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Preface

The conference series Traffic and Granular Flow has been established in 1995
and has since then been held biannually. At that time, the investigation of
granular materials and traffic was still somewhat exotic and was just starting
to become popular among physicists.

Originally the idea behind this conference series was to facilitate the con-
vergence of the two fields, inspired by the similarities of certain phenomena
and the use of similar theoretical methods. However, in recent years it has
become clear that probably the differences between the two systems are much
more interesting than the similarities. Nevertheless, the importance of various
interrelations among these fields is still growing. The workshop continues to
offer an opportunity to stimulate this interdisciplinary research.

Over the years the spectrum of topics has become much broader and has
included also problems related to topics ranging from social dynamics to bi-
ology. The conference manages to bring together people with rather different
background, ranging from engineering to physics, mathematics and computer
science. Also the full range of scientific tools is represented with presentations
of empirical, experimental, theoretical and mathematical work.

The workshop on Traffic and Granular Flow ’05 was the sixth in this series.
Previous conferences were held in Jülich (1995), Duisburg (1997), Stuttgart
(1999), Nagoya (2001), and Delft (2003). For its 10th anniversary, Berlin was
chosen as location, the largest city and capital of Germany. Berlin is also one
of the centers for transport related research and hosts many research institutes
that have a long history in the fields covered by the workshop.

The TGF ’05 took place from October 10-12, 2005 at the Humboldt Uni-
versity. World-renowned scientists worked here and read famous lectures, such
as Max Born, Albert Einstein, Peter Debye, James Franck, Fritz Haber, Otto
Hahn, Werner Heisenberg, Gustav Hertz, Jacob van’t Hoff, Robert Koch, Max
v. Laue, Walter Nernst, Max Planck, Erwin Schroedinger, and Wilhelm Wien,
to name only few of the 29 Nobel price laureates of the Humboldt University.

It is one of the most famous venues in the heart of Berlin with locations
touching the high-lights and low-lights of German-European and World His-
tory. It is located vis-à-vis of the Bebel square where 1933 the Nazi burned
books of such famous authors like Karl Marx, Heinrich Heine, Sigmund Freud,
Bertolt Brecht, Kurt Tucholsky, and Carl von Ossietzky. The German Reichs-



VI Preface

tag, the house of the parliament, close to the Humboldt University was burned
in the same year which was the occasion for the prosecution of dissenters and
ended with millions of murdered people in the concentration camps and World
War 2.

But also very close to the Humboldt University, at the Brandenburg gate,
in November 1989 people were sitting on the Berlin wall celebrating the end
of cold war. These pictures went all over the world. They shaped the image
of a new, young, open and optimistic Berlin.

We hope that this spirit of openness could also be felt at the conference.
Experts from physics, engineering, computer sciences and mathematics expe-
rienced a unique forum where current problems and solutions were presented
and discussed to deepen the understanding and knowledge of the physics of
traffic and the physics of granular media. Both areas have many important
applications in society and industry. “Free Flow” is an indispensable prereq-
uisite for acceptable traffic but it is also an existential precondition for mixing
powder for production of tablets or packaging in bags and exactly closing. The
main goal of the conference was to encourage theorists and practitioners of
both areas to a common view on the dynamics of transportation processes for
mutual benefit. It attracted nearly 100 participants from all over the world,
from almost 20 countries.

The papers presented show the current progress in modelling, computer
simulation, experiments and phenomena description as well as the prospec-
tives for application. The importance of the interregulations between both
research areas is growing. The conference pays tribute to this development
and opens new possibilities for interdisciplinary research. The topics covered
are, beside others, vehicular traffic, pedestrian traffic, granular flow, traffic
in urban road networks and computer networks and collective phenomena in
biological systems.

The conference ignited a broad public interest and the organizers gratefully
acknowledge financial support from the German Research Society (Deutsche
Forschungsgemeinschaft), from the Technology Foundation Berlin (Technolo-
giestiftung Berlin) and from the German Aerospace Center (Deutsches Zen-
trum für Luft- und Raumfahrt, DLR).

This conference would not have been possible without many people helping
behind the scenes. In particular we like to thank Roberto Aoki, Ute Böttger,
Petra Hänssgen, Steffi Lehmann from the DLR and Alireza Namazi from the
University of Cologne.

Köln, Berlin, Duisburg Andreas Schadschneider
August 2006 Thorsten Pöschel

Reinhart Kühne
Michael Schreckenberg
Dietrich E. Wolf
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Christof A. Krülle, Andreas Götzendorfer, Rafa�l Grochowski, Ingo
Rehberg, Mustapha Rouijaa, and Peter Walzel . . . . . . . . . . . . . . . . . . . . . . . 111

Erosion Waves: When a Model Experiment Meets a Theory
Eric Clement, Florent Malloggi, Bruno Andreotti, and Igor S. Aranson . 129

Bidisperse Granular Flow on Inclined Rough Planes
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Part I

Granular Flow



Saturn’s Rings Seen by Cassini Spacecraft:
Discoveries, Questions and New Problems

André Brahic

Université Paris VII Denis Diderot, A.I.M., C.E.A. Saclay, France
Member of the Cassini spacecraft Imaging Team
E-mail: brahic@cea.fr

1 Saturn’s Rings: A Natural Laboratory of Granular
Flow

The disc around Saturn is a system of colliding particles submitted to the
gravitational influence of Saturn and of small nearby satellites. It can be
considered as a natural laboratory of granular flow, dynamics, cosmogony,
and particle and field physics.

Despite the flood of new information on morphology and optical properties,
we have very little evidence about what rings are, how they formed, or how
they behave. We can only answer such questions by building theoretical models
and comparing their implications with past and future observations.

Fig. 1. Saturn’s rings. Three main rings (A, B, C) surround Saturn. The D, F, and
G rings are too diffuse or too narrow to be observed from the Earth. The external
E ring has a maximum density about the orbit of Enceladus. (NASA-JPL/ESA
document).
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Since they were first discovered by Galileo in 1610, the nature of Sat-
urn’s rings has been a continuing challenge to observation and theory. From
the beginning, observational resolution seemed to be just short of revealing
the essential nature of the rings. The effort to understand rings has always
attracted outstanding scientific minds. Galileo’s first detection of something
strange around Saturn was open to several interpretations. Huygens’s revela-
tion of a disc-like structure did not bring any information about rings’ nature.
Cassini suggested that the rings might consist of a myriad of small particles.
Laplace and Maxwell showed that in fact a solid ring would be unstable. Be-
ginning with Poincar, a general picture of collisional flattening and spreading
emerged, with structure governed in part by resonances with the satellites.
Dynamical theory was adequately consistent with Earth-based observations
of seemingly smooth, continuous rings. Optical and radio properties seemed
in good agreement with a swarm of small, icy particles of various sizes. The-
oretical models seemed in harmony with most observed properties.

Then came the deluge! In a golden decade, our conception of rings un-
derwent a revolution. We learned that rather to be smooth and continuous
structures, rings are better characterized as sets of narrow ringlets with sharp
edges, sometimes slightly elliptical or kinky in form. In 1977, narrow, black
rings were discovered around Uranus as they occulted a star observed from
Earth. In 1979, diffuse rings were discovered around Jupiter by the Voyager
spacecrafts. In 1984 and 1985, arcs were detected by the author around Nep-
tune as they occulted a star observed respectively from Chile and Hawaii. In
1980 and 1981, the Voyager spacecrafts revealed countless detailed features
and structures that had never been imagined.

The structure of the rings is determined by their origin and by dynamical
processes which depend upon the sizes and collisional properties of the ring
particles, and on the gravitational effects of the satellites. Electromagnetic
processes play a role on the motion of charged particles.

The classical ring system consists of three broad rings (A, B, and C from
outside towards Saturn) occupying the region between 1.23 and 2.67 Saturnian
radii. A faint E ring occupies an extended region outside the main rings and
shows a maximum of density about the orbit of Enceladus. The D ring, which
fills much of the region between the C ring and the top of Saturn’s atmosphere,
is too diffuse to be easily observed from Earth. The F and G rings are narrow
and faint rings just outside the A ring.

The A ring, which is the outermost of the classical rings, has a typical
optical depth of the order of 0.5. Many spiral waves and bending waves can
be observed in this ring. Two narrow gaps (the Encke gap and the Keeler gap)
are located in the outer portion of the A ring. The B ring is more opaque. Its
optical depth varies between 0.7 and more than 2. Its sharp outer boundary
coincides with the Mimas 2:1 resonance. It displays much more structure than
the A ring. In between the A and B rings, the Cassini division contains broad
and diffuse rings separated by narrow gaps. The inner C ring and the Cassini
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division present a number of similarities. Their optical depth is of the order
of 0.2. The C ring is populated by several opaque ringlets.

The E ring is broad and diffuse, composed predominantly of micron-sized
particles. It extends between 3 and 8 Saturnian radii. Its optical depth is of
the order of 10-7, and it can be observed from Earth only when viewed edge
on. The maximum density occurs near Enceladus’ orbit, suggesting that this
satellite is the source of he E ring.

The rings particles are primarily icy, but there is evidence for albedo, and
therefore possibly compositional variations on both local and regional scales.
Most of the particles are in the 1 centimetre to 5 metres radius range, but
there is reason to suspect the existence of some particles of all sizes up to 10
kilometres in radius.

After the surprises of the Voyager flybys in 1980 and 1981, the Cassini
spacecraft, with considerable improvements in resolution and sensitivity, is
revealing a system still more complex than foreseen. A collection of never-
before-seen phenomena within the rings was seen in the first images that
may be evidence of different physical manifestations of particle aggregation,
caused by either gravitational instabilities or kinematical effects or both. A
small number of structures are described in this article.

The words of Maxwell in his seminal Adam’s Prize essay of 1856 are still
particularly well adapted to the study of rings: “I am not aware that any
practical use has been made of Saturn’s Rings, either in Astronomy or in
Navigation . But when we contemplate the Rings from a purely scientific point
of view, they become the most remarkable bodies in the heavens. . . ”.

Saturn’s rings system is a so complex laboratory that several fields of
physics are needed for the modelling of the structure, behaviour, and evolution
of the rings.

2 The Voyager Odyssey

The space exploration has completely changed our understanding of rings. In
spite of 370 years of telescopic observations from the Earth, no one imagined
before 1980 the wealth and the diversity of structures inside planetary rings.
As a prelude to the Voyager flybys in1980 and 1981, the Pioneer 11 spacecraft
made the first reconnaissance of Saturn in 1979, providing scientific results on
which Voyager could build. Pioneer 11 flew close enough to Jupiter in 1974
to use the pull of the planet to bend its trajectory back on itself. In this way,
it could be redirected toward Saturn, on nearly the other side of the solar
system. The sling-shot effect of Jupiter’s gravity had sent it out of the ecliptic
plane into a region of space never before explored. Before the encounter, it
was necessary to decide exactly what sort of flyby would be the most produc-
tive. Several options were considered, including a plunge directly through the
Cassini division, or an aim point in the D ring, about midway between the
inner edge of the C ring and the cloud tops, or a flyby well outside the visible
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Fig. 2. Saturn’s rings photographied by the Pioneer Saturn spacecraft.
The Pioneer 11 spacecraft (left image), which has discovered the F ring, took the
first space image of the rings from space (right image). The rotating spacecraft took
one line of the image at each rotation, this gave a tilted appearance to the rings
which have moved relative to the spacecraft during the exposure time. (NASA-JPL
documents).

rings, at a distance of 2.9 Saturn radii from the centre of the planet. This
last outside option was not only considered much safer, but the flyby distance
was exactly the distance from Saturn at which Voyager 2 would have to cross
the rings in 1981 if it were to continue to Uranus. After considerable debate,
the director of the NASA planetary program overruled the recommendations
of the Pioneer principal investigators to choose the inside option. He selected
the safer outside option. Since the Voyager flybys, the amount of material in
the D ring and the Cassini division has been estimated and we know to day
that Pioneer should have been probably destroyed if an inside option would
have been taken.

On September 1st, 1979, Pioneer 11, renamed Pioneer Saturn, safely
crossed the ring plane and reached, 29 minutes later, the closest approach
to Saturn, just 21000 kilometres above he clouds. The view from the space-
craft would have been truly spectacular, but it was unhappily impossible to
capture it with the on board imaging system. A second ring plane crossing,
at 2.78 Saturn radii, took place two hours after closest approach, without any
indication of damage to the spacecraft. Thanks to this mission, which has
done a large number of varied discoveries including the one of Saturn’ F ring,
scientists had learned in addition that a spacecraft can survive inside the in-
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Fig. 3. The Voyager mission. The Voyager spacecrafts (right) were successfully
launched in 1977 (left). Voyager 1 visited Jupiter, Saturn and Titan. Voyager 2
flew by Jupiter, Saturn, Uranus, and Neptune successively (centre). (NASA-JPL
documents).

Fig. 4. Saturn’s rings. Saturn’s ring system is much more dynamic and complex
than imagined before the Voyager flybys. Seen from the Earth (left), Saturn’s rings
look homogeneous with smooth edges. Voyager spacecrafts revealed heterogeneous
rings with sharp edges (right). Thousands of structures are visible. (New Mexico
University and NASA-JPL document).

tense radiation of Jupiter and Saturn magnetospheres, and that the Saturn’s
ring plane can be safely crossed outside the A ring.

The six Voyager encounters with the four giant planets were period unpar-
alleled in degree and diversity of discovery, returning far more new information
that had been collected in more than three centuries of Earth observations.
The closer Voyager came to the planets, the more apparent it became that
the scientific richness of the giant planets systems was going to greatly exceed
the most optimistic expectations. The study of rings became one of the major
goals of the Voyager mission. At the time of the mission design, only Saturn’s
rings were known and nobody expected the huge amount of surprises unveiled
during the two Voyagers Saturn encounters. In 1980 and 1981, rings special-
ists were really astonished by the thousands of structures observed by the
Voyagers inside Saturn’s rings. These rings were found to be more complex
than previously believed.



8 André Brahic

3 The Cassini Mission

Cassini Huygens is probably the most ambitious and the most expensive
planetary mission ever launched. After a successful launch on October 15,
1997, two Venus flybys on April 26, 1998 and June 24, 1999, a Earth flyby on
August 18, 1999, a Jupiter flyby on December 30, 2000, and a Phoebe flyby
on June 12, 2004, the spacecraft safely reached Saturn on July1, 2004. At just
the right moment, the main engine has been fired for 96 minutes to slow down
and the Saturn orbit insertion has been a full success.

Fig. 5. The Cassini mission. The Cassini Huygens mission is an international
collaboration. The flags of the participating countries are represented on the left.
The Cassini orbiter (right image) carries 12 instruments. The overall height of the
assembled spacecraft is 6.8 metres and its weight is 5.7 tons. (NASA-JPL/ESA
documents).

Fig. 6. Cassini’s launch and the trajectory to Saturn. The spacecraft has
been successfully launched on October 15, 1997. It has been injected into a 6.7 year
Venus Venus Earth Jupiter gravity assist trajectory to Saturn. The arrival at
Saturn was on July 1, 2004. (NASA-JPL/ESA documents).
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Fig. 7. Revolutions around Saturn. After the Saturn’s orbit insertion on July
1, 2004 (left), 73 revolutions around Saturn have been programmed between 2004
and 2008 (right). (NASA-JPL/ESA documents).

Fig. 8. The Cassini instruments. The Imaging Science Subsystem (ISS) com-
prises a narrow-angle camera and a wide-angle camera. The narrow-angle camera
(upper left), which has a reflective optics with a 2-metre focal length, provides high-
resolution images. The wide-angle camera (lower left), which has a refractive optics
with a 20-centimetre focal length, provides extended spatial coverage at lower res-
olution. The bar charts at right show the operating wavelength coverage for the
remote-sensing operations (upper right) and energy range for the fields, particles,
and waves investigations (lower right). Both cover a range of 1010. (NASA-JPL/ESA
documents).
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When it reached its target and began orbiting Saturn, it became, at ten
astronomical units from the Sun, the farthest robotic orbiter that humankind
has ever established in the solar system. The nominal mission duration is four
years and the variable orbit design allows an unprecedented exploration of the
Saturn system tour over an extended period from a variety of illumination and
viewing geometries. Saturn’s rings are monitored for temporal changes in a
way not previously possible during the Pioneer and Voyager fly by missions.

Until now, the spacecraft is in an excellent state of health and is operating
normally. Until July 2008, Cassini will complete 74 orbits of the planet, 44
close flybys of Titan, and many other flybys of icy moons. The mission may
last several years longer if there is enough propellant remaining for trajec-
tory corrections. The images of Saturn’s atmosphere, rings, and satellites are
breathtaking.

4 Saturn’s Rings

Since the first observations of Galileo in 1610, Saturn’s rings study is one of
the oldest scientific subjects. The existence of a ring system around a planet
is a natural consequence of collisions between ring particles and of the Roche
limit. Theses rings should offer valuable insights into the physics of more exotic
and less accessible flat systems such as spiral galaxies, accretion discs, or the
primordial solar system.

We do not understand why the ring system is divided in several visu-
ally different radial zones at large scales as it can be seen from the Earth
even through a modest telescope. But, at a much smaller scale, the rings are
still more complex. A number of unexpected structures were discovered in
the high resolution images of the Voyager spacecrafts. Spiral waves, bend-
ing waves, narrow ringlets, eccentric rings, sharp edges, kinky and braided
structures, etc. are common inside the Saturn’s ring system. It seems that
interactions between rings and nearby small satellites should explain most of
the observed features. The possibility of numerous, small satellites occurring
within Saturn’s ring system was a puzzle the Voyager mission had hoped to
solve. Voyager’s best-resolution studies of the ring system were aimed at re-
vealing any bodies larger than about 10 kilometres in diameter. Nevertheless,
only four moonlets Atlas, Pan, Prometheus, and Pandora - were found in the
images. Only one, Pan, was located in the main ring system.

Imaging, stellar occultations and radio occultations from Voyager exper-
iments revealed a remarkable architectural diversity within the rings of all
four giant planets. Saturn’s rings are representative of all rings in being home
to many of the types of features found around Jupiter, Uranus and Neptune.
There are eccentric, inclined narrow rings; non-axisymmetric and sharp ring
edges; broad, tenuous rings; incomplete arc-like ring segments; small moons
shepherding nearby ring material, tightly wound spiral waves; axisymmetric
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Fig. 9. Galileo discovery. With his refractor (left), Galileo realized during a few
nights of July 1610, the most important collection of astronomical discoveries. The
changing appearance of the planet Saturn has puzzled 17th century astronomers
until Christian Huygens understood Saturn was surrounded by rings and Jean Do-
minique Cassini discovered the division named after him (drawings on the right).
(Florence Observatory and Paris Observatory documents).

Fig. 10. The changing appearance of the rings. These early drawings of Saturn
observed between 1610 and 1654 (left), correspond to the changing appearance of the
ring system as seen by the Space Telescope (right). The axis of rotation of Saturn
has a fixed direction relative to the stars and is seen more or less open from the
Earth during one Saturnian revolution. (right: NASA-JPL/ESA document).
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Fig. 11. Spiral waves and bending waves. Schematics of spiral density waves
(left). The actual wrapping is in fact much tighter for real density waves in ring sys-
tems. Radio occultation is an excellent probe of density and bending waves (right).

Fig. 12. Saturn’s rings. On the left image, the rings are see edge-on. On the
right image, the rings are visible in the lower part and their shadow on the northern
hemisphere is visible with Mimas and the limb of the planet. (NASA-JPL/ESA
document).
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but radially irregular features; azimuthally asymmetric ring brightness varia-
tions; and a great deal more. A collisional disc if left to itself should spread
until it is isolated and featureless, but Saturn’s main rings are far from this.

Characterizing ring structure at a spatial scale finer and a spectral range
wider than previously possible, determining its root causes, and searching for
secular changes in the rings both during the multi-year long Cassini mission
and since the Voyager era are prime objectives of the ring investigations at
Saturn. Combined studies with visible, ultraviolet, infrared, radar, and radio
instruments provide complementary results are now performed.

5 Cassini Observations: New Results on Rings

The Cassini observations around Saturn have produced many new findings,
including new rings, new structures, new satellites and refined orbits.

The Cassini spacecraft’s instruments have a much better resolution and a
much better sensitivity than the Voyager instruments. Orbiting around Sat-
urn, Cassini can observe the evolution of rings as a function of time, with a
large variety of phase angles, and at different wavelengths through a number
of various filters. Several regions can be seen in reflected light, diffuse light,
scattered light, etc. The shadow of the rings on the planet can be observed as
well as the planet through the rings.
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Fig. 13. Saturn’s rings seen under different phase angles. From the Earth,
the angle Sun rings observer is limited to 12. From Cassini spacecraft, the rings
can be observed under all angles and a large number of features are clearly visible
(lower right). The night side of the rings can be observed (upper left), the planet
can be seen through the rings (upper right) and transparent and opaque parts of the
rings can be distinguished. The opposition effect is visible in Saturn’s B ring (lower
left). The bright spot occurs where the angle between the spacecraft, the Sun and
the rings is near zero. (NASA-JPL/ESA document).
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Fig. 14. The Cassini division. Far to be empty, as it was believed before 1979, the
Cassini division is populated by many particles of all sizes. A number of structures
can be seen in this image. New ringlets have been discovered in Cassini images. Small
satellites not yet discovered are probably responsible of the structures. (NASA-
JPL/ESA document).

Fig. 15. The mysterious B ring. This detailed view of Saturn’s mid-B ring shows
intriguing structure, the cause of which has yet to be explained. The image, taken
on September 3, 2005, shows a region located between 107200 to 115700 kilometres
from Saturn. (NASA-JPL/ESA document).
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6 Waves and Wakes

Resonances between small nearby satellites and rings’ particles create spiral
density waves. The linear increase in wave number with the distance from the
resonance gives the surface density. Amplitude’s rates of growth and damping
give the moon’s mass and the ring’s viscosity. Non linearity, caused by the
self-gravity of density peaks, complicates these relationships.

Fig. 16. Rings full of waves. The left image shows three density waves in Saturn’s
A ring. They are respectively due to Pan, Pandora and Prometheus. The right image
shows a bending wave (right) and a density wave (left) in Saturn’s A ring. This view
shows the dark, unlit side of the rings. (NASA-JPL/ESA document).

Fig. 17. Prometheus 9:8 resonance. This resonance appears to be a beautiful
example of a linear density wave, but attempts to fit the wave reveal some non
linearity. The mass derived here is consistent with Voyager and dynamical modelling.
A ring surface density of about 39 g/cm2 is consistent with Voyager data. (NASA-
JPL/ESA document).
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Fig. 18. Atlas 5:4 resonance. Located at this resonance, this wave is on a little
peak which truncates it. The Atlas’mass is only 20value. With a value of 1.4 g/cm2,
the Cassini Division surface density is only 4height of 6 metres. (NASA-JPL/ESA
document).

Fig. 19. Pan 7:6 resonance. Pan’s mass from this wave is smaller than that
derived from Encke Gap edge waves. More waves need to be measured to obtain a
better value of the satellite mass. With a value of 2.5 g/cm2 at this location, the
Cassini Division surface density is about 6the A ring. A viscosity of 5 cm2/s implies
a scale height of 5 metres. (NASA-JPL/ESA document).
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7 Ring Edges. Arcs, Clumps and Moonlets

Passing moon excites particle eccentricities. As a result, the edge of a nearby
ring shows waves.

The little moon Pan, which is 20 kilometres across, is orbiting within the
Encke gap in Saturn’s A ring and is responsible for clearing and maintaining
this gap. The inner edge of Encke division is shaped by the small satellite
Pan and the inner edge wavelength does agree with Pan’s position. Pan is
responsible for creating stripes, called wakes, in the ring material on either
side of it. Since ring particles closer to Saturn than Pan move faster in their
orbit, these particles pass the moon and receive a gravitational kick from Pan
as they do. This kick causes waves to develop in the gap where the particles
have recently interacted with Pan, and also throughout the ring, extending
hundreds of kilometres into the rings. These waves intersect downstream to
create the wakes, places where ring material has bunched up in orderly manner
thanks to Pan’s gravitational kick.

Fig. 20. Edge wave in the Encke Gap. The left image reveals two faint, dusty
ringlets that occupy the gap along with Pan .The right ringlet occupies nearly the
same orbit as Pan, while the other is closer to the gap’s inner edge. Not only do
the ringlets vary in brightness, but they also appear to move in and out along their
length, resulting in notable kinks, which are similar in appearance to those observed
in the F ring. One possible explanation for the complex structure of the ringlets
is that Pan is not the only moonlet in this gap. The right drawing shows that the
particles nearhave most recently interacted with Pan and have just passed the moon.
Because of this, the disturbances caused by Pan on the inner gap edge are ahead of
the moon. The reverse is true at the outer edge where the particles have just been
overtaken by Pan, leaving the wakes behind it. (NASA-JPL/ESA document).
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Encke inner edge is significantly non sinusoidal. This is probably a conse-
quence of Pan non-zero eccentricity, but this has to be modelled. Pan creates
also waves in the outer edge, but their wavelength is too long to be observed.
At the outer edge of the Encke gap and in the region exterior to it, wakes due
to Pan are clearly seen. Wakes are simply coherent streamlines, not propagat-
ing waves. Farther, streamlines cross and interfere. Wake’s density maxima
have become very sharp peaks. This can be due to streamline crossing or to
self gravity.

Unlike anything seen before, Keeler gap edges show wisps. The spacing
between the wisps suggests this phenomenon can be due to a moon located
at the centre of the gap.

Fig. 21. Fingerprints of an unseen moon? The Keeler gap, a narrow gap 42
kilometres wide, lies approximately 250 kilometres inside the outer edge of the A
ring. The above image of the outer gap edge has been stretched by a factor of five
and contrast enhanced. Several faint discontinuities or spikes have been discovered.
The most easily seen spikes are labelled A through J in this image. These fea-
tures are similar to the spikes protruding inward from the core of the F ring during
Prometheus’s passages. These features all move in unison at the orbital speed ap-
propriate for particles at this location. It is likely that the features are caused by
the passages of a yet-unseen moonlet on an eccentric orbit within the Keeler gap.
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Fig. 22. Wakes and clumps. The upper left image is a false-colour view of Saturn’s
A ring from the ultraviolet spectrograph instrument aboard the Cassini spacecraft.
The ring is the bluest in the centre, where the gravitational clumps are the largest.
The thickest black band in the ring is the Encke gap, and the thin black band further
to the right is the Keeler gap. The right image is a computer simulation about 150
metres across illustrating a clumpy region of particles in the A ring. The bottom
images show the result of a computer simulation by Sbastien Charnoz (face- on on
the left and edge-on on the right). Viscosity can enhance density waves induced
by gravity and very small axisymmetric structures of about 100 metres large may
appear. (NASA-JPL/ESA document).
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Fig. 23. Wavemaker moon. Cassini’s confirmation that a small moon orbits
within the Keeler gap in Saturn’s rings is made by this image, in which the 7-
kilometre-wide body disc is resolved for the first time. The Keeler gap is located
about 250 kilometres inside the outer edge of the A ring. (NASA-JPL/ESA docu-
ment).

Fig. 24. Arcs and clumps in the Encke gap ringlets. Clumps have been
observed in three of the four Encke gap ringlets. In the above image, many clumps
are clearly visible in the main Encke gap ringlet, as well as waves produced by the
tiny moon Pan. (NASA-JPL/ESA document).
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Fig. 25. Clumps in the Pan ringlet. These three images, taken respectively on
July 1, 2004, November 15, 2004, and January 30, 2005 show that the clumps in the
Pan ringlet move and change as a function of time. Pan is visible at he extreme left
of each image. (NASA-JPL/ESA document).

Fig. 26. Diffuse ringlets discovered within Saturn’s rings. All images have
been processed to bring out low-optical thickness rings. Each arrow points to new
rings in the C ring (A image), immediately outside the outer B ring edge (B image),
in the Encke gap (C image), and in the F ring region (D image). (NASA-JPL/ESA
document).
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8 New Ring Phenomena

New features are visible between the A and the F ring. A collection of new ring
phenomena, first observed in images taken of the dark side of Saturn’s rings
immediately after Cassini entered orbit, may be evidence of the clumping and
aggregation of ring particles. This phenomenon is caused by the combined
gravitational effects of Saturn, orbiting moons, and other ring particles.

Unusual mottled-looking narrow region, with a radial width varying with
longitude from 5 to 10 kilometres, have been seen for the first time about 60
kilometres inside the outer edge of Saturn’s A ring. The mottled regions are
probably caused by particle clumping brought about by gravitational distur-
bances. The outer A ring edge is sculpted into a seven- lobed pattern called
a Lindblad resonance by the co-orbital satellites Janus and Epimetheus. The
resonant perturbations in this region are complicated by the presence of these
two moons whose orbits are within 50 kilometres of each other.

Other kinds of new features like ropy structures have also been found.
For example, at the outer edge of the Encke gap, rope-like features can be
seen between the first two wakes nearest the gap edge. Theses ropy features
appear to be a product of the enhanced gravitational disturbances that occur
when the particles pass through the wakes caused by Pan and consequently
are squeezed close together. These disturbances obviously persist even outside

Fig. 27. Examples of new ring phenomena: “mottled” and “ropy” struc-
tures. A map projection (B image) of the outer edge of the A ring (A image) shows
mottled structures which have never be seen before. The (C) image on the right
shows the outer edge of the Encke division and the region exterior to it. The wakes
of Pan are clearly seen. A different example of mottled structure is seen in the eight
Pan wake from the edge, as well as ropy structure within the first two bands exterior
to the gap. (NASA-JPL/ESA document).



24 André Brahic

the wakes, as is evident in the presence of the ropy structures in the bands in
between the wakes.

9 The D Ring

The D ring, which is between the inner C ring and the top of Saturn’s clouds,
has significantly changed since Voyager. For example, the ringlet located at
72000 kilometres from Saturn’s centre, called the D72 ringlet, is now much
fainter than it used to be, and its centre of light has shifted of about 200
kilometres inwards and we see new ringlets exterior to the D73 ringlet. There
no longer appears to be any wave-like structure in the diffuse material.

Fig. 28. The D ring. These images from the Cassini and the Voyager missions
show that structural evolution has occurred in saturn’s D ring during the 25 years
separating the two missions. The lower image, taken by Voyager 1 in 1980, shows
from left to right, the bright inner edge of the C ring and three discrete ringlets: D
73, D 72, and D 68. The upper image, obtained by Cassini, shows the same region
from a similar viewing geometry, but there have been some very significant changes
in the appearance of the D ring. The green line marks the inner edge of the C ring.
The D 72 ringlet has decreased in brightness by more than an order of magnitude
relative to the other ringlets. It has also moved inward bout 200 kilometres relative
to the others. With a much higher resolution than was possible for Voyager, Cassini
revealed surprising fine-scale structures between the C ring and D 73 (inset). (NASA-
JPL/ESA document).
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Cassini has observed the D ring at much higher resolution than was pos-
sible for Voyager, revealing surprising fine-scale structures with a periodic
wave-like structure with a wavelength of 30 kilometres.

10 The F Ring

Saturn’s F ring has been one of the most intriguing structures around Saturn
since it was first imaged by Voyager 1 spacecraft in 1980 (ref. Voyager). It
was variously described as kinks, clumps, strands, and braids. The Voyager
images showed features that deviated substantially from those of a simple
ellipse. Each particle in the F ring evidently follows its own elliptical orbit
around Saturn. The kinks and braids do not represent the paths of individual
particles. They are just instantaneous snapshots of a ring containing orbits
that vary from place to place. The F ring is surrounded by two shepherding
moons, Prometheus (near the inner edge) and Pandora (near the outer edge).
They have long been recognized as providing the gravitational pulls that con-
tinuously renew these intriguing patterns. A new nearby satellite, S/2004 S6,
has been discovered by the Cassini spacecraft. Its orbit can intersect the F
ring at high speed.

New narrow diffuse rings have been found in the F-ring region and the
evolution of the features has been followed as a function of time. In particular,
new Cassini observations show that the faint strands of material, initially
interpreted as concentric ring segments, are in fact connected and form a
single one-arm trailing spiral winding at least three times around Saturn.
The F ring spiral structure has nothing to do with other spiralling structures
seen in the main rings of Saturn and contains very little mass. It appears
to originate from material somehow episodically ejected from the core of the
F ring and then sheared out due to the different orbital speeds followed by
the constituent particles. The F ring spiral may be a consequence of moons
crossing the F ring and spreading its particle around.

There are many unsolved problems still remaining about the F ring. Per-
haps the most fundamental questions concern how the F ring has been formed
and why it is so strange. Several factors are important are important. The ring
orbits at the edge of the Roche limit, at the boundary inside which tidal forces
overcome self-gravity, where accretion is prevented. The rings and the nearby
satellites all follow highly eccentric orbits, which means that the ring is highly
perturbed when moons approach.
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Fig. 29. The F ring spiral. The F ring core is the bright line. The strands appear
as dimmer inclined lines below and above the core (bottom image). The map of
Saturn’s F ring (top image) illustrates how the strands flanking the core of the
contorted ring, when examined in detail, actually form a spiral structure wound like
a spring around the planet. This spiral may be a consequence of moons crossing
the F ring and spreading its particles around. In the middle image, two identical
maps of the F ring have been joined, side-by-side, to show the nature of the spiral
more clearly. The spiral strand’s path across the image begins about 350 kilometres
inward the F ring core at about 200 degrees longitude and moves closer to the ring
core toward the left. The strand appears to cross the ring core around 100 degrees
longitude, after which the distance between the strand and the ring core increases
to he left and can be followed, moving even farther outward, wrapping around to
the rightmost boundary of the right-hand map and continuing to the left. (NASA-
JPL/ESA document).
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11 The G Ring

The G ring is a tenuous ring outside the main ring system. An arc is visible
in some images of this ring. What makes this part of the G ring brighter than
other parts is not clear. However, the existence of this arc might hold clues
about how this ring was formed and where the material which makes up this
ring comes from.

Fig. 30. The G ring. This image of the G ring shows clearly that this ring has a
sharp inner edge and a much smoother outer edge. (NASA-JPL/ ESA document).

12 Colours and Composition

The observation of rings at different wavelengths gives unique information on
composition, structure, temperature and nature of the ring particles.

High resolution images in visible wavelengths give detailed information on
the structure of the rings and on evolution of features as a function of time.

Ultraviolet observations indicate there is more ice toward the outer part
of the rings, than in the inner part, hinting at the origins of the rings and
their evolution. The Cassini division and the Encke gap contain thinner and
durtier rings than the A ring, indicating a more icy composition.

Infrared observations indicate that the grain sizes in Saturn’s rings grade
from smaller to larger, related to distance from Saturn. Rings are probably
made up of boulder-size snowballs. The size of the ice crystals or grains on
the surfaces of those boulders can be determined with infrared data.Rings are
made mostly of water in the form of ice. Cassini infrared data are showing
that the ring ice is more pure than previously thought, with the most pure ices
generally being observed at increasing distances from Saturn. Dirty material is
most abundant in the thinnest parts of the rings such as the Cassini division,
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the Encke gap or other small gaps. This material appears remarkably similar
to what Cassini measured on Saturn’s moon, Phoebe.

Far infrared data give the temperature of the rings. The data show that
the opaque region of the rings, like the outer A ring and the middle B ring,
are cooler with temperatures of the order of 70 K, while the most transparent
sections, like the Cassini division or the inner C ring, are relatively warmer,
with temperatures of the order of 110 K.

Fig. 31. Saturn’s rings at different wavelengths. The top image shows the
colour of the rings in visible light. The bottom left image in false- colours shows the
rings in infrared. The bottom right image shows the rings in ultraviolet. The varying
temperatures of Saturn’s rings are depicted in the infrared image. Red represents
temperatures of about 110 K, and blue 70 K. Green is equivalent to 90 K. The
ultraviolet view indicates there is more ice toward the outer part of the rings, than
in the inner part. The Cassini division at left contains thinner, dirtier rings than the
turquoise A ring, indicating a more icy composition. (NASA-JPL/ESA document).
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13 The E Ring and Enceladus

The maximum density of the E ring occurs near Enceladus’ orbit, suggesting
that this satellite is the source of the E ring. Cassini spacecraft has iden-
tified a geologically unique and presently active province at the south pole
of Enceladus. This 505-kilometres diameter bright icy moon is active. Cassini
imaging, thermal and other data indicate clearly that this satellite is presently
heated by some mechanism. Tidal heating associated with the eccentricity of
Enceladus’ orbit, forced by its 2:1 mean motion resonance with Dione, has
long been suspected.

Fig. 32. The E ring and Enceladus. The top graph shows the amount of material
as a function of distance to Saturn. At the level of the orbit of Enceladus, there is
clearly much more material. The bottom images show fountain-like sources of fine
spray of material that towers over the south polar region of Enceladus. The bottom
right image is greatly enhanced and colorized in order to make visible the enormous
extent of the fainter and larger-scale component of the plume. (NASA-JPL/ESA
document).
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14 Conclusion

Cassini mission should last at least until July 2008 and may continue several
years longer if there is enough propellant remaining for trajectory corrections.
Already the first data on Saturn’s rings are breathtaking and we can expect the
unexpected from future observations. It will take several decades to analyze
all the observations and to understand all the observed phenomena. With
Saturn’s rings, we have a remarkable laboratory of physics and granular flow!
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Summary. We study the geometry of forces in some simple models for granular
stackings. The information contained in geometry is complementary to that in the
distribution of forces in a single inter-particle contact, which is more widely studied.
We present a method which focuses on fractal features of the force network and find
good evidence of scale invariance of patterns of large forces. The method enables us
to distinguish universality classes characterized by critical exponents. Our approach
can be applied to force networks in other athermal jammed systems.

1 Jammed Matter and Force Networks

Aggregates of particles can be found in a disordered solid-like state result-
ing from the phenomenon of jamming [1–5]. Granular materials, colloidal
suspensions and molecular liquids are but a few examples of such systems
that present a non-zero yield stress while trapped in one of many accessible
metastable states. If thermal fluctuations are irrelevant, the forces on each
particle must balance. Each stable configuration is thus characterized by a
highly irregular network of forces spanning the entire system.

Experimental [6–10] and numerical [11–19] studies have identified two main
distinctive features of these force networks. Firstly, strong fluctuations are
found in the magnitudes of inter-particle forces. The associated distribution
function P (F ) displays two characteristic properties: (i) it decays exponen-
tially at large forces and (ii) it exhibits a plateau or small peak at small forces,
which has been identified as a signature of jamming. The second experimental
observation is that large forces are concentrated along tenuous paths, which
have been deemed “force chains”. While P (F ) has been commonly used also
as a characterization of these force chains, strictly speaking it provides no in-
formation about the spatial organization of forces. In fact, so far force chains
have been identified mainly visually, and a quantitative characterization seems
to be lacking.

By drawing an analogy with percolation, in this paper we develop a geo-
metrical description which associates a set of critical exponents with an en-
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semble of force networks. We apply this approach to three different models
of static granular media under uniform pressure. We find that they belong
to different geometrical universality classes although P (F ) displays similar
features in all three of them.

2 Force Clusters

Consider an ensemble of configurations of a fixed number of jammed particles,
obtained numerically or experimentally. Each configuration defines a contact
graph G, where nodes correspond to particle centers and edges connect par-
ticles in contact. Assuming there is no friction, the inter-particle forces are
normal to the particle surface, and the underlying force network can be repre-
sented by associating with each edge i of G the corresponding force magnitude
Fi. To investigate the geometry of forces, rather then the underlying geometry
of contacts, we choose a threshold f and look at the subgraph Ḡ(f) of G ob-
tained by selecting only the edges with Fi > f . For f small, Ḡ(f) consists of a
single connected component, but as f increases, Ḡ(f) breaks up into a number
of disconnected clusters. An ensemble of force networks thus induces a family
of probability distributions of cluster sizes ρ(s, f) for different thresholds f ,
the cluster size s being defined as the number of edges in a cluster.

If the forces Fi were distributed independently for each i, e.g. uniformly
between 0 and 1, then the force clusters would simply be bond percolation
clusters [20]. In that case, in the thermodynamic limit N → ∞, a phase
transition occurs at a critical value fc of f : an infinite cluster exists with
probability 1 for f < fc, and with probability 0 for f > fc. At fc, the cluster
sizes are power-law distributed, ρ(s, fc) ∝ s−τ , and the correlation length
diverges as ξ ∝ |f − fc|−ν near the threshold. The scaling exponents τ and
ν are universal, they are independent of the underlying geometry, and in fact
they do not depend on the local distribution of forces P (F ) or even their
correlations, as long as these are short-ranged.

In an ensemble of force networks corresponding to a jammed system, force
and torque balance on each particle cause dependence and long-range corre-
lations between bonds. Nevertheless, if the average forces are uniform over
the extent of the system, we expect to find a critical threshold fc and an
associated set of universal scaling exponents. The analogy with percolation
moreover suggests that these exponents are independent of P (F ) and thus
provide a new, complementary characterization of force networks.

3 Criticality and Finite Size Scaling

An efficient method is necessary to study the existence of scale invariance
around the critical threshold from numerical and experimental data. While,
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Fig. 1. Examples of force networks (the thickness of the lines is proportional to
the force magnitude) and corresponding force clusters close to the critical threshold:
packing of 400 grains in Model A (top) and packing of 200 grains in Model B
(bottom).

strictly speaking, the system becomes scale-invariant only in the thermody-
namic limit, fc and the associated critical exponents can be extracted from
data on systems of finite size using finite size scaling [21]. This describes the
scaling of an observable with the system size close to criticality: if a quantity
X is expected to diverge as |f − fc|−χ near fc in an infinite system, then in
a system of size N , it obeys the scaling law

X(N, f) = NφX̃((f − fc)N1/dν) (1)

with d the spatial dimension and φ = χ/dν. The scaling function X̃ depends
on a single rescaled variable x = (f − fc)N1/dν , and for x � 1 it behaves as
x−χ, while for x→ 0 it remains finite.

Using measurements of X in systems of finite sizes, the parameters φ, ν
and fc can be obtained from (1) in two steps. Assuming that X(N, f) as
function of f displays a maximum Xm(N), from (1) the maxima for different
N all correspond to the same maximum of X̃, hence Xm(N) ∝ Nφ. Plotting
the amplitudes of the maxima versus N , we get the exponent φ. The values
of fc and ν can then be obtained by determining the best data collapse in the
region around the maximum.
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4 Models Studied

Combining the finite-size scaling method with Monte-Carlo simulations, we
studied force-cluster criticality in three two-dimensional models of static gran-
ular matter under uniform pressure [22, 23]. As all three models – which we
will call A, B, and C for further reference – have been introduced earlier in
other contexts, here we only define them briefly, without motivating in detail
their relevance to granular matter. In our view, they are are the simplest im-
plementations of two fundamental ingredients of force networks, namely force
balance on each grain and force randomness.

4.1 Snooker Model

To start with, we consider the “snooker-triangle packing” studied in [26, 27]. It
consists of a hexagonal packing of frictionless spherical grains confined within
a triangular domain, with the same confining pressure applied on all sides
of the triangle. A force network on this packing consists of repulsive forces
in vectorial balance on each grain and consistent with the applied pressure.
These constraints however do not define a single configuration of forces, but
a whole set. Following Edwards’ prescription [28], all such force networks are
taken to be equally likely, similarly to a micro-canonical ensemble. We sample
this ensemble with a Metropolis algorithm, using the parametrization of force
networks developed in Ref. [29]. In Fig. 1 we show an example of a force
network in this model and the corresponding force clusters for a threshold
f = 0.94.

4.2 Independent q-Model

We next consider consider the scalar q-model [24], one of the first models
introduced to account for the fluctuations of forces and appearance of force
chains in a granular packing. Here we consider the massless q-model on a
periodic tilted square lattice, which can be interpreted as a packing of rect-
angular bricks [25]. A uniform pressure is applied on the top of the packing
and on each site a brick supports a weight Wij . Each brick transfers verti-
cal forces F (ij)

l and F
(ij)
r to its bottom left and right neighbors respectively.

Vertical force balance is automatically satisfied by considering F (ij)
l and F (ij)

r

respectively as fractions qij and 1−qij of Wij , and randomness in force trans-
fer is implemented by taking the qij uniformly distributed between 0 and 1,
independently for each site. Fig. 1 shows a force network in this model and
the corresponding force clusters for a threshold f = 0.7 (for unit external
pressure).

4.3 Microcanonic q-Model

Our third model is a variation on the q-model. We consider the same packing
as in Sec. 4.2, but now, following Edwards’ prescription, all allowed force
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networks – consisting of sets of vertical forces {(F (ij)
l , F

(ij)
r )} – are equally

likely. As shown in Ref. [30], this is equivalent to having the qij distributed
with the joint probability distribution

∏
ij Wi,j . The aim is to examine the

influence of the form of the probability distribution by comparing independent
and microcanonic q-models, and the difference between scalar and vectorial
conservation laws by comparison with the snooker model.

5 Results

For the statistical characterization of clusters, we use the standard methods
of percolation theory [20]. A convenient observable to study is the second
moment of the distribution of cluster sizes, 〈s2(N, f)〉 =

∫
s2ρ(s, fc), where

the system size N is defined as the total number of edges. The probability
distribution of cluster sizes ρ(s, fc) does not usually take into account the
percolating cluster, as in the thermodynamic limit this would only add a
single cluster of infinite size. Therefore the percolating cluster is also omitted
in the calculation of the moments of the distribution. For f < fc, excluding the
percolating cluster is equivalent to removing the largest cluster, while for f >
fc removing the largest cluster does not change the scaling properties. To avoid
the need to define what ”percolating” means in the triangular geometry of the
snooker model, we leave out the largest cluster rather then the percolating one.
We determined the cluster sizes by a standard depth-first search algorithm
[31].

In all three models defined above, we find that 〈s2(N, f)〉 displays a maxi-
mum as function of f for fixed N . The amplitudes of the maxima as functions
ofN follow sharp power-laws shown in Fig. 2 (a), thus confirming the existence
of a critical threshold in each model. The corresponding critical exponent φ is
related via the hyper-scaling relation [20] to τ , the exponent of the cluster-size
distribution at criticality, and D, the fractal dimension of the incipient cluster
as φ = 3−τ

τ−1 = D−1. Higher moments 〈sn(N, f)〉 display a similar scaling with
exponents φn = n+1−τ

τ−1 , implying that the full distribution ρ(s, fc) approaches
a scaling form around the critical threshold.

The value of the critical threshold fc depends on the scale set by the
external pressure. Under unit pressure, we found a different fc for each model.
Fig. 3 displays the scaling functions obtained by collapse of the data. The
estimated values of the critical thresholds and exponents are summarized in
Table 1, where the two-dimensional percolation exponents are also included
for reference.

In Fig. 2(b) we show the probability distributions P (F ) of force magni-
tudes. In the independent q-model, P (F ) is exactly exponential [32], while in
the other two models it is exponential for large forces, and displays a peak at
small forces.
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Fig. 2. Results of Monte-Carlo simulations for the three models defined in the text:
(a) scaling of the maxima of the second moment 〈s2(N, f)〉 of the distribution of
cluster sizes (omitting the largest cluster in every configuration), as function of the
total system size N ; (b) probability distributions P (F ) of force magnitudes, obtained
from 100 samples of systems of 104 particles.

Table 1. Values of the critical threshold fc and the critical exponents φ and ν
obtained from Fig.2 and the data collapse shown in Fig.3. For two-dimensional
percolation, exact values are shown inside brackets.

fc φ = D − 1 ν

Independent q-model 0.7 ± 0.01 0.69 ± 0.01 3.1 ± 0.1
Snooker model 0.93 ± 0.01 0.89 ± 0.01 1.65 ± 0.1
Microcanonic q-model 0.585 ± 0.05 0.81 ± 0.01 1.65 ± 0.1
Percolation 0.895(43/48) 1.33(4/3)

6 Discussion

We have introduced a new approach to investigate the geometry of force net-
works, based on statistics of clusters created by forces larger then a given
threshold. The existence of a critical threshold uncovers a scale-invariance
of patterns of large forces, which we characterized by the critical exponents
ν and φ for the correlation length and the second moment of the cluster
size distribution. In particular, in each network we identify a fractal object
of dimension D = φ + 1, given by the incipient force cluster at the critical
threshold. As shown in Table 1, we found three different sets of critical expo-
nents for the three models we studied, implying that they belong to distinct
geometrical universality classes, although their P (F ) display similar features.
Interestingly, for the snooker model, φ is very close to the percolation value,
but as the values of ν are further apart and the scaling functions are different,
it does not belong to the percolation universality class.

Two distinct universality classes could have been expected a priori for the
q-models on one hand and the snooker packing on the other. Indeed, the q-
models are both directed and include only scalar conservation laws, while the
snooker model is isotropic with vectorial conservation laws. The reason for the
segregation of the independent and microcanonic in two different universality
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Fig. 3. Scaling of the second moment (omitting the largest cluster in each configu-
ration) as function of the threshold f and the system size N . (a)〈s2〉(f) for different
system sizes in the snooker model. (b-d) Data collapse obtained by expressing the
rescaled second moment of cluster sizes N−φ〈s2〉 as function of the rescaled variable
(f − fc)N

1/2ν for the three models defined in the text: (b) snooker model, (c) in-
dependent q-model and (d) microcanonic q-model The values of the corresponding
parameters fc, φ and ν are summarized in Table 1. We do not show the data for
very small system sizes where the collapse takes place only in a small region around
the maximum. For the q-models, the systems studied had the same vertical and
horizontal linear sizes.

classes is more subtle. They differ only by the form of the probability distri-
bution of forces, but in the independent case the distribution is Markovian
from top towards bottom, while in the microcanonic case no such preferred
direction of propagation exists.

While in jammed matter the disorder in the underlying contact geometry
plays an important role, we considered here only lattice models with fixed
contact geometry. The force-cluster method can be applied in a straightfor-
ward fashion to ensembles of forces networks resulting from disordered contact
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networks. By analogy with other critical phenomena, we however do not ex-
pect such randomness to modify the universality class. Indeed, the values we
have found for ν in combination with the Harris’ criterion [33] suggest that
geometric disorder is irrelevant. A further study indeed shows that introduc-
ing quenched disorder in the q-models does not modify the universality class,
which in turn confirms that the scale-invariance found here is in all aspects
similar to equilibrium critical phenomena.

While the results presented here clearly show that our method is able to
discriminate between different scaling behaviors, a crucial question is whether
any of the models belongs to the same universality class as a realistic two-
dimensional system of grains under isotropic pressure. A recent study [34] of
packings generated by molecular dynamics simulations showed that packings
under isotropic pressure lead to the same scaling behaviour irrespectively of
the applied pressure, the polydispersity of the grains, the coefficient of fric-
tion and the force law. Remarkably, the corresponding scaling exponents and
scaling function appear to be the same as those obtained from the snooker
packing.

7 Outlook

The existence of universality classes for force networks raises a number of
new questions. First of all, what properties of a jammed system determine
the universality class of its force network? Our results suggest that that the
isotropy of the applied force and the vector nature of the force balance are
essential. On the other hand, packings under static shear might lead to another
universality class. Another relevant parameter could be the temperature in
thermal systems which exhibit jamming, such as colloids.

Our method based on force cluster criticality is clearly able to discriminate
between the many models proposed for force networks [15, 35–39]. In partic-
ular, it shows that the Edwards’ hypothesis, which proposes to consider all
metastable states of a jammed system equally likely, leads quantitatively to
the same scaling properties as found in force networks generated by molecular
dynamics simulations.

Finally, the method developed here for force networks in jammed matter
is clearly more general. It applies in principle to any ensemble of graphs with
continuous variables on the edges, such as flux, transport or metabolic net-
works [40, 41]. The corresponding universality classes could complement the
topological characterizations of networks developed in the recent years [42].



Universality Classes for Force Networks in Jammed Matter 39

References

1. A. Liu and S. Nagel, Jamming and rheology (Taylor & Francis, 2001).
2. A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).
3. V. Trappe, V. Prasad, L. Cipelletti, P. Segre, and D. A. Weitz, Nature 411, 772

(2001).
4. H. A. Makse and J. Kurchan, Nature 415, 614 (2002).
5. M. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin, Phys. Rev. Lett. 81,

1841 (1998).
6. D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 57, 3164 (1998).
7. G. Løvoll, K. J. Maløy, and E. G. Flekkøy, Phys. Rev. E 60, 5872 (1999).
8. D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel,

Phys. Rev. E 63, 041304 (2001).
9. J. M. Erikson, N. W. Mueggenburg, H. M. Jaeger, and S. R. Nagel, Phys. Rev.

E 66, 040301 (R) (2002).
10. J. Brujic, S. F. Edwards, D. V. Grinev, I. Hopkinson, D. Brujic, and H. A.

Makse, Faraday Disc. 123, 207 (2003).
11. F. Radjai, M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Lett. 77, 274 (1996).
12. S. Luding, Phys. Rev. E 55, 4720 (1997).
13. F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Phys. Rev. Lett. 80, 61

(1998).
14. H. A. Makse, D. L. Johnson, and L. M. Schwartz, Phys. Rev. Lett. 84, 4160

(2000).
15. M. L. Nguyen and S. N. Coppersmith, Phys. Rev. E 62, 5248 (2000).
16. S. J. Antony, Phys. Rev. E 63, 011302 (2000).
17. C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86,

111 (2001).
18. C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 88,

075507 (2002).
19. L. E. Silbert, G. S. Grest, and J. W. Landry, Phys. Rev. E 66, 061303 (2002).
20. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Fran-

cis, 1991).
21. V. Privman, Finite Size Scaling and Numerical Simulations of Statistical Physics

(World Scientific, 1990).
22. H. M. Jaeger and S. R. Nagel, Rev. Mod. Phys. 68, 1259 (1996).
23. J.-P. Bouchaud, in Les Houches, Session LXXVII, edited by J. Barrat (EDP

Sciences, 2003).
24. S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and T. A. Witten,

Phys. Rev. E 53, 4673 (1996).
25. M. da Silva and J. Rajchenbach, Nature 406, 708 (2000).
26. J. H. Snoeijer, T. J. H. Vlugt, M. van Hecke, and W. van Saarloos, Phys. Rev.

Lett. 92, 054302 (2004a).
27. J. H. Snoeijer, T. J. H. Vlugt, W. G. Ellenbroek, M. van Hecke, and J. M. J.

van Leeuwen, Phys. Rev. E 70, 061306 (2004b).
28. S. F. Edwards and R. Oakeshott, Physica A 157, 1080 (1989).
29. S. Ostojic and D. Panja, in Powders and Grains 2005 (Barkema, 2005a).
30. S. Ostojic and D. Panja, J. Stat. Mech. p. P01011 (2005b), S. Ostojic and

D. Panja, cond-mat/0403321 (2005b).
31. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical

Physics (Oxford University Press, 1999).



40 Srdjan Ostojic and Bernard Nienhuis

32. J. H. Snoeijer, M. van Hecke, E. Somfai, and W. van Saarloos, Phys. Rev. E 70,
011301 (2004c).

33. A. Harris and T. Lubensky, Phys. Rev. Lett. 33, 1540 (1974).
34. S. Ostojic, E. Somfai and B. Nienhuis, Nature, in press.
35. M. Nicodemi, Phys. Rev. Lett. 80, 1340 (1998).
36. M. L. Nguyen and S. N. Coppersmith, Phys. Rev. E 59, 5870 (1999).
37. O. Narayan, Phys. Rev. E 63, 010301 (R) (2000).
38. J.-P. Bouchaud, P. Claudin, D. Levine, and M. Otto, Eur. Phys. J. E 4, 451

(2001).
39. C. Goldenberg and I. Goldhirsch, Granular Matter 6, 87 (2004).
40. M. A. de Menezes and A.-L. Barabasi, Phys. Rev. Lett. 92, 028701 (2004).
41. E. Almaas, B. Kovacs, T. Vicsek, Z. N. Oltvai, and A.-L. Barabasi, Nature 427,

839 (2004).
42. R. Albert and A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).



Species Segregation and Dynamical Instability
of Horizontally Vibrated Granular Mixtures

Massimo Pica Ciamarra, Alessandro Sarracino, Mario Nicodemi, and
Antonio Coniglio

Dip.to di Scienze Fisiche, Università di Napoli “Federico II”
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Summary. We review recent results about the segregation process of a granular
mixture of disks on an horizontally oscillating tray. In this condition an initially
disordered mixture first segregates via the formation of stripes perpendicular to the
driving direction; then stripes merge in a coarsening process. We discuss quanti-
tatively both the short-time and the long-time dynamics of the system, and the
dependence of the observed phenomenology on the frequency and amplitude of os-
cillation of the tray. The same system is also investigated when, instead of being
disordered, is initially prepared in two stripes parallel to the driving direction. In this
condition the interface between the two stripes manifests an instability which again
leads to the formation of stripes perpendicular to the driving direction. Finally, we
shortly review the mechanism which have been proposed in order to explain the
observed segregation process.

1 Introduction

A granular medium consisting of a collection of dry, cohesionless, identical
particles exhibits a wide range of complex behaviours. Despite the simplic-
ity of the constituent particles no reliable mathematical model exist for most
of these collective phenomena. Of particular interest is the counter-intuitive
phenomenon of species segregation [1]. When subject to an external pertur-
bation, such as vertical or horizontal oscillations, an initially disordered bi-
nary mixture of grains (which may differ in size, mass, frictional properties)
often segregates their components. Depending on the driving conditions dif-
ferent mechanism, such as percolation [2–4], inertia [5], convection [6], or even
purely thermodynamical effects [7], have been shown to be responsible for the
segregation process.

Recently segregation of a binary mixture subject to horizontal oscillations
has been observed by T. Mullin and co-workers [8–11]. In their experiment
a granular disordered monolayer, composed of a mixture of steel spheres and
poppy seeds, where placed on a horizontal tray oscillating along the x-axis.
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They observed the system to segregate via the formation of a pattern of al-
ternating stripes of particles of the same kind, parallel to the y-axis.

In order to understand the physical mechanism which is responsible for
this segregation process we have recently investigated this experiment via
soft-core molecular dynamics simulations. Here we review our work [12–14]
and present new results relative to the coarsening process of the stripes.

2 Model

We perform soft core Molecular Dynamics simulations of a two-dimensional
granular media taking into account grain-grain and grain-tray interactions
[15]. Two grains with diameters Di and Dj in positions ri and rj interact if
overlapping, i.e., if δij = [(Di +Dj)/2−|ri−rj |] > 0. The interaction is given
by a normal repulsive force with viscous dissipation [16, 17]. In two dimensions
this reduces to the linear spring-dashpot model,

fn = knδijnij − γnmeffvnij , (1)

where kn and γn are the elastic and viscoelastic constants, and meff =
mimj/(mi + mj) is the effective mass. We follow the realistic simulations
of [11, 15] and model the interaction with the tray via a viscous force

ft = −µi(vi − vtray), (2)

where vtray(t) = 2πAν sin(νt)x is the velocity of the tray and vi the velocity
of the disk i, plus a white noise force ξ(t) with

〈ξ(t)ξ(t′)〉 = 2Γδ(t− t′). (3)

For the grain-grain interaction, we use the value kn = 2 105 g cm2s−2 and
γn chosen, for each kind of grains, such that the restitution coefficient is
given: e = 0.8 [17]. The two components of our mixture have mass Mh = 1
g and Ml = 0.03 g, and viscous coefficient µh = 0.28 g s−1 and µl = 0.34
g s−1. The white noise has Γ = 0.2g2cm2s−3. Apart from a simple rescaling
of masses and lengths, these values are those of reference [11] (and given
in private communications), and are taken from direct measurements on the
experimental system. We solve the equations of motion by the Verlet algorithm
with an integration time-step dt = 6µs, which is limited by the value of Kn

and not, as usual in numerical simulations of the Langevin equation, by the
relaxation time m/µ (in our case dt � Ml/µl � Mh/µh). The numerical
resolution of stochastic force may be difficult [18]. We have validated the
algorithm and the integration time step considering that smaller value of dt
reproduces the same results, and that the expected properties of a thermal
binary mixture are recovered if the grain-grain interaction is made elastic (i.e.
γn is set to zero).
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The heavier grains of our mixture have diameter Dh = 1 cm. We consider
lighter grains diameter Dl to be Gaussian distributed with mean value 0.7
cm and 17% polydispersity, or to have the same size of the heavier grains,
Dl = Dh = 1 cm. We use a tray of width dy = 20 cm and length dx = 40 cm
or dx = 320 cm. Our simulations refer to oscillations with amplitude A = 1.2
cm and frequency ν = 12 Hz. The qualitative picture we discuss does not
change if these values are changed.

The dynamics of the system is determined by the amplitude and the fre-
quency of oscillation, and by the grain properties: size, mass and area fractions.
These are defined as

Φl = Nl
π

4LxLy
D2

l , Φh = Nh
π

4LxLy
D2

h, (4)

where D2
l is the mean value of the square of small grains diameter (D2

l �= D2
l

when we considering polydisperse light grains), and Nh (Nl) is the number of
heavy (light) grains.

3 Dynamics

The dynamics of a disordered mixture subject to horizontal oscillations can be
schematically divided in two steps, stripes formation and stripes coarsening:

• Stripe formation After few oscillations of the tray particles of the same
species organize in cluster, which rapidly merge and orientate giving rise
to a pattern of stripes perpendicular to the driving direction, as shown in
Fig. 3.

• Coarsening On a much longer timescale a coarsening process takes place:
stripes of particles of the same kind merge. Consequently the number of
stripes decreases and the mean stripe width increases.

This qualitative explanations of the dynamics is formally described by the
temporal evolution of the quantity a characteristic length of the system in the
x direction, ξx. As usual in coarsening processes this length is defined as:

2πξx =
∫
dkxSx(kx)dkx, (5)

where Sx(kx) = S(kx, 0) is the structure factor for wave vectors �k = (kx, 0)
with null y component. Fig. 2 shows the time evolution of ξx for a mixture
of grains of equal size, and area fraction Φh = 0.20, Φl = 0.31. This is well
described by the following functional form

ξx(t) = a+ b exp(−t/τ) + ctα (6)
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Fig. 1. Evolution of a mixture of equal-sized grains subject to horizontal vibrations.
The plots show the state of the system (from top to bottom) after 0, 400, 9800 and
20500 oscillations. Periodic boundary conditions are used in both directions. Note
that about 7 stripes are observed after 400 taps, which becomes 4 after 20500 taps.
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which combines an exponential relaxation with lasts approximately τ 	 175
oscillations, with a subsequent coarsening process. In this last stage the char-
acteristic length grows with a power law with an exponent α 	 0.25. A similar
growth exponent has been observed in [8]. We discuss now in some more detail
the short dynamics (stripes formation) and the long time dynamics, coarsen-
ing.
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Fig. 2. Temporal evolution of the characteristic length of the pattern. This is well
described by eq. 6 (smooth line), which combines an exponential relaxation with a
coarsening process.

3.1 Short-Time Dynamics

In a previous work we have examined the short time dynamics of the sys-
tem [12]. The goal was to understand under which conditions stripes form,
an what is the dependence of the initial wavelength of the striped pattern
on the properties (amplitude and frequency) of the drive. In order to make
direct comparisons with the experiments this analysis has been conducted
with monodisperse heavy grains, and polydisperse small grains. Under these
conditions, which are those studied by T. Mullin and coworkers, the system
can be mixed or segregated in stripes. Moreover, if segregation occurs, stripes
of the monodisperse species can be either “fluid” or “crystalline”.

This behaviour, in the (φh, φl) plane, is summarized in the diagram of
Fig. 3(a) showing the system “fluid” and “crystal” regions along with their
segregation properties, for ν = 12 Hz and A = 1.2 cm. Large grains are con-
sidered to be in a “fluid” configuration when their radial density distribution
function, g(r), shows a first peak at r = Dh and a second one at r = 2Dh, and
to be in a “crystal” configuration when a new peak at r =

√
3Dh appears [10].
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Fig. 3. Panel a Ordering properties of the late stage configurations of the mixture
as a function of the area fractions of the two components. The shaded area covers
the region where segregation via stripes formation occurs. circles: large grains are
in a fluid state. squares: large grains form a crystal. stars: the system appears
blocked in a “glassy” disordered configuration (see text). When stripes form their
characteristic short time length scale λ is a function of the frequency, ν, and of the
amplitude, A, of the driving oscillations. This is shown, in the case φh = 0.30 and
φl = 0.28, in panels b and c.

The system is in a “glassy” state [19] when on the longest of our observation
time scales, the system is still far from stationarity.

Fig. 3(a) shows that grains at small concentrations are mixed and in a fluid
state. Segregation via stripes formation appears at higher concentrations. At
even higher concentrations, large grains form stripes with a crystalline order,
as smaller grains are always fluid for their polydispersity. Finally, at very high
area fractions, the system is blocked in its starting disordered configuration
(“glassy” region). For instance, by increasing φl at a fixed value of φh (say
φh 	 0.174), we observe first a transition from a mixed fluid state to a seg-
regated striped fluid and then a transition where the the monodisperse phase
crystallize. The experiments of [10], where φh 	 0.174, show the very same
transitions found here at locations differing by a 10%.
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In the case φh = 0.30 and φl = 0.28, where stripes form, we describe
their dependence on the dynamics control parameters in Figs. 3(b) and 3(c),
showing that the length scale λ = dx/n, with dx later dimension of the tray
and n number of stripes, increases as a function of the shaking frequency, ν,
and of the amplitude A. These results are to be compared, for instance, with
those found in liquid-sand mixtures under oscillating flow: as we will discuss
in the next section, in fact, is it possible that in the investigated system stripes
form as a result of a dynamical instability of Kelvin-Helmholtz type, the same
instability responsible for ripples formation in liquid-sand mixtures. While
our results show that the wavelength depends both on the amplitude and the
frequency of oscillations, in liquid sand mixture the wavelength depends on
the amplitude of oscillation, but not on its frequency [20].

In our system the dependence on ν can be schematically understood by
comparison with the characteristic time scales τh = Mh/µb and τl = Ml/µs

of the two species (here τ−1
h = 0.28 Hz and τ−1

l = 11.3 Hz): in the limit
ν � τ−1

h , τ−1
l grains are not able to follow the tray motion and no sensitivity

to ν is expected, as well as when ν � τ−1
l since the grains move with the

tray. Analogously, the dependence on A is expected to be substantial when A
is at least of the order of the mean grains separation length, l = (4φh/πD

2
h +

4φl/πD
2
l )−1/2, since under this condition grains strongly interact.

3.2 Long-Time Dynamics

The long time dynamics of the system is characterized by a coarsening process
in which the characteristic length of the system increases as a power law,
ξx(t) ∝ tα, with an exponent α 	 1/4, as Fig. 2 shows.

The term ‘coarsening’ is usually referred to describe the out-of equilibrium
dynamics of a binary mixture (or of a magnetic system) whose temperature is
quenched from a high value to a value Tq which is below the coexistence curve.
At Tq the stable state is made of two coexisting regions: one region is rich in
one component of the binary mixture (has positive magnetization), while the
other region is rich in the second component of the mixture (has negative
magnetization). Therefore the system, which shortly after the quench is still
in a mixed state, spontaneously segregate forming growing domains rich in
one species or the other. These characteristic size of these domains grow in
time with a power law with an exponent which is 1/4 for the case of conserved
order parameter (the binary mixture case), 1/3 if the order parameter is not
conserved (magnetic system) (for a comprehensive review see [21]).

The long-time dynamics of our system exhibits a phenomenology which
closely resemble that of a thermal system undergoing coarsening. However
it is worth noting that (at the moment) this coarsening process cannot be
interpreted like the phase separation of a binary mixture quenched below the
critical point. For instance, it is difficult to introduce a temperature in our
system. If we try to define the temperature as the velocity fluctuations, in fact,
we end up in a confusing situations: for each species the fluctations of the x and
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of the y component of the velocities are different (as if the temperature was a
vector), the temperature of the two components are different, and the velocity
distributions are not Maxwellian. At the present stage of understanding the
notion of temperature and that of stable phase for the investigated system
appear to be meaningless, and the coarsening process must be seen as induced
by the forcing.

In this respect one may try to devise a simple model to understand the
origin of the growth exponent α. The idea is to model the fluctuations of the
width of the stripes, and to consider that two stripes merge if in contact [8, 22].
Assuming that all of the trips have the same width in order for two stripes to
merge the need to fluctuate of a distance of order ξx. Therefore we have:

∂ξx
∂t

∝ n · dy · P (ξx) (7)

where n = dx/(2ξx) is the number of stripes, P (x) is the probability that a
point of a stripe fluctuates of a distance x, and dy the y length of the tray. In
order to estimate P (x) we assume that each point of a stripe makes a random
walk in the horizontal direction as a consequence of the various collisions; P (x)
is proportional to the time τ(x) we have to wait for a point to be displaced
by x: P (x) ∝ τ(x) ∝ 1/x2. With this assumption:

∂ξx
∂t

∝ 1
2
dxdy

1
ξ3x
, (8)

and therefore ξx(t) ∝ t1/4.

4 Dynamical Instability

We have seen so far that a disordered granular mixture subject to horizon-
tal oscillations segregates via the formation of stripes. Here we discuss the
evolution of the same system when the initial state is not disordered. On the
contrary the two species are placed in two stripes parallel to the driving direc-
tion, as show in 4. The solution of the equation of motion of a grain of mass
M interacting with the oscillating tray via a viscous force regulated by the
coefficient of friction µ is

x(t) = − A

1 + τ2ν2
[cos(νt) + τν sin(νt)], (9)

where τ = M/µ. In our system the two species, having different relaxation
times τh = Mh/µh = 3.57 s and τl = Ml/µl = 0.09 s, are thus forced to
oscillate with different amplitudes and different phases. In the configuration
shown in 4 (upper panel) one one may expect the two species to oscillate
independently (following equation 9 with different relaxation times), and the
initial configuration to be a stable one. But this is not the case. The oscillatory
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t = 320 s

t = 40 s

t = 0 s

�
x

�
y

F

H

Fig. 4. Evolution of a binary mixture of disks placed on a tray oscillating along
the x direction. Here we consider the case in which the diameters of particles of
different species are equal. The pictures shows only 1/4 of the system length, which
is of 320 Db. The initial state (t= 0 s) is made of two stripes of particles of different
species parallel to the driving direction. As times goes on the flat interface between
the two species evolves via the formation of a sine-like modulation (t=40 s). Finally,
the wavy interface between grains of different species breaks leading to the formation
of a striped pattern as seen before (t=320 s).

motion of the tray induces an oscillating shear velocity at the interface between
the two species which causes the interface to evolve via the formation of
a modulation with a sine-like shape. As times goes on the amplitude of the
modulation grows until it breaks giving rise to the striped pattern seen before.

The mechanism responsible for the evolution of the pattern is understood
by considering Fig. 4 at t=40 s, and by making use of fluid-dynamics con-
siderations. Here ‘F’ and ‘H’ mark regions in which the horizontal motion
of grains of a given species is free, or hindered by the presence of grains of
the other species. By virtue of Bernoulli’s law the pressure in ‘F’ is smaller
than the pressure in ‘H’, implying a growth of the perturbed interface. This
sets-up a mechanism with a positive feedback, which leads to the formation
of the striped pattern. At the moment a closer connection between the inves-
tigated system and instability in fluids appears difficult. For instance one is
tempted to study the instability via a generalization of the Kelvin-Helmholtz
instability (which is a well-known fluid mechanical instability observed when
there is a constant shear velocity between two fluid flowing one past the the
other [23, 24]) to the case where the shear velocity between the two fluids
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oscillates in time. However the Kelvin-Helmholtz instability is investigated
introducing a typical lengthscale of the system, the capillary length, a combi-
nation of gravity and surface tension: in the investigated system gravity plays
no role, and there is no surface tension.

A dynamical instability similar to the one of Fig. 4 has been observed both
in two fluid systems [25] and in liquid sand mixtures [26]. In these cases, how-
ever, gravity stabilizes the interface in a wavy like configuration, and stripes
perpendicular to the driving direction are not observed.

5 Conclusion

We conclude by shortly discussing the mechanisms which have been pro-
posed in order to explain the observed segregation process. Originally the
phenomenology was attributed to the depletion potential [9], a form of inter-
action well known in colloidal systems [27]. Two big spheres immersed in bath
of smaller ones are subject to an effective potential, due to an entropic effect
(the clustering of big spheres increases the free space available to the smaller
ones, and consequently the entropy of the system), which is attractive at small
distances. This attractive interaction is used to explain the phase separation
of the system. The anisotropy of the drive, in turn, is used to explain why
the phase separation manifests via the formation of stripes [9]. However in
order for the depletion potential to exists it is necessary that the mixture is
made of particles of different size. Since we have observed segregation also in
the case of equal-sized particles, we can rule out the depletion potential as
a possible explanation of the observed phenomenology (in ref. [13] we show
that the depletion potential does not explain segregation even when the two
species have different size).

Another mechanism responsible for segregation, the ‘differential drag’, has
been proposed in [10, 28, 29]. Shortly, the authors suggest that since the two
species are forced to oscillate with different amplitudes and phases (see eq. 9)
there is an effective repulsion between particles of the different species, which
is responsible for the observed phenomenology. While it is certainly true that
such a repulsion exists and could possibly play a significant role in order
to explain the observed phenomenology, we note here that the ‘equilibrium‘
configuration of the system, that is the one that minimize this repulsion, is
made of stripes parallel to driving direction, and not of perpendicular stripes
as observed. When the stripes are parallel to the driving direction, in fact,
particles of different species never interact, while they interact if the stripes
are perpendicular to the driving direction.

Finally, in Ref. [12] we have suggested that the segregation process can
be related to instability process previously discussed. However there is no
direct evidence that this is instability is responsible for the segregation, and
it could be that the segregation process and the instability share a common
yet unknown microscopic origin.
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In conclusion, even though the overall phenomenology of the segregation
process of a granular mixture subject to horizontal oscillations is clear, the
microscopic origin of the observed phenomenology is still obscure.
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Lattice Versus Lennard-Jones Models with a
Net Particle Flow
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Summary. We present and study lattice and off-lattice microscopic models in
which particles interact via a local anisotropic rule. The rule induces preferential
hopping along one direction, so that a net current sets in if allowed by boundary
conditions. This may be viewed as an oversimplification of the situation concerning
certain traffic and flow problems. The emphasis in our study is on the influence
of dynamic details on the resulting (non-equilibrium) steady state. In particular,
we shall discuss on the similarities and differences between a lattice model and its
continuous counterpart, namely, a Lennard–Jones analogue in which the particles’
coordinates vary continuously. Our study, which involves a large series of computer
simulations, in particular reveals that spatial discretization will often modify the
resulting morphological properties and even induce a different phase diagram and
criticality.

1 Introduction

Many systems out of equilibrium [1, 2] exhibit spatial striped patterns on
macroscopic scales. These are often caused by transport of matter or charge
induced by a drive which leads to heterogeneous ordering. Such phenomenol-
ogy occurs in flowing fluids [3], and during phase separation in colloidal [4],
granular [5, 6], and liquid–liquid [7] mixtures. Further examples are wind rip-
ples in sand [8], trails by animals and pedestrians [9], and the anisotropies ob-
served in high temperature superconductors [10, 11] and in two–dimensional
electron gases [12, 13].

Studies of these situations, often described as nonequilibrium phase tran-
sitions, have generally focused on lattice systems [14–18], i.e., models based
on a discretization of space and in considering interacting particles that move
according to simple local rules. Such simplicity sometimes allows for exact
calculations and is easy to be implemented in a computer. Moreover, some
powerful techniques have been developed to deal with these situations, in-
cluding nonequilibrium statistical field theory. However, lattice models are
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perhaps a too crude oversimplification of fluid systems so that the robustness
of such an approach merits a detailed study.

The present paper describes Monte Carlo (MC) simulations and field theo-
retical calculations that aim at illustrating how slight modifications of dynam-
ics at the microscopic level may influence, even quantitatively, the resulting
(nonequilibrium) steady state. We are also, in particular concerned with the
influence of dynamics on criticality. With this objective, we take as a reference
the driven lattice gas (DLG), namely, a kinetic nonequilibrium Ising model
with conserved dynamics. This system has become a prototype for anisotropic
behavior, and it has been useful to model, for instance, ionic currents [17] and
traffic flows [19]. In fact, in certain aspects, this model is more realistic for traf-
fic flows than the standard asymmetric simple exclusion process [14, 15]. Here
we compare the transport and critical properties of the DLG with those for
apparently close lattice and off–lattice models. There is some related previous
work addressing the issue of how minor variations in the dynamics may induce
dramatic morphological changes both in the early time kinetics and in the sta-
tionary state [20–22]. However, these papers do not focus on transport nor on
critical properties. We here in particular investigate the question of how the
lattice itself may condition transport, structural and critical properties and,
with this aim, we consider nearest–neighbor (NN) and next–nearest–neighbor
(NNN) interactions. We also compare with a microscopically off–lattice rep-
resentation of the driven lattice gas in which the particles’ spatial coordinates
vary continuously. A principal conclusion is that spatial discretization may
change significantly not only morphological and early–time kinetics proper-
ties, but also critical properties. This is in contrast with the concept of uni-
versality in equilibrium systems, where critical properties are independent of
dynamic details.

NN hops NNN hops
E=0

NN hops NNN hops
E=

Fig. 1. Schematic comparison of the sites a particle (at the center, marked with a
dot) may occupy (if the corresponding site is empty) for nearest–neighbor (NN) and
next–nearest–neighbor (NNN) hops at equilibrium (left) and in the presence of an
“infinite” horizontal field (right). The particle–hole exchange between neighbors is
either forbidden (×) or allowed (

√
), depending on the field value.
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2 Driven Lattice Gases

The driven lattice gas, initially proposed by Katz, Lebowitz, and Spohn [23], is
a nonequilibrium extension of the Ising model with conserved dynamics. The
DLG consists of a d -dimensional square lattice gas in which pair of particles
interact via an attractive and short–range Ising–like Hamiltonian,

H = −4
∑
〈j,k〉

σjσk . (1)

Here σk = 0(1) is the lattice occupation number at site k for an empty (oc-
cupied) state and the sum runs over all the NN sites (the accessible sites are
depicted in Fig. 1). Dynamics is induced by the competion between a heat
bath at temperature T and an external driving field E which favors particle
hops along one of the principal lattice directions, say horizontally (x̂), as if the
particles were positively charged. Consequently, for periodic boundary condi-
tions, a nontrivial nonequilibrium steady state is set in asymptotically. MC
simulations by a biased Metropolis rate reveal that, as in equilibrium, the DLG
undergoes a second order phase transition. At high enough temperature, the
system is in a disordered state while, below a critical point (at T ≤ TE) it or-
ders displaying anisotropic phase segregation. That is, an anisotropic (striped
for d = 2) rich–particle phase then coexists with its gas. It is also found that
the critical temperature TE monotonically increases with E. More specifically,
for d = 2, assuming a half filled square lattice in the large field limit (in or-
der to maximize the nonequilibrium effect), one has a nonequilibrium critical
point at T∞ 	 1.4T0, where the equilibrium value is T0 = 2.269Jk−1

B . It was
numerically shown that this belongs to a universality class other than the On-
sager one, e.g., MC data indicates that the order parameter critical exponent
is βDLG 	 1/3 [17, 24] (instead of the Onsager value 1/8).

Other key features concern the two–particle correlation function C(x, y)
and its Fourier transform S(kx, ky), i.e., the structure factor. As depicted in
the left graph of Fig. 2, correlations are favored (inhibited) along (against)
the field direction. In fact, the DLG shows a slow decay of the two–point cor-
relations due to the spatial anisotropy associated with the dynamics [25]. This
long range behavior translates into a characteristic discontinuity singularity
at the origin (limkx→0 S‖ �= limky→0 S⊥) in the structure factor [16], which is
confirmed in Fig. 2.

How do all these features depend on the number of neighbor sites to which
a particle can hop? Or in other words, how robust is the behavior when ex-
tending interactions and accessible sites to the NNN?

Previous work has shown that extending hopping in the DLG to NNN
leads to an inversion of triangular anisotropies during the formation of clus-
ters [21], and also that dramatic changes occur in the steady state, including
the fact that, contrary to the DLG with NN interactions, the critical tem-
perature decreases with increasing E [22]. However, other important features
such as correlations and criticality seem to remain invariant. Analysis of the
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parallel (C‖) and transverse (C⊥) components reveals that correlations are
quantitatively similar for the DLG and for the DLG with NNN interactions
(henceforth NDLG) —although somehow weaker for the latter case. Also per-
sists a slow decay of correlations which yield to the discontinuity at the origin
of S(kx, ky). These facts are shown in Fig. 2.

On the other hand, recent MC simulations of the NDLG indicate that the
order parameter critical exponent is βNDLG ≈ 1/3 [26], as for the DLG. The
anisotropic diffusive system approach [28], which is a Langevin–type (meso-
scopic) description, predicts this critical behavior. In both cases, DLG and
NDLG, the Langevin equations, as derived by coarse graining the master
equation, lead to β = 1/3. These two Langevin equations are identical, ex-
cept for new entropic terms in the NDLG due to the presence of additional
neighbors [27].

The fact that extending particle hops and interaction to the diagonal sites
leaves invariant both correlations and criticality seems to indicate that the
two systems, DLG and NDLG, belong to the same universality class.

3 A Driven Off-Lattice Gas

In order to deep further on this interesting issue, we studied to what extent
the DLG behavior depends on the lattice itself. With this aim, we consid-
ered a driven system with continuous variation of the particles’ spatial co-
ordinates —instead of the discrete variations in the DLG— which follows as
close as possible the DLG strategy. In particular, we analyzed an off–lattice,
microscopically–continuum analog of the DLG with the symmetries and short–
range interaction of this model.
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Fig. 2. Parallel (squares) and transverse (triangles) components of the two–point
correlation function (left) and the structure factor (right) above criticality with NN
(filled symbols) and NNN (empty symbols) interactions for a 128 × 128 half filled
lattice. The inset shows the x−2 power law decay in C‖ for both discrete cases: DLG
(◦) and NDLG (×).
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3.1 The Model

Consider a fluid consisting of N interacting particles of mass m confined
in a two–dimensional box of size L × L with periodic (toroidal) boundary
conditions. The particles interact via a truncated and shifted Lennard–Jones
(LJ) pair potential [30]:

φ(r) ≡
{
φLJ(r) − φLJ(rc), if r < rc

0, if r ≥ rc,
(2)

where φLJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
is the LJ potential, r is the interparticle

distance, and rc is the cut-off which we shall set at rc = 2.5σ. The parameters
σ and ε are, respectively, the characteristic length and energy. For simulations,
all the quantities were reduced according to ε and σ, and kB and m are set
to unity.

The uniform (in space and time) external driving field E is implemented
by assuming a preferential hopping in the horizontal direction. This favors
particle jumps along the field, as it the particles were positively charged; see
dynamic details in Fig. 3. As in the lattice counterpart, we consider the large
field limit E → ∞. This is the most interesting case because, as the strength
of the field is increased, one eventually reaches saturation, i.e., particles can-
not jump against the field. This situation may be formalized by defining the
transition probability per unit time (rate) as

ω(η → η′;E, T ) =
1
2

[1 + tanh(E · δ)] · min {1, exp(−∆Φ/T )} . (3)

Here, any configuration is specified by η ≡ {r1, · · · , rN}, where ri is the
position of the particle i, that can move anywhere in the torus, Φ(η) =∑

i<j φ(|ri − rj |) stands for the energy of η, and δ = (x′i − xi) is the dis-
placement corresponding to a single MC trial move along the field direction,
which generates an increment of energy ∆Φ = Φ(η′) − Φ(η). The biased hop-
ping which enters in the first term of Eq. (3) makes the rate asymmetric under
η ↔ η′. Consequently, Eq. (3), in the presence of toroidal boundary condi-
tions, violates detailed balance. This condition is only recovered in the absence
of the driving field. In this limit the rate reduces to the Metropolis one, and
the system corresponds to the familiar truncated and shifted two–dimensional
LJ fluid [29, 30]. Note that each trial move concerning any particle will satisfy
that 0 < |r′i − ri| < δmax, where δmax is the maximum displacement in the
radial direction (fixed at δmax = 0.5 in our simulations).

MC simulations using the rate defined in Eq. (3) show highly anisotropic
states (see Fig. 3) below a critical point which is determined by the pair of
values (ρ∞, T∞). A linear interface forms between a high density phase and its
vapor: a single strip with high density extending horizontally along x̂ through-
out the system separates from a lower density phase (vapor). The local struc-
ture of the anisotropic condensate changes from a strictly hexagonal packing
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of particles at low temperature (below T = 0.10), to a polycrystalline–like
structure with groups of defects and vacancies which show a varied morphol-
ogy (e.g., at T = 0.12), to a fluid–like structure (e.g., at T = 0.30,) and,
finally, to a disordered state as the temperature is increased further. This
phenomenology makes our model useful for interpreting structural and phase
properties of nonequilibrium fluids, in contrast with lattice models, which are
unsuitable for this purpose. Skipping the microscopic structural details, the
stationary striped state is similar to the one in lattice models, however.

3.2 Transport Properties

Regarding the comparison between off–lattice and lattice transport properties,
the left graph in Fig. 4 shows the net current j as a function of temperature.
Saturation is only reached at jmax = 4δmax/3π when T → ∞. The current
approaches its maximal value logarithmically, i.e., slower than the exponential
behavior predicted by the Arrhenius law. The sudden rising of the current as
T is increased can be interpreted as a transition from a poor–conductor (low–
temperature) phase to a rich–conductor (high–temperature) phase, which is
reminiscent of ionic currents [17]. This behavior of the current also occurs in
the DLG. Revealing the persistence of correlations, the current is nonzero for
any low T, though very small in the solid–like phase. From the temperature
dependence of j one may estimate the transitions points between the different
phases, in particular, as the condensed strip changes from solid to liquid (T ≈
0.15) and finally changes to a fully disordered state (T ≈ 0.31).

The current is highly sensitive to the anisotropy. The most relevant in-
formation is carried by the transverse–to–the–field current profile j⊥, which
shows the differences between the two coexisting phases (right graph in Fig. 4).

Fig. 3. Schematic representation of the accessible (shaded) region for a particle trial
move at equilibrium (left) and out-of-equilibrium (right), assuming the field points
along the horizontal direction (x̂). The right hand side shows typical steady state
configurations above (upper snapshot) and below (lower snapshot) criticality in the
large field limit.
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Above criticality, where the system is homogeneous, the current profile is flat
on the average. Otherwise, the condensed phase shows up a higher current
(lower mean velocity) than its mirror phase, which shows up a lower current
(higher mean velocity). Both the transversal current and velocity profiles are
shown in Fig. 4. The current and the density vary in a strongly correlated
manner: the high current phase corresponds to the condensed (high density)
phase, whereas the low current phase corresponds to the vapor (low density)
phase. This is expectable due to the fact that there are many carriers in
the condensed phase which allow for higher current than in the vapor phase.
However, the mobility of the carriers is much larger in the vapor phase. The
maximal current occurs in the interface, where there is still a considerable
amount of carriers but they are less bounded than in the particles well inside
the bulk and, therefore, the field drives easily those particles. This enhanced
current effect along the interface is more prominent in the lattice models (no-
tice the large peak in the current profile in Fig. 4). Moreover in both lattice
cases, DLG and NDLG, there is no difference between the current displayed
by the coexisting phases because of the particle–hole symmetry. Such a sym-
metry is derived from the Ising–like Hamiltonian in Eq. (1) and it is absent
in the off–lattice model.

3.3 Critical Properties

A main issue is the (nonequilibrium) liquid–vapor coexistence curve and the
associated critical behavior. The coexistence curve may be determined from
the density profile transverse to the field ρ⊥. This is illustrated in Fig. 5. At
high enough temperature above the critical temperature the local density is
roughly constant around the mean system density (ρ = 0.35 in Fig. 5). As
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Fig. 4. Left graph: Temperature dependence of the net current for the driven LJ
fluid. Right graph: Transverse–to–the–field current profiles below criticality. The
shaded (full) line corresponds to the current (velocity) profile of the off–lattice model.
For comparison we also show the current profile of the DLG with NN interactions
(circle–dotted line). Since each distribution is symmetric with respect to the system
center of mass (located here at L/2) we only show their right half parts.
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T is lowered, the profile accurately describes the striped phase of density ρ+

which coexists with its vapor of density ρ− (ρ− ≤ ρ+). The interface becomes
thinner and less rough, and ρ+ increases while ρ− decreases, as T is decreased.
As an order parameter for the second order phase transition one may use the
difference between the coexisting densities ρ+ − ρ−. The result of plotting
ρ+ and ρ− at each temperature is shown in Fig. 5. The same behavior is
obtained from the transversal current profiles (Fig. 4). It is worth noticing
that the estimate of the coexisting densities ρ± is favored by the existence of
a linear interface, which is simpler here than in equilibrium. This is remarkable
because we can therefore get closer to the critical point than in equilibrium.

Lacking a thermodynamic theory for “phase transitions” in non–equilibrium
liquids, other approaches have to be considered in order to estimate the crit-
ical parameters. Consider to the rectilinear diameter law (ρ+ + ρ−)/2 =
ρ∞ + b0(T∞−T ) which is a empirical fit extensively used for fluids in equilib-
rium. This, in principle, has no justification out of equilibrium. However, we
found that our MC data nicely fit the diameters equation. We use this fact
together with a universal scaling law ρ+ − ρ− = a0(T∞ − T )β to accurately
estimate the critical parameters. The simulation data in Fig. 5 thus yields
ρ∞ = 0.321(5), T∞ = 0.314(1), and β = 0.10(8), where the estimated errors
in the last digit are shown in parentheses. These values are confirmed by the
familiar log–log plots. Compared to the equilibrium case [29], one has that
T0/T∞ ≈ 1.46. This confirms the intuitive observation above that the field
acts in this system favoring disorder. On the other hand, our estimate for the
order–parameter critical exponent is fully consistent with both the extremely
flat coexistence curve which characterizes the equilibrium two–dimensional LJ
fluids and the equilibrium Ising value, βIsing = 1/8 (non–mean–field value).
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Fig. 5. The temperature–density phase diagram (left graph)was obtained from the
transversal density profile (right graph) for N = 7000, ρ = 0.35, and different
temperatures. The coexistence curve separates the liquid–vapor region (shaded area)
and the liquid phase (unshaded area). The diamond represents the critical point,
which has been estimated using the scaling law and the rectilinear diameter law (as
defined in the main text).
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Although the error bar is large, one may discard with confidence the DLG
value βDLG ≈ 1/3 as well as the mean field value. This result is striking be-
cause our model seems to have the symmetries and short–range interactions
of the DLG. Further understanding for this difference will perhaps come from
the statistical field theory.

4 Final comments

In summary, we reported MC simulations and field theoretical calculations
to study the effect of discretization in driven diffusive systems In particu-
lar, we studied structural, transport, and critical properties on the driven
lattice gas and related non–equilibrium lattice and off–lattice models. Inter-
estingly, the present Lennard–Jones model in which particles are subject to
a constant driving field is a computationally convenient prototypical model
for anisotropic behavior, and reduces to the familiar LJ case for zero field.
Otherwise, it exhibits some arresting behavior, including currents and striped
patterns, as many systems in nature. We have shown that the additional spa-
tial freedom that our fluid model possesses, compared with its lattice coun-
terpart, is likely to matter more than suggested by some naive intuition. In
fact, it is surprising that its critical behavior is consistent with the one for the
Ising equilibrium model but not with the one for the driven lattice gas. The
main reason for this disagreement might be the particle–hole symmetry vio-
lation in the driven Lennard–Jones fluid. However, to determine exactly this
statement will require further study. It also seems to be implied that neither
the current nor the inherent anisotropy are the most relevant feature (at least
regarding criticality) in these driven systems. Indeed, the question of what
are the most relevant ingredients and symmetries which determine unambigu-
ously the universal properties in driven diffusive systems is still open. In any
case, the above important difference between the lattice and the off–lattice
cases results most interesting as an unquestionable nonequilibrium effect; as
it is well known, such microscopic detail is irrelevant to universality concern-
ing equilibrium critical phenomena.

We acknowledge very useful discussions with F. de los Santos and M. A.
Muñoz, and financial support from MEyC and FEDER (project FIS2005-
00791).
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Summary. Dunes are ubiquitous and exist in many forms in deserts and along
coasts. They are a consequence of the wind moving sand grains by a mechanism
called “saltation”. In order to describe the formation and evolution of dunes one
must understand the surface flux of sand. Using the equation of motion of turbulent
air in the approximation of Jackson and Hunt for gentle hills one obtains a set of
equations for dune motion. These equations reproduce very well field measurements.
They also allow to study in detail the collision of dunes and the stability of dune fields
since their solution is many orders of magnitude faster that real time observations.

1 Introduction

We all know the beautiful landscapes formed by dunes as for instance seen in
Figure 1. They are a consequence of the forces exerted on the grains by the
wind and the resulting particle flux. The first to systematically study airborne
sand transport was the British brigadier R. Bagnold who, during the time of
World War II did experiments in wind channels and field measurements in
the Sahara. He presented the first expression for the sand flux as function of
the wind velocity. Since then more refined expressions have been proposed.
Bagnold also described for the first time the two basic mechanisms of sand
transport: saltation and creep, and wrote the classic book on the subject which
still is consulted very much [1].

If the ground is covered by sand and has no vegetation the sand flux on
the surface modifies the shape of the landscape and spontaneously creates
patterns on different scales: ripples in the range of ten to twenty centimeters
and dunes in the range of two to two hundred meters. The change of the
topography can be described by a set of coupled equations of motion which
contain as variable fields the shear stress of the wind and the sand flux. These
equations allow to explain among others the different dune morphologies, their
velocity and their formation.
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Fig. 1. Typical desert landscape showing the characteristic sharp edges separating
the slip faces from wind driven regions.

In this article we will first introduce the properties of the turbulent wind
field, then present the mechanisms of sand transport and then we will discuss
dune formation.

2 The Wind

Air is a Newtonian fluid of density ρ = 1, 225kgm−3 and has a dynamic
viscosity µ = 1.78 × 10−5kgm−1s−1 which is defined as

τ = µ
dv

dz

where τ is a small applied shear stress and dv
dz the resulting velocity gradient.

Its state is fully described by the velocity field v(r) and the pressure field
p(r) when we assume constant temperature and density. Its time evolution
is given by the Navier-Stokes equations and the incompressibility condition.
The solution of this equation is mainly characterized by the dimensionless
Reynolds number defined through

Re =
Lv

ν
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Fig. 2. Velocity profile of the atmospheric boundary layer above a surface with a
roughness length z0 = 1.7 10−5 m; left: linear scale, right: semi-log plot.

where ν = µ
ρ is the kinematic viscosity. L and v are a characteristic length and

a characteristic velocity of the problem as it could be given by the boundary
conditions. Re represents the ratio of inertial forces to viscous forces. For
low Reynolds numbers the flow is laminar. For high Reynolds numbers the
flow is turbulent which means that there are strong spatial and temporal
fluctuations on different scales all the time. This situation is typical outdoor
even at moderate wind velocities due to the enormous size of the atmosphere.
This complex behaviour arises from the fact that for large Re the Navier-
Stokes equation is dominated by the non-linear inertia term.

The critical Reynolds number at which the atmospheric boundary layer
becomes turbulent is in the order of 6000 [2].Using the mixing length theory of
Prandtl [4] one obtains the well known logarithmic profile of the atmospheric
boundary layer illustrated in Figure 2.

v(z) =
u∗
κ

ln
z

z0
, (1)

where z0 denotes the roughness length of the surface and u∗ =
√
τ/ρ the shear

velocity. The shear velocity u∗ characterizes the flow and has the dimensions
of a velocity, although it is actually a measure of the shear stress. The rough-
ness length z0 is either defined by the thickness of the laminar sublayer for
aerodynamically smooth surfaces or by the size of surface perturbations for
aerodynamically rough surfaces.

The spatial and temporal fluctuations can be of small scale and high fre-
quency and therefore it is generally too expensive to simulate them directly
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Fig. 3. Velocity field in a longitudinal cut along the central slice of a Barchan dune.
One clearly sees the flow separation and a large eddy that forms in the wake of the
dune.

in practical applications. Instead, the Navier Stokes equations can be time–
averaged or ensemble–averaged, or otherwise manipulated to remove the small
scale dynamics, which results in a modified set of equations that are compu-
tationally more accessible.

One of these approaches for turbulence is the semi–empirical standard k-
ε model [6] which is based on transport equations for the turbulent kinetic
energy k and its dissipation rate ε. In the derivation of the k-ε model one
assumes that the flow is fully turbulent, and the effects of molecular viscosity
are negligible.

There are many programs, packages, and libraries available that have been
developed to solve the turbulent Navier Stokes equation with different bound-
ary conditions using the k-ε model. Nevertheless, three–dimensional turbulent
flow on large scales is still a challenge and limited by the performance of pro-
cessors and memory. We have chosen here the commercial code FLUENT
V5.0 [7].

We show in Figure 3 the velocity field of the wind over a crescent-shaped
obstacle which is in fact the topography of a real Barchan dune (see Fig-
ure 6) measured in Marocco. We see from the cut in wind direction Figure 3
that behind the dune an eddy of relatively low velocity is formed while the
strong wind seems to follow above an imaginary continuation of the initial hill
following the line s(x) that delimits the eddy (separation line).
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The three dimensional calculations using FLUENT are very time consum-
ing from a computational point of view. It is not possible to use it in an
iterative calculation as needed to follow the evolution of a dune where the
surface and thus the boundary evolves in time. Furthermore, the theoretical
understanding is limited by using such a “black–box” model.

A dune or a smooth hill can be considered as a weak modification of the
surface that causes a perturbation of the air flow. An analytical calculation of
the shear stress perturbation due to a two dimensional hill has been performed
first by Jackson and Hunt [8]. Later, the work has been extended to three
dimensional hills and further refined [9–13]. After a rather lengthy calculation
they obtain for the Fourier transformation of the shear stress perturbation τ̂x
in wind direction,

τ̂x(kx, ky) = A
h(kx, ky)kx√
k2

x + k2
y

(kx + iB|kx|) , (2)

where |k| =
√
k2

x + k2
y, γ = 0.577216 (Euler’s constant) and A and B depend

logarithmically on lnL/z0.
The non-local convolution integral term is a direct consequence of the

pressure perturbation over the hill. The second local term is a correction that
comes from the non–linearity of the Navier Stokes equation and represents the
effect of inertia. The calculation of the shear stress of the air onto a smooth
surface using eq. (2) is computationally very efficient. The limitation of this
analytical formula is that it can only be used for surfaces with slopes having
less than 30 degrees.

One way to treat this problem of flow separation is to divide the flow into
two parts by the separating streamline s(x) that reaches from the brink at
which one has the flow separation to the ground.

The area enclosed by the separating streamline and the surface, called
the separation bubble, a re–circulating flow develops,whereas the (averaged)
flow outside is laminar as shown in Figure 3. The general idea, suggested
by ref. [10], is that the air shear stress τ(x) on the windward side can be
calculated using the envelope that comprises the dune and the separation
bubble Figure 4. In Figure 4 we see the streamline calculated using FLUENT
for a test dune that is modelled by a circle segment and a brink position ten
meters before the maximum of this circle segment [14]. The dotted line is a
fit using an ellipse segment.

3 Sand Transport

Sand consists of grains with diameters d which range from d ≈ 2mm for very
coarse sand to d ≈ 0.05mm for very fine sand. The sand itself is mostly com-
posed of quartz (Si02) which has a density ρquartz of 2650 kgm−3. Dune sand



68 Hans J. Herrmann

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-4 -3 -2 -1  0  1  2  3  4

h 
/ H

m
ax

x / Hmax

Brink position -10 m

Dune shape
simulation

Fit

Fig. 4. Separation streamline as calculated with FLUENT (dashed line) and elliptic
fit (dotted line) for a dune with a brink position ten meters before the maximum
(from ref. [14]).

has a quite sharply peaked distribution of diameters because the transport
produces a natural mechanism of size segregation.

One can also distinguish sand grains with respect to their shape [15]. An
moving fluid such as air exerts a drag force Fd which acts in the direction of
the flow. For turbulent flow it scales quadratically with the velocity due to
Newton’s drag law:

Fd = βρu2
∗
πd2

4
, (3)

where β is a phenomenological parameter. Gravity and inertia oppose the
aerodynamic forces. Be ρ′ = ρquartz − ρair the reduced density of the sand
grains in the air and the minimal shear stress required to move a grain called
aerodynamic entrainment threshold τta = ρairu

2
∗ta. This aerodynamic entrain-

ment fluid threshold shear stress τta on a flat surface is directly proportional
to the reduced density ρ′ and the diameter d of the grains. Shields [17] in-
troduced a dimensionless coefficient Θ that expresses the ratio of the applied
tangential force to the inertial force of the grain,

Θ(Re∗) ≡ τta
ρ′gd

. (4)

Ref. [1] used the dimensionless Shields parameter Θ to define the fluid thresh-
old shear velocity u∗ta,
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u∗ta =

√
Θ
ρ′gd
ρair

. (5)

This expression is only valid as long as cohesive and adhesive forces can be
neglected and thus for grain diameters larger than 0.2mm. The typical value
for the fluid threshold shear velocity u∗ta = 0.25m s−1 is obtained for d =
250µm using Θ = 0.012.

During sediment transport when sand grains are flying in the air, they
impact onto the bed. The momentum transfer from an impacting grain to
grains resting on the ground lowers the threshold for entrainment. This has
already been observed by Bagnold [18] who called this lowered threshold im-
pact threshold u∗t. The impact threshold shear velocity u∗t can be calculated
in an analogous way and expressed by eq. (5) replacing the Shields parameter
by an effective value Θeff = 0.0064.

Different mechanisms of aeolian sand transport such as suspension and
bed–load can be distinguished according to the degree of detachment of the
grains from the ground. Bed–load transport can further be divided into salta-
tion, reptation, and creep. Small grains are suspended in air and can travel
long distances on irregular trajectories before reaching again the ground.

Saltation is the most relevant bed-load mechanism transport mechanism.
To initiate saltation some grains have to be entrained directly by the air. This
is called direct aerodynamic entrainment. The entrained grains are accelerated
by the wind along their trajectory mainly by the drag force before they impact
onto the bed again. The interaction between an impacting grain and the bed
is called splash process and can produce a jet of grains that are ejected into the
air. It is currently the subject of theoretical and experimental investigations
[19, 20]. Finally, the momentum transferred from the air to the grains gives
rise to a deceleration of the air. Due to this negative feedback mechanism
saltation reaches a constant transport rate after some transient time.

Using again FLUENT it is possible to calculate the saltation layer on the
grain level and obtain the loss of velocity of the wind due to the negative
feedback for different heights as done in ref. [27]. An example is given in
Figure 5 were we see that the velocity loss occurs mostly around a specific
height, namely the one which is typical for the grain trajectories. One also
notices that the loss is proportional to the amount of transported grains given
through the particle flux q as illustrated in the inset.

When already flying in the air, aerodynamic forces and gravity act on the
grain and determine its trajectory [1, 22–24]. The trajectory is close to that of
a simple ballistic trajectory. More elaborate calculations [23, 26] have shown
that the simple approximation using the ballistic formula gives values which
are overstimated by 10–20%.

Measurements performed in wind tunnels [28, 29] show that sand flux
starts at a threshold u∗t and scales with the cube of the shear velocity (q ∝ u3

∗)
for high shear velocities (u∗ � u∗t). In the vicinity of the threshold the func-
tional dependence is not well understood and empirical and theoretical flux
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Fig. 5. Profile of the difference of the wind velocity without and with grain transport
as function of the height for different fluxes q. The inset shows that this velocity
loss scales with q (from ref. [27]).

relations differ considerably. In fact recent calculations using FLUENT yield
a quadratic dependence of the form q ∝ (u∗ − u∗t)2 [27]. The simplest flux
relation that predicts a cubic relation between sand flux q and shear velocity
u∗ was proposed by Bagnold [1],

qB = CB
ρair

g

√
d

D
u3
∗, (6)

being d the real grain diameter and D = 250µm a reference grain diameter.
Later the threshold u∗t was incorporated into the sand flux relations in order
to account for the fact that sand transport cannot be maintained below a
certain shear velocity. Many phenomenological sand flux relations have been
proposed and have been summarized for instance in ref. [15]. A sand flux
relation that is widely used is the one by Lettau and Lettau [30],

qL = CL
ρair

g
u2
∗(u∗ − u∗t) (7)
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CL being a fit parameter. Analytical calculations that predict the sand flux
by averaging over the microscopic processes have deepened very much the
understanding of aeolian sediment transport [22, 23, 31–33].

The relations of the form q(u∗, ...) discused up to now assume that the
sediment transport is in steady state, i.e. the sand flux is saturated. In order
to overcome this limitation and to get information about the dynamics of the
aeolian sand transport, numerical simulations based on the grain scale have
been performed [21, 24, 34]. They showed that on a flat surface the typical
time to reach the equilibrium state in saltation is approximately two seconds,
which was later confirmed by wind tunnel measurements [28].

Assuming that each splash event produces on average the same number of
ejected new particles the number of saltating grains would increase exponen-
tially in time. Each accelerated grain, however, removes momentum from the
wind field. Therefore after a saturation time Ts the flux must saturate to a
value qs. From this microscopic picture Sauermann et al. [35–37] have derived
an equation describing this evolution of the flux towards saturation

∂q

∂x
=

1
ls
q

(
1 − q

qs

)
, (8)

ls being the “saturation length”.
Let us emphasize that Ts(τ, u) and ls(τ, u) = Ts u are not constant, but

depend on the external shear stress τ of the wind and on the mean grain
velocity u. We can relate the characteristic time Ts and length ls of the sat-
uration transients to the saltation time T and the saltation length l of the
average trajectory of a saltating grain,

Ts = T
τt

γ(τ − τt)
, ls = l

τt
γ(τ − τt)

(9)

τt being the entrainment threshold shear stress and γ a constant. For typical
wind speeds, the time to reach saturation is in the order of 2 s [21, 24, 34].
Assuming a grain velocity of 3–5m s−1 [25] we obtain a length scale of the
order of 10m for saturation. This length scale is large enough to play an
important role in the formation of dunes.

4 The Complete Model

The lee side of a hill has the tendency to steepen. If the wind blows long
enough from the same direction, the lee side will reach the angle of repose
Θ ≈ 34o, which is the steepest stable angle of a free sand surface. If this angle
is exceeded, avalanches start to slide down the hill until the surface has relaxed
to a slope equal or below the angle of repose. In that case the responsible for
sand flux is not the wind but gravity.

Without having to take into account the individual avalanches this effect
can be implemented by redistributing the sand in such a way that the slip
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Fig. 6. Field of Barchan dunes near Laâyoune, Morocco.

face is always a straight line with a slope corresponding to the angle of repose
Θ. In two dimensions this is easy. In three dimensions this process, however is
not straightforward. Bouchaud et al. (BCRE) [38] proposed a set of equations
to describe avalanches which allows implementing locally and iteratively even
in three dimensions the formation of surfaces having the angle of repose as
their steepest inclination. Therefore these BCRE equations seem adequate to
describe the dynamics of the slip face.

The complete model is defined by the three variable fields h(x, y), q(x, y)
and τ(x, y). τ is calculated from h through the Fourier transformation of
eq. (2). Then q is obtained from τ through eq. (8) using qs from eq. (7) and
ls from eq. (8). The new topography h is then obtained from q using mass
conservation:

∂h

∂t
=

1
ρsand

∇sq (10)

In regions where ∇sh > tanΘ slip occurs and the just mentioned BCRE
equations are applied. ∇s denotes the spatial derivative in direction of the
strongest gradient. Once h(x, y) is obtained one goes back to calculate again
τ(x, y) etc. In this way one iteratively obtains the time evolution of the three
fields.

The above system of iteratively solved coupled equations describes fully the
motion of the free granular surface under the action of wind and gravity and
can be used to calculate formation, evolution and shape of dunes. A natural
consequence of the two different driving mechanisms, wind and gravity, is that
the solution will separate in two regions: those for which the slope was larger
than Θ and where therefore the BCRE equation was applied, ie the slip faces,
and those where this was not the case. Theses two regions are separated by
characteristic sharp edges which are the typical feature of sandy landscapes
as seen in Figure 1.
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5 The Motion of Dunes

Dunes are land formations of sand of heights, ranging typically from 1 to 500
meters which have been shaped by the wind. These topographical structures
are found typically where large masses of sand have accumulated, which can
be in the desert or along the beach. Correspondingly one distinguishes desert
dunes and coastal dunes. Dunes can be mobile or fixed. Fixed dunes are older
and are either “fossilized” which means transformed into a cohesive material,
precurser to sand stone, or fixed because the average wind at their site over
some period is zero. Otherwise the sand moves if the winds are strong enough,
that means typically stronger than 4 meters a second.

As we all know, the beautiful landscapes (Fig. 6) formed by dunes are
characterized by very gentle hills interruped by sharp edges called brink lines,
delimiting regions of steeper slope, called slip-faces, lying in the wind shadow.
Depending on the amount of available sand and the variation of the wind
direction, one distinguishes different typical dune morphologies that have been
classified by geographers into over 100 categories. The most well-known are
longitudinal, transverse and Barchan dunes; other common dunes are star
dunes, ergs, parabolic dunes and draas.

If the wind always comes from the same direction, one obtains transverse
dunes if there is much sand and crescent shaped Barchan dunes (from a Turk-
ish word) if little sand is available. Barchans exist in large fields in Marocco,
Peru, Namibia etc. as seen in Figure 6). Their velocity ranges from 5 to 50 m
per year and is inversely proportional to their height.

An interesting question about Barchans is their shape. In Figure 7 we
see a longitudinal cut through the highest point of Barchans of different size
normalized in such a way that they all have the same maximum [39].

On the windward side all curves fall on top of each other, while the crest
lies more inwards for increasing dune height. The numerical solution of the
equations of the last section reproduced precisely these profiles [40] but on top
they do not have the uncontrollable fluctuations that come always from field
data. Similarly also the transverse cuts scale with height and the numerical
calculation also agrees with the observation.

One consequence of the above similarity relations is a well-known linear
dependence between dune height, length and width as has been already re-
ported by Bagnold [1]. Viewing the dune from the top, the brink has the shape
of a parabola [39]. Due to the competition between the saturation length and
the size of the separation bubble behind the dune one can calculate for the
minimal height of a stable dune to be about 1,5 meters. The shear stress of
the wind and the sand flux on a Barchan dune have also been measured and
very favourably been compared to the numerical results of the equations [41].

With these computer dunes it has lately been shown [42] that when a small
Barchan bumps into a larger one it can either be swallowed (if it is too small),
or it can coalesce but produce at each horn a new baby Barchan (breeding),
or it can, if the two initial dunes are of similar size separate again after some
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Fig. 7. Longitudinal profiles of eight dunes along their symmetry plane normalizing
the length scales such that the shapes collapse on top of each other (from ref. [39]).

exchange of sand (solitary behaviour). In this last case, it looks as if the dunes
do cross each other unaltered except for an eventual change in their size.

The system of equations of motion for dunes has also been used to calcu-
late entire systems of dunes and virtual landscapes. An example is shown in
Figure 8 where a constant influx of sand is used as boundary condition on the
left while on the right one has a free boundary.

6 Conclusion

In this article we have shown that using known expressions for turbulent flow
and using the transport mechanism of saltation, it is possible to formulate up
a set equations of motion for a wind driven free granular surface. These three
coupled equations containing as variable fields the shear stress of the wind,
the sand flux at the surface and the profile of the landscape must be comple-
mented by the BCRE equations in regions where the slope exceeds the angle
of repose in order to correctly describe the slip faces. The resulting system
of equations can be solved iteratively using appropiate boundary conditions
and initializations. The solutions produce patterns that not only ressemble
those observed in nature but also agree very well quantitatively with field
measurements of shapes, sand fluxes and dune velocities.

The simulation of dune motion on the computer allows make predictions
over long time scales since in the real world dune motion is very slow. One
can also predict the effect of protective measures like the BOFIX-technique
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Fig. 8. Complex dune pattern, calculated with the full three dimensional model.
Wind is blowing from the left to the right. When Barchan dunes are too close
they interact, get eventually connected, and form complex dune structures. The
large dunes are shielding the small dunes from the arriving sand flux which then
constantly loose volume.

of Meunier [43] and even calculate the dunes on Mars [44]. Recently also the
interaction with vegetation has been implemented [45]
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Herrmann H. J. (2003), Wind velocity and sand transport on a Barchan dune,
Geomorphology 1325, 1-11.
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Summary. The so-called minimal model provides an efficient minimum mathemat-
ical description of aeolian sand dune formation based on turbulent boundary layer
calculations and a mean-field like saltation model. It allows us to analyze the ef-
fect of environmental conditions – uncontrollable in the field – on the characteristic
shapes of dunes systematically. While the previously studied stationary solutions ob-
tained under periodic boundary conditions are “unphysical” in the sense that they
correspond to unstable fixed points of the equations, the solutions for open bound-
ary conditions are shown to be strongly constrained by the unstable manifolds of
these fixed points. For morphological evolution under periodically (e.g. seasonally)
changing wind conditions a rule of thumb emerges, saying that the shapes of com-
paratively small/large dunes are slaved by the unstable manifolds pertaining to the
actual/time-averaged environmental conditions, respectively.

From the interplay of turbulent air flow and erodible soil a plenitude of dif-
ferent shapes emerges. Among these, we will focus our attention on barchan
dunes, which form wherever unidirectional winds prevail and sand supply
is sparse. These dunes are crescent shaped with downwind pointing horns,
have gentle upwind slopes and a slip-face dominating the downwind side, as
sketched in Fig. 1(a). Whereas sand transport is of aeolian nature throughout
the upwind face and the horns, it is due to gravity on the slip-face, where
avalanches maintain the surface at the angle of repose. Barchan dunes com-
monly organize in large fields and present the most mobile dunes found on
earth with migration velocities in the range of 20− 70m/yr and as such are a
hazard in arid regions.

The turbulent flow field above a dune is essentially scale free, which leaves
the dimensions of the sand grains as the only elementary length scale in the
phenomenon of dune formation. With roughly six orders of magnitude sep-
arating typical dune lengths and sand grain diameters one would naturally
expect dunes to be scale invariant. This is actually not the case. Careful mea-
surements of barchan dunes in Morocco [1] (cf. Fig. 2) have provided clear
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Fig. 1. (a) Sketch of a barchan dune. (b) Central slice of a barchan dune. Beyond
the brink, inside of the so-called separation bubble the air flow near the ground is
stagnant or even reverse. As a consequence, there is no wind erosion on the slip face.
The height profile can be parameterized by height H and windward length L at half
height of the common envelope of the dune profile and its separation bubble

evidence that longitudinal cuts along the symmetry line (shaded in Fig. 1) of
different barchan dunes are not scale invariant. The solution to this puzzle is
provided by a peculiarity of aeolian sand transport, which conveys the infor-
mation on the grain size to the much larger scales of saltation trajectories. In
particular, the so-called saturation length �s [2] is proportional to the grain
size, but moreover dependent on the immersed density and on wind strength.
The presence of this characteristic length, which is typically of the order of
10−2 − 10−1 dune lengths, is responsible for the observed scale dependent
shape. Nevertheless, the windward profiles can be superimposed onto a mas-
ter curve once lengths and heights are rescaled independently, i.e. instead of
being self-similar, they are merely self-affine [1]. Accordingly, all windward
profiles can be obtained from a universal scaling function, the shape func-
tion f(x/L) ≡ h(x)/H(centered at the origin), where h denotes the envelope
profile of the dune and its separation bubble as illustrated by the sketch in
Fig. 1(b). In Fig. 2 we reproduce from [1] bare and rescaled data for dune pro-
files measured in Morocco. The characteristic height H and length L of each
dune can be extracted by scaling the data onto the universal shape function. In
Fig. 2(b), we compare the scaled data with the semi-empirical shape function
f(ξ) = cos2.3(0.74ξ) proposed in [3] (on the basis of numerical solutions of the
minimal model; see below). The collapse of the upwind parts of the profiles is
most convincing, while differences become pronounced on the downwind side
where the position of the brink is shifted upwind with increasing size of the
dunes. The fact that a more or less universal parameterization of longitudinal
windward dune profiles by only two parameters works, justifies the convenient
characterization of barchans in terms of e.g. height-length relations common
in the geomorphological literature.

It is inevitable in field studies that environmental conditions such as the
average wind strength and sand supply have to be accepted as they are, often
with added difficulty to collect reliable data about them. Apart from that,
the slow migration speeds render systematic measurements under fixed en-
vironmental conditions impossible. This is where a mathematical model of
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Fig. 2. (a) Longitudinal cuts along the symmetry line of barchan dunes measured
in Morocco (adapted from [1]). Heights are in the range of 3 − 9m and lengths
40−80m. (b) Although dunes are not scale invariant, data collapse of the windward
profiles can be achieved when heights and lengths are rescaled independently. The
rescaling parameters H and L were obtained by fitting the height profiles to the
shape function (solid line) mentioned in the main text

dune formation and dune migration can provide further insights. Historically,
the interest in modeling aeolian sand transport and structure formation goes
back to R. A. Bagnold, who published his seminal book The Physics of Blown
Sand and Desert Dunes in 1941 [4]. Approximately 60 years later, sound un-
derstanding of the two major aspects of dune formation and propagation,
namely turbulent air flow and aeolian sand transport, was achieved, so that a
minimal model for the formation of barchan dunes could be formulated [5, 6].
In this development, the perturbative treatment of the stationary flow field
above small hills due to Hunt and coworkers [7, 8], and the non-equilibrium
sand transport model proposed by Sauermann et al. [2] play a key role. On
the basis of the 2D minimal model the basic trend of the afore-mentioned
morphological differences between barchans measured in the field could be
explained.

In the following we shortly review the constituents entering the minimal
model and investigate the stability of its stationary solutions with respect to
perturbations of the wind strength. For constant sand supply, we present a
qualitative discussion of the influence of a periodically changing wind strength
on dune dynamics.
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1 The Model

Two important variables govern the surface evolution of a dune (and of any
erodible surface); the shear stress τ the wind exerts onto the surface and the
flux q of sand grains carried along by the wind.4 From the latter, changes of
a 2D height profile h follow simply from mass conservation,

∂th = −�−1
sand∂xq , (1)

where �sand is the average density of the dune. On the time scale of surface
evolution, the air flow as well as the sand flux adapt instantaneously to the
height profile h. Hence stationary formulae for shear stress τ and sand flux
q can be used in the model, leaving the height profile h as the only dynamic
variable.

The shear stress τ follows from a perturbative calculation of the turbulent
boundary layer above smooth hills, completed by a heuristic model for the
separation bubble downwind of the brink, which smoothly extends the height
profile over the slip-face [5–9] (Fig. 1). The stationary shear stress perturbation
τ̂ [h′] := τ/τ0 − 1 caused by the apparent obstacle consisting of the dune and
its separation zone, is a functional of the slope h′ of the envelope,

τ̂ = A

[∫ +∞

−∞
dξ h′(ξ)/(π(x− ξ)) −Bh′(x)

]
. (2)

Here τ0 denotes the (unperturbed) reference shear stress, the parameters are
A = 3.2 and B = 0.25 for the central slice of a barchan dune [6]. The shear
stress perturbation τ̂ is essentially independent of the actual size of the dune,
except for negligible logarithmic dependencies hidden in the prefactors A and
B, and scales with its aspect ratio ε = H/L. Due to turbulent fluctuations the
air flow over a symmetric hill is asymmetric, and the maximum shear stress
is slightly displaced in the upwind direction with respect to the apex of the
hill. This symmetry breaking by the turbulent flow is a crucial prerequisite
for structure formation [6, 10].

Sand transport over a dune mainly takes place in saltation, i.e. sand grains
move in consecutive jumps if the shear stress τ exceeds some threshold value
τt. During their flight the grains extract momentum from the wind which they
impart to the sand bed upon impact. The number of grains in the saltation
cloud adjusts itself according to a feedback mechanism between acceleration
of the grains by the wind and flow deceleration by the grains such that in
equilibrium each impacting grain is replaced by one dislodged grain [11, 12].
The characteristic length scale for the equilibration of this feedback process
is the aforementioned saturation length �s.

Since the wind strength above a dune varies locally, the sand flux inces-
santly has to adapt to changing wind conditions, and an equilibrium between
4 Here we follow the notation found in the literature. In 2D, the sand flux q actually

has dimensions of a sand transport rate per unit width [2].
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Fig. 3. Shear stress dependence of the kinetic coefficients qs and �s of the sand flux
equation (3). (a) The saturated flux qs increases nearly linearly with the shear stress
τ . (b) The saturation length �s sets the scale for saturation transients. It diverges
when the shear stress τ approaches the threshold τt, indicating a slowing down of
the equilibration near the threshold

the wind and the sand flux can never be established on the dune. This fea-
ture is captured by a continuum model, which calculates the stationary non-
equilibrium sand flux q[τ ] from the stationary shear stress τ according to

�s∂xq = q(1 − q/qs) . (3)

The equilibrium or saturated sand flux qs(τ) and the saturation length �s(τ)
are local functions of the shear stress τ(x), whereas the actual flux q(x) is a
retarded functional of τ(x) [2]. This results in a spatial lag of q with respect
to qs, which in competition with the symmetry breaking of the shear stress τ
determines the morphology of stationary dunes [5, 6]. Since the shear stress
τ drops below the threshold τt inside of the separation bubble, aeolian sand
transport breaks down there. Sand crossing the brink settles over a short dis-
tance ldep � �s and eventually avalanches down the slip-face. In the minimal
model, those avalanches are considered to relax the surface instantaneously,
the actual implementation follows the so-called BCRE model [13, 14].

2 Solutions

2.1 Stationary Solutions

Stationary solutions h(x, t; τ0, qin) of (1) for a given pair of external parame-
ters τ0 and qin correspond to shape invariantly moving dunes. Depending on
whether the influx qin is finite or vanishes, we distinguish two types of sta-
tionary solutions: heaps with continuous slopes throughout the whole profile
form at finite influx, whereas dunes with a slip-face form at zero influx. The
shape transition is a consequence of the saturation length �s fixing the length
of stationary heaps. For any given reference shear stress τ0, stationary heaps
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are enforced to steepen with increasing volume, and eventually develop a slip-
face [5, 6]. That stationary dunes are obtained at vanishing influx only, is due
to the minor technical simplification that transverse sand losses are dismissed
as “second order” effects. (If desired, they could easily be accounted for by an
analytical expression [3].) Rescaling heights and lengths by H and L, respec-
tively, leads to a collapse of the windward profiles onto the universal shape
function f(ξ, t), which is independent of the reference shear stress τ0 and the
influx qin. The profiles h(x, t; τ0, qin) thus depend on the parameters τ0 and qin
only implicitly through their characteristic heights H and lengths L. As an-
ticipated in the introduction, this implies that a morphological analysis may
be restricted to a reduced phase space.

2.2 Instability of Stationary Solutions with Respect to Wind
Changes

To better understand the nature of the transient solutions of the minimal
model, we start by studying the response of the equations of motion to
perturbations of the stationary solutions of equation (1). For definiteness,
we consider a stationary solution for external parameters τ0/τt = 2.0 and
qin/qs,0 = 0.4, and perturb it by switching the reference shear stress to a
higher/lower value, respectively, cf. Fig. 4. Here we introduced the abbre-
viation qs,0 = qs(τ0) for the saturated flux over an unperturbed sand bed.
The numerical analysis shows that an augmentation of the shear stress to
τ0/τt = 2.2 at fixed influx ratio, which is equivalent to a shortening of the
saturation length �s by roughly 15 percent, leads to enhanced erosion of the
windward side of the heap. The length L of the heap decreases towards the
stationary value corresponding to the new shear stress value τ0/τt = 2.2. But
since flux saturation is already reached somewhat upwind of the crest, sand
is deposited on the top of the heap and the height H increases away from
its reference value for the stationary solution. For a decreased reference shear
stress τ0/τt = 1.8 we observe reciprocal behavior; the saturation length �s in-
creases, which results in decreased erosion of the windward foot but increased
erosion of the top (since the flux q now takes longer to saturate). This re-
sults in the length L changing towards the stationary solution corresponding
to τ0/τt = 1.8 whereas the height H shrinks away from it. In summary, the
stationary solutions — or fixed points — of the model equations are unsta-
ble with respect to changes of the wind strength; attractive with respect to
length L but repulsive with respect to height H. As seen from Fig. 4(c) this
translates into shape attraction, i.e. attraction with respect to the aspect ratio
ε = H/L, while it leads to repulsion with respect to volume V ∝ HL.

2.3 Growing and Shrinking Solutions

In the preceding paragraph we showed that stationary solutions are unsta-
ble with respect to perturbations of the wind strength. Augmentation of the
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Fig. 4. Response of a stationary solution to a change of the reference shear stress.
Open symbols denote stationary solutions with influx ratio qin/qs,0 = 0.4 and ref-
erence shear stress τ0/τt = 1.8 (triangle), τ0/τt = 2.0 (square), and τ0/τt = 2.2
(circle), broken lines the corresponding unstable manifolds. The solid lines are the
numerically calculated trajectories with arrows indicating the direction of the dy-
namic evolution. (a) Initial response of the length L: upon changing the reference
shear stress from τ0/τt = 2.0 to τ0/τt = 2.2 (τ0/τt = 1.8) the length L is attracted
towards the fixed point corresponding to the new shear stress value. (b) Initial re-
sponse of the height H: a change of the reference shear stress leads to repulsion of
the height H away from the new fixed point. (c) Except for an initial transient, both
trajectories (solid lines) are attracted by the unstable manifolds of the new fixed
points

reference shear stress leads to indefinitely growing heaps, whereas diminution
results in heaps that shrink until they vanish. Figures 5 and 6 show snapshots
illustrating the evolution of two such solutions obtained from a stationary
heap for external parameters τ0/τt = 2.0 and qin/qs,0 = 0.4 by a quench of
the reference shear stress to τ0/τt = 2.2 and τ0/τt = 1.8, respectively. A
complete track record of the growth history is provided in Fig. 4(c) for the
scale variables H and L. Interestingly, growth and shrinkage take place in a
rather organized fashion: for any given reference shear stress τ0 and influx
qin, trajectories starting from arbitrary initial shapes and volumes converge
towards the unstable manifold of the corresponding fixed point [15]. In other
words, growing or shrinking profiles run through a series of preferred shapes
selected by the prevailing wind strength and sand supply. The dynamics is
asymptotically governed by the unstable manifold of the fixed point, which
considerably reduces the a priori high dimensional state space. In particular,
any morphological evolution under fixed wind conditions is bound to follow
these unstable manifolds.
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Fig. 5. Snapshots of a growing heap for reference shear stress τ0/τt = 2.2 and influx
qin/qs,0 = 0.4. With increasing volume, the heap steepens and eventually becomes a
dune with a slip-face
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faster until the heap is finally completely eroded

2.4 The Influence of Periodic Wind Variations

In the field, one often encounters periodically changing wind conditions which
might occur for example seasonally or daily. In this paragraph we provide a
qualitative discussion of both scenarios. While changing the reference shear
stress we keep the influx ratio qin/qs,0 fixed. Figure 7 shows numerical results
obtained for fixed influx ratio qin/qs,0 = 0.4 and reference shear stress peri-
odically switching every 180 days between τ0/τt = 2.2 and τ0/τt = 1.8. The
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volume of the initial heap is chosen such that it grows in time. The unstable
manifold of the fixed points corresponding to the two wind speeds alternately
attract the trajectory. For small volume, the trajectory switches rapidly from
one unstable manifold to the other, i.e. the dune profile can adapt rapidly
to the new “shape attractor”. With growing volume, the relaxation process
takes increasingly longer due to the increasing amount of sand that has to be
moved to achieve the required shape change. An indicative reference time scale
is provided by the time needed to completely rebuild the dune, which is of
the order of �sandV/qs,0. Large dunes cannot adiabatically adapt their shapes
to the shape attractor corresponding to the new environmental conditions.
Their shapes are rather the result of an effective time averaged environmental
condition. Thus their trajectories in the reduced phase space of Fig. 7, follow
asymptotically the unstable manifold of the average reference shear stress, in
our example given by τ0/τt = 2.0.
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Fig. 7. Evolution of a growing dune subject to periodically changing wind strength.
(a) Shear stress protocol. The reference shear stress is changed every 180 days from
τ0/τt = 2.2 to τ0/τt = 1.8 and vice versa while the influx ratio qin/qs,0 = 0.4 is kept
fix. (b) Evolution of the height H. (c) Reduced phase space trajectory of a growing
heap recorded for three cycles (solid line). Broken lines represent the unstable man-
ifolds of the fixed points corresponding to the alternating environmental conditions
τ0/τt = 1.8 (triangle) and τ0/τt = 2.2 (circle), and to the time averaged wind shear
stress τ0/τt = 2.0 (square), respectively. As long as the dune volume is small, the
trajectory switches rapidly between the unstable manifolds

The asymptotic regime is more conveniently studied for a small heap sub-
ject to a more frequent change of the reference shear stress, e.g. every 12 hours,
as shown in Fig. 8. The reaction of the shape to the rapidly alternating envi-
ronmental conditions has diminished to tiny oscillations around the unstable
manifold corresponding to the average reference shear stress τ0/τt = 2.0.
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One may certainly expect deviations from this idealized behavior for larger
shear stress differences and in particular if the lower shear stress falls close to
(or locally even below) the threshold for sand transport, so that the nonlinear
dependence of the saturation length �s on the reference shear stress becomes
important. However, the two idealized scenarios provide a powerful rule of
thumb giving a rough classification for the shape evolution of dunes in the field
and are helpful in understanding some of the apparently less systematic shape
variations of measured dune shapes with dune size (cf. Fig. 2): The shapes
of small dunes follow adiabatically the unstable manifold corresponding to
the actual environmental conditions, while the shapes of large dunes reflect
essentially the long time averaged environmental conditions.
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Fig. 8. The same as in Fig. 7 but for a periodic change of the reference shear
stress every 12 hours (a). The periods of alternating winds are so short that the
trajectory averages over both unstable manifolds rather than relaxing onto them
(c). Asymptotically, it follows the course of the unstable manifold corresponding to
the average reference shear stress τ0/τt = 2.0

3 Conclusions

Previous systematic studies of the minimal model of aeolian sand dunes were
mostly restricted to the simple but unstable stationary solutions obtained
under constant wind strength and periodic flux conditions, i.e. constant and
equal in- and outflux. Allowing for open boundary conditions and varying envi-
ronmental conditions may at first sight seem tantamount to opening a Pandora
box of complex non-equilibrium behavior. However, as we have demonstrated
above, due to a tight organization of the infinite dimensional phase space of
non-equilibrium dune shapes by a low dimensional set of shape attractors,
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the possible generic non-equilibrium shape evolutions are highly constrained
and the actual complexity is much lower than one might have expected. As a
paradigmatic example pertinent to field studies, we have numerically analyzed
the growth of small heaps and large dunes subject to a daily and seasonally
alternating wind strength, respectively. The emerging picture can be summa-
rized by a rule of thumb saying that the shapes of small dunes are slaved
by the unstable manifolds of the fixed-point solution for the actual environ-
mental conditions, while the shapes of large dunes are basically determined
by corresponding shape attractors pertaining to the averaged environmental
conditions.
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Summary. We report the result of new experiments on a granular medium sheared
in a Couette geometry. We investigate in particular the dependence of the resulting
stick-slip patterns on the imposed shear rate. A model equation based on a stochas-
tic description of the internal forces of the granular medium allows us to recover the
experimental results and unveils similarities between the stick slip motion and the
Barkhausen noise emitted by a ferromagnet during a hysteresis cycle. We show that,
because of the stochastic nature of forces in the granular medium, there is indeed a
correspondence in the statistical properties between shear rate fluctuations in granu-
lar media and displacement of magnetic domain walls under a varying external field.
The main difference between the two systems consists of a characteristic behavior
on the part of the granular medium, but which is not exhibited by the Barkhausen
effect. The stochastic model proposed allows us to ascribe this behavior to the mo-
ment of inertia of the plate and, on the basis of available data from the statistical
properties of friction in solid-on-solid systems and in polymer mono-layers, suggests
the possibility of describing a larger class of driven instabilities in terms of similar
general mechanisms.

