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PREFACE 

Over last five decades, vehicular pollution (VP) models are being used as tool to 
address the effectiveness of vehicular air pollution control strategies and the eco-
nomic consequences in implementing the decisions in urban areas. Using meteoro-
logical and traffic characteristics as input, VP models provide theoretical estimates 
of air pollution concentrations as well as temporal and spatial variations for the 
present and future what if scenarios.  During last few decades, VP models are ad-
vanced steadily in technical sophistication and their ability to deal with complex 

approaches. However, development of reliable VP models is still a challenge be-
cause a number of variables describing the non-linear vehicular pollutant disper-

Artificial neural networks (ANNs), which are parallel computational models, 
comprising of interconnected adaptive processing units (neurons) have the capa-
bility to predict accurately the dispersive behavior of vehicular pollutants under 
complex environmental conditions. This book aims at describing step-by-step pro-
cedure for formulation and development of ANN based VP models considering 
meteorological and traffic parameters. The model predictions are compared with 
existing line source deterministic/statistical based models to establish the efficacy 
of the ANN technique in explaining frequent dispersion complexities in urban 
areas. 

The book is very useful for hardcore professionals and researchers working in 
problems associated with urban air pollution management and control.  

 

direction, and vehicle wake are involved.  
sion characteristics including the arbitrary variations in the wind speed, wind
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environmental systems. VP modelling involves deterministic and/or stochastic 
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1 Introduction 

The expansion of industries, growth of cities and concentrated human 
activities are leading to alarming increase in air pollution levels in 
almost all metro cities of the world [1]. Vehicular, industrial and 
domestic sources are major anthropogenic categories causing emis-
sion of air pollutants into the environment. In recent years, air pollu-
tion from industrial and domestic sources has markedly decreased 
due to passage of various acts promulgated by different governments 
in most of the countries. However, a substantial growth of motorized 
traffic over the years has increased the air pollution levels in urban 
centers [2]. An investigation by Mage et al. [3] have pointed out that 
motor traffic is a major source of air pollution in mega-cities with a 
population of over 10 million1. In last five decades, the global vehi-
cle fleet has already grown ten fold and estimated to further double 
in next 20 to 30 years [5]. Much of the expected growth in vehicle 
numbers is likely to occur in the developing countries [3] with more 
people driving more vehicles over greater distances and for longer 
duration; and exposing larger number of people to elevated concen-
tration of ambient air pollutants for longer period causing adverse 
health effects [6]. 

 
1 Kretzchmar [4] indicated that in the year 1990, already 12 urban cities had population ex-
ceeding 10 million, and estimated to double over the next ten years-seventeen of twenty 
four mega-cities will be in developing countries. By the year 2030, developing country cit-
ies are expected to grow by 160 percent. 

M. Khare and S.M. Shiva Nagendra: Introduction, Artificial Neural Networks in Vehicular Pollution 
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1.1 Air Pollution Definition 

Many definitions have been proposed to explain the air pollution. In 
general, air pollution may be defined as the presence in the outdoor 
atmosphere of one or more contaminants or combinations thereof in 
such quantities and of such duration as may be or may tend to be 
injurious to human, plant, or animal life, or property or reasonably 
interfere with the enjoyment of life or the environment [7]. 

1.1.1 Composition of Atmosphere 

The composition of dry atmospheric air up to a height of 50 km is 
given in Table 1. In addition, air also consists of 1 to 3 percent (vol-
ume/volume) water vapor and tracers of sulfur dioxide (SO2), for-
maldehyde (HCHO), iodine (I), sodium chloride (NaCl), ammonia 
(NH3), carbon monoxide (CO), dust and pollen.  

 
Table 1 Compositions of dry atmospheric air.  

Chemical compound Concentration 
(ppm)a 

Concentration 
(μg/m3)b 

Nitrogen  (N2) 780,000 8.95 x 108 

Oxygen (O2) 209,400 2.74 x 108 

Argon (Ar)     9,300 1.52 x107 

Carbon dioxide (CO2)         315        5.67 x 105 

Neon (Ne)          18        1.49 x 104 

Helium (He)              5.2        8.50 x 102 

Methane (CH4)             1.2        7.87 x 102 

Krypton (Kr)             1.0        3.43 x 103 

Hydrogen (H2)             0.5        4.13 x 101 

Xenon (Xe)              0.08        4.29 x 102 

Nitrous oxide (N2O)             0.5        9.00 x 102 

Ozone (O3)       0.01-0.04 1.96 x 101 –7.84 x 101 

a parts per million;  b micrograms per cubic meter  
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1.2 Air Pollution Problems  

Air pollution problem was first experienced in the year 1272 in Eng-
land. King Edward I, enforced law prohibiting the use of sea-coal in 
furnaces. In 1873, a fog in London reported death of 268 people due 
to bronchitis problems [7]. Later, during 19th century, a number of 
air pollution related problems occurred. In December 1930, a heavy 
industrialized sector of the Muse Valley in Belgium, experienced a 
severe three day fog resulting into death of 60 persons. In January 
1931, 592 people died in Manchester and Salford area of England 
due to thick fog hovering over the city for nine days. In 1948, in 
Donora, Pennsylvania, a small town dominated by steel and chemi-
cal plants in the USA, about 6000 inhabitants fell sick due to thick 
fog persisted for four days. A major air pollution disaster hit the 
London city in December 1952. A thick fog lasted for ten days re-
sulting into death of 4000 people due to asphyxiation. In July 1976, 
sudden release of the dioxin due to reactor explosion in Seveso, Italy 
resulted into illness of 187 people. Recently, in December, 1984, re-
lease of 30 tones of deadly methyl isocynate gas from storage tanks 
due to failure of vent scrubber system in Bhopal, India, killed 2500 
persons and severely affected the health of more than one lakh peo-
ple in vicinity of the city [7, 8, 9].  These ‘episodes’ are mainly 
caused from ‘point/area’ sources favored by worse meteorological 
conditions. However, rapid urbanization of urban regions in last two 
decades resulted into their exponential growth in almost all over the 
world. Due to this many urban centers have become ‘hot-spots’ ex-
periencing frequent ‘exceedance’ in pollutant concentrations. Motor-
ized traffic is one of the major causes of deteriorating air quality in 
such urban centers. 

Several studies in the past have been carried out investigating the 
fate of vehicular pollution in such ‘hot-spots’. Organisation for Eco-
nomic Cooperation and Development (OECD) describes the regional 
and global impacts of vehicular emissions, with more emphasis on 
impact of vehicular pollution on local urban air quality [10]. A re-
view of road transport emissions and their impact on the environ-
ment at all scales from local to global has been reported in Faiz [11]. 

 
The Royal Commission on Environmental Pollution has published a 
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comprehensive report on environmental impact of vehicular pollu-
tion [12]. Joumard [13] has described the application of end-of-pipe 
technology for the abatement of vehicular pollution.  Recently, Col-
vile et al. [14] have reviewed impact of vehicular pollution on hu-
man health as well as tropospheric ozone productions.   

1.3 Air Pollution Sources 

The sources of air pollution are broadly classified into two catego-
ries, namely, natural and anthropogenic sources. Volcanic erup-
tions, forest fires, dust storms are few examples of natural sources. 
Anthropogenic sources consist of stationary and non-stationary 
(moving) sources. Stationary sources are mainly industries and non-
stationary sources are mainly transport. Further, the stationary 
sources are termed as point sources (single industry) and area 
sources (clusture of point sources and urban homes). The non-
stationary sources are mainly vehicles (line sources) and other 
transport means e.g., aeroplanes and railways. 

1.3.1 Point Source Emissions 

The modelling of point source emission uses Gaussian equation to 
estimate and predict the spatial and temporal dispersion of air pol-
lutants [8].      

1.3.2 Area Source Emissions  

An area source is a two-dimensional structure with a limited vertical 
height. The fundamental approach to developing a diffusion model 
for area sources is to apply conservation of mass for a particular pol-
lutant with appropriate boundary conditions [15]. The simplest area 
source model is the BOX model [16]. The pollutant is assumed to be 
completely mixed within a single box which covers the city and ex-
tends upward to the mixing height2. 
 

2 The mixing height is the height above which pollutants do not rise due to temperature pro-
file of the atmosphere. 
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The vehicular pollution dispersion from roadways is modeled as line 
source or series of point sources. The line source approximation in-
volves solving an integral equation along the specified line, which 
results in greater computational requirement than the approximation 
as a series of point sources. However, in both cases, the estimates of 
emission concentration are based on Gaussian model formulation 
[17].  

1.4 Urban Air Pollution Control Strategies  

Urban air pollution control has two major aspects-‘strategic’ and 
‘tactical’. The former is the long-term reduction of pollution levels 
at all scales of the problem from ‘local’ to ‘global’. Long-term 
strategies are developed by setting goals for air quality improvement 
for 5, 10 or 15 years ahead and plans are made to achieve the objec-
tives. On the contrary, the ‘tactical’ approach aims at prevention and 
control of ‘episodes’ to prevent an impending disaster. The duration 
of such ‘episodes’ usually varies from 36 hours to 3 or 4 days [8].  

1.5 Modelling Tools – Conventional and Soft 
Computational Approach Including ANN 

The conventional Gaussian based models are best suitable to predict 
long-term average concentrations with frequency distribution up to 
90 percentiles. These models are deterministic models of ‘causal’ in 
nature. However, their predictive performance is considerably re-
duced when there exist complexities in temporal and spatial relation-
ship between dependent and independent variables. One of the ap-
plication domains where the Gaussian based models terribly fail in 
describing the dispersion phenomena is the urban air sheds. Urban 
air sheds consist of one or more air quality control regions(AQCRs)3  

 

3 It may be defined as fixed boundaries / areas where local authorities are en-
trusted with the responsibility for assessing and reviewing the local air quality in 
conformity with the national ambient air quality standards (NAAQS). 

1.3.3 Line Source Emissions 
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wherein pollutant dispersion is affected by complex traffic move-
ments, road geometry, meteorological conditions and roughness 
elements. Statistical based models comparatively perform better than 
the deterministic Gaussian based models in such urban air sheds. 
These models use various statistical theories in estimating/ predict-
ing pollutant concentrations relating time series data on traffic and 
meteorology. However, the variation in time series data is complex 
and non-linear and requires prior assumptions concerning their dis-
tribution. As a result statistical based models ‘underperform’ when 
applied in complex urban air sheds [18]. Artificial neural network 
based models overcome these shortcomings to some extent because 
of their special properties like, self-correction, self-learning and par-
allel processing. As a result these models are able to describe the 
complex non-linear dispersion phenomena in such urban air sheds 
and accurately predict the ‘exceedances’ in pollutant concentrations. 



2 Vehicular Pollution  

The automobile discovery satisfactorily combines a human desire 
for rapid transportation with the desire for independence and flexi-
bility. However, rapid proliferation of motor vehicles, in both devel-
oped and developing country, poses a serious threat to the urban air 
quality [3]. This chapter provides an overview of vehicular pollution 
scenario in metro cities including sources of vehicular pollution, 
types of vehicular pollutants and their health effects. The chapter 
also describes the principles of local air quality management, the 
ambient air quality standards for urban air sheds and overview of 
vehicular pollution models.  

2.1 General 

Air pollution from motor vehicles has become a major concern in 
rapidly urbanizing regions of the world because of increase in num-
ber of vehicles in use and the distance traveled by each vehicle each 
year [19]. Higher incomes, mobility, expansion of cities, and prolif-
eration of employment centers have increased the demand for motor-
ized transport, resulting into a disproportionately high concentration 
of vehicles in urban centers [20].  In last five decades worldwide, the 
number of vehicles is growing faster than the global population e.g. 
about 5 % per year compared to 2 %, for population. Over last 30 
years, total global vehicular population has touched 700 millions, 
which approximately consumes 34 % of total oil produced in the 
world [21, 22]. 

 
M. Khare and S.M. Shiva Nagendra: Vehicular Pollution, Artificial Neural Networks in Vehicular 
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2.2 Sources of Vehicular Pollution  

Vehicular pollution sources can be classified into four categories: (i) 
exhaust emissions, (ii) evaporative emissions, (iii) refueling losses 
and (iv) crankcase losses. Out of the four categories, the exhaust 
emissions account for about 70 % of the vehicular pollution; 
whereas, the crankcase emissions account for about 20 % and evapo-
ration from tank and carburetor accounts for remaining part of the 
pollution percentage [23]. 

Air pollution from vehicles largely results from combustion of 
fuel. CO is a product of incomplete combustion. Most hydrocarbons 
(HCs) are combusted completely, forming carbon dioxide (CO2) and 
water; some remain unburned or react to form new HCs. Oxides of 
nitrogen (NOx) is produced from oxidation of nitrogen, a reaction 
that is enhanced at higher temperatures. Diesel, consisting of sulfur 
impurities, leads to emission of sulphur dioxide (SO2). Besides, par-
ticulate matter (PM) of less than 10 micron diameter (PM10) is one 
of the major constituents in diesel engines exhausts [24]. Other pol-
lution sources include evaporative emissions of HCs from engines 
and fuel systems when automobiles are in stationary position. These 
emissions are classified as ‘diurnal’ or ‘breathing losses’, ‘transitory 
trip-end’ or ‘hot soak losses’ and losses from porous fuel tubes. 
Evaporative emissions from sources other than the tailpipe, are re-
ferred as ‘running loss emissions’ when the engine is in operation. 
Crankcase emissions of HCs, or ‘blow-by losses’, originate from 
disabled or disconnected hoses [25]. The types of pollutants emitted 
by petrol and diesel engines are similar but vary in proportion due to 
difference in the mode of operation of engines. Table 2.1 shows that 
the exhaust emission of diesel engines contains significantly lower 
concentrations of pollutants than the exhaust emissions from petrol 
engines. 

Motor vehicles are categorized into following three groups, based 
on working principle of the engine e.g. (i) vehicles with spark igni-
tion engines using petrol, (ii) vehicles with two stroke ignition en-
gines using lubricating oil mixed petrol (two or three wheelers) and 
(iii) vehicles with compression ignition engines using diesel. In the 
first type, complete combustion does not take place and so pollutants 
are produced even at stoichiometric values of air/fuel ratio (A/F) 
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=14.5. This is due to the fact that spark induced reaction is not fully 
propagated inside the piston chamber. In the 4-stroke cycle petrol 
engine, the A/F ratio and operating temperature are low. As a result, 
substantial quantities of unburnt HCs and CO are emitted with low 
quantities of NOx. The second types of engines, i.e. the two and 
three wheelers (being petrol driven), emit large quantities of unburnt 
HCs, CO and PM. The third type, i.e. in the diesel engines, due to 
high A/F ratio and operating temperature, the concentration of NOx 
generally remains higher in the exhaust emissions. Since, diesel has 
low vapor pressure, the emission of fine carbon soot particles is also 
considerably high. Relative incidences of pollutants in exhaust emis-
sions by vehicle type have been given in Table 2.2. 

 
Table 2.1 Relative composition of exhaust gases (concentrations in ppmc/volume). 

Engine    Pollutants            Idling    Acceleration       Deceleration       Cruising 
type 
Petrol   Carbon monoxide           69000 29000          39000     27000 
                 Hydrocarbon   5300   1600          10000       1000  
                 Nitrogen oxides      30     1020   20         650  
                 Aldehydes                    30       20              290           10  

 
Diesel  Carbon monoxide            Trace   1000           Trace              Trace 
                Hydrocarbon    400     200              300         100     
                Nitrogen oxides                   60     350                30         240  
                Aldehydes      10       20   30            10  
cppm = parts per million.  To convert from units of ppm (volume) to μg/m3 under ambient 

3 

Source: [26].  
 

Table 2.2 Relative incidences of pollutants in exhaust emissions by different vehicle 
classes (Per 100 % of each pollutant). 

Vehicle class                                                  Pollutant 
    CO           NOx  HC 
Two and three wheelers 46        Negligible  70.0 

Cars (petrol driven)  25  5.0  8.0 

Buses and goods vehicles 29  94  22.0 
(diesel driven)  
 

Source: [26].  

conditions is given by: 1 ppm (volume) pollutant = (40.9 x molecular weight) μg/m   
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2.3 Types of Vehicular Pollutants 

Common vehicular pollutants in urban environment are CO, NOx, 
PM10, SO2, Volatile organic compounds (VOC’s) and Lead (Pb). A 
substantial quantity of CO2, which is a greenhouse gas, is also re-
leased [25]. In the following paragraphs (sections 2.3.1 to 2.3.6), 
formation of vehicular pollutants and their related statistics have 
been discussed.  

2.3.1 Carbon Monoxide 

CO is colorless, odorless and stable gas. It is produced due to in-
complete combustion of fuel in motor vehicles.  The lifetime of CO 
is between 2 to 4 months in the atmosphere [27]. Worldwide anthro-
pogenic CO emissions are estimated at 350 million tons, 59 % of 
which are contributed by the transport sector, 39 % by the residential 
and commercial sectors, and 2 % by the industrial and power sec-
tors.  In developing countries, transport sector accounts for 53 % of 
CO emissions [24]. These emissions can be reduced by increasing 
the A/F ratio, but with the risk of increasing the formation of NOx. 
Most effective reduction of CO can be achieved by using catalytic 
converters [25]. 

2.3.2 Nitrogen Oxides 

Nitric oxides (NO and NO2) are the important pollutants among the 
six NOx compounds. NOx is formed by oxidation of atmospheric ni-
trogen during combustion. About 90 % of these emissions are in the 
form of NO. NO is produced in the vehicle engine by combustion of 
nitrogen at high temperatures. NO2, formed by oxidation of NO, has 
a reddish brown color and pungent odor.  In the atmosphere, it is in-
volved in a series of reactions (in presence of ultraviolet radiation) 
that produce photochemical ‘smog’. It may also react with moisture 
in the air to form nitric acid (HNO3) aerosols i.e. the acid mist. In the 
lower atmosphere (troposphere), NO2 forms ozone (O3) by reacting 
with HCs. Worldwide anthropogenic NOx emissions are estimated at 
93 million tons, 43 % of which are contributed by transport sector. 
In developing countries, the transport sector accounts for 49 % of 
NOx emissions [10]. NOx emissions can be reduced by optimization 
of combustion process or by using catalytic converters [25].  
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2.3.3 Volatile Organic Compounds 

VOC’s include variety of HC compounds that are generated due to 
incomplete combustion of fuels or formed during combustion process. 
Chemically, HC’s are defined as compounds consisting of carbon 
and hydrogen. In the urban air, most important VOC’s are benzene, 
a series of aldehydes and polyaromatic hydrocarbons (PAH’s) [25]. 
About 55 % of HC emissions from gasoline fueled vehicles with no 
emission controls, originate in the exhaust system. Out of this 55 %, 
13 to 25 % come from the crankcase blow-by, and 20 to 32 % 
evaporate in the fuel lines, fuel tank and carburetor. Methane con-
sists of 5 to 15 % of HC emission from vehicles not equipped with 
catalytic converters and up to 40 % of exhaust HC from catalyst 
equipped vehicles. This is because the catalysts are less effective in 
oxidizing methane than other HC’s [24,28]. Benzene is an aromatic 
HC present in gasoline. About 85 to 90 % of benzene emissions 
come from exhaust and the remainder comes directly from gasoline 
evaporation and through distribution losses [11]. Benzene in exhaust 
originates both from partial combustion of other aromatic HC com-
pounds in gasoline such as toluene, and xylene. Benzene consists 63 
to 85 % of the toxic emissions in the exhaust from gasoline fueled 
cars equipped with fuel injected engines and 36 to 65 % from older 
model cars equipped with carburetor engines and catalytic convert-
ers [29]. Controlled gasoline fueled cars have higher emissions of 
formaldehyde than acetaldehyde. Uncontrolled diesel fueled vehicles 
emit 1-2 grams of aldehyde per liter [30]. PAH’s are emitted at a 
higher rate in the exhaust of diesel fueled vehicles than gasoline 
fueled. In developed countries, motor vehicles forms about 85 % of 
total VOC emissions [24].  

SO2 is a classical air pollutant associated with fuel consisting of sul-
phur impurities. SO2 is a stable, non-flammable, non-explosive, col-
orless gas that can be detected by taste at concentrations as low as 
1,000 �g/m3 or by smell at concentrations above 10,000 �g/m3 [24]. 
Diesel vehicles are main sources for SO2 emissions. SO2 emissions 
can successfully be reduced using fuels with low sulphur content. 
In recent years, the SO2 concentrations are negligible in vehicle 

2.3 Types of Vehicular Pollutants 

2.3.4 Sulphur Dioxide  
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exhausts as a result of low sulphur diesel fuel used in the transport 
sector [23].  

2.3.5 Particulate Matter  

In general, the term ‘particulate’ refers to all atmospheric substances 
that are not gases. They can be suspended droplets or solid particles 
or mixture of the two (aerosol).  Particulates can be composed of in-
ert or extremely reactive materials ranging in size from 100 �m 
down to 0.1 �m and less. Particles, in the range 1-10 �m (PM10) 
have measurable settling velocities but are readily stirred by air 
movements; whereas particles of size 0.1-1.0 �m (PM1) have small 
settling velocity [8].  Gasoline vehicles have lower PM emission rate 
than diesel fueled vehicles. PM emissions from gasoline fueled ve-
hicle result from unburnt lubricant oil, and ash forming fuel and oil 
additives [11]. PM emitted by diesel-fueled vehicles consists of soot, 
formed during combustion and heavy HC, condensed or adsorbed, 
on the soot and sulfates. These emissions contain PAH. In older die-
sel fueled vehicles, combustion of PM emission is between 40 to 
80%. However, with the advance of emission control measures in 
engines, the contribution of soot has been reduced considerably. 
Heavy HC, referred to as the soluble organic fraction of PM, origi-
nates from lubricating oil, unburnt fuel and compounds formed dur-
ing combustion [31]. Black smoke, associated with soot portion of 
the PM, emitted by diesel-fueled vehicles is caused by oxygen defi-
ciency during fuel combustion or expansion phase. Blue, gray and 
white smokes are caused by the condensed HC in the exhaust of die-
sel-fueled vehicles. Blue or gray smoke results from vaporized lu-
bricating oil and white smoke occurs during engine startup in cold 
weather. Diesel fuel additives such as barium, calcium, or magne-
sium reduce smoke emissions, but increase sulfate emissions.  These 
additives may also increase PAH emissions [24].  

2.3.6 Lead  

Motor vehicles fueled with leaded gasoline are the main sources of 
Pb in air. Tetraethyl lead is added to gasoline to increase the fuel’s 
octane number, which improves the antiknock characteristics of the 



fuel in spark ignition engines. About 70 to 75 % of this Pb is trans-
formed into inorganic Pb upon combustion, and emitted to the at-
mosphere through the exhaust pipe along with 1 % of the organic Pb 
that passes through the engine [24]. The rest of Pb remains trapped 
within the exhaust system. Organic Pb emissions usually occur as 
vapor, while inorganic Pb is emitted as PM, often less than 1 �m in 
size. Although Pb in gasoline accounts for less than 10 % of all re-
fined Pb production, about 80 to 90 % of Pb in global ambient air 
originates from combustion of leaded gasoline [32]. In recent years, 
Pb has been phased out in most of the countries. 

2.4 

Pollutants emitted by motor vehicles have a number of adverse ef-
fects on human health. Inhalation is the main route of exposure to 
pollutants originating from motor vehicle emissions. Other exposure 
routes are - drinking water contamination, food contamination and 
absorption through skin. Exposure by inhalation directly affects res-
piratory, nervous and cardiovascular systems of humans, resulting in 
impaired pulmonary functions, sickness, and even death [6]. 

CO absorbed through the lungs reduces the body’s capacity to 
transport available oxygen to the tissues. CO, bonds with hemoglo-
bin (COHb), lowers the oxygen level in the blood. An exposure of 
45 �g/m3 of CO for more than two hours adversely affects a per-
son’s ability to make judgments. Two to four hours of exposure at 
200 �g/m3 raises the COHb level in the blood to 10 to 30 % and thus 
increases the possibility of headaches. One-hour exposure to 1,000 
�g/m3 of CO raises the COHb level in blood to more than 30 % and 
causes a rapid increase in pulse rate leading to coma and convul-
sions. One to two hours of exposure at 1, 830 �g/m3 results in 40 % 
COHb in blood, which may cause death [33]. 

NO2 is an irritating gas that is absorbed into the mucous membrane 
of the respiratory tract. The most adverse health effect linked to NO2 
occurs at the junction of the lungs. The upper airways are less affected 
because NO2 is not very soluble in aqueous surfaces. Exposure of 
NO2 is linked with increased susceptibility to respiratory infection, 
increased airway resistance in asthmatics and decreased pulmonary 
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function. Short-term exposure to NO2 has been associated with ill-
ness in children (cough, running nose and sore throat, are among the 
most common), as well as increased sensitivity to urban dust and 
pollen. Health effects of occupational exposure of NO2 range from 
inflammation of mucous membrane of the tracheobronchial tree to 
bronchitis, bronchopneumonia and acute pulmonary edema [34].  
Lung function is affected by 30-minutes exposure to NO2 concentra-
tion of 560 �g/m3 while exercising, 940 �g/m3 in asthmatic people 
and above 1, 300 �g/m3 for a 10-15 minute exposure in healthy 
people [34]. In one of these studies, exposure to a daily mean NO2 
concentration of 244 �g/m3 is associated with sore throat among 
adults [35]. 

PAH’s, absorbed in the lungs and intestines and metabolized in the 
human body, are mutagenic and carcinogenic. It is estimated that 9 of 
100, 000 people exposed to 1 �g/m3 of benzo (a) pyrene, over a life-
time, may develop cancer. Aldehydes are absorbed in the respiratory 
and gastrointestinal tracts and metabolized. Adverse health effects 
from aldehyde include eye and nose irritation (at a concentration of 
0.06 mg/m3), irritation of mucous membrane and alteration in respira-
tion (at concentration of 0.12 mg/m3), coughing, nausea and shortness 
of breathe. Occupational exposure of formaldehyde is associated with 
the risk of cancer [34].   

SO2, is associated with reduced lung function and increased risk 
of mortality and morbidity. Adverse health effects of SO2 include 
coughing, phlegm, chest discomfort, and bronchitis [25]. WHO [36] 
has determined that the effects of 24-hour human exposure to SO2 
include mortality at ambient concentrations above 500 �g/m3 and 
increased acute respiratory morbidity at ambient concentrations 
above 250 �g/m3. Annual exposure to SO2 causes increased respira-
tory symptoms or illness at ambient concentrations above 100 
�g/m3.  

PM, greater than 10 �m in diameter is deposited in the extra tho-
racic part of the respiratory tract through nasal breathing, while the 
2.5 �m to 10 �m fraction (PM10) is deposited near the fine airways. 
PM2.5 (particles in range 2.5-1.0 �m) is a larger health concern be-
cause it can evade the lung tissue, where it can remain imbedded for 
years, or in the case of soluble particles, be absorbed into bloodstream 
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[8,37]. Based on 24-hour exposure, smoke at 250 �g/m3 is associated 
with increased acute respiratory morbidity among adults, and total 
suspended particulate (TSP) at 180 �g/m3 levels and PM10 at 110 
�g/m3 with decrements in lung functions among children. Increased 
respiratory symptoms or illness would be expected at an annul mean 
exposure to 100 �g/m3 of smoke and decrements in lung function 
would be expected at an annual mean exposure to 180 �g/m3 of TSP 
[36]. However, more recent studies suggest that health may be af-
fected even at lower concentrations [34]. 

Pb in ambient air is in the form of tiny particles with an aerody-
namic diameter of less than 10 microns (PM10). Ambient air also 
contains organic lead compounds as gases. The proportion of lead 
absorbed from gastrointestinal tract is about 10 to 15 % for adults 
and up to 50 % for children. Pb adsorption increases in diets with 
low levels of calcium, vitamin D, iron and zinc. Pb, absorbed in the 
human body, is distributed among bones, teeth, blood and soft tissues. 
Organic Pb is mainly absorbed by the lungs through the respiratory 
tract and also through skin [34]. Based on a review of epidemiologi-
cal studies, an increase of 1 �g/m3 in Pb concentrations in ambient 
air has been associated with an increase in blood Pb levels of 0.3 
�g/dl to 0.5 �g/dl [38]. Adverse effects of Pb exposure have been 
observed in small children, women of reproductive age, and male 
adults. Newborns and young children are most vulnerable to Pb 
exposure.  

Figure 2.1 shows the pathway from vehicular pollution generation 
to health effect. Table 2.3 describes, in brief, major health effects 
from vehicular pollutants. 
 

2.5 Meteorological and Topographical Factors Affecting  
Vehicular Pollution Dispersion in Urban Air Sheds 

The dispersion and transportation of vehicular pollution in an urban 
air shed are mainly controlled by its meteorological and topographi-
cal characteristics. The primary meteorological parameters affecting 
the vehicular pollution dispersion are wind speed, wind direction, 
mixing height and atmospheric stability. Wind speed is directly in-
fluenced by topography of the urban area. It increases with height.  
 

2.5 Meteorological and Topographical Factors Affecting Vehicular Pollution Dispersion
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Fig. 2.1. Pathway from transport emission to health effect.  
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Table 2.3 Health effects of vehicular pollutants. 

Pollutants   Health effects 

CO Reduces delivery of oxygen to the body, which is particularly seri-
ous for those with cardiovascular disease, causes impairment of 
function in healthy people.  

 
NO2 In high concentrations, irritates lungs and lowers resistance to res-

piratory infection; an important precursor to ozone and acid pre-
cipitation which can damage sensitive ecosystems 

 
VOC Results in ozone, which can damage lung tissue, reduces lung func-

tion, and causes irritation (these effects occur even at low levels in 
healthy people who engage in moderate exercise); also causes eco-
system degradation, mainly through damaging foliage.  

 
PM10 In high concentrations aggravates existing respiratory and cardio-

vascular disease, alters the immune system, can be carcinogenic, 
and causes lung damage. 

 
SO2   Major contributor to acid rain; degrades lung function and lower 

lung defenses while aggravating existing respiratory disease 
 
Lead Accumulates in the body and affects kidney, liver and nervous sys-

tem; causes neurological impairments. 
Source: [25]. 
 
A number of formulations describe the variation of wind speed in 
the surface boundary layer. However, Power law profile is frequently 
used. The initial direction of movement of vehicular pollution in ur-
ban roadways is determined by the wind direction. It is sensitive pa-
rameter. A shift in wind direction of as little as 5 degree causes 10 % 
decrease in vehicular pollution concentrations at the receptor under 
stable conditions, about 50 % under neutral conditions and  90 % 
under stable conditions. Wind rose diagram provides details regard-
ing prevailing wind speed and direction. Mixing height is another 
important parameter that controls vertical dispersion of the vehicular 
pollution. Mixing height is the height above the earth’s surface to 
which released pollutants extends, primarily due the atmospheric 
turbulence. The most important mixing process in the atmosphere, 
which causes the dilution of air pollutants, is called eddy diffusion. 
The atmospheric eddies mixes the parcels of polluted air with 

2.5 Meteorological and Topographical Factors Affecting Vehicular Pollution Dispersion
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relatively unpolluted air. Eddy diffusion is most efficient when the 
size of eddy is similar to that of the pollutant puff. Small size eddies 
are effective in diluting the edges of the pollutant mass. However, 
larger eddies are mainly responsible for the transport (advection) of 
polluted air mass as a whole. The size of eddies and its effect on the 
vertical expansion of rising air parcels depend on vertical tempera-
ture structure. There are two mechanisms by which eddies are 
formed in the atmosphere, one, heating from earth surfaces (solar 
radiation) and other, the wind shear. The turbulence structure and 
wind speed in the atmosphere are used in defining its dispersive abil-
ity (stability). The amount of turbulence in the atmosphere is used to 
categorize the stability classes. The most widely used category is the 
Pasquill-Gifford (PG) stability classes i.e. A, B, C, D, E and F. Class 
A denotes the most unstable or turbulent condition and class F de-
notes the most stable or least turbulent conditions. The atmospheric 
turbulence is affected by many factors, such as wind flows over 
rough terrain, trees or buildings (roughness).                 

2.6 Ambient Air Quality Monitoring  

Ambient air quality monitoring involves the measurement of pollut-
ants in the atmosphere. Ambient air quality monitoring in urban areas 
may have number of objectives. Foremost, is to generate information 
on the spatial and temporal distribution of air pollution [8]. Monitored 
data are then compared against national ambient air quality standards 
(NAAQS) to identify potential risks to human health or to the envi-
ronment. WHO studies [5] have shown high pollutant concentration at 
‘hot spots’ (central business district) in metro cities during certain 
periods of the day (i.e. peak traffic flow during morning and evening 
hours). These data assist policy makers to implement and evaluate the 
effectiveness of the control measures like formulation of the hazard 
warning system which initiates necessary preventive measures against 
health related risks when pollutant concentrations are above the 
NAAQS [39].  



2.7 Local Air Quality Management  

‘Episodes’ of poor air quality in cities indicate a need of local air 
quality management system (LAQMS) in order to protect humans 
and materials from adverse effects of air pollution [39]. There are 
several distinct strategies to control the air quality, which can be 
used in isolation or as a package to provide a response to national or 

ity may be viewed as a function of four variables: meteorology and 
climatology, geography and topography, urban form and emission 
source density and intensity. Of these variables, the one, most di-
rectly amenable to human managerial intervention, is that of emis-
sions. The density of emission sources and the intensity of releases 
from individual sources are affected by variety of direct and indirect 
actions. Therefore, any air quality management plan has to address 
the density and intensity of emission sources, if the desired out-
comes are to be achieved. Such a response requires the management 
of urban environment and the processes affecting its development. 
Four key principles of air quality management are emissions, im-
pacts, cost-benefit analysis and controls [41].  

The general concept of air quality management may be defined as 
“the application of a systematic approach to the control of air quality 
issues” [42]. A fuller definition would need to incorporate aspects of 
integration, cooperation and communication as a system designed to 
consider air quality in a holistic way. Griffin [43] expresses air qual-
ity management as comprising of five continuous steps: definition, 
planning, control, implementation and evaluation. These are trans-
lated into air quality management terms as shown in Figure 2.2. 

 

 19 2.7 Local Air Quality Management     

regional requirements and philosophies [40]. Theoretically, air qual-
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An air quality management plan provides a basis for necessary liai-

son between different actors and agencies involved, both directly and 
indirectly in determining the local air quality. It may be defined as 
“the application of a systematic approach to the control of air quality 
problems and this represents one mechanism where by integration 
could be achieved”. A schematic representation of the functions and 
processes involved in a theoretical air quality management plan is 
shown in Figure 2.3. The framework in Figure 2.3 incorporates all 
necessary functionality of an air quality management plan as de-
scribed below [41].  

Fig. 2.2. Concepts of air quality management given by Griffin [43]. 
Source: [39] 
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(i) The plan needs to be flexible to allow modifications 

for new knowledge about emissions or concentrations 
and yet for a suitable framework within which all 
groups coexist. 

 

Fig. 2.3. A hypothetical frame work far an air quality management plan.  
Source: [39]   
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(ii) An air quality management plan at the local scale 
would then ideally be a tier of a regional plan, which 
in turn, may be a part of a national plan. 

 
(iii) An air quality management plan provides opportunity 

for setting local air quality standards or guidelines, 
new possibilities for public information and educa-
tion and new mechanisms for the integration of a 
wide range of local authority and national policies. 

 
(iv) An air quality management plan is a set of procedures 

for dealing with the occasional occurrence of very 
poor air quality. 

 
The air quality management plan is, therefore, assessed in relation 

to a number of NAAQS within which air quality must be main-
tained. An area where it is likely to exceed the NAAQS, an AQCR is 
created wherein, an action plan is developed by which air quality is 
brought within the NAAQS. 

 

2.8 Options for Control of Vehicular Pollution  

Rao [9] has discussed the following options to control the vehicular 
pollution: 

 
(i) Reduction in amount of pollutants formed during 

combustion by suitable modifications in the internal 
combustion engine. 

(ii) Development of exhaust system reactors that will 
complete the combustion process and change poten-
tial pollutants into more acceptable materials. 

(iii) Development of alternative fuels that may produce 
low concentration of pollutants upon combustion. 

(iv) Replacement of internal combustion engine with low 
pollution engines. 

(v) Introduction of an effective inspection and mainte-
nance (I & M) programme. 

(vi) Phasing out of old vehicles. 



2.10 Overview of Vehicular Pollution Modelling       23 

2.9 Ambient Air Quality Standards  

The ambient air quality is a dynamic and complex environmental 
phenomenon exhibiting relations with time and space. Ambient air 
quality standards are set to protect society and the environment from 
the harmful effects of air pollutants. They are designed to achieve a 
given desirable level of air quality, and frequently serve as a refer-
ence base for other standards such as emission standards and fuel 
quality standards [44]. Ambient air quality standards are of two 
types e.g. primary and secondary. Primary ambient air quality stan-
dards are directed towards the protection of the most vulnerable 
groups of population, mainly the young, the old and people in poor 
health. Short-term standards and guidelines are established to control 
acute effects that result when high levels of pollution persist for 
short periods. Typical short-term standards are for 1-, 8- and 24-hour 
average of pollutant concentrations. Long-term standards and guide-
lines are designed to protect human health from regular exposure to 
high levels of pollution over a long period of time e.g. one year or 
more [5]. 

Secondary ambient air quality standards are established for non-
health impacts such as those involving soil crops, vegetations, man 
made materials, animals, wildlife, atmospheric visibility, property 
damage, transportation hazards and effects on the economy and per-
sonal comfort [45]. Its evaluation is the fundamental requirement 
towards assessment of the nature and extent of air quality variations.  

2.10 Overview of Vehicular Pollution Modelling 

There are two general approaches used in vehicular pollution modelling-
deterministic and statistical [46]. Deterministic models calculate the 
pollutant concentration from an emission inventory and meteorologi-
cal variables according to the solutions of differential equations, 
which represent the relevant physical processes. The models are de-
veloped with set of assumptions while deriving solution to differential 
equation. Deterministic models are most suitable for long term plan-
ning decisions [46, 47]. For vehicular pollution related episodes, char-
acterized by fast dynamics, these models perform unsatisfactorily 
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[48, 49]. In contrast to deterministic models, statistical models are 
empirical models. They estimate the pollutant concentration by 
statistical equation, describing the relationship between predictors 
(meteorological and traffic parameters) and predictant (pollutant 
concentrations). In recent past, time series analysis technique, popu-
larly known as Box-Jenkins’ models [50, 51, 52] have widely been 
used to describe the dispersion of air pollutants on the local scale 
[17, 53, 54]. Previous studies [55, 56, 57, 58, 59] have indicated that 
the data of ambient air quality are stochastic time series, thereby 
making it possible to make a short term forecast on the basis of his-
torical data. However, when applying the conventional time series 
model to the ambient air pollution forecast, the pollutant level varia-
tions are generally not simple autoregressive or moving average 
models [60]. In that case, the analyst has to employ statistical graphs 
of the autocorrelation function (ACF) and partial autocorrelation 
function (PACF) to identify an appropriate time series model. In the 
model identification stage, the resulting model quality frequently 
relies on individual’s experience and knowledge of the time series 
statistics [61].  

