. Elsevier, Amsterdam (1996)

5. Graßhoff, U., Schwabe, R.: Optimal designs for the Bradley-Terry paired comparison model.
Stat. Methods Appl. 17, 275–289 (2008)

6. McCulloch, C.E., Searle, S.R.: Generalized, Linear, and Mixed Models. Wiley, New York
(2001)

7. Pukelsheim, F.: Optimal Design of Experiments. Wiley-Interscience, New York (1993)
8. Russell, K.G., Woods, D.C., Lewis, S.M., Eccleston, J.A.: D-optimal designs for Poisson

regression models. Stat. Sin. 19, 721–730 (2009)
9. Schmidt, D., Schwabe, R.: On optimal designs for censored data. Metrika 78, 237–257 (2015)

10. Schwabe, R.: Optimum Designs for Multi-Factor Models. Springer, New York (1996)



Properties of the Random Block Design
for Clinical Trials

Hui Shao and William F. Rosenberger

Abstract To avoid deterministic treatment allocations in the permuted block design
(PBD), many clinical trialists prefer randomizing the block sizes as well. While such
a procedure is rarely formalized, it is generally assumed that the design will be less
predictable. In this paper, we formalize the random block design by assuming a
discrete uniform distribution for block size. The aim of this study is to provide a
statistical understanding of the RBD, by investigating its distributional properties,
including the degree of predictability and variability of treatment imbalance.

1 Introduction

The permuted block design (PBD) is the most popular randomization procedure.
In a PBD procedure, first a number of blocks with equal even block size is
established, then the treatment assignments are randomized within each block.
The main advantage of using the PBD is that it assures balance or approximately
balance for each treatment group throughout the course of the trial, especially
when the sample size is small. A drawback of this design is that one or more
treatment assignments in each block are deterministic and predictable when the
trial is not blinded. Therefore, the random block design (RBD), in which the block
size is randomly selected from a sequence of even integers, is proposed to reduce
the predictability of future assignments and achieve balanced treatment allocation.
However, this procedure is rarely carefully defined when it is employed, [5, 7] and
there is no theoretical support that the RBD is less predictable than the PBD. We
formalize the procedure by selecting block sizes according to a discrete uniform
distribution on the even integers, and quantify the predictability of the RBD in two-
arm clinical trials.
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2 Random Block Design

We formalize the random block design as follows. Blocks sizes are randomly
selected from even integers 2; 4; : : : ; 2Bmax with an equal probability 1/Bmax, where
Bmax is predefined by investigators, and then patients are randomized within each
block. Each block can be filled by either the random allocation rule (RAR) or
truncated binomial design (TBD). A random allocation rule can be considered
as drawing balls without replacement from an urn containing equal numbers of
two types of ball. A truncated binomial rule first uses a probability of 1=2 until
half the patients have been assigned to one of the two treatments, then assigns
the remaining patients to the opposite treatment. When referencing the RBD, it is
necessary to indicate the range of block size, in other words, the value of Bmax. It
is also necessary to indicate by which method each block is filled. We refer to each
design as RBD(Bmax; R) for those filled using the RAR and RBD(Bmax; T) for those
filled using the TBD. In this paper, we only focus on the RBD(Bmax; R); reference
[8] gives results for the RBD(Bmax; T). The following is the notation used in this
paper:

• There are two treatments, E (“experimental”) and C (“control”).
• n is the total number of patients. We do not assume all the blocks are filled.
• Tj is treatment assignment for the jth patient. Tj=1 if the jth patient is assigned to

treatment E and 0 if the patient is assigned to treatment C.
• 2Bj is the block size of the jth subject, 2Bj D 2; : : : ; 2Bmax.
• Rj is the position number within the block, and takes the values 1; : : : ; 2Bj. For

example, if the block sizes are 4, 2, 4, R8 D 2. If Rn D 2Bn, then every block is
filled; otherwise, the last block is unfilled.

• NE.j/ and NC.j/ are the total number of patients assigned to treatment E and C
after assigning the jth patient, respectively.

• Dj D NE.j/� NC.j/ is the imbalance in the number of patients after assigning the
jth patient.

• �j is the probability assigning the jth patient to treatment E.
• � is the indicator function.
• bac denotes the integer part of a.

3 Exact Distribution of Dj

Throughout all the mathematical development, we will treat summations as 0 if the
upper limit of the summation is smaller than the lower limit. All the proofs are by
induction and can be found in [8].

Lemma 1 Let b be an integer from 1 to Bmax. Let r be an integer from 1 to 2b. Let r
and j have the same parity. For j � 2Bmax C 2, the joint distribution of Bj and Rj for
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the RBD is given by

P.Rj D r;Bj D b/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1

Bmax
; 1 � r D j � 2b;

1

Bmax.Bmax C 1/

�
1C 1

Bmax

� j�r
2

; 1 � r � min.j � 2; 2b/;

0; r > min.j; 2b/:

The limiting joint distribution of Bj and Rj is given by

lim
j!1 P.Rj D r;Bj D b/ D 2

Bmax.Bmax C 1/
:

Theorem 1 Let d be a nonnegative integer from 0 up to Bmax. Let d and j have the
same parity. For j � 2Bmax C 2, the distribution of Dj for RBD(Bmax; R) is given by

P.Dj D ˙d/ D
BmaxX
bD1

min.2b;j/X
rD1

r;j have the
same parity

 
r

dCr
2

! 
2b � r

b � dCr
2

!
 
2b

b

! 1

Bmax

�
(

1

Bmax C 1

�
1C 1

Bmax

� j�r
2

) �.r<j/

�Œd�min.r;2b�r/�:

For j � 2Bmax C 3, the distribution of Dj is given by

P.Dj D ˙d/ 

BmaxX
bD1

2bX
rD1

r;j have the
same parity

 
r

dCr
2

! 
2b � r

b � dCr
2

!
 
2b

b

! 2

Bmax.Bmax C 1/
�Œd�min.r;2b�r/�:

4 Selection Bias

Blackwell and Hodges developed a simple model to measure the potential for
selection bias [2]. They proposed a convergence strategy for guessing the upcoming
assignment, which was to guess the treatment that has fewer prior allocations, or
to guess one of the treatments if both treatments have an equal number of prior
allocations. Their model calculates the expected selection bias factor, E.F/, which
is the expected excess number of correct guesses of treatment assignments beyond
that expected by chance when the investigator uses the convergence strategy. It is
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also equivalent to half of the difference between the expected number of correct and
incorrect guesses among all the guesses made when the two treatment groups have
different prior assignments.