1 Introduction

A remarkably broad variety of fundamental and applied problems in the phys-
ical, life, and materials sciences originate from an interplay between disorder
and non-equilibrium dynamics. Given the significance of fluctuations and noise
in practically every branch of science and technology, an interdisciplinary ap-
proach based on the cross-fertilization of materials science with techniques
and ideas drawn from the physics of fluctuations would have an immense po-
tential in the understanding and development of new and exciting areas of
modern physics. As an example, fluctuations play a role in material synthe-
sis since deposition and growth are stochastic processes and typically involve
the nucleation of defects and other disordered structures (clusters, inclusions,
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rough surfaces). Similarly disorder affects the material during device opera-
tion and typically gives rise to noise, leading eventually to failure. While noise
certainly represents an experimental nuisance in many cases, it also provides
a well established method for material characterization. Examples include the
Barkhausen noise in ferromagnetic materials, voltage noise in conductors and
acoustic emission in deformed solids.

Granular matter is utilized at some stage in the production of almost all
products which exist today, and yet the complexity they exhibit is understood
only in the most general conditions, despite its acknowledged importance in
the scientific community. In fact, the shear response of granular media has
been investigated for more than a century in different scientific frameworks [1],
ranging from soil mechanics [2] and earth sciences [3, 4] to physics [5, 6]. A large
variety of experimental settings and theoretical methodologies, or direct parti-
cle simulations [7, 8], have been applied to the problem in the search of general
relationships such as rate and state friction laws [4, 9]. However, it has been
observed that under a slow loading rate, the shear response of granular media
typically displays large fluctuations [10–12], with regimes in which motion is
intermittent and erratic, the so-called stick-slip phase. The necessity of obtain-
ing a mechanical description to be used in application has pushed most of the
past theoretical activity to the analysis of averaged properties, in the search
for constitutive macroscopic laws. On the contrary, a detailed analysis of slip
statistics is of primary importance if one wishes to understand the mechanisms
which are at the base of the wide fluctuations observed. They are, for example,
the distinguishing feature of “crackling noise”, which denotes an intermittent
activity with widely fluctuating amplitudes [13]. This phenomenon is observed
in different contexts such as magnetic materials [14, 15], ferroelectrics, type
II superconductors [16], fracture [17, 18] and plasticity [19, 20] to name just
a few. In addition it shares analogies with earthquake phenomenology, where
the statistics typically displays wide fluctuations and recorded sizes of seismic
events span several decades [21, 22].

Common aspects observed in such apparently different systems have sug-
gested the existence of a deeper correspondence in the underlying physical
properties [13], and one may hope that any general insight or understanding
gained in these phenomena may guide research in other fields. In this article,
starting from a laboratory experiment on sheared granular matter, we discuss
a model which quantitatively reproduces the observations and, at the same
time, is based on a simple but intuitive hypothesis which sheds light on the
similarities between different phenomena. Indeed, we show that, because of
the stochastic nature of forces in the granular medium, there is a correspon-
dence in the statistical properties between shear rate fluctuations in granular
media and domain wall velocities in ferromagnets (Barkhausen effect).
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Fig. 1. A photograph of the experimental set-up

2 Granular Experiment and Dynamic Statistics

The adopted experimental setup consists of a circular Couette cell filled with
mono-disperse glass beads. An annular plate is driven over the surface of the
cell by a motor via a torsion spring, exerting a shear stress on the granular
medium. A picture of the experimental apparatus is shown in Fig. 1 and a
detailed description of the setup is provided in [23]. As the spring winds up,
the torque on the plate increases until the plate slips. We focus our analysis
on the stick-slip regime, observed at low driving angular velocities when the
system cannot support a steady sliding regime. The apparatus allows us to
measure the deflection of the torsion spring and the angular position θ of the
plate as functions of time, from which we obtain the instantaneous position
of the plate and its derivatives. The reaction torque F of the medium can be
derived by the equation of motion:

Iθ̈ = k(ωt− θ) − F, (1)

where I is the moment of inertia of the disk, k is the stiffness of the torsional
spring, and ω is the angular velocity of the driving motor. The first term
on the right hand side is simply the force exerted by the spring. The second
term describes the “friction” F exerted by the medium and counteracting the
motion of the plate. This force being very irregular, the typical instantaneous
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Fig. 2. A sample time series of angular position, velocity and acceleration. The
portion of signal between two consecutive zeros of the velocity defines a slip event,
with the associate time duration and size

velocity signal displays a very erratic behavior with pulses of widely fluctuat-
ing magnitudes as those reported in Fig. 2. From similar previous experiments
its probability distribution is expected to obey a power-law [11, 12].

The present experiment allows to observe that also other physical quanti-
ties exhibit asymmetric statistical distribution with long tail. For example the
static and dynamic torque [24]. But in order to get a more complete character-
ization of the system from the statistical point of view more quantities can be
investigated. Typical quantities employed in crackling noise are the size S and
duration T of the events. For the granular medium a slip event is defined as
the portion of signal between two consecutive zeros of the plate velocity (see
Fig. 2). As an example some distributions of duration T are shown in Fig. 3.
They are found to display a monotonic decrease at small scales for different
values of the driving velocity ω, but followed sometimes by a characteristic
peak at larger scales. It will be seen below that the presence and the position
of the peak are related to the moment of inertia of the driving plate. Such a
feature is absent in the aforementioned Barkhausen noise since in that case
the motion of the domain walls is over-damped.

3 Proposed Model Equation

The instantaneous frictional torque F of (1), which acts as a friction term,
may depend in principle on the angular position, its derivatives, and on a
variety of state variables [3], including memory terms. This complexity arises
from the disordered arrangement of grains, where forces propagate via a com-
plicated network with both elastic and frictional interactions playing funda-
mental roles [25]. The network changes in time in a pseudo-plastic way [26],
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making the detailed description of the resulting torque a formidable problem
with a huge number of dependent degrees of freedom.

The above considerations suggest to considering F itself as a random quan-
tity and to implement a Brownian scheme for tackling the problem [27]. In the
Brownian motion the medium reaction to the particle motion is contained into
two terms: one term is of the deterministic type, and represents the medium
average viscosity; the second term is completely stochastic and just depends
on time. This simplified approach which yields a very effective description of
the diffusion of a particle in a liquid, is found to yield as well a simplified
but highly effective description of the non-equilibrium system under consid-
eration. In the present case the adoption of a Brownian force hypothesis is
supported from the observation that the average behavior of F as function of
the instantaneous plate velocity v behaves very smoothly and, worth noticing,
has a shape similar to that found in the steady sliding regime in some dry
solid-on-solid friction experiments [28]. In the present case it is well fitted
with the function (see e.g. Fig. 5 in Ref. [27]):

F̄ (v) = F0 + γ(v − 2v0 ln(1 + v/v0)), (2)

where F0 is the average static friction torque, v0 corresponds to the minimum
in the average torque and γ is the velocity damping coefficient. The fact
that similar functions serve for both systems constitutes a confirmation that
similar macroscopic general behaviors can be shared by systems that are quite
different microscopically.

Thus the force is split F into two additive terms F = F̄ (θ̇)+Ff : In the first
term the dependence on velocity is confined to a deterministic law, analogous
to the viscous reaction of a fluid, while the second term is independent of the
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velocity and introduces the fluctuating part. The properties of Ff being un-
known, we proceed to investigate its power spectrum, which bears information
on the correlation properties. Since the motion of the plate is intermittent, it
seems more natural to choose the angular position θ instead of the time as
parameter, in order to obtain a description as simple as possible. The power
spectrum of the fluctuating part is shown in Fig. 4 and its shape indicates
that the random force is not a white noise, but is correlated. This can be in-
terpreted as a direct consequence of the disordered structure of the force chain
network [29, 30] present in the granular medium: As the disk slips by a small
angle δθ, the friction torque changes by a random amount δFf which repre-
sents a fraction of the total torque. This is because for small displacement
the rearrangement in the granular structure is limited. On the other hand,
under subsequent, or large, slips, the rearrangement of the structure will be
more complete, and the fluctuations, increasing linearly for small angles, will
decay according to some cut-off function g: 〈(F (0) − F (θ))2〉 ∝ θ · g(θ/θ0),
with limθ→0 g = 1 and limθ→∞ g = 0 In order to decide which kind of func-
tion best fits the experimental spectrum a more detailed analysis would be
necessary. In any case the above facts can be expressed mathematically by
assuming that the force itself performs a bounded random walk

dFf

dθ
= η(θ)− f(Ff ) , (3)

where f(Ff ) is some bounding function: f(Ff ) > 0. The simplest choice is a
linear force: f(Ff ) = aFf (Ff > 0). Thus a is the inverse correlation length
and η is an uncorrelated stochastic process with variance D, that is

〈η(θ)η(θ′)〉 = Dδ(θ − θ′).

By choosing a Gaussian distribution for η, the above equation describes
an Ornstein and Uhlenbeck process with Lorentzian power spectrum, which
seems to approximate quite well the experimental one:

S(k) =

〈∣∣∣∣
∫
dθFf (θ) exp(−iθk)

∣∣∣∣
2
〉

=
2D

a2 + k2
. (4)

4 Parameter Dependence of the Distribution Peak

Despite some crude approximations, the model described in the previous sec-
tion seems successful in capturing the main statistical features of the stick-slip
motion observed in the experiments and in reproducing the broad distribution
characterizing the slip events [27].

Figure 3 displays the distributions of the event duration for different driv-
ing velocities and the corresponding distributions as obtained by the model.
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Fig. 4. The power spectrum of the fluctuating part of the force Ff (θ)

It is worth noticing that the latter are not curve fit to the distributions. They
are probability distributions of the data generated by the model, (1), whose
parameters I, k, ω are fixed by the experiment, the parameters F0, γ, v0 are
derived from the fit of the friction law (2), and a is the torque correlation
length determined experimentally (Fig. 4).

One notable feature of the model is that it allows us to clarify the peak
displayed by these and by the size distributions [27] and which is not present
in the case of the Barkhausen noise. In fact by dropping out the fluctuating

Fig. 5. The probability distributions for the slip duration as obtained by the
stochastic model for different values of the driving velocity
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part of the force Ff (θ) in

Iθ̈ = k(ωt− θ) − F̄ (θ̇) − Ff (θ) , (5)

an almost periodic motion of the plate is obtained, the probability distribution
of event duration becoming delta function whose location is proportional to√

(I/k). On the other hand if the inertial term is neglected the motion is
over-damped and power laws are obtained, reproducing the leftmost part of
the observed distributions and thus showing that the presence of the peak
is related to the inertia of the plate. Actually, the peak is enhanced also
by the instability in the friction law. Figure 5 shows the behavior of the
duration distribution p(T ) from the simulation of the model with different
driving velocities. As expected from the experiment the dependence of the
peak position on the driving velocity is very weak. On the contrary, it changes
according with the square root of the inverse spring constant (Fig. 6). One
task of forthcoming experiments will be to change the inertia of the plate to
check how peak location varies4.

5 Analogies with Different Systems

As stated in the introduction the proposed approach not only allows to explain
some of the observed behavior, but strengthens the possibility of finding com-
mon description for phenomena observed in unrelated fields, e.g. as unrelated
as the granular from magnetic materials. In fact an equation of motion sim-
ilar to (5) describes a different ”crackling noise”, the Barkhausen noise. The
Barkhausen noise is the (magnetic) noise emitted by ferromagnets during an
hysteresis cycle due to the magnetic domain motion. As the external magnetic
field changes, domains with the direction of internal field in agreement with
the external fields grow, while opposite domain shrink. Fluctuations in the
domain wall motion generate the Barkhausen noise which, although known
since almost a century [14], received a quantitative description only in the
last decades [15] by means of a stochastic equation similar to (5). In fact the
generic cartesian coordinate x for the motion of the domain wall position can
be described by [15]:

Γ
dx

dt
= Ha +Hd +Hp . (6)

Here the left hand side is the damping, Ha is the applied external field, Hd

is the demagnetizing field of the material and Hp(x) describes the pinning
of the domain walls by defects at random positions. If the inertial term is
included, this equation generalizes to the same form as (5), with a correspon-
dence among physical quantities given in Table 1:
4 Actually the value of I which yields results closer to the experimental ones is

larger than the true value of about 50%. We believe this to be due to some layers
of grains moving together with the plate during its motion and corresponding to
three or four layers of grains.
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Granular F̄ (θ̇) ωt −kθ Ff (θ)
Ferromagnet Γ ẋ Ha Hd Hp(x)

Table 1. Correspondence between the sheared granular and the Barkhausen noise
stochastic equations

A noticeable point is that even in the case of the Barkhausen noise the
fluctuating term Hp undergoes a bounded random walk, analogous to (3).

Fig. 6. The peak position in the probability distributions of the slip duration at
different driving velocity and spring constant

6 Summary and Perspectives

In this work we have addressed the statistical behavior of some quantities
characterizing the stick-slip regime of a granular medium subject to shear
stress in a Couette cell, showing that experimental data can be interpreted
to a good quantitative extent in terms of a stochastic equation of motion.
The noise term in the equation represents the fluctuating part of the force,
which undergoes a bounded Brownian motion and is therefore exponentially
correlated. The motion is damped by a viscous term which only depends
on the instantaneous velocity of the plate applying the shearing. Of course in
perspective it is desirable that these terms will be derived from first principles,
starting from the microscopic structure of the medium.

The stochastic equation desribing the granular system is of the same type
describing the Barkhausen noise in ferromagnetic materials. Moreover, the
similarities of some statistical properties of the investigated granular system
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[24] with those of some solid-on-solid [28, 31], and of PET filaments systems
[32] strongly suggest that a wide class of different phenomena can be described
by the same type of stochastic equation.
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2 Dipartimento di Fisica, Università “La Sapienza”, P.le A. Moro 2, 00185 Roma,
Italy

Summary. We perform an analysis of the stick-slip properties of a granular bed.
The granulate is confined to a circular channel and sheared by an overhead top
plate with a stick-slip motion. We attempt to decompose the frictional torque Ff

subtended by the medium into its independent components by graphical and phe-
nomenological analyses. We find clear functional dependence on the position, ve-
locity and acceleration of the plate and the residual torque signal shows some de-
pendence on the properties of the stick events. This article is related to that of
Baldassarri et al. in these proceedings.

1 Introduction

In recent times, the study of granular materials (GM) has become something
of a paradigm for complex systems in general [1]. Even though GMs consti-
tute one of the most widely used materials in industrial processes, and also
to a large extent in daily life, our ability to understand and predict their be-
haviour remains essentially at a phenomenological level [2]. Fluctuations are
at the very core of GM behaviour, and it is only recently that the scientific
community has come to appreciate the importance of these fluctuations [3].

GMs exhibit a very diverse behaviour, constituting solids, liquids or even
gases under different conditions, or even a mixture of two or all three simulta-
neously [4]. To make the problem even more intractable, GMs are macroscopic
particles which interact frictionally and/or collisionally, dissipating energy in
either case through a highly non-linear interaction [5, 6]. Therefore, to main-
tain a steady dynamic state, it is necessary to apply energy to the system
which, of course, pushes the system out of equilibrium, resulting in an energy
gradient within the granulate and hence, to the extent that a temperature can
be defined [7–9], a temperature gradient.

Furthermore, granular materials can exist in a glassy state, in which the
particles do not condense to a crystalline solid state, but instead follow a
dynamic which progressively slows due to frustration between particles [10–
12]. The transition to this state has been extensively studied for colloids, gels
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and spin glasses and, for GM, has become known as the jamming or rigidity
transition [13–15]. The glassy state of GMs is generally accentuated by the
presence of disorder, for example heterogeneous particles, which inhibit the
emergence of the crystalline state.

Previous work on the imaging of GMs with photoelastic grains [16, 17]
or confocal microscopy [18] has clearly demonstrated that GMs are highly
disordered systems, where stress is carried along highly directional chains of
grains [16, 19]. This is true in the static and slowly sheared states in which fric-
tional interactions between grains are the dominant effect [20](p. 78). On the
other hand, our research in this article on the transition to the fluid state of
sheared GMs, where collisional contacts become the dominant interaction [21].
In particular, we wish to identify which state parameters of the system con-
tribute to friction, and where possible to identify the functional dependence.
Common sense dictates that the shear velocity should play an important
role [5, 6, 22] though current research is not yet conclusive. Jaeger et al. [23]
have also proposed a microscopic model which generates static and dynamic
friction, with an increasing friction for high shear velocity.

In previous work, we have identified a solid/fluid transition for the sys-
tem under study here [24]; below the transition, the GM exhibits a constant
resistance to shear which, above the transition, increases rapidly. A similar
experimental setup has also been utilised to demonstrate that the system ex-
hibits criticality, though not universally [25, 26] and found some evidence for
a second-order rigidity phase transition in the system [27].

More recently, using data from the present experiments, Baldassarri et
al. [3, 28] have used experimental results as parameters for a simple macro-
scopic dynamic model which broadly reproduces the characteristics of the
motion observed. The model essentially consists of a Langevin equation in
which the frictional force is the sum of a deterministic function of the velocity
and a random fluctuating component (1) which follows a confined random
walk. Interestingly, the results indicate that there is an almost complete anal-
ogy between stick-slip granular shear and magnetic domain wall motion under
an applied magnetic field. The comparison between experiment and model,
however, is not perfect: the power-spectrum experimentally obtained, for ex-
ample, is not a perfect Lorentzian, and the event distributions obtained often
differ from the model values by up to a factor of 10.

In this preliminary study, at the risk of complicating the model with po-
tentially many other parameters, we wish to improve this analysis to see if
other dependencies can be identified, in particular, on the angular acceleration
θ̈ and a non-fluctuating component dependent on the angular displacement θ.

Iθ̈ = κ(ωDt− θ) − Ff (θ, θ̇, θ̈, ...)

Ff = Fv(θ̇) + Fr(θ) (1)
dFr

dθ
= η(θ) − aFr
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2 Experiments

The experiments discussed in this article were carried out on 2 mm glass
beads in an opaque circular Couette channel of mean radius 140 mm and
width 80 mm (see figure 1). The depth of beads in the channel is typically
80 mm and the medium is sheared from overhead by an annular aluminium top
plate weighing 1 kg which has a layer of beads glued to its lower surface. The
layer of beads does not extend the full width of the channel, but leaves a gap
of approximately 5 mm on either side to avoid individual grains jamming the
system at the boundary. A photograph of the apparatus is shown elsewhere
in these proceedings [3].

The top plate is driven by a variable speed motor via a gearing mechanism
and a torsion spring. The gearing mechanism and variable speed allows us to
investigate for driving speed 3 × 10−4 < ωD < 0.3 rad/s while the torsion
spring allows us to amplify the resulting fluctuations.

The experimental system is similar to that presented in [25], though here
the dilation mechanism is much improved and allows free expansion of the
granular material. Additionally, spatial and temporal resolution are improved
by a factor of approximately 10.

Though we are unable to investigate the interior of the granulate, we as-
sume that the lower layers of GM will crystallise while the upper layers remain
more heterogeneous due to the intermittent shearing. Therefore, before each

Fig. 1. The experimental apparatus. The annular top plate is forced to rotate over
a granular medium in a stick-slip fashion.



104 Fergal Dalton et al.

series of experiments, the system is run for a long time (appx. 1000 revs) in
order to approach a steady state. Experiments were conducted at ambient
temperature (18 < T < 23oC) and relative humidity (R<50%).

The experiment is constructed in such a way as to facilitate the accurate
measurement of the position of the annular top plate, and the torque acting
thereon. This is achieved by means of an angular encoder with a resolution of
3.5× 10−5 rad on both sides of the torsion spring, sampled at high frequency
(∼ 10 kHz). The difference between the two signals yields the instantaneous
torque, while the differentiation of the signal from the top plate yields the
angular velocity and acceleration.

The graphs presented in this article are chosen to depict what is, at this
time, a preliminary analysis involving a subset of the entire ensemble of ex-
periments. While the results give a “feeling” for the system’s behaviour, we
must state that they are not averaged over the ensemble though this will nat-
urally be the ultimate objective of these analyses. Nevertheless, the majority
of experiments yield qualitatively similar results in which the parameters and
quality of the various curvefits can change. The driving velocity ωD for the
data presented here, unless specified otherwise, is below the critical driving
velocity at which the system fluidises.

3 Results

To give an idea of the behaviour observed, in figure 2 we show the motion
of a high and a low driving velocity experiment. At high driving velocity,
ωD > 0.1 rad/s, the system exhibits a continuous fluctuating motion, which is
intermittently broken by stick events. On the contrary, the stick-slip phase is,
on average, still, but intermittently broken by slip events. The driving velocity
is shown in both cases by the dashed lines and so, it is evident that in the
stick-slip phase, the fluctuations in velocity greatly outweigh the mean ωD,
during some events by a factor of 20.

In figure 3 the typical distribution of the friction for low driving velocity
is shown. In previous work, we have attempted to provide a ”best-fit” to
the distribution, and concluded that either a Lognormal (2), Gumbel (3) or
Gamma (4) distribution will adequately describe the curve [29]. At higher
driving velocity however, the distribution changes to a symmetric Gaussian.
Similar results have also been obtained for solid-on-solid friction [30] and
polymer films [31]. We have argued [24] that this feature could be used to infer
the presence of force chains in the stick-slip state, and a fluidised stratum of
3 or 4 particle layers at high driving [24].

p(T ) =
1√

2π(T − T0)σ
exp

(
−

ln2 T−T0
T̄−T0

2σ2

)
(2)
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Fig. 2. The high velocity regime, characterised by steady sliding (black) is con-
trasted by the low velocity regime, with stick-slip events (red) of the experiment.
The relevant driving velocities are shown as dashed lines.

p(T ) =
1
α

[
exp
(
−T − T0

a
−A exp

T − T0

a

)]B

(3)

p(T ) =
(
T − T0

a

)α

exp
(
−T − T0

a

)
(4)

In figure 4 we demonstrate the correlation between the instantaneous fric-
tional torque Ff (eqs. (1)), and the instantaneous velocity, which is well fitted
by a curve of the form (5). This curve, and others in this article, are relatively
insensitive to changes in the driving velocity ωD as long as it remains below
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Fig. 3. The distribution of torque in the experiment for both low (left) and high
(right) ωD.
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Fig. 4. The correlation between the frictional torque Ff and the instantaneous
shear velocity θ̇. The curvefits are to (5) (red) and a simple quadratic increase
(green) above the minimum.

the fluidisation threshold, this example being driven at ωD = 0.01 rad/s. As
ωD increases this curve loses definition at low values of θ̇, progressively de-
caying until fluidisation (even above fluidisation some vestiges of the original
form may still be seen, for example the rising tail, though we do not present
any similar analysis of these curves here). The friction is a linearly decreasing
function of velocity at low velocity, leading to a static and dynamic friction;
a minimum in the friction indicates that there is a preferred angular velocity
ω0 where dissipation is minimised:

Fv(θ̇) = F0 + γ[θ̇ − 2ω0 ln(1 + θ̇/ω0)] (5)

where γ is a high velocity damping coefficient. Additionally, we observe that
above the minimum, the friction grows approximately as θ̇α with α 	 2,
suggesting fluid friction.

When we subtract this velocity dependence from Ff , we can proceed to
observe the residual dependence on other parameters. In figure 5, we plot
this residual torque as a function of angular acceleration θ̈. There is a clear
functional dependence which for many experiments can be fitted by (6), while
others show two linear segments with the same general trend.

Fa(θ̈) = A(e−aθ̈ − 1) (6)

The existence of this curve suggests that there is an additional inertia IGM

due to the mobilisation of grains, though it is not intuitive why an additional
inertia should have the form observed. Baldassarri et al [3, 28] have shown
that the additional inertia corresponds to the mobilisation of approximately
three or four layers of grains.
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Fig. 5. The correlation between the residual frictional torque Ff − Fv(θ̇) and the
instantaneous shear acceleration θ̈. The curvefit is of the form (6). The inset shows
the average dependence of the residual torque on the plate’s angular displacement
within each event: Fp(θ − θi) where θi is the angular position at the start of event i
(see text).

Nonetheless, we can still plot the remaining residual frictional torque: (Ff−
Fv(θ̇) − Fa(θ̈)) which, according to [3] we would expect to be a function of
angular displacement, fluctuating as a random walker in space, encoding the
noise characteristics of the system. We show this plot on the left of figure 6
together with the velocity of the system. It is clear that this residual friction
is not actually such a random walk, but instead decreases during events as
the plate spins and the spring winds down.

However, our analysis may still proceed. We wish to obtain only the fluc-
tuating component of the friction and must therefore eliminate the decrease
during each event, due to the unwinding of the spring, which may be consid-
ered as a deterministic component of the frictional torque depending on the
displacement of the plate relative to the start of the event (shown in the inset
to figure 5). In the same way that we have subtracted the components Fv(θ̇)
(shown in fig. 4) and Fa(θ̈) (fig. 5), we can also subtract this dependence on
θ−θi (inset to fig. 5), which is given by Fp(θ−θi) = −κ(θ−θi). The resultant
signal is shown on the right of figure 6 together with the velocity of the top
plate as a function of the angular displacement θ. This signal now seems to
fluctuate randomly though more energetically for the largest events. We plot,
therefore, the standard deviation of this noise signal for each event as a func-
tion of the event size and the event maximum velocity. The resulting curves,
shown in figure 7 are generally a power-law function of the maximum velocity
or size, before increasing exponentially above the transition velocity of ∼0.1
rad/s, corresponding to the point at which the grains fluidise.
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Fig. 6. The left graph shows the residual torque Ff − Fv(θ̇) − Fa(θ̈) (red) and the
plate velocity (black). Events are clearly identifiable in the velocity signal. The right
graph shows the residual torque Ff −Fv(θ̇)−Fa(θ̈)−Fp(θ− θi) (where Fp(θ− θi) is
the drift due to the macroscopic motion of the torsion spring), and the plate velocity.

4 Discussion

In this preliminary study, we have extended the analysis performed by Bal-
dassarri et al. [3, 28], and have found that the frictional response of a granular
medium may be expressed, in addition to the deterministic and fluctuating
components already revealed, as deterministic functions of the system accel-
eration and displacement.

Therefore, we conclude that the original model (1), while broadly captur-
ing the motion, is unable to accurately reproduce all the details due to its
deliberate simplicity. The present analysis, though complicating the model,
gives the possibility of refining the model and may form the basis for further
speculation.

Although below a certain size, the noise characteristics are related to the
size of the event in a scale-free manner, above this critical size, the noise signal
behaves differently. It seems that this transition may mark the transition from
solid to fluid within the granulate and so any future developments to the model
must necessarily include a second-phase in which the response of the medium
is qualitatively different.

Certainly, the analysis does not finish here. We cannot exclude the pos-
sibility that there may be other state variables which govern the frictional
response. Indeed, the overhead pressure, and even ambient conditions will
influence the outcome of an experiment, and there will almost certainly be
memory effects which will vastly increase the search-space in which correla-
tions may be found.

In future work, we wish to quantitatively improve the reliability of this
analysis using “independent component analysis” in which any arbitrary set
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of signals are compared and an orthogonal set of relations determined. Our
current understanding indicates that this method will enable the identification
of both cross-terms (involving, for example, both velocity and acceleration)
and non-linear terms. However, it is yet to be ascertained if this type of
analysis is applicable to the data at hand.
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Fig. 7. Fluctuations in the adjusted residual torque as a function of the event size.
Above a certain size, the fluctuations change in properties. The inset shows the same
data against the event maximum velocity. It appears that the fluidisation transition
causes the alteration to the noise properties.
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18. Jasna Brujić, Sam F. Edwards, Dmitri V. Grinev, Ian Hopkinson, Djordje Brujić,
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Summary. Vibratory conveyors are well established in routine industrial produc-
tion for controlled transport of bulk solids. Because of the complicated interactions
between the vibrating trough and the particles both glide and throw movements
frequently appear within one oscillation cycle. Apart from the amplitude and fre-
quency, the form of the trajectory of the conveyor’s motion also exerts an influence.
The goal of our project is a systematic investigation of the dependence of the trans-
port behavior on the three principle oscillation forms: linear, circular and elliptic.
For circular oscillations of the shaking trough a non-monotonous dependence of the
transport velocity on the normalized acceleration is observed. Two maxima are sep-
arated by a regime, where the granular flow is much slower and, in a certain driving
range, even reverses its direction. In addition, standing waves oscillating at half the
forcing frequency are observed within a certain range of the driving acceleration.
The dominant wavelength of the pattern is measured for various forcing frequencies
at constant amplitude. These waves are not stationary, but drift with a velocity
equal to the transport velocity of the granular material, determined by means of a
tracer particle. Finally, the fluidization of a monolayer of glass beads is studied. At
peak forcing accelerations between 1.1 g and 1.5 g a solid-like and a gas-like domain
coexist. It is found that the number density in the solid phase is several times that
in the gas, while its granular temperature is orders of magnitude lower.

1 Introduction

Vibratory conveyors are highly used for discharging, conveying, feeding, dos-
ing and distributing bulk materials in many branches of industry, for ex-
ample in the chemical and synthetic materials industries, food processing
(Fig. 1(a)), sand, gravel, and stone quarries, for small-parts assembly me-
chanics (Fig. 1(b)), the paper-making industry, sugar or oil refineries, and
foundries [1–3]. In addition to transport, vibration can be utilized to screen,
separate, compact or loosen product. Open troughs are used for conveying
bulk materials, closed tubes for dust-sealed goods, and work piece-specific
rails for conveying oriented parts.
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(a) (b)

Fig. 1. (a) Linear
vibratory conveyors
in the food indus-
try, (b) Vibratory
bowl feeder in an
automated assem-
bly chain at SUSPA
company, Sulzbach-
Rosenberg

Some of the main advantages of vibratory conveyors are their simple con-
struction and their suitability to handle hot and abrasive materials. In ad-
dition, they are readily used in the food industry, since they can easily be
kept complying to hygienic standards by using stainless steel troughs. Some
disadvantages of vibratory conveyors are their noisy operation, the induced
vibrations on their surroundings and their limited transport distance. Further-
more, the granular material may be damaged when it is subjected to extreme
accelerations normal to the trough.

Important properties to be considered regarding the granular material (or
bulk solid for engineers) are: particle size distribution and shape, friction be-
tween particles and trough and inter-particle friction, modulus of elasticity of
the particles and/or the bulk, cohesion, layer thickness, and the permeability
of air.

Considering the many parameters involved, the performance of a vibratory
conveyor is difficult to predict theoretically. Obvious design parameters are:
vibration mode (linear with or without vibration angle α, circular, elliptic),
amplitude A and frequency f of the oscillations, combined as dimensionless
throw number Γ = A sin(α)(2πf)2/g, inclination or declination of the con-
veyor, smoothness of the trough surface, modulus of elasticity of the trough’s
inner surface, which can be coated with rubber, plastic, etc., and possible
electrostatic charges.

2 Conveying Principles

Three different principles of conveying have to be distinguished [3, 4, 7] (see
Fig. 2):

• Sliding: Here the deck is moved by a crankshaft mechanism only hori-
zontally with asymmetric forward and backward motions. The material
remains always in contact with the trough surface and is transported for-
ward relative to the deck by a stick-slip drag.

• Throwing: If the vertical component of the acceleration exceeds gravity, the
material loses contact during part of the conveying cycle and is repeatedly
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forced to perform ballistic flights. Complicated sequences of a rest phase,
a positive (or negative) sliding phase, and a flight phase have to be con-
sidered. The net transport in the forward (or even backward) direction
depends sensitively on the coefficient of friction between the particles and
the trough and on the coefficient of restitution for the collision with the
deck.

• Ratcheting: Motivated by advances in the investigations of fluctuation-
driven ratchets a new transport mechanism has been proposed recently
[5, 6]: a horizontal transport of granular particles can be achieved in a
purely vertically vibrated system, if the symmetry is broken, instead of
the direction of the vibration mode, by an asymmetric periodic sawtooth-
shaped profile of the base.

(a)

(b)

(c)

Fig. 2. Three different conveying principles: (a) ‘Sliding’ by asymmetric horizontal
back-and-forth movements, (b) ‘Throwing’ by linear vibration with throw number
Γ > 1, both images taken from [4]. (c) ‘Ratcheting’ by vertical vibration on a
sawtooth-shaped profile of the base. From [5, 6]

3 Granular Transport

Since the transport phenomena on vibratory conveyors involve the nonlinear
interaction of many-particle systems with complex behavior, the investigation
of their dynamical properties has become a challenging subject to physicists,
too. In the past, most studies dealing with vibrated granular media were based
on purely vertical or purely horizontal vibration. Only recently a few experi-
mental explorations of the dynamics of granular beds subject to simultaneous
horizontal and vertical vibration have been reported [3, 8–14]. The observed
phenomena include the spontaneous formation of a static heap, convective
flow, reversal of transport, and self-organized spatiotemporal patterns like
granular surface waves.
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The most important questions currently under investigation are:

• How does the granular transport velocity depend on (i) external param-
eters of the drive like amplitude and frequency of the oscillation, the vi-
bration mode, or the inclination of the trough, and (ii) internal bulk pa-
rameters like coefficient of restitution, friction coefficients, and the filling
height?

• Is it possible to optimize the transport effectivity by suitable modifications
of the surface of the trough implying ratchet like profiles?

• What kind of self-organized structures can be expected? Are there clearly
characterized instabilities? Which physical mechanism underlie these struc-
tures? How is the granular transport effected?

• Are there segregation effects in bidisperse or polydisperse systems? What
are the analogies to vertical vibration?

• Can these results eventually lead to optimized industrial devices like con-
veyor systems, metering devices, sieves, mixers, dryers, or coolers?

4 Experimental Setup

For this purpose, a prototype annular conveyor system has been constructed
(Fig. 3) for systematic studies of the transport properties for different oscil-
lation modes, i.e. linear, elliptical, and circular (see Fig. 4) for a long running

Fig. 3. Annular vibratory con-
veyor with a toroidal trough of
radius R = 22.5 cm and width w
= 5 cm, suspended on adjustable
columns via elastic bands: (1)
Torus-shaped vibration channel,
(2) Adjustable support, (3) Elas-
tic band, (4) Vibration mod-
ule with unbalanced masses, (5)
Electric motor with integrated
frequency inverter
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5 cm

(a)

(b)
Fig. 4. (a) Driving module with
four unbalanced masses, (b) Side
views of a driving unit with four
rotating unbalanced masses, for
three principal modes of oscilla-
tion: linear (ϕ = 0), elliptical (ϕ =
π
4
), and circular (ϕ = π

2
)

time, without disturbing boundary conditions [10–12, 14]. In principle, this
conveyor can be excited in all six degrees of freedom individually, or by a
combination of two of them. For the first experiments, a vibration mode has
been chosen consisting of a torsional vibration φ(t) = A/R cos(2πft) around
the symmetry axis of the apparatus, superposed with a vertical oscillation
y(t) = A cos(2πft + ϕ) where ϕ is the fixed phase shift between the two os-
cillations. If, for example, this phase shift ϕ is chosen to be π/2, then each
point on the trough traces a circular path in a vertical plane tangent to the
trough at that point. In short, the support agitates the granules via a vertical
circular vibration.

For being able to adjust different vibration modes special driving units
have been developed, equipped with four rotating unbalanced masses, as com-
binations of two unbalanced-mass linear vibrators oriented perpendicularly to
each other [10–12].

Characteristic of the unbalanced-mass agitated system is the frequency
dependence of the vibration amplitude:

A(f) = At
f2√

(f2
0 − f2)2 + (2ζf0f)2

. (1)

The resonance frequency f0 = 1
2π

√
keff

M0+N ·mu
can be limited to a small value

(through appropriate choice of spring constant keff), so that in the over critical
range, f > 3f0, an almost constant terminal amplitude At = ru

N/2·mu
M0+N ·mu
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Fig. 5. Amplitude vs. frequency A(f) for different unbalanced mass mu. The inset
shows the dependence of the resonance frequency f0 and the terminal amplitude At

on the mass mu of the N = 32 unbalanced masses (net mass of the device M0 =
24.3 kg, eccentricity of the unbalanced masses ru = 19 mm, effective spring constant
keff = 177 N/cm

arises which can be adjusted for fixed eccentricity ru by the out of balance
mass mu. The frequency response (see Fig. 5) was measured experimentally
before every measurement by determination of the position of an affixed LED
on the vibrating device recorded with a CCD camera. The vibration amplitude
is found by aligning a circular path with radius A(f) to the image data. For
excitation frequency f > 15 Hz, the vibration amplitude is nearly constant
and therefore the dimensionless acceleration, i.e. the machine number K =
A(f) · 4π2f2/g is approximately proportional to f2. From the measured data,
the damping constant ζ can be determined to be 0.08 ± 0.01

An important parameter of the bulk solid that should be chosen carefully
for obtaining reproducible results is the layer height. For too thin layers the
particles will dilate mutually and start to perform irregular motions across the
trough bottom. In practice, as a rule of thumb, the layer of material should at
least be 10 particles high. Under these conditions, the bulk solid moves more
or less like a solid block, and the transport velocity is not very sensitive to
the exact height.

During the transport experiments, the average flow velocity is determined
by tracking a colored tracer particle that is carried along with the bulk. This is
done automatically with a PC based image processing system, which detects
the passage of the tracer through a line perpendicular to the trough and stores
each passage time on hard disk.
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5 Results

5.1 Flow Reversal

The result for such an experiment is shown in Fig. 6. Below a critical value
Γc ≈ 0.45 the grains follow the agitation of the tray without being transported.
The onset of particle movements is hindered by frictional forces between grains
and the substrate. By increasing the acceleration above this threshold a net
granular flow with constant velocity is observed. For circular vibration of the
trough, surprisingly, the transport velocity is not a monotonous function of
Γ , but has two maxima at Γ = 1.2 and Γ = 4.2. In between, the granular
flow is slower and even reverses its direction in the regime 2.6 < Γ < 3.8,
whereas an individual glass bead is propagated in the same direction for all
accelerations.

The critical Γ values, at which the transport behavior changes qual-
itatively, are independent of the oscillation amplitude. In the frequency-
amplitude parameter space (Fig. 7) the threshold values lie on f−2 hyperbola
of constant acceleration (‘isoepitachs’). However, for Γ > 4, i.e. beyond the
second reversal of flow direction, this scaling behavior is not observed any-
more. Depending on the vibration amplitude and the filling height, the third
reversal occurs in the range 5 < Γ < 7 [11].

5.2 Linear Vibration Mode

Complementary studies [9] applying linear vibrations have shown, that the
flow reversal is a special property of the circular vibration. For linear vibra-
tions, also a non-monotonous dependence of the transport velocity is seen
(Fig. 8), with a dip at Γ ≈ 5, but no reversal of the flow. Note that the max-
imum transport velocity in this case arrives at about 90% of the oscillation
velocity Aω, while in the circular case only about 50% can be attained.

5.3 Sand Bag Test

Worth mentioning is the so-called ‘sand bag test’ [7] routinely performed by
the manufacturers of vibratory conveyors. Since an individual grain, such as a
single glass bead, dropped onto the substrate will rebound with a high coeffi-
cient of restitution and therefore gives an unrealistic transport characteristic,
a better approach for modelling the bulk transport is achieved by use of a
small fabric bag, filled with the same kind of beads. The strikingly different
collective behavior arises from the large number of rapid inelastic collisions of
neighboring grains. However, it takes some experience to find a suitable single
object for producing reliable data for comparison with an effective one-particle
model.
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Transport

Fig. 6. Normalized transport velocity v∗ of a granular flow (≈ 300 000 glass beads
with 1 mm diameter, see inset) on the vibratory conveyor with circular vibration,
compared with the mean velocity of one single glass bead

5.4 Theoretical Description

Such a theoretical approach is based on the following initial assumptions [3,
15, 16]:

• The granular material behaves like a solid body and can be represented
by a point mass.

• When the layer of granular material hits the trough after a flight phase a
fully non-elastic collision is assumed.

• Rotations of the particle and interactions with the side walls of the trough
are neglected.

• The kinetic and static coefficients of friction are set equal or the distinction
between them is neglected.

• The air resistance during the flight phase is negligible.

According to these assumptions, Sloot and Kruyt [3] obtained fairly good
agreement between theory and experiment for slide conveyors but observed
large deviations for linear throw conveyors with vibration angle α. Hongler
et al. [17] described the dynamics of a vibratory feeder by a set of coupled,
nonlinear and strongly dissipative mappings and identified the transport be-
havior to be determined by periodic and chaotic solutions. First simulations
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Fig. 7. Phase diagram of the transport behavior at clockwise circular forcing. The
alternating arrows correspond to the transport direction of the bulk solid

for conveyors with variable vibration mode (linear, circular, and elliptic) by
Landwehr, Lange, and Walzel [18, 19] applied various, more complex collision
models taking also a finite coefficient of restitution into account. More re-
cently, an effective single-particle model by El hor and Linz [13, 15, 16] that
includes only dynamic friction forces and collisions with complete dissipation
of the vertical velocity component in order to understand the theoretical basics
of the transport process led to rather good agreement with the experimental
results shown in Figs. 6 and 8.

5.5 Onset of Particle Motion

Despite the complex interactions between the particles and the vibrating
trough during the transport process, which up to now can only be handled via
numerical simulations, it is interesting that the onset of motion for a single
block subject to static friction can be derived analytically.

A linear harmonic motion of the conveyor with amplitude A and vibration
angle α (see inset of Fig. 9(a)) can be expressed as x(t) = A cos(α) cos(2πft)
for its horizontal and y(t) = A sin(α) cos(2πft) for the vertical component,
respectively. Due to the periodic acceleration a particle with mass m lying
on the trough experiences a horizontal force Fh(t) = mẍ(t) and a modulated
effective weight N(t) = m(g + ÿ(t)). The mass is hindered from sliding if the
resulting frictional force F (t) = µsN(t) is larger than |Fh(t)|, where µs is the
static coefficient of friction. At the onset of particle motion both forces are
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61°
46°
31°
21°
11°

a

a

Fig. 8. Normalized transport velocity v∗ of a granular flow for linear vibration at
different vibration angles α

equal, which leads to the balance equation

|mẍ(t)| = µsm(g + ÿ(t)) . (2)

This condition is met first at the highest point of the conveyor’s trajectory
where the horizontal acceleration is maximal while the friction force is min-
imal, yielding a critical throw number Γonset for which the particle starts to
move:

Γonset =
µs tan(α)

1 + µs tan(α)
=
[
1 +

1
µs tan(α)

]−1

. (3)

Figure 9(a) shows the monotonous but nonlinear dependence of Γonset as a
function of both the vibration angle α and the static friction coefficient µs.

A similar calculation for the circular motion of the conveyor, where both
vibration amplitudes are set equal at a fixed phase shift ϕ = π/2, i.e. x(t) =
A cos(2πft) and y(t) = A cos(2πft+ π/2), leads to the expression

Γonset =
µs√

1 + µ2
s

(4)

for the slipping threshold. A comparison of both vibration modes, linear and
circular, is made in Fig. 9(b), which shows that it is easier to overcome static
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�

(a) (b)

Fig. 9. (a) Critical throw number Γonset for the onset of particle motion on a
linearly vibrating conveyor at various vibration angles α. (b) Comparison of the
critical throw number Γonset for the onset of particle motion for the circular and the
(α = 45◦) linear vibration modes

friction by linear vibrations of the trough. The circular mode seems to be
‘softer’, i.e. less effective to set particles in motion.

The most general, i.e. elliptic case is characterized by both parame-
ters, inclination angle α and phase shift ϕ, with the corresponding horizon-
tal and vertical orbital components x(t) = A cos(α) cos(2πft) and y(t) =
A sin(α) cos(2πft + ϕ), respectively, which yields the general solution of this
problem as

Γonset =
µs tan(α)√

1 + 2µs tan(α) cos(ϕ) + µ2
s tan2(α)

. (5)

These considerations may be seen as a starting point for the systematic
study of the transport behavior for all parameters of a vibratory conveyor.

6 Surface Waves

If Γ exceeds 1, the vertical component of the circular acceleration will cause
the grains to detach from the bulk followed by a flight on a ballistic parabola.
This results in a much less dense-packed, ‘fluidized’, state with highly mobile
constituents. In a certain driving range between Γ1 =

√
π2 + 1 ≈ 3.3 and Γ2 ≈

3.7 a locking of the time-of-flight between successive bounces and the period of
the circular vibration occurs [20]. The initially flat bed becomes destabilized,
and undulations of the granular surface occur in the range 2.4 < Γ < 4.5, see
Fig. 10 [21, 22]. High-speed CCD imaging showed that they oscillate with half
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5 cm5 cm

Fig. 10. Granular surface
waves (λ = 3.8 cm) inside
a vibratory conveyor with
vertical circular motion of
the annular trough oscillating
with Γ = 3.0 at a frequency
f = 22.4 Hz

the excitation frequency (‘f/2 waves’). In contrast to previous work [23–27]
done at purely vertical vibration the present waves are not stationary but are
transported along the annular trough. The drift velocity of the wave pattern
can be measured by applying a phase-locked imaging technique with fixed
time delay ∆t = 2T . This is done with a camera which is triggered by a
pick-up signal taken from the rotating unbalanced masses. From these images
space-time diagrams as shown in Fig. 11 can be constructed. The deviation
of the striped pattern from the vertical is taken as a measure for the wave
speed.

Fig. 11. Space-time diagrams
of amplitude h(ϕ, t) of surface
waves at maximum wave
amplitude every other forcing
cycle, for Γ = 2.84 (a) and
Γ = 4.22 (b). High amplitude
appears bright
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(a) (b)

�min

Fig. 12. (a) Scaled velocity v∗ of surface waves (•) and granular flow (�). (b) Circles
represent the measured wavelength λ plotted over the normalized acceleration Γ .
Throughout the measurement the driving amplitude was kept constant at 1.47 mm.
The solid line is the graph of the function λ = 1.3 cm + 20 cm ·Γ−1.9, the best fit to
the data

A comparison of the wave speed with the bulk velocity of the transported
particles shows that both velocities are identical (Fig. 12(a)). In particular,
a reversal of the wave velocity is also possible by adjusting the vibration
frequency alone. In the range Γ ≈ 4.5, when the granular flow is reversed a
second time, surface waves disappear. The granular surface becomes flat but
still oscillates at twice the vibration frequency. Above Γ ≈ 5.5 standing waves
are observed again but this time repeating their patterns after four shaker
periods (‘f/4 waves’). This scenario is reminiscent to the wave patterns found
by Bizon et al. [28] for vertical vibration of a laterally extended system.

A more detailed analysis of the Γ dependence of the wave length λ shows
an algebraic decay as

λ(Γ ) = λmin + Λ · Γα , (6)

see Fig. 12(b). For the minimum wavelength λmin we obtain a value of 1.3 ±
0.3 cm, which is approximately the depth of the granular layer. The values for
the other parameters are Λ = 20±4 cm and α = −1.9±0.3. This is consistent
with the results of Metcalf et al. [26] who examined the dependence of the
wavelength on the peak acceleration Γ at constant frequency.

For comparison with theoretical models it is necessary to determine the
dynamic surface profile h(ϕ, t) during the transport process with high spatial
and temporal resolution. This task has been solved by Pak and Behringer [24]
only for a small section of an annular trough. Our container consists of a 2 cm
wide annular channel with open top, 7 cm high Plexiglas walls, and a radius of
R = 22.5 cm giving a circumference of L0 = 141 cm (see Fig. 13). The granular
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Fig. 13. Experimental setup
with transparent trough and
conical mirror placed in the
center of the ring. The re-
flected image of the surface
profile is captured with a
high-speed CCD camera on
top of the mirror

system is observed from the top via a conical mirror placed in the center of the
ring, similar to Ref. [29]. Thus a side view of the whole channel is captured with
a single high-speed digital camera (resolution: 1280×1024 pixels at rates up to
500 images per second). Figure 14(a) shows an anamorphotic image reflected
from the conical mirror. The wavy granular surface is seen as a jagged ring
around the tip of the cone. For reconstructing the true shape of the profile
h(ϕ, t) digital image processing is performed which delivers 360◦ panoramic
side views of the granular profile in the channel as presented in Figs. 14(b)
and 15. The spatial resolution is sufficient for detecting single particles of
2 mm size. The channel is lit from outside through diffusive parchment paper
wrapped around the outer wall, hence particles appear dark in front of a bright
background.

(a) (b)

Fig. 14. (a) Anamorphotic image reflected from the conical mirror. (b) Section of
the reconstructed granular surface
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Fig. 15. Snapshots through the inner side wall of the channel covering 360◦ taken
at y(t) = 0 during the downwards motion of the container. Time increases from top
to bottom by 1.72 seconds (20 cycles) between consecutive snapshots. For clarity
all images are stretched in the vertical direction by a factor of four (f = 11.6 Hz,
Γ = 1.23)

7 Coexistence of Condensed and Fluidized Phases

Finally, a rather surprising pattern has been observed in a single layer of
monodisperse beads (see Fig. 15). At peak forcing accelerations between 1.1
g and 1.5 g a solid-like and a gas-like domain coexist. The solid fraction
Ls/L0 decreases with increasing acceleration and shows hysteresis (Fig. 16).
The sharp boundaries between the two regions travel around the channel
faster than the particles are transported. Complementary to our experimental
studies a molecular dynamics simulation is used to extract local granular
temperature and number density [30]. It is found that the number density in
the solid phase is several times that in the gas, while the granular temperature
is orders of magnitude lower. This system shows that equipartition of energy
can be violated by coexisting gaseous and solid domains, even though particle
motion is fully three-dimensional and not restricted by guiding partitions.
The rotation of the solid phase in the annular conveyor demonstrates that
the coexistence of solid and fluid regions is not caused by small potential
inhomogeneities in the forcing, particle container interactions or a tilt of the
apparatus.
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Fig. 16. Solid fraction Ls/L0

as a function of the peak
container acceleration Γ in
experiment (filled circles) and
simulation (open squares).
Arrows indicate how the sys-
tem evolves in the hysteresis
loops. The inset is a space-
time diagram of the granular
density. Solid regions appear
dark

8 Concluding Remarks

To summarize, the vibratory conveyor system presented here has demon-
strated its potential for the systematic investigation of the transport prop-
erties of granular materials in a systematic way. Considering the granular
pattern formation, the described annular apparatus is unrivaled for its capa-
bility to study solid-liquid transitions since, due to the permanent transport of
all particles at periodic boundary conditions, the influence of spatial inhomo-
geneities is excluded: (i) propagating patterns which persist along the whole
system cannot be caused by local inhomogeneities of the container and (ii)
one can wait until any transient due to coarsening processes of the developing
patterns have disappeared.

For industrial applications, the observed reversal effect is relevant as the
direction of a granular flow is selected through the frequency of the excitation
alone. One can employ such two-way conveyors for example in larger cascad-
ing transport systems as control elements to convey the material to different
processes as needed.

For a further understanding of the general behavior of granular material
on vibratory conveyors the next steps are (i) the development of a better
understanding of segregation phenomena in multidisperse systems, (ii) the in-
vestigation of clustering patterns in submonolayers, and (iii) the qualitative
modelling of the spatiotemporal surface structure. In particular, regarding the
travelling oscillon patterns, the model by Eggers and Riecke [31] for pure ver-
tical vibration seems to be a suitable starting point for generalization.
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Summary. We present recent results on two laboratory scale avalanches exper-
iments taking place both in the air and under-water. In both cases, a family of
solitary erosion/deposition waves are triggered. At higher inclination angles, we
show the existence of a linear long wavelength transverse instability followed by a
coarsening dynamics and finally, the onset of a fingering pattern. Both experiments
strongly differ by the spatial and time scales involved, nevertheless, the quantita-
tive agreement between the stability diagram, the wavelengths selection and the
avalanche morphology suggest a common erosion/deposition scenario. These exper-
iments are studied theoretically in the framework of the “partial fluidization” model
that was developed earlier to describe dense granular flows. This model identifies a
family of propagating solitary waves displaying a behavior similar to the experimen-
tal observation. A primary cause for the transverse instability is directly related to
the dependence of the solitary wave velocity on the granular mass trapped in the
avalanche, a results recovered experimentally.

1 Introduction

Avalanching processes leading to catastrophic transport of various natural ma-
terials do not only occur in the air as we know of snow avalanches, mud flows
and their catastrophic human and economical toll. Such events frequently hap-
pen below the see level as they take many forms from turbidity currents to
thick sediment waves sliding down the continental shelf. This is a fundamen-
tal feature shaping the submarine morphology. From the modelling of risks
point of view, important questions still remain such as to evaluate to which
extend an initial triggering event (an earth quake, an eruption..) would be
responsible for a subsequent process that might propagate or amplify over
large distances as an unstable matter wave. Unfortunately, the dynamics of
such catastrophic events remains an issue so far lacking of conceptual clar-
ity [1, 2] since (i) the rheology of the flows involved in an avalanche is complex
and still not unravelled, (ii) the physics of erosion/deposition mechanisms



130 Eric Clement et al.

is essentially limited to empirical descriptions based on dimensional analy-
sis and semi-empirical formulations. There were several theoretical attempts
to describe from a phenomenological point of view the dynamics of erosion
waves as an interplay between a rolling phase and a static phase [3, 4]. While
extensive laboratory-scale experiments on dry and submerged granular ma-
terials flowing on rough inclined plane [5–7] have brought new perspectives
for the elaboration of reliable constitutive relations, many open questions still
remain such as to understand and model avalanches propagation on erodible
substrates [8–10]. It has been shown experimentally that families of localized
triangular shape avalanches can be triggered in the metastability domain, be-
tween the stoppage angle and maximal avalanche angle. [8]. Also, the shape of
other localized droplet-like waves was recently shown to depend strongly on
the intimate nature of the granular material used [9]. All these questions are
closely related to the compelling need for reliable description of the fluid/solid
transition for particulate assemblies in the vicinity of the flow arrest. Here,
we present experimental results concerning avalanche fronts developing over
an erodible granular substrate, both in the air and under water. We know
that avalanche fronts flowing on solid rough substrates (non-erodible) are
transversally stable, the transverse coupling due to gravity being essentially
a stabilizing mechanism [5, 11]. But, when segregation occurs, an avalanche
front on a rough substrate may exhibit a fingering pattern explained by a
pinning mechanism [12, 13]. Although the rough grains we use have a nar-
row polydispersity (25%), we investigate here a quite different mechanism.
We demonstrate the existence of a linear transverse instability of the solitary
front occurring at higher inclination angles.

Recently, a model of “partially fluidized” dense granular flows was devel-
oped to couple a phenomenological description of a solid/fluid transition with
hydrodynamic transport equations. It reproduces many features found experi-
mentally such as metastability of a granular deposits, triangular down-hill and
balloon-type up-hill avalanches and variety of shear flow instabilities [14, 15].
The model was later calibrated with molecular dynamics simulations [16].
Here the partial fluidization model is applied to the previous situation of soli-
tary avalanches flowing over a thin erodible sediment layer. A set of equations
describing the dynamics of fully eroding waves is derived and a family of soli-
tary wave solutions propagating downhill is obtained. The velocity and shape
selection of these waves is investigated as well as the existence of a linear
transverse instability. The primary cause for the transverse instability is as-
sociated with the dependence of the soliton velocity with the mass trapped
in the flow. A numerical study is conducted to follow the nonlinear evolution
of the avalanche front. All these features are discussed in the context of the
previous experimental findings [10]. New perspectives for quantitative contact
between modelling and experiments are then underlined.
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Fig. 1. a Experimental set-up. b Stability diagram: hstop is the thickness of the
sediment left after an avalanche for a given angle θ, in air (•) and in water (◦);
hstart(θ) is the maximum stable height of sediment, in air (�) and in water (�).
hstart(θ) and hstop(θ) are fitted by the form h = b ln((tan θ − µ)/δµ) (solid lines).
In region I, an avalanche front cannot propagate autonomously down the slope: the
perturbation is bound to fade away when the driving stops. Avalanches triggered in
region II are stable while they exhibit a transverse instability in region III. In partic-
ular, solitary erosion waves are evidenced when starting from the stable height hstop.
c Front profile χ(y) obtained after image processing by a correlation technique. d
The corresponding correlation function C(y) allows to define the average wavelength
λ and amplitude A.

2 Experiments on Erosion Waves

2.1 Description of the Set-Ups

The avalanching set-ups consist of a thin layer of grains deposited on a sub-
strate that can be tilted at a value θ ( fig. 1a). The dry granular set-up is
similar to the one of Daerr et al. [8, 17]. The avalanche track is 70 cm wide
and 120 cm long. The granular medium is Fontainebleau sand of a medium
size d = 300± 60 µm and the track bottom is made of black velvet. For under
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Fig. 2. Solitary erosion wave profile δh = h − hstop rescaled by d (dotted line)
and surface velocity profile v rescaled by

√
gd (solid line) (dry, θ = 32deg, hstop =

2.3 mm = 7.8 d, region II). Inset: spatio-temporal diagram done with a fast camera
(125 Hz), showing the particle motion as well as the profile height (deflection of the
laser sheet). It can be observed that the surface grain velocity tends at the front
towards the solitary wave velocity va

water avalanches, the set up size is quite smaller. The avalanche track is the
bottom of a plexiglass tank that can be tilted up to an angle θ from an hori-
zontal position. The avalanche track width is 15 cm and so is the track length.
The granular sediment is an aluminum oxide powder of size either d = 30 µm
or 40 ± 11 µm. To avoid inter-particle cohesion, it is sufficient to maintain
the pH value close to 4 by adequate addition of hydrochloric acid [18]. The
substrate is initially set at an horizontal position and a fixed mass of pow-
der is poured and suspended by vigorous stirring. A uniform sediment layer of
height h then forms within 10 min. The bottom is an abraded but transparent
plexiglass plate which offers the possibility to monitor the avalanche dynamics
by transparency when illuminated from below. The profile of the avalanche
front h(x, t) is obtained with a laser slicing technique and is resolved within
30 µm (0.1 d) in the dry case. The front dynamics is quantitatively monitored
by image processing of the avalanche front pictures. The front line equation
χ(y, t) is then extracted (fig. 1c) and the front line auto correlation function
C(y, t) =< χ(y+y′, t)χ(y′, t) >y′ is computed. Then, the correlation function
first maximum is identified from which we define the average wavelength λ
and the amplitude A = 2

√
2C(λ) (fig. 1d). In addition, for dry avalanches,

we measure the surface velocity field using a Particle Image Velocimetry tech-
nique.
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Fig. 3. Flowing part of solitary waves visualized by image difference (air, d =
300 µm, θ = 35 deg, time interval 1.1 s), starting from a flat bed (left) or from an
initial bed presenting a forced wavelength λ = 6.5 cm.

2.2 The Sand Layer Stability Diagrams

It has been shown that the stability of dry granular layers of depth h lying on
a substrate inclined at an angle θ can be simply apprehended by a diagram
with two branches [5] (fig. 1b) hstart(θ) and hstop(θ) with the following inter-
pretation: a uniform deposit of height h will globally loose stability if tilted
above the angle θ defined by h = hstart(θ) and the avalanching process will
leave at rest a deposit of height hstop(θ). The hstart and hstop curves diverge
at an asymptotic angle limit, respectively equal to the avalanche angle of the
granular pile θa and to the repose angle θr. Between the two, a domain of
metastability for the granular deposit is present. Interestingly, the stability
curves obtained for dry and underwater layers bear the same features and fall
on the same curve when the deposited height is rescaled d (fig. 1b).

2.3 Solitary Erosion/Deposition Waves

To initiate avalanche fronts both in air and under water, we designed a ‘bull-
dozer’ technique where a plate perpendicular to the avalanche track scrapes
the sediment at a constant velocity (fig. 1a). Although our results on avalanche
stability are valid in the whole metastable region (fig. 1b), we will limit our-
selves here to experiments started from a stable sediment layer of height
hstop(θ). Once an autonomous avalanche front separates from the plate, the
bulldozer driving stops. For θr < θ < θa, we always obtain transversely stable
autonomous avalanche fronts, both in the wet and dry cases. We observed
that the avalanche quickly converges toward a form which then remains con-
stant. Furthermore, this solitary wave is found to be quite insensitive to the
avalanche preparation details within a range of scraping velocities or initial
masses set into motion. For this systematic study, we have kept a constant
scraping velocity at about one-third of the typical avalanche velocity va. For
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each value of the – unique – control parameter θ, there is thus a single pos-
sible solitary erosion wave. In water, va is of the order of the Stokes velocity
∆ρ

ρw

gd2

18 ν
	 2 mm/s where

∆ρ

ρw
= 3 is the density contrast between grains and

water, ν the water kinematic viscosity and g the gravity acceleration. In the
air, the propagation velocity is of the order of

√
gd 	 5 cm/s. In figure 2 we

show local sediment height h and local surface velocity v profiles for such an
avalanche. Independently, we measured the flow rule on homogeneous steady
flows and found v/

√
gh = β(h/hstop − 1), with β = 0.8, as previously found

for sand [6]. Here, this equilibrium relation remains verified in the tail of the
avalanche.

2.4 The Transverse Instability

For θ > θa the neutral wave fronts are transversally unstable. It is worth
noticing that for the same angles, avalanches down a solid rough plate are
stable (at least in the dry case). After the initial instability, we have identi-
fied a sequence of fusion processes increasing the spatial modulation lengths
(coarsening scenario). Finally, the transverse destabilization ends up as a fin-
gering pattern. In this final stage, the flowing zones are disconnected one from
the others so that the wavelength does not evolve anymore. On figure 4, we
display a typical time evolution of the dominant wavelength extracted from
the correlation function. In inset, a typical fusion event is displayed to illus-
trate the coarsening scenario. Because of the competition between unstable
modes and the coarsening process taking place, the identification of a generic
scenario for the transverse instability is problematic.

This is the reason why, in addition to the experiments started from a flat
bed we just described, we performed series of experiments starting from a
modulated initial condition. The modulation at a given wavelength is simply
produced by imprinting on the sediment surface regularly spaced thin scari-
fication (shallow scratches). We find that the forced modes always fade away
in region II, but on the other hand, in region III, the front modulations
amplifies exponentially for a wide band of modes. The linear regime is clearly
evidenced over one decade in amplitude. Non-linear effects start being visible
when the amplitude becomes of the order of 1 cm. The inset of figure 5 shows
the dispersion relationship deduced from these experiments, which demon-
strates the existence of an initial long wavelength linear instability.

For experiments both in the air and under water performed in the unsta-
ble regime, we extract the two characteristic wavelengths. The initial wave
length λ0 would correspond, to the best of our experimental possibilities, to
the fastest growing mode of the linear regime. Then, the wave length λ∞ is
taken at the onset of the fingering instability. In fig. 6, we display both wave-
lengths rescaled by the grains sizes : λ0/d and λ∞/d, as a function of the
inclination angle θ. The selected wavelengths are typically larger than a grain
size by at least two orders of magnitude. Note that the largest wavelengths



Erosion Waves: When a Model Experiment Meets a Theory 135

6

5

4

3

2

1
35302520151050

0

t (s)

(mm)

Fig. 4. Time evolution of the wavelength λ (water, d = 40 µm, θ = 37.1 deg) in a
single typical realization (•) and averaged over realizations (solid line) – the shadow
zone indicates the standard deviation. After a small plateau at the initial wavelength
λ0, λ increases due to merging processes (lower photograph) until the value λ∞ which
corresponds to the formation of non-interacting fingers (upper photograph).

t (s)

A

k (cm-1)
(s-1)

(cm)

0.1

1

543210

-10

-5

0

5

0.60.40.20

Fig. 5. Time evolution of the amplitude (air, d = 300 µm, θ = 35 deg) when the
initial condition is forced at a given wavelength λ = 12 mm (◦), λ = 30 mm (�),
λ = 90 mm (�) and λ = 178 mm (�). Inset: linear growth rate σ as a function of
the wave number k. The solid line is the best fit by σ = σm|k|λ0(1− (kλ0)

2/3), with
a maximum growth rate σm � 2.5 s−1 for λ0 � 4 cm. Measurement of λ0 from an
undisturbed solitary wave (fig. 3) gives 3.3 cm.

measured are of the order of the track width (1800 d in water and 750 d in air).
Furthermore, in the limit of finite size effects and measurements uncertainties,
we find that a value θ ∼= θa corresponds to a diverging boundary for the initial
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Fig. 6. Initial (•) and final (◦) wavelengths rescaled by d as a function of θ (d =
40 µm, in water). The initial wavelength data in air (�) and water (•) coincide, as
well as the final wavelength data in air (�) and water (◦). The error bars correspond
to the dispersion of the data from a realization to the other. As λ0 diverges at θa, we
have superimposed the curve 10 hstart(θ) (solid line), which is a good approximation
of λ0 to the first order. The dotted line is the best fit of the final wavelength λ∞ by
the same logarithmic form as hstart(θ) or hstop(θ).

wavelength λ0/d. Hence this is a signature of a zero wave-number instability
with a threshold close to θa. Another striking feature is the collapse, on the
same curve, of data obtained in the air and underwater, once rescaled by the
grain size. In the range of parameters where the fingering regime is reached
before the end of the track, the ratio of the final to the initial wavelength is
approximately constant and equal to λ∞/λ0 	 3.5. The presence of a fingering
instability is a quite fascinating feature of this avalanching process. Here, the
fingering front stems from the onset of localized propagating waves following
the transverse instability regime. These fingers are localized matter droplets
with levees on the side and propagating in a quasi solitary mode and when
they are fully developed, their selected width is found to be quite sensitive to
the slope (	 λ0 for both wet and dry cases).

3 The Partial Fluidization Model

3.1 The Model Presentation

In this Section we apply the partial fluidization model to investigate the
avalanche dynamics on a thin erodible sediment layer. A set of equations
describing the dynamics of fully eroding waves is derived and a family of
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solitary solutions propagating downhill is obtained. The velocity and shape
selection of these solitary waves is investigated as well as the existence of a
linear transverse instability. According to the partial fluidization theory [14],
the ratio of the static part of shear stress to the fluid part of the full stress
tensor is controlled by an order parameter (OP) ρ, which is scaled in such a
way that in granular solid ρ = 1 and in the fully developed flow (granular
liquid) ρ → 0. At the “microscopic level” OP is defined as a fraction of the
number of persistent particle contacts to the total number of contacts. Due to
a strong dissipation in dense granular flows, ρ is assumed to obey purely re-
laxational dynamics controlled by the Ginzburg-Landau equation for generic
first order phase transition,

τρ
Dρ

Dt
= l2ρ∇2ρ− ∂F (ρ, δ)

∂ρ
. (1)

Here τρ, lρ ≈ d are the OP characteristic time and length scales, d is the
grain size. F (ρ, δ) is a free energy density which is postulated to have two
local minima at ρ = 1 (solid phase) and ρ = 0 (fluid phase) to account for
the bistability near the solid-fluid transition. The relative stability of the two
phases is controlled by the parameter δ which in turn is determined by the
stress tensor. The simplest assumption consistent with the Mohr-Coulomb
yield criterion is to take it as a function of φ = max |σmn/σnn|, where the
maximum is sought over all possible orthogonal directions m and n.

For thin layers on inclined plane Eq. (1) can be simplified by fixing the
structure of OP in z-direction (z perpendicular to the bottom, x is directed
down the chute and y in the vorticity direction) ρ = 1 − A(x, y) sin(πz/2h),
h is the local layer thickness, A is slowly-varying function. This approxima-
tion valid for thin layers when there is no formation of static layer beneath
the avalanche. Then one obtains equations governing the evolution h and A,
coordinates x, y, height h, and time t are normalized by lρ, τρ correspond-
ingly [14, 15],

∂h

∂t
= −α∂h

3A

∂x
+
α

φ
∇ (h3A∇h) (2)

∂A

∂t
= λ0A+ ∇2A+

8(2 − δ)
3π

A2 − 3
4
A3 (3)

where ∇2 = ∂2
x +∂2

y , λ0 = δ− 1−π2/4h2, dimensionless transport coefficient:

α ≈ 2(π2 − 8)
π3ν

gτρlρ sin θ, (4)

ν is the shear kinematic viscosity, θ is the chute inclination, φ = tan θ. Control
parameter δ assumes the form δ(θ̃) = ((tan θ̃)2 − φ2

0)/(φ
2
1 − φ2

0), φ0,1 are
tangents of dynamic and static repose angles correspondingly, tan θ̃ is the local
slope of granular layer. Assuming that the slope of the layers tan θ̃ is close to
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the chute slope tan θ, we expand the control parameter δ ≈ δ0+βhx,δ0 = δ(θ),
β ≈ 1.5 − 3 depending on the value of θ, see for detail [14, 15]. The last term
in Eq. (2) is also due to change of local slope and is obtained from expansion
θ̃ = θ+hx. This term is responsible for the saturation of the slope of avalanche
front (without it the front can be arbitrary steep) [15].

3.2 Solitary Wave Shape Selection

In the coordinate system co-moving with the velocity V Eqs. (2),(3) assume
the form

∂h

∂t
= V ∂xh− α

∂h3A

∂x
+
α

φ
∇ (h3A∇h) (5)

∂A

∂t
= V ∂xA+ λ0A+ ∇2A+

8(2 − δ)
3π

A2 − 3
4
A3 (6)

Numerical studies revealed that the one-dimensional Eqs. (5),(6) possess a
one-parametric family of localized (solitary) solutions, see Fig 7:

A(x, t) = A(x− V t), h(x, t) = h(x− V t) (7)

Here the boundary conditions take a form h→ h0, A→ 0 for x→ ±∞, where
h0 is the asymptotic height. The one-dimensional steady state solitary wave
solution (7) satisfy

V (h− h0) = αh3A

(
1 − ∂xh

φ

)
(8)

−V ∂A
∂x

= λ0A+ ∂2
xA+

8(2 − δ)
3π

A2 − 3
4
A3 (9)

The solutions can be parameterized by the “trapped mass” m carried by
the solitary wave i.e. the area above h0,

m =
∫ ∞

−∞
(h− h0)dx (10)

The velocity V is increasing function of m, see inset Fig. 7a. The family of
admissible solutions for a propagative solitary wave terminates at m = mc

and V = Vc = V (mc). The critical mass mc decreases with the increase in α.
The dependence of V vs m is consistent with experimental data, see inset to
Fig. 7b for sandy avalanches in the air. Note that this experimental curve was
obtained by collecting the falling sand at the end of the avalanche plane when
erosion waves of different sizes were triggered. We also notice that below a
mass threshold, no propagation of an erosive wave is possible. The structure
of the solutions is sensitive to the value of α: for large α the solution has a
well-pronounced shock-wave shape, Fig. 7a, with the height of the crest hmax

several times larger than the asymptotic depth h0. For α → 0 the solution
assumes more rectangular form, see Fig. 7b, and hmax −h0 � h0. The results
are consistent with the shape of sand (compare with large α) and glass bead
(α→ 0) avalanches, see inset of Fig. 7a
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Fig. 7. h (a) and A (b) for various values of m and α. Solid line is for m = 147.7,
V = 2.72, dashed line is for m = 211, V = 3.12, for δ = 1, α = 0.08, β = 2;
point-dashed line is for α = 0.025, δ = 1.15, m = 62, V = 0.86. Inset to Fig. 7a:
Representative height profiles for avalanches in sand (solid line) and glass beads
(dashed line). Inset to Fig. 7b: V vs m (solid line), diamonds depict data for sand
avalanches.

3.3 The Front Linear Transverse Instability

To understand transverse instability we focus on the solitary solution with
slowly varying position x0(y, t)

A(x, t) = Ā(x− x0(t, y)), h(x, t) = h̄(x− x0(t, y)) (11)

Substituting Eq. (11) in Eq. (5) and integrating over x, one obtains

∂tm = V (m)(h+ − h−(m)) − ζ1∂
2
yx0 + ζ2∂

2
ym (12)
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Fig. 8. Growthrate σ(q) vs q for δ = 1.15 and α = 0.08 for the mass of the avalanche
m = 102. Solid line: σ(q) obtained by numerical stability analysis of one-dimensional
solution Eq. (11). Dashed line is solution of Eq. (15). Inset: optimal wavenumber of
q∗ vs α for δ = 1.15

where ζ1,2 = const is defined as

ζ1 =
α

φ

∫ ∞

−∞

(
Āh̄3∂xh̄

)
dx, ζ2 =

α

φ

∫ ∞

−∞

(
Āh̄3∂mh̄

)
dx

Here h+ = h(x→ ∞) is the height of the deposit layer ahead of the front and
h− = h(x→ −∞) is the height behind the front, see Fig. 7a. While the value
of h+ is prescribed by the initial sediment height, the value of h− behind
the front is determined by the velocity (or mass) of the front. For steady-
state solution h+ = h− = h0. For the slowly-evolving solution the difference
between h+ and h− can be small, however it is important for the stability
analysis. These terms are also necessary to describe experimentally observed
initial acceleration/slowdown of the avalanches. Substituting Eqs. (11) into
Eq. (3) and performing orthogonality conditions one obtains

∂tx0 = V (m) + ∂2
yx0 (13)

There are also higher order terms in Eq. (13) which we neglect for simplic-
ity. To see the onset of the instability we keep only the leading terms in
Eq.(12),(13), using V (m) ≈ V (m0) + Vm(m−m0), and m̃ = m−m0 � m0:

∂tm̃ = −τm̃− ζ1∂
2
yx0 + ζ2∂

2
ym̃

∂tx0 = Vmm̃+ ∂2
yx0 (14)

where m0 = const is the steady-state mass of the solitary wave, and τ =
V (m0)∂mh

−. Seeking solution in the form m,x0 ∼ exp[σt + iqy], q is the
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transverse modulation wavenumber, for the most unstable mode we obtain
from Eq. (14) the growthrate λ

σ =
−q2(1 + ζ2) − τ +

√
(q2(1 − ζ2) − τ)2 + 4Vmζ1q2

2
(15)

Expanding Eq. (15) for q → 0 we obtain σ ≈ 1
2 (2Vmζ1/τ − 1)q2 +O(q4). The

instability occurs if Vmζ1/τ−1/2 > 0. Substituting τ and using Vm/hm = Vh,
we obtain a simple instability criterion:

2Vhζ1/V > 1 (16)

Eq. (16) gives a value of threshold α since ζ1 ∼ α. For α < αc no instability
occurs, and the modulation wavelength diverges for α → αc. Far away from
the threshold we neglect τ and then obtain for λ(q):

σ = |q|
√
ζ1Vm − (1 + ζ2)q2/2 +O(q3) (17)

The optimal wavenumber q∗ is given

q∗ ∼
√
ζ1Vm ∼ α (18)

Fig. 8 shows σ(q) obtained by numerical stability analysis of linearized Eqs.
(2), (3) near the one-dimensional solution Eq. (7). For comparison is shown the
solution to Eq. (15), with the parameters extracted from the corresponding
one-dimensional steady-state problem Eqs. (8),(9). One sees that Eq. (15)
gives correct description for small q, however fails to predict σ(q) in the whole
range of q. For this purpose one needs to include higher order terms. Thus,
Eq. (15) gives correct description of the onset of instability and qualitative
estimate for the selected wavenumber q∗. Inset to Fig. 8 shows the dependence
of optimal wavenumber q∗ vs α, obtained by numerical linear stability analysis
of the solitary solution. It shows almost linear decrease of q∗ with α consistent
with Eq. (18). For very small α the plot indicates that q∗ → 0 at α → αc,
consistent with Eq. (16). From the qualitative point of view, the transverse
instability of planar front is caused by the following mechanism: local increase
of solitary wave mass results in the increase of its velocity and, consequently,
“bulging” of the front. Since the bulge “rolls” forward, i.e below the level of
the avalanche, the granular fluid flows towards the bulge, further draining the
trailing regions.

3.4 Beyond the Linear Instability: Coarsening and Fingering

To study the evolution of the avalanche front beyond the initial linear insta-
bility regime a fully two-dimensional numerical analysis of Eqs. (2), (3) was
performed. Integration was performed in a rectangular domain with periodic
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Fig. 9. Grey-coded images of height profile h(x, y) (white corresponds to larger
height) for three different moments of time, a) t = 170, b) t = 300 and c) t = 500
units of time. Domain size is 600 units in x direction and 450 units in y direction,
only part of domain in x direction is shown. Parameters: δ = 1.16, α = 0.14, β = 2
and initial height h0 = 2.285.

boundary conditions in x and y directions. Number of mesh points was up to
1200×600 or higher. As an initial condition we used a flat state h = h0 with a
narrow stipe h = h0 + 2 deposited along the y-direction. To trigger the trans-
verse instability small noise was added to the initial conditions. The initial
conditions rapidly developed into a quasi-one-dimensional solution described
by Eq. (7). Due to the periodicity in the x-direction, the solitary solution
could pass through the integration domain several times. It allowed us to per-
form analysis in a relatively small domain in the x-direction. The transverse
modulation of the solitary wave leading front was observed after about 100
units of time for the parameters of Fig. 9. We observe that modulation ini-
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tially grows in amplitude, eventually coarsens and leads to the formation of
large-scale finger structures.

4 Conclusions

Experimentally, we have investigated the dynamics of underwater and dry
granular avalanches taking place on a erodible substrate. We have identified
the domain of existence for solitary waves going down the slope without chang-
ing form. For angles larger than the avalanche angle, we proved the existence
of a linear transverse instability which further develops via a coarsening fusion
process and finally ends up as a fingering pattern. The existence of solitary
waves provides a new important test to models. For instance, it may be shown
that they cannot be recovered in Saint-Venant models that do not include a
static erodible layer below the avalanche. The mechanism responsible for the
instability remains yet to be identified but the scenario is a standard zero
wave number instability of threshold θa. The inhibition of this instability on
a solid bottom suggests that erosion/deposition processes in the avalanche
depth could play a determinant role. Further studies with other materials on
different substrates are needed to determine to which extent, the instability
is generic. A further challenging experimental issue is to get a more focused
vision on the interface separating the jammed and the rolling phases, and its
relation to the instability onset. In the final stage of the instability, fingers
appear as droplet like solutions of the erosion/deposition process and thus
look essentially different from the segregation fingers reported on a rough
substrate [12]. Note that their shape is reminiscent of many natural patterns
obtained in debris or mud flows [13] which also display surprisingly well se-
lected widths at values about hundreds of a typical rock size.
These experimental findings were put to test in the context of a phase field
modelling developed to describe dense granular flows. At the qualitative level
the agreement between theory and experiments is impressive. (i) Existence
of steady-state solitary avalanches propagating downhill with a shape similar
to experiment. (ii) Generic zero wave number (long-wave) transverse instabil-
ity compatible with the experimental divergence of the selected wavelength
close to the instability threshold. Far from the threshold, linear growth rate
dependence with q compatible with measurements. (iii) Coarsening in the
later development of the instability. (iv) Fingering instability with localized
droplet-like avalanches (also similar to those described in [9]). The analysis
predicts that the transverse instability ceases to exist when the rescaled trans-
port coefficient α decreases (see Fig. 8). However, the model does not provide
explicit expression for α due to the dependence of granular viscosity ν on other
external parameters (e.g. local pressure, see [14]). Rough estimates of α can
be extracted from the flow rules in Ref. [6] which gives the relation between
depth-average velocity 〈V 〉 and height h: 〈V 〉/√hg ≈ β̄h/hstop(θ) + const,
where dimensionless material constant β̄ ≈ 1 for sand and β̄ ≈ 0.2 for glass
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beads. Since flux of grains J = h〈V 〉 ≈ β̄
√
gh5/2/hstop(θ), to compare with

flux expression in Eq. (2), we write for the fully-fluidized state (A ≈ 1):
J ≈ β̄

√
gh3/h

3/2
stop(θ). Since the typical time in the problem τρ is of the order

collision time
√
d/g, after rescaling x → x/d, h → h/d, t → t/τρ, we ob-

tain in the dimensionless form the estimate for α ≈ β̄(d/hstop(θ))3/2. Since
hstop → ∞ with the decrease of angle θ, the instability should disappear for
smaller angles, which is verified experimentally. The analysis also predicts
that the instability could be suppressed for the case of small rheological pa-
rameter β̄ corresponding to smooth glass beads. Thus, the model provides a
crucial prediction on the transverse instability mechanism which lies in the
dependence of the solitary wave velocity with the flowing mass trapped in the
avalanche. This result is recovered experimentally. Still, important questions
remains on how to bring more quantitative comparison between the theory
and the experimental measurements. In this perspective, a challenging ques-
tion is a deeper understanding of spatial and temporal parameters involved in
the phase field equation (1). Along those lines an important question would be
to clarify the qualitative differences observed between smooth glass bead and
rough sandy materials as far as the effective flow rules and avalanches shapes
are concerned. This is centered around the central and challenging question
of erosion and jamming of a dense granular assembly. Note that the finger-
ing patterns found for these granular avalanches, bear remarkable similarities
with those existing in thin films flowing down inclined surfaces, both with
clear and particle-laden fluids [19]. However, the physical mechanisms leading
to this fingering are likely dissimilar: in fluid films, it is driven (and stabilized)
by the surface tension, whereas in the granular flow case, the surface tension
plays no role.
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Summary. Experiments on bidisperse dry granular flows on an inclined rough plane
were made in order to better understand the rheology of this kind of material.
Flows, created by a localised input of a granular matter onto the plane, propagate
and spread laterally, being unconfined by the experimental set-up. Because of size
segregation, the lateral and vertical inhomogeneous repartitions of particles lead
to several effects causing the main difference between bidisperse and monodisperse
flow: the outline effect and the interfaces effects. The outline effect is due to the
large beads at the front, and at the borders of the flow. It can be interpreted using
the relative frictions of the two types of beads on the rough plane. The relative
friction has been quantified with experiments on monodisperse granular flows. The
interfaces effects deal with the interaction between the layers of large and small
beads and with the interaction between the small beads and the plane. It combines
friction, dragging and longitudinal separation of th etwo superposed layers of beads.

1 Introduction

The flow of dense granular matter on inclined plane is often encountered in
engeineering applications involving the transport of material such as min-
erals and cereals. It is also common in geophysical situations where rocks
avalanches, landslides and pyroclastic flows are natural events consisting in
large-scale flow of grains [1, 2]. Most of these granular flows are composed of
polydisperse grains. Many chute flow experiments have been carried out and
different configurations have been used, changing the boundary conditions
from smooth [3, 4] to rough [5] and using several kind of materials [6–9].
This paper presents results of bidisperse granular flow on inclined rough plane.
These results have been compared to the one previously observed for monodis-
perse flows. To understand the modifications observed, it has been necessary
to quantify the basal friciton of the beads on the plane (changing the diameter
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of flowing beads, the relative roughness change) and with this quantification
to identify the mechanisms able to explain the behaviour of bidisperse flows.

2 Experimental Setup

The experimental setup consists in an inclined plane which is made rough by
gluing beads of diameter λ with a compactness C. The plane is 1.5 m long and
0.6 m width. We control precisely the angle of inclination θ. The experiments
consist in a flow of glass beads of diameter d. Different experiments have been
carried out : the measurement of the length L of a deposit left after the release
of a finite volume contained in a cap, the measurement of the thickness deposit
(hstop) left on the plane by a steady state flow and the measurement of the
mean velocity ū of an unconfined steady state flow, (fig. 1).

Fig. 1. Experiment configurations: (a) Release of a volume contained in a cap: de-
posit length measurement (b) Deposit left by a uniform steady state flow: deposit
thickness measurement (c) Unconfined steady state flow: mean velocity measure-
ment

3 Bidiperse Granular Flow

First obsevations on bidisperse granular flows show a great variety of mor-
phologies (fig. 2). The morphology of a monodisperse flow presents always the
same tear shape. On contrary, bidisperse flows present several morphologies
like rapid stop of the flow, tear, fingering, streching. We also see a separation
(segregation) between the large and the small beads.

In order to understand this varierty of morphologies, it is necessary to in-
terest to the segregation phenomenum which is observed for each experiment.
Because of the presence of two bead sizes, during the flow there is a separation



Bidisperse Granular Flow on Inclined Rough Planes 149

(a) (b)

Fig. 2. Morphology of deposits (the largest beads are white and the smallest dark
grey, the central white line is the laser sheet): (a) General morphology of a monodis-
perse deposit (b) Morphologies of bidisperse granular flows

by size, with the largest beads at the top of the flow. Because their velocity is
higher, the largest beads are also at the front and at the periphery of the flow.
This segregation is very rapid compare to the spreading time of the flow. We
will consider it is instantaneous in our study. Because of this segregation, we
can schematicly represent the flow as two superposed layers of beads (smallest
one at the bottom and largest ones at the free surface) (fig. 3a) surrounded
by the largest at the periphery of the flow (fig. 3b).

(a) (b)

Fig. 3. Schematic representation of the flow during the release of a volume containes
in a cap. (a) Segregation in the thickness, larger beads come at the top of the flow
(b) Segregation at the free surface, larger beads come at the front and all around
the flow

Because of this segregation, large and small beads are touching the same
plane experiencing different relative roughness. We understand the influence of
the relative roughness on the flow by studying monodisperse flow and changing
the relative roughness (first part of this work). Understanding this, we will
be able to explain the change in morphology of bidisperse flows in the second
part.
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3.1 Monodisperse Study: Influence of the Relative Roughness

We present results of monodisperse flows on a plane with the following charac-
teristics : λ = 425 µm and C = 0.56. The diameter of the flowing beads varies
from d = 150 µm to 580 µm. In all experiments we observe a singularity for a
diameter of flowing bead dc = 275 µm. This singularity corresponds to a min-
imum length L of the deposit, a maximum thickness hstop and a minimum in
the mean velocity ū (fig. 4). As the volume is contant and the maximum width
of the deposit imposed by the cap [10], an increase in length is equivalent to
a decrease in thickness.
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Fig. 4. Experimental results of monodispers flows on plane λ = 425 µm and C =
0.56 for several diameters of flowing beads: (a) Length of monodisperse deposit vs
the diameter of the flowing beads for several angles of inclination, (b) Thickness
hstop of monodisperse deposit vs the angle of inclination for several diameters of
flowing beads (c) Mean velocity ū vs the diameter of the flowing beads

On the hstop versus θ curves, two characteristic angles are defined: θ1 is the
inclination angle under which there is no flow and θ2 the angle above which
there is no more beads on the plane (fig. 5a). The hstop curve can be fitted
by the expression proposed by Pouliquen [11]:

tan θ = tan θ1 + (tan θ2 − tan θ1) exp
(
− hstop

Cd

)
where c is an adjustable parameter.

If we look at the evolution of θ2 with the diameter of the flowing beads,
there is still the singularity at dc (fig. 5b).

A geometrical model has been proposed to interpret this singularity [10].
It is based on the calculation of the angle required to make the last bead flow
down on the plane. This angle has been compared to the angle θ2 experi-
mentaly measured and a good correlation has been found. The value of dc is
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Fig. 5. (a) Evolution of hstop vs the angle of inclination, definition of θ1 and θ2, (b)
Evolution of θ1 and θ2 vs the diameter of the flowing beads on the plane λ = 425 µm
and C = 0.56

a function of the diameter of the glued beads and their compactness. Some
more experiments were carried out on other planes, changing the roughness
and the compactness to confirm the model [10].
As proposed by GDR Midi [12], the angle of inclination (and moreover
the maximum angle θ2) can be interpreted in terms of a friction coeffi-
cient µ, which is the ratio between the tangential and the normal forces
µ = ρgsinθ/ρgcosθ = tan θ. We present this friction coefficient versus an
inertial parameter I define as : I = γd/

√
ghcosθ where γ is the velocity gra-

dient in the flow (steady state flow), and h the thickness of the flow. This
evolution represents the basal friction on the plane. Figure 6 represents the
friction coefficient versus the inertial paramter I for the plane λ = 425µm
and C = 0.56 for several flowing beads and shows the influence of the rela-
tive roughness. We see that the curve for d = dc is above all the other ones,
which means that, for this diameter, the basal friction is the highest. For this
reason, the dc diameter was interpreted as a maximum of friction. The two
limits of the µ(I) curve correspond to the θ1 and θ2 angles. As the curves are
classified, we will use the value of µ2 = tan θ2 given by our model to compare
the relative friction of the different flowing beads on the same plane.

So, for each mixture used in bidisperse flows, we know which beads have
the highest friction (µ2) on the plane.

3.2 Bidisperse Flows: Outline and Interface Interactions

Results on bidisperse flows show a rich variety of morphologies. We will dis-
cuss in this section the possible mechanisms explaining these morphologies in
relation with th values of the relative friction of the different beads. All exper-
iments presented in this section correspond to flows on the plane λ = 1400 µm
and C = 0.56 giving dc = 755 µm.
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Fig. 6. Rheology of monodisperse flows for different relative roughness, plane λ =
425 µm and C = 0.56

One strong feature is, for some mixtures, the diminution of the width of the
deposit (fig. 2b). This diminution has been quatify by measuring the width
along the longitudinal direction (fig. 7).
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Fig. 7. Evolution of the longitudinal width of a monodisperse and bidisperse flows
deposit on the plane λ = 1400 µm and C = 0.56. Diameter of the small beads
ds = 327 µm, percentage of the large beads is %l = 50%, diameters of the large
beads dl respectively :( ◦) 670 µm, (•) 755 µm, (�) 1125 µm, (+) 1325 µm, (�)
1750 µm, (×) 2150 µm
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This figure shows that the maximum width does not change but that the
decrease in width change compare to the monodisperse flow. If µ2l > µ2s

(large beads have a greater friction than the small ones) the width of the
deposit is smaller than the one of monodisperse flow. If the friction coefficient
of the large beads (µ2l) is greater than the one of the small beads (µ2s) the
large beads at the periphery confine the flow and avoid the spreading of the
front. This mechanism is also a function of the percentage of large beads
(%l). If there is too much large beads, the flow is stopped after a very short
trajectory (%l ≥ 80%), if the percentage is not sufficient (%l ≤ 20%), the
flow is confined on a short distance and the morphology does not change a
lot, and for intermediate percentages, there is not enough large beads to stop
the flow, but enough to confine the flow on all the longitudinal distance and
we observe fingering (fig. 8).
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Fig. 8. Evolution of the longitudinal width and shape of a bidisperse flow deposit on
the plane λ = 1400 µm and C = 0.56, for several percentage of large beads. Diameter
of the small beads is ds = 327 µm, diameter of the large beads is dl = 755 µm

In conclusion, we can say that the variation of the width of the deposit is
sensible to the relative friction of the two species. If the friction of the larger
beads µ2l is greater than the friction of the small beads µ2s, the flow of small
beads is confined by the large beads, a finger can form or the flow can be
stopeed, depending on the volumic fraction of the large one.

When we interest to the interfaces effects, the interface plane/flowing beads
has been studied in the first part with the monodisperse flows, the second
interface is the one between the large and the small beads layer. The inter-
action of the large beads and the small beads have been studied, measuring
the deposit left by the mixture and comparing the thickness to those of a
monodipserse flow. In order to measure only the influence of the large beads
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on the small beads, we limit the experiments to specific cases for which there
is no confining effect (because the confining increases the thickness of the de-
posit) and for which the deposit is only composed of small beads. We can then
compare this thickness to the one left by a monodiperse flow of small beads.
To match these two conditions, the choice of the mixtures is done such that
: µ2l < µ2s (no confining) and dl � ds (no large beads are trapped in the
deposit).
Figure 9 presents the ratio of the deposit thickness left by a bi-disperse flow
(hstop,bi) on the one left by monodisperse flow of small beads (hstop,mono) for
several mixtures corresponding to the conditions described previously. These
measurements have been done for several diameter ratios and volumic frac-
tions of large beads. The presence of large beads modifies the deposit thickness
hstop. The deposit thickness decreases with the fraction of large beads %l, but
the size ration of beads does not seem to have a great influence.

%l

Fig. 9. Variation of the thickness ratio hstop,bi/hstop,mono vs the volumic fraction
of large beads %l, on the plane λ = 1400µm and C = 0.56. Diameter of the small
beads is ds = 327µm, diameters of the large beads are respectively (◦ ) 1125µm,
(�) 1325µm, (�) 1750µm,(+) 2150µm,(×) 2925µm

A proposed mechanism, for the deposit thickness decrease, is that the
large beads modify the velocity gradient in the small beads underlayer. Be-
cause of the greater velocity of the large beads, the gradient is increased. This
modification of the velocity gradient would lower the deposit thickness hstop

according to [11, 12]. To confirm this hypothesis, some steady state flow ex-
periments have been carried out. For all experiments we see a monolayer (one
bead thick) of large beads flowing on the underlaying layer of small beads.
The velocity of the small beads front (ūs) and the velocity of the monolayer
of the large beads (ul) have been measured. Assuming that the velocity gra-
dient is linear, the surface velocity of the small beads us is twice their mean
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velocity ūs. Comparing us and ul, we see that for almost all experiments they
have the same value (fig. 10). This means there is continuity at the interface
between the velocities of the small and the large beads and that the velocity
at the interface results both from the dynamics of small and large beads. This
confirm that the velocity gradient in the layer of small beads is modify by
the presence of large beads. For few values for which the velocity of the large
beads is greater, there is no continuity. A possible explaination is that the
large beads may have a rotationel motion on the layer of small beads. These
points correspond to high angles of inclination and high percentage of large
beads. In these cases, the velocity of the large beads only partially influences
the layer of small beads.
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Fig. 10. Comparaison between the mean velocity of the small beads ū and the
velocity of large beads for steady state flows. Diameter of the small is beads ds =
327 µm, diameter of the large beads dl = 1325 µm, %l = 50%, plane λ = 1400 µm
and C = 0.56, 22o < θ < 31o. The line represents the value for which 2ūs = ul

(velocity continuity)

The large beads modify the velocity gradient of the small beads, and then
the rheology of the small beads, which consequently implies a change in the
thickness of the deposit of small beads. In fact, for unsteady flows (fig. 9), this
thickness differs from hstop,mono. The small values of hstop,bi indicates that the
velocity gradient of small beads have been increased. We call this mechanism
dragging. This explain also why the width of the deposit is increased (fig. 7).

4 Conclusion

This work presents new results on bidiperse granular flows on inclined rough
plane. Two types of intercations have been pointed out : outline effect and
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interface effects. With these two types of interaction, the deposit morphol-
ogy modifications can be explained qualitatively (narrowing or fingering of
the deposit, increase length of the deposit, decrease of the thickness deposit).
The amplitude of these modifications deals with the fraction of large beads
and the relative friction of each category of beads more than with the size
ratio between the beads. To understand these effects, it has been necessary
to study the influence of the relative roughness of the plane. This was done
with a work on monodisperse flows. The relative friction of the beads on a
same plane have been calculated. Thanks this model, it has been possible to
interpret the modifications of the deposit morphologies and to propose two
mechanisms governing bidisperse flows: the confining and the dragging.
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Summary. We present two experimental studies on the flow of model granular
media made of nearly elastic spherical particles. Experiments are performed in mi-
crogravity conditions inside an airplane undergoing parabolic flights. We first inves-
tigate the rheological behaviour of the medium in a cylindrical Couette geometry.
The curves, shear stress versus shear rate, are presented and the quadratic depen-
dence on the shear rate is clearly shown. The second series of experiments investigate
the behaviour of a vibrated monolayer of spherical particles. A high speed camera
is used to record the motion of particles. With an image analysis tracking technique
we determine the velocities of the particles from which we retrieve the temperature.
The density profiles show the persistence of clusters of particles at the centre of
the cell which coexist with a gas phase at the edges of the cell. We conclude by
comparing experiments performed in microgravity and in normal gravity.

1 Introduction

The increase in interest in granular matter in recent years has been motivated
by the existence of such materials in industrial and geological situations. Gran-
ular media exhibit amazing phenomena in both static and dynamic regimes.
The shapes of heaps or the formation of arches in a static pile are still intrigu-
ing [1, 2]. On the other hand, the rheological properties of a granular have
shown several different behaviors depending on the flow range (quasistatic to
rapid flows). A non exhaustive list includes non linear waves, inelastic col-
lapse, segregation, convection rolls [3–5]. All these features suggest that the
local structure of the granular medium greatly influences its dynamical be-
havior. These aspects of granular flows have been investigated theoretically,
by numerical simulations and experimentally [6–8].

Experiments made in normal gravity do not allow to obtain the rheol-
ogy of a system of spheres at low or intermediate volume fraction. The use
of a vibrating plate combined with a shearing device can help to work with
a disordered system but still at packing fraction above 0.64 [9]. Performing
experiments in microgravity allows to obtain results at much lower volume
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fractions where kinetic theories, taking into account the inelastic nature of
collisions between particles, are more likely to apply. In this theory [10], the
temperature is found to be proportional to the square of the shear rate, the
square of a mean free path of the particles and inversely proportional to 1−e2,
where e is the restitution coefficient of the spheres of the granular medium
which drives the energy dissipation phenomenon. Jenkins and Richman [11]
have extended this theory by explicitly taking into account the anisotropy of
the second moment of the velocity fluctuations. The boundaries, and specifi-
cally their roughness properties, also influence the rheology with the existence
of a slip velocity occurring at the moving walls of the cell. A comparison of
the predictions of the theory by Jenkins [13] and Richmann [14], to our ex-
periments has shown a fair agreement only for the lowest volume fraction (
ν = 12%) but an overestimation of the viscosity at higher volume fraction [15].

An other currently used experiment, which also suffers from the presence of
the gravity since the volume fraction remains usually higher than 0.6 [16], con-
sists in vibrating a granular heap. In this case we are interested in the density
and the temperature profile, the velocity distribution-usually not Gaussian-
and the pair correlation function. These quantities can be obtained thanks to
high speed camera which records the trajectory of each particle in a monolayer
configuration. For vibrated spheres, the parameter characterizing the vibra-
tion is usually the reduced acceleration: Γ ∗ = a/g, where a is the acceleration
of the container and g the one of the gravity. Nevertheless S. Mc Namara
and E. Falcon have recently pointed out [17] that the velocity of the cell, V ,
was a more pertinent parameter to interpret the evolution of the temperature
or pressure with the motion of the shaker when Γ ∗ � 1. Furthermore these
authors have proved by numerical simulation that the usual scaling of tem-
perature and pressure proportional to V 2 was no longer verified, even in zero
gravity, if we take into account that the restitution coefficient depends on the
velocity of the particles.

In this paper we shall first present and discuss some results obtained in
a cylindrical Couette geometry with iron spheres; then in a second part we
present a new experiment done in microgravity with a flat cell mounted on
a shaker and the trajectories of the particles being recorded by a high speed
video camera. Preliminary results concerning the average kinetic energy and
the density profiles will be presented in this section. We discuss our results
and conclude in the last section.

2 Stress Versus Shear Rate in Cylindrical Couette
Geometry

Experiments have been performed in a cylindrical Couette geometry filled
with iron spherical particles with diameter σ of 1mm and 2mm (fig. 1).

The density of the particles ρp is about 7500kg/m3 and the associated
restitution coefficient e is close to 0.9. The cell has a height of 35.8mm, the
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Fig. 1. Experimental setup used to record the behaviour of a model granular
medium submitted to cylindrical Couette shear flow or to periodic oscillations. The
CCD camera allows us to obtain a direct visualisation of the structures formed under
shear while the high speed camera records at a rate of 950 frames per second the
vibrated granular medium. The computer controls the devices through the power
supply and stores the images delivered by the high speed camera.

inner cylinder a radius of Ri = 12.15mm and the outer one, a radius of
Re = 16.6mm. The number of layers of particles across the shearing gap varies
from 1 to 5 in our experimental situations. In this geometry, one can assume
that the shear rate is almost constant. By changing the number of particles
inside the cell, we are able to study the effect of the solid volume fraction ν
(or density) on the rheology of the granular medium. Iron particles of 1mm
in diameter are glued to the inner cylinder to create a rough surface. The gap
between these glued particles over the inner wall of the cell varies between
0.3 and 1 diameter. The inner cylinder is mounted on a rheometer which is
computer controlled. A given angular velocity ω is applied to the inner cylinder
and the rheometer measures the corresponding torque. This torque is then
converted to a shear stress using the geometrical characteristics of the cell.
The outer cylinder of the cell is made of glass to have a direct visualisation of
the shearing process and to avoid electrostatic effects occurring with plastics.

To cancel the effect of gravity, experiments are performed inside an air-
plane undergoing parabolic flights. By parabola, we mean, in the following,
the time interval during which the granular medium is no longer submitted to
gravity. Each flight includes 30 successive parabolas, each lasting about 30s.
The experimental determination of the rheological behavior of the granular
medium is performed by measuring the torque exerted on the inner cylin-
der while changing the angular velocity over a given range. More details on
the experimental procedure followed in microgravity and on reproducibility
tests are given in [15]. Experimental curves of the shear stress τ versus the
square of the shear rate γ2 for different solid volume fractions ν of particles
are presented in figure 2 for the particles of 1mm in diameter. As expected,
the behavior is clearly quadratic in γ̇ and one can also notice an increase with
the volume fraction of particles. A parallel with the theory of Jenkins and
Richman [13, 14] allows us to compare the experimental slope of these curves
to their theoretical values [15]. For instance for a volume fraction ν = 42%
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Fig. 2. Shear stress τ as a function of the square of the shear rate γ̇2 for different
solid volume fractions ν. Iron spherical particles of 1mm in diameter. The linear
behaviours observed are a clear signature of the quadratic dependence versus γ̇.

the experimental slope of the stress versus the square of shear rate is 0.0012
for 1mm spheres and 0.0026 for 2mm spheres whereas the theoretical slopes
are respectively 0.0030 and 0.0053. Recent numerical simulations [18] predict
a shear stress τ = aV n with n = 2.2 ± 0.2 and still a higher slope: a = 0.015
for ν = 40% [19], but for a flow between two annular plates.

The exponent is compatible with the Bagnold scaling and our experiments
in microgravity also prove the validity of this scaling. On the other hand, the
value of the prefactor is still to be confirmed. We believe that our experiments
are quite well defined, but as this coefficient depends on the slipping velocity
which itself depends on the roughness of the wall and on the ratio (Re −
Ri)/σ (4.5 with the 1mm spheres), the comparison with existing data with
numerical simulations is not very easy. Moreover some other phenomena could
be specific to our experiment. In particular the outer wall was a glass wall in
order to check visually the homogeneity of the density through the cell (small
perturbations of gravity along the axis of rotation during the parabola can
dramatically change the repartition of spheres through the cell) and also in
order to have some information on the structuration of particles.

We can see in figure 3 that when the volume fraction increases we observe
clearly the formation of rings of particles. These rings are likely related to
the clustering transition and they certainly contribute to reduce the trans-
verse momentum transfer, so it could explain partly why our slope is smaller
than the theoretical one. Other experiments with rough spheres also glued on
the external cylinder would be worse doing. The existence of clusters when
the dissipation rate becomes higher than the energy input can strongly mod-
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Fig. 3. Experimental pictures of the sheared granular medium in the presence of
shear and microgravity. As the volume fraction ν increases, structures made of rings
of particles appear in the shear gap.

ify the rheology of the system. This is well observable in vibrated flat cell.
In the following section we describe this kind of experiment also realized in
microgravity.

3 Vibrated Granular Gas

In order to experimentally determine the granular temperature, a similar
model granular medium made of iron spheres with diameter σ = 2mm has
been studied. The cell containing the medium is mounted vertically on an elec-
tromagnetic actuator allowing to apply sinusoidal excitations to the medium
with varying amplitude A and frequency f . An accelerometer monitors the
induced acceleration a (figs. 1 and 4).

The cell thickness (2.5mm) is chosen in such a way that the medium can
be treated like a monolayer of granular gas. The experimental cell is of circular
shape (diameter of 6.5cm) enclosed in between of two glass plates to reduce
undesired electrostatic effects. We chose a circular shape for the cell so that

Fig. 4. Typical experimental picture of the vibrated monolayer. A direct image
analysis processing on such picture gives the instantaneous position of all particles
inside the cell. The imposed oscillation is along the vertical direction y.
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during shaking, the energy supplied to the medium through the collisions in
between the particles and the walls is better redistributed in the perpendicular
direction of the imposed vibration. By changing the number of particles inside
the cell, we have the possibility to study the effects of concentration on the
temperature from a dilute up to a concentrated situation. At this time, only
two different volume fractions have been used: ν = 7.9% and ν = 16.7%. We
present in the following preliminary results on this study.

As soon as microgravity occurs, the vibrated particles quickly distribute
throughout the entire cell. The motion is recorded with the help of a high
speed camera at a frame rate of 950 images per second. In these conditions,
we had the possibility to record four full seconds of oscillations giving rise to
about 4000 different pictures and so 4000 different times during oscillations.
Each picture is then treated with a specific image analysis technique described
in reference [20]. This technique allows us to track and to obtain the x and y
positions of each single particle in the cell as a function of time (fig. 5). One can
notice that the trajectory greatly depends on the location of the particle inside
the cell. The motion is of Brownian type for a particle located at the center
(particle 1) while for particle 2 one can observe the rebounds between moving
walls of the cell on top and with the central cluster of particles at the bottom
of its trajectory. The large circle shows the position of the cell at rest. From
this experimental determination, we can retrieved the instantaneous velocity
v =

√
v2

x + v2
y where v2

x and v2
y are, respectively, the x and y component of

the velocity of each particle throughout the granular gas and then obtain the
granular temperature of the system. Here, we focused on the average value of
the temperature as a function of the vertical position y in the cell and not

Fig. 5. Experimental trajectory of two test particles in the cell in presence of the
oscillation (the trajectories of all other particles are not shown). The y-direction is
along the direction of the applied vibration. The type of motion greatly depends on
the location of the particle in the cell.
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Fig. 6. Averaged particle density (expressed in arbitrary units) as a function of
the vertical position y. The horizontal flat region appearing at the center of the cell
clearly shows the presence of the cluster of particles. The energy injected in the cell
on top and bottom quickly dissipates through the inelastic collisions between the
particles.

on the temporal fluctuations. The averaged values are calculated over all the
frames of one experiment.

Direct evident observations can be made from an instantaneous view of
the cell (fig. 4). We can define “hot” regions corresponding to the top and
bottom of the cell where the particles collide with the moving walls of the
cell. While the central area corresponds to a cold high density region where
the energy introduced into the cell has been dissipated during the collisions in
between the particles. We have observed that in our experimental situations,
only binary collisions occurred in between particles. The particle distributions
through the cell are shown if we plot the average density inside the cell as a
function of the vertical position y (fig. 6). The average is calculated over the
whole experimental recording time and over all particles.

Moreover, the important parameter on the behaviour of the medium is the
amplitude A of vibration rather than the relative acceleration Γ . At large am-
plitudes and over a period of oscillation, we have more collisions of particles
on the wall of the cell and then more energy supplied to the medium. The
injected energy in this way is related to the kinetic energy of the particles
which is then dissipated through the collisions. The presence of a flat density
profile at the center of the cell on figure 6 confirms the presence of the cen-
tral cluster. Note that the width of this flat region increases for decreasing
vibration amplitude. We have averaged the experimental velocities < v > of
the particles over a whole experiment as a function of the vertical position y
in the cell. Typical results obtained for the volume fraction of ν = 16.7% and
for two different amplitudes are presented on figure 7.
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Fig. 7. Averaged particle velocity < v > versus the position y in the cell aligned
with the direction of oscillations. Two different amplitudes are reported. As stated
in the text, the important parameter is the amplitude of oscillation rather than the
acceleration of the system.

One can see, on top and bottom locations, the “hot” regions corresponding
to high velocities while at the center of the cell, small velocities are found.

From this experimental determination, we can retrieve the average gran-
ular temperature as a function of the velocity V of the system, defined by
Aω where A is the amplitude and ω the angular frequency of the oscilla-
tion (fig. 8). The behaviour seems to be almost linear suggesting that the
temperature is proportional to the velocity. This can be the case when the
restitution coefficient of the particles depends on their velocity as pointed out
in reference [17]. But additional experiments are needed to conclude on this
point.

Fig. 8. Average temperature T retrieved from the particle’s velocities of the shaken
medium as a function of the velocity of the cell V . The behaviour seems to be linear
suggesting that the restitution coefficient of the particles depends on the velocity.
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Finally, in order to point out the advantages of microgravity for this kind
of study, identical experiments have been realized in the laboratory (so in
presence of gravity) with the cell now placed horizontally. The same experi-
mental conditions concerning volume fraction, amplitude and frequency have
been reproduced in order to compare the two situations. Despite the diffi-
culty to precisely perform the horizontality of the cell, important differences
have been observed. By performing the same processing on the experimental
recording, we can yet bring two conclusions. First, the fact that the parti-
cles lie on the bottom plate induces a collective motion of particles because
of rolling motion. This general motion is superposed to the oscillations and
gives rise to undesired effects on the dynamics of the medium. Second, the
differences observed in the density distributions of particles and the average
velocities of the particles through the cell (in the direction of the vibrations)
become critical for the regime of small oscillation amplitudes (fig. 9). Nev-
ertheless, for large amplitudes, the observed deviations are quite small. We
can then conclude that for strong shaking regimes, there is no real profit of
performing such experiments in microgravity while for weak vibrations, the
zero-g condition is quite necessary.

Fig. 9. Compared average velocity versus the vertical position in the cell y, without
and with gravity, for the same oscillation amplitude. Clear deviations are found due
principally to the friction of the particles over the walls of the cell. These differences
increase while decreasing the oscillation amplitude.

4 Conclusion

We have performed an experimental investigation of a model granular medium
composed of nearly elastic particles (iron beads) submitted to a Couette shear
flow or to a periodic oscillation. The experiments have been performed in mi-
crogravity, in order to cancel the effects related to the weight of the particles
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and to be in an“ideal”situationtotest the models and response of rapid shear-
ing flows. We well recover the quadratic dependence of the shear stress versus
the shear rate predicted by Bagnold. The experimental slope is found to be
smaller than the theoretical one especially at the highest volume fraction; an
observation that could be related to the presence of a shear induced ordering.

Some results obtained on a vibrated monolayer of iron spherical particles
have been presented. Our processing allows us to track individually each parti-
cle as a function of time through the cell. From the calculations of the average
particle’s velocities, we have determined both the density profile and the av-
erage granular temperature which seems to be proportional to the velocity of
the system. Processing of experimental data are still underway especially on
the study of particle diffusion through the vibrated medium.
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Summary. We present and analyze a cellular automaton model for granular surface
flow along piles and inclines. It is based on the intuitive idea that granular surface
flow happens via successive excitation of small-scale avalanches. We show that this
model reproduces several essential experimental results for granular surface flow and
give a continuum approximation of its spatio-temporal evolution.

1 Introduction

Since the pioneering work by Jaeger et al. [1] on avalanching in 1989, granular
matter [2, 3] experiences considerable scientific interest as one of the prime
paradigms of a complex system. Besides other aspects of granular dynamics,
the theoretical understanding of surface flow along granular piles and inclines
and in drums still presents a major challenge. This is because a variety of
properties such as avalanching and continuous surface flow dynamics as well
as local properties such as the spatio-temporal surface patterns and front
propagation need to be understood in a unifying way (for an overview cf. [5]).
For low shear, granular flow is governed by Reynolds’ dilatancy, and, therefore,
only the few uppermost granular layers close to the surface contribute to the
dynamics. For that reason, there are, besides micromechanical simulations of
the full many-grain problem (cf. [4] for a thorough overview), two directions
of modeling granular surface flow: (i) continuum approaches modeling the
boundary layer flow including its interaction with the interface to non-moving
bulk [6–8] and (ii) mean-field models that only model global features of that
flow such as the dynamics of mean surface inclination and mean velocity [9–
15].

In this contribution, we present a cellular automaton model for granular
surface flow that is based on the intuitive picture that the flow down a gran-
ular pile or incline occurs via successive excitation of small-scale avalanches
propagating downhill along the surface. In this picture, the flowing granular
matter is modeled in analogy to a sequence of coupled avalanches where each
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of them follows the rules given by a mean-field model for avalanches [11] and
can destabilize granular material below it and even above it. This material can
also set off avalanches according to the same dynamics. By this, the surface
flow being triggered by successive avalanching processes runs down the pile in
a domino-like manner.

In chapter 2 we sketch the essence of the mean-field model, describe the lo-
cal mechanisms leading to small-scale avalanching and give the mathematical
formulation of our cellular automaton model. Using numerical simulations, we
show in chapter 3 that the model reproduces essential experimental results,
such as the evolution of locally triggered avalanches and fronts [17, 18], the
S-shaping of the granular surface in rotated drums [19], and the power spec-
trum of avalanches found by Jaeger et al. [1]. In chapter 4 we briefly outline
a continuum approximation of the domino model.

2 Domino Model

Brief review of the mean-field model
The mean-field model for granular surface flow along piles, heaps, inclines or
in drums [11–13] is based on the experimental observation that (1) a flow of
granular particles close to the surface sets in if the inclination angle φ(t) of
the pile exceeds the maximum rest angle φs and (2) stops again if the angle of
repose φr is reached. To model this behavior in the spirit of a mean-field model,
only two global variables are taken into account: (1) the (spatially averaged)
time dependent angle of inclination φ(t) of the heap and (2) the mean velocity
v(t) of the moving particles that is determined by the kinetic energy of the
flow, Ekin(t) via v(t) =

√
Ekin(t)/2m where m denotes the total mass of

particles in motion. Since an ab-initio derivation of the dynamic equations
for φ(t) and v(t) does not seem to be easily feasible, they are modeled by
generalizing the motion of a solid block slipping down on an inclined surface
and given by

v̇ = g[sinφ− kd(v) cosφ]χ(v, φ) (1)
φ̇ = −amfv + ω. (2)

Here, kd(v) = b0 + b2v
2 denotes a generalized friction coefficient that com-

bines the frictional forces of the Coulomb type (b0-term) and the Bagnold
type (b2v2-term). Since the inclination angle decreases with the speed of the
avalanche v, the simplest possible description is expressed by a linear feedback
of φ̇ and the velocity v with amf > 0. Including the external rotation rate ω
the model is also able to describe the global motion in a rotating drum. The
cut-off function χ(v, φ) = Θ(v) + Θ(φ − φs) − Θ(v)Θ(φ − φs) with Θ rep-
resenting the Heaviside function captures the fact that a dynamics starts at
φ > φs and can only go on as long as v(t) > 0. Although this model (sup-
plied with some stochastics [14, 15]) can successfully describe many dynamical
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Fig. 1. Subdivision of a heap of granu-
lar material into small equidistant cells.
Each small cell possesses a individual spa-
tially constant angle φ(i) with respect to
the horizontal; the whole rugged surface
profile of the heap, however, is assumed
to be continuous.

aspects of granular surface flow such as the spectral behavior of successive
avalanches [1] or the hysteretic transition from avalanches to continuous flow
in rotated drums [19] as function of the rotation rate ω, it fails by construction
to explain any spatio-temporal properties of the surface flow.

General idea of the domino model
The aim of the domino model is to incorporate local properties of the gran-
ular surface flow, i.e. the spatio-temporal dynamics of the surface, the trans-
port velocity at the surface and the local inclination angle or the slope. For
the following, it turns out to be useful to discretize time in an Eulerian
way by subdividing the time axis t in small, equally sized time segments
t0, ..., tN−1, tN, tN+1, ... with stepsize ∆t and labeling the successive time steps
by n = N∆t. The next important step is to subdivide the granular heap of
horizontal length L in an array of individual cells of equal width l labeled by
the index i = 1, .., I, as depicted in Fig. 1. This width should be still at least
about an order of magnitude larger than micromechanical scale for grains to
allow for the applicability of the mean-field model for the individual cell dy-
namics. At a fixed time n, the individual cells are specified by the horizontal
and vertical positions x(i, n) and h(i, n) measured with respect to the horizon-
tal at the foot of the pile and by the corresponding inclination angles φ(i, n)
with h(i− 1, n)− h(i, n)) = l tanφ(i, n) of the locally straight cell surface, cf.
Fig. 1. The surface elements of the cells are assumed to be able to perform an
avalanche-like motion modeled as in the mean-field model [11]; their individ-
ual dynamics, however, must be subsequently cross-coupled to that of their
nearest neighboring cells by additional constraints. Were all cells uncoupled
from their neighbors, the dynamical rules for avalanching of each individual
cell i would read

v(i, n+ 1) − v(i, n) = g[sinφ(i, n) − kdi[v(i, n)] cosφ(i, n)]∆tχ(v, φ) (3)
φ(i, n+ 1) − φ(i, n) = [−aiv(i, n) + ω]∆t (4)

with kdi[v(i)] = b0i + b2iv(i)2 being the (local) nonlinear friction coefficient
including Bagnold friction for larger velocities and ω being the external ro-
tation rate in the case of rotating drum flow. The χ[v(i, n), φ(i, n)]-function
is a natural extension of the fact that a local avalanche starts slipping if the
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inclination angle of cell i exceeds the maximum local rest angle φs(i) and
stops if the velocity v(i, n) reaches zero,

χ(v, φ) = Θ[v(i, n)] +Θ[φ(i, n) − φs(i)] −Θ[v(i, n)]Θ[φ(i, n) − φs(i)]. (5)

The angle φs(i) is a specific property of the granular material and must be
taken from experiments. The constants b0i, b2i and ai and their relation to
the parameters of the global model are discussed below. Throughout this pa-
per, we assume that these parameters possess the same value for each cell,
i.e. ai = a, b0i = b0, b2i = b2, φs(i) = φs. Since, however, all individual cells
are connected to the neighboring cells, the constraints of (1) mass/area con-
servation of flowing granular material and (2) continuity of the whole surface
profile must be incorporated.

Coupling mechanisms
The domino model is based on the idea that an avalanche starts at some
cell i of the pile (e.g. the uppermost one 1) due to addition of grains to
that cell implying a local increase of the angle φ(i, n) or due to (possible)
external rotation where all angles φ(i, n) are simultaneously increased. A local
avalanche starts slipping if the inclination angle of the cell i exceeds φs and
then deposits material on the cell below it to the right, see left panel of Fig.
2. Then, the lower cell can also be destabilized (provided φ(i + 1) > φs)
and develop a subsequent local avalanche that again deposits material further
below and so on. This mechanism characterizes the flowing-down process.
On the other hand, the slipping of an avalanche at the cell i also induces a
transport of the grains from above, i.e. at least from cell i − 1, which was
previously supported by the resting grains at cell i. Consequently, the upper
cell i − 1 to the left will also be destabilized. This mechanism is called the
pulling-from-below process, see right panel of Fig. 2. In the model, it is assumed

x

h(x)

x(i− 1) x(i) x(i+ 1)

i i+ 1

x

h(x)

x(i− 2) x(i− 1) x(i)

i− 1 i

Fig. 2. Left panel: flowing-down process - first step of a small avalanche: The
avalanche of cell i runs down and deposits material on cell i + 1; the height h(i) of
the foot of avalanche i is determined by the conservation of mass criterion, i.e. by
area conservation below the cell surfaces. Right panel: pulling-from-below process
- second step after the slipping of avalanche at cell i which left a discontinuity
at x(i − 1), see left panel. The pulling of i on i − 1 is described again by mass
conservation.
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that local avalanches slip independently of their neighbors and interact with
the neighboring cells only via transporting mass to the next cell or pulling
mass from the previous one. The cell i performs avalanching according to the
mean field model resulting in a change of angle from φ(i, n) to φ(i, n + 1).
During the transport of grains from cell i to cell i + 1 no granular material
is lost. Therefore, mass conservation, or equivalently, conservation of the area
below the surface at any time n and continuity of the surface determine the
local height h(i, n + 1) of the avalanching cell as shown in the left panel of
Fig. 2. This process couples the evolution of local height h(i, n) to the velocity
v(i, n) of cell i, its angle φ(i, n) and the angle φ(i + 1, n) of cell i + 1. The
height h(i, n+ 1) follows from the relation

h(i, n+ 1) = h(i, n) +
1
3
l tanφ(i, n) − 1

3
l tanφ(i, n+ 1). (6)

For all avalanches except the top one, there is the second process that
avalanche i destabilizes cell i − 1 and grains flow from i − 1 to i. This in
turn modifies h(i − 1, n + 1) which is now also coupled to v(i, n) and the
angles φ(i− 1, n), φ(i, n) and φ(i, n+ 1) which follows from the relation

h(i− 1, n+ 1) = h(i− 1, n) − 2
3
l tanφ(i, n) +

1
3
l tanφ(i, n+ 1). (7)

The flowing-down and pulling-from-below processes happen simultaneously so
that the surface of the pile stays always continuous.

Cellular automaton formulation
Next, we combine the two afore-mentioned basic coupling mechanisms with
the avalanching process for individual cells in form of a spatio-temporally
discrete formulation of the entire surface dynamics. Although our basic mech-
anisms are local, it is important to note that they are triggered by the entire
downflow of material, or expressed differently, the starting conditions for an
avalanche at cell i at time n generally depends on the entire downflow that
reached cell i from all cells i = 1, ..., i− 1. In this respect, our model exhibits
a long-range dynamics. We consider the dynamics of the system at the cell
position i and the time n. The system at time n starts at cell 1 at the top de-
veloping an avalanche process that successively moves down to the lowest cell
nmax if the cells i sequentially fulfill the flow conditions. The initial conditions
for the automaton at cell i are h(i − 1, n), h(i, n), h(i + 1, n) together with
φ(i, n) and v(i, n) in the case that cell (i−1) does not perform an avalanching
process at time n. The more interesting case is that an avalanche flows down
from cell i − 1 and, therefore, deposits material onto cell i. Then, cell i is
instantaneously in an intermediate state which we denote by φ+(i, n) and the
height of i−1 is in an intermediate state h(i−1, n′). This state is intermediate
n′ because the downflow along cell i at time n will drag away further material
from cell i−1. In other words, the automaton at position i and time n finishes
the transition of avalanche i − 1 from its state at time step n to time step
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n + 1, excites an avalanche at cell i into a intermediate state n′ and gives a
tilt (+) to cell i+ 1. With this notation and using n′ for intermediate values,
the discrete formulation of one time step of the avalanching process at cell i
is described in an algorithmic formulation by:

φ(i, n′) = φ+(i, n) − av(i, n)∆t (8)
v(i, n+ 1) = v(i, n)

+g
(
sinφ+(i, n) − [b0 + b2v

2(i, n)
]
cosφ+(i, n)

)
∆tχ(v, φ) (9)

with χ(v, φ) given by (5).Introducing the definition

∆h(i− 1, i, n, n′) =
1
3

[
h(i− 1, n′) − h(i, n) − l tanφ(i, n′)

]
,

the resulting heights after one dynamical step can be calculated as follows

h(i, n′) = h(i, n) +∆h(i− 1, i, n, n′) (10)
h(i− 1, n+ 1) = h(i− 1, n′) −∆h(i− 1, i, n, n′) . (11)

The entering angles are determined by the local heights and given by

φ+(i+ 1, n) = arctan ({h(i, n′) − h(i+ 1, n)}/l) . (12)

Given the heights of all cells, all angles are fixed and can be computed from
the height values. As input for the cellular automaton we only need to know
the angle φ(i, n) or φ+(i, n). The other angles follow passively:

φ(i− 1, n+ 1) = arctan ({h(i− 2, n+ 1) − h(i− 1, n+ 1)}/l) (13)
φ(i, n′) = arctan ({h(i− 1, n+ 1) − h(i, n′)}/l) . (14)

The avalanching step of cell i− 1 is then finished. However, the cell i will be
further destabilized by developing an avalanche at cell i + 1. It will deposit
material onto i + 1 and is, therefore, in the intermediate state characterized
by h(i, n′). Now the cell i + 1 is in the tilted state φ+(i + 1, n) and by this
the automaton starts again at position i + 1. The effect of external rotation
ω can be simply included by generalizing (8) via the substitution

−av(i, n) → −av(i, n) + ω . (15)

Parameters and experiments
The mean-field model described above possesses four parameters, namely b0,
b2, a and φs. In the domino model, these parameters might be, at least in
general, dependent on the individual cell of the domino model. Whereas the
maximum angle of rest of a pile φs,mf in the mean field model can be directly
measured in experiments, its local counterpart φs(i) of the domino model
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might slightly exceed φs,mf . The parameter b2 mimics the Bagnold friction
and is related to the density and other specific properties of the material under
concern. It does not depend on the length scale of the cell. From extrapolations
of experiments [9], it follows that b2 is typically of order 0.001. Also the pa-
rameter b0 can be estimated from avalanching experiments along heaps being
basically proportional to the difference between maximum angle of rest φs and
the angle of repose φr, or in detail b0 = tanφd with φd = 1

2 (φs−φr) at v̇ = 0.
The parameter amf in the mean-field model can be extrapolated from exper-
iments performed with slowly rotated drums. In Ref. [10] it has been argued
that amf scales with the length of the granular surface L, amf = amf(L) ∝ 1/L.
Since we introduce the cell size l as an artificial length scale in the domino
model, the parameter a entering in the domino model has to be appropri-
ately adjusted. Specifically, the requirement that e.g. avalanches propagating
through the whole system must possess a duration time being independent of
the cell size l has to be invoked. Extensive numerical experiments performed
with our model suggest a scaling relation

a = a(l) ∝ amf
L2

l2
. (16)

3 Selected Results

Dynamics of a chute flow
As a first example to investigate dynamical properties of granular surface flow
in our domino model, we study the dynamics of granular media on an incline
that can be tilted to arbitrary chute angles φc. Experimentally this can be
realized by a chute setup that allows for the study of stick-slip avalanches,
avalanches with restricted size (velocity of avalanche fronts, growth behavior
in time and interaction with initially imposed surface structures like small
heaps or slope roughness) and even some continuous flow states when periodic
boundary conditions are assumed.

Here, we investigate the chute flow under the condition that the chute
is subject to periodic boundary conditions at its top and its bottom. This
can be realized by putting the granular material on a transport belt running
upwards [16] or by realizing a constant inflow/outflow along the chute. From
our simulations, we infer that under these conditions a hysteretic transition
should be observable if one slowly ramps up and down the inclination angle φc

of the chute bed. Specifically, the important observation is that (1) increasing
the inclination angle triggers the flow to start at φc = φs while (2) slowly
decreasing the inclination angle again leads to a halt of the chute flow not
before φc = φd is reached. The numerical simulation of the mean velocity
v = 1/N

∑N
i=1 v(i, n) being constant for a fixed angle φc are shown in Fig. 3.

The slope has been subdivided into 200 small cells with dynamical parameters
chosen to reproduce the experiment of Jaeger et al. [1]. They correspond to
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Fig. 3. Mean velocity as function of the
chute angle φc. The chute angle is ramped
up and down slowly in steps of 0.1 degrees
every 800 seconds. The slope was divided
into 200 parts with initially uniform incli-
nation. Dotted line agrees with a behavior
v ∝ √

φc − φd.

φs = 27.8◦, φr = 25.6◦, a = 0.5, b0 = tan (φs + φr)/2, b2 = 0.01. The dotted
line in Fig. 3 can be fitted to the analytic form v ∝ √

φc − φd.

Front propagation along a chute
In recent experiments, Daerr and Douady [17] have experimentally shown that
single avalanches created by perturbing a static layer of granular material on
a rough incline can exhibit two distinct types of dynamics: (1) an avalanche
that just propagates downhill or (2) an avalanching front that propagates
downwards and upwards. Here we show that both types of avalanching also
can be recovered in the domino model. Following the experiments of Daerr and
Douady [17], we have performed simulations on chutes with a rough surface
profile of the granular material. We add to the angle φr a normally distributed
part between −(φs − φr)/2 and (φs − φr)/2 being multiplied with a scaling
factor r. Then we ramp up the chute by an additional angle ∆φ into the
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Fig. 4. Space-time plots of two different scenarios of avalanching fronts on chutes
triggered in the metastable region. Grey (black) areas denote where the granular
surface is moving (at rest). In the left panel the chute is tilted from φr = 25.6◦ by
∆φ = 1.02◦, whereas in the right panel ∆φ = 1.3◦ exceeds φd = (φs + φr)/2 and
leads to an avalanche with upwards moving rear front.
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Fig. 5. Space-time plots describing avalanches on chutes inclined at φr = 25.6◦ and
tilted by ∆φ = 0.95◦. The roughness is r = 0.1 times φs − φr = 2.2◦ with φs and
φr taken from the Jaeger experiments [1]. In the left panel the flow is triggered by a
small heap, leading to an avalanche running down the slope that eventually starves
out. In the right panel, we created a dip as initial condition. The tilt of the chute
is too small to destabilize enough material from above, the flow stops without the
material running over the dip.

metastable region. We disturb the surface at one point by adding additional
grains, so that locally φs is exceeded. Depending on ∆φ and the scale of
roughness r we numerically observe various scenarios of avalanches flowing
down the chute with rear fronts either moving downwards or upwards or even
combinations of both as function of time, cf. left panel of Fig. 4. Besides a
surface flow that propagates from its creation point down to the foot of the
pile, also other avalanching structures can be obtained by varying the initial
profile of the heap. In Fig. 5 we show localized structures with forward and
rear fronts moving downhill or uphill that peter out after some time at some
point on the pile. It is essential to note that such backward propagating fronts
do not imply upflow of the granular material. The flow direction is always
downwards, however the starting point of the surface flow can move uphill in
time because of the pulling-from-below mechanism. What are the conditions
for the rear front to move downwards or upwards? Our numerical simulations
indicate the following. If one starts with a pile surface with averaged angle φ
in a no-flow configuration and puts locally a small pile with larger inclination
angle as a perturbation on it, then there is:
(1) no flow if φ < φr

(2) a global flow if φ > φs

(3) a localized flow with rear front moving downhill that might peter out at
some time or not, if φr < φ < φd = (φs + φr)/2 and
(4) a localized flow with a rear front moving uphill if φd < φ < φs.
This seems, at least qualitatively, to agree with the experimental findings of
Daerr and Douady [17]. A quantitative comparison between our results and
those of Daerr and Douady is difficult, because their results are given with
respect to the static height of granular material on their chute. In our model
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that focusses on the dynamical variations of the surface profile, such a static
height is not present by construction. So, the comparison remains qualitative.

One can directly infer from the space-time plots in Fig. 4, that the forward
front velocities are constant whereas the rear front velocities differ depending
on whether they are moving also downwards or upwards. In the first case, the
rear front of the avalanche exhibits as rather rugged dynamics. In the latter
case, the rear front is moving with approximately the same speed as the head
front. This is in contrast to the arguments of Rajchenbach [20] who supposed
a head front moving twice as fast as the rear front; however, it seems to be in
accordance with the observations of Daerr and Douady [17].