To overcome these shortcomings, the air quality modelers have 
used alternative techniques called “Artificial Neural Network 
(ANN)”. The ANN approach is a promising alternative substitute to 
conventional time series models for forecasting vehicular pollution 
because of their special properties like, self-correction, self-learning 
and parallel processing [17, 61, 62].  
 
 

 
 
 
 
 
 



3 Artificial Neutral Networks 

3.1 General 

Building intelligent systems that can model human behavior has cap-
tured the attention of the world in recent past. So, it is not surprising 
that a technology such as neural networks has generated great inter-
est in pattern recognition. This chapter begins with a view of what 
neural networks are and why they are so appealing. A typical bio-
logical neuron is explained to understand the concept used in artifi-
cial neuron model. With this basic concept, a simple neuron model 
has been described including the fundamental elements of neural 
network, such as input, hidden and output layers and connection be-
tween the layers, types of neural network, transfer function and 
learning algorithm. 

3.2 What Artificial Neural Networks are? 

ANNs are parallel computational models comprising of densely 
interconnected adaptive processing units. These networks are fine-
grained parallel implementation of nonlinear static or dynamic 
systems [63, 64]. Neural networks are intended for modelling the 
organizational principles of the central nervous system, expecting 
that the biologically inspired computing capabilities of the ANN will 
allow the cognitive and sensory tasks to be performed more easily 
and more satisfactorily then the conventional serial processor [65]. 
The important feature of these networks is their adaptive nature, 
where ‘learning by example replaces programming’ in solving prob-
lems [66]. This feature makes such computational models very ap-
pealing in application domains where one has little or incomplete 
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understanding of the problem to be solved and training data is read-
ily available [67]. In general, neural networks can be thought of as a 
‘black box’ device that accepts inputs and produce outputs. Their 
applications are almost limitless but fall into a few simple categories 
namely data classification, modelling/forecasting and system control 
[68].  

3.3  Basic Concepts of Neural Network 

A neural network is a large-scale parallel network system consisting 
of a basic block called ‘neuron’. These neurons are inter-connected 
in single or multi layers [66, 69]. These are biologically inspired i.e. 
they are composed of elements that perform in a manner that is 
analogous to the most elementary functions of the biological neu-
rons. These elements are then organized in a way that may (or may 
not) be related to the anatomy of the brain. Despite this superficial 
resemblance, ANNs exhibit a number of brain characteristics [69]. 

A classical comparison of the information processing capabilities 
of the human and the computer is highlighted by an attempt to 
mechanize human information processing. The computer can multiply 
large numbers at high speed yet it cannot recognize unconstrained, 
speaker-independent speech [70]. Human abilities complement those 
of computer by easily recognizing speech, even when it is slurred and 
the environment is noisy. A conventional computer uses algorithm 
based program that operates serially and is controlled by a central 
processing unit, and stores information at addressed locations in 
memory. On the other hand, brain operates with highly distributed 
transformations that operate in parallel, have distributed control 
through thousands of interconnected neurons, and appear to store 
information as distributed correlation amongst the neurons [71, 72].   
         
3.3.1 Human Biological Neuron 

The human brain is made up of a vast network of computing ele-
ments called ‘neurons’, coupled with sensory receptors. The average 

 
human brain, roughly three pounds in weight and 90 cubic inches in  
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volume, is estimated to contain about 100 billion cells of various 
types. There are about 10 billion neurons in the human brain and 
remaining 90 billion cells are called ‘glial’ or ‘glue cells’, and these 
serve as support cells for the neuron [65].  The neuron is a funda-
mental unit of the biological nervous system. It is a simple process-
ing unit, which receives and processes the signal from other neuron 
through its paths called ‘dendrites’ (Figure 3.1). An activity of a 
neuron is an ‘all-or-none’ process. If the combined signal is 

 

(called axon) which splits up and connects the other neurons input 
paths through a junction referred to as a ‘synapse’. The amount of 
signals transferred, depends upon the synaptic strength of the junc-
tion which is chemical in nature. This synaptic strength is found to 
be modified during the learning process of the brain; therefore, it can 
be considered as a memory unit of each interconnection [66]. Fol-
lowing are the basic characteristics of a neural network: 

(i) It consists of simple processing units called ‘neurons’, 
which perform local computation on their input to pro-
duce an output. 

(ii) Memory and processing elements of neural network are 
collocated. 

(iii) Neural networks are trained by adjusting the connection 
weights.  

(iv) Knowledge stored in the neural network is adaptable. 

strong enough, it generates the output signal to its output path 

Fig. 3.1. Basic neurobiology of man. 
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(v) Neural networks are self-organized (arrangement of hid-
den layer neurons) during learning process. 

3.3.2 Simple Neuron Model 

McCulloch and Pitts [73] developed the first artificial neuron to 
mimic the characteristics of biological neuron. In essence, a set of 
inputs is applied, each representing the output of another neuron. 
Each input is multiplied by a corresponding weight, analogous to a 
synaptic strength, and all of the weighted inputs are then summed to 
determine activation level of the neuron. Figure 3.2 shows a simple 

 

 

Fig. 3.2. Simple neuron model first designed by McCulloch and Pitts [73]. 
 
labeled X1, X2, X3…. Xn is applied to the artificial neuron. These in-
puts collectively referred to as the vector ‘X’, corresponding to the 
signals into the synapse of a biological neuron. Each signal is multi-
plied by an associated weight W1, W2, W3,…. Wn before it is applied 
to the threshold unit (� = threshold constant). Each weight corre-
sponds to the “strength” of a single biological synaptic connection, 
collectively refereed to as vector ‘W’. The threshold unit, corre-
sponding roughly to the biological cell body, adds all of the 

neuron model designed by McCulloch and Pitts. A set of inputs 
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weighted inputs algebraically and processed by an activation func-
tion to produce the neurons output signal ‘y’ [65]. The threshold 
logic unit (TLU) computes a neuron output value ‘y’, according to 
the equation 3.1:      

3.4 History of Artificial Neural Network  

Pattern recognition is one of the reasonable methodologies for 
evaluation of a process and a sound basis for decision making. Pat-
terns are either derived from a series of several accompanying ex-
periments or they are estimate of ‘state’ variables. There are three 
main pattern recognition methods- statistical pattern recognition, 
subspace pattern recognition and fuzzy pattern recognition [74]. 

The recent progress in artificial intelligence and neural computa-
tion has been attracting much attention in the field of pattern recog-
nition. From last five decades, scientists are trying to emulate the 
real neural structure of human brain and to develop an algorithm 
equivalent to the learning process. According to Mammone [75], 
ANN was first used in the 1940’s, when McCulloch and Pitts [73] 
proposed a computational model based on a simple neuron-like logi-
cal element. Donald Hebb [76] have described a learning rule for 
adapting the connection strength of these artificial neurons, which is 
also called as famous ‘Hebbian learning rule’ or ‘Delta rule’ [66]. In 
the 1950’s and 1960’s a group of researcher have combined these 
biological and psychological insights to produce the first ANNs 
[69]. Later, Rosenblatt [77] has constructed a perceptron- an ar-
rangement of processing elements representing the nerve cells into a 
network (single layer of artificial neurons). These networks are 
applied to diverse problems such as weather prediction, electrocar-
diogram analysis, and artificial vision. Minsky and Papert [78] have 
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derived that the single layer networks when in use, are theoretically 
incapable of solving many simple problems. Nevertheless, a few 
dedicated scientists such as Jeuvo Kohonen, Stephan Grossberg and 
James Anderson continued their efforts in this field.  

In the past few years, ANN theory has been translated into appli-
cation. With four major conventions in 1987 in the field of ANNs, 
and several hundred technical papers published, the growth rate has 
been phenomenal. Werbos [79], Parker [80] and Rumelthart, Hinton 
and Williams [81] have developed independently back-propagation 
algorithm, which provided a systematic means for training multi-
layer networks.  

3.5 Artificial Neural Network Architecture  

ANN architecture includes defining the number of layers, the num-
ber of neurons in each layer, and the interconnection scheme be-
tween the neurons. Figure 3.3 shows neural network architecture for 
three-layer network with fully connected neurons of different layers. 
Selection of number of layers is controlled by training algorithm. 
Some training algorithms may require only one layer while other 
may require a minimum of three layers. For instance, back-
propagation algorithm requires an input layer, an output layer and a 
hidden layer. The number of hidden layers is selected based upon 
the problem complexity. The number of ‘neurons’ in input and out-
put layer is problem specific. The interconnections between ‘neu-
rons’ are controlled by the training algorithm and the nature of the 
problem. 
 



 

3.6  Types of Neural Networks 

ANN’s are broadly classified into ‘non –recurrent’ (feed-forward) 
and ‘recurrent’ (involving feed back) neural networks. Figure 3.4 il-
lustrates the taxonomy of the neural networks. 
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Fig. 3.3. Configuration of multilayer artificial neural network. 
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Fig. 3.4. A taxonomy of neural network architecture. 

3.6.1 Feed-Forward Networks 

A feed-forward network (FFN) has input, output and hidden layers 
(Figure 3.5a). It also has subgroups of processing elements. A layer 
of processing elements makes independent computations on data 
that it receives and passes the results to another layer. The next layer 
may in turn make its independent computations and passes on the 
result to yet another layer. Finally, a subgroup of one or more proc-
essing elements determines the output from the network. Each proc-
essing element makes its computation based upon a weighted sum of 
its inputs. A threshold function is some times used to quantify the 
output of a neuron in the output layer. 

3.6.2 Recurrent Neural Networks 

A recurrent neural network (RNN) has feedback paths, which makes 
it a ‘sequential’ rather than a ‘combinatorial’ network, permitting it 
to exhibit temporal behavior. All possible connections between neu-
rons are allowed.  Once cyclic connections are included, a neural 
network becomes a non-linear dynamic system.  Such a system has 
very rich temporal and spatial behavior.  These behaviors can be 
utilized to model certain cognitive functions, such as associative 
memory, unsupervised learning, self organizing maps, and temporal 
reasoning. Figure 3.5b illustrate recurrent networks with the hidden 
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neurons. The feedback connections shown in the figure originate 
from the hidden neurons as well as from the output neurons. RNNs 
with cyclic connections are much harder to analyze and describe 
than FFN, reflecting the difficulties of limited mathematical tools for 
non-linear dynamic systems.  Multilayer FFN’s have proved to be 
extremely successful in pattern recognition problems, while RNN’s 
have been used in associative memories as well as for the solution of 
optimization problems [74]. 
 
 

 
Fig. 3.5. Types of neural networks. 
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3.7  Transfer Functions and Learning Algorithms 

The transfer function and learning algorithm are two important com-
ponents of information processing in neural networks. 

3.7.1  Transfer Functions 

The transfer function is the mechanism of translating input signals to 
output signals for each processing element. There are three types of 
transfer functions, as listed below: 

(i) Hard limit transfer function (Step function) 
(ii) Linear transfer function (Ramp function) 
(iii) Log –Sigmoid transfer function (Sigmoid function) 

 
Log-Sigmoid transfer function (Sigmoid function) is the most com-
monly used function in air quality modelling [18, 67, 82, 83]. Figure 
3.6 describes the Sigmoid transfer function, which has a graph simi-
lar to a stretched letter ‘S’. It consists of two functions- logistic and 
tangential. The values of tangent function vary from –1 to +1 and for 
logistic function, between 0 and 1.  
 

3.7.2 Learning Methods 

A ‘learning’ process, or ‘training’, forms the interconnections (cor-
relations) between neurons. It is accomplished by providing known 
input and output data in an ordered manner to the neural network. 
The learning corresponds to parameter (weight) changes. A network 
can be subjected to ‘supervised’ or ‘unsupervised’ learning. In for-
mer case, external prototypes are used as ‘target’ outputs for specific 
inputs, and the network is given a learning algorithm to follow and 
calculate new connection ‘weights’ that bring the output closer to 
the ‘target’ output. Unsupervised learning is the sort of learning that 
takes place without a ‘teacher’. In learning without supervision, the 
desired response is not known, thus explicit error information cannot 
be used to improve network behavior.  
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Fig. 3.6. Sigmoid transfer function. 

 
Most of the neural networks are trained using a ‘supervised’ learning 
algorithm. There are several supervised learning algorithms, but one 
of the most widely used is back-propagation algorithm. 

3.8 Back-Propagation Learning Algorithm 

According to Rao and Rao [63], Paul Werbos has developed the 
back-propagation training algorithm for FFN and later Parker, and 
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Rumelhart and McClelland [84] have improved it. The back-
propagation training algorithm uses gradient descent procedure to 
locate the absolute (or global) minimum of the error surface. In 
back-propagation, there are two phases in its learning cycle- one, to 
propagate the input pattern through the network and the other, to 
adopt the output by changing the weights in the network. It is the er-
ror signals that are back-propagated in the network operation to the 
hidden layer(s). The error in the output layers is used as a basis for 
adjustment of connection weights between the input and hidden lay-
ers. The adjustment of connection weights between the input and the 
hidden layers and subsequent recalculation of the output values be-
come an iterative process which is carried out until the error falls be-
low a tolerance level. A momentum parameter can be used in scaling 
the adjustment from a previous iteration and adding to the adjust-
ments in the current iteration.  

Before starting the training process, the weights in the network are 
initially set to small random values. This is synonymous with select-
ing a random point on the error surface. The back-propagation algo-
rithm then calculates the local gradient of the error surface and 
changes the weights in the direction of steepest local gradient.   

The back-propagation training process starts by inputting training 
data set to the network. The training data set consists of input and 
output vectors. When these vectors sequentially presented to the 
neural network, the following calculations are performed. 
 
 
Zj =  Wij (Xi + bj),  i =1,2,….n ;  j= 1,2,…..H                    (3.2) 
 
Where  Zj = input to the jth hidden layer neuron. 
 Xi = numerical value of the ith input vector. 
 Wij = weight of the ith input layer neuron to the jth hidden 
                     layer neuron. 
 N = number of input layer neurons.  
            H = number of hidden layer neurons. 
 B = bias value for the jth hidden layer neuron. 
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The output of hidden layer using sigmoid function, is calculated as 
follows.      
   

where hj = output of the hidden layer neuron, j. 
            f = transfer function for the hidden layer.  
 
In the training process, the network output, in general, may not be 
equal to the desired output. Consequently, the output error is calcu-
lated as the difference between the network output and the desired 
output. If the output error does not achieve the tolerance level, the 
network modifies the connection weights according to the value of 
the output error; then, training data are inputted again to the network 
and the network output is calculated. The training cycle is continued 
until the network achieves the desired tolerance level. If the error 
value is within the tolerance limit, the network becomes a ‘trained’ 
network. Thus, the back-propagation algorithm is summarized into 
seven steps: 
 

(i) initialize the network weights, 
(ii) present the first input vector, from the training data, to 

the network, 
(iii) propagate the input vector through the network to obtain 

an output, 
(iv) calculate an error signal by computing actual output to 

the desired (target) output, 
(v) propagate error signal back through the network, 
(vi) adjust weights to minimize the overall error, 
(vii) repeat steps (ii) to (vii) with next input vector, until over-

all error is satisfactorily small. 
 

The above implementation of the back-propagation algorithm is 
known as on line training, whereby, the network weights are adopted 
after each pattern has been presented. The alternative is known as 
batch training, where the summed error for all patterns is used to up-
date the weights. The benefits of each approach are discussed in Bat-
tii [85]. In practice, many hundreds of training iterations are required 
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before the network error reaches a satisfactory level. The training 
should be stopped when the performance of the neural network on 
independent test data reaches a maximum [18,86].  The error surface 
contains more than one minima, global or local (Figure 3.7). It is de-
sirable that the training algorithm does not become trapped in local 
minimum.  

The back-propagation algorithm contains two adjustable parame-
ters, a learning rate (�) and a moment term (�), which can assist the 
training process in avoiding local minima. The ‘�’ determines the step 

            

Fig. 3.7. Neural network error surface in two dimensional space.  
 
too large then the network error will change erratically due to large 
weight changes, with the possibility of jumping over global minima. 
Conversely, if the ‘�’ is too small then training will take a long time. 
The ‘�’ is used to assist the gradient descent process if it becomes 
stuck in a local minimum. By adding a proportion of the previous 
weight change to the current weight change (which will be very 
small in a local minimum), it is possible that the weight can escape 
the local minimum. By selecting a suitable set of connecting weight 
and transfer functions, it has been proved that a neural networks can 
approximate any smooth function, measurable function between the 
input and output vectors [87]. A schematic, illustrating the iterative 

taken along the iterative gradient descent learning process. If this is 



training procedure using the back-propagation algorithm is shown in 
Figure 3.8.                                         

Desired outputs 

Inputs  

 

                                                         Network                                    
                                                           outputs                              Error    

 

 
 
Fig. 3.8. Schematic of neural network training by back-propagation algorithm. 

3.9  Summary 

ANN’s are biologically inspired parallel computational models. 
They are useful tools for prediction/forecasting, function approxima-
tion and classification. In general, FFN’s are applied for air pollution 
forecasting problems. The transfer function and the learning algo-
rithm are two important components of ANN based modelling. The 
sigmoid function is the most commonly used function in air quality 
modelling. Back-propagation is one of the most widely used super-
vised training algorithms, because of its mathematical simplicity. 
Neural networks can be used for problems that cannot be solved 
with known formula and for problems with incomplete or noisy data. 
Neural networks seem to have the capability to recognize patterns in 
the data presented to it, and are thus useful in many types of pattern 
recognition problems.  
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4 Vehicular Pollution Modelling – Conventional 
Approach  

In last five decades, a number of vehicular pollution models based 
on deterministic and/or stochastic techniques have been developed 
describing temporal and spatial distribution of exhaust emissions on 
roadways. However, during the recent past, ANN technique has be-
come one of the upcoming techniques in modelling the exhaust 
emission dispersion phenomena. In the following sections, existing 
literature on deterministic, numerical, statistical and ANN based ex-
haust emission dispersion models have been reviewed. The limita-
tions associated with deterministic and statistical approach have also 
been discussed. 

4.1 General 

Vehicular pollution models, also known as line source models, are 
widely used to study the dispersion characteristics of exhaust 
emissions near the roadways [88]. These models provide theoreti-
cal estimates of air pollution concentrations, as well as temporal and 
spatial variations for the present and future conditions. They are 
used in almost all aspects of urban air quality planning. The models 
are used to assess the current and potential future air quality due to 
vehicular emissions for framing policy decisions. The current ve-
hicular emissions and meteorological data are used as ‘input’ to the 
line source dispersion models to forecast future changes based on 
‘what if’ scenarios [89]. The modelling approaches includes deter-
ministic, statistical, hybrid of deterministic and statistical distribu-
tion and artificial neural network [17].  

M. Khare and S.M. Shiva Nagendra: Vehicular Pollution Modelling – Conventional Approach, 
Artificial Neural Networks in Vehicular Pollution Modelling (SCI) 41, 41–66 (2007) 
www.springerlink.com  � Springer-Verlag Berlin Heidelberg 2007 
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4.2 Theoretical Approaches of Vehicular Pollution   
Modelling 

The deterministic mathematical models estimate the pollutant con-
centrations from emission inventory and meteorological variables, 
according to solution of various equations that represent the relevant 
physical processes. In other words, differential equation is devel-
oped by relating the rate of change of pollutant concentration in 
terms of average wind and turbulent diffusion, which, in turn, is de-
rived from the mass conservation principle. The common Gaussian 
line source model is based on the superposition principle, namely 
concentration at a receptor, which is the sum of concentrations from 
all the infinitesimal point sources making up a line source. This 
mechanism of diffusion from each point source is assumed to be in-
dependent of the presence of other point sources. The other assump-
tion considered in deterministic model, is the emission from a point 
source spreading in the atmosphere in the form of a plume, whose 
concentration profile is generally Gaussian in both horizontal and 
vertical directions. Considering the above assumptions, the basic ap-
proach to develop deterministic line source model is the coordinate 
transformation between wind coordinate system (X1, Y1, Z1) and line 
source coordinate system (X, Y, Z). Figure 4.1 shows the details of 
line source and wind coordinate systems. Let the length of the road-
way be ‘L’, which makes an angle ‘�’ with the wind vector. The 
middle point of the line source can be assumed as ‘origin’ for both 
coordinate systems, having same Z-axis. The line source is along 
‘Y-axis’ and the wind vector is in the X1 direction. In the line source 
coordinate system all parameters viz., X, Y, Z and L are known from 
the road geometry. A hypothetical line source is assumed to exist 
along Y1 that makes the wind direction perpendicular to it. Eq. 4.1 
gives the concentration at the receptor [90].  
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where, QL = line source strength (unit/ m3); !#Y, !#Z  = horizontal 
and vertical dispersion coefficients respectively, and are functions 
of distance X and stability class; X1 = receptor distance from the line  

(4.1)
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Fig. 4.1. Orientation of line source and wind direction coordinate system. 
  
source; Z = receptor height above ground level (m); H = height of 
line source (m); u = the mean ambient wind speed at source height 
(m/s); L= length of the roadway (m).   

nate system, Luhar and Patil [91] have developed a general finite 
line source model (GFLSM) as given below: 
 

 
where, � makes angle between roadway and wind direction,            
ue = u sin� + uo, uo is wind speed correction due to traffic wake[92], 
ho = H + Hp, Hp = plume rise. The detailed formulation of the equa-
tion (4.2) has been discussed in Appendix-A. Numerical line source 
modelling is based on numerical approximation of partial differen-
tial equations representing atmospheric dispersion phenomena. First 
order closure models, also called K- models, have their common 
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4.2 Theoretical Approaches of Vehicular Pollution Modelling

Using the above relationship between wind and line source coordi-
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roots in the atmospheric diffusion equation derived by using K-
theory approximation for the closure of the turbulent diffusion 
equation. These models are time dependent and applied through 
computer codes; Eulerian grid, Lagrangian trajectory, The Eulerian-
Lagrangian and Random Walk Particle Trajectory approaches are 
some very commonly used techniques. Juda, [46] has given detailed 
methodology for developing the numerical line source models. In 
contrast to deterministic modelling, the statistical models calculate 
concentrations by statistical methods from meteorological and traffic 
parameters after an appropriate statistical relationship has been 
obtained empirically from measured concentrations. Regression, 
multiple regression and time series technique are some of the com-

Jenkins models) are widely used to describe the dispersion of ex-
haust emissions at trafficked intersection and at busy arterial roads. 
Autoregressive integrated moving averages (ARIMA), ARIMA with 
exogenous inputs (ARMAX) and transfer function noise (TFN) 
algorithm have been adopted in line source modelling studies [59]. 

important that the iterative model building process proposed by Box 
and Jenkins is always followed. Further, ARIMA models do not 
specifically distinguish the physical causes of dispersion phenomena 
(e.g. meteorological variables, emission rates of the sources, etc.) in 
their input. Such models represent ‘black box’ approach. All possi-
ble uncertainties of the model are taken into account by the ‘noise’ 
variable with assigned statistical properties [46]. The TFN model is 
a dynamic model describing the dependent variable as a response to 
the ‘impulses’ of the independent variables, with the latter playing 
the role of time dependent forcing functions in an ordinary linear 
differential equation. The characteristics of the response are de-
scribed by the impulse response functions. The technique is quite 
general and useful in handling multivariate time series. It specifi-
cally builds into the model dynamics of impulse and response that is 
capable of describing a wide range of physical phenomena (in linear 
regime). One important feature of TFN modelling is its inherent 
capability of avoiding spurious correlations and true causality in 
time series [53]. The formulation of univariate B-J model for fore-
casting CO concentrations on urban roadways has been presented in 

monly used methods. The time series analysis techniques (Box–

The Box–Jenkins [51, 52] models are empirical models and it is 
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Appendix-B. The hybrid approach as described by Jakeman et al. 
[93], combine the useful components of both deterministic and 
statistical models. The hybrid approach facilitates strengthening of 
the deterministic model’s prediction accuracies i.e. to use it for pre-
dicting concentrations that occur relatively frequently (mean pollut-
ant concentrations). The statistical component is used to analyze the 
parametric distributional form of air pollutant data to estimate per-
centiles including extreme values. This approach is based largely on 
the ability of deterministic models to make causal links between 
emissions, meteorology and mean ground level concentrations and 
the ability of statistical models to predict the distribution of all 
events about mean, once the appropriate distributional form is 
identified for the historical air pollution data [93]. The hybrid 
approach first uses the pollutant concentration data generated by the 
deterministic model within its range of greatest reliability. Then the 
parameters of suitable statistical model are estimated from this 
truncated sample. Once parameterized by a suitable estimation 
method, the statistical component then provides a description of air 
quality data for the entire range of percentiles.  

ANN is a kind of statistical modelling technique offering several 
advantages over traditional phenomenological or semi-empirical mod-
els, since they require known input data set without any assumptions 
[17, 62]. For line source modelling, the multilayer neural network 
seems to be the most suitable for predicting exhaust emissions [94]. 
The multilayer neural network consists of a system of layered inter-
connected ‘neurons’ or ‘nodes’ as illustrated in Figure 4.2.  The neural 
network model (Figure 4.2) represents a non-linear mapping between 
an input vector and output vector [18]. The ‘nodes’ are arranged to 
form an input layer, one or more ‘hidden’ layers, and an output layer 
with nodes in each layer connected to all nodes in neighboring layers 
[82]. The input layer ‘neurons’ serve as a buffer that distribute input 
signals to the next layer, which is a hidden layer. Each ‘neuron’ in the 
hidden layer sums its input signal, processes it with simple non-linear 
transfer or activation function (e.g., logistic and hyperbolic tangent), 
and distributes the result to the output layer. The ‘neurons’ in the 
output layer compute their output signal in the similar manner. 

4.2 Theoretical Approaches of Vehicular Pollution Modelling

The output signals from each neuron in multilayer neural network
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Fig. 4.2. A multilayer neural network with hidden layer.   
propagate in forward direction; therefore multilayer neural network 
is also called as ‘FFN’ neural network [86]. A multilayer neural net-
work can approximate any smooth, measurable function between in-
put and output vectors by selecting a suitable set of connecting 
weights and transfer functions [87]. Multilayer neural network has 
the ability to learn through training. A supervised back-propagation 
algorithm is commonly employed in training of multilayer neural 
network [86]. Training requires a set of data, which consists of a se-
ries of input and associated output vectors. During training, the mul-
tilayer neural network is repeatedly presented with training data, and 
the weights in the network are adjusted until the desired input - out-
put mapping occurs. During training, the output from the multilayer 
neural network is compared with desired output. If the network out-
put is not matched with desired output, an error signal is propagated 
back through the network. Training uses the magnitude of these er-
ror signals to adjust the weights and the process continues till the 
network output matches the desired output. 
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4.3 Vehicular Pollution Deterministic Models 

Historically, the work of Sutton [95] may be regarded as first of its 
kind in air quality modelling. One of the early studies on deterministic 
vehicular pollution modelling has been reported in Waller et al. [96]. 
The analytical method for estimating the pollution levels from motor 
vehicles in the vicinity of highways of common geometric configu-

computational examples indicate that this method is capable of 
representing, in a realistic manner, of all the physical variations 
accounted in the derivation. Dilley and Yen [98] have derived an 
analytical solution to a two-dimensional transport and diffusion 
equation that describes the downwind pollutant concentration from 
an infinite crosswind line source. Both large scale and mesoscale 
winds are included in their model. Further, the analysis shows that 
mesoscale winds are not significant in reducing pollutant concentra-
tion. Peters and Klinzing [99] describe two separate equations for 
ground level as well as elevated line source, and analyze the effects 
of diffusion coefficient in line source dispersion. Using diffusion 
equation, Lamb and Neiburger [100] have come out with a model 
for computing pollutant concentrations resulting from both point and 
line sources. Later, this model has been tested with respect to its dif-
fusion characteristics by computing the hourly CO concentrations on 
a particular day, at 760 locations in the Los Angeles basin. The 
model results show reasonably good agreement with observed values. 
Csanady [90] has developed a hypothetical model for a finite line 
source and it is applicable only when the wind is perpendicular to 
the roadway. Calder [101] has studied the effect of oblique wind on 
line source pollution dispersion near roadways. He describes that the 
concentration at roadside receptor increases marginally, as wind 
direction becomes parallel to highway. Dabberdt et al. [102] have 
presented a practical multipurpose urban diffusion model (APRAC-
1A) for predicting inert vehicular pollutant concentration. The model 
requires routinely available meteorological and traffic parameters for 
prediction of concentration isopleths, sequential hourly values and 
frequency distributions. A model for the diffusion of pollutants from 
a line source in an urban atmosphere has also been developed by  
 

4.3 Vehicular Pollution Deterministic Models

ration has been developed by Chen and March [97]. The preliminary 
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Sharma and Myrup [103]. This study reveals that wind shear (varia-
tion of wind with height) is responsible for turbulent diffusion in 
lower atmosphere. Based on the finite length approximation, Stukel 
et al. [104] have formulated a line source dispersion model for 
estimating particulate/gaseous pollutant concentration in urban 
roadways. In another study, Nicholson [105] have presented a scalar 
budget box diffusion model for prediction of CO concentration in 
street canyons. Fay and King [106] have formulated a Gaussian 
model, considering vehicle-induced effects on the dispersion of pol-
lutants. This model assumes that vehicle wake induced turbulence 
dominates over the natural turbulence near the road. Therefore, dis-
persion of pollutants is assumed to be independent of atmospheric 
parameters except wind speed, and dependent upon the drag charac-
teristics of passing vehicles.  

The General Motor (GM) corporation experiments as reported by 
Cadle et al. [107] are the earliest field experiments used for under-
standing traffic influences on adjacent roadways. These data have 
been measured over a simulated test track of four lanes free way of 5 
km long at the GM proving grounds in Milford, Michigan, U.S.A. 
Chock [108] has conducted a number of experiments to evaluate the 
influence of traffic on the dispersion of pollutants near urban road-
ways. He has observed the variations in upwind dispersion due to 
crossroad wind, which has occurred within a few meters of the road. 
The U.S. EPA has developed a number of air pollution models for 
highways, which include CALINE [88], EGAMA [109], and 
HIWAY [110]. The HIWAY model is based on the Gaussian equa-
tion with the assumption of a series of finite line sources. CALINE 
model is also Gaussian based line source model, but it has got sepa-
rate equations for calculating pollutant concentration under cross-
wind and parallel wind conditions. Chock [111] and Noll et al. [112] 
have evaluated these models and found that the EPA-HIWAY model 
overestimates pollutant concentrations adjacent to the highway. This 
model avoids the cumbersome integration necessary for conven-
tional Gaussian model that makes point source assumption; instead, 
it uses an infinite line source approach and specifies one dispersion 
parameter as a function of wind road orientation from the source. 
Later, a series of improved versions of CALINE model viz. 
CALINE-2, CALINE-3 and CALINE-4 have been developed by 
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Ward et al. [113] and Benson [114,115]. Middleton et al. [116] have 
developed a dispersion model for estimating the concentration of in-
ert gaseous pollutants from the curved circular and straight sections 
of a complex road interchange. For small wind angles, pollutant 
concentration predicted from finite road length matches well with 
the concentration estimates obtained from infinite line source model. 
For complex roadway geometry, Colwill et al. [117] have conducted 
experiments to observe change in pollutant concentration over a 
short distance at a site downwind of an isolated motorway and 
within a road complex. DeTar [118] has come out with a model 
which estimates the concentration of pollutants from line sources.  
This model is applicable at various receptor heights, distances, wind 
speed and direction. In another study, Green et al. [119] have found 
that the actual ground level concentrations may decrease with de-
creasing wind speed particularly when it drops below some critical 
value. Data from an ongoing model validation program for disper-
sion of pollutants from roadways in Texas has shown that pollutant 
concentrations do not increase with decreasing wind speed as pre-
dicted by most models that are based on Gaussian formulation. Rao 
et al. [120] have studied the impact of traffic-induced turbulence on 
the near roadway dispersion of air pollutants. The study concludes 
that, there is a noticeable augmentation of turbulent kinetic energy 
due to wake generated by moving traffic. Later, Rao et al. [121] 
have evaluated four Gaussian models, namely, GM [92], HIWAY 
[110], AIRPOL-4 [122], CALINE-2 [113] and three numerical mod-
els – DANARD [123], MROAD-2 [124] and ROADS [125]. Their 
comparative results have shown that GM model simulations are 
more precise than any other models. Peterson [126] has presented an 
updated version of HIWAY model i.e. HIWAY –2, released by EPA 
in May 1980. The latter model gives more realistic concentration 
estimates as it uses an updated dispersion algorithm. Rao and 
Keenan [127] have modified the Pasquill-Grfford dispersion curves 
of the EPA - HIWAY model, and have found that modified HIWAY 
model (HIWAY-3) better simulates the near roadway dispersion 
when compared to original HIWAY model. Further, an empirical 
aerodynamic drag factor has also been developed to handle pollutant 
dispersion under low wind conditions. Later, the HIWAY-4 (an im-
proved version of HIWAY-3) has been developed in which the 
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modified dispersion curves and aerodynamic drag factor are incor-
porated. Chang et al. [128] have evaluated the EPA rollback 
(EPARM) and the generalized rollback (GRM) models. Both models 
show similar predictions when identical inputs were used for estima-
tion. Sedefian et al. [129] have utilized data from GM dispersion ex-
periments to assess the characteristics of traffic-generated turbulence 
and its effects on the dispersion process near roadways. It is ob-
served that the dispersion next to highway is greatly influenced by 
the traffic and its influence decreasing considerably at further 

about 50% at a downwind distance of 30 m. Munshi and Patil [130] 
have first used analytical models for estimating the vehicular pol-
lution dispersion on Indian urban roadways under heterogeneous 

vehicles having different axel weight, size, and shape moving in the 
same lane and constituting mixed traffic conditions]. Hickman and 
Colwill [131] have described a simple and effective method of esti-
mating pollutant concentrations around highways using the empiri-
cally modified Gaussian dispersion theory. It accurately represents 
the roadside situation. This model later has been calibrated and vali-
dated with the measured CO concentration at three different loca-
tions in UK. Using Texas and GM data, Rodden et al. [132] have 
evaluated 5-line source dispersion models namely, CALINE-3, 
CALINE-2, AIRPOL-4, HIWAY and TRAPS-IIM [133]. All four 
models show poor performance when compared with observed data. 
Eskridge and Rao [134] have discussed the time resolution and ver-
tical spacing necessary to resolve vehicle wake turbulence and the 
role of pseudo turbulence in modelling pollutant diffusion near 
roadways. The study reveals that velocity variances in GM experi-
ment data are dominated by ‘wake passing effect’ (time variation in 
the wind velocity as the vehicles wake passes the observation point), 
and are inadequate to resolve the wake turbulence effect. Nelli et al. 
[135] has developed the Texas Instrumentation model (TEXIN) for 
predicating air quality near roadway intersections. Later, the TEXIN 
model predictions have been compared with predictions of three in-
tersection models - inter section midblock model, program MICRO 
and indirect source guidelines. The results show that TEXIN model 

low wind speeds the traffic contribution to the total diffusivity is 
downwind distances vis - a - vis at higher elevations. However, at 