Based on the fact that a larger degree of randomness corresponds to less
predictability, we propose a metric for measuring the degree of randomness of a
restricted randomization procedure, which is the degree of predictability

�PRED D
nX

jD1
E

ˇ̌̌̌
�j � 1

2

ˇ̌̌̌
:

This is similar to the metric proposed by Chen [3] and Berger [1]. This degree of
predictability describes the expected deviation of a randomization procedure from
complete randomization. A large value of this indicates a low degree of randomness,
hence a high chance of correct prediction.

It turns out that the degree of predictability is mathematically equivalent to
Blackwell-Hodges expected selection bias factor. Now call a correct guess a hit
and an incorrect guess a miss when the two treatment arms have different prior
allocations. Letting H and M denote the number of hits and misses, respectively,
then the expected number of hits and misses, given �1; : : : ; �n is calculated as

E.Hj�1; : : : ; �n/ D
nX

jD1

�
1

2
I

�
�j D 1

2

�
C �jI

�
�j >

1

2

�
C .1 � �j/I

�
�j <

1

2

��
;

and

E.Mj�1; : : : ; �n/ D
nX

jD1

�
1

2
I

�
�j D 1

2

�
C .1 � �j/I

�
�j >

1

2

�
C �jI

�
�j <

1

2

��
:

The expected selection bias factor is then given by

E.F/ DEE.Fj�1; : : : ; �n/ D E

�
E.Hj�1; : : : ; �n/� E.Mj�1; : : : ; �n/

2

�

DE
nX

jD1

��
�j � 1

2

�
I

�
�j >

1

2

�
C
�
1

2
� �j

�
I

�
�j <

1

2

��

D
nX

jD1
E

ˇ̌̌̌
�j � 1

2

ˇ̌̌̌
:
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Theorem 2 The �PRED in n, n � 1, trials for the RBD(Bmax; R) is given by

�PRED 

min.n;2BmaxC2/X

jD1

BmaxX
bD1

8̂̂̂̂
<̂
ˆ̂̂:

min.b;j/X
rD1

r;j have the
same parity

r�1X
tD0

ˇ̌̌̌
b � t

2b � r C 1
� 1

2

ˇ̌̌̌
 

r � 1
t

! 
2b � r C 1

b � t

!
 
2b

b

!

C
min.2b;j/X
rDbC1

r;j have the
same parity

bX
tDr�b�1

ˇ̌̌̌
b � t

2b � r C 1
� 1

2

ˇ̌̌̌
 

r � 1
t

! 
2b � r C 1

b � t

!
 
2b

b

!
9>>>>=>>>>;

� 1

Bmax

 
1

Bmax C 1

�
1C 1

Bmax

� j�r
2

!I.r<j/

C
nX

jD2BmaxC3

BmaxX
bD1

8̂̂̂̂
<̂
ˆ̂̂:

bX
rD1

r;j have the
same parity

r�1X
tD0

ˇ̌̌̌
b � t

2b � r C 1
� 1

2

ˇ̌̌̌
 

r � 1
t

! 
2b � r C 1

b � t

!
 
2b

b

!

C
2bX

rDbC1
r;j have the
same parity

bX
tDr�b�1

ˇ̌̌̌
b � t

2b � r C 1
� 1

2

ˇ̌̌̌
 

r � 1
t

! 
2b � r C 1

b � t

!
 
2b

b

!
9>>>>=>>>>;

2

Bmax.Bmax C 1/
:

We refer to the PBD with block size 2B using the RAR to fill each block as
PBD(B; R). Theorem 2 can be simplified for the degree of predictability of the
PBD(B; R).

Theorem 3 The �PRED in n, n � 1, trials for the PBD(B; R) is given by

�PRED D
j n

2B

k
8̂̂̂̂
<̂
ˆ̂̂:
22B�1 
2B

B

! � 1

2

9>>>>=>>>>;
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Table 1 Degree of predictability of the RBD and PBD for different values of n, Bmax and B

RBD(Bmax; R) PBD(B; R)

n 2 3 4 5 6 7 2 3 4 5 6 7

5 0:87 0:76 0:66 0:58 0:52 0:47 0:83 0:60 0:40 0:30 0:24 0:20

10 2:14 1:90 1:71 1:60 1:45 1:32 1:83 1:50 1:40 1:53 0:99 0:77

15 3:08 2:78 2:55 2:36 2:21 2:09 2:83 2:40 2:16 1:83 1:81 1:89

20 4:36 3:92 3:59 3:33 3:11 2:93 4:17 3:40 2:93 3:06 2:33 2:18

25 5:31 4:81 4:43 4:13 3:88 3:66 5:00 4:40 3:99 3:37 3:43 2:81

50 11:03 10:01 9:24 8:62 8:12 7:69 10:17 8:90 8:04 7:66 6:91 6:16

75 16:42 14:95 13:84 12:95 12:22 11:60 15:33 13:40 12:10 11:02 10:39 9:64

100 22:14 20:15 18:64 17:45 16:46 15:64 20:83 18:00 16:21 15:32 13:90 13:25

C
mX

rD1
r;j have the
same parity

8̂̂̂̂
<̂
ˆ̂̂:I.r�B/

r�1X
tD0

ˇ̌̌̌
B � t

2B � r C 1
� 1

2

ˇ̌̌̌
 

r � 1
t

! 
2B � r C 1

B � t

!
 
2B

B

!

C I.r�BC1/
BX

tDr�B�1

ˇ̌̌̌
B � t

2B � r C 1
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where m D n � 2B
j n

2B

k
.

The degree of predictability of the RBD and PBD for different values of n, Bmax

and B is provided in Table 1. As expected, the degree of predictability decreases
with the block size. It also shows that when Bmax D B, the degree of predictability
of the RBD(Bmax; R) is higher than the PBD(B; R). This agrees with the simulation
results of Zhao et al. [9]. In order to generate an allocation sequence with degree of
predictability comparable to the PBD(B; R), a larger value of Bmax has to be selected
for the RBD(Bmax; R).