Power spectrum of avalanches
As mentioned above, an important feature of the mean-field model (when sup-
plied with additional stochastic forces) is that it can correctly reproduce the
power spectrum of sequences of avalanches detected by Jaeger et al. [1]. Using
the deterministic domino model, it is challenging to see whether the influence
of multiply coupled small scale avalanches can also generate the spectrum
and act similarly as the Gaussian white noise term in the extended mean field
model [14]. This is especially interesting since so far there exists no physical ex-
planation of the statistical properties of the noise in the global model. Within
our model, there are actually two different ways to determine the power spec-
trum. First, one can determine the time evolution of the spatially averaged ve-
locity of the avalanching process, v(n) = (1/I)

∑I
i=1 v(i, n), perform a Fourier

transform of that signal and compute the spectrum Sav(f) ∝ |F [v(n)]|2 Sec-
ond, one can fix a specific cell i and measure the time evolution of the ve-
locity signal at this position, Sloc(f) ∝ |F [v(i, n)]|2. The latter is close to the
method experimentally used in Ref. [1]. In Fig. 6 we compare the experimen-
tal result [1], i.e. the curve that ends at (log10(f) = 1, log10(S(f)) = −4) due
to their experimental resolution, with numerical simulations of Sav(f) (lower
curve for large f) and Sloc(f) from the domino model for a specific set of ap-
propriate parameters. The typical shape of the power spectrum, a peak at low
frequencies that reflects the time between two avalanching events, followed by
broad shoulder and decay behavior that lies between 1/f3 and 1/f4 is present
in all three spectra. Specifically, we find that the decay behavior of Sloc(f)
agrees very well with the experiments. This is, by the way, to our knowledge
the first theoretical explanation of the power spectrum of the avalanching
process based on a purely deterministic dynamics.

S-shaped surface distortion
In half-filled drums rotated with a sufficiently large rotation rate ω, a (hys-
teretic) transition to a continuous surface flow develops. Rajchenbach [19] has
shown that the corresponding surface profile is not flat, but possesses an S-
shaped distortion (e.g. for a rotation rate of 4.5 rpm). This effect can also be
found in our model, see left panel of Fig. 7, indicating that it is an intrinsic
property of the granular flow and not primarily an effect of strong centrifugal
forces that are so far neglegted in our model. To analyze the origin of the
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Fig. 6. The two computed power spec-
tra of a sequence of 60 avalanches versus
the power spectrum obtained from exper-
imental data by Jaeger et al. [1]. Param-
eters are φs = 28.8, b0 = arctan(φd) =
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Fig. 7. Left: S-shaped surface distortion under rotation. Middle: Strength of the
surface distortion measured by the mean square deviation MS from the linear re-
gression line. For increasing rotation rates there is a saturation of the distortion,
for low values, the surface distortion vanishes after 4 sec of rotation time. Right:
Dependence of MS on the time t for three distinct values of b2 showing that the
Bagnold friction triggers the surface distortion in the model.

surface distortion, we set the Bagnold friction term ∝ b2 to small values of
b2 = 0.003 or 0.03 and use 4.5 rpm as a fixed rotation rate. Starting from a
flat surface and turning on the rotation abruptly, the surface typically deforms
initially in an S-shaped way, but becomes flat again after a bigger avalanche
has flowed down. Subsequently, the surface stays at a mean angle of about
φd. Increasing Bagnold friction to a value of b2 = 1.3 the average surface an-
gle increases with increasing rotation rates and, even more important for the
domino model, the surface profile does not loose its initial S-deformation with
ongoing rotation.

To quantify the surface deformation, we introduce the characteristic mea-
sure MS being the sum of the square deviations from the linear regression line
of their surface profile. In the middle panel of Fig. 7, we show that low rota-
tion rates (1 rpm) lead to an initial build-up of a S-surface that breaks down
again to very low values of MS , whereas higher rotation rates (1.7 rpm and 2.4
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rpm) lead to significantly non-flat surface profiles. In the right panel of Fig. 7,
we present the dependence of MS on time for three different values of b2. As
mentioned before, the initial strong increase and subsequent decrease of MS

vanishes for large values of b2. The surface stays S-shaped and the saturation
value of MS increases with b2. Consequently, the effect of the S-shaped surface
deformation is a ramification of the Bagnold friction in our domino model.

4 Continuum Approximation

The domino model presented so far possesses the interesting property that it
can be continuized in space and time and, therefore, be recast in the form of a
system of coupled nonlinear field equations for the spatio-temporal evolution
of the height h(x, t) and the local velocity v(x, t) at the surface on a still
coarse-grained mesoscopic level. Assuming here for simplicity zero external
rotation ω = 0, taking into account that the coupling a(l) scales like 1/l2 with
the cell size, the continuum limit l → 0 and ∆n → 0 can be performed by
replacing

g(i, n) → g(x, t) (17)
(1/∆t)[g(i, n+ 1) − g(i, n)] → ∂tg(x, t) (18)

(1/l)[g(i+ 1, n) − g(i, n)] → ∂xg(x, t) (19)

with g representing h or v. The non-trivial point of such a continuum limit
consists of an adequate treatment of flow down and pulling-from-below mech-
anisms entering in the domino model. A detailed discussion of that will be
presented elsewhere [21]). Here, we just quote the final result given by

∂th = q1
{(

1 + (∂xh)2
)
∂xv + 2v (∂xh)

(
∂2

xh
)}

(20)

∂tv = q2[∂xh+ b0 + b2v
2]χ(h, v) (21)

χ(h, v) = Θ(v) −Θ(∂xh− ss) −Θ(v)Θ(∂xh− ss). (22)

with q1 = −(1/3)amfL
2, being independent of the cell size l, q2 = −g cosφd,

and the local maximum slope of rest ss = tanφs. This system of equations has
to be supplied with initial conditions for the velocity v(x, 0) (often equals zero)
and the height profile h(x, 0) at the beginning and boundary conditions for
the specific experimental setup. Comparative studies of the domino model and
its continuized version show that many properties of the cellular automaton
model such as e.g. the power spectrum of avalanches and the front propagation
in case of localized perturbations along chutes survive the continuum limit.
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5 Conclusion

A cellular automaton model for granular surface flow [11] has been presented
that takes spatio-temporal properties of the surface evolution into account by
coupling small scale avalanches. As discussed in this contribution, the model
provides explanations for several experimentally observed local and dynamical
effects in a unifying way. A more detailed account of our investigation will be
given elsewhere [21].
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Morphological Change of Crack Patterns
Induced by Memory Effect of Drying Paste
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Laboratory of Physics, College of Science and Technology, Nihon University,
Funabashi, Chiba 274-8501, Japan

Summary. We have experimentally found a method to imprint into paste the di-
rection of future crack propagation in the drying process of paste. The rheological
measurement and the drying experiment making morphological phase diagram re-
veal that the plasticity of paste plays an important role in the memory effect.

1 Introduction

In this work, we have two purposes to do our experiments. First, we are
interested in the complex rheology of soft matter, especially the memory effect
of paste, from the scientific point of view. Second, we want to find a method
to control crack pattern formation in order to avoid serious damages in the
field of industry.

To achieve both purposes, we perform drying experiment of paste. We
prepare paste by mixing powder with water, pour the mixture into the acryl
container, and dry it at 25oC and 30% humidity. Usually isotropic and cellular
crack patterns appear as the paste is dried [1]. Here, we propose a method to
control future crack propagation which appears in the drying process.

2 Emergence of Anisotropic Crack Patterns

As our first experimental result, we obtain the anisotropic crack pattern as
is shown in Fig. 1. Here, we use Calcium Carbonate as powder, and prepare
paste by mixing 3000g of powder with 1500g of distilled water. The diameter
of the circular container is 500mm. As soon as we pour the mixture into the
container, we oscillate the container horizontally in angular direction for 60sec
to spread the mixture homogeneously inside the container. After drying the
mixture for 3 days, we get the radial crack pattern as is shown in Fig. 1(a).

At first, we thought that the radial crack pattern is induced by the bound-
ary effect of the circular container, but soon we realized that our idea was
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Fig. 1. Anisotropic crack patterns [2] (a) Radial crack pattern which appears when
the container is initially oscillated in an angular direction (b) Lamellar crack pattern
which appears when the container is initially vibrated in one direction

wrong. In the next experiment where we vibrated the container horizontally
in one direction, we obtain the lamellar crack pattern as is shown in Fig. 1(b).
Here, the direction of these anistropic crack is perpendicular to the direc-
tion of the initial external vibration. That is, these anistropic crack patterns
are induced by the memory of paste on the direction of the initial external
vibration, and not by the boundary effect [2].

Fig. 2. Time evolution of lamellar crack pattern formation [3]

Figure 2 shows the time evolution of the lamellar crack formation. At the
first stage of the crack formation, straight cracks propagate along the direction
perpendicular to the direction of the initial external vibration. As time goes
on, new cracks are formed between lamellar cracks until the spacing between
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lamellar cracks becomes about the thickness of the mixture. At the final stage,
long rectangular fragments break themselves into shorter pieces and we get
the brick structure [3].

3 Rheological Measurement

To investigate the feature of powder of Calcium Carbonate, we perform mi-
croscopic observation using Scanning Electron Microscope (SEM), and find
that the shape of particles is isotropic and rough. Since the sizes of particles
range between 0.5 and 5µm, the rheology of the mixture of powder and water
changes drastically as a function of the solid volume fraction, i.e., the volume
fraction of powder in the mixture, denoted by ρ.

Thus, we perform rheological measurement of the mixture. Figure 3 shows
the value of the yield stress σY as a function of the solid volume fraction ρ.
There are two vertical lines in the figure. Below ρ=25% which corresponds
to the Liquid-Limit (LL) line, the value of the yield stress vanishes and the
mixture can be regarded as a Newtonian viscous fluid. Above ρ=54% which
corresponds to the Plastic-Limit (PL) line, the mixture is called as semi-solid,
and we cannot mix powder with water homogeneously due to the lack of
enough water.

Fig. 3. Yield stress σY as function of solid volume fraction ρ [2]. The dotted and the
dashed-and-dotted vertical lines correspond to the Liquid-Limit (LL) line (ρ=25%)
and the Plastic-Limit (PL) line (ρ=54%), respectively.

Between LL and PL lines, the mixture has a finite yield stress with plas-
ticity and the value of the yield stress increases drastically as the value of
the solid volume fraction increases. Thus, in the following experiments, we
systematically change the value of the solid volume fraction ρ.
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4 Morphological Phase Diagram of Crack Patterns

Now, we investigate the condition when paste can remember the direction
of the initial external vibration. We consider that there are two important
parameters in our experiments, one is the solid volume fraction ρ, and the
other is the strength of the initial external vibration. Here, the strength of
the initial external vibration is expressed as 4π2rf2, where r represents the
amplitude and f denotes the frequency of the initial external vibration. In
the following experiments, we set the amplitude r of the initial vibration as
15mm, and change the frequency f from 20 to 60rpm. As containers, we use
square acryl boxes with sides of 200mm. We fix the mass of powder in the
mixture as 360g in each container, so that we can equalize the final thickness
of mixture with different solid volume fraction when they dry up and thus
we can equalize the characteristic sizes of final crack patterns. Here, the final
thickness of the mixture becomes about 7mm.

First, we present the dependence on the solid volume fraction ρ in Fig. 4
by setting the value of the frequency f as 40rpm and changing the solid
volume fraction ρ. When the value of ρ is low (ρ=28%), we only get the
isotropic and cellular crack pattern. As the value of ρ increases, the pattern
changes into lamellar crack pattern (ρ=41%). Note that the direction of the
lamellar crack pattern is perpendicular to the direction of the initial external
vibration, denoted by the arrow in the figure. As we increases the value of
ρ further, however, we again get the cellular crack pattern, but this change
can be understood in the morphological phase diagram which will be shown
below.

Fig. 4. Dependence on the solid volume fraction ρ. Here, we set the value of the fre-
quency f as 40rpm, and the corresponding strength of the initial external vibration
becomes 0.26m/s2.

Next, we present the dependence on the frequency f of the initial external
vibration in Fig. 5 by setting the value of the solid volume fraction as ρ=41%,
and changing the frequency f . When the value of f is low (f=20rpm, i.e., the
strength of the initial external vibration is 0.07m/s2), we only get the isotropic
and cellular crack pattern, but, as the value of f increases, the pattern changes
into lamellar crack pattern (f=40rpm, i.e., strength of 0.26m/s2).
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Fig. 5. Dependence on the frequency f of the initial externalvibration. Here, we set
the value of the solid volume fraction ρ as 41%.

All these results described above are summarized by the morphological
phase diagram of crack patterns, shown in Fig. 6, as a function of the solid
volume fraction ρ and the strength 4π2rf2 of the initial external vibration. In
the left region of LL line, we only obtain isotropic and cellular crack pattern.
The region between LL and PL lines is divided, by the solid and the dashed
curves, into three regions, A, B, and C.

Fig. 6. Morphological phase diagram of crack patterns as a function of the solid
volume fraction ρ and the strength 4π2rf2 of the initial external vibration [2]. Open
circles denote isotropic cellular crack patterns and solid squares denote lamellar
crack patterns. Solid and open triangles denote combinations of isotropic cellular
crack patterns and lamellar crack patterns. The region between the LL dotted line
and the PL dashed-and-dotted line is divided, by the solid and the dashed curves,
into three regions, A, B, and C. Only in region B between the solid and the dashed
curves, lamellar crack patterns can appear.
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The solid curve in Fig. 6 which divides regions A and B is drawn by
equalizing the value of the shearing stress σ induced by the external vibration
to that of the yield stress σY shown in Fig. 3. In region A below the solid curve
only isotropic and cellular crack patterns appear, while in region B above the
solid curve we obtain lamellar crack pattern. That is, when the strength of
the external vibration is larger than that of the yield stress of the paste, the
initial external vibration causes shear movement of paste and the memory is
kept inside the paste due to its plasticity.

However, in region C above the dashed curve we again get only isotropic
and cellular crack patterns. This change is explained by checking the fluidity
of the mixture at the initial vibration. In region C, some surface waves or tur-
bulent flows appear during the initial vibration. This turbulent flow destroys
the microscopic memory inside the mixture, and thus, only isotropic cellular
crack patterns appear in region C.

Recently, theoretical approaches based on the elastic-plastic deformation
of paste with a nonzero yield stress are proposed to explain the memory effect
of a paste to an external mechanical force [4] and the formation of resultant
anisotropic crack patterns in the drying process of a paste [5].

5 Concluding Remarks

We experimentally found that we can imprint the direction of an external
vibration into paste by applying shear movement to the paste, and the memory
in the paste is visualized as the morphology of anisotropic crack patterns which
appear in the drying process. We consider that our experimental results can
be applied to industry, because, if we can control the direction in which cracks
will propagate in the future, we make plans to avoid accidental serious damage.
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Summary. In suspensions with charged particles, electrostatic forces and hydro-
dynamic interactions are both important to describe the system. We study different
models of hydrodynamic interaction for monopolarly charged particles in a nonpolar
liquid. In this case, there is no screening of the Coulomb repulsion, so the repulsion
between all pairs must be taken into account. For some selected systems we examine
different models of hydrodynamic interaction, and we show that anomalies and un-
physical behaviour in many cases result. We propose a way to model the interaction
which does not suffer from these problems.

1 Introduction

Suspensions appear in many different forms and settings, and the particles as
well as the solvent may have different properties. In order to simulate such
suspensions, the particles as well as the fluid must be handled in some way.
Depending on the system in question one among several methods may be the
preferred one. For systems with rather few particles, one might choose an
Euler-Lagrange method, meaning that the Navier-Stokes equations are simu-
lated on a grid in the Euler-picture, whereas the particles are followed explic-
itly - a lagrangian picture. There exist many varieties of these rather detailed
methods. A different approach is to follow only the particles explicitly. The
effect of the solvent can be incorporated by various models of hydrodynamic
interaction. This allows for simulation of systems with many more particles
than for the Euler-Lagrange methods.

In this study we examine how various models of hydrodynamic interaction
work for a charged suspension. The motivation for studying this system stems
from methods in coating processes [1]. Those system contain in reality so many
particles that a too detailed hydrodynamic modelling is neither wanted nor
possible. Interactions are often modelled as superposition of two-particle in-
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teractions, possibly also of three-particle and more-particle interactions. How-
ever, it turns out that for systems of many particles, these methods may result
in unphysical behaviour, which we demonstrate for certain test systems, em-
ploying different models of hydrodynamic interaction. In particular for denser
system these problems are evident.

Based on our observations we conclude that extreme care must be taken
for denser systems. We propose a way to mend the problem, and tests on the
same systems show that our method does not suffer from the same problems.

2 Models of Hydrodynamic Interaction

Every suspended particle experiences forces and interacts with the solvent.
Assuming that the motion of the fluid is governed by the linear Stokes equation
[2] and denoting the external force and torque on a single particle with F
and T, respectively, the motion of the particle is governed by the following
equation (

v
ω

)
=
(

µtt µtr

µrt µrr

)(
F
T

)
. (1)

Here, the particle’s velocity and angular velocity are denoted by v and ω,
respectively. The matrix is called the mobility matrix, which contains the
effect of the fluid on the particle, whereby one assumes that the overdamped
limit is valid. For a single particle in an infinitely extended, resting fluid, the
mobility matrix is diagonal: µtt= 1

6πηaI for the translation, and µrr= 1
8πηa3 I

for the rotation. Here, I denotes the unity matrix. The radius of the particle
is a and the viscosity of the fluid is η. As soon as more than one particle is
considered, the motion of particles is coupled, and the mobility matrix grows
in complexity. The structure of the equation of motion is maintained in the
form of Eq. (1) when the velocity vector v is understood to contain the velocity
of all particles sequentially, and similar for angular velocity, force, and torque.
For two particles, that would mean that the coupling of their translational
motion and the forces acting on them takes the form(

v1

v2

)
=
(

µtt
11 µtt

12

µtt
21 µtt

22

)(
F1

F2

)
. (2)

When it comes to actual values for the entries in the mobility matrix, there
exists a whole range of models of increasing complexity. In the following we
present some of these, which we subsequently use in test simulations.

2.1 Oseen Tensor

For simplicity, we present the effect on translational coupling between two
particles first in the simplest possible setting. Assuming that there is a single
point particle present, upon which the force F is acting, the resulting flow
field u in distance r to the particle is
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u(r) =
1

8πη

(
1
r
I +

rr
r3

)
· F = G(r) · F , (3)

where G is the Oseen tensor [2]. The simplest possible interaction model is
to calculate the velocity field of each particle individually and to sum up all
contributions. Thus, the velocity of particle 1 in a system of N particles is
given by

v1 =
F1

6πηa
+

N∑
i=2

ui =
F1

6πηa
+

N∑
i=2

G(r1 − ri) · Fi . (4)

This model was introduced by Kirkwood and Riseman [3]. The resulting mo-
bility matrix is given by

µtt
ii =

1
6πηa

I and µtt
ij = G(ri − rj), i �= j . (5)

2.2 More Accurate Two-Particle and Many-Particle Models

The simple model of Kirkwood and Riseman fails in reproducing accurate
mobilities for suspensions. This can be seen e.g. by the fact that the resulting
mobility matrix is not positive definite for particles close to each other [4].
However, for two particles, a solution of the interaction problem exists up to
arbitrary order and is presented by R.B. Jones and R. Schmitz [5]. In their
paper, the mobility matrices µii and µij are presented in form of a series
expansion in the particle distance r. For identical particles, explicit results up
to an order of r−20 are given.

Although the Jones-Schmitz calculations are accurate for two particles and
the Stokes equation describing the fluid motion is linear, the superposition of
two-particle interactions does not lead to a valid mobility matrix. The reason
is, that the superposition of two-particle solutions does not fulfill the no-slip
boundary condition on the particles’ surface in a many-particle system.

Mazur and van Saarloos calculated in principle many-particle interactions
[6]. Expanding the mobility matrix again in a series of particle distances r,
the terms up to r−3 only contain two particle interactions identical to those of
Jones and Schmitz. Explicit results are given up to r−7, where three particle
interactions (of order r−4 and r−6) and four-particle-interactions (of order
r−7) occure.

Another widely used model including many-particle hydrodynamic inter-
actions is proposed in [7]. However, in case of particles beeing close to each
other, this model again employs two-particle interactions.

3 Simulation of Repulsive Particle Systems

In the following we consider systems of identical particles carrying all the
same electric charge and beeing suspended in a nonpolar liquid. There is no
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Fig. 1. (a) Four equally charged particles in symmetric positions are shown. On
each particle the only(II-IV) or longer arrow(I) represents the total electrostatic
force acting on the particles. Each of these forces gives a component to the velocity
of particle I, which are shown as dotted lines on I. Schematically, the sum of the four
velocities is shown to point in the opposite direction of the actual force of the particle.
(b) By considering each pair interaction separately, only the electrostatic force from
one neighbour at a time is used when calculating the hydrodynamic interaction. This
ensures a resultant velocity in the same direction as the total electrostatic force.

screening of the Coulomb repulsion, so the repulsion between all pairs must
be taken into account. Evidently the particles repel each-other. However, hy-
drodynamic interaction between particles tends to slow this repulsion down.
For a few selected systems we examine the different models of hydrodynamic
interaction described above, and we show that anomalies and unphysical be-
haviour in many cases result. We propose a way to model the interaction
which do not suffer from these problems.

The idea of the test setups is illustrated in Fig. 1. The four particles in
Fig. 1(a) all repel each-other. Due to symmetry one sees directly that the to-
tal repulsive force on each particle is of equal size and pointing radially away
from the centre. This setup is chosen for two reasons. Firstly, all particles
experience equivalent surroundings, meaning that it suffices to show results
for one particle. Secondly, it is intuitively clear that the hydrodynamic inter-
action must act to slow down the expansion as compared to the case without
interaction. However, if the interaction is over-estimated the particles do not
only slow down, they may effectively attract each-other, which is clearly un-
physical.

We show results in three dimensions(3D). The numbers of particles that
we have chosen are: 4, 6, 8, 12, and 20, placed in the corners of a tetrahe-
dron, hexahedron, octahedron, dodecahedron, and icosahedron, respectively.
Again, this is for simplicity in the presentation, since these forms are perfectly
symmetric. Results are shown in Fig. 2, where the x-axis is the distance r be-
tween the centres of two neighbouring particles in units of the particle radius
a. The y-axis is the calculated velocity of the particles radially outwards nor-
malized with respect to the velocity the particle would have if there were no
hydrodynamic interaction (i.e. the total force over stokes friction, v0 = F

6πηa ).
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All the examples in Fig. 2 show normalized velocities that are smaller than
unity. This means that in a sense the hydrodynamic interaction is shown to
act in correct direction, that is to say the interaction slows the particles down.
For particle distances over some threshold, roughly at least one particle radius
between the particles that are closest together, the methods of Kirkwood-
Riseman, Jones-Schmitz, and Mazur-van Saarloos show the same results: a
substantial slowing down of the particles. For smaller distances, the interaction
is clearly over-estimated by the methods since they all lead to attraction
of the particles. One might at this point argue that this is only a result of
the somehow constructed particle setup. To check this we have performed
simulations of dense system with many particles which are placed randomly
in space. These systems we also have followed in time, and the particles have
indeed attracted each-other in some cases: they have imploded.

The failure of the hydrodynamic modelling which we have demonstrated
is severe and leads to very unphysical events. It seems that the superposition
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Fig. 2. As a function of particle distance (centre-centre) the resulting velocity of
the particles with hydrodynamic interaction is shown. The velocity is normalized as
described in the text. Negative values mean that the particles attract each other.
This can be observed in all cases for short inter-particle distances when standard
hydrodynamic interaction is included. Our proposed method (solid lines) does not
show this unwanted feature.
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of two-particle interactions, or few-particle interactions is not permitted for
many particles. One way to get around this problem may be to only consider
the electrostatic repulsive force between each pair of particles, and then cal-
culate the contribution to the velocity based on this force and hydrodynamic
interaction for this pair separately. In all the setups shown in Fig.2, we tested
out this idea. By using the pairwise interaction of Jones and Schmitz we se
that no artificial attraction results(solid curves). We note that whether this
method gives the physically correct values is not hereby proved, but we find
the idea is promising.

4 Conclusion

We have studied aspects of suspensions with monopolarly charged particles.
The effect of hydrodynamic interactions is generally recognized to be impor-
tant, but its modelling in the case of many particle is highly non-trivial. We
considered the situation were the solvent itself is nonpolar so that the coloumb
interaction is long-ranged. This leads to rather strong electrostatic interaction,
but the motion of the particles are expected to be slowed down due to the
hydrodynamic interaction between the particles. We presented some standard
interaction models and tested their effect on some particular symmetric par-
ticle setup. These setups were chosen because one can more easily, based on
physical intuition, distinguish between physical and unphysical behaviour.

It turns out that all the interaction models that are commonly used lead
to attraction between the (equally charged!) particles whenever the distances
between the particles are too small. We conclude that in particular for dense
systems this method cannot be used. Whether they can be used for less dense
system for many particles is hereby not proved correct or wrong, but we have
observed similar extreme anomalies for simulations of systems with many par-
ticles, and we claim that extreme care must be taken if one choses to do so.
We do not give the ultimate solution to the problem, but we propose an idea
that we find very promising: by only taking the pairwise electrostatic repul-
sion into account when calculating the hydrodynamic interaction between the
particles, the anomalies do no longer occur for the test systems in this study.
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Summary. The particle discharge process from a vertical open-top pipe with a
capillary outlet reveals some exceptions to the common belief that the outflux os-
cillation results solely from dynamic arching of beads at the orifice and that the
outflux is not sensitive to the filling height. With beads of a particular size range,
the outflux fluctuates greatly with time and the bulk dense granular flow in the pipe
shows stop-and-go motion when the filling height is above a threshold. When the
filling height falls to the threshold, led by a transitional stage, the outflux and the
bulk movement become stable. The dropping velocity variation of the upper surface
is measured to study the bulk motion in the pipe. With a heuristic theory, we find
that the granular compaction and interstitial air pressure effect are responsible for
the stop-and-go oscillation and the transitional behavior.

PACS number(s): 45.70.Mg, 81.05.Rm, 45.70.Vn

1 Introduction

Due to its complex dynamic behaviors, the physics of granular matter has at-
tracted the attention of scientists and engineers in various fields [1–4]. Granu-
lar systems consist of particles interacting by inter-particle contacts and they
exhibit many interesting phenomena, including density waves, surface pattern,
segregation etc. Among them, the problem of guided flows in tubes, pipes, or
chutes is of crucial importance for many industrial processes. Experiments,
cellular-automata and molecular-dynamic simulations have been carried out
to study the outflux behavior of granular material from pipes or silos. But
some of the underlying mechanisms are still not clear.

Here, two previously unreported observations in an open-top pipe with
capillary outlet are communicated: (i) When the filling height is far above a
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threshold, the outflux fluctuates with time and the bulk condensed granular
flow above the bottleneck shows uniform stop-and-go motion. (ii) When the
filling height falls below the threshold, led by a transitional stage, the outflux
and the bulk movement become smooth. We also develop a heuristic model
taking account of the granular compaction and interstitial air pressure effect
to interpret the above behavior.

This paper is organized as follows: In Sec. II, we briefly review the recent
results on granular pipe or silo flow. Sec. III presents the results of our exper-
iment. In Sec. IV, the heuristic model for analyzing the experimental results
is presented. Finally, conclusions are given in Sec. V.

2 Granular Pipe Flow and Outflux Oscillation

The outflux Q from a hopper or silo is related to many factors. The outlet
width d and the inclination angle θ for the converging hopper wall (as shown in
Fig.1a) play an important role. The experiment of Beverloo et al. [5] revealed
that Q ∼ d5/2. When the size of particles is small (< 400µm), the flux is far
below Beverloo’s prediction value due to the interstitial air effect. Computer
simulations of Khelil [6] show that θ ≈ 35◦ is a typical transition point (θ is
the angle of the recline wall to the horizontal). The outflux Q does not change
significantly when θ is smaller than 35◦, whereas it increases dramatically
when θ exceeds 35◦.

Experiments and simulations [7–9] show that the particles usually do not
flow uniformly. Instead, they flow in the form of density waves. Experiments
of Wu [10] and Veje [11] found that the counter flow of air can induce the

Fig. 1. The outflux ticking experimental setups of Wu et al [10] (a) and Veje et
al [11] (b).
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ticking of outflows in a closed-top hourglass. The oscillation motion results
from the coupling between the flow of sand and convection of air through
the sand matrix. When there is a counterflow, they observe ticking depending
sensitively on the grain size and distribution. But the ticking disappears when
the chamber is open to the air. Their experimental setups are as shown in
Fig.1.

It is usually thought that the outflux of a silo or hopper fluctuates due
to the dynamic arching at the orifice when the effect of interstitial air is
neglectable. Because the arching effect is not sensitive to the granular pressure
[15], it is usually thought that the outflux is not sensitive to the filling height
[17].

In 1998, Moriyama et al [12] proposed an experiment with a flask attached
to the bottom of the granular pipe and a flow meter attached to the outlet of
the flask. When the outlet of the flask was fully open, granules could fall rather
freely and there are no visible density waves. As the bottom was gradually
closed, the pressure in the flask increased, and density waves appeared.

It is clear that the appearance of density waves in the above mentioned
experiments is related to the effect of interstitial air. However, density waves
can emerge without air. The friction between the particles and the pipe, the
dissipative collisions between particles and an environmental electromagnetic
field can also induce density waves in the pipe. In general, when the granular
particle’s diameter is smaller than 400µm, the air effect can not be ignored in
granular pipe flow. Chen et al [3] studied the flow of granular nickel particles
moving down vertical pipes from a hopper in the presence of a local, horizontal
AC electric field. For low V (< Vc = 2.0kV ), a downward-moving interface
exists between the hopper and the electrodes separating a high-density particle
region in the lower part from a low-density region in the upper part. For high
V(> Vc), no interface exists and the whole region between the hopper and the
electrodes are densely filled.

In 1996, Raafat et al [13] studied the granular density waves in a vertical
glass tube. They discovered that particles were in bulk freely falling when the
granular density is low. When the granular density is high, the particles were
in slow flow. In between there are density waves. In 1999, Aider et al [14]
studied the density waves and stop-and-go effect in detail. They investigated
the granular flow with different humidity. In Raafat or Aider’s experiments,
the upper part (hopper) and the lower part (valve) of the pipe have great
influence to the the flow structure and dynamic behavior of the granular flows
in the pipe.

3 Experimental Observations

Our experiment is carried out in a vertical glass tube without any hopper on
the top. The particle flow in the tube and the outflux show some peculiar
behaviors different from the experimental observations described above.
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Fig. 2. Outflux oscillation, (left) thin flow and (right) thick flow.

The glass tube is of internal radius R = 2.5mm and length L = 500mm
with a radius r = 0.75mm capillary outlet at the bottom. The typical length
of the capillary part is hc ≈ 40mm. Several granular materials were used
including glass beads and sand with diameter dg = 0.1 − 0.28mm, dg =
0.28 − 0.40mm, and dg = 0.1 − 0.40mm. With these granular materials, we
found qualitatively similar behavior. For convenience, we concentrate on dg =
0.1 − 0.4mm glass beads throughout this paper. The outlet size is chosen to
be greater than four times of the beads’ diameter, so that dynamic arching is
not easy to form at the outlet [15]. The granular flow is not stuck even though
outflux oscillation is found in the experiment with the above granular species.
However, when dg is greater than 0.45mm, the flow is stuck; and when dg is
smaller than 0.1mm, the flow is smooth.

The flow is initiated by opening the bottom outlet of the pipe after the pipe
is fully filled with particles. The outflux from the capillary outlet fluctuated
with time when the filling height h0 was far above a threshold of about 50mm.
As shown in Fig.2, a periodic flow phenomenon is observed: a thin flow is
always followed by a thick flow. The maximum size difference could be 80%,
which is much greater than the outflux oscillation due to dynamic arching
(10% − 15%). The fluctuation was quite rhythmic with a frequency of about
3Hz. This is also different from random oscillation in dynamic arching case.
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Fig. 3. Upper surface dropping velocity variation at the first stage (0 ∼ 8s).

Fig. 4. Transition from the stop-and-go motion to a stable motion.

Simultaneously, the dense bulk movement above the bottleneck showed
uniform stop-and-go motion. The outflux was thick when particles flowed,
while a thin flow corresponded to the stopping of the bulk above the bot-
tleneck. It is suitable to use the dropping speed of the upper surface as a
representation of the bulk motion. We placed a ruler beside the pipe with the
minimum scale of millimeter (See Fig.2). A digital camera was used to capture
the movement of the granular upper surface with the frequency of 24 frames
per second. The position of the surface was read afterwards frame by frame.
With the position data, we determined the moving velocity.

As shown in Fig.3, the velocity varies periodically with a well-defined pe-
riod T . Each T can be separated into two different phases, the active phase Ta

(when the particles flow) and the inactive phase Ti (when the particles stop
flowing). The peak velocity is 7.2mm/s in Ta, corresponding to a maximum
flux of Fmax ≈ 140mm3/s. Taking Ti into account, the mean mass flux is
F ≈ 35mm3/s.

This stop-and-go motion persisted until the filling height of particles
dropped to a threshold (h0 ≈ 50mm). The movement gradually became
smooth with a transition as shown in Fig.4. Firstly, the speed began to fluc-
tuate more frequently at a lower peak velocity 1.2mm/s. And the outflux
oscillates with the same rhythm. Close inspection of the variation revealed



198 Qing-Song Wu et al.

that Ti gradually decreased to zero. At h0 ≈ 50mm, the velocity began to
oscillate around V ≈ 0.9mm/s with no stagnant period (Ti = 0). Finally,
the motion became stable at V ≈ 0.6mm/s with only small variations, cor-
responding to a mean outflux F ≈ 12mm3/s, which was much smaller than
that in the stop-and-go phase.

It must be mentioned that no visible air bubble was observed. However, the
effect of interstitial air cannot be ignored, since the typical grain size (fraction
in millimeter) corresponds to a situation where the pressure fluctuations of
the interstitial air are likely to be comparable with the hydrostatic pressure of
the grains. So, we must take into account the effect of interstitial air pressure
variation in order to develop a sound theory to understand the above behavior.

4 Theory and Analysis

In this part, we propose a heuristic theory considering the granular com-
paction and interstitial air pressure effect. Unlike fluids, the static pressure
within granular material will not increase linearly with depth h as described
in Archimedes’ law: P (h) = ρgh. It will saturate to a maximum when h is
above a threshold because of the container wall’s friction.

Using the arguments put forward by Janssen [16], the horizontal stress
σr is proportional to the vertical stress σz: σr = Kσz = Kp, where K is
the parameter characterizing the conversion of the vertical stress into the
horizontal stress due to the imbricate nature of the particles. So the frictional
stress at the wall is σrz = µwσr = µwKp where µw is the friction coefficient
for particle-wall contacts. The force equilibrium equation for the slice dh at
depth h is:

ρgπR2∂h = πR2∂P + 2πRµwKP∂h (1)

Here ρg(≈ 2.5g/cm3) is the density of the glass. So we get an equation
for the static pressure P (h) acting on a slice dh at depth h starting from the
upper surface:

P (h) = ρggλ[1− exp(−h/λ)], (2)

with a characteristic height λ = R
(2µwK) . For rolling friction, µw = 0.1. And

K is usually set to 0.3. So Eq.(2) shows that P (h) ≈ ρggh when h� λ, while
it saturates to ρggλ when h� λ. There is a transitional region near h = λ.

We note that the pressure difference on the upper and lower surface of
each slice can be written as

πR2dP =
∂P

∂h
πR2dh = ρggπR

2e−h/λdh (3)

The friction by the lateral wall is
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dFfrict = 2πRµwKPdh = ρggπR
2[1 − e−h/λ]dh (4)

Comparison of these two actions shows that the pressure difference is very
small when h� λ. We note λ ≈ 4cm. So it is suitable to use the hydrostatic
pressure as the dynamic pressure to calculate the friction, while we ignore the
pressure difference in the flowing phase. So the acceleration of the slice can
be written as

a(h) = g · Γ (h) = g − 1
ρgπR2

∂Ffrict

∂h
= g − P (h)

ρgλ
(5)

Substituting Eq.(2) into Eq.(5) , we get the reduced acceleration

Γ (h) = exp(−h/λ), h ∈ [0, h0] (6)

Strictly speaking, the above equation is true only at the very moment of the
beginning of the downward motion. We suppose that the dynamic coefficient
of friction is identical to the static one. Eq.(6) shows that Γ (h) decreases
with depth h so that the lower part in the pipe is less accelerated than the
upper part. This makes the bulk material in the pipe more compact during
the flowing stage [18]. This compact effect is most significant at the capillary
part. Due to the radius change in the pipe (R → r) and the upward part of
the wall’s normal force, Γ (h) is greater for the slice at the position S1 where
the pipe begins to shrink in contrast with that of the slice at the outlet S2.
This leads to a net accumulative flux f into the capillary part.

4.1 Stop-and-Go Motion and the Outflux Oscillation

When an accumulation of ∆V occurs, the air at the capillary part is com-
pressed slightly, resulting in a small change ∆P1 in interstitial air pressure.
For an isothermal process,

∆P1 ≈ P0 · ∆V
φV1

(7)

where P0 is the environmental air pressure, V1 ≈ 1.5mL is the volume of
the capillary part and a small section above S1, φ is the volume fraction of
air. Assume that the accumulative flux f is constant. ∆V increases linearly
with time. When the pressure at S1 equals the maximum granular packing
pressure, the flow is hindered, ∆P1 stops increasing and consequently Ta ends.
In the Ti phase, ∆P1 decreases due to the air current q passing through the
granular packing:

d∆P1

dt
= P0 · q

φV1
. (8)

Assuming that the pressure profile is linearly distributed between the Pmax

site S1 and the upper/bottom surfaces, we can use Darcy’s law:
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q = −κπ
η

·∆P1 · ( r
2

hc
+

R2

h0 − hc
) (9)

where κ is the permeability of the bead packing, η is the viscosity of the
air and hc(≈ 40mm) is the typical length of the capillary part. Substituting
Eq.(9) into the pressure-decreasing equation and making integration, we have

∆P1(t) = ∆Pmax
1 · exp(− t

τ
) (10)

with τ denoting the characteristic time for the pressure attenuation

τ =
ηφV1

P0πκ( r2

hc
+ R2

h0−hc
)

(11)

Thus, in the inactive phase Ti, the pressure difference in the capillary part
vanishes exponentially, and Ti ≈ τ . The permeability κ ≈ 4.0 × 10−8cm2 for
the bead size we used [19]. The viscosity of air is 2× 10−4P and P0 is 1 atm.
This leads to τ ∼ 10−1s, in agreement with the experiment observations.

∆Pmax
1 is the maximum of ∆P1 occurring at the point when the particles

are hindered from falling. It can be estimated from Eq.(2) that

∆Pmax
1 = ρggλ ≈ 10−2atm (12)

From Eq.(7), we can also get

∆Pmax
1 ≈ P0 · ∆Vmax

φV1
(13)

so ∆Vmax ≈ 1.8mm3. It is about 1/7 of the total outflux in an oscillation
period T. That is, in an oscillation period, 6/7 of the total outflux is discharged
in the active phase Ta, whereas the other 1/7 rests at the capillary part and
then is discharged in the inactive phase Ti. This results in the thick flow in
Ta and a thin flow for Ti.

4.2 Transitional Behavior

To understand the appearance of transition in the ending period of the dis-
charge process, we calculate the characteristic height in Eq.(2): λ = R

2µwK ≈
4cm for the granular packing above hc. When the filling height h0 falls be-
low hc + λ, the required ∆Pmax

1 decreases with h0. So ∆Vmax and time Ta

decreases, and therefore the maximum upper surface velocity also decreases.
Another effect of small h0 is that, the characteristic air pressure attenua-

tion time τ will decrease rapidly as h0 increases (see Eq.(11) and Fig.5). So
Ti decreases to zero, and the flow becomes smooth. As shown in Fig.5, τ de-
creases to zero at h0 ≈ 50mm, so that the characteristic threshold should be
between hc and λ+hc, in qualitative agreement with our experiment. And we
conclude that the reason for the disappearance of ticking behavior in Wu [10]
and Veje’s [11] open-top hourglass experiment is that their granular packing
height is small.



Particle Discharge Process from a Capillary Pipe 201

Fig. 5. The variation of τ with h0, calculated from Eq.(11).

5 Conclusion

Our experimental and theoretical studies on the particle discharge process
from an open-top capillary pipe reveal some exceptions for the common belief
that the oscillatory motion results solely from arching of beads at the orifice
and that the outflux is not sensitive to the filling height. When the filling
height is above a threshold, the outflux fluctuates greatly with time and the
bulk dense granular flow above the capillary shows stop-and-go motion. When
the filling height falls to the threshold, led by a transitional stage, the outflux
and the bulk movement become stable.

We measure the dropping velocity variation of the upper surface. And
with a heuristic theory, we show that the granular compaction and interstitial
air pressure effect are responsible for the behavior. The prediction using our
theory agrees well with the experimental observation. We also conclude that
the transitional filling height threshold is between the typical capillary part
height hc and the characteristic height of granular static pressure λ+ hc.

This work is supported by the National Natural Science Foundation of
China (Grant No. 10274074, 10532060, 10404025), the National Basic Re-
search Program of China (Grant No. 2006CB705500), and the Australian
Research Council through a Discovery Project Grant.
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Transport in Biological Systems
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Summary. Motor proteins are key players in intracellular transport processes and
biological motion. Theoretical modeling of these systems has been achieved by the
use of step processes on one-dimensional lattices. After a comprehensive introduction
to the total asymmetric exclusion process and some analytical tools, we will give a
review on different lines of research attracted to the aspects of this systems. We
will focus on the generic properties of a coupling between the exclusion process and
Langmuir bulk kinetics that induce topological changes in the phase diagram and
multi-phase coexistence.

1 Introduction

The identification of motion as a manifestation of biological life dates back
to the earliest records of science itself. The Greek physician Erasistratos of
Ceos studied biological motion on the length scale of muscles already in the
3rd century BC. He imagined muscles to function in the way of a piston
contracting and relaxing from pneumatic origin. It was not until the invention
of the microscope in the 17th century by van Leeuwenhoek that this theory
could be devalidated with Swammerdams observation that muscles contract
at constant volume.

Concerning biological motion on a microscopic scale, scientists favored
concepts of “living forces” for many centuries until this was finally ruled out
by the observations of the Scottish botanist Robert Brown in 1828 who found
all kind of matter to undergo erratic motion in suspensions. A satisfactory ex-
planation was provided by Einstein in 1905 by the interaction with thermally
fluctuating molecules in the surroundings. However, the molecular details re-
mained unknown in the fog of low microscope resolution. Modern experimen-
tal techniques [1] have lately revealed the causes of sub-cellular motion and
transport.
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Today we know that every use of our muscles is the collective effort
of a class of proteins called myosin that “walk” on actin filaments. Gen-
erally spoken, we refer to all proteins that convert the chemical energy of
ATP (adenosine-triphospate) in a hydrolysis reaction into mechanical work as
molecular motors. These motors are highly specialized in their tasks and occur
in a large variety: ribosomes move along mRNA strands while translating the
codons into proteins, dynein is responsible for cilia motion and axonal trans-
port, and kinesins play a key role in cytoskeletal traffic and spindle formation
(for an overview see [2] and references therein).

While the exact details of the molecular structure and function of motor
proteins [3] remain a topic of ongoing research, on a different level attention
was drawn to phenomena that arise out of the collective interaction of many
motors. Early research along this line was motivated by mRNA translation
that is managed by ribosomes. Ribosomes are bound to the mRNA strand
with one subunit and step forward codon by codon. The codon information
is translated into corresponding amino acids that are taken up from the cy-
toplasm and assembled into proteins. To increase the protein synthesis many
ribosomes can be bound to the same mRNA strand simultaneously. This fact
might induce collective properties as was first realized by MacDonald [4] who
set up a theoretical model for the translation of highly expressed mRNA. The
importance of effects caused by the concerted action of many motors can be
deduced from a very simple example that has yet drastic consequences: the
slow down of ribosomes due to steric hindrance caused by another ribosome
in front – comparable to an intracellular traffic jam that might significantly
slow down protein synthesis.

A theoretical approach to collective phenomena in intracellular traffic will
try to simplify the processes of molecular motion down to a single step rate
rather than focus on the chemical or mechanical details on the molecular level
of motor steps. Then it becomes possible to model and analyze the behavior
of several motors with the tools of many-body and statistical physics. We will
start this review with a short introduction on this single step model in Sec.
2 before we introduce the total asymmetric exclusion process (TASEP) as a
theoretical model for intracellular transport. Sec. 3 describes the stationary
states and density distributions and their phase diagram as a function of
boundary conditions. After a review on several recent extensions in Sec. 4, we
will focus on the competition of TASEP and bulk dynamics in Sec. 5. Before
concluding, Sec. 6 contains further recent developments.

2 Model and Methods

In the quest for a theoretical model for the motion of molecular motors the
first and simplest choice may be the use of a Poisson process. The “Poisson
stepper” is assumed to be an extensionless object advancing stochastically in
discrete steps along a one-dimensional periodic lattice. The process is uni-
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directional as the position of the stepper can be described by x(t) = a n(t)
with the discrete step size a and the random variable n(t) being a sequence
of growing integers. Step events occur stochastically with a rate r constant
in both space and time. Consequently, the average time between two steps is
then given by the dwell time τ = 1/r and the probability to find the “Poisson
stepper” at a position n after time t by the Poisson distribution [5].

After we have defined a model for the translocation of a single motor,
we proceed with our original task which aims at the understanding of col-
lective properties of many motors. Of course, more elaborate models have
been established [6, 7] that account for several rate limiting steps – examples
are the ATP supply or the availability of amino acids for ribosomal mRNA
translation. However, the very basic “Poisson stepper” is chosen for reasons of
simplicity and in order to prevent unnecessary molecular details from masking
collective effects. Still, the validity and limitations of this simplification have
to be kept in mind.

Being supplied with the dynamics of a single motor, a stage for the con-
certed action of many can now be set up. This was first done in a pioneering
work by MacDonald [4] and is now widely know as the total asymmetric ex-
clusion process (TASEP). It consists of a one-dimensional lattice (Fig. 1) with
N sites labeled by i = 1, · · · , N and with a spacing of a = L/N , where L is
the total length of the lattice. For convenience, L is often set to 1 and the
lattice spacing then referred to as ε = 1/N .

Particles have an extension of the size of the lattice spacing and are sub-
jected to hard core exclusion due to steric hindrance. Therefore the occupation
number ni of site i can only take the values 0 or 1. Particles on the lattice
attempt jumps to their right neighboring site with a rate r, which will be set
to unity in the following. Hereby, a reference time scale is set. The effective
frequency of jumps can be much smaller than r when attempted jumps are
rejected due to an already occupied target site. The attempted jump rate to
the left is zero, since we deal with a total asymmetric exclusion process, in
contrast to the asymmetric exclusion process or the symmetric exclusion pro-
cess, where the jump rate to the left is non-zero or even equal to the jump
rate to the right.

Fig. 1. Schematic model of TASEP (particles are injected with rate α, move exclu-
sively to the right subject to hard-core exclusion, and are removed with rate β)
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Unless one uses periodic boundary conditions, specific dynamic rules have
to be defined at the boundaries, which play a crucial role in the solution of the
process. Among different other conditions (reflective, open with a blockage)
the most common type are open boundaries, which we will use as well: at the
left boundary (i = 1) particles attempt to attach with a rate α, while they
detach at the right boundary (i = N) with rate β. This is equivalent to two
additional sites i = 0 and i = N + 1 at the boundaries, which are connected
to the system by the bulk dynamics described above, and are constantly set
to the density α and 1− β respectively.

In spite of its simplicity, TASEP shows a wide range of interesting prop-
erties. Since it was propelled into the scope of statistical physicists, it has
become a paradigm for non-equilibrium physics. In contrast to equilibrium
systems it lacks detailed balance but evolves into a steady state where a
non-vanishing current is maintained between boundaries. Upon varying these
boundary conditions, TASEP was found to exhibit phase transitions which
– following general theorems [8] – are not even allowed for one-dimensional
equilibrium systems in the absence of long-range interactions. However, the
analysis of non-equilibrium systems is considerably complicated by the lack of
universal concepts like the Boltzmann-Gibbs ensemble theory. Feasible meth-
ods exist nevertheless and will be explained in the next section.

3 Density and Current in Stationary States

In analyzing exclusion processes research can focus on a multitude of dif-
ferent properties. The probably most obvious to address is the density and
current distribution in the stationary state. This is motivated by two reasons.
On the one hand, one intuitively attributes a strong importance to density
information with respect to the biological background as e.g. the ribosome
density is connected to the rate of protein synthesis. On the other hand,
promising experimental techniques can measure motor densities and may al-
low for validation of theoretical models. Of course, quite extensive research
has also been attracted to a multitude of different properties like correla-
tion functions [9, 10], relaxation properties [11] or super-diffusive spreading of
fluctuations [12] which will not be the topic of this review. We will focus on
analytical methods (supported by numerical simulations) that are designed to
investigate spatial density distributions in the stationary state of the system.
To this end we will introduce some basic tools that have proven useful in the
exploration of TASEP properties. These are based on mean-field approxima-
tions and reproduce many results that can also be derived exactly. We are
well aware that this approach neglects correlations as included in the exact
solutions that have been achieved for the TASEP density profile by applying
either recursion relations [13] or a quantum Hamilton formalism with Bethe
ansatz [14].



From Intracellular Traffic to a Novel Class of Driven Lattice Gas Models 209

3.1 Quantum Mechanics and Statistic Properties

As an introduction we will outline some general statistical properties. At any
given moment, the system can be found in a certain configuration µ made up
of the occupation numbers at each lattice site. The next occurring stochastic
event (i.e. the jump of one particle to a neighboring site) will therefore change
the system to another configuration µ′. The transition probability pµ→µ′ is
independent of the way the system had reached the initial configuration. Since
there is no memory of the system’s history, but any transition probability
solely depends on the preceding state, TASEP is a Markov process. In order
to describe the system’s evolution, we can then use a master equation for the
probability to find the system in a certain state.

dP (µ)
dt

=
∑
µ′ 
=µ

[ωµ′→µPµ′(t) − ωµ→µ′Pµ(t)] , (1)

where the ωµ→µ′ are the transition rates from one configuration µ to another
µ′.

How can we now translate this general property into a description of
TASEP? To this end we will use a convenient notation, which applies meth-
ods from the quantum mechanics toolbox in order to formulate the master
equation in terms of operators. It was introduced as “quantum Hamiltonian
formalism” and allows for exact solutions [14]. We introduce operators n̂i(t),
which act as occupation number operators, measuring the presence (ni = 1)
or absence (ni = 0) of a particle at site i. This results in the Heisenberg
equation (for an introduction see e.g. [14])

d

dt
n̂i(t) = n̂i−1(t)[1 − n̂i(t)] − n̂i(t)[1 − n̂i+1(t)] , (2)

where the first term on the right hand side constitutes the jump of a particle
from the left neighboring site to site i (and thus a particle gain) and the second
term a jump from site i to the adjacent lattice site on the right (a particle
loss). Note the intrinsic exclusion constraint in both terms that prevents jump
events if the destination site is occupied, i.e. the expression in brackets equals
zero. If one expresses these gains and losses in current, it becomes convenient
to use the current operator

ĵi(t) = n̂i(t)[1 − n̂i+1(t)] . (3)

This allows to rewrite (2) as a discretized form of a continuity equation with
the discrete divergence ∇ĵi(t) = ĵi(t) − ĵi−1(t):

d

dt
n̂i + ∇ĵi(t) = 0 . (4)

Similar equations for the boundaries are readily derived in the same way.
Since we are interested in the average density on a certain lattice site, we
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need to compute the time (or ensemble) average of the operators. Equation
(2) gives an equation of motion for the operator and allows to solve for the
time evolution of 〈n̂i(t)〉. In executing the ensemble average of (2) two-point
correlation functions like 〈n̂i−1(t)(1 − n̂i(t))〉 appear on the right hand side.
These correlation functions again are connected to higher order correlations
via their equations of motion. The resulting infinite series of correlation func-
tions can be solved exactly for special cases only. Generally, one is required
to use mean-field approaches.

3.2 Mean-Field Solution

The rather blurry term “mean-field theory” is based on the concept of using
time or space averages (e.g. by neglecting temporal or spatial fluctuations) and
has found a wide range of applications in statistical physics (see [15]). In this
chapter, we will explain its implementation for the TASEP and show a possible
solution. To point out the use of mean-field theory in TASEP, we look again at
the average of the operator n̂i(t). We are interested in the stationary state and
therefore averaging signifies either a time or an ensemble average, since the
system is ergodic. Then the average returns the density at the considered site
i as �i = 〈n̂i〉. Performing the average over (2), leaves us with the difficulty
of the infinite series of correlation functions mentioned earlier. The mean
field approximation consists now in neglecting any correlations by setting e.g.
〈n̂in̂j〉 = 〈n̂i〉〈n̂j〉 (see [16]). In our case, we obtain for the current

〈n̂i(t)(1 − n̂i+1(t))〉 = 〈n̂i(t)〉(1 − 〈n̂i+1(t)〉) . (5)

This allows then, to rewrite (2) in the stationary state (d�i(t)/dt = 0) as

0 = �i−1(1 − �i) − �i(1 − �i+1) . (6)

Obviously, (6) could easily be solved numerically, since it forms a system of
N difference equations. However, it is possible to reduce the set of equations
to arrive at an explicit solution by making two assumptions. First, note that
the stationary state condition d�i(t)/dt = 0 implies a conservation of current
throughout the bulk, as can be seen from (6). Ergo, we just have to solve one
equation out of the set, to determine the stationary, homogeneous current
(and density). For that purpose, we use the continuum approximation, which
turns the spatial lattice variable quasi-continuous. This is achieved for a large
number N of lattice sites on a lattice of normalized length L = 1. The distri-
bution of sites then approaches a continuum as ε = L/N � 1 and x = i/N
is rescaled to the interval 0 ≤ x ≤ 1. Thereby an expansion in powers of ε is
allowed.

�(x± ε) = �(x) ± ε∂x�(x) +
1
2
ε2∂2

x�(x) +O(ε3) (7)

Using this expansion in (6) and the corresponding equations for the bound-
aries, results in the following first-order differential equation if we neglect all
terms with higher orders in ε:
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(2�− 1)∂x� = 0 . (8)

The corresponding boundary conditions are �(0) = α and �(1) = 1 − β.
Because we have a first order differential equation that needs to satisfy two
boundary conditions, we are evidently concerned with an over-determined
boundary value problem. There are three solutions to (8): �bulk(x) = 1/2
does not satisfy either boundary condition (except for the special case α =
β = 1/2), while �(x) = C can satisfy either the left or the right boundary
condition, resulting in �α(x) = α and �β(x) = 1− β, respectively.

3.3 Phase Diagram and Domain Wall Theory

To obtain a general solution satisfying the boundary conditions, both solutions
need to be matched. Consider the case α, β < 1/2. To meet the boundary
condition at both sides, the global density function �(x) has to be �α (�β)
in an environment close to the left (right) boundary. Since both �α and �β

are uniform, the two solutions do not intersect. At this point, we have to go
beyond mean-field theory and assume that at any given time both solutions
are valid in non-overlapping areas of the system. Where those areas border,
they are connected by a sharp domain wall (DW) at position xw (see Fig. 2)

�(x) =

{
�α for 0 ≤ x ≤ xw ,

�β for xw ≤ x ≤ 1 .
(9)

From the dynamics of this domain wall [17] we can deduce important infor-
mation about the system. The key point of domain wall theory is the identifi-
cation of particle currents as the cause of domain wall motion. If for example
the current jα = �α(1 − �α) of the left density solution �α is higher than the
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Fig. 2. (left) Schematic density distribution for α = .3, β = .2: in this situation
the particle current jα exceeds the current jβ , thus carrying more particles to the
domain wall which is then shifted to the left. (right) Phase diagram of TASEP in
α, β phase space shows a low density (LD), high density (HD) and maximal current
(MC) phase



212 Hauke Hinsch et al.

current in the right part of the system (corresponding to α > β), particles
are transported faster to the DW from the left end then they can head on
to the right. Thus, the domain wall is shifted to the left. The system is filled
up, until finally the whole bulk density has taken the value of �β except for a
small boundary layer 3 at the system’s left boundary. The opposite happens,
if jβ > jα, which is the case for β < α. Hence we can empirically state that the
boundary with the smaller rate acts as a bottleneck and imposes its density
distribution on the system. To quantify this behavior, one can use a traveling
wave solution [17] of the form �(x−V t) to obtain the domain wall velocity as

V =
jβ − jα
�β − �α

= β − α . (10)

To arrive at a phase diagram in α, β-space we will analyze the bulk density.
A positive DW velocity is obtained for α < β and pushes the DW to the right
side of the system resulting in a bulk density smaller 1/2 called low-density
phase (LD). On the contrary, β < α leads to a high-density phase (HD), as
illustrated in the phase diagram (Fig. 2). LD and HD phase are connected by
a first-order transition. Note, that this phase diagram is equally obtained by
the above mentioned exact methods.

The transition line α = β < 1/2 in the phase diagram requires special
treatment. The velocity of the domain wall yields zero here, but Monte Carlo
simulations show that the DW actually will make random steps to either side.
This behavior is caused by the stochasticity of the input and output events
that are described as rate processes. Hence, the DW makes random steps to
either side with equal probability, being nothing else than the famous random
walk in a domain with reflecting boundaries. An average over a sufficiently
long time will therefore result in a homogeneous probability density over space.
The stationary density profile will just be a linear slope connecting the two
boundary conditions:

�(x) = α+ (1 − β − α)x . (11)

Note that mean-field theory neglects fluctuations and hence fails to predict
this density distribution, but gives the result of a stationary domain wall.
However, coming back to the picture of the domain wall as a random walker,
the linear density distribution can readily be made plausible. Interpreting the
random walk as free diffusion of the domain wall and keeping in mind that
the density constraints �(0) = α and �(1) = 1−β hold at all times, the linear
density profile is easily derived as solution of the one dimensional diffusion
equation with boundary conditions.

Finally, consider an increase of e.g. α to values that exceed 1/2, while β >
1/2 (crossing the boundary from the upper left to the upper right quadrant
3 The boundary layer is necessary in order to fulfill both boundary conditions. Its

extend is finite for small systems, but will vanish in the thermodynamic limit
N → ∞.
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in the phase diagram). In this situation particles are removed sufficiently fast
from the system and the supply of particles on the left side acts as a bottleneck
limiting density and current. For α < 1/2 any increase in α results in an
increased current (think of a highway, where an additional car will result in
a higher overall traffic). But above a certain value αC = 1/2 any increase in
particle input will not increase the current further 4 but will cause the current
to diminish again (as an additional car will further slow down traffic during
rush hour). As a result the bulk will keep its current maximum at � = 1/2
and a boundary layer will form at the left side of the system to match the
boundary condition. This is of course nothing else than the bulk solution �bulk

with two boundary layers and was baptized maximal current phase (MC). It is
reached via second-order transitions for values α > 1/2 and β > 1/2. A more
rigorous treatment of this behavior can be gained by computing the collective
velocity of the particles [17].

4 Biologically Motivated Generalizations of TASEP

The adoption of lattice gas models for biological systems was followed by a
variety of efforts to fit TASEP to different realistic environments. For that
purpose some of the simplifying assumptions TASEP is based on had to be
questioned. For example, experimental observations have shown that ribo-
somes typically cover an area on the mRNA that exceeds the lattice spacing
by a multiple. To account for this situation the particles in TASEP have to
extend over several lattice sites. However it was found that this does not
change the phase diagram quantitatively [18]. Another direction of research
went back to the original field of MacDonald to elucidate the importance of
initiation and prolongation of ribosomes [19] or formation of mRNA loops to
facilitate the back transport of ribosomes from the termination site [20].

While particle interactions in TASEP is limited to hard-core potentials,
even a small increase in the interaction radius – as it could be caused by
charged molecules – leads to qualitative changes in the phase diagram [21]. It
was shown that lattice gases with short-range repulsive interaction exhibit a
density-current relation with two local maxima in contrast to simple TASEP
that leads to one maximum. This behavior results in a qualitative change of
the phase diagram that is enriched by four more regions one being a minimal-
current phase.

Further work was dedicated to the scenario of the interaction of different
species of molecular motors that move in opposite directions. This can either
happen on the same filament when two different particles are able to surpass
each other with a jump rate that differs from the jump rate of either particle
4 As j = �(1−�) = �−�2 has a maximum at � = 1/2. This density-current relation

is a convenient tool to characterize traffic processes and its plot is often referred
to as fundamental diagram.
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to a free site [22] or on two adjacent one-dimensional filaments [23]. In both
cases, spontaneous symmetry breaking was observed.

Intracellular transport along cytoskeletal filaments has also served as a
source of inspiration for driven lattice gas models. While in the TASEP model
motors can only bind and unbind on the left and the right boundary respec-
tively, cytoskeletal motors are known to detach from the track to the cyto-
plasm [2] where they perform Brownian motion and subsequently reattach
to the track. The interplay between diffusion in the cytoplasm and directed
motion along the filament was studied [24] both in open and closed compart-
ments, focussing on anomalous drift and diffusion behavior, and on maximal
current and traffic jams as a function of the motor density.

In [25] it has been realized that the on-off kinetics may not only give rise
to quantitative changes in the transport efficiency but also to a novel class of
driven lattice gas models. It was shown that the interplay between bulk on-off
kinetics and driven transport results in a stationary phase exhibiting phase
separation. This was achieved by an appropriate scaling of the on-off rates
that ensures that particles travel a finite fraction on the lattice even in the
limit of large systems. Then, particles spend enough time to “feel” the their
mutual interaction and, eventually, produce collective effects. In the following
section, we will review the results of these studies [25, 26].

5 Phase Coexistence

The essential features of cytoskeletal transport are the possibility of bulk
attachment and detachment and a finite residence time on the lattice. The
latter can be understood as a effect of thermal fluctuations that may over-
come the binding energy of the motors that is only of the order of several
kBT . Hence, attachment and detachment is a stochastic process whose dy-
namic rules have to be defined. Parmeggiani et al. [25] chose to use Langmuir
kinetics (LK) known as adsorption-desorption kinetics of particles on a one- or
two-dimensional lattice coupled to a bulk reservoir [27]. Particles can adsorb
at empty sites and desorb from occupied sites and microscopic reversibility
demands that the kinetic rates obey detailed balance leading to an evolu-
tion towards an equilibrium steady state describable by standard concepts of
equilibrium statistical mechanics. In this sense the choice of LK is especially
tempting as we are now faced with the competition of two representatives of
both equilibrium and non-equilibrium systems. The system – in the following
referred to as TASEP/LK – is defined as follows: the well-known TASEP is
extended with the possibility of particles to attach to the filament with rate
ωA and to detach from an occupied lattice site to the reservoir with rate ωD.
According to the type of ensemble (canonical, grand canonical) the reservoir
is either finite or infinite. Here, the reservoir is assumed to be infinite and
homogeneous throughout space and time. The density on a lattice reached
in the equilibrium state of LK is only dependent on the ratio K = ωD/ωA
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and is completely uncorrelated in both space and time for neglection of any
particle interaction except hard-core. This is justified by the assumption that
the diffusion in the cytoplasm is fast enough to flatten any deviations of the
homogeneous reservoir density. The resulting density profile on the lattice is
homogeneous and given as Langmuir isotherm �L = K/(K + 1).

If we now consider the combination of TASEP and LK into the model
displayed in Fig. 3, attention has to be paid to the different statistical nature
of both processes. TASEP evolves into a non-equilibrium state carrying a finite
current. Since particles are conserved in the bulk, the system is very sensitive
to the boundary conditions, whereas LK as a equilibrium process is expected
to be robust to any boundary effects especially for large systems. Combining
both processes would thus lead to a trivial domination of LK as the bulk rates
ωA and ωD that apply to a large number of bulk sites become predominant
over the rates α and β that only act on the two boundary sites. To observe any
interesting behavior (i.e. real interplay) between the two dynamics, one needs
competition. A prerequisite for the two processes to compete are comparable
jump rates. To ensure that the rates are of the same order independently of
the system size, an appropriate scaling is needed. To this end a N -independent
global detachment rate ΩD is introduced, while the local rate per site scales
as

ωD =
ΩD

N
. (12)

For the attachment one proceeds similarly. What does this scaling signify
physically? For an explanation it is instructive, to have a look at the time
scales involved: a particle on the lattice will perform a certain move on an av-
erage time scale, which is the inverse of that moves rate. Therefore, a particle
spends an average time τ ≈ 1/ωD on the lattice before it detaches. Bearing in
mind that the TASEP jump rate is set to unity, a particles will jump to its
adjacent site after a typical time of one unit time step. Therefore the particle
will travel a number NT = 1/ωD of sites before leaving the lattice. Compared
to the lattice length this corresponds to a fraction of nT = NT/N = 1/(NωD).
In order to keep this fraction finite in the thermodynamic limit, ωD needs to
scale as defined in (12). Only if the fraction nT is finite, a given particle can

Fig. 3. Schematic model of TASEP/LK: the TASEP is extended by possible particle
attachment and detachment in the bulk with rate ωA, ωD
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experience interaction with other particles and give rise to collective phenom-
ena [26].

5.1 Mean Field Solution of TASEP/LK

To obtain density and current distributions of the TASEP/LK, we use again
a mean-field approach and proceed along the lines of Sec. 3.2.

First of all, we need to account for the Langmuir kinetics. This is done
by adding the following terms to the Heisenberg equation (2) of the simple
TASEP to obtain

d

dt
n̂i(t) = n̂i−1(t)(1−n̂i(t))−n̂i(t)(1−n̂i+1(t))−ωDn̂i(t)+ωA(1−n̂i(t)) . (13)

where the first added term captures the detachment events and the latter the
attachment. Neglecting correlations as done before gives for the stationary
state

0 = �i−1(1 − �i) − �i(1 − �i+1) − ωD�i + ωA(1 − �i) . (14)

The boundary conditions are not altered by LK. Using again the power series
expansion (7) and keeping in mind the scaling of the on and off rates ω as in
(12), we obtain the following ODE:

ε

2
∂2

x�+ ∂x�(2�− 1) − ωD�+ ωA(1− �) = 0 . (15)

The ratio K = ωA/ωD between the attachment and detachment rates will
prove an important parameter in the analysis of this differential equation.
Since the case K �= 1 is considerably complicated in its mathematical analysis
we refer the reader to reference [26] and restrain our discussion to the case
K = 1. In the thermodynamic limit (ε → 0) and with ωD = ωA = Ω the
ODE(15) simplifies to first order:

(∂x�−Ω)(2�− 1) = 0 . (16)

Obviously, there are two solutions to this general ODE problem. The homoge-
neous density �L = 1/2 given by the Langmuir isotherm and the linear slope
�(x) = Ωx+C. The value of C is determined by the boundary conditions and
leads to the two solutions �α(x) = α+Ωx and �β(x) = 1− β −Ω +Ωx. The
complete density profile �(x) is the combination of one or several of the three
densities above. Depending on how they are matched, we distinguish several
phases as explained in the following.

5.2 Phase Diagram and Density Distributions

The only area in the phase diagram that does not change compared to simple
TASEP is the upper right quadrant. This is not surprising since the maximal
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current phase is a bulk controlled regime anyway. Therefore the additional
bulk dynamics with the Langmuir isotherm at �L = 1/2 do not result in
any changes in the density distribution. In this case, non-equilibrium and
equilibrium dynamics do not compete but cooperate.

As in TASEP different solutions can be matched in various ways, the
simplest being the connection by a domain wall between the left solution
�α and the right solution �β . Depending on the current distribution, two
possibilities have to be distinguished. As both solutions are non-homogeneous,
the corresponding currents jα and jβ will be strictly monotonic (Fig. 4 (left)).
If the currents equal each other inside the system at a position xw, the DW
is localized at this position, as a displacement to either side would result in
a current inequality that drives the DW back to xw (see Fig. 4 (left)). Ergo,
the TASEP/LK exhibits multi-phase existence of low and high density regions
(LD-HD phase) in the stationary state on all time-scales, opposed to TASEP
where this behavior is only observed for short observation times. Recently,
this DW localization has been observed experimentally [28].

If the matching of left and right current is not possible inside the system,
the known LD and HD phases are found. This is the case for one boundary
condition being considerably larger than the other and is evidently depending

Fig. 4. (left) The DW connects the two densities ρα and ρβ (both dashed) and is
localized at the point where the correspondent currents jα and jβ match. Note the
finite extend of the DW (localization length) that is only produced for Monte-Carlo
simulations (solid wiggly line) and is not captured by mean-field results (solid line).
(right) Topological changes in the phase diagram of TASEP/LK for (a) Ω = 0.3,
(b) Ω = 0.5, (c) Ω = 1, from [26]
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quantitatively on the slope of the density solutions. This slope is determined by
the ratio of the TASEP step rate and the bulk interchange rate Ω. For large
Ω any density imposed by the boundary relaxes fast against the Langmuir
isotherm of �L = 1/2 resulting a steep slope of the density profile.

This fact allows for the existence of two other phases with multi-regime
coexistence. We could imagine a scenario in which the boundary imposed
density solutions decay fast enough towards the isotherm to enable a three-
regime coexistence of low density, maximal current and high density (LD-MC-
HD phase). Furthermore, a combination of a MC phase with a boundary layer
on one side and a LD or HD region of finite extend at the other boundary can
be imagined. Not all these phases will be realized for every value of Ω. Instead,
the phase topology of two-dimensional cuts through the α, β,Ω-phase space
changes. An example is shown in Fig. 4 (right).

5.3 Domain Wall Theory

After we have derived an analytical solution for the density profile based on
the mean-field differential equation (15), we now have a closer look on the
domain wall and its stochastic properties.

As mentioned before, the density profile exhibits a discontinuity at xw

that is actually a finite size continuous transition between the high and low
density for systems of finite size. Only upon increasing the system size N → ∞
a sharp transition between the left and the right solution occurs. However,
this is only due to the fact that the lattice spacing decreases to ε → 0+. So
compared to the lattice length L, usually normalized to 1, the domain wall is
discontinuous, while on the length scale of lattice sites it will still have a finite
extend. This extend is an intrinsic statistical feature and is usually referred
to as localization length.

The domain wall in its random walk behavior can be either subjected to
equal rates (unbiased) as in TASEP or the rates of movement to the left/right
can be different (biased). In general, the rates will not only be different, but
also depend on the space variable. To begin with, we will show a way how to
derive these rates by taking into account fluctuations of particle number [17,
29]. Consider a situation where all events that can change the particle number
(α, β,Ω) have a typical time scale that is considerably larger than that of jump
processes on the lattice. In this case, the time between any entry and exit
events is so long, that the system has enough time to “rearrange” (to reach a
temporary steady state) in between . Then it is possible to identify jump rates
ωl(x) (ωr(x)) for DW movement to the left (right) with the overall rate for
entry and exit of any particle at any site. Specifically, if a particle enters the
system, the DW is shifted to the left by a distance of ≈ ε/[�β(xw)− �α(xw)].
Therefore the rate for the DW to move one lattice site to the left is ωl =
ωentry/[�β(xw) − �α(xw)].

If the density distribution �(x) is known analytically, it is possible to cal-
culate ωentry, the overall rate of particle entrance, as the sum over all possible
entrance events
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Fig. 5. (left) The DW will be localized at the point where the jump rate to the
left ωl and right ωr intersect. This can be interpreted as an potential |∆ω|. (right)
Variance of DW probability distribution over Ω for α = β = 0.01 and α = β = 0.1
in a system of N = 500, predictions according to [30] (solid) and based on particle
number fluctuations (dashed) compared to MC simulations (dots)

ωentry = α(1 − α) +
∫ 1

0

dx ωA(1 − �(x)) . (17)

The first term captures entrance events from the left boundary reservoir and
the integral accounts for the Langmuir kinetics. The first multiplicand in both
terms is the attempted rate of a jump, whereas the difference in brackets states
the probability of the destination site to be vacant. Along the same lines,
the exit rate is computed. As we know the analytical density distribution as
�(x) = α + Ωx + ∆Θ(x − xw) with the Heavyside function Θ and the DW
height 5 ∆ = 1 − α− β −Ω, we can execute the integrals to obtain

ωentry = α(1 − α) +Ω(β +
Ω

2
) + xΩ∆ . (18)

Knowing these rates, one can complete the description of the domain wall
as a random walker by calculating the position dependent jump rates to the
left and right ωl(x) and ωr(x). The two rates constitute an effective potential
displayed in Fig. 5. The DW will always be driven to that point xS in the
system where ωexit(xS) = ωentry(xS). This position is the center of the DW
probability density in a stochastic picture and the stationary DW position in
a mean-field picture. It is in agreement with mean field results and yields

xS =
Ω − α+ β

2Ω
. (19)

The other quantity of interest which - in contrast to the DW position - cannot
be determined by mean-field calculations is the localization length. In order
to compute this quantity, fluctuations have to be taken into account as we will
5 The term −1Ω accounts for the diminished height that is caused by the Langmuir

kinetics on the whole length 1 of the system.
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show in the following. If we use the notation p(x) for the probability that the
domain wall is at position x, then the condition for a stationary DW reads in
the continuum limit

ωr(x)p(x) = ωl(x+ ε)p(x+ ε) . (20)

Introducing now y(x) = ωl(x)p(x) and approximate y′(x) = |y(x+ε)−y(x)|/ε
we obtain:

y′(x) +Ny(x)
(

1 − ωr(x)
ωl(x)

)
= 0 . (21)

The solution then is given by

p(x) =
p̃(x)
Z

=
1

Zωl(x)
exp[−N

∫ x

x0

dx′(1 − ωr(x)
ωl(x)

)] . (22)

where Z accounts for normalization. In general, Z is not available explicitly,
but it has been shown [30] that the unnormalized probability function can be
approximated by a Gaussian

p̃(x) ∝ e−C(x−xS)2 , (23)

where C is given by the second order derivative of the exponent in (22) as

C =
1
2
d2

dx2

[
N

∫ x

x0

dx′
(

1 − ωr(x)
ωl(x)

)]
=
N(ωl − ωr)′(xS)

2ωl(xS)
. (24)

Hence, the variance σ =
√

1/(2C) of the domain wall can be easily be obtained
provided that the jump rates ωl(x) and ωr(x) are available. Evans et al. [30]
have assumed those rates to be ωl,r(x) = jα,β/(�β−�α). Kouyos has shown [31]
that using the rates (17) derived from the fluctuations of particle number, one
arrives at more accurate results compared to Monte Carlo simulations (see Fig.
5). In this case C evaluates to

C =
2NΩ∆

α(1 − α) + β(1 − β) +Ω
. (25)

As the width of the DW is given by σ = 1/
√

2C, the localization of the DW
scales with N−1/2.

6 Conclusions and Outlook

Much in the same way as MacDonald’s pioneering paper [4] on mRNA trans-
lation, recent work on kinesin motors walking along microtubules has spurred
progress in nonequilibrium transport phenomena. The ubiquitous exchange of
material between the cytoplasm and the molecular track, which originally was
thought to only lead to quantitative modifications of the dynamics [24], has
recently been identified [25] as the source for qualitatively new phenomena
such as phase separation. This introduced a completely new class of non-
equilibrium transport models.
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These lattice gas models are characterized by a scaling of the on-off rates
with system size which enables competition of driven motion and equilibrium
Langmuir kinetics. Hereby, a finite residence time on the lattice ensures co-
operative effects to establish multi-phase coexistence, localized shocks and an
enriched phase behavior compared to prior TASEP results.

There are now various routes along which one could proceed. The first
one is to add more realistic features of the molecular motors, such as the fact
that they are dimers [32] or that there is more than one chemo-mechanical
state [28]. Such investigations are crucial for a quantitative understanding of
intracellular traffic in various ways. One might ask how robust the features of
minimal models are with respect to the addition of more molecular details. In
the case of dimers the answer is far from obvious since the non-equilibrium
dynamics of dimer adsorption shows rich dynamic behavior with anomalously
slow relaxation towards the equilibrium state [27]. How this combines with
the driven transport along the molecular track was recently analyzed thor-
oughly [32]. While correlation effects due to the extended nature of dimers
invalidate a simple mean-field picture it was found that an extended mean-
field scheme can be developed which quantitatively describes the stationary
phases. Surprisingly, the topology of the phase diagram and the nature of the
phases is similar to the minimal model with monomers. The physical origin of
this robustness can be traced back to the form of the current-density relation
which exhibits only a single maximum.

The second line of research generalizing the minimal model [25] asks for
the effect of interactions, more than one molecular traffic lane, “road blocks”
such as microtubule associated proteins and various other kinds of “disorder”,
bi-directional traffic, coupling of driven and diffusive transport and the like
on the stationary density profiles and the dynamics. In almost every instance
it is found that this leads to an even richer behavior with new phenomena
emerging.

For TASEP it is known that isolated defects (slow sites) depending on
their strength may either give rise to local density perturbations for low par-
ticle densities or yield macroscopic effects for densities close to the carrying
capacity [33]. The interplay between coupling to the motor reservoir in the
cytoplasm and the fluctuations in the capacity limit due to disorder along the
track gives rise to a number of interesting collective effects [34].

Coupling two lanes by allowing particle exchange at a constant rate along
the molecular track also results in novel phenomena. Similar to equilibrium
phase transitions described by field theories with two coupled order parame-
ters higher order critical points may emerge [35].

Coupling diffusive and driven transport, the origin of new phenomena is
due to a competition of different processes of comparable time scales. The
qualitative failure of mean-field theory in some of these systems [36] comes
as quite a surprise, since mean-field has proven to predict phase diagrams for
large systems with an astonishing accuracy in the lattice gas models mentioned
above.
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Summary. Traffic-like collective movements are observed at almost all levels of
biological systems. Molecular motor proteins like, for example, kinesin and dynein,
which are the vehicles of almost all intra-cellular transport in eukayotic cells, some-
times encounter traffic jam that manifests as a disease of the organism. Similarly,
traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracel-
lular matrix of vertebrates, has also been observed in recent experiments. Traffic-like
movements of social insects like ants and termites on trails are, perhaps, more famil-
iar in our everyday life. Experimental, theoretical and computational investigations
in the last few years have led to a deeper understanding of the generic or common
physical principles involved in these phenomena. In particular, some of the methods
of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by
Einstein, Langevin and others, turned out to be powerful theoretical tools for quan-
titative analysis of models of these traffic-like collective phenomena as these systems
are intrinsically far from equilibrium. In this review we critically examine the cur-
rent status of our understanding, expose the limitations of the existing methods,
mention open challenging questions and speculate on the possible future directions
of research in this interdisciplinary area where physics meets not only chemistry and
biology but also (nano-)technology.

1 Introduction

Motility is the hallmark of life. What distinguishes a traffic-like movement
from all other forms of movements is that motile elements move on “tracks” or
“trails”. However, in sharp contrast to vehicular traffic, the tracks and trails,
which are the biological analogs of roads, can have nontrivial dependence
on time during the typical travel time of the motile elements. What makes
biological traffic even more unusual is that in many cases the motile elements
themselves not only create the tracks but also modify their lengths as well as
shape and, in some extreme cases, even leave behind a trail of destruction by
wiping out the track as they move forward.
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We are mainly interested in the general principles and common trends
seen in the mathematical modeling of collective traffic-like movements at dif-
ferent levels of biological organization [1]. Although the choice of the physical
examples and modelling strategies are biased by our own works and experi-
ences, we put these in a broader perspective by relating these with works of
other research groups. We begin at the lowest level, starting with intracellular
biomolecular motor traffic on filamentary rails. Then we present brief sum-
maries of recent works on the traffic of molecular motors along the collagen
fibrils in the extra-cellular matrix and those on transport of micron-size cargo
by uni-cellular micro-organisms. We end our review by discussing the collec-
tive traffic-like terrestrial movements of social insects, particularly, ants, on
their trails.

2 Theoretical Approaches

In recent years many individual-based models of biological traffic have been
formulated in discretized space. While in some models the dynamics of the
system has been formulated in terms of differential equations assuming con-
tinuous time, in many others the dynamics has been implemented in terms
of “update rules” in discrete time steps in the spirit of cellular automata and
lattice gas models [2–4]. Most of these models are extensions of a class of
particle-hopping models which were earlier successfully used in the context of
vehicular traffic [5]. The asymmetric simple exclusion process (ASEP) [6] is
one of the simplest particle-hopping models. In the ASEP particles can hop
(with some probability or rate) from one lattice site to a neighbouring one,
but only if the target site is not already occupied by another particle. “Simple
Exclusion” thus refers to the absence of multiply occupied sites. Generically,
it is assumed that the motion is “asymmetric” such that the particles have a
preferred direction of motion.

For such driven diffusive systems the boundary conditions turn out to be
crucial. If periodic boundary conditions are imposed, i.e., the sites 1 and L
are made nearest-neighbours of each other, all the sites are treated on the
same footing. If the boundaries are open, then a particle can enter from a
reservoir and occupy the leftmost site (j = 1), with probability α, if this site
is empty. In this system a particle that occupies the rightmost site (j = L)
can exit with probability β. The ASEP has been studied extensively in recent
years and is now well understood [6, 7]. Both parallel and random-sequential
updating schemes have been studied extensively in the literature.

The average number of motile elements that arrive at (or depart from)
a fixed detector site on the track per unit time interval is called the flux.
One of the most important transport properties is the relation between the
flux and the density of the motile elements; a graphical representation of
this relation is usually referred to as the fundamental diagram. If the motile
elements interact mutually only via their steric repulsion their average speed



Traffic Phenomena in Biology: From Molecular Motors to Organisms 225

v would decrease with increasing density because of the hindrance caused by
each on the following elements. On the other hand, for a given density c, the
flux J is given by J = cv(c), where v(c) is the corresponding average speed.
At sufficiently low density, the motile elements are well separated from each
other and, consequently, v(c) is practically independent of c. Therefore, J is
approximately proportional to c if c is very small. However, at higher densities
the increase of J with c becomes slower. At high densities, the sharp decrease
of v with c leads to a decrease, rather than increase, of J with increasing c.
Naturally, the fundamental diagram of such a system is expected to exhibit a
maximum at an intermediate value of the density.

3 Intra-Cellular Traffic of Cytoskeletal Molecular Motors

Intracellular transport is carried by molecular motors which are proteins that
can directly convert the chemical energy into mechanical energy required for
their movement along filaments constituting what is known as the cytoskeleton
[8, 9]. Three superfamilities of these motors are kinesin, dynein and myosin;
majority of these motors are two-headed. Most of the kinesins and dyneins
are like “porters” in the sense that these move over long distances carrying
cargo along the filamentary tracks without getting completely detached; such
motors are called processive. On the other hand, the conventional myosins and
a few unconventional ones are nonprocessive; they are like “rowers”.

These cytoskeleton-based molecular motors play crucially important bio-
logical functions, e.g., in axonal transport in neurons. The mechano-chemistry
of single cytoskeletal motors and the mechanism of their motility have been
investigated both experimentally and theoretically for quite some time [10–
12].

Often a single microtubule (MT) is used simultaneously by many motors
and, in such circumstances, the inter-motor interactions cannot be ignored.
In this article we shall focus mostly on the effects of mutual interactions of
these motors on their collective spatio-temporal organisation and the biomed-
ical implications of such organisations. Fundamental understanding of these
collective physical phenomena may also expose the causes of motor-related
diseases (e.g., Alzheimer’s disease) [13–16] thereby helping, possibly, also in
their control and cure. The bio-molecular motors have opened up a new fron-
tier of applied research — “bio-nanotechnology”. A clear understanding of the
mechanisms of these natural nano-machines will give us clue as to the possible
design principles that can be utilized to synthesize artificial nanomachines.

Derenyi and collaborators [17, 18] developed one-dimensional models of
interacting Brownian motors. They modelled each motor as a rigid rod and
formulated the dynamics through Langevin equations for each such rod as-
suming the validity of the overdamped limit; the mutual interactions of the
rods were incorporated through the mutual exclusion.
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The model considered by Aghababaie et al. [19] is not based on TASEP,
but its dynamics is a combination of Brownian ratchet and update rules in
discrete time steps. In this model the filamentary track is discretized and the
motors are represented by field-driven particles in the spirit of the particle-
hopping models. The hopping probabilities of the particles are obtained from
the instantaneous form of the local time-dependent potential. No site can
accommodate more than one particle at a time. Each time step consists of
either an attempt of a particle to hop to a neighbouring site or an attempt
that can result in switching of the potential from flat to sawtooth form or vice-
versa. Both forward and backward movement of the particles are possible.
However, neither attachment of new particles nor complete detachment of
existing particles were allowed.

The fundamental diagram of the model [19], computed imposing periodic
boundary conditions, is very similar to those of TASEP. This observation
indicates that further simplification of the model proposed in ref. [19] is pos-
sible to develope a minimal model for interacting molecular motors. Indeed,
the detailed Brownian ratchet mechanism, which leads to a noisy forward-
directed movement of the field-driven particles in the model of Aghababaie
et al. [19], is replaced in some of the more recent theoretical models [20–28]
by a TASEP-like probabilistic forward hopping of self-driven particles [29]. In
these simplified versions, none of the particles is allowed to hop backward and
the forward hopping probability is assumed to capture most of the effects of
biochemical cycle of the enzymatic activity of the motor. The explicit dynam-
ics of the model is essentially an extension of that of the asymmetric simple
exclusion processes (ASEP) [6, 30] that includes, in addition, Langmuir-like
kinetics of adsorption and desorption of the motors.

In the model of Parmeggiani et al. [24], the molecular motors are repre-
sented by particles whereas the sites for the binding of the motors with the

Fig. 1. A schematic description of the TASEP-like model introduced in ref. [24] for
molecular motor traffic. Just as in TASEP, the motors are allowed to hop forward,
with probability q. In addition, the motors can also get “attached” to an empty lat-
tice site, with probability A, and “detached” from an occupied site, with probability
D from any site except the end points; the rate of attachment at the entry point on
the left is α while that at the exit point on the right is β.
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cytoskeletal tracks (e.g., microtubules) are represented by a one-dimensional
discrete lattice. Just as in TASEP, the motors are allowed to hop forward, with
probability q, provided the site in front is empty. However, unlike TASEP, the
particles can also get “attached” to an empty lattice site, with probability A,
and “detached” from an occupied site, with probability D (see fig.1) from any
site except the end points. The state of the system was updated in a random-
sequential manner. Carrying out Monte-Carlo simulations of the model, ap-
plying open boundary conditions, Parmeggiani et al. [24] demonstrated a novel
phase where low and high density regimes, separated from each other by do-
main walls, coexist [26, 27]. Using a mean-field theory (MFT), they interpreted
this spatial organization as traffic jam of molecular motors.

A cylindrical geometry of the model system was considered by Lipowsky,
Klumpp and collaborators [20–22] to mimic the microtubule tracks in typical
tubular neurons. The microtubule filament was assumed to form the axis of the
cylinder whereas the free space surrounding the axis was assumed to consist of
Nch channels each of which was discretized in the spirit of lattice gas models.
They studied concentration profiles and the current of free motors as well as
those bound to the filament by imposing a few different types of boundary
conditions. This model enables one to incorporate the effects of exchange of
populations between two groups, namely, motors bound to the axial filament
and motors which move diffusively in the cylinder. They have also compared
the results of these investigations with the corresponding results obtained in
a different geometry where the filaments spread out radially from a central
point.

A novel feature of the model of Klein et al. [31] (see Fig. 2) is that the
lattice site at the tip of a filament is removed with a probability W per
unit time provided it is occupied by a motor; the motor remains attached to
the newly exposed tip of the filament with probability p (or remains bound
with the removed site with probability 1 − p). Thus, p may be taken as a
measure of the processivity of the motors. This model clearly demonstrated
a dynamic accumulation of the motors at the tip of the filament arising from
the processivity.

Fig. 2. A schematic description of the model suggested by Klein et al. [31] for motor
induced depolymerization of cytoskeletal filaments.
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3.1 Traffic of Interacting Single-Headed Motors KIF1A

The models of intracellular traffic described so far are essentially extensions
of the asymmetric simple exclusion processes (ASEP) [6, 30] that includes
Langmuir-like kinetics of adsorption and desorption of the motors. In reality,
a motor protein is an enzyme whose mechanical movement is loosely cou-
pled with its biochemical cycle. In a recent work [32], we have considered
specifically the single-headed kinesin motor, KIF1A [33–37]; the movement of
a single KIF1A motor was modelled earlier with a Brownian ratchet mech-
anism [38, 39]. In contrast to the earlier models [21, 24, 26, 28] of molecular
motor traffic, which take into account only the mutual interactions of the
motors, our model explicitly incorporates also the Brownian ratchet mecha-
nism of individual KIF1A motors, including its biochemical cycle that involves
adenosine triphosphate(ATP) hydrolysis.

The ASEP-like models successfully explain the occurrence of shocks. But
since most of the bio-chemistry is captured in these models through a single
effective hopping rate, it is difficult to make direct quantitative comparison
with experimental data which depend on such chemical processes. In contrast,
the model we proposed in ref. [32] incorporates the essential steps in the bio-
chemical processes of KIF1A as well as their mutual interactions and involves
parameters that have one-to-one correspondence with experimentally control-
lable quantities. Thus, in contrast to the earlier ASEP-like models, each of
the self-driven particles, which represent the individual motors KIF1A, can
be in two possible internal states labelled by the indices 1 and 2. In other
words, each of the lattice sites can be in one of three possible allowed states
(Fig. 3): empty (denoted by 0), occupied by a kinesin in state 1, or occupied
by a kinesin in state 2.

Good estimates for the parameters of the model could be extracted by
analyzing the empirical data [32]. Assuming that each time step of updating
corresponds to 1 ms of real time, we performed simulations up to 1 minute.
In the limit of low density of the motors we have computed, for example, the
mean speed of the kinesins, the diffusion constant and mean duration of the

� �
1 0 0 2 0 1 21 1 2 10

Brownian, ratchet

Attachment 2,12,1 Detachment

� �
1 0 0 2 0 1 21 1 2 10

Brownian, ratchet

Attachment 2,12,1 Detachment

Fig. 3. A 3-state model for molecular motors moving along a MT. 0 denotes an
empty site, 1 is K or KT and 2 is KD. Transition from 1 to 2, which corresponds to
hydrolysis, occurs within a cell whereas movement to the forward or backward cell
occurs only when motor is in state 2. At the minus and plus ends the probabilities
are different from those in the bulk.
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movement of a kinesin on a microtubule from simulations of our model; these
are in excellent quantitative agreement with the corresponding empirical data
from single molecule experiments.

Using this model we have also calculated the flux of the motors in the
mean field approximation imposing periodic boundary conditions. Although
the system with periodic boundary conditions is fictitious, the results provide
good estimates of the density and flux in the corresponding system with open
boundary conditions.

In contrast to the phase diagrams in the α − β-plane reported by earlier
investigators [21, 25, 26], we have drawn the phase diagram of our model in
the ωa−ωh plane by carrying out extensive computer simulations for realistic
parameter values of the model with open boundary conditions. The phase
diagram shows the strong influence of hydrolysis on the spatial distribution
of the motors along the MT. In particular, the position of the immobile shock
depends on the concentration of the motors as well as that of ATP; the shock
moves towards the minus end of the MT with the increase of the concentration
of kinesin or ATP or both. The formation of the shock has been established
by our direct experimental evidence; our findings on the domain wall are in
qualitative agreement with the corresponding experimental observations [32].

This work has been discussed in more detailed in our separate article [40]
in this proceedings.

4 Intra-Cellular Traffic of Nucleotide-Based Motors

Helicases and polymerases are the two classes of nucleotide-based motors that
have been the main focus of experimental investigations. In this section, we
discuss only the motion of the ribosome along the m-RNA track. Historically,
this problem is one of the first where TASP-like model was successfully applied
to a biological system.

In a living cell ribosomes translate the genetic information ‘stored’ in the
messenger-RNA (mRNA) into a program for the synthesis of a protein. mRNA
is a long (linear) molecule made up of a sequence of triplets of nucleotides;
each triplet is called a codon (see Fig. 4). The genetic information is encoded
in the sequence of codons. A ribosome, that first gets attached to the mRNA
chain, “reads” the codons as it translocates along the mRNA chain, recruits
the corresponding amino acids and assembles these amino acids in the se-
quence thereby synthesizing the protein for which the “construction plan”
was stored in the mRNA. Once the synthesis is completed, the ribosome gets
detached from the mRNA. Thus, the process of “translation” of genetic infor-
mation stored in mRNA consists of three steps: (i) initiation: attachment of
a ribosome at the “start” end of the mRNA, (ii) elongation: of the polypep-
tide (protein) as the ribosome moves along the mRNA, and (iii) termination:
ribosome gets detached from the mRNA when it reaches the “stop” codon.
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Fig. 4. The process of biopolymerization: Ribosomes attach to mRNA and read the
construction plan for a biopolymer which is stored in the genetic code formed by
the sequence of codons. None of the codons can be read by more than one ribosome
simultaneously.

In order to model the traffic of ribosomes on a m-RNA track, let us denote
each of the successive codons by the successive sites of a one-dimensional lat-
tice where the first and the last sites correspond to the start and stop codons.
The ribosomes are much bigger (20-30 times) than the codons. Therefore,
neighbouring ribosomes attached to the same mRNA can not read the same
information or overtake each other. In other words, any given site on the
lattice may be covered by a single ribosome or none. Let us represent each
ribosome by a rigid rod of length �r. If the rod representing the ribosome has
its left edge attached to the i-th site of the lattice, it is allowed to move to the
right by one lattice spacing, i.e., its left edge moves to the site i+ 1 provided
the site i + �r is empty. In the special case �r = 1 this model reduced to the
TASEP. Although the model was originally proposed in the late sixties [41],
significant progress in its analytical treatment for the general case of arbi-
trary �r could be made only three decades later; even the effects of quenched
disorder has also been considered in the recent literature [42–46].

As mentioned above, a ribosom is much bigger than a base triplet. How-
ever, modifying the ASEP by taking into account particles that occupy more
than one lattice site does not change the structure of phase diagram [41].

5 Extracellular Transport: Collagen-Based Motors

The extracellular matrix (ECM) [47] of vertebrates is rich in collagen. Mono-
mers of collagen form a triple-helical structure which self-assemble into a
tightly packed periodic organization of fibrils. Cells residing in tissues can
secret matrix metalloproteases (MMPs), a special type of enzymes that are
capable of degrading macromolecular constituents of the ECM. The most no-
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table among these enzymes is MMP-1 that is known to degrade collagen. The
collagen fibril contains cleavage sites which are spaced at regular intervals of
300 nm. The collagenase MMP-1 cleaves all the three α chains of the collagen
monomer at a single site.

Breakdown of the ECM forms an essential step in several biological pro-
cesses like, for example, embryonic development, tissue remodelling, etc. [47].
Malfunctioning of MMP-1 has been associated with wide range of diseases [48].
Therefore, an understanding of the MMP-1 traffic on collagen fibrils can pro-
vide deeper insight into the mechanism of its operation which, in turn, may
give some clue as to the strategies of control and cure of diseases caused by
the inappropriate functions of these enzymes.

Saffarian et al. [49] used a technique of two-photon excitation fluorescence
correlation spectroscopy to measure the correlation function corresponding to
the MMP-1 moving along the collagen fibrils. The measured correlation func-
tion strongly indicated that the motion of the MMP-1 was not purely diffusive,
but a combination of diffusion and drift. In other words, the “digestion” of a
collagen fibril occurs when a MMP-1 executes a biased diffusion processively
(i.e., without detachment) along the fibril. They also demonstrated that inac-
tivation of the enzyme eliminates the bias but the diffusion remains practically
unaffected. They claimed that the energy required for the active motor-like
transport of the MMP-1 comes from the proteolysis (i.e., degradation) of the
collagen fibrils.

There is a close relation between the traffic of MMP-1 on collagens and
the “burnt-bridge model” introduced by Mai et al. [50]. In the burnt bridge
model (see Fig. 5), a “particle” performs a random walk on a semi-infinite
one-dimensional lattice that extends from the origin to +∞. Each site of the
lattice is connected to the two nearest neighbour sites by links; a fraction c of
these links are called “bridges” and these are prone to be burnt by the random
walker. A bridge is burnt, with probability p, if the random walker either
crosses it from left to right or attempts to cross if from right to left [50, 51]. In
either case, if the bridge is actually burnt, the walker stays on the right of the
burnt bridge and cannot cross it any more. The hindrance against leftward
motion, that is created by the burnt bridges, is responsible for the overall
rightward drift of the random walker. Mai et al. [50] studied the dependence of
the average drift velocity v on the parameters p and c by computer simulation.
They also derived approximate analytical forms of these dependences in the
two limits p� 1 and p 	 1 using a continuum approximation.

Saffarian et al. [49] also carried out computer simulations of a two-
dimensional model of the MMP-1 dynamics on collagen fibrils which is essen-
tially a two-dimensional generalization of the burnt-bridge model. By compar-
ing the results of their simulations with their experimental observations, Saf-
farian et al. they concluded that the observed biased diffusion of the MMP-1
on collagen fibrils can be described quite well by a Brownian ratchet mecha-
nism [38, 39].
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Fig. 5. Schematic representation of the one-dimensional burnt bridge model of
MMP-1 dynamics proposed in ref. [50].

6 Cellular Traffic

A Mycoplasma mobile (MB) bacterium is an uni-cellular organism. Each of the
pear-shaped cells of this bacterium is about 700 nm long and has a diameter
of about 250 nm at the widest section. Each bacterium can move fast on
glass or plastic surfaces using a gliding mechanism. In a recent experiment
[52] narrow linear channels were constructed on lithographic substrates. The
channels were typically 500 nm wide and 800 nm deep. Note that each channel
was approximately twice as wide as the width of a single MB cell. The channels
were so deep that none of the individual MB cells was able to climb up the
tall walls of the channels and continued moving along the bottom edge of the
walls of the channels. In the absence of direct contact interaction with other
bacteria, each individual MB cell was observed to glide, without changing
direction, at an average speed of a few microns per second.

When two MB cells made a contact approaching each other from opposite
directions within the same channel, one of the two cells gave way and moved to
the adjacent lane. However, in a majority of the cases, two cells approaching
each other from the opposite directions simply passed by as if nothing had
happened; this is because of the fact that the width of the channel is roughly
twice that of the individual MB cell. Moreover, when two cells moving in the
same direction within a channel collided with each other, the faster cell moved
to the adjacent lane after the collision.

Hiratsuka et al. [52] attached micron-sized beads on the MB cells using
biochemical technique and demonstrated that the average speed of each MB
cell remained practically unaffected by the load it was carrying. In contrast to
the nonliving motile elements discussed in all the preceding sections, the cells
are the functional units of life. Therefore, the MB cells have the potential for
use in applied research and technology as “micro-transporters”. More recently,
the unicellular biflagellated algae Chlamydomonas reinhardtii (CR), which
are known to be phototactic swimmers, have been shown to be even better
candidates as “micro-transporter” as these can attain average speeds that
is about two orders of magnitude higher than what was possible with MB
cells [53]. However, to our knowledge, the effects of mutual interactions of the
CR cells on their average speed at higher densities has not been investigated.
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7 Traffic in Social Insect Colonies: Ants and Termites

From now onwards, we shall study traffic of multi-cellular organisms, partic-
ularly, ants which are social insects. The ability of the social insect colonies
to function without a leader has attracted the attention of experts from var-
ious disciplines [54–61]. Insights gained from the modeling of the colonies of
such insects are finding important applications in computer science (useful
optimization and control algorithms) [62], communication engineering [63],
artificial “swarm intelligence” [64] and micro-robotics [65] as well as in task
partitioning, decentralized manufacturing [66–71] and management [72]. the
collective terrestrial movements of ants have close similarities with the other
traffic-like phenomena considered here. When observed from a sufficiently long
distance the movement of ants on trails resemble the vehicular traffic observed
from a low flying aircraft.

Ants communicate with each other by dropping a chemical (generically
called pheromone) on the substrate as they move forward [73–75]. Although
we cannot smell it, the trail pheromone sticks to the substrate long enough for
the other following sniffing ants to pick up its smell and follow the trail. [73].
Both the continuum model developed by Rauch et al. [76] and the CA model
introduced by Watmough and Edelstein-Keshet [77] were intended to address
the question of formation of the ant-trail networks by foraging ants. Couzin
and Franks [78] developed an individual based model that not only addressed
the question of self-organized lane formation but also elucidated the variation
of the flux of the ants.

In the recent years, we have developed discrete models [79–82] that are
not intended to address the question of the emergence of the ant-trail [83],
but focus on the traffic of ants on a trail which has already been formed. We
have developed models of both unidirectional and bidirectional ant-traffic by
generalizing the totally asymmetric simple exclusion process (TASEP) [6, 84,
85] with parallel dynamics by taking into account the effect of the pheromone.

In our model of uni-directional ant-traffic the ants move according to a
rule which is essentially an extension of the TASEP dynamics. In addition, a
second field is introduced which models the presence or absence of pheromones
(see Fig. 6). The hopping probability of the ants is now modified by the pres-
ence of pheromones. It is larger if a pheromone is present at the destination
site. Furthermore, the dynamics of the pheromones has to be specified. They
are created by ants and free pheromones evaporate with probability f per
unit time. Assuming periodic boundary conditions, the state of the system is
updated at each time step in two stages. In stage I ants are allowed to move
while in stage II the pheromones are allowed to evaporate. In each stage the
stochastic dynamical rules are applied in parallel to all ants and pheromones,
respectively.
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Fig. 6. Schematic representation of typical configurations of the uni-directional ant-
traffic model. The symbols • indicate the presence of pheromone. This figure also
illustrates the update procedure. Top: Configuration at time t, i.e. before stage I of
the update. The non-vanishing probabilities of forward movement of the ants are
also shown explicitly. Middle: Configuration after one possible realisation of stage
I. Two ants have moved compared to the top part of the figure. The open circle
with dashed boundary indicates the location where pheromone will be dropped by
the corresponding ant at stage II of the update scheme. Also indicated are the
existing pheromones that may evaporate in stage II of the updating, together with
the average rate of evaporation. Bottom: Configuration after one possible realization
of stage II. Two drops of pheromones have evaporated and pheromones have been
dropped/reinforced at the current locations of the ants.

One interesting phenomenon observed in the simulations is coarsening. At
intermediate time usually several non-compact clusters are formed. However,
the velocity of a cluster depends on the distance to the next cluster ahead.
Obviously, the probability that the pheromone created by the last ant of the
previous cluster survives decreases with increasing distance. Therefore clusters
with a small headway move faster than those with a large headway. This
induces a coarsening process such that after long times only one non-compact
cluster survives.

A similar coarsening phenomenon has been observed also in the bus-route
model [86, 87]. In fact, the close relation between our model of uni-directional
traffic on ant-trails and the bus-route model has been pointed out earlier [88].
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In the bus route model, each bus stop can accommodate at most one bus at
a time; the passengers arrive at the bus stops randomly at an average rate λ
and each bus, which normally moves from one stop to the next at an average
rate Q, slows down to q, to pick up waiting passengers [86, 87].

In vehicular traffic, usually, the average speed of the vehicles decreases
monotonically with increasing density because the inter-vehicle interactions
tend to hinder each other’s movements. In contrast, in our models of ant-traffic
the average speed of the ants varies non-monotonically with their density over
a wide range of small values of f because of the coupling of their dynamics
with that of the pheromone. This uncommon variation of the average speed
gives rise to the unusual dependence of the flux on the density of the ants in
our models of ant-traffic. Furthermore, the flux does not exhibit the particle-
hole symmetry which is a characteristic of the TASEP. Details of the models
and results on both uni-directional and bi-directional traffic of ants on trails
are given in the article of John et al. in this proceedings [89]. The experimental
data reported in the pioneering experimental work of Burd and collaborators
[90] were too scattered to test our theoretical predictions. However, more
accurate recent data [91, 92] establish both the non-monotonic variation of
the average speed with density as well as the formation of cluster by the ants.

8 Summary and Conclusion

In this article we have reviewed our current understanding of traffic-like col-
lective phenomena in living systems, starting from the smallest level of intra-
cellular bio-molecular motor transport and ending at the level of the traffic of
social insects like, for example, ants. We have restricted our attention to those
theoretical works where, in the spirit of particle-hopping models of vehicular
traffic, the language of cellular automata or extensions of TASEP has been
used. The success of this modelling strategy has opened up a new horizon in
traffic science and, we hope, we have provided a glimpse of an exciting frontier
of interdisciplinary research.
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6. G.M. Schütz: Exactly Solvable Models for Many-Body Systems, in C. Domb

and J.L. Lebowitz (eds.), Phase Transitions and Critical Phenomena, Vol. 19
(Academic Press, 2001).

7. M.R. Evans and R.A. Blythe, Physica A313, 110 (2002).
8. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, (Sinauer Asso-

ciates, 2001) .
9. M. Schliwa (ed.), Molecular Motors, (Wiley-VCH, 2002).

10. G. Oster and H. Wang, in ref. [9].
11. M.E. Fisher and A.B. Kolomeisky, Proc. Natl. Acad. Sci. 98, 7748 (2001).
12. R.D. Astumian, Appl. Phys. A 75, 193 (2002).
13. M. Aridor and L.A. Hannan, Traffic 1, 836 (2000); 3, 781 (2002).
14. N. Hirokawa and R. Takemura, Trends in Biochem. Sci. 28, 558 (2003)
15. E. Mandelkow and E.M. Mandelkow, Trends in Cell Biol. 12, 585 (2002).
16. L.S. Goldstein, Proc. Natl. Acad. Sci. 98, 6999 (2001); Neuron 40, 415-425

(2003). 28, 558 (2003); Curr. Op. Neurobiol. 14, 564-573 (2004).
17. I. Derenyi and T. Vicsek, Phys. Rev. Lett. 75, 374 (1995).
18. I. Derenyi and A. Ajdari, Phys. Rev. E 54, R5 (1996).
19. Y. Aghababaie, G.I. Menon and M. Plischke, Phys. Rev. E 59, 2578 (1999).
20. R. Lipowksy, S. Klumpp, and Th. M. Nieuwenhuizen, Phys. Rev. Lett. 87,

108101 (2001).
21. R. Lipowksy and S. Klumpp, Physica A 352, 53 (2005).
22. M.J.I. Müller, S, Klumpp and R. Lipowsky, J. Phys. Cond. Matt. 17, S3839

(2005) and references therein.
23. S. Klumpp and R. Lipowsky, this proceedings.
24. A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. Lett. 90, 086601 (2003);

Phys. Rev. E 70, 046101 (2004).
25. E. Frey, A. Parmeggiani and T. Franosch, Genome Informatics 15(1), 46 (2004)

and references therein.
26. M.R. Evans, R. Juhasz, and L. Santen, Phys. Rev. E 68, 026117 (2003).
27. R. Juhasz and L. Santen, J. Phys. A 37, 3933 (2004).
28. V. Popkov, A. Rakos, R.D. Williams, A.B. Kolomeisky, and G.M. Schütz, Phys.
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Summary. Semiflexible polymers and filaments play an important role in biological
and chemical physics. The cooperative behaviour of interacting filaments and the
internal bending modes of a single filament give rise to various equilibrium phase
transitions, such as bundling and adsorption, which are reviewed in this article. In
motility assays, filaments are adsorbed and driven by motor proteins, which are
anchored to a planar two-dimensional substrate. We present a simulation model for
the active filament dynamics in this non-equilibrium system.

1 Introduction

Stiff, filamentous polymers play an important role in biological and chemical
physics. Such polymers have a considerable bending rigidity, which gives rise to
persistence lengths comparable to or larger than their contour lengths. These
semiflexible polymers exhibit a variety of cooperative phenomena, which we
want to discuss in this article. These transitions result from the competition
of several energies in the system, i.e., the bending energy, the thermal energy,
interaction energies, and external driving forces. In biological systems, driving
forces can arise from the activity of molecular motors which perform directed
walks on cytoskeletal filaments.

First we will discuss the equilibrium phase transition that leads to the
formation of filament bundles in the presence of attractive interactions, which
can arise from crosslinking proteins or unspecific interactions [3]. In eukary-
otic cells, the most important building blocks of the cytoskeleton are micro-
tubules and filamentous actin (F-actin). Actin filaments have a persistence
length Lp 	 30µm [1], microtubules are much stiffer with a persistence length
Lp ∼ mm [2]. In the cortex of the cell, actin filaments form a dense meshwork
which is responsible for many of the viscoelastic properties of the cell. Another
important morphology that is found in the cell are filament bundles [4], which,
e.g., support cell protrusions and serve as stress fibres. Both meshworks and
bundles are hold together by different actin-binding crosslinking proteins [4, 5].
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Actin bundling crosslinkers possess two adhesive end domains which bind to
filaments by weak bonds; crosslinker mediated interactions therefore allow a
reversible formation of actin bundles, which can be regulated by the concen-
tration of crosslinkers in solution. Solution of actin filaments and crosslinking
proteins have been studied in vitro in a number of recent experiments [6–8]. In
these studies it has been observed that bundle formation in F-actin solutions
containing crosslinking molecules requires a threshold crosslinker concentra-
tion above which F-actin bundles become stable against the thermal fluctua-
tions of filaments and a phase containing networks of bundles separates.

Another important equilibrium phase transition of polymers is their ad-
sorption to an attractive planar surface. For semiflexible polymers or filaments,
the adsorption transition is similar to the binding of two filaments but rep-
resents a distinct universality class [9]. Various single molecule methods have
been applied to adsorbed semiflexible polymers because both visualization and
manipulation are easier for adsorbed polymers with a large diameter, such as
DNA [10, 11]. These polymers are generically semiflexible because stronger
entropic or enthalpic interactions along their backbone increase the bending
rigidity. The thermally activated dynamics of single filaments adsorbed on
structured substrates has been discussed in Refs. [12]. Here, we will focus on
the adsorption behaviour of filaments in motility assays. In such an assay,
cytoskeletal filaments are adsorbed and driven over a two-dimensional, planar
substrate by motor proteins whose tails are anchored to the substrate [13]. In
order to obtain adsorption, a critical density of motor proteins is needed in
close analogy to the critical crosslinker concentration for the formation of a
filament bundle.

Motility or gliding assays are a standard biochemistry assay to characterize
motor proteins, which is based on measuring the active dynamics of adsorbed
filaments. In biological cells, small forces generated by motor proteins organize
and rearrange cytoskeletal filaments and give rise to active, non-equilibrium
filament dynamics, which plays an important role for cell division, motility,
and force generation [17]. Whereas conventional “passive” polymer dynamics
is governed by thermal fluctuations [18], active filament dynamics is charac-
terized by a constant supply of mechanical energy by motor proteins, which
hydrolyze adenine triphosphate (ATP). Motility assays are model systems,
which allow to study active filament dynamics in a controlled manner. By an-
alyzing the transport velocities of single filaments gliding over the substrate,
information can be obtained about basic properties of molecular motors such
as their maximal velocity. We introduce a simulation model for motility as-
says, which refines previous models [14–16] and contains semiflexible filaments,
motor heads, and polymeric motor tails as separate degrees of freedom.

This article is organized as follows. In section 2 the formation of filament
bundles via crosslinker-mediated attractive interactions is discussed. The ad-
sorption of a filament onto an adhesive surface is considered in section 3. In
particular, we discuss the filament adsorption on a planar two-dimensional
substrate covered with anchored motor proteins, which represents the geom-
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etry used in motility assays. In section 4, we introduce a model for the active
filament dynamics in motility assays and present recent simulation results.

2 Filament Bundles

We consider N filaments with bending rigidity κ in a solution containing
crosslinking molecules with two adhesive end groups. The persistence length
of such a filament is Lp = 2κ/T , where T is the temperature in energy units.
This system exhibits a critical crosslinker concentration, X1 = X1,c, which
separates two different concentration regimes. ForX1 < X1,c, the filaments are
unbound and uniformly distributed within the compartment. For X1 > X1,c,
the filaments form either a single bundle, which represents the true ground
state of the system as in Fig. 1(a) and (c) , or several sub-bundles, which
represent metastable, kinetically trapped states as in Fig. 1(b). Furthermore,
as we decrease the crosslinker concentration from a value above X1,c towards
a value below X1,c, the bundles undergo a discontinuous unbinding transition
at X1 = X1,c. The existence of a single, discontinuous unbundling transition
can be established by analytic methods for N = 2 filaments [9] and by Monte
Carlo (MC) simulations for larger bundles containing up to N = 20 filaments.

Fig. 1. Monte Carlo snapshots of bundles with N = 20 filaments. (a) Close to
the unbinding transition in the bundled phase. (b) Deep in the bound phase, the
bundle tends to segregate due to slow kinetics and filament entanglement. (c) The
equilibrium shape of the bundle is roughly cylindrical.

2.1 Model

The filaments are oriented along one axis, say the x-axis, and can be parame-
trized by two-dimensional displacements zi(x) (i = 1, ..., N) perpendicular
to the x-axis, with 0 < x < L, where L is the projected length of the poly-
mer. This parametrization is appropriate provided the longitudinal correlation
length is small compared to Lp. We discretize the filament into segments of
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length a‖, i.e., xk = ka‖ and zi,k = zi(xk). The presence or absence of a
crosslinker molecule at segment k of filament i is described by the occupation
number ni,k = ni(xk) = 0, 1. The filament-crosslinker system is described by
the Hamiltonian

H =
∑

i

[Hb,i{zi} + H1{ni}] +
∑
i,j

H2{zi−zj , ni, nj} , (1)

where the first contribution Hb,i =
∫ L

0
dx 1

2κ
(
∂2

xzi

)2 contains the bending en-
ergies of the filaments. The term H1 describes the intrafilament interactions of
linkers. We consider a lattice gas of linkers with hard-core repulsion adsorbing
on a filament with H1 =

∑
k a‖Wni,k where W < 0 is the adhesive energy

(per length) of one linker end group. The third contribution H2 describes the
pairwise interactions between filaments i and j and is given by

H2 =
∑

k

a‖
[
Vr(∆zij,k) +

1
2
(ni,k + nj,k − 2ni,knj,k)Va(∆zij,k)

]
(2)

where∆zij,k ≡ zi,k−zj,k. The first term is the hard-core repulsion of filaments
that is independent of the linker occupation with a potential Vr(z) = ∞ for
|z| < �r and Vr(z) = 0 otherwise where �r is of the order of the filament
diameter. The second term is the linker-mediated attraction and is non-zero
if either segment k of filament i or segment k of filament j carries a linker.
Then the other filament is attracted by a linker-mediated potential Va(z).
The latter filament gains the additional energy |W | if |∆zij,k| ≤ �a, where the
potential range �a is of the order of the linker size. This attraction is modelled
by the potential well

Va(z) = W for 0 < | z| − �r < �a , Va(z) = 0 otherwise. (3)

We can perform the partial trace over the crosslinker degrees of freedom
ni,k in the grand-canonical ensemble to obtain an effective interaction be-
tween filaments. Each crosslinker has two adhesive ends. The first adhesive
end adsorbs on a filament and establishes the standard Langmuir-type ad-
sorption equilibrium with a linker concentration per site X1 ≡ 〈ni,k〉1 =
Kcx/(1 + Kcx) where the average is taken with the Hamiltonian H1. X1

is thus determined by the concentration cx of linkers in solution, where
K is the equilibrium constant of the association reaction of the crosslinker
with the filament. Tracing over weakly bound linkers with |W | � T/a‖,
we end up with effective pairwise linker-mediated filament interactions, i.e.,
H̄2 ≈ 1

2

∑
k a‖[Vr(∆zij,k) + V̄a(∆zij,k)], which have the same functional form

as the bare interactions; the short-range attractive part V̄a is of the form (3)
with a strength W̄ ≈ 2X1W proportional to the linker concentration on the
filament. Pairwise filament interactions with potentials of the form (3) are
generic and do not only arise from crosslinkers but also from van-der-Waals,
electrostatic, or depletion forces.
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Fig. 2. MC data for N = 2, 3, 5, 10, 20 identical filaments (with persistence length
Lp = 200, contour length L = 100, potential range �a = 0.001, and hard core
radius �r = 0.1; all lengths are in units of ∆x, lines are guides to the eye). For
N = 10, 20 two branches of data are shown corresponding to two different initial
conditions; in the lower branch we prepared a compact cylindrical configuration, in
the upper branch (thick lines) we arranged filaments initially in a plane. (a) Mean
energy 〈H〉/NL per filament (in units of T ) as a function of the effective potential
strength |W̄ | (in units of T/∆x). Arrows correspond to the snapshots in Fig. 1. (b)
Logarithmic plot of the mean filament separation 〈∆z〉 ≡ 〈|∆zij | − �r〉 (in units of
∆x) as a function of the reduced potential strength (|W̄ | − |W̄c|)/|W̄ |.

2.2 Discontinuous Unbundling Transition

We have studied bundle formation by MC simulations for up toN = 20 identi-
cal filaments (κi = κ) using the effective Hamiltonian H =

∑
i Hb,i +

∑
i,j H̄2.

The MC simulations can be used to determine the locus and order of the
unbinding transitions, at which the mean energy 〈H〉 exhibits a discontinuity,
see Fig. 2a. To gain further insight into bundle morphologies, we also mea-
sure the mean segment separation 〈|∆zij | − �r〉, see Fig. 2b, which is directly
proportional to the mean bundle thickness that can be determined by optical
microscopy in experiments.

Our MC simulations confirm that, for bundles containing up to N = 20
filaments, there is a single, discontinuous unbinding transition, see Fig. 2a.
In the presence of a hard-core repulsion, the critical potential strength W̄c

saturates to a N -independent limiting value for large N . As can be seen in
Fig. 1a typical bundle morphologies close to the transition are governed by
pair contacts of filaments. The bundle thickness, as given by the mean segment
separation 〈|∆zij | − �r〉, stays finite up to the transition, see MC data in
Fig. 2b. For increasing N , an increasing number of higher moments 〈(|∆zij |−
�r)m〉 remains finite at the transition [all moments m < 2(N − 1)(3N − 4)/3
remain finite] showing that the critical thickness fluctuations of large bundles
become small.

Deep in the bundled phase, i.e., for large |W̄ |, our MC simulations show
that bundles do not always reach their equilibrium shape. Small sub-bundles
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containing typically N ∼ 5 filaments form easily, start to entangle, and further
equilibration is kinetically trapped suggesting that the bundle is in a “glass”
phase. Fig. 1b shows the segregation into sub-bundles in a typical configu-
ration and Fig. 2a shows the corresponding rise in the mean bundle energy
per filament which approaches the N = 5 result. In Fig. 2b the pronounced
rise of the mean separation for N > 5 with increasing potential strength and
with increasing N is due to the segregation. This behaviour is reminiscent of
the experimentally observed F-actin structures consisting of networks of small
bundles [7]. Only when starting from a sufficiently compact initial state, bun-
dles relax towards the equilibrium form in the MC simulation, which is a
roughly cylindrical bundle with a hexagonal filament arrangement as shown
in Fig. 1c. In contrast to the segregated form, the bundle thickness and the
mean energy per filament of the equilibrium form decrease with increasing N ,
as can be seen in Fig. 2.

The critical potential strength W̄c corresponds to a critical crosslinker
concentration X1,c. For weakly bound linkers |W | � T/a‖, we have a simple
linear relation W̄ ≈ 2X1W such that X1,c ≈ W̄c/2W . The corresponding
relation for strongly bound linkers is more complicated.

Our simulations use periodic boundary conditions and treat very long and
essentially parallel filaments. In order to include translational and rotational
entropy we can map the ensemble of semiflexible filaments considered here
onto an ensemble of rigid rods of finite length L and diameter a⊥ at a certain
concentration c. The effective pairwise attraction (per length) J is given by
the bundling free energy of the filaments with J ∼ W̄c−W̄ > 0 for |W̄ | > |W̄c|.
Using the results of Refs. [19], we find that the hard rod system separates into a
high-density nematic phase and a low-density nematic or isotropic phase above
a critical attraction, which is in qualitative agreement with the experimental
results in Refs. [6–8].

3 Filament Adsorption

The adsorption transition of a single filament onto a planar substrate is qual-
itatively similar to the bundle formation for N = 2 filaments in 1+1 dimen-
sions, where the one-dimensional perpendicular distance z(x) from the surface
is analogous to a one-dimensional separation between filaments. The adsorp-
tion transition can be solved analytically [9], which reveals that unbinding
and desorption represent two distinct universality classes with different criti-
cal exponents.

Here we want to consider the adsorption of a filament with persistence
length Lp = 2κ/T on a planar two-dimensional substrate where molecular
motors are adsorbed with an areal density σ. Each motor can bind to a fila-
ment within a capture radius w and a binding energy Wm < 0. In contrast
to the case of the annealed crosslinker ensemble considered previously, the
motors represent a quenched ensemble of adsorption points. In the following,
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we consider the typical experimental situation of a rather uniform coverage
with motor proteins and also neglect effects from filament fluctuations parallel
to the surface. Then the array of motors gives rise to an average adsorption
potential V̄ad(z) of the same functional form as the potential (3) with a po-
tential strength W̄ad = Wmσw, the hard substrate at �r = 0 and �a of the
order of the capture radius w. On length scales comparable or smaller than
Lp, the semiflexible polymer is only weakly bent by thermal fluctuations and
its configurations are governed by the effective Hamiltonian

Had =
∫ L

0

dx
[κ
2
(∂2

xz)
2 + V̄ad(z(x))

]
. (4)

We consider the limit of long filaments LW̄ad � T , which can exhibit a
desorption transition. Using the model (4), this desorption transition has
been studied by transfer matrix techniques in Refs. [9]. The critical potential
strength for desorption is W̄ad,c = −cT/w2/3L

1/3
p corresponding to a criti-

cal motor density σc = T/Wmw
5/3L

1/3
p , where c ≈ √

3π/2 ≈ 1.5. For motor
densities above this critical density, filaments adsorb onto the substrate with
anchored motors against the thermal fluctuations of filaments. The critical
motor density for adsorption is decreasing with increasing filament rigidity κ.
The transfer matrix treatment shows that the free energy difference between
adsorbed and unbound state vanishes as |∆f | ≈ |W̄ad,c||w|/ ln |w|−1 where
w ≡ (W̄ad−W̄ad,c)/W̄ad,c. Therefore, the correlation length ξ‖ = T/|∆f | ∝
|w|−ν diverges with an exponent ν = 1 + log. The weak bending approxima-
tion is valid as long as gradients are small, i.e., 〈(∂xz)2〉 ∼ ξ‖/Lp � 1, which
is fulfilled for |W̄ad−W̄ad,c| � T/Lp, which typically applies to stiff filaments
such as microtubules adsorbed by kinesins.

4 Motility Assays for Motor Proteins

We consider a motility assay, where filaments are connected to the substrate
by anchored motors of sufficient density σ > σc. In the presence of ATP, the
motor heads start to perform a directed walk on the filaments, which induces
active dynamics of adsorbed filaments.

4.1 Model

Our microscopic model for motility assays describes filaments, motor heads,
and polymeric motor tails as separate degrees of freedom [22]. One end of the
motor tail is anchored to the substrate and the motor head on the other end
can bind to a filament in the correct orientation due to the tail flexibility.
Once bound the motor head moves along the filament thereby stretching the
polymeric tail, which gives rise to a loading force acting both on the motor
head and the attached filament. This force feeds back onto the motion of the
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Fig. 3. Schematic top view of a filament i in the motility assay with two motors
attached. The configuration of filament i is specified by the position rc,i of its center
of mass an its orientation angle θi; ui = (cos θi, sin θi) is the orientational unit vector
of the filament. Fα

m,i is the force arising from the stretched polymeric tail of motor
α, which has an end-to-end vector ∆rα. The polymeric tail is stretched by the motor
head moving with velocity v, see eq. 6. dm denotes the distance between attached
motors.

bound motor head, which moves with a load-dependent motor velocity [20, 21].
Filaments follow an overdamped dynamics with external forces arising from
the stretched motor tails and the repulsive filament-filament interaction.

To proceed, let us consider N rigid filaments of length L on a planar two-
dimensional substrate [23]. The configuration of filament i (i = 1, ..., N) is
then specified by the position of its center of mass rc,i and its orientation angle
θi, see Fig. 3. The overdamped translational and rotational dynamics of each
filament i is described by stochastic Langevin-type equations of motion [22]

Γ · ∂trc,i =
∑Ni

α=1
Fα

m,i +
∑N

j=1
Fr,ij + ζi

Γθ∂tθi =
∑Ni

α=1
Mα

m,i +
∑N

j=1
Mr,ij + ζθ,i , (5)

where Ni is the number of motor heads attached to filament i and indexed by
α. ui = (cos θi, sin θi) is the orientational unit vector of filament i. Γ is the
matrix of translational friction coefficients, Γ = Γ‖ui⊗ui+Γ⊥(I−ui⊗ui) [18],
where I is the unit matrix, and Γθ is the rotational friction coefficient. Γ‖, Γ⊥
and Γθ are the friction coefficients of the passive filament dynamics. ζi(t)
and ζθ,i(t) are the translational and the angular components of the Gaussian
distributed thermal random forces. Fα

m,i is the force arising from the stretched
tail of motor α. The end-to-end vector of the polymeric tail is ∆rα ≡ rα

i − rα
0 ,

where the motor tail is anchored at rα
0 and the head position is rα

i . We model
the polymeric tail as freely jointed chain such that Fα

m,i is pointing in the
direction −∆rα and its absolute value is obtained by inverting the force-
extension relation of a freely jointed chain [24]. There is also a corresponding
torque due to the motor activity, Mα

m,i = |(rα
i − rc,i)×Fα

m,i|. The interaction
forces Fr,ij and torques Mr,ij are due to the purely repulsive interactions
between filaments i and j corresponding to a hard-rod interaction for filaments
of diameter D.

The dynamics of motor heads is described by a deterministic equation of
motion, which has the form
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∂tx
α
i = v(Fα

m,i) , (6)

where |xα
i | ≤ L/2 defines the position of the motor α on the rod i, i.e.,

rα
i = rc,i +xα

i ui, i.e., the filament polarity is such that the motor head moves
in the direction ui. The motor velocity v is a function of the loading force
Fα

m,i which builds up due to stretching of the motor tail. We use a force-
velocity relation with a maximum value vmax for forces Fα

m,i · ui ≥ 0 pulling
the motor forward, a linear decrease for forces Fα

m,i ·ui < 0 pulling the motor
backwards, and v = 0 for Fα

m,i ·ui < −Fst, where Fst is the stall force [20, 21].
We assume that the motor binds to the filament when the distance between
the position of the fixed end of the motor tail at rα

0 and the filament is smaller
than the capture radius w. Apart from the stall force Fst the motor is also
characterized by its detachment force Fd, above which the unbinding rate of
the motor head becomes large. For simplicity we assume in our model that
the motor head detaches whenever the force Fα

m,i exceeds a threshold value
Fd. We consider the case of processive motors with a high duty ratio close to
unity, i.e., motors detach from a filament only if they reach the filament end
or if the force F becomes larger than the detachment force Fd.

4.2 Simulation

Using the above model we performed simulations of gliding assays for a ran-
dom distribution of motors with a surface density σ and periodic bound-
ary conditions. At each time step ∆t we update the motor head position
xα

i and filament position by using the discrete version of the equations of
motion (5) and (6). The parameter values that we choose for the simula-
tions are comparable with experimental data on assays for conventional ki-
nesin. The simulation results presented in this article have been obtained
for assays with quadratic geometry and size 25µm2 with rigid filaments of
length L = 1µm and diameter D = L/40. We simulate at room temperature
T = 4.28 × 10−3pN µm. Friction coefficients are Γ⊥ = 2Γ‖ = 4πηL/ ln(L/D)
and Γθ = Γ‖L2/6, where η is the viscosity of the surrounding liquid. We
use a value η = 0.5pN s/µm2 much higher than the viscosity of water,
ηwater ∼ 10−3pN s/µm2, which allows to take larger time steps and decreases
the simulation time. We checked that this does not affect results. We use a
maximum motor speed of vmax = 1µms−1 and a stall force of Fst = 5pN . The
capture radius for motor proteins is w = 10−2µm and the length of the fully
stretched motor tail Lm = 5× 10−2µm.

The motion of a single filament with contour length L is characterized
by stochastic switching between rotational and translational diffusion if no
motors are attached, directed translation in rotationally diffusing directions if
one motor is attached, and directed translation in one direction if two or more
motors are attached. The relative frequency of these types of motion depends
on the mean number of motors attached to the filament or the mean distance
〈dm〉 between bound motors and, thus, on the surface motor concentration
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Fig. 4. (a) Simulation results for average distance 〈S〉 traveled by a filament
between successive rotations as a function of the filament length L for high motor
concentration. The solid line is the analytical result (7) as derived in Ref. [14]. (b)
and (c): Snapshots of a gliding assay of rodlike filaments with filament density ρ =
2/L2 on a motor coated substrate with randomly distributed motors and periodic
boundary conditions. For detachment forces Fd = Fst, we find (b) an isotropic phase
at low motor surface density σwL = 0.03 and (c) active nematic ordering at high
motor surface density σwL = 0.09.

σ [14]. In the limit of high motor concentration a filament has two or more
bound motors on average and 〈dm〉 ∼ 1/σw. The single filament performs a
persistent walk with a persistence length [14]

ξp =
〈S〉
〈∆θ2〉 =

1
〈∆θ2〉

L+ 2〈dm〉
L+ 3〈dm〉

〈dm〉2
L

(
eL/〈dm〉 − 1 − L

〈dm〉
)

(7)

where 〈S〉 is the mean distance traveled by a filament between successive
rotations and 〈∆θ2〉1/2 = 3σ/σL2 the mean angle at rotations. The theoretical
result (7) is confirmed by our simulation as shown in Fig. 4a. The mean
filament velocity vF = 〈|ṙc,i|〉 can be obtained by simultaneously equating
the filament friction force with the total motor driving force and the filament
velocity with the motor velocity in the steady state, which gives vF = vmax(1+
Γ‖vmax〈dm〉/LFst)−1. This relation is confirmed by our simulations.

Our results for the simulation of many filaments with hard-core interac-
tions indicate that the motility assay exhibits active nematic ordering if the
motor density σ is increased as can be seen in the two simulation snapshots
Figs. 4b and c.
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Traffic of Molecular Motors
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Summary. Molecular motors perform active movements along cytoskeletal fila-
ments and drive the traffic of organelles and other cargo particles in cells. In contrast
to the macroscopic traffic of cars, however, the traffic of molecular motors is char-
acterized by a finite walking distance (or run length) after which a motor unbinds
from the filament along which it moves. Unbound motors perform Brownian motion
in the surrounding aqueous solution until they rebind to a filament. We use variants
of driven lattice gas models to describe the interplay of their active movements, the
unbound diffusion, and the binding/unbinding dynamics. If the motor concentration
is large, motor-motor interactions become important and lead to a variety of coop-
erative traffic phenomena such as traffic jams on the filaments, boundary-induced
phase transitions, and spontaneous symmetry breaking in systems with two species
of motors. If the filament is surrounded by a large reservoir of motors, the jam length,
i.e., the extension of the traffic jams, is of the order of the walking distance. Much
longer jams can be found in confined geometries such as tube-like compartments.