traffic conditions [heterogeneity in traffic refers to categories of 
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predictions are better than other three models. Using the Gaussian 
equation, Segal [136] has presented a graphical input microcomputer 
model (GIMM) for predicting CO concentration from different types 
of line sources. Hickman and Waterfield [137] have developed a 
computer code for predicting air pollutant concentrations from 
roadway traffic. The code has provided a wide range of information 
required for air quality assessment, such as, concentration of pollut-
ants corresponding to traffic flows, weather conditions and exposure 
periods. Cohn and Gaddipati [138] have developed an interactive 
graphics method for highway air pollution analysis. This approach 
has resolved problems associated with use of coordinates in 
CALINE-3 and HIWAY-2 models. Padmanabhamurthy and Gupta 
[139] have described meteorological aspects of air pollution disper-
sion. Later, Beiruti and Al-Omishy [140] have developed a digital 
computer simulation of the traffic flow and used this simulation 
model to predict NO2 and HC concentrations at three busy traffic 
roads in Baghdad, Iraq. Cooper [141] has reviewed various models 
used for estimating the impact of indirect sources on air quality. A 
methodology for predicting 8-hour concentration by using 1-hour 
CO concentrations has also been discussed. Hlavinka et al. [142] 
have developed an improved version of TEXIN model i.e. TEXIN-2. 
This model uses critical movement analysis (CMA) - for estimating 
traffic flow parameters; MOBILE-3 - to determine free flowing traffic 
cruise emissions; and CALINE-3 - to model the pollutant distribu-
tion downwind of an intersection. Kunler et al. [143] have discussed 
the applicability of various air quality models in describing the 
dispersion of car exhaust emissions and its effect on forest cover. 
Hoydysh et al. [144] have used four distinct approaches i.e. solution 
of the Navier-stokes equations, two dimensional semi-empirical 
models, zero-dimensional semi-empirical models and empirical 
adaptation of Gaussian line source dispersion to model air flow and 
mass dispersion in street canyons. The results indicate that none of 
the approaches give accurate distribution of pollutant concentrations 
in street canyons. In another study, Khalil and Rasmussen [145] 
have applied a chemical mass balance (CMB) model for CO appor-
tionment among residential wood burning sources and automobile 
sources in Olympia, Washington. Gronskei [146] has studied the 
influence of car speed on dispersion of exhaust emissions. He has 
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observed that vertical diffusion of exhaust gas increases with in-
crease in the speed. His experimental results, when compared with 
HIWAY-2 predictions, show that HIWAY-2 under-predicts the pol-
lutant concentrations. Sculley [147] has reviewed four representative 
approaches namely, IIM, MICRO2, TEXIN2 and CALINE4. The 
study suggests an alternative emission analysis procedure, which can 
be used in standard line source models to estimate the dispersion at 
the intersections. Using historical meteorological and vehicular data, 
Cooper [148] has derived ‘meteorological persistence factor’ (MPF) 
and ‘vehicular persistence factor’ (VPF) for the Florida City. Further, 
a worst case ‘total persistence factor (TPF)’ has also been derived. 
The TPF equals to the product of the mean annual second highest 
MPF and the mean VPF. Luhar and Patil [91] have developed a sim-
ple general finite line source model (GFLSM) based on Gaussian 
diffusion equation, pertaining to Bombay traffic conditions. The 
GFLSM predictions are compared with GM, CALINE-3 and 
HIWAY-2 model predictions. The results show satisfactory per-
formance of the GFLSM for Indian traffic conditions. Singh et al. 
[149] have developed an analytical dispersion model (IITCO) for 
computing CO concentrations for Delhi road conditions. The per-
formance of IITCO model has been compared with Pollution Epi-
sode Model (PEM) and Intersection Midblock Model (IMM). The 
results show better performance of IITCO model when compared to 
PEM and IMM. Kono and Ito [150] have developed a microscale 
dispersion model i.e. the OMG volume source model. Later, the 
OMG volume source and EPA HIWAY-2 model results have been 
compared with measured SF6 concentrations. It has been observed 
that OMG volume source model predictions are better than the other 
models [151]. In another study, Singh et al. [149] has applied IITCO 
model to Kuwait traffic conditions. The results have been compared 
with U. S. operational model, namely, Intersection Midblock Model 
[152]. Among the simulations obtained from both the models, the 
performance of IMM has been better than IITCO. Miles et al. [153] 
have developed a hybrid approach for assessing air quality implica-
tions of urban planning. This approach is a combination of determi-
nistic and statistical approaches. It is a function of vehicular traffic 
and basic meteorology. Nieuwstadt [154] has studied large eddy 
simulation using theory of the dispersion characteristics of a passive 
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line source pollutant in the convective atmospheric boundary layer. 
Further, the author has also studied the dynamics of line source in 
two parts i.e. part-I, governed by the internal buoyancy, and part-II, 
governed by the ambient turbulence. For the latter part, he has de-
veloped a simple integral plume rise model [155]. Benson [156] has 
studied recent versions of CALINE models, namely, CALINE-3 and 
CALINE-4. He has evaluated the predictive capability of CALINE-4 
and found its performance better than CALINE-3. In another study, 
Alexopolos et al. [157] have come out with a model for spatial and 
temporal evaluation of traffic emissions in metropolitan areas. The 
model is useful when raw traffic data, network and number of trip 
data are difficult to generate. Qin and Kot [158] have carried out 
dispersion studies in low wind conditions for three streets in Guang-
zhou city. Using the observed data, a simple operational model has 
been proposed to simulate the dispersion of vehicular emissions in 
street canyons. Burden et al. [159] have used CALINE–4 and 
DMRB models for predicting NO2 concentration at roadway inter-
sections, in Bristol, U.K. The two models satisfactorily predict the 
NO2 concentrations under flexible traffic volume.  Akeredoiu et al. 
[160] have used the CALINE-4 model for forecasting CO at a road-
way intersection. Chan et al. [161] have tested the applicability of 
four simple dispersion models, namely, APRAC, GZE, CALINE-4 
and PWILG. These models are evaluated by comparing the pre-
dicted CO and NOx concentrations with measured values at street 
canyons in Guangzhou city. The models perform accurately in pre-
dicting the maximum ground level concentrations. Derwent et al. 
[162] have used one-year air quality data collected at one of the 
urban roadside locations in central London to evaluate Gaussian and 
Box models. The predicted results have been used for a comprehen-
sive validation of the published emission inventory estimates of the 
London city. Esplin [163] has given approximate explicit solutions 
to the general line source problems at different wind angles. Clifford 
et al. [164] have studied the mechanisms involved in the dispersion 
of pollutants around slow moving vehicles. The spatial distribution 
of tracer gas along and across the vehicles shows that a significant 
level of pollution is received by a commuter in a slow moving vehi-
cle from the automobile immediately in front. Dabberdt et al. [165] 
have evaluated two Gaussian based models namely, HIWAY2 and 
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CALINE 4 and a numerical model for air quality prediction near ur-
ban intersection. The model results indicate that numerical model 
predictions are more accurate than two Gaussian based models. Us-
ing traffic counts and fleet composition, Yu et al. [166] have devel-
oped a mathematical model for predicting trends in CO emissions. 
Chock and Winkler [167] have compared the impact on air quality 
predictions using the fixed - and varying - layer depth structures in 
an urban airshed model (UAM). The analysis shows that the fixed 
layer-depth approach yields substantially higher concentrations of 
CO, NO and VOC in lower layers of atmosphere in isolated areas at 
early morning than the varying layer depth approach. Gualteri and 
Tartaglia [168] have presented a geographical information system 
(GIS) based line source model for predicting air quality near road-
sides. Karim and Matsui [169] and Karim et al. [170] have devel-
oped a computer model consisting of wind distributions, emission 
dispersion and modified Gaussian equation to identify street canyon 
and vehicle wake effects on transport of air pollution from the urban 
road microenvironments. The model simulates and analyzes the 
wind flow and their components in the street canyon considering a 
two-dimensional street canyon flow pattern. Later, Karim [171] has 
developed a traffic pollution inventory and modeled dispersion of 
vehicular pollutants in an urban environment. Khare and Sharma 
[172] have developed the Delhi finite line source model (DFLSM), 
(a deterministic based model), for Delhi traffic conditions. This 
model shows better prediction accuracy for CO when compared to 
the GFLSM [91]. The formulation of DFLSM has been discussed in 
Appendix-A. In an another study, Sivacoumar and Thanasekaran, 
[173] have applied GFLSM to predict CO concentrations at four sec-
tions of major highway in Madras. The model results are comparable 
to measured CO concentrations. Goyal and Ramakrishna [174] have 
developed the Gaussian based finite line source model for describing 
downwind dispersion of CO in urban roads. The model results, when 
compared with CALINE 3, show that both the models perform satis-
factorily.  Buckland and Middleton [175] have given nomograms for 
screening of vehicular pollution in congested street canyons. Hao 
et al. [176] have described a method for estimating the spatial and 
temporal distribution of exhaust emissions in Beijing, based on lim-
ited database including vehicle type, density and vehicle distance 
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travelled. Later, the estimated emission data are validated using a 
mathematical dispersion model i.e. the industrial sources complex 
short-term version 3 (ISCST 3) by simulating the pollutant concen-
tration distribution in an urban area.  Kousa et al. [177] have devel-
oped computer simulation code for predicting the traffic volume and 
emission at an urban centre. The simulation code predictions, when 
compared with 1996-1997 monitored data at Helsinki metropolitan 
in Finland, has been found to be satisfactory. Sivacoumar and Tha-
nasekaran [178] have evaluated four Gaussian based dispersion 
models, namely, GM, CALINE-3, PAL-2 and ISCST-2 for Indian 
traffic conditions. The study reveals that GM model perform best, 
followed by CALINE-3, ISCST-2, and PAL-2. Kiihlwein et al. [179] 
have developed a Gaussian based multi-source model for estimating 
pollutant concentration at selected locations in Augsburg (South 
Germany). Jorquera [180] has applied box model for assessing the 
air pollution standards in Santiago, Chile after a shift was made from 
unleaded gasoline to compressed natural gas. Nagendra and Khare 
[17] have given a comprehensive review of literature on line source 
deterministic based models.  As mentioned earlier, line source ap-
proximation as series of point sources significantly increases the 
amount of time required to run an atmospheric dispersion model. 
Also these models aim to resolve the underlying physical and 
chemical equations controlling exhaust emissions dispersion, and 
therefore require detailed meteorological and traffic characteristic 
data. As a result, the researchers start looking for other alternative 
modelling techniques, e.g., numerical and statistical.  

4.4 Vehicular Pollution Numerical Models 

A number of numerical models have been used for simulation of 
highway dispersion. Danard [123] has developed a two- dimensional 
eularian model i.e. DANARD. It solves the mass conservation equa-
tion based on numerical methods outlined by Dufort and Frankel 
[181]. Using the boundary conditions imposed in DANARD, 
Ragland and Pierce [182] have derived the continuity equation for 
parallel and non-parallel diffusivity classes by an efficient matrix in-
version technique. The model predicts concentration for oblique and 
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perpendicular cases by ignoring lateral diffusion. For parallel cases, 
the model solves the equation in three dimensions including lateral 
diffusion. Kirsch and Mason [124] have developed the MROAD-2 
model, a Eulerian two-dimensional grid model. It numerically solves 
the mass conservation equation.  The user can specify the size of the 
grid and model allows the existence of several line sources (all 
assumed to be perpendicular to the plane of the road), including ele-
vated roadways. Pitter [125] has described ROADS model, a two- 
dimensional conservation model. The model determines the steady 
state concentrations of pollutants by numerically solving the equa-
tions using the Lax-Wendroff finite difference scheme. Eskridge et al. 
[183] have presented a finite difference highway model. The model 
uses surface layer similarity theory and vehicle wake theory of 
Eskridge and Hunt [184] to determine the atmospheric structure 
along the roadway. Chock [185] has formulated a numerical model 
to solve advection diffusion equation for a line source. In this model 
traffic effects are considered as additive components of the eddy dif-
fusivity tensor (Kij) over that of atmospheric effects in the following 
form: 

 
Kij = Ka ij +Kt ij      (4.3)  
 

where Ka
ij is the ambient /atmospheric eddy diffusivity tensor and 

Kt
ij is traffic induced component of eddy diffusivity tensor. Later, 

this model is validated for GM experiment data and is reported to be 
valid within $ 10 % accuracy limits. Eskridge and Thomsion [186] 
have developed the ROADWAY model, which predicts pollutant 
concentration near a roadway. It assumes a surface layer described 
by surface layer similarity theory with the superposition of the ef-
fects of vehicle wakes.  The ROADCHEM model [186] is a version 
of ROADWAY, which incorporates the chemical reactions involv-
ing NO, NO2 and O3 as well as advection and dispersion phenom-
ena. In this version, surface layer similarity theory is used to produce 
vertical angle turbulence profiles. Maddukuri [187] has described a 
numerical model for the estimation of CO dispersion.  The model is 
based upon the semi empirical equation of turbulent diffusion equa-
tion. Eskridge and Rao [188] have modified the ROADWAY model 
by using experimentally determined eddy diffusion coefficients. The 
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revised version of ROADWAY is completely independent of the 
GM sulfate experiment data, whereas the initial version has used the 
GM data to determine the diffusion coefficients needed in the wake 
theory. Later versions of ROADWAY model predictions are closer 
to GM data than the initial version. Thompson and Eskridge [189] 
have experimentally studied the influence of vortex pair in turbulent 
diffusion behind vehicles. These experimental results are incorpo-
rated into ROAWAY model for improving its predicting efficiency. 
The model physics is based primarily on the vehicle speed, turbu-
lence and diffusion of the tracer. The CAR model (Calculation of 
Air Pollution from Road Traffic), developed by the Dutch national 
institute of environmental health [190] and Dutch institute of applied 
scientific research [191], has been evaluated for a Dutch city by Eer-
ens et al. [192]. The calibration of the model is done by using data 
from the Dutch national air quality-monitoring network [193] and 
wind tunnel experiments [191]. The CAR model satisfactorily esti-
mates the air pollutant concentrations in urban streets. CAR-FMI 
[194,195,196] is a road network dispersion model, developed by the 
Finnish Meteorological Institute. The Norwegian Institute of Air Re-
search (NILU) has also developed the ROADAIR and CONTILENK 
models for open roads and NERI OSRM for street canyons, respec-
tively [197]. A recent study by Karppinen et al. [198.199] have 
described the application of CAR-FMI model in estimating the con-
tribution from mobile sources in predicting the emission, dispersion 
and chemical transformation of NOx in an urban area. Maurizi and 
Tampieri [200] have shown that large variation of skewness and kur-
tosis and atmospheric turbulent flow has to be taken into account 
when a probability density function is proposed for modelling pol-
lutant dispersion using Lagrangian stochastic models. In another 
study Koeltzsch [201] has developed a theoretical relationship be-
tween Lagrangian and Eulerian time scales. Recently, Huang et al. 
[202] have developed a two-dimensional air quality numerical 
model using atmospheric convection diffusion equations and a K-% 
turbulent model. Later, the model is applied to predict the air quality 
impact by exhaust emissions near urban streets. In another study, 
Karppinen et al. [203] have formulated a numerical model for evalu-
ating the traffic characteristics and dispersion of pollutants in 
Helsinki, Finland. Later, this model is validated with urban and 
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suburban air quality data [204]. Chang et al. [205] have developed a 
two-dimensional numerical model based on joint-scalar probability 
density function approach, coupled with a turbulence model. Re-

incorporating vehicle wake parameters in earlier version of 
ROADWAY model. Further, using a towed array of 3-D sonic ane-
mometers, first field measurements of velocities and turbulence in 
the vehicle wake have also been made. The results indicate that pol-
lutant concentration decreases with increasing distance from the 
road more rapidly for horizontal wind case than for the perpendicu-
lar wind. In addition, Nagendra and Khare [17] have also made a 
comprehensive review of literature on line source numerical models. 

Numerical line source model seems to be the most desirable solu-
tion to exhaust emission dispersion, provided adequate data and 
computing resources are available [18]. However, in general, due to 
complex interaction between meteorology and traffic characteristics 
with exhaust emission dispersion leads to lack of theoretical under-
standing and therefore statistical models are required.   

4.5 Vehicular Pollution Stochastic Models 

McGuire and Noll [207] have studied the relationship between maxi-
mum concentration and average time for CO, NOx and NO2 pollut-
ants collected at 17 monitoring stations in California city. From the 
past studies on air pollution modelling, there exists substantial evi-
dence that the series of pollution concentration and meteorological 
data are highly auto-correlated irrespective of the time [55]. McCol-
lister and Wilson [60] have used the B-J (Box-Jenkins) type models 
for short-term forecast of oxidant and CO in Los Angeles basin. The 
model is one dimensional and shows poor prediction for extreme 
events. Tiao et al. [208] have studied the effects of intervention 
caused by a new highway on the oxidant time series in the Los 
Angeles basin. A univariate analysis of the weekly averages of the 
daily maxima of oxidant, CO, NO2, and total HC has been done by 
Chock et al. [56] for Riverside, California.  The relationships be-
tween the weekly averages of the daily maxima of the oxidant and 
the weekly averages of meteorological parameters are also investigated. 

cently Rao et al. [206] have developed the ROADWAY 2 model by 
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Based on least square technique, Aron and Aron [209] have de-
veloped the stochastic model for forecasting daily maximum CO 
concentrations at Los Angles basin. The results show that preceding 
days CO concentration, pressure differences between nearby stations, 
surface temperature, day of the week, length of daylight, solar radia-
tion and inversion height are the most significant variables in model 
development. Hirtzel and Quon [210] have used auto-correlation 
function to model hourly and average 8 hourly CO concentrations 
measured at the continuous air monitoring program station in Chi-
cago. In another study, Ledolter and Tiao [211] have described a sta-
tistical model that predicted CO concentration on both sides of the 
freeway in Los Angles. Regression analysis technique has been used 
by Chang et al. [212] to determine the relative impact of mobile and 
stationary sources on high NO2 concentrations. The analysis shows 
that hourly NO2 concentrations observed in Los Angles basin arise 
largely from vehicle emissions and support the assumptions used in 
generalized rollback model [128]. Lincoln and Rubin [213] have ap-
plied multiple regression analysis to correlate CO with daily average 
haze coefficient and total suspended particulate (TSP) in downtown 
urban area of Los Angeles. Zamurs and Piracci [214] have devel-
oped a multiple linear regression model to predict CO concentration 
at selected intersections. Using a statistical theory, a simple formula 
for calculating dispersion from continuous finite line source has 

used a hybrid (deterministic + stochastic) model to predict seasonal 
extremes of one-hour average CO concentration. Bardeschi et al. 
[217] have noted the importance of time series of concentration 
emission and meteorological conditions during the hours prior to the 
high CO concentrations. In recent past, a number of studies have 
been carried out using multivariate time series analysis in which 
various B-J modelling techniques have been applied for homogene-
ous traffic conditions [53, 54, 218, 219, 220, 221]. Liu et al. [222] 
have used Monte Carlo simulation method to predict personal expo-
sure levels to CO in Taipei. The skewness and kurtosis methods 
have been used by Zhang et al. [223] to investigate the statistical dis-
tribution of CO and HC emissions on a road in Denver, U. S. A. 
Glen et al. [224] have developed an empirical model predicting 
monthly CO concentrations for long-term trend assessment. In 
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been presented by Mikkelsen et al. [215]. Jakeman et al. [216] have 
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another study, Cernuschi et al. [225] have described the empirical 
models establishing relationships between annual average pollutant 
concentration and air quality related parameters. Comrie and Diem 
[226] have examined the relationships between meteorology, traffic 
patterns and CO concentration at seasonal, weekly and diurnal time 
scales in Phoenix, Arizona. Maffeis [227] has formulated 
FOREPOLL model to forecast the probability of a CO concentration 
violation at traffic intersection in Lombardy region. Sharma et al. 
[228] have applied extreme value theory to know the expected num-
ber of violations of the NAAQS to hourly and eight-hourly average 
CO concentrations for an AQCR comprising of an urban road inter-
section, followed by the development of an intervention analysis 
model (IAM) for the same AQCR [229]. Further, Sharma and Khare 
[230,231] have used Box- Jenkins modelling techniques to provide 
short-term and real-time forecast of the ambient air pollution levels 
due to vehicular sources at an urban intersection. A linear regression 
model has been developed by Olcese et al. [232] to predict the CO 
and NOx concentration near traffic roads. Stedman et al. [233] have 
presented maps (based on empirical linear relationships) for estima-
tion of annual average NO2 concentrations near roadside locations in 
major cities in the UK. A detailed review on analytical modelling 
techniques, including deterministic and statistical modelling ap-
proaches for exhaust emission can be found in Sharma and Khare 
[2]. Further, model performance evaluation and comparative as-
sessment have also been discussed in this review. In addition, Na-
gendra and Khare [17] have presented a comprehensive review of 
literature on line source stochastic models.  

In current research scenario, the primary concern before the re-
searcher is how to develop a general vehicular pollution prediction 
model that may work with reasonable accuracy under varied envi-
ronmental conditions. In such situations, numerical modelling is 
perhaps the most desirable approach. However, with increase in 
complexity of the problem, the theoretical understanding decreases 
due to ‘ill-defined’ interactions between environmental systems. In 
such cases, statistical approaches become most suitable. However, 
the main drawback in statistical techniques lies in prior assumptions 
concerning data distribution, as well as their site-specific nature 
[53,54]. Recent studies by Hornik et al. [87] and Schalkoff [234] 
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have shown that neural networks can be considered as an effective 
alternative tool to statistical modelling techniques. The ANN can 
model highly non-linear functions, which can be trained to accu-
rately generalize when presented with entirely new set of unseen 
data. Recent advances in neural networks precisely show the bene-
fits that the ANN offer in form of prediction accuracy when com-
pared to more traditional statistical modelling techniques [83]. In the 
following section, a review on application of ANN pertaining to 
vehicular pollution modelling has been presented. 

4.6 ANN based Vehicular Pollution Models    

The ANN approach offers several advantages over traditional phe-
nomenological or semi-empirical models. In that, it exhibits rapid 
information processing, and its ability to develop a mapping of the 
input and output variables [235]. ANN based models have signifi-
cant advantage over analytical and statistical models, since they re-
quire known input data set without any assumptions. Using those 
inputs, the neural network model automatically develops its own 
internal model and subsequently predicts the output. 

Literature on application of ANN in line source modelling is 
scanty [17, 62, 236]. Moseholm, et al. [94] have studied the useful-
ness of neural network in understanding the relationships between 
traffic parameters and CO concentrations measured near an intersec-
tion, which is sheltered from wind by multi-storied buildings. In an-
other work, Dorzdowicz et al. [237] have developed a line source 
neural network model for estimating hourly mean concentrations of 
CO in the urban area of Rosario city. Eleven inputs e.g. vehicular 
flux-vehicles/hr (cars, taxis, median vehicles, trucks and buses), 
wind speed and direction, solar radiation, humidity, pressure, rain in-
tensity and temperature have been used for development of the three 
ANN based models. The first model with eleven input variable set; 
the second, with seven variable set (excluding humidity, pressure, 
rain intensity and temperature); and the third, with six input vari-
ables (eliminating solar radiation in addition to variables excluded in 
second model). These models are later validated for each type of 
network (i.e., considering different number of input variable sets), 

4.6 ANN based Vehicular Pollution Models
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and using approximately a set of 100 patterns.  The results show that 
eliminating variables from the input set does not show any major in-
fluence on the predicted CO concentrations. Gardner and Dorling 
[83] have developed multilayer perceptron (MLP) neural network 
models using hourly NOx and NO2 and meteorological data of the 
Central London. The predicted results show better performance 
when compared with previously developed regression models [238] 
for the same location. Perez and Trier [239] have developed a multi-
layer neural network based model to predict NO and NO2 concentra-
tions at a traffic junction in Santiago, Chile.  Later, model results, 
when compared with persistence and regression models, show that 
neural network based model performs much better than the persis-
tence and regression models. Viotti et al. [240] have presented ANN 
based short and long-term air quality models for forecasting vehicu-
lar air pollutant concentrations in the city of Perugia, Italy. The 
ANN based models show reasonable accuracy in predicting short 
and long-term air pollutant concentration. Kukkonen et al. [241] 
have evaluated five neural network, a linear statistical and determi-
nistic based models in predicting the NO2 and particulate matter 
concentrations in the central Helsinki, Finland. Recently, Nagendra 
and Khare [242] have developed ANN based line source models for 
predicting CO concentrations on an urban roadway. Ten meteoro-
logical and six traffic characteristic variables have been used for de-
veloping these models. The results show that the neural network 
models are able to capture traffic ‘wake’ effects on the CO disper-
sion in the near field regions of the roadway. Further, Nagendra and 
Khare [17, 62] have presented a comprehensive review on ANN 
based vehicular pollution models. 

Most of the ANN studies have addressed the problem associated 
with pattern recognition, forecasting and comparison of the neural 
network with other traditional approaches in atmospheric sciences. 
However, the step-by-step procedure involved in development of 
ANN based models are not discussed. In the following chapters, the 
methodology consisting of step-by-step approach in developing the 
ANN based vehicular pollution models at urban roadways for het-
erogeneous traffic conditions and tropical meteorology has been de-
scribed. Besides, the application of ANN based vehicular pollution 
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models in predicting the CO and NO2 concentrations at two AQCRs 
have also been included.  

4.7  Limitations of Vehicular Pollution Models 

Deterministic vehicular pollution modelling approach is the most 
logical and traditional approach for the prediction of air pollution 
concentrations, yet it is not free from limitations. These models most 
often arrive by deducing arguments at mathematical formulae which, 
it is opted, reflect more or less accurately the physics of the process. 
To be useful, these formulae need first an adequate amount of mete-
orological input about the state of the atmosphere (wind speed and 
direction, stability, turbulence, etc.) and similarly detailed data on 
emissions [243]. The limitations of the deterministic vehicular pollu-
tion models are three fold - first, the understanding of the physics, 
second, the explicit or implicit simplifying assumptions, and third, 
the accuracy of the various input parameters.  For instance, when 
unit time interval is short (i.e., & 1 day) and ‘steady state’ assump-
tions required for the application of Gaussian type models are not 
met, the deterministic based models do not give satisfactory results 
[244]. Besides, the Gaussian dispersion equation has a singularity at 
zero wind speeds. Therefore, all Gaussian based models perform 
poorly when wind speeds are less than 1m/s [91].  

In general, Gaussian based model predictions are reasonably accu-
rate for long-term average concentrations and for the frequency dis-
tribution up to 90 percentile [245]. However, the predictions become 
inaccurate when the frequency distribution is 98 percentile [246]. 
Further, deterministic models are not suitable for extreme value pre-
dictions [247]. However, they are most suitable for long term plan-
ning decisions [89, 248, 249]. Table 4.1 summarizes the limitations 
of selected vehicular pollution models. 

Numerical models have common limitations arising from employ-
ing the K-theory for the closure of diffusion equation. The K-theory 
diffusion equation is valid only if the size of the ‘plume’ or ‘puff’ of 
pollutants is greater than the size of the dominant turbulent eddies. 
The K-model assumption is also not valid for the convective 

4.7  Limitations of Vehicular Pollution Models

boundary layer under strong instability. The other limitations of
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Table 4.1 Applicability and limitations of selected vehicular pollution models. 
Applicability Sl. 

No 

Model 

Pollutant 
type 

Receptor location 
and traffic type 

Limitations 

1. California line 
source model 
 [88] 

CO, NOx, 
SPM 

Roadside    
Homogeneous  
 

Tendency to predict high pollutant 
concentration for parallel wind 
case. 
No treatment of plume rise due to 
hot exhaust of vehicles. 

2. HIWAY-1 
[110] 

CO  Roadside    
Homogeneous  
 

Predicts poorly for low winds. 
Overestimates pollutant concentra-
tion for stable atmospheric condi-
tion and parallel wind case.  
No treatment of plume rise due to 
hot exhaust of vehicles. 

3. CALINE-2 
[113] 

CO, NOx, 
SPM 

Roadside    
Homogeneous  
 
 

Predicts poorly for unstable and 
neutral stability conditions. 
Over predicts the pollutant concen-
tration for parallel wind cases and 
under predicts for oblique wind 
conditions.  

4. GM  model 
[92] 

CO  Roadside    
Homogeneous  
 

Tendency to over predict the con-
centration under parallel wind con-
ditions. 
Predicts poorly for low winds.  

5. CALINE-3 
[114] 

CO, NOx, 
SPM 

Roadside    
Homogeneous  
 

Tendency to predict high for paral-
lel wind condition. 
No proper treatment for mechani-
cal and thermal turbulence created 
by vehicle exhaust.  

6. HIWAY-2 
[126] 

CO Roadside    
Homogeneous  
 

Inadequate dispersion parameters. 
No treatment of plume rise due to 
hot exhaust of vehicles. 

7. HIWAY-3 
[121] 

CO Roadside    
Homogeneous  
 

Predicts poorly for low winds. 
Tendency to predict high for paral-
lel wind condition. 
No treatment of plume rise due to 
hot exhaust of vehicles. 

8. HIWAY-4 
[121] 

CO Roadside    
Homogeneous  
 

Tendency to predict high for paral-
lel wind condition. 
No treatment of plume rise due to 
hot exhaust of vehicles. 

9. CALINE-4 
[115] 

CO, NOx, 
Aerosol 

Roadside    
Homogeneous  

Tendency to predict high for paral-
lel wind condition. 

9. ISCST-2 
[250] 

CO, NOx, 
SPM 

Roadside    
Homogeneous  
 

Tendency to predict high for paral-
lel wind condition. 
No treatment for turbulence caused 
by heated exhaust. 

10. GFLSM 
[91] 

CO, SPM Roadside    
Heterogeneous  

Predicts poorly for low winds. 
 

11. DFLSM 
[172] 

CO Roadside    
Heterogeneous  

Predicts poorly for low winds. 
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storage of data. It also requires large amounts of input data. The so-
lutions obtained from numerical model are approximate one. Past 
studies have revealed that the performance of numerical models 
namely, DANARD [123], MROAD-2 [124], ROADS [125], 
ROADWAY [183] are not better than the Gaussian based determi-
nistic line source models [121, 251, 252]. 

The statistical model inference is descriptive. It is a summariza-
tion of the data already on record completed by the assumption that 
the record either is stable or contains trends or cycles, which may 
somehow be extrapolated. Most of the statistical models are based 
on a group of observations; therefore statistical models are empirical 
in nature. Limitations of statistical models include the requirements 
of long historical data sets and lack of physical interpretation. 
Statistical models are generally devised to determine the underlying 
relationship between a set of input data (predictors) and targets 
(predictants). Regression modelling is an example of statistical ap-
proach; often under perform when used to model non-linear systems 
[18]. Another limitation of statistical model is that they cannot pro-
vide information about how pollutant levels would respond to emis-
sion controls, though statistical distribution modelling has been 
reported to be used in developing simple roll-back formulae for de-
termining a desirable level of source emission control to meet with 
the objectives of air quality management [253].  

Generally, the Box-Jenkins algorithm is considered to be the most 
sophisticated method for time series analysis. Kapoor and Terry 
[254] have indicated that a time series model requires considerable 
knowledge in time series statistics. Since, the vehicular pollution 
variations are generally not simple autoregressive (AR) or moving 
average (MA) models [60], analysts must employ statistical graphs 
of the autocorrelation function (ACF) and partial auto correlation 
function (PACF) to identify an appropriate time series model. In 
model identification stage, the resulting model quality frequently 
relies on individual experiences and knowledge of time series statis-
tics. In addition different analyst might render contradictory inter-
pretations, given the same data [61]. The statistical models are, 
therefore site specific. 

4.7 Limitations of Vehicular Pollution Models

numerical models are large computational costs in terms of time and 
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In developing the ANN based vehicular pollution models for line 
sources, no procedure has yet been formulated for selecting proper 
network architecture [67]. Technically only one hidden layer is 
required to approximate any smooth measurable function between 
inputs and outputs [87]. The optimum number of nodes required in 
hidden layer is problem dependent, being related to the complexity 
of the input and output mapping, the amount of noise in the data and 
the amount of training data available. Multilayer neural network per-
forms well when used for interpolation, but poorly, if used for ex-
trapolation. Apart from these, no thumb rules exist in selection of 
data set for training, testing and validation of neural network based 
model.  

4.8 Summary  

The vehicular pollution modelling is an useful tool for predicting the 
urban air quality. Analytical modelling approaches including deter-
ministic and statistical techniques are commonly used for vehicular 
pollution modelling. Choosing the most suitable approach depends 
on the complexity of the problem being addressed to and the degree 
to which the problem is understood. Deterministic approach seems 
to be the most logical and traditional approach for modelling air pol-
lution concentrations. The prediction capability of deterministic 
models depends on the conditions fulfilling the simplifying assump-
tions, which are made in the model formulation. The Gaussian 
model is generally accepted for prediction of long-term average con-
centrations. Numerical models are most desirable solution, if adequate 
data, computational resources and other theoretical understanding of 
dispersion phenomena are available. Statistical models are site 
specific and do under perform when modeled with highly non-linear 
data. The ANN approach, particularly multilayer neural networks 
are most suitable where a full theoretical (deterministic and statis-
tical) models cannot be constructed; and especially when dealing 
with complex conditions. 
 
 



5 Vehicular Pollution Modelling - ANN Approach  

The chapter describes the formulation and development of ANN 
based vehicular pollution models. Section 5.1 briefly describes the 
history of ANN modelling approach, followed by theoretical aspects 
of development of ANN based vehicular pollution model (section 
5.2). The step-by-step ANN model building and training procedures 
are presented in section 5.3 and 5.4 respectively. The statistics for 
model testing and evaluation are given in section 5.5. The develop-
ment of ANN based vehicular pollution models for different time 
resolutions, following NAAQS, are presented in Section 5.6 (case 
studies).    
 

5.1 General 

Modelling of vehicular pollution dispersion is actively researched 
for many decades. However, because of the vast number of the vari-
ables and the arbitrary variations in the wind speed and direction, 
and vehicle wake, the development of reliable vehicular pollution 
model is still a challenge [17]. As mentioned in chapter 4, existing 
vehicular pollution dispersion model can be classified as either 
‘phenomenological/deterministic’ or ‘statistical’. On one hand, phe-
nomenological approaches are based on underlying phenomena de-
scribed by advection and diffusion processes of the atmosphere. On 
the other hand, statistical approaches are based on semi empirically 
developed relationships between the downwind concentrations with 
emission rates and meteorological variables.       

In late 1950’s, the perceptron was introduced as a learning model 
and thereafter understanding of biological nervous systems entered a 
new era. This modelling technique becomes a vital tool in modelling 
of nonlinear dynamic processes. The neural network approach offers 
several advantages over traditional phenomenological or semi 
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www.springerlink.com  � Springer-Verlag Berlin Heidelberg 2007 

M. Khare and S.M. Shiva Nagendra: Vehicular Pollution Modelling – ANN Approach, Artificial 



68      5 Vehicular Pollution Modelling - ANN Approach 

empirical models. It exhibits rapid information processing, and it is 
able to develop a mapping of the input and output variables. Such a 
mapping can subsequently be used to predict desired output vari-
ables as a function of suitable input variables [234]. Presently, ANN, 
and in particular, the multi layer neural network are found wide ap-
plication in solving complex air pollution problems [17; 18, 62, 
236]. In recent past, number of multilayer neural network modelling 
studies have been carried out on forecasting of O3, SO2, NO2 and 
PM concentrations and found their importance in modelling com-
plex air pollution problems [67, 82, 83, 255, 256, 257]; whereas, to 
date, multilayer neural networks are limited application in modelling 
of vehicular pollution dispersion [17, 62]. This chapter describes the 
step-by-step procedure to model the vehicular pollution dispersion 
phenomena near urban roadways using the ANN technique.  
 

5.2 ANN Approach to Vehicular Pollution Modelling 

Multilayer neural networks are capable of modelling highly non-
linear relationship and can be trained to accurately generalize, when 
presented with new unseen data [87]. The neural network learns to 
model a relationship during a supervised training procedure, when 
they are repeatedly presented with series of input and associated 
output data [83].  
    During ANN based vehicular pollution model training, it is im-
portant to avoid over training of the neural networks [67]. Over 
training occurs when the model learns the lousy details present in the 
training data which, results in poor model generalization when, it is 
tested with new unseen data [83]. In order to avoid over training, 
ANN based vehicular pollution model is usually trained on a subset 
of inputs and outputs to determine weights, and subsequently vali-
dated on the remaining (quasi-independent) data to asses the accu-
racy of the neural network model predictions [82]. It is advisable to 
divide the data into three partitions namely, the ‘training data set’, 
‘test data set’ and ‘evaluation data set’. The ‘training data set’ forms 
the bulk of the data used for training purpose; the ‘test data set’ is 
used during training in order to check the generalization perform-
ance of the neural network model. Training can be stopped when the 
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model performance on the ‘test data set’ reaches maximum. Finally, 
the ‘evaluation data set’ is used to evaluate the final neural network 
model. This suggests that the ‘training data set’ is adequately exten-
sive and representative. Neural networks perform well, when used 
for interpolation, but poorly in cases of extrapolation [18]. The 
‘training data set’ must fully represent all the cases about which the 
ANN based vehicular pollution model is required to generalize. 
Since, the ANN based vehicular pollution model is trained on data 
of a selected site/air quality control region (AQCR), it can therefore, 
only be used, with confidence at the AQCR i.e. site dependent [82]. 
Further, the local traffic characteristics and building arrangements 
that determine the processes controlling the pollutant behavior, is 
important in determining the extent to which the model predictions 
can be extrapolated. In the present ANN based vehicular pollution 
modelling, the input data for neural network model consists of mete-
orological and traffic characteristic variables and the associated out-
put is CO or NO2 concentrations. Back-propagation with momentum 
term algorithm, which is implemented in the Stuttgart Neural Net-
work Simulator (SNNS) is used to train the ANN based vehicular 
pollution models. The software runs under the UNIX operating sys-
tem, freely available via the internet (ftp://ftp.informatik.uni-
stuttgart.de). In the recent past, SNNS is widely applied in solving 

SNNS are briefly described in Appendix-B. 
 

5.3 Algorithm for ANN based Vehicular Pollution Model 

The ANN based vehicular pollution model-building process consists 
of six sequential steps: 

(i) selection of the optimal ANN based vehicular pollu-
tion model architecture, 

(ii) selection of the best activation function, 
(iii) selection of the optimum learning parameters, ‘n’ 

(learning rate) and ‘�’ (momentum rate),  
(iv) initialization of the network weights and bias, 
(v) training and generalization of the model, 
(vi) evaluation of the model. 

5.3 Algorithm for ANN based Vehicular Pollution Model

large number of air pollution problems [83, 255, 256]. The details of 
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5.3.1 Selection of the Optimal ANN based Vehicular Pollution Model   
Architecture 

The architecture of ANN based vehicular pollution model consists of 
number of neurons in the input, hidden and output layers and their 
interconnections. The number of neurons in the input layer equals 
the number of input variables (i.e. for vehicular pollution modeling, 
meteorological and traffic characteristic variables). The output layer 
consists of one neuron i.e. the pollutant concentration. The number 
of neurons in the hidden layer depends upon the number of training 
patterns, the number of input/output neurons, the amount of noise in 
the data, the network architecture, the type of activation function 
used in the hidden layer and the training algorithm [258, 259]. One 
hidden layer is sufficient to approximate any non-linear function in 
addition to input and output layers. Training several networks and 
estimating the corresponding errors on the test data set obtain the 
number of neurons in the hidden layer. A few neurons in the hidden 
layer produce high training and testing errors due to under-fitting 
and statistical bias. On the contrary, too many hidden layer neurons 
lead to low training error, but high testing error, due to over fitting 
and high variance [259]. In the past, researchers have used ‘rule of 
thumb’ to find the number of neurons (H) in the hidden layer, as de-
scribed below:  

(i) H = (number of input neurons + number of output 
neurons) 

(ii) The maximum number of neurons in the hidden layer 
(Hmax) is given by Swingler [260] and Berry and 
Linoff [261]: Hmax = 2 times the number of input 
layer neurons 

(iii) H = the number of the training patterns divided by 5 
times of the number of input and output neurons.   

The ‘rule of thumb’ has failed to provide ‘optimal’ number of hid-
den layer neurons that subsequently affected the model prediction 
accuracy. In the present ANN based vehicular pollution modelling 
work has demonstrated that the iterative approach is more efficient 
and accurate in determining the optimal number of hidden layer neu-
rons, yielding minimum model prediction error on the ‘test data set’. 
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The non-linear relationship between input and output parameters in 
any network requires a function, which can appropriately connect 
and/or relate the corresponding parameters. Neurons in the neural 
networks transform their net input by using a “scalar to scalar” func-
tion called the “activation function”, yielding a value called the neu-
rons “activation”. The activation function is sometimes called a 
“transfer function”, and activation functions with a bound range, are 
often called as “squashing function”, or sigmoid functions (hyper-
bolic tangent and logistic functions). If a neuron does not transform 
its net input, then it is called an ‘identity’ or ‘linear’ activation func-
tion [69]. 

Activation functions for the hidden neurons are needed to intro-
duce non-linearity into the network. Without the non-linearity, the 
hidden neuron would not make neural networks more powerful. For 
the hidden neurons, sigmoid activation functions are generally used 
in the ANN based air pollution modelling [82, 235, 255]. This is due 
to a very small change in the weights that usually produce a change 
in the outputs, which make it possible to tell whether that change in 
the weight is converging or not. Further, this function is monotonic, 
continuously differentiable and bounded.  

For the output neuron, the activation function depends on the dis-
tribution of the target values. For continuous value targets with a 
bound range, the logistic and the hyperbolic tangent functions are 
useful. But, if the target values have no known bound range, it is 
better to use an unbound activation function, most often the “identity 
function”. For ANN based vehicular pollution modelling, the hyper-
bolic tangent function is used in the hidden layer neurons, and the 
unbound identity function is used for the input and the output layer 
neurons. 
 

5.3.3 Selection of the Optimum Learning Parameters 

Multilayer neural network has the ability to learn through training. 
Training requires a set of data consisting of a series of input and as-
sociated output vectors. A supervised back-propagation algorithm is 
most commonly employed in training the multilayer neural network. 
In the back-propagation training, � and � are used to ‘speed up’ or 

5.3 Algorithm for ANN based Vehicular Pollution Model

5.3.2 Selection of the Best Activation Functions 
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‘slow down’ the convergence of error [81]. The back-propagation 
training algorithm gives an “approximation” to the trajectory in 
weight space, computed by the gradient descent method [85]. The 
decrease in value of ‘�’ results in smaller changes in the synaptic 
weight from one iteration to the next and reduces the training speed. 
But, the increase in value of ‘�’ helps in faster training of the net-
work due to the large changes in the synaptic weight and thus mak-
ing the network as unstable (i.e. oscillatory). The term ‘�’ is used to 
avoid the network oscillation in back propagation training algorithm. 
The values of ‘�’ and ‘�’ are set between 0 to 1 [71, 235]. The fol-
lowing guidelines exist in evaluating the optimal value of ‘�’ and 
‘�’ [86].  

(i) The ‘�’ and ‘�’ converge to a local minimum in the 
error surface of the network with the least number of 
epochs.    