5 Balancing Properties

We investigate the balancing properties of the RBD by calculating the variance of
the terminal treatment imbalance, Var.Dn/. For a RBD with block sizes ranging
from 2 to 2Bmax, the final imbalance Dn varies from �Bmax to Bmax. A small variance
of Dn indicates that repeating the RBD produces similar values of imbalance.
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Theorem 4 Let n � 1. The variance of the terminal imbalance of the RBD(Bmax;
R) is given by the following.
If n � 2Bmax C 2,

Var.Dn/ D 2

BmaxX
bD1

min.2b;n/X
rD1

r;n have the
same parity

min.r;2b�r/X
dD0

d;n have the
same parity

 
r

dCr
2

! 
2b � r

b � dCr
2

!
 
2b

b

!

� d2

Bmax

(
1

Bmax C 1

�
1C 1

Bmax

� n�r
2

) �.r<n/

:

If n � 2Bmax C 3,

Var.Dn/ 
 2

BmaxX
bD1

2bX
rD1

r;n have the
same parity

min.r;2b�r/X
dD0

d;n have the
same parity

d2

 
r

dCr
2

! 
2b � r

b � dCr
2

!
 
2b

b

! 2

Bmax.Bmax C 1/
:

Theorem 5 Let n � 1. The variance of terminal imbalance of the PBD (Bmax; R) is
given by the following.

Var.Dn/ D 2

min.m;2B�m/X
dD0

d;n have the
same parity

d2

 
m

mCd
2

! 
2B � m

B � mCd
2

!
 
2B

B

! ;

where m D n � 2B
j n

2B

k
.

The variance of the imbalance of the RBD and PBD for different values of n,
Bmax, and B is provided in Table 2. For the RBD, the variance of the imbalance is an
increasing function of Bmax for each n. The variance of the imbalance for the PBD is
0 when all blocks are filled. When Bmax D B, the overall variance of the imbalance
of the RBD is smaller than that of the PBD.

We plot the variance of the terminal imbalance of the RBD(5; R) and PBD(3;
R) for different values of n in Fig. 1, since these two procedures generate treatment
allocations with similar degrees of predictability. We see the variance of the terminal
imbalance of the RBD is more stable than that of the PBD. The PBD(3; R) has on
average smaller variance of imbalance than the RBD(5; R).
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Table 2 Variance of the imbalance of the RBD and PBD for different values of n, Bmax and B

RBD(Bmax; R) PBD(B; R)

n 2 3 4 5 6 7 2 3 4 5 6 7

5 1:00 1:09 1:41 1:72 1:98 2:21 1:00 1:00 2:14 2:78 3:18 3:46

10 0:44 0:76 1:08 1:10 1:40 1:78 1:33 1:60 1:71 0 1:82 3:08

15 1:00 1:13 1:31 1:50 1:70 1:84 1:00 1:80 1:00 2:78 2:45 1:00

20 0:44 0:76 1:02 1:28 1:52 1:75 0 1:60 2:29 0 2:91 3:69

25 1:00 1:13 1:31 1:50 1:70 1:91 1:00 1:00 1:00 2:78 1:00 2:54

50 0:44 0:76 1:02 1:28 1:52 1:75 1:33 1:60 1:71 0 1:82 3:69

75 1:00 1:13 1:31 1:50 1:70 1:91 1:00 1:80 2:14 2:78 2:45 3:46

100 0:44 0:76 1:02 1:28 1:52 1:75 0 1:60 2:29 0 2:91 1:85
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Fig. 1 Variance of the imbalance as a function of n

6 Discussion

In this study, we have formalized the RBD and quantified its degree of predictability
and balancing properties in closed-form formulas. This provides a statistical
understanding of the RBD that can be used in comparisons with other restricted
randomization procedures.

Compared with the PBD, the RBD does not reduce predictability as one might
expect. One has to choose a relatively larger value of Bmax for the RBD(Bmax; R)
to produce a comparable or less predictable allocation sequence than that under the
PBD(B; R). In this case, the PBD has an overall relative smaller variance of terminal
imbalance than the RBD. If the total number of patients is known, the clinical trialist
can choose a PBD design with 0 variance for terminal imbalance. Alternatively, if
one can establish a fixed sample size that is divisible by all possible realizations of
the block sizes that result in all blocks being filled. from the RBD, one can eliminate
the possibility of imbalance [4].
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Matts and Lachin concluded that the selection bias factor of a design employing
multiple block sizes is approximately the same as that of a design with a block size
equal to the average of all the block sizes of the former design [6]. For example,
the selection bias factor of the RBD(3; R) is approximately the same as that of the
PBD(2; R), and the selection bias factor of the RBD(5; R) is approximately the
same as that of the PBD (3; R). Our results confirm their conclusion and show that
the degree of predictability of RBD(3; R) is slightly smaller than that of the PBD
(2; R).
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Functional Data Analysis in Designed
Experiments

Bairu Zhang and Heiko Großmann

Abstract F-type tests for functional ANOVA models implicitly assume that the
response curves are generated by a completely randomized design. By using the
split-plot design as an example it is illustrated how these tests can be extended
to more complex ANOVA models. In order to derive the test statistics and their
approximate null distributions, Hasse diagrams for representing the structure of the
experiment are combined with a stochastic process perspective. The application of
the more general F-type tests is illustrated for simulated data.

1 Introduction

Functional data arise in designed experiments when the response for an experimen-
tal unit is a curve that is densely sampled over a continuum. Despite this more
complicated response the basic structure of the experiment in terms of treatment
allocation is often relatively simple and essentially that of a regression or analysis
of variance (ANOVA) model. In these models, the parameters are also functions and
traditional F tests are no longer appropriate.

In [4, 11] and [12], functional F tests or F-type tests have been developed
for testing fixed effects in functional linear models. This work adopts the so-
called stochastic process perspective [6] in which the response curves are regarded
as sample paths of a stochastic process and the null distribution of the test
statistic is derived by using the Karhunen-Loève expansion [7] and Satterthwaite’s
approximation [10]. However, these results essentially assume that the response
curves are obtained from a completely randomized experiment.

In this paper, we illustrate how, by applying well-known experimental design
principles, functional data from more complex experiments can be analyzed under
the stochastic process perspective. In particular, we are interested in ANOVA models
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for functional data which take the structure of the observational units into account.
Although the method in this paper is applicable to more complex situations, we
focus on split-plot designs with two treatment factors in different strata as an
example.