1 Introduction

The traffic of vesicles, organelles, protein complexes, messenger RNA, and
even viruses within the cells of living beings is driven by the molecular mo-
tors of the cytoskeleton which move along cytoskeletal filaments in a directed
fashion [1–3]. There are three large classes of cytoskeletal motors, kinesins and
dyneins which move along microtubules, and myosins which move along actin
filaments. These motors use the free energy released from the hydrolysis of
adenosinetriphosphate (ATP), which represents their chemical fuel, for active
movement and to perform mechanical work. They move in discrete steps in
such a way that one molecule of ATP is used per step. Typical step sizes are
∼ 10 nm, typical motor velocities are in the range of µm/sec.

Since the interior of cells is quite crowded and motors are strongly at-
tracted by the filaments, which leads to relatively large motor densities along
the filaments, it is interesting to study the collective traffic phenomena which
arise from motor–motor interactions, in particular the formation of traffic
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jams due to the mutual exclusion of motors from filament sites. To study
these cooperative phenomena theoretically we have introduced new variants
of driven lattice gas models [4] which have been studied extensively during the
last years both by our group [4–11] and by several other groups [12–17] and
which will be described below. These models are related to lattice gas models
for driven diffusive systems and exclusion processes as studied in the con-
text of non-equilibrium phase transitions [18–21] and highway traffic [22, 23].
Since molecular motors can be studied in a systematic way using biomimetic
systems which consist of a small number of components (such as motors, fila-
ments, and ATP), they can also serve as model systems for the experimental
investigation of driven diffusive systems.

Although the traffic of cargo particles pulled by molecular motors within
cells is remarkably similar to the macroscopic traffic on streets or rails, there
is an important difference which is a direct consequence of the nanoscale size
of molecular motors: The motor–filament binding energy can be overcome
by thermal fluctuations which are ubiquitous on this scale, and molecular
motors therefore have a finite walking distance or run length after which they
unbind from the filament along which they move. This walking distance is
typically of the order of 1 µm for a single motor molecule.1 Likewise, unbound
motors which diffuse freely in the surrounding aqueous solution, can bind to
a filament and start active movement. In contrast to highway traffic, where
additional cars enter only at on-ramps, i.e. at specific locations, binding of
molecular motors occurs along the full length of the filaments. In addition to
stepping along a one-dimensional track and mutual exclusion, lattice models
for the traffic of molecular motors must therefore also describe the dynamics
of motor–filament binding and unbinding as well as the diffusive movement of
the unbound motors.2

In contrast to the transport properties of single motor molecules which
have been studied extensively during the last 15 years [1, 2], the traffic phe-
nomena in many-motor systems have only recently attracted the interest of
experimentalists and are still largely unexplored from the experimental point
of view. The quantity of main interest has so far been the profile of the bound
motor density along a filament. Density profiles with a traffic jam-like ac-
cumulation of motors at the end of filaments have been observed in vivo
for a kinesin-like motor which was overexpressed in fungal hyphae [28, 29].
Recently, motor traffic jams have also been observed in biomimetic in vitro
systems using both conventional kinesin (kinesin 1) [30] and the monomeric
kinesin KIF1A (kinesin 3) [17].

1 In order to transport a cargo actively over larger distances as, e.g., in the axon of a
nerve cell, several motors work together in a cooperative fashion. We have recently
shown that 7–8 motors are sufficient for processive transport over distances in the
centimeter range as necessary in axons [24].

2 These processes have not been taken into account in earlier studies of exclusion
effects in many-motor systems which were based on ratchet models [25–27].
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In the following, we will give a short overview over the lattice models for
molecular motors and discuss the motor traffic in various systems which differ
mainly in the compartment geometry and the arrangement of filaments. In
section 4, we address the length of motor jams on filaments and argue that
in the presence of a large motor reservoir this jam length is typically of the
order of the walking distance. Longer jams are found in confined geometries
as discussed in section 5. In the last section of the paper, we briefly review
our results for systems with two motor species.

2 Lattice Models for Molecular Motor Traffic

To describe the interplay of the movements of bound and unbound motors,
we have introduced a class of lattice models which incorporate the active
movement of bound motors, the passive diffusion of unbound motors, and the
motor–filament binding and unbinding dynamics [4]. These models can also
account for motor–motor interactions such as their mutual exclusion from
binding sites of the filament.

We describe the motor movements as random walks on a (in general, three-
dimensional) cubic lattice as shown in Fig. 1(a). Certain lines on this lattice
represent the filaments. The lattice constant is taken to be the motor step
size � which for many motors is equal to the filament periodicity. When a
motor is localized at a filament site, it performs a biased random walk. Per
unit time τ , it makes forward and backward steps with probabilities α and
β, respectively. With probability γ, the motor makes no step and remains at
the same site. The latter parameter is needed to account for the fact that if
the lattice constant is given by the motor step size, unbound diffusion over
this scale is much faster than an active step of a bound motor. Finally, the
motor hops to each of the adjacent non-filament sites with probability ε/6 and
unbinds from the filament. The total unbinding probability per unit time is
ε0 = nadε/6 with the number nad of adjacent non-filament sites which is given
by nad = 4 and nad = 3 for filaments in solution and filaments immobilized
to a surface, respectively.

At non-filament sites, the motor performs a symmetric random walk and
hops to all neighboring sites with probability 1/6 per time τ . This choice of
the hopping rate for unbound motor movements implies that the time scale τ
is given by the diffusion coefficient Dub of unbound motors via τ ≡ �2/Dub. If
it reaches a filament site, it binds to the filament with the sticking probability
πad.

The behavior at the filament end has to be specified separately. We con-
sider two possibilities: (i) active unbinding of motors at the filament end where
motors at the last filament site make a forward step with probability α as at
the other filament sites, but the latter step brings them to the forward non-
filament neighbor site, so that their total unbinding probability is ε0 +α, and
(ii) thermal unbinding where a motor at the last filament site does not make
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Fig. 1. Lattice model for molecular motor traffic: (a) Molecular motors step in a
biased fashion along a filament (black line). With probability ε/6, a motor unbinds
from the filament by stepping to an adjacent non-filament site. Unbound motors
perform symmetric random walks and, when reaching a filament site, rebind to it
with probability πad. Mutual exclusion implies that motors cannot step to lattice
sites that are already occupied by another motor. (b) In some situations, the un-
bound motor density ρub (or the corresponding concentration c) can be considered
as constant. In that case, bound motors move along the filament as in (a) and unbind
from it with probability ε0 = nadε/6. Binding of a motor to an empty filament site
occurs with probability π0ρub = nadπadρub/6 which can also be expressed as πcc as
discussed in section 4.

a forward step, but has an increased waiting probability γ′ = γ + α. In that
case, unbinding occurs with probability ε0.

The hopping rates can be chosen in such a way that one incorporates
the measured transport properties of single motors such as velocity, diffusion
coefficient, and average walking distance before unbinding from the filament
[4, 10].

Finally, motor-motor interactions can easily be incorporated into these
models. In the following we mainly consider the mutual exclusion of motors
from lattice sites. Exclusion is most important at filament sites (since the
motors are strongly attracted to these sites), but in principle also applies to
unbound motors. In the last section of this article, we consider cooperative
binding of motors to the filament. In that case, the binding and unbinding
probabilities depend on the occupation of the nearest neighbor filament sites.
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When considering many-motor systems, one is often interested in the mo-
tor densities and currents profiles rather than the single-motor trajectories.
The quantities of main interest are then the bound and unbound motor densi-
ties ρb and ρub. If gradients of the unbound motor density along the direction
parallel to a filament can be neglected – either because unbound diffusion is
very fast or because the space available for unbound diffusion is large, so that
motors remain unbound for a long time before rebinding to the filament – the
unbound density can be treated as constant. In that case, one obtains a one-
dimensional model for the filament which is coupled to a reservoir of unbound
motors with constant motor density as studied in Refs. [7, 12, 13, 15, 17]. Per
unit time τ , a motor on the filament unbinds with probability ε0 and binding
of a motor from the reservoir to an empty lattice site occurs with probability
π0ρub ≡ nadπadρub/6, as shown in Fig. 1(b). This situation will be discussed
in section 4.

3 Motor Traffic in Tube-Like Compartments

The motor traffic through tube-like compartments in which one or several
filaments are aligned parallel to the cylinder axis represents a simple sys-
tem which mimics the transport in axons. We have studied tube-like systems
with various kinds of boundary condition: closed systems [4, 9, 11], periodic
boundary conditions [6], open boundaries coupled to motor reservoirs [6], and
half-open systems [11].

The simplest case is given by periodic boundary conditions which can be
solved exactly [6]. In this case, the stationary probability distribution is given
by a product measure; the bound and unbound motor densities are constant
and satisfy the radial equilibrium condition

πadρub(1 − ρb) = ερb(1 − ρub) ≈ ερb, (1)

where the last approximation usually holds under experimentally accessible
conditions, where the unbound density is small, but the bound motor density
can be of the order of one motor per binding site. The bound motor current is
given by J = vbρb(1−ρb) with the bound motor velocity vb. As a function of
the bound motor density or of the total number N of motors within the tube,
it exhibits a maximum and decreases for high motor densities due to motor
jamming as shown in Fig. 2(a).

If the tube is coupled to motor reservoirs at its orifices, the motor traf-
fic exhibits boundary-induced phase transitions related to those of the one-
dimensional asymmetric simple exclusion process (ASEP) [6]. As for the
ASEP, a low-density, high-density and maximal-current phase are present,
and correspond to situations where the bottleneck which limits the transport
is given by the left boundary, the right boundary or the interior of the tube,
respectively. In all three phases, the motor densities are approximately con-
stant and satisfy radial equilibrium sufficiently far from the boundaries. The
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Fig. 2. (a) Bound motor current J for a filament in a tube with periodic boundary
conditions as a function of the number N/L of motor particles per length within the
tube. (b) Phase diagram for an open tube coupled to motor reservoirs with densities
ρb,in and ρb,ex at the left and right end of the tube.

location of the transition lines within the phase diagram is quite sensitive to
the precise choice of the boundary conditions and can be shifted by tuning
the model parameters. A particularly simple case is obtained if we impose
radial equilibrium at the boundaries. In this case, the phase diagram, which is
shown in Fig. 2(b), is independent of the motor transport properties and the
geometric parameters of the tube, and the phase diagram corresponds exactly
to the ASEP phase diagram.

4 Traffic Jams on Filaments in Contact with a Large
Motor Reservoir

From an experimental point of view, the simplest system, for which one can
study molecular motor traffic, is given by one or several immobilized filaments
which are in contact with a solution with a certain motor concentration. For
typical in vitro systems, unbound motor diffusion is very fast and the space
available for unbound diffusion is large, so that we can describe the unbound
motors by a constant density ρub. In the following, we will use dimension-
ful quantities with units typically used by the experimentalist, and therefore
characterize the unbound motors by the concentration c, which is typically in
the nano-molar range, rather than by the local volume fraction ρub. In these
units, the rate for the binding of an unbound motor to an empty filament site
is given by πcc where πc is the second-order binding rate. It is related to the
binding rate in density units via πcc = π0ρub with π0 ≡ nadπad/6 and is most
conveniently expressed in terms of the dissociation constant Kd ≡ ε0/πc which
has the dimension of concentration and is typically of the order of ∼ 100 nM.

If the filament is long compared to the motor walking distance, the bound
motor density is constant except for the regions close to the filament end and
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given by the equilibrium of the binding/unbinding dynamics, ρ(0)
b = c/(Kd +

c) as shown in Fig. 3(a) and (b) for thermal and active unbinding at the
filament end, respectively, using parameters for conventional kinesin. Likewise,
the current along this part of the filament is given by J0 = vbρ

(0)
b (1− ρ(0)

b ). If
the motors unbind thermally at the filament end, a (rather short) traffic jam
forms at the filament end, where the motors accumulate. Note that no jam is
obtained if the motors unbind actively as shown in Fig. 3(b).

The length of the jam region can be defined as L∗ ≡ L − x∗ with the
filament length L and the position x∗ of the jam end, where the density starts
to deviate from the equilibrium value ρ(0)

b . An estimate of L∗ can be obtained
from the balance of currents

J0 − Jend = ε0

∫ L

L−L∗
dx
[
ρb − c

Kd
(1 − ρb)

]
, (2)

where Jend is the forward current at the last filament site. Eq. (2) leads to the
jam length

L∗ = ∆xb
J0 − Jend

vb

[
ρ̄b,jam − c

Kd
(1 − ρ̄b,jam)

]−1

, (3)

where ρ̄b,jam is the average bound density in the jam region and ∆xb is the
walking distance of the motors as given by ∆xb ≡ vb/ε0.

For thermal unbinding of motors at the filament end, Jend = 0. If we
estimate the density within the jam by the maximal value, ρ̄b,jam 	 1, Eq. (3)
leads to

L∗ 	 ∆xb
J0

vb
≤ ∆xb/4 (4)

for the jam length in agreement with simulations which show that L∗ 	
∆xbJ/vb with a prefactor close to one.

This estimate shows that, for filaments in contact with a solution with
constant motor concentration, the jam length L∗ is of the order of the walking
distance∆xb. Longer jam lengths can arise (i) if the unbinding rate ε decreases
with increasing density or (ii) if a gradient in the concentration of unbound
motors is build up [4, 9] which increases binding to the filament in the jam
region and thus also increases the last term of Eq. (3).

5 Geometry-Enhanced Traffic Jams in Closed
Compartments

If filaments are embedded into closed compartments, the motor current along
these filaments leads to the build-up of density gradients within these com-
partments [4, 9, 11]. These gradients are particularly pronounced in tube-like
compartments where all filaments are aligned in parallel and with the same
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Fig. 3. Profiles of the bound motor density ρb on a filament in contact with a
solution with constant unbound motor concentration c as a function of the coordinate
x parallel to the filament for (a) thermal and (b) active unbinding at the filament end.
Note that a traffic jam only occurs for thermal unbinding at the filament end and
that this jam is rather short, of the order of the walking distance. The parameters
are as appropriate for kinesin, ε0 = 1/s, Kd = 200nM, vb = 1µm/s, and for a
microtubule of length 8µm.

orientation along the tube axis. For low motor densities, the motors are essen-
tially localized at that end of the tube towards which their active movements
are directed. If exclusion can be neglected, the bound and unbound motor
densities decrease exponentially if one moves away from this tube end. The
length scale ξ of the exponential decrease is given by ξ = Dubφε/(vbπad), the
ratio of the distance unbound motors diffuse before rebinding and the walking
distance of bound motors. In this expression, vb and Dub are the bound ve-
locity and the unbound diffusion coefficient of the motors, respectively, and φ
is the cross-section of the tube. A constant unbound motor density is a good
approximation if ξ � L, i.e., for large unbound diffusion coefficients Dub and
for large tube radii.

If the overall motor density is increased in these systems, the region in
which the motors are localized develops into an extended crowded domain,
see Fig. 4. The length L∗ of this domain defines the jam length for these
systems. In contrast to the systems discussed in the previous section, the jam
length can be larger than the walking distance and increases with increasing
overall motor concentration until the crowded domain spreads over the full
tube length. In this crowded domain, the density profiles can approximately
be described by local radial equilibrium. For the case of a half-open tube,
which is very similar to the closed tube, but more easily accessible to analytical
methods, the latter approximation shows that the jam length scales essentially
as L∗ ∼ 1/vb [11] rather than L∗ ∼ ∆xb ∼ vb as for a filament in contact
with a constant unbound motor density. The jam length is given by

L∗ =
φDubπad

vbε
G(ε/πad, ρb,in), (5)



Traffic of Molecular Motors 259

0 200 400 600
x

0

0.2

0.4

0.6

0.8

1

b

bv

Dub

(a) (b)

Fig. 4. (a) Motor traffic within a closed tube. The current of bound motors which
move along a filament with velocity vb is balanced by a diffusive current of unbound
motors which diffuse back with the diffusion coefficient Dub. (b) Corresponding
profiles of the bound motor density ρb as a function of the coordinate x along
the filament. A traffic jam domain at the right end of the tube builds up both
for thermal and active unbinding of motors from the ’last’ filament site (solid and
dashed lines, respectively). With increasing overall motor concentration, the crowded
domain spreads to the left.

where G is a function of the ratio of the unbinding and binding probabilities
and of the bound motor density ρb,in in the reservoir to which the tube is
coupled at its open end [11]. If the boundary density is sufficiently close to one,
G behaves as G ≈ − ln(1− ρb,in) and the jam length diverges logarithmically
with 1− ρb,in. For the closed tube, G is determined by an integral constraint
which fixes the total number of motors within the tube.

In addition, the traffic jam is present for both thermal and active unbinding
at the filament end [9] as shown in Fig. 4(b). This means that the crowded
domains are due to a combination of the motor behavior at the last filament
site and the motor accumulation in the region close to the filament end. The
latter accumulation is strongly geometry-dependent.

We have also studied centered or aster-like filament systems [9]. In this
case, the accumulation of motors in the center of an aster is much weaker
than in tube-like systems and, in fact, determined by a power law rather than
by an exponential. As for filaments in contact with a reservoir with constant
unbound motor density, traffic jams are obtained only for thermal unbinding
at the filament end, but not for active unbinding. In addition, when the overall
motor density is increased, the traffic jams remain short in this case. The main
effect of an increase in the overall motor density is a flattening of the density
profile.
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6 Symmetry Breaking and Traffic Lanes in Systems with
Two Motor Species

Each molecular motor moves either towards the plus- or towards the minus-
end of the corresponding filament, but different types of motors move into
opposite directions along the same filament. In this situation, cooperative
binding of the motors to the filament – in such a fashion that a motor is
more likely to bind and less likely to unbind next to a bound motor moving
in the same direction, while it is less likely to bind and more likely to unbind
next to a motor with opposite directionality – leads to spontaneous symme-
try breaking [7]: If the motor–motor interactions, which we characterize by a
single interaction parameter q, are stronger than a certain critical interaction
strength qc, one motor species occupies the filament, while the other one is
largely excluded from it. This symmetry breaking has been found both for
tube-like compartments with periodic boundary conditions and for systems
with a constant unbound motor density. In the latter case, symmetry break-
ing occurs, independent of the choice of the boundary conditions provided
that the system size or the filament length is large compared to the motors’
walking distance. Note that, in contrast to the previously reported example
for symmetry breaking in a driven diffusive system, the ’bridge model’ [31],
the symmetry breaking here is not boundary-induced.

Symmetry breaking has two interesting consequences. First, it implies that
for q > qc there is a discontinuous phase transition if the relative concentra-
tions of the two motor species are varied. This transition is accompanied by
hysteresis, which is again not boundary-induced, in contrast to the hysteresis
which was reported recently for another driven diffusive system [32]. Second,
if several filaments are aligned in parallel and with the same orientation, this
symmetry breaking leads to the spontaneous formation of traffic lanes for
motor traffic with opposite directionality [7].

7 Concluding Remarks

The traffic phenomena in systems with many molecular motors can be de-
scribed by stochastic lattice gas models which are similar to asymmetric ex-
clusion processes, but have the additional property that the motors can un-
bind from the filamentous track and diffuse in the surrounding fluid. These
systems exhibit a variety of cooperative phenomena and, in addition to their
importance for our understanding of the traffic within cells and for prospec-
tive applications in nanotechnology, provide promising model systems for the
experimental study of driven diffusive systems.
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Summary. We develop a theoretical model of intra-cellular transport by mutually
interacting molecular motors KIF1A that takes into account the hydrolysis of ATP
explicitly. A remarkable feature of this model is that all its parameters can be
directly determined from experimental data. Our results are in excellent quantitative
agreement with the empirical data, and we also provide experimental evidence for
the existence of domain walls in our in-vitro experiment.

1 Introduction

Active transportation of mitochondria and vesicles is made possible by motor
proteins, like kinesin and dynein, which move on filamentary tracks called
microtubules (MT) [1]. It is quite important to study the collective behaviour
of motors because their malfunction may be related to some diseases, e.g.,
Alzheimer’s disease [2]. Therefore a fundamental understanding of the collec-
tive transportation is expected to help in the control and cure of such diseases.

The molecular motors are regarded as self-driven particles [3], like vehicles
moving on a road, which move on MT faster than diffusion by using the fuel of
adenosine triphosphate (ATP) hydrolysis. Some of the most recent theoretical
models of interacting molecular motors [4–7] utilize this similarity between
molecular motor traffic on MT and vehicular traffic on highways [8]. In those
models the dynamics is essentially an extension of that of the asymmetric
simple exclusion processes (ASEP) [9] and additionally includes Langmuir-
like kinetics of adsorption and desorption of the motors.

In reality, a motor protein is an enzyme whose mechanical movement is
regulated by its biochemical cycle. Thus recently we have proposed a Brown-
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ian ratchet model that includes the biochemical cycle of ATP hydrolysis [10],
which is not explicitly taken into account in the earlier models. In the model
we specifically consider the single-headed kinesin motor, KIF1A [11] and try
to make detailed quantitative predictions which can be tested experimentally.
We have shown that, in the low-density regime, where inter-motor interac-
tions are rare, predictions of the proposed model are in excellent quantitative
agreement with the corresponding results obtained in laboratory experiments
on single KIF1A motors. Moreover, the spatio-temporal organization of the
motors predicted by the same model in the high-density limit is also in qual-
itative agreement with the corresponding experimental observations [10]. In
this paper we show the detailed estimations of parameters used in this model
by using experimental results [11–13], and make extensive simulations in the
biologically-admissible range of these parameters.

2 A Model of Two Mechanical States of KIF1A

A single protofilament of MT is modelled by a one-dimensional lattice of L
sites each of which corresponds to one KIF1A-binding site on the MT; the
lattice spacing is equivalent to 8 nm which is the separation between the
successive binding sites on a MT [1].

Four biochemical states are involved in each elementary cycle of the molec-
ular motor (Fig. 1), that is, bare kinesin (K), kinesin bound with ATP (KT),
kinesin bound with the products of hydrolysis, i.e., adenosine diphosphate
(ADP) and phosphate (KDP), and, finally, kinesin bound with ADP (KD)
after releasing phosphate. Both K and KT bind firmly to the MT. KDP has
a very short lifetime and the release of phosphate, i.e., transition from KDP
to KD, triggers the detachment of kinesin from MT; KD is also bound to the
MT, but can execute Brownian motion along the track. Finally, KD releases
ADP at the next binding site on the MT utilizing a Brownian ratchet mech-
anism, and thereby returns to the state K. Thus, from the mechanical point
of view we can distinguish two states of KIF1A during the cycle (Fig. 1), i.e.,
the rigorously bound state (’state 1’) and the Brownian moving state on MT
(’state 2’). Thus it is natural to consider that each kinesin is represented by
a particle with two possible mechanical states labelled by the indices 1 and 2
which capture the rigorously bound and Brownian moving states of KIF1A,
respectively.

Moreover, attachment of a motor to the MT occurs stochastically when-
ever a binding site on the latter is empty. Detachment of a motor happens
stochastically only at the transition from the state 1 to state 2, which is con-
firmed by a recent experiment [14]. Thus, each of the lattice sites can be in one
of three possible allowed states: empty (denoted by 0), occupied by a kinesin
in state 1, or occupied by a kinesin in state 2.

For the dynamical evolution of the system, one of the L sites is picked up
randomly and updated according to the rules given below together with the
corresponding probabilities:
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K KT

KDPKD
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P

ADP

d

state 2
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Fig. 1. The biochemical cycle of a single KIF1A motor. Two mechanical states can
be distinguished, as shown by the broken line. State 1 is a rigorously bound state
and in state 2 Brownian motion is possible.

Attachment : 0 → 1 with ωadt (1)
Detachment : 1 → 0 with ωddt (2)
Hydrolysis : 1 → 2 with ωhdt (3)

Ratchet :
{

2 → 1 with ωsdt
20 → 01 with ωfdt

(4)

Brownian motion :
{

20 → 02 with ωbdt
02 → 20 with ωbdt

(5)

The ends of the MT protofilament are known to have a structural con-
formation different from that in its middle region, and the probabilities of
detachment and attachment at the two ends of the MT may be different from
those at any bulk site. We choose α and δ, instead of ωa, as the probabilities
of attachment at the left and right ends, respectively. Similarly, we take γ1

and β1, instead of ωd, as probabilities of detachments at the two ends. Finally,
γ2 and β2, instead of ωb, are the probabilities of exit of the motors through
the two ends by random Brownian movements. Note that the rate constants
ωf , ωs and ωb are strictly related with the corresponding physical processes
in the Brownian ratchet mechanism of a single KIF1A motor [10].

Let us denote the probabilities of finding a KIF1A molecule in the states
1 and 2 at the lattice site i at time t by the symbols ri and hi, respectively.
In mean-field approximation the master equations for the dynamics of motors
in the bulk of the system are given by

dri
dt

= ωa(1 − ri − hi) − ωhri − ωdri + ωshi + ωfhi−1(1 − ri − hi), (6)

dhi

dt
= −ωshi + ωhri − ωfhi(1 − ri+1 − hi+1)

− ωbhi(2− ri+1 − hi+1 − ri−1 − hi−1) + ωb(hi−1 + hi+1)(1 − ri − hi).(7)

The corresponding equations for the boundaries, which depend on the rate
constants α, δ, γi and βi for entry and exit, are similar.
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3 Estimation of Parameters

From experimental data [11–13], good estimates for the parameters of the sug-
gested model can be obtained. We will assume that one timestep corresponds
to 1 ms. From the experimental observations of Brownian ratchet motion we
have ωf/ωs 	 3/8, and the rate of releasing ADP of a single motor is given
by ωs + ωf 	 0.2 ms−1 This gives the individual estimates ωs 	 0.145 ms−1

and ωf 	 0.055 ms−1. The detachment rate is given by ωd 	 0.0001 ms−1,
which is found to be independent of the kinesin population. On the other
hand, the attachment rate depends on the concentration C (in M) of the
kinesin motors. The equilibrium constant for attachment and detachment is
ωd/(ωa/C) = 10nM, we have ωa = 107 C/M·s. In typical eucaryotic cells
in-vivo the kinesin concentration C can vary between 10 and 1000 nM. There-
fore, the allowed range of ωa is 0.0001 ms−1 ≤ ωa ≤ 0.01 ms−1. Moreover
the experimental data on the Michaelis-Menten type kinetics of hydrolysis [1]
suggest that

1
V

=
1

Vmax
(1 +

Km

T
) (8)

where V is the reaction rate for the hydrolysis, and 1/Vmax is the shortest
reaction time for the hydrolysis which is observed as 9ms. Km is the rate
constant given by 0.1 mM, and T (in mM) is the concentration of ATP. Since
the duration of the state 2 is estimated as 5ms, the reation 1/ωh + 5 = 1/V
holds. Thus we have

ω−1
h 	

[
4 + 9

0.1
T

]
ms (9)

so that the allowed biologically relevant range of ωh is 0 ≤ ωh ≤ 0.25 ms−1.
Finally the rate ω−1

b must be such that the Brownian diffusion coefficient D
is of the order of 72000 nm2/s; using the relation ωb ∼ D/(8nm)2, we get
ωb 	 1.125 ms−1. Note that in [12] the Brownian diffusion coefficient is of the
order of 40000 nm2/s, but this must be rescaled to 40000 × 9(total time of a
hydrolysis) / 5(time in the state 2 in a hydrolysis) = 72000 in our simulation
because only the state 2 can move on the MT.

The predictions of the model for the mean speed of the kinesins etc. are
in excellent agreement with single-molecul experiments [10].

4 Simulations and Domain Wall Formation

In contrast to the phase diagrams in the α − β-plane reported in earlier in-
vestigations [4, 5, 7], we have determined the phase diagram of our model in
the ωa − ωh plane by carrying out extensive computer simulations for real-
istic parameter values of the model with open boundary conditions (Fig. 2).
The phase diagram shows the strong influence of hydrolysis on the spatial
distribution of the motors along the MT. For very low ωh no kinesins can
exist in state 2; the kinesins, all of which are in state 1, are distributed rather
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Fig. 2. Phase diagram of the model in the ωh − ωa plane, with the corresponding
values for ATP and KIF1A concentrations given in brackets. These quantities are
controllable in experiment. The boundary rates are α = ωa, β1,2 = ωd, γ1,2 = δ = 0.
We see the formation of an immobile shock, whose position depends on both ATP
and KIF1A concentrations.

homogeneously over the entire system. In this case the only dynamics present
is due to the Langmuir kinetics. Even a small, but finite, rate ωh is sufficient
to change this scenario. In this case both the density profiles of kinesins in
state 1 and 2 exhibit a shock. As for the ASEP-like models with Langmuir
kinetics [4, 5], these shocks are localized. Moreover we have found that the
position of the immobile shock depends on the concentration of the motors as
well as that of ATP; the shock moves towards the minus end of the MT with
increasing kinesin or ATP concentration (Fig. 2).

5 Experiments on Domain Wall Formation on MT

Finally, we present direct experimental evidence that supports the formation
of a shock. Imaging of kinesin motor movement was carried out as described
previously [11]. Microtubules labeled with a green fluorescent dye Bodipy
(Molecular Probes) were immobilized on the top surface of the flow cell.
Recombinant KIF1A protein labeled with a red fluorescent dye AlexaFluor
(Molecular Probes) was then introduced to the flow cell at 100 pM concen-
tration along with 2 mM ATP. Our standard motility buffer (imidazole 50
mM, Mg-acetate 5 mM, EGTA 5 mM, K-acetate 50 mM, Triton X-100 1%)
was supplemented with paclitaxcel 10 uM, ATP-regeneration system and ox-
gen scavenger system. Green and red fluorescent images of microtubules and
KIF1A kinesins were separately obtained with our custom-made fluorescent
microscope and image-intensified CCD camera (Roper).
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Fig. 3. Formation of comet-like accumulation of kinesin at the end of a MT. Fluo-
rescently labeled KIF1A (red) was introduced to MT (green). Arrows are the minus
end and triangles are the plus end of MT. As predicted theoretically, a domain wall
is formed on the MT at high concentrations of KIF1A.

The “comet-like structure”, shown in Fig. 3, is the collective pattern
formed by the red fluorescent labelled kinesins where a domain wall sepa-
rates the low-density region from the high-density region. As predicted by the
model, the position of the domain wall depends on both ATP and KIF1A
concentrations. Currently a more quantitative comparison is performed. The
results will be presented elsewhere.
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Summary. We investigate traffic on preexisting ant trails using minimal cellular
automaton models. We focus on generic properties of the models like the coarsen-
ing of particles and the fundamental diagrams. Crucial differences between the bi-
and the unidirectional model are also discussed. However, based on the coarsening
behaviour both models belong to the same universality class. Furthermore it will be
shown how coarsening in both models can be understood in terms of different kinds
of dynamically induced disorder.

1 Introduction

The occurrence of different kinds of spatio-temporal patterns has been inves-
tigated in various traffic systems like vehicular traffic [1, 2], pedestrians dy-
namics [3] or biological transport [4, 5]. In order to reproduce and understand
the empirically observed phenomena various model approaches have been pro-
posed. Recently cellular automata models have become popular which allow
to capture the most important features of a system in an intuitive way [1, 6].

Apart from specific applications, the models are also interesting from a
more theoretical point of view. Surprisingly models introduced to describe
traffic on existing uni- and bidirectional ant trails were found to exhibit
anomalous features in their fundamental diagrams [7–9]. These are related
to the spatio-temporal organization of the ants, as a result of different kinds
of coarsening processes [7, 10]. We will show that these processes can be un-
derstood as effects of effective disorder. Disorder has already been investigated
in various driven systems [11–16], but in our case it is not assigned statically
either to a certain particle or a lattice site. Instead the disorder is formed
dynamically through the collective motion of the particles themselves.

Starting from a random initial state, the uni- and the bidirectional mod-
els will exhibit clustering of particles. Measuring density-density correlation



270 Alexander John et al.

functions will allow us to describe these processes quantitatively in time. The
stationary state is characterised by the fundamental diagrams, i.e. the density-
dependence of the flux and the average velocity. Each of the diagrams exhibits
unusual features on its own in both models. We will show that this is caused
by the same mechanisms which have already governed the coarsening process.

A more detailed discussion and comparison with empirically observed phe-
nomena as well as applications to pedestrian dynamics can be found in [9, 17,
18].

2 The Unidirectional Model

The unidirectional model [7] is a generalization of the totally asymmetric
simple exclusion process (TASEP) [16, 19] considering ants as particles. In
the TASEP particles move forward with rate q to the next site ahead only
if this site is empty (hard-core exclusion). The ant trail model takes into
account the increase of the walking speed due to the effects of chemotaxis,
the relevant form of communication between the ants in this context [20].
In addition to hard-core exclusion, another coupling between neighbouring
particles is introduced. A moving particle will create a mark (a ’pheromone’
in the language of chemotaxis) at the site it leaves. If a second particle tries
to hop to that site, its hopping rate is increased to Q > q. The pheromone
marks have a finite lifetime and ’free’ pheromones (i.e. pheromones at sites
without a particle) evaporate with rate f (see Fig. 1).

For simplicity, periodic boundary conditions and random sequential dy-
namics are used as the investigated effects seem to be quite stable against the
special choice of dynamics [7, 10] or boundary conditions [21].

2.1 Coarsening Behaviour

Starting from an initial state where particles are distributed randomly, the
formation of clusters (see Fig. 2) is observed during the time evolution of the

1 2 3 4 5 6 7 8 9 10 11

Q q

f

Q

f ff

1 2 3 4 5 6 7 8 9 10 11

Q q K

f f

Fig. 1. Illustration of the definitions for the uni- and bidirectional model: ants
moving to the right �, ants moving to the left �, pheromone marks •. Java applets
can be found at www.thp.uni-koeln.de/ant-traffic
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Fig. 2. Space-time plots for the unidirectional model (Q = 0.9, q = 0.2, f = 0.002,
ρ = 0.2): On the left the formation of small moving clusters can be seen. The plot
on the right shows the stationary state.

system. One also observes an increase of the velocity of particles when catch-
ing up with preceding ones. The probability that a particle finds a pheromone
mark decreases with increasing distance to the preceding particle. Therefore
the velocity of a cluster does not depend on its size etc., but only on the
distance to the cluster ahead. Thus clusters ‘accelerate’ with decreasing dis-
tance. At later times this process ends up in one single but moving cluster
which comprises all particles. This cluster is denoted as ‘loose cluster’ [8] since
it is not compact. Typically it is an alternating sequence of empty and oc-
cupied sites, i.e. the cluster is much larger than the number of particles it
consists of. In a finite system this loose cluster can resolve due to fluctuations
and reform at a different position.

A quantitative characterization of the coarsening process can be obtained
from equal-time density-density correlations. Following a method already used
in [22] one defines a suitably normalized correlation function

C(r, t) =
1

ρ(1 − ρ)

(
1
L

L∑
i=1

〈n(i, t)(n(i+ r, t)〉 − ρ2

)
(1)

which is determined numerically by averaging over different initial conditions.
Here n(i, t) = 0, 1 is the occupation number of site i at time t and ρ = N/L
the particle density determined by the number of particles N and the system
length (number of sites) L.

Since no other high density areas outside of the cluster exist, C(r, t) reaches
its minimum Cmin = − ρ

1−ρ for r larger than the cluster size l. But as C(r, t)
is symmetric with respect to r = L/2, this method is limited to cluster sizes
l < L/2.

Starting from a random initial state, at early times only short-ranged cor-
relations exist and C(r, t) = 0 for large separations r (Fig. 3). With increasing
time, the range of correlations is also increasing. C(r, t) is positive for short
distances due to the existence of small clusters. For large distances, C(r, t)
becomes negative. The location R(t) of the first zero-crossing of C(r, t) (see
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Fig. 3. Density-density correlations C(r, t) of the unidirectional model (Q = 0.9,
q = 0.2, f = 0.002, ρ = 0.2) at different times t = 300 · 103(◦), 200 · 103(�),
100 · 103(�), 50 · 103(�), 20 · 103(�), 10 · 103(�), 5 · 103(�), 2 · 103 (×). The time
evolution of C(r, t) can be seen on the left. The right plot shows the location R(t)
of the first zero crossing. The insets show the location of the higher zero crossings
and a double-logarithmic plot of R(t).

Fig. 3) can be considered as a measure for the average length of clusters at
time t.

As R(t) describes the average distance of uncorrelated particles obviously
clustering leads to an increase of the range of correlations in time (Fig. 3).
Uncorrelated particles can only be found at growing distances r > R(t).

2.2 Fundamental Diagrams

An important quantity for the characterization of the stationary state is the
fundamental diagram, i.e. the relation between flux and density, or equiva-
lently, between average velocity and density.

The most surprising feature is the non-monotonic dependence of the veloc-
ity on density for small evaporation rates f (see Fig. 4, left) [7, 8]. For larger
f the velocity shows a strictly monotonic decrease known e.g. from vehicular
traffic [1]. It has its origin in the hindrance effect that each additional parti-
cle has on the others. In contrast, for small f the velocity increases sharply
with density until it reaches the curve for f = 0. This is due to the velocity
enhancement through the presence of the pheromones. It only occurs at small
values of the evaporation rate since otherwise the lifetime of the trace is not
long enough to be felt at small densities (large particle separations). At higher
densities the pheromone marks become less important and the dynamics is
dominated by the exclusion principle. The velocity is almost constant at small
to intermediate densities. The regime of constant velocity resembles to obser-
vations made for models with particle-wise disorder [12–14]. In the present case
this disorder is not quenched, but can change dynamically due to the absence
or presence of pheromone marks. At sufficiently high densities, particle-wise
disorder vanishes, leading to the usual fundamental diagram known from the
TASEP.
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Fig. 4. Velocity-density relation for the uni- (left) and flux-density relation for bidi-
rectional model (right) for Q = 0.9, q = 0.2, K = 0.1 and evaporation probabilities
f = 0(◦), 0.0002(�), 0.0008(�), 0.002(�), 0.008(�), 0.02 (×), 0.08(�), 0.2(∗), 1(•).

3 The Bidirectional Model

The bidirectional model for traffic on ant trails [10] can be considered as two
coupled unidirectional models with particles moving in opposite directions. It
consists of two lattices with L sites and Nσ particles (σ =→,←) for each
direction. The dynamics in each of the lattices is identical to that of the
unidirectional model. Only in the case where the corresponding target site of
the other lattice is also occupied, the motion occurs with a different probability
K (see Fig. 1). This allows to take into account the effects of interactions
between oppositely moving particles. By construction the bidirectional model
reduces to the unidirectional one if either N→ = 0 or N← = 0. Here we will
focus on the symmetric case N→ = N←, which already shows the generic
features.

The choice of K determines the nature of the coupling between the two
directions. For q < Q < K the holes (i.e. empty sites) on the lattice in
opposite direction lead to slowing down, whereas for K < q < Q this is
done by particles. The latter case takes into account the slowing down of
counterflowing ants due to the exchange of information [23].

Instead of considering a model with two pheromone trails [17], one for each
direction, we consider here a variant where the oppositely moving particles
create a common pheromone trail. Here a pheromone mark evaporates with
rate f only if both cells are empty (Fig. 1).

3.1 Coarsening Behaviour

Analogous to the unidirectional model, particles are distributed randomly in
the initial state. During time-evolution clusters are formed (see Fig. 5) which,
in contrast to the unidirectional model, are localized. Due to exchange of
particles, some clusters grow whereas others shrink. At later times, one large
cluster survives which is localized at a position that only fluctuates slightly.
Outside this large cluster smaller ones with shorter lifetimes also exist.
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Fig. 5. Space-time plots for the bidirectional model (Q = 0.9, q = 0.2, K = 0.1,
f = 0.002, ρ = 0.2): The left plot shows the formation of small localized clusters out
of the random distribution of particles in the initial state. At late times most small
clusters have disappeared and one large localized cluster has survived.
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Fig. 6. Density-density correlation function of the bidirectional model (Q = 0.9,
q = 0.2, K = 0.1, f = 0.002, ρ = 0.2) at different times t = 100 · 103(�), 20 · 103(�),
10 · 103(�), 5 · 103(�), 3 · 103(�), 2 · 103 (◦). On the left, the time evolution of the
density-density correlations is depicted. The right figure shows first zero-crossings
vs. time. The insets show later crossings and a double-logarithmic plot of R(t).

For capturing the dynamics of high-density regimes (clusters), second-class
particles [11] have already been employed successfully. The dynamics of these
particles can be defined in such a way, that they will occupy the boundary
areas between the low- and high-density regimes [24]. Here we will again follow
the method already used in [22]. The results (see Fig. 6) are very similar to
those observed in the unidirectional case discussed in Sec. 2.1.

3.2 Fundamental Diagrams

The generic property of this model can be seen in the behaviour of the flux.
Here, at intermediate densities, the flux becomes almost independent of the
density and f leading to a characteristic plateau (see Fig. 4, right). This
plateau region coincides with the regime of phase separation, namely the lo-
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calized large cluster. With increasing density, the cluster grows larger. There-
fore effectively the extension of the defect formed by particles moving in the
opposite direction becomes larger which also explains the small slope of the
plateau region. This does not occur in the well-studied models of constant
defect length [15], where the flux attains a constant value over intermediate
densities. But the value of this constant flux decreases with increasing defect
length. This effect can also be seen in our model, since an increasing density
also leads to an increase of the defect length.

The defect strength is determined by the difference between the effective
unhindered hopping rate qeff and the counterflow exchange rate K. Since qeff
decreases with increasing evaporation rate f , this difference is smaller for
large f . Therefore the defect strength is smaller and the regime of constant
flux starts at higher densities, like in systems with lattice-wise defects [11, 15].

4 Discussion and Summary

The investigation of the spatio-temporal organization of particles in models
inspired by uni- and bidirectional ant trails has revealed interesting coarsening
processes. Density-density correlation functions were used in order to identify
the formation of high-density areas, namely clusters of particles during the
early stages of the time evolution.

Coarsening in both models exhibits common features. The growth of the
largest cluster in time is described by a power-law, similar to what has been
observed in [22, 25]. The exponents for the uni- and bidirectional model appear
to be the same, z = 1

3 at early and z = 1
2 at intermediate times. Based on

this both models belong to the same universality class.
Also the number of clusters depends on R(t). This is indicated by taking

into account the higher-order zero-crossings of the density-density correlation
function. Using the first zero-crossing one gets the minimum average distance
of uncorrelated clusters. This implies the existence of some kind of periodic
structure. So in general, zero-crossings can be expected at Rn = nR < L

2 ,
with n ∈ [1, L

2R ] with n being interpreted as the number of clusters at a given
instance of time.

In the unidirectional model at the end only one “loose” cluster emerges
comprising all particles in the system. A main feature in that state is the
regime of constant average velocity which is known from particle hopping
models with particle-wise disorder [14]. With increasing density, the effective
disorder dissolves which then leads to the observed non-monotonicity. For
densities close to ρ = 1, the stationary state becomes very similar to that of
the TASEP.

The main feature of the stationary state in the bidirectional model is
the occurrence of a plateau in the fundamental diagram, similar to systems
with lattice-wise disorder [15]. However, in the present model the disorder is
not static, but created dynamically by the particles moving in the opposite
direction.
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Summary. We present a mathematical model for self-driven particles (2-D Optimal
Velocity Model), which can reproduce a big variety of patterns in group formation
and phase transition physics, by changing only two control-parameters and the num-
ber of particles. We show the formation of several typical patterns and their phase
diagrams. The model can be applied to the study of group formation of collective
bio-motions such as schools of fish.

1 Introduction

Basic idea and physical interests: The original 1-dimensional Optimal
Velocity (OV) model is a mathematical model for traffic flow [1, 2], which
succeeds in reproducing the fundamental properties of freeway traffic flow.
At the same time, it is one of the simplest dynamical models describing a
collective motion of self-driven particles as well. It is introduced as

d2

dt2
xn(t) = a

{
V (∆xn(t)) − d

dt
xn(t)

}
. (1)

xn is the position of the nth particle, and ∆xn = xn+1 − xn is the headway
distance. a is a sensitivity constant (inverse of relaxation time). V (∆xn),
the so-called OV-function, determines the optimal velocity depending on the
distance, which has a form such as V (∆x) = α{tanhβ(∆x−b)+c}. The model
represents a simple problem: if the particles try to adjust their velocity to the
optimal velocity, what happens? The answer is that under some conditions
the homogeneous movement can not be maintained, but instead a flow of
collective patterns appears and preserves its shape.
When we extend the OV model to higher dimensions, the model can be ap-
plied to several kinds of collective motions of interacting particles, such as
granular flow in liquid, pedestrians, evacuation dynamics and collective bio-
motions or group formation of organisms, etc.
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General properties of the 2-D OV model: In the 2-dimensional model,
the negative sign of attractive force in one dimension is not simply extended
to repulsive forces. The two characteristics in the OV model independently
appear in 2-D space: the following behavior induced by the attractive force,
and the exclusion behavior induced by the repulsive force. A wide variety
of models is naturally given only by extending the dimensionality. We can
introduce a new parameter (denoted by c in the following), which controls the
distance dominated by the attractive or repulsive forces. Thus, the model has
one additional control parameter, besides the sensitivity a and the number of
particles N (or the average particle-density).

2 Modeling Collective Bio-Motion in 2-D OV Model

Mathematical formulation of the 2-D model: The equation of motion
for a particle with the index i is given by

d2

dt2
xi(t) = a

⎧⎨
⎩
∑

j

V(∆xij(t)) − d

dt
xi(t)

⎫⎬
⎭ , (2)

where bold letters represent two-dimensional vectors. xi = (xi, yi) and xj =
(xj , yj) are the positions of ith and jth particles, respectively, and ∆xij =
xj − xi. V(∆xij) expresses the interaction between two particles with the
following form:

V(∆xij) = f(rij)(1 + cosϕ) nij , (3)
f(rij) = α{tanhβ(rij − b) + c}, (4)

where rij = |xj − xi|, cosϕ = (xj − xi)/rij and nij = (xj − xi)/rij . The
strength of the interaction depends on the distance rij between the ith and
jth particles, and on the angle ϕ between the directions of xj − xi and the
current velocity d

dtxi. Due to the term (1+cosϕ), a particle receives stimulus
more sensitively from the proceeding particles than the following ones. Eq. (4)
has the same form as the OV function for the 1-D model for studying all cases
in a unified way.

Repulsive/attractive interaction: If we add a constant term aV0 to the
r.h.s. in Eq. (2) and set c = −1 (meaning that f < 0), the interaction is of
repulsive type. V0 is a constant vector which expresses a “desired velocity”.
A particle moves with the desired velocity, if it is isolated. The interaction
between pedestrians or particles moving in a liquid through a pipe, is described
by this case3. In general, V0 is an external flow in the background such as a
“tide”. In the case c = 1.0, the force is attractive for all rij .

3 The linear stability of this type of model has been analyzed. The phase diagram
and the flow-pattern in each phase are shown in [7].
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In the case 1 > c > −1, both repulsive and attractive interactions coexist.
Actually, the parameter c controls the border of the regions with repulsive
and attractive interactions. For example, for α = 1/4, β = 4, b = 1 (the values
used in our simulations): In the case c = −0.5, the force between two particles
is repulsive for rij < 1.14 and attractive for rij > 1.14. In the case c = 0, the
border is 1. In such cases, the model is suitable for collective bio-motions.

Variation in types of scope (interaction): First, the ith particle receives
stimuli from neighbor particles within a circle rij < R. The interaction is cut
off by setting V(∆xij) = 0 outside the circle. Under this condition, we study
two types of scope (interaction). Type-1: a particle receives forces from all
particles within its circle. Type-2: a particle receives forces from the nearest
neighbor particle in each sector around the particle. (We divide the range
within its circle into six sectors for simplicity.) Though we concentrate our
simulations on Type-1 in this paper, the parameter c brings a big variety in
pattern formation.

3 Patterns of Group Formation

In general the homogeneous flow is not stable in 2-dimensional models even
for a small number of particles (low density) when an external flow does not
exist in the background. In the case with external flow the stability of the
homogeneous flow depends on the parameter c. In the simulations in this
paper, no external flow exists. We note that if we set the homogeneous flow in
the initial condition at a density lower than 1/R, it is preserved as in Fig. 1(a).
It is trivial owing to the cut-off of interaction and the corresponding phase is
not interesting. The simulations are performed in a 2-dimensional space with
periodic boundary.
Type-1, c=1 (attractive force only): For high density (> 1/R), particles
move almost randomly (Fig. 1(b)). Small “platoons” are observed as a group
formation. The members of the groups are successively changing.

(a) density < 1/R (b) density > 1/R

Fig. 1. The patterns of flow in Type-1, c = 1. Each triangle represents a particle
and its direction of movement.
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Type-1, c=-1 (repulsive force only): In this case there are three stable
patterns depending on N as shown in the phase diagram in Fig. 2. The region
of large N(> 1/R) is divided into three phases. For the region N < 350 ∼ 480,
particles are moving randomly with no group formation (Fig. 2(a)). For the
region 360 ∼ 480 < N < 550, particles can not move and stay at each position
being uniformly distributed just like a crystal solid (Fig. 2(b)). Moreover, each
particle is always changing its direction. For much higher density, N > 550,
two or three particles form a “bound state” (Fig. 2(c)), and then slowly change
their positions. After enough relaxation time, particles form a specific pattern
like the “shirakawa dune” seen in a Japanese garden (Fig. 2(d)).
In contrast to the attractive force (the case c = 1), the repulsive force (the
case c = −1) is important for the emergence of a “crystal” phase. While, the
attractive force forms a local pattern, such as a “platoon”.

Phase diagram of type-1, c = −1

(a) random moving (b) crystal solid

(c) 2- or 3-bound state (d) “shirakawa dune”

Fig. 2. Phase diagram and patterns emerging in type-1, c = −1.
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Type-1, c=0 (repulsive for rij < R/2; attractive for R/2 < rij < R):
In this case, two stable local patterns of group formation appear. The phases
are characterized by these objects. In contrast to the case c = −1, the param-
eter space (N, a) is divided into three phases depending on a (sensitivity), not
on N (number of particles) as shown in Fig. 3.

Phase diagram of type-1, c = 0

(a) a = 2.4, N = 300 (b) a = 2.2, N = 450

(c) a = 1.8, N = 200 (d) a = 1.8, N = 400

(e) a = 1.5, N = 350 (f) a = 0.4, N = 350

Fig. 3. Phase diagram and patterns emerging in type-1, c = −1.
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For high sensitivity (a > 2.3), the specific local pattern of group formation
is emerged. We call it “ball”. Particles are actively moving within a ball,
which is formed by the non-equilibrium balance of attractive and repulsive
interactions. A ball can move slowly without decaying. It has a limit capacity
of the number of particles in it. So, as the number of particles N becomes
larger, the number of balls increases (Fig. 3(a)).
As the sensitivity becomes lower (1.5 < a < 2.3), balls gradually decay,
and connect with each other. Thus, particles form a “band”. At large N
near critical a between the ball and band phases, ball and band coexist
(Fig. 3(b)). Inside a band, particles move together as groups in opposite di-
rections (Fig. 3(c)). If N becomes larger in this phase, the length of a band
becomes longer (Fig. 3(d)).
The smaller the sensitivity becomes (a < 1.5), the weaker the tightness of
forming a band. The particles in a band become loosely bounded and a band
diffuses and decays (Fig. 3(e)). Finally, at much lower sensitivity no band or
ball pattern can be observed and all particles move randomly with no struc-
ture (Fig. 3(f)).

4 Summary and Discussion

The repulsive force is important for the emergence of crystal structures, while
the attractive force forms a local pattern but of tiny size. We expect that
a local pattern with finite size appears in a hybrid case such as c = 0. We
succeeded in forming “ball” and “band” patterns in Type-1 model. We remark
that the another expected patterns like schools of fish are successfully observed
in the Type-2 model (nearest neighbor interaction). The patterns of group
formation emerging in Types 1 and 2 are quite different.
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Summary. The goal of our study is to make use of the (fractally-defined) harmonic-
mean criterion (HMC) as an indicator of proper/improper matter nucleation–tran-
sportation and matter-(non)densification tasks realized over certain thermodynamic-
kinetic pathways in d–dimensional environments. We investigate three dynamic pro-
cesses: self-avoiding random walk (SAW), cluster-cluster aggregation (CCA) and
diffusion-limited aggregation (DLA). They are all considered as dispersive systems
characteristic of excluded-volume effect (EVE). From our mean-field investigation it
turns out that the HMC shows that SAW and CCA belong to the same kinetic (or,
dispersive chemical kinetics) class, whereas DLA does not since it is realized over
a mixed (non-homogeneous) thermodynamic-kinetic pathway. Our findings clearly
reveal that the dimension two appears to be kinetically optimal for SAW and CCA
but cast again some serious doubts on whether the so-called DLA 2D ”paradigm”
is here a well-posed problem.

1 Introduction

In this work, we are going to show that certain model dispersive systems,
manifesting aggregation-desaggregation effects, underlie the same mean char-
acteristics, whereas some other do not.
The mean characteristics we have in mind are generally related with the two-
point harmonic-mean (HM), ν(d=2)

k , defined as

1

ν
(d=2)
k

=
1
2

(
1

ν
(d=1)
k

+
1

ν
(d=3)
k

)
, (1)

where ν(d=2)
k , appears to play the role of the HM and is at the same time

calculated as an average (logarithmically defined) speed [1] of a k-process
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embedded in d = 2. It is related by eq. (1) with its corresponding values
ν

(d=1)
k and ν

(d=3)
k , also calculated as the average speeds of the same type

but taken in neighboring Euclidean sub- and super-spaces d = 1 and d = 3,
respectively.
For a method of calculation of the average speeds, ν(d=j)

k , j = 1, 2, 3, see [1, 2].
For a definition of the HM, applied to model nanoparticle formation, see [3].
A k-process realized in the d-dimensional space, here d = 1, 2, 3, is said to
obey the harmonic-mean criterion (HMC) iff its average speeds, inserted into
eq. (1), yield the average speed in d = 2 exactly as HM of the two other
remaining speeds, taken for d = 1 and d = 3, respectively. It ultimately means
that such a (harmonic) mean quantity at d = 2 becomes exactly an average,
evaluated by a statistical-mechanical method as the ensemble-average in the
same geometric space, cf. [1–3]. By offering such a definition we automatically
infer that the mean harmonicity fulfilled in the domain of the speed of the
process implies a sufficient kinetic optimality of it, i.e. that the process in
question goes smoothly in the Euclidean space in which it is embedded, here
in d = 2.
Such a convergence/non-convergence of two types of the statistical mea-
sures mentioned above would implicitly resemble a type of dimension-
influenced ergodic hypothesis. Its fulfillment/non-fulfillment in d = 2, herein
specifically formulated for the model dispersive systems under considera-
tion, demands that the HM of purely algebraic nature can/cannot equal
the (fractally-defined) average. The average is taken over a certain coupled
configurational-temporal space of each embedding k-process. See, especially
eq. (7) and eq. (8) of sec. 2.3, and additionally [1, 2] for some argumentation.
The k-processes that we analyzed throughout the present paper are [4]:

• a (topologically) linear system/polymer, i.e. the self-avoiding walk (SAW);
• a branched system/polymer, i.e. the diffusion-limited aggregation (DLA);
• a network-like/polymeric system, i.e. the cluster-cluster aggregation (CCA).

The SAW is defined as a chain of monomers that undergo an attraction-
repulsion Lennard-Jones type interaction scheme measured along the chain
(see, Fig. 1) [5].
The DLA is defined by a trial random walker that randomly samples an avail-
able space until it meets some accretion center at which it remains ultimately
captured (see Fig. 2) [7].
The CCA is defined by pairwise cluster-cluster interactions via the cluster’s
surface, where the inter-cluster space is usually recovered upon an adequate
raise of the temperature as a cooperation compaction-relaxing effect between
late stage growing and mechanical relaxation modes (Fig. 3) [1].
A common physics-involving feature of all above listed systems can be termed
excluded-volume effect (EVE): None of them can self-overlap, and some re-
maining interspace is always left during its evolution in the available isotropic
space. In turn, a common theoretical framework of all of them is that their
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Fig. 1. Some arbitrary small-scale square-lattice realization of SAW for n=100 steps
(left), and its fractal dimension depicted at the top of a log-log plot (right) [6]

Fig. 2. Small-scale computer realization of 2D DLA model for the number of random
walkers NRW = 9 for thousand particles incorporated by the cluster (left) and its
type of lattice, and type of accretion-seed dependent (from top to bottom) fractal
characteristics. The characteristics quite fairly accommodate to the basic horizontal
line which is the Meakin’s estimate of DLA fractal dimension DDLA ≈ 5

3
(right) [8]

dynamics undergo a Smoluchowski-type dynamics [5] while their scaling prop-
erties are quite satisfactorily described by the mean-field approach, for exam-
ple, the SAW enjoys the Flory-Fisher (F-F) mean-field approach [9], with a
well known d–dimensional scaling formula

λk(t) ∝ tν
(d)
k , (2)

where λk is an ensemble-averaged linear characteristic [2, 5, 9], t the time (or
quite equivalently: the degree of polymerization) and ν(d)

k a scaling exponent,
here ν

(d)
SAW = 3/(d+ 2). In short, the F-F approach begins with a certain

Gibbs-Boltzmann type construction of the statistical sum, Z, of the radially
distributed segments (monomers) of a polymeric chain immersed in a solution.
The segments are considered as a continuous cloud of homogeneous density, so
that each segment ”feels” the same density around it. The potential interaction
of segments is a pairwise (repulsive) interaction - it enters then the statistical
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Fig. 3. Schematics of some assemblies of molecular clusters: Cluster-Cluster Ag-
gregation (CCA) occurs. The light realms around each cluster can be considered as
depletion zones, characteristic of colloid and protein aggregations, see [1, 2] and refs.
therein. The small dark dots are monomers

sum, which is included in the free energy of the chain, F = −β−1lnZ (for β,
see eq. (3) below). After minimalizing F over the chain length one notices that
a scaling relation of the type of eq. (2) solves the problem with the scaling
exponent ν(d)

SAW stated as above, cf. [9] (chapter 3).
Some important motivation to the present study states that the HMC is prac-
tically used in colloid (e.g., aerosol) science, here a silicon nanoparticle forma-
tion [3]. The silicon nanoparticle formation is a type of coagulation process,
which is also a complicated nucleation-transportation problem. Growth of the
coagulate is modeled by means of a difference scheme, which is by aerosol sci-
entists called a standard ”two-point” method. According to this method, the
growth rate of the number of particles in a bin is a result of flowing in some
particles from a neighboring bin as well as of flowing out a certain number
of particles from the bin of interest. A kind of simple discrete master equa-
tion can be written down. It includes a quantity which is named the effective
particle transfer rate between the bins. This rate, exactly as in our HMC is
designed as a two-point HM, being composed of two other growth rates (pre-
cisely, as in our case), one of them coming from the free molecular motion
of an aerosol particle, and the other from dealing with the aerosol as a con-
tinuum [3]. This way, an analogy between using the HM-s in our and aerosol
system is completed, especially when we would compare it with CCA, which
is - similarly to aerosol particle formation - a surface-involving process, see
Appendix A.2 in [3] and eqs. (10) and (11) therein.
The paper is organized as follows. In Section 2, we give an overview of the
common theoretical framework, finally emphasizing the fulfillment of HMC
for CCA. In Section 3, we present SAW and CCA as dynamic processes that,
even though being realized over two different pathways, will be shown to obey
the HMC. In Section 4, we demonstrate that all known mean-field estimates
of DLA speed do not obey the HMC, and attribute this shortage to the fact
that DLA is realized over a mixed (non-homogeneous) kinetic pathway, or
shows up a nonlinear EVE. Moreover, we draw some special attention to the
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fact that the proposed HMC should not be confused with the well-known
harmonic-measure criterion for DLA which gives a well-established multifrac-
tal spectrum for the growth probability, properly yielding the single fractal
dimension of a DLA cluster at the highest growing mode. (As a promising
fact one would report here is that the numerical estimate of ν(d)

DLA = 6/5d by
Meakin [10, 11] obeys the HMC, which essentially means that the numerically
obtained ν

(d)
DLA exactly conforms to the eq. (1), cf. eq. (8) in subsection 2.3.)

The last section (Section 5) includes the main results of the paper and their
discussion.

2 Common Theoretical Framework

In this study, we deal with three essentially different nucleation–transportation
and matter-compaction involving problems. In spite of their clearly different
dynamical behaviors there is at least one common effect which can be assigned
to all of them: The EVE, well described by the F-F as well as by Fokker-Planck
and Smoluchowski (F-P&S) dynamic frameworks [5, 9]. In case of SAW it is
due to the repulsive part of the interactions between monomers from which
the chain is made of. As concerns CCA, it can be revealed by calculating
the total volume of the system for both low and high temperature matter
aggregations, and then by seeing that there is a matter expansion exclusively
in the case of the high temperature CCA [1]. While looking at DLA, in turn,
one can immediately see that EVE is generically present in the process because
the branches of the DLA microstructure do not overlap each other - they
rather behave as separated SAW-s, nucleated at one nucleation seed, which
always appears to be a cluster-surface (interface) process in a d-dimensional
space [12].

2.1 Fokker-Planck and Smoluchowski Type Dynamics

For revealing the presence of the EVE as a dynamic phenomenon a standard
way assumes the F-P&S type equation to be fulfilled. For most of disper-
sive systems it is usually based on the form of the matter current (see also
Appendix for details)

J(x, t) = −D(x)
(
∂f

∂x
+ β

dU(x)
dx

f

)
, (3)

where β = 1/kBT , kB is the Boltzmann’s constant (in case of dispersive soft-
matter systems dU(x) · β ∼ 1 typically holds), T is the temperature, t - time,
D - diffusion coefficient (it usually depends also upon the parameter d - the
space dimension; in general: D ≡ D(x, t; d) [1, 5]), U ≡ U(x) - potential, f ≡
f(x, t) - concentration of the constituting entities characteristic of SAW, CCA
and DLA, respectively. Here, the entities constituting SAW are monomers
whereas for CCA one has molecular, e.g. protein clusters and for DLA there
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can be atoms, molecules or macromolecules sometimes [4]. As concerns the
variable x, it is to be specified according to each of the three analyzed processes
separately.
For SAW the ”drifted” diffusion is realized along a spacial-coordinate axis, so
that x stands for the current position of the monomer, for example, that of
either hydrophilic or hydrophobic type [5, 6, 13].
For CCA model, actually based on [1], the diffusion is always realized along
an axis of cluster sizes, thus, x is here typically the volume of a single cluster.
For DLA there are not so many conclusive analytic studies pointing to the
F-P&S dynamics. One of the exceptions found in literature would be that
of Fokker-Planck dynamics for the needles emerging during a model (1+1)-
DLA. In this approach, each needle undergoes a one-dimensional random walk,
starting from a horizontal line, and obeying the standard DLA rules, result-
ing in favoring taller needles at the cost of their non-tall neighbors. As a
consequence of the model formulated in such way a most relevant stochastic
variable, x, is defined by means of an excess length of the two neighboring
teeth of (1 + 1)–DLA microstructure [12].
In view of the above, the three processes under consideration might have
another interesting dynamic feature in common: They are two-state Kramers-
type processes with a weak surmountable barrier given by U(x) accounting
for EVE. It means that they are mesoscopic systems underlying basic rules of
non-equilibrium thermodynamics [14].

2.2 Mean Field Approach

In order to explain the mean-field (MF) approach let us rest again on the
well known F-F procedure [9]. First, the F-F as each MF approach neglects
the fluctuations of the monomer concentration of a SAW. Second, it takes
into account two main contributions to a SAW free energy: an entropic, due
to elasticity-influenced conformational changes of the chain, as well as the
enthalpic coming from repulsion between non-neighboring monomers, which
inevitably leads to EVE. Third, the interactions ”seen” by such a procedure
are always binary interactions - it results in f2 (Van der Waals) contribution
in the free energy [5], cf. Appendix. The three above stated assumptions,
after minimizing the free energy of the SAW with respect to its size, and after
letting a similarity relation to be a solution of the resulting equation, lead to
a straightforward derivation of the SAW exponent [5, 9]

ν
(d)
SAW =

3
d+ 2

, (4)

where d is a dimension of the Euclidean space. Mutatis mutandis, we can
provide the CCA as well as the DLA exponents. For CCA we get [1]

ν
(d)
CCA =

1
d+ 1

, (5)
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whereas for DLA one typically1 obtains [11, 17]

ν
(d)
DLA =

d+ 1
d2 + 1

. (6)

2.3 HMC of the Fractally-Defined Speed in Dimension d

To compare somehow the speeds of the three processes analyzed, assumed that
their descriptions are all based on the same MF Van-der-Waals (dispersive-
force) type approximation, see the preceding subsection and the Appendix,
let us define the speed of the process in a fractal-like manner

ν
(d)
k =

lnλk(t)
lnt

;
t

t
(k)
0

>> 1, (7)

where k indicates SAW, CCA and DLA respectively, λk stands for a charac-
teristic length of each of k-processes, t(k)

0 > 0 - the initial instant of each of
k-processes, t - as above. Note that the late time condition t

t
(k)
0

>> 1 holds.

Notice that all λk–s are fully derivable from the F-P&S dynamic characteris-
tics of each system of interest [1, 5, 18]. Moreover, note that formally the F-
P&S dynamics define a stochastic process which is a nonequilibrium (drifted)
process - its stochasticity implies that t is an ”active” (kinetic) variable. The
F-F type MF approach, in turn, being based on the minimization of the free
energy, implies that some N (e.g., the polymerization degree of the SAW)
becomes a crucial but thermodynamic variable. By postulating such a defi-
nition of the speed (cf., eq. (7)) we somehow claim that N be equivalent to
(or, at least, proportional to) t which should be true in a late stage of the
aggregation-compaction process when the system presumably arrives at one
of its quasi-equilibrium states.
While analyzing CCA [1] we have found that the so defined speed of CCA
obeys a two-point HMC, namely

2

ν
(2)
CCA

=
1

ν
(1)
CCA

+
1

ν
(3)
CCA

. (8)

From eq. (8) it is seen that the HMC unquestionably points to a special
relevance of the Euclidean dimension d, here with emphasizing the role played
by d = 2 for kinetically optimal path of any process obeying eq. (8). In the
next section of the paper we are wondering whether and why it is true (or

1 There exists at least one more estimate for ν
(d)
DLA = 6+5d

8+5d2 obtained in [15] which,

in turn, uses some other refined MF approach. Note that
�
ν

(d)
DLA

�−1

is nonlinear

in d, which is the case of eq. (6) too, cf. [16], in which the number of branches of
a DLA microstructure increases with d arriving, however, at a saturation effect
in d = 2 but not for d > 2
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not) for SAW and DLA, which is equivalent to examining the necessary and
sufficient conditions of existence of (8). (For convincing the reader that the
CCA lies in the same class of pairwise-interaction driven processes, such as
that of SAW and DLA, we encourage her/him to consult the Appendix.)
We find the HMC important. Firstly, because the HM inherently involves a
logistic competition (Malthus-type) effect between (squared) geometric, G,
matter-aggregation resources and its arithmetic, A, linear counterpart. For
accepting it simply realize that based upon eq. (8) one may rewrite it as
follows: ν(2)

CCA = [νG
CCA]2/νA

CCA, where νG
CCA and νA

CCA denote, respectively,
the geometric and arithmetic means composed of ν(1)

CCA and ν
(3)
CCA. Such a

presence of nonlinear (geometric) matter-aggregation resources and of their
linear (arithmetic) counterparts involved in ν

(2)
CCA as a ratio of them both,

is reminiscent of some competition effect of mean matter-aggregation speeds,
νG
CCA and νA

CCA, reflected as chemical reaction rates of second and first order
(possibly of the broken order in between, Section 5, eq. (11)), respectively.
Secondly, it indicates the dimension two (d = 2) as a relevant dimension - this
is why throughout the whole paper we have allowed ourselves to illustrate our
work by some small-scale 2D numerical simulations [6, 8] - in which some pro-
cesses may go kinetically optimally but other ones, as we will see apparently
of DLA-type, may not be optimal.

3 SAW & CCA as Processes Realized over Mono- and
Polynuclear Paths

The SAW, see Fig. 1, is clearly realized over a single kinetic pathway which
we call a mononuclear path. It is because the SAW object formed may serve
as a singular nucleation seed per se. Moreover, two or more SAW-s may form
a molecular cluster, for example a dimer (NSAW = 2). Such a formation
procedure, resting upon a creation of NSAW = 2 and NSAW > 2 clusters, we
wish to call a polynuclear path - clearly, the high-temperature polynuclear
path in which any matter-compaction effect is typically relaxed [1, 6].
As is mentioned in subsection 2.3 the CCA obeys the HMC. It is easy to check
by inserting (4) into (8), that also SAW with its characteristic exponent, which
is now according to the definition given by eq. (7) the speed of SAW process,
obeys the HMC too, just in the way shown by eq. (8). We attribute this fact
to the observation that both SAW and CCA go over kinetic pathways of non-
mixed low-energy-barrier states: the SAW goes by addition of monomers only,
and CCA goes purely by some linkage of clusters (see, Fig. 3). The addition
as well as the linkage can typically be either first-order or second-order chem-
ical reactions, see discussion in the preceding section. Therefore their speeds,
assumed that each process is realized in a homogeneous (structure-less) d–
dimensional space, fulfill the same (HMC) criterion.
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4 DLA as a Process Realized over Some Mixed Path

The HMC is hardly fulfilled in case of DLA described in terms of MF. One
can easily prove by inserting (6) into (8) that here the HMC fails. It is even
the case of the refined estimate of νDLA (see, footnote 1). Such a behavior
may be attributed to the fact that DLA can be thought of as a dynamic
process in which quite many SAW-s are nucleated on a single nucleation center
(see, Figs. 1 and 2). This can be anticipated as a certain intermediate stage
since this way one can only create a branched molecular cluster but neither
a (topologically) linear chain nor some network-like assemblage of clusters.
This difference strongly suggests that DLA is realized over an intermediate, or
better said, over some mixed kinetic pathway, because we can observe therein
some common signatures of both SAW and CCA. Also, the EVE must be
of different type than the corresponding EVE - s characteristic of SAW and
CCA. Thus, this entices us to state that the F-F type MF approach which
one applied to get ν(d)

DLA is insufficient and probably must be completed by
taking into account fluctuations, i.e. going visibly beyond the MF approach.
Some confirmation arises from large-scale computer simulations by Meakin
and coworkers [10]. They estimated [11]

ν
(d)
DLA =

6
5d
, (9)

which surprisingly obeys the HMC stated by eq. (8). Note that [ν(d)
DLA]−1 is a

linear function of d, so is also the case of eq. (4) and eq. (5) but it is certainly
not true for the reciprocal of ν(d)

DLA taken from eq. (6).
At this place, let us clearly state that the HMC proposed in the present study
should not be confused with a harmonic-measure criterion so often mentioned
for DLA, especially realized in d = 2 [18]. This criterion refers to a theoretical
description of 2D DLA in terms of the theory of analytic functions. It extracts
the growth probability distribution in such a way that inclusion of a Brownian
particle at a tip of the branch of the DLA cluster is much more probable than
having it landed on any fjord between two neighboring branches. Thus, it
has no obvious relation to the d-dimensional HMC that we propose to use
for showing here a kinetic non-optimality of 2D DLA, whereas the harmonic-
measure criterion mostly points to the self-similarity of a DLA cluster [4, 18],
which we take for granted (Fig. 2).

5 Results and Discussion

Let us point out that the basic common features of three model dispersions
considered under F-F type scaling approximation are the following:

1. Excluded-volume effect (EVE)
• for SAW and DLA it leads to a long-time superdiffusive behavior:

λk(t) ∝ tν
(d)
k , where 1 > ν

(d)
k ≥ 1

2 (d = 1, 2, 3);
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• for CCA the total volume of the system is an unconserved quantity [1];
this way, the EVE is manifested in cluster-cluster aggregations; but
the analogous scaling behavior is subdiffusive: λk(t) ∝ tν

(d)
k , where

0 < ν
(d)
k ≤ 1

2 (d = 1, 2, 3) since cluster-cluster aggregation takes more
time than typically a non-cluster-cluster processes, such as SAW or
DLA. It has been summarized in a picturesque way in Fig. 4.

Fig. 4. Summarizing scheme for the three embedding processes, manifesting some
EVE-caused dynamic disorder, with possibilities of entering the chaotic matter
regime, especially when d → ∞ (a need for applying then an M -point HMC might
appear, where M > 2) [2]. It proclaims, that kinetically optimal k-processes emerge

when
�
ν

(d)
k

�−1

is linear in d, cf. eq. (10). The dashed arrows indicate kinetic non-

optimality seen in terms of the MF approach

2. The main discrimination procedure that emphasizes whether the HMC
becomes eventually effective, or appears to be ineffective2, may rest upon
a fundamental observation, namely that
• SAW and CCA are realized over uniquely defined, mononuclear (one-

chain viz cluster of monomers) or polynuclear (many-cluster based)
kinetic pathways [1, 5, 13];

• DLA is always realized over some mixed pathway: many SAW-s are
clustered on one nucleation seed, what makes a difference when for-
mally applying the HMC [4, 7, 10, 12]. It seems that a nonlinear branch-
ing, typically loopless topology would make some difficulties when one

2 Thus, the HMC can also be thought of to be a measure of some (in)effectiveness
of the k-process embedded in the subsequent Euclidean space
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tried to kinetically optimize the process leading to creation of such a
structure, especially in the two-dimensional embedding space.

• Notice formally, that a critical dimension for SAW, dc, reads dc = 4 (no
effective pairwise interaction) [9], whereas for CCA dc = 1 (surface-
independent case), cf. [1]. But for DLA dc takes on a fractional value
- when evaluating it based on eq. (6), i.e. comparing it to one-half
(standard-diffusion exponent), it reads dc

∼= 2.41, which also makes a
formal difference between integer-influenced dc of SAW and CCA and
its non-integer counterpart for DLA [4, 11].

Moreover, from an algebraic point of view, we have observed that for the three
processes under consideration it is sufficient if the (numerical) estimate of the
fractally-defined inverse speed of the process (1/ν(d)

k ) is a linear function of
dimension d, such as

D
(d)
f :=

1

ν
(d)
k

= A · d+B, (10)

where A,B are constants. If this is not the case, like in Tokayama-Kawasaki or
Hentschel [15, 17] estimates, the HMC clearly favoring d = 2 realization space,
fails. Thus, it is an unambiguously stated criterion likely favoring the EVE
which is a common feature of the three processes considered, but arises natu-
rally as interaction vs elasticity enthalpic-entropic effect in case of SAW and
CCA, but rather purely diffusionally in case of DLA, i.e. when the enthalpic
part is missing.
In particular, for DLA it would imply that any approach attempting for get-
ting a final estimate of either a d–dependent fractal dimension3 (D(d)

f ) or
some d–dependent fractally-defined speed of the DLA process, should be a
non mean-field approximation, enabling the influence of thermal (β being
x-dependent ?) and/or athermal (density changes) fluctuations in the final
outcome [19, 20]. It must lead to a more realistic description of the process,
addressing an interaction of the DLA cluster with its surroundings, careful in-
spection of the sticking rules, that would make a DLA structure more mechan-
ically compact or tenuous, as well as use of its multiparticle variants [8]. More-
over, the system has to be thermodynamically checked at least for presence of
non-equilibrium steady states as well as for its consistency with the theorem of
minimum entropy production [14]. It can be done by certain renormalization-
group considerations [21]. Another option could be to resort to some numeri-
cal approaches that view DLA process in terms of some deterministic particle
trajectories, and that the cluster is build on their realizations [22].
Bear in mind that, although DLA is widely recognized as a Laplacian growth
model the two above mentioned approaches [21, 22] do not need the Laplace

3 Note, however, that for CCA D
(d)
f = 1

ν
(d)
CCA

= d + 1, cf. eq (7), is not of fractal-

dimension form. It is rather a superdimension, or according to ref. [9], a measure
of the random close-packing [1, 2] (A standard version of the approach [1] is,
however, presented for non-fractal objects.)
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equation to be solved for obtaining the speed of the DLA in the way shown by
our paper. As is known, the 2D Laplacian growth is not well-formulated math-
ematically in d = 2 [23] and the problem needs logarithmic corrections [16]. It
seems that in d = 2 the stationarity of the diffusion field is not fully guaran-
teed, especially under the presence of an absorbing boundary (sink) somehow
violating its (external) harmonicity. As a consequence, at least certain matter
fluctuations near the boundary can be suspected to occur - therefore some non
mean-field DLA of turbulent type [24] looks more confident, and a suitable
modification of ν(d)

DLA could emerge from such a proposal. An open question
remains whether it will confirm the estimate by Meakin, eq. (9). If so, it will
then formally give us the main message coming from the HMC, namely that
in d = 2 only those processes may go thermodynamic-kinetically optimally
for which the reciprocals of their speeds are linear functions of the space di-
mension d, eq. (10), cf. [16]. Therefore, a quite accurate numerical realization
of DLA by Meakin, and even his followers [18, 19], point to D(d)

f = 5d/6 to be
a reliable value [4, 10].
When looking at the problem in terms of the HMC, the above results sug-
gest an isotropic realization in space of d = 2 for SAW [25] and CCA [1, 2]
but somehow discourages the HMC for DLA-type practical experiments on a
plane, i.e. as in the case of thin-films realizations of DLA patterns [4, 26].
Moreover, looking at our three processes, manifesting EVE-caused dynamic
disorder, cf. Fig. 4, one would interpret some of our findings in terms of disper-
sive (fractal-like) chemical reaction kinetics, especially when the characteristic
length λk would be of order of the kinetic mean free path of the system which
is often the case met in condensed phases [27] or in aerosols [3]. In such a
Loschmidt-type limit [28], one would presume that a product of the (disper-
sive) chemical reaction rate coefficient, κ ≡ κ(t), and λk will likely arrive
at

λk × κ ∼ δk(d), (11)

where a t–independent constant δk(d) ∝ ν
(d)
k , where again the argumenta-

tion about (non)linearity of δk(d)−1 can be used to distinguish between the
SAW/CCA and DLA different ’kinetic universality’ classes, cf. eq. (10). The
above, but confined to CCA only, could provide an alternative view of the
time-dependent kinetics of certain more specific, e.g. nucleated-polymerization
processes such as model prion growth [27, 29].
To sum up, in this paper it has been shown that, within the mean-field ap-
proximation, in order to fulfill the d-dimensional HMC (d = 1, 2, 3), physically
meaning that the system evolves toward optimal kinetic conditions in d = 2,
a linear EVE (see, Fig. 4), to be quantitatively characterized by the dimen-
sionless potential β × U(x) [5, 13] from the Smoluchowski-type equation (3),
has to be shown up by the system - it is just the case of SAW and CCA
but, unfortunately, 2D DLA likely suffers a nonlinear EVE, i.e. it possesses
a totally branched internal meandric and fjords-involving microstructure at
all length scales (Fig. 2), hardly penetrable by, say, a testing particle that
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has no additional (third) dimension at its disposal to eventually escape from
it, or to successfully percolate through it, once entering one of its fjords in
either direction [4, 7, 16, 18, 19, 24]. Therefore, eq. (10) appears to be a cen-
tral HMC-oriented result of our study [2, 10, 17, 18, 23]. Thus, the Euclidean
space d = 2 does not seem optimal from a thermodynamic-kinetic point of
view for DLA and is attributed to non-fulfillment (violation of eq. (10)) of
the dimension-dependent matter-aggregational ergodic hypothesis (see, sec.
1) - a case that discourages application-oriented activities, oppositely to 2D
SAW [25] or CCA [1] colloid type applications that can be found elsewhere,
e.g. in membrane science [26].
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Appendix

For the class of CCA processes [1] the local continuity equation

∂

∂t
f(v, t) +

∂

∂v
J(v, t) = 0, (12)

where x is now v - the volume of a molecular cluster (v(d−1)/d stands for its
’reactive’ surface), and f(v, t) is the distribution function of the clusters at
time t, is the conservation law which, after inserting J(v, t) in eq. (12), leads
to the F-P&S dynamic framework.
It can be found useful to transform the F-P&S equation into its possibly
simple functional representation. For doing so, let us express the matter flux,
eq. (3), in the following form [30]

J(v, t) = −(B(v)
δF (f)
δf(v, t)

+ βD(v)
∂

∂v

δF (f)
δf(v, t)

). (13)

Here δF (f)/δf(v, t) stands for the functional derivative, and the free-energy
functional F (f) looks as follows [31]

F (f) = (1/2)f(v, t)
∫

C(v − v′)f(v′, t)dvdv′, (14)

where above (cf. (13)) B(v) = b(v)dU(v)/dv has been used (b(v) - the mobility,
linearly proportional to D(v)). If one takes the kernel, C, C(v−v′) = δ(v−v′),
one obtains
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F (f) = (1/2)[f(v, t)]2, (15)

which because of the power 2 in (15), unambiguously suggests binary inter-
actions between clusters, as is, for example, assumed in Van der Waals (real)
gases between the gas molecules in the framework of a mean-field descrip-
tion [28]. For other details of the functional-based approach to CCA, see [31].
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Pedestrians



Pedestrian Free Speed Behavior
in Crossing Flows

Winnie Daamen and Serge P. Hoogendoorn

Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

Summary. Insights into pedestrian behavior, and tools to predict this behavior, are
essential in the planning and design of public pedestrian facilities, such as transfer
stations, shopping malls, and airports. Both macroscopic features of pedestrian flows
and microscopic walking behavior underlying these features are important.
This paper discusses findings from an experiment with crossing pedestrian flows, and
in particular the free speed distribution of the participating pedestrians. Available
free speed estimation methods developed for car traffic appear to be not suited for
pedestrian traffic. This paper presents a dedicated adaptation of a method used for
car traffic, with satisfactory results in pedestrian crossing flows.

1 Introduction

Free speed or desired speed is the speed a pedestrian walks with when he or
she is not hindered by other pedestrians. The free speed differs among pedes-
trians, among types of walking infrastructure, and among external conditions.
This is due to the characteristics of pedestrians (age, gender, physical abili-
ties), characteristics of walking infrastructure (grade, length, width, type of
facility), and weather and other external conditions. Since the exact relation
between these characteristics is not known, free speeds are usually described
as a stochastic variable with a distribution.
Free speed and its distribution play an important role in many traffic flow
models. To illustrate: the free speed distribution is an input for gas-kinetic
models [3, 4], while many microscopic simulation models draw free speeds of
individual pedestrians from free speed distributions [5, 6].
Insights into free speeds are also important from the viewpoint of design of
facilities and public transport timetables. Walking times between origins and
destinations in a facility can be derived, giving insight into the efficiency of a
facility with respect to minimizing walking efforts.
The aim of this paper is to derive a free speed distribution for crossing pedes-
trian flows. The data on which the distributions are estimated come from
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large-scale laboratory walking experiments (see [2] and Fig. 1). Since an ap-
propriate approach to derive free speed distributions for (crossing) pedestrian
traffic is not available, we apply one developed for car traffic [7, 8]. The re-
sults are rather unsatisfying, so we adapt the criterion to determine whether a
pedestrian is constrained or not. Estimations using this new criterion appear
to be much more promising.

Fig. 1. Overview of crossing flows experiment

2 Free Speed Estimation

Estimating free speed distributions is not as straightforward as it looks like.
Pedestrians are either walking at their free speed or following another pedes-
trian. This suggests that only those pedestrians walking freely need to be
considered in deriving the free speed distribution. However, pedestrians hav-
ing a relatively high free speed have a higher probability of being constrained
than pedestrians with a relatively low free speed. This method will lead to
underestimation of the free speeds.
Since existent free speed estimation methods all have their own drawbacks [1],
Hoogendoorn [7] recently developed a new estimation approach for car traffic
referred to as the modified Kaplan-Meier approach [9]. This approach is based
on the concept of censored observations [10] using a non-parametric method to
estimate the parameters of the free speed distribution. Applying this method
for pedestrian traffic with crossing flows leads to the cumulative distribution
functions for free speed shown in Fig. 2. This figure shows the measured speeds
of all pedestrians (F (v)), the speeds of the unconstrained pedestrians (F 0(v0))
and the estimated free speed distribution (Fmod.Kaplan−Meier).
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The results appear to be unsatisfactory. First, the median free speed is 1.35
m/s, which is much lower than the free speeds measured for other pedestrian
experiments. Second, all distributions are nearly similar, which is neither what
we expect nor what our other experiments show. Reason for this might be the
use of a headway criterion to determine the probability of pedestrians being
constrained. This headway criterion only accounts for pedestrians walking in
front of the considered pedestrian. This leads in crossing flows to an underes-
timation of constrained pedestrians, since significant hindrance is caused by
pedestrians from aside. In the ensuing we will develop a new criterion for this
constrainedness.

Fig. 2. Estimated free speed distributions for crossing flows according to [7].

3 New Criterion for Constrainedness of a Pedestrian

The probability θp that a pedestrian p is constrained is directly related with
the presence of other pedestrians qi. Not only the distance between pedestri-
ans is important to determine the hindrance, also the time aspect is: someone
getting very close over a few seconds will give less hinder than someone cur-
rently at the same close distance. In car traffic, two notions are known in this
respect, namely time-to-collision and post encroachment time [11]. Here, we
look at the distance between two pedestrians and how this distance varies
over time, assuming that both pedestrians maintain their current walking
speed and angle of movement.
Figure 3a shows a hypothetic situation, with four pedestrians present in the
observation area (arrows indicate their current walking speed). The aim is
to determine θp, depending on pedestrians q1, q2 and q3. Since pedestrians
are anisotropic (they will mainly react to pedestrians in front of them), only
pedestrians q1 and q2 will be considered in the approach. Extrapolating cur-
rent speeds, the distance between the centers of the pedestrians is calculated
over time (see Fig. 3b).
In effect, Fig. 3b shows two criteria for the constrainedness of a pedestrian,
namely distance between pedestrians and the moment that a specific distance
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occurs. The fuzzy approach is very suited to describe θp as a probability of
a pedestrian being constrained, varying between 0 (free flowing) and 1 (con-
strained) [8]. This approach is also able to handle a combination of criteria,
as is the case here: a pedestrian is more constrained when the distance to an-
other pedestrian is smaller (“proximity”) and the moment this occurs is closer
(“urgency”). In Fig. 3c the probability to be constrained due to a specific dis-
tance between pedestrian p and pedestrians q1 and q2 respectively is plot over
time. The specific relations for the membership functions for proximity θP

and urgency θU are shown in Fig. 4.
For a given distance d between two pedestrians p and qi the membership
θP

p,qi
(d) is determined as well as the membership θU

p,qi
(h) for the moment h on

which this distance d occurs. The probability that pedestrian p is constrained
due to a specific pedestrian qi depends on both θP

p,qi
(d) and θU

p,qi
(h):

θp,qi
(d, h) = θP

p,qi
(d)θU

p,qi
(h) (1)

The function θP
p,qi

(d) can be interpreted as the probability that two pedes-
trians having an intermediate distance d are constrained, while the function
θU

p,qi
(h) can be interpreted as the probability that a pedestrian experiencing

this distance at a specific time moment h is constrained. The joint probability

Fig. 3. Conflict area of pedestrian p (a), distance between pedestrian p and pedes-
trians q1 and q2 (b) and probability of pedestrian p being constrained by pedestrians
q1 and q2 over time (c).

Fig. 4. Membership functions for proximity (a) and urgency (b).
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can be determined from these functions under the assumption that both are
independent.
For each pair of pedestrians (in the example p− q1 and p− q2) the maximum
θp,q needs to be calculated. It might be argued that this is the minimum
distance between the pedestrians. However, if two pedestrians have nearly the
same angle of movement, this point would be at the end of the area (θP =
max; θU = 0), whereas at the current moment, pedestrian p may be already
hindered (0 < θP <max; θU > 0). Therefore, θp,qi

is determined over the
complete predicted time period and the maximum is assigned to this pair of
pedestrians:

θp,qi
= max

(
θP

p,qi
(d)θU

p,qi
(h)
)

(2)

To determine θp we need to know which pedestrian qi is most constraining
pedestrian p and assign the corresponding θp,qi

to pedestrian p. To do this,
we take the maximum of θp,qi

for each pedestrian qi on the area:

θp = max
qi

(θp,qi
) (3)

4 Free Speed Distribution in Crossing Flows

Applying the criterion described in the previous section leads to the esti-
mation results shown in Fig. 5. The estimated free speed distribution has
significantly moved to the right, resulting in a median free speed of 1.6 m/s
(in other experiments we found median free speeds of 1.55 m/s). Also, the
difference between the speed distribution of the unconstrained pedestrians
and the distribution for all pedestrians has grown, since fewer pedestrians are
considered unconstrained (using the same new criterion).

Fig. 5. Estimated free speed distributions applying the new criterion.
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5 Conclusions

We have shown how the approach to estimate free speed distributions for car
traffic can be improved to make it applicable for crossing pedestrian flows. The
criterion determining the probability of a pedestrian being constrained has
been based on a fuzzy approach, using the distance between pedestrians and
the time moment this distance occurs as parameters of the membership func-
tions. Application of this method on data from laboratory experiments shows
much better results than the original method (median free speed of 1.6m/s in
pedestrian crossing flows compared to 1.55m/s in other experiments).
Despite the promising results, additional research has to be performed. One
of the points is to investigate the choice of parameters of the membership
functions. Applying this approach on data from other experiments, we can
compare the free speed distributions and adapt the parameters so that the
distributions are similar. After all, the same pedestrians participated in the
experiments. Also, the sensitivity of the approach for the choice of parameters
needs to be investigated. In addition, the form of the membership functions
might be varied.
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Summary. The simplest system for the investigation of the fundamental diagram
for pedestrians is the single-file movement. We present experimental results for this
system and discuss the observed linear relation between the velocity and the inverse
of the density. For the modelling we treat pedestrians as self-driven objects moving
in a continuous space. On the basis of a modified social force model we analyze
qualitatively the influence of various approaches for the interactions of pedestrians on
the resulting velocity-density relation. The one-dimensional model allows focusing on
the role of the required length and remote force. We found that the reproduction of
the typical form of the fundamental diagram is possible if one considers the increase
of the required length of a person with increasing current velocity. Furthermore we
demonstrate the influence of a remote force on the velocity-density relation.

1 Introduction

Empirical studies of pedestrian streams can be traced back to the year 1937 [1].
To this day a central problem is the relation between density and flow or ve-
locity. This dependency is termed the fundamental diagram and has been
the subject of many investigations from the very beginning, see references
in [2, 3]. One simple system is the uni-directional movement of pedestrians
in a plane without bottlenecks. In this context the fundamental diagram of
Weidmann [2] is frequently cited. It is part of a review work and the author
summarized 25 different investigations for the determination of the funda-
mental diagram. Apart from the fact, that with growing density the velocity
decreases, the relation shows a non-trivial form. Weidmann notes that dif-
ferent authors choose different approaches to fit their data, indicating that
the dependency is not completely analyzed. A multitude of possible effects
can be considered which may influence the dependency. For instance we re-
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fer to passing maneuvers, internal friction, self-organization phenomena like
marching in steps [4] or ordering phenomena like the ‘zipper’ effect [5]. A
reduction of the degrees of freedom helps to restrict possible effects and al-
lows an improved insight to the problem. Thus we choose a one-dimensional
system for this investigation. Furthermore, the fundamental diagram is used
for the evaluation of microscopic models for pedestrian movement [6–9]. The
models can be classified in two categories: the cellular automata models [10–
14] and models in continuous space [15–18]. We focus on models continuous
in space, which differ substantially with respect to the ‘interaction’ between
the pedestrians and thus to the update algorithms as well. The social force
model for example assumes amongst others a repulsive force with remote ac-
tion between the pedestrians [15, 19–22]. Other models treat pedestrians by
implementing a minimum inter-person distance, which can be interpreted as
the radius of a hard body [17, 18]. To concentrate on the influence of the
required space and the remote action on the velocity-density relation we in-
troduce in a one-dimensional model different approaches for the interaction
between the pedestrians. This contribution summarizes parts of two articles.
The reader may consult [3, 23] for more detailed discussions and additional
results.

2 Experiment

2.1 Description

Our aim is the measurement of the relation between density and velocity
for the single-file movement of pedestrians. To facilitate this with a limited
amount of test persons also for high densities and without boundary effects,
we choose a experimental set-up similar to the set-up in [24].
The corridor, see Figure 1, is build up with chairs and ropes. The width of the
passageway in the measurement section is 0.8m. Thus passing is prevented
and the single-file movement is enforced. The circular guiding of the passage-
way gives periodic boundary conditions. The length of the measured section
is lm = 2m and the whole corridor lp = 17.3m. The experiment is located in
the auditorium ‘Rotunde’ at the Central Institute for Applied Mathematics
(ZAM) of the Research Centre Jülich. The group of test persons is composed of
students of Technomathematics and staff of ZAM. To enable measurements at
different densities we execute six cycles with N = 1, 15, 20, 25, 30, 34 numbers
of test persons in the passageway.
The measurement of the flow characteristics is based on video recordings with
a DV camera (PAL format, 25 fps) of the measured section. These recordings
were analyzed frame-wise, see Figure 1. For every person i we collect the
entrance time (of the ear) in the measured section tini and the exit time tout

i .
These two times allow the calculation of the individual velocities vman

i =
lm/(tout

i −tini ) and the the density ρman
i . We regard a crossing of an individual
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Fig. 1. Left: Experimental set-up for the measurement of the velocity-density rela-
tion for the single-file movement. Right: One frame of the cycle with N = 30. The
two vertical lines mark the measured section.
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Fig. 2. Dependency between individual velocity and density for single-file movement

pedestrian with velocity vman
i as one statistical event, which is associated to

the density ρman
i . While ρman

i is the mean value of the density during the
time-slice [tini , t

out
i ]. For a more detailed discussion and an example for the

time-development of ρ we refer to [3].
Figure 2 shows the distribution of the events (vman

i , ρman
i ) of the cycles with

N = 15, 20, 25, 30 and 34. We exclude the data where the influence of the
starting phase and opening of the passageway are apparent.

2.2 Empirical Results

For the single-file movement the distance to the next pedestrian in front can
be regarded as the required length d of a pedestrian to move with velocity v.
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Fig. 3. Dependency between required length and velocity according to the data
from the cycles with N = 15, 20, 25, 30 and 34. A linear relationship gives the best
fit to the data.

Considering that in a one-dimensional system the harmonic average of this
quantity is the inverse of the density, d = 1/ρ, one can investigate the relation
between required length and velocity by means of the velocity-density relation
for the single-file movement.
Fig. 3 shows the dependency between required length and velocity. We tested
several approaches for the function d = d(v) and found that a linear relation-
ship with d = 0.36 + 1.06 v gives the best fit to the data. According to [2] the
step length is a linear function of the velocity3 only for v 	 0.5m/s. Thus it
is surprising, that the linearity for entire distance holds even and persists for
velocities smaller than 0.5m/s. Possible explanations will be discussed later.
The comparison of the relation between velocity and density for the single-file
movement with the movement in a plane according to Weidmann shows a sur-
prising conformity, see [3]. This conformance indicates that two-dimensional
specific properties, like internal friction and other lateral interferences, have
no strong influence on the fundamental diagram at least at the density do-
mains considered. Instead, the visual analysis of the video recordings suggests
that the following ‘microscopic’ properties of pedestrian movement determine
the relation between velocity and density. At intermediate densities and ve-
locities the step length is reduced with increasing density. The distance to the
pedestrian in front is related to the step length as well as to the safety margin
to avoid contact with the pedestrian in front. Both, step length and safety
margin are connected with the velocity. At high densities and small velocities
we observed that small groups pass into marching in lock-step. Furthermore
3 Lower average velocities arise from a combination of a lower step frequency and

a shorter step length.
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the utilization of the available place is optimized. This is achieved by some
persons setting their feet far right and left of the line of movement, giving some
overlap in the space occupied with the pedestrian in front. While at interme-
diate densities and relative high velocities the pedestrians are concentrated on
their movement, this concentration is reduced at smaller velocities and leads
to a delayed reaction on the movement of the pedestrian in front. The march-
ing in lock-steps and the optimized utilization of the available space, which
compensate the slower step frequency, are possible explanations that the lin-
earity between the required length and the velocity holds even for velocities
v < 0.5m/s.

3 Modelling

3.1 Modification of the Social Force Model

The social force model was introduced in [15]. It models the one-dimensional
movement of a pedestrian i at position xi(t) with velocity vi(t) and mass mi

by the equation of motions

dxi

dt
= vi mi

dvi

dt
= Fi =

∑
j 
=i

Fij(xj , xi, vi). (1)

The summation over j accounts for the interaction with other pedestrians.
We assume that friction at the boundaries and random fluctuations can be
neglected and thus the forces are reducible to a driving and a repulsive term
Fi = F drv

i + F rep
i . According to the formulation in [20] we choose

F drv
i = mi

v0
i − vi

τi
and F rep

i =
∑
j 
=i

−∇Ai (‖xj − xi‖ − di)
−Bi . (2)

Here v0
i is the intended speed and τi controls the acceleration. The hard core

di reflects the size of pedestrian i acting with a remote force on other pedestri-
ans. Without other constraints a repulsive force which is symmetric in space
can lead to velocities which are in opposite direction to the intended speed.
Furthermore, it is possible that the velocity of a pedestrian can exceed the
intended speed through the impact of the forces of other pedestrians. In a
two-dimensional system this effect can be avoided through the introduction
of additional forces like a lateral friction, together with an appropriate choice
of the interaction parameters. In a one-dimensional system, where lateral in-
terferences are excluded, a loophole is the direct limitation of the velocities
to a certain interval [15, 19]. Another important aspect is the dependency be-
tween the space requirement di and the current velocity vi. In [6, 7] it was
observed that in cellular automata models it makes a big difference whether
a pedestrian occupies all cells passed in one time-step or not. Further, other
authors suggested that the space requirement or step length is correlated with



310 Armin Seyfried et al.

the speed [15, 17, 25]. In Section 2 we quantify empirically the relation between
the required length d for one pedestrian to move with velocity v. Summing
up, for the modelling of regular motions of pedestrians we modify the reduced
one-dimensional social force model in order to meet the following properties:
the force is always pointing in the direction of the intended velocity v0

i ; the
movement of a pedestrian is only influenced by effects which are directly po-
sitioned in front; the required length d of a pedestrian to move with velocity
v is d = a + b v. For detailed discussion we refer to [23]. To investigate the
influence of the remote action both a force which treats pedestrians as simple
hard bodies and a force according to Eq. (2), where a remote action is present,
will be introduced. For simplicity we set v0

i ≥ 0, xi+1 > xi and the mass of a
pedestrian to mi = 1.

Hard bodies without remote action

Fi(t) =

{
v0

i −vi(t)
τi

: xi+1(t) − xi(t) > di(t)
−δ(t)vi(t) : xi+1(t) − xi(t) ≤ di(t)

with di(t) = ai + bivi(t)

(3)
The force which acts on pedestrian i depends only on the position, its veloc-
ity, and the position of the pedestrian i+ 1 in front. As long as the distance
between the pedestrians is larger than the required length di, the movement
of a pedestrian is only influenced by the driving term. If the required length
at a given current velocity is larger than the distance the pedestrian stops (i.e.
the velocity becomes zero). This ensures that the velocity of a pedestrian is
restricted to the interval vi = [0, v0

i ] and that the movement is only influenced
by the pedestrian in front. The definition of di is such that the required length
increases with growing velocity.

Hard bodies with remote action

Fi(t) =
{

Gi(t) : vi(t) > 0
max (0, Gi(t)) : vi(t) ≤ 0 (4)

with

Gi(t) =
v0

i − vi(t)
τi

− ei

(
1

xi+1(t) − xi(t) − di(t)

)fi

and
di(t) = ai + bivi(t).

Again the force is only influenced by actions in front of the pedestrian. By
means of the required length di, the range of the interaction is a function of
the velocity vi. Two additional parameters, ei and fi, have to be introduced
to fix the range and the strength of the force. Due to the remote action
one has to change the condition for setting the velocity to zero. The above
definition assures that pedestrian i stops if the force would lead to a negative
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velocity. With the proper choice of ei and fi and sufficiently small time steps
this condition gets active mainly during the relaxation phase. Without remote
action this becomes important. The pedestrian can proceed when the influence
of the driving term is large enough to get positive velocities.
This different formulation of the forces requires different update algorithms,
see the discussion in [23].

3.2 Model Results

To enable a comparison with the empirical fundamental diagram from Section
2 we choose a system with periodic boundary conditions and a length of
L = 17.3m. The values for the intended speed v0

i are distributed according to
a normal-distribution with a mean value of µ = 1.24m/s and σ = 0.05m/s.
In a one-dimensional system the influence of the pedestrian with the smallest
intended speed masks jamming effects which are not determined by individual
properties. Thus we choose a σ which is smaller than the empirical value and
verified with σ = 0.05, 0.1, 0.2m/s, that a greater variation has no influence to
the mean velocities at larger densities. For the parameters τ, a, b, e and f we
choose identical values for all pedestrians (for a discussion see [23]). According
to [22], τ = 0.61 s is a reliable value.
Figure 4 shows the relation between the mean values of walking speed and
density for hard bodies without remote action, according to the interaction
introduced in Eq. (3). To demonstrate the influence of a required length de-
pendent on velocity we choose different values for the parameter b. With b = 0
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Fig. 4. Velocity-density relation for hard bodies without remote action according to
Eq. (3) in comparison with the empirical data. The filled squares result from simple
hard bodies with a = 0.36 m and b = 0. The introduction of a required length leads
to a good agreement with the empirical data for b = 0.56 s.
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one gets simple hard bodies and the required length is independent of the ve-
locity. In this case one gets a negative curvature of the function v = v(ρ). The
velocity-dependence controls the curvature and b = 0.56 s results in a good
agreement with the empirical data. With b = 1.06 s we found a difference be-
tween the velocity-density relation predicted by the model and the empirical
fundamental diagram. The reason for this discrepancy is that the interac-
tion and the equation of motion do not describe the individual movement of
pedestrians correctly. To illustrate the influence of the remote force, we fix
the parameter a = 0.36m, b = 0.56 s and set the values which determine the
remote force to e = 0.07N and f = 2.
The fundamental diagram for the interaction with remote action according
to Eq. (4) is presented in Fig. 5. The influence is small if one considers the
velocity-dependence of the required length. But with b = 0 one gets a qual-
itatively different fundamental diagram. The increase of the velocity can be
expected due to the effective reduction of the required length. The gap at
ρ ≈ 1.2m−1 is surprising. It is generated through the development of distinct
density waves, see [23], as are well known from highways. From experimental
view we have so far no hints to the development of strong density waves for
pedestrians, see Section 2. The width of the gap can be changed by variation
of the parameter f which controls the range of the remote force. Near the
gap the occurrence of the density waves depends on the distribution of the
individual velocities, too.
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Fig. 5. Velocity-density relation for hard bodies with remote action according to Eq.
(4) in comparison with hard bodies without a remote action (filled circles). Again
we choose a = 0.36 m. The parameter e = 0.07 N and f = 2 determine the remote
force. With b = 0 one gets a qualitatively different fundamental diagram and a gap
for the resulting velocities.
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4 Summary and Outlook

In the investigation presented we determine the empirical relation between
velocity and density for the single-file movement of pedestrians. The compari-
son of this fundamental diagram with the literature data for the movement in
a plane shows a surprising agreement, see [3]. The conformance indicates that
the internal friction and other lateral interferences, which are excluded in the
single-file movement, have no influence on the relation at the density domains
considered. The visual analysis of the video recording gives hints to possible
effects, like the self-organization through marching in step, the optimized uti-
lization of the available space at low velocities and the velocity dependence of
step-length and safety margin. The data shows a linear relation between the
velocity and the inverse of the density, which can be regarded as the required
length of one pedestrian to move.
For the modelling we investigate the influence of the required length and re-
mote action on the resulting velocity-density relation. We have introduced a
modified one-dimensional social force model, which takes into account that
the required length for moving with a certain velocity depends on the current
velocity. The model-parameter can be adjusted to yield a good agreement
with the empirical fundamental diagram. The remote action has a sizeable in-
fluence on the resulting velocity-density relation only if the required length is
independent of the velocity. In this case one observes distinct density waves,
which lead to a velocity gap in the fundamental diagram. For the model
parameter b which correlates the required length with the current velocity,
we have found that without remote action the value b = 0.56 s results in a
velocity-density relation which is in good agreement with the empirical fun-
damental diagram. However, from the same empirical fundamental diagram
one determines b = 1.06 s. We conclude that a model which reproduces the
right macroscopic dependency between density and velocity does not neces-
sarily describe correctly the microscopic situation, and the space requirement
of a person at average speed is much less than the average space requirement.
This discrepancy may be explained by the “short-sightedness” of the model.
Actually, pedestrians adapt their speed not only to the person immediately
in front, but to the situation further ahead, too. This gives a much smoother
movement than the model predicts. The investigation presented provides a ba-
sis for a careful extension of the modified social force model and an upgrade
to two dimensions including further interactions.
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nungsmethoden für die Projektierung, Verlagsgesellschaft Rudolf Müller, Köln-
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Flow-Density Relations for Pedestrian Traffic

Winnie Daamen and Serge P. Hoogendoorn

Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

Summary. This paper discusses the validity of first-order traffic flow theory to
describe two-dimensional pedestrian flow operations in case of an oversaturated
bottleneck upstream of which a large high-density region has formed. Pedestrians
passing the same cross-section inside of the congested region appear to encounter
different flow conditions. In the lateral center, high densities and low speeds are
observed. However, on the boundary of the congested region, pedestrians may walk
in nearly free flow conditions. Visualising pedestrian flow data in the flow-density
plane results in a large scatter of points having similar flows (bottleneck capacity),
but different densities. Observations on congestion of pedestrian traffic over the
total width of the cross-section are found to belong to a set of different fundamental
diagrams instead of a single one. This has consequences for the estimation of the
fundamental diagram describing pedestrian traffic.

1 Introduction

Insight into pedestrian behaviour is essential in the planning and design pro-
cess of public pedestrian facilities, such as transfer stations, airports, inner
cities and shopping malls. Managing pedestrian flows through these facilities
requires knowledge of pedestrian flow characteristics as well as of the walking
behaviour underlying these characteristics. Designers of pedestrian facilities
often use flow characteristics to determine levels-of-service on specific parts
of the facility. Given the fact that, on average, pedestrians behave the same
under similar average conditions, a statistical relation exists between speed,
flow and density - the fundamental diagram. Many researchers have reported
their empirical findings on this particular aspect, including the flow-density
relation for various types of infrastructure, flow composition, etc.
First-order pedestrian traffic flow theory combines the use of the fundamental
diagram with the conservation of pedestrians, which holds equally for car
traffic. This theory has among other things been applied in the pedestrian
simulation tool SimPed [1]. Other continuum theories describing pedestrian
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traffic have been derived by Helbing [4], Hughes [8], and Hoogendoorn and
Bovy [6].
Based on data collected in laboratory experiments, we derive fundamental
diagrams using cumulative curves for two cross-sections. Next, we discuss the
congested state observations in the flow-density diagram. To find an explana-
tion for seemingly confusing results, we focus on the lateral positions where
pedestrians pass a specific cross-section and look at the corresponding speeds.
We show that the physical form of the congestion influences the observations
of the flow on the total cross-section. This indicates an essential difference
in the use of the fundamental diagram in pedestrian traffic compared to car
traffic.

2 Experimental microscopic Pedestrian Data

The trajectory data used in this paper have been collected during controlled
walking behaviour experiments performed in 2002 in a large hallway of the
Faculty of Civil Engineering and Geosciences. Ten experiments have been
conducted, where the participating pedestrians had different ages and genders.
For more information on these experiments, see [2].
This paper only considers the narrow bottleneck experiment, in which the ob-
served area had a length of 10 m and a width of 4 m. The experiment lasted
about 15 min. The narrow bottleneck experiment is characterised by the pres-
ence of a bottleneck having a length of 5 m and a width of 1 m. The bottleneck
width is such that pedestrians inside of the bottleneck are not able to pass
each other. As pedestrian demand increases, it will exceed the capacity of the
bottleneck at some moment. From that time onward, congestion appears just
upstream of the bottleneck moving further up-stream over time (see Fig. 1;
bottleneck on the left, pedestrians walk from right to left). After decreasing
the demand, congestion resolved in due time. Individual pedestrian data has
been extracted from digital video footage, allowing pedestrian trajectories to
be determined with high accuracy [7].

Fig. 1. Overview of the narrow bottleneck experiment.
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3 Derivation of the Fundamental Diagram

In this section, fundamental diagrams are derived from cumulative flow plots.
A cumulative plot of pedestrians is a function N(x, t) that represents the
counted number of pedestrians passing a cross-section x from an arbitrary
starting moment. The flow q measured at a cross-section x during a time
period from t1 to t2 equals:

q(x, t1, t2) =
N(x, t2) −N(x, t1)

t2 − t1
(1)

At each time instant t when a pedestrian passes cross-section x, the speed u
of this pedestrian is measured as well. The density k at spot x and instant t is
then derived from the fundamental relation between speed, flow, and density:

k(x, t) =
q(x, t)
u(x, t)

(2)

These data have been aggregated for a fixed number of pedestrians (here
N = 30) passing cross-section x. Usually, an aggregation is performed on a
fixed period of time, but this may result in a very low number of observa-
tions when flows are low. Rather than fixed interval lengths, we consider fixed
sample sizes. That is, starting at some time instant tn, the number of ob-
served pedestrians is accumulated until a fixed number N of observations are
collected. Then, the average of the relevant traffic flow variable can be deter-
mined. From a statistical point of view, this method offers important merits
[5]. Among other things, the averages have comparable statistical accuracy,
independent of the occurring flow and flow composition.
Fundamental diagrams have been constructed, based on the data of the narrow
bottleneck experiment. The cross-sections on which speed and flow are derived
are situated both inside (x = 4 m) and in front (x = 7 m) of the bottleneck (see
Fig. 2d). Figure 2 also shows observations in the three phase-spaces (speed-
density phase-space in Fig. 2a; speed-flow phase-space in Fig. 2b; flow-density
phase-space in Fig. 2c).
Although congestion occurs, pedestrians continue walking with speeds higher
than 0.4 m/s. All three phase-spaces indicate high variance during congestion,
whereas we would have expected a smaller range of observations. Specifically
the large scatter at different densities for similar flows (equal to the bottleneck
capacity) is remarkable (see dotted ellipse in Fig. 2c). One might hypothesize
that walkers adapt their following and speed choice behaviour if confronted
with high density and low speed conditions during a longer period of time.
However, it appears that speeds, flows, and densities do not change during
the period that congestion occurs.
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Fig. 2. Observations in the three phase-spaces of the narrow bottleneck experiment
for two cross-sections: (a) Speed - density relation, (b) Speed - flow relation, (c)
Flow - density relation, and (d) Overview of the experiment

4 First-Order Pedestrian Traffic Flow Theory

Let us reconsider Fig. 2, and focus on the large variance of the congested
measurements in the flow-density plane. This variance cannot be contributed
to random noise, representing changes in pedestrian behaviour during conges-
tion, since the variation between the points is too large. In the following, an
explanation for this phenomenon is presented.
First, let us consider a related situation in car traffic. Figure 3a shows the flow-
density relation common for car traffic [3]. The situation is a lane drop of a two-
lane road, being similar to the narrow bottleneck experiment for pedestrians.
Two fundamental diagrams are applied: one for the two-lane part of the road
upstream of the bottleneck (solid line) and another one (grey stripe-dotted
line) inside the bottleneck, behind the lane drop. When flows are small, the
free flow part of the fundamental diagram is observed (solid ellipse in Fig. 3a).
When the flow becomes higher than the bottleneck capacity, congestion occurs
upstream of the bottleneck. Observations are found on the congestion branch
of the two lane fundamental diagram for the solid cross-section (dotted ellipse
on the right in Fig. 3a) as well as on the capacity part of the single lane
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Fig. 3. Traffic flow theory for car traffic (a) and pedestrian traffic (b).

fundamental diagram for the grey stripe-dotted cross-section (dotted ellipse
on the left in Fig. 3a).
Also in the narrow bottleneck experiment, flows and densities have been de-
termined at two cross-sections (see Fig. 3b). The solid fundamental diagram
is valid for the total width upstream of the bottleneck (w = 4 m), while
the grey stripe-dotted fundamental diagram applies inside of the bottleneck
(w = 1 m). However, when pedestrians do not occupy the complete width of
the area upstream of the bottleneck, another fundamental diagram applies.
Therefore, for each width between 1 m (bottleneck width) and 4 m (complete
width of the area upstream of the bottleneck) a different fundamental diagram
seems to apply (grey striped lines in Fig. 3b).
The width used by pedestrians upstream of the bottleneck is thus very impor-
tant to be able to derive a proper fundamental diagram. When pedestrians
use the complete width upstream of the bottleneck homogeneously, the fun-
damental diagram for a walkway of 4 m wide may be applied. This is similar
to car traffic flow theory. However, the question is whether pedestrians do oc-
cupy the complete width of the area upstream of the bottleneck, and if they
do, whether the distribution over the width is homogeneous.
Figure 1 shows that pedestrians form a funnel-shaped group while waiting to
enter the bottleneck. Only part of the cross-section is thus occupied. However,
Fig. 1 is only a snap shot, so Fig. 4 shows the average spatial form that waiting
pedestrians adopt during the total congestion period. Figure 4 only shows the
area upstream of the bottleneck, which is located on the left side of the figure
between the lateral positions y = 1.5 m and y = 2.5 m. According to the
figure, nearly all pedestrians pass the area just upstream of the bottleneck
(between x = 5 m and x = 5.5 m). The further upstream of the bottleneck,
the larger width is occupied by pedestrians. However, the outsides of the
funnel are only used by about 10% of the pedestrians (in terms of density),
while most pedestrians use the center of the cross-section. The scale values
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Fig. 4. Average density of pedestrians over 2-D space during congestion upstream
of the bottleneck.

for the density are indicated as percentages of the maximum observed density
on the right hand side of Fig. 4, where 1 indicates that all pedestrians have
passed this location, and 0 indicates that none of the pedestrians have passed.

Figure 5 shows another macroscopic characteristic of pedestrian flows, namely
speed. Flow and speed are directly observed on the cross-section, whereas den-
sity is derived from these characteristics. The speeds are aggregated (again
over small groups) in relation to the (discrete) lateral positions of pedestrians
passing cross-section x = 7 m, situated upstream of the bottleneck. During
congestion, speeds observed at a cross-section vary significantly, depending

Fig. 5. Speeds as function of the lateral position in a cross-section upstream of the
bottleneck during congestion.
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on the pedestrian’s lateral position. At the outsides of the funnel, pedestrians
encounter (nearly) free flow conditions thus being able to maintain a higher
speed. In the center of the flow pedestrians walk in congestion, with corre-
sponding low speeds.
The previous paragraphs have indicated that it is not meaningful to de-rive a
single flow-density relation for the complete width of an area upstream of the
bottleneck. In fact, a number of points may be distinguished, forming together
a single observation in the flow-density phase-space in Fig. 2. This is made
clear in Fig. 6.

Fig. 6. Composition of a measurement point in the flow-density diagram for the
complete cross-section.

As an example, we will distinguish three equilibrium regions, having similar
speed and flow. The two outer regions (with densities k1 and k3) are more
or less free flow, whereas congestion occurs in the lateral center (with density
k2). The three observations are indicated in the flow-density diagram by grey
dots. However, the observation in the flow-density plane in Fig. 2 is based on a
combination of these three equilibrium points. The result is that the aggregate
observation (indicated by the black dot in Fig. 6) may be located anywhere
on the horizontal dotted line and does not be-long to a specific fundamental
diagram. The congestion branch of the fundamental diagram therefore cannot
be estimated using aggregate observations for the complete width of a cross-
section upstream of the bottleneck.

5 Conclusions

We have discussed results of dedicated experiments conducted to gain more
insights into walking behaviour. This paper focuses on the applicability of
fundamental diagrams to describe pedestrian flow operations in congestion.



322 Winnie Daamen and Serge P. Hoogendoorn

One of the experiments involved a narrow bottleneck. Pedestrian demand was
so large that congestion occurred. Based on observations at two cross-sections
(one inside of the bottleneck and one upstream of the bottleneck), fundamental
diagrams are shown describing pedestrian traffic.
It turns out that during congestion, pedestrians form a funnel-shaped group
upstream of the bottleneck. Pedestrians meet different conditions at a specific
cross-section (at the same time), depending on their lateral position. In the
lateral center, high densities and low speeds are observed. However, on the
boundary of the congested region, pedestrians may walk in nearly free flow
conditions and literally walk around the congestion. An observation in the
flow-density diagram thus consists of several observations, each describing
a smaller lateral range of the cross-section, in which similar, homogeneous
conditions occur.
We can therefore state that the congestion branch of the fundamental di-
agram cannot be estimated using aggregate observations for the complete
width of a cross-section upstream of the bottleneck. Instead, homogeneous
parts should be distinguished in a cross-section. The width of each homo-
geneous part also identifies the fundamental diagram a specific (aggregate)
observation belongs to.
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Summary. This paper studies the coupled vehicle-pedestrian delay problem, taking
into account the interactions between vehicles and pedestrians. In a previous paper,
we found that for a large pedestrian arrival probability, coupled inefficient oscilla-
tions of pedestrian and vehicle flows emerge when pedestrians cross the street with a
small time gap to approaching cars (aggressive pedestrians), while both pedestrians
and vehicles benefit, when they keep some overcritical time gap (careful pedestrians).
In this paper, we take into account the fact that the crossing time of a pedestrian
group increases with its size. Our simulations show that when the crossing time
of the pedestrian group is considered, the situation of careful pedestrians changes
qualitatively. While vehicle and pedestrian flows for a low vehicle flow rate and
small pedestrian arrival probability are efficient, oscillations occur when the vehicle
flow rate and/or the pedestrian arrival probability increase. We propose a variable
speed limit implemented by a LED display to avoid the inefficiency of vehicle and
pedestrian flows for careful pedestrians.

1 Introduction

In a recent paper [1] (see also [2] for an analytical investigation), we have
investigated the problem of interacting vehicle and pedestrian flows, a problem
that has not been thoroughly studied in the past. In a way, the problem can be
viewed as two dynamically coupled queues, which cannot be served at the same
time, as pedestrians must cross the street at times when no vehicle passes and
vice versa. It is found that for a large pedestrian arrival probability, coupled
oscillations of pedestrian and vehicle flows emerge when the pedestrians cross
the street with a small time gap to approaching cars (aggressive pedestrians),
while both pedestrians and vehicles benefit, when they keep some overcritical
time gap, i.e. if their safety coefficient is high (careful pedestrians). This may
be interpreted as a slower-is-faster effect [3].
In our previous paper, however, we have assumed that the crossing time of
the pedestrian group is the same as that for a single pedestrian. This is not
so realistic. It would probably be more realistic to assume that the crossing
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time of a pedestrian group increases with the number of the pedestrians in
the group. Apart from this improvement, we will study the case of relatively
high vehicle flow rates, which has been neglected before.
It is found that, when the crossing time of the pedestrian group is consid-
ered, a different dynamics is found for careful pedestrians. While there is no
inefficient vehicle and pedestrian flow for small vehicle and pedestrian arrival
rates, inefficient oscillations occur when the vehicle flow rate and/or pedes-
trian arrival probability increase. In order to get rid of this inefficiency, we
propose to use a speed limit.
Our contribution is organized as follows. In the next section, the model and
results of our previous paper are briefly reviewed. In section 3, we present new
results, taking into account the size-dependent crossing time of a pedestrian
group. In section 4, we present the implementation of the speed limit, which
can remove the inefficient oscillations. Conclusion are given in section 5.

2 Model and Previous Results

Our model to simulate interacting vehicle and pedestrian flows is as follows:
First, within one incremental time step dt of 0.1s, we assume the arrival of
one pedestrian along the roadside at a given crossing point O with probability
p. An arriving pedestrian checks the traffic situation (Fig. 1(a)). We suppose
that, when the safety criterion d > d0 + σtrvn is satisfied, the pedestrian
will cross the road. Here, σ is a safety coefficient, d0 is the minimum safety
distance of pedestrians, tr the time needed for a pedestrian to traverse the
street, d the distance to point O from the nearest upstream vehicle and vn

its velocity. We assume that when no other pedestrian is on the road, the
safety coefficient chosen by a pedestrian is σ = σ0. When other pedestrians
are crossing the road, he or she is encouraged to cross as well and, therefore,
chooses a smaller safety coefficiency σ = σ1.
The computer simulation is carried out as follows: First, we scan the posi-
tions of the vehicles and find the nearest vehicle n upstream of point O. If
a pedestrian is on the street, the net distance to the next object is specified

Fig. 1. Sketch of the vehicle-pedestrian delay system. In (b), the vehicle blocks
point O, thus, the pedestrian cannot cross. This is consistent with our criterion,
because d is negative and the condition d > d0 + σtrvn is not met.
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as ∆x = xO − xn(t), and the velocity of the object ahead into the driving
direction is v = 0. Otherwise the distance and velocity are given by the next
vehicle ahead, i.e. ∆x = xn+1 − xn − ln+1 and v = vn+1 (here l is the vehicle
length). This enters the equation of vehicle motion according to the intelligent
driver model (IDM) [4].
In each simulation time step, if a new pedestrian occurs at point O, he or she
crosses the road if the safety criterion d > d0 + σtrvn is satisfied. Otherwise,
he or she will wait until the next time step. In a previous paper [1], we have
assumed that if there is more than one pedestrian waiting at the roadside, the
pedestrian group will need the time tr to cross the road, independently of the
number of pedestrians in the group.
In our simulations, open boundary conditions and parameter values as in
Ref.[1] are used. The simulations show that, for aggressive pedestrians, the
average delay time essentially remains constant when the arrival probability
p is sufficiently small. When p increases, it begins to increase with growing
values of p. Then, after reaching a maximum, it goes down with a further
increase of the arrival rate p (Fig. 2). However, for careful pedestrians, the
average delay is always small (Fig. 3).
A detailed investigation shows that the increase in the average delay of ag-
gressive pedestrians originates from an alternating vehicle and pedestrian flow
occuring at large pedestrian arrival probabilities (see Fig. 2(a) in [1]). Never-
theless, when p is very large, the stopped vehicle queue may occupy the whole
length of the road section upstream of the crossing point. This results in a lim-
itation and an eventual decrease of the average delay, as many pedestrians will
cross the road together after a maximum waiting time. Careful pedestrians
cannot stop vehicles. As a result, no oscillations occur, which is more efficient
for pedestrians and vehicles. The simulations show that there exists a critical
value σ1 ≈ 0.96 of the safety coefficient σ at which a transition between the
two different system behaviors takes place.

3 Inefficient Oscillations Caused by Careful Pedestrians

In this section, the crossing time is set to tr = tr,0 +β(Nw − 1). Here tr is the
number of time steps needed to cross the road for a pedestrian group of size
Nw, and tr,0 = 20 is the number of time steps needed to cross the road for a
single pedestrian. In our simulations, the β parameter is set to 0.5. If we set
β = 0, the improved model reduces to the original one.
Let us first consider the case of aggressive pedestrians. Our simulations show
that, when the increased crossing time of pedestrian groups is taken into
account, only slight changes occur (see filled triangles in Fig. 2).
Let us consider next the case of careful pedestrians. Fig. 3 shows the simulation
results. One can see that for low vehicle flow rates the average delay does not
change for small arrival probabilities p. However, when the arrival probability
p is very high, oscillations occur (Fig. 4). This is because when p is very large,
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Fig. 2. Average time delay time to aggressive pedestrians (σ1 = 0.6) as a function
of their arrival probability p. In (a), the vehicle flow is 370 veh/h, while in (b) the
vehicle flow is 810 veh/h. The solid lines represent the results of the original model,
the filled triangles the results of our improved model without speed limit, and the
empty triangles our results for the improved model with speed limit.

Fig. 3. Average time delay to careful pedestrians (σ1 = 1.0) as a function of their
arrival probability p for a vehicle flow rate of (a) 370 veh/h and (b) 810 veh/h.

a large group of waiting pedestrian can form in a short time. This group needs
quite some time to cross the road and therefore, it can stop vehicles.
With an increase in the vehicle flow rate, the transition from efficient flows
to inefficient oscillations occurs at smaller values of p (Fig. 3(b)). This is
because with an increase in the vehicle flow rate, time gaps large enough to
allow a crossing of pedestrians become less frequent. As a result, even for
the same pedestrian arrival probability p, the group of waiting pedestrians
usually becomes larger in our improved model when the vehicle flow rate is
high. Therefore, oscillations occur easier.
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4 Implementation of a Speed Limit

From the above section, we know that the reason for inefficient oscillations
is the formation of large pedestrian group. Therefore, in order to avoid the
inefficiency of alternating vehicle and pedestrian flows in the case of careful
pedestrians, it is necessary to reduce the size of waiting pedestrian groups.
This can be achieved by a variable speed limit implemented as follows.
A LED display is placed upstream of the crossing point. It enforces a speed
reduction with a cycle period τ . While the speed limit is turned off for a
fraction α of the time period, it slows down vehicles for the remaining fraction
(1 − α) of the cycle time τ .
In our simulations, the LED display is placed 50 m upstream of the crossing
point. Its period is set to τ = 30 s. α is set to the value 0.67, i.e., the speed
limit is activated for 10 s in a period. When the speed limit is turned on,
vehicles within 50 m upstream of the LED will slow down: their maximum
velocity decreases to the speed limit vmax,s displayed on the LED display. In
our simulations, vmax,s is set to 5 m/s.
In Fig. 3(b), we show the simulation results for a speed limit. One can see
that not only the oscillations are removed at large values of p, but also the
average delay decreases dramatically compared with the original model. In
Fig. 4(b), we show a spacetime plot of the vehicle trajectories. Compared
with Fig. 4(a), one can see that a speed limit increases the frequency of large
time gaps. Before reaching the time t0, the speed limit has already generated a
large time gap, which is available at the crossing point at time t1. In this way,
no large pedestrian group builds up. Consequently, vehicles are not anymore
stopped by pedestrians, and inefficient oscillations are avoided.
In Fig. 3(a), we show the simulation results for a speed limit and a low flow
rate. One can see that the oscillations disappear for large values of the pedes-
trian arrival probability p. Compared with the original model, the average
delay decreases only slightly. This is because large time gaps occur frequently
in this model even without a speed limit.
Finally, we point out that, when the vehicle flow is high, a speed limit can
decrease the average delay also for small arrival probabilities p of aggressive
pedestrians, although the oscillations cannot be removed (see Fig. 2(b)).

5 Conclusions

In this contribution, we have extended a previous model for the interactions
of pedestrians and vehicles by considering the size-dependent crossing time of
pedestrian groups. Our simulations show that this changes the system dynam-
ics qualitatively for careful pedestrians. While vehicle and pedestrian flows are
efficient for low vehicle flow rates and small arrival probabilities p, inefficient
alternating flows occur when the vehicle flow rate and/or the pedestrian ar-
rival probability p increases. However, for aggressive pedestrians, there is no
qualitative change.



328 Rui Jiang and Dirk Helbing

Fig. 4. Spacetime plots of vehicle trajectories for p = 0.3, σ1 = 1.0 and a vehicle flow
rate of 680 veh/h. The simulation results are (a) for the improved model without
speed limit (b) for the improved model with a speed limit. In (a), one can see that,
before time t0, the time gaps are so small that no pedestrian can cross at point O
for a long time period. Therefore, a lot of pedestrians are waiting to cross when a
large time gap becomes available at time t0. This large pedestrian group needs long
to cross the road, so that vehicles will form long queues.

In order to avoid the inefficiency of oscillatory vehicle and pedestrian flows in
the case of careful pedestrians, we have proposed to implement a speed limit.
It is shown that in this way the inefficiency of vehicle and pedestrian flows
is removed for careful pedestrians. Furthermore, it is shown that, even when
the vehicle flow is high and the pedestrian arrival probability p is small, a
speed limit can decrease the average delay both for careful pedestrians and
aggressive pedestrians. This is reached by generating larger time gaps between
successive vehicles.
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Microscopic Calibration and Validation of
Pedestrian Models: Cross-Comparison of
Models Using Experimental Data

Serge P. Hoogendoorn and Winnie Daamen

Transport & Planning Department, Delft University of Technology, 2628 CN Delft,
The Netherlands

Summary. This contribution proposes a new approach to estimate model param-
eters of microscopic pedestrian models using individual pedestrian trajectory data.
To this end, a generic approach is proposed that enables parameter identification
for microscopic models in general and in particular for walker models. The ap-
plication results provide new insight into the behavior of individual pedestrians,
inter-pedestrian differences, as well as the resulting pedestrian flow characteristics.
By comparing different models of increasing complexity, it is investigated which of
the model amendments are significant from a statistical point of view and which
are not. It is shown that besides anisotropy, finite reaction times play an important
role in correctly describing microscopic walking behavior. The implications of these
findings in the microscopic description of pedestrians flows are considered by study-
ing the predicted flow operations at a narrow bottleneck. It turns out that the finite
reaction times have a significant effect on the pedestrian flow operations.

1 Introduction

In general, calibration of microscopic pedestrian models is performed by com-
paring aggregate model outcomes (flows, speeds, densities, etc.), predicted
macroscopic relations (e.g. speed density curves), or emerging spatio-temporal
patterns (dynamic lane formation, formation of diagonal strips in crossing
flows) with macroscopic empirical data (if available) or expert opinion (does
the model act as expected). In doing so, it has been shown that a number of
pedestrian flow models are able to predict macroscopic flow conditions with
reasonable accuracy; see for example [1–3].
There are many reasons why a macroscopic approach to microscopic model cal-
ibration will not always yield the desired results. For example, inter-pedestrian
differences expressed by the variability in model parameters cannot be de-
termined using macroscopic data. Furthermore, it is unclear if microscopic
models are able to describe individual walking behavior accurately, or if they
mainly provide a reasonable ‘average’ macroscopic prediction. This being the
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case, there is no way to assess whether the behavioral assumptions underlying
a microscopic model are valid or not. If not, it is doubtful whether the micro-
scopic model is sufficiently generic and able to predict pedestrian behavior in
other situations than the model was calibrated for.
This main contribution of this paper is the development of an estimation ap-
proach for calibrating microscopic models using pedestrian trajectory data.
These data can and have been collected using a variety of systems, such as
video and infrared [4, 5]. A continuous time microscopic walker model is gen-
eralized to include different aspects of walking that are deemed important.
It is emphasized that this is not a benchmarking study in the sense that all
microscopic pedestrian models are cross-compared. We also do not consider
route choice behavior.
We have focused on the microscopic walker model NOMAD [1], which is simi-
lar to the well-known social-forces model [2]. An important contribution of the
work presented in the paper pertains to new insights into important processes
in walking behavior, which is determined by cross-comparing the effects of dif-
ferent model extensions. That is, we determine which of the model parameters
are important in predicting microscopic pedestrian behavior, as well as con-
sidering their statistical properties. In doing so, we will study two potentially
important aspects of walking behavior, namely anisotropy and finite reaction
times. Lastly, since we establish model parameters for individual pedestri-
ans, we will show inter-pedestrian differences in walking behavior and their
consequences for pedestrian flow operations.