(ii) The ‘�’ and ‘�’ converge to a least global minimum 
in the error surface with the least number of epochs.   

(iii) The ‘�’ and ‘�’ converge to the network configura-
tion that is best generalized with the least number of 
epochs.   

In the vehicular pollution modelling work, the optimal values of 
learning parameters are evaluated using guideline (iii). 
 

5.3.4 Initialization of the Network Weights and Bias  

Before starting neural network training, initialization of neural net-
work weights and bias (free parameters) are required. A good choice 
for the initial values of the synaptic weights and bias of the network 
can be of help in fast convergence of training processes.  In cases, 
where prior information is available, it may be preferable to use the 
prior information to guess the initial values of the free parameters. If 
no prior information is available, the customary practice is to set all 
the free parameters of the network to the random numbers that are 
uniformly distributed inside a small range of values [69]. The reason 
for making the range small is to reduce the likelihood of the neurons 
in the network saturating and producing small error gradients.  
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However, the range should not be made too small, as it can cause the 
very small error gradients, and therefore may increase training time. 
For sigmoid (hyperbolic tangent) functions, a possible choice for ini-
tialization is to pick the random values for the weights that are uni-
formly distributed inside the range [(–2.4/Fi), (+2.4/Fi)], where, Fi is, 
total number of inputs [86]. In many cases, it is desirable to provide 
each neuron with a trainable bias. This offsets the origin of the sig-
moid function, producing an effect that is similar to adjusting the 
threshold of the perceptron neuron, thereby permitting more rapid 
convergence of the training process. 
    The wrong choice of initial weights may lead to premature satura-
tion [262]. This phenomenon refers to a situation where the instanta-
neous sum squared errors remains constant for some period of time 
during the training process. Such phenomena cannot be considered 
as a local minimum, because the sum-squared error continues to de-
crease after this period is finished. In other terms, the premature 
saturation phenomenon corresponds to a “saddle point” in the error 
surface. The premature saturation can be avoided by choosing the 
initial values of the synaptic weights and bias values of the network, 
uniformly distributed inside a small range of values. Further, prema-
ture saturation is less likely to occur when the number of hidden 
neurons is less [69]. 
 

5.3.5 Training Procedure 

The object of training the ANN based vehicular pollution model is to 
adjust the weights so that application of a set of inputs (meteorologi-
cal plus traffic characteristic variables) produces the desired set of 
outputs. Training involves finding the set of neural network weights, 
which enables the ANN based vehicular pollution model to represent 
the underlying patterns in the training data. This is achieved by 
minimizing the ANN based vehicular pollution model error, for all 
the input patterns, with respect to the associated network output pat-
terns. Unfortunately the error surface is often complex and contains 
many local minima. For instance, if the training algorithm becomes 
trapped in local minimum, then final ANN based vehicular pollution 
model will be suboptimal. Typically, when the global minimum is  
 

5.3 Algorithm for ANN based Vehicular Pollution Model
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not reached, the local minima can be considered as an acceptable so-
lution. Therefore, training a number of ANN based vehicular pollu-
tion models and selecting the model having minimum error on ‘test 
data set’, may reduce the likelihood of local minima.   
    The patterns of the input-output sets can be referred to as vectors. 
Training assumes that each input vector is paired with a target vector 
representing the desired output; together these are called a training 
pair. Usually, a network is trained over a number of training pairs. 
During training, the ANN based vehicular pollution model is repeat-
edly presented with training data and the weights in the network are 
adjusted until the desired input-output mapping occurs. Training an 
ANN based vehicular pollution model with back-propagation algo-
rithm consists of initializing the weights to small random values 
(Section 5.3.4). The input-output vectors are then sequentially pre-
sented to the network. When an input-output vector is presented, the 
following calculations are performed.   
(i) Multiply all the input by an initial random weight and sum 

the result as 
 

Where Pj  = input to the ‘j’ hidden layer neuron. 
            xi  = numerical value of the ith input layer neuron. 
            wij = weight of the ith input layer neuron to jth hidden layer  
                    neuron. 
            n  = number of the input layer neurons. 
            H = number of the hidden layer neurons. 
 bj  = bias value for the jth hidden layer neuron. 

(ii) Transform the hidden layer output by a sigmoid transfer 
function f (Pj).  

Where Qj = output of the hidden layer neuron ‘j’. 
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(iii) Multiply the hidden layer outputs by the hidden-output layer 
weight and sum as: 

Where Rk = input to the kth output layer neuron. 
            Wjk = weight of the jth hidden layer neuron to the kth output  

                        layer neuron.     
             M = number of the output layer neuron. 
             bk = bias value for the kth output layer neuron. 

 
(iv) Transform the output, Rk by the transfer function to obtain 

the network outputs Yk. The network outputs are compared 
with actual values, and an error at the kth output neuron is 
computed: 

 
Ek = Tk -Yk                            (5.4) 

 
where, Tk = teaching (actual) value  
 
The general principle used in the back-propagation learning method 
is the ‘delta rule’ (Appendix-B), which is based on the minimization 
of the sum of squares of the error obtained in equation (5.4). The re-
duction in the sum of squares of the error is performed by iteratively 
modifying the numerical values of the weights in the direction of the 
steepest descent with respect to the error. Hence, this procedure is 
called the ‘steepest descent method’ [85]. The weights in the hidden-
output layer are adjusted first, and then the weights in the input-
hidden layer are adjusted. The weights in the successive iterations 
are modified according to the following equation for layer 1 and tth 
iteration: 
 
wjk (t+1) = wjk (t) +� 'j (t) Qjk (t) + � [wjk (t)-wjk(t-1)]             (5.5) 
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Q k � 1, 2, ....m (5.3)

where '  = local gradient of the network 
j =1, 2, …  H;       k =1, 2, …  m 
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local gradient for the hidden-output layer 'k is computed as follows 

'k (t) = Ek (t) Yk (t) [1- Yk (t)]    k = 1, 2, …..m               (5.6) 
 
local gradient for the input-hidden layer  

'j (t) = Qj (t) [1-Qj (t)]  'k (t) wjk                                  (5.7) 
 

Stopping criteria 
 

The stopping criteria for the back-propagation algorithm are 
listed below. 

(i) The back-propagation algorithm is considered to have 
converged when the absolute rate of change in the 
mean squared error (MSE) per epoch is very small. 

(ii) After an each training iteration, the network is tested 
for its generalization performance. The training proc-
ess stops when the generalization performance 
reaches the maximum on the test data set.  

 
The first criterion of minimizing the MSE over a training data set 
does not necessarily imply good generalization. The second criteria 
trains the network iteratively based on number of training epochs. 
Each training epoch decides the value of synaptic weight and bias of 
the network. Thereafter, the trained network is tested on the ‘test 
data’ set, which gives the prediction error. If the prediction error ex-
ceeds the statistical standards (i.e. the degree of agreement, ‘d’), the 
network is again trained with increased number of epochs and so the 
process is repeated. The second stopping criterion is adopted due to 
its superior learning efficiency. Table 5.1 summarizes the criteria 
used in developing the ANN based vehicular pollution models. 
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Table 5.1 Criterion used in the ANN based vehicular pollution modelling. 
 

Sl. 
No. 

Item  Criterion used in the present study Similar crite-
rion used in the 
previous studies 

1. Criteria for 
selection of 
neural net-
work archi-
tecture 

Input neurons= number of input variables   
Output neurons= number of output variable  
Hidden neurons= smallest number of neurons 
that yields a minimum prediction error on the 
test data set [86].  

 
[18], [82], [83], 
[239] and [240] 

2. Criteria for 
selection of 
neuron acti-
vation func-
tions 

Input neurons= identity function  
Output neurons= identity function 
Hidden neurons = hyperbolic tangent func-
tion [69] 

 
 

[240] 

3. Criteria for 
selection of 
learning pa-
rameters  

The learning parameters converge to the net-
work configuration and give best perform-
ance on the test data with least number of ep-
ochs/iterations [86].    

 
[240] 

4. Criteria for 
initialization 
of network 
weights  

Network weights are uniformly distributed 
inside in the range of [ (-2.4/Fi), (+2.4/Fi)], 
where Fi = total number of inputs  [86]. 

 
[18]   
 

5. Training al-
gorithm  

Back-propagation [71], [84] [82], [83], [235],  
[239] and [240] 

6. Stopping cri-
teria for neu-
ral network 
training 

Stopping criteria: after each training itera-
tions/epochs the network is tested for its per-
formance on test data set. The training proc-
ess is stopped when the performance reach 
the maximum on test data set [86], [259].     

 
[18],[83],[235] 
and [240] 

7.  Statistics for 
model testing  

RMSE and ‘d’ [263] [18], [82], [83]  and 
[240] 

8. ANN model-
ling data  set 

Training data set: for training neural net-
work. 
Test data set: for testing of neural network 
during training.  
Evaluation data set: for performance evalua-
tion of trained neural network model. 

 

[240] 

5.4 Statistics for Testing ANN based Vehicular Pollution 
Models  

The statistical indicators for testing and evaluating the ANN based 
vehicular pollution model are systematic and unsystematic root 
mean square error (RMSES and RMSEU), mean bias error (MBE), 
mean square error (MSE), coefficient of determination (r2), linear 
best fit constant (a) and gradient (b), mean of the observed and 

5.4 Statistics for Testing ANN based Vehicular Pollution Models

[82], [83], and

[82], [83], and 



78      5 Vehicular Pollution Modelling - ANN Approach 

predicted concentration ( O and P , respectively) and their standard 
deviations (�o and �p, respectively) and ‘d’ values [263]. It is not 
uncommon to find models that are evaluated by the correlation coef-
ficient ‘r2’. However, the ‘r2’ statistic may not be appropriate in as-
sessing the accuracy of air quality model predictions. The model 
evaluation based on ‘r2’ statistics mostly fails due to the presence of 
‘lag’ between source emission quantity and the ambient pollutant 
concentration. The ‘lag’ is due to adverse meteorological conditions 
(inversion) which implies the accumulation of pollutants in the am-
bient environment during ‘odd’ hours of the day when there are no 
source emissions [172]. The ‘d’ is a descriptive statistics. It reflects 
the degree to which the observed variate is accurately estimated by 
the simulated variate. The ‘d’ is not a measure of correlation or as-
sociation in the formal sense, but rather a measure of the degree 
(based on ensemble average) to which the model predictions are er-
ror free. At the same time, ‘d’ is a standardized measure in order that 
it may be easily interpreted and cross-comparisons of its magnitudes 
for a variety of models, regardless of units, can readily be made. It 
varies between 0 and 1. A computed value of 1 indicates perfect 
agreement between the observed and predicted observations, while 0 
connotes complete disagreement [263]. The value of ‘d’ is expressed 
as: 
 
 

 
� = average of the observed data 
p = predicted data 
 

5.5 Development of ANN based Vehicular Pollution  
Models  

Near the traffic intersections and busy roads, the vehicular pollution 
dispersion is influenced by two factors; one, the natural turbulence 
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and second, the traffic generated turbulence (traffic wake). The natu-
ral turbulence is represented by meteorological variables and the 
‘traffic wake’ relates to the traffic characteristic variables [83, 184]. 
Therefore, ANN based vehicular pollution models are developed 
considering both the meteorological and the traffic characteristic 
variables. The models are formulated using three choices of input 
data sets. Firstly, considering both meteorological and traffic char-
acteristics input data; the second, considering only meteorological 
input data; and the third, considering only traffic input data. The 
output corresponding to these inputs is the vehicular pollution con-
centration. The choice of inputs to model are directly connected to 
the quantity of information given to the neural network and is gener-
ally constituted from the meteorological and traffic characteristic 
data.  
    A back-propagation technique with momentum term algorithm, 
implemented in the SNNS, is used to train the models. The criteria 
summarized in Table 5.1 are adopted for training the ANN based 
vehicular pollution models. The trained models are saved at frequent 
intervals of training epochs that are used for prediction. Several 
hundreds of experiments are performed to determine the best combi-
nation of model parameters – learning rate (�), momentum constant 
(�), number of the hidden layers, number of hidden neurons (H), 
learning algorithm and activation function. The root mean square er-
ror (RMSE) and degree of agreement (d values) are estimated to 
check the applicability of the trained ANN based models.  
 

5.6 Case Study  

This section discusses the development of ANN based vehicular pol-
lution models for predicting 1-hr, 8- hr average CO and 24-hr aver-
age NO2 concentrations at two air quality control regions (AQCRs), 
one representing a traffic intersection (AQCR1) and other, an arte-
rial road (AQCR2), in the Delhi city, India. 

Figure 5.1 shows the study area along with air quality sampling 
stations being monitored by Central Pollution Control Board (CPCB), 
New Delhi. AQCR1 is located adjacent to kerb side of highly traf-

5.6 Case Study

ficked road- Bhadur Shah Zafar marg, which is one of the roads
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Fig. 5.1. Details of AQCRs in Delhi city. 

                                                                 (a)  AQCR1 

                                                   (b) AQCR2 
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crossing income tax office (ITO) intersection. This region comes 
under the central business district housing a number of government 
office buildings along with reputed educational institutes. The region 
is considered to be an area of most intense human activity and also 
tagged for the ‘worst air quality’ in the city.  The AQCR2 - Sirifort 
monitoring station, is located in the south of central Delhi. The sur-
rounding area is comprised of dense residential localities, commer-
cial establishments, institutional areas and famous sport complex. 
This station is situated near moderately busy traffic road, Khelgaon 
marg.  
 

5.6.1 Pollutant Data  

The 1-hr average CO concentrations are collected from the CPCB be-
tween January 1997 and December 1999 for two AQCRs. Similarly 
for the same duration, the daily average NO2 data (working days-
Monday to Friday) are collected at AQCR1 and AQCR2. A standard-
ized (DIN specification) sample collection system is installed at both 
the AQCRs to collect the representative roadside samples [264]. The 
sampling point is about three meters from the ground level. At both 
the AQCRs, CO is measured by non-dispersive infrared (NDIR) 
absorption gas analyzer. The NO2 samples at AQCR1 are collected 
by the high volume sampler and analysed by Jacob and Hochhesier 
modified (Na-Arsenite) method; where as at AQCR2, NO2 concen-
trations are recorded by Chemiluminescent detector [23].  

The analysis of pollutant data shows highest ground level concen-
trations of CO and NO2 during winters (November to March); while 
lowest during tropical monsoon period (July to September). Table 
5.2 shows the average monthly CO at both the AQCRs. The monthly 
average CO concentrations at AQCR1 ranged between 8.8 ppm 
(November, 1998) - 1.84 ppm (June, 1999) and at AQCR2, it ranged 
between 5.97 ppm (November, 1997) - 1.29 ppm (April, 1997). Ta-
ble 5.2 shows the maximum, minimum 1-hr average CO concentra-
tions at both AQCRs. The 1-hr maximum CO concentration of 39.6 
ppm and 37.5 ppm are recorded during winter period at AQCR1 and  
 
 

5.6 Case Study
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AQCR2, respectively, while the lowest is 0.1 ppm at both the 
AQCRs.  

Table 5.2 Hourly maximum, minimum and daily mean CO concentrations for  
                  each month of the period January 1997 to December 1999.   
(a) AQCR1 
 

 
(b) AQCR2 
 

CO concentration, ppm 

1997 1998 1999 

 
 
Month 

Maxi-
mum 

Mini
mum 

Av-
erage 

Maxi-
mum 

Mini-
mum 

Aver-
age 

Maxi-
mum 

Mini-
mum 

Aver-
age 

January 31.4 0.1 4.39 18.7 0.9 3.42 13.3 0.5 2.34 
February 16.6 0.6 2.47 11.7 0.8 2.41 17.7 0.1 2.83 
March 14.8 0.4 1.78 10.6 1 2.27 17.2 0.1 1.97 
April 14.5 0.1 1.29 10.5 1.1 3.18 18 0.1 2.34 
May 11.1 0.1 1.49 17.5 0.2 2.33 6.9 0.7 2.36 
June 7.3 1.2 2.11 8.1 0.3 1.66 4.3 0.8 2.3 
July 8.1 0.5 2.0 6.9 0.7 2.76 NR NR NR 
August 7.7 0.8 2.04 4.2 0.7 1.59 NR NR NR 
September 8 1.2 3.09 10.5 0.6 2.4 NR NR NR 
October 26.2 1.3 3.78 17.6 0.6 3.47 20.6 0.9 5.83 
November 30 1.4 5.97 17 1 4.61 37.5 0.3 5.14 

December 27.2 1.1 4.58 31.2 1 4.63 9.75 2.2 4.59 
Note: NR = Due to instrument malfunction CO readings are not recorded.   
 
Table 5.3 provides the pattern of monthly NO2 concentration data 
at AQCR1 and AQCR2. The levels of NO2 in winter months 

CO concentration, ppm 

1997 1998 1999 

 
 
Month 

Maxi-
mum 

Mini-
mum 

Aver-
age 

Maxi
mum 

Mini-
mum 

Aver-
age 

Maxi
mum 

Mini-
mum 

Aver-
age 

January 39.6 1.4 6.84 21.6 0.2 3.96 14.1 1.3 4.04 
February 19.5 0.7 4.11 21.8 0.5 3.78 16.9 2.7 4.93 
March 20.6 0.9 4.38 12.9 1.4 3.56 10.2 1.6 3.15 
April 21.8 1.1 4.3 14.9 0.9 3.44 16.8 0.9 3.79 
May 20.5 0.4 4.38 16.8 0.3 3.3 14.2 0.7 3.28 
June 15.3 0.4 3.91 11.6 0.5 2.98 9.4 0.2 1.84 
July 9.2 1 3.37 10 1.1 3.56 6.6 0.1 2.35 
August 11.4 0.7 2.68 17.7 1.5 5.78 7.2 0.4 2.17 
September 13.7 0.4 3.29 26.4 1.1 4.26 9.3 1 3.25 
October 14.9 1.1 3.69 18.7 1.5 5.57 17.2 1.5 5.33 
November 32.3 1.3 5.45 33.8 2.5 8.8 21.1 1.2 4.86 
December 0.1 0.2 4.04 37.1 1.1 7.15 29.6 0.3 5.14 
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June) and monsoon month values (July-September).   
Table 5.3 Daily maximum, minimum and mean NO2 concentrations for each  
                   month of the period January 1997 to December 1999. 
(a) AQCR1 

 
(b) AQCR2 

Note:  NR =  Due to instrument malfunction NO2 readings are not recorded. 

NO2 concentration, ppb 
1997 1998 1999 

 
 
Month 

Maxi-
mum 

Mini
mum 

Aver-
age 

Maxi
mum 

Mini-
mum 

Av-
erage 

Maxi
mum 

Mini-
mum 

Aver-
age 

January 63.3 9 26.4 76.3 16.3 43.9 35.8 13.5 24.0 
February 29.6 10.5 19.9 71.5 15.6 37.8 45.1 13.8 29.2 
March 43.9 20.9 28.8 55.2 19 34.6 43 17.4 29.0 
April 42 21.8 32.5 44.5 22.6 31.4 37.4 20.5 28.3 
May 53.1 27.1 38.5 53.1 13.4 30.3 36.3 18 26.1 
June 46.2 19.2 32.0 39.5 9.3 24.1 32 20.5 26.0 
July 37.2 18.2 28.2 29.4 14.5 21.4 35.8 19 27.4 
August 41.3 19.5 27.1 55.1 21.6 35.1 37.2 24.6 29.9 
September 50.3 18.3 32.4 47.8 19.7 30.7 45.1 27.2 34.5 
October 92.3 34 54.8 47.8 22.4 36.5 52.3 32.6 43.8 
November 105.4 32.5 55.6 53.9 12.9 33.6 58.1 26.2 43.7 
December 89.7 21.1 43.1 89.2 27.6 43.6 65.3 21.2 40.4 

NO2 concentration, ppb 

1997 1998 1999 

 
Month 

Maxi-
mum 

Minim 
um 

Aver
age 

Maxi 
mum 

Minim 
um 

Aver
age 

Maxim 
um 

Mini-
mum 

Aver-
age 

January 51.1 30.3 41.0 NR NR NR 70.9 21.13 41.6 
February 63.0 27.3 45.4 NR NR NR 12.3.3 19.5 52.5 
March 40.3 14.0 19.2 NR NR NR 43.3 22.3 32.1 
April 42.5 15.1 25.0 NR NR NR 85.4 14.8 46.0 
May 17.1 11.6 13.8 NR NR NR 85.4 22.8 52.4 
June 40.8 12.4 18.2 30.6 16.3 24.4 NR NR NR 
July 41.3 26.2 28.9 30.2 16.3 23.8 NR NR NR 
August NR NR NR 26.8 15.7 19.5 33.4 14.3 18.4 
September NR NR NR 56.2 10.5 22.2 70.8 16.2 41.4 
October NR NR NR 90.6 26.3 53.9 NR NR NR 
November NR NR NR NR NR NR NR NR NR 
December NR NR NR NR NR NR NR NR NR 

5.6 Case Study

(November-March) are higher in comparison to summer (April-
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5.6.2 Traffic Data 

Hourly traffic volume data are collected from the Central Road Re-
search Institute (CRRI), New Delhi for both AQCRs for the three 
year study period (January 1997 to December 1999). The vehicles 
are classified into four groups (Table 5.4), for which emission fac-
tors are developed by the Indian Institute of Petroleum (IIP), Deha-
radun [265]. The daily average traffic volume at AQCR1 (ITO 
crossing) is three fold than that of the traffic volume at AQCR2 
(KGM road). The estimated average daily traffic flow at AQCR1 
and AQCR2 ranges between 1 76,000 to 1 13,000 and 62,000 to   
40, 000 respectively. The analysis of traffic data showed that the 
traffic pattern on Monday and Friday, being the first and the last day 
of the working week respectively, is comparable. Similarly, the traf-
fic pattern for the mid weekdays do not show significant difference. 
However, traffic pattern on weekends i.e. on Saturday and Sunday, 
show lean traffic flow than working weekdays traffic flow. The 
maximum daily average traffic flow is higher during Monday and 
Friday followed by Tuesday, Wednesday, Thursday, Saturday and 
Sunday. The composition of the traffic on all the weekdays is almost 
same on both the AQCRs. The total traffic composition at AQCR1 is 
dominated by two wheelers, followed by four wheeler gasoline-
powered, three wheelers and four wheeler diesel-powered vehicles. 
Where as, at AQCR2, four wheeler gasoline-powered vehicles 
dominated the traffic, followed by two wheelers, three wheelers and 
four wheeler diesel-powered vehicles. The proportion of the morn-
ing peak flow at the AQCRs for weekdays varied between 8 to 12 % 
of the average daily traffic and morning peak hours occurred be-
tween 9 AM to 11 AM; while the proportion of evening varied from 
7 to 9 % and evening peak occurs from 5 PM to 9 PM. The propor-
tion of the morning and evening peak flows, as average of all week-
days (Monday to Sunday), is in more or less same range as in the 
working days (Monday to Friday).  
   The average weekday traffic flows are marginally low as com-
pared to the average working day flows primarily due to low traffic 
volumes on Sunday.  
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Table 5.4 Vehicle classification and their emission factors. 

5.6.3 Meteorological Data 

The meteorological data is taken from Indian Meteorological De-
partment (IMD), New Delhi. The hourly observations of cloud 
cover, pressure, mixing height, sun shine hours, visibility, tempera-
ture, humidity, rainfall, wind speed and direction are collected for 
the same period, for which air quality observations are made. Pas-
quill-Gifford stability scheme (Classes A to F) is used to determine 
hourly stability categories [266]. The average annual rainfall, hu-
midity, pressure, cloud cover, temperature, visibility, wind speed, 
mixing height and sunshine hours in Delhi are 657 mm, 64.2 %, 
483.4 mba, 2.8 okta, 24.7oC, 94.6, 1.3 m/s, 322.2 m, and 6 hr/day, 
respectively. Table 5.5 lists the seasonal daily mean meteorological 
variables. 

 
 
 

Emission factors  

 

Classification Vehicles clas-
sified 

Pol-
lutant 

Up to 
1991 

1991-
1995 

1996-
2000 

2000-
2005 

CO 
 

25 19.8 6.45 3.16 1 Light duty 
gasoline 
 powered 
vehicles 

Cars, Jeeps, 
Vans, Taxis, 
etc. NO2 2.0 2.0 1.14 0.56 

CO 
 

12.7 12.7 9.96 5.35 2 Light duty 
diesel  
powered ve-
hicles 

Buses, Mini-
buses, Jeeps, 
Vans, etc. NO2 21 21 16.8 9.34 

CO 8.3 6.49 5.0 2.4 3 Two wheel-
ers 
gasoline 
powered 

Motor vehi-
cles, Scoot-
ers, Mopeds  NO2 0.1 0.1 0.1 0.1 

CO 
 

12 12 8.1 4.8 4 Three 
wheelers  
gasoline 
powered 

Autorick-
shaws 

NO2 0.26 0.26 0.26 0.26 

5.6 Case Study

No.
Sl. 
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Table 5.5 Seasonal daily mean values of meteorological parameters recorded   
during the period January 1997 to December 1999. 

Sl 
No. 

 

Parameter Winter Summer  Monsoon Post 
Monsoon 

1 Cloud cover,  okta 2.2 2.2 4.9 2.7 
2 Humidity,  % 68.6 45.6 75.8 72.7 
3 Pasquill stability category 

(A-F: 1-6) 
3.9 3.7 3.5 3.8 

4 Pressure,  mba 490 478.7 475.9 484.7 
5 Rainfall,  mm/day 0.48 1.44 4.08 2.64 
6 Sunshine hours, hour/day 5.2 8.0 4.8 6.2 
7 Temperature,  0 C 17.0 31.5 30.6 26.6 
8 Visibilityd 94.1 95.3 95.1 94.7 
9 Wind direction, degree 133.9 165.7 130.6 102.9 
10 Wind speed, ms-1 1.1 1.9 1.5 0.9 
11 Mixing height, m 298.8 387.2 311.9 305.8 

  
            d IMD synoptic codes for representing visibility 

Code   Visibility  Code   Visibility 

90 < 50 m   95  2000 m  
91                  50 m   96   4000 m  
92                  200 m                      97      10 kms 
93 500 m    98      20 kms 
94                  1000 m  99               � 50  kms 

5.6.4 Models Development 

The data at each AQCR has been classified into ‘training’, ‘test’ and 
‘evaluation’ data sets. Two year data from 1st January 1997 to 31st 
December 1998 is used for model training. Data for the months 
January, February, 1st to 15th March, April, 1st to 15th May, July, 1st 
to 8th August, 16th to 30th September and 1st to 10th October 1999 are 
used for model test purposes. Further the data for the months of 16th 
to 31st March, 16th to 31st May, June, 9th to 31st August, 1st to 15th 
September, 11th to 31st October, November and December 1999 are 
used for the evaluation of the ANN based vehicular pollution 
models. The random selections of the data for training, generalization 
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and for the evaluation purposes are based on seasonal variations in 
meteorological and pollutant concentration in the AQCRs.  
 
I 1-hr average ANN based CO models 

(i) 1-hr average CO model with meteorological and traf-
fic characteristic variables as input to the multilayer 
neural network (ANNCO1hrA1 and ANNCO1hrA2 
models for AQCR1 and AQCR2, respectively).  

(ii) 1-hr average CO model with meteorological vari-
ables as input to the multilayer neural network 
(ANNCO1hrB1 and ANNCO1hrB2 models for AQCR1 
and AQCR2, respectively).  

(iii) 1-hr average CO model with traffic characteristic 
variables as input to the multilayer neural network 
(ANNCO1hrC1 and ANNCO1hrC2 models for AQCR1 
and AQCR2, respectively).  

 
II 8-hr average ANN based CO models 

(i) 8-hr average CO model with meteorological and traf-
fic characteristic variables as input to the multilayer 
neural network (ANNCO8hrA1 and ANNCO8hrA2 mod-
els for AQCR1 and AQCR2, respectively).  

(ii) 8-hr average CO model with meteorological vari-
ables as input to the multilayer neural network 
(ANNCO8hrB1 and ANNCO8hrB2 models for AQCR1 
and AQCR2, respectively).  

(iii) 8-hr average CO model with traffic characteristic 
variables as input to the multilayer neural network 
(ANNCO8hrC1 and ANNCO8hrC2 models for AQCR1 
and AQCR2, respectively). 

 
III 24-hr average ANN based NO2 models 

(i) 24-hr average NO2 model with meteorological and 
traffic characteristic variables as input to the multi-
layer neural network (ANNNO224hrA1 and 
ANNNO224hrA2 models for AQCR1 and AQCR2, re-
spectively).  

5.6 Case Study
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(ii) 24-hr average NO2 model with meteorological vari-
ables as input to the multilayer neural network 
(ANNNO224hrB1 and ANNNO224hrB2 models for 
AQCR1 and AQCR2, respectively).  

(iii) 24-hr average NO2 model with traffic characteristic 
variables as input to the multilayer neural network 
(ANNNO224hrC1 and ANNNO224hrC2 models for 
AQCR1 and AQCR2, respectively).  

 
Table 5.6 describes the number of patterns used in each model type 
for training, testing and evaluation.  The list of input parameters 
used for each model type is given in Table 5.7. It is important to 

cosine functions. This enabled the neural network algorithm to work 
properly despite discontinuities in the original cyclic signals [267]. 
 

                  exhaust emission model type and for each site.    
 

Number of patterns  
Site 

 
Model ID Training Test Evaluation  
ANNCO1hrA1 
ANNCO1hrB1 
ANNCO1hrC1 

 
16708 

 
4218 

 
4194 

ANNCO8hrA1 
ANNCO8hrB1 
ANNCO8hrC1 

 
2113 

 
534 

 
532 

 

 
 
 
 

AQCR1 

ANNNO224hrA1 
ANNNO224hrB1 
ANNNO224hrC1 

 
522 

 
128 

 
133 

ANNCO1hrA2 
ANNCO1hrB2 
ANNCO1hrC2 

 
14363 

 
2049 

 
2527 

ANNCO8hrA2 
ANNCO8hrB2 
ANNCO8hrC2 

 
1834 

 
266 

 
326 

 
 
 
 

AQCR2 

ANNNO224hrA2 
ANNNO224hrB2 
ANNNO224hrC2 

 
262 

 
74 

 
47 

 
 
e The non-cyclic wind direction variable has been converted into cyclic variable using the 
expression sin (wind direction) and cos (wind direction), where wind direction is expressed 
in degrees.  

Table 5.6 Training, test and evaluation data sets for each ANN based vehicular 

emention that wind direction  data is dichotomised using the sine and 
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                     emission models.           
        

Model ID Input variables 
ANNCO1hrA1 
ANNCO1hrA2 
ANNCO8hrA1 
ANNCO8hrA2 
ANNNO224hrA1 
ANNNO224hrA2 
 

 
Cloud cover, humidity, mixing height, pressure, Pasquill 
stability, sunshine hour, temperature, visibility, sin(wind 
direction), cos(wind direction), wind speed, two wheeler, 
three wheeler, four wheeler(gasoline), four wheeler (die-
sel), source strength (CO) and source strength (NO2)   

ANNCO1hrB1 
ANNCO1hrB2 
ANNCO8hrB1 
ANNCO8hrB2 
ANNNO224hrB1 
ANNNO224hrB2 
 

 
Cloud cover, humidity, mixing height, pressure, sunshine 
hour, temperature, visibility, sin(wind direction), cos(wind 
direction) and wind speed 

ANNCO1hrC1 
ANNCO1hrC2 
ANNCO8hrC1 
ANNCO8hrC2 
ANNNO224hrC1 
ANNNO224hrC2 

 
Two wheeler, three wheeler, four wheeler(gasoline), four 
wheeler (diesel) and source strength (CO) / (NO2)    

Data normalization   

In order to use with the multilayer neural networks, all the data are 
normalized between the range, –1.0 to +1.0. This is carried out by 
determining the maximum (Xmax) and minimum (Xmin) values of 
each variables (Xi) over the entire period and calculating normalized 
variable using following formulation:  
   

  

 

( )
( ) (5.9)             1.0

xx
xx2x

minmax

mini
normi ��

�

�
�
�

�
�

�
��
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Table 5.7 Model input variables for the ANN based vehicular exhaust  
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Scaling is provided because, during training initial neural network, 
weights are chosen randomly. If one input has large range and an-
other has a small range, but both exhibit a similar amount of vari-
ance, then the network may ignore the small input due to the large 
contribution from the other input.  

The data is later returned to original units using the following formu-
lation [83]: 

 

 

Using the processed data, 1-hr, 8-hr average ANN based CO models 
and 24-hr average ANN based NO2 models are developed. The de-
tails are discussed below:  

Development of 1-hr Average ANN based CO Models 

(i) ANNCO1hrA1 model (1-hr average meteorological and  
traffic characteristic variables as model input) 

 
1-hr average ANN based CO models are developed using hourly 
meteorological and traffic characteristic variables as model input. 
The input in the ANN based vehicular pollution model consists of 
the 17 independent variables. The original total data set of 1-hr CO 
values for the three-year period at AQCR1, included 26280 values. 
The total of 1160 missing values represented 4 % of the whole data 
set. About 64 % of the total data set is used for model training, 16 % 
for test and 16 % for evaluation of the model. The ‘training data set’ 
should contain as many significant meteorological and traffic situa-
tions as possible. When a representative ‘training data set’ of pat-
terns is not available, accurate prediction cannot be obtained from 
the neural network model [67]. For the present work, ‘training data 
set’ consists of all the seasonal patterns of hourly CO concentrations. 
Figure 5.2 shows the hourly CO values used for training the ANN 
based vehicular pollution model. Several hundreds of experiments 

( ) x
2

)x(x1.0xx min
minmaxnormi

i ���
�

��
� ��

� � (5.10)
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are performed to determine best combination of the ‘�’, �, number 
of the hidden layers, H, learning algorithm and activation function.  
     Table 5.8 shows the statistics of 1-hr average ANN based CO 
models with the number of neurons in the hidden layer. As a result 
of several experiments, a fully connected feed-forward neural net-
work, with seventeen neurons in the input layer, three neurons in the 
single hidden layer and one neuron in the output layer, shows satis-
factory prediction on ‘test data set’. Figure 5.3 shows the CO pat-
terns used for the ANN based CO model testing. A number of 
computational runs are conducted using SNNS to find the optimum 
number of neurons in the hidden layer.  
     The inputs to these runs are the meteorological and traffic vari-
ables in the input layer, the output is in terms of pollutant concentra-
tion i.e. CO and the number of neurons in the hidden layer are varied 
from 2 to 34. The descriptive statistics tests i.e. ‘d’ value and RMSE 
are applied to arrive at the optimum number of neurons in the hidden 
layer. Table 5.8 describes the above statistical test values, which are 
used to find out number of neurons in the hidden layer. The architec-
ture of the 1-hr average ANN based CO model with the meteoro-
logical and the traffic characteristic variables as inputs, is shown in 
Figure 5.4. Each neuron, out of seventeen input neurons, represents 
each of the meteorological and the traffic characteristic variables. 
The one output neuron represents the hourly estimates of the CO 
concentration. The guidelines, explained in the section-5.3, are con-
sidered for choosing the optimum ‘�’, ‘�’, the number of hidden 
layers, H, the learning algorithm and the activation function. Trained 
ANN based CO model network is saved at frequent intervals of 
training epochs. The RMSE and ‘d’ values are estimated to check 
the applicability of the trained ANN based CO model. This proce-
dure is followed till the trained ANN based vehicular pollution 
model gives the best prediction performance on ‘test data set’ (Table 
5.9). After several experimentation, the best RMSE and ‘d’ values 
are found for the model parameters ‘�’ = 0.001 and ‘�’ = 0.7. The 
final neuron definitions and synaptic weights of the ANNCO1hrA1 
model are presented in Table D.1a and D.1b respectively in Appen-
dix-D. 
 
 

5.6 Case Study
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Fig. 5.2. CO training pattern used for development of 1-hr average ANNCO  
                 models at AQCR1. 

                 models at AQCR1. 
 
 
 

Fig. 5.3. CO test pattern used for generalization of 1-hr average ANNCO  
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Table 5.8 Experimental simulation results for optimization of the hidden layer  

 
Statistical parameter Number 

of hidden 
neurons 

Mean square error after 
network stabilization 

d RMSE 
2 0.01564 0.5959 2.22 
3 0.01569 0.6250 2.18 
4 0.01560 0.6132 2.24 
5 0.01567 0.6124 2.26 
6 0.01573 0.6058 2.29 
7 0.01574 0.6048 2.30 
8 0.01559 0.6163 2.23 
9 0.01577 0.6028 2.33 

10 0.01567 0.6025 2.34 
11 0.01577 0.5999 2.37 
12 0.01570 0.6016 2.35 
13 0.01571 0.5985 2.37 
14 0.01575 0.5949 2.40 
15 0.01576 0.5976 2.37 
16 0.01577 0.5959 2.38 
17 0.01577 0.5949 2.41 
18 0.01573 0.5948 2.39 
19 0.01580 0.5954 2.41 
20 0.01577 0.5924 2.44 
21 0.01577 0.6061 2.34 
22 0.01578 0.5971 2.40 
23 0.01577 0.5932 2.43 
24 0.01575 0.5939 2.41 
25 0.01579 0.5949 2.42 
26 0.01573 0.5971 2.38 
27 0.01574 0.5927 2.43 
28 0.01578 0.6011 2.35 
29 0.01575 0.5915 2.45 
30 0.01576 0.5954 2.38 
31 0.01570 0.5935 2.41 
32 0.01572 0.5920 2.45 
33 0.01574 0.5945 2.42 
34 0.01571 0.5948 2.40 

 

5.6 Case Study

                  neurons for the 1-hr average ANN based CO model.    
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Fig. 5.4. Structure of 17:3:1 ANN based CO model. 

Table 5.9 Estimates of the statistics during generalization of the ANNCO1hrA1  
                   model. 

Epoch d RMSE 
100 0.626 2.1823 
200 0.6435 2.1200 
300 0.6526 2.1000 
400 0.6568 2.1000 
500 0.6587 2.0999 
600 0.6598 2.0988 
700 0.6607 2.0976 
800 0.6611 2.0970 
900 0.6621 2.0960 

1000 0.6623 2.0930 
1100 0.6624 2.0906 
1200 0.6624 2.0905 
1300 0.6626 2.0899 
1400 0.6630 2.0893 
1500 0.6620 2.0904 
1600 0.6610 2.0910 
1700 0.6600 2.0920 
1800 0.6600 2.0930 
1900 0.6600 2.0940 
2000 0.6600 2.0950 
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(ii) ANNCO1hrB1 model (1-hr average meteorological variables  
     as model input) 
 
The objective of this model is two fold. First, is to develop ANN 
based vehicular pollution model to forecast 1-hr average CO concen-
tration using routinely monitored meteorological variables. Second, 
to study the sensitivity of the traffic characteristic variables in 1-hr 
average ANN based CO model.          