The basic idea is to adapt Bailey’s ANOVA approach [2] to the functional data
setting and to derive F-type tests for testing fixed effects in different strata. More
precisely, we use Hasse diagrams to develop a mixed-effects model for functional
data and to derive the analysis of variance table. We then apply the approach in
[12] in order to derive the null distributions of the F-type tests in the different strata.
Mixed-effects functional models have been considered before [1, 3, 5, 8, 9], but none
of these papers has emphasized the link between the design and the analysis.

The remainder of the paper is organized as follows. Section 2 briefly recaps
the structure of the split-plot design and presents the corresponding mixed-effects
functional model and the ANOVA table. F-type tests of the treatment effects are
derived in Sect. 3 and applied to simulated functional data in Sect. 4. The final Sect. 5
offers some conclusions.

2 Model and Analysis for Split-Plot Design

A classic split-plot design (for example, see [2]) has b large blocks, each of which
consists of s small blocks (whole-plots), each of which contains m observational
units (sub-plots). Thus the total number of observational units is N D bsm. There
are two treatment factors H with s levels and A with m levels. Within each block,
each level of H is applied to one entire whole-plot and, within each whole-plot,
each level of A is applied to one sub-plot. The Hasse diagrams [2] representing the
structure of the experiment are shown in Fig. 1.

In the functional data setting, the N responses are curves Yijk.t/ with arguments
t in a real interval T . If we assume that all blocks and whole-plots have random

Fig. 1 Hasse diagrams for plot structure (left) and treatment structure (right) of split-plot design
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effects, then the mixed-effects functional model can be expressed as

Yijk.t/ D 	.t/C �j.t/C !k.t/C �jk.t/C ˇi.t/C ˛j.i/.t/C �k.ij/.t/; (1)

where i D 1; : : : ; b, j D 1; : : : ; s and k D 1; : : : ;m. The terms 	.t/, �j.t/, !k.t/ and
�jk.t/ respectively indicate an overall mean function and functions representing the
fixed effect of the jth level of factor H, the fixed effect of the kth level of factor A
and the interaction of these two levels. Moreover, ˇi.t/, ˛j.i/.t/ and �k.ij/.t/ represent
functions for the random effect of the ith block, the random effect of the jth whole-
plot, nested in the ith block, and the error term, which is equal to the random effect
of the kth sub-plot of whole-plot j within block i. We assume that ˇi.t/, ˛j.i/.t/ and
�k.ij/.t/ are independent Gaussian processes with zero mean and smooth covariance
functions D.s; t/ D covŒˇi.s/; ˇi.t/�, P.s; t/ D covŒ˛j.i/.s/; ˛j.i/.t/� and 
.s; t/ D
covŒ�k.ij/.s/; �k.ij/.t/�. These can be summarized as ˇi.t/ � GP.0;D/, ˛j.i/.t/ �
GP.0;P/ and �k.ij/ � GP.0; 
/, where GP stands for ‘Gaussian process’.

At each t 2 T , the ANOVA table for the model represented by the Hasse
diagrams in Fig. 1 and Equation (1) can be calculated as described in [2, p. 151]

and is shown in Table 1. In the table, Ny:::.t/ D 1
bsm

bP
iD1

sP
jD1

mP
kD1

yijk.t/ and averages

Nyi::.t/, Ny:j:.t/, Ny::k.t/, Nyij:.t/, Ny:jk.t/ are calculated in a similar way. Moreover, SS.t/ and
EMS.t/ denote functional sums of squares and functional expected mean squares,

Table 1 Analysis of variance table for split-plot design with functional response

Stratum Source df SS.t/ EMS.t/

Mean Mean 1
bP

iD1

sP
jD1

mP
kD1

Ny:::.t/2 –

Blocks Blocks b � 1
bP

iD1

sP
jD1

mP
kD1

fNyi::.t/� Ny:::.t/g2 –

Whole-plots H s � 1
bP

iD1

sP
jD1

mP
kD1

fNy:j:.t/� Ny:::.t/g2 bm
s�1

sP
jD1

�j.t/2C
fmP.t; t/C 
.t; t/g

Residual .b � 1/.s � 1/ By subtraction mP.t; t/C 
.t; t/

Total b.s � 1/
bP

iD1

sP
jD1

mP
kD1

fNyij:.t/� Nyi::.t/g2 –

Sub-plots A m � 1
bP

iD1

sP
jD1

mP
kD1

fNy::k.t/� Ny:::.t/g2 bs
m�1

mP
kD1

!k.t/2 C 
.t; t/

A ^ H .s � 1/.m � 1/
bP

iD1

sP
jD1

mP
kD1

fNy:jk.t/� b
.m�1/.s�1/

sP
jD1

mP
kD1

�jk.t/2C
Ny:::.t/g2 � SSA.t/� SSH.t/ 
.t; t/

Residual .b � 1/s.m � 1/ By subtraction 
.t; t/

Total bs.m � 1/
bP

iD1

sP
jD1

mP
kD1

fyijk.t/� Nyij:.t/g2 –

Total bsm
bP

iD1

sP
jD1

mP
kD1

yijk.t/2
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which are calculated as point-wise sums of squares and mean squares for every
t 2 T . Similarly, the degrees of freedom in the third column of Table 1 are for
a point-wise analysis with fixed t 2 T . As will be seen in the next section, these
degrees of freedom are however different from those for the functional model (1)
and the corresponding hypothesis tests.

3 Hypothesis Tests

F-type tests of fixed effects have been derived in [12] for functional ANOVA models
under the implicit assumption that the response curves are obtained from a com-
pletely randomized design. Here we present corresponding results for model (1).
The main difference in this setting is that treatment effects are not tested in a single
but in two strata. More precisely, as for classic split-plot designs, the effect of
treatment factor H is tested in the whole-plots stratum, whereas the effect of factor
A and the interaction H ^ A of the two factors H and A are tested in the sub-plot
stratum.

In all three cases the test statistics are based on integrated sums of squares from
Table 1. Following the approach in [11, 12] the null distribution is derived by using
the Karhunen-Loève expansion. Here we only present the results.