2 Considered Walker Models

In this contribution, we focus on a simplified version of the model of [1], which
is similar to the original social-forces model [2]. This section presents the basic
model and the amendments that are considered for further analysis. It is noted
that many extensions to both the NOMAD model and the social-forces model
have been proposed. For the purpose of this paper, it is however not necessary
to consider these.

2.1 Basic Model

The basic model predicts the two-dimensional acceleration vector ap(t) as

ap(t) =
v0

p − vp(t)
Tp

−Ap

∑
q∈Qp

upq(t)e
− dpq(t)

Rp (1)

where vp denotes the velocity of pedestrian p;Qp denotes the set of pedestrians
q that influence pedestrian p. Finally, we have

dpq(t) = ‖rq(t) − rp(t)‖ and upq(t) =
rq(t) − rp(t)

dpq(t)
(2)
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The basic model has four pedestrian specific parameters, namely the free speed
V 0

p =
∥∥v0

p

∥∥, the acceleration time Tp, the interaction constant Ap and the
interaction distance Rp that are to be estimated from data. Note that the
desired walking direction e0

p = v0
p/V

0
p is determined by pedestrian route choice

and is assumed known.

2.2 Instantaneous Model Including Anisotropy

Anisotropy implies that pedestrians will only – or at least mainly – react to
pedestrians in front of them. The basic model has been amended to include
anisotropy as follows [1]:

ap(t) =
v0

p − vp(t)
Tp

−Ap

∑
q∈Qp

upq(t)e
− d∗

pq(t)

Rp 1upq(t)·vp(t)>0 (3)

with

d∗pq(t) =
upq(t) · vp(t)

‖vp(t)‖ + ηp
upq(t) ·wp(t)

‖vp(t)‖ (4)

where wp(t) is the vector perpendicular to the velocity vector vp(t), with the
same length as vp(t); ηp > 1 is a pedestrian specific factor that describes
differences in pedestrian reaction to stimuli directly in front and stimuli from
the sides of the pedestrians, which is to be estimated from the available mi-
croscopic data. The indicator function 1upq(t)·vp(t)>0 is one if pedestrian q is
in front (upq(t) · vp(t) > 0) if p and zero otherwise (upq(t) · vp(t) < 0).

2.3 Model Including Finite Reaction Time

To determine if the reaction time can be neglected or not, the final model
considered is a retarded (or delayed) model:

ap(t+ τp) =
v0

p − vp(t)
Tp

−Ap

∑
q∈Qp

upq(t)e
− d∗

pq(t)

Rp 1upq(t)·vp(t)>0 (5)

where τp > 0 is the pedestrian-specific reaction time (or rather, perception-
response time) to be estimated from the microscopic data. Pedestrians are
thus assumed to have a delayed response to the observations they make at
time instant t. We expect that the reaction times will be between 0.1 s and
0.8 s.

2.4 Approach to Model Estimation

The parameters to be estimated are the free speed V 0
p , the acceleration time

Tp, the interaction factor Ap, the interaction distance Rp, and the reaction
time τp. The latter is determined by considering all plausible reaction time
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values – i.e. between 0.1 s and 0.8 s – and afterwards determining which value
yields the best performance (in terms of log-likelihood). For the anisotropy
factor ηp, different values have been considered and cross-compared to test
which yields good model performance, after which one fixed value was chosen
for all pedestrians; this was done to keep the number of parameters small.
The available observations are pedestrian trajectories (the location rp(tk) as
a function of time instant tk, for k = 1, . . . , n) of all pedestrians p. From these
data, all relevant quantities can be derived either directly or by applying finite
differences. For the data considered in the remainder, observations are present
each 0.1 s (i.e. tk = t0 + 0.1k).

2.5 Maximum Likelihood Estimation

Most continuous time microscopic walker models, including those considered
in this contribution can be expressed in the following form:

ap(t+ τp) = fp(vp(t), rq(t) − rp(t), ...|θp) + εp(t) (6)

where θp denotes the set of unknown parameters, including the reaction time.
The error vector εp(t) is introduced to reflect errors in the modeling, similar
to the error term used in multivariate linear regression. Note that the error
vectors εp(t) are generally serially correlated (i.e. εp(tk) and εp(tk−1) have a
large positive correlation). For now, we assume that the error term is normally
distributed with mean zero and standard deviation σp (pedestrian specific).
Since we can determine all relevant variables (positions, distances, speeds,
relative speeds) directly from available experimental data, we can use Eq. (6)
to determine a prediction for the retarded acceleration directly from the data.
The prediction is clearly dependent on the model parameters to be estimated
and can be compared with the observed acceleration aobs

p (t+τp). According to
the model, the difference between the prediction and the observation follows
the normal distribution with mean 0 and standard deviation σp.
The likelihood Lk of a single prediction step, say from time tk to time tk+1,
is related directly to the probability density g (ε) of the normal distribution.
More specifically:

Lk(θp, σ
2
p) =

1
σp

√
2π

exp

(
−
(
aobs

p (t+ τp) − ap(t+ τp)
)2

2σ2
p

)
s.t. (7)

ap(t+ τp) = fp(vobs
p (t), robs

q (t) − robs
p (t), ...|θp) (8)

Considering an entire sample of subsequent acceleration observations and ne-
glecting correlations between subsequent samples (serial correlation), the like-
lihood of the observation given the model parameters becomes:

L = L(θp, σ
2
p) =

n∏
k=1

1
σp

√
2π

exp

(
−
(
aobs

p (t+ τp) − ap(t+ τp)
)2

2σ2
p

)
(9)
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where n denotes the number of time-instants tk for which an observation is
available. The log-likelihood equals:

L̃(θp, σ
2
p) = −n

2
ln
(
2πσ2

p

)− 1
2σ2

p

n∑
k=1

(
aobs

p (t+ τp) − ap(t+ τp)
)2

(10)

Maximum-Likelihood (ML) estimation involves finding the parameters that
maximize the (log-) likelihood. A necessary condition for the optimum allows
determination of the standard deviation:

∂L̃(θp, σ
2
p)

∂σ2
p

= 0 ⇒ σ̂2
p =

1
n

n∑
k=1

(
aobs

p (t+ τp) − ap(t+ τp)
)2

(11)

From Eq. (11) we see that the ML estimate for the variance of the error term
is given by the MSE of the predictions and the observations. For the remaining
parameters, the ML estimates can be determined by numerical optimization,
i.e.

θ̂p = arg max L̃(θp, σ̂
2
p) (12)

with

L̃(θp, σ̂
2
p) = −n

2
ln

(
2π
n

n∑
k=1

(
aobs

p (t+ τp) − ap(t+ τp)
)2)− n

2
(13)

This expression shows that maximization of the log-likelihood is equivalent to
minimization of the mean squared error (MSE).

2.6 Covariance Estimates

To approximate the covariance matrix of the estimated parameters, we can
use the so-called Cramér-Rao lower bound [6], stating that:

var (θp) ≥ −E
(
∇2L̃

)
(14)

Since ML is asymptotically efficient, we can show that the asymptotic vari-
ance of the parameters is given by the right-hand side of Eq. (14); see [6]. In
the remainder, this approximation is used to determine an estimate for the
covariance of the estimated parameters.
The Cramér-Rao bound provides important insights into the statistical prop-
erties of the models by providing estimates for the model standard error and
the statistical correlation between the parameter estimates. The standard-
errors can be used to determine whether the model parameters are not equal
to zero in a statistical sense. The correlation matrix provides additional in-
sight into the statistical properties of the estimates, for instance by explaining
large standard errors cause by large correlation between estimates.
We will use the so-called likelihood-ratio test to test whether the one model is
better than the other. We emphasize that the log-likelihood test accounts for
the number of parameters via the degrees of freedom, thereby enabling the
comparison of simple and complex models.
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2.7 Inter-Pedestrian Parameter Correlation

Besides the correlation in the parameter estimates determined via the Cramér-
Rao bound, inter-pedestrians differences can be determined. In the ensuing,
this is achieved by computing the mean, variance and inter-personal correla-
tion of the individual parameter estimates for the different pedestrians. These
statistics provide insight into the behavioral differences between pedestrians,
and the inter-pedestrian correlation between the parameter estimates.

3 Experimental Data Used for Model Calibration

Microscopic pedestrian data is gradually becoming more available. Different
observation techniques have been developed recently that enable collecting
the time-space behavior of individual pedestrians. Examples are video [4] and
infrared sensors [5]. The trajectory data used in the ensuing of this contribu-
tion have been collected from walking experiments performed in 2002. These
walking experiments were conducted in a large hallway of the Faculty of Civil
Engineering and Geosciences. The group of pedestrians participating consisted
of people of different ages and genders. Using a digital camera mounted at the
ceiling of the hallway and dedicated software to process the digital footage
into pedestrian trajectories, all trajectories of the pedestrians participating
in the experiments were determined. For the remainder of this contribution,
data from the narrow bottleneck experiment are used. The narrow bottle-
neck experiment was characterized by a high pedestrian demand trying to
pass through a narrow bottleneck of 1 m width. Since the demand was larger
than the bottleneck capacity, the bottleneck became oversaturated resulting
in congestion. For a detailed description of the experiment, the data and their
characteristics, we refer to [4].

4 Estimation Results

To get a general impression of the model performance as well as a better un-
derstanding of the important behavioral processes underlying walking behav-
ior, this section presents the results of cross-comparing the model predictions
with a zero-acceleration reference model (i.e. assuming constant velocities for
all pedestrians). The parameters of the models have been estimated from
the experimental data discussed in the preceding section. The performance
of the models is cross-compared based on the overall relative increase in the
log-likelihood compared to the null-log likelihood (stemming from the zero-
acceleration model), and the percentage of models that passed the likelihood
ratio test.
Tab. 1 shows an overview of the estimation results. The table shows that the
average differences between model performances are considerable. Especially
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Model type % improvement L̃ % passing LR-test

Basic model 6.4% 71%
Anisotropic model 7.7% 76%
Retarded anisotropic model 19.7% 83%

Table 1. Overview of estimation results.

the difference between the instantaneous models and the retarded models is
relatively large (improvement of the log-likelihood of 6.4% and 7.7% for the
respective instantaneous models, compared to 19.7% in case of the retarded
anisotropic model).

4.1 Basic Model Results

From Tab. 1, we can conclude that the basic model passes the likelihood
ratio test (LR test) in 71% of all cases. For the remaining 29%, the basic
model did show a higher log-likelihood than the null-model (which assumes no
acceleration), but the improvement was not large enough to pass the LR test.
Tab. 2 shows an overview of the statistics of the parameter estimates. The
estimates are plausible in terms of their magnitude. The table shows that
the inter-pedestrian differences are most prominently reflected by the differ-
ences in the acceleration times Tp and the interaction distance Rp, as can be
concluded from the CoV (Coefficient of Correlation) values of 0.32 and 0.50
respectively. Furthermore, it turns out that the inter-pedestrian correlations
between the parameter estimates are generally small, except for the positive
correlation between free speed and interaction distance (0.49).

Parameter Mean Stand. dev CoV Correlation amongst parameters

V 0
p Tp Ap Rp

V 0
p (m/s) 1.34 0.21 0.16 1 -0.20 0.02 0.49

Tp (s) 1.09 0.35 0.32 1 0.10 -0.36

Ap (m/s2) 11.96 0.23 0.02 1 -0.16

Rp (m) 0.16 0.08 0.50 1

Table 2. Statistics of parameter estimates for the basic model.

4.2 Anisotropic Model

As concluded before, the anisotropic model with instantaneous reaction out-
performs the basic model, although the improvement is rather limited. The
LR test shows that the model improves significantly with respect to the näıve
zero-acceleration model in case of 76% of all pedestrians considered.
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Tab. 3 shows an overview of the parameter estimates for all individual esti-
mates which passed the likelihood ratio test, as well as the correlation between
the individual estimates. The results show that especially the acceleration time
Tp has a relatively large standard deviation (judging from the CoV values),
implying that the inter-pedestrian differences in acceleration times are large.
This holds equally for the interaction distance Rp.
The correlation between the parameters reveals a considerable relation be-
tween the free speed and the interaction distance (positive correlation of 0.62),
implying that on average, pedestrians having a large free speed V 0

p have a large
acceleration distance Rp. An interpretation of this (statistical) result might be
that pedestrian with a high free speed have the tendency to better anticipate
on pedestrians further away from them. However, the explanatory perfor-
mance of the model is still limited, and care should be taken in interpreting
the estimation results.
Other high correlations are found between the acceleration time Tp and the
interaction factor Ap (negative correlation of 0.54), and between the interac-
tion factor Ap and the interaction distance Rp (positive correlation of 0.46).

Parameter Mean Stand. dev CoV Correlation amongst parameters

V 0
p Tp Ap Rp

V 0
p (m/s) 1.32 0.22 0.17 1 -0.23 0.28 0.62

Tp (s) 0.96 0.24 0.25 1 -0.54 -0.32

Ap (m/s2) 11.46 0.56 0.05 1 0.46

Rp (m) 0.33 0.09 0.27 1

Table 3. Statistics of parameter estimates for anisotropic model.

If we compare the estimates of the basic model with the estimates of the
anisotropic model, we see that the estimates are similar, except for the in-
teraction distance Rp. In the anistropic model, the interaction distance Rp

is on average twice as large as in the non-anistropic model. Regarding the
inter-pedestrian parameter differences, it turns out that the variability in the
acceleration time Tp reduces substantially.

4.3 Retarded Anisotropic Model

The statistical analysis clearly reveals the importance of the finite reaction
time in walking behavior modeling, as shown from the improvements of the
model performances as indicated by Tab. 1: besides the fact that 83% of the
considered cases passes the LR test, we can also see that the log-likelihood
improvement over the näıve zero-acceleration model of 19.7% is much higher
than for the non-retarded models (6.4% and 7.7% respectively).
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Tab. 4 provides an overview of the average parameter values, their standard
deviation and the inter-pedestrian correlation between the parameter esti-
mates. It shows that in particular the standard deviations - and thus the inter-
pedestrian differences - of the acceleration times Tp and interaction distances
Ap are relatively large. Also note the medium inter-pedestrian differences in
the reaction time τp (mean of 0.28 s and standard deviation of 0.07 s).

Parameter Mean Stand. dev CoV Correlation amongst parameters

V 0
p Tp Ap Rp τp

V 0
p (m/s) 1.34 0.23 0.17 1 0.23 0.39 0.57 -0.02

Tp (s) 0.74 0.23 0.31 1 -0.23 -0.06 0.44

Ap (m/s2) 11.33 0.64 0.06 1 0.36 -0.46

Rp (m) 0.35 0.11 0.31 1 -0.17

τp (s) 0.28 0.07 0.25 1

Table 4. Statistics of parameter estimates for the retarded anisotropic model.

As for the instantaneous models, from Tab. 4 we observe that the free speed V 0
p

and the interaction distance Rp are positively correlated (0.57). It also turns
out that the reaction time τp and the interaction factor Ap are negatively
correlated, implying that the reaction time and the interaction factor are to
a certain extent mutually exclusive.
To gain more insight into the distributions of the parameter estimates, Fig. 1
shows histograms of the estimates, from which inter-pedestrian differences can
be observed clearly. Also the shape of the parameter distributions becomes
apparent. Note that all parameter distributions appear to be skewed rather
than symmetric.
Fig. 2 shows the distribution of the reaction time estimates. Again the dis-
tribution appears to be skewed. The median reaction time equals 0.3 s; few
pedestrians have a reaction time which is larger than the median of 0.3 s.
Let us finally note that the parameter estimates determined by applying the
approach to data from other experiments are consistent (wide bottleneck,
one-directional flow, bi-directional flow, etc.).

5 Consequences for Pedestrian Flow Modelling

The estimation results presented in the previous section show some interesting
issues that may have important implications for microscopic pedestrian flow
modeling. In particular, these findings relate to:

1. Inter-pedestrian differences as expressed by the variability in the param-
eter estimates.

2. Correlation between parameter estimates.
3. Importance of delays in the correct description of microscopic behavior.
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Fig. 1. Parameter distributions for 82 pedestrians using an anisotropy factor of 8
(retarded model).

Fig. 2. Distribution of the reaction time estimates.

Regarding the first point, the current models can in general be amended easily
when sufficient insight has been gained into the distribution of the parameters
for the pedestrian population to be simulated. The distribution that needs
to be used will be dependent on amongst other things gender distribution,
trip purpose, and external conditions (such as weather). The variability in
pedestrian behavior will cause macroscopic properties of the pedestrian flow
to become stochastic. This holds in particular for the bottleneck capacity
and the jam-densities (and consequently the queue lengths). The extent in
which this occurs in beyond the scope of this paper. The second issue is of
particular interest when generating pedestrians in a microscopic model. When
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Fig. 3. Snapshot of situation at the narrow bottleneck as determined by the adapted
NOMAD pedestrian simulation model. The figure shows the two detectors that have
been used to compute the queue discharge rate. In the example shown, congestion
is detected at detector 2. As a result, the flow observed at detector 1 is labeled as
an observation of the queue discharge rate.

the behavioral parameters are generated, it is important to take into account
the correlations during the parameter generation process.
With respect to the third point, considerable changes in the properties of
the pedestrian flow dynamics are expected. Amongst the phenomena that are
likely to occur are instabilities in the flow, congestion probabilities, reduction
in the queue discharge rate once congestion sets in, etc.
To test whether this hypothesis is indeed correct, we have modified our model
to include finite reaction times, and applied the modified simulation model on
a simple test-case example (a narrow bottleneck). The bottleneck has a width
of 1.0 m. From experimental observations, we expect a bottleneck capacity
of 1.6 P/s (see for [4] details). The pedestrian demand equals 1.8 P/s. The
parameters used in the simulation correspond to the estimates determined
in the previous sections of this contribution. Fig. 3 shows a snapshot of a
simulation for the considered scenario. The figure shows the locations of the
detectors that have been used to collect the synthetic data on which our
analyses are based.
When comparing the instantaneous and the retarded models, several things
become apparent. For one, the flow becomes more unstable, more erratic. The
considered flow operations are near oversaturation (volume to capacity almost
equal to 1). From our simulation results, it turns out that before congestion
occurs, the bottleneck capacity is higher than once congestion has set in (ca-
pacity drop). This phenomenon is quite common in car traffic, but apparantly
it is also present in pedestrian flow operations. The reasons for this capacity
drop is the fact that when congestion has set in, pedestrians are dispersed
over part of the width of the walking area, i.e. they are not standing right in
front of the bottleneck. When arriving at the bottleneck, they need to turn
as well as to accelerate. This process is likely to be affected by the reaction
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time of the pedestrians: when the response to prevailing traffic conditions is
retarded, both turning and acceleration will be delayed and thus capacity of
the bottleneck is likely to decrease.
We also found that the predicted probability of breakdown occurring is larger
when using retarded models than when using the instantaneous model. More
specifically, the instantaneous model predicts congestion occurring in 54% of
all simulations. For the retarded model with a reaction time of 0.3 s, congestion
occurs more frequently, namely in 68% of all situations.

6 Conclusions and Recommendations

This contribution puts forward a generic approach for calibration of micro-
scopic models. Using trajectory data, the approach enables estimation of the
pedestrian-specific parameters of different walker models. The approach pro-
vides insight into the statistical properties of the estimates, as well as the
performance of the models to which the calibration approach is applied.
In applying the approach to data collected during walking experiments, infer-
ences could be made regarding the behavioral processes that are to be included
in the modeling to ensure a realistic description of walking. It turns out that
besides anisotropy, finite reaction times play an important role in correctly
describing microscopic walking behavior. Furthermore, inter-pedestrian differ-
ences in walking behavior have been shown. Based on these findings, a small
scale study was performed regarding the changes in the dynamic properties
of the pedestrian flow model. It was observed that including a reaction time
has a significant effect on the pedestrian flow operations, in particular with
respect to the congestion probabilities.
Future research will entail estimating parameters of more advanced models.
Furthermore, we will further study the macroscopic properties of microscop-
ically calibrated pedestrian models. Further research should reveal how the
observed finite reaction time and the inter-pedestrian differences affect the
dynamic flow properties.
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Summary. In this article, we show two examples for the application of pedestrian
flow simulation and analysis: the World Youth Day 2005 (WYD) in Cologne and the
(non-emergency) egress from a football stadium. Various circumstances are specific
for religious events. The persons might perform rituals and therefore the patterns
of movement or gathering are governed by rules that go beyond simple necessity or
comfort. Furthermore, the persons are usually very much attracted by the (idealistic)
aim of their pilgrimage. The final service at the WYD in Cologne, celebrated by the
Pope, was the major event during the WYD. The paper is divided into three parts:
The first section is concerned with the World Youth Day and the second with the
egress from a football stadium. The final section summarizes the results, provides
recommendations and concludes with the most important implications for the field
of crowd dynamics simulation.

1 Description of the Model

1.1 Model Characteristics

The model is extensively described in [1–3]. It is similar to the model used
in [4, 5] to simulate competitive egress behavior apart from the friction and the
dynamic floor field. The model characteristics can be summarized as follows:

1. The geometry is respresented as a regular grid of quadratic cells where
walls are represented as non-accessible cells. The cell size is 40cm.

2. Persons move on these cells. Their velocity may vary between 2 and 5 cells
per time step. The length of a time step is 1 second.

3. Diagonal movement is possible and the diagonal distance is correctly ac-
counted for (by a factor of

√
2).

4. The update is shuffled sequential [6], which is equivalent to an iterative
conflict resolution [5].

5. There are as many static potentials (called floor fields in [4, 5, 7]) as there
are exits. Each potential measures the distance to its exit.
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6. There is no dynamic floor field.
7. The transition probabilities are given by e∆p, where ∆p is the difference

between the potential of the current and the destination cell. The exit has
potential 0.

1.2 Parameter Settings

The following table 1 contains the parameter values for the standard popula-
tion used in the examples in sections 2 and 3. It is important to note that the
reaction time distribution was deliberately chosen to be very low in order to
get a worst case scenario. It is well known from empirical observations [8] that
immediate detection of and reaction to an alarm leads to the highest rates of
congestion.

Parameter Minimum Maximum Mean Std. Dev. Unit

Free Walking Speed 2 5 3 1 m/s
Dawdling Probability 0 0.3 0.15 0.05 -
Reaction Time 0 10 5 2 s

Table 1. Parameters of the standard population.

2 World Youth Day

The World Youth Day took place in August 2005 in Cologne, Germany. The
final event was a service with Pope Benedict XVI. It was held on a large
ground (around 92 ha) with a stage in the centre. The geometry is shown in
fig. 1. Altogether around 700 to 800 thousand pilgrims were expected. Apart
from roads and public transportation systems, footpaths played an eminent
role in the mobility concept.
Concerning pedestrian motion, two cases must be distinguished: the normal
case of getting to and back from the area and the emergency case, when part
of the site or the complete area has to be evacuated. In order to estimate the
performance of the roads and footpaths in case of an emergency evacuation,
several simulations were performed. One example is shown below. Since the
size of the area is about 2 km in East-West and about 1.6 km in North-South
direction, a complete evacuation is in most cases neither sensible nor feasible.
The scenarios considered were accidents with trucks or a fire. In these cases,
the strategy was to evacuate the field directly affected and one neighbouring
field (the rectangular areas defined by the roads and footpaths – cf. Fig. 1).
The scenario shown in fig. 2 is a fire on or near the central stage and a partial
evacuation of the so called pilgrim field near the location of the incident. After
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Fig. 1. World Youth Day Premises: The “Marienfeld” near Kerpen and Cologne.

Fig. 2. World Youth Day Simulation: Initial Distribution of 36,000 persons (left)
for the scenario “fire near the stage”. The area is 32,000 sqm, i.e. 32 ha and the
density ca. 1.1 persons/sqm. The right picture shows the situation after 30 minutes.

30 minutes the major part of the afflicted area can be evacuated. However,
it takes another one and a half hours to get the persons completely off the
area in this simulation. Since the surrounding pilgrim fields are also filled
with people, there is a strong need to contain the threat within a few fields
(the small rectangles defined by the paths and roads – cf. fig. 1). Otherwise
the complete area would have to be evacuated which took more than 4 hours
in the simulation. There was, however, open space several times larger than
the “Marienfeld” around the area which is a necessary condition for a safe
evacuation in the first place.
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3 Egress from a Football Stadium

Concerning quantitative verification, movement patterns provide a valuable
tool to investigate the reliability of simulation results. In the following, video
footage is compared to simulations, especially concerning overall egress time
(non-emergency). The video footage was taken at an international match be-
tween Germany and Scotland in Dortmund (Westfalenstadion). The results
described here are an extension of [10], where simulation results for the stands
in the four corners of the stadium were investigated by simulations. This ref-
erence also contains further information on the model and its application.
Furthermore, [11] contains an in depth description and comparison of differ-
ent modeling approaches for pedestrian dynamics and especially evacuation
simulation.

Fig. 3. The Westfalenstadion Dortmund: Outside view and general arrangement
plan (Borusia Dortmund KGaA, www.borussia-dortmund.de).

In fig. 4 the first six minutes of the video footage and the first three minutes
of the simulation are shown. The reason for the different time spans is that
the real persons react slower. However, due to their effectivenes and group
formation which is not represented in the simulation, the motion is more syn-
chronized than in the simulation. Therefore, the snapshots were chosen such
that the situations are comparable even though the times might be different.
For the second half of the egress shown in fig. 5 this difference vanishes and
after 13 minutes, the situation is very much alike for reality and simulation. It
is remarkable that after less than 15 minutes, the normal egress is nearly com-
plete. One important pattern that can be identified is the sequence of egress
from the rows. The lower rows are emptied first. This pattern is represented
nicely by the simulation.
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Fig. 4. The Westfalenstadion Dortmund: Comparison of the results for the video
analysis (left column) and the simulation (right column) at the beginning of the
egress. The video snapshots are taken at (from top to bottom) t = 2 and t = 6
minutes for the videos and t = 20 seconds and t = 3 minutes for the simulation.

Fig. 5. The Westfalenstadion Dortmund: Comparison of the results for the video
analysis (left column) and the simulation (right column). The video (left column)
and simulation snapshots (right column) are taken at (from top to bottom) t = 10
minutes and t = 13 minutes.
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4 Conclusions
We have presented egress simulations (and in one case video analysis) of two
different events with large numbers of pedestrians. An important aspect in the
egress from football stadiums are V-like shapes that are formed because the
egress from the lower seating rows is faster. For events with several hundred
thousand participants like the World Youth Day 2005 in and near Cologne an
evacuation of the complete area is usually not advisable, as can be seen from
the simulations presented and from the fact that the overall evacuation time
was estimated to be at least 4 hours.
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University Duisburg-Essen.
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Summary. This paper deals with the numerical approximation of the solutions of a
macroscopic model for the description of the flow of pedestrians. Solutions of the as-
sociated Riemann problem are known to be possibly nonclassical in the sense that the
underlying discontinuities may well violate Oleinik inequalities, which makes their
numerical approximation very sensitive. This study proposes to apply the Transport-
Equilibrium strategy proposed in [2] for computing nonclassical solutions of scalar
conservation laws to this framework. Numerical evidences are proposed.

1 Introduction

In this paper, we are interested in the numerical approximation of weak so-
lutions of a scalar conservation law arising in the description of the flow of
pedestrians. The model under consideration has been introduced recently by
Colombo and Rosini in [8]. It is based on the well-known Lighthill-Whitam [14]
and Richards [15] model and reads{

∂tρ+ ∂xq(ρ) = 0, ρ(x, t) ∈ R, (x, t) ∈ R × R
+∗,

ρ(x, 0) = ρ0(x), x ∈ R,
(1)

where ρ ≥ 0 is the pedestrian density and q : R
+ → R

+ is the flow function.
The form of equation (1) is an immediate consequence of two basic assump-
tions, namely the conservation of the total number of pedestrians and a given
speed law v which depends on density ρ ∈ [0, R] only (R denotes the maximal
density). Recall that q = ρv. However, this model was first dedicated to car
flows and so is not able to reproduce important features of pedestrian flows,
at least when considering typical concave increasing-decreasing flow functions.
For instance let us mention the overcompression phenomenon in a crowd or
the fall of pedestrians in the outflow through a door of a crowd in panic. In
order to overcome this difficulty, Colombo and Rosini [8] first proposed to
modify the typical shape of the flow function q by introducing another char-
acteristic density R� > R for the maximal density in exceptional situations
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of panic. The flow function now looks like a concave-convex and increasing-
decreasing function on [0, R] and a convex-concave and increasing-decreasing
function on [R,R�], see Fig. 1 below. In particular, discontinuities satisfying
the usual Rankine-Hugoniot conditions but violating the standard admissibil-
ity entropic conditions such as Oleinik inequalities (see (6) below) are present
in the model. Then, the same authors defined a unique Riemann solver us-
ing such nonclassical shocks. The main motivation in considering nonclassical
solutions is to allow panic states (ρ ∈ [R,R�]) to appear in a initially calm
situation (ρ ∈ [0, R]), because of a sharp increase in the density for instance.
Note that the maximum principle in classical solutions prevents such panic
situations from arising. We refer the reader to [12] for a general theory of
classical and nonclassical solutions.
From a numerical point of view, the numerical approximation of nonclassical
solutions is known to be very challenging and still constitutes (at least gen-
erally speaking) an open problem nowadays (see for instance [4–6, 9, 10, 13],
but also [1] and the references within). Very recently, a new efficient numer-
ical strategy has been proposed in [2] for computing nonclassical solutions
of scalar conservation laws. Roughly speaking, the corresponding finite vol-
ume scheme is based on two steps, namely an Equilibrium step which aims to
put at stationary equilibrium nonclassical discontinuities when present, and
a Transport step for propagating these discontinuities. n this paper, we thus
propose to adapt the Transport-Equilibrium scheme developed in [2] to the
present setting. We refer the reader to [3] for details about the slight (but
important) difference between both algorithms. Importantly, we will see that
the resulting scheme still provides numerical solutions in full agreement with
exact ones.

2 Governing Equation and Closure Relation

The model we consider for the description of the flow of pedestrians has been
recently introduced and studied by Colombo and Rosini [8]. It is based on the
well-known Lighthill-Whitam [14] and Richards [15] model and reads{

∂tρ+ ∂xq(ρ) = 0, q(ρ) = ρv(ρ), (x, t) ∈ R × R
+∗,

ρ(x, 0) = ρ0(x), x ∈ R,
(2)

where ρ is the pedestrian density, q is the flux function and v the speed
of pedestrians. For simplicity, initial data ρ0 is assumed to be made of two
constant states ρl and ρr, separated by a discontinuity located at point x = 0:

ρ0(x) =
{
ρl if x < 0,
ρr if x > 0. (3)

Equation (2) expresses the conservation of the number of pedestrians in the
space domain, while the speed v is assumed to depend only on the density ρ
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by means of the so-called fundamental relation. In the context of car flows, it
is pretty classical to consider that the function ρ ∈ [0, R] → q(ρ) is concave,
with q(0) = q(R) = 0, R being the maximal density, and reaches its maximum
value at a critical density RM ∈ [0, R]: q(RM ) = maxρ∈[0,R] q(ρ). Here and
in order to take into account some important features of human flows, like
the overcompression phenomenon or the fall of pedestrians due to panic for
instance, we follow [8] and take a flux function q whose form is given on
Figure 1.
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Fig. 1. Closure relations: ρ → q(ρ)

Two remarkable values R and R� (R < R�) are now considered for the density
ρ: the first one represents a natural bound of ρ in situations with little or not
panic (ρ ∈ [0, R]), and the second one is a maximal value of ρ in situations
of great panic (ρ ∈ [R,R�]). The flow function q now admits in each of
these regions a maximum value: RM ∈ [0, R] with q(RM ) = maxρ∈[0,R] q(ρ)
and R�

M ∈ [R,R�] with q(R�
M ) = maxρ∈[R,R�] q(ρ) as well as an inflection

point: RI ∈ [0, R] with q′′(RI) = 0 and R�
I ∈ [R,R�] with q′′(R�

I) = 0,
while q(0) = q(R) = q(R�) = 0. Choosing (without loss of generality in the
forthcoming developments)

q(ρ) = −ρ(ρ−R)2(ρ−R�), R = 2, R� = 3, (4)

the following values are easily found:

RM 	 0.5570, R�
M 	 2.6930, RI 	 1.1208, R�

I 	 2.3792. (5)

3 The Riemann Solver

Let us now turn to the definition of a Riemann solution for eqs. (2-4). First
of all, let us recall that there exists a unique classical solution for (2-4), that
is a weak solution selected by the validity of Oleinik inequalities across dis-
continuities separating ρ− and ρ+:
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q(ρ) − q(ρ−)
ρ− ρ−

≥ q(ρ+) − q(ρ−)
ρ+ − ρ−

, for all ρ between ρ− and ρ+. (6)

Moreover, this solution obeys the following maximum principle property

ρ(x, t) ∈ [min(ρl, ρr),max(ρl, ρr)], for all x ∈ R and t ≥ 0. (7)

See for instance [12] for details. In this context, imagine that ρl and ρr belong
to the calm region [0, R]. Then, due to the maximum principle (7), no panic
state may be found in the classical solution. From a practical point of view,
such a panic state is nevertheless expected to appear in certain situations
when ρr is very close to R. That is the reason for which nonclassical solutions
violating both the maximum principle property and Oleinik inequalities across
discontinuities are introduced in the present framework. With this in mind
and following [8] and [12], we define two functions ψ : [0, R�] → [R,R�] and
Φ : [0, R] → [0, R], related to the graph of function q in the (ρ, q)-plane, as
follows:

• ψ(ρ) is such that the line Lρ that passes through the points with coordi-
nates (ρ, q(ρ)) and (ψ(ρ), q(ψ(ρ))) is tangent to the graph of function q at
point (ψ(ρ), q(ψ(ρ)))

• Φ(ρ) is such that this line intersects the curve q = q(ρ) at a further point
with coordinates (Φ(ρ), q(Φ(ρ))).

An illustration is given in Figure 2 (left) where both the function q and the
line Lρ=0.5 are plotted. The right part of Figure 2 is concerned with the graph
of both functions ψ and Φ. In particular, note that Φ is not defined in the
whole domain [0, R] simply because the additional intersection point between
Lρ and q is sometimes realized below 0.
Then, introducing two real thresholds s and ∆s such that

s ∈ ]0, RM [ and ∆s ∈ ]0, R− s[, (8)

Colombo and Rosini [8] defined a unique Riemann solution for (2-4), which
coincides with the classical solution except in the next three situations:
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Fig. 2. Function q and line L0.5 (left); functions ψ and Φ (right)
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(i) (ρl, ρr) belongs to A with

A = {(ρl, ρr) ∈ [0, R�]2 / s ≤ ρl ≤ R, Φ(ρl) < ρr ≤ R, (ρr − ρl) > ∆s}, (9)

(ii) (ρl, ρr) belongs to B with

B = {(ρl, ρr) ∈ [0, R�]2 / ρr > R, ρr > ρl, ρr ≤ ψ(ρl)}, (10)

(iii) (ρl, ρr) belongs to C with

C = {(ρl, ρr) ∈ [0, R�]2 / ρr > R, ρr > ρl, ρr > ψ(ρl)}. (11)

The last two situations aim at defining the solution when the right state ρr

belongs to the panic area, i.e. ρr > R. More precisely, if ρl and ρr are such
that (ρl, ρr) belongs to B the Riemann solution contains a nonclassical shock
connecting ρl to ψ(ρl) followed by the classical Riemann solution associated
with initial states ψ(ρl) and ρr. And if ρl and ρr are such that (ρl, ρr) belongs
to C, the Riemann solution is a nonclassical shock connecting ρl to ρr. In this
paper, we will focus (without restriction) on the first situation (ρl, ρr) ∈ A
which explains that if the left state ρl is sufficiently large (ρl ≥ s) and faces
a right state ρr which is pretty far (ρr − ρl > ∆s) from ρl and already close
to the panic region (Φ(ρl) < ρr ≤ R), then a panic state is created due to
the sharp increase in the density so that the maximum principle property
is violated, and the corresponding solution is made of a nonclassical shock
connecting ρl to ψ(ρl) followed by the classical Riemann solution associated
with initial states ψ(ρl) and ρr.
Before addressing the numerical approximation of these Riemann solutions,
it is worth noticing that function ψ plays the part of a kinetic function that
manages the transitions between calm and panic. Finally, we refer the reader
to [8] for additional properties of interest satisfied (or not) by the Riemann
solver proposed in this section.

4 Numerical Approximation

Aim of this section is the description of the so-called Transport-Equilibrium
schemes recently proposed by the author for approximating nonclassical solu-
tions of conservation laws. The work proposed in [2] is concerned with scalar
conservation laws, while the case of systems will be treated in a subsequent
paper. Applying these schemes to the model of pedestrian flows under consid-
eration is the main objective of this section. We begin by introducing some
notations.
Let ∆t and ∆x be the time and the space steps. Introducing the inter-
faces xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t for
n ∈ N, we classicaly seek at each time tn an approximation ρn

j of the so-
lution x → ρ(x, tn) on each interval Cj = [xj−1/2;xj+1/2), j ∈ Z. In this



352 Christophe Chalons

context, we assume as given a two-point (without loss of generality) numeri-
cal flux function (u, v) → g(u, v) consistent with the flux function q, and we
set λ = ∆t/∆x.
In order to motivate the need of a particular treatment when numerically
dealing with nonclassical solutions, let us have a look on what happens when
considering the following classical conservative scheme:

ρn+1
j = ρn

j − λ(gj+1/2 − gj−1/2), j ∈ Z, (12)

with gj+1/2 = g(ρn
j , ρ

n
j+1) for all j ∈ Z. Figure 3(left) shows the solution

generated by a standard relaxation numerical flux g (see (19) below) when
initial states ρl and ρr are such that (ρl, ρr) ∈ A. In other words, the exact
solution contains a transition between calm and panic regions that should be
observed via a nonclassical shock connecting ρl to ψ(ρl). On the contrary, we
note that the numerical solution is classical and then remains entirely calm.
This means that the update formula (12) is not able to create by itself the
panic state ψ(ρl). The same failure would be observed with (ρl, ρr) ∈ B. Then,
one must enforce the appearance of the corresponding discontinuity between ρl

and ψ(ρl) when it is relevant, that is when (ρl, ρr) ∈ A and when (ρl, ρr) ∈ B.
Actually, it turns out that the conservative scheme (12) is not either able to
properly capture the exact nonclassical solution when (ρl, ρr) ∈ C, that is in
the case when the Riemann initial data (3) should be simply propagated at
speed σ(ρl, ρr) given by Rankine-Hugoniot jump relation:

σ(ρl, ρr) =
q(ρr) − q(ρl)
ρr − ρl

. (13)

Instead, a classical solution is observed on Figure 3 (right). Then, one must
enforce the initial data to be simply propagated (at the right speed !) when it
is relevant, that is when (ρl, ρr) ∈ C.
These observations led us to replace (12) with the following nonconservative
update formula:
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Fig. 3. Solution generated by standard relaxation method when (ρl, ρr) ∈ A (left)
and (ρl, ρr) ∈ C (right).
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ρn+1−
j = ρn

j − λ(gL
j+1/2 − gR

j−1/2), j ∈ Z, (14)

where the numerical fluxes gL
j+1/2 and gR

j+1/2 have to be suitably defined.
The very idea is to modify the numerical flux gj+1/2 by means of two fluxes
gL

j+1/2 and gR
j+1/2 each time that a nonclassical shock appears in the solution

of the Riemann problem (2)-(3)-(4) associated with ρl = ρn
j and ρr = ρn

j+1.
Otherwise, gj+1/2 will be unchanged. According to whether the nonclassical
shock connects states ρl and ψ(ρl) or not, that is depending on if (ρn

j , ρ
n
j+1) ∈

A∪B or (ρn
j , ρ

n
j+1) ∈ C, we will use different formulas. More precisely, we set

for all j ∈ Z :

gL
j+1/2 =

{
g(ρn

j , ρ
n
j ) if (ρn

j , ρ
n
j+1) ∈ A ∪B ∪ C,

g(ρn
j , ρ

n
j+1) otherwise, (15)

and

gR
j+1/2 =

⎧⎨
⎩
g(ψ(ρn

j ), ρn
j+1) if(ρn

j , ρ
n
j+1) ∈ A ∪B,

g(ρn
j+1, ρ

n
j+1) if(ρn

j , ρ
n
j+1) ∈ C,

g(ρn
j , ρ

n
j+1) otherwise.

(16)

The aim of gL
j+1/2 is to keep at the next time step the same value ρn

j in
the cell Cj since ρn

j always coincides with the left state of the nonclassical
shock in the Riemann solution associated with ρl = ρn

j and ρr = ρn
j+1. The

aim of gR
j+1/2 is double. First, to keep the same value ρn

j+1 in the cell Cj+1

when (ρn
j , ρ

n
j+1) ∈ C, since ρn

j+1 coincides in this case with the right state of
the nonclassical shock in the Riemann solution associated with ρl = ρn

j and
ρr = ρn

j+1. And then, to force the value ψ(ρn
j ) to appear in the cell Cj+1 when

(ρn
j , ρ

n
j+1) ∈ A ∪B.

With these definitions, we easily check for instance that discontinuities sep-
arating two states ρ− and ρ+ such that (ρ−, ρ+) ∈ C are kept at stationary
equilibrium by formulas (14-16). See also [2] or [3] for more details. More
generally, we are thus bound to introduce a dynamic step in order to make
moving the values that we previously forced to be present in specific cells.
Recall that the speed of propagation σ(ρ−, ρ+) of a discontinuity between
ρ− and ρ+ is given by Rankine-Hugoniot conditions (13). We then decide to
define at each interface xj+1/2 a speed of propagation σj+1/2:

σj+1/2 =
{
σ(ρn+1−

j , ρn+1−
j+1 ) if (ρn

j , ρ
n
j+1) ∈ A ∪B ∪ C,

0 otherwise,
(17)

and solve locally (at each discontinuity xj+1/2) a transport equation with
speed σj+1/2. In order to get a new approximation ρn+1

j at time tn+1 = tn+∆t,
we propose to pick up randomly on interval [xj−1/2, xj+1/2[ a value in the
juxtaposition of the solutions of these transport equations at time ∆t that
we choose sufficiently small to avoid wave interactions. In particular, such
a sampling strategy prevents the emergence of spuriousintermediate values
with respect to those obtained at time tn+1−. See again [2] or [3] for more
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details. Given a well distributed random sequence (an) within interval (0, 1),
it amounts to set:

ρn+1
j =

⎧⎪⎨
⎪⎩
ρn+1−

j−1 if an+1 ∈ [0, λσ+
j−1/2[,

ρn+1−
j if an+1 ∈ [λσ+

j−1/2, 1 + λσ−
j+1/2[,

ρn+1−
j+1 if an+1 ∈ [1 + λσ−

j+1/2, 1[,
(18)

with σ+
j+1/2 = max(σj+1/2, 0) and σ−

j+1/2 = min(σj+1/2, 0) for all j ∈ Z. The
description of our numerical strategy is now completed.

5 Numerical Experiments

This section proves the good design of the transport-equilibrium scheme we
have proposed. To that purpose and without restriction, we consider a relax-
ation scheme as a basic numerical flux g, that is

g(u, v) =
1
2
(q(u)+q(v))+

a(u, v)
2

(u−v) with a(u, v) = max
[min(u,v),max(u,v)]

|q′|,
(19)

(see [11] for instance) and we use the following standard CFL condition for
computing time step ∆t at each time iteration:

∆t =
1
2
· ∆x

maxj |a(ρn
j , ρ

n
j+1)|

.

Following a proposal by Collela [7], we consider the van der Corput random
sequence (an) defined by

an =
m∑

k=0

ik2−(k+1),

where n =
∑m

k=0 ik2k, ik = 0, 1, denotes the binary expansion of the integers
n = 1, 2, .... Closure relations for the numerical simulations are as follows.
First of all, the flux function q is chosen as in (4) (see also (5) and Fig. 1 for
the graph of the function q). Then, thresholds s and ∆s are chosen to be

∆s = Φ(0) =
5
3
, s =

1
2
(R−∆s) =

1
6
,

so that condition (8) holds true. As last, we mention that the computations
are performed on two grids, containing respectively 100 (∆x = 0.01) and
500 (∆x = 0.002) points per unit interval. Let us now consider two typical
behaviors of the Riemann solution given in Section 3. We refer the reader
to [3] for additional numerical tests.
In Test 1, we choose ρl = 0.2 and ρr = 1.9 so that it is easily checked
that (ρl, ρr) ∈ [0, R]2 and (ρl, ρr) ∈ A. In such a situation, panic arises and



Pedestrian Flows with Nonclassical Shocks 355

the solution is composed of a nonclassical discontinuity between ρl = 0.2
and ψ(ρl) 	 2.7744, followed by a classical part made of a rarefaction wave
and a classical shock attached to the rarefaction. We observe on Fig. 4 (left)
that our algorithm properly captures this nonclassical solution. Note also that
the nonclassical discontinuity from ρl to ψ(ρl) is sharp: there is no point in
the profile. For the sake of comparison, Fig. 4 (right) shows again that the
usual relaxation scheme defined by update formula (12) generates a (classical)
solution which lies entirely in interval [0, R] and so is far from the expected
one. What proves both the need of modifying classical conservative approaches
and the validity of our strategy.
In Test 2, we take ρl = 0.2 and ρr = 2.9 so that we have now (ρl, ρr) ∈ C.
By Section 3, the solution is a single nonclassical shock connecting ρl to ρr.
Fig. 5 (left) shows that our algorithm again sharply captures this nonclassical
discontinuity. Actually, note that it and Glimm’s random choice scheme are
identical for this test case since the equilibrium step is clearly transparent.
The solution obtained with the standard relaxation scheme is plotted again
on Fig. 5 (right).
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6 Conclusion

An efficient numerical strategy has been presented for computing nonclassical
solutions of a particular scalar conservation law for the simulation of human
flows. Our approach turns out to be nonconservative, but measures in [3] have
shown that the loss of mass is extremely low, while numerical solutions fully
agree with exact ones.
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Networks and Urban Traffic



Decision-Making and Transport Costs in
Complex Networks

Sean Gourley and Neil F. Johnson

Physics Department, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.

Summary. We analyse the effects of agents’ decisions on the creation of, and reac-
tion to, congestion on a centralised network with ring-and-hub topology. The system
dynamics are driven by an interplay between the creation of, and the transition be-
tween, particular stable states which arise as the network is varied. Our results show
that the existence of congestion in a network is a dynamic process which is as much
dependent on the agents’ decisions as it is on the structure of the network itself.

1 Introduction

Traffic is an interesting example of an interacting multi-particle system (i.e.
cars) on a non-trivial topological network (i.e. roads). Many traffic studies
have taken the view that cars follow automata-like rules. This is probably a
good approximation for dealing with traffic which is already on a particular
road – however it does not address the arguably more fundamental question
of why those cars, or rather their drivers, chose that route in the first place.
Indeed with in-car access to real-time traffic monitoring already available and
likely to become more prevalent in the future, an understanding how motorists’
individual decisions affect the traffic patterns which emerge on road networks,
is of great practical importance [1]. Here we consider such a question, in a
common real-world scenario in which there is a choice between choosing a
route through a potentially crowded central region, or instead choosing the
safe but long option of an outside road.
The quickest route across the network is easy to determine when you are
the only agent on the network. However this is rarely the case in real-world
problems, where you have multiple agents all trying to mimimise the time/cost
of traversing the network. When this happens you see congestion at the major
shortcut points. If the affected agents then react in a similar way in order
to avoid the bottle-neck, an even bigger congestion point can then arise at
a different location on the network. Congestion arises then not solely as a
result of the network topology, but rather as a result of the dynamic interplay
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between the structure of the network and the decisions of the agents who are
using it.
Ashton et al presented an exactly solvable model of a ring-and-hub network [5]
which extended the model of Ref. [6] to include congestion costs on a central
hub or hubs. In this paper we introduce a model for describing the effects
of agents’ decisions on the creation of congestion within such a ring-and-hub
topology. Hence this work generalized the model introduced by Ashton et al,
by introducing decision-making agents onto the network. Agents use their
own strategies to make inductive decisions about the future behaviour of the
system in order to find the cheapest pathway across it. Our model lends itself
to real life situations such as communication across social/business networks,
flow of data across the internet, air traffic, or any situation where competing
agents have to navigate a network where congestion is a factor. Indeed, the
study of the functional properties of networks is gaining increased attention
across a range of disciplines [1–4]. We use this hub and spoke model not only
as a tool to solve specific traffic issues, but also as a platform upon which we
can understand the general principles of this class of problems.

2 System Set-Up

The simulation consists of N agents and a central hub of capacity L. Each
of the N agents are connected to their nearest neighbours by an undirected
link of unit length. These links form a peripheral pathway around the outside
of the network. The agents also have the possibility of being connected to
another point on the network through the central hub. If this pathway exists
it is known as the hub pathway and the number of these in the network is
defined to be λ. Through these sets of connections the agents form a combined
ring-and-hub topology, i.e. a hub and spoke network, which can be seen in
Fig. 1.

Fig. 1. Our model network with the nodes connected to nearest neighbours around
the outside and the central hub located in the middle. Agent A(i) is randomly
connected to another point on the network A(j) and the costs of the transport are
shown as Ccentral, Coutside.
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Fig. 2. (a) Digital pricing structure for the central hub with capacity L. A standard
cost of β = 1 is applied before the capacity reached. After capacity is reached the
cost of using the hub increases by fixed amount cc. (b) The m = 2 set of strategies
allocated to agents in this simulation. Each column represents a different realisation
of the history string, and each row then contains a full set of actions for each history
string. Action 1 corresponds to using the central hub, and action 0 is to take the
peripheral path.

Each agent A(i) must transport himself (e.g. a car containing himself, or a
message) from one location on the hub and spoke network to a randomly se-
lected final destination A(j) at another point on the network. If the agent A(i)
is connected to the central hub they have the option of using this resource
with an associated cost Ccentral, or they can use the peripheral pathway con-
structed from connections between nearest neighbours at a cost of Cout. The
goal of each agent is to transport the object/data to its final destination with
the minimum cost incurred to the individual agent.
There are costs associated with each decision and these are given below by (1),
where the cost of using the central hub is a variable cost that is dependent both
on the actions of the agents within the group and the capacity of the hub. The
central hub has a finite capacity given by L, if this capacity is reached then the
hub is congested and a congestion charge cc (time/money) is imposed on all
traffic through the hub. There are several ways to implement the congestion
charge depending on the system being modelled, but for the purposes of this
paper we will choose a digital cost structure (as shown in Fig. 2a), where
each connection to the hub is 1

2 a unit length and the congestion charge only
applies when > L agents use the central hub.
In contrast to the variable pricing structure of the central hub, the cost of using
the peripheral pathway is determined only by the number of nodes traversed
and as such is a fixed cost. There is a cost of β = 1 associated with traveling
between two neighbouring nodes on the network. The transport costs across
the network are then given by
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Ccentral =

{
2
(

β
2

)
if Ncentral ≤ L

cc+ β if Ncentral > L

Cout = nβ (1)

Where n is the number of nodes traversed, cc is the congestion charge, which
can vary between 0 and N/2, and β is the standard or unit cost. The con-
nections between nodes on the network are undirected links of unit length;
hence data can travel either way round the network to its destination. The
maximum distance an object can travel is then N/2. The connections to the
central hub are directed and unique to the agent, hence only agents directly
connected to the hub are able to use it. If an agent is not connected to the
central hub, they are forced to use a peripheral pathway.
In order to make their decisions as to whether to use the central hub, each
agent is randomly assigned s = 2 strategies from a pool of binary strategies.
For m = 2 these strategies take the form (1011), where each digit in the
strategy sequence corresponds to an action associated with the history string
of the same position (11, 10, 01, 00) i.e. for history string (11) we have action
0. Here action action 1 denotes a decision to use the central hub, whilst 0
corresponds to not using the central hub. The strategy table (shown in Fig. 2b)
is self-similar in nature, and for every node visited by the global history string,
another column of the table is accessed to reveal differences in strategies.
At each time-step in the game every agent with a connection to the central
hub must make a decision whether or not to use the central hub, the decision
can be summarized as “through the middle, or around the outside?” Their
decision is dictated by the relative success of the two strategies that they
hold. The agents make their decision based on the action associated with
their highest scoring strategy, and if the two strategies are tied then the agent
will flip a coin to decide. If the agent chooses action 1 and Ccentral < Cout then
the agent has made the correct decision and the success of their strategy will
be reinforced with an increase in it’s virtual points score of +1 points, else if
Cout > Ccentral then the strategy will be penalised by −1 points. The reverse
applies if the agents high scoring strategy predicts action 0. At time t = t+1,
using the newly updated strategies, the agent again makes a decision about
the cheapest pathway to use, and the above process is repeated.

3 Results

3.1 Variable Network Structure

At the start of the simulation there are no connections to the central hub
and each agent is only connected to their nearest neighbours. At each time-
step a randomly chosen agent is connected to the central hub such that λ =
λ + 1. With this new network in place, the strategies and destinations are
then reassigned amongst the agents and the simulation is repeated with the
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Fig. 3. Network schematic, initially λ = 0 and only nearest neighbour connections
exist. As λ increases connections are added from origin to destination until the
network is fully connected.

agents competing to minimise their costs over the new network. This process
is repeated until all agents have a connection to the central hub. A schematic
of this process is shown in Fig. 3 as λ increases from 0 to λ = N . We have run
this simulation with N = 101 agents, a memory length of m = 2 and s = 2
strategies assigned per agent. The central hub has a capacity given by L and
a congestion charge determined by the digital price structure shown above in
Fig. 2a. The simulation is run for 10,000 time-steps which constitutes one run,
with each value of λ representing the average of 1000 runs.
The global cost per agent of transportation across the network is defined as
g(λ), and is displayed in Fig. 4a for various values of of cc in a network with
L = 40. The transport cost, is initially the same for all values of cc and starts
at g(0) ∼ 25. This value is then the cost of transporting data/objects across
the network with no connections to the central hub, and the general expression
is given by

g(0) =
1
2

(
N

2

)
β . (2)

As λ increases, g decreases linearly for all values of cc up to a critical point
at λ ∼ 50. The curves for the various values of cc then diverge and follow
their own pathways. Using this information we can divide the plots into two
groups; high penalty cc > 25 and low penalty cc < 25. For the high penalty
group g(λ) increases rapidly after the critical point until the emergence of
a stable state at λ ∼ 65 where g stays relatively constant before increasing
further as λ tends to N . For the low penalty group an increase in g(λ) after
the critical point is also observed, however after this initial increase the cost
of transportation across the network again begins to fall as connections are
added.
In Fig. 4b we see the plot of the probability of the central hub being crowded,
γ(λ). For values of λ < 50, γ = 0 as the central hub is never overcrowded.
Above λ = 50 we observe, for some of the systems, the emergence of a second
stable state at γ = 0.5. For the low penalty systems little or no time is
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Fig. 4. (a) This graph displays the results from the simulation showing the global
transport cost across the network g(λ) as a function of the number of agents con-
nected to the central hub. (b) This graph shows the probability of the central hub
being crowded (γ). Inset shows the agents success rate in predicting the cheapest
pathway across the network.

spent in the γ = 0.5 state. Whereas for high penalty systems as cc increases,
the amount of time spent in this state also increases, and when cc = 50
the system does not leave the γ = 0.5 state. The inset of Fig. 4b shows
the average success rate of the agents in predicting the correct transport
pathway across the network. Following the critical point, agents in systems
with cc < 25 initially enjoy a continued increase in average success rates.
However for systems with cc > 25 the increase in average success rate only
occurs for higher values of λ.

3.2 Variable Capacity Hubs

The simulation was also run for networks with varying central hub capacities.
The size of the central hub was increased from L = 10 to L = 70 in increments
of L = 10 and the simulation was repeated for each realisation of the network.
The global transport costs per agent is shown for these systems in Fig. 5a with
a congestion charge of cc = 30. The main features to note include the initial
decrease in g(λ) that is present for each curve irrespective of the capacity
of L. This decrease continues as links are added up to a critical number of
connections λcritical. Above this value g(λ) starts to increase. By increasing the
size of L we observe a delay in the onset of the critical point and corresponding
non-linear portion of the curves. For values of L > 75 (not shown here) we do
not see this critical point and observe a continuous linear decrease in g(λ) as
λ is increased up to λ = N .
For low capacity hubs with L < 40 the global transport cost saturates at
g(λ) = N

4 . Once in this saturated state, adding extra links only serves to
marginally decrease transport costs. It is interesting to note that despite the
differences in where the critical point occurs, the same basic shape of the



Decision-Making and Transport Costs in Complex Networks 365

Fig. 5. (a) This graph shows the global transport cost across the network g(λ) for
systems with varying central hub capacities. Where cc = 30 and the hub capacity
varies from L = 10 to L = 70. (b) This graph shows the comparison of global
transport costs between two systems with two types of agents. The first (solid line)
has agents that use global information and strategies to make their decisions. The
second (dotted line) comprises of agents that make random decisions to determine
their best route.

curves is preserved (for the portions that can be seen), offset dependent on the
size of L. Though the existence of a plateau is only observed for 30 < L < 50,
as below this threshold the transition to the saturated state occurs too rapidly,
and for capacities higher than this, the peripheral nodes are fully connected
to the central hub before the plateau emerges.

3.3 Random Agents

The results in Sects. 3.1 and 3.2 were obtained for systems where each agent
had access to both strategies and global information. In this section we ran
simulations where the agents did not have access to global information or
strategies. The agents were thus forced to make random decisions about which
path to take around the network. In Fig. 5b we compare the global transport
costs of these strategy based systems with the costs of comparative random
systems. The set-up for both systems is otherwise the same with cc = 30 and
N = 101 in both networks.
In each system the initial decrease in g(λ) is observed up to a critical point
λcritical. However, for the system with random decision making agents, the
slope of g(λ) is not as great as for the system where agents have access to
both strategies and global information. Due to the differences in slope, λcritical

is larger for the random agent system occurring at λcritical ∼ 70, compared
to a value of λcritical ∼ 50 for the strategy based system. It is also interesting
to note that for the random system there is no intermediate states present
after the onset of the critical point. This is contrasted with the strategy based
systems, where a stable state emerges for λ > λcritcal in the high penalty
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systems. In terms of efficiency, the strategy based system outperforms the
random agent system for all values of λ except in the region 60 < λ < 80.

3.4 Fixed Strategies and Destinations

In this version of the game the agents’ destinations and strategies were al-
located at the start and these remained constant throughout the simulation.
Connections were then added from the peripheral nodes to the central hub
one at a time. For every new connection added to the network the simulation
was repeated, with the same strategies and destinations, and g(λ) determined.
This data is shown in Fig. 6 as the solid line, whilst each of the markers in the
background represent a single realisation of the simulation where the agents’
destinations and strategies are randomly allocated as described in Sect 3.1.
This set of results in Fig. 6 clearly reveals the dynamic interplay between
stable states, where adding connections to the hub does not greatly influence
the global transport cost, and critical points, where adding links can have a
dramatic effect on the global cost.

Fig. 6. Network with L = 40, cc = 30, m = 2, and N = 101. Graph shows how
g(λ) varies as connections are added to the hub, for fixed allocation of strategies and
destinations amongst the agents (solid line). The background data show the range
of values for various strategy/destination distributions.

State I is a stable state and is defined by the near linear decrease in g(λ).
Closer inspection of Fig. 6 reveals a step-wise decrease in cost for State I,
where the addition of some connections to the hub does not reduce g(λ) across
the network. This step-wise decrease arises because some links are allocated
to agents who hold strategies that do not allow them to take advantage of the
cheaper central route across the network. The critical point λcritical (discussed
in more detail in Sect. 4), is clearly shown here at λ = 57. The result illustrates
the sharpness of the transition, where for λ < 57 the central hub is under-
subscribed, but adding one more link results in a crowding of the central hub,
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and the system immediately jumps into State II. The system only resides in
State II for a brief time before the more stable State III is reached.
State III is a stable state, and the global transport cost remains relatively
constant as λ increases more agents gain access to the central hub. At λ = 83
the addition of a single connection results in another sharp transition that
moves the system into State IV, where the addition of links to the central hub
results in a rapid increase in g. This increase in global transport cost across is
halted upon entering State V, where the addition of new connections has little
effect on g. We also observe the symmetry of the transitions between States
IV-V and States II-III. In the next section we will discuss the underlying
phenomena driving the effects we observe in Figs. 4-6, looking particularly at
the emergence of the unique stable states and the sharp transitions between
them.

4 Analysis

We can divide the agents into two groups based on the distance that they
have to travel and the size of the congestion charge, where Nshort denotes
the average number of ‘short trip’ agents and Nlong the average number of
‘long trip’ agents. Nlong agents have to travel a distance that is greater than
cc + 1. Hence it is always advantageous for the long trip agents to use the
central hub irrespective of the other agents actions. The short trip agents
Nshort have a distance to travel which is less than the size of the congestion
charge. Hence for short trip agents, using the central hub will only be cheaper
than the peripheral pathway provided that the central hub is not congested.
However if the central hub is congested, then it will prove cheaper to use the
peripheral pathway. The correct decision for short trip agents is then depen-
dent on the collective actions of the group. Since the agents’ final destinations
are distributed randomly we get for cc < N/2:

Nshort =
(

cost of using crowded hub
cost of maximum path across network

)
Ntotal + β (3)

=

(
cc

Ntotal
2

)
Ntotal + 1

= 2cc+ 1 , (4)

Nlong = Ntotal −Nshort

= Ntotal − 2cc− 1 . (5)

If cc < N/2 then there are no long trip agents andNshort = Ntotal. Because the
size of the congestion charge remains constant, the sizes of these two groups
stays fixed for the duration of the game. There are then two separate history
stings µ associated with the game µshort and µlong one for each group of agents.
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The agents in each group can then effectively be treated as a cohesive unit,
whose actions are jointly determined by their respective values of µ and the
initial strategy distribution.

4.1 Un-Crowded Central Hub: State I

The game starts with λ = 0 and the hub is under-subscribed with no con-
gestion, this state will be called State I. The history string for both groups
of agents is then µlong = µshort = (0000...), where 0 denotes the global un-
crowded result. This history string only visits one node on the De Bruijn graph
(00) (Fig. 7a) and as such results in a compression of the strategy space from
the original pool of 16, to just two. The two strategies are then (0|1) and (0|0),
where the first term denotes the history and the second the agent’s action.
Because the history string consists of consecutive 0’s the virtual point scores
for the two strategies diverge linearly over time as shown in Fig. 7b. This gives
rise to the state level diagram shown in Fig. 7c with two states corresponding
to the two different strategies (0|1) and (0|0). Because each agent is randomly
assigned s = 2 strategies, and plays the higher scoring of the two, the popula-
tions of the levels is 3N/4 and N/4 respectively. Where the average number of
agents taking action 1 (population of top level in Fig. 7c) is defined as N(1)
and N(0) is then the average number of agents taking action 0 (population of
bottom level). Because the long trip and short trip agents behave in the same
fashion in this state;

N(1)long

Nlong
=
N(1)short

Nshort
=

3
4

(6)

Thus for every link that is added to the central hub, the usage of the central
hub (N(1)) increases on average by 3/4 agents, giving us for State I;

g(λ) = (average peripheral cost)− λ(Ncentral/Ntotal)Ccentral

=
N

4
− 3λ

4
β (7)

Fig. 7. (a) The path across the de Bruijn graph for State 1. (b) The corresponding
virtual points scores for the two classes of strategies used by agents to make their
decisions, (c) Equivalent levels, along with associated populations and success rates.
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Where the slope given by equation (7) is in good agreement with that seen
in Figs. 4a and 5a. The slope of the graph for the random agents in Fig. 5b
is not as steep because for this system the second term in (7) is reduced
to (λβ)/2. This process of transport cost reduction continues as long as the
system remains in the un-crowded state with N(1) < L. We can then define a
critical point to be the point where the system has a 50% chance of N(1) > L.
Thus the critical point where the system moves out of State I and into the
crowded regime in State II occurs when N(1) = L, or when

λcritical =
4
3
L . (8)

Using (8) for systems with hub capacities of L = (10, 20, 30, 40, 50, 60, 70)
gives us critical points of (13.3, 26.6, 39.9, 53.3, 66.6, 79.98, 93.3) respectively.
These values are in excellent agreement with the minimum values of g(λ) seen
in Fig. 5a.
The change in state corresponds to a change in history string for short trip
agents µshort = (0001...). However the history string for the long trip agents
remains fixed at µlong = (0000...). The long trip agents maintain this history
string for the duration of the game irrespective of what state the system is
in. Upon leaving State I, the two groups of agents then cease to behave as
one unit and we need to consider their actions independently. The number of
agents using the central hub is given by

N(1) = N(1)long +N(1)short . (9)

Because µlong remains fixed for the game, the average number of long trip
agents using the central hub is simply dependent on the size of the congestion
charge and the number of connections to the central hub:

N(1)long =
3
4
Nlongλ

=
3
4
(Ntotal − 2cc− 1)λ . (10)

In contrast to the long trip agents, N(1)short is more difficult to calculate,
since µshort varies depending on which state the system resides in. In order to
determine the short trip agents’ contribution to the central hub congestion,
we must then analyse the system dynamics for States II and above.

4.2 Stable States and Noise

In State II (see Fig. 8a) the system visits two extra nodes (01) and (10).
Visiting the nodes has two effects, the first is that for part of the time the
central hub is crowded and a congestion charge is applied to all agents using
it. This crowding is responsible for the increase in g(λ) which occurs after the
critical point. The increase in g(λ) is a gradual one since the probability of
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residing in the State II is goverend by a binomial distribution. The second
effect of the nodes is to increase the number of strategies available to the
agents, which in turn changes the number of levels/bands in the state level
diagram. Here the total number of levels in increased to six in State II (see
Fig. 8b) from the original two in State I.
The two nodes can thus be thought of as providing extra degrees of freedom
for the system and as such they resolve the (1xx) strategy into four new
strategies (111, 110, 101, 100). This extra resolution means that for node (10)
a percentage of the agents that were taking action 1 before the transition are
now taking action 0, and as such N(1) must initially be less that L in State
II. The same strategy splitting effect occurs for the (0xx) group of strategies,
which if s = 1 would cancel the above effects and the system would move out
of this state. However because s = 2 the distribution of strategies is top heavy
for the strategies with (00 | 1). As a result of this, the splitting of strategies
acts to create a buffer by reducing N(1). This means that as more links are
added to the central hub the new state will remain stable until the 2nd critical
point is reached.

Fig. 8. (a) de Bruijn graph for State II, system visits three nodes and α is the
number of times the system returns to (00) node. (b) State level diagram for State
II, the wide bands represent groups of strategies with the same mean success rate.

In State II, the system traverses the de Bruijn graph in a cyclic fashion, re-
turning to the (00) node each time (Fig. 8). However after taking this pathway
the original ordering of the strategies is different. The system then resets itself
by returning to the (00) node α times. As L increases the value of α decreases,
from α = 3 initially to α = 1 immediately before leaving State II. This change
in α reduces the number of unique levels in the state diagram, and alters the
make-up of the strategies within them (Fig. 8b).
The wider bands in the state level diagram represent sets of strategies which
have the same average success rate over time (En), but vary about En during
the cycle around the graph. The strategies will vary about this mean, but on
two out of the three nodes they will have equal virtual point scores. On these
nodes agents that then hold two strategies from within the same band are
forced to flip a coin in order to decide which strategy to play. If the agents’
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two tied strategies make the same predictions for the particular node, then
it does not increase the disorder in the system. However if the two strategies
make different predictions, flipping the coin does influence their action and this
agent falls into a new group of agents which we shall call the undecided group,
denoted here by N( 1

2 ). There are thus three elements in the system, N(1)
the number of agents choosing action 1 with certainty, N(0) the number of
agents choosing action 0 with certainty and N( 1

2 ) the number of agents whose
decision is determined by chance. Because the long trip agents effectively only
have two non-equal strategies to play, the N( 1

2 ) agents come exclusively from
the short trip population. The relative sizes of these three groups of agents
determine which state the system will reside in and hence the probability that
the central hub is crowded.
A global ‘1’ result on the (10) node will shift the system out of State II and
into State III. In order to determine the probability of this occurring we need
to consider the size of the N(1) and N( 1

2 ) components for this state. We
will look specifically at the α = 1 distribution since this is the last cycle the
system visits before moving into State III. Analysis of ψn and the band levels
in Fig. 8b gives us,

N

(
1
2

)
=

8λ
64
Nshort for α = 1

and using Eqns. (9,10) in conjunction with Fig. 8b, we have;

N(1) =
(

34
64
Nshort +

3
4
Nlong

)
λ

If N( 1
2 ) is greater than the difference between the resource level and N(1),

then the system will be randomly ’kicked out’ of the stable cycle in State II
and will briefly reside in State III before returning. This process is shown in
Fig. 9a. If we define the buffer as,

∆ = L−N(1) −N

(
1
2

)
.

We can then use binomial probability distribution to determine the likelihood
that the system will be ’randomly’ perturbed into a new state. Doing this
gives us

Pperturb =
N( 1

2 )∑
k=∆

P

(
k |N

(
1
2

))
=

N( 1
2 )∑

k=∆

N
(

1
2

)
!

k!(N
(

1
2

)− k)!

(
1
2

)k(
1 − 1

2

)N( 1
2 )−k

.

The effect of the N( 1
2 ) agents is to act as noise which can randomly perturb

the system into a range of intermediate states between States II and III, these
can be seen clearly in Fig. 9b for 0.25 < γ < 0.5.
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Fig. 9. (a) de Bruijn graph for the intermediate state between States II and III.
Probability of visiting the (11) node given by Pperturb. (b) The histogram reveals
the existence of intermediate states of γ for 60 < λ < 65.

4.3 High γ States

The movement into State III corresponds to a re-ordering of the strategy
bands, which compress from the multiple bands in State II to just one band in
State III. This new state is known as the Eulerian trail (Fig. 10a), since it visits
each node exactly twice during it’s cycle. The compression of the strategies
into one band serves two purposes. Firstly, since all the strategies have the
same mean value of En, the number of agents having to flip coins to make their
decisions increases, so N( 1

2 ) increases. The second effect is another example of
the buffering process, which reduces N(1) as all the strategies compress into
one state. The two processes make it difficult to perturb the system into a new
cycle and the Eulerian trail is thus an attractor in this system. This stability
is evidenced by the fact (see Fig. 4b) that the sole addition of central hub
connections for short trip agents cannot drive the system out of this state.
Because there is only one strategy band, every new short trip agent connected
to the hub has a 0.5 probability of them picking action 1. The addition of short
trip agents serves only to reinforce the Eulerian trial and in order to move
into State IV, the system needs long trip agents to be connected to the central
hub. This effect can be seen in Fig. 3b, where it is only when cc is reduced
such that Nlong increases, do we get significant movement out of State III.
The movement into states above State III is then increasingly driven by long
trip agents and their associated action bias. As λ increases the system moves
through the high γ states IV and V. As the system progresses through these
states the cycles around the de Bruijn graph are left shifted (see Fig. 10) as
the agents actions lead to a predominately crowded central hub. The global
history cycles for States IV and V shown in Fig. 10 exhibit similar behaviour
to those of States I and II. Where the system resets itself α’ times on the
(11) node, and each cycle around the de Bruijn graph has a unique state-level
diagram associated with it. Because of the inherent symmetry of the de Bruijn
graph the earlier analysis of States I and II proves useful for our understanding
of these high γ states.
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Fig. 10. Here we see the high γ states, (a) Eulerian trail, (b) State IV, (c) State
V. These cycles around the de Brujin graph for States IV and V are mirror images
of the cycles in states I and II.

The de Brujin cycles for States IV and V correspond to the mirror images
of States II and I respectively. The difference here is that the strategy levels
for these states are inverted, with the top ranking strategy bands now at the
bottom, and vice versa. The population ψn of each of the n levels remains the
same. Whilst this reordering of strategies does not affect the long trip agents’
decisions, it does act to reduce the likelihood of short trip agents using the
central hub. Due to the inverted nature of the state-level diagrams, the average
number of short trip agents using the central hub in State IV is then equal to
the number of agents electing to take the peripheral path in State II:

N(1)short(IV) = N(0)short(II) =
22
64
λ . (11)

Likewise for State V and State I, giving us;

N(1)short(V) = N(0)short(I) =
λ

4
. (12)

Long trip agents continue to provide an addition of 3/4 agents per link as
given by (10), and in essence drive the transitions between through these
higher states. Hence systems with more long trip agents will move out of
these states at lower values of λ, and this is observed in Fig. 4b. We can
substitute (11) and (12) for each of these states into (9) to determine the
total number of agents using the central hub. From this equation for N(1) it
is then possible to determine the likelihood of the central hub being crowded.
Each new state that the system visits has a unique cost g, and γ associated
with it. We can derive γ(λ) for each realisation of the network using the
expressions for N(1) that we have derived for each state. Using this result in
conjunction with a careful analysis of the state-level diagrams the transport
costs can be determined for each state. This gives us a general expression for
the global transport cost:

g(λ) =
i∑

n=1

g(λ)nP (λ)n . (13)
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Where g(λ)n is the cost associated with State n, and P (λ)n is the probability
of residing in this state. Elsewhere we will present a detailed analysis of these
states and the transitions between them.

5 Summary

This paper has shown that the agents in the network can be divided into two
groups, where the size of each group is determined by the maximum path
length across the network and cc. The addition of new links to the network
brings about two main processes that serve to drive the system into new
states. The first of these processes is the addition of N(1) agents who use the
central hub with certainty. The second process is a more unpredictable one
with the addition of ‘random’ N( 1

2 ) agents to the system. If N(1)+N( 1
2 ) > L,

there is a finite probability that the N( 1
2 ) agents will randomly perturb the

system into new states, but these states are not permanent. However for any
node on the graph if N(1) > L, the change is permanent and a new state
is formed that has a unique and ‘predictable’ cycle associated with it. This
new state and the associated cycle around the de Bruijn graph has the effect,
when compared with the previous state, of changing the history strings for the
Nshort agents, which in turn re-orders the agents strategies. This re-ordering
of strategies reduces the number of short trip agents using the central hub,
and in effect acts as a buffer to produce stable states in the system.
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Specifica of Fundamental Diagram in Urban
Traffic
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Summary. The relation between the fundamental quantities flow, density, and
speed is well studied empirically in “undistorted” traffic, i.e. traffic on highways
or major non-urban roads. The situation on urban roads is more complicated since
urban traffic is influenced by a number of effects. Especially, the situation at inter-
sections (traffic lights, merging traffic) is of striking importance.
While the flow between two intersections can be considered as roughly constant, the
density and the speed are quantities that vary rapidly along the road. By analyzing
data from stationary sensors (measuring flow and local speed) as well as Floating Car
Data (measuring travel time, i.e. averaged speed) we found that the speed on many
urban roads does not depend on the corresponding flow (respectively the density)
alone. For a given flow, the speeds at different times of the day may differ. This
effect can be observed for local speeds as well as for speeds averaged along edges
or over an area. Very often the maximum in the flow at morning peak precedes the
speed minimum. The time difference between these two events is up to one hour
varying from road to road. Similar observations have been found in averages over
an urban area.
A possible explanation for the observed relation between flow and speed is – besides
the influence of traffic signalling – that a more heterogeneous traffic (with a higher
fraction of vehicles merging into different directions) leads to slower speeds.

1 Introduction

Traffic is described by fundamental relations between the characteristic quan-
tities, traffic flow q, density k, and speed v (see, e.g., [1, 2]). In the following,
we concentrate on flow-speed relations because these quantities are measured
directly in the data available here. The density can in principle be derived
from flow and speed. However, simply using q/v as an estimate can yield
strange results for small speeds. The fundamental relations are studied well
for “undistorted” systems, e.g. highway traffic. Fig. 1 shows as a characteristic
example for freeway traffic the flow speed relation from data obtained by a
stationary sensor on a highway.
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Fig. 1. Example for the flow-speed relation on a highway. The data are taken from
a stationary detector on a highway close to Munich for one day.

The flow-speed plot consists of two branches. The upper branch with high
speeds represents the free-flow-state, the lower branch represents the con-
gested regime. In the free flow state the speed is roughly the same and does
not depend (or depends only weakly) on flow when the flow is low. For large
flows, the speed becomes smaller with growing flow. In the congested regime,
flow and speed are reduced until the extreme case of total traffic breakdown.
Except for special situations, e.g. locally reduced road capacity, highway data
typically have a similar structure as described here.
Urban traffic, however, can be strikingly different. Caused by traffic signals,
merging traffic at intersections, parked vehicles and the like, the speed of a
single vehicle, and with it, the speed profile v(x) along a road can undergo
rapid transitions. A typical speed profile is displayed in Fig. 2.
The most important intersections in Fig. 2 are at position 0.3 km, 0.75 km, and
1.45 km, respectively. The averaged speed is reduced before these intersections.
In contrast, the averaged flow can be expected to change only slightly between
two adjacent nodes.

2 The Data

This paper studies two different classes of data. The first one is from 280
stationary detectors maintained by the Verkehrsmanagementzentrale (VMZ)
Berlin. The detectors are distributed in the main road (non-highway) network
in the centre of Berlin. Commuter roads leading out off the city centre are
covered as well as connections within the inner city. Data from the highway
network are not taken into account. Each sensors averages flow and speed over
sample intervals of 5 minutes.
The other source is floating car data (FCD) from taxis of the Berlin company
Cityfunk [3, 4]. The vehicles are equipped with a GPS device which transmits
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Fig. 2. Speed profiles along a road section in Berlin. The speed is plotted as function
of position for vehicles moving into positive (solid) and negative x-direction (dashed).
The data are obtained from floating car data. The speed values are averaged over
39 working days and the time from 6:00 to 18:00.

the positions to the headquarter in a fixed time interval, typically 30s. The
positions are matched on a digital map. From this, travel times and averaged
speeds can be obtained. Different from the stationary detectors that measure
flow and speed simultaneously, PVD do not give direct information about
traffic flow.
We considered data from a three month period, 13 weeks, in summer 2003.
Unless stated otherwise, the plots refer to 39-day averages of all Tuesdays,
Wednesdays, and Thursdays in the analyzed time period.

3 Observations

Fig. 3 shows the daily profile of speed and flow averaged over a 10 km × 10 km
area in the centre part of Berlin and 39 working days (Tuesday, Wednesday,
and Thursday). The flow values are obtained from 120 stationary sensors; the
speed values from the sensors as well as from FCD.
The speed profiles obtained by both methods are qualitatively very similar.
The speed minima are in the afternoon and morning rush hours. However,
both data sets differ by an obvious offset of approximately 15 km/h. Typi-
cally, stationary detectors are located away from larger intersections. (Their
positions are selected in order to avoid problems to detect vehicles waiting at
the traffic signal or from averaging over merging and non-merging vehicles.)
As a consequence of such a choice of positions the averaged speed from the
sensors must be larger than the averaged speed in the whole network. In con-
trast, FCD contain real travelling times and are therefore a better indicator
for the speed average.
The flow profile shows the typical peaks in the morning and the afternoon rush
hours with a dominating afternoon peak. The absolute flow values depend on
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Fig. 3. Shown is the speed from stationary sensors (solid line) and floating car data
(dashed dotted line) as function of time averaged over 39 working days from the
inner part of Berlin. The flow averaged over 39 days and 120 stationary sensors is
plotted with dashed lines.

the selection of detectors for averaging. The qualitative structure of flow and
speed profiles however is also recovered when averaging over different detector
ensembles.
There is another, less eye-catching, difference between highway and urban
traffic visible in Fig. 3. The speed on highways is in the free flow regime
roughly independent from flow for low and moderate flow values. In contrast
either FCD as well as stationary sensors observe a different situation at low
flow times (i.e., at night) in urban traffic. There is a continuous increase in
speed until a maximum at about 4 in the morning, roughly at time of flow
minimum. At this time, the speed values obtained by both methods are about
5 km/h larger than in the late evening.

Fig. 4. Speed vs. flow from the same data as in Fig. 3. To obtain the data for FCD,
the travel speeds have been plotted against the flows measured by the stationary
detectors.
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In Fig. 4 right, the averaged speed is plotted as function of flow. Different
points on the curves are from different times of the day. Obviously, there are
two different branches; the same flows are correlated with different speeds at
different times of the day. With other words, one and the same speed can be
brought into accordance with totally different flows at different times of the
day.
Midnight is the gap in the left part of the curves in the plot. The loop is
clockwise, upper branches consists of data from the night and morning hours.
Typically, speeds at morning are higher than at other times later the day. A
similar loop (in some sense hysteretic) structure appears in the floating car
data.
The situation at one single sensor strongly depends on the type of road it
is located on. Nevertheless, similar effects as described above can also be
observed for many single detectors. One example is given in Figs. 5 and 6 for a
commuter road leading into the city. Therefore, the morning flow peak (in the
plot averaged over 39 working days) is the dominating one. Correspondingly,
the global speed minimum is in the morning hours.

Fig. 5. 39 day average of daily profiles of flow (dashed line) and speed (solid line)
obtained from a stationary sensor on a commuter road.

Fig. 6 (solid line) shows the speed as function of flow from the same data as
in Fig. 5. Also, a loop structure as in Fig. 4 appears. At morning hours, the
speed typically is higher than at times with the same flow later the day. Here,
the speed minimum takes place in the late morning. The afternoon data are
concentrated in a cluster (with flow values of about 900 veh/h and speed of
about 45 km/h).
The dotted line contains data from one single day. The basic shape and the
loop structure can be observed in the same way as in the 39 day average. In
this example, a beginning of congestion can be observed. It illustrates that the
loop like structure has nothing to do with the congestions branch as displayed
in Fig. 1.
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Fig. 6. Speed vs. flow at the same sensor as in Fig. 5. The 39-day average (solid
line) and data from one single day (dotted) are plotted.

In this example (Fig. 5), the morning flow maximum takes place before the
morning speed minimum. This turns out to be a rather frequent effect in urban
traffic. To make this observation more quantitative, the distribution of flow
maxima and speed minima has been analyzed. For each five minutes interval
of the data, and for data from 150 sensors (all sensors in the data set with
a maximum flow above 1000 veh/h) in the regarded time interval of 39 days,
the number of flow maxima has been counted and plotted as function over the
time of the day. For the speeds, the minimum speed is treated accordingly.
The result is displayed in Figure 7.
Nearly all flow maxima (solid line) take place either between 6:00 and 10:00
in the morning or between 14:00 and 18:00 in the afternoon peak time, re-

Fig. 7. Frequency of the number of occurrences of flow maximum (solid line) and
speed minimum (dashed line) at a certain time as function of time. Data from 150
sensors and 39 working days have been taken into account.
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spectively. The speed minima (dashed line) are more widespread. This is an
indication that more sources than the local flow alone influence the speed.
Fig. 8 shows the distribution of temporal differences between flow maximum
and speed minimum. The number of occurrences of a certain temporal dif-
ference as function of this difference is plotted either for the morning flow
maxima (solid line) and afternoon maxima (dashed). The maxima for both
curves are not exactly at 0, but at −5 minutes. Except for this, the afternoon
curve is roughly symmetric with respect to zero. This is not the case for morn-
ing data. The dominance of occurrences at negative x-values indicate the flow
maximum often tends to precede the speed minimum.

Fig. 8. Frequency of the occurrence of temporal difference between flow maximum
and speed minimum as function of the temporal difference. Negative x-values in-
dicate that the flow maximum precedes the speed minimum. The solid line is for
data from the morning (flow maximum between 6:00 and 10:00), the dashed line for
afternoon data (flow maximum between 14:00 and 18:00). Data from 150 loops and
39 days are taken into account.

4 Discussion

Urban traffic is affected by many influences. Interestingly, this is reflected in
the fundamental relation between the characteristics quantities flow and speed
(or density, respectively), which display a large amount of different flavours
of the same underlying theme.
One feature which can be observed at many urban roads is that one and the
same flow can lead to different speed at different times of the day even in
the non-congested regime. This is the case either for single measurements at
one fixed position as well as for local and/or temporal averages. Among the
different features observable in this context, the most prominent is that the
flow maximum in the morning rush hour tends to precede the speed minimum.
In some situations it is easily imaginable and well-known that an increase in
flow precedes a speed reduction. E.g., this can be the case when congestion
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is originating or if there is a larger number of vehicles waiting at a traffic
signal and the speed is measured downstream. However, these and similar
situations lead to an offset in the order of a few minutes only. Also, they can
be expected to take place in similar ways in the morning and afternoon peak
hours. It is possible that such effects are responsible for the observed shift in
the order five minutes between flow and speed (Fig. 8). However this effect
cannot explain larger offsets in the morning data (and the lack of such features
in the afternoon).
Also, hysteretic effects described previously [5, 6] which are mainly caused by
drivers’ behaviour take place on different time scales.
So far, we do not have a conclusive answer to the question where the observed
effect results from. But we have hypotheses: the first one assumes, that traffic
in the early morning rush hour possibly is more homogeneous. A large fraction
of commuter vehicles follow the same routes over relatively long distances.
This could lead two a smaller amount of vehicles crossing the lanes in order
to merge.
The second hypothesis is that the number of vehicles stopping outside park-
ing zones seems to grow only later the day in the morning rush hour. Such
vehicles block a lane for a certain time, leading to a decreased speed. It seems
intuitively clear that both of these effects are principally able to reduce the
road capacity, and, therefore, the speed. However, it can not been concluded
from the available data in which quantity these effects are really important
or if other reasons must be taken into account to explain the observations.
It has been demonstrated by an empirical analysis that urban traffic dif-
fers from freeway traffic. Although there are several candidates for the cause
of this difference, it remains to explicitly demonstrate the culprit for these
changes. To better understand these effects are of uttermost importance for
both traffic flow simulations as well as for any endeavour to predict traffic
states. Microsimulation models designed to simulation traffic flow probably
have to be extended. However, a much better data base is needed to obtain a
sufficient input for such simulations.
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3. R.P. Schäfer, K.U. Thiessenhusen, P. Wagner: A traffic information system by

means of real-time floating-car data. ITS World Congress 2002, Chicago
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Summary. This paper is concerned with a fluidodynamic model for traffic flow.
More precisely, we consider a single conservation law, deduced from the conservation
of the number of cars, defined on a road network that is a collection of roads with
junctions. The evolution problem is underdetermined at junctions, hence we choose
to have some fixed rules for the distribution of traffic plus an optimization criteria
for the flux. We prove existence of solutions to the Cauchy problem and we show
that the Lipschitz continuous dependence by initial data does not hold. Our method
is based on wave front tracking approach, see [4].

1 Introduction

This paper deals with a fluidodynamic model of heavy traffic on a road net-
work. More precisely, we consider the conservation law formulation proposed
by Lighthill and Whitham [15] and Richards [16]. This nonlinear framework
is based simply on the conservation of cars and is described by the equation:

�t + f(�)x = 0, (1)

where � = �(t, x) ∈ [0, �max], (t, x) ∈ R+ × R, is the density of cars, v =
v(t, x) is the velocity and f(�) = v � is the flux. This model is appropriate to
reveal shock formation as it is natural for conservation laws, whose solutions
may develop discontinuities in finite time even for smooth initial data (see
[4]). In most cases one assumes that v is a function of � only and that the
corresponding flux is a concave function.
We deal with a network of roads, as in [7, 11, 12, 14]. This means that we have
a finite number of roads modeled by intervals [ai, bi] (with one of the two
endpoints possibly infinite) that meet at some junctions. For endpoints that
do not touch a junction (and are not infinite), we assume to have a given
boundary data and solve the corresponding boundary problem, as in [1, 2].
The key role is played by junctions at which the system is underdetermined
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even after prescribing the conservation of cars, that can be written as the
Rankine-Hugoniot relation:

n∑
i=1

f(�i(t, bi)) =
n+m∑

j=n+1

f(�j(t, aj)), (2)

where �i, i = 1, . . . , n, are the car densities on incoming roads, while �j ,
j = n + 1, . . . , n + m, are the car densities on outgoing roads. In [14], the
Riemann problem, that is the problem with constant initial data on each
road, is solved maximizing a concave function of the fluxes and it is proved
existence of weak solutions for Cauchy problems with suitable initial data of
bounded variation. In this paper we assume that:

(A) there are some prescribed preferences of drivers, i.e. the traffic from in-
coming roads is distributed on outgoing roads according to fixed coeffi-
cients;

(B) respecting (A), drivers choose so as to maximize fluxes.

To deal with rule (A), we fix a traffic distribution matrix

A = {αji}j=n+1,...n+m, i=1,...,n ∈ Rm×n,

such that

0 < αji < 1,
n+m∑

j=n+1

αji = 1, (3)

for each i = 1, ..., n and j = n + 1, ..., n + m, where αji is the percentage
of drivers arriving from the i−th incoming road that take the j−th out-
going road. Notice that with only the rule (A) Riemann problems are still
underdetermined. This choice represents a situation in which drivers have
a final destination, hence distribute on outgoing roads according to a fixed
law, but maximize the flux whenever possible. We are able to solve uniquely
Riemann problems, under suitable conditions on the matrix A, and then to
construct solutions to Cauchy problems for networks with simple junctions,
i.e. junctions with two incoming roads and two outgoing ones. Recall that the
solution depends on the way the Riemann problem is solved. In some other
papers, see [10, 11], other Riemann solvers at junctions are studied. In partic-
ular in [11], the authors solve the Riemann problem at junction substituting
the rule (B) with a maximization of a quadratic functional, that permits to
eliminate some technical assumptions of this paper. Moreover D’Apice, Manzo
and Piccoli in [10] proposed to solve the Riemann problem by inverting the
order of the rules (A) and (B). The solution constructed in this way depends
in a Lipschitz continuous way from the initial datum.
The main technique to construct a solution is using the wave-front tracking
algorithm and controlling the total variation of the flux. We refer the reader
to [4] for the general theory of conservation laws and for a discussion of wave
front tracking algorithms.
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The main difficulty in solving systems of conservation laws is the control of
the total variation, see [4]. It is easy to see that for a single conservation law
the total variation is decreasing, however in our case it may increase due to
interaction of waves with junctions.
There is a natural lack of symmetry for big waves (i.e. waves crossing the value
σ) and bad data at junctions, since the role of entering roads is different from
that of exiting ones. Similarly, for scalar conservation laws with discontinuous
coefficients, one has to use a definition of strength for discontinuities of the
coefficient, seen as waves, that is not symmetric but depends on the sign of the
jump in the solution. This is enough to control the total variation in that case,
on the contrary our problem is more delicate. In fact, the variation can still
increase due to interactions of waves with junctions. The bounded quantity is
the total variation of the flux. We prove this fact for junctions with only two
incoming roads and two outgoing ones. Unfortunately the total variation of
the flux is not equivalent to the total variation of �, since f ′(σ) = 0, and so it
is not sufficient to prove existence of solutions. Therefore some compactness
argument is used together with a bound of big waves near junctions.
Our techniques are quite flexible, so we can deal with time dependent coef-
ficients for the rule (A). In particular, we can model traffic lights and also
in this case the control of total variation is extremely delicate. An arbitrarily
small change in the coefficients can produce waves whose strength is bounded
away from zero. Still it is possible to consider periodic coefficients, a case of
particular interest for applications. We can also deal with roads with differ-
ent fluxes: this can be treated in the same way with the necessary notational
modifications.
There is an interesting ongoing discussion on hydrodynamic models for heavy
traffic flow. In particular some models using systems of two conservation laws
have been proposed, see [3, 8, 13]. We do no treat this aspect.
The paper is organized as follows. In Sec. 2 we give the definition of weak
entropic solution and, following rules (A) and (B), we introduce an admissi-
bility condition at junctions. In Sec. 3 we state the result about the existence
and uniqueness of admissible solutions for the Riemann Problem in a junc-
tion, then using this we describe the construction of the approximants for the
Cauchy Problem (see Sec. 4). In Sec. 5 we give the bound on the total varia-
tion of the flux and existence of admissible solutions for the Cauchy Problem
with suitable initial data. In Sec. 6 we show with a counterexample that the
Lipschitz continuous dependence with respect to initial data does not hold.

2 Basic Definitions

We consider a network of roads, that is modeled by a finite collection of
intervals Ii = [ai, bi] ⊂ R, i = 1, . . . , N , ai < bi, possibly with either ai = −∞
or bi = +∞. On each road consider the model proposed by Lighthill-Whitham-
Richards
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�t + f(�)x = 0. (4)

where � denotes the density of cars in roads. Hence the datum is given by a
finite collection of functions �i defined on [0,+∞[×Ii.
On each road Ii we want �i to be a weak entropic solution, that is for
every function ϕ : [0,+∞[×Ii → R smooth with compact support on
]0,+∞[×]ai, bi[ ∫ +∞

0

∫ bi

ai

(
�i
∂ϕ

∂t
+ f(�i)

∂ϕ

∂x

)
dxdt = 0, (5)

and for every k ∈ R and every ϕ̃ : [0,+∞[×Ii → R smooth, positive with
compact support on ]0,+∞[×]ai, bi[∫ +∞

0

∫ bi

ai

(
|�i − k|∂ϕ̃

∂t
+ sgn (�i − k)(f(�i) − f(k))

∂ϕ̃

∂x

)
dxdt ≥ 0. (6)

It is well known that, for equation (1) on R and for every initial data in L∞,
there exists a unique weak entropic solution depending in a continuous way
from the initial data in L1

loc.
We assume that the roads are connected by some junctions. Each junction J
is given by a finite number of incoming roads and a finite number of outgoing
roads, thus we identify J with ((i1, . . . , in), (j1, . . . , jm)) where the first n–
tuple indicates the set of incoming roads and the second m–tuple indicates
the set of outgoing roads. We assume that each road can be incoming road at
most for one junction and outgoing at most for one junction.
Hence the complete model is given by a couple (I,J ), where I = {Ii : i =
1, . . . , N} is the collection of roads and J is the collection of junctions.
Fix a junction J with incoming roads, say I1,. . .,In, and outgoing roads,
say In+1,. . ., In+m. A weak solution at J is a collection of functions �l :
[0,+∞[×Il → R, l = 1, . . . , n+m, such that

n+m∑
l=0

(∫ +∞

0

∫ bl

al

(
�l
∂ϕl

∂t
+ f(�l)

∂ϕl

∂x

)
dxdt

)
= 0, (7)

for every ϕl, l = 1, . . . , n+m smooth having compact support in ]0,+∞[×]al, bl]
for l = 1, . . . , n (incoming roads) and in ]0,+∞[×[al, bl[ for l = n+1, . . . , n+m
(outgoing roads), that are also smooth across the junction, i.e.

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, ..., n, j = n+1, ..., n+m.

Definition 1. Let � = (�1, . . . , �n+m) be such that �i(t, ·) is of bounded vari-
ation for every t ≥ 0. Then � is an admissible weak solution to (1) related
to the matrix A, satisfying (3), at the junction J if and only if the following
properties hold:
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1. � is a weak solution at the junction J ;
2. f(�j(·, aj+)) =

∑n
i=1 αjif(�i(·, bi−)), for each j = n+ 1, ..., n+m;

3.
∑n

i=1 f(�i(·, bi−)) is maximum subject to 2.

For every road Ii = [ai, bi], if ai > −∞ and Ii is not the outgoing road of any
junction, or bi < +∞ and Ii is not the incoming road of any junction, then
a boundary data ψi : [0,+∞[→ R is given. In this case we ask �i to satisfy
�i(t, ai) = ψi(t) (or �i(t, bi) = ψi(t)) in the sense of [1, 2]. The treatment of
boundary data can be done in the same way as in [1, 2], thus we treat the
case without boundary data. All the stated results hold also for the case with
boundary data with obvious modifications.
Our aim is to solve the Cauchy problem on [0,+∞[ for a given initial and
boundary data as in next definition.

Definition 2. Given �̄i : Ii → R, i = 1, . . . , N , L∞ functions, a collection of
functions � = (�1, . . . , �N ), with �i : [0,+∞[×Ii → R continuous as functions
from [0,+∞[ into L1

loc, is an admissible solution if �i is a weak entropic
solution to (1) on Ii, �i(0, x) = �̄i(x) a.e., at each junction � is a weak
solution and is an admissible weak solution in case of bounded variation.

On the flux f we make the following assumption

(F) f : [0, 1] → R is smooth, strictly concave (i.e. f ′′ ≤ −c < 0 for some
c > 0), f(0) = f(1) = 0. Therefore there exists a unique σ ∈]0, 1[ such
that f ′(σ) = 0 (that is σ is a strict maximum).

3 The Riemann Problem

For a scalar conservation law a Riemann problem is a Cauchy problem for
an initial data of Heaviside type, that is piecewise constant with only one
discontinuity. One looks for centered solutions, i.e. �(t, x) = φ(x

t ), which are
the building blocks to construct solutions to the Cauchy problem via wave
front tracking algorithm. These solutions are formed by continuous waves
called rarefactions and by traveling discontinuities called shocks. The speed
of waves are related to the values of f ′, see [4].
Analogously, we call Riemann problem for the road network the Cauchy prob-
lem corresponding to an initial data that is piecewise constant on each road.
The solutions on each road Ii can be constructed in the same way as for
the scalar conservation law, hence it suffices to describe the solution at junc-
tions. Because of finite propagation speed, it is enough to study the Riemann
Problem for a single junction.
Consider a junction J in which there are n roads with incoming traffic and m
roads with outgoing traffic, and a traffic distribution matrix A. For simplicity
we indicate by
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(t, x) ∈ R+ × Ii �→ �i(t, x) ∈ [0, 1], i = 1, ..., n, (8)

the densities of the cars on the roads with incoming traffic and

(t, x) ∈ R+ × Ij �→ �j(t, x) ∈ [0, 1], j = n+ 1, ..., n+m (9)

those on the roads with outgoing traffic, see Figure 1.

1

2

3 n

n+1

n+2

n+m

Fig. 1. A junction.

We need some more notation:

Definition 3. Let τ : [0, 1] → [0, 1] be the map such that:

1. f(τ(�)) = f(�) for every � ∈ [0, 1];
2. τ(�) �= � for every � ∈ [0, 1] \ {σ}.

Clearly, τ is well defined and satisfies

0 ≤ � ≤ σ ⇐⇒ σ ≤ τ(�) ≤ 1, σ ≤ � ≤ 1 ⇐⇒ 0 ≤ τ(�) ≤ σ.

To state the main result of this section we need some assumption on the matrix
A satisfied under generic conditions. Let {e1, . . . , en} be the canonical basis
of Rn and for every subset V ⊂ Rn indicate by V ⊥ its orthogonal. Define for
every i = 1, . . . , n, Hi = {ei}⊥, i.e. the coordinate hyperplane orthogonal to
ei and for every j = n+ 1, . . . , n+m let αj = (αj1, . . . , αjn) ∈ Rn and define
Hj = {αj}⊥. Let K be the set of indices k = (k1, ..., k�), 1 ≤ � ≤ n− 1, such
that 0 ≤ k1 < k2 < · · · < k� ≤ n+m and for every k ∈ K set

Hk =
�⋂

h=1

Hkh
.

Letting 1 = (1, . . . , 1) ∈ Rn, we assume

(C) for every k ∈ K, 1 /∈ H⊥
k .

The following theorem describes the solution to Riemann problems at junc-
tion. For a proof see [7].
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Theorem 1. Consider a junction J , assume that the flux f : [0, 1] → R satis-
fies (F) and the matrix A satisfies condition (C). For every �1,0, ..., �n+m,0 ∈
[0, 1], there exists a unique admissible centered weak solution, in the sense of
Definition 1, � =

(
�1, ..., �n+m

)
to (1) at the junction J such that

�1(0, ·) ≡ �1,0, ......, �n+m(0, ·) ≡ �n+m,0.

Moreover, there exists a unique (n+m)−tuple (�̂1, ..., �̂n+m) ∈ [0, 1]n+m such
that

�̂i ∈
{{�i,0}∪]τ(�i,0), 1], if 0 ≤ �i,0 ≤ σ,

[σ, 1], if σ ≤ �i,0 ≤ 1, i = 1, ..., n, (10)

and

�̂j ∈
{

[0, σ], if 0 ≤ �j,0 ≤ σ,
{�j,0} ∪ [0, τ(�j,0)[, if σ ≤ �j,0 ≤ 1, j = n+ 1, ..., n+m. (11)

Fixed i ∈ {1, ..., n}, if �i,0 ≤ �̂i, we have

�i(t, x) =

{
�i,0, if x <

f(�̂i)−f(�i,0)
�̂i−�i,0

t+ bi, t ≥ 0,

�̂i, if x > f(�̂i)−f(�i,0)
�̂i−�i,0

t+ bi, t ≥ 0,
(12)

and, if �̂i < �i,0,

�i(t, x) =

⎧⎨
⎩
�i,0, if x ≤ f ′(�i,0)t+ bi, t ≥ 0,(
f ′
)−1((x− bi)/t

)
, if f ′(�i,0)t+ bi ≤ x ≤ f ′(�̂i)t+ bi, t ≥ 0,

�̂i, if x > f ′(�̂i)t+ bi, t ≥ 0.
(13)

Fixed j ∈ {n+ 1, ..., n+m}, if �j,0 ≤ �̂j, we have

�j(t, x) =

⎧⎨
⎩
�̂j , if x ≤ f ′(�̂j)t+ aj , t ≥ 0,(
f ′
)−1((x− aj)/t

)
, if f ′(�̂j)t+ aj ≤ x ≤ f ′(�j,0)t+ aj , t ≥ 0,

�j,0, if x > f ′(�j,0)t+ aj , t ≥ 0,
(14)

and, if �̂j < �j,0,

�j(t, x) =

{
�̂j , if x < f(�j,0)−f(�̂j)

�j,0−�̂j
t+ aj , t ≥ 0,

�j,0, if x >
f(�j,0)−f(�̂j)

�j,0−�̂j
t+ aj , t ≥ 0.

(15)

4 The Wave-Front Tracking Algorithm

Once the solution to a Riemann problem is provided, we are able to con-
struct piecewise constant approximations via wave-front tracking algorithm.
The construction is very similar to that for scalar conservation law, see [4],
hence we briefly describe it.



390 Mauro Garavello and Benedetto Piccoli

Let �̄ = (�1, . . . , �N ) be a piecewise constant map defined on the road network.
We want to construct a weak solution of (1) with initial condition �(0, ·) ≡ �̄.
We begin by solving the Riemann Problems on each road in correspondence
of the jumps of �̄ and the Riemann Problems at junctions determined by the
values of �̄ (see Theorem 1). We split each rarefaction wave into a rarefaction
fan formed by rarefaction shocks, that are discontinuities traveling with the
Rankine-Hugoniot speed. We always split rarefaction waves inserting the value
σ (if it is in the range of the rarefaction). Moreover, we let any rarefaction
shock with endpoint σ have velocity zero.
When a wave interacts with another one we simply solve the new Riemann
Problem. Instead, when a wave reaches a junction, we solve the Riemann
Problem at the junction. The number of waves may increase only for interac-
tions of waves at junctions. Since the speeds of waves are bounded, there are
finitely many waves on the network at each time t ≥ 0. We call the obtained
function an approximate wave front tracking solution. Given a general initial
data, we approximate it by a sequence of piecewise constant functions and
construct the corresponding approximate solutions. If they converge in L1

loc,
then the limit is a weak entropic solution on each road, see [4] for a proof.

5 Existence of Solutions

Assume that every junction has exactly two incoming roads and two outgoing
ones. This hypothesis is crucial, because the presence of more complicate junc-
tions provokes additional increases of the total variation of the flux. The case
where junctions have at most two incoming roads and at most two outgoing
roads can be treated in the same way. So, for each junction J , the matrix A,
defined in the introduction, takes the form

A =
(

α β
1 − α 1 − β

)
, (16)

where α, β ∈]0, 1[ and α �= β, so that (C) is satisfied.
From now on we fix an approximate wave front tracking solution �, defined
on the road network. The following lemma gives an estimate of the total
variation of the flux of an approximate wave-front tracking solution. The proof
is contained in [7] and it is based on analyzing what happens in term of the
total variation of the flux when a wave interacts with a junction.

Lemma 1. Consider a road network (I,J ). For some K > 0, we have

Tot.Var. (f(�(t+, ·))) ≤ eKtTot.Var. (f(�(0+, ·)))

for each t ≥ 0.

The previous estimate permits to prove the following theorem.
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Theorem 2. Fix a road network (I,J ). Given C > 0 and T > 0, there
exists an admissible solution defined on [0, T ] for every initial data �̄ ∈ cl{� :
TV (�) ≤ C}, where cl indicates the closure in L1

loc.

Proof. (Sketch) Fix a sequence of initial data �̄ν piecewise constant such that
TV (�̄ν) ≤ C for every ν ≥ 0 and �̄ν → �̄ in L1

loc as ν → +∞. For each �̄ν we
consider an approximate wave-front tracking solution �ν such that �ν(0, x) =
�̄ν(x) and rarefactions are split in rarefaction shocks of size 1

ν .
For every road Ii, we have to consider the zone Di

1(�ν) where the solution is
influenced only by the initial datum and the zone Di

2(�ν), where the solution
is influenced by junctions. OnDi

1, by classical arguments, we have that �ν → �
in L1

loc, with � admissible solution to the Cauchy problem.
On Di

2, we have, up to a subsequence, �ν ⇀
∗ � weak∗ on L1 and, f(�ν) → f̄

in L1 for some f̄ . It is possible to prove, see [7], that there are at most two big
waves on Di

2 for every time, hence, splitting the domain Di
2 in a finite number

of pieces where we can invert the function f , we obtain �ν → f−1(f̄) in L1.
Together with �ν ⇀

∗ � weak∗ on L1, we conclude that �ν → � strongly in L1.

6 Lipschitz Continuous Dependence

In this section we present a counterexample to the Lipschitz continuous depen-
dence by initial data with respect to the L1-norm. The continuous dependence
by initial data with respect the L1-norm remains an open problem. The coun-
terexample is constructed using shifts of waves as in the spirit of [5], to which
we refer the reader for general theory. The result is contained in the following
proposition.

Proposition 1. Let C > 0, J be a junction and let (�1,0, . . . , �4,0) be an equi-
librium configuration as in Lemma 4. There exist two piecewise constant initial
data satisfying the equilibrium configuration at J such that the L1-distance be-
tween the corresponding two solutions increases by the multiplication factor C.

This proposition is based on the following lemmata, which describe how a
shift propagates through a junction. For a proof, see [7].

Lemma 2. Let us consider in a road two waves, with speeds λ1 and λ2 respec-
tively, that interact together at a certain time t̄ producing a wave with speed
λ3. If the first wave is shifted by ξ1 and the second wave by ξ2, then the shift
of the resulting wave is given by

ξ3 =
λ3 − λ2

λ1 − λ2
ξ1 +

λ1 − λ3

λ1 − λ2
ξ2. (17)

Moreover we have that

∆�3 ξ3 = ∆�1 ξ1 +∆�2 ξ2, (18)

where ∆�i are the signed strengths of the corresponding waves.
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Lemma 3. Consider a junction J with incoming roads I1 and I2 and outgoing
roads I3 and I4. If a wave on a road Ii (i ∈ {1, . . . , 4}) interacts with J without
producing waves in the same road Ii and if ξi is the shift of the wave in Ii,
then the shift ξj produced in a different road Ij (j ∈ {1, . . . , 4} \ {i}) satisfies:

ξj
(
�+

j − �−j
)

=
∆γj

∆γi
ξi
(
�+

i − �−i
)
, (19)

where ∆γl (l ∈ {i, j}) represents the variation of the flux in the road Il and
�−l , �+

l (l ∈ {i, j}) are the states at J in the road Il respectively before and
after the interaction.

Lemma 4. There exists an initial datum given by (�1,0, �2,0, �3,0, �4,0), that is
an equilibrium configuration at J , a wave (�̄2, �2,0) on road I2, waves (�3,0, �

∗
3)

with shift ξ3,0 and (�∗3, �̄3) on road I3 such that the followings happen in
chronological order:

1. the initial distance in L1 is ξ3,0 |�3,0 − �∗3|;
2. the wave (�3,0, �

∗
3) in I3 with shift ξ3,0 interacts with J ;

3. waves are produced only in I2 and I4;
4. the wave on road I2 interacts with (�̄2, �2,0) producing a new wave;
5. the new wave from road I2 interacts with J ;
6. waves are produced only in I3 and I4;
7. in I4 the L1–distance after the interactions, is equal to

2
1 − β

β
|ξ3,0 (�∗3 − �3,0)| ,

and the L1–distance on road I3 is equal to ξ3,0 |�3,0 − �∗3|.
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Summary. This article presents a study of the performance decrease caused by
blocking one link. We predict which types of links are important for the well func-
tioning of the network as a whole. Traffic is simulated on a regional network in
which the links are blocked sequentially. Each of these outcomes is compared to
the outcome of the fully operational network. We argue that traffic dynamics in-
cluding spillback are important in the reduction of performance. We assessed the
performance decrease for two situations, one in which people stick to their everyday
routes and one in which they will adapt their routes to the new situation. A block-
ing of motorways turns out to influence the traffic flow most. In the situation that
people stick to their everyday routes, urban roads close to the motorway are equally
important: spillback effects causes delays also for through traffic on the motorway.

1 Introduction

The reliability and the robustness of traffic networks are important perfor-
mance indicators, both from the perspective of the traveler (travelers prefer
reliable and robust networks, reference) and network operators [1, 2]. Meth-
ods to gain insight into impacts on network performance of large accidents,
terrorist attacks, flooding, etc., are hence very valuable.
The main research question considered in this contribution is on which type of
links the network performance relies. In other words, if there is a incident on
a certain link, the service level of the network will reduce. Which are the type
of links that reduce the number of arrived vehicles the most when blocked?
We used the number of arrived vehicles as performance measure. Rather than
the average or total time spent in the network, where one should correct for
the number of vehicles still queuing, this is a more absolute measure for a
fixed-time simulation [3].
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This is already done in static models for a simple network [4, 5]. There, risk-
adverse route choice is studied in a fully analyzable static network of a few
links. It analyzes a game between road users and failing links. If links fail too
often, users will include the risk in their route choice. This has been further
developed by introducing extra costs for a link with high densities [6, 7]; this is
still a small test network. We applied these concepts on a real size network with
time dependent demand and tried to find typical characteristics of vulnerable
parts of a existing road network; general conclusions about reliable network
types can be found in [8]. We simulated the flow of a time dependent demand
on the whole network and thus taking network dynamics and spillback effects
into account.
The symbols used in the article are listed in table 1.

Symbol Meaning

b blocked link
L set of all links in the network
G the network
Gb the network with link b blocked
π path
π∗(G) equilibrium paths in network G.
A(π, G) number of travelers arrived at their destination at the end

of the simulation given route choice π and network G
A(π∗(G), Gb) number of travelers arrived at their destination at the end

of the simulation if link b is blocked and the route choice
is based on a complete network

A(π∗(Gb), Gb) number of travelers arrived at their destination at the end
of the simulation if link b is blocked and the route choice
is based on the actual traffic situation

Table 1. List of used symbols

2 Mathematical Formulation of the Problem

The problem can be formulated mathematically as a two-level optimization
problem. There is a fixed demand of travelers for each origin-destination pair
od. At one hand, the travelers aim to change to the route with the shortest
travel time. The equilibrium state is such that traveler i had no possibility to
change unilaterally change his route and reduce the travel time he perceives
at the moment of choice [9]. This optimum is called a Wardrop optimum [10,
11]. We will refer to this optimum using π∗

od(G), where G is the network on
which the route choice is based. The number of travelers that arrive on their
destination within the fixed time frame, using path π given network G is
referred to as A(π,G).
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An effect counteracting the optimization of the travelers is the (partial) closing
of one of the links. The network disturbed by the closing (partial) closing of
link b is called Gb.
A link is a unreliable element of the network if the number of arrived travelers
is much reduced if there is an incident on that link. At this level, the aim is
to minimize the number of arrived travelers A. So, the aim is to find the link
b such that the least travelers arrive in the fixed time frame.
Of course, the optimal route choice is dependent on the network and therefore
on the blocked link. Thus, we define a Wardrop optimum of the route choice
in case of a network with link b blocked:

π∗
od(Gb) (1)

This can be considered as a two-player game: one group of players is the
collective of travelers, the destroyer of the network is the other player. In
game theory, one speaks of leaders and followers meaning the one who moves
first and the one responding on that move, respectively. Here also, we could
speak of leaders and followers. Then, two cases can be considered: one in which
the travelers lead and the destroyer follows and the other one in which the
destroyer leads and the travelers follow.

2.1 Scenario 1: Travelers Lead, Destroyer Follows

In the scenario that the travelers lead, the first move is to be made by the
travelers. They find one route choice optimized for the case in which the
network is intact. In this scenario, they will stick to the routes π∗(G). This
scenario describes the situation where neither information is given, nor an
extraordinary traffic situation will make the travelers change their route.
Now, the performances of the destroyed network can be calculated. For each
blocked link b, we could calculate

A(π∗(G), Gb). (2)

The most critical link b∗ can be found by minimizing the number of arrivals

b∗ = argmin
b

(A (π∗ (G) , Gb)) . (3)

2.2 Scenario 2: Destroyer Leads, Travelers Follow

This scenario describes a situation where the people are fully informed about
the traffic conditions and delays. They are not informed about the incident,
though. That is to say, the vehicles calculate their travel time based on speeds.
As long as there are no vehicles queuing yet, they will not foresee any problems
in their route choice.
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Mathematically, this is represented by letting the first move to the destroyer
and letting the travelers respond to this first move. The final function to
evaluate is

A(π∗(Gb), Gb). (4)

As the travelers will change their actions, i.e. their routes, on the action of
the destroyer, this game is a Stackelberg game. The most critical link b∗ in
this scenario can be found by optimizing

b∗ = argmin
b

(A (π∗ (Gb) , Gb)) . (5)

3 Model

The simulation model we used had to be able to simulate spill back-effects
well. A substantial part of the discovered delay is namely caused by the spill
back effects of a traffic jam. Furthermore, we had to use a dynamic model
with different time periods to simulate the morning peak with an acceptable
accuracy.
Therefore, we used the macro traffic simulation model DSMART, developed at
the TU Delft. It differentiates vehicles with different destinations. The model
does not distinguish between user classes, vehicle types nor between road
lanes. A traffic jam for vehicles wanting to make a turn will also block the
main stream of the traffic. This corresponds to a driving style where drivers
wanting to take the exit do not keep the outer lane in a traffic jam.
The stochastic route choice model is done by a probit model. For each link,
the travel time is calculated based on the link speeds. At the base travel
time is calculated by dividing the length by the speed, an error is added. The
expected travel time on which the route choice is based, is randomly drawn
from a normal distribution of travel times with the base travel time as mean
and with a standard deviation of 10%.
For the case without route choice, the calculation is based on 20 samples
from this route choice. Each period, 20 fastest routes from each node to each
destination will be determined from this stochastic process. Those routes are
considered representative for all travelers. For half of the travelers, the new
route choice is based upon these routes; the other half will stick to the routes
of the previous period.
In the scenario of adapted route choice, the used model is comparable. Due to
computational limitations – now, the route choice has to be recalculated for
every simulation – we reduced the number of samples for this scenario from
20 to 8.
The network consists of both motorways and urban links. The urban road
network is not very detailed, but the main urban roads are modeled, as well as
single origin/destination links representing a quarter/district, see also Fig. 2.
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4 Simulations

The network we simulated are the roads around Rotterdam, a Dutch city with
600.000 inhabitants (see Fig. 1). Fig. 2 shows the model of this network. As this
figure shows, the motorway network is completely modeled. The underlying
road network is just partly modeled.

Fig. 1. Map of the Rotterdam area.

The simulated time is the morning peak, from 6.30 to 9.30 am. At the start of
the simulation, the network is empty. The network consists of 468 transport
links, 44 origin links and 44 destination links; the connections are provided
by 239 nodes.
As all macroscopic models, DSMART supposes the speed of vehicles constant
during a time step. The chosen time step is 15 seconds; for longer times,
one cannot assume the vehicle speeds to be constant. Furthermore, serious
problems arise if vehicles can travel more then a link length within one time
step [12]. On the other hand, further reducing the time step to values of 10,
5 or even 1 second would increase the total calculation time. The simulation
time for a scenario with a fixed route choice (in mathematical terms, calcu-
late A(π∗(G), Gb) or A(π∗(G), Gb) with π∗(G) precalculated) is a around five
minutes on a Pentium 4, 2.8 GHz with 512 MB RAM.
Of course, if the route choice has to be optimized too, calculate A(π∗(Gb), Gb)
or A(π∗(Gb), Gb) takes longer. One of these calculations route choice optimiza-
tion will take around twenty minutes of calculation time.
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Fig. 2. The model of the network.

These simulation times may seem fair, but remember that calculation of both
A(π∗(G), Gb) and A(π∗(Gb), Gb) are needed for all b ∈ L, so 468 times. All
together, it is over a week of calculation time.

5 Results

The types of links that cause the most delay when blocked are different for
the both cases studied. In Fig. 3 the number of arrivals for both cases are
shown. An asterisk in the figure is the network performance in the case of a
blocked link – each asterisk is a different position of the blockage. For each
position of the blockage, there are two scenarios possible. In one, the travelers
stick to their fixed route and in the other one, they will adjust their route
choice. The results, the number of travelers that reached their destination, of
both scenarios are plotted on the axes.
The points are located under the diagonal (dashed black line) of the graph.
That means that in almost all cases, i.e. for almost all of the blocked links, the
number of arrivals is higher if people are allowed to take an other route. Some
statistics about these results are that in the case of no rerouting, in average
1.6 · 106 travelers arrive, with a standard deviation of 5 · 105 travelers, which
equals 30%. In the case of flexible routes, these numbers are 1.9 · 106, 3 · 105

and 16% respectively.
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Fig. 3. Comparison of arrivals

Fig. 4. Loss of arrivals at destination if link is blocked – case without rerouting.

In Fig. 4 and Fig. 5 it is indicated how valuable links are. The color is a
measure of the travelers not arriving if that particular link is blocked. If a
blockage of a certain link is of no influence on the number of arrived travelers,
the link is green. If a link is red, it means that the least people arrive if that
link is blocked. The scale for the color is the same in both figures. Comparing
both figures, one can remark that Fig. 4 is much redder than Fig. 5, meaning
that more people arrive. In Fig. 6 the difference of these two is plotted. In case
the adaptivity of the route choice does improve the performance of a network
(disturbed by the blocking of link b) much, the link (b) is colored green. The
redder link b is, the less advantageous the rerouting was for the performance
of the network in case of a blockage of link b.
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Fig. 5. Loss of arrivals if link is blocked – case with rerouting.

Fig. 6. Difference in arrivals between adaptive route choice and fixed routes.

Then, three categories of links can be identified. Firstly, the links that do not
harm the flow in either case. These can be found in the upper left corner of the
graph. In both scenarios, fixed routes and rerouting, the number of arrivals
are high. These are unused links.
The second category that can be found are the links that reduce the number
of arrived travelers is both cases, both with rerouting and without rerouting.
These are represented by asterisks in the lower left corner When analyzing
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these points, these links turn out to be motorway links, mostly close to a
destination area.
The third area is the most interesting, this is the lower right corner of the
graph. At the links represented by the asterisks there, rerouting can improve
the network performance a lot. The number of arrived travelers is namely low
in the case with fixed route choice and high with a flexible route choice. These
links are non-motorway links close to a destination and close to a motorway
too.
This can be explained by the fact that there are many alternatives in an urban
road network. But, as people take their usual routes, they got stuck. Spillback
effects then cause the flow on the motorway to be blocked too.
These spillback effect cause the motorway to be completely blocked. Therefore,
the delay for the though traffic could be bigger than in the case of motorway
link itself being blocked.
Fig. 6 shows also which link is the one that is above the diagonal in Fig. 3.
In one case the network will perform significantly better if the routes are not
adapted. The link for which this is the case is indicated with a blue arrow in
Fig. 6. This might be a consequence of the location of this link and the busy
interchange downstream for the alternative route. If the routes are adapted,
the traffic will flow by an alternative route. The best alternative will lead the
traffic to an already congested interchange. There, this extra flow can harm
the flow of through traffic. Here, the difference between system optimum and
user optimum might play a role. It could be better for all if some will not
perform their best.

6 Conclusions

We conclude that the motorway links are vulnerable for the performance of
a road network, even if the route choice can be adjusted to the faced traffic
situation. Furthermore, we conclude that severe congestion can be avoided if
travelers are rerouted if there is a blockage of a urban link close close to their
destination.
Spillback effects turn out to have a big impact on the occurred congestion.
Some urban roads are critical links because of congestion spillback effects to
the motorway.
The links for which congestion can be avoided by rerouting are links for which
there are parallel alternatives. We therefore conclude that in a network with
lots of parallel routes could be regarded as robust with regards to incidents.
The calculations are done in a single lane macroscopic simulation. In regions
with good discipline, drivers might queue for an exit at the outer lane, so let-
ting through traffic the possibility to pass. Therefore, a multi lane simulation
model with an appropriate modeling of lane change behavior at ramps [13] is
required.
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For each level of detail, though, calculation time will increase. A way to reduce
the total time of computation is to find vulnerable links in an other way than
calculating the network performance with all links sequentially blocked. A
possible way to search for these links is with an genetic algorithm. This will
be a direction for future work.
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Traffic Flow in Bogotá
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Summary. We introduce cellular automaton models for both cars alone [1] and
mixed traffic (cars and buses) on motorways in Bogotá. Our model includes three
elements: hysteresis between acceleration and braking gaps, a delay time in the
acceleration, and instantaneous braking. In addition, we include a lane changing
rule and the disordered behavior of Bogotan bus drivers. The parameters of our
model were obtained from direct measurements on a car and a bus in this city.
We use this model to simulate the flux-density fundamental diagram for a single-
lane road with car traffic and a two-lane road with mixed traffic, and compare the
results with experimental data. Our simulations are in very good agreement with
experimental measurements, and reproduce both the shape and the value of the
maximal flux. Moreover, they show that the causes of the measured high fluxes are
the short gaps that the Bogotan drivers are used to maintain to the car ahead (the
agressive driving that is typical for this city).

1 Introduction

In the 1990’s, the urban tranport system in Bogotá was characterized by
a severe congestion and a quite poor road network condition. There was a
high occurrence of accidents and the mean travel time was about 1.5 hours
between home and work. Since 1998, the city administration has tried to
solve this problem by introducing transportation strategies such as a mass
transportation system (TransMilenio), almost 250 kilometers of bike paths,
pedestrian bridges everywhere, restrictions on the use of private cars at rush
hours (Pico y placa) and a great number of campaigns in favor of a better civic
culture. However, the number of deaths in automobile accidents is still high
(about 700 per year). In addition, the imprudent and aggressive driving of the
urban bus drivers in Bogotá is well known. They stop everywhere, although
very nice bus stops have been built. Actually, in this city it is not unusual
to see competition between buses on the same route or passengers which are
picked up on the left lane of the road. For this reason, and keeping in mind
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that one half of the accidents are due to buses, it is interesting to study the
effect of buses in Bogotá’s traffic flow.
Since the construction of the STCA model [2, 3], cellular automata (CA) have
been applied with success to traffic simulations. These models are able to re-
produce the macroscopic properties of highway traffic from the microscopic
behavior of each car. Some recent works have kept in mind the driving particu-
larities of each place to simulate a more realistic traffic flow [1, 4–7]. Moreover,
some of them have extended these models to multilane highways, with both
symmetric or asymmetric lane changing rules, depending on the road density
that can reproduce the density inversion between right and left lanes near
maximum flow.
In [1] we proposed a cellular automaton model for the traffic flow in Bogotá,
with parameters that were taken from measurements inside a car running
in Bogotá and with results that were in agreement with experimental flow-
density diagrams. Our model includes three elements. The first one is the set
of gaps the driver uses to decide to brake (brake gap gapbrake) or accelerate
(acceleration gap gapaccel). They are, in general, different (hysteresis) and
both depend on the speed. The second element is the time it takes the car
to reach the next discrete speed value (retarded acceleration, tup). The last
one is an instantaneous brake reaction that we have observed when the car
ahead brakes. Hereby we extend this work to simulate two-lane highways with
mixed traffic (cars and buses). As for cars, the driving parameters for buses
are obtained from real measurements, plus simple symmetric changing-lane
rules. The goal is to study the effect of the ratio between cars and buses on
the flow-density fundamental diagram.
The paper proceeds as follows. In Sec. 2 we show a detailed description of
our model, including tables with parameters for both cars and buses and
lane-changing rules. Sec. 3 shows the effect of changing from a one-lane to a
two-lane simulation with cars alone on the flow-density diagram and compares
them against the experimental results of our previous work. Sec. 4 shows the
simulation results for a two-lane road with mixed traffic at several mixtures of
cars and buses. Finally, Sec. 5 contains the main conclusions and discussions
of this work.

2 Model Description

In our model the highway is represented by an array of two lanes of length L
with periodic boundary conditions. Each site of the array is a cell of length
2.75 m. Vehicles can only have integer speed values, v = 0, 1, ..., vmax. With a
speed unit vunity = 10 km/h, our model takes vmax = 7 for cars and vmax = 5
for buses. This corresponds to time steps of tstep = 0.9 s, which is near the
typical driver’s reaction time. A car occupies two consecutives cells: the car
length (4.5 m) plus the distance between cars in a jam (1 m). A bus occupies
three cells: the bus length (7 m) plus a distance between buses in a jam of
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1.25 m. Thus, the maximal number of vehicles in one lane of the highway is
given by N = L

%cars ·2+%buses ·3 .
At time t the n-th vehicle is completely defined by its type (car or bus),
its position xn(t), its velocity vn(t) and its brake-light status, bn(t), which
is 1 or 0 and indicates whether the driver braked or not at the previous
timestep t− 1 [8]. The effective gap is defined as gap = ∆x(t) +∆v(t), where
∆x(t) = xn+1(t)−xn(t)− 1 is the number of empty cells to the vehicle ahead
and ∆v(t) = vn+1(t) − vn(t) is the relative speed of the car ahead. The car
position is the last cell occupied by the vehicle.
As already mentioned, our model includes three elements: the hysteresis be-
tween braking and acceleration gaps, the time to accelerate and the instanta-
neous braking. The three parameters gapbrake, gapaccel and tup are functions
of speed and represent the drivers’ driving. For each vehicle type, these pa-
rameters were experimentally found [1] and are summarized in table 1.

Cars

Speed gapbrake gapaccel tup

0 0 3 1
1 3 4 1
2 3 5 1
3 4 5 1
4 5 6 2
5 6 7 2
6 6 8 2
7 7 9 2

Buses

Speed gapbrake gapaccel tup

0 0 4 1
1 4 6 1
2 6 7 2
3 8 9 2
4 8 10 3
5 9 12 3

Table 1. Driving parameters for Bogotá.

The lane-changing rule considers a symmetric incentive criterion. That is, one
considers to change lanes only when the speed of the car ahead (vahead) is
lower that my own speed (v). In this case, one computes the distance to the
first vehicle ahead (∆xfront(t)) and the first vehicle behind me (∆xback(t))
on the other lane. Now, if the gap on my own lane is less than the gap to
the car ahead on the other lane (xback(t) + vback(t) ≤ x(t)) and my position
is less than the future position of the vehicle behind me on the target lane
(x(t)<xback(t) + vback(t)), then I change to the same position at the target
lane. The last condition is a security criterion to prevent accidents.
Summarizing, all vehicles execute in parallel the following set of rules:

• Compute its gap(t).
• lane–changing rule: in case vahead(t) < v(t) (incentive critera) and also

∆x(t)<∆xfront(t) and xback(t) + vback(t)<x(t)(security criterion), then
change lane (let x(t) = x(t) on the other lane) and compute again its
gap(t).

• Determine its parameters gapaccel, gapbrake and tup from table 1.
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– normal braking: if gap(t) < gapbrake, decelerate to the maximal speed
v(t + 1) such that gap′brake < gap(t) < gap′accel, where gap′brake and
gap′accel are the parameters at speed v(t+1). In addition, let delay = 0
and turn on brake-lights (bn(t+ 1) = 1).

– If gap ≥ gapaccel, then
· instantaneous braking: if gap(t) ≤ gapaccel + 2 and the brake lights

of the vehicle ahead are on (bn+1(t) = 1), let v(t + 1) = v(t) − 1
(brake), turn on brake-lights (bn(t+ 1) = 1) and let delay = 0.

· accelerate: else, turn off brake-lights (bn(t+ 1) = 0) and
· If delay = tup, let v(t + 1) = v(t) + 1 (accelerate) and let

delay = 0
· Else, let delay = delay + 1 and preserve v(t+ 1) = v(t).

– Otherwise, let delay = 0, turn off the brake-lights (bn(t+ 1) = 0) and
preserve v(t+ 1) = v(t).

• Finally, move v cells ahead,

x(t+ 1) = x(t) + v(t+ 1) . (1)

The counter delay defines whether tup has been completed. The variable
bn+1(t) defines the brake light status of the vehicle ahead. The instantaneous
braking rule represents the braking reaction we have observed when the ve-
hicle ahead also brakes. This reaction is observed for all distances but is just
included in the gaps when gap ≤ gapaccel. Thus, we have included it as an
additional rule only if gapaccel ≤ gap(t) ≤ gapaccel + 2 through a brake-light
in each vehicle.

3 Effect of the Lane-Changing Rule

For all simulations in this paper, L = 3000 cells and the system starts with an
initial configuration of N vehicles, with random distributions of speeds and
positions and all brake-lights turned off. In order to prevent traffic accidents
at start, we test for each vehicle if vini ≤ ∆x. In such case, vini = ∆x as an
additional first step.
First, we want to investigate whether the lane-changing rule modifies the
fundamental diagram. Fig. 1 shows the fundamental diagram from our two-
lane model with cars alone and compares with the results from our previous
single-lane model. It also includes measurements on Bogotá’s highways [1] and
results from a STCA model plus our retarded acceleration. As expected, we
do not observe any difference between the single- and two-lane models, i.e.
the rule is well implemented.
Nevertheless, this figure deserves some discussion. It shows that all models,
STCA + retarded acceleration included, are in good agreement with experi-
mental data. As we have shown before [1], the value of maximal flow we have
obtained, qmax = 1.320(4) cars/timestep (88 cars/minute) is much larger than
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those measured on german highways (66 cars/minute) [9]. This suggests that
the small gaps to the car ahead (the aggressive driving that is so characteristic
for Bogotá) make the traffic flux more efficient. The price may be a high rate
of automobile accidents, but this is area of future studies.
In addition, we found in [1] that for small single-lane systems, and due to the
periodic-boundary conditions, there are some configurations that do not relax,
remaining forever at a mean velocity that is larger than the average velocity for
the relaxed system, and generate a spurious peak in the flow-density diagram.
These configurations disappear when the second lane is added to the model.