The number of training patterns and test patterns remain same as 
that of ANNCO1hrA1 model. In order to meet the second criteria, the 
number of neurons is also been kept constant (i.e. 3) in the hidden 
layer. The final architecture of the ANN based CO model 
(ANNCO1hrB1) with the meteorological predictor as input variable, is 
expressed as 10:3:1 (Figure 5.5). By following the step-by-step 

tion on ‘test data set’ is achieved at 2000 epoch. The estimates of the 
statistics during generalization of the ANNCO1hrB1 model on ‘test 
data set’ are presented in Table 5.10. The final neuron definitions 
and synaptic weights of the ANNCO1hrB1 model are presented in 
Table D.2a and D.2b respectively in Appendix-D.  
 

 
 
Fig. 5.5. Structure of 10:3:1 ANN based CO model. 
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Table 5.10 Estimates of the statistics during generalization of the ANNCO1hrB1  
                   model. 

Epoch d  RMSE 
200 0.49 3.03 
400 0.51 2.89 
600 0.52 2.81 
800 0.53 2.75 

1000 0.54 2.7 
1200 0.545 2.65 
1400 0.547 2.6 
1600 0.55 2.58 
1800 0.552 2.58 
2000 0.552 2.57 
2200 0.55 2.58 
2400 0.55 2.59 
2600 0.55 2.59 
2800 0.55 2.60 
3000 0.55 2.61 

 
 
(iii) ANNCO1hrC1 (1-hr traffic characteristic variables as model  
      input) 
 
This model is developed with five traffic characteristic variables as 
input to the ANN based CO model (ANNCO1hrC1), i.e. two-wheeler, 
three-wheeler, four wheeler-gasoline-powered, four-heeler diesel-
powered and source strength of CO. The objective of this model is to 
study the sensitivity of meteorological variables in the 1-hr average 
ANN based CO model. Figure 5.6 show the structure of the ANN 
based CO model having traffic characteristic variable as input to the 
model. Table 5.11 lists the statistics of ANNCO1hrC1 model during 
generalization. The final neuron definitions and synaptic weights of 
the ANNCO1hrC1 model are provided in Table D.3a and D.3b respec-
tively in Appendix-D.  
 
 
(iv) ANNCO1hrA2 (1-hr average meteorological and traffic   
      characteristic variables as model input at AQCR2) 
 
At AQCR2, out of three-year data set of 1-hr CO values (26280), a 
total of 7341missing values represented 28 % of the whole data set. 
About 55 % the of total data is used for the ANN based CO model  



      97 

Table 5.11 Estimates of the statistics during generalization of the ANNCO1hrC1  
                    model. 

Epoch d  RMSE 
5 0.4 3.73 

10 0.41 3.72 
15 0.41 3.73 
20 0.41 3.74 
25 0.41 3.75 
30 0.41 3.76 
35 0.41 3.77 
40 0.41 3.77 
45 0.41 3.78 
50 0.41 3.78 
55 0.41 3.79 
60 0.41 3.79 
65 0.41 3.79 
70 0.41 3.79 
75 0.41 3.80 

 
 

Fig. 5.6. Structure of 5:3:1 ANN based CO model. 
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training, 7.5 % for the model testing and 9.5 % for the final ANN 
based CO model evaluation. Network architecture of 17:3:1 is used 
for the development of ANNCO1hrA2 model. This model is similar to 
ANNCO1hrA1 model of AQCR1, consisting of seventeen input vari-
ables. Figure 5.7 and 5.8 show the 1-hr average CO patterns used for 
the training and testing of ANNCO1hrA2 model, respectively. After 
repeated experiments, the best prediction is obtained at 200 epoch 
with ‘�’ = 0.001 and ‘�’ = 0.3. Table 5.12 shows the statistics esti-
mated during generalization of the ANNCO1hrA2 model on ‘test data 
set’. The final neuron definitions and synaptic weights of the 
ANNCO1hrA2 model are described in Table D.4a and D.4b respec-
tively in Appendix-D.  
 

 

Fig. 5.7. CO training pattern used for development of 1-hr average ANNCO  
                 models at AQCR2. 
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Fig. 5.8. CO test pattern used for generalization of 1-hr average ANNCO model  
               at AQCR2. 
 

1hrA2  

 

Epoch 
 

d 
 

RMSE 
50 0.648 2.238 

100 0.647 2.21 
150 0.645 2.207 
200 0.655 2.105 
250 0.647 2.208 
300 0.647 2.209 
350 0.648 2.213 
400 0.648 2.217 
450 0.648 2.219 
500 0.648 2.220 
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Table 5.12 Estimates of the statistics during generalization of the ANNCO
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(v) ANNCO1hrB2 (1-hr average meteorological variables as model  
     input at AQCR2) 

 
Neural network architecture of 10:3:1 is used in the development of 
the ANNCO1hrB2 model. Table 5.13 presents the generalization sta-
tistics of the ANNCO1hrB2 model on ‘test data set’. The best model 
prediction is obtained at ‘�’ = 0.001 and ‘�’ = 0.3 with 600 epoch. 
The final neuron definitions and synaptic weights of the 
ANNCO1hrB2 model are summarized in Table D.5a and D.5b respec-
tively in Appendix-D. 

 
Table 5.13 Estimates of the statistics during generalization of the ANNCO1hrB2  
                    model. 
 

Epoch d RMSE 
50 0.644 2.26 

100 0.649 2.186 
150 0.65 2.15 
200 0.65 2.146 
250 0.65 2.144 
300 0.649 2.14 
350 0.649 2.14 
400 0.65 2.14 
450 0.65 2.139 
500 0.65 2.137 
600 0.65 2.136 
700 0.64 2.139 
800 0.64 2.147 
900 0.636 2.158 
1000 0.632 2.167 
1100 0.629 2.169 
1200 0.629 2.18 
1300 0.629 2.18 
1400 0.629 2.18 
1500 0.629 2.19 
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(vi) ANNCO1hrC2 (1-hr traffic characteristic variables as model  
      input at AQCR2) 
 
Five traffic variables are used in the development of the 
ANNCO1hrC2 model. The structure of this model is 5:3:1. With ‘�’= 
0.001 and ‘�’ = 0.1, the ANNCO1hrC2 model gives satisfactory per-
formance on ‘test data set’ at 20 epoch (Table 5.14). The final neu-
ron definitions and synaptic weights of the ANNCO1hrC2 model are 
given in Table D.6a and D.6b respectively in Appendix-D. 
 
Table 5.14 Estimates of the statistics during generalization of the ANNCO1hrC2  
                    model. 
 

Epoch D RMSE 
10 0.43 3.05 
20 0.44 3.04 
30 0.44 3.04 
40 0.44 3.04 
50 0.44 3.04 
60 0.44 3.04 
70 0.44 3.04 
80 0.44 3.04 
90 0.44 3.04 

100 0.44 3.04 
           

Development of 8-hr Average ANN based CO Models 

(i) ANNCO8hrA1 (8-hr average meteorological and traffic  
characteristic variables as model input at AQCR1) 

 
The total data set of 8-hr average CO value at AQCR1 includes 3285 
values. The total of 106 missing values represented 3 % of the whole 
data set. About 65% of the total data is used for model training, 16 
% for testing, and 16 % for final evaluation of the 8-hr average ANN 
based CO model. To develop the ANNCO8hrA1 model, hourly mete-
orological, traffic characteristic and CO data are processed to obtain 
8-hr average values. A maximum of two hourly missing values are 
considered acceptable in order to remove uncontrolled bias due to 
equipment malfunction or equipment calibration [162]. A 17:3:1 

5.6 Case Study
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structure is used for the development of ANNCO8hrA1 model. Figure 
5.9 and 5.10 show CO patterns, used in the training and testing of 
the ANNCO8hrA1 model respectively. Table 5.15 describes perform-
ance of the ANNCO8hrA1 model during generalization on the ‘test 
data set’. The final neuron definitions and synaptic weights of the 
ANNCO8hrA1 model are presented in Table D.7a and D.7b respec-
tively in Appendix-D.  

Fig. 5.9. CO training patterns used for development of 8-hr average ANNCO  
                models at AQCR1. 
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Fig. 5.10. CO test patterns used for generalization of 8-hr average ANNCO  
                   models at AQCR1. 
 
Table 5.15 Estimates of the statistics during generalization of the ANNCO8hrA1  
                    model. 
 

Epoch d RMSE 
100 0.627 2.12 
200 0.635 2.07 
300 0.639 2.04 
400 0.64 2.04 
500 0.639 2.05 
600 0.636 2.07 
700 0.635 2.09 
800 0.633 2.10 
900 0.631 2.12 
1000 0.63 2.13 
1100 0.629 2.14 
1200 0.628 2.16 
1300 0.626 2.17 
1400 0.624 2.18 
1500 0.622 2.19 
1600 0.618 2.22 
1700 0.614 2.24 
1800 0.609 2.27 
1900 0.605 2.29 
2000 0.602 2.31 

5.6 Case Study
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(ii) ANNCO8hrB1 (8-hr average meteorological variables as  
     model input at AQCR1) 

Neural network architecture of 10:3:1 is used for the development of 
the ANNCO8hrB1 model. Table 5.16 summarizes performance of the 
ANNCO8hrB1 model during generalization on the ‘test data set’. The 
final neuron definitions and synaptic weights of the ANNCO8hrB1 
model are listed in Table D.8a and D.8b respectively in Appendix-D. 
 
Table 5.16 Estimates of the statistics during generalization of the ANNCO8hrB1  
                    model. 
 

Epoch d RMSE 
100 0.62 2.03 
200 0.638 1.92 
300 0.644 1.92 
400 0.648 1.90 
500 0.65 1.88 
600 0.653 1.87 
700 0.654 1.87 
800 0.654 1.87 
900 0.655 1.86 
1000 0.656 1.86 
1100 0.656 1.86 
1200 0.656 1.86 
1300 0.655 1.87 
1400 0.655 1.87 
1500 0.655 1.87 
1600 0.655 1.87 
1700 0.655 1.88 
1800 0.655 1.88 
1900 0.655 1.88 
2000 0.655 1.88 

 
 
(iii) ANNCO8hrC1 (8-hr average traffic characteristic variables  
      as model input) 

Neural network architecture of 5:3:1 is used for the development of 
the ANNCO8hrC1 model. The performance of the ANNCO8hrC1 model 
during generalization on ‘test data set’ is given in Table 5.17. The 



      105 

final neuron definitions and synaptic weights of the ANNCO8hrC1 

Table 5.17 Estimates of the statistics during generalization of the ANNCO8hrC1  
                    model. 
 

Epoch d RMSE 
5 0.438 2.18 

10 0.438 2.13 
15 0.439 2.13 
20 0.44 2.12 
25 0.44 2.12 
30 0.44 2.13 
35 0.44 2.14 
40 0.44 2.14 
45 0.44 2.14 
50 0.44 2.15 
55 0.44 2.15 
60 0.44 2.16 
65 0.44 2.16 
70 0.44 2.16 
75 0.44 2.16 

(iv) ANNCO8hrA2 (8-hr average meteorological and traffic  
      characteristic variables as model input at AQCR2) 
 
At AQCR2, a total of 859 missing values represented 26 % of the 
whole data (3285). Out of the total data, 56 % is used for training 
purpose, 8 % for testing and another 10 % for final 8-hr average 
ANN based CO model evaluation. A 17:3:1 structure is used for the 
development of the ANNCO8hrA2 model. Figure 5.11 and 5.12 show 
CO patterns used for training and testing of the ANNCO8hrA2 model 
respectively. The performance of the ANNCO8hrA2 model during 
generalization on ‘test data set’ is shown in Table 5.18. The final 
neuron definitions and synaptic weights of the ANNCO8hrA2 model 
are listed in Table D.10a and D.10b respectively in Appendix-D. 

5.6 Case Study

model are given in Table D.9a and D.9b respectively in Appendix-D.
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Fig. 5.11. CO training pattern used for development of 8-hr average ANNCO  
                   models at AQCR2.  
 
 

 
Fig. 5.12. CO test pattern used for generalization of 8-hr average ANNCO  
                   models at AQCR2. 
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Table 5.18 Estimates of the statistics during generalization of the ANNCO8hrA2  
                    model. 
 

Epoch d RMSE 
200 0.665 1.665 
400 0.682 1.626 
600 0.688 1.605 
800 0.689 1.594 
1000 0.689 1.587 
1200 0.688 1.585 
1400 0.689 1.580 
1600 0.687 1.580 
1800 0.687 1.580 
2000 0.687 1.580 
2200 0.686 1.580 
2400 0.686 1.580 
2600 0.686 1.580 
2800 0.686 1.580 
3000 0.686 1.580 

 
(ii) ANNCO8hrB2 
     input at AQCR2) 
 
A 10:3:1 structure is used for the development of the ANNCO8hrB2 
model. The performance of the ANNCO8hrB2 model during generali-
zation on ‘test data set’ is shown in Table 5.19. The final neuron 
definitions and synaptic weights of the ANNCO8hrB2 model are de-
scribed in Table D.11a and D.11b respectively in Appendix-D. 
 
Table 5.19 Estimates of the statistics during generalization of the ANNCO8hrB2  
                    model. 

Epoch d RMSE 
1000 0.69 1.567 
2000 0.69 1.565 
3000 0.7 1.530 
4000 0.71 1.530 
5000 0.7 1.550 
6000 0.698 1.560 
7000 0.69 1.570 
8000 0.687 1.580 
9000 0.684 1.580 
10000 0.679 1.580 

5.6 Case Study

(8-hr average meteorological variables as model  
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(iii) ANNCO8hrC2 (8-hr average traffic characteristic variables  
      as model input at AQCR2) 

Neural network architecture of 5:3:1 is used for the development of 
the ANNCO8hrC2 model. Table 5.20 shows the performance of the 
ANNCO8hrC2 model during generalization on ‘test data set’. The fi-
nal neuron definitions and synaptic weights of the ANNCO8hrC2 

 
Table 5.20 Estimates of the statistics during generalization of the ANNCO8hrC2  
                    model. 
 

Epoch d RMSE 
10 0.42 1.99 
20 0.43 1.98 
30 0.44 1.97 
40 0.43 1.98 
50 0.43 1.99 
60 0.43 1.99 

 
 

Development of 24-hr Average ANN based NO2 Models 

(i) ANNNO224hrA1 (24-hr average meteorological and traffic  
    characteristic variables as model input at AQCR1) 
 
The 24-hr average ANN based NO2 models are developed using 
daily average meteorological and traffic characteristics variables 
(seventeen) as model input. The total data set included 783 values. 
About 67 % of the total data is used for the model training, 16% the 
model testing and 17 % for the final evaluation of ANN based NO2 
models. Figure 5.13 and 5.14 show NO2 patterns used for training 
and testing of the ANN based NO2 models respectively.  

Several hundred experiments are performed to determine the best 
combination of ‘�’,‘�’, the number of hidden layers, H, the learning 
algorithm and the transfer function. As a result, a fully connected 
feed-forward neural network with seventeen neurons in the input 
layer, a single hidden layer with five hidden neurons and a

Appendix-D. 
model are presented in Table D.12a and D.12b respectively in 
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Fig. 5.13. Training patterns used for development of 24-hr average ANNNO2  
                  models at AQCR1. 
 

Fig. 5.14. Test pattern used for generalization of 24-hr average ANNNO2 model  
                 at AQCR1. 
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single neuron in the output layer, shows satisfactory prediction on 
‘test data set’. Similar to 1-hr and 8-hr average model, the inputs 
used in the computational runs, are 17 (meteorological and traffic 
characteristics variables), while the output is NO2 concentration 
(i.e.1) and the number of neurons in the hidden layer are varied from 
2 to 34. Table 5.21 describes the RMSE and ‘d’ values, which are 
used to find out number of neurons in the hidden layer. Figure 5.15 
shows the architecture (17:5:1) of the ANN based NO2 model with 
seventeen input variables. Table 5.22 lists the performance of the 
ANNNO224hrA1 model during generalization on ‘test data set’. The 
final neuron definitions and synaptic weights of the ANNNO224hrA1 
model are described in Table D.13a and D.13b respectively in 
Appendix-D. 
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Table 5.21 Experimental simulation results for optimization of the hidden layer  
                    neurons for the 24- hr average ANN based NO2 model.    
 

Statistical parameter Number 
of hidden 
neurons 

Mean square error after 
network stabilization 

d RMSE 

2 0.04657 0.58 7.96 
3 0.04046 0.44 10.29 
4 0.03803 0.47 10.45 
5 0.03777 0.63 7.18 
6 0.03774 0.44 10.69 
7 0.03802 0.48 10.18 
8 0.03657 0.45 9.89 
9 0.03647 0.44 11.13 
10 0.03758 0.45 11.11 
11 0.03703 0.40 11.98 
12 0.03984 0.40 11.13 
13 0.03994 0.42 10.49 
14 0.04030 0.44 10.18 
15 0.03982 0.42 10.52 
16 0.03731 0.39 12.35 
17 0.04014 0.40 11.08 
18 0.03815 0.39 11.93 
19 0.03798 0.39 11.99 
20 0.04151 0.40 10.80 
21 0.03896 0.39 12.00 
22 0.04000 0.47 9.81 
23 0.03888 0.40 11.83 
24 0.04538 0.56 7.91 
25 0.03896 0.40 11.87 
26 0.03843 0.44 11.13 
27 0.04216 0.56 9.07 
28 0.04604 0.58 7.70 
29 0.04464 0.52 8.34 
30 0.04576 0.57 7.80 
31 0.04606 0.58 7.67 
32 0.03871 0.40 11.95 
33 0.04299 0.43 9.74 
34 0.04614 0.58 7.69 

 

 

5.6 Case Study
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Fig. 5.15. Structure of 17:5:1 ANN based NO2 model.  
 
 
Table 5.22 Estimates of the statistics during generalization of the ANNNO224hrA1  
                   model. 
 

Epoch d RMSE 
50 0.597 7.58 

100 0.625 7.20 
150 0.627 7.18 
200 0.625 7.29 
250 0.622 7.32 
300 0.467 9.0 
350 0.47 9.95 
400 0.44 10.69 
450 0.44 10.48 
500 0.44 10.78 
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(ii) ANNNO224hrB1 (24-hr average meteorological variables as  
     model input at AQCR1) 

The ANNNO224hrB1 model is developed, with ten meteorological 
variables, as inputs. Figure 5.16 shows the architecture of the 
ANNNO224hrB1 model. Table 5.23 shows the performance of the 
ANNNO224hrB1 model during generalization on ‘test data set’. The final 
neuron definitions and synaptic weights of the ANNNO224hrB1 model 
are provided in Table D.14a and D.14b respectively in Appendix-D. 

Fig. 5.16. Structure of 10:5:1 ANN based NO2 model. 
 
Table 5.23 Estimates of the statistics during generalization of the ANNNO224hrB1  
                   model. 
 

Epoch d RMSE 
100 0.58 8.23 
200 0.59 8.06 
300 0.59 7.93 
400 0.598 7.86 
500 0.598 7.82 
600 0.595 7.82 
700 0.594 7.85 
800 0.594 7.87 
900 0.593 7.89 
1000 0.592 7.90 
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(iii) ANNNO224hrC1 (24-hr average traffic characteristic variables  
      as model input at AQCR1) 
 
Neural network architecture of 5:5:1 is used for the development of 
the ANNNO224hrC1 model (Figure 5.17). This model consists of five 
traffic variables as input. Table 5.24 shows the performance of the 
ANNNO224hrC1 model during generalization on ‘test data set’. The 
final neuron definitions and synaptic weights of the ANNNO224hrC1 

Fig. 5.17. Structure of 5:5:1 ANN based NO2 model. 
 
(iv) ANNNO224hrA2 (24-hr average meteorological and traffic  
      characteristic variables as model input at AQCR2) 
 
For AQCR2, about 51 % of the total data values are found to be 
missing, therefore training, test and ‘evaluation’ data set are selected 
randomly for the development of the ANN based NO2 model. Out of 
49 % of available data, 33 % data are used for training, 10 % used 
for testing and 6 % for the final model evaluation. Figure 5.18 and 
5.19 represent NO2 patterns used for the training and test of the 
ANN based NO2 model at AQCR2.  Network architecture of 17:5:1 
is used to develop the ANNNO224hrA2 model. Table 5.25 shows the 
performance of the ANNNO224hrA2 model during generalization on 
‘test data set’. The final neuron definitions and synaptic weights of 
the ANNNO224hrA2 model are listed in Table D.16a and D.16b re-
spectively in Appendix-D. 
 

Appendix-D. 
model are presented in Table D.15a and D.15b respectively in 
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Table 5.24 Estimates of the statistics during generalization of the ANNNO224hrC1  
                   model. 
 

Epoch d RMSE 
5 0.265 29.21 
10 0.34 23.07 
15 0.43 12.59 
20 0.44 9.76 
25 0.44 9.03 
30 0.44 8.84 
35 0.44 8.77 
40 0.44 8.75 
45 0.43 8.75 
50 0.40 8.75 
55 0.40 8.75 
60 0.40 8.75 
65 0.40 8.75 
70 0.40 8.75 
75 0.40 8.75 
80 0.40 8.75 
85 0.40 8.75 
90 0.40 8.75 
95 0.40 8.75 

100 0.40 8.75 

Fig. 5.18. Training patterns used for development of  24-hr average ANNNO2  
                  models at AQCR1. 
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Fig. 5.19. Test patterns used for generalization of 24-hr average ANNNO2 model  
                 at AQCR1. 
 

24hrA2  
                    model. 
 

Epoch d RMSE 
50 0.51 20.2 

100 0.54 19.3 
150 0.539 18.85 
200 0.545 18.66 
250 0.546 18.65 
300 0.543 18.79 
350 0.535 19.06 
400 0.529 19.38 
450 0.523 19.67 

 
    

(v) ANNNO224hrB2 (24-hr average meteorological variables as  
     model input at AQCR2) 
 
Network architecture of 10:5:1 is used to develop the ANNNO224hrB2 
model. The performance of the ANNNO224hrB2 model during gener-
alization on ‘test data set’ is provided in Table 5.26. The neuron 
definitions and synaptic weights of the ANNNO224hrB2 model are 
presented in Table D.17a and D.17b respectively in Appendix-D. 
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Table 5.26 Estimates of the statistics during generalization of the ANNNO224hrB2  
                   model. 
 

Epoch d RMSE 
50 0.524 19.4 

100 0.528 19.16 
150 0.528 19.16 
200 0.528 19.15 
250 0.529 19.13 
300 0.529 19.11 
350 0.53 19.11 
400 0.53 19.10 
450 0.539 19.11 
500 0.539 19.11 
550 0.533 19.12 
600 0.533 19.13 
650 0.529 19.16 
700 0.529 19.18 
750 0.528 19.23 

 

 (vi) ANNNO224hrC2 (24-hr average traffic characteristic variables  
        as model input at AQCR2) 
 
Neural network architecture of 5:5:1 is used for the development of 
the ANNNO224hrC2 model. The performance of the ANNNO224hrC2 
model during generalization on ‘test data set’ is given in Table 5.27. 
The final neuron definition and synaptic weights of the 
ANNNO224hrC2 model are provided in Table D.18a and D.18b re-
spectively in Appendix-D.  
     The summary of the 1-hr and 8-hr average ANN based CO and 
24-hr average ANN based NO2 models parameter and their perform-
ance statistics on test data set at both the AQCRs are presented in 
Table 5.28.  

5.6 Case Study
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Table 5.27 Estimates of the statistics during generalization of the ANNNO224hrC2  
                    model. 

Epoch d RMSE 
20 0.41 19.55 
40 0.41 19.55 
60 0.41 19.55 
80 0.41 19.54 

100 0.41 19.52 
120 0.41 19.52 
140 0.41 19.51 
160 0.41 19.48 
180 0.41 19.50 
200 0.41 19.52 

 
Table 5.28 Summary of the 1-hr, 8-hr and 24-hr ANN based vehicular pollution 

model parameters and the model performance statistics on test data set. 
Site Time 

resolu-
tion 

Model Number  
of epoch 

� � RMSE d 

ANNCO1hrA1 1400 0.001 0.7 2.0893 0.663 

ANNCO1hrB1 2000 0.001 0.3 2.57 0.552 

 
1-hr 
average 

ANNCO1hrC1 10 0.001 0.7 3.72 0.41 

ANNCO8hrA1 400 0.001 0.3 2.04 0.64 

ANNCO8hrB1 1000 0.001 0.1 1.86 0.656 

 
8-hr 
average 

ANNCO8hrC1 20 0.001 0.1 2.12 0.44 

ANNNO224hrA1 150 0.01 0.7 7.18 0.627 

ANNNO224hrB1 500 0.001 0.9 7.82 0.598 

 
 
 
 
 
 
AQCR1 

 
24-hr 
average 

ANNNO224hrC1 40 0.001 0.3 8.75 0.44 

ANNCO1hrA2 200 0.001 0.3 2.105 0.655 

ANNCO1hrB2 600 0.001 0.3 2.136 0.65 

 
1-hr 
average 

ANNCO1hrC2 20 0.001 0.1 3.04 0.44 

ANNCO8hrA2 1400 0.001 0.5 1.58 0.689 

ANNCO8hrB2 4000 0.001 0.7 1.53 0.71 

 
8-hr 
average 

ANNCO8hrC2 30 0.001 0.7 1.97 0.44 

ANNNO224hrA2 250 0.001 0.3 18.65 0.546 

ANNNO224hrB2 400 0.001 0.5 19.1 0.53 

 
 
 
AQCR2 

 
24-hr 
average 

ANNNO224hrC2 160 0.001 0.5 19.48 0.41 
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5.7 Summary  

A step-by-step procedure for building ANN based vehicular pollu-
tion models has been described in this chapter. The development of 
ANN based vehicular pollution models for different time resolutions 
have been explained with the help of case study. The regularly 
monitored meteorological and traffic characteristic variables are 
used for the development of the ANN based vehicular pollution 
models for different time resolution (1-hr and 8-hr average CO mod-
els and 24-hr average NO2 models) following NAAQS.  A 17:3:1 
and 17:5:1 architectures are used for the development of the ANN 
based CO and NO2 models respectively for both meteorological and 
traffic characteristic variables as input to the model. While, 10:3:1 
and 10:5:1 architectures are used for the development of the ANN 
based CO and NO2 models respectively for regular meteorological 
variables as input to the model. Network architecture of 5:3:1 and 
5:5:1 are used for the ANN based CO and NO2 models respectively 
for traffic characteristic variables as input to the model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.7 Summary



6 Application of ANN based Vehicular Pollution 
Models  

This chapter presents case studies analyzing the performance of the 
ANN based vehicular pollution models applied at the urban intersec-
tion and straight corridor in the city of Delhi, India. Statistical indi-
cators, used in evaluating the model performance, are also been  
explained. Further, predictions of the ANN based vehicular pollution 
models have also been compared with conventional models e.g.  
deterministic and stochastic. 
  

6.1 General  

The performance of the ANN based vehicular pollution models have 
been evaluated using relevant statistical parameters e.g. index of 
agreement (d), the mean and the deviations of the observed and pre-
dicted concentrations, mean bias error, mean square error, systematic 
and unsystematic root mean square error, coefficient of determina-
tion and linear best fit constant and gradient [263]. The degree of 
agreement (d) between a set of predicted and observed concentration 
is normally accepted as one of the major statistical criterion for the 

eral, there are three steps that need to be considered while evaluating 
the performance of an air quality model. First, the assessment of 
model inputs; second, the comparison between predictions and ob-
servations and third, the sensitivity analysis of the model predictions 
[269]. In vehicular pollution modelling studies, the assessment of 
model inputs refers to the essential correction of the model, in terms 
of its representation of the basic processes involved in the dispersion 
of exhaust emissions. The dispersion, near the traffic intersections 
and busy roads, is influenced mainly by two factors; first, the natural 
turbulence and second, the traffic generated turbulence (traffic 

M. Khare and S.M. Shiva Nagendra: Application of ANN based Vehicular Pollution Models, Artificial 
Neural Networks in Vehicular Pollution Modelling (SCI) 41, 121–156 (2007) 
www.springerlink.com  � Springer-Verlag Berlin Heidelberg 2007 

assessment of the air quality model performance [263, 268]. In gen-



122      6 Application of ANN based Vehicular Pollution Models 

wake). The natural turbulence is represented by meteorological vari-
ables, while ‘traffic wake’ is related to the traffic characteristic  
variables [183,184]. The ANN based vehicular pollution models 
consider both the characteristic variables i.e. the meteorological and 
the traffic.  

Comparison between the predictions and observations is a crucial 
component of the model evaluation and is emphasized in many air 
quality-modelling studies [121, 172, 269]. It is difficult to analyze 
whether discrepancies between predictions and observations are due 
to errors in the input data, or in the representation of the dispersion 
processes. One-way of understanding the case of discrepancies be-
tween predictions and observations is to carry out the parameter sen-
sitivity i.e. to analyze the input variables to which the model is most 
sensitive. It allows one to evaluate how the model responds when its 
parameters are separately perturbed and aids the assessment of the 
physical response of the model components [270]. The sensitivity 
analysis for the present ANN based vehicular pollution models has 
been carried out in two stages. Firstly, by eliminating the traffic 
characteristic variables and keeping the meteorological variables as 
the only model input. Secondly, eliminating the meteorological vari-
ables and keeping the traffic characteristic variables as the only 
model input. 
  

6.2 Model Performance Indicators 

Fox [271] and Willmott [263] have described about the presence of 
inconsistencies in testing and evaluating the air quality models. It is 
not uncommon to find models that are evaluated by the correlation 
coefficient ‘r2’. Such statistics may not be useful in assessing the ac-
curacy of the model predictions and thus may seriously hinder 
model interpretations [82]. Therefore, the selected statistical indica-
tors as suggested by Willmott [263,268] and Willmott et al. [272] 
have been used to describe the goodness of the model predictions.  

6.2.1 Root Mean Square Error  

Two commonly reported measures of residual error include the 
mean absolute error and the root mean square error (RMSE). These  
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two errors summarize the difference between the observed and the 
predicted concentrations [263]. The power term in the RMSE calcu-
lations makes it more sensitive to extreme values than mean absolute 
error. The RMSE explains the actual size of the error produced by 
the model. The RMSE may further be divided into two components - 
systematic (RMSES) and unsystematic (RMSEU). The RMSES (also 
known as the model oriented error) is based on the difference be-
tween expected predictions and actual observations; RMSEU (also 
called data oriented error) is based on the difference between actual 
and expected predictions [268]. The RMSES and RMSEU are derived 
by first fitting a line by least square regression and then decompos-
ing the RMSE, using the following formulations:  

 

 
Where iP̂  = least square estimate 
           N = number of values 
           Oi = observed values 
           Pi  = predicted values 

 

6.2.2 Coefficient of Determination  

The coefficient of determination (r2) is an intuitively attractive statis-
tic. It indicates how much of the variations in the observed data are 
being reproduced by the model.   
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where O = average of observed values 

6.2.3 Mean Bias Error   

The mean bias error (MBE) is defined as the difference between the 
mean of the predicted and observed concentrations. It indicates the 
degree to which the observed concentrations are ‘over’ or ‘under’ 
predicted by the model. The MBE is estimated by following equa-
tion:   

6.2.4 

The standard deviation (σ) of the predictions quantifies the amount 
of the variance that the model is capturing when compared to the 
variations in the observed data.  

 
Where   P = average of predicted values 
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σO = standard deviation of the observations 
            σP = standard deviation of the predictions  
 

6.2.5 Slope and Intercept of the Least Square Regression Equation 

A model that exactly reproduces the actual observations has slope, 
‘b’ as 1.0 and, intercept ‘a’ as 0.0. The parameters ‘a’ and ‘b’ are es-
timated following least square procedure as given below. 
 

          P̂ = b + a O    

6.2.6 Degree of Agreement  

Willmott [263] and Willmott et al. [272] advocated that the degree 
of agreement (d) is a useful measure of model performance. The 
value of‘d’ is a descriptive statistics that reflects the degree to which 
the observed variate is accurately estimated by the simulated variate. 
It is the most commonly used statistical indicator in air quality 
model performance studies [59, 172, 83, 255, 82, 91].  
 

6.3 Application of ANN Based Vehicular Pollution Models 
at Urban Intersection and Straight Road Corridor  

6.3.1 1-hr Average CO Models 

Table 6.1 lists the performance statistics of the ANNCO1hrA1 and the 
ANNCO1hrA2 model predictions on the test data set at AQCR1 and 
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AQCR2 respectively. At AQCR1, the mean of the predicted CO 
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Table 6.1 Performance statistics of the ANNCO1hrA1 and ANNCO1hrA2 models 
                 (with the meteorological and the traffic characteristic inputs).   
 

Statistic 
RMSE 

Site Model ID  
 

O
 

ppm 

P
 

ppm 

σO  

 
ppm 

σP  

 
ppm 

MBE 
 
ppm 

MSE 
 
ppm RMSES 

ppm 
RMSEU 
ppm 

r2 

 

 

 d     a  
 
ppm 

b  

AQCR1 ANNCO1hrA1 3.79 4.54 3.33 2.31 0.75 6.4 1.91 1.69 0.47 0.78 2.75 0.47 

 AQCR2 ANNCO1hrA2 3.98 3.65 4.19 2.02 -0.32 6.7 2.94 1.58 0.39 0.67 2.46 0.3 

 

concentration ( P = 4.54 ppm) is higher than that of the observed 
mean (3.79 ppm); while at AQCR2, it is lower ( P = 3.65 ppm) than 
the observed mean value (3.98 ppm). The MBE value at AQCR1 is 
positive-indicating a tendency of the model to over predict; while at 
AQCR2, it is negative - indicating a tendency of the model to under 
predict. The standard deviation (σP) of the ANNCO1hrA1 model pre-
diction is matching with the standard deviation of the observed data 
at AQCR1.  At AQCR2, the difference between the standard devia-
tion of the observed and the predicted data is quite high. This ex-
plains that the ANNCO1hrA1 is reproducing the variations in the test 
data set at AQCR1; where as, at AQCR2, the ANNCO1hrA2 model is 
unable to reproduce the variations in the test data set. The RMSES 
and RMSEU errors for the ANNCO1hrA1 model are 1.91 and 1.69 
ppm respectively; where as, for the ANNCO1hrA2 model, these are 
2.94 and 1.58 ppm. A low RMSES value at AQCR1 indicates that 
the ANNCO1hrA1 model predictions are closely matching with the 
actual observations when compared with the ANNCO1hrA2 model 

1hrA1  and 
ANNCO1hrA2 models are 0.78 and 0.67 respectively. It implies that 
at AQCR1, 78 % of the model predictions are error free while at 
AQCR2, only 67 % are error free. It shows that ANNCO1hrA1 model 
is more reliable and accurate than ANNCO1hrA2 model.  Figure 6.1 
and 6.2 show observed versus predicted CO concentrations at 
AQCR1 and AQCR2 respectively, indicating that both models under 
predict the CO concentrations when observed values are towards 
higher side. 

predictions at AQCR2. Further, the ‘d’ values for ANNCO
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Fig. 6.1. Scatter plots of 1-hr average CO observations vs the ANNCO1hrA1 model 
               predictions for the evaluation data set at AQCR1. 
 
 

 

Fig. 6.2. Scatter plots of 1-hr average CO observations vs the ANNCO1hrA2 model 
               predictions for the evaluation data set at AQCR2. 
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Table 6.2 Performance statistics of the ANNCO1hrB1 and ANNCO1hrB2 models 
                  (with the meteorological inputs).   

Statistic 
RMSE 

Site Model ID 

O  
ppm 

P  
ppm 

σO 
 

ppm 

σP 
 

ppm 

MBE 
 

ppm 

MSE 
 

ppm RMSES
ppm 

RMSEU
ppm 

r2 

 
D 

       
a 
 

ppm 

b 

AQCR1 ANNCO1hrB1 3.79 5.43 
 

3.33 1.71 1.63 9.8 2.82 1.36 0.36 0.65 4.26 0.31 

AQCR2 ANNCO1hrB2 
 

3.98 3.75 4.19 1.87 -0.22 7.0 3.11 1.51 0.35 0.63 2.70 0.26 

 

    Table 6.2 provides the performance statistics of the ANNCO1hrB1 
and ANNCO1hrB2 model predictions on the test data set at AQCR1 
and AQCR2 respectively. The mean of predicted CO concentration 
at AQCR1 is higher than the observed mean; while at AQCR2, it is 
matching with the observed mean. At AQCR1, the MBE value is 
positive (1.63 ppm), indicating a tendency of the model to over pre-
dict; while, at AQCR2, it is negative (-0.22 ppm), indicating a ten-
dency of the model to under predict. The standard deviations (σP) of 
the ANNCO1hrB1 and ANNCO1hrB2 model predict-tions are lower 
than the standard deviations (σO) of the observed data set. This ex-
plains that both models seem to be inadequate to reproduce the 
variations in the test data set. RMSES values for the ANNCO1hrB1 
and ANNCO1hrB2 models are closely matching with each other. High 
RMSES values indicate that both the models perform satisfactorily 
on the test data set. The‘d’ values also explain that at AQCR1, 65 % 
of the model predictions are error free; while at AQCR2, 63 % pre-
dictions are error free. It shows that both the models predict with 
reasonably good accuracy. Figure 6.3 and 6.4 show observed versus 
predicted CO concentrations at AQCR1 and AQCR2 respectively 
indicating that both the models under predict CO concentrations 
when observed values are towards higher side.  
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Fig. 6.3. Scatter plots of 1-hr average CO observations vs the ANNCO1hrB1 model 
               predictions for the evaluation data set at AQCR1. 
 

 

Fig. 6.4.  Scatter plots of 1-hr average CO observations vs the ANNCO1hrB2 model 
                predictions for the evaluation data set at AQCR2. 
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For short-term average data (1-hr), the relationship between exhaust 
emissions, and meteorological and traffic characteristic variables is 
highly complex and non-linear. Gardner and Dorling [83,255] dem-
onstrated that ANN can accurately model such non-linear relation-
ships and so concluded that increase in the number of input variables 
further improves the prediction performance of an ANN model. The 
present study also supports the above findings. However, the loca-
tion of the monitoring station with respect to the line source is im-
portant factor that affects the prediction performance of the ANN 
model. A line source monitoring station can be considered as ‘near-
field’ (≤ 3 m) and/or far field (> 30 m) [120, 127, 129, 183, 184]. In 
the ‘near field’ region, the ‘traffic wake’ generated by moving vehi-
cles, dominantly disperses the pollutants. In the ‘far-field’ region, 
‘traffic wake’ effects gradually reduce and meteorological variables 
dominate the dispersion and dilution of the pollutants [120, 129]. In 
the present study, AQCR1 lies in ‘near-field’ (≈ 3 m); while AQCR2 
lies in ‘far-field’ region (≈ 100 m).   
    The results show that ANNCO1hrB1 model (developed for AQCR1 
which is in the ‘near-field’ region and in which traffic characteristic 
variables are not included), poorly performs on the test data, in terms 
of ‘d’ value, which is decreased by 13 %, when compared with 
ANNCO1hrA1 model (developed for AQCR1 which is in ‘near-field’ 
region and in which traffic characteristic variables are included). 
However, this reduction in ‘d’ value is marginal (only 4 %), when 
the ANNCO1hrB2 model (developed for AQCR2 which is in ‘far-
field’ region and in which traffic characteristic variables are not in-
cluded) prediction results are compared with ANNCO1hrA2 model 
predictions (developed for AQCR2 which is in the ‘far-field’ region 
and in which traffic characteristic variables are included). It clearly 
shows that in ‘far-field’ regions, the exclusion of traffic characteris-
tic variables from the ANN model input marginally affect its predic-
tion performance because at such distances, the effect of traffic  
generated turbulence (traffic wake) on pollutant dispersion gradually 
diminishes.  
 