3.1 F-Type Test for Factor H

In order to test the effect of treatment factor H we test the null hypothesis that the s
functions corresponding to the effects of the s levels of H are equal, that is we test
H0 W �1.t/ D � � � D �s.t/ for all t 2 T against H1 W :H0. It can be shown that under
the null hypothesis R

SSH.t/dt=.s � 1/R
SSwhole-plot residual.t/dt=.b � 1/.s � 1/

approx:� F.dfH; dfres/; (2)

where SSH.t/ and SSwhole-plot residual.t/ denote the functional sums of squares for
H and the residual within the whole-plot stratum in Table 1.

The degrees of freedom of the F distribution in (2) are equal to

dfH D .
P1

rD1 �r/
2P1

rD1 �2r
.s � 1/ and dfres D .

P1
rD1 �r/

2P1
rD1 �2r

.b � 1/.s � 1/;
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where �1; : : : ; �1 are the eigenvalues of the covariance function mP.s; t/C 
.s; t/
with s; t 2 T . Following the approach of [12], mP.s; t/C
.s; t/ can be estimated by

bP
iD1

sP
jD1

mP
kD1

fNyij:.s/� Nyi::.s/� Ny:j:.s/C Ny:::.s/gfNyij:.t/ � Nyi::.t/ � Ny:j:.t/C Ny:::.t/g

.b � 1/.s � 1/ :

We now show how the approximation in (2) is derived. To this end, we use
the following auxiliary result adapted from [12]: If x1.t/; : : : ; xn.t/; t 2 T , are
independent Gaussian processes with zero mean function and common covariance
function ı.s; t/, then Z

Œ

nX
iD1

fxi.t/ � Nx.t/g2�dt �
1X

rD1
�r�

2
n�1;

where �1; : : : ; �1 are the eigenvalues of ı.s; t/ and Nx.t/ D 1
n

Pn
iD1 xi.t/.

Under the null hypothesis that H0 W �1.t/ D � � � D �s.t/ for all t 2 T , SSH.t/
in (2) can be calculated as

SSH.t/ D
bX

iD1

sX
jD1

mX
kD1

fNy:j:.t/ � Ny:::.t/g2

Dbm
sX

jD1
Œf N̨ j.:/.t/C N�:.:j/.t/g � f N̨ :.:/.t/C N�:.::/.t/g�2;

where N̨ j.:/.t/, N�:.:j/.t/, N̨ :.:/.t/ and N�:.::/.t/ are obtained by taking averages over the
subscripts represented by the dots. The assumptions in Sect. 2 imply that N̨ j.:/.t/ C
N�:.:j/.t/, j D 1; : : : ; s, are independent Gaussian processes with zero mean function
and common covariance function 1

bm .mP C 
/. By applying the auxiliary result, it
follows that Z

SSH.t/dt �
1X

rD1
�r�

2
s�1;

where �1; : : : ; �1 are the eigenvalues of the covariance function mP.s; t/C 
.s; t/.
Similarly, we can prove that

R
SSsmall blocks residual.t/dt � P1

rD1 �r�
2
.b�1/.s�1/,

where �1; : : : ; �1 are the same eigenvalues as before.

As in [11], the ratio
P1

rD1 �r�
2
s�1=.s�1/P1

rD1 �r�
2
.b�1/.s�1/=.b�1/.s�1/ can be approximated by

F.df1; df2/, where df1 D .
P1

rD1 �r/
2P1

rD1 �
2
r
.s � 1/ and df2 D .

P1
rD1 �r/

2P1
rD1 �

2
r
.b � 1/.s � 1/,

which gives the result in (2).
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3.2 F-Type Tests for Factor A and for Interaction H ^ A

Using a similar method, we can also derive test statistics and corresponding null
distributions for treatment factor A and for the interaction of the two treatment
factors. Under the null hypothesis H0 W !1.t/ D � � � D !m.t/ for all t 2 T , we
have R

SSA.t/dt=.m � 1/R
SSsub-plot residual.t/dt=.b � 1/s.m � 1/

approx:� F.dfA; dfres�/;

and under the null hypothesis H0 W �11.t/ D � � � D �sm.t/ for all t 2 T , we haveR
SSH^A.t/dt=.s � 1/.m � 1/R

SSsub-plot residual.t/dt=.b � 1/s.m � 1/

approx:� F.dfH^A; dfres�/;

where SSA.t/, SSH^A.t/ and SSsub-plot residual.t/ denote functional sums of squares
for treatment factor A, the interaction of H and A, and the residual within the sub-
plot stratum. The degrees of freedom of the F distributions in the above equations

are respectively equal to dfA D .
P1

rD1 �
�
r /
2P1

rD1 �
�
r
2 .s � 1/, dfH^A D .

P1
rD1 �

�
r /
2P1

rD1 �
�
r
2 .s � 1/.m � 1/

and dfres� D .
P1

rD1 �
�
r /
2P1

rD1 �
�
r
2 .b�1/s.m�1/, where ��

1 ; : : : ; �
�1 are the eigenvalues of the

covariance function 
.s; t/ with s; t 2 T . Finally, 
.s; t/ can be estimated similarly
to mP.s; t/C 
.s; t/.

4 Simulation Study

We illustrate the application of the tests in Sect. 3 with simulated data for a split-plot
design with two blocks, three whole-plots per block and four sub-plots within each
whole-plot. Values of the response curves are generated for 1000 equally spaced
values t in the interval T D Œ0; 1�. The functions for generating the fixed effects
are 	.t/ D 2 sin.2�t/, �j.t/ D je.t�0:5/2 , !k.t/ D esin.k� t/ and �jk.t/ D �j.t/ � !k.t/,
where i D 1; 2, j D 1; 2; 3 and k D 1; 2; 3; 4. In the simulations, for simplicity,
we use the covariance functions D D 0:5�, P D 0:2� and 
 D 0:3�, where
�.s; t/ D e�j1000.s�t/j. The stochastic processes representing the random effects in
Equation (1) are then simulated as ˇi.t/ � GP.0; 0:5�/, ˛j.i/.t/ � GP.0; 0:2�/ and
�k.ij/.t/ � GP.0; 0:3�/.