4 Mixed Traffic Flow

Now we include buses and cars on the highway traffic. Fig. 2 shows the fun-
damental diagram for several mixtures of cars and buses. For buses alone
we obtain values of maximal flow, qmax = 1.173(3) (78 buses/minute), and
maximal-flow density, ρ(qmax) = 0.24(2), that are smaller than those for cars
alone. This is clear, just because buses are slower and longer than cars.
When the percentage of buses lies between 100% and 10%, the shape of the
fundamental diagram does not show any important changes. In this range the
buses restrict the normal car flow and the system behaves like a road with
buses only. It is interesting to see that in the free-flow regime the average speed
is vaver = 5 cells/timestep (50 km/h), i.e. the system relaxes to configurations
where one or many clusters of cars are lead by one or more buses. When the
bus percentage is lower than 10% we observe some changes in the diagram
shape. In this case the fundamental diagram transforms from a bus-traffic
behavior to a car-traffic one. For the free-flow region the average velocity
increases from 50 km/h to 70 km/h for bus percentages around 5%. Finally,
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Fig. 1. Comparison of the two-lane simulation with the single-lane results [1].
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Fig. 2. Fundamental diagram for a two-lane highway with mixed traffic: a) bus
percentages between 100% and 10%, b) bus percentages between 5% and 0% .

equilibrium times also change when mixed traffic is introduced. For both buses
and cars alone we found equilibrium times that are around five times shorter
than for mixtures. This is a good point to take into account in future phase-
transition studies of this kind of systems.

5 Conclusions

The simulations of a two-lane highway with cars alone are in good agree-
ment with the real measurements. In this case, the value of critical density
is ρc = 0.32(4) and the maximal flow is q(ρc) = 1.320(4) cars/timestep (88
cars/minute). These values are larger than those measured in other cities due
to the small gaps that Bogotan drivers use to maintain with the car ahead,
even at large speeds. The inclusion of buses on the highway has a great effect
on the fundamental diagram. When the percentage of buses is higher than
10% the critical density decreases to ρc = 0.24(2) and the maximal flow also
decreases to q(ρc) = 1.17(2) buses/timestep (78 buses/minute), which are the
values for a highway with buses alone. In other words, the presence of buses
on the lane is catastrophic on the car flow, and this can explain the constant
congested traffic in Bogotá, where cars and buses share the same lane.
Having a cellular automaton for mixed traffic opens a wide spectrum of future
applications. For example, questions like how much the flux will improve if
buses stop just in bus stations, or if bus lanes were implemented, can be
directly addressed with this model. These are problems of great interest in
Bogotá, where pedagogical campaigns have been one of the main ingredients
of success to address the traffic problem, and they will be topic of future work.
Finally, our model is easy to implement, and its parameters can be measured
without expensive equipment. These features make this model a good candi-
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date to investigate vehicular flow in developing countries, where traffic is much
more complex and where each city has its own peculiarities and problems.
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Summary. Agent-based and cellular automata models have been widely used in an
efficient and effective way for studying granular traffic, but rarely considering the
combined effect and interactions of pedestrians and vehicles in urban networks. So
from this point of view an attempt has been made to develop a virtual urban envi-
ronment which considers both vehicular and pedestrian traffic and the interactions
arising from their behavior. This paper presents details of the model we have devel-
oped. For vehicular traffic a cellular automata model, combining and appropriately
modifying (e.g. to account for the pedestrian movement) BML, NaSch and ChSch
models, is considered. Pedestrian traffic is simulated using simple behavioral rules
combined with an agent-based approach. Different constraints affecting the mobility
of the whole system are considered, which can be seen and even changed by the user
in the simulated environment. The model belongs to the microscopic category where
pedestrians/vehicles behave in their environment by making a sequence of decisions.
The interactions among vehicles and pedestrians are also incorporated which signi-
fies various effects, ranging from accident risk of pedestrians to the generation of
traffic jams. NetLogo which is a multi-agent based modeling language is used as the
programming platform for the simulation.

1 Introduction

Traffic flow is a subject of interdisciplinary [1] interest at the present time,
both for the very real problems of congestion on busy highways [2], as well as
an example of a complex system whose behaviour has yet to be fully under-
stood. The investigation of such systems started as early as 1934 by Green-
shields with a study on traffic capacity [3]. Since its inception, the study
of traffic flow was based on stochastic processes [4]. In 1955 Lighthill and
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Whitham described the existence of density waves as well as shock waves [5]
in a continuous model of traffic flow.
Pedestrian simulation has only recently received more attention in the con-
text of crowd evacuation management, and panic situation analysis [6-11].
The ability of predicting movements of pedestrians is valuable in many con-
texts. Apart from panic situations, capturing the behaviour of pedestrians is
of growing importance in architecture, urban planning, land use, marketing
and traffic operations.
The development of Intelligent Transportation Systems (ITS) has triggered
important research activities in the context of behavioral dynamics. Several
new models (driving and travel behavior models), new simulators (traffic sim-
ulators, driving simulators) and new integrated systems to manage various
elements of ITS, have been proposed in the past decade [12-19]. With re-
gard to pedestrians, the focus of ITS has mainly been on safety issues and so
modeling pedestrian movements in detail has rarely been considered.
A certain number of work recently tried to explore this field, in particular
from the point of view of complex systems, but rarely are those tackling the
problem of the dynamics of pedestrian displacements in interaction with road
traffic, which is however the key dimension of the urban living environment.
Pedestrian simulation is a new area of safety and health research employing
contemporary technology in a form traditionally used in areas of vehicular
transportation, skill acquisition and defense [14]. This paper discusses the
design considerations of developing such a simulator, which provides scope
for multi-modal research in the fields of safety, health and transportation.
In order to fill this gap, this paper presents some glimpse on how to contribute,
through creation of a multi-agent simulator supplied with ethopsychologic
observations in real situations. Such a virtual laboratory would indeed allow,
on a quasi experimental basis, to find solutions of various problems related to
this area.
The objective of the research is the development of a computer simulation
model for pedestrian and vehicular movement in architectural and urban space
as an animation. The characteristics of the model is the ability to visualize the
movement of each pedestrian in a plan as an animation. Based on response
to various safety and health-related scenarios, the participant makes decisions
regarding the effect of the virtual built environment on his safety, health
and comfort. The findings can be reintroduced into field conditions allowing
improvements in public health and safety. So architects and designers can
easily find and understand the problems in their design projects.
Cellular automata (CA) are alternatives to differential equations in an at-
tempt to model transportation systems. CA’s are dynamical systems in which
space and time are discrete. A cellular automaton consists of a regular grid
of cells, each of which can be in one of a finite number of k possible states,
updated synchronously in discrete time steps according to a local, identical
interaction rule. On the other hand, developed in the context of artificial intel-
ligence, agent-based simulation has been widely used in the context of traffic
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simulation. It provides a great deal of flexibility, as the behavior of each ele-
ment in the system can be modeled independently, and complex interactions
can be captured. In our context, each pedestrian/vehicle is an ”agent”. The
behavior of each agent can be modeled as a sequence of specific choices, such
as the destination, the itinerary, an overall direction, or where to put the
next step. Discrete choice models in general, and random utility models in
particular, are disaggregate behavioral models designed to forecast the be-
havior of individuals in choice situations [15]. So by analyzing all the above
reasons we have adopted these two approaches, namely cellular automata and
agent-based simulation, in our research.

2 Modeling Vehicular and Pedestrian Traffic Movements

2.1 CA Model for Cars

Following the prescription of the NaSch model, we allow the speed V of each
vehicle to take one of the Vmax + 1 integer values V = 0, 1, 2, . . . , Vmax. For
urban systems we do not want to have Vmax more than 72 km/h. So we are
taking maximum speed as 3 (22.5 m/s as each cell is 7.5 m in length as in the
NaSch model). Suppose Vn is the speed of the nth vehicle at time t while mov-
ing in any direction (different from NaSch/ChSch/BML model where vehicles
move either towards east or towards north and number of cars is fixed on a
given road). Also we want each car to slow down at the intersection (consider-
ing the distance Pn to the closest signalized intersection, or Sn, the distance to
the closest unsignalized intersection) and decide regarding the turning move-
ments (to get homogenity). The above assumption is true considering the fact
that drivers become more cautious and reduce their speed at intersections to
avoid any kind of collisions with other vehicles. At each discrete time step
t → t + 1, the arrangement of N vehicles is updated in parallel according to
the following driving rules:

Step 1: Acceleration.
If Vn < Vmax, the speed of the n-th vehicle is increased by one, i.e.,
Vn → Vn + 1.

Step 2: Deceleration due to 1) other vehicles, 2) intersections (non-signalised
and signalised), 3) pedestrians on the street (D = the minimum gap be-
tween the car under consideration and the pedestrian in front of it on the
road (if any) in the radius vision-cars where vision-cars is the vision for
cars. It is directly related to the distance up to which a driver can see in
the urban network while driving).

Step 3: Randomization.
If Vn > 0, the speed of the car under consideration is decreased randomly
by unity (i.e, Vn → Vn − 1) with probability p (0 ≤ p ≤ 1); p, the
random deceleration probability, is identical for all the vehicles and does
not change during updating.
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Step 4: Movement.
Each vehicle moves forward with the given speed, i.e. Xn → Xn + Vn,
where Xn denotes the position of the n-th vehicle at any time t.

The major changes are made in step 2 which reflects the interaction among
vehicles and pedestrians. Step 4 shows that there are no more north-bound or
east-bound vehicles, the speed of each car is updated simultaneously without
any specific classification.

2.2 Model for Pedestrians

In our model randomly located pedestrians converge at the same point, i.e. the
destination, by path-finding. The path-finding of a pedestrian is influenced by
two new concepts which we have introduced: 1) an attraction field and 2) a
punctuated equilibrium effect in our pedestrian model. We will discuss them
one by one before presenting the rules for walking.

Attraction Field

Attraction represents how marked-crosswalks influence the behavior of pedes-
trians, i.e. if a marked-crosswalk is at such a distance that it can attract the
attention of pedestrians while crossing so as to avoid midblock crossings. In
simple words we can say that a crosswalk will generate a sort of magnetic
field in its nearby area (sidewalk, because pedestrians will not be influenced
by this field once he/she starts crossing) and it will attract agents (pedestri-
ans) in this area. So the pedestrians will move on the sidewalk until they find
a marked-crosswalk, and will then decide to cross. Otherwise, if the attraction
field is not strong enough or if the pedestrian is out of the range of the field
(i.e. the distance to the crosswalk is too large), to attract the attention then
pedestrians will choose midblock-crossings. This is actually what happens in
the real world also where the pedestrian is influenced by a crosswalk if it is
not too far from him.

Punctuated Equilibrium Effect

This effect comes into the picture at the time when a pedestrian arrives at a
cell where he/she has to decide about the crossing. We do not want our model
to be quite deterministic where each pedestrian has only one option to choose.
Now based on this concept the pedestrian will analyze the situation and make
a decision about crossing/no-crossing (Yield/No-Yield). Yield means that a
pedestrian will stop at the cell and will analyze the situation globally/locally
and will decide to cross once he/she feels that it is safe to cross otherwise
(in No-Yield) he will start crossing without taking care of the surrounding
conditions.
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We tried to keep our pedestrian model as simple as possible by using only
a minimal set of rules but at the same time these rules are able to predict
pedestrian behavior quite accurately. At each discrete time step t→ t+1, the
arrangement of N pedestrians is updated in parallel according to the following
”rules”. The rules are divided in two categories: 1) pedestrian moving on
sidewalk and 2) pedestrian entering a crossing.

1. Pedestrian moving on sidewalk:
Step 1: Path-finding

In this step a pedestrian will choose the direction in which he has to
move (depending on a vision radius).
Case I: When the pedestrian is in the attraction field (sidewalk →
crosswalk)
Case II: When pedestrian is not in the attraction field (→ sidewalk or
mid-block crossing)

Step 2: Checking (street crossing)

2. Pedestrian entering a crossing:
Step 1: Decision-making
pt = proportion of pedestrians having yielded up to time t (global)
If p > ε (noise) then,(

If pt > .33, pedestrian will Yield
If pt = .33, the pedestrian will continue to do whatever he was doing
earlier, i.e. Yield or No-Yield.
If pt < .33, the pedestrian will not Yield (No-Yield).

)
else the pedestrian will choose randomly from the option Yield/No-
Yield.

Step 2: Yield/No-Yield
If a pedestrian has yielded, then he will stop and check for any moving
cars on the street in his/her radius of vision and if he detects any
moving cars, he will stop and allow the cars to pass.
Else, s/he will just cross without taking care of cars, i.e. blindly.

Step 3: Movement
The pedestrian will move forward with his/her walking speed.

3 Results

In this section we will be discussing some fundamental results of our model.
Most of the results are quite interesting to observe in the sense that they give
a picture that is generally found in the urban complex systems, arising from
a lot of interactions among the agents which belong to different categories.
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3.1 Effect of Yield/No-Yield Pedestrians on Accidents

The proportion pt of yielding pedestrians can be varied using the parameter
ε = En (noise in the system).
As it can be seen from the above graphs as the noise in the system increases
the system becomes more or less unstable (more randomization takes place)
and proportion of intelligent (yielding) pedestrians also decreases which gives
rise to more number of accidents. One can expect these results in the real
world too where pedestrians are not bothered about the cars, and thus there
chances/risk of getting involved in an accident also increases.

Fig. 1. (a) Proportion of yielding pedestrians with time for varying noise En in the
system (b) Rate of accidents for varying noise En in the system.

3.2 Effect of Maximum Speed of Cars on Accidents

Here we will study the effect of varying speed on accident rate by keeping
other parameters constant.
One can expect these results because as the speed of car increases the pedes-
trian/cars become more vulnerable to be involved in an accident.

3.3 Effect of Vision-Car/Pedestrians

In the earlier examples we have kept the car vision and pedestrian vision
constant, i.e. 2 cells. Now we will show how changing vision can affect other
conditions and interactions.
Changing the vision has direct impact on the distance to which a pedes-
trian/car can see. So if vision is larger (as explained earlier), the strength
of the attraction field increases. Hence chances of pedestrians to choose the
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Fig. 2. (a) Average speed variation with change in maximum speed; (b) Rate of
accidents for different maximum speeds of cars. The other parameters are the same
for both cases.

Fig. 3. Effect of changing vision on (a) time spent by pedestrians on sidewalk (b)
rate of accidents.

crosswalk also increase, which will make pedestrians spend more time on the
sidewalk rather than making midblock-crossings which are now suppressed by
the attraction field.

4 Conclusions

Pedestrian and vehicular simulation is a new area of safety and health research
employing contemporary technology in a form traditionally used in areas of
vehicular transportation, skill acquisition and defense. This paper discusses
the design considerations of developing such a simulator, which provides scope
for multi-modal research in the fields of safety, health and transportation. The
model is being developed to create simulated environments whereby the par-
ticipant of the study responds to simulated environments as though he or she
is actually in the field. Under these conditions, the simulated environment
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can be manipulated to further research in many aspects of pedestrian facility
design with low-risk to participants in the study. Based on the response to
various safety and health-related scenarios, the participant makes decisions
regarding the effect of the virtual built environment on his safety, health and
comfort. The findings can be reintroduced into field conditions allowing im-
provements in public health and safety. Other current needs for research in
pedestrian environments can be examined so that the simulator can be de-
signed with enough flexibility to support various research needs. This paper
discusses the considerations in the design of the simulator, which accommo-
date a variety of current pedestrian research needs related to improving both
the safety of the pedestrian and vehicular environments designed for trans-
portation corridors, as well as defining the nature of walking facility design
required by the health industry for preventive and curative use.
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Summary. The multi-phase signal control method is one of the important measures
to enhance intersection capacities and alleviate urban traffic problems. This paper
employs the stopping-line-method to study the capacity model of cross multi-phase
signalized intersections and analyses the relevant change of the intersection capacity
and cycle length. It studies the intersection capacity in detail under two normal
situations, one with one straight lane and one left-turn lane, and the other with two
straight lanes and one left-turn lane. Finally, a practical intersection is chosen and
its phase design is improved by the method proposed in the paper.

1 Introduction

With the sustaining and rapid development of our national economy, urban
automobile possession, traffic volumes, and traffic demand are increasing dras-
tically. Traffic congestion of different degrees appears universally in many
metropolis. Because an intersection, as the joint of road networks, joins traffic
flows from different directions, besides, due to the factors such as red light
time loss and mixed driving of automobile and the non-mobile, intersection
capacity is far lower than roads capacity. As a result, the intersection becomes
the bottleneck of retaining the excessive traffic flows from the roads, and the
sector of high accident occurrence in urban road networks. In order to assure
the traffic security of intersections and make full use of the intersection capac-
ity, it is an important measure to operate scientific management and control
at intersections.
At present the intersection traffic control in the cities of our country mostly
applies signal control methods, either the two-phase signal control method or
the multi-phase signal control method. Multi-phase signal control method is
a unified name of the control method for more than two signal phases. It sep-
arates traffic flow in time, decreases the traffic conflict spots at intersections,
and improve traffic orders and security when vehicles and pedestrians pass
intersections. In [1] the multi-phase signal control method has been compared



420 Chang Yulin et al.

with the two-phase signal control method under the aspects of traffic conflict,
capacity, service levels etc. They conclude that the former is an effective way
to improve intersection security and service levels.

2 Capacity of Multi-Phase Signalized Intersection

Looking into a cross-signalized intersection, Approach i is composed of Ap-
proach 1, Approach 2, Approach 3, and Approach 4 from four different di-
rections. It is assumed that every approach has special left-turn and straight
signals. For a signalized intersection, the opposite approaches often apply the
same signal phase, that is, the signal phase of Approach 1 and Approach 3 is
the same, and the signal phase of Approach 2 and Approach 4 is the same.
To simplify calculations, Approach 1 and Approach 2 are taken as represen-
tatives. If the total signal cycle length is denoted by L, the green time of
Approach i from direction j is recorded as lij (i = 1, 2; j = 1 is straight, j = 2
is left turn), the yellow time is recorded as cij , and when the vehicle flow of
Approach i from direction j is passing the intersection stopping line, if the
time spent by the first vehicle is recorded as tcij and the time spent by the
following vehicle is recorded as tfij .Then the following formula can be given:

2∑
i,j=1

(lij + cij) = L . (1)

Let c =
∑2

i,j=1 cij , then
∑2

i,j=1 lij + c = L. The yellow interval cij is between
2 and 4 s. The parameter c is the sum of yellow times in one cycle. It is a
constant related to the intersection geometry, which mainly depends on the
intersection size and the lane setting method.
If the number of the lanes of Approach i from direction j is denoted by mij ,
then the number of vehicles of the approach from the direction in one signal
cycle can be calculated by the following formula:

sij = mij

(
lij − tcij

tfij
+ 1
)

= mij

(
lij
tfij

− tcij − tfij

tfij

)
. (2)

If one signal cycle length is L, then the number of vehicles that can pass the
intersection in unit time, i.e. the capacity of the intersection, is

N =
S

L
=

1
L

4∑
i,j=1

sij =
2
L

2∑
i,j=1

sij = 2
2∑

i,j=1

mij

L

(
lij
tfij

− tcij − tfij

tfij

)
. (3)
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3 Distribution of Headways at Intersections

When the signal light changes from red to green, the first vehicle in the queue
needs some reaction time and acceleration time. Therefore, the headway of the
first vehicle is the longest and the headway of the following vehicle decreases
one by one. But the headway of the vehicle behind the fourth is basically the
same (Fig. 1).

Fig. 1. The following car’s gap at different positions

Based on the measured result, the average headway of the first vehicle is about
5 s, that of the vehicle behind the fourth is about 2 s, and the excessive head-
way of the front vehicles is about 6 s. To simplify calculations, the excessive
headway of the front vehicle is recorded as the headway of the first vehicle.
Therefore, when the queuing vehicles are passing the intersection after the
signal changes from red to green, the headway of the first vehicle is about 8 s
and the headway of the following vehicle is about 2 s. In addition, there is
little difference between the headway of the straight, left-turn and right-turn
vehicles. Therefore, tcij can be recorded as 8 s and tfij can be recorded as 2 s
in practical calculations.

4 Two Types of Simplified Situations

4.1 One Straight Lane and One Left-Turn Lane at Every Approach

In one type of simplification it is assumed that grade and shape of the two
crossing roads of the intersection are basically the same: There is only one
straight lane and one left-turn lane at every approach. We assume that the
following car headways tfi1 (i = 1, 2, 3, 4) of the straight vehicle flow (denoted
by tf1) and the following car headways tfi2 (i = 1, 2, 3, 4) of the left-turn
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vehicle flow (denoted by tf2) at every approach of the intersection are the
same. Introducing the parameter α =

∑2
i,j=1

tcij−tfij

tfij
which is determined by

the geometrical features of the intersection and the vehicle performance, the
intersection capacity (see eq. (3)) becomes

N =
2
L

⎛
⎝ 2∑

j=1

1
tfj

2∑
i=1

lij − α

⎞
⎠ . (4)

If the following car headway of the straight vehicle is approximated by the
following car’s headway of the left-turn vehicle, that is tf1 = tf2 = tf , and
according to eq. (1), then eq. (4) is simplified as following:

N =
2
L

⎛
⎝ 1
tf

2∑
i,j=1

lij − α

⎞
⎠ =

2
L

(
L− c

tf
− α

)
= 2
(

1
tf

− 1
L

(
c

tf
+ α

))
(5)

Eq. (5) indicates that the capacity of the signalized intersection is related to
the signal cycle length and the reciprocal of Cycle Length L, i.e. the capacity
is larger for longer cycle lengths L. But when the signal cycle length reaches
a certain value, further increase of the signal cycle length does not affect the
capacity much. The capacity N is limited to 2/tf when L→∞. If the yellow
interval cij is taken as 2 s, then c is 8 s. If tc1 = 8 s, tc2 = 7 s, tf1 = 2 s, and
tf2 = 2 s in eq. (5), then it is simplified to

N =
(

1 − 30
L

)
(pcu/s). (6)

In the above discussion of the intersection capacity, the case of right-turn
vehicles is not taken into account. If a special right-turn lane is designed at an
intersection, the intersection capacity will only have to add the capacity of the
special right-turn lane, because the right-turn signal phase can be designed
connecting with the other phases and does not take up of the entire signal
period. If the right-turn lane and the straight lane share the same approach,
the total capacity of the intersection will decrease a little, due to the interact
of straight vehicles and right-turn vehicles.

4.2 Two Straight Lanes and One Left-Turn Lane at Every
Approach

For many common intersections in urban roads, the proportion of the straight
vehicle flow is greater than the left-turn and the right-turn vehicle flow.
Thereby, the number of straight lanes is more than right-turn and left-turn
lanes at many intersections. One of the usual situations is that the number of
straight lanes is 2, the number of right-turn lanes and left-turn lanes is both
1. The capacity of the intersection on this condition is discussed as following.
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If mi1 = 2, mi2 = 1, tfij = 2 s, tcij = 8 s in eq. (3), and the yellow interval
cij is taken as 2 s on the restrictive condition of eq. (1), then

N = 1 +
l11 + l21 − 42

L
(pcu/s). (7)

The change of the capacity of the above two intersections is analyzed as fol-
lowing. Taking the difference of eqs. (7) and (6), then dividing it by eq. (6),
the growth rate of capacity is given by

∆N

N
=
l11 + l21 − 12

2(L− 30)
. (8)

If the number of straight lanes increases from 1 to 2 when the number of
straight vehicles is more than the number of left-turn vehicles and the straight
phase is longer than the left-turn phase, the capacity of the intersection can
increase by about 50%.

5 Model in the Case of Vehicle Arrival Rate

The factor of vehicle delay needs to be considered during designing the signal
phase of an intersection in practice. Generally, as the signal period is longer,
the capacity is larger. But meanwhile the caused vehicle delay is longer. As
the signal period is shorter, the vehicle delay is shorter, but the capacity of the
intersection is smaller. Therefore, in order to make vehicle delay the shortest,
during designing the signal phase, we only have to discuss the case that the
intersection capacity is larger than vehicle arrival rate.
The situation of non-saturated traffic flow, that is, the case that the arrival
traffic flow is smaller than the intersection capacity, is discussed as following.
Because the same signal phase is often applied in the opposite approaches,
when traffic flow from a certain direction is large, the main traffic demand
needs to be met during designing the signal phases. The average arrival rate
of Approach i from direction j is supposed to be qij .To make the arrival traffic
flow can pass the intersection in the signal period, the design of signal phase
length must satisfy the following condition:

mij

(
lij
tfij

− tcij − tfij

tfij

)
> qijL, (i, j = 1, 2). (9)

After dividing eq. (9) by mij , adding the divided results based on i and j,
and finally dividing the total result by the cycle length L, one arrives at

N = 2
2∑

i,j=1

1
L

(
lij
tfij

− tcij − tfij

tfij

)
> 2

2∑
i,j=1

qij
mij

. (10)

Eq. (10) indicates that the capacity of the intersection is larger than the
vehicle arrival rate.
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In the case of a non-saturated flow rate, the design of signal phases must make
the remaining time after vehicles of all the approaches from all the directions
have passed the intersection as balanced as possible. That is, the following
values should be made as same as possible:(

lij
tfij

− tcij − tfij

tfij

)
− qij
mij

L, (i, j = 1, 2). (11)

Mathematically this can be formulated as

min
2∑

i,j=1

((
lij
tfij

− tcij − tfij

tfij

)
− qij
mij

L

)2

(12)

s.t.
2∑

i,j=1

lij = L− c. (13)

Using Lagrangian multiplication factors, one obtains

lij =
t2fij∑2

i,j=1 t
2
fij

⎛
⎝L− c−

2∑
i,j=1

(
tcij − tfij +

qijtfij

mij
L

)⎞⎠
+ tcij − tfij +

qijtfij

mij
L. (14)

Eq. (14) is just the formula to design phases of all the directions. It can be
simplified a bit in practice. The difference between the following car headway
of the left-turn and straight traffic flow at intersections is not large after the
traffic flow is stable. Therefore, Eq. (14) can be simplified as

lij =
1
4
(L− c) +

⎛
⎝(tcij − tfij) − 1

4

2∑
i,j=1

(tcij − tfij)

⎞
⎠

+ tfL

⎛
⎝ qij
mij

− 1
4

2∑
i,j=1

qij
mij

⎞
⎠ . (15)

This can even be further simplified. In case that the difference between the
interval when the first vehicle and the following vehicle of the straight and
left-turn traffic flow at approaches are passing the stopping-line is not large,
the second part of the right side of the equation can be eliminated:

lij =
1
4
(L− c) + tfL

⎛
⎝ qij
mij

− 1
4

2∑
i,j=1

qij
mij

⎞
⎠ . (16)

Eq. (16) indicates for the cross intersection designed with a special left-turn
signal, the signal phase length lij is determined by parameters such as the
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cycle length L, yellow interval c, following car headway tf , and the main
traffic volume qij/mij and the cycle length L is determined by eq. (10). If
one assumes all the values of tfij are the same and denoted by tf , according
to eqs. (1), (4), (9), then the cycle length can be determined as the following
condition:

1
L

(
L− c

tf
− α

)
>

2∑
i,j=1

qij
mij

. (17)

In practice, Eq. (17) is changed into an equation which can be applied to
calculate the cycle length L.

6 Conclusion

(1) The capacity of a signalized intersection increases with signal cycle length.
If the cycle length is too short, the capacity will decrease too much. If the cycle
length is too long, the capacity will increase slowly and delay will increase.
(2) If the right-turn traffic flow is not taken into account, the intersection
capacity will increase by about 50% when approaches are broadened from one
straight lane and one left-turn lane to two straight lanes and one left-turn
lane. Therefore, broadening approaches is one of the effective ways to improve
the intersection capacity. (3) In the design of phases at intersections, the cycle
length and the phase length are related to the number of approaches, following
car headway, yellow interval, starting time loss etc.
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Stability of Flows on Networks
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Summary. The problems of traffic flow forecasting on complex traffic networks are
still almost not explored. However these problems are very actual for scientists as
well as for traffic engineers. In this paper we consider problems of stability of particle
(car) flows on networks. The definitions of critical, stable and unstable flow states on
networks are obtained as properties of solutions of nonlinear differential equations on
graphs. For networks with different geometry the necessary and sufficient conditions
of flow stability on networks are found. The perspective problems of exploration of
qualitative properties of flows on networks are formulated.

1 Introduction

The rapid growth of the motorization level in the world provoked interest of
scientists and engineers in problems of stability of traffic flows [1-5]. However,
more difficult problems, such as forecasting of stable states of flows on complex
traffic networks, are still almost not explored [6-8].
In this paper we consider problems of stability of particle (car) flows on net-
works. A network is an oriented graph with edges corresponding to road sec-
tions and vertices corresponding to road junctions. A state of flow on net-
works is defined by the vector-function of densities ρ(t) = {ρi(t)}. The time-
dependence of each coordinate ρ(t) is simulated by a system of differential
equations and expresses the following physical principle: the rate of density
change on an edge is proportional to the difference of the intensities (flux) of
cumulative input and output flows from the edge.
The flow intensity qi(t) on edge i is a function of the density ρi(t), which is
defined by the fundamental diagram qi(t) = λiρi(t)(ρ∗i − ρi(t)), where ρ∗i is
the maximal density on edge i. Then q∗i = λi (ρ∗i )

2
/4 is the maximal intensity

(the highway capability of the edge). At last if li is the length of edge i, then
C∗

i = liρ
∗
i is the edge capacity and C∗ =

∑
i C

∗
i the network capacity.

The flow regime ρ̄ = ρ̄(t) in the time t0 is called critical, if an i-edge exists
with ρi(t0) = ρ∗i . According to the physical principle of the model the flow
regime will be critical also for t ≥ t0, because qi(t) ≡ 0, t ≥ t0.
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The flow regime is called T -critical, if for t ≥ T the flow regime is critical,
otherwise the flow regime is called T -uncritical. So the flow state ρ̄(t) is called
T -critical point or T -uncritical point accordingly. Let T∗(ρ̄(0)) denote min{τ ≥
0/ the flow regime is critical for t ≥ τ}.
The point ρ̄(0) is called stable T -uncritical point, if all points belonging to
some neighborhood of ρ̄(0) and considered as initial states will be T -uncritical.
Otherwise this T -uncritical point is called unstable T -uncritical point.
Let ρ̄(0) be a stationary uncritical point of flow, i.e. the uncritical flow state is
not changing during time. Then ρ̄(0) is an ∞-uncritical point as T∗(ρ̄(0)) = ∞.
An uncritical flow state ρ̄(0) is locally stable, if for small changes of the flow
state the flow returns to the state ρ̄(0) when t→∞. Clearly ρ̄(0) is a station-
ary point.
We consider closed and open networks. Let the flow mass C be the total quan-
tity of particles on the network. If the network is closed then C is constant. If
the network is open then particles can arrive to and depart from the network,
thus C = C(t). It is clear that the open network can be considered as part of
a more complex closed network.

2 Closed Networks

2.1 Flow on Ring Consisting of Two Identical Sections

Let us consider a unidirectional flow on a ring consisting of two identical
sections (see Fig. 1). Let l = l1 = l2 be the lengths of sections, ρ∗ = ρ∗1 = ρ∗2
be the maximal densities. Then C∗

1 = C∗
2 = ρ∗l are the capacities of sections

and C∗ = 2ρ∗l is the network capacity. In the interval of admissible values
ρ ∈ [0, ρ∗] the dependence of the intensity on density is λρ(ρ∗ − ρ). In this
case the exact expression for the flow density dependence can be found.
The flow densities on the sections satisfy a system of two differential equations
and a normalization condition expressing the constancy of the flow mass.
Whether the flow regime is critical or not, T∗ (ρ̄(0)) = ∞, will depend on the
ratio between the ring capacity C∗ and the flow mass C. It means that:
If the flow mass is less than half of the ring capacity, C < C∗/2, then the flow

l

l

..

Fig. 1. Ring consisting of two identical sections
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regime is stable ∞-uncritical. In this case flow state converges to stationary
regime ρ1 = ρ2 = C/2 when t grows and

∣∣ρi(t) − C
2

∣∣↘ 0, i = 1, 2.
If C > C∗/2, ρ1(0) �= ρ2(0), then the flow regime is critical for any initial ad-

missible conditions and T∗(ρ0) ≤ l

2λρ∗( 2C
C∗ −1) ln (ρ∗−Cρ∗

C∗ )

(ρ0−Cρ∗
C∗ )

, where ρ0 = ρ1(0).

Indeed, since in the case of identical sections ρ1(0) + ρ2(0) = C/l, then either
ρ1(0) = ρ2(0) = C/2l, or on one of the sections the initial density is greater
then C/2l. In the first case the flow regime is unstable uncritical regime (the
stationary point). In the second case the flow state is critical. Let us find the
time required to reach the critical regime. Assume that ρ0 = ρ1(0) > C/2l >
ρ2(0). Until the critical regime is not reached the time-dependence of the flow
density on the first section is given by ρ(t) = C

2l +(ρ0− C
2l )e

2λ
l (C

l −ρ∗)t. For the

time T∗(ρ0) to reach the critical regime we have C
2l + (ρ0 − C

2l )e
2λ
l (C

l −ρ∗)T∗ =

ρ∗, i.e. e
2λ
l (C

l −ρ∗)T∗ = ρ∗− C
2l

ρ0− C
2l

and 2λ
l

(
C
l − ρ∗

)
T∗ = ln ρ∗− C

2l

ρ0− C
2l

. Thus we get

T∗(ρ0) = l

2λρ∗( 2C
C∗ −1) ln (ρ∗−Cρ∗

C∗ )

(ρ0−Cρ∗
C∗ )

.

If C = C∗/2, then the flow state is stationary and unstable at any initial
condition l (ρ1(0) + ρ2(0)) = C.

2.2 Ring Consisting of Two Non-Identical Sections

Let us consider the flow on a ring consisting of two non-identical sections
(i = 1, 2) with lengths li,maximal densities ρ∗i and intensities qi = λiρi(ρ∗i−ρi)
(see Fig. 2).
The system of differential equations for the flow is then

l1
dρ1

dt
= −λ1ρ1(ρ∗1 − ρ1) + λ2ρ2(ρ∗2 − ρ2)

l2
dρ2

dt
= λ1ρ1(ρ∗1 − ρ1) − λ2ρ2(ρ∗2 − ρ2).

(1)

We have the condition of flow mass constancy

l1ρ1 + l2ρ2 = C, (2)

�

�

1
l

2
l

1

2

..

Fig. 2. A ring consisting of two non-identical sections.
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and the set of admissible densities D:

0 ≤ ρ1 ≤ ρ∗1, 0 ≤ ρ2 ≤ ρ∗2. (3)

The stationary points are the solutions of the equation

−λ1ρ1(ρ∗1 − ρ1) + λ2ρ2(ρ∗2 − ρ2) = 0. (4)

We put x = ρ1−ρ∗1/2, y = ρ2−ρ∗2/2. Hence in (4) we obtain λ1(x2−(ρ∗1)
2/4)−

λ2(y2 − (ρ∗2)
2/4) = 0 or

−λ1x
2 + λ2y

2 = −λ1(ρ∗1)
2/4 + λ2(ρ∗2)

2/4 = −q∗1 + q∗2 . (5)

Assume that q∗2 > q∗1 , i.e. the highway capacity of the second section is greater
than the capacity of the first section. Then (5) is a hyperbola with focuses on
the y−axis, i.e. in initial coordinates on D (Fig. 3).
The direction field of velocities (ρ̇1, ρ̇2) is parallel to the line l1ρ1 + l2ρ2 = C,
and its direction is defined by the sign ρ̇1 in Fig. 3.
In the point (ρ∗1, 0) the normal to the line (4) is (λ1ρ

∗
1, λ2ρ

∗
2) and in the point

(0, ρ∗2) is symmetrical and is equal to (−λ1ρ
∗
1,−λ2ρ

∗
2). Assume that

λ2ρ
∗
2

λ1ρ∗1
>
l2
l1
, (6)

i.e. the tangent of the angle of slope of the normal to the hyperbola in the point
(ρ∗1, 0) is greater than the tangent of the angle of slope of the normal to (2).
Then when C changes the line (2) can not meet one of hyperbola branches
(4) twice. Thus, we get the qualitative sketch shown in Fig. 4.
Condition (6) is equivalent to

v∗2 =
λ2ρ

∗
2

l2
>
λ1ρ

∗
1

l1
= v∗1 . (7)

0 �

�
2

_

_

+

�
2

*

�*

Fig. 3. Signs of ρ̇
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0

C

�
1

D2

D1

A

B

Fig. 4. Case v∗
2 > v∗

1

Fig. 5. Case v∗
2 < v∗

1

Condition (7) means that the rate of density change on the second section
in the neighborhood of the boundaries [0, ρ∗2] is greater than the corresponding
rate on the first section. The opposite case, (v∗2 < v∗1), is shown in Fig. 5.
The distinctive feature of the second case is the existence of stable and unstable
fragments of stationary points on each hyperbola branch. Otherwise, in the
first case, when v∗2 > v∗1 (Fig. 4), the upper branch is unstable and the lower
branch is stable.
Let us assume that q∗1 = q∗2 , i.e. λ1(ρ∗1)

2 = λ2(ρ∗2)
2. The hyperbola (4) de-

generates to the pair of lines λ1 (ρ1 − ρ∗1/2)2 = λ2 (ρ2 − ρ∗2/2)2 . It is equal
to √

λ1

∣∣∣∣ρ1 − ρ∗1
2

∣∣∣∣ =√λ2

∣∣∣∣ρ2 − ρ∗2
2

∣∣∣∣ . (8)

These lines meet the opposite vertices of the rectangle D (Fig. 6).
Depending on the velocity ratio v∗1 and v∗2 , (7), we have either the upper branch
CDB, or the right stationary branch ADB unstable, and the corresponding
adjunct is stable.
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Fig. 6. Degeneration, q∗1 = q∗2

3 Open Unidirectional Edge

Let us consider an edge with length l, which receives a flow of constant inten-
sity q (Fig. 7). Due to the fact that as a rule an edge in the network has an

Fig. 7. Elementary open section

exit, the intensity of the output flow is fixed. Thus,

l
dρ

dt
= Θ (ρmax − ρ) − min(qmax, f(ρ)), (9)

where Θ (ρ) = {1; ρ > 0; 0; ρ ≤ 0}, f(ρ) = λρ(ρ∗ − ρ), 0 ≤ ρ ≤ ρ∗.
It is clear, that if q > min(qmax, q

∗), than the flow is critical and

T∗(ρ(0)) ≤ l(ρ∗ − ρ)
q − min(qmax, q∗)

, (10)

where q∗ = λ(ρ∗)2

4 is highway capability of the edge.
Then, let us assume that q ≤ min(qmax, q

∗). At the beginning q∗ ≤ qmax. Then
min(qmax, f(ρ)) = f(ρ), and equation (9) reads l dρ

dt = q − f(ρ).
It is obvious that the point (ρ1(q), q) (Fig. 8) is a stable stationary point, the
point (ρ2(q), q) is an unstable stationary point and ρ(0) ∈ (ρ2(q), ρ∗) is the
set of critical points. So

l

ρ∗∫
ρ(0)

dρ

q − f(ρ)
=

T∗(ρ(0))∫
0

dt = T∗ (ρ(0)) . (11)
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Fig. 8. q ≤ q∗ ≤ qmax

Fig. 9. q ≤ qmax ≤ q∗

Let us consider the remaining case qmax < q∗, i.e. q < qmax < q∗. The
main qualitative characteristics of the flow’s behaviour are similar to that
of the previous case, with the only difference that instead of f(ρ) (Fig. 8),
min (f(ρ), qmax) is used (Fig. 9).

4 Problems

4.1 Ring of n Sections

Let us consider unidirectional movement on a ring consisting of n sections
(n > 2,) and l is the section length (Fig. 10).
The following statements are true:

• If C > nC∗/2, C∗ is capacity of a section, then the flow regime becomes
critical in finite time for any initial conditions, except for the case of
stationary points.

• If C < C∗, i.e. flow mass is less than a section capacity, then the movement
is uncritical and converges to the stationary point.

• However, if C∗ < C < nC∗/2, then qualitative characteristics of the flow

depend on its initial conditions ρ̄(0) = (ρ1(0), · · · , ρn(0)) , l
n∑

i=1

ρi(0) = C.
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��

��

l l l
l

. . . .
.

Fig. 10. Ring of n sections

For example, when n = 2m and ρ2i−1(0) = ρ1, ρ2i(0) = ρ2, i = 1, · · · ,m and
the initial conditions are periodic, then the vector ρ̄(t) will be periodic due to
its uniqueness at any point of time t.
Thus, the flow on a ring with 2m sections will be equivalent to the flow on
m rings of 2 sections. Therefore at l (ρ1 + ρ2) < C∗ the movement is ∞-
uncritical, T∗ = ∞, but at l (ρ1 + ρ2) > C∗, except for stationary conditions,
the movement is critical.
The following problems are to be explored: How to describe a flow in the
common case n and at any initial conditions? What are sufficient conditions
for ρ̄(0) at which the flow converts to the critical regime in a finite period of
time?

4.2 Ring of 2 Sections with Control

Another generalization of a ring model of 2 sections is unidirectional move-
ment on a ring of 2 sections with “traffic lights” (Fig. 11). In this model an
alternation of 2 phases is considered. During the first phase, the movement of
particles from one section to another is allowed, and during the second phase
it is prohibited. The flow can be controlled by choosing the length of phases
to prevent the transition to the critical regime.
What other stationary states can be generated and in what ways by using
above described controls?

��

��

l
o
o
o

l
1

2

. ..

Fig. 11. Circular movement with control
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Fig. 12. Crossroads without mixing

4.3 Crossroads

Let us consider the model in Fig. 12. Assume that the edges and main diagrams
of the graph are identical. The input flows have intensities Qi(t), i = 1, 2, 3, 4.
In nodes 1-4 the Boolean control functions Ui(t) are introduced (i = 1, 2, 3, 4)
with Ui(t) = 0, if horizontal movement is allowed, and Ui(t) = 1 if vertical
movement is allowed (Fig. 12).
The problem is in the description of control methods, ensuring uncritical
regimes and fixed intensities of output flows Ri(t), i = 1, . . . , 4.

References

1. A.P. Buslaev, A.V. Novikov, V.M. Prikhodko, A.G. Tatashev, M.V. Yashina:
Stochastical and Imitation Approch to Traffic Movement. (Mir, Moscow 2003)

2. V.N. Lukanin, A.P. Buslaev, A.V. Novikov, M.V. Yashina: Traffic Flows Mod-
elling and the Evaluation of Energy-Ecological Parameters. Part I. Int. J. of
Vehicle Design (2001)

3. V.N. Lukanin , A.P. Buslaev, A.V. Novikov, M.V. Yashina: Traffic Flows Mod-
elling and the Evaluation of Energy-Ecological Parameters. Part II. Int. J. of
Vehicle Design (2001)

4. I. Lubashevski, R. Mahnke, P. Wagner, S. Kalenkov: Phys. Rev. E 66, 016117
(2002).

5. I. Lubashevsky, P. Wagner, R. Mahnke: Eur. Phys. J. B 32, 243–247 (2003)
6. Yu.V. Pokorny, E.N. Povorotova, O.M. Penkin: On spectre of some vector bound-

ary problems. Problems of the qualitative theory differential equations. ed. by
V.M. Matrosov (Nauka, Novosibirsk 1988)

7. S. Nicaise: Some results on spectral theory over networks, applied to nerve im-
pulse transmission. Lecture Notes in Math. 1171, pp. 532–541 (Springer 1985)

8. A.P. Buslaev, A.G. Tatashev, M.V. Yashina: On properties of a class of systems
of non-linear differential equations on graphs. Vladikavkaz Math. J. 4 (2004)

9. A.P. Buslaev, V.M. Prikhodko, A.G. Tatashev, M.V. Yashina: Deterministic-
stochastic flow model. (2005) ArXiv.org/0504139

10. A.P. Buslaev, A.G. Tatashev, M.V. Yashina: Traffic flow stochastic model 2*2
with discrete set of states and continuous time. (2004) ArXiv.org/0405471



Laboratory Experiments with
Nagel-Schreckenberg Algorithm

Thorsten Chmura1,2, Thomas Pitz1,2, and Michael Schreckenberg3

1 Laboratory for Experimental Economics, University of Bonn, 53113 Bonn,
Germany

2 Shanghai Jiao Tong University, Antai School of Managment, Shanghai 200052,
People’s Republic of China

3 Department of Traffic and Transportation, University of Duisburg-Essen

Summary. A new software environment (NETSIM) is presented that can be used
for interactive experimental studies concerning the route-choice behaviour of human
actors in different scenarios. It is also possible to create scenarios in which human
actors interact with software agents. Since the treatments in laboratory experiments
are well controlled, the behaviour of subjects in situations of economically relevant
decision-making can be analysed more thoroughly. We describe an experimental
setup in which the Nagel Schreckenberg Algorithm for vehicle dynamics is used.

1 Introduction

The quality of traffic systems is a decisive factor in the wealth and economic
growth of modern societies. In order to satisfy the need for mobility espe-
cially in areas with a high volume of traffic, current traffic problems have
to be identified and solved without reducing the mobility and location qual-
ity of the economic area. A multitude of insights and methods of solution
have already been presented by different scientific disciplines. Of particular
interest is the development of intelligent traffic information systems [1,2,12].
However, such concepts for transport policy can only be successful if they are
accepted by the traffic participants. It is not yet evident whether more in-
formation for the traffic participants positively influences the traffic flow [3].
Traffic participants who receive too much information tend to build simple
heuristics [10]. Thus, over-reactions can emerge which cause additional fluc-
tuations [3,4,19]. In order to gain a better understanding of such reactions,
it is necessary to study the learning behaviour of traffic participants in more
detail. The insights achieved in such a study should be used to analyse the
effectiveness of technical solutions in advance and thus to avoid cost-intensive
field experiments.
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The understanding of the individual behaviour of traffic participants is essen-
tial for the development and optimisation of intelligent transport and traffic
information systems. While these systems have in part achieved a high tech-
nical standard, the reactions of traffic participants in complex traffic networks
are so far largely unexplored.
Experimental studies [7,8,16,17] concerning the route-choice behaviour of traf-
fic participants in simple scenarios are already available. The behaviour model
developed in these studies formed the basis of multi-agent systems which sim-
ulate the route-choice behaviour of traffic participants. It was possible to show
in simple scenarios that the theory of intensifying learning known from tech-
nical literature [9] is in a slightly modified form suitable for the prediction of
human behaviour.
Due to the initial successes achieved in this field, these investigations concern-
ing route-choice behaviour are to be carried out in more complex and realistic
scenarios. The compilation of data for the analysis of behavioural phenom-
ena is not easy because the reactions of traffic participants to traffic news or
even to new technologies can hardly be estimated and vary strongly between
individuals. In order to cope with this problem, researchers are mainly con-
centrating on two methods at the moment. On the one hand, one attempts
to determine the needs and wishes of car drivers with the help of extensive
surveys. On the other hand, there is the concept to let driving simulators take
route-choice decisions. One investigates the backgrounds of the route-choice
taken with the help of virtual simulations. In the following, the methods and
achieved results shall be shortly summarised and compared with approaches
of Experimental Economic Research.
A simple and cost-saving method is to deduce the reactions of car drivers
to a specific situation with the aid of questionnaires. Studies can be carried
out with several hundreds of test subjects (e.g. [14]), which is a condition for
representative results. Nevertheless, the evaluation of questionnaires is very
time-consuming and in part error-prone. In addition to that, the participants
are not necessarily confronted with a realistic picture of the situation. For
instance, decisions are taken under a high pressure of time during the drive.
This can hardly be simulated in a questionnaire situation.
Critics of the survey method developed route-choice simulators such as IGOR
[5] and VLADIMIR [6] which physically represent a scenario and thus offer
the test subjects a more realistic picture (e.g. [13,5,6]). The development of
such a simulator is time-consuming and expensive. One advantage is that the
results are directly electronically recorded, can be processed easily and are
thus less prone to errors. However, its disadvantage is the lack of interaction
with other traffic participants. This is completely neglected so that learning
processes in a changing environment cannot be analysed.
Experimental Economics is an empirical discipline whose data basis is gener-
ated in fundamentally replicable experimental sessions. In these sessions, test
subjects are confronted with an economically relevant situation, e.g. a negoti-
ation situation, a simulated market or a modelled traffic situation. In order to
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Toolbox
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Fig. 1. Architecture of NETSIM, with 2 agents and 2 human players.

ensure appropriate incentive structures, the test subjects are paid in relation
to their performance. Success does not only depend on one’s own decisions
but also decisively on the interaction with other participants.
Of particular importance is the analysis of learning behaviour in recurring
similar decision-making situations. In the case of traffic sciences, one could for
instance consider the daily drive to work during which the person in question
can choose between two alternative routes. Several books about experiments
concerning route-choice behaviour are already available [4,11]. Additionally,
route-choice experiments in simple scenarios in which the test subjects were
paid in a performance-related way were analysed in the context of a BMBF
research project [16,17,18].
In order to analyse more complex and realistic scenarios, we have developed
NETSIM as a software environment that can be used for interactive experi-
mental studies of the route-choice scenario with (and without) the behaviour
of human actors. The simulated traffic flow is calculated by a server. It is pos-
sible to create scenarios in which human actors interact with software agents.
Since the treatments in laboratory experiments are well controlled, the be-
haviour of subjects in situations of economically relevant decision-making can
be analysed more thoroughly. Figure 1 shows an example with two agents and
two human players.

2 Simulation Model

This paper gives a report of an experimental setup with a microsimulation
transition model for the cars on the roads. The traffic flow was simulated by
a cellular automaton as described in the following subsections dealing with
different models. The roads are represented by an array of length L. The
velocity v of each car is an integer with 0 ≤ v ≤ vmax. The gap of a car is
equal to the number of empty cells in front of it. In each period, each car
moves according to the following rules [15]:
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Definition (Nagel Schreckenberg Algorithm):

• Acceleration: If v < vmax and the gap is less than v + 1, the velocity
increases by 1 [v → v + 1].

• Slow down: If the gap g of a car is less than v + 1 (v + 1 < g) the car
slows down to v′ = g. [v → g].

• Random velocity change: With probability p, the velocity v (if v > 0)
decreases by 1 [v → v − 1].

• Each car moves v cells forward.

The Nagel-Schreckenberg model is used to describe emergent effects like traffic
jams in traffic networks.

3 Experimental Setup

In this paper, we focus on the route-choice in a generic two route scenario,
which has already been investigated previously (e.g. [11,16,17]).
Subjects are informed that in each of k trips they have to make a choice
between a main road M and a side road S for travelling from A to B. If a car
reaches B, the actor who sent this car receives the value of its travel time.
After the subject has chosen a road, the car moves on that road from A to
B. For the calculation of the travel time of the cars, we used the simulation
algorithm described in section 2. The simulations produce emergent effects
like traffic jams. The subject was given different information about the past
and current traffic scenarios. Therefore, the reactions to this information could
be tested in a well controlled environment.
We report an experimental setup with 18 subjects in each session. These
subjects are told that S is longer than M. In the experiment, the length of
road M was 60 and the length of road S was 90 cells. After a subject has got
a car, he or she has a limited time of 20 sec. to come to a decision and send
his or her car either on road M or road S. If the limited time passes without
the subject’s taking a decision, his or her car will automatically be sent to a
by-pass with a substantially higher travel time.
Four experiments with 6 sessions were played. The travel time in the exper-
iments was calculated by the Nagel Schreckenberg algorithm. The subjects
receive the following information about each of their cars on their computer
screens:

• Number of the car
• Chosen Road
• Travel Time
• Payoff (depends on the travel time)
• Only in experiment II: Average travel time of the last 5 cars (distributed

over all players) which passed L
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Technical Background:

In each session, one ”simulated day” was played. A ”simulated day” is divided
in 5 periods which differ in the volume of traffic:

I. Low volume of traffic L
II. High volume of traffic H
III. Low volume of traffic L
IV. High volume of traffic H
V. Low volume of traffic L.

One day with 24 hours is listed in the following table (Fig. 2). In this model,
each of the 18 players got 17 cars per day.

Fig. 2. Traffic volume per simulated day.

Algorithm: Allocation of the Cars

To ensure that each of the players got exactly 17 cars, the set of 18 players
was divided in 2 groups G and H with 9 players each. Each of the players is
chosen randomly and allocated a new car which has to be sent by the player
to one of the two roads.
In Fig. 3 (Fig. 4), 20 (32) periods of a part with high (low) traffic are shown.
In this part, each of the 18 players was activated exactly one time. One cell
represents one period in the transition algorithm. In one period, each car on
the two roads moves exactly one time according to the transition algorithm.
In the programme, the length of one period was 4 sec.
The decision time of each player is shown by 5 horizontally connected cells
with a grey margin. Therefore, in the experiments the length of the decision
time of each player was 20 sec.
In cells marked with letter G (H), players from group G (or H respectively)
are activated to take their decision. From period 1 (8) to period 13 (20), each
player of group G (H) was randomly activated exactly one time.
If a player overruns the decision time, his car is automatically sent to a by-
pass with substantially higher travel time. If the player chooses a road during
his decision time, his car is sent to a pool. If there are more than 5 cars in
the pool, his car is also sent to the bypass. All the cars in the pool are sent
fifo to the chosen road. The cars on the road move according to the transition
algorithm to the end of the road. If a car reaches its destination, the player
receives information about its travel time.

4 Experimental Results

Figure 5 shows a typical session with the Nagel Schreckenberg algorithm. The
x-axis represents the periods when a car is entering the road. The length
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Fig. 3. Section with high traffic

Fig. 4. Section with low traffic

of the vertical bars below (above) is the travel time of a car on the longer
side (shorter main) road. The bars above the period axis refer to cars on the
shorter main road and the bars below refer to cars on the longer side road.
One can see in the table in Fig. 6 that in each session the players prefer to
choose the shorter main road. In Fig. 5, one can see that in the first periods
the travel time on the shorter main road is lower because there are only a
few cars on the road. Due to an overreaction of the players, the average travel
time on the shorter main road is higher than that on the side road.
In each experiment except for one, the travel time on M is higher than on
S but in experiments with traffic information, the travel time on the main
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Fig. 5. Typical session in experiment I.
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Fig. 6. Experiment I and II with Nagel Schreckenberg Algorithm.

road is even significantly higher. The null-hypothesis could be rejected by a
Wilcoxon-Mann-Whitney-Test on the significance level of 5% (one-sided). One
can still find this relation when one compares the mean travel time on both
roads. On the side roads, we cannot verify a significantly differing travel time.
The first assumption was that in experiments with information, players chose
the main road less often. But as you can see, the players preferred the main
road also in experiments with information. In fact, we could not verify a
significant difference between the frequencies of the roads chosen.
However, we notice a small but significant difference in the mean intervals of
the road entry times of the cars on M. The higher mean interval of road entry
times on M in Experiment II causes the distribution of the cars on the main
road to be more effective.
We find the contrary relation on the side road. Nevertheless, the road entry
time is not low enough to significantly increase the travel time on S. One can
also exemplify the relation between the mean travel time on M and the mean
interval of the road entry time by the following scatter diagram (Fig. 7).

Fig. 7. Scatter diagram: Travel time vs. road entry.
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5 Conclusion

We have described an experimental setup that can be used for interactive
studies of the route-choice behaviour of human actors in different scenarios.
We have shown that with this software, it is also possible to create scenarios
in which human actors interact with software agents. Since the treatments in
laboratory experiments are well controlled, the behaviour of subjects in sit-
uations of economically relevant decision-making can be analysed more thor-
oughly. In the future, we will run the laboratory experiments with the two
transition models in which human participants will play against agents.
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Traffic Flow: Theory



Phase Transitions in Stochastic Models of Flow

Martin R. Evans

SUPA, School of Physics, The University of Edinburgh,
Mayfield Road, Edinburgh EH9 3JZ, Scotland

Summary. In this talk I will review some very simple models of nonequilibrium
systems known as the ‘Asymmetric Exclusion Process’ and the ‘Zero-Range Process’.
These involve particles hopping stochastically on a lattice and thus form stochas-
tic models of flow. Systems driven out of equilibrium can often exhibit behaviour
not seen in systems in thermal equilibrium - for example phase transitions in one-
dimensional systems. I shall show how examples of such transitions may be inter-
preted as jamming transitions in the context of traffic flow. More generally I shall
discuss other instances of the condensation transition which is the phenomenon of
a finite fraction of the driven conserved quantity condensing into a small spatial re-
gion. Criteria for the occurrence of condensation may be formulated and the detailed
properties of the condensate such as its fluctuations have recently been elucidated.

1 Introduction

In this talk I shall discuss some very simple models of stochastic flow of of
particles, which can be thought of as representing granular flow or vehicular
traffic or even as biophysical entities such as molecular motors. These models
have been studied from a theoretical viewpoint with the aim of elucidating
the properties of nonequilibrium systems, which I shall discuss further below.
However it is encouraging to note that the models have more recently been
applied in a number of contexts reported in this conference (see for example
the talk of D. Chowdhury [1] at this meeting).
First let me review what is meant by a nonequilibrium system by contrast-
ing with the idealisation of an equilibrium system in which: i) a system has
reached a state in which its properties are stationary in time ii) the system
is in equilibrium with its environment with respect to exchange of energy or
particles or volume. These conditions are rarely met and a system will be
nonequilibrium by virtue of: i) not yet having stationary properties and re-
laxing towards thermal equilibrium ii) being stationary but being held away
from thermal equilibrium. In the latter case the system is driven by its en-
vironment rather than being in equilibrium with it. The steady state of the
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system will usually not be described by Gibbs-Boltzmann statistical weights,
rather it will be a nonequilibrium steady state.
A well studied class of systems with nonequilibrium steady states are those
with a conserved quantity driven through the system. The presence of a cur-
rent within the steady state ensures that detailed balance is not satisfied. Such
systems are known as driven diffusive systems [2, 3].
In order to illustrate how phase separation can trivially occur even in one-
dimensional nonequilibrium systems let us consider a very simple example
which serves to illustrate the class of models to be discussed in the rest of
this paper. The significance is that separation is precluded in one-dimensional
equilibrium systems under quite general conditions.
In this example studied in [4] particles hop forward stochastically on a one-
dimensional lattice with periodic boundary conditions. An exclusion interac-
tion implies that no two particles can occupy the same site. The hopping rates
between neughbouring sites is unity except for one ‘defect bond’ where the hop
rate is r < 1—see Fig. 1. This bond could be thought of as an obstruction or
bottleneck in a traffic flow scenario. For low enough global density of particles
one finds a traffic jam or high density region of particle behind the defect and
a low density region in front of the defect. Thus very simply we see that the
defect can induce phase separation into two macroscopic regions of different
density in this driven system. Also note that further around the lattice the
high density and low density regions must meet and at this point there will
be shock which is a sharp change in density over a microscopic distance. A
related system would be where there is one defect particle which hops more
slowly than the rest. Again, for low enough global density of particles one
expects a traffic jam behind the slow particle, hence phase separation. As we
shall see in the next section this mobile-defect system has a steady state that
one can solve exactly.

1 r 1

High density region Low density region
defect bond

(obstruction)

Fig. 1. A simple driven system illustrating phase separation into high density and
low density region. Periodic boundary conditions by the dashed region are indicated
and one would find a ‘shock’ where the high density region meets the low density
region further around the lattice in the dashed region.
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1.1 Types of Stochastic Dynamics

It is useful to make a brief digression to discuss the different types of stochastic
dynamics and how one implements these in a stochastic simulation [5].
Let us consider a model where a particle may hop forward stochastically if
the site in front is empty

in ∆T with probability p∆T (1)

A system of such hopping particles with at most one particle per site is known
as an Exclusion Process. The continuous time limit is ∆T → 0 then p becomes
the hopping rate of a particle. In this limit at most one hopping event occurs
in each time ∆T . Note that the rate can be greater than one. The implemen-
tation of continuous time dynamics can be done through a random sequential
algorithm. Here a particle is picked at random and then it hops forward (if an
empty site is available) with relative probability prel. Let us illustrate what
is meant by relative probability by considering a more complicated situation
where there is an additional process which may occur as well as hopping for-
ward with rate p. To be specific let us consider annihilation of the particle
with rate a. Then to simulate both the processes one would choose the ratio
of the relative probabilities for the two events to be prel/arel = p/a and the
sum of the two relative probabilities to be unity prel + arel = 1. The latter
condition ensures that an event occurs when the particle is randomly selected,
thus economising on random numbers. The time between updates corresponds
(on average) to ∆T = prel

p
1
M where M is the total number of particles.

An alternative implementation of continuous time dynamics is to use a ran-
dom number to generate the time to the next event. This is particlularly
convenient in more complicated systems when certain rates which effectively
control the system become very small. Such an algorithm is variously known as
‘continuous time Monte Carlo’ [5], BKL algorithm [6], Gillespie algorithm [7]
or even ‘kinetic Monte Carlo’.
On the other hand in many simulations of granular material and traffic flows
discrete time is favoured. In this case many events can happen in the same
update e.g. many particles can hop forward simultaneously. Setting the time
between updates as ∆T = 1 then implies that p ≤ 1. The case p = 1 corre-
sponds to a deterministic limit where particles hop forward if an empty site
is available. In this limit features not supported in the stochastic case may
appear. For example in an exclusion process under parallel dynamics in the
deterministic limit and for low enough density, a configuration of particles
where each particle has an empty site ahead will be an absorbing state.

2 The Zero-Range Process

The Zero-Range Process (ZRP) was introduced some years ago by Spitzer [8]
and recent interest has been reviewed in [9, 10]. In this section we define the



450 Martin R. Evans

model and present results for the steady state (more detail can be found in [9]).
In later sections I will review more recent results obtained in collaboration
with Satya Majumdar and Royce Zia.
To begin with we consider a one-dimensional lattice of N sites with sites la-
belled i = 1 . . . N and periodic boundary conditions (site N+1= site 1). Each
site can hold an integer number of indistinguishable particles. The configu-
ration of the system is specified by the occupation numbers mi of each site
i. The total number of particles is denoted by M and is conserved under the
dynamics. The dynamics of the system is given by the rates at which a particle
leaves a site i (one can think of it as the topmost particle—see Figure 2a) and
moves to the left nearest neighbour site i−1. The hopping rates u(m) are a
function of m the number of particles at the site of departure. Some particular
cases are: if u(m) = m then the dynamics of each particle is independent of
the others; if u(m) = const for m > 0 then the rate at which a particle
leaves a site is unaffected by the number of particles at the site (as long as it
is greater than zero).
As illustrated in Figure 2 there exists an exact mapping from a ZRP to an
asymmetric exclusion process, which as discussed above is a driven system
where there is at most one particle per site. The idea is to consider the particles
of the ZRP as the holes (empty sites) of the exclusion process. Then the sites
of the ZRP become the moving particles of the exclusion process. Note that in
the corresponding exclusion process we have M particles hopping on a lattice
of M +N sites. A hopping rate in the ZRP, u(m), which is dependent on m
corresponds to a hopping rate in the exclusion process which depends on the
length of the gap to the particle in front. So the particles can feel each other’s
presence and one can have a long-range interaction.
The important attribute of the ZRP is that it has a factorised steady state.
By this it is meant that the steady state probability P ({mi}) of finding the

a)

1 2 3 4

u(3)

u(1)

1 2 3 4

site

particle

u(1)

u(3)u(1) u(1)b)

Fig. 2. Mapping between the zero-range process and the asymmetric exclusion
process
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system in configuration {m1,m2 . . .mN} is given by a product of factors f(mi)
along with a constraint which fixes

∑
imi = M

P ({mi}) =
1

Z(M,N)

N∏
i=1

f(mi)δ
(∑

i

mi −M
)
. (2)

Here the normalisation Z(M,N) is introduced so that the sum of the proba-
bilities for all configurations, with the correct number of particles M , is one:

Z(M,N) =
∑

m1,m2...mN

δ
(∑

i

mi−M
) N∏

i=1

f(mi) (3)

The normalisation may usefully be considered as the analogue of a canonical
partition function of a thermodynamic system [11]. One may conveniently
compute (3) numerically by using the recursion

Z(M,N) =
M∑

m=0

f(m)Z(M −m,N − 1) . (4)

It is important to realise that due to the constraint of fixed particle number
the single-site weight f(m) is not the same as the single-site mass probability
distribution p(m) which would be calculated as

p(m) =
f(m)Z(M −m,N − 1)

Z(M,N)
. (5)

In other words, although the steady state factorises, the constraint of fixed
particle number still induces correlations between sites.
In the basic model described above, f(m) is given by

f(m) =
m∏

n=1

1
u(n)

for m ≥ 1

= 1 for m = 0 (6)

To prove (2,6) one simply considers the stationarity condition on the proba-
bility of a configuration (probability current out of the configuration due to
hops is equal to probability current into the configuration due to hops):∑

i

θ(mi)u(mi)P (m1 . . .mi . . .mN ) =

∑
i

θ(mi)u(mi+1+1)P (m1 . . .mi−1,mi+1+1 . . .mN ) . (7)

The step function θ(mi) highlights that it is the sites with m > 1 that allow
exit from the configuration (lhs of (7)) but also allow entry to the configuration
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(rhs of (7)). It is straightforward to show that (7) is satsified when the steady
state is of the form (2) [9].
We can easily generalise to consider an heterogeneous system by which we
mean that the hopping rates are site dependent: the hopping rate out of site
i when it contains mi particles is ui(mi). It is easy to check that the steady
state still factorises and the single-site weights are simply modified to

fi(m) =
m∏

n=1

1
ui(n)

for m ≥ 1 . (8)

We now return to the motivation for studying the ZRP. Firstly there exist
some exact mappings of particular nonequilibrium systems onto the ZRP. Ex-
amples include the repton model of polymer dynamics under periodic bound-
ary conditions [12]; the drop-push model for the dynamics of a fluid moving
through backbends in a porous medium [13]; clustering in shaken granular
gases (which furnishes a pleasing experimental example of condensation phe-
nomemon to be discussed in section 3); the exchange of monomers between
protein filaments [14]; cluster-cluster aggregation in surface growth [19].
More generally, however, one may think of the sites of the ZRP as represent-
ing domains of some driven system—this is most natural within the exclusion
process interpretation of the ZRP (Figure 1). The domains may have some
internal structure, for example further degrees of freedom, but this is all in-
tegrated out, and one is left with an effective dynamics of exchange of length
between domains. An early example of this use of the ZRP was in the context
of the Bus Route Model [17]. By using the ZRP as the effective description,
a general criterion for phase separation in one-dimensional driven systems
has been developed [15, 16]. Within this description phase separation is man-
ifested by the emergence of one large domain and this corresponds to the
phenomenon of condensation in the ZRP which we now discuss.

3 Condensation Transitions

A class of phase transitions which may occur in models such as the ZRP is that
involving spatial condensation, whereby a finite fraction of the constituent
particles condenses onto the same site [17–19]. Of particular interest is the
fact that transitions may occur in one-dimensional systems and that for a
factorised steady state one may analyse the transition exactly.
To analyse the condensation transitions which may occur it is simplest to use
the grand canonical distribution where pi(n) is approximated by

pi ∝ znfi(n) (9)

and the fugacity z is fixed by the equation for the average density ρ = M/N

ρ =
1
N

∑
i

〈mi〉 where 〈mi〉 =
∑

n

mpi(n) (10)



Phase Transitions in Stochastic Models of Flow 453

In the thermodynamic limit

N → ∞ with M = ρN , (11)

where the density ρ is held fixed, one expects the grand canonical distribution
to be exact if one can solve for z. Thus the condensation mechanism reduces
to the question of whether one can satisfy (10). Although there are some
subtle differences between the heterogeneous and homogeneous cases to be
described below, the basic mechanism is as follows. First note that each 〈mi〉 is
a monotonically increasing function of z. Thus as ρ increases the required value
of z increases. However there is a maximum value that z can take so that 〈mi〉
converges. If at the maximum value of z (10) takes a finite value ρc = ρ(zmax),
then for ρ > ρc (10) cannot be satisfied and we have condensation. We expect
the excess number of particles N(ρ− ρc) to condense onto a single site.

1 10 100 1000 10000
ln n

1e-12

1e-09

1e-06

0.001

ln
 p

(n
)

Fig. 3. ln-ln plot of the single-site distribution p(n) vs. particle number n. The data
are obtained by iterating the recursion relation (4) for ZL,N for L = 1000 and b = 5.
The circles represent ρ = 1/4 where the system is in the fluid phase; the diamonds
represent ρ = 4 where the system is in the condensed phase.

3.1 Heterogeneous Case

To give an idea of how a condensation transition may occur we consider the
case ui(m) = ui for m > 0 i.e. the hopping rate does not depend on the
number of particles at a site. In this case fi is given by

fi(m) =
(

1
ui

)m

. (12)
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The mapping to an ideal Bose gas is evident: the M particles of the ZRP are
viewed as Bosons which may reside in N states with energies Ei determined by
the site hopping rates: exp(−βEi) = 1/ui. Thus the ground state corresponds
to the site with the lowest hopping rate. We can sum a geometric series to
calculate 〈mi〉 = z/(ui − z) then taking the large N limit allows the sum over
i to be written as an integral

ρ =
∫ ∞

umin

duP(u)
z

u− z
(13)

where P(u) is the probability distribution of site hopping rates with umin the
lowest possible site hopping rate. The maximum allowed value of z is then
umin. Interpreting P(u) as a density of states, equation (13) corresponds to
the condition that in the grand canonical ensemble of an ideal Bose gas the
number of Bosons per state is ρ. The theory of Bose condensation tells us that
when certain conditions on the density of low energy states pertain we can
have a condensation transition. Then (10) can no longer be satisfied and we
have a condensation of particles into the ground state, which is here the site
with the slowest hopping rate.
A very simple example is to have just one ‘slow site’ i.e. u1 = p < 1 while the
other N−1 sites have hopping rates ui = 1 when i > 1. Using the mapping to
an exclusion process (see Fig. 2), this corresponds to one slow particle. One
can show [20, 21] that for a high density of particles in the ZRP (low density
of particles in the corresponding asymmetric exclusion process) we have a
condensate since site 1 contains a finite fraction of the particles. In the low
density phase the particles are evenly spread between all sites.
A simple interpretation of heterogeneous condensation in a traffic flow context
is to think of the slow particle of the exclusion process as a slow vehicle such
as a tractor or agricultural vehicle. Then, in a city situation where the density
of vehicles is high the fact that the vehicle is slow does not limit its speed
rather it is the high density of traffic. However, with a lower overall density of
traffic e.g. on a country road the slow vehicle will limit the flow of the traffic
and a traffic jam will be generated behind the slow vehicle and empty road
ahead. This corresponds to the condensed phase.

3.2 Homogeneous Case

We now consider the homogeneous ZRP where the hopping rates u(m) are
site independent. Then 〈mi〉 is independent of i and (10) reads

ρ = 〈m〉 ∝
∑
m

mzmf(m) (14)

Let us take for example u(m) = β(1+γ/m) so that the hopping rate decreases
to an asymptotic value β as the mass at the site increases. In this case one
can show from (6) that f(m) behaves for large m as
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f(m) ∼ β−mm−γ (15)

and the maximum allowed value of z is zmax = β.
Then to have condensation we require that (14) is finite for z = β which im-
plies that

∑
mm1−γ is convergent and therefore γ > 2. Thus the condition for

condensation is simply that u(m) decays to β more slowly than β(1 + 2/m).
Note that in the homogeneous system the particle excess N(ρ−ρc) condenses
onto a spontaneously selected site. Therefore there is a spontaneoous symme-
try breaking associated with the transition. The condensation mechanism is
also different from the heterogeneous (or Bose-Einstein) case in that one can-
not access the condensed phase by taking z ↗ zmax in a system size dependent
way.
A simple interpretation of homogeneous condensation in a traffic flow context
is to think of the particles of the exclusion process as buses and the sites as
bus stops [17]. Then, the movement of a bus between bus stops is slower when
the distance to the next bus ahead is large simply because there will be more
passengers waiting at the bus stop. this corresponds to u(n) decreasing with
n. Condensation then corresponds to the buses clustering together into a large
jam with stops empty of buses (and full of waiting passengers) lying ahead.

4 General Mass Transport Model

So far we have considered the ZRP and taken advantage of the fact that it has
a factorised steady state. Actually there are some other models known to have
factorised steady states for example the Asymmetric Random Average Process
(ARAP) [22–24] which has been used a simple model for force propagation
in granular media and traffic flow. In that case sites contain a quantity of
mass that is a continuous rather than discrete variable and the dynamics is a
discrete time updating where

mj(T + 1) = (1 − rj(T ))mj(T ) + rj−1(T )mj−1(T ) (16)

Here rj(T ) is a random number between 0 and 1. Thus at an update a random
fraction rj(T ) of the mass at site j is transferred to the neighbouring site
ahead. The steady state factorises if the distribution of r has the form of a
Beta distribution ∼ rp(1 − r)q.
A natural question is under what conditions does a model obtain a factorised
steady state? To answer this we will consider a general mass transport model
where the mass may be continuous and also time is discrete (the cases of
discrete mass and continuous time may be considered as special limits) [25].
Thus we consider a one-dimensional lattice of N sites with periodic boundary
conditions: associated with each site is a mass mi which is most generally a
continuous variable. The total mass is given by M =

∑N
i=1mi. The dynamics

is as follows: in each time-step, at each site i, mass µi drawn from a distribution
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φi(µi|mi) ‘chips off’ the mass mi, and moves to site i − 1. Thus the master
equation reads

PT+1({m}) =
N∏

i=1

∫ ∞

0

dm′
i

∫ m′
i

0

dµi φi(µi|m′
i)

N∏
j=1

δ(mj −m′
j + µj − µj+1)PT ({m′}) .(17)

We show in [25] that a necessary and sufficient condition for the steady state
to factorise is

φi(µ|m) =
v (µ)wi (m− µ)

[v ∗ wi] (m)
, (18)

in which case the single-site steady-state weights are given by

fi (m) = [v ∗ wi] (m) ≡
∫ m

0

dµ v (µ)wi (m− µ) . (19)

Here v and wi are arbitrary functions but v must be the same for each site.
Note that φi(µ|m) factorises into a function of the mass which moves, v(µ),
and a function wi(σ) of the mass which stays, σ = m− µ.
Let us stress that this simple condition (18) determines a very general class of
mass transport models with factorised steady states. This class encompasses
both continuous and discrete mass, as well as parallel and random sequen-
tial dynamics. This approach provides a unified perspective of all previously
known models and includes the ZRP and the ARAP as special cases [26].
Although (18) is appealingly simple it is not an explicit test in that given a
particular φ(µ|m) it may not be obvious if it is of the form (18). Happily a sim-
ple explicit test for factorisation for any given φ(µ|m) can easily be obtained
from (18) as explained in [26].

5 The Nature of the Condensate

In section 3.2 for homogeneous condensation we noted that the grand canon-
ical distribution can only describe the system in the fluid (non-condensed)
phase. In order to analyse the condensate (corresponding to the ‘bump’ in
p(n) in Figure 3) one needs to calculate Z(M,N) within the canonical ensem-
ble rather than grand canonical i.e. to evaluate (3). A full analysis has recently
been accomplished [27, 28] by writing (3) as a contour integral and evaluating
the integral in the large N limit. Furthermore for some special cases an exact
closed form has been obtained for all system sizes [27, 28]. Some properties of
p(n) in the canonical ensemble have also been calculated in [29].
Here we will present a simple picture where the shape and fluctuations of the
condensate bump can be predicted from the properties of sums of random
variables.



Phase Transitions in Stochastic Models of Flow 457

Z(M,N) =
∫ ∞

0

dm1

∫ ∞

0

dm2 . . .

∫ ∞

0

dmNf(m1)f(m2) . . . f(mL)δ(
∑

i

mi−M)

(20)
Without loss of generality we can let∫ ∞

0

dmf(m) = 1 (21)

which allows us to interpret f(m) as the probability distribution for the jumps
of a random walker taking only positive steps. Then Z(M,N) is simply the
probability that a walker taking positive jumps with distribution f(m) reaches
M after N jumps.
Now let us assume∫ ∞

0

dmmf(m) = µ1 <∞ i.e. f(m) ∼ m−γ (γ > 2) (22)

Then if Nµ1 > M the jumps are typically all O(1) whereas if Nµ1 < M
then (20) will be dominated by trajectories of the walker where one jump is
O(M −Nµ1). This single extensive jump corresponds to the condensate
Further one can calculate the condensate fluctuations which are given by the
fluctuation of the large jump. Denoting the large jump by mcond one deduces
that if γ > 3, ∆mcond ∼ N1/2 whereas if 3 > γ > 2 ∆mcond ∼ N1/(γ−1).
Therefore for γ > 3 we have gaussian fluctuations and a normal condensate
whereas for 3 > γ > 2 we have anomalous fluctuations.
A schematic phase diagram in the ρ–γ plane showing the fluid phase, anoma-
lous condensate and normal condensate is illustrated in Fig. 4.

2 3 4
0

20

FLUID PHASE

ANOMALOUS
CONDENSATE

NORMAL
CONDENSATE

Fig. 4. Schematic phase diagram in the ρ–γ plane. The full line represents the
critical density ρc(γ).

Consider a system with continuous mass for which
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6 Further Developments in Theory of Condensation

As a conclusion let us mention some recent developments in the study of
the ZRP. Firstly, one can generalise the ZRP to contain two or more species
of particle whose hop rates are function of the number of particles of each
species at the departure site. Under certain conditions on these hop rates a
factorised steady state is obtained [30, 31]. The multispecies system allows
new condensation mechanisms whereby one species can induce condensation
in the other [32].

l l+1l 1

n

m

v(n,m)

u(n,m)

Fig. 5. A two species ZRP with hop rates v(m, n) to the left for one species and
u(m, n) to the right for the other.

Secondly, the dynamics of condensation has been of considerable interest.
Starting from some random initial condition a coarsening process ensues from
which a single condensate ultimately emerges. A variety of approaches have
been used to study this process both for heterogeneous condensation [21], [33]
and homogeneous condensation [34–36]. Also in the case of homogeneous con-
densation the ‘flip time’ for the condensate to dissolve and reform on another
site has been calculated in [29].
Finally let us mention that since the ZRP is used to model systems of ‘meso-
scopic size’ it would be of interest to have a detailed and general analysis of
the finite size effects associated with the condensation mechanisms.
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D–52425 Jülich, Germany; r.harris@fz-juelich.de

1 Introduction

The development of traffic jams in vehicular flow is an everyday example
of the occurence of phase separation in low–dimensional driven systems, a
topic which has attracted much recent interest [1–4]. In [5] the existence of
phase separation is related to the size-dependence of domain currents and a
quantitative criterion is obtained by considering the zero-range process (ZRP)
as a generic model for domain dynamics. We use zero-range picture to study
the phase separation in traffic flow in the spirit of the probabilistic (master
equation) description of transportation [6]. Significantly, we find [7] that prior
to condensation studied in previous works [8, 9] the system can exist in a
homogeneous metastable state and we provide estimates of critical cluster size
and mean nucleation time. Finally, we calculate the fundamental flux-density
diagram which includes a metastable branch. Metastability and hysteresis
effects have been observed in real traffic [10, 11]. For previous work focusing
on the description of jam formation as a nucleation process, see [12, 13].

2 The Model

We consider a model of traffic flow, where cars are moving along a circular
road. We divide the whole road of total length L into cells of size �. Each
cell can be either empty or occupied by a car. In distinction to most cellular
automaton models, we consider the development of our system in continuous
time. The first car in each cluster (uninterrupted string of n occupied cells)
is allowed to move forward by one cell with transition rate wn. This model
can be directly mapped to the zero-range process (ZRP) (see also [1]). Each
vacancy (empty cell) in the original model is related to a box in the zero-range
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model. The number of boxes is fixed, and each box can contain an arbitrary
number of particles (cars), which is equal to the size of the cluster located
to the left (if cars are moving to the right) of the corresponding vacancy
in the original model. If this vacancy has another vacancy to the left, then
it means that the box is empty. Since the boundary conditions are periodic
in the original model, they remain periodic also in the zero-range model. In
this representation, one particle moves from a given box to the right with
transition rate wn, which depends only on the number of particles n in this
box. Our choice

wn = w∞ (1 + b/nσ) for n ≥ 2 , (1)

is motivated by the slow-to-start effect — the longer a car has been stationary
the larger the probability of a delay when starting (cf. [14–17]). The transition
rate w1 is given separately as a constant describing the freely moving cars,
whereas wn with n ≥ 2 represents the escaping from a jam of size n.

3 Master Equation

In the grand canonical ensemble where the total number of particles is allowed
to fluctuate, the stationary distribution over the cluster–size configurations is
the product of independent distributions for individual boxes [18, 19]. Assum-
ing this product ansatz also in the dynamics, one arrives at the mean-field
master equations [4]

∂tP (n, t) = 〈w〉P (n− 1, t) + wn+1P (n+ 1, t) − [〈w〉 + wn]P (n, t) (n ≥ 1),
∂tP (0, t) = w1P (1, t) − 〈w〉P (0, t) , (2)

where 〈w〉(t) =
∑∞

k=1 wkP (k, t) is the mean inflow rate in a box. The above
mentioned factorisation is an exact property of the stationary state of the
grand canonical ensemble or, alternatively, of an infinitely large system [18].
Hence, in these cases, the master equations (2) give the exact stationary state
while providing a mean–field approximation to the dynamics of reaching it.
The stationary solution P (n) corresponding to ∂P (n, t)/∂t = 0 can be found
recursively, starting from n = 0. It yields the known result [4, 18, 19]

P (n) = P (0) 〈w〉n
n∏

m=1

1
wm

(3)

for n > 0, where P (0) is found from the normalisation condition.
Denoting by M the number of boxes, which corresponds to the number of
vacancies in the original model, the mean number of cars on the road is given
by 〈N〉 = M〈n〉, where 〈n〉 =

∑∞
n=1 nP (n) is the average number of particles

in a box. Note that in the grand canonical ensemble the total number of cars
as well as the length of the road L fluctuate. For the mean value, measured
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in units of �, we have 〈L〉 = M + 〈N〉, and the average density of cars is
c = 〈N〉/〈L〉 = 〈n〉/(1 + 〈n〉). Hence, we have the following relation

c

1 − c
=

[ ∞∑
n=1

n〈w〉n
n∏

m=1

1
wm

]
×
[
1 +

∞∑
n=1

〈w〉n
n∏

m=1

1
wm

]−1

(4)

from which the stationary mean inflow rate 〈w〉 can be calculated at a given
average density c.
If σ > 1 in (1), as well as for b ≤ 2 at σ = 1, Eq. (4) has a solution for any
density 0 < c < 1. This implies that the homogeneous phase is stable in the
whole range of densities, i. e., there is no phase transition in a strict sense. If
σ < 1, as well as for b > 2 at σ = 1, 〈w〉/w∞ reaches 1 at a critical density
0 < ccr < 1, and there is no physical solution of (4) for c > ccr. This means
that the homogeneous phase cannot accommodate a larger density of particles
and condensation takes place at c > ccr. This behaviour underlies the known
criterion for phase separation in one–dimensional driven systems [5].

4 Metastability

Suppose that at the initial time moment t = 0 the system is in a homoge-
neous state with overall density slightly larger than ccr. Here we study the
development of such a state in the mean–field approximation provided by (2).
With this initial condition, the mean inflow rate in a box 〈w〉 is slightly larger
than that at c = ccr, i. e., 〈w〉 = w∞ + ε holds with small and positive ε.
Hence, only large clusters with wn < w∞ + ε have a stable tendency to grow,
whereas any smaller cluster typically (except a rare case) fluctuates until it
finally dissolves. In other words, the initially homogeneous system with no
large clusters can stay in this metastable supersaturated state for a long time
until a large stable cluster appears due to a rare fluctuation.
Neglecting the fluctuations, the time development of the size n of a cluster is
described by the deterministic equation dn/dt = 〈w〉 −wn. According to this
equation, the undercritical clusters with n < ncr tend to dissolve, whereas the
overcritical ones with n > ncr tend to grow, where the critical cluster size ncr

is given by the condition 〈w〉 = wncr
. Using (1) yields

ncr 	
(

b

〈w〉/w∞ − 1

)1/σ

. (5)

Assuming that the distribution of relatively small clusters contributing to
〈n〉 is quasi–stationary, i. e., that the detailed balance (equality of the terms
in (2) describing opposite stochastic events) for these clusters is almost reached
before any cluster with n > ncr has appeared, we have

c

1 − c
	
[

ncr∑
n=1

n 〈w〉n
n∏

m=1

1
wm

]
×
[
1 +

ncr∑
n=1

〈w〉n
n∏

m=1

1
wm

]−1

(6)
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[instead of (4)] relating the current 〈w〉 in (5) to the density c. The critical
cluster size ncr is found numerically by solving (5) and (6) consistently.
Based on the mean-field dynamics we have evaluated the mean (nucleation)
time, which the system spends in the metastable state, as the first passage
time to reach the overcritical cluster size ncr +1 in one of the boxes. Assuming
an exponential form for the first passage time distribution P(t) ∼ exp (−wesct)
in one box, where wesc is the escaping rate from the region n ∈ [0, ncr], we
arrive at a very simple expression

〈T 〉M 	 〈T 〉1/M (7)

relating the mean first passage time (or nucleation time) to reach the over-
critical cluster size ncr + 1 in a system of M boxes (〈T 〉M ) with that of one
box. The latter can be calculated easily by the known formula [20]

〈T 〉1 =
ncr∑
n=0

[
〈w〉P̃ (n)

]−1 n∑
m=0

P̃ (m) , (8)

where P̃ (0) = 1 and P̃ (n) =
∏n

k=1(〈w〉/wk) with n > 1 represent the un-
normalised stationary probability distribution. Since the exponential decay of
the first passage time distribution is a long–time behaviour, the estimate (7)
is valid only for large enough mean nucleation times 〈T 〉M .
Further on we have assumed w∞ = 1/τ∞ = 1 by choosing the time constant
τ∞ as a time unit. We have tested our mean-field predictions by comparing
them with Monte Carlo (MC) simulations for a system of M = 105 boxes.
The simulations, starting from random uniform initial condition, show clear
evidence for the existence of a metastable state prior to condensation — see
Fig. 1 presenting three MC runs. We have evaluated the distribution of cluster
sizes (for small clusters) averaged over the metastable state of one such run
and have found a very good agreement with Eq. (3) with 〈w〉 = wncr

, thus
supporting the assumption of quasi–stationarity. Fig. 2 shows a comparison
between the simulated and the predicted by mean-field equations (5) to (7)
values of ncr and 〈T 〉M depending on the density c. Note that the mean-field
values diverge at c → ccr. We find that our mean–field theory fairly accu-
rately reproduces the critical cluster size but systematically underestimates
the nucleation time. Nevertheless, it provides a good qualitative description
of the metastable state and its dependence on density thus representing an
important first step towards more refined theories.

5 Fundamental Diagram

The relation between density c and flux j of cars is known as the fundamental
diagram of traffic flow. The average stationary flux can be calculated as j =∑∞

n=1Q(n)wn, where Q(n) is the probability that there is a car in a given cell
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Fig. 1. Largest cluster size versus time for σ = 0.5, b = 1, w1 = 5, c = 0.66,
M = 105 (ccr � 0.56). Results from three independent MC runs are shown (cf. [7]).
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Fig. 2. Critical cluster size (left) and the mean nucleation time (right) versus density
for σ = 0.5, b = 3, w1 = 5, M = 105 (ccr � 0.27). Crosses show simulation data
(averaged over 10 Monte Carlo histories), dashed lines are predictions of the mean–
field equations (cf. [7]).

(in the original model) which can move forwards with the rate wn. Relating the
latter to the stationary distribution P (n) and to the fraction of cells occupied
by the cars which are allowed to move, we obtain

j = (1 − c) 〈w〉 . (9)

This relation can be used also to calculate the flux in the metastable state,
which is quasi-stationary. In this case 〈w〉 is calculated using (6).
The resulting fundamental diagrams for two different sets of control param-
eters, i. e., σ = 1, b = 6, w1 = 10 and σ = 0.5, b = 3, w1 = 5 are shown in
Fig. 3. As we see, the shape of the fundamental diagram, as well as the criti-
cal density and location of the metastable branch depend remarkably on the
values of these parameters. We therefore believe that by suitable variation of
parameters our simple model can reproduce some important features of real
traffic flow. There is much scope for further investigation, both analytical and
computational.
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Fig. 3. The fundamental (flux–density) diagram for two different sets of control
parameters: σ = 1, b = 6, w1 = 10 (left); σ = 0.5, b = 3, w1 = 5 (right). The
branches of metastable homogeneous state are shown by dotted lines, the critical
densities ccr are indicated by vertical dashed lines.
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Summary. The random shuffle update method for the asymmetric exclusion pro-
cess (ASEP) is introduced and the cluster dynamics technique is extended in order
to analyse its dynamics. A sequence of approximate models is introduced, the first
element of which corresponds to the classical parallel update rule whose two-cluster
dynamics is reviewed. It is then shown how the argument may be extended induc-
tively to solve for the two-cluster probabilities for each element of the sequence of
approximate models. A formal limit is then taken, and macroscopic velocities and
flow rates are derived.

1 Introduction

This paper is concerned with cellular automata of Nagel-Schreckenberg type
[1], with the maximum velocity parameter vmax set equal to one. This type of
model is sometimes referred to as the Asymmetric Exclusion Process (ASEP)
[2, 3]. In this well-known set-up, space is discretised into a one-dimensional
array of cells each of which is either empty or occupied by exactly one agent,
and each agent moves according to a pair of very simple microscopic rules:

1. If the cell immediately downstream is occupied, remain stationary. (R1)
2. If the cell downstream is unoccupied, move forward into it with probability
p, 0 < p ≤ 1. (R2)

The only remaining subtlety (and the subject of this paper) concerns the
precise order in which rules (R1,2) are applied.
We consider the dynamics of rules (R1,2) under the shuffle update scheme,
which has received very little attention in the literature to date [4–6]. At each
time step in this scheme, a random order is generated which contains each
agent exactly once. Rules (R1,2) are then applied to each individual agent
in turn, according to this order, and the system is updated incrementally as
each agent takes its turn. After all agents have had their turns, a new random
order is generated and the next time step begins.
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The shuffle update is similar to the random sequential scheme [7] in that the
occupancy of cells is updated incrementally as each agent applies its rules
and consequently, the shuffle update does not require conflict resolution to
preserve single-occupancy (even in multi-dimensional extensions). However,
the shuffle update enjoys the modelling advantage that individual agents never
receive large numbers of consecutive turns, hence the possibility of unphysical
velocities is eliminated.
In this paper we give an outline of how the two-cluster analysis of Schrecken-
berg et al [8], which analyses (R1,2) under the parallel update scheme, can be
extended to the more complicated case of the shuffle update. The argument
here is more involved than [8] because under the shuffle update, it is possible
for large blocks of contiguous agents to move forward in a single time step, if
their turns are served in upstream order.
Due to this increase in complexity, we use a sequence of approximations to
the full model. We define the truncated process of order n to mean that rules
(R1,2) are applied under the shuffle update scheme, with the proviso that the
opportunity to move is offered only to agents who are in the first n positions
of a contiguous block at the beginning of the time step. Our procedure is thus
to explain briefly how two-cluster dynamics works for n = 1 and then explain
how to extend it inductively to any truncated process of order n. Finally we
let n→∞.

2 Two-Cluster Analysis for n = 1

This method is described fully in [8]. We suppose that the occupancy of neigh-
bouring cell pairs is independent and we seek to compute the so-called two-
cluster probabilities P2 for all possible combinations of occupancy of two
adjacent cells, i.e., the probabilities of two adjacent cells having states (1, 0),
(0, 1), (1, 1) and (0, 0), where 0 and 1 denote empty and occupied respectively.
It can be shown that all such two-cluster probabilities can be calculated from
y := P2(1, 0) and hence the goal is to seek this quantity.
The strategy is to list all possible configurations S at time t∗ − 1 which can
give rise to (1, 0) in a monitored two-cluster at time t∗. If we can calculate
the transition probability W (S) for each configuration, in addition to the
probability P (S) of the configuration itself (which is usually expressed in terms
of y), and if we assume the process has reached statistical stationarity, then
we may employ conditional probability to write y =

∑
S P (S)W (S), which for

the truncation of order n we re-write and express in the form fn(y; c, p) = 0
where c is the mean density and p is the parameter of rule (R2).
The truncated model with n = 1 is identical to the parallel update rule of
Nagel and Schreckenberg [1], and for this standard case the two-cluster calcu-
lations are derived in detail in [8]. Note further that the two-cluster method
has been shown to be exact in this case, in the sense that the spatial indepen-
dence assumption for neighbouring two-clusters is exact.
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Fig. 1. The list of all possible transitions to a (σ1, σ2) = (1, 0) two-cluster (high-
lighted in bold) at time step t∗, for the truncated process of order n = 1. The list is
identical to that for the parallel update rule. Probabilities for the window states at
time step t∗ − 1 are denoted by P ; transition probabilities are denoted by W . Cells
marked by ? can be either occupied or empty, with no effect on the P or W calcu-
lation: The state probability contribution is just a factor of one, and the movement
or lack of movement of an agent in this cell cannot affect the monitored (σ1, σ2)

two-cluster. The families of left hand column states labelled by F
(n)
i , G

(n),m
i are the

building blocks of the inductive process that follows later.
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Fig. 2. The propagation of F
(n)
i states as n increases. These states correspond to

the left-hand column in Fig. 1 for n = 1. The added right hand cell in each window
takes the value ? meaning that it can be either occupied or empty but we need
not consider which, since it has no effect on the ability or probability to produce
(σ1, σ2) = (1, 0).

For the case n = 1, Fig. 1 gives a listing of the relevant configurations and
their probabilities P and transition probabilities W . Rather than construct
f1(y; c, p) and analyse its zeroes, we instead show now how inductive argu-
ments may be used to extend Fig. 1 to truncated processes of arbitrarily large
order n.

3 Inductive Construction for Truncated Processes

We now generalise to look at the truncated process for arbitrary order n. As
n is increased, we need to consider bigger families of states, because there are
more ways of obtaining (σ1, σ2) = (1, 0). The states also have wider windows,
because as n increases, (σ1, σ2) can be affected by more sites further down-
stream. The key is to build the families of cell windows inductively from those
with lower n. Our choice of labels for the states was chosen with this process
in mind, and we treat the F (n)

i and G
(n),m
i states separately as they extend

in quite different ways, summarised in Figs. 2–4.
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ones as well as propagating in the same manner as the F
(n)
i states (shown in Fig. 2).

The characteristic feature of states which breed is that all cells with the dashed
outline should be filled. For any given n, F

(n)
i and G

(n),m
i encompass all states

capable of producing (σ1, σ2) = (1, 0) at the next time step. The breeding of G
(n),m
i

means that the number of states increases by two each time n is increased by one.
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Fig. 4. The state and transition probabilities for the G
(n),m
i for increasing n. We

see the state probabilities unaltered along the propagating (horizontal) arrows, and
gaining a factor of the conditional probability 1 − y/c on the breeding (diagonal)
arrow. Transition probabilities gain a factor of p/n on a diagonal arrow, while

W (G
(n),n−1
1 ) = W (G

(n−1),n−1
1 )(1 − p/n). All others remain unchanged on the hori-

zontal arrows.

By considering Fig. 2, we observe that the F (n)
i states and their probabilities

do not change in any substantive way, so that P (F (n)
i ) = P (F (1)

i ), W (F (n)
i ) =

W (F (1)
i ), for all n.
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Now we look at Fig. 3 and consider the G(n),m
i states. Let us look at the

n = 2 case and see how the P and W values relate to those for n = 1.
Note P (G(2),1

i ) = P (G(1),1
i ), since a ? contributes a factor of one to the prob-

ability, and P (G(2),2
i ) = (1 − y/c)P (G(1),1

i ), gaining a factor of the condi-
tional probability 1 − y/c from the extra agent appearing in the blocks at
τ3. For the transition probabilities we find W (G(2),1

2 ) = W (G(1),1
2 ). Moreover

W (G(2),2
i ) = (p/2)W (G(1),1

i ), because one more agent is required to move,
gaining a factor of p, whilst the 1/2 comes from the probability that the
agents will update in an order which will allow the second agent to move.
Finally W (G(2),1

1 ) = (1 − p/2)W (G(1),1
1 ) because it has become necessary to

specify that the second agent in the block does not move, although it now
can. These n = 2 probabilities are shown in Fig. 4. By looking at both Figs. 3
and 4, we see that the (n = 1) �→ (n = 2) transition involved the breeding
of states. This process generalises inductively to give the breeding behaviour
at higher n values. Non-breeding G

(n),m
i states propagate unaltered in the

manner of the F (n)
i states.

4 General Solution for the Two-Cluster Probability

By employing conditional probability we may write

yn =
∑

i

P (F (1)
i )W (F (1)

i ) +
∑
i,m

P (G(n),m
i )W (G(n),m

i ) , (1)

where yn denotes P2(1, 0) for the truncated process of order n and F (n)
i ,G(n),m

i

are the families of states described in the previous section. This formula,
on substitution of the relevant quantities, may be rearranged in the form
fn(y; c, p) = 0, where

fn(yn; c, p) = p− py

1 − c
+

n∑
i=1

(−y
c

)i n∑
j=i

pj

j!

(
j − 1
i− 1

)(
1 − py

1 − c

)
. (2)

By letting n→ ∞ we solve f(y; c, p) = 0 for the two-cluster probability of the
full process, where

f(y; c, p) = −(1 − p) +
1

c− y

(
1 − py

1 − c

)(
c− yep(1−y/c)

)
. (3)

In general, this equation appears to have a unique solution for y, but requires
numerical solution.

5 Steady State Velocities and Flow Rates

We now find the mean velocity and flow rate in terms of the two-cluster
probability y. We proceed by using y to find the probability distribution of
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the length of the block to which an agent chosen at random belongs. This
quantity may be constructed from conditional two-cluster probabilities in the
form

Pl =
(y
c

)2 (
1 − y

c

)l−1

, (4)

where l is the length of the block in question. We now use the fact that the
agent is equally likely to be in any position within the block, and we sum
the probability that it moves from the kth position over all k = 1, 2, . . . , l
positions. By using (4), we thus obtain the mean velocity (equivalent to the
probability that an agent chosen at random moves) in the form

v̂ =
∞∑

l=1

lPl
1
l

l∑
k=i

P (block serves at least k agents)

=
y

c− y

(
exp
(p
c
(c− y)

)
− 1
)
. (5)

We can therefore write down flow rate

q =
cy

c− y

(
exp
(p
c
(c− y)

)
− 1
)
, (6)

as the product of the system density and mean velocity.

6 Conclusion

By extending the two-cluster analysis of the well-known parallel update model
[1, 8], we have been able to derive expressions for steady state distributions
and flow rates of the more complicated shuffle update case. The results found
here agree with the recent paper of Wölki et al [5] who employed a car-oriented
mean field (COMF) method, as opposed to the site-oriented (SOMF) method
that we use. However, it remains to be shown whether exactness, i.e. the
spatial independence of neighbouring clusters, holds for the full model and
the truncated processes of order n > 1.
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Summary. The asymmetric simple exclusion process (ASEP) with periodic bound-
ary conditions is investigated for shuffled dynamics. In this type of update, in each
discrete timestep all particles are updated in a random sequence. It is shown that
in contrast to all other updates studied previously, the ASEP with shuffled update
does not have a product measure steady state apart from some simple limits. Ap-
proximative formulas for the steady-state distribution and fundamental diagram are
derived that are in very good agreement with simulation data.

1 Introduction

The asymmetric simple exclusion process (ASEP) can be considered as the
simplest discrete traffic model [1]. It captures essential features like uni-
directional motion and hard-core exclusion. In the case of parallel dynamics it
corresponds to the vmax = 1 limit of the Nagel-Schreckenberg model [2]. For
the ASEP a lot of analytical results exist, both for open and periodic bound-
ary conditions; for a review see [3]. The model describes a particle system on a
discrete one-dimensional lattice. Particles are allowed to hop one site to their
right, supposed that it is empty. The usual dynamics is in continuous time:
the random-sequential update. Moreover, discrete-time update schemes have
been studied: backward- and forward-ordered sequential updates, sublattice-
parallel and fully-parallel dynamics (for an overview, see [4]). We analyze an-
other update scheme, the ‘shuffled update’ that has originally been introduced
in a two-dimensional cellular automaton describing pedestrian dynamics [5, 6].
In this type of update in each timestep the update sequence is determined by
a random permutation of the particle numbers. Note that the shuffled update
is different from random-sequential dynamics which is generically used for the
ASEP. Whereas the latter describes stochastic processes in continuous time
which can be realized by updating a randomly chosen particle in each timestep,
the shuffled dynamics combines elements of discrete updates and dynamics in
continuous time. It is discrete in the sense that there is a well-defined timestep
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during which each particle is updated exactly once. On the other hand, the
order of updating the particles is not fixed. E.g. it may happen that a specific
particle is updated last during a timestep and first during the next one! De-
spite this important difference, the shuffled and random-sequential updates
share certain similarities. In contrast to the ordered updates with fixed order,
they do not have a deterministic limit, even for hopping probabilities p = 1.
However, in the random-sequential case the dynamics depends on p only in a
trivial way, since by rescaling time always p = 1 can be chosen. This is not
possible in the shuffled case. We therefore expect a non-trivial p-dependence
of the results, as in the other discrete-time updates.

2 ASEP with Shuffled Dynamics

We consider a one-dimensional lattice with L sites and periodic boundary
conditions. Each site may either be occupied by one of theN particles, labelled
i = 1, 2, ..., N , or it may be empty. Therefore the particles are distinguishable.
In each discrete timestep a random permutation π(1, ..., N) of the particle
labels equals the update sequence. If the right neighboring cell is empty, the
relevant particle moves one site to the right with probability p; if it is occupied,
the particle stays in its cell.
Figure 1 shows a part of a large system consisting of six cells and four particles
(numbered 1, 2, 3, 4 without loss of generality), at time t (left) and t+1 (right).
The drawn update sequence is . . . , 3, . . . , 4, . . . , 1, . . . , 2, . . . , where the ellipsis
indicate that other particle numbers belonging to different clusters3 can be
chosen inbetween (for the cluster depicted, only the relative positions of the
numbers of its particles in the sequence are of interest). Particle 3, chosen first,
can not move since the cell in front is occupied by 2, and similar for particle
4. Considering the case p = 1, particle 1 then moves deterministically to the
right. Then 2 also moves, because it was drawn after 1. Although particle 4
is drawn after 3, it can not move, since both were drawn before 1 and 2.

4 3 2 1 4 3 2 1

Fig. 1. Shuffled update of a cluster consisting of four particles numbered from right
to left. The drawn sequence is 3, 4, 1, 2 and p = 1.

3 A cluster is defined as the sequence of occupied cells between two consecutive
holes (unoccupied cells).
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3 Analytic Description of the Steady State

Due to the translational invariance of the system with periodic boundary
conditions a configuration can be denoted by (n1, n2, . . . , nN ) where ni is the
number of empty cells in front of particle i. It is assumed that the prob-
ability for such a configuration in the thermodynamic limit (N,L → ∞,
with N/L =const.= ρ) factorizes into N single-particle probabilities Pn, i.e.
P(n1, n2, . . . , nN ) =

∏N
i=1 Pni

. This is usually not exact and constitutes the
so-called car-oriented mean-field (COMF) theory, successfully applied to traf-
fic flow models [7, 8] previously. For a slightly different approach, see [9]. The
factorization assumption includes that the probability Q(k) for an arbitrary
particle to have a string of exactly k− 1 particles in front is approximated by

Q(k) = P k−1
0 (1 − P0). (1)

The factor (1−P0) arises from the fact that the rightmost particle of the string
has per definition at least one hole in front. Since every random sequence can
be drawn with the same probability (1/N !) in the beginning of a certain
timestep, one can calculate the probability with which a particle has moved
at the end of the timestep in a given configuration. If the particle has at least
one hole in front (with probability Q(1) = 1−P0) it moves with probability p.
If it has a string of k−1 particles in front (with probability Q(k), k = 2, 3 . . . ),
the situation is slightly more sophisticated. The first k particles have to be
chosen in the order from the right to the left (with probability 1/k!) and
each of these particles has to move (with probability pk). Thus the considered
particle moves with probability pk/k!. The average velocity 〈v〉 is obtained by
summing over all possible events and using (1):

〈v〉 =
∞∑

k=1

pk

k!
Q(k) =

{
p, for P0 = 0,
1−P0

P0
(exp(pP0) − 1), for P0 > 0.

(2)

The average velocity 〈v〉 is related to the flow J via the particle density ρ and
yields the so-called fundamental diagram

J(ρ) = ρ〈v〉. (3)

To express J or 〈v〉 through ρ we need to know P0. The probabilities Pn can
be calculated straightforwardly and are given by [10, 11]

P0 =
p(2ρ− 1) − ((1 + p)ρ− 1)〈v〉

pρ (1− 〈v〉) , (4)

Pn =
(p− 〈v〉)(1 − P0)

(1 − p)〈v〉
(

(1− p)〈v〉
p(1− 〈v〉)

)n

, n ≥ 1. (5)

Note that this are implicit expressions that have to be solved numerically for
general p, since 〈v〉 depends on P0 via (2). For p = 1, P0 becomes explicitly
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P0(ρ, p = 1) =
2ρ− 1
ρ

θ

(
ρ− 1

2

)
, (6)

as one can check easily. P0(ρ, p = 1) is completely determined by the fact
that the first particle of a cluster moves deterministically and all the other
particles have smaller hopping probabilities due to the shuffling. For densities
ρ ≤ 1/2 this implies that any state which consists only of clusters of size 1,
i.e. separated particles, is stationary. Hence the probability to find a particle
directly in front vanishes and we have P0 = 0 (Fig. 2). For densities ρ > 1/2
clusters are formed that are separated by exactly one hole, i.e. there are only
isolated empty cells in the steady state. It is easy to verify that no pairing of
holes can happen, since from the point of view of the holes they jump at least
one site backwards and at most to the end of the cluster. As a consequence,
Pn = 0 for n ≥ 2. Thus L −N clusters exist, which is then also the number
of particles having exactly one hole in front. Thus we obtain P1 = (1 − ρ)/ρ
and P0 = 1 − P1 = (2ρ− 1)/ρ in this density regime. These results are exact
for p = 1 and are reproduced by COMF. Using (3), the flow-density relation
is explicitly given by

J(ρ, p = 1) =

{
ρ, ρ ≤ 1/2,
ρ(1−ρ)
2ρ−1

[
exp
(

2ρ−1
ρ

)
− 1
]
, ρ > 1/2.

(7)

The fundamental diagram (7) shows a strong asymmetry with respect to
ρ = 1/2. For densities ρ ≤ 1/2 each particle can move independently and
deterministically, since every particle has at least one hole in front, exactly as
in parallel updating [8]. If the density is increased to values greater than 1/2,
clusters of nonvanishing length are formed from which the rightmost particle
can move deterministically. The other particles have smaller hopping prob-
abilities. This yields the curvature in the fundamental diagram in the high
density regime. In contrast to the parallel and random-sequential dynamics,
the shuffled update is not particle-hole symmetric (Fig. 2).

4 Proof of Non-Exactness

In the following it is shown that COMF is not exact for general p. Consider
the master equation for the steady-state probability P(0N−1, L − N), i.e. a
cluster of N particles followed by L−N holes:

P(0N−1,M) =
(
p̄+

pN

N !

)
P(0N−1,M) + p̄

N−1∑
k=1

pk

k!
P(0N−k−1, 1, 0k−1,M − 1),

(8)
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Fig. 2. The probability P0(ρ, p) (left) and the fundamental diagram J(ρ, p) (right)
for p = 1 (top) and p = 0.5 (bottom). Depicted are the results from COMF (lines)
and from computer simulations (squares) for a system consisting of L = 500 cells.
Note that P0(ρ, p = 1) is exact.

with p̄ = 1−p and M := L−N . Assuming that the steady-state probabilities
factorize into probabilities for certain interparticle distances Pn and perform-
ing the limit N → ∞ gives pP0PM = p̄P1PM−1 (ep − 1). Now, inserting the
expression for Pn (n ≥ 1) from eq. (5) and using (2) leads to the constraint

0 = (ep − 1)
(

p

epP0 − 1
− 1 − P0

P0

)
− p. (9)

This condition is only fulfilled in the limit P0 = 1 (i.e. for ρ = 1) and also
for p = 0. In all other cases, the master equation (8) can not be solved by
factorizing probability distributions.
The ASEP with shuffled update can further be mapped onto a generalized
zero-range process with parallel update for which a factorization criterion
was derived recently [12]. The probability ul(m) = pl/l! − θ(m − l)pl+1/(l +
1)! that exactly l particles leave a cluster of m particles during a timestep
[11] can not be written as ul(m) = vlwm−l/

∑
l vlwm−l, where v and w are

functions that depend only on l and m− l respectively. Therefore the ASEP
with shuffled update does also not factorize into single probabilities P̃m for
the cluster lengths m. This implies that although we know Pn, n ≥ 0 exactly
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the fundamental diagram (7) in the case p = 1 can not be exact for ρ > 1/2
since the flow depends on the particular configuration of clusters.
We just mention that one can show that a truncated model in which only
the first two particles of a cluster are allowed to move factorizes into cluster
probabilities P̃m for p = 1 [11].

5 Discussion

The ASEP with periodic boundary conditions and shuffled dynamics was stud-
ied. Assuming a factorization of the steady state probability very good ap-
proximations for the fundamental diagram were derived. Since the shuffled
dynamics is intrinsically stochastic, already for p = 1 a nontrivial fundamen-
tal diagram (depicted in Fig. 2 (b)) was found. Despite the stochasticity of the
update in the regime ρ ≤ 1/2 all particles move deterministically since each
particle is separated by at least one hole to the left and right in the steady
state. For higher densities ρ > 1/2 also neighboring particles occur which can
move with certain probabilities and the flow is increased compared to the
purely parallel case. For p < 1 the two regimes can no longer be distinguished
and the fundamental diagrams become smoother.
It could be proven that the ASEP with shuffled dynamics does not factorize.
Therefore the mean-field theory of Sec. 3 which assumes a factorization into
interparticle distances is only a good approximation but not exact for 0 <
p < 1. In the case p = 1 the exact expression for the probability P0 that a
particle has no hole in front was found. The exact knowledge of this quantity
allowed for an exact calculation of the flow for densities ρ ≤ 1/2, but not for
ρ > 1/2. This is due to the fact that in this density regime the probability
for a particle to move depends on the number of particles in front. So the
flow depends on the distribution of clusters which is not known exactly. It
could be proven that this distribution also does not factorize. However also in
this regime the calculated flow is in impressively good agreement with Monte-
Carlo data (see Fig. 2). The fact that the ASEP with shuffled update does
not factorize comes as a surprise. So far all update procedures have lead to
a factorized steady state. Here the distinguishability of the particles seems to
be important whereas in the updates considered previously the particles are
basically indistinguishable.
Finally we want to mention an application. The ASEP with shuffled update
can be considered as a model for pedestrians moving in one direction in a
single lane [5, 6]. This may occur in a corridor which is so narrow that side-
by-side motion and overtaking are impossible. To model corridors of arbitrary
width and taking into account different step-lengths, in [11, 13] simple gener-
alizations were proposed for which the analytic results derived here already
yield good approximations for the fundamental diagrams.
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5. A. Keßel, H. Klüpfel, and M. Schreckenberg, in Pedestrian and Evacuation Dy-

namics, edited by M. Schreckenberg and S. D. Sharma (Springer, 2001)
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Summary. A simple CA model (CA-184s2ss) is shown to reproduce, at freeway
bottlenecks, elements of the observed phenomena of two-capacity flow, including
both breakdown and recovery flows, and of wide moving jams. Notwithstanding
that both of these phenomena are incompatible with classical kinematic-wave models
(KWMs) of traffic flow, sufficiently coarsely time-aggregated CA-184s2ss simulations
are shown to be approximated modestly well by the KWM, with a single suitable
empirically determined capacity at the bottleneck.

1 Introduction

By “two-capacity” flow we intend observations and related analyses that sug-
gest flows immediately downstream of an enqueued bottleneck can be observed
at two distinct values. These distinct values are typically a higher value prior
and immediately subsequent to formation of a queue upstream of the bottle-
neck and a lower value at seemingly random intervals of time subsequent to
development of such a queue. This may be regarded as a particular instance of
the more general phenomenon of “breakdown” [1], in the sense of a (sudden)
drop in speed. (It is more specifically an instance of “spontaneous break-
down.”) North American transportation engineers (e.g., [2–4]) have tended to
focus on this two-capacity instance of breakdown, particularly at candidate
bottlenecks consisting of freeway entrance ramps (merge junctions). Reasons
for this focus include:

1. Existence of two-capacity flow at freeway entrance ramps is practically
important, not least in that it is the basis for the belief that ramp metering
provides a net benefit, as opposed to simply transferring flow from entering
to mainline traffic.

2. Two-capacity flow is clearly inconsistent with the classical (lane-aggregated)
Lighthill-Whitham-Richards [5, 6] kinematic-wave model (KWM), in that
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generally accepted forms of the KWM predict flow immediately down-
stream of a point bottleneck [7] will be equal to a single value, the “ca-
pacity” of that bottleneck.

3. Existence of two-capacity flow seems to have become widely accepted.

The second item in this list contrasts sharply with observations of sudden
speed drops just upstream of a bottleneck, which are readily explained in the
KWM context as “shock waves” propagating upstream and forming the tail
of a queue having head located at the bottleneck.
Notwithstanding that the two seem fundamentally incompatible, there re-
mains the question of just how poorly the classical KWM predicts traffic flow,
in the presence of two-capacity flow. The principal objective of this work is to
contribute toward an understanding of the possibilities in this regard. More
specifically, in Section 4 we demonstrate that a certain (stochastic) cellular
automaton (CA), the CA-184s2ss of Section 3, produces some of the elements
of two-capacity flow, and then show (Section 5) that nonetheless kinematic-
wave simulations of that CA under two-capacity conditions reproduce quite
satisfactorily certain aggregate aspects of the CA flow. The following Sec-
tion 2 contains a summary of previous observations related to two-capacity
flow, and concludes with a description of what we subsequently take as the
characteristic signature of two-capacity flow. The final Section 6 contains our
conclusions, and suggestions for further related subsequent studies.
Two comments seem in order regarding the philosophy undergirding this work:
First, we do not intend the associated CA to be a faithful representation of
real traffic flow, but rather to serve as a surrogate for actual traffic flow, in
order perhaps to achieve a better understanding of possibilities in the rela-
tionships between (inherently stochastic) traffic flow and associated (deter-
ministic) macroscopic models. This objective frees us to focus on the simplest
possible CA that might reflect some of the key aspects of two-capacity flow.
The CA-184s2ss formulated in Section 3 below takes fullest advantage of that
freedom. Second, notwithstanding this freedom from reality we make an effort
to formulate the key elements of our model, especially the upstream bound-
ary condition, in a way that is consistent with some reasonable form of driver
behavior. The latter seems crucial to any hope of similarity between the CA
and a KWM simulation of it, because solutions of the KWM eventually are
strongly boundary driven.
As regards the first of these comments, we note the similarity in objective
with a possible use of CA that was suggested by Wolfram [8]: “The derivation
of hydrodynamic behavior from microscopic dynamics has never been entirely
rigorous. Cellular automata can be considered as providing a simple example
in which the necessary assumptions and approximations can be studied in
detail.” Our use of CA is intended to be exactly along the lines of the second
sentence of this quotation, as seems appropriate because the first sentence
surely is even more emphatically the case for behavior of vehicular traffic
than for hydrodynamics.
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Finally, the ultimate conclusion that the KWM can predict some aspects of
traffic flow adequately, in the presence of two-capacity flow and notwithstand-
ing the fundamental inconsistency between the two, is somewhat reminiscent
of the classical paper of Wigner [9] on “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences.” More specifically, it is surely an in-
stance of the second reason advanced by Wigner that the “regularities” com-
prising the “laws of inanimate nature” are “surprising”: “the regularity which
we are discussing (here the predictions of the KWM) is independent of so
many conditions which could have an effect on it (e.g., the presence or ab-
sence of two-capacity flow).” Indeed the present work, as well as many others
in these proceedings, provides evidence that inroads are well underway toward
advancing these surprising regularities into “laws of animate nature.” This is
precisely as Wigner hoped and perhaps expected, as expressed in the closing
paragraph of the cited work.

2 Summary of Observations

Observations of two-capacity flow have been reported by Edie and Foote [10],
by Agyemang-Duah and Hall [11], and by Cassidy and Bertini [3], while other
studies [12–15] have reported lack of conclusive evidence supporting a reduc-
tion in flow subsequent to formation of a queue. From an empirical study
Banks [16] (cf. also Banks [17, 18]) indicates that “the hypothesis that flow
decreases when it breaks down is confirmed, provided the hypothesis applies
to individual lanes,” but “when averaged across all lanes. . . there was no sig-
nificant change,” and concludes that alleged two-capacity flow “is unlikely to
provide a basis for metering. . . .”
This variety of conclusions most likely reflects the fact that when differences
between the levels of flow at a bottleneck, before and after queue formation,
are reported their magnitude tends to be only about 5%. Given such relatively
small alleged differences, it is difficult to know whether the different conclu-
sions reached in different studies are attributable to differences in method-
ologies for obtaining and analyzing data, or to actual differences in traffic
behavior at distinct sites, or possibly some combination of these factors. This
inherent difficulty in determining existence of the two-capacity phenomenon
has been discussed in particularly cogent fashion by Persaud and Hurdle [15].
In view of this difficulty, it is perhaps not surprising that, as suggested in the
preceding paragraph, it took some three to four decades to advance beyond
the status observed by Wattleworth [18] in 1963: “The question of whether or
not the flow downstream of a freeway bottleneck decreases when congestion
sets in is currently the subject of much discussion in engineering circles. Re-
search findings support both the yes and no answers to this question. Several
studies. . . suggested that perhaps the question did not have a simple yes or
no answer.”
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Nonetheless, we do seem now to have advanced beyond this uncertainty, in
that there appears to be an emerging consensus that two-capacity flow exists.
Indeed the discussion now seems to have evolved toward a focus upon how
best to incorporate two-capacity flow into standard engineering analyses. See
[19], and many more-or-less recent references cited therein). We believe this
emerging consensus owes much to the careful data analysis of Cassidy and
Bertini [3]. The remainder of this section is therefore primarily devoted to a
summary of that work, culminating in a description of the characteristics that
we subsequently take as characterizing two-capacity flow.
The “freeway sites used” in [3] are described as “segments of the Queen Eliz-
abeth Way (QEW) and the Gardiner Expressway” that “have been featured
in previous studies of capacity.” The fundamental idea of the analysis is to
plot “scaled flow” N(x, t)− q0t versus time t, with “N(x, t) = the cumulative
number of vehicles to pass (detector) location x by time t, measured from
the passage of some reference vehicle” and “q0 is defined as the background
flow and” t “is the elapsed time from the passage of some reference vehicle.”
The basic idea is that the rescaling provided by subtracting the “background
cumulative count” q0t “promotes the visual identification of changing flows.”
Figure 1 shows an instance of the results from this procedure. The average
flow over a time interval is equal to the background count (6100 vph in the
present case) plus the slope of the corresponding secant line. The queue at the
bottleneck is determined to originate at time 6:18:30. For approximately 12
minutes the corresponding flow downstream approximates 7000 vph, but after
that it “breaks down” to a lower value of approximately 6090 vph. After a
further elapsed time of approximately seven minutes the flow “recovers” to a
higher value of approximately 6890 vph. This pattern of alternating periods of
“break down” and “recovery,” with differences on the order of 8%, continues
until the queue at the bottleneck disappears around 7:54:00 hours.
Figure 2 displays directly a plot of these alternating mean flows, as visually
identified from Fig. 1. In the following we take this pattern of alternating flows
downstream of a bottleneck as the characteristic signature of two-capacity
flow. In the following section we introduce a simple CA model designed to
reproduce this signature of two-capacity flow.
“Two-regime” flow refers to the phenomenon of observations of extensive
density-flow data scatter at sufficiently high densities [20], and an “inverted
lambda” tail in the density-flow scatter plot [21]. The phenomena of two-
capacity flow and two-regime flow phenomena are somewhat similar, and
sometimes are linked together, but should be treated as distinct. For instance,
Hall and Agyemang-Duah [22] effectively note that two-regime flow must be
sought where traffic can be in queue, which is to say upstream of what Da-
ganzo [23] terms an “active bottleneck,” while two-capacity flow must be
observed if at all immediately downstream of an active bottleneck (where
“immediately” means absent intervening ramps). Both are prima facie incon-
sistent with existence of a fundamental diagram, as is implicit to the KWM.
We refer the interested reader to [24] for a study of the two-regime phe-
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nomenon that has philosophical similarities to the study of the two-capacity
phenomenon presented here.

Fig. 1. A typical plot of scaled flow, from Cassidy and Bertini [3].
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Fig. 2. The characteristic signature of two-capacity flow, as seen downstream of a
bottleneck during presence of a queue upstream of that bottleneck.
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3 CA-184s2ss

The base model is the instance vmax = 1 of the “slow-to-start” class of CA
models [25], which is identical to the earlier class of CA-184cc (cc = “cruise
control”) [26] in the present case. In more detail, a vehicle has speed v = 1
during a time step if, and only if, either:

a) It has a (spatial) headway of at least one empty site at the beginning of
that time step and its speed was one during the preceding time step; or

b) it has a spatial headway of at least two empty sites at the beginning of
that time step.

A bottleneck is then implemented in this base model as a site (cell) at which a
Nagel-Schreckenberg “randomization” step occurs, provided the spatial head-
way of the vehicle at that site is exactly two. That is, if the spatial headway
of the vehicles at the bottleneck is exactly two, then a speed determined as
one according to the rules of the preceding paragraph is reduced to zero, with
prescribed probability pb. It is common to refer to pb as “braking probabil-
ity,” but here we prefer the term “probability of hesitation” to reflect the
fact that a speed that would “normally” be one can stay at zero either be-
cause of a spontaneous braking from a previous speed of one, or because of
an unnecessary “hesitation” in accelerating from speed zero to speed one.
In order to complete the specification of an implementation of CA- 184s2ss
(s2ss = “slow-to-start stochastic”) it is necessary to specify the boundary
and initial conditions. In this work the downstream (exiting) boundary con-
dition (BC) is taken as the “infinite supply” condition that the exiting (most
downstream) cell is not the bottleneck, and the subsequent two cells are al-
ways empty; equivalently, the most downstream vehicle always has speed one,
unless it is at the bottleneck and momentarily reduced to zero by the “ran-
domization.”
The upstream (entrant) BC is implemented as arrival (with speed one) of a
vehicle at the entrant (upstream) cell with probability pu = D/(1−D), at the
second and subsequent steps following the immediately preceding arrival. Here
D is some given demand, 0 ≤ D ≤ 1/2, which may be regarded as a control
variable (along with pb). It is further assumed that any unmet demand (i.e.,
vehicles that arrive, but are prevented from entering by the position of their
lead vehicle) is shunted to an alternate route. The alternative is to maintain
an entrant queue, in some fashion [24].
Throughout the present work the initial conditions correspond to an initially
empty section of roadway. For some purposes this requires permitting some
time to lapse, in order to reach a steady state.

4 Simulations with CA-184s2ss

Except as explicitly indicated otherwise, the results presented in this section
were obtained using an implementation of CA-184s2ss, as described in the
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preceding section, with 278 cells, labeled from 0 to 277, the bottleneck located
at cell 251, probability of hesitation at the bottleneck = .005, and upstream
demand = 0.5. Effects from varying some of these parameters will be discussed
in subsequent sections.
Flows reported in this section were obtained as the (arithmetic) mean outflow,
through the exit cell 277, obtained as the arithmetic mean per time step over
some number (aggregation time) of time steps. The value of aggregation time,
along with the number of time steps per sample path of the stochastic process
CA-184s2ss, varied between sample paths, as will be specified in conjunction
with each instance. Note that the times plotted are in number of aggregation
periods, not number of time steps.
Figure 3 displays illustrative results, as obtained for four different sample
paths, with aggregation time = 45 time steps and 9000 time steps per sam-
ple path. The results, subsequent to a rather rapid initial transient, suggest
a bistable system, in which the “breakdown” and recovery regimes are both
metastable, but roughly equally likely. Further, the flows during “breakdown”
and recovery are respectively 1/3 and 1/2 (the latter modulo a bit of com-
binatorial fluctuation), which are precisely the two likely candidates to be
considered capacities for CA-184s2s [26]. However, the durations of each in-
stance of either of these regimes appear to be considerably random. In many
respects these results are similar to the Cassidy-Bertini observations of two-
capacity flow in actual traffic, as summarized in Fig. 2.
Note that the aggregation time employed in Fig. 3 translates into a maximum
of 22 or 23 vehicles per aggregation period, which is a rather small number
from the perspective of minimizing effects of fluctuations. With this in mind,
Fig. 4 displays the corresponding results for exactly the same sample paths as
Fig. 3, but now with an aggregation time of 450 time steps (a maximum of ap-
proximately 225 vehicles per aggregation period). The results, past the now
nearly negligible initial transient, have somewhat the appearance of an ap-
proximation to a constant value of approximately 0.4 (vehicles per time step)
but still with a substantial “stochastic” fluctuation. Note that this putative
constant value is approximately the arithmetic mean of the two approximately
equally likely capacities previously noted.
This observation naturally leads us to inquire regarding the effect of an even
coarser aggregation of flows. Figure 5 shows the results for a single sample
path of 90,000 time steps, partitioned into 20 aggregation periods of 4500 time
steps each. The results obviously are even smoother (i.e., more nearly constant
≈ 0.4) than those of Fig. 4, but even at this coarse level of aggregation there
remains a noticeable statistical fluctuation. Our best estimate of the empirical
bottleneck capacity, as obtained from an ensemble of five sample paths similar
to (and including) that of Fig. 5, is .393 ± 003.
The results just presented and discussed suggest the degree to which two-
capacity flow is observed can hinge crucially on the details of the associated
data analysis, especially the temporal scale on which flows are aggregated. A
similar smoothing of the flows, and consequent diminution of the two-capacity
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Fig. 3. Flow (vehicles per time step) vs. time (aggregation periods of 45 time steps),
for four sample paths of CA-184s2ss, with mean demand = 1/2 and probability of
hesitation = .005.

effect, occurs if one aggregates over an ensemble of sample paths, each of which
individually is aggregated on a time scale that displays considerable evidence
of two-capacity flow. This is illustrated in Fig. 6, which displays the ensemble-
averaged flows over an ensemble of nine sample paths, each of which has a
duration of 9000 time steps and is individually aggregated over aggregation
periods of aggregation time = 45 time steps. See Fig. 7 for the time-dependent
flows (also aggregated over periods of 45 time steps) for the individual sample
paths.
It seems a reasonable hypothesis that the approximately equal likelihood of
flow at each of the smaller and larger “capacities” in the above results stems
from the choices of probability of hesitation and length of the roadway section
prior to the bottleneck so that there is approximately equal likelihood over
time that a (mini)jam stemming from a hesitation either is or is not present
on the roadway. This is supported by the results of Fig. 8, which suggest
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Fig. 4. Flow (vehicles per time step) vs. time (aggregation periods of 450 time
steps), for the same four sample paths of CA-184s2ss as in Fig. 3.
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Fig. 5. Flow (vehicles per time step) vs. time (aggregation periods = 4500 time
steps) for a sample path of 90,000 time steps, with mean demand = 0.5 and proba-
bility of hesitation = .005.

that the higher (lower) capacity flow regime becomes more prevalent (stable)
as the probability of hesitation decreases (respectively, increases). Of course
any use of that insight to reduce the likelihood of “breakdown” requires some
insight into the causes of that hesitation. The fact the breakdown stems from
behavior of a very small fraction (0.5%) of the driver-vehicle combinations
on the roadway also suggests it may be very difficult to control breakdown.
The sensitive dependence upon probability of hesitation, in terms of which
regime is predominant, suggests the possibility that details of observations of
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Fig. 6. Flow (vehicles per time step) vs. time (aggregation periods = 45 time steps),
averaged over an ensemble of nine sample paths of 9000 time steps each.
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Fig. 7. Flow (vehicles per time step) vs. time (aggregation periods of 45 time steps
each) for the nine sample paths of the ensemble of Fig. 6.
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Fig. 8. Flow (vehicles per time step) vs. time (aggregation periods of 45 time steps
each) for typical sample paths of 9000 time steps each, with hesitation probabilities
pb = .00125 (top) and .02 (bottom).

two-capacity flow could be very dependent upon the composition of the traffic
stream in the location and at the time that the observations are taken.