Comparative performance of ANNCO1hrB1 vs ANNCO1hrA1  
and ANNCO1hrB2 vs ANNCO1hrA2 
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Table 6.3 Performance statistics of the ANNCO1hrC1 and ANNCO1hrC2 models 
                  (with the traffic characteristic inputs).   

Statistic 
RMSE 

Site Model ID 

O
 

ppm 

P
 

ppm 

σO 

 
ppm

σP 
 

ppm

MBE
 

ppm

MSE
 

ppm RMSES
ppm 

RMSEU
ppm 

r2 

 
d 
 

a 
 

ppm 

b 

AQCR1 ANNCO1hrC1 3.79 6.75 
 

3.33 0.75 2.95 19.18 4.33 0.73 0.05 0.44 6.56 0.05 

AQCR2 ANNCO1hrC2 
 

3.98 4.38 4.19 0.96 0.4 9.72 3.96 0.93 0.06 0.31 4.15 0.06 

 
    Table 6.3 summaries the performance statistics of the 
ANNCO1hrC1 and the ANNCO1hrC2 models prediction on test data set 
at AQCR1 and AQCR2 respectively. The means of the predicted CO 
concentrations at both the AQCRs are higher than the observed 
means. The MBE values at both AQCRs are positive, indicating the 
tendency of the models to over predict. The standard deviations (σP) 
of the ANNCO1hrC1 and ANNCO1hrC2 model predictions are low 
when compared to the observed standard deviations (σO). It explains 
that both the models are inadequate to reproduce the variations in the 
test data set. Further, the high RMSES values indicate that both 

ANNCO1hrC1 and ANNCO1hrC2 models explain that at AQCR1, 44 % 
of the model predictions are error free; while at AQCR2, 31 % of the 
model predictions are error free. Figure 6.5 and 6.6 show observe 
versus predicted CO concentrations at AQCR1 and AQCR2 respec- 
tively indicating that both the models under predict CO concentra-
tions when observed values are towards higher side and over  
predicts when observed values are towards lower side.  

6.3 Application of ANN Based Vehicular Pollution Models

models perform poorly on the test data set. The ‘d’ values for the 
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Fig. 6.5.  Scatter plots of 1-hr average CO observations vs the ANNCO1hrC1 model 
                predictions for the evaluation data set at AQCR1. 
 

 
Fig. 6.6. Scatter plots of 1-hr average CO observations vs the ANNCO1hrC2 
                model predictions for the evaluation data set at AQCR2. 
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Comparative performance of ANNCO1hrC1 vs ANNCO1hrB1 and 
ANNCO1hrA1  and ANNCO1hrC2 vs ANNCO1hrB2 and ANNCO1hrA2  

 
The RMSES value for the ANNCO1hrC1 model increases by 2.42 and 
1.51 ppm when compared with ANNCO1hrA1 and ANNCO1hrB1 mod-
els respectively. However, for ANNCO1hrC2 model, the RMSES val-
ues increases by 1.02 and 0.85 ppm when compared with 
ANNCO1hrA2 and ANNCO1hrB2
values for AQCR1 indicates that ANNCO1hrC1 model (d=0.44) per-
forms poorly, when compared with ANNCO1hrA1 (d=0.78) and 
ANNCO1hrB1 (d=0.65) models. At AQCR2, the ANNCO1hrC2 model 
(d=0.31) also shows poor performance when compared with the 
ANNCO1hrA2 (d=0.67) and ANNCO1hrB2 (d=0.63) models. The poor 
performance of ANNCO1hrC1 and ANNCO1hrC2 models can be ex-
plained by the following facts. Firstly, these models are developed 
considering only traffic characteristic variables as their inputs. As a 
result of which the models explain the CO dispersion due to ‘traffic 
wake’ effect only. Secondly, due to the absence of meteorological 
input variables, these models fail to take into account the ‘lag ef-
fect’- it is a phenomena that results into the accumulation of CO in 
the atmosphere during inversion conditions resulting into high con-
centration while the traffic is trickle [172]. This phenomenon fre-
quently occurs during critical winter periods (November to March), 
when inversion conditions prevail during nighttime, particularly 4 to 
6 hrs after 6 PM (10 PM to 6 AM). The ANNCO1hrC1 and 
ANNCO1hrC2 models fail to recognize and learn these phenomena. It 
verifies the fact that, as described by Gardner and Dorling [83,255] 
that decrease in number of variables affects the prediction accuracy 
of ANN based vehicular pollution models.       

6.3.2 8-hr Average CO Models 

Table 6.4 gives the performance statistics of ANNCO8hrA1 and 
ANNCO8hrA2 model predictions on test data set at AQCR1 and 
AQCR2 respectively. The mean of predicted CO concentration at 
AQCR1 (P= 5.56 ppm) is much higher than that of the observed 
mean (3.78 ppm); while at AQCR2, it is lower (P = 3.39 ppm) than 

6.3 Application of ANN Based Vehicular Pollution Models

 models respectively. Further, the ‘d’ 
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Table 6.4 Performance statistics of the ANNCO8hrA1 and ANNCO8hrA2 models 
           (with the meteorological and the traffic characteristic inputs).   

Statistic 
RMSE 

Site Model ID 

O  
ppm 

P  
ppm 

σO 
ppm

σP 
ppm

MBE
ppm

MSE
ppm

RMSES
ppm 

RMSEU
ppm 

r2 d a 
ppm 

 

b 

AQCR1 ANNCO8hrA1  3.78 5.56 2.45 2.35 1.78 5.71 1.87 1.48 0.61 0.78 2.72 0.75 

AQCR2 ANNCO8hrA2 4.18 3.39 3.35 2.10 -0.79 11.83 2.27 1.71 0.33 0.69 1.89 0.36 

 
the observed mean value (4.18 ppm). At AQCR1, the MBE value is 
positive (1.78 ppm), indicating the tendency of the model to over 
predict; while, at AQCR2, it is negative (-0.79 ppm), indicating the 
tendency of the model to under predict. The standard deviations (σP) 
of the ANNCO8hrA1 and ANNCO8hrA2 model predictions are 2.35 and 
2.1 ppm respectively. At AQCR1, σP is matching with the standard 
deviation of the observed data.  At AQCR2, the difference between 
the standard deviations of observed and predicted data is marginal 
(1.25 ppm). This explains that ANNCO8hrA1 model is reproducing 
the variations in the test data set with reasonable accuracy; where as, 
the ANNCO8hrA2 model is showing moderate variations in the test 
data set. A low RMSES value at AQCR1 indicates that the 
ANNCO8hrA1 model predictions are closely matching with the actual 
observations when compared to the ANNCO8hrA2 model predictions 

8hrA1 and 
ANNCO8hrA2 models are 0.78 and 0.69 respectively. This explains 
that at AQCR1, 78 % of the model predictions are error free; while 
at AQCR2, only 69 % of model predictions are error free. It shows 
that ANNCO8hrA1 model predictions are more accurate than the 
ANNCO8hrA2 model. Figure 6.7 and 6.8 show observed versus pre-
dicted CO concentrations at AQCR1 and AQCR2 respectively, indi-
cating that both models under predict CO concentrations, when  
observed concentrations are towards higher side.  
    Table 6.5 lists the performance statistics of the ANNCO8hrB1 and 
ANNCO8hrB2 model predictions on test data set at AQCR1 and 
AQCR2 respectively. The mean of the predicted CO concentration 
at AQCR1 is higher than the observed mean; while at AQCR2, the 
mean of the predictions is slightly lower than that of the observed 
mean. The MBE value at AQCR1 is positive (1.95 ppm), indicating 
the tendency of the model to over predict; while at AQCR2, it is  

at AQCR2. Further, the ‘d’ values for the ANNCO
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Fig. 6.7.  Scatter plots of 8-hr average CO observations vs the ANNCO8hrA1 model 
                predictions for the evaluation data set at AQCR1. 
 

 

Fig. 6.8.  Scatter plots of 8-hr average CO observations vs the ANNCO8hrA2 model 
               predictions for the evaluation data set at AQCR2. 
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Table 6.5 Performance statistics of the ANNCO8hrB1 and ANNCO8hrB2 models 
                  (with the meteorological inputs).  

Statistic 
RMSE 

Site Model ID 

O
 

ppm 

P
 

ppm 

σO 

 
ppm 

σP 
ppm 

MB
E 
ppm 

MS
E 
ppm RMSES

ppm 
RMSEU
ppm 

r2 d  a  
 ppm 

 b 
  
 

AQCR1 ANNCO8hrB1 3.78 
 

5.24 2.45 2.09 1.95 4.88 1.97 1.40 0.58 0.77 2.84 0.63 

AQCR2 ANNCO8hrB2 
 

4.18 3.45 3.35 1.96 -0.71 8.35 2.38 1.64 0.3 0.67 2.13 0.32 

 

negative (-0.71 ppm), indicating its tendency to under predict. The 
standard deviation of the ANNCO8hrB1 model predictions is match-
ing with the standard deviation of the observed data set at AQCR1. 
At AQCR2, the difference between the standard deviation of ob-
served and predicted data is quite high. It explains that ANNCO8hrB1 
model is able to reproduce the variations in the test data set at 
AQCR1; where as, at AQCR2, ANNCO8hrB2 model fails to repro-
duce the variations in the test data set. A low RMSES value at 
AQCR1 indicates that ANNCO8hrB1 model predictions are closely 
matching with the actual observations when compared with the 
ANNCO8hrB2 model predictions at AQCR2. Further, the  ‘d’ values 
for the ANNCO8hrB1 and ANNCO8hrB2 models explains that at 
AQCR1, 77 % of the model predictions are error free, while at 
AQCR2, 67 % are error free. It shows that ANNCO8hrB1 model is 
more accurate in its prediction performance than the ANNCO8hrB2 
model. Figure 6.9 and 6.10 show observed versus predicted CO con-
centrations at AQCR1 and AQCR2 respectively, indicating that both 
models under predict CO concentrations when observed concentra-
tions are towards higher side. 

 

The RMSES values for ANNCO8hrB1 and ANNCO8hrB2 models in-
crease marginally when compared to ANNCO8hrA1 and ANNCO8hrA2 
respectively. Further, ‘d’ values for ANNCO8hrB1 model (d=0.77) 
and ANNCO8hrB2 (d=0.67) also show a marginal decrease when 

8hrA1 (d=0.78) and  compared with ‘d’ values of ANNCO

Comparative performance of ANNCO8hrB1 vs ANNCO8hrA1  
and ANNCO8hrB2 vs ANNCO8hrA2  
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Fig. 6.9.  Scatter plots of 8-hr average CO observations vs the ANNCO8hrB1 model 
               predictions for the evaluation data set at AQCR1. 

 

Fig. 6.10.  Scatter plots of 8-hr average CO observations vs the ANNCO8hrB2 
                    model predictions for the evaluation data set at AQCR2. 
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ANNCO8hrA2 models (d=0.69) respectively. It may be due to the in-
crease in time averaging interval (1-hr to 8-hr) which smoothens out 
the temporal variations of CO concentration with meteorological and 
traffic characteristic variables which, in turn, implies that the real 
non-linear CO-meteorology and CO-traffic relationships gradually 
approach to linear form. As a result, the elimination of traffic char-
acteristic variables from the model input finds no dramatic im-
provements in its performance. Comrie [82] and Gardner and  
Dorling [18, 255] have observed the out-performance of neural net-
work model at sub daily time scale when the non-linearity of the 
system has been more apparent, while only small to marginal gains 
in model performance at the daily time scale.      
   Table 6.6 explains the performance statistics of the ANNCO8hrC1 
and ANNCO8hrC2 models prediction on test data set at AQCR1 and 
AQCR2 respectively. At AQCR1, the mean of the predicted CO 
concentration (5.03 ppm) is higher than the observed mean (3.78 
ppm); while at AQCR2, it is lower (3.49 ppm) than the observed 
mean value (4.18 ppm). The MBE values at AQCR1 is positive, in-
dicating the tendency of the model to over predict; while at AQCR2, 
it is negative, indicating its tendency to under predict. The standard 
deviations (σP) of the ANNCO8hrC1 and the ANNCO8hrC2 model pre-
dictions are lower than the observed standard deviations (σO). It ex-
plains that both models are inadequate to reproduce the variations in 
the test data set. The high RMSES values indicate that both models 

ANNCO1hrC1 and ANNCO1hrC2 models are 0.4 and 0.26 respectively. 
This explains that at AQCR1, 40 % of the model predictions are er-
ror free; while at AQCR2, 26 % are error free. Figure 6.11 and 6.12 

 
Table 6.6 Performance statistics of the ANNCO8hrC1 and ANNCO8hrC2 models  
                 (with the traffic characteristic inputs).   

Statistic 
RMSE 

Site Model ID 

O  
ppm 

P  
ppm 

σO 
ppm 

σP 
ppm 

MBE
ppm 

MSE
ppm 

RMSES
ppm 

RMSEU
ppm 

r2 d  a 
 
ppm 

b 

AQCR1 ANNCO8hrC1 3.78 5.03 2.45 0.37 1.24 7.4 2.70 0.36 0.03 0.4 4.93 0.02 

AQCR2 ANNCO8hrC2 4.18 3.49 3.35 0.52 -0.69 11.02 3.28 0.50 0.07 0.26 3.33 0.04 

 

show observed versus predicted CO concentrations at AQCR1 and  

perform poorly on the test data set. The ‘d’ values for the 
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Fig. 6.11. Scatter plots of 8-hr average CO observations vs the ANNCO8hrC1 
                  model predictions for the evaluation data set at AQCR1. 
 
 

 
Fig. 6.12 Scatter plots of 8-hr average CO observations vs the ANNCO8hrC2 model 
               predictions for the evaluation data set at AQCR2. 
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AQCR2 respectively, indicating that both models under predict CO 
concentrations when observed concentrations are towards higher 
side and over predicts when observed concentrations are towards 
lower side.  
 
Comparative performance of ANNCO8hrC1 vs ANNCO8hrB1 and 
ANNCO8hrA1 and ANNCO8hrC2 vs ANNCO8hrB2 and ANNCO8hrA2  
 
The RMSES value for ANNCO8hrC1 model increases by 0.83 and 
0.73 ppm when compared with ANNCO8hrA1 and ANNCO8hrB1 mod-
els respectively. However, for ANNCO8hrC2 model, this value in-
creases by 1.01 and 0.9 ppm when compared with ANNCO8hrA2 and 
ANNCO8hrB2 models respectively. Further, ‘d’ values indicate that 
ANNCO8hrC1 model (d=0.4) performs poorly at AQCR1, when com-
pared with ANNCO8hrA1 (d=0.78) and ANNCO1hrB1 models 
(d=0.77). At AQCR2, the ANNCO8hrC2 model (d=0.26) also shows 
poor performance when compared with the ANNCO8hrA2 (d=0.69) 
and ANNCO8hrB2 models (d=0.67). The reason for the poor perform-
ance of ANNCO8hrC1 and ANNCO8hrC2 models seems due to their 
inability to take into account the ‘lag effect’ in absence of meteoro-
logical data as input to these models. It again verifies the fact that, as 
described by Gardner and Dorling [83,255] that decrease in number 
of variables, affects the prediction accuracy of ANN based vehicular 
pollution models.       

6.3.3 24-hr Average NO2 Models 

Table 6.7 provides the performance statistics of the ANNNO224hrA1 
and ANNNO224hrA2 model predictions on the test data set at AQCR1 
and AQCR2 respectively. The mean values of ANNNO224hrA1 and 
ANNNO224hrA2 model predictions are slightly lower than the ob-
served mean values. The MBE values at AQCR1 and AQCR2 are 
negative, indicating the tendency of the models to under predict. The 
standard deviations (σP) of the ANNNO224hrA1 and ANNNO224hrA2 
models prediction are 6.9 and 4.87 ppb respectively. At AQCR1, 
standard deviation of the predictions (σP) is close to the standard de-
viation of the observed data. At AQCR2, the difference between the  
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Table 6.7 Performance statistics of the ANNNO224hrA1 and ANNNO224hrA2models  
                 (with the meteorological and the traffic characteristic inputs).   

Statistic 
RMSE 

Site Model  ID 

O  
ppb 

P  
ppb 

σO 
 

ppb

σP 
 

ppb

MBE
 

ppb

MSE
 

ppb RMSES
ppb 

RMSEU
ppb 

r2 d a 
ppb 

b 
 

AQCR1 ANNNO224hrA1 35.1 
 

31.7 10.4 6.9 -3.4 69.06 6.5 5.05 0.47 0.76 15.7 0.46 

AQCR2 ANNNO224hrA2
 

30.2 27.8 9.4 4.87 -2.34 77.44 8.01 4.41 0.18 0.59 21.2 0.2 

 
standard deviations of the observed and predicted data is quite high. 
This explains that the ANNNO224hrA1 model is reproducing the 
variations in the test data set at AQCR1 with improved accuracy 
than ANNNO224hrA2 model. A low RMSES value at AQCR1 indi-
cates that the ANNNO224hrA1 model predictions are closely matching 
with actual observations, when compared with ANNNO224hrA2 

ANNNO224hrA1 and the ANNNO224hrA2 models are 0.76 and 0.59  
respectively. This explains that at AQCR1, 76 % of the model pre-
dictions are error free; while at AQCR2, only 59 % of model predic-
tions are error free. It shows that ANNNO224hrA1 model is more  
reliable and accurate than ANNNO224hrA2. Figure 6.13 and 6.14 
show observed versus predicted NO2 concentrations at AQCR1 and 
AQCR2 respectively, indicating that both models under predict NO2 
concentrations when observed concentrations are towards higher 
side.  
   Table 6.8 summaries the performance statistics of the 
ANNNO224hrB1 and ANNNO224hrB2 model predictions on the test 
data set at AQCR1 and AQCR2 respectively. The mean values of 
the predicted NO2 concentration at both the AQCRs are lower than 
observed mean values. The MBE values at AQCR1 and AQCR2 are 
negative (-4.29 and -3.5 ppm respectively), indicating the tendency 
of the models to under predict. The difference between the standard 
deviation of observed and predicted data at AQCR2 is higher than at 
AQCR1. It explains that ANNNO224hrB1 model predictions are closer 
to observed values when compared with the ANNNO224hrB2 model. 
Further, a low RMSES value at AQCR1 also indicates that 
ANNNO224hrB1 model predictions are closely matching with actual 

24hrB2observations when compared to ANNNO2  model predictions. 

6.3 Application of ANN Based Vehicular Pollution Models

model predictions at AQCR2. Further, the ‘d’ values for the 
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Fig. 6.13. Scatter plots of 24-hr average NO2 observations vs the ANNNO224hrA1 
                 model predictions for the evaluation data set at AQCR1. 
 

 

Fig. 6.14. Scatter plots of 24-hr average NO2 observations vs the ANNNO224hrA2 
                 model predictions for the evaluation data set at AQCR2. 
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Table 6.8 Performance statistics of the ANNNO224hrB1and ANNNO224hrB2 models 
                 (with the meteorological inputs).   

Statistic 
RMSE 

Site Model ID 

O  
ppb 

P  
ppb 

σO 
 

ppb

σP 
 

ppb

MBE
 

ppb

MSE
 

ppb RMSES
ppb 

RMSEU
ppb 

r2 d a 
 

ppb 

b 
 

AQCR1 ANNNO224hrB1 35.1 
 

30.8 10.4 6.56 -4.29 78.32 7.41 4.86 0.45 0.73 16.04 0.42 

AQCR2 ANNNO224hrB2 
 

30.2 26.7 9.4 4.68 -3.5 90.25 8.53 4.35 0.12 0.55 21.46 0.17 

 
24hrB1 and ANNNO224hrB2 models 

explains that at AQCR1, 73 % of the model predictions are error 
free; while at AQCR2, 55 % are error free. It shows that 
ANNNO224hrB1 model at AQCR1 is more accurate than 
ANNNO224hrB2 at AQCR2. Figure 6.15 and 6.16 show observed ver-
sus predicted NO2 concentrations at AQCR1 and AQCR2 respec-
tively indicating that both models under predict NO2 concentrations 
when observed concentrations are towards higher side.  

The RMSES values increase by 0.91 ppb for ANNNO224hrB1 model 
when compared to ANNNO224hrA1. However, the RMSES value for 
ANNNO224hrB2 model is showing 0.52 ppb increase when compared 
to ANNNO224hrA2. Further, ‘d’ values for AQCR1 indicates that 
ANNNO224hrB1 (d=0.73) model performance decreases marginally 
when compared to the ANNNO224hrA1 (d=0.76). Similarly, at 
AQCR2, the ANNNO224hrB2 model (d=0.55) performance also 
shows marginal decrease when compared to the ANNNO224hrA2 
(d=0.59). The reasons for this appear to be the same as explained in 
section 6.3.2. 
    Table 6.9 provides the performance statistics of the 
ANNNO224hrC1 and ANNNO224hrC2 model predictions on test data 
set at AQCR1 and AQCR2 respectively. The mean value of the pre-
dicted NO2 concentrations at AQCR1 is closely matching with the 
observed mean. At AQCR2, the mean of predicted NO2 concentra-
tions is lower than the observed mean value. The MBE values at 
AQCR1 and AQCR2 are negative, indicating the tendency of the 
models to under predict. The standard deviations (σP) of the 

24hrC1 and the ANNNO224hrC2ANNNO2  model predictions are very 

6.3 Application of ANN Based Vehicular Pollution Models

Comparative performance of ANNNO224hrB1 vs ANNNO224hrA1  
and ANNNO224hrB2 vs ANNNO224hrA2 

The ‘d’ values for the ANNNO2
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Fig. 6.15. Scatter plots of 24-hr average NO2 observations vs the ANNNO224hrB1 
                 model predictions for the evaluation data set at AQCR1. 

 

Fig. 6.16. Scatter plots of 24-hr average NO2 observations vs the ANNNO224hrB2 
                 model predictions for the evaluation data set at AQCR2. 
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Table 6.9 Performance statistics of the ANNNO224hrC1 and ANNNO224hrC2 models 
                 (with traffic characteristic inputs).   

low when compared with observed standard deviations (σO). It ex-
plains that both models are inadequate to reproduce the variations in 
the test data set. Further, the high RMSES and low ‘d’ values also 
indicate that both the models perform poorly on the test data set. 
Figure 6.17 and 6.18 show observed versus predicted NO2 concen-
trations at AQCR1 and AQCR2 respectively, indicating that both 
models under predict CO concentrations when observed concentra-
tions are towards higher side. 

 
The ‘d’ value indicates that ANNNO224hrC1 model (d=0.25) per-
forms poorly at AQCR1 when compared with ANNNO224hrA1 
(d=0.76) and ANNNO224hrB1 (d=0.73) models. At AQCR2, the 
ANNNO224hrC2 model (d=0.3) also shows poor performance when 
compared with ANNNO224hrB2 (d=0.55) and ANNNO224hrA2 models 
(d=0.59). The reason for this seems to be the absence of meteoro-
logical variables as input to the ANNNO224hrC1 and ANNNO224hrC2 
models. With the result, the models fail to explain the seasonal 
variations present in the NO2 dispersion characteristics. Similar to 1- 
and 8-hr average ANN based CO models, it again shows that de-
crease in number of input variables affects the prediction accuracy 
of ANN based vehicular pollution models [83,255].       

6.3 Application of ANN Based Vehicular Pollution Models

Comparative performance of ANNNO224hrC1 vs ANNNO224hrB1  
and ANNNO224hrA1 and ANNNO224hrC2 vs ANNNO224hrB2  
and ANNNO224hrA2 

 
  

Statistic 
RMSE 

Site Model  
ID 

O
 

pp
m 

P
 

pp
m 

�O 
ppb 

�P 
ppb 

MB
E 

ppb 

MS
E 
Pp
b 

RMS
ES 

ppb 

RMS
EU 

ppb 

r2 d a 
ppb 

b 

AQCR1 ANNNO224hrC1 35.1 
 

33.1 10.4 0.74 -1.94 110.9 10.49 0.75 0.1 0.25 32.89 0.007 

AQCR2 ANNNO224hrC2 30.2 27.3 9.4 0.44 -2.85 96.43 9.86 0.44 0.03 0.3 27.57 -0.01 
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Fig. 6.17. Scatter plots of 24-hr average NO2 observations vs the ANNNO224hrC1 
                 model predictions for the evaluation data set at AQCR1. 

 

Fig. 6.18.  Scatter plots of 24-hr average NO2 observations vs the ANNNO224hrC2 
                  model predictions for the evaluation data set at AQCR2.     
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6.4 Performance Evaluation and Comparison of ANN 
based Vehicular Pollution Models with Conventional 
Models 

Prediction performances of the 1-hr average ANN based CO models 
are compared with, univariate stochastic model (Appendix C) and 
one of the existing deterministic model (Appendix A) for the critical 
period test data set (21st - 31st December, 1999).  

The ANNCO1hrA1 and ANNCO1hrA2 models are used for prediction 
of CO concentration for the critical period at AQCR1 and AQCR2 
respectively. Table 6.10 gives the performance statistics of the 
ANNCO1hrA1 and ANNCO1hrA2 model predictions on the critical pe-
riod test data set. At both the AQCRs, the means of predicted CO 
concentration are higher than that of the observed mean values. The 
MBE values are positive at both the AQCRs, indicating the tendency 
of the models to over predict. The standard deviation (σP) of the 
ANNCO1hrA1 model prediction is lower than the standard deviation 
of the observed data at AQCR1. At AQCR2, the difference between 
the standard deviation of the observed and predicted data is quite 
low. This explains that the ANNCO1hrA2 model is reproducing the 
variations in the critical period test data set; where as, ANNCO1hrA2 
model is unable to reproduce the variations. Further, a low RMSES 

ANNCO1hrA2 model predictions are closely matching with the actual 
observations when compared with the ANNCO1hrA1 model predic-
tions at AQCR1. Figure 6.19 and 6.20 show observed versus pre-
dicted CO concentrations at AQCR1 and AQCR2 respectively, indi-

observed concentrations are towards higher side.  
 
Table 6.10 Performance statistics of the 1-hr average ANN based CO models.  

Statistic 
RMSE 

Site Model ID 

O  
ppm 

P  
ppm 

σO 
ppm

σP 
ppm

MBE
ppm

MSE
ppm RMSES

ppm 
RMSEU

ppm 

r2 d a 
ppm 

 

b 

AQCR1 ANNCO1hrA1 5.24 
 

6.6 4.24 2.37 1.0 13.1 3.06 1.94 0.33 0.67 4.82 0.32 

AQCR2 ANNCO1hrA2 
 

4.07 5.06 3.08 2.27 0.89 8.12 2.09 1.93 0.27 0.69 3.45 0.39 

6.4 Performance Evaluation and Comparison of ANN based Vehicular Pollution Models

indicating that both models under predict CO concentrations when 

value and a high ‘d’ value (0.69) at AQCR2 indicate that the 

Period Test Data 
6.4.1 Performance of ANN based CO Models for the Critical 



148      6 Application of ANN based Vehicular Pollution Models 

 

Fig. 6.19. Scatter plots of 1-hr average CO observations vs the ANN based CO 
                 model (ANNCO1hrA1) predictions for the critical period data set at 
                 AQCR1. 

 

Fig. 6.20. Scatter plots of 1-hr average CO observations vs the ANN based CO 
                 model (ANNCO1hrA2) predictions for the critical period data set at 
                 AQCR2. 
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6.4.2 Performance of Univariate Stochastic Models for the Critical  
Period Test Data 

Table 6.11 provides the performance statistics of the ARIMA 
(1,1,1)x(0,1,1)24   and ARIMA(1,1,0)x(0,1,1)24 model predictions on 
the critical period test data set at  AQCR1 and  AQCR2  respec-
tively.  The mean values of predicted CO concentrations are lower 
than the observed mean values at both the AQCRs. The MBE values 
are negative at both the AQCRs, indicating the tendency of the mod-
els to under predict. The standard deviations (σP) of the ARIMA 
(1,1,1)x(0,1,1)24 and ARIMA(1,1,0)x(0,1,1)24 model predictions are 
low when compared to the observed standard deviations (σO). This 
explains that univariate stochastic models are unable to reproduce 
the variations in the critical period test data set at respective AQCRs. 
The RMSES and RMSEU errors for the ARIMA (1,1,1) x (0,1,1)24 
model are 5.0 and 0.51 ppm respectively; where as, for the ARIMA 
(1,1,0) x (0,1,1)24 model, these are 5.65 and 0.36 ppm. A lower 
RMSES value at AQCR1 indicates that the ARIMA (1,1,1) x 
(0,1,1)24 model predictions are moderately matching with observed 
values when compared to the ARIMA (1,1,0)x(0,1,1)24 model pre-
dictions at AQCR2. Further, the ‘d’ values for the 
ARIMA(1,1,1)x(0,1,1)24 and the ARIMA(1,1,0)x(0,1,1)24 models are 
0.49 and 0.43 respectively. This explains that at AQCR1, 49 % of 
the model predictions are error free; while at AQCR2, only 43 % 
predictions are error free. Figure 6.21 and 6.22 show observed ver-
sus predicted CO concentrations at AQCR1 and AQCR2 respec-
tively indicating that both models under predict CO concentrations 
when observed concentrations are towards higher side.      
 
Table 6.11 Performance statistics of the univariate stochastic models.  

6.4 Performance Evaluation and Comparison of ANN based Vehicular Pollution Models

Statistic 

RMSE 

Site Model ID 

O  
ppm 

P  
ppm 

�O 
ppm 

�P 
ppm 

MBE 
ppm 

MSE 
ppm 

RMSES 
ppm 

RMSE
U 

ppm 

r2 d a 
ppm 

B 

AQCR1 ARIMA 
(1,1,1)(0,1,1)24 

5.24 
 

0.99 4.24 0.75 -4.61 35.05 5.0 0.51 0.21 0.49 0.27 0.13 

AQCR2 ARIMA 
(1,1,0)(0,1,1)24 
 

4.07 0.57 3.08 0.38 -3.59 21.62 5.65 0.36 0.11 0.43 0.4 0.04 
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Fig. 6.21. Scatter plots of 1-hr average CO observations vs the univariate stochastic 
                 model predictions for the critical period data set at AQCR1. 

 

 

Fig. 6.22. Scatter plots of 1-hr average CO observations vs the univariate stochastic 
                 model predictions for the critical period data set at AQCR2. 
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Table 6.12 summarizes the performance statistics of the DFLS 
model [172] predictions on the critical period test data set at AQCR1 
and AQCR2 respectively. The mathematical formulation and inputs 
for DFLS model are given in Appendix-A. The mean values of pre-
dicted CO concentrations are lower than that of the observed mean 
values at both the AQCRs. The MBE values are negative at both the 
AQCRs, indicating the tendency of the model to under predict. At 
both the AQCRs, the standard deviations (σP) of the DFLS model 
predictions are lower than the observed standard deviations of the 
critical period data. This explains that the DFLS model is inadequate 
to reproduce the variations in the critical period test data set at both 
the AQCRs. Further, a lower RMSES value at AQCR1 indicate that 
the DFLS model predictions are moderately matching with observed 
values when compared to the DFLS model predictions at AQCR2. 

and 0.41 respectively. This explains that at AQCR1, 43 % of the 
model predictions are error free; while at AQCR2, 41 % predictions 
are error free. It shows that the DFLS model performance at both the 
AQCRs is more or less similar. Figure 6.23 and 6.24 show observed 
versus predicted CO concentrations at AQCR1 and AQCR2 respec-
tively, indicating that both models under predict CO concentrations 
when observed concentrations are towards higher side.  
 
Table 6.12 Performance statistics of the deterministic model (DFLSM).

Comparative performance of ANN based vehicular pollution 
model vs univariate stochastic and deterministic models  
 
Table 6.13 summarizes the comparative performance statistics of 
ANN based, univariate stochastic and deterministic models on the 

Scritical period test data set. At AQCR1, the RMSE  value for the  

6.4 Performance Evaluation and Comparison of ANN based Vehicular Pollution Models

The ‘d’ values for the DFLS model at AQCR1 and AQCR2 are 0.43 

6.4.3 Performance of Deterministic Model for the Critical Period  
Test Data  

Statistic 
RMSE 

Site Model 
ID 

O  
ppm 

P  
ppm 

�O 
ppm 

�P 
ppm 

MBE 
ppm 

MSE 
ppm 

RMSES 
ppm 

RMSEU 
ppm 

r2 d a 
ppm 

b 

DFLSM 5.24 
 

1.81 4.24 1.38 -3.43 31.58 5.45 1.38 0.1 0.43 1.81 0.0001 

DFLSM 4.07 0.23 3.0 0.16 -3.83 23.62 5.87 0.16 0.1 0.41 0.21 0.005 

 

AQCR1

AQCR2
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Fig. 6.23. Scatter plots of 1-hr average CO observations vs the deterministic 
                  (DFLS) model predictions for the critical period data set at AQCR1. 

 

Fig. 6.24. Scatter plots of 1-hr average CO observations vs the deterministic 
                  (DFLS) model predictions for the critical period data set at AQCR2. 
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Table 6.13 Summary of ANN based CO model vs univariate stochastic and  
                    deterministic model comparison.  

Site AQCR1 AQCR2 

Model ID ANNCO1hrA1 Univariate DFLS ANNCO1hrA2 Univariate DFLSM 
 

RMSES 3.06 5.0 5.45 2.09 5.65 5.87 

d 0.67 0.49 0.43 0.69 0.43 0.41 

 
DFLS model increases by 2.39 and 0.45 ppm when compared with 
the ANNCO1hrA1 and univariate stochastic model. However, at 
AQCR2, it increases by 3.78 and 0.22 ppm when compared with the 
ANNCO1hrA2 
at both the AQCRs indicate poor performance of DFLS and univari-
ate stochastic models. The sequence of the predicted and observed 
values of the CO concentration for ANN based CO model, univari-
ate stochastic model and DFLS model is shown in Figures 6.25 and 
6.26 respectively. These figures show that at both the AQCRs, 
DFLS model predictions are comparable to the observed values  
during ‘working hours’ (8 AM – 6 PM). This may be due to the 
presence of sufficient traffic flow (emission rate) along with the me-
teorology, which are the vital input parameters of this Gaussian 
based deterministic model. However, during after hours (i.e., after 
10 PM), the DFLS model fails to predict CO concentration ade-
quately due to the presence of “lag effect” during which the accumu-
lation of CO takes place without any dispersion while the traffic 
flow is trickle [172]. This indicates that Gaussian based determinis-
tic models are not able to explain non-linear relationship between 
the vehicular pollution, meteorological and traffic characteristic 
variables.  
     The stochastic model takes into account all possible uncertainty 
in form of ‘noise’ variable with assigned statistical properties. The 
time series of CO concentration at both the AQCRs contain no for-
ward information on “lag effect”. Therefore, the persistence of  
inversion conditions has not been explained by the noise term in the 
univariate model. Further, the statistical analysis of CO concentra-
tion variation in critical period is generally not following the theo-
retical ACF and PACF graphical form [273]. With the result,  
univariate stochastic model fails to reproduce the CO time series for 
critical periods at both the AQCRs.  

6.4 Performance Evaluation and Comparison of ANN based Vehicular Pollution Models

and univariate stochastic model. Further, the ‘d’ values 
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Fig. 6.25. Comparison of 1-hr average CO concentrations predicted by ANN 
                  based CO, univariate stochastic and deterministic models for the  

 
Fig. 6.26. Comparison of 1-hr average CO concentrations predicted by ANN 
                  based CO, univariate stochastic and deterministic models for the critical 
                  period data set at AQCR2. 
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In contrast with univariate stochastic and deterministic models, 
ANN based vehicular pollution models show best performance on 
the critical period test data set at both the AQCRs (Table 6.13). It is 
due to the inclusion of all those relevant meteorological and traffic 
parameters that affect CO concentrations during the critical periods. 
Further, the neural network model also takes into account the ‘lag 
effect’ that prevails during the critical periods. Further, they are also 
able to capture non-linear relationship between CO dispersion and 
meteorological and traffic characteristics due to its self-learning ca-
pabilities.  

 

6.5  Summary  

The application of ANN based vehicular pollution models to the ur-
ban context in India have been presented. A range of statistical indi-
cators as suggested by Fox [271] and Willmott [263] are used for 
model performance evaluation. The performance of 1-, 8- and 24-hr 
average ANN based vehicular pollution models are evaluated on the 
test data set at two AQCRs. For ‘near-field’ region (AQCR1), the 
forecast performances of 1-hr average ANN based CO models with 
meteorological and traffic characteristic inputs are satisfactory, 
while there is a significant decrease in model performance when 
only meteorological inputs are used. For ‘far-field’ region (AQCR2), 
the forecast performance of 1-hr average ANN based CO models 
with meteorological and traffic characteristic input as well as with 
only meteorological input are satisfactory. The study also reveals the 
effect of the location of the monitoring station on pollutant disper-
sion. The forecast performance of 8-hr average ANN based CO 
models with meteorological and traffic inputs, and only with mete-
orological inputs, respectively, is equally satisfactory. Similar ob-
servations have also been observed for 24-hr average ANN based 
NO2 models. The performance of 1-, 8- and 24-hr average ANN 
based vehicular pollution models with only traffic characteristic 
variables input is unsatisfactory. The performance of the ANN based 

6.5 Summary

vehicular pollution models have been compared with one of the
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than that of deterministic and univariate statistical models for the 
critical period data set. 
 

ANN based vehicular pollution model predictions are more reliable 
deterministic and the univariate stochastic models. It is observed that 



7 Epilogue 

The development of effective air quality management strategies at 
local urban scale requires analysis of complex interaction between 
exhaust emission with meteorological and traffic characteristics. A 
well-structured air quality management system must be based on ef-
ficient tools that integrate a diverse set of information’s–vehicular 
emissions, traffic characteristics, meteorological variables and local 
air quality data. Therefore, extensive meteorological and traffic 
characteristics, emissions and air quality data are required for the 
development of efficient air quality management models. 