Figure 2 depicts the functional data from the simulation. Results of the functional
analysis of variance are given in Table 2. Note that the integrated sums of squares
in the fourth column of the table are approximated by summation over the 1000
values of t. The F-type tests show that the treatment factors and the interaction have
significant effects on the response curves.
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Fig. 2 Functional data simulated by using model (1) for split-plot design

Table 2 Analysis of variance table for simulated functional data

Stratum Source df
R

SS.t/dt Hypothesis test

Mean Mean 1 279;873:3 –

Blocks Blocks 1 7337:6 –

Whole-plots H 2 16;727:5 7:6004 > F0:05.3:98; 3:98/

Residual 2 2200:9 –

Total 4 18;928:4 –

Sub-plots A 3 36;045:3 40:9802 > F0:05.26:72; 80:16/

A ^ H 6 2871:5 1:6323 > F0:05.53:44; 80:16/

Residual 9 2638:7 –

Total 18 41;555:5 –

Total 24 347;694:8
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5 Conclusions

F-type tests in [4, 11] and [12] for functional ANOVA models using a completely
randomized design can be extended to more complex ANOVA models. Here we
have presented results for split-plot designs. By using the approach of [2] a point-
wise ANOVA table can be derived from Hasse diagrams representing the structure
of the observational units and the treatments.

The sums of squares and degrees of freedom in that table provide the basis for the
test statistics of F-type tests which under the null hypothesis of no effects have an
approximate F distribution. The degrees of freedom of this distribution are however
different from the degrees of freedom in the point-wise ANOVA table. Both the
numerator and the denominator of the test statistics are integrated sums of squares
and in practice the corresponding integrals have to be approximated by taking sums
over the values at which the functional data are observed.

An important difference from the results for completely randomized designs
is that, depending on the structure of the experiment, the tests are performed in
different strata using different integrated sums of squares in the denominator. Failing
to account for the structure of the experiment may result in incorrect conclusions
due to false replication. Although in this paper we have only considered the split-
plot design, we conjecture that the approach presented here can be generalized to
the whole class of orthogonal designs discussed in [2].
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Analysis and Design in the Problem of Vector
Deconvolution

Anatoly Zhigljavsky, Nina Golyandina, and Jonathan Gillard

Abstract We formulate the problem of deconvolution of a given vector as an
optimal design problem and suggest numerical algorithms for solving this problem.
We then discuss an important application of the proposed methods for problems of
time series analysis and signal processing and also to the low-rank approximation
of structured matrices.

1 Introduction

For two vectors ˛ D .˛1; : : : ; ˛n/
T 2 R

n and ˇ D .ˇ1; : : : ; ˇm/
T 2 R

m, their
convolution is the vector 
 D ˛ ? ˇ D .
1; : : : ; 
N/

T 2 R
N of size N D m C n � 1

with elements


i D
X

j

˛jˇi�jC1 I i D 1; : : : ;N : (1)

The summation range for j in (1) is defined so that the terms ˛jˇi�jC1 make sense;
that is, maxf1; i � m C 1g � j � minfn; ig.

In this paper, we shall discuss the following problems.
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Estimation Problem 1. Given Y 2 R
N and ˛ 2 R

n n f0g, find

Ǒ D argmin
ˇ2Rm

kY � ˛ ? ˇk2 ; (2)

where m D N C 1� n and k � k is the usual Euclidean norm.
Estimation Problem 1a. Given Y 2 R

N and ˇ 2 R
m n f0g, find

Ǫ D argmin
˛2Rn

kY � ˛ ? ˇk2 ; (3)

where n D N C 1 � m.
Estimation Problem 2. Given Y 2 R

N and ˛ 2 R
n n f0g, find

Ǒ
ı D argmin

ˇ2Rm
ı

kY � ˛ ? ˇk2 ; (4)

where R
m
ı D ˚

ˇ D .ˇ1; : : : ; ˇm/
T 2 R

m such that ˇj � ı for all j D 1; : : : ;m


.

Here ı 2 Œ0; 1/ is some number (usually either 0 or a small positive number).
Estimation Problem 2a. Given Y 2 R

N and ˇ 2 R
m n f0g, find

Ǫı D argmin
˛2Rn

ı

kY � ˛ ? ˇk2 ; (5)

where Rn
ı D ˚

˛ D .˛1; : : : ; ˛n/
T 2 R

n such that ˛i � ı for all i D 1; : : : ; n


.

Design Problem 1. Given Y 2 R
N n f0g and n < N, find

. Ǫ ; Ǒ/ D argmin
.˛;ˇ/2Rn�Rm

kY � ˛ ? ˇk2 : (6)

Design Problem 2. Given Y 2 R
N n f0g, ı 2 R and n < N, find

. Ǫ ; Ǒ/ı D argmin
.˛;ˇ/2Rn

ı�R
m
ı

kY � ˛ ? ˇk2 : (7)

We believe that the most practically important, among the problems formulated
above, is the problem (7). In Sect. 4, we show that the use of (approximate) solutions
to the problem (7) could significantly increase accuracy of a wide range of methods
of time series analysis and signal processing.
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2 Solving the Estimation Problems

2.1 Matrix Form of the Convolution Operation

Let us express the convolution 
 D ˛ ? ˇ in a matrix form. For given ˛ 2 R
n

and ˇ 2 R
m, define the matrices F˛ 2 R

N�m and Fˇ 2 R
N�n as follows: for i D

1; : : : ;m, the i-th column of the matrix F˛ is

0@ 0i�1
˛

0m�i

1A , where 0u 2 R
u is a vector of

zeros of size u. Similarly, the j-th column of the matrix Fˇ is

0@0j�1
ˇ

0n�j

1A , j D 1; : : : ; n.

The matrices F˛ and Fˇ look like this:

F˛ D

0BBBBBBBBBBBBB@

˛1 0 � � � 0
˛2 ˛1 � � � 0
:::

:::
: : :

:::

˛n ˛n�1
: : :

:::

0 ˛n : : :
:::

:::
: : :

: : :
:::

0 � � � 0 ˛n

1CCCCCCCCCCCCCA
; Fˇ D

0BBBBBBBBBBBBB@

ˇ1 0 � � � 0
ˇ2 ˇ1 � � � 0
:::

:::
: : :

:::

ˇm ˇm�1
: : :

:::

0 ˇm : : :
:::

:::
: : :

: : :
:::

0 � � � 0 ˇm

1CCCCCCCCCCCCCA
: (8)

Two (equivalent) matrix forms of (1) are

.i/ ˛ ? ˇ D F˛ ˇ and .ii/ ˛ ? ˇ D Fˇ ˛ : (9)

Remark 1 If ˛ ¤ 0 then rank.F˛/ D m, hence in this case the matrix .FT
˛F˛/�1

exists and .FT
˛F˛/�1FT

˛Y ¤ 0 for any Y 2 R
N n f0g. Similarly, if ˇ ¤ 0 then

rank.Fˇ/ D n and .FT
ˇFˇ/�1FT

ˇY is uniquely defined and is different from 0 for any

Y 2 R
N n f0g.