5 Corresponding Kinematic-Wave Results

It is clear that neither the KWM, nor any other deterministic macroscopic
model, can possibly approximate well all sample paths corresponding to two-
capacity flow as seen at fine levels of temporal aggregation (e.g., Figs. 3, 7 and
8). However, there remains the possibility of acceptable KWM approximations
to more coarsely time-aggregated representations of two-capacity flow (e.g.,
Figs. 4 and 5), or to ensemble aggregates (Fig. 6). The objective of this section
is to explore the extent to which this possibility is realized.
Any version of a KWM requires an associated fundamental diagram (den-
sity/flow relation) as one of its two essential ingredients, the other being con-
servation of vehicles. This requirement poses immediate difficulties for CA-
184s2s, owing to the well-known fact [26] that it has multiple steady-state
flows corresponding to some densities (e.g., 1/2 vehicles per cell). For the
moment let us ignore this, to suppose rather that CA-184s2s has a classical
FD of the sort shown in Fig. 9, and work out the consequences of that sup-
position for the time-dependence of the flow immediately downstream of the
bottleneck in CA-184s2ss.
In Fig. 9 qb denotes the capacity of the bottleneck, and the remaining nota-
tion is more-or-less obvious. We assume qmax ≤ 1/2, as seems likely from what
is well-known about CA-184s2s. Following Nelson and Kumar [7], the corre-
sponding KWM solution of the base scenario of the preceding section then is
as follows. At t = 0 a shock forms that connects an upstream region having
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Fig. 9. A hypothetical FD for CA-184s2ss

(ρ, q) = (ρmax, qmax) to a downstream region with (ρ, q) = (0, 0), and accord-
ing to the shock condition subsequently propagates downstream with speed
equal to the slope of the light dashpot line in Fig. 9. This shock subsequently
reaches the bottleneck at a time determined by this speed of propagation
and the distance from entrant boundary to the bottleneck. At the bottleneck
a portion of the incident shock is reflected back upstream, and a portion is
transmitted downstream. Although the reflected portion may be of interest
for other purposes, only the transmitted portion affects flow downstream of
the bottleneck, which is the flow that is relevant to the two-capacity effect.
That transmitted portion consists of a shock connecting an upstream region
having (ρ, q) = (ρ0, qb) to a downstream region with (ρ, q) = (0, 0), and sub-
sequently propagating downstream with speed equal to the slope of the heavy
dashpot line in Fig. 9.
It follows that the flows observed downstream of the bottleneck take the fol-
lowing simple form. Prior to some arrival time, which is dependent upon the
details of the FD for CA-184s2s, the flow is zero. Subsequent to the arrival
time it is equal to the capacity of the bottleneck. If this capacity could, for
the base case pb = .05 of the preceding section, be taken as some value in the
vicinity of 0.4, then we could proclaim vindication for the KWM and move
on. But what is the justification for this value of bottleneck capacity? Further,
what is the justification for the assumption that qmax (the CA-184s2s capac-
ity) is greater than this empirical bottleneck capacity, especially given that
the capacity corresponding to the vast majority of the initial configurations
on a ring road is well-known to be 1/3?
One answer to these questions, which is very much in the tradition of trans-
portation engineering, is that capacities of both roadways and bottlenecks
should be determined on the basis of observational data. If we recall that
CA-184s2ss is here supposed to comprise reality, then it is entirely consistent



Two-Capacity Flow: CA Simulations and Kinematic-Wave Models 493

with that empirically grounded philosophy to hold that data such as that
in Figs. 4-6 firmly indicate that the capacity of our bottleneck has a value
somewhere in the vicinity of q ≈ 0.4, and that of the roadway upstream of
that bottleneck is some value that is not precisely determined by these data,
except that it is greater than the empirical bottleneck capacity. This approach
absolutely would lead to KWM results (for the outflow) that are quite con-
sistent with those (highly aggregated) empirical results, modulo a typically
acceptable amount of “statistical fluctuation.”
Of course it is impossible to ignore that our “empirical” results stemmed from
a very simple CA model. For this model it seems likely the prosaic argument
of the preceding paragraph could be replaced by something more elegant.
One commonly used source of FDs for models is simulations on a ring road.
An FD from ring-road simulations would certainly be appropriate for use in
conjunction with a KWM, because the corresponding closed boundary con-
ditions comprise a computationally accessible alternative to the “long road”
envisioned in the title of the seminal Lighthill-Whitham paper [5]. However,
we have been unsuccessful in obtaining, from ring-road simulations, a FD
displaying the properties delineated above. We believe this is because the
“alternate path” BC we implement at the upstream boundary acts, in con-
cert with a nonzero probability of hesitation, to produce phenomena that are
qualitatively different from those seen in flow on a ring road.
More specifically, we believe the relevant CA-184s2s capacity is the larger
value of 1/2 rather than the smaller value of 1/3, because the regularity of
the upstream boundary flow (for D = 1/2 a vehicle arrives at the entrant
boundary exactly every second time step) drives flows in CA-184s2ss, in the
region of densities extending from 1/3 to 1/2, toward those resulting in the
basic CA-184s2s from what Benjamin, Johnson and Hui [25] term as “a certain
small sub-set of initial configurations (that) will result in a steady-state region
with no traffic queues.” However, once one implements a nonzero probability
of hesitation within CA-184s2s, then queues (clusters, jams) necessarily form,
somewhat randomly, depending upon the details of the implementation of
hesitation. For a ring road, the certainty of a slow start that is taken in the
present model, and densities no less than 1/3, there is no possibility for such a
cluster to dissipate once formed, because inflow is always at least equal to the
outflow of 1/3. Somewhat similarly, for the present upstream alternate path
BCs, a cluster formed at the bottleneck will not only persist, but it also will
propagate upstream and grow in size, because the inflow of 1/2 > outflow of
1/3, similarly to the wide jams of Kerner [27]. However, once such a “moving
jam” reaches the upstream boundary it will begin to dissipate, because now
the inflow of 0 (all vehicles arriving at upstream boundary are shunted to the
alternate path) is less than the outflow, which remains at 1/2 until the jam
completely dissipates.
To complete the picture, once the jam at the upstream boundary does dis-
appear, the inflow at that boundary returns to 1/2 = the larger of the “two
capacities” for CA-184s2s. The boundary between this region of flow 1/2 and
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the downstream region of flow 1/3 propagates downstream, and eventually
reaches the bottleneck. The flow at and downstream of the bottleneck then
returns to 1/2, which is to say a period of recovery is entered. This endures
until yet another vehicle hesitates at the bottleneck. For the particular pa-
rameters in the preceding section it is apparent that the periods of recovery
and of breakdown (existence of a jam) are, in the mean, of approximately
equal duration. The vehicle trajectories plotted in Fig. 10 illustrate graphi-
cally these cycles of breakdown, followed by eventually successful attempts at
recovery, ultimately followed by another instance of breakdown.
More specifically, the white, darker gray, black and lighter gray regions in Fig.
10 represent respectively – in more-or-less standard terms of transportation
engineering – spatiotemporal regions of vacuum (no vehicles), free flow, jam
and queue discharge (acceleration wave). To essentially rephrase the discus-
sion of the preceding two paragraphs, the initial vacuum transitions to a free
flow region, as vehicles entering the roadway arrive. The free flow region tran-
sitions to a jam when some vehicle hesitates at the bottleneck, which initially
occurs at approximately the 500th time step. This jam widens as it propa-

Fig. 10. Vehicle trajectory plot for the initial sample path in the ensemble of Figs. 6
and 7. Vertical axes are x = cell index, 0 ≤ x ≤ 277. Horizontal axes are t = time,
in steps, for respectively (from top to bottom), 0 ≤ t ≤ 2250, 2250 ≤ t ≤ 4500,
4500 ≤ t ≤ 6750, and 6750 ≤ t ≤ 9000.
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gates upstream, but eventually begins to narrow when its upstream boundary
reaches the entrant section, and ultimately disappears when its downstream
boundary reaches the entrant section. As that downstream boundary passes
a given location it transitions into a queue (jam) discharge region. When the
downstream boundary of the jam reaches the entrant section, there emerges
from that boundary a new free flow region, and the cycle repeats. That is,
downstream of that boundary there is a queue discharge region that tran-
sitions at the upstream entrant section into the downstream boundary of a
free flow region, which propagates downstream until it passes the bottleneck,
and endures until the next occurrence of the cycle free flow → jam → queue
discharge → free flow is initiated by the next hesitation at the bottleneck.
An alternative to ring-road simulations, as a possible more elegant source of
a suitable FD, would be an analytic approach via cluster expansions. Under
the above circumstances one would expect the desired FD not to be well-
approximated by the one developed in [25] via a 2-cluster expansion. It might
well be possible to obtain a suitable analytic approximation by similar meth-
ods, but we shall not pursue that here.
Finally, note that the free-flow, jam and queue-discharge regions mentioned
above correspond to regions of symmetry under minimal translations of length
two, one and three cells, respectively. These regions therefore have some claim
to be considered as distinct “phases,” under the somewhat fundamental def-
inition of a phase transition as a break in symmetry. Of course the extreme
regularity and clarity displayed in these transitions is a direct consequence
of the regularity of arrival of vehicles at the entrant section, which in turn
stems from taking the entrant demand as 1/2. We have shown that for this
value of demand the KWM with the empirically determined bottleneck ca-
pacity of ≈ 0.4 predicts flow sufficiently well for purposes such that highly
temporally aggregated means suffice. However, for the KWM to be truly use-
ful, with such empirically determined bottleneck capacities, it must perform
adequately over the full range of possible entrant demands. We consider this
issue in the following section.

6 Demands < 1/2

The titular situation opens the door to qualitatively new phenomena, relative
to the preceding section, because now there is the possibility of jams disap-
pearing, prior to propagating to the upstream entrant section, through merger
with “gaps” in the upstream free flow. The smaller the upstream demand is,
the more likely such “cancellation” of jams. We therefore describe in this sec-
tion the results of some CA experiments with D < 1/2 and varying, and
comparisons of the results with corresponding predictions of the KWM. Any
clues these results might provide toward a basis for the bottleneck capacity of
≈ 0.4 that is suggested empirically by the results of the two preceding sections
also are certainly of interest.
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Fig. 11. Flow (vehicles per time step) downstream of the bottleneck vs. time (aggre-
gation periods of 45 time steps), for four sample paths of CA-184s2ss, with various
mean demands as specified in the legend and probability of hesitation = .005.

Figures 11, 12 and 13 show results of CA simulations with entrant demands
.45, .4 and .35, using the same aggregation levels as respectively Figs. 3-
5. At the finest of these aggregation levels (45 time steps), and the largest
demand (.45), the only significant difference from the results of Fig. 3 is a
notable amount of stochastic noise, presumably from the stochastic nature
of arrivals at the upstream boundary, during periods that higher flows (free
flow) prevails upstream of the bottleneck. However, the lower flows (queue
discharge) remain constant at the lower capacity of 1/3. When the demand
decreases to .4 the level of demand-driven high-frequency noise in the higher
capacity flow increases even further, and the mean value associated with this
demand-driven free flow decreases, but the lower queue-discharge flow remains
more-or-less stable. When the demand decreases to .35 the high-frequency
noise dominates at all times. At this level of aggregation it is difficult to
discern any central tendency of the flows.
When the aggregation period is increased to 450 time steps (Fig. 12) there
does emerge something of a central tendency toward mean values; however,
some superimposed stochastic effects still appear, especially for the larger
values of demand. For even larger aggregation periods (Fig. 13) these are sig-
nificantly smoothed. The mean flows, downstream of the bottleneck and past
the first 2000 time steps, for the three cases of Fig. 13 are .395 (D = .45), .380
(D = .4) and .354 (D = .35). These can be compared to the respective values
of .393, .393 and .350 that would be predicted by the KWM, with use of the
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Fig. 12. Flow (vehicles per time step) vs. time (aggregation periods), for four sample
paths of CA-184s2ss, now with aggregation periods of 450 time steps.
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Fig. 13. Flow (vehicles per time step) vs. time (aggregation periods = 4500 time
steps) for a sample path of 90,000 time steps, with varying mean demands, as indi-
cated, and probability of hesitation = .005.
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Fig. 14. Demand/flow curves, for CA-184s2ss, with probability of hesitation = .005,
and other parameters as specified in the text.

bottleneck capacity of .393 that was determined by the “empirical” observa-
tions of Section 4. This is a maximum error of 3.5%, which is comparable to,
but smaller than, both the difference between breakdown and recovery flows
and the typical accuracy of microsimulation models [28].
Some workers have recently reported evidence of phase transitions in the form
of discontinuities of either the first or second kind in demand/flow diagrams.
The upper solid curve in Fig. 14, which was obtained by incrementing demand
from .3 to .5 in steps of .01 and by aggregating exiting flow from a sample
path of 90,000 time steps over the last 88,000 steps, does not discernibly dis-
play any such discontinuities. The matching solid lower curve is a plot of the
difference between demand and exiting flow, and therefore an approximation1

to the unmet demand. The two curves together illustrate that unmet demand
increases rapidly as demand increases beyond the lower capacity of 1/3, and
the flow curve suggests that there remains significant stochastic variation at
the higher demand levels, even for this relatively large number of time steps.
In order to explore the latter even further, the dashpot curves in Fig. 14 were
obtained analogously, except with demand increments from .45 to .5 in steps
of .005 and sample paths of 180,000 time steps, with exiting vehicles dur-
ing the first 2000 time steps neglected in order to achieve an initial steady
state. Again there are no apparent discontinuities that would suggest a phase
change. However, over the entire range of demands considered there is a dis-
tinct gradual change in the slope, and increasing fluctuation in the observed
flow, as the demand increases.
1 In order to make it exact it would be necessary to adjust for vehicles in the

roadway at beginning and end of the 88,000 steps over which the exiting flow is
aggregated.
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Figure 15 provides a picture of this evolution of flows, in the form of flow
vs. time diagrams similar to Figs. 3, 7, 8 and 11, but for demands varying
from .34 to .5, in increments of .02. As demand decreases from the value
of 1/2 that was used in the preceding two sections, the first notable effect
is high-frequency fluctuations in the flow during periods of high flow (the
free-flow value of 1/2). These stem from fluctuations in the demand, and
their magnitude increases as demand decreases. In the meantime the queue-
discharge flows at the exit initially remain stable at 1/3; however, eventually
(D ≈ .42) one sees fluctuations, driven by the stochastic entrant demand,
that have minima even smaller than 1/3. As demand decreases past this point
the relative portion of the time during which queue-discharge = 1/3 holds
decreases, although some queue discharge remains even at D = .34. The
decreasing occurrence of queue discharge at the exit stems from the increasing
tendency for jams emanating from the bottleneck to be “extinguished” by the
increasingly frequent and larger gaps in the preceding region stemming from
the entrant boundary, as anticipated at the beginning of this section.
This effect can be seen graphically in the expanded vehicle trajectories of
Fig. 16; cf. especially the jams initially forming at t = 4259 and 4434. This
expanded view also demonstrates that the regions preceding the jams are
comprised of alternating gaps (small vacuum regions) and platoons (moving
vehicles separated by spatial headways = 1, as in the free-flow regions of the
preceding sections). While one conceivably could argue that this represents a
“phase” distinct from the vacuum, free-flow, jam and queue-discharge phases
previously identified, at the microscopic level it seems a more basic view of
this regime is as a fine-scale mixture of the vacuum (empty) and free-flow
phases. In any even, when incipient jams are extinguished by gaps in such
regions, this tends to happen early in the formation of the jams, when they
are relatively small in size, and therefore they tend to be difficult to ascertain
visually within more highly aggregated vehicle-trajectory plots such as Fig. 10.

7 Conclusions

The cellular automata CA-184s2ss has been shown to replicate elements of
both two-capacity flow and wide moving jams at freeway bottlenecks, as ob-
served in actual traffic (cf. respectively [3] and [27]). Notwithstanding that
neither of these phenomena is replicated by the KWM, sufficiently coarsely
time-aggregated flows downstream of the (CA-184s2ss simulated) bottleneck
yield an empirical capacity. Use of this empirically determined bottleneck
within the KWM replicates simulations reasonably well (a few percent), as
compared either to coarse time aggregations or ensemble averages of fine time
aggregations.
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Fig. 15. Flow (vehicles/time step) vs. time (aggregation periods of 45 time steps
each) for typical sample paths of 9000 time steps each, with hesitation probability
pb = .005, varying demands, and other CA-184s2ss parameters as described in the
text.

It would be interesting to make similar comparisons, with the time aggre-
gations carried out over short intervals and with the bottleneck capacity em-
ployed in the KWM taken as a stochastic variable, as suggested in [2] and [19].
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Fig. 16. Expanded view of vehicle trajectories for the sample path of Fig. 15 corre-
sponding to D = .36. Note the incipient jams formed at the bottleneck at time steps
4259 and 4434, but extinguished by gaps arriving shortly after their formation.
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Summary. Lee et.al. [1] have proposed a cellular automaton model that empha-
sizes the conflict between human overreaction and limited mechanical capabilities
as the origin of congested traffic states. The limited acceleration and deceleration
capabilities lead to a rather different approach to realize realistic traffic modeling.
But the original model lacks the robustness and usability for more complicated and
flexible simulations. In order to allow an extension of the model to two-lane traffic a
modification of the original single-lane model is presented that ensures the absence
of any collisions in the model dynamics.

1 Introduction

H. K. Lee et al. [1, 2] introduced an advanced cellular automaton model for
single-lane traffic that allows to reproduce the different forms of synchronized
traffic, the pinch effect [3–5] and also short time-headways in free and syn-
chronized flow [6]. In the model, realistic flow properties are a consequence
of moderate driving. It takes into account finite acceleration and deceleration
properties and also the attitude of the drivers.
Due to the finite deceleration capabilities, the model is not intrinsically
accident-free. Usually collisions are avoided by introducing a strict hardcore
repulsion between the individual cars. However, this typically leads to pro-
cesses with a very large deceleration. In the presence of limited deceleration
capabilities crashes have to be avoided by choosing the dynamics appropri-
ately. In the original version of the model [1], accidents could occur if the
initial state is not chosen carefully. This makes the extension of the model to
more complex scenarios like two-lane traffic difficult. Therefore an extension
of the model that increases its robustness against accidents is required.
So in parallel to the development of the rule-set for a secure lane change
the original one-lane model is adapted. Here the calculation scheme of the
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parameter γ — which describes the attitude of the driver — has to be changed.
The characteristics of the accidents observed in simulations showed that a
delayed change from the optimistic to the pessimistic state is the source of
the accidents in the original model. The vehicle may react too late to changes
in the neighborhood of the leading vehicles, especially of the second-nearest
car ahead.

2 Model Definition

First we recapitulate the rule set of the one-lane model. The core is an in-
equality that defines a velocity ct+1

n which is considered to be safe by the
driver:

xt
n +∆+

τf (ct+1
n )∑

i=0

(ct+1
n −Di) ≤ xt

n+1 +
τl(v

t
n+1)∑

i=1

(vt
n+1 −Di) . (1)

xt
n and vt

n are position and velocity of vehicle n, respectively, and ∆ represents
the minimum gap between the vehicles and is at least the length L of the
leading vehicle. Each summation in (1) denotes a deceleration cascade with
maximum braking capabilityD. As long as both τf (v) and τl(v) are set to v/D
and ∆ = L, the deceleration would end in a bumper-to-bumper configuration.
But this is weakened if the human factor is introduced. Note that ct+1

n is not
uniquely determined by (1) and the upper limit is used.
In order to model the different behavior of drivers one distinguishes between
optimistic and pessimistic driving. The former controls the behavior in free
flow. Vehicles drive unhindered and drivers accept “unsafe” gaps, i.e. gaps
smaller than those allowing them to react to an emergency braking of the
leading vehicle. Short time-headways below 1 sec are possible [6]. The latter
governs the driving at high densities. Interactions between the cars are strong
and braking is likely. The vehicles drive pessimistic and remain aloof. This
leads to the following definition of γ:

γt
n =

{
0 for vt

n ≤ vt
n+1 ≤ vt

n+2 or vt
n+2 ≥ vfast

1 otherwise,
(2)

where the parameter vfast is slightly smaller than the maximum velocity vmax.
The upper limits τf (v) and τl(v) of the summation (1) as well as the minimum
gap between the cars are determined by

∆ = L+ γt
n max{0,min{gadd, v

t
n − gadd}},

τf (v) = γt
nv/D + (1 − γt

n)max{0,min{v/D, tsafe} − 1}, (3)

τl(v) = γt
nv/D + (1 − γt

n)min{v/D, tsafe}.
Here D denotes the deceleration capability of the vehicles and tsafe the max-
imum number of time steps a vehicle observes its own safety when driving
optimistically. The remaining update is as follows:



Mechanical Restriction Versus Human Overreaction 505

1. p = max{pd, p0 − vt
n(p0 − pd)/vslow}

2. c̃ t+1
n = max{ct+1

n | ct+1
n satisfies Eq. (1)–(3)}

3. ṽ t+1
n = max{0, vt

n + a,max{0, vt
n −D, c̃ t+1

n }}
4. vt+1

n = max{0, vt
n −D, ṽ t+1

n − η}, with η = 1 if rand() < p or 0 else
5. xt+1

n = xt
n + vt+1

n

For a detailed description of the update rules, see [1, 2].
As mentioned above the key to a safe one-lane model rests on a more careful
determination of γ. Simulations show that two different scenarios lead to a
dangerous configuration [7]: (i) if all three vehicles involved in the calculation
of γ drive optimistically with the same velocity; (ii) if the velocity difference
between vn+1 and vn+2 is too high. Nevertheless, the frequency of accidents
is very low. In the free flow region we could not detect any accidents, at
higher densities (e.g. ρ = 60 veh/km we found a maximum of the order of 108

time-steps in which a vehicle has one accident.
That means critical situations emerge at the transition between optimistic and
pessimistic driving as the vehicle reacts with an offset of one time step. Due
to the nature of the collisions observed in the original model we changed the
definition of γt

n. To prevent dangerous situations of the first type the second
inequality in vt

n ≤ vt
n+1 ≤ vt

n+2 is strengthened to vt
n+1 < vt

n+2. Accidents
due to a large velocity difference are in general eliminated by a upper limit of
the difference between vn and vn+1.
Additionally it was needed to add a stronger interaction between each vehicle
n and n+ 2. This is done by introducing a brake-light bn. It denotes whether
the vehicle has reduced its velocity because of its surrounding, but not because
of dawdling (i.e. the randomization):

btn =

{
1 for ṽt+1

n < vt
n

0 otherwise.
(4)

Note, that the brake-light has not the same role as in [8]. Here it provides
a way to communicate the presence of a hindrance and therefore a possible
change of the optimistic state to the following cars. So each vehicle is able to
sense a critical situation early enough.
The parameter γ is now determined considering also the state of the brake-
light of the (n+ 2)th vehicle:

γt
n =

⎧⎪⎨
⎪⎩

0 for vt
n ≤ vt

n+1 < vt
n+2

or
(
vt

n+2 ≥ vfast ∧ vt
n − vt

n+1 ≤ D ∧ btn+2 = 0
)

1 otherwise.
(5)

The remaining update is unchanged.

3 Results

The changes in the definition of the model dynamics hardly influence the
macroscopic and microscopic results [7]. The dynamics of the model is still
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capable to reproduce the traffic patterns observed empirically as well as the
short time-headways in the free flow phase and synchronized traffic. Fig. 1
shows examples for space-time plots of a system with an on-ramp. The left
part shows synchronized traffic at an on-ramp in which compact jams emerge
because of the so-called pinch effect [3, 4]. The right plot in Fig. 1 shows local-
ized synchronized traffic. Note that widening and moving synchronized pat-
terns are reproduced as well. The insertion algorithm follows the one described
in [1]. The following model parameters, which are motivated by empirical facts
and already utilized in [1], are used in the simulations: a = 1, D = 2, l = 5,
vfast = 19, tmin = 3, gadd = 4, p0 = 0.32, pd = 0.11, vslow = 5, vmax = 20. The
length of one cell is chosen to be ∆x = 1.5m and one time-step to ∆t = 1 sec.

Fig. 1. Impact of an on-ramp: General pattern at (qmain, qramp) = (0.55, 0.16) (left),
and localized synchronized pattern at (0.38, 0.17) (right)

Furthermore, we are optimistic to prove rigorously the absence of accidents
in the modified model [7]. In order to estimate the influence of the changes to
the original model made here we have determined how often the new rules are
applied and lead to a different result. In the free flow region the probability of
changed γn (see Eq. (5)) compared to the definition in [1] is about 0.004 per
car and second. That means that the influence of the changed rules is small.

4 Two-Lane Traffic

In addition to the modifications that lead to the absence of accidents, simu-
lating realistic scenarios requires the extension to a two-lane model. Here it
is especially important to keep in mind the missing hardcore repulsion. The
lane changes have to take into account safety in the sense of not interfering
with cars on the other lane, but also avoiding accidents in the process of lane
changing. In this contribution we consider only symmetric lane changes.
In the two-lane model each time-step is separated into two sub-steps [9]. In
the first step for each vehicle it is decided whether it will change lane in
the current time-step. In the second step a normal one-lane model time-step
update is applied to each of the two lanes.
The basic idea behind the two-lane model is using the condition for c̃t+1

n

to determine the safety of a possible lane change. In each time-step it is
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checked whether the vehicle would be able to drive with the safe velocity if
it changes lane. It is also checked whether the follower on the destination
lane would be able to drive safely. The parameter β ∈ {0, . . . , D} controls
how much the follower may be constrained. For β = 0 only smooth lane
changes are allowed where the follower is not forced to brake at all, while at
β = D even decelerations with maximal braking capability are acceptable.
These conditions constitute the security criterion and determine whether a
vehicle can change lanes without obstructing vehicles on the destination lane
or even provoking a dangerous situation.
A vehicle wants to change lane only if the mobility criterion is satisfied. For
the symmetric two-lane model this means that the vehicle can drive faster on
the destination lane than on its current lane. This is determined by calculating
ṽt+1

n on the current lane and then virtually changing the vehicle to the other
lane, calculating ṽt+1

n again and comparing these two.
According to [10] a lane change takes tlc = 3 seconds in time. Therefore
the security criterion must hold for at least three time-steps until a positive
mobility criterion can trigger the vehicle to actually change the lane. For each
vehicle a new variable ϑt

n is introduced that is initially ϑ0
n = 0 and acts as a

counter for time-steps in which the security criterion is valid.
To formally describe the update rules of the model, ltn ∈ {0, 1} denotes the
lane used by vehicle n at time t. Fl(n) denotes the follower and Ll(n) the
leader of the vehicle n on lane l. Some values are calculated for a vehicle
virtually changing the lane. In this case, a second subscript is used to specify
the lane. Thus ṽt+1

n,l means “ṽt+1
n , if the vehicle would be on lane l”.

The update rules of the two-lane model are:

1. ϑt+1
n = ϑt

n + 1 if all of the following conditions hold, or 0 otherwise:
• xt

n − xt
F1−l(n) > L+ gsafe and xt

L1−l(n) − xt
n > L+ gsafe

• vt
n −D ≤ c̃t+1

n,1−ltn

• vt
F1−ltn

(n) − β ≤ c̃t+1
F1−ltn

(n)

2. lt+1
n = 1 − ltn if ṽt+1

n,1−ltn
> ṽt+1

n,ltn
and ϑt+1

n ≥ tlc, or ltn otherwise.
3. ϑt+1

n = 0 if lt+1
n �= ltn.

Here gsafe denotes an optional security gap which becomes important at higher
densities where the gap between the vehicles approaches 0.
An important result of this two-lane traffic model that distinguishes this ap-
proach from former ones (see e.g. [9, 11] for an overview) is shown in Fig. 2.
In the low-density region the number of lane changes Nlc rises until an occu-
pation of about 0.08. Than it decreases until an occupation occ of about 0.15
when the system runs into the synchronized state. Here Nlc nearly reaches 0.
This means in the presence of synchronized traffic on both lanes the vehicles
do not change anymore. This effect does not depend on tlc and shows the
strong synchronization [12] between the two lanes, as lane-changing has no
advantage.
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Fig. 2. The number of lane changes Nlc per hour and kilometer (left) depending on
the occupation occ of the road. The lane change rate disappears in the presence of
synchronized traffic. The maximum decreases exponentially with respect to tlc.

The number of lane changes increases again at higher occupations occ > 0.35.
Here we do have phase-separated traffic and cars reaching the congested area
tend to change the lane if the upstream end of the congestion is starting earlier
on its lane than on the other. Note that tlc is important for the number of
lane changes Nlc. The lane change rate decreases exponentially with tlc.
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Ramp Effects in Asymmetric Simple Exclusion
Processes

Ding-wei Huang

Department of Physics, Chung Yuan Christian University, Chung-li, Taiwan

Summary. We present analytical results of ramp effects in asymmetric simple ex-
clusion processes. Both on-ramp and off-ramp are included in between the two open
boundaries. Exact phase diagrams are obtained analytically in the full parameter
space. We find that the order of the two ramps is crucial. When the on-ramp is
placed after the off-ramp along the traffic direction, there are only four distinct
phases since free flow will not follow a congestion. When the on-ramp is placed be-
fore the off-ramp, we observe a new phase. The bottleneck emerges as the flow in
between the two ramps saturates to its maximum. Applications to a traffic rotary
are discussed.

1 Introduction

Recently, traffic related problems have attracted much attention from physi-
cists [1, 2]. Not only are the problems highly relevant for our modern life, they
also provide excellent examples for the phenomena of boundary-induced phase
transitions [3, 4]. Traffic flow is basically a one-dimensional phenomenon. With
naive intuition, congestions result whenever the in-flow is larger than the out-
flow. On the other hand, if the in-flow is less than the out-flow, the vehicles
might move freely. However, such impressions are only partially correct. Free
flow and congestion can be steady phases on the roadway, instead of tran-
sient situations in the naive explanation. Such steady phases present in a
system driven far away from equilibrium, where a steady current is main-
tained asymptotically. The most basic model to capture such a feature is the
asymmetric simple exclusion process [5, 6]. The model has been studied thor-
oughly in a simple configuration of one roadway with two open ends and no
ramp. As nontrivial boundaries, ramps can be expected to influence the traffic
strongly [7–9]. In this work, we introduce ramps along the roadway and study
their influence on the traffic. Exact phase diagrams are obtained. The full pa-
rameter space can be completely classified. As a step towards more complex
networks, the flow around a traffic rotary is also analyzed.
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2 Model

We study the phase diagrams of asymmetric simple exclusion processes with
open boundaries and ramps. The system configurations are shown in Fig. 1.
A simple roadway is represented by a one-dimensional lattice. Each site can
be accommodated by one particle only. At each time step, every particle hops
forward to the next site as long as that site was empty in the previous time
step. The dynamics in the bulk is fully deterministic. There are four non-trivial
sites: particles can be injected from the first site (left end) and from the site
designated as the on-ramp; particles can also be removed from the last site
(right end) and from the site designated as the off-ramp. Although particles
move deterministically along the main road, their injection and removal from
these four special sites is stochastic. The injection rates from the left end
and the on-ramp are denoted by α0 and α1, respectively; the removal rates
from the right end and the off-ramp are denoted by β0 and β1, respectively.
In our previous study [10], we have obtained the analytical phase diagrams
in the cases of a single ramp. Now, we consider the case of two ramps, first
with the off-ramp placed before the on-ramp as shown in Fig. 1(a). As the
two ramps divide the roadway into three homogeneous parts, we can replace
the ramp flow by effective boundaries. The flow through the off-ramp β1 can
be represented by a removal rate β′ for the first part and an injection rate
α′ for the second part of the roadway; the flow through the on-ramp α1 can
also be represented by a removal rate β′′ for the second part and an injection
rate α′′ for the third part of the roadway. The regime of the (FFF) phase
can be obtained by imposing the constraints α0 < β′, α′ < β′′, and α′′ < β0.
The effective rates can be solved by balancing the flow across the ramp. The
analytical expressions are as follows:

α′ =
α0(1 − β1)
1 + α0β1

and β′ = 1 ; (1)

α′′ = α′ + α1(1 + α′) and β′′ =
α′(1 + α1)

α′ + α1(1 + α′)
. (2)

It is interesting to note that the crucial condition is the free flow on the third
part of the roadway, i.e., α′′ < β0. The regimes for other phases can also be
obtained similarly. We summarize the results as

(FFF) α1(1 + α0) − β1(1 + β0)α0 < β0 − α0 ; (3)
(FFJ) α1(1 + α0) − β1(1 + β0)α0 > β0 − α0 ,

α1(1 + α0)β0 − β1(1 + β0)α0 < β0 − α0 ; (4)
(FJJ) α1(1 + α0)β0 − β1(1 + β0) < β0 − α0 ,

α1(1 + α0)β0 − β1(1 + β0)α0 > β0 − α0 ; (5)
(JJJ) α1(1 + α0)β0 − β1(1 + β0) > β0 − α0 . (6)

We note that the four dimensional parameter space (α0, β0, α1, β1) can be
completely classified into these four distinct phases. With naive intuition, the
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two ramps divide the roadway into three sections, and each section can be
either free or jam. Thus one would expect eight different phases. However,
there are four phases missing: (JFF), (JJF), (JFJ), and (FJF). Along the
traffic direction, free flow will not follow a congestion. Basically, the traffic
jams emerge as α0 and/or α1 increases and resolve as β0 and/or β1 increases.
The numerical simulations can be exactly reproduced as shown in Fig. 2.

0

1

0

1

00

1

1(a)

(b)

1

1

2

2

3

3

Fig. 1. System configurations: (a) on-ramp α1 placed after off-ramp β1; (b) on-
ramp α1 placed before off-ramp β1. The gray arrow shows the direction of particle
hopping. The three parts of the roadway are labelled by the number.

3 Maximum Flow

Next, we switch the order of the two ramps. The on-ramp is now placed before
the off-ramp as shown in Fig. 1(b). The results of last section should be revised
accordingly. We summarize the results for the four different phases:

(FFF) α1(1 + α0) − β1(1 + β0)α0 − α1β1(1 + α0)(1 + β0) < β0 − α0 ,

α1(1 + α0) < 1 − α0 ; (7)
(FFJ) α1(1 + α0) − β1(1 + β0)α0 − α1β1(1 + α0)(1 + β0) > β0 − α0 ,

α1(1 + α0) − β1(1 + β0) < β0 − α0 ; (8)
(FJJ) α1(1 + α0)β0 − β1(1 + β0) + α1β1(1 + α0)(1 + β0) < β0 − α0 ,

α1(1 + α0) − β1(1 + β0) > β0 − α0 ; (9)
(JJJ) α1(1 + α0)β0 − β1(1 + β0) + α1β1(1 + α0)(1 + β0) > β0 − α0 ,

β1(1 + β0) < 1 − β0 . (10)

It is interesting to notice that the above four phases do not completely classify
the parameter space (α0, β0, α1, β1). In fact, one more distinct phase can be
observed. The traffic flow saturates to the maximum value on the second part
of the roadway, while the congestion remains on the first part of the roadway
and the free flow is maintained on the third part of the roadway. The phase
regime can be obtained as follows:
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Fig. 2. Bulk density of the system shown in Fig. 1(a) (with three parameters fixed).
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Fig. 3. Bulk density of the system shown in Fig. 1(b) (with three parameters fixed).

(JMF) α1(1 + α0) > 1 − α0 ,

β1(1 + β0) > 1 − β0 , (11)

where free flow (F), jams (J), and maximum flow (M) can be observed in
different parts of the roadway. With these five different phases, the parameter
space (α0, β0, α1, β1) can then be completely classified. In last section (the
off-ramp placed before the on-ramp), the maximum flow can only be observed
along the phase boundaries for the extreme conditions α0 = 1 and/or β0 =
1. When the off-ramp is placed after the on-ramp, the maximum flow can
be observed in an extended regime and becomes a distinct phase. Basically,
congestions develop as α1 increases and the free flow restores as β1 increase.
However, when α1 and β1 are larger than certain criteria, the traffic flow
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would saturate in the middle section of the roadway and a new phase appears.
Similarly, the new phase emerges whenever α0 and β0 are larger than certain
criteria. We emphasize again that the above analytical results are exact. The
numerical simulations can be correctly reproduced, see Fig. 3.

4 Traffic Rotary

When periodic boundary conditions are imposed, the system configuration
shown in Fig. 1 becomes a traffic rotary. With two on-ramps and two off-
ramps, the rotary shown in Fig. 4 can be taken as an alternative to a conven-
tional crossroad. Traffic from west to east is prescribed by α1 and β1; traffic
from south to north is prescribed by α2 and β2. Beside the free flow (FFFF)
and congestion (JJJJ), the maximum flow can only be expected in part 1 of
the rotary. In such a situation, part 2 will be free flow and part 4 will be con-
gested. Part 3 can be either free or jam. Thus we should have four different
phases:

(FFFF) α1 + α2 + α1α2 < β1 + β2 − β1β2 ; (12)
(JJJJ) β1 + β2 + β1β2 < α1 + α2 − α1α2 ; (13)

(MFFJ) α1 + α2 − α1α2 < β1 + β2 − β1β2 < α1 + α2 + α1α2 ; (14)
(MFJJ) β1 + β2 − β1β2 < α1 + α2 − α1α2 < β1 + β2 + β1β2 . (15)

Again, the numerical simulations can be reproduced, see Fig. 5.

1 1

1 2

34

2

2
.

Fig. 4. System configuration of a traffic rotary. Particles move clockwise as shown
by the gray arrows. The rotary is then divided into four parts labeled by numbers.

5 Concluding Remarks

We demonstrate that the bulk properties on a roadway are totally controlled
by the stochastic ramp-flow through the boundaries. To classify the traffic
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Fig. 5. Bulk density of the system shown in Fig. 4 (with three parameters fixed).

conditions, the roadway can be divided into various parts joined by the ramps.
On each part, the traffic is homogeneous and can be characterized as free flow,
congestion, or maximum flow. A complete classification in the parameter space
is achieved. Exact phase diagrams are obtained analytically. Basically traffic
jams emerge as the on-ramp flow increases. Free flow is restored as the off-ramp
flow increases. In between these two phases, various kinds of inhomogeneity
can develop among different parts of the roadway. Along the traffic direction
free flow will not follow a congestion directly. To constitute a bottleneck, the
maximum flow must appear in between the downstream free-flow and the
upstream congestion, which also implies that the on-ramp must be placed
before the off-ramp along the traffic direction. In the simple model studied,
the present results are exact. These transparent results might be useful to
analyze real traffic networks.
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Summary. A bottleneck simulation of road traffic on a loop, using the cellular
automata Nagel-Schreckenberg model (with p = 0), reveals three types of stationary
wave solutions. They consist of i) two shock waves at the bottleneck boundaries, ii)
one shock wave at the boundary and one on the “open” road and iii) the trivial
solution, i.e. homogeneous, uniform flow. These solutions are selected dynamically
from a range of stationary wave solutions, similar in fashion to the wave selection in
a bottleneck simulation of the optimal-velocity model. This is yet another indication
that CA and OV models share certain underlying dynamics, although the former
are discrete in space and time while the latter are continuous.

Cellular automata (CA) models have been widely used to simulate traffic flow
on highways and road networks [4, 8], in particular the Nagel-Schreckenberg
model [6, 7]. Together with car-following (CF) and continuum models, they
represent the three most popular classes of traffic models.
Analytical work by Berg et al. [2] and Lee et al. [5] has established a link
between car-following models based on ordinary differential equations, and
continuum models based on partial differential equations. While an analytical
link between CA models and either CF or continuum models is still miss-
ing (mean-field theory aside), the dynamics of all three classes exhibit many
common features such as sub-critical bifurcations, limit cycles and pattern
formation [3, 4].
Bottlenecks are the major cause for highway congestion and, therefore, have
been studied in some detail [3, 4, 9]. In this paper, a wave selection analysis
of a bottleneck simulation reveals a fundamental link between the dynamics
of CA models and optimal-velocity (OV) models, which belong to the class of
CF models.

1 Cellular Automata Bottleneck Simulation

For traffic on a loop (periodic boundary conditions) of length L, a bottleneck
of length LB is located at 0 ≤ x ≤ LB . The system is simulated using the
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Fig. 1. Stationary shock waves visualized in the fundamental diagram: From six
possible wave connections (the trivial uniform flow solution in Fig. 3c is not shown
here) only three emerge as dynamical solutions, displayed in Figs. 3a-3c.

Nagel-Schreckenberg (NS) CA model [6] for vanishing randomness (p = 0)
with a reduction in top speed from vmax = 5 on the “open” road to vmax

B = 3
in the bottleneck. All other model parameters remain the same. Initially, N
cars are randomly distributed along the road and the system is updated up
to t = 106 time steps. We set LB = 200 and L = 1000.
Note that the wave selection on a loop is fundamentally different from wave
selection on an “open” road with different conditions at the upstream and
downstream boundary, respectively. Also, we set p = 0 in order to avoid the
jam formation in the NS model, which would interfere with the stationary
wave patterns.

2 Wave Selection in the Fundamental Diagram

We will use the fundamental diagram (FD), i.e. flux versus density, to interpret
our numerical results. It is shown for both the bottleneck (qB : flux, ρ: density)
and the open road (qo)

qB =
{

3ρ ; 0 ≤ ρ ≤ 1/4,
1 − ρ ; 1/4 < ρ ≤ 1 , qo =

{
5ρ ; 0 ≤ ρ ≤ 1/6,
1 − ρ ; 1/6 < ρ ≤ 1 (1)

in Fig. 1. Note that they merge into the same function for ρ ≥ 1/4.
Generally speaking, we could expect as many as six stationary wave solutions
for the bottleneck simulation as t → ∞. In the FD, five of them are visual-
ized as chords with zero gradient due to vanishing wave speed. They connect
plateaus between the bottleneck and the open road (case 2, 3 and 4) in case
of one stationary shock wave at each bottleneck boundary. However, they can
also entail a plateau connection on the open road as in cases 1 and 5. These five
stationary wave patterns are shown in Fig. 2 in terms of density distribution
along the loop. In addition, there is the trivial wave solution of homogeneous
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Fig. 2. Stationary wave patterns of Fig. 1: While case (a) and (b) occur in the
simulations (cases (1) and (2) in Fig. 1, respectively), as shown in Figs. 3a and 3b,
cases (c), (d), and (e) do not emerge. This is a very close analogy to the wave pattern
selection of a bottleneck simulation with the optimal-velocity model (see Fig. 4) [10].

uniform flow. In principle, we could think of further wave patterns but we will
restrict the analysis to the simplest cases featured here.
We found in our simulations that only three wave patterns are selected from
this range of possible wave solutions. They consist of the following (ρ: average
density on the loop):

• Case 1: 0.17 ≤ ρ < 0.25
Stationary wave pattern that connects two plateaus by one shock at the
downstream boundary of the bottleneck and one classical (Lax) shock on
the open road (see Figs. 2a and 3a): The resulting bottleneck headway
(distance between cars) is exactly at dB = 4. On the open road we find
the headway to be near dn = 7, or exactly do = 20/3 on average.

• Case 2: 0 ≤ ρ < 0.17
Stationary wave pattern that connects two plateaus by shocks at the
upstream and downstream boundary of the bottleneck, respectively (see
Fig. 2b and 3b): In the bottleneck dB > 4 and on the open road do > 20/3.
Note that it takes a very long time for the system to reach steady-state due
to the small interaction of cars on the open road. Hence, Fig. 3b should be
considered as a transient, quasi-steady state.

• Case 3: ρ > 0.25
Trivial flow solution, i.e. homogeneous, uniform flow: Unless the average
headway is close to an integer number, as is the case in Fig. 3c, the indi-
vidual headways dn oscillate around the average headway d. However, this
is an effect solely due to the discretization of space, and the flow solution
can still be considered uniform.

Three open questions remain:

1. Why is there a transition between the structures at ρ = 0.17 and ρ = 0.25?
2. What determines the location of the shock on the open road in case 1?
3. Why do we not observe the other wave patterns?

We will now briefly elaborate on all three questions.
The two headways in Fig. 3b are determined by the conservation of cars and
by imposing zero wave speed (zero gradient of the chord in the FD). This can
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Fig. 3. Stationary wave patterns of bottleneck simulation: Vehicle speed vn vs.
position x; d: average headway. (a) 0.17 < ρ < 0.25 (here: ρ = 0.20): Two shocks
emerge, one at the downstream bottleneck boundary and one classical (Lax) shock on
the open road. (b) Stationary wave pattern of bottleneck simulation with average
density ρ < 0.17 (here: ρ = 0.142): Two shocks emerge, one at each bottleneck
boundary. (c) Trivial flow solution for bottleneck simulation with average density
ρ > 0.25 (here: ρ = 0.333).

be written as two equations with two unknowns, the bottleneck headway dB

and the open road headway do. Neglecting finite size effects, conservation of
cars reads

L− LB

do
+
LB

dB
= N. (2)

We find for the wave speed criterion (equal fluxes qB and qo in both road
segments)

qB = qo ⇒ 3ρB = 5ρo ⇒ 3
dB

=
5
do
, (3)

where ρB and ρo denote the bottleneck and open road density, respectively.
The system (2)-(3) can be solved for dB . It yields

dB =
3
5L+ 2

5LB

N
. (4)

In Fig. 3b, we have L = 1000, LB = 200, N = 142 and, hence, dB = 4.79.
This equals ρB = 1/dB = 0.21, which coincides with the numerical value. The
value for do follows correspondingly.
The maximum amount of vehicles that the wave structure in Fig. 3b can sup-
port, however, is reached when dB = 4.0 and, determined by zero wave speed,
do = 20/3. For LB = 200, this corresponds to an average density of

ρ = 0.2
1
4

+ 0.8
1

20/3
= 0.17, (5)

which is coincidentally close to q = 1/6, the maximum of qo. If we increase
ρ beyond this, the wave pattern in Fig. 3a is triggered, with a bottleneck
headway exactly at dB = 4 and do = 20/3 for the other plateau value. This
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is shown by chord 1 in Fig. 1. The length of the second plateau Lp is now
determined by the conservation of cars alone. Setting ρ = 0.2 in Fig. 3a, we
write

ρ =
1
4
(1 − Lp/L) +

1
20/3

(Lp/L) ⇒ Lp = 500, (6)

which is very close to the numerical value of L ≈ 510. Note that finite size
effects impose limits on the accuracy of estimates. For ρ ≥ 0.25, this wave
pattern must vanish and we are left with the trivial flow solution of Fig. 3c.

3 Link to Optimal-Velocity Model

While the above analysis explains the transition between the three wave pat-
terns, which are observed in the numerical simulations, it does not answer
why the remaining wave patterns in Fig. 1 do not occur.
A similar bottleneck simulation with the (linearly stable) OV model [1] has
been carried out by Ward et al. [10]. Here, the bottleneck was simulated
by a reduction factor in the optimal velocity function. Again, three wave
patterns emerge from the numerical results, as indicated by the chords in the
fundamental digram in Fig. 4.
These wave patterns can partly be explained by kinematic wave theory (char-
acteristics crossing boundaries between bottleneck and “open” road) and a
phase-plane analysis of stationary travelling waves in the corresponding con-
tinuum model [2, 5, 10]. For example, case 2 of the OV model is a connection
between two saddle points. A full explanation of the wave structures might
require a higher-order continuum model though. For case 1 of the CA model,
however, we cannot define a characteristic wave speed at the maximum of the
bottleneck flux (ρ = 1/4) and the method of characteristics cannot be applied
to explain the emerging wave pattern.
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bottleneck

q 1

2
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Fig. 4. Fundamental diagram and wave selection of a bottleneck simulation with the
(linearly stable) OV model [10]. Three stationary wave patterns emerge. Cases (1)
and (2) of the OV simulation correspond to cases (1) and (2) of the CA simulation
(Fig. 1). Case (7) corresponds to the trivial flow solution of Fig. 3c due the identical
fundamental diagrams of the bottleneck and the open road for ρ ≥ 0.25 in Fig. 1.
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Nevertheless, there is a one-to-one correspondence between the three solutions
of the OV and the CA model:

1. OV model, case 1 ↔ CA model, case 1
2. OV model, case 2 ↔ CA model, case 2
3. OV model, case 7 ↔ CA model, trivial solution (Fig. 3c)

Note that the two fundamental diagrams for the CA model in Fig. 1 merge into
one another for ρ ≥ 0.25 (maximum of qB lies on qo-curve, chord 7 merges into
one point). This also implies that, for case 1 of the OV model, we actually
find three plateaus similar to Fig. 2e, with the bottleneck flux again at its
maximum.
Kinematic wave theory alone cannot fully explain the selection of stationary
shocks in the bottleneck simulation, since one always finds at least one shock
with two diverging characteristics. On the other side, stationary wave patterns
can be expected at the boundaries due to a non-smooth change in model
parameters. Therefore, it is the dynamics of the model which determine the
actual observable patterns, and these resemble each other in the OV and CA
model simulations.

4 Conclusion and Future Work

In this paper, the dynamics of a bottleneck simulation exhibit a link between
cellular automata and optimal-velocity traffic models. This is surprising in
some sense since it connects a model, which is discrete in space and time, to
a model, which is continuous in space and time.
Future work will focus on a CA model with two different fundamental dia-
grams for the bottleneck and the open road, respectively, and how this com-
pares to the bottleneck simulations of the OV model. This can be achieved by
choosing two different “dawdling” probabilities 0 < po < pB < 1. However,
this entails the formation of jams, which overlap with the stationary wave
patterns.
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Linking Synchronized Flow
and Kinematic Waves
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Summary. This paper shows that including the effects of lane-changing activity
in kinematic wave theory reveals the physical mechanisms and reproduces the main
empirical features that motivated Kerner’s three-phase theory. This is shown using
a hybrid representation of traffic flow where lane-changing vehicles are treated as
discrete particles with realistic accelerations embedded in a continuous multilane
kinematic wave stream. We show that this parsimonious four-parameter model re-
produces the three phases identified by Kerner, including phase transitions and jam
formation. We conclude that synchronized flow and wide-moving jams differ only in
their lane-changing spatiotemporal patterns, but obey the same conservation laws
and boundary conditions. Freeway segments with one, two and three junctions are
analyzed.

1 Introduction

Kerner’s three-phase theory [1] was introduced for explaining complex traffic
features, such as the capacity drop [2–6], hysteresis [7], stop-and-go waves [8–
13] and other complex traffic patterns [14–16]. It has been the subject of
intense debate in recent years [17]. In particular, there is no consensus on
(i) whether or not the so-called synchronized flow should be considered as a
separate phase, and (ii) whether traffic jams arise spontaneously or are caused
by bottlenecks. This paper shows that lane-changing activity is at the core of
the matter, and helps to provide an answer to these important questions.
Recently, a multilane hybrid (MH) model [18] that requires only four observ-
able parameter has been shown to explain most of the above-mentioned traffic
complexities. These parameters are the triangular fundamental diagram (ie,
free-flow speed, u, wave speed, w and jam density, κ), and a behavioral pa-
rameter, τ , in time units, which could be roughly interpreted as the time to
complete a lane change maneuver.
The MH model is based on the effects of “disruptive lane-changing maneu-
vers”; i.e., a lane-changing vehicle acts as a moving bottleneck on its target
lane while it accelerates to the speed prevailing on that lane. The ensuing
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disruption creates voids in the target traffic stream and triggers other lane
changes. These lane changes, in turn, create other voids. And voids reduce
capacity! It turns out that this simple physical principle explains the capac-
ity drop on bottlenecks caused by lane-drops, moving obstructions and merge
bottlenecks; see [18, 19].
This paper shows that the MH model reproduces the main features of three-
phase theory. To this end, Sec. 2 describes the input data for the MH model;
Sections 3 to 6 present simulations of the scatter in the fundamental diagram,
the outflow from wide-moving jams, the “catch effect” and the spontaneous
emergence of jams, respectively. Finally, a brief discussion is included in Sec. 7.

2 Input Data

All the numerical experiments in this paper assumed the following parameter
values: τ = 4 sec, u = 112.7 km/h (70 mph), w = −22.5 km/h (−14 mph)
and κ = 139.7 veh/(km*lane) (225 veh/mile*lane)). We used a time-step of
∆t= 0.6 sec, but the results are independent of ∆t.
We have assumed that all the lane-changing particles correspond to cars with
a maximum acceleration given by a = a0(1 − v/vmax), where v is the car’s
current speed, while vmax and a0 are the car’s maximum speed and acceler-
ation at zero speed, respectively. We chose a car with average performance
features, such that vmax = 123.8 km/h (76.9 mph) and a0 = 3.4 m/s2 (11.17
ft/s2).

3 Scatter in Empirical Fundamental Diagrams

Empirical traffic data gathered from loop-detectors exhibit a wide scatter in
the congested branch of the fundamental diagram. In fact, synchronized flow
was introduced for reproducing this scatter.
Our results indicate that the scatter is a combination of two factors: (1) a
disruptive lane change creates congestion upstream and free-flow downstream;
(2) different lanes may be in different regimes at a given point in time; eg,
left lane in free-flow and right lane in congestion. In both cases the aggregate

Fig. 1. Fundamental diagrams collected at locations x0, . . . x4.
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Fig. 2. Time-space density map showing the simulation of the “catch effect”.

state will fall inside the fundamental diagram. The precise location of this
point in the fundamental diagram depends on the proportion of time spent in
each state.
To illustrate this, Fig. 1 presents the simulated fundamental diagrams col-
lected at 5 evenly-spaced locations (x0, . . . x4) on a three-lane freeway segment
with two on-ramps. The simulation consisted in varying on-ramp demand rates
and introducing exogenous moving jams, in order to create a wide variety of
traffic conditions on all detectors. The aggregation interval was 30 seconds.
It can be seen an important scatter at (x1, . . . x4). We conclude that the free-
flow state created by a disruptive lane change (void) and the congested state
upstream of it produces aggregate states inside the fundamental diagram and
may explain the scatter in empirical observations.

4 The “Catch Effect”

It has been observed that when a disturbance coming from upstream propa-
gates through an initially uncongested on-ramp, it induces a bottleneck that
can last for long periods of time.
The time-space density map resulting from the simulation of the “catch effect”
is shown in Fig. 2. Three disturbances from downstream were exogenously
introduced in the simulation. Notice that after the passage of the first dis-
turbance through the on-ramp, disruptive lane-changing maneuvers appear.
This can be seen as white areas in the figure, which represent the voids in
flow that a disruptive maneuver produces in traffic stream. As a consequence,
the bottleneck discharge rate decreases, which explains the capacity drop and
why congestion gets caught at the on-ramp and does not vanish.

5 Outflow from Wide-Moving Jams

Empirical evidence indicates that the inflow to a wide-moving jam, qin, is
consistently higher than the outflow from the jam, qout; ie,

qin > qout. (1)
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Fig. 3. Simulation results of a wide-moving jam propagating through a three-lane
freeway: spaciotemporal pattern of the mean flow across lanes (left); lane-average
flow vs time at location x = 0.8 km (right).

To the author’s acknowledge, existing traffic flow models capture this effect
by means of additional exogenous parameters; ie, this phenomenon is imposed
to the models rather than being a consequence of the underlying theory. In
the MH model, however, a lower outflow is obtained naturally because of
lane-changing maneuvers taking place near the downstream front of the jam.
The simulation results of a wide-moving jam propagating through a three-lane
freeway is shown in Fig. 3. The left part of the figure shows the spaciotemporal
pattern of the mean flow across lanes, where it is clear that the jam propagates
with constant speed on both ends, as observed empirically. The right part of
the figure shows a cross-section of this surface at location x = 0.8 km, where
it is evident how condition (1) is satisfied.

6 Stop-and-Go at on-Ramp Bottlenecks

Complex traffic patterns have been observed at on-ramp bottlenecks, most
notably stop-and-go waves and the spontaneous emergence of wide-moving
jams. The following experiments show how these complex features arise nat-
urally in the proposed theory. Fig. 4 shows the propagation of disturbances
across three on-ramps. Notice that wide-moving jams propagate at a constant
speed and tend to get wider as they propagate through the on-ramps. This is
in qualitative agreement with the observations in [1].
Fig. 5 shows the emergence stop-and-go waves on a freeway segment with a
single on-ramp. Freeway demand was held constant at 90% of its capacity.
Notice how the level of on-ramp demands determines both the frequency and
magnitude of stop-and-go waves.

7 Discussion

This paper has showed that the effects of lane-changing activity near bottle-
necks may be the main cause of traffic instabilities. Our results suggest the



Linking Synchronized Flow and Kinematic Waves 525

time

s
p
a
c
e

moving jams free-flowsynchronized flow

Fig. 4. Propagation of disturbances across three on-ramps.
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Fig. 5. Stop-and-go at on-ramp bottlenecks for low on-ramp demand (top, 400
veh/h), medium on-ramp demand (middle, 700 veh/h) and high on-ramp demand
(bottom, 1100 veh/h). On-ramp at x=1.2 km.

following physical explanation to traffic instabilities at merge bottlenecks: on-
ramp queues determine the speed at which traffic enters the freeway. This is
approximately the same speed at which shoulder-lane vehicles will start their
lane-changing maneuvers. Therefore, the lower the speed of entering traffic
the greater the voids created by lane changes from the shoulder lane and the
greater the losses in capacity. It also follows that the stop-and-go waves ob-
served at on-ramp bottlenecks may be caused by changes in traffic conditions
at the on-ramp.



526 Jorge A. Laval

References

1. B S Kerner. The physics of traffic. Springer, 2004.
2. HS Mika, JB Kreer, and LS Yuan. Dual mode behavior of freeway traffic. High.

Res. Rec. 279: 1–13, 1969.
3. K Agyemang-Duah and FL Hall. Some issues regarding the numerical value of

freeway capacity. In U.Brannolte, editor, International Symposium on Highway
Capacity, pages 1–15, Balkema, Rotterdam, 1991.

4. FL Hall and K Agyemang-Duah. Freeway capacity drop and the definition of
capacity. Transportation Research Record, TRB 1320:91–98, 1991.

5. B S Kerner and H Rehborn. Experimental features and characteristics of traffic
jams. Phys. Rev. E 53: R1297–R1300, 1996.

6. B Persaud, S Yagar, and R Brownlee. Exploration of the breakdown phenomenon
in freeway traffic. Transportation Research Record, TRB 1634: 64–69, 1998.

7. J Treiterer and JA Myers. The hysteresis phenomenon in traffic flow. In D. J.
Buckley, editor, 6th Int. Symp. on Transportation and Traffic Theory, pages 13–
38, A.H. and A.W. Reed, London, 1974.

8. DC Gazis, R Herman, and G Weiss. Density oscillations between lanes of a
multi-lane highway. Operations Research 10: 658–667, 1962.

9. G F Newell. Theories of instability in dense highway traffic. J. Opns. Res. Japan
1(5): 9–54, 1962.

10. K Smilowitz, C Daganzo, J Cassidy, and R Bertini. Some observations of high-
way traffic in long queues. Trans. Res. Rec. 1678: 225–233, 1999.

11. MJ Cassidy and M Mauch. An observed traffic pattern in long freeway queues.
Trans. Res. A 2(35): 143–156, 2001.

12. J M Del Castillo. Propagation of perturbations in dense traffic flow: a model
and its implications. Trans. Res. B 2(35): 367–390, 2001.

13. M Mauch and MJ Cassidy. Freeway traffic oscillations: Observations and pre-
dictions. In M.A.P. Taylor, editor, 15th Int. Symp. on Transportation and Traffic
Theory, Pergamon-Elsevier, Oxford, U.K., 2002.

14. B S Kerner and H Rehborn. Experimental properties of phase transitions in
traffic flow. Phys. Rev. Lett. 79: 4030–4033, 1997.

15. B S Kerner and H Rehborn. Theory of congeste traffic flow: self-organization
without bottlenecks. In A. Ceder, editor, 14th Int. Symp. on Transportation and
Traffic Theory, pages 147–177, Pergamon, New York, N.Y., 1999.

16. B S Kerner. Complexity of synchronized flow and related problems for basic
assumptions of traffic flow theories. In H. M. Zhang, editor, Networks and Spatial
Economics, pages 35–76. Kluwer Academic Publishers, Boston, USA, 2001.

17. CF Daganzo, M Cassidy, and R Bertini. Possible explanations of phase transi-
tions in highway traffic. Trans. Res. A 5(33): 365–379, 1999.

18. JA Laval and CF Daganzo. Lane-changing in traffic streams. Trans. Res. B (In
Press), 2005.

19. JA Laval, M Cassidy, and CF Daganzo. Impacts of lane changes at merge
bottlenecks: A theory and strategies to maximize capacity. these proceedings.



Probabilistic Description of Traffic Breakdown

Reinhard Mahnke1 and Reinhart Kühne2

1 Rostock University, Institute of Physics, D–18051 Rostock, Germany;
reinhard.mahnke@uni-rostock.de

2 German Aerospace Center, Institute of Transportation Research,
D–12489 Berlin, Germany; reinhart.kuehne@dlr.de

Summary. Traffic breakdowns are described by a balance equation that models
the dynamics of jam formation by the following two contributions. There are dis-
charge rate depending on the length of the congestion and an adhesion rate mainly
depending on the traffic volume of the considered road section. With this balance
equation it is feasible to calculate the dynamics of traffic pattern formation espe-
cially the first passage time for a transition from free flow condition to congested
traffic including the influence of the parameters affecting the discharge and adhesion
rates. As a simple approximation we consider constant attachment rate as well as
constant detachment rate.
Starting with the probability density and furtheron with the cumulative probability
for breakdowns the change in the incident duration distribution is calculated and
qualitatively given. The paper concludes with recommendations for a comprehensive
operation improvement and provides necessary steps for a long lasting stabilization
of traffic for a given vehicular flow time series pattern.

1 Introduction

In the probabilistic description a traffic breakdown is defined as a car cluster
formation process. For this we consider a model of traffic flow on a freeway
section and study the spontaneous formation of a jam regarded as a large car
cluster arising on the road. The cluster is specified by its size n, the number
of aggregated cars (see Fig. 1). Its internal parameters, namely, the headway
distance and, consequently, the speed of cars in the cluster are treated as fixed
values independent of the cluster size n.
We note that in the model under consideration there can be only one cluster
on the road. The free flow phase is specified also by the corresponding head-
way distance that, however, depends strictly speaking on the car cluster size
n. When a vehicular cluster arises on the road its further growth is due to
the attachment of the free cars to its upstream boundary, whereas the cars
located near its downstream boundary accelerate to leave it, which decreases
the cluster size. These processes are treated as random changes of the cluster
size n by ±1 (see Fig. 2) and the cluster evolution is described in terms of time
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variations of the probability function P (n, t) for the cluster to be of size n at
time t. Then following [1–4] we write the balance equation called one–step
Master equation governing the cluster evolution

∂P (n, t)
∂t

= w+(n− 1)P (n− 1, t) + w−(n+ 1)P (n+ 1, t)

− [w+(n)P (n, t) + w−(n)P (n, t)] . (1)

Here we have the simplest case when the attachment rate w+(n) to the cluster
takes into account strictly speaking the net time gap for a freely moving car
to move up to the cluster. If net time gap and gross time gap are taken equal
then this rate is just the traffic flow q

w+ = q (2)

which is constant. The rate of the cars escaping from the cluster at its down-
stream front also is given as a constant

w−(n) =
1
τ
. (3)

The value τ can be interpreted as the characteristic time needed for the first
car in the cluster to leave it and to go out from its downstream boundary at
a distance about the headway distance in the current free flow state [5, 6].
An example of such a cluster trajectory is shown in Fig. 3. Due to the problem
under consideration, we introduce boundary conditions for the trajectory n(t).
It is naturally to define n = 0 as the reflecting boundary and cluster size n(t)
is always n(t) ≥ 0. On the other hand, n = nesc is the absorbing or escape
cluster size and the breakdown phenomenon appears when n(t) = nesc [5–7].

free flow car clusterq

{n

1/

Fig. 1. Definition of car cluster formation with attachment rate q (inflow) and
detachment rate 1/τ (outflow).

Fig. 2. Schematic illustration of cluster evolution by one–step Master equation.
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Fig. 3. Example of stochastic trajectory n(t) with initial condition n(t = 0) = 0,
reflecting boundary at n = 0 veh. and absorbing boundary at nesc = 35 veh.

2 Drift-Diffusion Approximation

In order to apply well developed techniques of escape theory [3, 4] to the anal-
ysis of the traffic breakdown probability we approximate the discrete balance
equation (1) by the corresponding Fokker–Planck or drift–diffusion equation
because in the case under consideration the kinetic coefficients w+(n), w−(n),
first, vary smoothly on scales about unity and, second, are approximately
equal to each other. The following transformations allows us to find an ap-
propriate approximation.

1. The Kramers–Moyal expansion

∂p(x, t)
∂t

=
∞∑

n=1

(−1)n

n!
∂n

∂xn

[
αn(x, t)p(x, t)

]
(4)

for the probability distribution function p(x, t) in a continuum approxi-
mation

p(x, t) dx ≈ P (n, t) (5)

with the expansion coefficients given by the moments of the transition
rates w(x′, x, t) from state x to state x′, i. e.,

αn(x, t) =

∞∫
−∞

(x′ − x)nw(x′, x, t) dx′ . (6)

2. Discrete variable n is transformed to a new continuous one

x =
n

necs
. (7)
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3. Initial condition n0 = 0 means no jam at the beginning

x0 =
n0

necs
= 0 . (8)

4. Reflecting boundary n = 0 is transformed to left value a = 0.
5. Absorbing boundary n = nesc is transformed to rigth value b = 1.
6. Diffusion coefficient D is given as an independent parameter.
7. Drift coefficient v is calculated from the rates difference

v = w+(n) − w−(n) = q − 1/τ . (9)

We can immediately consider the influence of the drift value v with the help
of the potential U(x) = − v x (see Fig. 4) which provides driving force.

0 1 n

U(n)

v < 0

n
0

0 1 n

U(n)

v = 0
n

0
0 1 n

U(n)

v > 0

n
0

Fig. 4. The linear potential U(n) for three different scenarios according to the
different values of the drift parameter v.

As a result we obtain the well-known drift–diffusion equation with initial and
boundary conditions

∂p(x, t)
∂t

= −v ∂p(x, t)
∂x

+D
∂2p(x, t)
∂x2

. (10)

The probability density p(x, t) satisfies initial condition (delta–function)

p(x, t = 0) = δ(x− x0) (11)

and boundary conditions, i. e. there is a reflecting boundary at x = a = 0
where the flux j vanishes

j(x = 0, T ) = v p(x = 0, T ) −D
∂p(x, T )
∂x

∣∣∣∣
x=0

= 0 (12)

and an absorbing boundary at x = b = 1 where the probability density is zero

p(x = 0, t) = 0 . (13)

The method how to get a solution of this initial–boundary–value–problem is
shown in [8] where the details of calculation are given. Here we would like
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Fig. 5. The solution of Fokker–Planck equation (10) – (13) for two different values
of drift parameter v (v = −1 m/s (left plot) and v = 3 m/s (right plot)) and for
fixed diffusion term D = 1 m2/s.

to present the final results. According to the fact, that drift parameter v can
take any real values we should separate three different cases (see Fig. 5)

v

D
> −2 : p(x, t) = 2e

v
2D x

×
∞∑

m=0

e−[k̃2
m+(v/2D)2]Dt

1 + v/2D

k̃2
m+(v/2D)2

sin
[
k̃m

]
sin
[
k̃m (1− x)

]
; (14)

v

D
= −2 : p(x, t) = e− x

(
3 e−D t (1 − x)

+ 2
∞∑

m=1

e−[k̃2
m+1]Dt

1 − 1
k2

m+1

sin
[
k̃m

]
sin
[
k̃m (1− x)

])
; (15)

v

D
< −2 : p(x, t) = 2e

v
2D x

(
− e−[−z2

0+(v/2D)2]Dt

1 + v/2D

(−z0)
2+(v/2D)2

sinh [z0] sinh [z0 (1 − x)]

+
∞∑

m=1

e−[k̃2
m+(v/2D)2]Dt

1 + v/2D

k̃2
m+(v/2D)2

sin
[
k̃m

]
sin
[
k̃m (1− x)

])
(16)

where the values k̃m and z0 are solutions of transcendental equations (see
Fig. 6 and Fig. 7)

tan k̃m = − 2D
v

k̃m (17)

tanh z̃0 = − 2D
v

z̃0 . (18)

We would like to mention that the smallest or ground–state wave vector k̃0

vanishes when v/D tends to −2 from above, and no continuation of this
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Fig. 6. The wave number k̃0 and its imaginary part z0 for Ω = v/D ≥ − 2 and
Ω = v/D ≤ − 2, respectively, and the eigenvalue λ0 = k̃2

0 + (v/2D)2 (Ω = v/D ≥
−2) and λ0 = −z2

0 + (v/2D)2 (Ω = v/D ≤ −2) for the ground state m = 0. The
thin straight line shows the approximation z0 ≈ −Ω = v/D valid for large negative
Ω = v/D.
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Fig. 7. The parameter Ω = v/D dependence of wave numbers k̃m and eigenvalues
λm for ground state m = 0 and excited states m = 1, 2, 3.

solution exists on the real axis for v/D < −2. A purely imaginary solution
k̃0 = iz0 appears instead, where z0 is real, see Fig. 6.

3 Breakdown Probability Density

In terms of probabilistic modelling a traffic breakdown is an event when the
system’s state which started at time t = 0 with x = 0 (free flow) reaches for
the first time x = b = 1 where the escape value b = 1 is a given cluster size
regarded as overcritical. Following Risken [4] the distribution function of the
first passage times T is given by the probability distribution flux through the
absorbing boundary at x = b = 1 out of the considered domain 0 ≤ x ≤
1. We calculate this first passage time distribution from continuity equation
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(conservation law) for our system with reflecting boundary at x = 0 and
absorbing boundary at x = 1, which gives us the relation

d

dt

∫ 1

0

p(x, t)dx + P(t, x = 1) = 0 (19)

for breakdown probability flux P(t, b) at x = 1 (congestion of size n = nesc)
with x0 = 0 (initial free flow traffic situation). The first passage time proba-
bility density depends on drift and diffusion values in the following way

v

D
> −2 : P(t, x = 1) = 2e

v
2D

∞∑
m=0

e−(k̃2
m+(v/2D)2)Dt

1 + v/2D

k̃2
m+(v/2D)2

k̃m sin
[
k̃m

]
; (20)

v

D
= −2 : P(t, x = 1) = e− 1

(
3D e−D t

+ 2D
∞∑

m=1

e−(k̃2
m+1)T

1 − 1
k̃2

m+1

k̃m sin
[
k̃m

])
; (21)

v

D
< −2 : P(t, x = 1) = 2De

v
2D

⎛
⎝− e−(− z2

0+(v/2D)2)D t

1 + v/2D

− z2
0+(v/2D)2

z0 sinh [z̃0]

+
∞∑

m=1

e−(k̃2
m+(v/2D)2)D t

1 + v/2D

k̃2
m+(v/2D)2

k̃m sin
[
k̃m

]⎞⎠ . (22)
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Fig. 8. The first passage time probability density P(t, x = 1) for two different
values of drift parameter v (v = −1 m/s (smooth curve) and v = 3 m/s (dotted
curve)) at a fixed diffusion term D = 1 m2/s. The right plot shows the time lag in
detail.
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4 Breakdown Probability

A quantity of practical interest is the probabilityW (v,D, t = tobs) that break-
down takes place within a given time interval t ∈ [0, tobs]. It is obtained by
integrating the breakdown probability density as follows

W (v,D, t = tobs) =

tobs∫
0

P(t, x = 1) dt . (23)

The result of integration in three different cases where v/D is larger, equal,
or smaller than −2 reads

v

D
> −2 : W (v,D, tobs) = 2 e

v
2D

×
∞∑

m=0

1 − e−(k̃2
m+(v/2D)2)D tobs

k̃2
m + (v/2D)2 + v/2D

k̃m sin
[
k̃m

]
; (24)

v

D
= −2 : W (v,D, tobs) = e− 1

(
3
(
1 − e−D tobs

)

+ 2
∞∑

m=1

1 − e−(k̃2
m+1)D tobs

k̃m

sin
[
k̃m

])
; (25)

v

D
< −2 : W (v,D, tobs) = 2e

v
2D

(
− 1 − e−(−z2

0+(v/2D)2)D tobs

−z2
0 + (v/2D)2 + v/2D

z0 sinh [z̃0]

+
∞∑

m=1

1 − e−(k̃2
m+(v/2D)2)D tobs

k̃2
m + (v/2D)2 + v/2D

k̃m sin
[
k̃m

])
.(26)

5 Weibull Distribution as Fit Function

The shape of W (v,D, t = tobs) in any case reminds to the stochastic dis-
tributions used in reliability assessment and support the ideas of Regler [9]
and others [10–12]. These authors use Weibull distributions as fitting curves
with enough parameters to match a broad variety of cummulative distribution
functions. The Weibull distribution is calculated from

W (q) = 1 − exp
[
−
(
q

β

)α]
(27)

where α and β are parameters of the distribution. We have fitted our cal-
culation for the cumulative (breackdown) probability by Weibull distribution
(Fig. 9). The following transformations relating the parameters in our equa-
tions to the physical observables have been used
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x = leff n , (28)

v =
(
q − 1

τ

)
leff , (29)

D =
1
2

(
q +

1
τ

)
l2eff , (30)

where leff is the effective length of a car. Here q is the vehicular flow and τ is
the characteristic reaction (relaxation) time constant, as introduced earlier.

1200 1600 2000 2400
q, veh/h

0

0,2

0,4

0,6

0,8

1

W
(q

, t
 =

 5
 m

in
)

Master Equation
Fokker-Planck Equation
Weibull Distribution

Fig. 9. Cumulative breakdown probability W (q, t = tobs). The parameters of calcu-
lation (Fokker–Planck equation) and simulation (Master equation) are escape cluster
size nesc = 19 veh., effective length of car leff = 7 m, relaxation time τ = 2 s, ab-
sorbing boundary xesc = 133 m, observation time tobs = 5 min. For comparison
Weibull distribution is shown with parameter values α = 8.3 and β = 1865.

6 Conclusion

A method how to calculate the traffic breakdown from a physical point of
view have been discussed and developed. A brief summary of calculation re-
sults in a continuum drift–diffusion approximation is presented and the calcu-
lated breakdown probability is compared to the Weibull distribution. In the
following one needs to compare the results with real empirical data to con-
clude with recommendations for a comprehensive operation improvement and
provide necessary steps for a long lasting stabilization of traffic for a given
vehicular flow time series pattern.
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How to Calculate Traffic Breakdown
Probability?
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Institut für Physik, Universität Rostock, D–18051 Rostock, Germany
julia.hinkel@uni-rostock.de

Summary. We would like to calculate the traffic breakdown probability distribu-
tion which is related to a first-order phase transition from free flow to congested flow.
Intuitively we introduce the notion of breakdown probability density as a function
of time to reach some significant large car cluster size (first passage time problem).
The calculations are based on an initial–boundary–value Fokker–Planck equation
including balance condition of the probability flux.

1 Drift-Diffusion Problem with Absorbing and
Reflecting Boundary

Let us consider the initial–boundary–value–problem (shown schematically in
Fig. 1) with constant diffusion coefficient D and constant drift coefficient v.
Our task is to calculate the probability density p(x, t) to find the system in
state x (exactly in the interval [x;x+dx]) at time t. The dynamics of p(x, t) is
given by the drift–diffusion–equation (see [1, 2]) as well as initial and boundary
conditions
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Fig. 1. Schematic picture of the boundary–value problem showing the probability
density p(x , t) in the interval a ≤ x ≤ b.
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∂p(x, t)
∂t

= −v ∂p(x, t)
∂x

+D
∂2p(x, t)
∂x2

. (1)

The solution of (1) satisfies the (delta–function) initial condition

p(x, t = 0) = δ(x− x0) (2)

and boundary conditions, i. e. at x = a is a reflecting boundary (no flux j at
left border)

j(x = a, t) = vp(x = a, t) −D
∂p(x, t)
∂x

∣∣∣∣
x=a

= 0 (3)

and at x = b is an absorbing boundary

p(x = b, t) = 0 . (4)

2 Dimensionless Drift-Diffusion Equation

It is convenient to formulate the drift–diffusion problem in dimensionless vari-
ables. For this purpose we define a new variable 0 ≤ y ≤ 1 instead of a ≤ x ≤ b

by y =
x− a

b− a
and a new time T =

D

(b− a)2
t and one dimensionless control

parameter (scaled drift v which may have positive, zero, or negative values)

Ω =
v

D
(b− a) (5)

and a new probability density by P (y, T )dy = p(x, t)dx and therefore P (y, T ) =
(b−a)p(x, t). As a result, the equations (1) to (4) can be rewritten as follows:

∂P (y, T )
∂T

= −Ω∂P (y, T )
∂y

+
∂2P (y, T )

∂y2
(6)

with the initial condition (delta–function)

P (y, T = 0) = δ(y − y0) (7)

and boundary conditions, i. e. reflecting boundary at y = 0

J(y = 0, T ) = ΩP (y = 0, T ) − ∂P (y, T )
∂y

∣∣∣∣
y=0

= 0 (8)

and absorbing boundary at y = 1

P (y = 1, T ) = 0 . (9)
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3 Solution in Terms of Orthogonal Eigenfunctions

To find the solution of the well–defined drift–diffusion problem, first we take
the dimensionless form (6) – (9) and use a transformation to a new function
Q by

Q(y, T ) = e−
Ω
2 yP (y, T ) . (10)

It results in a dynamics without first derivative called reduced Fokker–Planck–
equation

∂Q(y, T )
∂T

= −Ω
2

4
Q(y, T ) +

∂2Q(y, T )
∂y2

. (11)

According to (10) the initial condition is transformed to

Q(y, T = 0) = e−
Ω
2 y0P (y, T = 0) , (12)

whereas the reflecting boundary condition at y = 0 becomes J(y = 0, T ) =
Ω

2
Q(y = 0, T ) − ∂Q(y, T )

∂y

∣∣∣∣
y=0

= 0. The absorbing boundary condition at

y = 1 now reads Q(y = 1, T ) = 0. The solution of reduced equation (11)
can be found by the method of separation of variables (see [3]). A separation
ansatz is Q(y, T ) = χ(T )ψ(y). Hence,

Q(y, T ) =
∞∑

m=0

Cme
−λmTψm(y) . (13)

and by using the initial condition (12) and the transformation (10) we obtain
the solution P (y, T ) of the Fokker–Planck–equation (9) as (see Fig. 2)

P (y, T ) = e
Ω
2 (y−y0)

∞∑
m=0

e−λmT ψm(y0)ψm(y) (14)

with eigenfunction of ground state (m = 0)

ψ0(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

1 + Ω
2

1
k̃2
0+Ω2/4

sin
[
k̃0(1 − y)

]
, Ω > − 2

√
3 (1− y) , Ω = − 2

√
− 2

1 + Ω
2

1
− z2

0+Ω2/4

sinh [z0(1 − y)] , Ω < − 2

(15)

and all other eigenfunctions

ψm(y) =
√

2
1 + Ω

2
1

k̃2
m+Ω2/4

sin
[
k̃m(1 − y)

]
m = 1, 2, . . . . (16)
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Fig. 2. The solution of drift–diffusion Fokker–Planck–equation with initial condi-
tion y0 = 0.5 for different values of the control parameter Ω, i. e. Ω = − 5 (top left),
Ω = − 2.5 (top right), Ω = 0.1 (bottom left), Ω = 3 (bottom right).

The eigenvalue of ground state (m = 0) is given by

λ0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k̃2
0 +Ω2/4 , Ω > − 2

1 , Ω = − 2

− z2
0 +Ω2/4 , Ω < − 2

(17)

and all others eigenvalues are λm = k̃2
m + Ω2/4 for m = 1, 2, . . ., where the

wave numbers are calculated from transcendental equation

k̃0 : tan k̃0 = − 2
Ω
k̃0 Ω > − 2 (18)

z0 : tanh z0 = − 2
Ω
z0 Ω < − 2 (19)

k̃m : tan k̃m = − 2
Ω
k̃m m = 1, 2, . . . . (20)
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4 First Passage Time Probability Density

The balance equation in our open system (see [2]) has the form

∂

∂T

1∫
0

P (y, T )dy + P(T, y = 1) = 0 . (21)

The quantity P(T, y = 1) dT is the probability that the absorbing boundary
at y = 1 is reached for the first time within the time interval [T, T +dT ] (since
it is forbidden to return and then reach it once again). Hence, P(T, y = 1) is
the first passage time probability density (see [2]) sometimes called breakdown
probability density (see Fig. 3). As before at Sect. 3, we should separate three
different cases

Ω > −2 : P(T, y = 1) = 2e
Ω
2 (1−y0)

×
∞∑

m=0

e−(k̃2
m+Ω2/4)T

1 + Ω
2

1
k̃2

m+Ω2/4

k̃m sin
[
k̃m(1 − y0)

]
; (22)

Ω = −2 : P(T, y = 1) = e− (1−y0)

[
3 (1 − y0) e−T

+ 2
∞∑

m=1

e−(k̃2
m+1)T

1 − 1
k̃2

m+1

k̃m sin
[
k̃m(1 − y0)

] ]
; (23)

Ω < −2 : P(T, y = 1) = 2e
Ω
2 (1−y0)

[
− e−(− z2

0+Ω2/4)T

1 + Ω
2

1
− z2

0+Ω2/4

z0 sinh [z̃0(1 − y0)]

+
∞∑

m=1

e−(k̃2
m+Ω2/4)T

1 + Ω
2

1
k̃2

m+Ω2/4

k̃m sin
[
k̃m(1 − y0)

]⎤⎦ . (24)

5 Cumulative Breakdown Probability

The probability that the absorbing boundary y = 1 is reached within certain
observation time interval 0 ≤ T ≤ Tobs is given by the cumulative (breakdown)
probability (see [4])

W (Ω,T = Tobs) =

Tobs∫
0

P(T, y = 1) dT . (25)

Finally, we would like to show the results for the cumulative (breakdown)
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Fig. 3. The first passage time probability density distribution P(T, y = 1) for
Ω < −2 (left) and Ω > −2 (right).
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Fig. 4. The cumulative probability W (Ω, Tobs) as function of observation time Tobs

(with fixed Ω, left) and as function of parameter Ω (with fixed Tobs = 0.3, right).

probability (25) with respest to different values of the control parameter Ω.
The solution (see Fig. 4) reads

Ω > −2 : W (Ω,Tobs) = 2 e
Ω
2 (1−y0)

×
∞∑

m=0

1 − e−(k̃2
m+Ω2/4)Tobs

k̃2
m +Ω2/4 +Ω/2

k̃m sin
[
k̃m(1 − y0)

]
;(26)

Ω = −2 : W (Ω,Tobs) = e− (1−y0)

[
3
(
1 − e−Tobs

)
(1 − y0)

+ 2
∞∑

m=1

1 − e−(k̃2
m+1)Tobs

k̃m

sin
[
k̃m(1 − y0)

] ]
; (27)

Ω < −2 : W (Ω,Tobs) = 2e
Ω
2 (1−y0)

[
− 1 − e−(−z2

0+Ω2/4)Tobs

− z2
0 +Ω2/4 +Ω/2

z0 sinh [z̃0(1 − y0)]

+
∞∑

m=1

1 − e−(k̃2
m+Ω2/4)Tobs

k̃2
m +Ω2/4 +Ω/2

k̃m sin
[
k̃m(1 − y0)

]]
. (28)
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These mathematical results are applied to traffic theory for comparison with
empirical observation (see [4, 5]).
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and E. Shchukin (Rostock) for the collaboration and participations in discus-
sions.

References

1. H. Risken: The Fokker-Planck Equation. Method of Solution and Applications,
Springer, Berlin, 1996

2. C. W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and
the Natural Science, Springer, Berlin, 2004
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Summary. Models for highway traffic are studied by numerical simulations. Of
special interest is the spontaneous formation of traffic jams. In a thermodynamic
system the traffic jam would correspond to the dense phase (liquid) and the free
flowing traffic would correspond to the gas phase. Both phases depending on the
density of cars can be present at the same time. A model for a single lane circular
road has been studied. The model is called the optimal velocity model (OVM) and
was developed by Bando, Sugiyama, et al. We propose here a reformulation of the
OVM into a description in terms of potential energy functions forming a kind of
Hamiltonian for the system. This will however not be a globally defined Hamiltonian
but a locally defined one as it is a dynamical model. The model defined by this
Hamiltonian will be suitable for Monte Carlo simulations.

1 Bando Model

We report a suggested reformulation of the Bando Model [1, 2], to a model
including a kind of thermodynamics. The Bando model is a deterministic
model for traffic flow. We restrict the work to a one-dimensional single lane
circular road shown in Fig. 1.
Velocity of car i is denoted by vi and position by xi, (in a dimensionless
formulation the set of equations (1) for velocity u and position y (right)). The
Bando model is defined by the following set of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d
dtvi = 1

τ (vopt(∆xi) − vi) d
dtui = (uopt(∆yi) − yi)

d
dtxi = vi

d
dtyi = 1

bui

vopt (∆xi) = vmax
(∆x)2

D2+(∆x)2 uopt (∆yi) = (∆y)2

1+(∆y)2

b = D
vmaxτ

(1)
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x

Fig. 1. One-dimensional circular road with periodic boundary conditions. The cars
are represented by blue filled circles, their velocities are marked by red arrows and
a headway distance is marked by ∆x.

The control parameters are the maximal velocity vmax, the time scale τ and
the interaction distance D. The optimal velocity vopt(∆x) is a function of
headway (bumper-to-bumper) distance ∆xi = xi+1 −xi. The average density
of cars is c = N/L.
The acceleration of the cars is given by ai = dvi

dt and is given by the Bando
model (Eq. (1)). This acceleration corresponds to a force on the car according
to Newton’s second law F = ma = dv

dt . Finally we get the potential energy
Vpot associated with the force F , as we know the displacement it acts over.
This potential energy can be used to reformulate the Bando model into a
Hamiltonian for the system of cars. It should be noted however that the Hamil-
tonian obtained is not a true Hamiltonian as it is only locally defined. But at
least we can still use it to perform Monte Carlo simulations.
Below we show some earlier numerical results for the Bando model [3], where
the equations where integrated with a 4th order Runge–Kutta method. Under
certain conditions the traffic separates into two phases, a dense (= jam) and
a dilute (= free flow) one. Very much like in a liquid–gas transition, we can
use the difference in densities as the order parameter. The results in Fig. 2
show coexisting dense and dilute phases for certain values of b and c, where
the cars move in either a jam with u = umin or in a free flow with u = umax.
The corresponding phase diagram can be seen in Fig. 3.
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Fig. 2. The subcritical bifurcation diagram at c = 1.5 (left) and the critical bifur-
cation diagram at c =

√
3 (right) for a system of N = 60 cars.
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Fig. 3. Phase diagram of the Bando Model. The critical value for b is bcr = 3
√

3/4.

2 Monte Carlo Simulations

Many complex problems (with many degrees of freedom) such as magnetic sys-
tems, gases, super conductors, atoms, nuclear decay, telephone switchboards,
etc. can be analysed by Monte Carlo (MC) simulations. We will take as an
example the 2D Ising model. This is a model for magnetic systems and also
other ones with two states of the configuration variables like a binary alloy.
In Fig. 4 a graphical representation of the two-dimensional Ising model on a
square lattice is shown.
The Ising model in two dimensions has an exact solution, the famous Onsager
solution [4] and in principle one should not need to perform Monte Carlo
simulations on it. But it has become very famous and it has reached a posi-
tion within condensed matter physics similar to the Bohr atomic model for
hydrogen.

Fig. 4. The two-dimensional Ising model on a square lattice. At each lattice site
there is a configuration variable Si = ±1 shown here as an arrow.
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Every state of the Ising model has an energy according to the Hamiltonian of
the system

H = −
∑
〈i,j〉

Si · Sj .

The thermodynamic properties are given by the partition function Z =∑
l e

−Hl/kBT . From Z we can calculate ”any” thermodynamic property of the
system. Most (nearly all) systems are however too complicated to be solved
analytically in a closed form and we have to revert to Monte Carlo simulations
(see [5]) in order to learn more about the model in question.
Now we will describe how to do Monte–Carlo simulations in practice. For a
configuration of spins Si, the Metropolis procedure is:

1. Generate a new state by changing one of the spins Sj → Sj +∆Sj of the
Ising model.

2. Calculate the energy difference ∆E.
3. Accept the new state if ∆E < 0, else if ∆E > 0, accept the new state if

r < e− ∆E/kBT where r is a random number r ∈ [0, 1], otherwise keep the
old value.

4. Go to step 1.

Monte Carlo usually is used for equilibrium properties, but can be used for
dynamics as well. There are other Monte Carlo procedures as well, as the
heat-bath method [5].

3 Example of Driven System

It is not directly clear that one should be able to get any sensible results from
Monte Carlo simulations for a driven system. A driven system is not in equi-
librium and thereby we are no assured that equilibrium methods should apply.
But we will show an example of how it can be done. One of the authors has per-
formed a Monte Carlo simulation of a current–voltage (IV) characteristics for
a superconducting (SC) film. In a SC film there are vortex pairs (see Fig. 5)
which are thermally excited. Vortices interact logarithmically V (r) = ln(r)
and hence system is a 2D Coulomb gas. A Monte Carlo move consists of
adding ±–pairs (charge neutral) at random position and random orientation.
From MC dynamics we obtain IV current – voltage characteristics. Due to
the electric field, Lorentz force gives different energies to the created pairs
depending on their orientation (see Fig. 6). The energy contribution due to
the Lorentz force introduces a local part into the Hamiltonian. Hence, there
is no global Hamiltonian! Non-linear IV characteristics of the form

V ∝ Ia

(with a = 3 at the critical temperature T = Tc) obtained from experiments
and Monte Carlo simulations well coincide with each other (see Fig. 6).
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+
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+

Fig. 5. A two-dimensional superconductor with 2 vortex pairs in it. The electrical
field is in the direction of E.

E

+ +

+

+
d)c)

a) b)

Fig. 6. Four possible orientations of a vortex pair are shown (left) with respect to the
driving electrical field E. The energy of a particular pair depends on its orientation.
Configurations a) and b) have different energy whereas c) and d) are not effected by
the presence of the field E. The curves (right figure) show Monte Carlo simulation
results together with experimental ones (taken from [6]). The different curves fall
on top of each other suggesting that we can recover the experimental facts with a
simple driven model. Here X is the reduced temperature T/Tc.

4 Traffic Flow

Now we describe the Metropolis procedure for the cars. The basic idea is
simple: we reformulate the Bando model in terms of locally defined potential
energies.

1. For a car i make a random change in velocity ∆v ∈ [−∆vmax,∆vmax].
2. The force F acting on a car is known from the Bando model (Eq. (1)).
3. Calculate the change in energy ∆E (potential + kinetic) due to the pro-

posed change in velocity ∆v of the car.
4. Use Metropolis algorithm to determine if the change ∆v is accepted.
5. Move the car with either its new or old velocity in time step ∆t.

There is an extra parameter in the problem — the ratio m/T where m is the
mass of the car and T is the temperature. Note however that T is not a real
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Fig. 7. The potential energy for a single car in a system with N = 3 and L = 30.
The left figure shows the potential energy of a car at fixed position as a function of
its velocity. The right figure shows the potential energy of a car with fixed velocity
as a function of position.

temperature, it is a meassure of the strength of fluctuations. The potential
energy Vpot is also unusual as it is a function of both velocity vi and position
xi.
We have made test runs with a preliminary program for the Bando model
defined in terms of potential and kinetic energies. These preliminary runs
have been restricted to only take the potential energy into account, as this
corresponds closely to the Bando model. In Fig. 7 we show the potential energy
of a single car in a system consisting of only 3 cars. These three cars are set
to the homogeneous solution v(equidistant) = 1.000 and c = ∆x = 10.0.
In Fig. 7 the functional form of the potential is that of a parabola with its
minimum at the homogeneous solution.
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Summary. We investigate the adaptation of the time headways in car-following
models as a function of the local velocity variance, which is a measure of the inho-
mogeneity of traffic flows. We apply our meta-model to several car-following mod-
els and simulate traffic breakdowns in open systems with an on-ramp bottleneck.
Single-vehicle data generated by ’virtual detectors’ show a semi-quantitative agree-
ment with microscopic data from the Dutch freeway A9. This includes the observed
distributions of the net time headways and times-to-collisions for free and congested
traffic, and the velocity variance as a function of traffic density. Macroscopic proper-
ties such as the observed wide scattering of flow-density data are reproduced as well,
even for deterministic simulations. We explain these phenomena by a self-organized
variance-driven process that leads to the spontaneous formation and decay of long-
lived platoons.

1 Introduction

One of the open questions of traffic dynamics is a microscopic understanding
of the observed wide variation of the time headways which is closely related to
the wide scattering of flow-density data in the congested traffic regime (see,
e.g., Refs. [1–3] for an overview). Moreover, the most probable value of the
time headway in congested traffic is larger by a factor of about 2 compared
to free traffic, see Fig. 1(a).
With the increasing availability of single-vehicle data, further statistical prop-
erties of traffic became the subject of investigation such as the velocity vari-
ance as a function of the traffic density [4], or the distribution of the times-to-
collision (TTC), which is surprisingly invariant with respect to density changes
(compared to distance, time gap, or velocity distributions), see Fig. 1(b).
In this contribution, we propose a variance-driven adaptation mechanism
(VDT mechanism), according to which drivers increase their time gaps T
when the local traffic dynamics is unstable or largely varying.
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Fig. 1. Empirical statistical properties of cars following any kind of vehicle obtained
from single-vehicle data from the left lane of the Dutch freeway A9 from Haarlem
to Amsterdam. (a) Net time headway; (b) Inverse times-to-collision, for two traffic
situations: The data set for ’free traffic’ includes all single-vehicle data where the
one-minute average of velocities was above 20 m/s, and the traffic flow above 1000
vehicles/h. ’Congested traffic’ includes all data where the one-minute average of the
velocities was below 15 m/s.

2 Variance-Driven Time Headways (VDT)

We will formulate the VDT mechanism in terms of a meta-model applicable
to any car-following model containing the ’safe’ time headway or a related
parameter such as the desired (equilibrium) distance. Some examples are the
optimal-velocity model (OVM) [5], the velocity-difference model (VDIFF) [6],
the intelligent-driver model (IDM) [7], or the Gipps model [8].
We assume that smooth traffic flow allows for lower values of the time headway
than disturbed traffic flow, i.e., the actual time headway

T = αTT0 = min (αT supmax, 1 + γVn) . (1)

is increased in nonperturbed traffic with respect to the minimum time head-
way T0 by a factor αT ≥ 1. Furthermore, we characterize disturbed traffic
flow (such as stop-and-go traffic) by the local variation coefficient

Vn =
√
θn

v̄n
, (2)

where the local velocity average v̄n and velocity variance θn, are calculated
from the own velocity vi and the velocities of the (n− 1) predecessors (j− i):

v̄n =
1
n

n−1∑
j=0

vj−i, θn =
1

n− 1

n−1∑
j=0

(vj−i − v̄n)2. (3)

The VDT has three parameters, namely the number n of vehicles to determine
the local velocity variance, the maximum multiplication factor αT supmax
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by which the time headway is increased compared to perfectly smooth traffic,
and the sensitivity γ. The factor αT supmax can be estimated from empirical
time-headway distributions as the ratio of the most probable time headways
for congested and free traffic, respectively, while the sensitivity γ is calibrated
to the empirical variation coefficient Vn = Vn(ρ) as a function of density
(Fig. 2). Throughout this contribution, we will assume the values n = 5,
αT supmax = 2.2, and γ = 4.
Notice that, in the special case n = 2, the local variation coefficient for vehicle
i is given by V (i)

2 =
√

2|vi − vi−1|/(vi + vi−1), i.e., the VDT mechanism adds
a contribution to the underlying car-following model which is proportional
to the velocity difference to the immediate predecessor. For n > 2, the VDT
includes some anticipation beyond this vehicle which is expected to be an
essential ingredient for human driving [9].
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Fig. 2. Velocity variation coefficient
√

θ/ 〈vi〉 as a function of overall traffic density
from single-vehicle data of the Dutch freeway (“Data”), and from a virtual detector
4 km upstream of the on-ramp, when the VDT is simulated with various underlying
models.

2.1 Acceleration Noise

Since the VDT is essentially based on fluctuations of the velocity, it is to be
expected that purely deterministic underlying models yield unrealistic results
due to the lack of an initial source triggering fluctuations. For simplicity, we
will just add a white (independent and δ-correlated) noise term [10] to the
deterministic car-following acceleration a sup (det)i according to

v̇i = a sup (det)i(t) +
√
Qξi(t). (4)

Here, Q denotes the fluctuation strength (we will assume Q = 0.1m2/s3 for
all simulations unless stated otherwise), and the white noise ξi(t) is assumed
to be unbiased and δ-correlated:
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〈ξi〉 = 0, 〈ξi(t)ξj(t′)〉 = Qδijδ(t− t′). (5)

The Kronecker symbol δij is 1, if i = j and zero otherwise, while the Dirac
function δ(t) is defined by

∫∞
−∞ δ(t′) dt′ = 1 and δ(t) = 0 for t �= 0.
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Fig. 3. Empirical and simulated flow-density data obtained from aggregated data
(aggregation interval: 60 s) from real and virtual detectors. The empirical curve
(“Data”) is obtained by aggregating single-vehicle data on the Dutch freeway A9.

3 Simulations of a Traffic Scenario

In the following, we will apply the VDT to three car-following models, namely
the intelligent-driver model (IDM) [7], the optimal-velocity model (OVM) [5],
and the velocity-difference model (VDIFF) [6], which augments the OVM by
a term proportional to the velocity difference. We will also simulate hetero-
geneous traffic (referred to as MIX) consisting of a mixture of 1/3 IDM, 1/3
OVM, and 1/3 VDIFF. For each model, we assume 80 % ‘cars’, and 20 %
’trucks’ which differ only in the desired velocity (35 m/s and 25 m/s, respec-
tively). For the model equations and parameters, we refer to Ref. [11].
We have simulated a single-lane road section of total length 15 km with an on-
ramp of merging length Lrmp = 200 m located at xrmp = 12 km, from which
a constant flow of 400 vehicles/h merges to the main road [11]. Instead of
explicitely modelling on-ramp lane changes, we have inserted the ramp vehicles
centrally into the largest gap within the merging region. At the merging, the
velocity was 60% of that of the respective front vehicle.
We have started the simulation with free traffic and increased the traffic de-
mand at the in-flowing boundary linearly from 300 vehicles/h at t = 0 s to
3000 vehicles/h at t = 2400 s. Afterwards, we decreased the inflow linearly
to 300 vehicles/h until t = 4800 s. In case the inflow exceeded capacity, we
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delayed the insertion of new vehicles at the upstream boundary. To enable a
direct comparison with detector data, we implemented a ’virtual detector’ 4
km upstream of the on-ramp recording the passage time, velocity, and type
of each vehicle.
Figure 2 compares the local variation coefficient, Eq. (2) with n = 5, as ob-
tained from empirical single-vehicle data, with that obtained from the virtual
detector when simulating the VDT with the three mentioned models and
with the model mix. Both the decrease with density for low densities and the
distinct increase at ρ ≈ 35 veh./km are reproduced. Notice that this depen-
dence on the density is an emergent result and not contained in the model
assumptions.
Figure 3 (a) shows that the fundamental diagram obtained from simulations
of the VDT with the IDM agrees, in a statistical sense, quantitatively with
empirical observations. Remarkably, wide scattering is even observed in a
completely deterministic simulation (Fig. 3 (b)).
Figure 4 shows simulated statistical single-vehicle properties. Both the wide
time-gap distribution and the shift of the maximum with traffic density are re-
produced, although the agreement is not quantitative (cf. Fig. 1). The wider
distributions obtained for the model mix suggest that heterogeneity in the
population of driver-vehicle units plays an essential role. Finally, the distri-
bution of times-to-collision agrees nearly quantitatively with the data for the
OVM and the model mix, but not for the IDM. In conclusion, the model mix
can reproduce, at least semiquantitatively, the fundamental diagram, the vari-
ance function, and the distributions of time headways and times-to-collision.
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4 Discussion

In the variance-driven time headway (VDT) model put forward in this paper,
the desired safety time headway increases with the local velocity variance.
Therefore, when traffic becomes unstable, larger time gaps are held in order to
keep up a reasonable level of safety, which is reflected in the nearly unchanged
times-to-colision. This causes, on the one hand, a capacity drop. On the other
hand, time headways are expecetd to be small in platoons consisting of vehicles
driving with similar velocities. Therefore, platoons are rather long-lived and
time gaps are much larger between them. This explains (at least, partially)
the large scattering of flow-density data [3] in synchronized traffic flow [2].
We note that an understanding of the effects of the velocity variance is crucial
for devising measures to avoid traffic breakdowns: The VDT feedback mecha-
nism is triggered most likely near sources of sustained velocity variations, for
example in the merging, diverging, or weaving zones near freeway intersec-
tions. Particularly, it is essential to avoid merging and diverging maneuvers
at high velocity differences, e.g., by increasing the length of the acceleration
lane at on-ramps and off-ramps. The simulations illustrate this point: When
simulating on-ramp vehicles merging with the velocity of the nearby main-road
vehicles (as compared to 60% of this velocity), we have observed a delayed
traffic breakdown and sometimes even no breakdown at all for the same traffic
demand.
Finally, the distinct increase of the time headways after traffic breakdown al-
lows for vehicle-based options to increase the traffic performance and stability
by means of adaptive cruise control systems [12].
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Summary. Recently we proposed an extension to the traffic model of Aw, Rascle
and Greenberg. The extended traffic model can be written as a hyperbolic system of
balance laws and numerically reproduces the reverse λ shape of the fundamental di-
agram of traffic flow. In the current work we analyze the steady state solutions of the
new model and their stability properties. In addition to the equilibrium flow curve
the trivial steady state solutions form two additional branches in the flow-density
diagram. We show that the characteristic structure excludes parts of these branches
resulting in the reverse λ shape of the flow-density relation. The upper branch is
metastable against the formation of synchronized flow for intermediate densities and
unstable for high densities, whereas the lower branch is unstable for intermediate
densities and metastable for high densities. Moreover, the model reproduces the
characteristic properties of wide moving jam formation and propagation.

1 Balanced Vehicular Traffic: The BVT Model

The BVT model (balanced vehicular traffic model, see [5, 6]) generalizes the
traffic model of Aw, Rascle and Greenberg [1, 2] by prescribing a more general
source term to the momentum equation. The evolution of traffic density ρ and
velocity v is described by the following hyperbolic system of balance laws

∂ρ

∂t
+
∂(ρv)
∂x

= 0 , (1a)

∂(ρ(v − u(ρ)))
∂t

+
∂(ρv(v − u(ρ)))

∂x
= β(ρ, v)ρ(u(ρ) − v) , (1b)

where u(ρ) is the equilibrium velocity and β(ρ, v) is the effective relaxation
coefficient (see Fig. 1). In the traffic model of Aw, Rascle and Greenberg,
β(ρ, v) = 1/T , where T = const is the relaxation time. In moving observer
coordinates, the momentum equation reads d(v − u)/dt = −β(v − u). The
characteristic speeds of the BVT model are λ1 = v + ρu′(ρ) ≤ v, which is
related to shocks and rarefaction waves, and λ2 = v, which is related to contact
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Fig. 1. The effective relaxation coefficient β(ρ, v), for units [ρ] = 1/km/lane, [v] =
km/h and [β] = 1/h.

discontinuities. The appearance of negative β(ρ, v) < 0 can be motivated by
the incorporation of a finite reaction time τ in the momentum equation (see [5]
for more details).

2 Steady State Solutions

In order to obtain a better understanding of the BVT model we study the
steady state solutions of the system (1a)-(1b). For steady state solutions there
is a linear coordinate transformation (t, x) → (Θ, z) such that all time deriva-
tives with respect to Θ vanish. As a consequence steady state solutions lie
on straight lines in the fundamental diagram of traffic flow, i.e. ρv = q + ρw,
where q, w = const. They further fulfill

(λ1 − w)
dv
dz

= β(ρ, v)(u(ρ) − v) . (2)

2.1 Trivial Steady State Solutions

The trivial steady state solutions (dv/dz = 0, see Fig. 2) are

• v = u(ρ): the equilibrium velocity curve,
• β(ρ, v) = 0, lower branch: the jam line,
• β(ρ, v) = 0, upper branch: the high-flow branch.
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Fig. 2. Trivial steady state solutions and the characteristic structure of the BVT
model. The trivial steady state solutions are the equilibrium flow-curve (borders
between regions I and IV and regions II and III), the jam line (border between
regions I and II), and the high-flow branch (border between regions III and IV). The
dashed lines correspond to characteristic curves with gradient λ1 and λ2 respectively.

2.2 Non-Trivial Steady State Solutions

The non-trivial steady state solutions (i.e. dv/dz �= 0) are monotonous solu-
tions linking the trivial steady state branches mentioned before. They cover a
wide range of states in the fundamental diagram of traffic flow, in particular
regions II and III of Fig. 2.

3 Stability of Trivial Steady State Solutions

Motivated by [4] we study the stability properties of the trivial steady state
solutions.

3.1 Linear Stability

The finite propagation speeds restrict the stability of steady state solutions
to regions where the characteristic cone covers the steady state solution, i.e.
λ1 ≤ w ≤ λ2, where w is given by

w =
d(ρv)
dρ

. (3)

These intuitive results can be confirmed by a formal linear stability analysis
(see [6]).
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3.2 Nonlinear Stability

Numerical simulations [6] show that the linearly stable branches of non-equili-
brium steady states are only metastable (in the sense of [3]) , i.e. for sufficiently
large perturbations the solutions depart from the steady states. We summarize
the overall stability properties in Fig. 3.
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Fig. 3. Stability properties of the trivial steady state solutions in the BVT model.

4 Identification of Free Flow, Wide Moving Jams and
Synchronized Flow

We try to relate the traffic states of the BVT model to the three phases of
traffic flow according to [3].

4.1 Free Flow

We interpret the stable branch of equilibrium flow and the metastable section
of the high-flow branch as free flow. Hence, according to Fig. 3, free flow is
metastable for intermediate densities.

4.2 Wide Moving Jams

Wide moving jams can be understood as spatially extended (quasi) steady
state solutions at the jam line. With a quasi steady state we describe a traffic
state for which the constants of steady states (see Sec. 2) can vary slightly.
Using this definition, wide moving jams have the following characteristics [6]
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• The outflow from wide moving jams is nearly constant and far below the
maximum free flow.

• The propagation speed of the downstream front of wide moving jams is
nearly constant, wide moving jams travel upstream with a velocity of about
15 km/h.

• Wide moving jams travel through bottlenecks.
• Wide moving jams are not formed spontaneously from free flow.

4.3 Synchronized Flow

All other traffic states in the congested regime, including (non-trivial) steady
states and narrow jams make up synchronized flow. Thus, states of synchro-
nized flow cover a wide range in the flow-density diagram. In numerical sim-
ulations, the precise location of data points of synchronized flow in the fun-
damental diagram strongly depends on the initial and boundary data.

5 Traffic Flow at a Bottleneck

We exemplarily model a 7 km long section of a two lane highway with a
bottleneck between 5 and 6 km, prescribing periodic boundary conditions. We
use constant initial data of free flow in the metastable regime, ρ = 75 [1/km].
At the bottleneck, we modify the velocity according to v → v + (u(ρ) − v −
0.1 km/h)| sin(πx)|. Figure 4 shows the simulation results for the density and
the velocity.
In particular, we observe that

• synchronized flow forms at the bottleneck and further upstream.
• a wide moving jam forms which travels through the bottleneck.
• narrow moving jams can merge and can be swallowed by the wide moving

jam.
• narrow moving jams can be caught by the bottleneck.

6 Conclusion

Continuum models of traffic flow using an equilibrium flow-density curve
have been criticized for the one-dimensionality of steady states. The BVT
model [5, 6], which is a generalization of the model of Aw, Rascle and Green-
berg [1, 2], still uses an equilibrium flow-density curve. However, this flow-
density curve does not describe traffic states in the congested regime directly.
As a consequence of the model, steady states cover a wide range in the con-
gested regime of the fundamental diagram. The equilibrium flow-density curve
is still very important, as it determines the characteristic and stability proper-
ties of the model. The upper branch of the trivial non-equilibrium steady state
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Fig. 4. Formation and propagation of wide moving jams. The upper panel shows
the evolution of the density, whereas the lower panel shows the evolution of the
velocity. At the bottleneck located between 5 and 6 km, synchronized flow forms,
which finally leads to a wide moving jam. This wide moving jam moves with a
velocity of about -15 km/h (i.e. upstream) and swallows moving jams during this
propagation. It further travels through the bottleneck.

solutions is metastable against the formation of synchronized flow for inter-
mediate densities and unstable for high densities. The model can thus explain
the metastability of free flow for intermediate densities. It further reproduces
the main characteristics of wide moving jams.
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Summary. The Optimal–Velocity (OV) model is posed on an inhomogeneous ring–
road and the consequent spatial traffic patterns are described and analysed. Param-
eters are chosen throughout for which all uniform flows are linearly stable, and a
simple model for a bottleneck is used in which the OV function is scaled down on
a subsection of the road. The large-time behaviour of this system is stationary and
it is shown that there are three types of macroscopic traffic pattern, each consisting
of plateaus joined together by sharp fronts. These patterns solve simple flow and
density balances, which in some cases have non-unique solutions. It is shown how
the theory of characteristics for the classical Lighthill-Whitham PDE model may be
used to explain qualitatively which solutions the OV model selects. However, fine
details of the OV model solution structure may only be explained by higher order
PDE modelling.

1 Introduction

The aim of this paper is to understand the steady state wave profiles that
emerge in car-following models in the presence of spatial inhomogeneity. We
simulate traffic with the Optimal Velocity model [1], posed on a ring-road
that is made inhomogeneous by adding a simple model for a bottleneck, in
which the Optimal Velocity function is reduced by a constant factor for some
portion of the road. The surprise in this paper is that such a simple model
set-up can display non-trivial solution structure.
The modelling of traffic flow can be understood at two distinct levels: micro-
scopically, whereby each vehicle is considered individually, and macroscopi-
cally whereby traffic is considered as a continuous fluid. The simple discrete
model that we consider here develops stable stationary patterns as t → ∞,
which can be understood by drawing parallels with continuum models.
The paper is set out as follows. In Sect. 2, we describe the OV model set-
up that we use for the remainder of this paper, including precise details of
how the spatial inhomogeneity is applied. Then in Sect. 3, we outline our
numerical simulation and coarse-graining procedure, and we show results of
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three numerical experiments with qualitatively different solution structure as
t→ ∞ (see Fig. 1). Sections 4 and 5 analyse these experiments using classical
kinematic wave theory, firstly by analysing simple flow and density balances
and then by using characteristic arguments to explain the wave selection prin-
ciples. We calculate explicitly a phase diagram describing where the different
solution types occur. Finally in Sect. 6, we conclude and indicate the success
and failures of higher order continuum models in explaining the fine details
of the solution structure.

2 Problem Set-Up

We consider the traffic patterns formed by a large number N of identical
vehicles driving on a unidirectional single-lane ring-road of length L. Over-
taking is not considered. Vehicles move in continuous space x and time t, and
their displacements and velocities are labelled xn(t) and vn(t) respectively.
We suppose that the direction of motion is in increasing x, and moreover that
vehicles are labelled n = 1, 2, . . . , N in the downstream direction. For the ve-
hicles’ equations of motion, we adopt the well-known Optimal Velocity (OV)
car-following model [1] for which

ẋn = vn, (1)
v̇n = α {V (hn;x) − vn} . (2)

Here dot denotes differentiation with respect to time, and the rate constant
α > 0 is known as the sensitivity. The variable hn := xn+1 − xn gives the
headway, or gap to the vehicle in front, and loosely speaking the OV model
describes the relaxation of traffic to a safe speed which is defined in terms
of this gap. Note that under open boundary conditions one would need to
prescribe the trajectory of the lead vehicle N , but on the ring-road we assume
merely that it follows vehicle 1, so that hN = L+ x1 − xN .
The novelty in this paper is that we use an inhomogeneous OV function which
takes the form

V (hn;x) :=

{
rBV (hn), 0 ≤ xmodL < L̂L,

V (hn), L̂L ≤ xmodL < L,
(3)

and which is thus scaled down by a reduction factor 0 < rB < 1 for a propor-
tion 0 < L̂ < 1 of the ring-road under consideration. (Note that for sake of
brevity, the vehicles’ displacements xn(t) are set-up as monotone increasing
and unbounded, although henceforth, we interpret all displacements modulo
L.)
In (3), V with a single argument denotes a spatially independent OV function,
and for concreteness, we adopt the standard [1] S-shape

V (h) = tanh(h− 2) + tanh(2). (4)
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However, qualitatively similar results should be recovered by any V for which
1. V (0) = 0, 2. V ′ ≥ 0 and 3. V (h) → Vmax as h→ ∞. The detailed structure
of V is not important because throughout we choose α ≥ 2max V ′, so that all
uniform flows are linearly stable. Consequently, the patterns that we observe
are forced only by the spatial inhomogeneity and not by spontaneous flow
breakdown effects.

3 Numerical Procedure and Simulation Results

We now supplement equations (1–3) with the uniformly spaced initial data

xn = nh∗ and vn = V (h∗) for n = 1, 2, . . . , N. (5)

Here h∗ := L/N is the mean spacing. Note that for the limiting (no bottleneck)
cases where either rB = 1 or L̂ = 0, (5) gives a uniform flow solution of
(1–3) in which xn = nh∗ + tV (h∗). However, in general we should expect the
bottleneck to redistribute traffic. In order to investigate the resulting patterns,
we solve the initial value problem (1–5) numerically using a standard fixed
step fourth-order Runge-Kutta solver.
After some experimentation with the solver, we conclude that the traffic al-
ways settles down to a stationary profile as t → ∞, although the transient
processes can sometimes be very long. Here stationarity means that suitably
defined macroscopic density and velocity variables become steady, although
they are non-trivially dependent on space x, and consequently vehicles’ mo-
tions are in fact periodic as t→∞, since as they drive around the ring-road,
they move repeatedly through the spatial pattern and experience traffic jams,
free-flowing regimes etc. Note however that if we chose smaller values of sen-
sitivity α than presented here, so as to force the linear instability of a range
uniform flows, then the macroscopic variables could also be non-trivially time-
dependent as t→ ∞.
Taking into account the above discussion, the results that we display shortly
show stationary macroscopic density profiles ρ(x) rather than individual ve-
hicle trajectories. The simplest way to relate microscopic and macroscopic
variables is via ρ(xn, t) = 1/hn(t), although it is well-known [2, 3] that this
relationship holds exactly only for entirely homogeneous situations. Therefore
we use a coarse-grained [2] density

ρ(x, t) =
∫
L

dx′dt′φ(x− x′, t′)
∑

n

δ(xn(t′) − x′), (6)

with

φ(x, t) =
1

2πσ2
exp(−x2/2σ2)δ(t), (7)
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Fig. 1. Stationary t → ∞ coarse-grained density profiles ρ(x). The portions of
solution profiles within the bottleneck are indicated by shading. (a) Light traffic
h∗ = 7.0 (ρ∗ = 0.142857), see Example 1; (b) Medium traffic h∗ = 2.5 (ρ∗ = 0.4),
see Example 3; (c) Heavy traffic h∗ = 1.0 (ρ∗ = 1.0), see Example 2.

which is thus obtained from distributional point density by convolving with
a Gaussian test function whose characteristic length scale σ is chosen large
enough so as to smooth out individual vehicles but small enough so as to
retain macroscopic features. A macroscopic flow variable q(x, t) may be ob-
tained in a similar way by coarse-graining the discrete velocity vn, and then
a coarse-grained velocity is given by v(x, t) := q(x, t)/ρ(x, t). Note that since
we are usually seeking a steady density, there are computational short-cuts
and the cheapest procedure is to calculate ρ(x) by coarse-graining in time the
numerical trajectory of a single vehicle as it drives once around the ring-road.
We now give three examples of the eventual stationary profiles ρ(x) which
show how the structure changes as the mean headway h∗ is varied. To simplify
matters, all other parameters are held fixed as follows: N = 100 vehicles,
bottleneck reduction factor rB = 0.6, bottleneck nondimensionalised length
L̂ = 0.25 and sensitivity α = 2.0. Later we consider how the qualitative
solution structures change as functions of the three problem parameters ρ∗ :=
1/h∗, rB and L̂.
Example 1. We take h∗ = 7.0 which corresponds to light traffic (large h∗,
small ρ∗). See Fig. 1(a). The t→ ∞ steady density profile ρ(x) adopts a two-
plateau form, with an almost constant density ρB attained in the bottleneck
and a lower (almost constant) density ρ1 on the remainder of the loop. At each
end of the bottleneck, the two density plateaus are joined by sharp, almost
shock-like fronts.
Example 2. We take h∗ = 1.0 which corresponds to heavy traffic. See
Fig. 1(c). In a similar fashion to Example 1, ρ(x) adopts a two-plateau form.
However this time the bottleneck density ρB is less than the density ρ1 on the
unconstrained part of the loop. Like Example 1, there are also sharp, shock-
like fronts at each end of the bottleneck, although here they have a more
complicated oscillatory structure.
Example 3. We now take h∗ = 2.5 which may be regarded as an interme-
diate case. See Fig. 1(b). In contrast to the two previous examples, ρ(x) now
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has a three-plateau form. The density as before adopts an almost constant
(but slightly S-shaped) profile ρ 	 ρB within the bottleneck, with fronts at
each end. Downstream of the bottleneck is a low density ρ1 region, whereas
upstream is a high density ρ2 region, which may be thought of as a queue wait-
ing to enter the bottleneck. There is thus an extra internal shock-like front in
the unconstrained part of the loop, where the fast traffic that has come out of
the bottleneck rejoins the queue to enter it. Unlike the other fronts we have
encountered so far, that joining ρ1 and ρ2 is not locked on a discontinuity in
the model; nevertheless, it is stationary.
Further simulation may be used to show how the Fig. 1 profiles are related to
each other. If one starts with the Fig. 1(b) structure (Example 3) and decreases
the mean headway (increases the mean density), then the queue upstream of
the bottleneck grows in length until it reaches the downstream boundary of
the bottleneck, and swamps the entire unconstrained part of the loop. At this
point, the internal shock vanishes and the Fig. 1(c) structure is recovered.
Conversely, if one starts with Fig. 1(b) and decreases the mean density, the
queue upstream of the bottleneck shortens until it vanishes altogether. At
that point, the internal shock is absorbed into the upstream boundary of the
bottleneck and the Fig. 1(a) structure is recovered.

4 Density and Flow Balances

We now begin an explanation of the structures seen in Section 3. Later we
derive a phase diagram which predicts when each will occur. Since the ob-
served structures resemble constant density plateaus separated by classical
shocks, we attempt an explanation based on kinematic wave theory [6]. To
this end, we introduce the fundamental (flow) diagram Q(ρ) = ρV̂ (ρ) where
V̂ (ρ) = V (1/ρ) is the continuum counterpart to the discrete OV function V .
As is well-known, Q is usually a unimodal function. With choice (4), Q at-
tains its maximum value Qmax 	 0.58 at ρmax 	 0.36. In the bottleneck, the
fundamental diagram Q is scaled by rB.
Firstly we consider the two-plateau structures of Figs. 1(a) and (c). Since
the fronts are sharp, negligibly few vehicles are contained within them at any
one time. We may therefore approximate the density ρ(x) with a piecewise-
constant profile consisting of ρB within the bottleneck and ρ1 in the uncon-
strained part of the loop. It thus follows that

L̂ρB + (1− L̂)ρ1 = ρ∗, (8)
Q(ρ1) = rBQ(ρB), (9)

which describe respectively the conservation of vehicles and a flow balance
(the latter is necessary since the observed profiles are stationary). Equations
(8), (9) are thus a pair of simultaneous equations to solve for ρ1 and ρB, where
the remaining parameters ρ∗, rB and L̂ are prescribed.
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Fig. 2. Solution structure of (8), (9). Panels (a-c) correspond directly to panels
(a-c) in Fig. 1. Top row (i) indicates solutions of (10) and bottom row (ii) of the
equivalent equation (11). The extra numbering in panels (c)(i,ii) allows the (ρ1, ρB)
solution pairs to be identified.

We must therefore examine the (ρ1, ρB) solution structure of (8), (9) and this
is achieved via Fig. 2. To see this, note that ρB may be eliminated from (8),
(9) to give

Q(ρ1) = rBQ

[
ρ∗ − (1 − L̂)ρ1

L̂

]
, (10)

and the left and right hand sides of this equation are plotted against ρ1 in
Figs. 2(a-c)(i). Note alternatively that ρ1 can be eliminated from (8), (9) to
give

rBQ(ρB) = Q

[
ρ∗ − L̂ρB

1 − L̂

]
, (11)

and as a cross-check, the left and right hand sides of this equation are plotted
against ρB in Figs. 2(a-c)(ii). Further, parameters have been chosen so that
the panels (a-c) correspond directly to panels (a-c) in Fig. 1. Firstly, the light
traffic diagrams Figs. 2(a)(i,ii) indicate a unique (ρ1, ρB) solution pair and it
may be shown that this is indeed corresponds to values obtained in Example
1.
However, in the heavy traffic diagrams Figs. 2(c)(i,ii), there are clearly three
(ρ1, ρB) solution pairs: what determines which pair is selected in the cor-
responding Example 2? Finally, in the intermediate case of Figs. 2(b)(i,ii),
there is a unique (ρ1, ρB) solution pair, however, the corresponding Example
3 selects instead a three-plateau structure. It now remains to identify extra
principles which explain the solution selection in cases (b) (Example 3) and
(c) (Example 2).
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5 Wave Selection Via Characteristics

We now use characteristic arguments from kinematic wave theory [6, Chap. 2]
to explain the observed wave selection behaviour. We focus initially on Ex-
ample 2 (heavy traffic), see Figs. 1(c) and Figs. 2(c)(i,ii), and then later we
consider the three-plateau case.
We recall that in kinematic wave theory, characteristics are lines (or line
segments) in the (x, t) plane on which density is conserved. Further, it is
well-known that the local velocity of a characteristic with density ρ is given
by Q′(ρ). Consequently, characteristics propagate downstream in light traffic
and upstream in heavy traffic. When characteristics converge, one obtains a
classical shock, whereas when they diverge, one obtains a (non-stationary)
expansion fan.
Figure 3 develops a characteristic analysis of the (ρ1, ρB) solution pairs found
in Fig. 2(c)(i,ii). The key point to note is that the solution pairs numbered 1
and 3 straddle ρ = ρmax at which both the unconstrained Q(ρ) and bottleneck
rBQ(ρ) fundamental diagrams attain their maxima. These solution pairs can
be disregarded, because the consequent density profiles would involve patterns
of characteristics with both positive and negative slopes. This means that at
either the upstream or downstream boundary of the bottleneck, there would
necessarily be a non-stationary expansion fan which would not agree with the
t→ ∞ stationary results.
In contrast, solution pair 2 is non-straddling and involves only characteristics
with negative slopes, see Fig. 3 panel (iv). In this sketch, neither the upstream
or downstream boundary of the bottleneck has a classical (compressive) shock.
Rather, at each boundary the characteristics cross through the shock which is
forced solely by the model discontinuity at that point. It may be shown that
this solution agrees with that found by discrete simulation in Section 3 and
moreover that it is a proper solution of the Lighthill-Whitham-Richards model
in that it may be reached via the solution of the initial value problem [8].
We now turn our attention to the three-plateau case (Example 3, Fig. 1(b)),
for which it may be shown that the analysis of Section 4 predicts a straddling,
and hence invalid solution pair (ρ1, ρB). The resolution is thus to approximate
the density ρ(x) by a piecewise-constant profile with three components: ρB

(density in bottleneck) and ρ1, ρ2 (densities in unconstrained part of loop).
The density and flow balances thus yield respectively

L̂ρB + β(1 − L̂)ρ1 + (1 − β)(1 − L̂)ρ2 = ρ∗, (12)
Q(ρ1) = Q(ρ2) = rBQ(ρB), (13)

where 0 < β < 1 parametrises the internal shock position separating ρ1 and
ρ2. We thus have three equations, but four unknowns, namely β, ρ1, ρ2 and
ρB, and we require extra information to fix a unique solution. By studying
characteristic diagrams, it becomes clear that a solution without diverging
characteristics (and hence non-stationary expansion fans) is only possible if
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Fig. 3. Characteristic analysis for the (ρ1, ρB) solution pairs from Figs. 2(c)(i,ii).
Panel (iii) shows the location of solution pairs, joined by horizontal lines representing
flow balance, on the fundamental diagrams Q and rBQ. Characteristic pictures for
each of the three root pairs are shown in panels (iv), (v) and (vi): the bottleneck
is denoted by shading. Panels (v) and (vi) cannot give stationary profiles since
they predict an expansion fan at the up- and down-stream ends of the bottleneck
respectively. Hence solution pair 2 from panel (iv) is selected. Note that in panel
(iii), this solution pair is non-straddling in the sense that both ρ1 and ρB are the
same side of the fundamental diagram maximum.

ρB = ρmax, (14)

i.e., if the flow inside the bottleneck is maximised. Further, when supple-
mented by (14), system (12), (13) can be solved uniquely for ρ1, ρ2 and β,
and it may be shown that this solution agrees with the discrete simulations.
The characteristic structure is shown in Fig. 4. In particular, it involves non-
standard waves at the up- and down-stream ends of the bottleneck. However
it may be shown via the solution of the initial value problem that these are
admissible solutions of the Lighthill-Whitham-Richards model [8].
We now turn our attention to the computation of a phase diagram. Since in
the three-plateau case we have ρB = ρmax, the values of ρ∗ where solutions
change from two plateau solutions to three plateau solutions can be calculated.
At the thresholds, β is either 0 or 1 and ρB = ρmax, thus eliminating ρ1 or ρ2

in (13) using (12), leaves only

rBQ(ρmax) = Q

[
ρ∗ − L̂ρmax

1 − L̂

]
, (15)
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Fig. 4. Characteristic analysis for the three-plateau case: only the configuration
shown with flow maximised in the bottleneck avoids expansion fans. Note that the
characteristics inside the bottleneck have zero velocity and hence this structure is
on the very boundary of becoming an expansion fan. The internal shock between ρ1

and ρ2 is classical since at it the characteristics converge.
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Fig. 5. Phase diagram derived from (15) for bottleneck length L̂ = 0.25. The points
marked (a), (b), and (c) correspond to panels (a), (b) and (c) in Figs. 1 and 2. The
line segments denoted A and B indicate to where the phase boundary would move
for L̂ = 0.5 and L̂ = 0.75 respectively.

as a relation between the problem parameters that holds at the transition, see
Fig. 5. In particular, we may partition the (ρ∗, rB) plane according to whether
the three-plateau solution occurs, or according to which type of two-plateau
solution occurs, and the boundary in this plane depends on L̂ in a manner
that we can determine explicitly. In particular, increasing the length of the
bottleneck shrinks the domain where the three-plateau solution occurs.
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(a) (b) (c)

ρ1ρ1ρ1 ρ2 ρBρB ρmax

Fig. 6. Numerical (ρ,ρx) phase plots corresponding to Figs. 1(a–c). The discs mark
the boundaries of the bottleneck. (a) Light traffic: heteroclinic cycle connecting
(ρ1, 0) and (ρB, 0). (b) Three plateau case: saddle at (ρ1, 0); saddle–node at (ρB, 0)
explaining S–shaped structure; complex fixed point at (ρ2, 0). (c) Heavy traffic:
complex fixed points at (ρ1, 0) and (ρ2, 0).

6 Higher Order Modelling

We have shown how first order kinematic wave theory explains the principal
qualitative features of the discrete simulation results presented in Fig. 1. This
theory however is based on a piecewise-constant ansatz for the density profile
ρ(x), and does not explain, for example, the S-shaped profile in the bottleneck
in Fig. 1(b), nor does it explain the internal structure of the shocks. To analyse
these features, we should resort to higher order PDE approximations of the
OV model [2, 3]. Using the work of [7] as motivation, we use finite differences
to obtain the spatial derivative of the coarse-grained density so that we may
display numerical (ρ, ρx) phase portraits: see Figs. 6(a–c).
In each of these phase portraits, trajectories spend most time in the vicinity of
fixed points which correspond to the constant density plateaus in Figs. 1(a–c).
These fixed points are then linked via rapid transits across the phase portrait
which describe the interior structure of the shocks. Note that in Figs. 6(a–c),
the bottleneck boundaries are in fact ‘mid-shock’ and are denoted by small
solid discs.
In the light traffic portrait Fig. 6(a), we observe a heteroclinic-cycle con-
necting saddle-like fixed points, which agrees with the analytical prediction
of [7]. However, in the heavy traffic portrait Fig. 6(c), the numerical trajec-
tory crosses itself, and we observe complicated fixed-points which resemble
projections of Shilnikov points. The conclusion in this case is that the dy-
namics cannot be represented in two dimensions. In fact, one may show that
the second-order theory [7] predicts a pair of stable node fixed points, and
hence cannot produce the required connections. Instead, the solution seems
to adopt a sharper profile which brings higher derivatives into play, and which
thus permits the required connections in a higher dimensional phase space. In
the three-plateau case Fig. 6(b), [7] predicts that the bottleneck fixed point
is at saddle-node bifurcation, in the vicinity of which, trajectory behaviour is
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polynomial in x. This observation can be used to explain the S-shape bottle-
neck profile in Fig. 1(b).
Thus to sum up, from a simple model for a bottleneck on a loop, we have
observed interesting, stationary wave patterns in the OV model as t → ∞.
These patterns consist generally of two or three plateaus separated by shock–
like structures. We have built an understanding of these patterns using a PDE
approach, principally by using first order kinematic wave theory. However, the
fine details require higher order modelling with a momentum equation – this
is work in progress.
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Summary. Recent empirical observations at freeway merge bottlenecks have re-
vealed (i) a drop in the bottleneck discharge rate when queues form upstream, (ii)
an increase in lane-changing maneuvers simultaneous with this “capacity drop”, and
(iii) a reversal of the drop when the ramp is metered.
This paper shows that a simple vehicle lane-changing theory, which has been shown
to explain related phenomena at lane-drops and moving bottlenecks, also explains
the new phenomena at merges. In this theory, lane-changing vehicles are modeled
as discrete particles endowed with realistic accelerations, and are embedded in a
multilane stream where each lane obeys the kinematic wave model. This theory is
parsimonious: only one of its four parameters has to be calibrated by running the
model.
Our simulations show that the theory predicts surprisingly well the cumulative flows
at all locations, the vehicle trip times, the number of lane-changing maneuvers, the
capacity drop, its recovery upon metering, and the distribution of these measures
across lanes and over time. Applications are discussed.

1 Introduction

The kinematic wave (KW) model [1, 2], when applied with a triangular fun-
damental diagram (KWT) [3], is arguably the simplest means to explain ba-
sic traffic features, such as the spatial extent of queues and average vehicle
densities within these queues [4–9]. But more complex traffic features, such
as the capacity drop [10–14], hysteresis [15], the capacity of moving bottle-
necks [16] and stop-and-go waves [5, 17–21] cannot be explained with such a
simple model.
Many of these features, however, are explained by a multilane hybrid (MH)
theory that combines the KW model with discrete lane changes treated as
moving bottlenecks [22]. This paper shows that the theory also explains traffic
behavior at merges. Section 2 describes the key concepts of the theory in [22]
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Fig. 1. (a) Triangular fundamental diagrams; (b) site description (taken from [23]).

and the proposed treatment of merges. Section 3 tests the model and section 4
discusses its results.

2 Parameters of the Multilane Hybrid Model with
Merges

The multilane hybrid (MH) model in [22] treats each lane as a KWT traffic
stream, interrupted by lane-changing vehicles. The KWT model has three
parameters that can be measured by direct observation: a “free-flow” speed,
u (km/h), a wave speed, w (km/h), and a “jam density”, κ (veh/km). One can
also define a “capacity”, Q (veh/h), related to the previous three parameters
by: Q/u + Q/w = κ; see Fig. 1a. Typical values (used on all our tests) are:
u = 112.7 km/h (70 mph), w = 22.5 km/h (14 mph) and κ = 139.7 veh/km
(225 veh/mile). Therefore, Q = 2, 625 veh/h.
Lane-changing vehicles are treated in the MH model as discrete particles
with variable speeds and accelerations (v, a), subject to upper bounds: v ≤
vmax; a ≤ amax. These bounds are parameters of the model, but they can
be chosen without running the model, simply by analyzing the vehicle fleet.
For all of our tests we chose features of an average car on level terrain:
vmax = 123.8 km/h and amax = 3.4(1 − v/vmax) m/s2.
Lane changes are assumed to be triggered by speed differences between ad-
jacent lanes, and drivers’ desire for travelling faster. This is modeled by a
probability rate for lane changing (probability per unit time), π, which de-
fines the behavior of a driver experiencing a speed deficit, ∆v ≥ 0, relative to
a neighboring lane. The behavioral relationship is assumed to be of the form
π = ∆v/(uτ), where τ is a behavioral parameter with units of time. This is
the only parameter that is estimated by running the model.
Given u,w, κ, τ , and the upstream traffic demand, the model can be simulated
in discrete time by inspecting the system at intervals ∆t (sec); see [22]. It
predicts the flow and accumulations by lane at any desired set of locations and
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the number of lane changes between every pair of adjacent lanes. As explained
in [22], the model reproduces the capacity drop at lane-drops because lane
changers with bounded accelerations introduce voids in the traffic stream,
which pass through a bottleneck to the detriment of its discharge rate.
The on-ramp was modeled as an additional freeway lane with the same above-
mentioned KWT parameters. Since our site did not have an acceleration lane,
we neglected its length; i.e., lane changes to/from the freeway can only take
place at a point. Given that several on-ramp vehicles may enter the freeway at
the same time, an additional condition is imposed at the boundary with the
freeway. At this boundary, the on-ramp capacity is expanded by 40 %. Notice
that this expanded capacity does not induce on-ramp inflows greater than Q;
it merely implements the boundary condition for merges proposed in [25] by
increasing the priority for entering traffic to the levels observed in [24].