In last 50 years, several line source models are developed to de-
scribe temporal and spatial distribution of exhaust emission on urban 
roadways. Most of these models are developed either by determinis-
tic and/or stochastic approaches. During the recent past, ANN tech-
nique is becomes one of the upcoming techniques in modelling the 
exhaust emission dispersion phenomena. In this book, the develop-
ment of ANN based vehicular pollution models of different time 
resolutions are described. ANN based vehicular pollution modelling 
approach does not require in depth knowledge of physical phenom-
ena. Instead, the neural network develops suitable mapping of the 
vehicular pollution dispersion, based on the data with which is 
trained. The training is mostly done by back-propagation method. 
The models are formulated following three choices of input data 
sets. Firstly, with both meteorological and traffic input data. Secondly, 
with only meteorological input data and lastly with only traffic input 
data. 
    A step-by-step procedure has been formulated for the develop-
ment of ANN based vehicular pollution models. The procedure pro-
vides vital statistics and clues on some parameters e.g. when to stop 
the training process and determination of learning parameters in 
back-propagation learning algorithm. ANN based vehicular pollu-
tion models are developed for different time resolutions as per 

M. Khare and S.M. Shiva Nagendra: Epilogue, Artificial Neural Networks in Vehicular Pollution 

www.springerlink.com  � Springer-Verlag Berlin Heidelberg 2007 
Modelling (SCI) 41, 157–161 (2007) 



158      7 Epilogue 

NAAQS, to assess the future air quality, particularly during inver-
sion conditions. Based on future changes in the traffic characteristics 
and meteorology, these models may be used as efficient tools to as-
sess the future urban air quality.  
    The 1-hr average ANN based CO models (developed with both 
meteorological and traffic characteristics as inputs) show best per-
formance on the test data set at both the AQCRs. It demonstrates 
that ANN can accurately model the short-term non-linear CO disper-
sion phenomena. However, the location of the AQCR with respect to 
the line source plays a vital role in evaluating the prediction per-
formance of the neural network based model. The 1-hr average 
ANN based vehicular pollution model (developed with only mete-
orological inputs, excluding traffic characteristic variables) shows 
poor performance on the test data set at AQCR1 which is situated at 
‘near-field’ region (< 3 m from the line source), when compared to 
ANN based vehicular pollution model with both meteorological and 
traffic characteristics, as inputs. It supports the findings of Rao et al. 
[120], which explain the dominance of ‘wake effects’ on pollutant 
dispersion in ‘near-field’ region of roadways. The 1-hr average 
ANN based vehicular pollution model, developed with only mete-
orological inputs (excluding traffic characteristic variables), shows 
marginal difference in its performance on the test data set at AQCR2 
which is situated at ‘far-field’ region (> 30 m from the line source), 
when compared to ANN based vehicular pollution model developed 
with both meteorological and traffic characteristics as inputs. It indi-
cates that in ‘far-field’ region, meteorological variables dominate the 
pollutant dispersion [120, 129]. The 8-hr average ANN based CO 
and 24-hr average ANN based NO2 models, developed with both 
meteorological and traffic characteristics as inputs, show satisfactory 
performance on the test data set at both the AQCRs. The results also 
show that increase in the number of input variables further improves 
the performance of ANN based models.  

The increase in time average interval (1-hr to 8-hr and 24-hr) 
smoothens out the temporal variations in pollutant concentrations. 
As a result, the 8-hr average ANN based CO and 24-hr average 
ANN based NO2 models (developed with only meteorological in-
puts, excluding traffic characteristic variables), show no improve-
ments in model performance on the test data set at both the AQCRs. 
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The 1- and 8-hr average ANN based CO models (developed with 
only traffic characteristics as inputs) show poor performance on the 
test data set at both the AQCRs. It reflects the models’ inability to 
take into account the ‘lag effect’ [172], in absence of meteorological 
data as inputs. The 24-hr average ANN based NO2 models (devel-
oped with only traffic characteristics as inputs) show poor perform-
ance on the test data set at both the AQCRs. It demonstrates that 
these models are not able to explain the seasonal variations, present 
in the NO2 dispersion characteristics in absence of meteorological 
data. 
    The comparison of ANN based vehicular pollution models with a 
univariate stochastic and a deterministic (DFLS) models shows that 
ANN based models have an edge over them in terms of their predic-
tion accuracy as well as applicability. The DFLSM failed to predict 
CO concentration during after hours (i.e. after 10 PM) due to its 
inability to take into account the ‘lag effect’ [172]. The univariate 
stochastic model also failed to explain the ‘lag effect’, there by, 
showing poor performance. The ANN based models performed 
satisfactorily in predicting the pollutant concentration during all the 
hours of the day for the critical period data set. It clearly demon-
strates the self learning capabilities of ANN based models which 
resulted into capturing CO dispersion phenomena through meteoro-
logical and traffic characteristic variables. 
    The current deterministic and stochastic line source models are 
widely used by local air quality authorities to make short-term pollu-
tion forecasts for public advisories and for input into decision re-
garding air quality management. However, in the presence of ‘lag 
effect’ these models fail to provide reliable short-term pollution 
forecasts during critical periods. In this book shows that neural net-
works can accurately develop mapping of the ‘lag effect’ phenom-
ena based on the data with which it has been trained. Further, it also 
demonstrates that neural network methods are viable when com-
pared to deterministic and stochastic approaches.     

This book explains the capabilities of neural network approach in 
studying the ‘near-field’ and ‘far-field’ short-term exhaust emission 
dispersion characteristics. With the available meteorological and 
traffic characteristics data, the trained neural network has been 
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found to be able to identify the traffic ‘wake effects’ on pollutant 
dispersion on urban roadways.  
    From last five decades a considerable amount of research work 
are carried on the development of exhaust emission models using 
deterministic approach, while limited studies are conducted on sta-
tistical approach [59]. The relationship between vehicular emission 
dispersion with meteorology and traffic characteristic is highly com-
plex and non-linear. Hence there is always a scope for applying new 
modelling techniques to tackle such complex phenomena. In this 
book, recent modelling approach i.e. ANN, has been used to address 
the local air quality management system in urban areas, in which 
traffic is the main cause of urban air pollution. The work presented 
in this book has successfully demonstrated that ANN based vehicu-
lar pollution models are worthy of further exploration. 
     ANN technology is in its infancy. It is an approach that is inher-
ently more suited for certain class of information processing opera-
tions. The modelling of exhaust emission dispersion phenomena 
using ANN technique, may aid in defining the capabilities of neural 
network. It appears that the presence of ‘noise’ in air quality data 
may limit the capability of the ANN model forecasting. This one 
gray area, where further work can be carried out, using suitable 
functions [274] in ANN based vehicular pollution modelling for 
proper distribution of air quality data, before actual calculations are 
made in hidden layer neurons. This approach may eliminate the 
effect of ‘noise’ on the air quality data and thus improve the accu-
racy of forecast.  
    A fuzzy approach may also be used in developing ANN based ve-
hicular pollution models for estimating the number of violations of 
air quality standards. Thus, ANN along with the fuzzy logic theory 
may be used as an effective means for exploring complex interrela-
tionships between traffic characteristics, meteorological variables 
and pollutant concentrations in urban areas [49, 275].  
     Substantial progress has been made in the application of statisti-
cal models-stochastic and regression techniques. But a very few 
studies have been made on hybrid modelling approach. A hybrid ap-
proach is combination of deterministic and statistical distribution 
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study the dispersion characteristics at traffic intersections and busy 
arterial roads.  

 7 Epilogue 

techniques used to fit the distribution of air pollutant concentrations 
[93, 276]. Hence, hybrid modelling studies may be carried out to 



A Formulation of Delhi Finite Line Source Model 
(DFLSM) 

A.1 General 

The commonly used method of modelling air pollutant dispersion is 
represented by a differential equation, which expresses the rate of 
change of pollutant concentration in terms of average wind speed 
and turbulent diffusion. Mathematically this process is derived from 
the mass conservation principle [131]. The basic diffusion equation 
used in air quality modelling is given by:  
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where C = pollutant concentration; t = time, x, y, z = position of the 
receptor relative to the source; u, v, w = wind speed coordinate in x, 
y and z direction; Kx, Ky, Kz = coefficients of turbulent diffusion in 
x, y and z direction; Q = source strength; R = sink (changes caused 
by chemical reaction)   
 

A.2 Formulation of Gaussian Plume Model  

The diffusion equation A.1 can be solved by two approaches. The 
first, and more complex type of solution is by numerical integration, 
having defined boundary conditions. The second approach is via 
simplifying assumption that the wind and turbulence functions are 
independent of time and position. Then, an analytical solution is 
possible, in which the pollutant concentration is expressed as a 
Gaussian distribution. Using analytical approach, the first formula-
tion for the steady-state concentration of the downwind from a con-
tinuous point source was presented by Sutton [277], and further 

 (A.1)
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developed by Pasquill [278] and Gifford [279]. The formulation of the 
Gaussian plume model for the continuous point source is given by: 

� �

2
1

exp
2
1

exp

2
1

exp
2

;,,

22

2

HzHz

y
u

Q
HzyxC

zz

yzy

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

��
�

�

�
�
�

��
�

�

�
�
�

�
	
	



� �
��

�
�
�

��
�

�

�
�
�

��
�

�

�
�
�

�
	
	



� �
��

�
�
�
�

�

�

�
�
�
�

�

�

��
�

�

�

		
	




�
��

��

����

where C = pollutant concentration (mass/volume); Q = emission 
rate from the point source (mass/time); z = receptor height above 
ground (m); u  = mean horizontal wind speed (m/s); H = effective 
stack height (m) = the sum of the physical stack height (h) and the 
plume rise ( h); zy and ��  = horizontal and vertical dispersion coef-
ficients (m) at a distance x from the source; x and y = downwind and 
lateral distances from the source to the receptor point (m). 

In the above equation, the last right-hand side term accounts for 
reflection of the plume at the ground by assuming an image source 
at distance ‘H’ beneath the ground surface. Figure A.1 shows the 
Gaussian plume model concepts considered in the above equation.  
 
Assumptions in Gaussian plume model: 
 

(i) Steady-state conditions, which imply that the rate of 
emission from the point source is constant. 

(ii) Homogeneous flow, which implies that the wind speed 
is constant both in time and with height (wind direction 
shear is not considered). 

(iii) Pollutant is conservative and no gravity fallout. 
(iv) Perfect reflection of the plume at the underlying sur-

face, i.e. no ground absorption. 
(v) The turbulent diffusion in the x-direction is neglected 

relative to advection in the transport direction (x), 
which implies that the model should be applied for av-
erage wind speeds of more than 1 m/s ( u > 1 m/s). 

(vi) The coordinate system is directed with its x-axis into 
the direction of the flow, and the v (lateral) and w (ver-
tical) components of the time averaged wind vector are 
set to zero. 

 (A.2)
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cal directions. 
 

(vii) The terrain underlying the plume is flat. 
(viii) All variables are ensemble averaged, which implies 

long-term averaging with stationary conditions. 
     Many limitations arise due to the assumptions made in the forma-
tion of Gaussian plume models. For instance, the steady-state as-
sumption implies that the Gaussian plume equation can be applied 
only for shorter distances (of the order of 10 km) and shorter travel 
time (of the order of 2 hours). In spite of their disadvantages, the 
Gaussian plume models have wide applications because of the fol-
lowing reasons: 
(i)  Much experience has been gained since first model formulation 

(in particular in the field of dispersion coefficients estimation). 
(ii)  The model is easy to understand and use, and is efficient in 

computer running time. 
(iii)  The model is appealing conceptually. 

 A.2 Formulation of Gaussian Plume Model

Fig. A.1. Cross section of a Gaussian plume profile in the horizontal and verti-
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The basic Gaussian dispersion model applies to a single point 
source, such as a smoke stack, but it can be modified to account for 
line sources (such as emissions from motor vehicles along a high-
way), or area sources (one can model these as a large number of 
point sources). 
 
A.3 General Finite Line Source Model  

Line sources are typically encountered during the atmospheric diffu-
sion modelling of vehicular pollution and may be treated as assem-
blages of finite line sources. But, because an explicit solution to the 
general finite line source (GFLS) problem is not possible, it has to 
be approximated as a series of point sources [163]. Thus, a line 
source may be considered to be a superposition of a series of point 
sources. Figure 4.1 in chapter 4 illustrates the coordinate system and 
the source/receptor relation used in the derivation GFLS model. Let 
us consider a point source of strength (emission rate) Qp, placed at 
the origin of the coordinate axis. The concentration at the receptor R 
(x1, y1, z) due to this upwind point source can be represented by: 
 
   � �z,y,xQC 11p!

where, ! (x1, y1, z) is some form of diffusion equation relating con-
centration to downwind and crosswind distances [163]. Replacing 
Qp in equation A.3 with an infinitesimal part 1L ydQ " of a uniform line 
source of strength (emission rate) QL per unit length such that dC is 
that portion of the concentration originating from 1L ydQ " :    
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Now, assume a hypothetical line source along y1-direction so that 
the wind is perpendicular to it. The concentration at the receptor R 
(x1, y1, z) due to this hypothetical line source can be calculated by 
integrating equation A.4. It is expressed as: 
 

 (A.3)

 (A.4)
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� � � �,,,, 11111 ydzyxQzyxC L "#" !

Since the deterministic model is based on the Gaussian plume 
model, which assumes the concentration distribution perpendicular 
to the plume axis to be Gaussian, the function ! in the above equa-
tion can be replaced by the generalized plume formula for an ele-
vated point source (equation A.2): 
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where z = receptor height above ground level; H = height of line 
source; u  = the mean ambient wind speed at source height; zy ,�"�"  = 
vertical and horizontal dispersion coefficients respectively and are 
functions of distance x1 and stability class. The prime (") symbol in-
dicates the parameters in the wind coordinate system. 
     Now, the concentration C"  at R due to this hypothetical line 
source for perpendicular wind direction, after proper substitution of 
!, is given by [90]: 
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The above equation is in the wind coordinate system and the pa-
rameters which are generally not known in this coordinate system 
have to be transformed into forms such that they are functions of 
line source coordinates. The relationship between the wind coordi-
nate system is given by: 

 A.3 General Finite Line Source Model

 (A.5)

 (A.6)

 (A.7)
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Since the line source is along the y-axis,  
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   QL is the emission rate per unit length in the wind coordinate sys-
tem; hence in the line source coordinate system it would be QL/Sin$ 
due to transformation of the length unit. So the apparent source 
strength QL is amplified by the factor 1/Sin$ because of obliquity of 
the source. 
   Substituting the values of y1, 1y" , x1 and 1yd "  together with the 
source strength correction in equation A.7, the following equation is 
obtained: 
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Here, �y and �z are functions of downwind distance (given by 
x/Sin$) and stability class. From the definition and properties of the 
error function (one sided normal cumulative distribution function), 
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Hence equation A.9 becomes: 
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Khare and Sharma [172] modified the GFLS equation, and found 
that after removing error function, the model performance improved 
considerably for Delhi traffic conditions. The DFLS model is ex-
pressed as follows: 
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The above model avoids the point source assumption, but satisfies 
the finite line source approach of GM model [121]. Further, the 
above equation specifies one dispersion parameter as a function of 
wind-road orientation angle and distance from the source. 

  

 (A.11)

 (A.12)

 (A.13)

 A.3 General Finite Line Source Model

The source height and $Sinu  in the above equation are replaced by 
ho (= H + Hp) and effective wind speed � �oe uSinuu �$  respectively, 
where Hp is the plume rise and uo is the wind correction due to vehi-
cle wake as described below. The arguments of the error function 
should be positive, hence the final form of the GFLS model is as 
follows: 
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A.4  DFLS Model Inputs   

A.4.1  Source Strength (QL) 

Source strength depends on the volume of traffic using the road, its 
composition and the operating mode of vehicles. Emission factor 
listed in Table 5.4 of chapter 5 have been used to estimate source 
strength of CO for various types of vehicle. These emission factors 
are developed for Indian motor vehicle driving cycles by Indian Oil 
Corporation, Dehradun [265]. 

A.4.2   Wind Speed 

In Gaussian equation the pollutant concentration is inversely propor-
tional to wind speed. The effective wind speed ( eu ) is assumed to be 
the sum of the ambient wind component ( u) and wind speed correc-
tion ( ou ). The ‘uo’ accounts for lateral dispersion caused due to 
traffic wake and also concentration divergence when wind speed ap-
proaches to zero (calm wind condition) or direction becomes parallel 
to the roadway [92]. Ideally, u  is the mean wind speed at source 
height. However, some parameters [92] which are being used in the 
DFLS model formulation are based on wind speed measurements at 
4.5 m height above the ground. In case of vehicles, it is difficult to 
measure wind speed such a small source height (' 0.3 m). Therefore, 
wind speeds at 4.5 m have been used. In general, wind speed and di-
rections are measured at 10 m height. Hence, Power law relationship 
between wind speed and height has been used to get the wind speed 
values at 4.5 m height. The wind speed correction is dependent on 
the atmospheric stability conditions and is assumed to be constant 
for a given stability condition, which is described by Richardson 
number [92]. Table A.1 shows the values of the parameters used in 
the DFLSM. The values of uo are all less than 1 m/s, as is expected 
from the fact that only a crosswind speed (1 m/s could significantly 
deflect the wake generated from the traffic [108]. 
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A.4.3 Vertical Dispersion Coefficient 

The vertical dispersion coefficient (�z) is directly depends on the 
down wind distance from the source and atmospheric stability. The 
�z of the GM model [92] has been modified by changing the down-
wind distance (x) from the line source coordinate system to a wind 
coordinate system by incorporating an angle-dependent factor f ($) 
[91]. Equation A.14 provides the estimation �z. 
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Where a, b and c are parameters determined by non-linear least 
square method [92] and are dependent on the atmospheric stability 
conditions. However, the term 1/Sin$ in equation A.14 has a singu-
larity at $ = 0. Therefore, if 1/Sin$ is compared with f ($) of the GM 
model, then the following expression should be used in equation 
A.14 instead of Sin$, for different stability conditions [91]. 
 
For unstable and neutral conditions,  

Sin7758.02242.0Sin $�)$

For stable conditions 

Sin8534.01466.0Sin $�)$

(A.14)

(A.15a)

(A.15b)

 A.4 DFLS Model Inputs

 
Table A.1 Parameters used in the deterministic mathematical model (DFLSM). 

Parameter a b C * + , u1 uo 

Stable (Ri  > 
0.07) 

1.49 0.15 0.77 5.82 3.57 20.7 0.18 
 

0.23 
 

Neutral 
(0.07 -Ri  > - 

0.1) 
 

1.14 0.10 0.97 3.46 3.50 11.1 0.27 0.38 

Unstable 
(Ri . - 0.1) 

 
1.14 0.03 1.33 - - - - 0.63 

Source: [92]  
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A.4.4   Source Height 

The effective source height (ho) is considered as sum of the height of 
the line source (H) and plume rise (Hp), which can be estimated as 
follows. However, when the cross-road wind speed is >1m/s, the ef-
fect of plume rise is negligible [108]. 
   Consider a plume emitted from a line source into a neutral envi-
ronment with finite crosswind. Then, following the approach of 
Slawson and Csanady [280], the conservation of mass, momentum 
and buoyancy can be expressed as: 
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where u"  = cross line wind speed; W = upward motion of the 
plume with width R; ,W = entrainment velocity of ambient air into 
the plume; / = (0o - 0)/0o , 0 and 0o = densities of the plume and the 
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where z is the height of the plume, which is a linear function of dis-

From equation A.19, it is evident that the plume centre height be-
comes undefined as 0u )" . However, as the traffic wake pushes the 
pollutant outward, an effective advection, characterized by u1, is ex-
pected near the road even at zero ambient cross-road wind, so that 
� �1a uuu �"  does not approach zero [92]. The plume under stable 

conditions will reach a maximum height. Using dimensional 
analysis, the plume height for calm conditions would be 

(A.16)

(A.17)

(A.18)

ambient air respectively; g = gravitational acceleration and  

tance, in contrast to the x2/3 behaviour of the plume rise from stack. 

(A.19)
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where ,1 and ,2 are constants [92]. However, in the present work 
the regions are located close to the downwind from the road (. 
100m), which generally tend to approach neutral stability [92], the 
maximum height for the purposes of present study would not be 
relevant. The values of , and u1 are listed in Table A.1, the factor F1 
is determined by the heat emission rate. It can be observed from Ta-
ble A.1 the values of u1 are comparable to uo. In other words, u"  can 
be replaced by u. 
 

A.4.5   Stability Class 

Stability of the atmosphere directly affects the dispersion parameter 
in the Gaussian models, which in turn decides the ground level con-
centration. A mathematical representation of stability [92], based on 
the numerical values of Richardson’s number, has been employed in 
the DFLSM. This method consists of three categories of stability to 
represent microscale atmospheric conditions, namely- stable, unsta-
ble and neutral. However, it may be pointed out here that the stabil-
ity class for computing various input parameters in the DFLSM has 
been assumed to be neutral, because near roadways, stability usually 
tends to approach neutrality [101, 108, 120]. 
 
 
 
 
 
 
 

 A.4 DFLS Model Inputs



B Stuttgart Neural Network Simulator Software 

B.1 General  

Stuttgart Neural Network Simulator (SNNS) software package is 
developed by institute for parallel and distributed high performance 
systems, university of Stuttgart, Germany. This software runs under 
UNIX operating system. The main features of SNNS software con-
sist of extensive recognition of the pattern loading i.e., up to five 
pattern files can be loaded and dynamically switched between them 
without reloading again, easy to train, test and visualize the neural 
network model. The SNNS software consists of three main compo-
nents namely a simulator kernel, graphical user interface (GUI), and 
a compiler. The Simulator kernel operates on the internal network 
data structures of the neural networks and performs all the opera-
tions on them. While, the GUI, gives the graphical representation of 
the neural networks and controls the kernel during the simulation 
run. In addition, the GUI can be used to create and modify the neural 
network in different ways. Lastly, a compiler is used to generate 
large neural networks, from a high-level network description lan-
guage. The SNNS software (Version 3.1), used in the development 
of ANN based VEE models consists of high quality learning algo-
rithms, efficient in training, testing and visualization of neural net-
work model. Hence, it became popular software in the scientific 
community. Further, this software works on number of machines i.e. 
Sun, DEC, IBM, HP, SGI and operating systems  of SunOS, Unix, 
AIX, Ultrix, Linax etc. 

 

B.2 Simulator Kernel  

The SNNS software kernel is designed to accommodate many types 
of neural network models. The main feature of the kernel is the 

www.springerlink.com  � Springer-Verlag Berlin Heidelberg 2007 
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complete encapsulation of all the internal data structures and the ef-
ficient memory management. Each unit (neuron) in the network 
model is user definable i.e., units may be introduced, removed, or 
their activation values changed, similarly connections among the 
units may be inserted, deleted or redirected.  

B.2.1 Simulator Kernel Layers  

The simulator kernel is internally structured into three layers. Each 
layer represents a higher level of abstraction.  
Layer 1: The innermost layer also called as ‘memory management 
layer’ which offers allocation and de-allocation of data structures in 
large blocks of contiguous memory, thus enhancing the standard 
UNIX memory management.  
Layer 2: The next layer consists of all functions to operate on, and 
modify the networks including propagation and learning functions.  
Layer 3: The top most layer is also called ‘graphical user interface 
layer’ consists of the function that provides an interface between 
kernel and the X-GUI. The same layer also consists of the in-
put/output (I/O) file interface to the network compiler. 

B.2.2 Internal Data Structures  

The kernel requires numerous data structures to manage and display 
the network. It displays both static (units, links) and dynamic (con-
nection weights) components of the neural network model. The al-
location of data structures is carried in large blocks of several 
hundreds of single structure components. The units and all their 
components are stored in the form of unit array. When the array is 
filed up by requests from the user interface, the memory manage-
ment automatically requests a new bigger array from the operating 
system. The pointers to the structure components are reallocated, 
and the old empty array is returned to the operating system.  

B.2.3 Types of Units 

There are three types of units based on their function in the neural 
network model. The units which are connected to inputs of the neu-
ral network model are called input units and the units whose outputs  
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represent the output of the neural network model are called output 
units. The units connecting the input and output units of the model 
are called hidden units. Activation functions and output functions 
are built in SNNS software for the process of information within 
units. It consists of several activation functions and four output func-
tions. Table B.1 and B.2 lists the selected activation functions and 
output functions built in SNNS software respectively. However, ad-
ditional activation functions and output functions can be built easily 
by writing ‘C’ codes and linked with simulator kernel. 
 
    Table B.1 List of selected activation functions built in the SNNS software. 

  Function Formula 

1 Identity  aj(t)  = netj(t) + $ 

2 Logistic  aj(t)  = 1/{1+e-(net
j
(t) + $)} 

3 StepFunc  aj(t)  = 1  if netj(t) > 0 
 aj(t)  = 0  if netj(t) < 0 

4 TanH  aj(t)  = tanH( netj(t) +$) 

5 TanH_Xdiv2  aj(t) =  tanH{( netj(t))/2} 

 
 
       Table B.2 List of output functions built in the SNNS software. 

Sl. No Function Formula 
1 Identity  oj(t) =  aj(t) 

2 Clip_0_1  oj(t) = o;       if aj(t) % 0 
 oj(t) = aj(t);  if aj(t) < 1 
 oj(t) = 1;      if aj(t) 1 1 

3 Clip_1_1  oj(t) = -1;      if aj(t) % -1 
 oj(t) = aj(t);  if  -1< aj(t) < 1 
 oj(t) = 1;      if aj(t) 1 1 

4 Threshold_0.5  oj(t) = o;       if aj(t) % 0.5 
 oj(t) = aj(t);  if aj(t) > 0.5  

 

Five update modes are implemented in SNNS software to compute 
the new activation values of the units. These are explained as fol-
lows: 
 

 B.2 Simulator Kernel
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(i) synchronous: units change their activation all together after each 
step. The kernel first computes the new activation of all units from 
their activation functions in some arbitrary order. After all units have 
their new activation value assigned, the new output of the units is 
computed.  
(ii) random permutation: the units compute their new activation and 
output function sequentially. The order is defined randomly but each 
unit is selected exactly once in every step. 
(iii) random: the order is defined by random number generator, i.e., 
single unit is chosen at random and its new output  is computed  and  
propagated before any other unit is updated. In this case some unit 
may be updated several times, some not at all. 
(iv) serial: the order is defined by ascending internal unit number, 
units are updated according to their internal cell number. 
(v) topological order: the kernel first sorts the units according to 
their topological position and performs activity from input to output.  
 
B.2.4 Training a Feed-Forward Neural Network Model 

Training a feed forward neural network with supervised learning 
consists of the following procedure: an input pattern is presented to 
the network. The input is then propagated forward in the net until ac-
tivation reaches the output layer. This is called forward propagation 
phase. Then, the output of the output layer is compared with the ac-
tual output value. The errors i.e. the differences between the output 
of the output layer and actual output are used to compute the neces-
sary changes of the link weights. This process is called backward 
propagation. The above training procedure is adopted in back propa-
gation algorithm. In the back propagation learning algorithm weights 
are updated using delta rule.        
 

B.3 Graphical User Interface 

GUI displays the dynamics of the neural network model simulation. 
The GUI of SNNS consists  of  the  following  windows,  which  can  
be  positioned  and  controlled Independently. 



      179 

(i) A manager panel with info panel, the menu bottom GUI 
which opens other windows, a message line, and a status 
information line.  

(ii) Graphical display of the neural network model in two di-
mensions. 

(iii) File browser for loading and saving network and pattern 
files.  

(iv) A remote panel for simulation operations. 
(v) A help window to display help text. 
(vi) A 3D view panel to control the three dimensional network 

visualization component. 
(vii) A Hinton diagram display window for weight matrix. 
(viii) An error graph display window, to explain the network er-

ror during training 
(ix) Bignet panel to generate big regular feed-forward nets, 

time delay, ART1, ART2 and ARTMAP networks.  
(x) Cascade panel for control of the learning phase of cascade 

correlation learning.  
(xi) Inversion display, to control the network analyzing tool. 

     In addition to the above windows a confirmer and shell windows 
are also associated with GUI: the former displays important informa-
tion to the user for conforming destructive operation like change of 
activation function, loading of new patterns, new network model etc. 
While later, indicates the success or failure of the loading or saving 
of a file. 

B.3.1 Graphical Network Editor 

The graphical interface is used to generate new neural network and 
modify the existing neural network. Some commands also exist to 
change the display style of the network. Therefore, the user has a 
powerful set of operations like insertion, deletion, copying, moving 
of units. These operations may be applied to individual units or to 
selections of units and may effect links as well, like copy all selected 
units with their input links or delete all links into the selected units. 
These operations allow a quick and convenient use of the graphical 

 B.3 Graphical User Interface

the network compiler. The interactive graphical network editing
interface of the simulator to generate the networks than to use
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facilities are especially useful for networks with simple or repetitive 
but not completely regular topology.  

 
Neural Network Models Supported by SNNS  
Software 

SNNS supports wide variety of neural network models, which in-
cludes Associate Resonance Theory (ART1); Associate Resonance 
Theory (ART2); Associate Resonance Theory Mapping 
(ARTMAP); Back-propagation for batch training (BackpropBatch); 
Back-propagation with momentum term (BackpropMomentum); 
Backpercolation; Batch-Back-propagation for recurrent networks 
(BBPTT); Back-propagation for recurrent networks (BPTT); Cas-
cade correlation meta algorithm (CC); Counterpropagation; LVQ al-
gorithm with dynamic unit allocation (Dynamic-LAQ); Hebbian 
learning rule (Hebbian); Back-propagation for Jordan-Elman net-
works (JE_BP); BackpropMomentum for Jordan-Elman networks 
(JE_BP_Momentum); Quickprop for Jordan_Elman networks 
(JE_Quickprop); Rprop for Jordan_Elman networks (JE_Rprop); 
Kohonen self Organizing Maps (Kohonen); Quickprop; Quickprop 
for recurrent networks (QPTT); Radial Basis Functions (Radial-
BasisLearning); Cascade Correlation for recurrent networks (RCC); 
Rumelhart-McCelland’s delta rule (RM_delta); Resilient Propaga-
tion learning (Rprop); Vinilla Back-propagation (Std_Back-
propagation); Back-propagation for Time Delay Neural Networks 
(TimeDelayBackprop).  

The back-propagation learning method proposed by Rumelhart 
and McClelland [84] involves the presentation of a set of pairs of in-
put and output patterns. It first uses the input vector to produce its 
own output vector and then compares it with the desired output, or 
target vector. If there is no difference, no learning takes place. Oth-
erwise the weights are changed to reduce the difference.  
 

 

 

B.4 
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Generalized Delta Rule 

To derive a generalized delta rule for multilayer neural network, a 
set of non-linear (similinear) activation function has been consid-
ered. A non-linear activation function is one in which the output of a 
neuron is non-decreasing and differentiable of the net total output. 
The net output value of pattern ‘p’ on neuron ‘j’ can be computed as:    

where p = input patterns; Oi = ii, if neuron is an input neuron; Opi = 
ith element of the actual output pattern produced by the presentation 
of the input pattern p; Wij = weight from the ith to jth neurons. Thus, 
a non-linear activation function is one in which  

          
    Opj = fj (Netpj)  

 
where ‘f’ is differentiable and non-decreasing.  
 
To get the correct generalization of the delta rule, set 

       

 
Tpj = target input for ‘jth’ component of the output pattern for ‘p’ pat-
tern . Using chain rule, the equation B.3 can be represented by prod-
uct of two part: first part reflecting the change in error as a function 
of the change in net input to the neuron and second part representing 
the effect of changing a particular weight on the net input. Thus, it 
can be defined as: 
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From equation B.1, the second function is represented as 
 

 
 
 
Let us define, Equation B.5 thus has the equivalent from  
 

 

To implement gradient descent in sum square error ‘E’ (=3 Ep), 
equation B.9 has been used to estimate the change in network 
weights.  

 
 p Wji = 4 /pj Opi                   
 

To compute 
pj

p
pj Net

E
�

�
�/ , by applying chain rule, this partial 

derivative becomes product of two factors. One factor reflecting the 
change in error as a function of the output of the neuron and one 
reflecting the change in the output as a function of changes in the 
input. Thus, let us compute the second factor. By equation B.2 
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which is simply the derivative of the squashing function fj for the jth 
neuron, evaluate at the net input Netpj to that neuron. To compute the 
first factor, consider two cases. First, assume that neuron uj is an 
output neuron of the network. In this case, it follows from the defini-
tion of Ep that substituting for the two factors in equation B.10. 
Hence it becomes, Equation D.13 is valid for any output neuron uj. 
If uj is not an output neuron, by the chain rule,   

 

 

 
 

 
 
For this case, substituting for the two factors in equation D.10 

yields  

Wherever uj is not an output neuron. Equations D.13 and D.15 give 
a recursive procedure for computing the ‘/’ for all the neurons in 
the network, which are then used to compute the weight changes in 
the network according to equation D.9. This procedure constitutes 
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the generalized delta rule for a feed-forward network of non-linear 
neurons. The above results can be summarized in three equations.  
 
Equation 1: the weights on each line should be changed by an 
amount proportional to the product of an error signal, ‘/’, available 
to the neuron receiving input along that line and the output of the 
neuron sending activation along that line ( p Wji = 4 /pj Opi ). 
 
Equation 2: determines the error signal at output neurons and is 
given by )()( pjjpjpjpj NetfOT "�/ , where jf " (Netpj) is the deriva-
tive of the non-linear activation function, which maps the total input 
to the neuron to an output value.  

2"
k

kjpkpkjpj WNetf // )( where the neuron is not an output neuron.  

phases: during the first phase the input is presented and propagated 
forward through the network to compute the output value Opj for 
each neuron. This input is then compared with the targets resulting 
in an error signal /pj for each neuron. The second phase involves a 
backward pass through the network (analogous to the initial forward 
pass) during which the error signal is passed to each neuron in the 
network and the appropriate weight changes are made. This second 
backward pass allows the recursive computation of  ‘/’ as indicated 
above. The first step is to compute ‘/’ for each of the output neu-
rons. This is simply the difference between the actual and desired 
output values. It is followed by computation of weight changes for 
all connections that feed into the final layer. Then /’s for all neurons 
in the penultimate layer are computed. This propagates the error 
back one layer, and the same process can be repeated for every 
layer. 

Equation 3: determines the error signal in hidden neurons for 
which there is no specified target is determined recursively in 
terms of the error signals of the neuron to which it directly
connects and the weights of those connections. That is 

Thus, the application of the generalized delta rule, involves two 



C Development of Univariate Stochastic 
Vehicular Pollution Models 

C.1 General  

Air pollution concentrations are strongly auto-correlated. In the ab-
sence of sufficient knowledge about the structure of the causal fac-
tors, one may start by trying to determine the current value of ‘Q’ by 
using its own past behavior [53, 59]. No theoretical assumptions are 
required, and the character of the effect of the previous terms can be 
determined empirically from the available historical data. The only 
condition that needs to be imposed is that the series should be suffi-
ciently long (at least 50 and preferably 100 successive observations 
should be used) to allow reliable empirical identification of the 
character [51]. 
 

C.2 Time Series Analysis 

A time series is a collection of observations generated sequentially 
through time at a particular location [273]. The special features of a 
time series are that the data are ordered with respect to time, and that 
successive observations are usually expected to be dependent. In-
deed, it is this dependence from one time period to another, which is 
exploited in making reliable forecasts. 

Time series analysis may be broadly divided into purely statistical 
method applicable to non-repeatable experiments [52] and more or 
less complex structural models [281]. The Box-Jenkins approach is 
thoroughly applied to the analysis of a variety of time series from 
the social and economic sciences. The application to physical  
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sciences and air pollution series are also described in the literature 
[53, 54, 56, 281, 282, 283, 284]. 
 

C.3  Box-Jenkins Approach 

The Box–Jenkins approach for the time series analysis possesses 
many appealing features. It allows the air quality management 
board, which has data on past years pollutant concentration to fore-
cast future concentration without having to search for other time 
series data such as emissions, meteorology, etc. However, the Box-
Jenkins approach allows the use of several time series to explain the 
behavior of another series. The Box-Jenkins approach consists of 
extracting the predictable movements from the observed historical 
data. The time series is decomposed into several components, called 
filters. The Box-Jenkins approach primarily makes use of three lin-
ear filters: the autoregressive, the integration and the moving aver-
age filter. These filters can be considered as special type of sieves, in 
which time series data are sifted through a series of progressively 
finer sieves.  As the data pass through each sieve, some characteris-
tic components of the series are filtered out. This process terminates 
when no additional information is available to be filtered out. 

The schematic representation of ARIMA filters is shown in Figure 
C.1. The integration filter processes the observed data (zt) and pro-
duces a filtered series (wt). The autoregressive filter produces an in-
termediate series (et) and finally the moving average filter generates 
random noise (at). The objective of applying these filters is to end up 
with random noise, which is unpredictable. 
 

   zt                          wt                                  et                                  at 

                       

Fig. C.1. Schematic representation of ARIMA model (filters). 

 

Integration 
filter 

Autoregressive 
filter

Moving average 
filter
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The nature of the different sieves and the grid sizes of the sieves are 
all the information required to describe the behavior of the time se-
ries. Indeed, finding the number and nature of the filters is equiva-
lent to finding the structure, identifying the form, and constructing 
the model for the series. The Box-Jenkins method provides a unified 
approach for identifying which filters are the most appropriate for 
the series being analysed; for estimating the parameters describing 
the filters, i e. for estimating the grid size of the sieves, and for diag-
nosing the accuracy and reliability of the models are estimated, and 
finally, for forecasting.  

Basically, the Box-Jenkins approach uses the concepts of auto-
regression and moving-average processes, where the dependent 
variable under study is lag-regressed on to itself and thus, giving rise 
to the so called autoregressive moving average (ARMA) and auto-
regressive integrated moving average (ARIMA) and seasonal 
ARIMA models [285]. These models are applicable to stationary se-
ries, where there is no systematic change in the mean values and the 
variance is constant over time [286, 287]. The choice of an appropri-
ate Box-Jenkins model is not straight-forward, but require a rather 
elaborate procedure for identification and validation [53, 286].    
 

C.3.1 Autoregressive Models 

A time series is said to be governed by a first-order autoregressive 
process if the current value of the time series, zt, can be expressed as 
a linear function of the previous value of the series and a random 
shock, at. Let zt-1 denotes the previous value of the series zt, then 
autoregressive processes can be written as  

where !1 is the autoregressive parameter which describes the effect 
of a unit change in zt-1 on zt and which needs to estimated. The ran-
dom shock at, also known as error or white noise series, is assumed 
to be normally and independently distributed with mean zero, con-
stant variance �a

2, and independent of zt-1. The term ‘at’ can also be 
defined as Gaussian white noise, because of normality assumption. 

11 azz ttt � �!  (C.1)

C.3 Box-Jenkins Approach
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The equation C.1 is called as autoregressive process of order 1, 
AR(1).  