2.2 Solving the Estimation Problems

Using (i) in (9) we can express Estimation Problem 1 as a problem of parameter
estimation in the simple regression model

Y D F˛ˇ C � ; (10)
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where � is a vector of errors. Using standard results from linear regression, the least
squares estimate (LSE) of ˇ is

Ǒ D .FT
˛F˛/�1FT

˛Y ; (11)

which is exactly the required vector (2).
To solve Estimation Problem 1a we write it as a problem of parameter estimation

in the regression model Y D Fˇ˛ C � ; by using (ii) in (9). LSE of ˛ gives the
required solution:

Ǫ D .FT
ˇFˇ/�1FT

ˇY : (12)

In view of Remark 1 the matrices .FT
˛F˛/�1 in (11) and .FT

ˇFˇ/�1 in (12) exist.
The optimization problem (4) and (5) are quadratic programming problems with

linear constraints. There are no explicit formulas for the solutions of (4) and (5)
but there are many fast iterative methods for approximating these solutions, see e.g.
[1, 3].

3 Solving the Design Problems

First, we explain why have we called the problems (6) and (7) ‘design problems’.
Consider the problem (6); a similar interpretation holds for the problem (7). In view
of (i) in (9), the problem (6) can be written as

. Ǫ ; Ǒ/ D argmin
.˛;ˇ/2Rn�Rm

kY � F˛ˇk2 ; (13)

where F˛ is a design matrix in the linear regression model (10). This matrix has size
N � m and the special form shown in (8). Therefore, optimization with respect to
ˇ is equivalent to the parameter estimation in the model (10) but optimization with
respect to ˛ is equivalent to the optimal choice of the design matrix F˛. Formally, the
latter looks like a typical problem of optimal design although common asymptotic
considerations including the equivalence theorem do not have much sense here as
the original problem is essentially discrete so that there is no sense in letting N !
1. Moreover, as we have established numerically, the problems (6) and (7) are not
convex and require the use of techniques of global optimization for their solution.

3.1 Solving Design Problem 1

For fixed ˛ ¤ 0 (and hence the design matrix F˛), the value of optimal ˇ is given
by (11), the solution to Regression Problem 1. Similarly, for fixed ˇ, the value of
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optimal ˛ is given by (12), the solution to Regression Problem 2. By alternating
these two steps we obtain the following iterative algorithm8<: Ǒ

s D �
FT
˛s�1

F˛s�1

	�1
FT
˛s�1

Y

Ǫs D
�

FT
ˇs

Fˇs

��1
FT
ˇs

Y ;
(14)

where s D 1; 2; : : : and ˛0 2 R
n n f0g is a starting vector. In view of Remark 1, for

all s the vectors Ǒ
s and Ǫs in (14) are well-defined and different from zero.

The algorithm (14) is monotonic since at each iteration the objective function
in (6), SS.˛; ˇ/ D kY � ˛ ? ˇk2, is decreasing. However, despite SS.˛; ˇ/ being
quadratic in both sets of variables (˛ and ˇ), it is not convex and the algorithm (14)
does not necessarily converge to the global minimizer in (6). A repeated application
of (14) from different starting points can be a good option for reaching a good or
even an optimal solution of (6).

3.2 Solving Design Problem 2

For fixed ˛ (or ˇ), the value of optimal ˇ (respectively, ˛) can be approximately
found as discussed in Sect. 2.2. This leads to an iterative algorithm which extends
the algorithm (14): ( Ǒ

s D argminˇ2Rm
ı

SS.˛s�1; ˇ/
Ǫs D argmin˛2Rn

ı
SS.˛; ˇs/ ;

(15)

where s D 1; 2; : : :, SS.˛; ˇ/ D kY � ˛ ? ˇk2 and ˛0 2 R
n is a starting vector.

Similarly to the algorithm (14), the algorithm (15) is monotonic but the limiting
point is not necessarily the global minimizer in (7). A repeated application of (15)
from different starting points is therefore recommended.

We will now briefly discuss the choice of the initial starting vector ˛0.
Consider the algorithm (15) which generalizes the algorithm (14) from the case

ı D �1 to general ı. This algorithm is a local descent algorithm applied to a
problem of global optimization. Any general global optimization technique can be
used for choosing initial vectors in (15). Stochastic global optimization techniques
could be of special interest, see [11, 12] for comprehensive reviews of these
techniques. Alternatively, for certain types of vectors Y, theoretical considerations
can be used for choosing ˛0. As argued in Sect. 4, the case Y D .1; 1; : : : ; 1/T

is of special importance in problems of matrix structured low-rank approximation.
There are some particular combinations of N and n where the exact analytic solution
providing SS. Ǫ ; Ǒ/ D 0 is available but for a generic pair .N; n/ there is no such
solution.
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Table 1 Values of SS( Ǫ ; Ǒ) and DEV( O
 ) computed by running algorithm (15) started at ˛�
0

.n;m/ .4;4/? .4;5/? .4;6/? .4;7/? .4;8/? .4;9/? .4;10/ .4;15/? .4;20/? .4;100/

SS( Ǫ ; Ǒ) 0.3333 0.6667 0.1295 0.1691 0.1149 0 0.3765 0 0.0542 0.0988

DEV( O
 ) 0.3333 0.3333 0.1710 0.2184 0.1429 0 0.2758 0 0.0739 0.1479

.n;m/ .5;5/? .5;10/ .5;20/? .5;50/ .5;100/ .10;10/? .10;50/ .10;100/ .20;100/ .50;100/

SS( Ǫ ; Ǒ) 0.3333 0.1363 0 0.1342 0.1149 0.3333 0.1395 0.3162 0.3743 1.271

DEV( O
 ) 0.3333 0.1351 0 0.1376 0.1429 0.3333 0.1419 0.2067 0.2154 0.3437

Assume Y D .1; 1; : : : ; 1/T 2 R
N and assume ı D 0 (or some small positive

number). Assume also n � m (otherwise we change the notation ˛ $ ˇ). If for
some reasons only one run of the algorithm (15) is planned then we suggest to
choose ˛�

0 D .1; �; �; : : : ; �; �; 1/T, where all entries ˛i of ˛�
0 are � except for ˛1 D

˛n D 1; � is some number in .0; 1/. If m � 2n then the vector ˇ�
0 associated with

˛�
0 has values

ˇi D
8<:
.1 � �/i�1; i D 1; 2; : : : ; n
1=.2C .n � 2/�/; i D n C 1; : : : ;m � n
.1 � �/m�i; i D m � n C 1;m � n C 2; : : : ;m :

All the elements 
i of 
�
0 D ˛�

0 ? ˇ
�
0 are equal to 1 except for the elements 
i with

i D n; n C 1; : : : ; 2n � 1 and i D N � 2n C 1; : : : ;N � n. The largest elements of 
�
0

are 
n D 
N�n D 2��. If m < 2n then we set ˇi D .1��/i�1; i D 1; 2; : : : ; dm=2e
and ˇm�iC1 D ˇi for i > dm=2e.

We chose � D 0:2 and ı D 0. Table 1 shows the values of SS( Ǫ ; Ǒ), where
. Ǫ ; Ǒ/ is the limiting value of the iterative process (15) started at ˛�

0 . Table 1 also
shows the value of the maximum deviation DEV( O
 ) D max1�i�N j O
i � 1j, where
O
 D Ǫ ? Ǒ. Note that for a large proportion of the values of n and m (with n � m and
N D n C m � 1) presented in Table 1, we have not managed to improve the values
SS( Ǫ ; Ǒ) by starting at different (random) starting vectors ˛0. The pairs .m; n/where
we believe the values of SS are globally optimal have an added asterisk. Table 1 also
demonstrates that although in many cases we cannot get the exact deconvolution of
the vector of ones, there are approximate deconvolutions which are quite accurate.

4 Application: Low-Rank Approximation of Hankel
Matrices

Assume we are given a vector X D .x1; : : : ; xN/
T 2 R

N which we interpret as a
time series. We want to decompose this series as xn D sj C �j, j D 1; : : : ;N, where
S D .s1; : : : ; sN/

T is a signal and �1; : : : ; �N denote noise. We assume that the signal
S satisfies a linear recurrence relation (LRR) of order � r; that is, sj D a1sj�1C: : :C
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arsj�r; for all j D r C 1; r C 2; : : : ;N, where a1; : : : ; ar are some coefficients of the
linear recurrence. Formally, the problem we want to solve is finding the minimizer

S� D arg min
S
�.S;X/ ; (16)

where �.�; �/ is a distance on R
N �R

N and the minimum in (16) is taken over the set
of vectors in R

N which satisfy an LRR of order � r. In most applications, the most
natural choice of the metric � in (16) would be Euclidean.

The optimization problem (16) is usually formulated as a matrix optimization
problem, where vectors in (16) are represented by n�m Hankel matrices. With a
vector Z D .z1; z2; : : : ; zN/

T of size N and given n < N, we associate an n � m
Hankel matrix

HZ D

0BBB@
z1 z2 � � � zm

z2 z3 � � � zmC1
:::

:::
:::

:::

zn znC1 � � � zN

1CCCA ;

where m D N C 1� n. A matrix version of the optimization problem (16) is

H� D arg min
H

d.H;HX/ ; (17)

where d.�; �/ is a distance on R
n�m �R

n�m and the minimum in (17) is taken over the
set of all n�m Hankel matrices of rank � r. The optimization problem (17) is the
general problem of Hankel structured low-rank approximation (HSLRA), see e.g.
[2, 4, 6].

The optimization problems (16) and (17) are equivalent if the distance functions
�.�; �/ in (16) and d.�; �/ in (17) are such that �.U;V/ D c � d.HU;HV/ for all U;V 2
R

N , where c > 0 is arbitrary and can be assumed to be 1 without loss of generality.
The standard choice of the distance d.�; �/ in the HSLRA problem (17) is

d.X;X0/ D kX � X0kF , where k � kF is the Frobenius norm. The primary
reason for this choice is the availability of the singular value decomposition
(SVD) which forms the essential part of many algorithms attempting to solve the
HSLRA problem, see e.g. [4, 5, 10, 13]. For a software which provides an efficient
implementation of the standard methods of the singular spectrum analysis, see
[8, 10]; for the particular case of HSLRA we refer to [7]. However, if the distance
d.X;X0/ in (17) is d.X;X0/ D kX � X0kF , then � in (16) takes a very particular
form, which is far from Euclidean, see e.g. [8, 10].

One would prefer to define the distance function �.�; �/ in (16) and acquire the
distance d.�; �/ for (17). As mentioned above, the most natural distance �.�; �/ in (16)
is Euclidean and hence we want to be close to it but at the same time we would
like to have the SVD operation available for the matrix low-rank approximation
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algorithms. We now show that an optimal answer to this question is given by the
solution of (7) with Y D .1; 1; : : : ; 1/T.

Define the so-called .Q;R/-norm in R
n�m by

jjUjj2Q;R D Trace QURUT ; (18)

where U 2 R
n�m, Q 2 R

n�n, R 2 R
m�m, Q D diag.Q/; R D diag.R/ with

diagonals Q D .q1; : : : ; qn/
T; and R D .r1; : : : ; rm/

T respectively; all components
of Q and R are positive. The .Q;R/-norms admit SVD expansions for low-rank
matrix approximations, see e.g. [9], so we shall seek for the distance in (17) which
is defined through a .Q;R/-norm with some Q and R. The relation between the
.Q;R/-norms in (17) and the Euclidean norm in (16) is established by the following
lemma, which is not difficult to prove.

Lemma 1 For any X 2 R
N, we have

jjHXjj2Q;R D XTWX ; (19)

where W D diag.W/ and the vector W D .w1; : : : ;wN/
T is the convolution of the

vectors Q and R: W D Q ? R.

Lemma 1 implies that if vectors Q and R are chosen so that Q ? R ' W D
.1; 1; : : : ; 1/T, then we get the required norm in (17). This is exactly the version of
the problem (7) which we have discussed in Sect. 3.2.
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