Most air pollution time series are characterized by non-
stationarity. To remove trends or the non-stationarity in the time 
series zt (defined as a sequence of N observations, equidistant in 
time, such as z1, z2, zN), the difference operators (also called the 
integration operators), ‘5’ and ‘5s’, are defined as  

where ‘s’ denotes the period or the span, i.e. the length of the 
seasonal cycle. The operators may be applied ‘d’ and ‘D’ times re-
spectively (‘d’ and ‘D’ being the order of regular and seasonal dif-
ferencing respectively). To remove serial correlations in the series, 
two operators- autoregressive and moving average can be applied. 
They are expressed as polynomials of the backward shift operators, 
B and Bs, which are defined as  

  

A pth order autoregressive model AR (p) is written as: 

 

The regular and the seasonal AR operators !p (B) and 6P (B
s), are re-

spectively polynomials of the order p in B and P in Bs, such that 
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C.3.2 Moving Average Models 

The first order moving average model can be expressed as the cur-
rent value of the series zt and as a linear function of the current and 
previous errors or shocks, at and at-1. Mathematically, a first order 
moving average model MA (1) can be expressed as  

where $1 is the moving average parameter. As with an autoregres-
sive process, the random shock at, in a moving average process is as-
sumed to be normally and independently distributed with its mean 
zero, and having constant variance �a

2. In moving average model, it 
is very unrealistic to think that an event that has occurred many 
years ago has more influence on today’s situations than an event that 
is occurred recently. Therefore, $1 must restrict to satisfy 7$17< 1. 
This condition is called the invertability condition of an MA (1) 
model [51]. The above MA (1) process in equation (C.6) can easily 
be extended to include additional lagged residual terms. The qth or-
der MA process, MA (q) for instance, can be expressed as:  
 

 
The regular and seasonal moving average operators are similarly de-
fined as: 

The moving average operators express the current values of the 
data as a finite sum of the current and past values of the shock or 
random noise, at. 
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C.3.3 Mixed Autoregressive and Moving Average Models 

To achieve greater flexibility of the actual time series, it is sometime 
advantageous to include both autoregressive and moving average 
terms in the model. This leads to the mixed autoregressive – moving 
average model (ARMA model). The general ARMA (p, q) model is 
given as: 

  

C.3.4 Autoregressive Integrated Moving Average Models  

ARIMA models are also called as non-stationary models. Many se-
ries actually exhibit non-stationary behavior and in particular, do not 
vary about a fixed mean. The first difference of the series zt – zt-1, 
constitutes a stationary series. The general autoregressive integrated 
moving average (ARIMA) model of the order (p, d, q) is expressed 
as: 

C.4  The Box-Jenkins Univariate Modelling Approach 

The application of a general class of forecasting methods involves 
two basic steps. The first step is to analyze the historical data series 
and the second, is the selection of the forecast model that fits the 
data [288].  These two steps are incorporated in ARIMA models and 
are used extensively in time series analysis. Box-Jenkins models are 
applicable to stationary series, where there is no systematic change 
in the mean values and the variance is constant over time [286]. The 
presence of any trends in time series data result in positive autocor-
relation, i.e. the autocorrelation of stationary data drop to zero after 
second or third time lag, while for a non-stationary series it is sig-
nificantly different from zero even for several time lags. Therefore, 
Box-Jenkins approach assumes stationary time series [289]. The 
choice of an appropriate Box-Jenkins model is not straightforward, 
but requires a rather elaborate procedure for identification and 
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validation [53, 286]. More details on B-J modeling technique can be 
found in Box and Jenkins [50, 51] and Khare and Sharma [59]. 
    A univariate time series model is one, which uses only current and 
past data on one variable. The general class of univariate B-J sea-
sonal models, denoted by ARIMA (p, d, q)�(P, D, Q)s can be expressed as 
[51]:  

 
Where ! and 6 = regular and seasonal autoregressive parameters, 

B = backward shift operators, 5 = difference operators, d and D = 
order of regular and seasonal differencing, s = period/span, zt = ob-

parameters, at = random noise, p, P, q and Q represent the order of 
the model and c = constant. 

A time series model which makes explicit use of other variables to 
describe the behavior of the desired series is called a multiple time 
series model or multivariate time series model [51, 59]. The multi-
variate time series model, expressing the dynamic relationship 
among different variables, is called a transfer function model. A 
transfer function model is related to the standard regression model, 
in that, both have a dependent variable and one or more explanatory 
variables [273]. 

The univariate modelling procedure involves mainly three steps in 
the proper construction of time series model. These include model 
identification, parameter estimation and model evaluation (diagnos-
tic checking). More details can be found in Khare and Sharma [59], 
Box et al. [50], Vandaele [273], Chatfield [286], Kendall and Ord 
[287] and Hipel and Mcleod [290]. 

 

C.5 Development of 1-hr Average Univariate CO Models 

Figure C.2 shows the 1-hour CO time series at AQCR1 (x1-series). 
A visual inspection of the figures reveals that, when the local aver-
age of the concentration is relatively high (during peak hour traffic 
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and inversion conditions), the hourly variability is also high. On the  

C.5 Development of 1-hr Average Univariate CO Models

served data series, $ and = regular and seasonal moving average 
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Fig. C.2. Plot of X1 series. 
 
other hand, whenever the local average of the concentration is also 
low (during trickle traffic flow), the hourly variability is also low. 
Therefore, variance non-stationarity seems to be present in the series. 
Variance non-stationarity in the time series is a situation, which cor-
responds to heteroscedasticity in the regression terminology [59]. 
However, in order for an ARIMA model to be fitted in a time series, 
the series must be stationary in variance [289]. Unfortunately, there 
is no adequate formal test to check for variance non-stationarity 
[291]. One practical way, to test for variance non-stationarity, in 
cases, where the standard deviation or the variance seems to be pro-
portional to the local mean of the series, divide the series into inter-
val of equal ‘length’, and find the mean and the corresponding 
standard deviation or variance of each segment. If the local mean is 
found to be proportional to the local standard deviation, the variance 
stabilizing transformation is logarithmic one. If the local mean is 
found to be proportional to the local variance, the variance stabiliz-
ing transformation is the square root transformation [292]. This 
practice was followed for x1-series by splitting it into fifty segments, 
each having 24 observations. The local mean was regressed against 
the local standard deviation, as well as against the local variances. 
Both cases show statistically significant coefficients, but the case 
using the local standard deviation is having a much better fit. Hence, 
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the log-transformation is used to stabilize the variance. The log-
transformed x1-series of the AQCR1 is denoted by log x1.  

The four standard stages of the model building strategy, namely 
identification, estimation, diagnosis and metadiagnosis, are fol-
lowed. 

The plots of autocorrelation (ACF) and partial autocorrelation 
(PACF) functions for the log x1 series are shown in Figures C.3(a) 
and (b) respectively for AQCR1. The characteristics of these plots 
indicate that the series is non-stationary and needs to be differenced.  
The plots of ACF and PACF of the differenced series are shown in 
Figures C.4(a) and (b) respectively. In both the ACF and PACF 
plots, there are significant correlations at several lags, but a specific 
model is not immediately distinguishable. Many tentative models are 
tested, and several of them are adequate. Metadiagnosis showed that 
the best model is an ARIMA (1,1,1)x(0,1,1)24 for AQCR1. 

The next step is that of parameter estimation which, is done by us-
ing the modified Marquardt [293] non-linear optimization iterative 
scheme. Table C.1 gives the final estimates of the parameters with 
corresponding standard deviation and ‘t’ ratio, which is indicative of 
the statistical significance of the model parameters (7t-ratio7( 2.0).  
Figures C.5(a) and (b) show the plots of the ACF and PACF of the 
residuals of the univariate model for log x1 series. There are no sig-
nificant correlations in the residual ACF and PACF. The plots of the 
residuals are shown in Figure C.6. Portmanteau or modified Box-
Pierce i.e., Q-statistic is performed at 12, 24 and 36 lags. Both the 
tests indicate that the residuals can be considered as white noise. 
Further, stationarity, invertability tests and the statistical significance 
of the model parameters are examined and it indicated that all the 
model requirements are satisfied. Finally, metadiagnosis shows that 
the best model is an ARIMA (1,1,1) x (0,1,1) 24 model with the pa-
rameter as shown in Table C.1 for AQCR1. 

 

C.5 Development of 1-hr Average Univariate CO Models
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Fig. C.3a. Plot of the ACF of log x1 series. The vertical dot lines  represent the  
                  95 % confidence intervals (0.058). 
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Fig. C.3b. Plot of the PACF of log x1 series. The vertical dot lines represent  
                   the 95 % confidence intervals (0.058). 

C.5 Development of 1-hr Average Univariate CO Models
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Fig. C.4a. Plot of the ACF of the differenced log x1 series. The vertical dot  
                   lines represent the 95 % confidence intervals (0.058). 
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Fig. C.4b. Plot of the PACF of the differenced log x1 series. The vertical dot  
                   lines represent the 95 % confidence intervals (0.058). 

C.5 Development of 1-hr Average Univariate CO Models
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Table C.1 Final estimates of parameters for the log x1 series ARIMA model at 

AQCR1. 

Model Parameter Estimate Standard  
deviation 

t-ratio 

!1 0.8153 0.0219 37.21 

$1 0.8742 0.0119 73.46 

 

ARIMA  

(1,1,1) x (0,1,1) 24 

81 0.9234 0.0177 52.17 

 

Thus the final form of the model for AQCR1 is given in equation 
C.12. 
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Fig. C.5a. Plot of the ACF of the residuals of the univariate model for the log  

                  fidence intervals (0.058). 
 

 

                  x1 series at AQCR1. The vertical dot lines represent the 95 % con- 

C.5 Development of 1-hr Average Univariate CO Models
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Fig. C.5b. Plot of the PACF of the residuals of the univariate model for the  
                   log x1 series at AQCR1. The vertical dot lines represent the 95 %  
                   confidence intervals (0.058). 
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                  AQCR1. 
 
The plot of x2 series for AQCR2 is shown in Figure C.7. Logarith-
mic transformation is done to stabilize the variance.  

 

Fig. C.7. Plot of x2 series. 
 

C.5 Development of 1-hr Average Univariate CO Models

Fig. C.6. Plot of the residuals from the univariate model for log x1 series at  

-4

-3

-2

-1

0

1

2

3

4
0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

Time (hours)

R
es

id
ua

ls

0

5

10

15

20

25

30

35

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

59
6

63
1

66
6

70
1

73
6

77
1

80
6

84
1

87
6

91
1

94
6

98
1

10
16

10
51

10
86

11
21

11
56

11
91

12
26

12
61

12
96

13
31

13
66

14
01

14
36

Time (hour)

C
O

, p
pm



202      C Development of Univariate Stochastic Vehicular Pollution Models 

The plots of ACF and PACF for the x2 series are shown in Figures 
C.8 (a) and (b) respectively that are indicative of the presence of 
variance non-stationary in the series and hence differencing is 
needed. Figures C.9 (a) and (b) show the ACF and PACF of differ-
enced series respectively. The characteristics of the plots suggest an 
ARIMA (1,1,0)x(0,1,1)24 model. The model parameters are esti-
mated similar to x1 series ARIMA model as described in previous 
section. Table C.2 shows the final estimates of the model parameters 
with standard deviation and t-ratio. Figures C.10 (a) and (b) show 
the plots of ACF and PACF of the residual series. The plot of the re-
siduals from the model is shown in Figure C.11. The plots along 
with the portmanteau test indicate the residuals as ‘white noise’ se-
ries. The model is further checked for invertability and stationarity 
and found to satisfy all model fit requirements. Finally, the metadi-
agnosis also shows that ARIMA (1,1,0)x(0,1,1)24 with model pa-
rameter shown in Table C.2 is the best suited model for the x2 series.  
Thus the final form of the model for AQCR2 is given in equation 
8.13.
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Fig. C.8a. Plot of ACF of the log x2 series. The vertical dot lines represent the  
                  95 % confidence intervals (0.058). 

C.5 Development of 1-hr Average Univariate CO Models
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Fig. C.8b. Plot of PACF of the log x2 series. The vertical dot lines represent  
                   the 95 % confidence intervals (0.058). 
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Fig. C.9a. Plot of ACF of the differenced log x2 series. The vertical dot lines  
                  represent the 95 % confidence intervals (0.058). 

C.5 Development of 1-hr Average Univariate CO Models
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Fig. C.9b. Plot of PACF of the differenced log x2 series. The vertical dot lines  
                  represent the 95 % confidence intervals (0.058). 
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Fig. C.10a. Plot of the ACF of the residuals of the univariate model for the log  
x2 series at AQCR2. The vertical dot lines represent the 95 % confi-
dence intervals (0.058). 
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Fig. C.10b. Plot of the PACF of the residuals of the univariate model for the  
                     log x2 series at AQCR2. The vertical dot lines represent the 95 %  
                     confidence intervals (0.058). 
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          Table C.2 Final estimates of parameters for the log x2 series ARIMA  
                               model at AQCR2. 

 

Estimate Standard  
Deviation 

t-ratio 

!1  0.0952 0.0287 3.32 ARIMA 

(1,1,0) x (0,1,1) 24 
81  0.9223 0.0161 57.29 

 

 

 

Fig. C.11. Plot of the residuals from the univariate model for log x2 series at  
                  AQCR2. 
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D Neuron Definitions and Synaptic Weights 

 
Table D.1a Neuron definitions in the ANNCO1hrA1 model. 

Neuron 
number 

Type of layer Type of activation func-
tion 

Bias 

1 Input Identity -0.00479 
2 Input Identity -0.00303 
3 Input Identity -0.00356 
4 Input Identity -0.00154 
5 Input Identity 0.00454 
6 Input Identity -0.00871 
7 Input Identity -0.00324 
8 Input Identity 0.00905 
9 Input Identity 0.00254 
10 Input Identity -0.00236 
11 Input Identity 0.00703 
12 Input Identity 0.00245 
13 Input Identity -0.00289 
14 Input Identity 0.00949 
15 Input Identity -0.00683 
16 Input Identity 0.00846 
17 Input Identity -0.00485 
18 Hidden  Hyperbolic tangent 5.16323 
19 Hidden Hyperbolic tangent 1.57388 
20 Hidden Hyperbolic tangent -0.65549 
21 Output Identity 7.17080 
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Table D.1b Synaptic weights in the ANNCO1hrA1 model. 

Target neuron (hidden layer) Target neuron 
(output layer ) 

Source 
neuron 
(input 
layer) 18 19 20 

Source 
neuron 
(hidden 
layer) 21 

1 0.15831 0.05203 0.04304 18 -0.66107 
2 -0.20881 0.50732 0.46755 19 -0.13831 
3 2.03689 0.27709 0.30407 20 0.16490 
4 -0.44868 -0.03613 0.31942   
5 -0.36148 -0.37584 -0.12156   
6 0.12254 0.11583 0.03800   
7 -0.31756 -0.00713 0.11151   
8 0.17358 0.18449 -0.24788   
9 -0.10592 -0.31096 0.19853   
10 -0.53684 1.19278 -0.05143   
11 1.31096 -0.06436 -0.73124   
12 0.06918 -0.04417 -0.14063   
13 1.29911 0.50580 0.57351   
14 -1.79287 -0.82108 0.30317   
15 -0.17827 -0.07727 0.17400   
16 0.47920 -0.02236 -0.23817   
17 0.00107 -0.09338 0.01079   
 

 
Table D.2a Neuron definitions in the ANNCO1hrB1 model. 

Neuron 
number 

Type of layer Type of activation function Bias 

1 Input Identity 0.00224 
2 Input Identity -0.00055 
3 Input Identity 0.00467 
4 Input Identity 0.00198 
5 Input Identity -0.00742 
6 Input Identity 0.00908 
7 Input Identity 0.00411 
8 Input Identity 0.00212 
9 Input Identity -0.00120 
10 Input Identity 0.00378 
11 Hidden  Hyperbolic tangent 0.03244 
12 Hidden Hyperbolic tangent 1.47907 
13 Hidden Hyperbolic tangent 0.34292 
14 Output Identity -2.47934 

D Neuron Definitions and Synaptic Weights
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Table D.2b Synaptic weights in the ANNCO1hrB1 model. 

Target neuron (hidden layer) Target neuron 
(output layer ) 

Source neu-
ron 
(input layer) 11 12 13 

Source neu-
ron (hidden 
layer) 14 

1 -0.01774 0.14153 -0.15023 11 -0.21935 
2 -0.05482 -0.16932 0.02848 12 -0.79906 
3 0.11320 0.29358 -0.32724 13 -0.43119 
4 0.01782 -0.36714 0.10535   
5 -0.08293 0.09618 -0.01608   
6 -0.07914 -0.47127 0.00909   
7 -0.05418 0.14221 -0.00727   
8 -0.02731 -0.09402 -0.00190   
9 -0.05173 -0.23392 0.25471   
10 0.15743 0.27373 0.02501   

Table D.3a Neuron definitions in the ANNCO1hrC1 model. 

Neuron 
number 

Type of layer Type of activation function Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Hidden  Hyperbolic tangent -0.55178 
7 Hidden Hyperbolic tangent 0.57984 
8 Hidden Hyperbolic tangent 0.23081 
9 Output Identity -3.54114 

Table D.3b Synaptic weights in the ANNCO1hrC1 model. 

Target neuron (hidden layer) 
 

Target neuron 
(output layer ) 

Source neu-
ron (input 
layer) 6 7 8 

Source neuron 
(hidden layer) 

9 

1 -0.04632 0.04027 0.05952 6 0.57363 
2 -0.15528 0.15235 0.11554 7 -0.59587 
3 0.26183 -0.25365 -0.13650 8 -0.25235 
4 0.00527 -0.01375 0.02413   
5 -0.01015 0.00001 0.01595   

D Neuron Definitions and Synaptic Weights
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Table D.4a Neuron definitions in the ANNCO1hrA2 model. 
Neuron 
number 

Type of 
layer 

Type of activation function Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Input Identity -0.00382 
12 Input Identity 0.00882 
13 Input Identity -0.00800 
14 Input Identity 0.00673 
15 Input Identity 0.00682 
16 Input Identity -0.00066 
17 Input Identity -0.00208 
18 Hidden  Hyperbolic tangent 0.01595 
19 Hidden Hyperbolic tangent -1.43897 
20 Hidden Hyperbolic tangent -0.69772 
21 Output Identity -3.15814 
 

Table D.4b Synaptic weights in the ANNCO1hrA2 model. 
Target neuron (hidden layer) Target neu-

ron (output 
layer ) 

Source 
neuron 
(input 
layer) 18 19 20 

Source neuron 
(hidden layer) 

21 

1 -0.03260 -0.13160 0.02995 18 -0.32498 
2 0.00824 0.27776 0.06891 19 0.65493 
3 0.17969 -0.18366 0.20985 20 0.53567 
4 0.06751 0.35674 -0.02567   
5 0.09542 0.26904 -0.08919   
6 0.07503 0.00914 0.09532   
7 -0.15863 0.39317 -0.10930   
8 -0.10637 -0.34269 -0.09502   
9 0.07167 0.11000 0.03102   
10 0.13389 0.37090 0.00517   
11 0.42102 0.04736 0.24808   
12 0.01278 -0.22312 0.11783   
13 0.03832 -0.24103 0.12948   
14 0.02573 0.40172 -0.05087   
15 -0.00325 -0.05251 0.06503   
16 -0.01568 0.22416 -0.06853   
17 0.00225 -0.01431 -0.08702   

D Neuron Definitions and Synaptic Weights
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Table D.5a Neuron definitions in the ANNCO1hrB2 model. 

Neuron 
number 

Type of layer Type of activation function Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Hidden  Hyperbolic tangent -2.67685 
12 Hidden Hyperbolic tangent -0.34942 
13 Hidden Hyperbolic tangent -0.35607 
14 Output Identity -3.15804 
 

 
Table D.5b Synaptic weights in the ANNCO1hrB2 model. 

Target neuron (hidden layer) Target neuron 
(output layer ) 

Source neu-
ron 
(input layer) 11 12 13 

Source neu-
ron 
(hidden 
layer) 

14 

1 -0.15323 0.06651 0.08363 11 0.93085 
2 0.28744 0.19849 0.18802 12 -0.32623 
3 -0.72705 0.04614 0.15720 13 0.39866 
4 0.66764 0.17169 -0.05248   
5 -0.25799 -0.15025 -0.02138   
6 0.66636 -0.44127 -0.11173   
7 -0.27302 -0.23599 -0.22747   
8 0.10265 0.06280 0.01320   
9 0.56523 0.29254 0.04819   
10 -0.14312 0.60350 0.10465   

 
Table D.6a Neuron definitions in the ANNCO1hrC2 model. 

Neuron 
number 

Type of layer Type of activation func-
tion 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Hidden  Hyperbolic tangent -0.58816 
7 Hidden Hyperbolic tangent 0.62155 
8 Hidden Hyperbolic tangent 0.27332 
9 Output Identity -3.85196 

D Neuron Definitions and Synaptic Weights
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Table D.6b Synaptic weights in the ANNCO1hrC2 model. 

Target neuron (hidden layer) 
 

Target neu-
ron (output 
layer ) 

Source neu-
ron (input 
layer) 

6 7 8 

Source neu-
ron 
(hidden 
layer) 9 

1 -0.05455 0.05361 0.04694 6 0.64310 
2 -0.07357 0.07634 0.05015 7 -0.67971 
3 0.13012 -0.12329 -0.06072 8 -0.29229 
4 -0.06677 0.06494 0.04487   
5 0.01323 -0.02190 -0.00536   

Table D.7a Neuron definitions in the ANNCO8hrA1 model. 

Neuron 
number 

Type of layer Type of activation func-
tion 

Bias 

1 Input Identity -0.00479 
2 Input Identity -0.00303 
3 Input Identity -0.00356 
4 Input Identity -0.00154 
5 Input Identity 0.00454 
6 Input Identity -0.00871 
7 Input Identity -0.00324 
8 Input Identity 0.00905 
9 Input Identity 0.00254 
10 Input Identity -0.00236 
11 Input Identity 0.00703 
12 Input Identity 0.00245 
13 Input Identity -0.00289 
14 Input Identity 0.00949 
15 Input Identity -0.00683 
16 Input Identity 0.00846 
17 Input Identity -0.00485 
18 Hidden  Hyperbolic tangent 0.32292 
19 Hidden Hyperbolic tangent 0.07896 
20 Hidden Hyperbolic tangent -1.26795 
21 Output Identity -2.96655 

 

D Neuron Definitions and Synaptic Weights



      217 

Table D.7b Synaptic weights in the ANNCO8hrA1 model. 

Target neuron (hidden layer) Target neuron 
(output layer ) 

Source 
neuron 
(input 
layer) 

18 19 20 

Source 
neuron 
(hidden 
layer) 

21 

1 -0.03206 -0.16334 -0.34902 18 -0.34490 
2 0.04502 -0.02707 -0.02607 19 -0.31507 
3 -0.04209 0.03513 -0.19817 20 0.75589 
4 -0.02162 -0.01756 0.09332   
5 0.09361 0.11624 0.30234   
6 -0.00510 0.00985 0.03920   
7 -0.07060 -0.06456 0.02332   
8 0.05212 -0.00340 -0.46738   
9 -0.17315 -0.00742 0.02507   
10 0.08170 0.13098 0.35014   
11 0.05623 0.13528 -0.34223   
12 -0.02074 0.08877 -0.16345   
13 -0.13436 -0.01130 0.24120   
14 -0.17517 -0.02903 0.29279   
15 -0.07348 0.00843 0.01256   
16 0.01964 0.12857 -0.02143   
17 -0.02427 0.05819 -0.05249   

Table D.8a Neuron definitions in the ANNCO8hrB1 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity -0.00063 
2 Input Identity 0.00081 
3 Input Identity -0.00305 
4 Input Identity 0.00346 
5 Input Identity -0.00893 
6 Input Identity 0.00264 
7 Input Identity -0.00888 
8 Input Identity 0.00985 
9 Input Identity -0.00033 
10 Input Identity 0.00454 
11 Hidden  Hyperbolic tangent 1.52583 
12 Hidden Hyperbolic tangent 0.05478 
13 Hidden Hyperbolic tangent 0.22974 
14 Output Identity -3.29806 

D Neuron Definitions and Synaptic Weights
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Table D.8b Synaptic weights in the ANNCO8hrB1 model. 

Target neuron (hidden layer) Target neu-
ron (output 
layer ) 

Source 
neuron 
(input 
layer) 11 12 13 

Source neu-
ron 
(hidden 
layer) 14 

1 0.45041 0.02932 -0.17292 11 -0.75173 
2 0.22309 0.04661 -0.01427 12 0.28041 
3 0.21480 0.09240 -0.25122 13 -0.40808 
4 -0.30680 0.03168 -0.03839   
5 0.12879 0.19608 0.15285   
6 -0.16781 0.06855 -0.18150   
7 0.56053 0.01906 0.01692   
8 -0.03569 -0.01469 -0.15558   
9 -0.30539 -0.16920 -0.00359   
10 0.45518 -0.08346 0.14706   

Table D.9a Neuron definitions in the ANNCO8hrC1 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Hidden  Hyperbolic tangent -0.48606 
7 Hidden Hyperbolic tangent 0.58846 
8 Hidden Hyperbolic tangent 0.21210 
9 Output Identity -4.28758 

Table D.9b Synaptic weights in the ANNCO8hrC1 model. 

Target neuron (hidden layer) 
 

Target neuron 
(output layer ) 

Source 
neuron 
(input 
layer) 

6 7 8 

Source neu-
ron 
(hidden 
layer) 

9 

1 0.02431 -0.03069 0.00036 6 0.52157 
2 0.04889 -0.05287 -0.02197 7 -0.64152 
3 0.05659 -0.05042 -0.02053 8 -0.21839 
4 -0.08264 0.09904 0.03421   
5 -0.00233 -0.00470 0.00321   

D Neuron Definitions and Synaptic Weights
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Table D.10a Neuron definitions in the ANNCO8hrA2 model. 

Neuron 
number 

Type of layer Type of activation function Bias 

1 Input Identity 0.00072 
2 Input Identity -0.00030 
3 Input Identity 0.00137 
4 Input Identity -0.00263 
5 Input Identity -0.00156 
6 Input Identity 0.00691 
7 Input Identity -0.00453 
8 Input Identity 0.00878 
9 Input Identity -0.00656 
10 Input Identity 0.00752 
11 Input Identity 0.00529 
12 Input Identity -0.00187 
13 Input Identity 0.00204 
14 Input Identity 0.00199 
15 Input Identity -0.00843 
16 Input Identity -0.00321 
17 Input Identity -0.00836 
18 Hidden  Hyperbolic tangent -0.66856 
19 Hidden Hyperbolic tangent 2.03216 
20 Hidden Hyperbolic tangent -1.09419 
21 Output Identity -2.90043 
 

Table D.10b Synaptic weights in the ANNCO8hrA2 model. 

Target neuron (hidden layer) Target neuron 
(output layer ) 

Source 
neuron 
(input 
layer) 

18 19 20 

Source 
neuron 
(hidden 
layer) 

21 

1 0.10672 0.17250 0.20633 18 -0.52193 
2 0.01499 0.13936 0.17162 19 -0.84740 
3 -0.18388 0.44172 -0.25054 20 0.54208 
4 0.42903 -0.66201 0.06561   
5 0.51733 -0.24082 0.45047   
6 0.04907 0.11880 0.13219   
7 0.42363 -0.31777 0.46070   
8 -0.54130 0.54347 -0.39106   
9 -0.20366 0.00167 -0.24871   
10 0.52868 -0.31951 0.37335   
11 -0.33818 0.95094 -0.32504   
12 -0.38312 0.60226 -0.30789   
13 0.14529 -0.07154 -0.06568   
14 0.41914 0.11192 -0.22404   
15 0.16883 0.03726 0.05905   
16 -0.38679 -0.64223 0.25067   
17 -0.06770 -0.24371 0.11601   
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Table D.11a Neuron definitions in the ANNCO8hrB2 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Hidden  Hyperbolic tangent -0.61484 
12 Hidden Hyperbolic tangent -0.89660 
13 Hidden Hyperbolic tangent -3.81334 
14 Output Identity -3.94131 

 
Table D.11b Synaptic weights in the ANNCO8hrB2 model. 

Target neuron (hidden layer) Target neu-
ron (output 
layer ) 

Source 
neuron 
(input 
layer) 11 12 13 

Source neu-
ron 
(hidden 
layer) 14 

1 -0.12059 -0.20294 -0.19016 11 0.56664 
2 0.32070 0.51047 -0.33367 12 -0.35583 
3 -0.57415 -1.30319 -0.48777 13 0.74532 
4 -0.66135 -1.00062 1.42335   
5 -0.21568 -0.48801 -0.46632   
6 -0.19135 -0.47738 0.98116   
7 -0.71347 -1.07823 -0.40611   
8 -0.18358 -0.41027 0.06304   
9 0.07355 0.23614 0.28070   
10 -0.19139 -0.12850 -2.15348   
 

Table D.12a Neuron definitions in the ANNCO8hrC2 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Hidden  Hyperbolic tangent -0.49001 
7 Hidden Hyperbolic tangent 0.58313 
8 Hidden Hyperbolic tangent 0.24294 
9 Output Identity -4.45871 
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Table D.12b Synaptic weights in the ANNCO8hrC2 model. 

Target neuron (hidden layer) 
 

Target neuron 
(output layer ) 

Source 
neuron 
(input 
layer) 

        6     7     8 

Source neu-
ron (hidden 
layer) 9 

1 -0.09674 0.11997 0.07888 6 0.56117 
2 0.11389 -0.10406 -0.05356 7 -0.67313 
3 0.10226 -0.08343 -0.03945 8 -0.27223 
4 -0.12291 0.15597 0.07680   
5 0.04080 -0.03249 -0.01088   

Table D.13a Neuron definitions in the ANNNO224hrA1 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Input Identity -0.00382 
12 Input Identity 0.00882 
13 Input Identity -0.00800 
14 Input Identity 0.00673 
15 Input Identity 0.00682 
16 Input Identity -0.00066 
17 Input Identity -0.00208 
18 Hidden  Hyperbolic tangent 0.11470 
19 Hidden Hyperbolic tangent 2.17832 
20 Hidden Hyperbolic tangent 0.01681 
21 Hidden Hyperbolic tangent -0.18061 
22 Hidden Hyperbolic tangent -0.06514 
23 Output Identity 0.15778 
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Table D.13b Synaptic weights in the ANNNO224hrA1 model. 
Target neuron (hidden layer) Target neu-

ron 
(output 
layer ) 

Source 
neuron  
(input 
layer) 

18 19 20 21 22 

Sourc
e neu-
ron 
(hid-
den 
layer) 

23 

1 -0.18333 0.68854 -0.03368 0.11240 0.10391 18 -0.10966 
2 0.01002 -0.10544 -0.00898 -0.01293 -0.04050 19 -0.58753 
3 0.06642 -0.21211 0.01648 -0.03722 -0.06831 20 -0.02741 
4 -0.60928 -1.10906 -0.11386 0.73764 0.75628 21 0.13031 
5 -0.00340 0.13715 -0.01276 0.01954 -0.03160 22 0.19014 
6 -0.02219 0.60689 -0.01489 0.04220 0.03360   
7 -0.46502 -0.99465 -0.11094 0.56391 0.55755   
8 -0.04292 0.22445 0.00911 0.05889 0.06853   
9 -0.16015 -0.07926 -0.04362 0.17833 0.16667   
10 0.00368 -1.00307 0.00144 -0.01680 -0.10380   
11 0.09786 0.03782 0.02517 -0.14377 -0.17454   
12 0.06275 0.23737 0.01382 -0.06170 -0.07470   
13 0.07802 0.23726 0.01304 -0.07630 -0.12314   
14 0.06378 0.24496 0.01987 -0.07692 -0.08953   
15 0.11013 0.23543 0.01530 -0.12443 -0.17070   
16 -0.27111 -0.36556 -0.06173 0.30558 0.29727   
17 -0.04966 0.00639 -0.00919 0.05432 0.02034   
 

 
Table D.14a Neuron definitions in the ANNNO224hrB1 model. 

Neuron 
number 

Type of layer Type of activation func-
tion 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Hidden  Hyperbolic tangent 0.01092 
12 Hidden Hyperbolic tangent -1.91146 
13 Hidden Hyperbolic tangent 0.15323 
14 Hidden Hyperbolic tangent -0.30229 
15 Hidden Hyperbolic tangent 0.42171 
16 Output Identity -1.82050 
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Table D.14b Synaptic weights in the ANNNO224hrB1 model. 
Target neuron (hidden layer) Target 

neuron 
(output 
layer ) 

Source 
neuron 
(input 
layer) 

11 12 13 14 15 

Source 
neuron 
(hidden 
layer) 

16 

1 0.14167 -0.47136 0.24713 -0.27942 -0.16135 11 0.06699 
2 -0.08574 0.44454 -0.13353 0.17586 -0.05701 12 0.78181 
3 0.03561 -0.12653 0.01221 -0.1331 -0.06097 13 0.13590 
4 0.26624 1.25685 0.38315 -0.50416 -0.55670 14 -0.25773 
5 0.08786 -0.31635 0.07474 -0.07969 -0.06197 15 -0.10905 
6 0.13049 0.68387 0.26536 -0.34284 -0.51240   
7 0.05987 -0.12385 0.15054 -0.22968 -0.13381   
8 0.11348 0.20933 0.08932 -0.01308 -0.30992   
9 -0.04084 0.62479 -0.05313 0.17960 0.29290   
10 -0.06206 -0.03433 -0.17276 0.21364 0.02206   

Table D.15a Neuron definitions in the ANNNO224hrC1 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity -0.21548 
6 Hidden  Hyperbolic tangent -0.21548 
7 Hidden Hyperbolic tangent 0.27119 
8 Hidden  Hyperbolic tangent -0.25492 
9 Hidden Hyperbolic tangent 0.51335 
10 Hidden Hyperbolic tangent 0.19821 
11 Output Identity -3.84471 

Table D.15b Synaptic weights in the ANNNO224hrC1 model. 
Target neuron (hidden layer) Target neuron 

(output layer ) 
Source 
neuron 
(input 
layer) 

6 7 8 9 10 

Source 
neuron 
(hidden 
layer) 

11 

1 0.00006 0.00264 -0.00523 0.02012 0.00998 6 0.21688 
2 -0.00904 0.01453 -0.00490 0.00551 0.00652 7 -0.27478 
3 -0.00200 0.01643 -0.00471 0.00736 0.00273 8 0.25750 
4 -0.00087 0.00193 -0.00691 -0.00071 0.00807 9 -0.53613 
5 -0.01263 0.00763 -0.00495 0.01011 -0.00121 10 -0.19916 
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Table D.16a Neuron definitions in the ANNNO224hrA2 model. 

Neuron 
number 

Type of layer Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Input Identity -0.00382 
12 Input Identity 0.00882 
13 Input Identity -0.00800 
14 Input Identity 0.00673 
15 Input Identity 0.00682 
16 Input Identity -0.00066 
17 Input Identity -0.00208 
18 Hidden  Hyperbolic tangent 0.19937 
19 Hidden Hyperbolic tangent 0.36413 
20 Hidden Hyperbolic tangent -0.10121 
21 Hidden Hyperbolic tangent -0.45489 
22 Hidden Hyperbolic tangent -0.03185 
23 Output Identity -3.28973 

Table D.16b Synaptic weights in the ANNNO224hrA2 model. 
Target neuron (hidden layer) Target 

neuron 
(output 
layer ) 

Sourc
e neu-
ron 
(input 
layer) 18 19 20 21 22 

Source 
neuron 
(hidden 
layer) 

23 

1 0.03940 0.11796 0.00129 -0.16105 -0.00888 18 -0.33798 
2 -0.07219 -0.06373 0.03949 0.04069 0.00653 19 -0.54008 
3 0.05985 0.04826 -0.02434 -0.00981 -0.00657 20 0.15799 
4 0.04805 0.03139 -0.02070 -0.01707 -0.01302 21 0.62502 
5 -0.05202 -0.11549 0.01942 0.13442 -0.00014 22 0.04407 
6 0.03362 -0.02864 -0.01423 0.04811 -0.00457   
7 0.04093 0.03260 -0.02648 -0.00485 0.00276   
8 0.17819 0.31542 -0.07745 -0.38437 -0.02221   
9 -0.04000 -0.01920 0.02001 -0.01932 0.00988   
10 0.04240 -0.04038 -0.02647 0.11991 -0.01693   
11 0.03624 0.06632 -0.02934 -0.09118 -0.00726   
12 0.04312 -0.00970 -0.01705 0.07555 0.00517   
13 0.03521 -0.00875 -0.02203 0.09182 -0.01222   
14 0.03453 -0.01010 -0.01379 0.07281 0.00456   
15 0.02640 -0.00515 -0.02407 0.07823 -0.01106   
16 0.07716 0.05389 -0.03794 0.00149 -0.00420   
17 0.04158 0.02805 -0.02426 0.04956 -0.00321   
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Table D.17a Neuron definitions in the ANNNO224hrB2 model. 

Neuron 
number  

Type of layer  
 

Type of activation 
function 

Bias 

1 Input Identity 0.00207 
2 Input Identity -0.00681 
3 Input Identity 0.00293 
4 Input Identity 0.00107 
5 Input Identity 0.00363 
6 Input Identity -0.00773 
7 Input Identity 0.00969 
8 Input Identity -0.00168 
9 Input Identity 0.00681 
10 Input Identity 0.00233 
11 Hidden  Hyperbolic tangent -0.14257 
12 Hidden Hyperbolic tangent -0.33990 
13 Hidden Hyperbolic tangent -0.14014 
14 Hidden Hyperbolic tangent 0.23251 
15 Hidden Hyperbolic tangent 0.39997 
16 Output Identity -3.43884 

Table D.17b Synaptic weights in the ANNNO224hrB2 model. 
Target neuron (hidden layer) Target 

neuron 
(output 
layer ) 

Source 
neuron 
(input 
layer) 

11 12 13 14 15 

Source 
neuron 
(hidden 
layer) 

16 

1 -0.01003 -0.15576 -0.01261 0.06394 0.19695 11 0.24899 
2 0.04852 0.07505 0.04749 -0.07299 -0.07166 12 0.49849 
3 -0.04557 -0.04054 -0.04894 0.06278 0.03415 13 0.24637 
4 -0.01694 -0.03352 -0.02640 0.03615 0.01860 14 -0.39467 
5 -0.04451 0.04754 -0.04737 0.02357 -0.08728 15 -0.54996 
6 -0.05042 -0.00098 -0.04138 0.03453 -0.03233   
7 -0.14760 -0.30786 -0.15057 0.23100 0.34351   
8 0.01164 -0.00518 0.01127 -0.00860 0.01676   
9 -0.07452 0.07465 -0.07036 0.05756 -0.15315   
10 -0.01185 -0.07522 -0.01452 0.03091 0.08509   
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Table D.18a Neuron definitions in the ANNNO224hrC2 model. 

Neuron 
number 

Type of layer  
 

Type of activation 
function 

Bias 

1 Input Identity -0.00008 
2 Input Identity 0.00866 
3 Input Identity 0.00214 
4 Input Identity 0.00041 
5 Input Identity 0.00564 
6 Hidden  Hyperbolic tangent 0.33959 
7 Hidden Hyperbolic tangent 0.03696 
8 Hidden  Hyperbolic tangent -0.36337 
9 Hidden Hyperbolic tangent 0.39934 
10 Hidden Hyperbolic tangent -0.55711 
11 Output Identity -4.50506 

Table D.18b Synaptic weights in the ANNNO224hrC2 model. 

Target neuron (hidden layer) Target 
neuron 
(output 
layer ) 

Source 
neuron 
(Input 
layer) 

6 7 8 9 10 

Source 
neuron 
(hidden 
layer) 

11 

1 -0.01202 -0.00540 0.00100 -0.01935 0.00597 6 -0.34511 
2 0.00304 0.01004 -0.01107 -0.01128 0.00640 7 -0.03588 
3 0.00746 0.00191 -0.00885 -0.01262 -0.00878 8 0.36996 
4 0.00115 0.00685 -0.00690 -0.01727 0.00723 9 -0.40968 
5 0.02916 -0.00466 -0.03625 0.02660 -0.03689 10 0.58362 
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