3 Tests

In this section we show how the MH model replicates the empirical obser-
vations at an on-ramp merge in [23]. We describe these observations first.

3.1 Field Measurements

The experiments in [23] are the first to reveal some of the mechanisms that
lead to lower bottleneck discharge rate after queues formed upstream. The site
is a stretch of northbound Freeway 805 in San Diego, California; see Fig. 1b.
The merge formed by the metered on-ramp at 47th St/Palm Ave on-ramp,
is a recurrent active bottleneck. The experiments were conducted during ten
morning rush periods in summer and fall 2003. Capacity drops and recoveries
due to select ramp metering strategies were observed. The rush periods of
October 15th and October 21st were selected for analysis in this paper.
Detailed traffic data were manually extracted from videos. The empirical data
for October 15th are presented in Figs. 2a and 3a-b, while the data for October
21st correspond to Figs. 4a and 5a-b. These figures display the following time
series:

• Oblique queueing diagrams: a transformation of cumulative vehicle count
vs time, N(t), measured at the four locations labelled X1 through X4 in
Fig. 1b; see [26]. Notice that to guarantee flow conservation ramp inflows
were added to the counts upstream of the bottleneck.

• Vehicle accumulations: the number of vehicles in the shoulder lane (only)
between locations X1 and X3, as per the illustration directly to the right
of Fig. 3a. These accumulations were sampled from video every 5 sec and
the curve presents the averages of these counts over 1-min intervals.
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Fig. 2. Oblique queueing diagrams on October 15st: (a) measured (taken from [23]);
(b) simulated.

• Oblique cumulative lane changes, LC(t): this plot corresponds to the com-
mutative number of vehicle lane changes between X1 and X3 on an oblique
coordinate system to amplify the variations in the lane changing activity.
Only lane changes leaving the two rightmost lanes were considered; see
schematic to the right of Fig. 3b.

Examination of figures 2a, 3a-b, 4a and 5a-b reveals that (i) the capacity drop
occurs simultaneously with an increase in lane-changing counts and shoulder
lane vehicle accumulation, and that (ii) controlling the ramp-metering rate
could mitigate this lane changing and accumulation, so that high merge ca-
pacities could be restored.
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3.2 Simulation Results

The input data for the simulations consisted of the lane-specific traffic de-
mands measured in 30-sec intervals at the loop-detector located upstream
of X1 (see Fig. 1b3), and the demand on the on-ramp taken from [23]. The
behavioral parameter τ = 4 sec was found to replicate the number of lane
3 Notice that when a queue reaches this detector it no longer measures demand

but the bottleneck discharge rate. When this happened we extrapolated the last
demand value into future time steps.
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changes during congested periods and was used throughout. We also chose
∆t= 0.6 sec, but any small value for the time increment would work similarly.
Simulation results are shown below the corresponding empirical charts on
Figs. 2 to 5. Vertical solid lines connecting the empirical and simulated charts
have been added to facilitate comparisons.
Examination of Figs. 2 and 4 reveals that the simulation accurately predicts
the cumulative count curves at all locations. In all cases, the theory predicts
bottleneck activation times to within 30 seconds of the observed times. Pre-
dicted bottleneck discharge rates are within 3% of those observed.
Although discrepancies exist between the predicted and observed curves of
shoulder-lane accumulations and cumulative lane changes (Figs. 3 and 5), key
features of these microscopic measures are reproduced by the theory. In partic-
ular, the predicted time series of shoulder lane accumulations exhibit similar
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shapes to those observed, though the theory underpredicts the numeric values.
Predicted lane-changing maneuvers match those observed during congested
times outside of restrictive metering periods (this traffic regime is color-coded
dark gray in Figs. 3d and 5d). Prediction errors arise for the other regimes;
these being congestion during restrictive metering periods (light gray in the
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Fig. 6. Simulation of the effects of two control schemes: (a) oblique queueing dia-
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freeway with a temporary lane-changing ban.

figures) and free-flow conditions (white). Notably, however, the total number
of lane-changing maneuvers predicted over these two regimes combined closely
match observed numbers. The observed times of regime change are also closely
matched by the theory.

4 Discussion

The generally good fit between theory and observation – particularly on the
important aggregate measures – is encouraging, given the paucity of model
parameters. A perfect match between theory and observation should not be
expected at the microscopic level given (i) that observations vary significantly
from day to day; and (ii) that our behavioral assumption was the simplest
possible. In fact we find it surprising that a single-parameter model could
reproduce so much detail.
With this in mind, we now use the model to assess the capacity enhancements
generated by two control schemes: one focusing on on-ramp flow, the other on
freeway lane-changing maneuvers. Predictions for the first of these solutions
are displayed in Fig. 6a-b. These were produced for a constant freeway demand
and for on-ramp demands that cause the ramp queue to grow slowly and then
recede. Note how three capacities arise: a full capacity of 10,000 veh/h that
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arises with no queues on the freeway nor on the on-ramp; an intermediate
capacity of 9,000 veh/h with a queue only on the freeway; and a low capacity
of 7,800 veh/h with queues both on the freeway and the on-ramp. The latter
two capacities correspond to roughly 10 and 20% of the full capacity, and
are consistent with the range of capacity drops reported in the literature.
Notice that both drops occur when the on-ramp input flows are 500 veh/h in
both cases. Therefore, the 1,200 veh/h difference in discharge flow from the
merge most likely occurs because queued on-ramp vehicles enter the freeway
at low speeds. Thus, the model predicts that preventing on-ramp queues is of
critical importance. Note too that varying traffic conditions on the on-ramp
induce oscillations in the discharge rate and can contribute to oscillations in
the freeway queue.
Predictions for the second control scheme are shown in Fig. 6c. These predic-
tion are made for the same site under constant freeway and on-ramp demands,
but now a lane-changing ban is imposed on freeway traffic in t ∈ [7, 14] min.
It is clear how full capacity is restored during the period of no lane-changing
activity. Notice that full recovery was possible because no queues formed on
the on-ramp. Had there been a ramp queue, merge capacity would have been
partially recovered, as per our preceding results. These topics are currently
under further investigation by the authors.
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Summary. We describe a new model of vehicular traffic flow with phase transi-
tions. The model is obtained by coupling the classical Lighthill-Whitham-Richards
equation with the 2×2 system proposed by Aw and Rascle. We show an application
to the modeling of a bottleneck, and compare the results with those obtained using
other models.

1 Introduction

One of the first models introduced to describe traffic flow is the well known
Lighthill-Whitham [8] and Richards [9] (LWR) model, which reads

∂tρ+ ∂x[ρv(ρ)] = 0, (1)

where ρ ∈ [0, R] is the mean traffic density, and v(ρ), the mean traffic ve-
locity, is a given non-increasing function, non-negative for ρ between 0 and
the positive maximal density R, which corresponds to a traffic jam. This sim-
ple model expresses conservation of the number of cars, and relies on the
assumption that the car speed depends only on the density. Nevertheless, ex-
perimental data (Fig. 1, right) suggest that a good traffic flow model should
exhibit two qualitative different behaviors:

• for low densities, the flow is free and essentially analogous to the LWR
model;

• at high densities the flow is congested and has one more degree of freedom
(it covers a 2-dimensional domain).

The first continuous model showing phase transitions has been introduced by
Colombo [3]. In this paper we briefly describe a new traffic flow model with
phase transitions obtained combining the Aw-Rascle 2 × 2 model [2] (in the
following referred to as the AR model) with the LWR equation (the model
has been studied in detail in [6]). We show an application to the modeling of
a bottleneck, and compare the results with the ones obtained using the LWR
model and the biphasic model described in [3].
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2 Brief Description of the Model

The model under consideration has been introduced in [4, 6]. The LWR equa-
tion and the AR model describe the free flow and the congested phase, re-
spectively. More precisely, the model reads

Free flow: Congested flow:
(ρ, v) ∈ Ωf (ρ, v) ∈ Ωc

∂tρ+ ∂x[ρv] = 0
{
∂tρ+ ∂x[ρv] = 0
∂t

[
ρ(v + p(ρ))

]
+ ∂x

[
ρv(v + p(ρ))

]
= 0

v = vf (ρ) = (1 − ρ/R)V p(ρ) = Vref ln(ρ/R)
(2)

where R is the maximal possible car density, V is the maximal speed allowed
and Vref a given reference velocity. The sets Ωf and Ωc denote the free and the
congested phases respectively. In Ωf there is only one independent variable,
the car density ρ. In Ωc the variables are the car density ρ and the car speed
v or, equivalently, the conservative variables ρ and y := ρ v + ρ p(ρ); see [2].
The “pressure” function p plays the role of an anticipation factor, taking in
account drivers’ reactions to the state of traffic in front of them.
It is reasonable to assume that if the initial data are entirely in the free
(resp. congested) phase, then the solution will remain in the free (resp. con-
gested) phase for all time. Thus we are led to take Ωf (resp. Ωc) to be an
invariant set for (2), left (resp., right). The resulting domain is given by

Ωf = {(ρ, v) ∈ [0, Rf ] × [Vf , V ] : v = vf (ρ)} ,

Ωc = {(ρ, v) ∈ [0, R] × [0, Vc] : p(r) ≤ v + p(ρ) ≤ p(R)} ,
where Vf > Vc are the threshold speeds, i.e. above Vf the flow is free and
below Vc the flow is congested. The parameter r ∈ ]0, R] depends on the en-
vironmental conditions and determines the width of the congested region.
The maximal free-flow density Rf must satisfy Vf + p(Rf ) = p(R) (that is
Vf + Vref ln(Rf/R) = 0 with our choice of the pressure). In order to get this
condition, we are led to assume Vref < V . It is easy to check that the capacity
drop in the passage from the free phase to the congested phase [7] is then au-
tomatically satisfied. In order to resume, we have the following order relation
between the speed parameters:

V > Vref > Vf > Vc.

Fig. 1 shows that the shape of the invariant domain is in good agreement with
experimental data. A detailed description of the Riemann solver and further
analytical results are given in [6].

3 Initial-Boundary Value Problems

From the point of view of traffic flow, it is natural to consider Initial Boundary
Value Problems. We start considering the case of a road starting at x = 0
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Fig. 1. Left: invariant domain for (2). Right: experimental data, taken from [7].

where the inflow f̃ is regulated. This leads to study the following Riemann
problem with boundary⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ+ ∂x [ρ · vf (ρ)] = 0 (ρ, y) ∈ Ωf , t ≥ 0 , x ≥ 0{
∂tρ+ ∂x [ρ · v] = 0
∂ty + ∂x [y · v] = 0 (ρ, y) ∈ Ωc , t ≥ 0 , x ≥ 0

(ρ, y)(0, x) = (ρ̄, ȳ) x ≥ 0 ,
(ρv)(t, 0) = f̃ t ≥ 0 .

(3)

We denote the maximum possible flow along the considered road by F =
RfVf .

Proposition 1. With reference to (3), if

Vref ≥ V
(
1 − r

eR

)
, (4)

then for all (ρ̄, ȳ) ∈ Ωf ∪Ωc, there exists a threshold fmax = fmax(ρ̄, ȳ) such
that for all f̃ ∈ [0, fmax] the Riemann problem for (3) admits a solution in
the sense of [1, Definition NC]. More precisely, there exists a unique state
(ρ̃, ỹ) ∈ Ωf ∪ Ωc such that the flow at (ρ̃, ỹ) is f̃ and the standard solution
to the Riemann problem (2) with data (ρ̃, ỹ) and (ρ̄, ȳ) consists only of waves
having positive speed.

1. If (ρ̄, ȳ) ∈ Ωf , then fmax = F and (ρ̃, ỹ) is in Ωf . The solution consists
of a 2-wave in the free phase.

2. If (ρ̄, ȳ) ∈ Ωc, then there exist a fmin = fmin(ρ̄, ȳ) such that:
a) If fmin ≤ f̃ ≤ fmax, (ρ̃, ỹ) is the unique intersection between the curve
ρv(ρ, y) = f̃ and the 2-wave through (ρ̄, ȳ). The solution consists of a
simple 2-wave.

b) If f̃ < fmin, then (ρ̃, ỹ) is the unique state in Ωf such that ρ̃vf (ρ̃) = f̃ .
The solution consists of a phase boundary and a 2-wave.

Moreover, the Riemann Solver is continuous in L1
loc.
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Condition (4) ensures that supΩf∪Ωc
λ1 < 0, hence all waves of the first family

are exiting the domain x ≥ 0, t ≥ 0 and the problem is non-characteristic [1].
In practice, inequality (4) means that, if the maximal speed V is not too high,
the anticipation factor, which is proportional to Vref , forces informations to
move backward.
The proof is detailed in [5, 6]. Note that, as remarked in [5], the incoming flow
f̃ can be slightly greater than the flow ρ̄ v(ρ̄) present on the road.
Once the Riemann solver is available, well posedness for the Initial-Boundary
Value Problem can be proved as in [5], for all initial and boundary data with
bounded total variation.
We consider now the somewhat symmetric case of a road whose outflow at
x = 0 is regulated. At the level of Riemann problem, this can be modeled by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ+ ∂x [ρ · vf (ρ)] = 0 (ρ, y) ∈ Ωf , t ≥ 0 , x ≤ 0{
∂tρ+ ∂x [ρ · v] = 0
∂ty + ∂x [y · v] = 0 (ρ, y) ∈ Ωc , t ≥ 0 , x ≤ 0

(ρ, y)(0, x) = (ρ̄, ȳ) x ≤ 0 ,
(ρv)(t, 0) ≤ f̃ t ≥ 0 .

(5)

Proposition 2. With reference to (5), condition (4) implies that for all
(ρ̄, ȳ) ∈ Ωf ∪ Ωc, and for all possible flows f̃ ∈ [0, F ] the Riemann prob-
lem (5) admits a solution in the sense of [1, Definition NC]. More precisely,
there exists a unique state (ρ̃, ỹ) ∈ Ωf ∪Ωc such that the flow at (ρ̃, ỹ) is less
or equal f̃ and the standard solution to the Riemann problem (2) with data
(ρ̄, ȳ) and (ρ̃, ỹ) consists only of waves having negative speed. If the flow at
(ρ̄, ȳ) is less or equal f̃ , then (ρ̃, ỹ) = (ρ̄, ȳ), otherwise:

1. If (ρ̄, ȳ) ∈ Ωf , then (ρ̃, ỹ) is in Ωc. The solution consists of a phase tran-
sition eventually followed by a 1-wave in the congested phase.

2. If (ρ̄, ȳ) ∈ Ωc, then the solution consists of a simple 1-wave, (ρ̃, ỹ) being
the intersection of the 1-Lax curve through (ρ̄, ȳ) and the line ρv = f̃ .

Proof. Let us assume that the flow at (ρ̄, ȳ) is greater than f̃ , and let (ρm, vm)
be the intersection point between the 1-Lax curve through (ρ̄, ȳ) and the line
ρv = f̃ , i.e. the solution of the equation ρv̄+ ρVref ln(ρ̄/ρ) = f̃ , with ρm > ρ̄.
If (ρm, ym = y(ρm, vm)) ∈ Ωc, then (ρ̃, ỹ) = (ρm, ym). Otherwise, (ρ̃, ỹ) is the
intersection point between the 1-Lax curve through (ρ̄, ȳ) and the line v = Vc,
i.e. the solution of the equation v̄ + Vref ln(ρ̄/ρ) = Vc .

4 An Example: Modeling a Bottleneck

In this section, we compare the model introduced here with the LWR model (1)
and the biphasic model introduced by Colombo in [3], which reads:
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Free flow: Congested flow:
(ρ, q) ∈ Ωf (ρ, q) ∈ Ωc

∂tρ+ ∂x[ρv] = 0
{
∂tρ+ ∂x[ρv] = 0
∂tq + ∂x[(q −Q)v] = 0

v = vf (ρ) v = vc(ρ, q) =
(
1 − ρ

R

)
q
ρ .

(6)

Here, Q is a parameter of the road under consideration and the weighted flow
q is a variable originally motivated by the linear momentum in gas dynamics.
The two phases are defined by

Ωf = {(ρ, q) ∈ [0, Rf ] × [0,+∞[ : vf (ρ) ≥ Vf , q = ρ · V } ,
Ωc =

{
(ρ, q) ∈ [0, R] × [0,+∞[ : vc(ρ, q) ≤ Vc,

q−Q
ρ ∈

[
Q−−Q

R , Q+−Q
R

]}
,

where the parameters Q− ∈]0, Q[ and Q+ ∈]Q,+∞[ depend on the environ-
mental conditions and determines the width of the congested region.
We consider traffic on a highway described by the interval [−2, 2], in which
the number of lanes is reduced from three to two at x = 0. This is simulated
by setting the maximal density R = 1 for x < 0, and R = 2/3 for x > 0.
Modeling this problem requires the solution of two Riemann problems with
boundary, namely (3) for x > 0 and (5) for x < 0. In the example shown here,
we have chosen initial data on the left-hand side so that the incoming flux is
higher than the maximal possible flux in the two-lane region. This causes the
traffic congestion shown by Fig. 2, 3.
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Fig. 2. Bottleneck at x = 0 with incoming flux fl higher than the maximal possible
flux at x > 0.
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Fig. 3. Bottleneck at x = 0 with incoming flux fl = F , the maximal possible
incoming flux at x < 0.

Initial data ul for x < 0 and ur for x > 0 are taken in the free phase Ωf . The
solutions given by the three models present the same behavior:

- a shock (hiding a phase transition for models (2) and (6)) moving backward
in the three lane region, upstream the congested traffic;

- a discontinuity (under-compressive shock) at x = 0, corresponding to the
bottleneck;

- a rarefaction wave moving forward in the free phase.

In particular, the LWR-Aw-Rascle coupling (2) and the LWR-Colombo cou-
pling (6) are in good agreement, especially if the flux of the incoming traffic
is equal to F (Figure 3).
The numerical integrations for Figs. 2, 3 rely on the choices: R = 1, r = 0.47,
V = 2, Vf = 1, Q = 0.5, Q− = 0.25, Vc = 0.85, Rf = 0.5 for x < 0 and
r = 0.41, Vf = 1, Q = 1/3, Q− = 1/6, Vc = 0.85, Rf = 1/3 for x > 0;
Vref = V

1−Rf /R
ln(R/Rf ) .
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Summary. In a recent paper (Phys. Rev. E 72, 035102 (2005)) we have proposed
a stochastic optimal velocity model which includes two exactly solvable stochastic
models. It can be regarded as a stochastic version of the optimal velocity model. We
find that the model shows striking metastability (i.e. long-lived metastable states,
dynamical phase transition, and sharp spontaneous metastability breaking) as well
as solvability. In this work, we present additional explanations of the solvability and
metastability, which are helpful in understanding the traffic dynamics of the model.

1 Introduction

For the last several decades traffic dynamics has attracted much attention from
physicists and mathematicians, since it is a typical example of non-equilibrium
statistical mechanics of self-driven many-particle systems [1–3].
There are a lot of models for traffic flow proposed thus far, from various
viewpoints, such as macroscopic and microscopic, differential equations and
cellular automata, deterministic and probabilistic. Among these traffic models,
the optimal velocity model (OV) achieves a remarkable success although it is
a simple deterministic model [4, 5]. It takes the form

d2xi

dt2
= a
[
V (xi+1 − xi) − dxi

dt

]
, (1)

where xi = xi(t) is the position of i-th vehicle at time t. A function V is called
the optimal velocity function, which gives an optimal speed according to the
headway xi+1 − xi. Note that the parameter a corresponds to the sensitivity
of drivers which plays an important role in the stability of traffic flow [4].
Moreover, it is reported that the OV model shows a kind of solvability, i.e., it
has an analytic solution of jam flow [6, 7].
In our recent paper [8], we have proposed a stochastic optimal velocity (SOV)
model which includes two exactly solvable stochastic processes. It can be re-
garded as a stochastic extended version of the OV model. In this work, we
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present additional explanations of the solvability and metastability of the SOV
model.

2 The Stochastic Optimal Velocity Model

2.1 General Scheme

First of all, we explain the general framework of our stochastic CA model
for one-lane traffic. The roadway, being divided into cells, is regarded as
a one-dimensional array of L sites, and each site contains one vehicle at
most. Let Mt

i be a stochastic variable which denotes the number of sites
at which the i-th vehicle moves at time t, and wt

i(m) be the probability of
Mt

i = m (m = 0, 1, 2, . . .). Then, we assume as a principle of motion that the
probability wt+1

i (m) depends on the probability distribution wt
i(0), wt

i(1), . . .,
and the positions of vehicles xt

1, x
t
2, . . . , x

t
N at the adjacent time. The updating

procedure is as follows:

• Calculate the next intention wt+1
i (i = 1, 2, . . . , N) from the present inten-

tions wt
i(0), wt

i(1), . . . and positions xt
1, x

t
2, . . . , x

t
N :

wt+1
i (m) = f(wt

i(0), wt
i(1), . . . ;xt

1, . . . , x
t
N ;m) (2)

• Determine the number of sites Mt+1
i that a vehicle moves (i.e. the velocity)

probabilistically according to the intention wt+1
i .

• Each vehicle moves as

xt+1
i = xt

i + min(∆xt
i, Mt+1

i ) (∀i), (3)

where ∆xt
i = xt

i+1 − xt
i − 1 denotes the headway.

The hard-core exclusion rule is incorporated through the second term of the
right hand side of (3).
The probability distribution wt

i imports the driver’s intention and the uncer-
tainty of operation into a traffic model, and there is no physical counterpart
of it. We hence call it the intention in the sense that the moving vehicles are
not driven by a kind of external force field but by themselves.

2.2 The SOV Model

In what follows, we assume wt
i(m) ≡ 0 for m ≥ 2. Note that

∑∞
m=0 w

t
i(m) = 1

by definition. Setting vt
i = wt

i(1) we have wt
i(0) = 1−vt

i and for the expectation
value 〈M t

i 〉 =
∑∞

m=0mw
t
i(m) we then obtain 〈M t

i 〉 = vt
i . From (2) we have

wt+1
i (1) = vt+1

i = f(vt
i ;x

t
1, x

t
2, . . . ; 1) (4a)

wt+1
i (0) = 1− vt+1

i , (4b)
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and we therefore express the intention by vt
i instead of wt

i . As long as vehicles
move separately (i.e. ∆x > 0), the positions are updated according to the
simple form

xt+1
i =

{
xt

i + 1 with probability vt
i

xt
i with probability 1− vt

i ,
(5)

and consequently we have

〈xt+1
i 〉 = 〈xt

i〉 + vt
i (6)

in the sense of the expectation value. This equation expresses that the inten-
tion vt+1

i can be regarded as the average velocity at time t.
Let us take the evolution equation

vt+1
i = (1 − a)vt

i + aV (∆xt
i), (7)

in (2), where a (0 ≤ a ≤ 1) is a parameter and the function V takes values in
[0, 1] so that vt

i should be within [0, 1]. Equation (7) consists of two terms, i.e.,
a term turning over the intention vt

i into the next, and an effect of the situation
(the headway ∆xt

i). The intrinsic parameter a indicates the sensitivity of
vehicles to the traffic situation, and the larger a is, the less time a vehicle
takes to change the intention.
A discrete version of the OV model is expressed as

xi(t+∆t) − xi(t) = vi(t)∆t, (8a)

vi(t+∆t) − vi(t) = a
[
V (∆xi(t)) − vi(t)

]
∆t, (8b)

where ∆xi(t) = xi+1(t) − xi(t), and ∆t is a time interval. Due to the formal
correspondence between (7) and (8b), we call the stochastic CA model defined
by (7) the stochastic optimal velocity model hereafter.

3 Solvability of the SOV Model

As we described in the preceding paper [8], the SOV model recovers two mod-
els of stochastic processes, the asymmetric simple exclusion process (ASEP)
and the zero range process (ZRP), when the parameter a takes the values
0 and 1 (both ends of the domain). The ASEP is well known to be exactly
solvable, and we can give an explicit formula for the flux:

Q(ρ) =
1
2

(
1 −
√

1 − 4pρ(1 − ρ)
)
, (9)

where ρ denotes the density of vehicles and p is the probability of a vehicle
hopping. The ZRP includes the ASEP as special case and is also exactly
solvable in the sense that we can make an exact calculation of the flux. The
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flux Q(ρ) is known to be calculated from the OV function V (x) through an
iteration process [9].

Q(ρ) = ρ
L−N∑
x=0

V (x)p(x), (10)

where p(x) gives the probability of a certain headway taking the value of x
and is calculated as follows:

h(x) :=

{
1 − V (1) (x = 0)
1−V (1)
1−V (x)

∏x
y=1

1−V (y)
V (y) (x > 0) , (11)

and from this h(x) we have

p(x) := h(x)
Z(L−N − 1, N − 1)

Z(L,N)
, (12)

where Z(L,N) is iteratively calculated through the recursion formula

Z(L,N) =
L−N∑
x=0

Z(L− x− 1, N − 1)h(x), (13a)

Z(x, 1) = h(x− 1), Z(x, x) = h(0), (13b)

where L is the number of sites, and N the number of vehicles.
Furthermore, we find that as a approaches 1 the SOV model reduces to ZRP.
Figure 1 shows the fundamental diagrams with two values of the sensitivity
a = 0.3 and 0.8, where we take an ordinary OV function

V (∆x) =
tanh(∆x− 3/2) + tanh 3/2

1 + tanh 3/2
. (14)

In this case, the exact fundamental diagram (a = 1) has a good agreement
with the sensitivity a > 0.6.

4 Metastability of the SOV Model

In contrast with the case of a→ 1, the SOV model does never approach ASEP
although a→ 0, and shows some novel features instead. Since we already had
a detailed discussion about this point in [8], we briefly review that case in this
section.
First of all, we point out that the SOV model shows an ASEP-like property and
deviates from ASEP as time advances (i.e. the system approaches a stationary
state). Fig. 2 shows fundamental diagrams of the SOV model with the OV
function (14) and the sensitivity a = 0.01. They are plotted at each time
stage t = 10 and 1000, starting from uniform states (and random states) with
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Fig. 1. The fundamental diagram of the SOV model with sensitivity (a) a = 0.8
and (b) a = 0.3. In both figures, we also draw the exact fundamental diagram (gray
line) of ZRP, i.e. the SOV model with a = 1, for the sake of comparison.

Fig. 2. Fundamental diagrams of the SOV model with the OV function (14) and
the sensitivity a = 0.01. They are plotted at each time stage t = 10 and 1000,
starting from uniform states (and random states) with p (≡ v0

i ) = 0.5. The exact
curve (gray) of ASEP with probability p = 0.5 are included for comparison. The
system size is L = 1000, and the number of samples is 4 at each density.

p (≡ v0
i ) = 0.5. Then, the exact diagram of ASEP with the probability p is

figured out by use of (9). In Fig. 2, we find that a curve similar to the diagram
of ASEP appears only for the first few steps (t = 10) and then changes the
shape rapidly (t = 1000). Surprisingly, when the diagram becomes stationary,
it allows a discontinuous point and two overlapping stable states around the
density ρ ∼ 0.14 (Fig. 3(a) t = 10000).
Figure 3(a) shows the fundamental diagram following those in Fig. reffd2, and
(b) shows a closeup of (a) around the discontinuous point. We find that, in the
region of density at which the flux changes discontinuously, there appears more
than one stable state at the same density. The stable states are categorized by
their properties, i.e., the highest-flux states are free flow where vehicles move
freely at the maximum velocity, the middle-flux states are congested where
vehicles create many small clusters, and the lowest-flux states are jammed
where a big jam moves backwards.
Moreover, it is remarkable that before reaching the low-flux stable state the
traffic flow stays at higher-flux states for some time. In the present case, we
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Fig. 3. (a) The fundamental diagram following those in Fig. 2. (b) A closeup of
Fig. (a) around the discontinuous point ρ � 0.14. They are plotted at each time
stage t = 10000 with the same condition of Fig. 2.

Fig. 4. (a) The time evolution of flux at the density ρ = 0.14 starting from the
uniform state. We observe two plateaus at the flux Q = 0.14 with a lifetime T �
5000, and Q � 0.08 with T � 7000 before reaching the stationary jam state. (b)
The corresponding spatio-temporal diagram, where vehicles (black dots) move from
bottom up.

observe a dynamical phase transition at the density ρ 	 0.14 as indicated by
successive arrows in Fig. 2. Figure 4 shows the flux changing stepwise over
time and the spatio-temporal pattern. In these figures, we observe apparent
changes of traffic condition from a free flow to a jam through a congested
state.

5 Conclusion and Remark

In this work, we exhibit the solvability and metastability of the SOV model.
According to the sensitivity parameter, the SOV model changes the macro-
scopic property from solvable to metastable. It is noteworthy that although
the SOV model includes the ASEP at the sensitivity parameter a = 0, it does
not show an ASPE-like behavior for any small a. Moreover, the metastability
contains a quite rich structure, i.e., some long-lived metastable states appear
and break their metastability spontaneously. We stress that in the present
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model it is not an external field, but an internal (microscopic) mechanism
that drastically changes the macroscopic property of states, although that
mechanism is not defined explicitly.
Results for the SOV model under open boundary conditions, with step-like OV
function [10], and a multi-velocity version of the SOV model will be reported
in the nearest future.
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Summary. We present analytical and numerical results of modeling of flows rep-
resented as correlated non-Poissonian point process and as Poissonian sequence of
pulses of different size. Both models may generate signals with power-law distribu-
tions of the intensity of the flow and power-law spectral density. Furthermore, differ-
ent distributions of the interevent time of the point process and different statistics
of the size of pulses may result in 1/fβ noise with 0.5 � β � 2. A combination of
the models is applied for modeling Internet traffic.

1 Introduction

Modeling and simulations enable one to understand and explain the observ-
able phenomena and predict new ones. This is true, as well, for mathematical
studies and modeling of traffic flow with the aim to get a better understanding
of phenomena and avoid some problems of traffic congestion. Traffic phenom-
ena are complex and nonlinear, they show cluster formation, huge fluctuations
and long-range dependencies. Almost twenty years ago it was detected from
empirical data that fluctuations of a traffic current on a expressway obey a
1/f law for low spectral frequencies [1]. Similarly, 1/f noise is observable in
the flows of granular materials [2, 3].
1/f noise, or 1/f fluctuations are usually related with power-law distributions
of other statistics of the fluctuating signals, first of all with the power-law
decay of autocorrelations and the long-memory processes (see, e.g., the com-
prehensive bibliography of 1/f noise on the website [4], review articles [5, 6]
and references in the recent paper [7]). The appearance of clustering and large
fluctuations in traffic and granular flows may be a result of synchronization
of the ensemble of the nonlinear system subjected to common random exter-
nal perturbations, which may result in nonchaotic behavior of Brownian-type
motions, intermittency and 1/f noise [8, 9].
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Traffic and granular flows usually may be considered as consisting of discrete
identical objects such as vehicles, pedestrians, granules, packets and so on.
They may be represented as consisting of pulses or elementary events and
further simplified to a point process model [7, 10–12]. Moreover, from the
modeling of traffic it was found that 1/f noise may be the result of clustering
and jumping [10] similar to the point process model of 1/f noise [7, 11, 12].
On the other hand, 1/f noise may be conditioned by the flow consisting of
uncorrelated pulses of variable size with a power-law distribution of pulse
durations [13]. In Internet traffic the flow of the signals primarily is composed
of power-law distributed file sizes. The files are divided by the network protocol
into equal packets [14]. Therefore, the total incoming web traffic is a sequence
of packets arising from a large number of requests. Such a flow exhibits 1/f
fluctuations as well [14, 15].
Long-range correlations and power-law fluctuations of expressway traffic flow
have recently been observed on a wide range of time-scales from minutes to
months and investigated using the method of detrended fluctuation analysis
[16]. There are no explanations why traffic flow exhibits 1/f noise behavior
in such a large interval of time.
It is the purpose of this paper to present analytical and numerical results for
the modeling of flows represented as sequences of different pulses and as a
correlated non-Poissonian point process resulting in 1/f noise and to apply
these results to the modeling of Internet traffic.

2 Signal as a Sequence of Pulses

We will investigate a signal of flow consisting of a sequence of pulses,

I(t) =
∑

k

Ak(t− tk). (1)

Here the function Ak(t− tk) represents the shape of the pulse k having influ-
ence on the signal I(t) in the region of time tk.

2.1 Power Spectral Density

The power spectral density of the signal (1) can be written as

S(f) = lim
T→∞

〈
2
T

∑
k,k′

eiω(tk−tk′ )

tf−tk∫
ti−tk

tf−tk′∫
ti−tk′

Ak(u)Ak′(u′)eiω(u−u′)dudu′
〉
,

(2)
where ω = 2πf , T = tf − ti � ω−1 is the observation time and the brackets
〈. . .〉 denote the averaging over realizations of the process. We assume that the
pulse shape functions Ak(u) decrease sufficiently fast when |u| → ∞. Since
T →∞, the bounds of the integration in Eq. (2) can be changed to ±∞.
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When the time moments tk are not correlated with the shape of the pulse Ak,
the power spectrum is [2]

S(f) = lim
T→∞

2
T

∑
k,k′

〈
eiω(tk−tk′ )

〉〈 +∞∫
−∞

+∞∫
−∞

Ak(u)Ak′(u′)eiω(u−u′)dudu′
〉
.

(3)
After introduction of the functions [13]

Ψk,k′(ω) =

〈 +∞∫
−∞

Ak(u)eiωudu

+∞∫
−∞

Ak′(u′)e−iωu′
du′
〉

(4)

and
χk,k′(ω) =

〈
eiω(tk−tk′ )

〉
(5)

the spectrum can be written as

S(f) = lim
T→∞

2
T

∑
k,k′

χk,k′(ω)Ψk,k′(ω). (6)

2.2 Stationary Process

Equation (6) can be further simplified for the stationary process. Then all
averages can depend only on k − k′, i.e.,

Ψk,k′(ω) ≡ Ψk−k′(ω) (7)

and
χk,k′(ω) ≡ χk−k′(ω). (8)

Equation (6) then reads

S(f) = lim
T→∞

2
T

∑
k,k′

χk−k′(ω)Ψk−k′(ω). (9)

Introducing a new variable q ≡ k − k′ and changing the order of summation
yields

S(f) = lim
T→∞

2
T

kmax−kmin∑
q=1

kmax−q∑
k=kmin

χq(ω)Ψq(ω)

+ lim
T→∞

2
T

−1∑
q=kmin−kmax

kmax∑
k=kmin−q

χq(ω)Ψq(ω) + lim
T→∞

2
T

kmax∑
k=kmin

Ψ0(ω). (10)

Here kmin and kmax are minimal and maximal values of the index k in the
interval of observation T . Eq. (10) may be simplified to the structure
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S(f) = 2ν̄Ψ0(ω) + lim
T→∞

4
N∑

q=1

(
ν̄ − q

T

)
Reχq(ω)Ψq(ω) (11)

where ν̄ is the mean number of pulses per unit time and N = kmax − kmin is
the number of pulses in the time interval T .
If the sum 1

T

∑N
q=1 qReχq(ω)Ψq(ω) → 0 when T →∞, then the second term

in the sum vanishes and the spectrum is

S(f) = 2ν̄Ψ0(ω) + 4ν̄
∞∑

q=1

Reχq(ω)Ψq(ω) = 2ν̄
∞∑

q=−∞
χq(ω)Ψq(ω). (12)

2.3 Fixed Shape Pulses

When the shape of the pulses is fixed (k-independent) then the function
Ψk,k′(ω) does not depend on k and k′ and, therefore, Ψk,k′(ω) = Ψ0,0(ω).
Then equation (6) yields the power spectrum

S(f) = Ψ0,0(ω) lim
T→∞

2
T

∑
k,k′

χk,k′(ω) ≡ Ψ0,0(ω)Sδ(ω). (13)

Eq. (13) represents the spectrum of the process as a composition of the spec-
trum of one pulse,

Ψ0,0 =

∣∣∣∣∣∣
+∞∫

−∞
Ak(t)eiωtdt

∣∣∣∣∣∣
2

, (14)

and the power density spectrum Sδ(ω) of the point process

Iδ(t) = a
∑

k

δ(t− tk) (15)

with the area of the pulse a = 1.

3 Stochastic Point Processes

The shapes of the pulses mainly influence the high frequency power spectral
density, i.e., at ω ≥ 1/∆tp, with ∆tp being the characteristic pulse length.
Therefore the power spectral density at low frequencies for not very long
pulses is mainly conditioned by the correlations between the transit times tk,
i.e., the signal may be approximated by the point process.
The point process model of 1/fβ noise has been proposed [11, 12], generalized
[7], analysed and used for financial systems [17]. It has been shown that when
the average interpulse, interevent, interarrival, recurrence or waiting times
τk = tk+1 − tk of the signal diffuse in some interval, the power spectrum
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of such process may exhibit the power-law dependence, Sδ(f) ∼ 1/fβ , with
0.5 � β � 2. The distribution density of the signal (15) intensity defined
as I = 1/τk may be of the power-law, P (I) ∼ I−λ, with 2 
 λ 
 4, as
well. The exponents β and λ are depending on the manner of diffusion-like
motion of the interevent time τk and, e.g., for the multiplicative process are
interrelated [7, 17]. For the pure multiplicative process [7]

β = 1 + α, λ = 3 + α, (16)

where α is the exponent of the power-law distribution, Pk(τk) ∼ τα
k , of the in-

terevent time. In general, for relatively slow fluctuations of τk, the distribution
density of the flow I,

P (I) ∼ Pk(I−1)I−3, (17)

is mostly conditioned by the multiplier I−3. Since the point process model has
recently [7, 17] been analysed rather properly we will not repeat the analysis
here and present only some new illustrations.
Figure 1 demonstrates that for essentially different distributions of τk, the
power spectra and distribution densities of the point processes are similar.
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Fig. 1. Distribution densities of the interevent time τk, (a), of the flow I(t), (b),
and of the power spectra S(f), (c), for different point processes with slow diffusion-
like motion of the average interevent time. Different symbols correspond to different
types of generation of the interevent sequences.
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Further we proceed to the flow consisting of the pulses of different durations
and application of this approach for modeling of the Internet traffic.

4 Flow Consisting of Pulses of Variable Duration

When the occurrence times tk of the pulses are uncorrelated and distributed
according to a Poisson process, the power spectrum of the random pulse train
is given by Carlson’s theorem

S(f) = 2ν̄
〈|Fk(ω)|2〉 , (18)

where

Fk(ω) =

+∞∫
−∞

Ak(t)eiωtdt (19)

is the Fourier transform of the pulse Ak. Suppose that the random parameters
of the pulses are the duration and the area (integral) of the pulse. We can
take the form of the pulses as

Ak(t− tk) = T ρ
kA

(
t− tk
Tk

)
, (20)

where Tk is the characteristic duration of the pulse. The value of the exponent
ρ = 0 corresponds to the fixed height but different durations, the telegraph-like
pulses, whereas ρ = −1 corresponds to constant area pulses but of different
heights and durations, and so on.
For the power-law distribution of the pulse durations,

P (Tk) =

{
δ+1

T δ+1
max−T δ+1

min
T δ

k , Tmin ≤ Tk ≤ Tmax,

0, otherwise,
(21)

from Eqs. (18) and (19) we have the spectrum

S(f) =
2ν̄(δ + 1)

(T δ+1
max − T δ+1

min )ωδ+2ρ+3

ωTmax∫
ωTmin

|F (u)|2uδ+2ρ+2du. (22)

For τ−1
max � ω � τ−1

min when δ > −1 the expression (22) may be approximated
as

S(f) ≈ 2ν̄(δ + 1)
(T δ+1

max − T δ+1
min )ωδ+2ρ+3

∞∫
0

|F (u)|2uδ+2ρ+2du. (23)

Therefore, the random pulses with the appropriate distribution of the pulse
duration (and area) may generate signals with the power-law distribution of
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the spectrum with different slopes. So, the pure 1/f noise generates, e.g., the
fixed area (ρ = −1) with the uniform distribution of the durations (δ = 0)
sequences of pulses, the fixed height (ρ = 0) with the uniform distribution
of the inverse durations γ = T−1

k and all other sequences of random pulses
satisfying the condition δ + 2ρ = −2.
In such a case we have from Eq. (23)

S(f) ∼ (δ + 1)ν̄
(T δ+1

max − T δ+1
min )f

. (24)

5 Internet Traffic

In this Section we will apply the results of Section 4 for modeling Internet
traffic. The incoming traffic consists of a sequence of packets, which are the
result of the division of the requested files by the network protocol (TCP).
The maximum size of a packet is 1500 bytes. Therefore, the information signal
is as in the point process (15) with pulse area a = 1500 bytes. Further, we
will analyse the flow of the packets and will measure the intensity of the flow
in packets per second. In such a system of units in Eq. (15) we should put
a = 1.
We exploit the empirical observation [14, 18] that the distribution of the file
sizes x may be described by the positive Cauchy distribution

P (x) =
2
π

s

s+ x2
(25)

with the empirical parameter s = 4100 bytes. This distribution asymptotically
exhibits the Pareto distribution and follows Zipf’s law P (X > x) ∼ 1/x. The
files are divided into packets of a maximum size of 1500 bytes or less by the
network protocol. In Internet traffic the packets spread into the Poissonian
sequence with average inter-packet time τp (see Fig. 2). The total incoming
flow of the packets to the server consists of packets arising from the Poissonian
request of the files with average interarrival time of files τf .
The files are requested from different servers located at different distance.
This results in the distribution of the average inter-packet time τp in some
interval. For reproduction of the empirical distribution of the interpacket time
τk we assume the uniform distribution of lg τk in some interval [τk,min, τk,max],
similarly to the McWhorter model of 1/f noise [7]. As a result, the presented
model reproduces sufficiently well the observable non-Poissonian distribution
of the arrival interpacket times and the power spectral density, as well (see
Fig. 3).

6 Conclusion

In the paper it was shown that processes exhibiting 1/f noise and power-law
distribution of the intensity may be generated starting from the signals as
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Fig. 2. Division of the requested files into equal size packets with some inter-packet
time.
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Fig. 3. Distribution densities of (a) the interpacket time τk, and (b) the power spec-
tra, for the simulated point process (open circles ◦) and empirical data (open squares
�). The used parameters are as in the empirical data [14, 18], τf = 0.101s, τk,min =
11.6µs and τk,max = 1000 τk,min.

sequences of constant area pulses with correlated appearance times as well as
of different size Poissonian pulses. Combination of both approaches enables
the modeling of signals in Internet traffic.
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Summary. Based on the stochastic description of transport phenomena the rela-
tionship between a non–Markovian evolution equation and the Fokker–Planck equa-
tion with drift is investigated. Memory is included by direct coupling between initial
and current values of probability density. We present the result for three different
initial distributions.

1 The Non-Markovian Fokker-Planck Equation

In media with a spatial–temporal accumulation process transport phenomena
should be described by a stochastic approach [1] based on probabilities. The
time evolution of the probability density could depend on the history of the
sample to which it belongs, i. e. the changing rate of the probability should be
influenced by the changing rate in the past and so the evolution equation of
the probability has to be supplemented by memory terms. A recent overview is
given in [2]. Here the modification we proposed is to replace the conventional
Fokker-Planck equation by [3]

∂tp(r, t) = M(r, t; p,∇p) +

t∫
0

dt′
∞∫

−∞
ddr′K(r− r′, t− t′; p,∇p)L(r′, t′; p,∇p) .

(1)
This equation is of convolution type and consists of two competing parts
standing for processes on different timescales. The first part manifested by
the operator M characterizes the instantaneous and local process, whereas the
second part with the operators K and L represent the delayed processes, the
memory. In general all the operators may be non-linear in p(r, t) and ∇p(r, t).
The specification of them has to be according to the physical situation, which
one deals with. One main feature of the quantity p(r, t) is, that it is conserved
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dP (t)
dt

=
d

dt

∞∫
−∞

ddr p(r, t) = 0 . (2)

To preserve p the instantaneous term M has to be related to a (probability)
current, e. g., M ∝ ∇ · j. For an arbitrary polynomial kernel K̂(z), where

K̂(z) =
∫
ddrK(r, z) (3)

with the Laplace-transform K(r, z) =
∫∞
0
dt e−z t K(r, t) the conservation law

(2) is not fulfilled in general. A possible choice where it is fulfilled is L ≡
− ∂tp(r, t). For a detailed discussion, see [3].

2 Diffusion with Time Independent Memory Kernel

Let us consider the evolution equation

∂tp(r, t) = D∇2p(r, t) −
t∫

0

dt′
∞∫

−∞
ddr′K(r− r′, t− t′) ∂t′p(r′, t′) (4)

as a special case of (1). This Fokker-Planck equation relates p(r, t) to p(r, t′)
with 0 < t′ < t unlike to a conventional one, where the evolution is only
dependent on the probability at present time. Moreover (4) offers a coupling
between ∂tp(r, t) and ∂t′p(r, t′). The mixing of time scales leads to a substan-
tial modification of the long time limit. As one of the simplest choices we took
a strictly spatial local, but time independent kernel

K(r, t) = µ δ(r) , (5)

where the parameter µ > 0 characterizes the strength of the memory. By this
choice the spatial and temporal variables are decoupled. Inserting the kernel
in (4) one gets

∂tp(r, t) = D∇2p(r, t) − µ [p(r, t) − p0(r)] with p0(r) ≡ p(r, t = 0) . (6)

The time independence of the kernel means that all times t′ (0 < t′ < t) in
the past have the same weight and so there is a very strong memory with a
direct coupling of the instantaneous value to the initial value. The memory
induced feedback to the initial value appears as a driving force. Without this
coupling one can interpret the equation as a description of a particle, which
performs a diffusive motion, where the probability density p(r, t) decays on
a time scale µ−1. As (6) is a linear equation and so the solution of it can be
found analytically for arbitrary initial conditions
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p(r, t) = e−µ t

∞∫
−∞

ddr′ p0(r′)

⎡
⎣G(r− r′, t) + µ

t∫
0

dt′G(r− r′, t− t′) eµ t′

⎤
⎦ ,

(7)
where G(r, t) is the Green’s function of the conventional diffusion equation.
From the general solution, some properties could be followed easily such as
if the initial distribution is non-negative p0(r), so the p(r, t) does provided
µ > 0. The second moment s(t) could be calculated

s(t) ≡
∞∫

−∞
r2 p(r, t) ddr =

2 dD (1− e−µ t)
µ

∞∫
−∞

p0(r) ddr +

∞∫
−∞

r2 p0(r) ddr .

(8)
Notice that for the limit of vanishing memory µ→ 0 one can easily verify that
the last equation shows conventional diffusive behavior. The selection of the
initial distribution is the essential point in our model and so three example
are given to illustrate the solution of (6). Without lack of generality we con-
centrate our calculation on the one-dimensional case. It can be generalized to
higher dimensions.

Delta-Starting Distribution

The first (more academic) example is the delta–starting distribution p0(x) =
p0 δ(x). Substituting this in (7) the following solution is calculated

p(x, t) =
p0√

4πD t
e−

�
µ t+ x2

4 D t

�
+
p0 κ

4
[f+(x;D,µ) + f−(x;D,µ)] (9)

f± = e±κ x

[
erf
( ±x√

4D t
+
√
µ t

)
− sgn(±x)

]
, (10)

where erf(x) is the error function and κ =
√
µ/D. The first part is the solution

of the homogeneous equation showing temporal decay with time constant µ−1.
In the long time limit the system shows a non-trivial stationary solution

lim
t→∞ p(x, t) ≡ ps(x) =

p0 κ

2
e−κ |x| . (11)

Such a stationary solution is due to the permanent coupling to the initial dis-
tribution and the greater µ > 0 the stronger is this effect and more pronounced
are the deviations from the pure diffusive behavior (µ = 0).
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Gaussian and Exponential Initial Conditions

For an arbitrary initial condition p0(r) the stationary solution can be directly
calculated by solving the differential equation ∇2ps(r) = κ2 [ps(r) − p0(r)]
with κ2 = µ/D. It results in

ps(r) =
κ

d+2
2

(2π)
d
2

∫
ddr′

p0(r′)

|r− r′| d−2
2

K d−2
2

(κ |r− r′|) , (12)

where Kν is a modified Bessel function, which could be expressed by stan-
dard functions for odd dimensions, i. e. (d = 1, 3), and for even dimen-
sions offers a logarithmic behavior [4]. In case of the Gaussian distribution
p0(x) = p0 e−λ x2

, the integration of (12) leads to

ps(x) =
p0 κ

4

√
π

λ
eβ2

[g+(x;β, λ, κ) + g−(x;β, λ, κ)] (13)

with

g±(x;β, λ, κ) = e±κ x erfc
(
β ± x

√
λ
)

and β =
√

µ

4λD
=

κ

2
√
λ
. (14)

For exponential starting distribution p0(x) = p0 e−λ |x| the calculation shows

ps(|x|) =

⎧⎪⎪⎨
⎪⎪⎩
p0

λ κ2

κ2−λ2

[
e−λ |x|

λ − e−κ |x|
κ

]
for λ �= κ

p0
1+κ |x|

2 e−κ |x| for λ = κ .

(15)

3 Relationship to Fokker-Planck Equation with Drift
Term

The conventional form of the Fokker-Planck equation, where an external force
is considered, has in the one-dimensional case the following form

∂p(x, t)
∂t

= D
∂2p(x, t)
∂x2

− ∂

∂x
[f(x) p(x, t)] , (16)

whereD is the diffusion coefficient, supposed to be constant (independent of x)
here and f(x) is the drift coefficient or the force, for which f(x) = − dU(x)/dx
with U(x) as corresponding potential. On the one hand, the diffusion coeffi-
cient D measures the intensity of the noise and represents the stochastic part
of motion, whereas the drift coefficient f(x) corresponds to the force experi-
enced by the system and so it describes the deterministic part of motion. In
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this subsection we calculate the force f(x) which corresponds to the potential
U(x) for the different starting distributions p0(x), in such a way that both
Fokker-Planck equations (6) and (16) are equivalent. To do this the deter-
ministic parts of both equations are compared in the long time limit, in the
stationary state. The formal solution is found by integration

f(x) =
µ

x∫
0

[ps(ξ) − p0(ξ)] dξ

ps(x)
+

C

ps(x)
, (17)

where C is an integration constant, which one could set to zero. To show the
equivalence mathematically, one has to do this comparison in the following
way. First take an arbitrary function h(x) with bounded support, then inte-
grate the product of h and the deterministic part of (6) resp. (16) over the
complete real line, and finally compare the results of these integrations. If
both integrations are equal, then the functions are equal.

4 Results

Finally we present the results for three different initial distributions, depicted
in Fig. 1, the corresponding stationary solutions is shown in Fig. 2, the drift
term and the corresponding potential in Fig. 3 and Fig. 4, respectively. For
the delta-like starting distribution the drift term can be calculated to

f(x) = −
√
µD sign(x) (18)

and so one can verify the following potential

U(x) =
√
µD |x| . (19)

In case of a Gaussian initial distribution an analogue calculation leads to
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f(x) =
√
µD

g+(x;β, λ, κ) − g−(x;β, λ, κ)
g+(x;β, λ, κ) + g−(x;β, λ, κ)

, (20)

whereas an exponential starting distributions yields to the drift term

f(x) =
√
µD sign(x)λ

e−κ |x| − e−λ |x|

κ e−λ |x| − λ e−κ |x| . (21)
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The underlying potentials can be obtain after an integration. The results are
shown in Fig. 4. A generalization of the results for higher dimensions and a
more general discussion will be published elsewhere [5].
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Summary. In dense vehicular traffic cars often drive at close distances, they form
clusters or platoons. Within these platoons, time headways are observed, which
are often even shorter than the reaction time of the drivers - a situation which is
potentially dangerous.
Here we propose a simple dynamical model for a platoon undergoing emergency
braking, which takes into account the individual variations of the reaction time
and braking capacities. We apply the model to real platoons, i.e. platoons which
have been identified in large sets of single-vehicle traffic data. We use our results in
order to compare the impact of different possible regulations (speed limit, minimum
headway).

1 Introduction

One of the remarkable empirical features of highway traffic is the fact that
vehicles frequently undergo the security distance. Although the recommended
security distance amounts to 1.8 sec in Germany and the observed time head-
way distribution has in general a maximum around 1. sec, one frequently ob-
serves time headways far below one second [1]. These extremely short time
headways have important consequences concerning the structure, performance
and security of vehicular traffic. In this work we focus on the security aspects
of dense highway traffic. The search for causes of accidents in vehicular traf-
fic has attracted broad scientific interest. Studies on this subject include the
identification of dangerous situations in model generated configurations. Al-
though many interesting results have been obtained using this model-based
approach it is not obvious how these results depend on the particular model.
Therefore we try to minimize the modeling part throughout our analysis by
taking empirical data of highway traffic in combination with a simple brak-
ing model. The usage of empirical data implies that we consider properly all
relevant correlations between time-headways and velocities. This procedure
should lead to more significant results than obtained in previous studies. As
we are interested in the risk related to the structure of traffic flows we analyze
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a typical situation where a chain reaction of brakings leads to an accident.
This will happen in platoons, i.e. clusters of vehicles driving at short distances.
Let us consider a platoon including N vehicles (i = 0 . . . N − 1). Each vehicle
has a velocity vi, a reaction time τi and a braking capacity a∗i . The time-
headway thi is defined here as the temporal distance between the rear end of
the preceeding vehicle i − 1 and the front end of vehicle i. Now we assume
that one car in this platoon is braking with deceleration a0. If time headways
are small enough, the following cars have to brake as well in order to avoid
collision. More precisely, if thi < τi, vehicle i has to brake harder than vehicle
i − 1. If this is true for several vehicles in a row it finally may happen that
the required deceleration exceeds the braking capacity of the car. In this case
a collision occurs.
Apart from this mechanism it is possible that a driver didn’t even start to
brake before colliding with the preceeding car if his reaction time is too long
(or the time headway too short). As a result, the accident probability is in-
creasing with the position in the platoon. This well-known effect has already
been studied in ideal platoons e.g. having constant initial time headways, in
particular to study the impact of various cruise control devices [2]. In order
to improve the realism of the approach some authors have introduced proba-
bility distributions for the reaction times or braking capacities [3]. Although
this approach recognizes the variability of time headways, speeds and reaction
times it disregards the fact that e.g. velocity-velocity or velocity-time headway
correlations are non-negligible in dense vehicular traffic. Correlations can be
included by directly identifying the platoons in the empirical data sets (see
section 3 for details).
In the scenario that we consider, cars undergo emergency braking. We thus
have to introduce a dynamical model for such emergency braking, which we
keep as simple as possible: Braking of car i triggers the braking of the following
car i+ 1, which starts to brake after a reaction time τi+1. Then the car slows
down with the weakest constant deceleration sufficient to avoid accidents,
until it stops. This choice of a constant deceleration law is consistent with
deceleration records for emergency braking on tracks (see e.g. [4]), although
other empirical studies indicate that unexpected braking on real roads with
non professional drivers is rather described by a two step process [5]. However,
so far there exists only a small number of empirical studies on this subject,
such that it is difficult to single out one of the two possibilities. Therefore we
have chosen the constant deceleration law for simplicity.
The event that triggers the chain of emergency brakings is the sudden brak-
ing of an initiating car with a constant deceleration a0. We chose a modest
value for a0 (between 3 to 5m/s2), well below the average maximum braking
capacity. The choice of the model implies that we have to assign two param-
eters to each vehicle, which are not included in the data set: the reaction
time of the drivers and the maximum braking capacities. These are taken
from probability distributions, which rely on the outcome of e.g. car-following
experiments. There is a consensus to take a log-normal distribution for the
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reaction times. The parameters of this distribution differ depending whether
the driver expects the considered event or not. In a platoon, drivers expect to
have to adjust their velocity to the preceeding cars very often, and thus they
react quite rapidly if a weak acceleration is required. However, they do not
expect an emergency braking, and it is a well known fact that, due to their
fear of rear-end collision with the following car, drivers hesitate to brake too
hard. Therefore we used a distribution of reaction times which corresponds
to unexpected events. The log-normal distribution for the reaction times has
to be cut off beyond a certain value, that we took equal to 2s following [4].
Still, some authors [6] claim that some much longer reaction times may be
observed in real traffic, and the effect of these will be considered in future
work. It is however reasonable to assume that in platoons, where people ex-
pect to have to adapt their speed all the time, very long reaction times would
be exceptional.
In this paper, we took for the braking capacity distribution a Gaussian cen-
tered around 7m/s2, and truncated below 6 and above 8m/s2, except when
stated otherwise.
We stress the fact that the braking capacity and reaction time distribution
are the only model parameters that can not be directly taken from the single
vehicle data. Contrary the structure of the platoons is directly accessible and
does not depend on model parameters of any kind. In order to obtain represen-
tative values of the accident probabilities by means of numerical simulations
we have considered 500 to 1000 realizations of the probability distributions.

2 Criterion for Accidents

A first estimate for the number of accidents in a platoon can be obtained
simply by comparing the final positions of the cars after braking. Obviously
an accident must have occurred if the order of cars is exchanged compared to
the initial positions. The corresponding criterion on deceleration requirements
reads

1
ai

≤
(
v0

i−1

v0
i

)2
1

ai−1
+

2(thi − τi)
v0

i

. (1)

However, some of the accidents may not be identified by means of the final
positions. Figure 1 shows such an example, where the trajectories of two cars
intersect, although the final positions do not indicate the occurrence of an
accident. In order to consider such kinds of accidents as well, one has to
introduce an alternative criterion in a certain range of parameters [7]

1
ai

≤ 2(v0
i−1 − v0

i )τi + 2v0
i t

h
i − ai−1τ

2
i

2ai−1v0
i t

h
i + (v0

i−1 − v0
i )2

. (2)

In our study on, which relies on a large set of real data, we found that about
15% of the collisions, i.e. a non-negligible fraction, are identified by means of
(2).
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Fig. 1. Trajectories of two successive cars. The circle indicates the end of the
reaction time for the 2nd driver. When two cars are very close, but the second car
has a deceleration capacity much stronger than the first car, it is possible to have
an intersection between the trajectories that would not be detected if one looks only
on the final positions.

3 Description of the Data Set

The data have been collected between March, 30, 2000 and May, 16, 2000
on the German highway A3 between the junction Duisburg-Wedau and the
highway-intersection Kreuz-Breitscheid. The traffic stream characteristics at
this location have been established by magnetic loops, one for each lane. The
chosen location is well apart from on- and off-ramps or intersections, such that
the data set should represent the bulk properties of real vehicular traffic. It
also important to note that there is no speed limit applied at this section of the
highway. The whole data set comprises measurements of about 780000 cars. By
means of the detection devices it is possible to measure the passing time (up to
a precision of 1/100 sec), the speed of a vehicle, and the occupation rate of the
loop. These direct measurements can be used in order to calculate the length
of a vehicle, spatial and temporal distances between two cars and various
other quantities of interest. The lower bound for the velocity measurement
is 10 km/h, i.e., velocities of slower vehicles are not measured. The relation
between direct measurements, and the spatial quantities as e.g.the distance
headways are based on the assumption that the vehicles pass the detector at
a constant and representative speed. This assumption is not valid for cars in
a jam, where the detected speeds are much higher than the average speeds.
As mentioned above the single-vehicle data allow for the determination of the
time-headway th and the distance-headway gap of the n-th vehicle via

th(n) = tn − tn−1 − ln−1

vn−1
(3)
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and
gap(n) = vn(tn − tn−1) − ln−1 (4)

where we assume that vn and vn−1 are constant. tn denotes the time the n-th
vehicle passes the detector, ln and vn its length and velocity.

3.1 th as a Function of the Velocity

It is an obvious fact that the accident probability of a car largely depends on its
distance to the vehicle in front. While the spatial headway strongly depends
on the speed of the cars, it has been argued that the temporal headways
are rather insensitive to the speed of the cars. Here we want to evaluate
the velocity dependence of the time headway distribution. We have plotted
the distribution for the th of all vehicles having a velocity between V and
V + ∆V where ∆V = 30 km/h. Now, we take the value of th for which the
distribution is maximum (thmax), and plot it as a function of V . We choose
the maximum thmax instead of the average value, because the average value is
strongly influenced by the long tail for large th’s - which is not of interest,
as it reflects only the average flux. We rather expect the velocity to have an
impact on the distribution at short headways. Our observation is that thmax

is almost constant for all velocities greater than 80 km/h. Below this value,
thmax increases as the velocity V decreases. Drivers are impressed by driving
too close (regarding spatial distance) to the preceeding car, while they are less
sensitive to temporal distances.
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3.2 Identification of the Platoons

We define a platoon as a set of cars within which all time headways are less
than a certain threshold Tmax, while the time headways in front and behind
the platoon are larger than Tmax. This crude definition does not aim at char-
acterizing a precise dynamical structure - some more specialized definitions
of platoons have been given, which take into account for example the speeds
of the cars, etc. Here, the extraction of the platoons from the data could
rather be viewed as a pre-filtering of the data, on which the results should not
depend.

4 Impact of Various Security Measures

As the probability that a car brakes suddenly is not known, the absolute num-
ber of accidents we identify does not have any meaning. The relevant quantity
is the relative number of accidents, when one compares two situations. Here,
we use the result for the original data as a reference state. Then, we modify
the data in order to mimic various security measures. We compute the ratio
of the number of accidents with a given security measure to the number of
accidents in the reference state (see figure 3).
In a previous work [7] we have shown that our results depend only weakly on
the choice for Tmax. Thus we present here only the results for Tmax = 3 and
7s.
Now we study the dependence of the results with respect to the amplitude
of the stimulus, i.e. the amplitude a0 of the first braking car. The effects of
the security measures (which are described below) are quite similar when the
amplitude a0 takes the values 3, 4, or 5m/s2.
The first possible security measure is the application of a speed limit, which
we introduced in the following way: if the average velocity of a platoon v̄ is
above the speed limit vmax, all the velocities within the platoon are rescaled
by the factor vmax/v̄. In this way the relative speed dispersion is kept within
the platoon. We also keep the time-headways between cars when applying the
speed limit. This is justified by fig. 2, though it is possible that real speed
limitations would have an impact on time-headways. But it is not obvious
a priori in which direction the effect would be: one the one hand, more cars
would drive at about the same speed, and thus there may be more competition
between them. On the other hand, less drivers attempt to overtake as they
have to respect the speed limit. Therefore the number of aggressive drivers
should be reduced. A study by [1] shows that the fraction of drivers exceeding
the speed limit (130km/h) is the same if you consider the subsets of vehicles
with a time headway less than 0.5s or 1.0s. This is in favor of a constant time
headway for all velocities, at least for velocities above a certain threshold
(around 80km/h in our case).
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Fig. 3 shows that, counterintuitively, a speed limit increases the number of
accidents. This is a consequence of the non-linearity of the braking trajectories,
as explained in [7]. Of course, for most other accident scenarii, an increase of
the speed would be a serious drawback.
The next points in figure 3 refer to a modification of the braking capacity dis-
tribution. As expected, an increase (decrease) of the width of the distribution
increases (decreases) the number of accidents.
The first significant improvement on the number of accidents is obtained when
the average of the braking capacity distribution is increased from 7 to 9m/s2.
The effect is however limited, and in practice, it would be rather impossible
to improve the braking capacities of all cars without increasing the width of
the distribution.
The suppression of short time headways is by far the most efficient measure.
If all time headways smaller than 1.8s are replaced by time headways equal
to 1.8, almost all collisions are suppressed. Interestingly, even the suppression
of time headways below 1s only reduces the number of accidents drastically -
more than half of the accidents are avoided.
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Fig. 3. Ratio of the number of accidents for various security measures. The ’x’-
axis refers to these measures with the following correspondence: (1) is the reference
state - by definition it is 100%. (2) Speed limitation vmax = 130km/h. (3) vmax =
110km/h. (4) Braking capacities a∗ ∈ [6.8, 7.2](m/s2). (5) a∗ ∈ [5, 9](m/s2). (6)
a∗ ∈ [8, 10](m/s2). (7) Time headway minimum th ≥ 0.5. (8) th ≥ 1.0. (9) th ≥ 1.8.
Symbols circles, squares, x correspond respectively to an amplitude a0 = 3, 4, and
5m/s2. Solid (dashed) lines indicate that Tmax = 3s (7s).
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5 Perspectives

A further improvement of the model should address the possibility that a ve-
hicle reacts not only to the vehicle just in front, but also to other preceeding
vehicles. This was already addressed in [8, 9] and recent work by S. Hoogen-
doorn [10] indicates such an influence of more than one preceeding car. When
a car-following model is considered, it is easy to give a different weight - or
sensibility - to the interaction depending on which pair of vehicles is consid-
ered. The results by S. Hoogendoorn indicate that if α0 is the sensibility for
nearest neighbors, then a sensibility of the order of α0/2 should typically be
taken for next nearest neighbors.
In our case, which considers emergency braking, such a weighting is not pos-
sible. Either one brakes or one does not brake. Our proposal would be that,
though the action of braking would still follow the signal of the immediately
preceeding car, preceeding cars could have an influence on the reaction time
distribution. I.e. if the driver observes that the 2nd car in front is braking, he
prepares himself to react more rapidly.
One could also take advantage of the fact that in our data, the type of the
vehicles is known (cars, trucks...). One could thus incorporate the fact that
for example, a car behind a truck can only react on the vehicle directly in
front, while other configurations allow for a larger visibility.

6 Conclusion

We have shown that if something unexpected occurs on the road, as many
drivers drive with a short headway, it is likely that they won’t be able to
avoid a collision. This suggests three possible levels of action to minimize the
number of accidents:

• Decrease the number of unexpected events: this could be obtained for
example by regularizing the flow, inciting the drivers to have more homo-
geneous velocities, etc.

• Suppress short time-headways: the equipment of cars with automatic dis-
tance control could be helpful.

• Improve reaction times: cars could be equipped with alert devices, etc.
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Summary. Adaptive-Cruise Control (ACC) automatically accelerates or deceler-
ates a vehicle to maintain a selected time gap, to reach a desired velocity, or to
prevent a rear-end collision. To this end, the ACC sensors detect and track the ve-
hicle ahead for measuring the actual distance and speed difference. Together with
the own velocity, these input variables are exactly the same as in car-following mod-
els. The focus of this contribution is: What will be the impact of a spreading of
ACC systems on the traffic dynamics? Do automated driving strategies have the
potential to improve the capacity and stability of traffic flow or will they necessarily
increase the heterogeneity and instability? How does the result depend on the ACC
equipment level?
We discuss microscopic modeling aspects for human and automated (ACC) driving.
By means of microscopic traffic simulations, we study how a variable percentage
of ACC-equipped vehicles influences the stability of traffic flow, the maximum flow
under free traffic conditions until traffic breaks down, and the dynamic capacity
of congested traffic. Furthermore, we compare different percentages of ACC with
respect to travel times in a specific congestion scenario. Remarkably, we find that
already a small amount of ACC equipped cars and, hence, a marginally increased
free and dynamic capacity, leads to a drastic reduction of traffic congestion.

1 Introduction

Traffic congestion is a severe problem on European freeways. According to a
study of the European Commission [1], its impact amounts to 0.5% of the
gross national product and will increase even up to 1% in the year 2010. Since
building new infrastructure is no longer an appropriate option in most (West-
ern) countries, there are many approaches towards a more effective road usage
and a more ’intelligent’ way of increasing the capacity of the road network.
Examples of advanced traffic control systems are, e.g., ’intelligent’ speed lim-
its, adaptive ramp metering, or dynamic routing. These examples are based
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on a centralized traffic management, which controls the operation and the
response to a given traffic situation. In this contribution, we focus on a lo-
cal strategy based on autonomous vehicles, which are equipped with adaptive
cruise control (ACC) systems. The motivation is that a jam-avoiding driving
strategy of these automated vehicles might also help to increase the road ca-
pacity and thus decrease traffic congestion. Moreover, ACC systems become
commercially available to an increasing number of vehicle types.
An ACC system is able to detect and to track the vehicle ahead, measuring
the actual distance and speed difference. Together with the own speed, these
input data allow the system to calculate the required acceleration or deceler-
ation to maintain a selected time headway, to reach a desired velocity, or to
prevent a rear-end collision. It should be emphasized that ACC systems con-
trol the longitudinal driving task. Merging, lane changing or gap-creation for
other vehicles still needs the intervention of the driver. ACC systems promise
a gain in comfort and safety in applicable driving situations, but they are
not yet applied in congested traffic conditions. The next generation of ACC
will successfully extend the application range to all speed ranges and most
traffic situations on freeways including stop-and-go traffic. This leads to the
question: In which way does a growing market penetration of ACC-equipped
vehicles influence the capacity and stability of traffic flow? Although there
is considerable research on this topic [2], there is even no clarity up to now
about the sign of the effect. Some investigations predict a positive effect [3, 4],
while others are more pessimistic [5, 6].
The contribution is organized as follows: We start with a discussion of mod-
eling issues concerning the description of human vs. automated driving and
pinpoint the differences between ACC-driven vehicles and human drivers. In
Sec. 3, we will model three ACC driving styles which are explicitly designed
to increase the dynamic capacity and traffic stability by varying the individ-
ual driving behavior. Since the impact on the traffic dynamics could solely be
answered by means of traffic simulations, in Sec. 4 we perform a simulation
study of mixed freeway traffic with a variable percentage of ACC vehicles. In
Sec. 5, we conclude with a discussion of our results.

2 Modeling Human and Automated (ACC) Driving
Behavior

Most microscopic traffic models describe the acceleration and deceleration of
each individual ’driver-vehicle unit’ as a function of the distance and velocity
difference to the vehicle in front and the own velocity [7, 8]. Some of these
car-following models have been successful in reproducing the characteristic
features of macroscopic traffic phenomena such as traffic breakdowns, the
scattering in the fundamental diagram, traffic instabilities, and the propaga-
tion of stop-and-go waves or other patterns of congested traffic. While these
collective phenomena can be described by macroscopic, fluid-dynamic traffic
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models as well [9], microscopic models are more appropriate to cope with the
heterogeneity of mixed traffic, e.g., by representing individual driver-vehicle
units by different parameter sets or even by different models.
Remarkably, the input quantities of car-following models are exactly those of
an ACC system. As in microscopic models, the ACC controller unit calculates
the acceleration with a negligible response time. Therefore, one might state
that car-following models describe ACC systems more accurately than human
drivers despite of their intention to reproduce the traffic dynamics of human
driving behavior.
Thus the question arises, how to take into account the human aspects of
driving for a realistic description of the traffic dynamics. The nature of human
driving is apparently more complex. First of all, the finite reaction time of
humans results in a delayed response to the traffic situation. Furthermore,
human drivers have to cope with imperfect estimation capabilities resulting
in perception errors and limited attention spans. These destabilizing influences
alone would lead to a more unsafe driving and a high number of accidents if
the reaction time reached the order of the time headway. But in day-to-day
situations the contrary is observed: In dense (not yet congested) traffic, the
modal value of the time headway distribution on German or Dutch freeways
(i.e., the value where it reaches its maximum) is around 0.9 s [10–12], which is
of the same order of typical reaction times [13]. Moreover, single-vehicle data
for German freeways [10] indicate that some drivers even drive at headways
as low as 0.3 s, which is below the reaction time by a factor of at least 2-3
even for a very attentive driver. For principal reasons, therefore, safe driving
is not possible in this case when considering only one vehicle in front.
This suggests that human drivers achieve additional stability and safety by
scanning the traffic situation several vehicles ahead and by anticipating fu-
ture traffic situations. The question is, how this behavior affects the overall
driving behavior and performance with respect to ACC-like driving mimicked
by car-following models. Do the stabilizing effects (such as anticipation) or
the destabilizing effects (such as reaction times and estimation errors) dom-
inate, or do they effectively cancel out each other? The human driver model
(HDM) [14] extends the car-following modeling approach by explicitly tak-
ing into account reaction times, perception errors, spatial anticipation (more
than one vehicle ahead) and temporal anticipation (extrapolating the future
traffic situation). It turns out that the destabilizing effects of reaction times
and estimation errors can be compensated for by spatial and temporal antic-
ipation [14]. One obtains essentially the same longitudinal dynamics, which
explains the good performance of the simpler, ACC-like car-following models.
Thus, for the sake of simplicity, we model both automated ACC-driving and
human driving with the same microscopic traffic model, but differentiate the
driving strategies by different parameter sets.
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3 Jam-Avoiding ACC Driving Strategies

As discussed in the previous section, both human drivers and ACC-controlled
vehicles are effectively described by the car-following model approach. Here,
we will use the intelligent driver model (IDM) [15], according to which the
acceleration of each vehicle α is a continuous function of the velocity vα, the
net distance gap sα, and the velocity difference (approaching rate) ∆vα to the
leading vehicle:

v̇α = a

[
1 −
(
vα

v0

)4

−
(
s∗(vα,∆vα)

sα

)2
]
. (1)

The deceleration term depends on the ratio between the effective ’desired
minimum gap’

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(2)

and the actual gap sα. The minimum distance s0 in congested traffic is sig-
nificant for low velocities only. The dominating term in stationary traffic is
vT , which corresponds to following the leading vehicle with a constant safe
time headway T . The last term is only active in non-stationary traffic and
implements an accident-free, ’intelligent’ driving behavior including a brak-
ing strategy that, in nearly all situations, limits braking decelerations to the
’comfortable deceleration’ b. The IDM guarantees crash-free driving. The pa-
rameters for the simulations are given in Table 1.
In order to design a jam-avoiding behavior for the ACC vehicles, we modify
the ACC model parameters. The (average) time headway has a direct rela-
tion to the maximum (static) road capacity: Neglecting the length of vehicles
leads to the approximative relationship Q ≈ 1/T between the flow Q and
the headway T (cf. Eq. (3) below). The crucial parameter controlling the ca-
pacity is, therefore, the safe time headway which is an explicit parameter of
the IDM. Moreover, the system performance is not only determined by the
time headway distribution, but also depends on the stability of traffic flow.
An ACC driving behavior aiming at increasing the traffic performance should,
therefore, additionally consider a driving strategy which is able to stabilize
the traffic flow, e.g. by a faster dynamic adaptation to the new traffic sit-
uation. The stability is mainly affected by the IDM parameters ’maximum
acceleration’ and ’desired deceleration’, see [15].
In the following, we will investigate the potentials of three different parameter
sets for jam-avoiding driving behavior, varying the IDM parameters T , a and
b. In order to refer to the values given in Table 1, we express the parameter
changes by simple multipliers. For example, λa = 2 represents an increased
ACC parameter a′ = λaa, where a is the value listed in Table 1.

(1) The reduction of the time headway T by a factor λT = 2/3 has a positive
impact on the capacity. The other model parameters of Table 1 remain
unchanged, i.e., in particular, λa = 1, λb = 1.
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(2) Besides setting λT = 2/3, we increase the desired acceleration by choosing
λa = 2. The faster acceleration towards the desired velocity increases the
traffic stability.

(3) The additional reduction of the desired deceleration by λb = 1/2 cor-
responds to a more cautious and more anticipative driving style. This
behavior also increases the stability.

Model Parameter Value

Desired velocity v0 120 km/h
Save time headway T 1.5 s
Maximum acceleration a 1.0 m/s2

Desired deceleration b 2.0 m/s2

Jam distance s0 2 m

Table 1. Model parameters of the intelligent driver model (IDM) used in our sim-
ulations. The vehicle length is 5 m. In order to model jam-avoiding ACC strategies,
we modify the safe time headway parameter T , the ’maximum acceleration’ a and
the ’desired deceleration’ b by multipliers λT , λa, and λb, respectively.

4 Microscopic Simulations of Mixed Traffic

Let us now investigate the impact of ACC vehicles which are designed to
enhance the capacity and stability of traffic flows. We will simulate mixed
traffic consisting of human and automated (ACC) longitudinal control with a
variable percentage of ACC vehicles.
Our simulation is carried out for a single-lane road with an on-ramp serving
as bottleneck and with open boundary conditions. To keep matters simple,
we replace an explicit modeling of the merging of ramp vehicles to the main
road by inserting ramp vehicles centrally into the largest gap within a 300 m
long ramp section. In order to generate a sufficient velocity perturbation in
the merge area, the speed of the accelerating on-ramp vehicles at the time of
insertion is assumed to be 50% of the velocity of the respective front vehicle.
Moreover, we neglect trucks and multi-lane effects. While these aspects are
relevant in real traffic, they do not change the picture qualitatively. Nev-
ertheless, the induction of a second driver-vehicle type, e.g., ACC vehicles,
always has the potential to reduce the traffic performance by an increased
level of heterogeneity. We have compared the simulation results with Gaus-
sian distributed model parameters, but found no qualitative difference for this
single-lane scenario.
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4.1 Spatiotemporal Dynamics and Travel Time

Let us now demonstrate that already a moderate increase in the dynamic
capacity obtained by a small percentage of jam-avoiding ACC vehicles may
have a significant effect on the system performance.
We have simulated idealized rush-hour conditions by linearly increasing the
inflow at the upstream boundary over a period of 2 hours from 1200 vehicles/h
to 1600 vehicles/h. Afterwards, we have linearly decreased the traffic volume
to 1000 vehicles/h until t = 5h. Moreover, we have assumed a constant ramp
flow of 280 vehicles/h. Since the maximum overall flow of 1880 vehicles/h
exceeds the road capacity, a traffic breakdown is provoked at the bottleneck.
We have used the IDM parameters from Table 1 and parameter set (3) for
ACC vehicles, i.e., λT = 2/3, λa = 2, λb = 1/2.
Figure 1 shows the spatiotemporal dynamics of the traffic density for 0%
and 10% ACC vehicles. The increased capacity obtained by the induced ACC
vehicles leads to a strong reduction of the traffic jam already for a small
percentage of ACC vehicles. For 30% ACC vehicles, the traffic jam disappears
completely.
An increased percentage of jam-avoiding ACC vehicles has a strong effect on
the travel time: Figure 2 shows the actual and cumulated travel times for
various ACC percentages. At the peak of congestion (t = 3.2 h), the travel
time for individual drivers is nearly triple that of the uncongested situation
(t < 1 h). Already 10% ACC vehicles reduce the maximum travel time de-
lay of individual drivers by about 30% (Fig. 2(a)), and the cumulated time
delay (which can be associated with the economic cost of this jam) by 50%
(Fig. 2(b)). Several factors contribute to this enhanced system performance.
First, an increased ACC percentage leads to a delay of the traffic breakdown.
Second, the ACC vehicles reduce the maximum queue length significantly.
Third, the jam dissolves earlier. These effects, which are responsible for the
drastic increase in the system performance already for a small proportion of
jam-avoiding ACC vehicles, will be investigated in the following.

Fig. 1. Spatiotemporal dynamics of the traffic density (a) without ACC vehicles
and (b) with 10% ACC vehicles (parameter set (3)). Already a small increase in the
road capacity induced by a small percentage of jam-avoiding ACC vehicles leads to
a significant reduction of traffic congestion (light high-density area).
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Fig. 2. Time series for (a) the actual and (b) the cumulated travel times for simu-
lation runs with different percentages of ACC vehicles. The traffic breakdown leads
to a significant prolongation of travel time. A proportion of 30% ACC vehicles can
completely prevent the traffic breakdown.

4.2 Maximum Capacity in Free Traffic

The static road capacity Qtheo
max , which corresponds to the maximum of the

flow-density diagram, is mainly determined by the average time headway T .
However, the theoretical capacity depends also on the ’effective’ length leff =
lveh + s0 of a driver-vehicle unit and is given by

Qtheo
max =

1
T

(
1 − leff

v0T + leff

)
. (3)

The maximum capacity Qfree
max before traffic breaks down (which is a dynamic

quantity), however, is typically lower thanQtheo
max , since it depends on the traffic

stability as well. Therefore, we have analyzed the ’maximum free capacity’
resulting from the traffic dynamics as a function of the average time headway
T and the percentage of ACC vehicles. Our related simulation runs start
with a low upstream inflow and linearly increase the inflow with a rate of
Q̇in = 800 vehicles/h2. We have checked other progression rates as well, but
found a marginal difference only.
For determining the traffic breakdown, we have used ’virtual detectors’ located
1 km upstream and downstream of the on-ramp location. In analogy to the
real-world double-loop detectors, ’virtual detectors’ count the passing vehicles,
measure the velocities, and aggregate the data within a time interval of one
minute. For each simulation run we have recorded the maximum flow before
traffic has broken down (single dots in Fig. 3(a)). Due to the complexity of
the simulation and the 1-min data aggregation, Qfree

max varies stochastically. We
have, therefore, averaged the data with a linear regression using a Gaussian
weight of width σ = 0.2, and plotted the expectation value and the standard
deviation.
Figure 3(a) shows the maximum free capacity as a function of the ACC per-
centage for the three different parameter sets representing different ACC driv-
ing styles. Qfree

max increases approximately linearly with increasing percentage



640 Arne Kesting et al.

of ACC vehicles. The parameter a mainly increases the traffic stability, which
leads to a delayed traffic breakdown and, thus, to higher values of Qfree

max. Re-
markably, the values are nearly identical with those for heterogenous traffic
consisting of driver-vehicle units with Gaussian distributed parameters.
In Fig. 3(b) the most important parameter, the time headway T , is varied for a
homogeneous ensemble of 100% ACC vehicles. Obviously, Qfree

max decreases with
increasing T . Furthermore, the dynamic quantity Qfree

max remains always lower
than the theoretical capacity Qtheo

max given by Eq. (3), which is only reached
for perfectly stable traffic. The three parameter sets show the influence of the
IDM parameters a and b: The acceleration a has a strong impact on traffic
stability, while the stabilizing influence of b is smaller. Finally, as the difference
between Qtheo

max and the dynamic maximum free capacity Qfree
max increases for

lower values of T , one finds that a smaller T reduces stability as well.
In order the assess the potentials of various driving styles, we have evaluated
an approximate relationship as a function of the ACC equipment level αACC.
The relative gain γ in system performance is given by

γ ≈ [0.95(1 − λT ) + 0.07λa + 0.08(1 − λb)] αACC. (4)

Thus, λT is the most crucial parameter, while λb has hardly any influence.
For example, lowering the time headway by λT = 0.7 with αACC = 1 results
in a maximum gain of γ ≈ 30%.
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Fig. 3. Maximum free capacity as a function of (a) the percentage of ACC vehicles,
and (b) the time headway T for 100% ACC vehicles. We have simulated three
different parameter sets for ACC vehicles with λT = 2/3 and varying values of λa

and λb (see main text). Dots indicate results of single simulation runs, while the
solid lines correspond to averages over several simulations and the associated bands
to plus/minus one standard deviation.

4.3 Dynamic Capacity After a Traffic Breakdown

Let us now investigate the system dynamics after a traffic breakdown. The
crucial quantity is the dynamic capacity, i.e., the downstream outflow from
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a traffic congestion Qout [16]. The difference between the free capacity Qfree
max

and Qout is denoted as capacity drop with typical values between 5% and 30%.
We have used the same simulation setup as in the previous section. After a
traffic breakdown was provoked by an increasing inflow, we have averaged
over the 1-min flow data of the ’virtual detector’ 1 km downstream of the
bottleneck. We have identified the congested traffic state by filtering out for
velocities smaller than 50 km/h at a cross-section 1 km upstream of the bot-
tleneck. Again, we have averaged over multiple simulation runs by applying a
Gaussian-weighted linear regression.
Figure 4(a) shows the dynamic capacity for a variable percentage of ACC ve-
hicles for the three different parameter sets specified before. Interestingly, the
capacity increase is not linear as in Fig. 3(a). Above approximately 50% ACC
vehicles, the dynamic capacity increases faster than for lower percentages. We
explain this behavior with an ’obstruction effect’: the faster accelerating ACC
vehicles are hindered by the slower accelerating drivers. In fact, the slowest ve-
hicle type determines the dynamic capacity, which could be called a ’weakest
link effect’. In conclusion, distributed model parameters have a quantitative
effect on the outflow from congested traffic (it is lower than for homogeneous
traffic with averaged parameters), while such an effect is not observed for the
free-flow capacity!
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Fig. 4. (a) Dynamic capacity as a function of the percentage of ACC vehicles.
The curves represent three different parameter sets corresponding to different ACC
driving strategies. The results from multiple simulation runs are averaged using a
linear regression with a Gaussian weight of width σ = 0.2. (b) Flow-density data
for the traffic breakdown determined from a ’virtual’ detector 2 km upstream of the
bottleneck without ACC vehicles. The equilibrium flow-density curve of identical
vehicles corresponds to the parameter set given in Table 1.

5 Discussion

Adaptive cruise control (ACC) systems are already available on the market.
The next generations of ACC systems will extend their range of applicability
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to all speeds, and it is assumed that their spreading will grow in the future.
In this contribution, by means of microscopic traffic simulations we have in-
vestigated the impact that an automated longitudinal driving control of ACC
systems based on the intelligent driver model (IDM) is expected to have on
the traffic dynamics.
ACC systems are closely related to car-following models as their reaction
is restricted to a leading vehicle. Moreover, we have explained why such a
car-following approach also captures the main aspects of longitudinal driver
behavior so well. We, therefore, expect that both ACC systems and human
driver behavior will mix consistently in future traffic flows although the driving
operation is fundamentally different.
The equipment level of ACC systems provides an interesting option to en-
hance the traffic performance by automated driving strategies. In order to
analyze the potentials, we have studied ACC driving styles, which are explic-
itly designed to increase the capacity and stability of traffic flows. We have
varied the percentage of ACC vehicles and found that already a small propor-
tion of ACC vehicles, which implies a marginally increased free and dynamic
capacity, leads to a drastic reduction of traffic congestion. Furthermore, we
have shown that, capacity and stability do have similar importance for the
traffic dynamics.
We have assumed that the ACC systems have a more jam-avoiding driving
style than the human drivers. One might additionally take into account ineffi-
cient human behavior when traffic gets denser and the time headway increases
with increasing local velocity variance [12, 17]. In this case, a constant time
headway policy for automated driving is expected to improve the system per-
formance even more.
Up to now, ACC systems are only optimized for the user’s driving comfort
and safety. In fact, present ACC systems may have a negative influence on
the system performance when their percentage becomes large. The design of
ACC strategies, which also consider their impact on traffic dynamics, will be
crucial for the next ACC generations.
Furthermore, we propose to implement an ’intelligent’ ACC strategy that
adapts the ACC driving style dynamically to the overall traffic situation. For
example, in dense, but not yet congested traffic, a jam-avoiding parameter set
could help to delay or suppress traffic breakdowns as shown in our simula-
tions, while in free traffic a parameter set mimicking natural driver behavior
may be applied instead. The respective ’traffic state’ could be autonomously
detected by the vehicles using the history of their sensor data in combination
with digital maps. Moreover, inter-vehicle communication could contribute
information about the traffic situation in the neigborhood, e.g., by detecting
the downstream front of a traffic jam [18].
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Summary. The function of adaptive cruise control (ACC) systems can be enhanced
by information flows between equipped cars, i.e., by upstream transmission of mes-
sages about the current traffic situation. Message transport within one driving direc-
tion is obviously rather restricted for small percentages of equipped cars due to the
limited broadcast range. Thus, we consider vehicles in the opposite driving direc-
tion as possible relay stations. Analytical results based on a Poisson approximation,
which are in accordance with empirical traffic data, show the efficiency and veloc-
ity of information propagation based on transversal message hopping. The obtained
propability distributions of the transmission times are compared with numerical
results of microscopic traffic simulations. By simulating the formation of a typi-
cal traffic jam, we show how information about distant bottlenecks and jam fronts
reaches upstream equipped cars, which then can optimize their driving strategies.

1 Introduction

Inter-vehicle communication (IVC) is widely regarded as a powerful concept
for the transmission of traffic-related information. In contrast to the com-
mon communication channels, which operate with a centralized broadcast
concept via radio or mobile-phone services, IVC is designed as a local service
based on ad-hoc networks. Vehicles equipped with a short-range radio device,
broadcast messages which are received by all other equipped cars within the
limited broadcast range. The message transmission is not controlled by a cen-
tral station, and, therefore, no further infrastucture is needed. Supported by
the technological progress and the falling prices for corresponding hardware,
the market for short-range communication devices is growing, and wireless
local-area networks (WLAN) spread more and more.
In this contribution we will focus on the propagation of information via IVC
equipped vehicles. Since IVC will start with a small equipment level, it is
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crucial to investigate the functionality and the statistical properties of the
message hopping processes. Fast and reliable information spreading is a nec-
essary precondition for a successful implementation of this technology. The
traffic information of interest can be generated by the IVC equipped cars
themselves, if each car reports about the traffic conditions it currently faces.
This results in a completely decentralized, autonomous traffic surveillance and
information system. While the information must be transported over distances
of about 1 km in upstream direction, the broadcast range is only of the order
of 250m. We, therefore, also consider equipped vehicles in the opposite driving
direction as transmitter cars.
Apart from the single drivers the whole traffic system may benefit from IVC as
well [2]. Adaptive cruise control (ACC) automates the braking and accelerating
of a car. While the objectives of the currently available ACC systems are
to enhance the comfort and safety of driving, there has been no focus on
their effect on the capacity of the freeway, except for the general positive
effects of avoiding accidents. Transmission of traffic information via IVC could
help ACC systems to recognize the traffic situation faster and more reliably.
Moreover it could help ACC systems to increase road capacity by allowing it
to reduce the time headway just when it is about to leave the downstream
front of a traffic jam.
Our contribution is organized as follows: After a discussion of message trans-
port strategies for freeways and their statistics (Section 2), we will present
in Section 3 a simulation scenario, where information about a traffic jam is
transported upstream by cars of the other driving direction. Afterwards, we
will summarize our contribution and give a short outlook.

2 Statistics of Message Transport on Freeways

2.1 Message Transport Strategies

In the context of freeway traffic, messages normally have to travel upstream
in order to be valuable for their receivers. In general, there are two strategies,
how a message can be transported upstream via IVC (or mixtures of both):
Either the message hops from an IVC car to a subsequent IVC car within
the same driving direction – which will be called longitudinal hopping, or
the message hops to an IVC car of the other driving direction which takes the
message upstream and delivers it back to cars of the original driving direction.
The second mechanism, where vehicles of the opposite direction act as relay
stations, will be referred to as transversal hopping (cf. Fig. 1).

2.2 Spatial Distribution of Equipped Vehicles

If the market penetration is low, the encounter of an IVC equipped vehicle
with another one is seldom. In good approximation, the positions of the IVC
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Transport by transmitter Car T
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BTH

Fig. 1. Transport of a traffic information message on a freeway: When car “A” enters
a traffic jam, it broadcasts a related message. This is received by a subsequent car
via longitudinal hopping (“LH”) and by an equipped transmitter car “T” of the
other driving direction via transversal hopping (“TH”). The message can travel
with the transmitter “T” upstream, until it is delivered back to the original driving
direction by back transversal hopping (“BTH”). In the main text, we will discuss
which message passing mechanism is more efficient.

cars therefore can be assumed independent of each other, even for high traffic
densities. With the additional assumption of a constant overall traffic density
ρ on all lanes of the analyzed driving direction, and for a given percentage
(equipment level, market penetration) α of IVC vehicles, it follows that the
number of IVC vehicles on a given road section is Poisson distributed. Thus,
the headways ∆s between consecutive equipped vehicles are distributed ex-
ponentially:

f∆s(x) = λe−λx with λ = αρ. (1)

This assumption is very well supported by empirical data, cf. Fig. 2. Evalu-
ating the data of single cars passing a freeway cross section, it is possible to
obtain the distribution of distances between IVC equipped vehicles for sce-
narios of different equipment levels. Even for a single lane, this distance is
exponentially distributed for small equipment levels. However, above a level
of 20%, the form of the distribution gets more and more similar to the Er-
lang/Pearson III distribution of headways [5].

2.3 Longitudinal Message Hopping

Longitudinal hopping is only possible, if there is an upstream receiver in the
broadcast range of the sending car. For message transport over a certain dis-
tance, there has to be a closed chain of IVC cars: Every single distance between
two subsequent IVC equipped cars must be smaller than the broadcast range
for a certain time span. This is very unlikely for a low equipment level. The
following example presents a more detailed analysis.
For a given maximum broadcast range rmax, the probability of finding an
upstream receiver for longitudinal hopping is given by

P (∆s < rmax) =

rmax∫
0

f∆s(x)dx = 1 − e−λrmax . (2)
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Fig. 2. Probability density of distances between IVC equipped vehicles based on
single vehicle data for the freeway I-880. Each car entering the upstream boundary
of the investigated freeway stretch have, with probability α randomly and indepen-
dently, been chosen to be an ’equipped’ car. The resulting fraction of α chosen cars
corresponds to an IVC market penetration of α. Using the time headways ∆t be-
tween consecutive equipped vehicles, we have obtained the distance ∆s for every
equipped car i via ∆si = ∆tiVi−1, where the equipped car i − 1 is the predecessor
of car i, and Vi−1 its velocity. The single vehicle data were recorded in 1993 at cross
section 6 (29300 feet distance from Mariana) of freeway I-880, Hayward, California,
in direction north [13]. Data of congested or light traffic (velocity < 60 km or flow
< 1000/h/lane) have been omitted. Only the right lane has been taken into account
in (a) and (c). In (b) and (d), the three rightmost lanes from altogether five lanes
have been considered.

Considering an overall density of ρ = 30 veh/km on two lanes, α = 0.05, and
rmax = 250m, we obtain a probability of 31% for a message hop. If we require
that the information should be available at least ru = 1000m upstream of a
detected traffic event, the information has to hop at least four times. Because
of the statistical independence of the hopping processes, the probability for n
successful hops is given by

Pn =
(
1 − e−λrmax

)n
. (3)

That is, the probability for four successful hops is only (0.31)4 ≈ 1%. Note
that this is an upper limit for the transmission probability, as not every hop
will bridge exactly 250 m. Thus, normally more than 4 hops will be necessay,
which further reduces the transmission probability.
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Fig. 3. Initial spatial configuration and labelling of the distances: The sender has
just detected an event and broadcasts a corresponding message. The first encoun-
tered equipped car of the other direction, the transmitter, may be downstream or
upstream (left) of the sender, but in the latter case within the broadcast range
rmax (left cutoff of probability distribution). If the transmitter is out of the broad-
cast range (for large xt1), the message will not be received immediately. The time,
when the message is picked up by the transmitter does not directly affect the time t
which is needed to deliver the message the distance ru upstream of the initial sender
position. However, both times depend, of course, on xt1.

2.4 Transversal Message Hopping

With longitudinal hopping, a message either reaches its “destination” at once
or never. Via transversal hopping, a message reaches always the destination
point ru = 1000 m upstream of the position where it has been generated. The
message is available at this point as soon as the first encountered equipped car
of the other direction, the transmitter, has moved a distance x� = ru − rmax

upstream from the place of message generation. The remaining distance can
be bridged via wireless communication (cf. Fig. 3). The time t, when this
is completed, depends on the initial position of the transmitter at the time
the message is generated and on its velocity vtr. The initial distance of the
transmitter from the “retransmission point” x∗ consists of two parts, xt1 and
xt2 (cf. Fig. 3). Thus, we obtain

t =
xt1 + xt2

vtr
. (4)

xt2 is given by
xt2 = ru − 2rmax (5)

(cf. Fig. 3), while the stochastic quantity xt1 is determined by the gap distri-
bution between two IVC cars, i.e., its probability density is given by

fxt1(x) = f∆s(x) = λe−λxΘ(x). (6)

Here, the Theta-function Θ(x) is 1 for positive arguments x, and zero, other-
wise.
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Let us now calculate the cumulative distribution P (t < τ) of arrival times t.
According to Eq. (4), the message arrives at a time t < τ , if xt1 < τvtr − xt2.
Therefore, the probability that the information is succesfully transmitted until
time τ can be calculated as

P (t < τ) = P (xt1 < τvtr − xt2) (7)

=

τvtr−xt2∫
0

fxt1(x) dx (8)

= Θ

(
τ − ru − 2rmax

vtr

)(
1 − e−λ(2rmax+vtrτ−ru)

)
(9)

Because fxt1(x) = 0 for x < 0 (see Eq. (6)), the probability distribution is
zero if, in the case of a small value of τ , the upper bound of the integral in
Eq. (8) becomes negative. This results in the Theta function Θ(τvtr − xt2) =
Θ
(
τ − ru−2rmax

vtr

)
in Eq. (9). Since the probability of a transmission before

the time ru−2rmax
vtr

= xt2
vtr

is zero, this is the minimal possible transmission
time. It occurs, when the transmitter only needs to pass the distance xt2, i.e.,
if it is initially as far as possible upstream (corresponding to maximum of the
distribution in Fig. 3).
In Figure 4, the information transport within the same driving direction is
compared to the information transport via a transmitter of the opposite driv-
ing direction. In the first case, the message is instantaneously available a
certain distance ru upstream of a recognized traffic event (if we neglect the
broadcasting time). However, because of the low equipment rate, the trans-
mission succeeds only with a very small probability that does not change in
time. Either the information reaches the destination more or less at once, or
never. In the case of transversal hopping, the message needs at least 18 sec-
onds, but after 36 seconds, the message is available with a probability of 50%.
An 36-seconds old information 1000 m ahead of the event is still very valuable:
For example, in 36 seconds a possible disturbance of the traffic flow may travel
(with a characteristic speed of ≈ 15 km/h) 150 m upstream. Hence, for the
receiver of this information, there are 850 m left to react to the traffic event
(e.g. stop-and-go wave).

2.5 Microscopic Simulation of Inter-Vehicle Communication

In order to test these analytical results, we have carried out a multi-lane
traffic simulation of a 10 km freeway stretch with two independent driving
directions and altogether four lanes. We have used the intelligent driver model
(IDM) [12] complemented by a lane changing algorithm [11] (see Fig. 5 below).
The parameters have been selected as in Ref. [2], whereas the desired velocities
have been chosen Gaussian distributed with an rms value of 18 km/h around
v0 = 120 km/h. We have used open boundary conditions with a constant
inflow at the upstream boundary of Q = 1240/h/lane.
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The microscopic simulation approach allows for a detailed modeling of the
message broadcast and receipt mechanisms of IVC equipped vehicles (col-
ored vehicles in Fig. 5). To obtain the statistics of message propagation, the
equipped vehicles have generated a “dummy” message while crossing the po-
sition x = 5 km. In Fig. 6, the results of the simulation are compared to
the analytical results based on the Poisson approximation (cf. Sec. 2.2). The
percentage of vehicles equipped with the IVC device has been varied and the
traffic density measured by ’virtual’ detectors as in Ref. [2]. The results show
a very good agreement with our analytical calculations (Eq. 9).

3 Application: Upstream Transport of Traffic-Related
Information Via Transversal Hopping

Let us now demonstrate the message propagation mechanism with a micro-
scopic traffic simulation. We have simulated the two driving directions of an
altogether four-lane freeway. In one driving direction, we have triggered a wide
moving cluster (also called a “Moving Localized Cluster” [3, 8]), while traffic
was freely flowing in the other driving direction (see Fig. 5). Two types of
messages have been generated: (i) If the velocity of a vehicle equipped with
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Fig. 4. Probability distribution of the time interval between the generation of a
message and its availability 1 km upstream of the event for the two broadcast strate-
gies. If only cars of the same driving direction are used for message transmission, at
least 4 successful “hops” are necessary. The transmission probability is, therefore,
P4 = P 4

1 = 0.01 or less (cf. text). When transmitter cars of the opposite driving
direction are used, the message needs at least 18 seconds, but after 36 seconds, the
message is available with a probablilty of about 50%. The velocity of the transmit-
ters has been assumed to be vtr = 100 km/h. The minimal time for the message
transfer is ru−2rmax

vtr
= 18 s.
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traffic
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IVC

Fig. 5. Screenshot of the traffic scenario discussed in Sec. 3. The microscopic
simulation approach allows one to combine traffic dynamics with the microscopic
mechanisms of broadcasting and receiving messages via inter-vehicle communication
(IVC). The colored cars are equipped with the functionality of generating, sending
and receiving information. In the driving direction towards the reader, a stop-and-go
wave propagates through the system. The equipped vehicles in the opposite driving
direction are used as transmitter cars enabling a “transversal” message hopping.
This process allows for a fast information propagation in upstream direction.
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Fig. 6. Message transport via transmitter cars in the opposite driving direction:
Comparison of Eq. (9) (solid lines) with the simulated distribution of the time
intervals τ until a message is available 1000 m upstream of a traffic event (symbols).
The assumed IVC parameters were the broadcast range rmax = 250 m and the
minimal delivery range ru = 1000 m. Applying the vehicle parameters in Ref. [2]
and choosing an inflow of Q = 1240 veh/h/lane, we have a transmitter velocity of
vtr = 85 km/h and an overall density of ρ = 29 veh/km in each direction. The
simulations have been carried out with equipment rates of α = 3%, α = 5%, and
α = 8%.

an IVC device dropped below 30 km/h, the car started to broadcast the mes-
sage “start of traffic jam” with the time and position of its detection. (ii) If
the velocity exceeded the velocity 30 km/h, the message “end of traffic jam”
was being broadcasted.
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Fig. 7. Spatiotemporal diagram of a traffic simulation, for which the trajectories
of vehicles equipped with inter-vehicle communication (IVC) devices are displayed
by dashed lines. The equipment level is 3%. While the cars encounter a propagating
stop-and-go wave, they start to broadcast messages about the begin and the po-
sition of the stop-wave and the following start-wave as labeled by numbers in the
diagram. Since the broadcast range of 200m does not allow for a reliable message
propagation only in the driving direction (see scale in the diagram), the messages are
transported by equipped (transmitter) cars of the opposite driving direction (tra-
jectories not shown). Finally, the receipt of the propagating messages is marked for
a specific vehicle (solid trajectory). This considered car gets the information about
the position of the traffic jam, and, additionally, the expected travel time, for the
first time 2 km upstream. The reliability of the information increases by the receipt
of additional messages, which confirm and update the reconstruction of the expected
traffic situation for the individual driver.
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The spatiotemporal traffic dynamics and the processes of sending and receiv-
ing messages are shown in Fig. 7. Due to the low equipment rate of α = 3%,
the equipped vehicles have an average distance to each other that exceeds
the broadcast range of the IVC device. An upstream message propagation
only within one driving direction would, therefore, lead to a fast breakdown
of the information chain (see Fig. 7) as stated in Sec. 2.3. Thus, we have used
IVC-equipped vehicles as transmitters in the other driving direction. Fig. 7
numbers the generated messages and shows their delivery to a specific vehicle.
Remarkably, the considered vehicle gets the first information about the traffic
congestion already 2 km before encountering the stop-wave. The information
is confirmed and updated by subsequent messages provided by other vehicles.
The up-to-date information about the expected traffic situation could be used
to warn drivers or to set-up a strategically operating adaptive cruise control
(ACC) system [2].

4 Summary and Outlook

The market penetration of adaptive cruise control (ACC) is steadily growing.
By means of inter-vehicle communication (IVC), the performance of these
systems can be increased by accurate and up-to-date messages about the
traffic situation ahead.
For receiving and transmitting up-to-date information on a short timescale,
it is promising to use an entirely decentralized system like an ad-hoc-network
of vehicles equipped with inter-vehicle communication technology – especially
if these equipped cars on the road also gather the traffic information that is
transmitted.
A problem of such a short-range communication system is that it may not
work properly for a low equipment rate. In this contribution, we have, there-
fore, presented a communication strategy for inter-vehicle communication that
operates well for low equipment rates by using cars on the opposite driving
direction as relay stations. For example, even for an equipment rate of 5%
only, a traffic-information message will be passed 1 km upstream with a prob-
ability of 50% within 36 seconds. The simulations of Fig. 7 showed that even
lower equipment rates enable effective communication in realistic situations.
A further step is to develop and implement traffic-state dependent strategies
for ACC [2] that react to IVC information in a situation-specific way.
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Effects of Advanced Traveller Information
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Summary. A genetic algorithm approach is used to study the behaviour of agents
in a simulation of a daily route choice. There are two roads to choose and we show
that there is a welfare enhancing effect of an Advanced Traveller Information System
(ATIS) in comparison to the standard case without an ATIS. In the first case it is
remarkable that not all agents follow the recommendation of the ATIS and the
equilibrium distribution is only approximately attained.

1 Introduction

With an increasing amount of traffic world wide (NSTC (1999)), congestion
is a daily routine for many travellers and commuters and it is unlikely that
this situation will change for the better for many traffic systems in the near
future (BVBW (2001)). To solve the problem it becomes more important to
supply Intelligent Transportation Systems (ITS), which lead to a better us-
age of available traffic networks. Kwan and Golledge (1998) emphasise that
Advanced Traveller Information Systems (ATIS) are a key factor for the im-
plementation of successful ITS.
This paper examines how individual drivers react on information from an
ATIS, in a situation of daily home-to-work-route choice. Mahmassani et al.
(1997) distinguish three possible reactions of work commuters on peak pe-
riod congestion: First, variations of the departure time, second, changes in
frequency, purpose, and duration of intervening stops and third, selecting a
different route. These results are based on an empirical study in Austin, Texas.
Another study presented by Stern et al. (1998) investigates commuters’ be-
haviour in the Netherlands. In agreement with Mahmassani’s result, the most
common reaction is a variation in the working time, which results in a vari-
ation of trip starting times, and a variation of route to/from work. Other
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observable reactions are increasing home working activities, increased usage
of public transportation, job changes and changes of home locations.
In Section 2 we describe a simple model of route choice under influence by
an ATIS, in Section 3 a genetic algorithm to simulate agents’ behaviour is
described and in Section 4 we present results of some simulations of agents’
behaviour within our model.

2 Action Models

To study the effects of an ATIS, we use two models to capture the effects
of the genetic algorithm. First, we set up a basic model of agent behaviour
without an ATIS and second we extend this model by an ATIS.

2.1 Basic Model

The basic model consists of agents who have two route options to drive to
work. So they have to decide between two roads, which differ in their transport
capacity. In the following they will be called S big and S small. There is no
outside option, neither short term orientated as using public transport systems
or not going to work, nor long term orientated as moving nearer to working
place or getting another job. The resulting action tree is shown in figure 1.

Fig. 1. Basic model action tree.

The agents decide in a random order, the numbers of agents driving on S big
respective S small are call n big and n small. The resulting agent’s utility is
equal to the use under perfect circumstances - no other drivers on the road -
minus the time lost by other drivers jamming the road. S big enables a greater
utility under perfect circumstances and is less affected by higher utilisation.
Altogether this model is very similar to the experiment described by Selten
et al. (2005).

2.2 Basic Model Extended by ATIS

Now we introduce an ATIS in form of a traffic radio in our model. After a
specific number of agents have decided on which route to take, a route rec-
ommendation is given. This recommendation consists just of the information
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which route would actually yield to a higher utilisation. As the interval of
recommendations gets smaller, the quality of the ATIS should improve. The
decision tree is then modified to give reaction options to the recommendation.
First the agent has to decide whether he believes in the recommendation or
not - in the latter case he will decide in the same way as in the basic model. If
he believes in the recommendation, on the one hand he could directly follow
this recommendation or on the other hand respond in the contrarian way.
Figure 2 shows the corresponding action tree.

Fig. 2. Extended model action tree.

3 The Genetic Algorithm

To get dynamics into the simulation, a genetic algorithm is used to change
the agents’ action attributes. Each attribute has a binary code which is called
’gene’ in the following. A set of genes makes up a gene pool. Following Pitz
(2005) a genetic action tree G(T ) is defined as:

1. T is an action tree.
2. For each agent, action type and attribute C(i, a) is the gene pool (a set

of bits).
3. For each action type, there exists a decision degree, which is a probability

for choosing that action type. There might be a condition ∆ if the action
type (a special node in the action tree) is disabled. For instance, the agent
might be willing to buy something, but is out of money.

4. For each gene c(i, a) out of C(i, a) there exists a fitness function f(c(i, a)),
which is determined contingent of the outcome of the action.

5. d(c(i, a)) is the semantic of c(i, a), which describes the contingency of the
action in respect to the gene in the simulation.

If the agent is not obliged to a certain action, it will follow the action tree from
the root to the leafs. Every attribute of each action type with its coded value
c(i, a) will be filled using a uniform distribution. A violation of the condition



660 Thorsten Chmura et al.

∆H1 or ∆H2 will cancel the sub-nodes H1 or H2 respectively3. This is the way
we have chosen to force the agent to perform a certain action, if necessary.
In the case that there are two choices left, the gene pool is used to determine
the agent’s action. A c(i, a) is taken out of the gene pool C(i, a) (again by
a uniformly distributed probability) and if d(c(i, dh1)) < dh1, then the left
node is chosen and vice versa.
Reaching the root of the decision tree, every action attribute has its coded
value c(i, a) and each of them is evaluated by the fitness function f(c(i, a))
dependent on the outcome when the agent has run the action tree. Since every
gene now has a certain value, the action is specified and can be carried out.
Each action changes the environment and this will be the evaluation basis for
the fitness f of the agent’s action attributes.
Three principles are used by the genetic algorithm: mutation, selection and
cross over. A mutation is created by a mutated copy of a gene which is changed
at ’selected’ random places. With a probability p (which is in our case anti-
proportionally related to its fitness) the agent’s gene will be replaced by this
mutation. The better its fitness, the lower is the probability of changing the
gene. When all the genes of each agent are assembled to one large gene pool,
5% of this gene pool is randomly mixed by a cross over, that is, one set of
genes is taken to another location and the former set is overwritten by the
replaced set.
We used a general framework developed in a seminar at the Laboratory for
Experimental Economics, University of Bonn, intended for use with genetic ac-
tion trees. Instead of setting the fitness immediately after each agent’s choice,
the fitness of the decision genes is calculated after the activation of all agents
for each genetic cycle. In our model the fitness of every agent’s decision gene
is the sum of utilities of this agent over a genetic cycle.

4 Results

We now combine our agents’ action models with the genetic algorithm and
make some behaviour simulations. We begin with some simulation calibra-
tions, then we go on to present some results for the basic model and finally
we introduce the ATIS in two different quality levels. All results we present in
this section come from simulation runs of the genetic algorithm. If something
is said to be significant, it is in the context of a t-test at the 5%-level.

4.1 Calibration

Each run of the simulation covers 200 rounds with 100 agents. Every 10 rounds
the genetic algorithm is called and the mutation is done - the genetic cycle.
The other parameters of the framework are set to their default values, too.
3 H1 denotes the ”left” node, H2 the ”right” node.
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Just to mention the basic setup, every decision degree is set to 50 per cent.
The implemented utility function for an agent using S big is:

U big = 3.50 − 0.02 · n big. (1)

For the other agents, who are driving on S small, the utility function is:

U small = 3.00 − 0.03 · n small. (2)

For this utility functions an equilibrium and a first best solution could be
determined. In equilibrium 70 agents should use S big and 30 agents should
use S small. In this agents-to-road distribution no agent could increase his
own utility by deviating. The equilibrium utility sum of all agents would be
210.00. For the first best solution 67 agents should use S big and 33 agents
should use S small, so the social welfare optimal maximised utility sum of
211.05 could be reached.

4.2 Basic Model

Beginning with the simplest situation, the decision between S small and
S big, the agents show an interesting behaviour, see figure 3. The equilib-
rium number of agents on S big should be 70. Notice that in this equilibrium
the realised utilities of agents using S big respective S small are exact equal,
but no agent could increase his own utility by deviating.
Several runs of the simulation show an average utilisation of S big of 64, which
is lower than the equilibrium. The resulting mean utility sum is about 207.73,
which is significantly lower than the equilibrium utility sum of 210.00, and
has a variance of 0.066613. This variance is due to a huge fluctuation on the
roads within a run of the simulation, sometimes even less than 50 agents are
on S big, but the following analysis will only consider the averages of several
runs.

Fig. 3. Simulation results, basic model.
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The explanation for this finding lies in the functioning of the genetic algorithm.
Even if the equilibrium distribution of agents on the roads is reached, there is
always some cross-over-mutation which destabilises the equilibrium in the long
term. Additionally, it is unlikely that this equilibrium is reached even in the
short term. There is always a mutation of the agents on the relatively full road
and relatively low utility, even in the case of being close to the equilibrium on
S big. Either they win or lose. The losers will always run through the genetic
algorithm with a hundred percent chance.
Consider the case when there is less than the equilibrium number of 70 agents
on S big. They will enjoy a higher utility and therefore their fitness function
will be higher than the ones of the agents on the relatively crowded S small.
A smaller portion of the agents (the number on S small) will mutate and,
despite the fact of some cross-over mutation, will change to users of S big -
not many. As highly likely result, more than 70 agents will use S big now.
In the case of a larger than equilibrium number of users of S big, they will
get the lower utility and therefore will mutate. There is a great number of
agents possibly switching back to S small and so there is again a relatively
large group of agents on S small.
Empirical evidence of such a back switching behaviour is given by a study
of Tacken and de Boer (1989, 1991). An improvement in the beltway around
Amsterdam created a change in people’s driving behaviours and ’traditional’
congestion places become less used which results in less congestion. After
this happened, people began to switch back to ’traditional’ behaviours again.
In our simulation similar results are obtained using an exponential utility
function instead of our specified linear function, which is why we stick to the
simpler linear function.

4.3 Basic Model Extended by ATIS

Now we introduce the traffic radio. Since there is almost no significant dif-
ference in results between the quality of the traffic radio and the results, we
pick two arbitrary values for the traffic radio update interval: 20 and 1, the
latter one is the reference case for a perfect traffic radio. Starting with the
former case, the variance of the agents’ utility decreases and the mean utility
increases significantly, a typical simulation run is presented in figure 4.
The mean utility sum is now about 209.81 with a variance of 0.008558. Com-
pared to the simulations without ATIS the mean utility sum has increased
and the variance decreased. This happened because the number of agents on
the road is now much closer to the equilibrium distribution in every round.
Now, between 40 and 60 per cent will consider the traffic radio in their de-
cision - either by direct or contrarian response and the ratio between direct
and contrarian response is a little above 1/2, see figure 5. In the case of a
perfect traffic radio where the update interval is 1 the mean utility sum goes
on increasing to 210.09 and the variance decreases to 0.001651. However, no
serious change in agents’ behaviour is observable.
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Fig. 4. Route choice, model with ATIS, interval = 20.

Finally, the average utility increases in both cases in comparison to the case
without traffic radio, but the agents’ utility still varies a lot within a simula-
tion.
So why does not every agent follow the traffic radio directly, because this
would lead the agents to the equilibrium? It’s again the genetic algorithm
in combination with the model’s implementation. When the genes force the
agent’s behaviour to the region of the equilibrium, much of the outcome is
determined by chance. For some there is no need to consider the traffic radio
if there is a group large enough who does - their concern will create a sort of
“public good”, they compensate for the agents who ignore the traffic radio and
even for the agents who choose the contrarian response, because these agents
are outnumbered by the factor 2, as mentioned above. This leads to the quite
unstable outcome, for instance, there should not be any contrarian responses
in the case of a perfect traffic radio. A simulation with disabled contrarian

Fig. 5. Reaction to ATIS, model with ATIS, interval = 20.
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response node is welfare enhancing for average utility and its variance will be
significantly better4. A simple5 OLS regression supports our explanation, see
figure 6:

AVG Ui = β0 + β1 ∗ AVG n Believei + β2 ∗ AVG n dont Followi + εi (3)

Fig. 6. Model 1: OLS estimates using the 39 observations 1-39.

For interpretation: the more agents minded the traffic radio in a simulation
run, the higher the average utility, as shown by the positive coefficient of
”Believe”. The average utility decreases, the higher the number of agents who
respond in a contrarian way.
In the end one finds that the genetic algorithm works fine to embrace the
equilibrium. But because of the special circumstances mentioned above it still
leaves room for some marginal opportunity to improve welfare by an ATIS,
here the traffic radio.

5 Conclusions

This paper examines the effect of ATIS on commuter behaviour. Our simula-
tion shows that introduction of ATIS in form of traffic radio leads to signifi-
cantly higher utility with lower variance. It is interesting that our simulations
have shown that not every agent will follow the recommendation directly to
achieve this effect. Another - slightly surprising - result is that there are still
agents who respond in a contrarian way. Further research should focus on how
to set incentives for drivers to believe and follow ATIS. As every driver who
does not follow the recommendation has an external effect on the others’ utili-
ties, it should be tried to make them for this effect reliable. A Vickrey-Clarke-
Groves mechanism (Vickrey (1961), Clarke (1971), Groves (1973)) could be
4 Further results are available from the authors on request.
5 Since each simulation run is a random draw of the same data generating process,

OLS should be applicable. Simulation parameters are: traffic radio update interval
20 and the static linear utility function.
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used for that purpose, but a problem may occur, as not every individual’s
behaviour could be observed. Another direction for further research could
be using of genetic algorithm on more complex travel behaviour models, like
Hivert’s (1997) SATCHMO framework or like the Prism-Constrained Activity-
Travel Simulator described by Kitamura et al. (1996).

Appendix: Specifications

Parameters, Variables and Constants of the Decision Tree

S big constant for big road
S small constant for small road
S neutral constant for no road
n activated number of agents, already activated in actual round
n big, n small number of agents on the roads
E interval interval of actualisation of route recommendation (for

no recommendations set E interval> number of agents)
Recommendation route recommendation, possible values: S big,

S small, S neutral

Decision Tree

Fig. 7. Decision Tree.
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Summary. A cellular automaton traffic model of cars on two single-lane roads
crossing at one point is studied. At the crossing real-time traffic information is
displayed and drivers determine the driving direction based on the information about
the trip-time. The traffic flow and density of the cars on the roads oscillate between
free flow and jam states, and their time-behavior is chaotic. The real-time traffic
information lures the driver to a road with shorter trip-time and causes too much
concentration of the traffic by the nonlinearity of the velocity-density relation.

1 Introduction

Nowadays, the automobile is necessary for the usual civil life. However, an
automobile mass society gave birth to social problems such as traffic jams,
traffic accidents and air pollution. To solve these problems, the automobile
itself and the complex system of automobiles and roads are improved by the
electric and information technology. Then safety and energy efficiency of the
automobile are improved and environmental pollution is being reduced. Real-
time traffic information is collected and supplied to improve traffic flow and
the efficient usage of the road network. Sequences of traffic lights are effective
in optimizating the flow on urban streets. Traffic information, however, occa-
sionally induces instabilities of the traffic flow or an abnormal concentration
of cars on the road network. The timing of collection and supply of traffic
information essentially influences the dynamics of the traffic flow. Effects of
announcing global traffic information have been studied in a two-route traffic
model introducing two types drivers: dynamic and static ones [1,2]. Optimum
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operation of a set of traffic lights was studied in two urban streets with an
intersection [3] and in a two-dimensional urban street network [4]. Yokoya [5]
has investigated traffic flows in two single-lane roads intersecting at one point,
where each driver decides which route he should take by the information con-
stantly provided by a road-side facility. He found an abnormal concentration
of cars induced by the provided information.
In the present paper, traffic flows are investigated in a CA model of a road
system where two single-lane roads intersect at one point. A traffic-sign board
supplies drivers with real-time traffic information at the intersection and the
driver decides the direction of motion based on this information. The update
rule of the driver is different from Yokoya’s rule at the intersection. Traffic flow
fluctuates complicatedly in time about an equilibrium flow. The dynamics of
the traffic flow is analyzed from the point of view of chaos.

2 A Model with Traffic Information

The road system consists of two one-dimensional (one-lane and one-way)
roads, which cross at one point. There is no traffic signal but a board dis-
playing real-time traffic information at the crossing. In cellular automaton
(CA) traffic models, the road is expressed by a chain of cells, with cyclic
boundary condition, and the cell at the crossing is shared by the two roads
(Fig. 1). The car moves forward following the rule-184 CA [6]. On two roads,
named X-road and Y -road, the cars are allowed only to go ahead in +X-
axis direction or +Y -axis direction, respectively. The update is carried out
simultaneously for both roads. This means that there is no traffic signal at
the crossing. In order to avoid collision of cars entering simultaneously into
the crossing from both roads, one car is selected with equal probability and
allowed to move. Traffic information is displayed at the crossing and updated
every time-step. The driver at the crossing gets information about the trip-
times on both roads and chooses the road with the shorter trip-time. If the
trip-times are equal for both roads, the driver does not change the direction
of motion. The trip-time is calculated by the reciprocal of the mean velocity
of all cars on each road. The present model is not deterministic, because it
contains a stochastic process in the approach of the cars into the crossing.
We simulate traffic flow of both roads (X-road and Y -road) in the model
described above. As a first simulation, the road length L of both roads is
set at 500 cells and an equal number of 180 cars (Nx = Ny = 180) are put
randomly on both roads. Then the cars advance obeying the rules described
above. The initial density d = N/L is 0.36. The sum of the number of cars
on both roads is conserved. The mean velocity V of cars is calculated by
the ratio of the number of the movable cars to the total number of cars on
the respective road. Time-series of variations of the density and the velocity
on both roads are shown in Fig. 2. Though the densities dx and dy of cars
on both roads initially are equal, one gradually increases whereas the other
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decreases. After they reach a maximum or minimum, respectively, they turn
back towards the other extreme.
Thus they continue to oscillate in antiphase between different maxima and
minima in a complicated way. The velocities Vx and Vy of the cars show a
more complicated behaviour (Fig. 2(right)). They vary between the value 1,
corresponding to the free flow, and small values corresponding to jams. When
the velocity Vx for the X-road surpasses Vy for Y -road, just then the density
dx on the X-road is at the minimum and begins to increase, i.e. all cars
crowd into X-road. When dx catches up with dy after some time-steps, Vx is
still larger than Vy. As a result, the dx goes on increasing to the maximum.
Thus the dx continues to oscillate between different maxima and minima.
The situation that almost all cars concentrate in one road with the other road
becoming empty repeats itself.
Fig. 3(left) shows a velocity-density (V −d) diagram made from the time-series
data in Fig. 2. The straight-line part of Vx = 1 corresponds to free flow on the
X-road and the curve (1/dx − 1) for dx > 1/2 corresponds to the jamming
state. When a point (Vx, dx) is sited on the line of the free flow, it approaches
a critical point of (dx = 1/2, Vx = 1) on the line as time passes and then goes
down on the curve of the jam. After the velocity decreases to a minimum point
where almost all cars are on the X-road, it turns back through another route
with lower velocity and returns to free flow again. Thus it travels around
clockwise on the different trajectories in the shape like a frame of glasses,
which are never the same trajectories.
A flow-density diagram (F − d) calculated from the same time-series data is
given in Fig. 3(right). The flow Fx on the X-road travels around clockwise
on the different trajectories through the free flow state, the jam state and the
mixed states of free flow region and jam region. The flow Fy travels around on
the flow-density space following the flow Fx trajectory with the conservation
relation Nx + Ny = 2dL, though it never coincides with the Fx trajectory.
Fig. 4 gives a spatiotemporal pattern of cars advancing on the X-road and
the Y -road, which corresponds to one turn in the flow-density diagram. A

Fig. 1. Crossroad system. Cars on X-road and Y -road are bound for east and
north, respectively. The roads are under the periodic boundary condition. Traffic
information is displayed on the board at the intersection. The driver chooses the
road with the shorter trip-time.
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Fig. 2. Time variations of (left) car densities and (right) velocities on the X- and
Y -roads for mean density d = 0.36.

Fig. 3. Trajectory in (left) velocity-density and (right) in flow-density space for
d = 0.36.

dot indicates a car in the figure. The light color region shows the free flow
configuration ...10101... of cars, where 1 indicates a car. The dark color region
shows the jam of the configuration such as ...011110....
We perform the similar simulations for the car densities of d = 0.5 and d =
0.62. The car densities oscillate complicatedly in the similar way. The flow
travels around clockwise on the different trajectories in the flow-density space.
The oscillation of the car density, i.e. the overcrowding of cars occurs in the
density range of 0.25 < d < 1.

3 Character of the Traffic Flow

We examine the character of these fluctuating traffic flows in the viewpoint of
chaos. We find an attractor of the density dx in the m-dimensional phase space
and the correlation dimension of the fluctuating dx. To embed the time-series
data of dx in the m-dimensional phase space, a set of points (dx(t), dx(t +
δ), dx(t+ 2δ), ..., dx(t+ (m− 1)δ) is conventionally made from the dx(t) data.
In the present system, dx(t) oscillates roughly periodically. The mean period
depends linearly on the length L of the road and is numerically expressed
as T = 2.87L for d = 0.36. Then we put δ = 250, which is usually set to
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Fig. 4. A spatiotemporal pattern of cars advancing on the X-road (left) and Y -road
(right), respectively. Cars move to the right and time increases from top to bottom.
The number of cells is L = 500 and the intersection is located at L = 100 from the
right edge.

some fractions of the mean period T in order to draw round trajectories.
The dimension m of the space is estimated from the correlation dimension
calculated by the Grassberger-Procaccia algorithm (GP method) [7]. In the
GP method, the following correlation integral Cm(ε) is calculated,

Cm(ε) = lim
N→∞

1
N2

N∑
i,j=1

H(ε− |r(i) − r(j)|), (1)

where H(t) is the Heaviside function, r(i) is the coordinate of the i-th point
in the m-dimensional space and |r(i) − r(j)| indicates the distance between
the i-th and the j-th points. The correlation integrals for the points of dx are
calculated in various m-dimensional spaces. They are assumed to be scaled as
Cm(ε) ∝ εν(m). The correlation exponent ν(m) is given from the gradient of a
linear part in the graph of Cm(ε) vs. ε expressed on log-log scale (Fig. 5(left)).
Thus ν(m) is calculated for various m, shown in Fig. 5(b). The correlation
dimension D2 is estimated from the infinite m limit as D2 = 2.4 (a fractal
value) for d = 0.36.
We put the embed dimension m to 3 from the correlation dimension D2 and
embed the time series data of dx in the 3-dimensional phase space. The strange
attractors for dx at d = 0.36 are plotted in the 3-dimensional phase space,
shown in Fig. 6(left). They look like the shape of two-dimensional crushed
springs. Next, we calculate the largest Lyapunov exponent of the attractors.
The largest Lyapunov exponent is estimated from the following parameter
λ(t, τ) [8]
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Fig. 5. (left) Correlation integrals Cm(ε) for m = 1, . . . , 8 and (right) correlation
exponent ν(m) for various embed dimensions m for d = 0.36.

Λi(t, τ) =
|ri(t+ τ) − r′i(t+ τ)|

|ri(t) − r′i(t)|
, λ(t, τ) =

1
Nτ

N∑
i=1

logΛi(t, τ), (2)

where ri(t) is the coordinate of the i-th point and r′i(t) that of the neighbor
point nearest i-th point at t = 0. logΛi(t, τ) is averaged for all possible points
of ri. Fig. 6(right) shows λ(t, τ) for dx for d = 0.36 calculated on the various
values of t and τ . We estimate the largest Lyapunov exponent to be +8 · 10−3

from the plateau on the curve in this figure. We apply this method also to the
dx in the density d = 0.5 and 0.62 and list the results λ(t, τ):

λ(t, τ) =

⎧⎪⎨
⎪⎩

8 · 10−3 for d = 0.36,
5 · 10−3 for d = 0.5,
6 · 10−3 for d = 0.62.

(3)

In these densities, the largest Lyapunov exponents are all positive. It means
that the density varies chaotically in the traffic flow on the crossing road
with the real time traffic information. The chaotic property originates from

Fig. 6. (left) Strange attractor of the density dx for d = 0.36. (right) the largest
Lyapunov exponent.
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the stochastic process included in the approach of car into the intersection
from both roads. The real-time traffic information lures the driver to a road
with shorter trip-time and causes too much concentration of the traffic. In the
present traffic model, all drivers are sensitive to the real-time information. It
does not improve the mean total flow of both roads.
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Summary. Detection, identification and tracking of multiple moving targets have
important applications in transportation and vehicle control areas. In this paper we
present our approach to detect, recognize and track the vehicles within the detection
region of a moving probe vehicle, based on the data collected by multiple sensors,
including LIDAR and GPS. This paper develops a methodology to group the LIDAR
measurements into targets, classify the targets as vehicles or fixed objects, and track
the vehicular targets within lanes using a Kalman-filter. One important feature of
this approach is that we track all of the observations in world coordinates, allowing
us to average over many samples and ideally many runs to differentiate between the
fixed objects (road boundaries) and moving objects (vehicles).

1 Introduction

Vehicle detection and tracking is important in various traffic analysis ap-
plications including traffic flow measurement, driver behavior analysis and
many vehicle control applications, e.g., [1], emergency braking systems and
autonomous driving systems, e.g., [2]. LIght Detection And Ranging (LIDAR)
is one tool used to detect the location of the nearest obstacle within a specific
angular range and it is starting to be deployed on probe vehicles to detect
other vehicles, pedestrians, road boundaries or other objects in traffic. Most
traffic studies employ detectors at a fixed location or do not collect information
on multiple vehicles. In contrast, a probe vehicle equipped with LIDAR can
collect information on vehicles over a range of both space and time. Most LI-
DAR sensors have the advantage of large detection region and ability to sense
the outline of the objects, but approaches have to be designed to associate
the observations from a given vehicle both in space and time.
This association problem is typically broken into the following three steps,
clustering, classification and tracking, as follows. Clustering is a process to
group the LIDAR measurements in a given frame from the same object to-
gether, classification sorts the clusters into several different classes, and track-
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ing is a process to associate clusters representing a given vehicle from frame
to frame. Several approaches have been designed to cluster the LIDAR range
data [3,4], recognize different types of objects from the clustered data [3,5,6,7]
and track the objects [8,4,9].
It remains difficult to accurately differentiate between vehicles and non-vehicle
objects (mostly road boundaries) in the classification process. Examples of
separating the road boundaries from vehicles are presented in [3,5,6], but the
methods still need to be improved to cope with partial occlusion problems,
detection errors and noise. Borrowing the idea of background subtraction from
the image processing field, this paper presents a new method to accurately dis-
tinguishing between road boundaries and vehicles in the LIDAR data stream
by constructing a density image of data points in a world coordinate sys-
tem. The density image is rich in information about the road boundaries and
shows advantage in retrieving the location of the road boundaries, particu-
larly when the probe vehicle makes multiple runs past the same location. The
boundary detection method, together with a clustering process and a Kalman-
filter based tracking algorithm, renders an effective approach to detect and
track the vehicles using the LIDAR range data.

2 Methodology

In this section, an approach is developed to cluster the LIDAR range data
based on their spatial distributions, classify the clusters as vehicle objects or
non-vehicle objects, and then track the vehicle objects from frame to frame.
The LIDAR sensor used in this study has an angular range of 180◦, an angular
resolution of ∆α = 0.5◦, a range limit of 80 m, a ranging resolution of 0.01
m, and a scanning rate of 3Hz. Fig. 1a shows the vehicle coordinate system
(x, y), with the origin at the probe vehicle position and the y axis along the
heading direction of the probe vehicle, superimposed on a world coordinate
system (X,Y ), whose origin is at some fixed location in the world, the Y axis
pointing north and X axis pointing east. These two coordinate systems will
be used in the following analysis.

2.1 Clustering

The clustering process divides the data points into m mutually exclusive sub-
sets, C1, . . . , Cm, each subset is a cluster representing the points from a same
object. The clustering process is carried out in the following two steps.

Step 1: group the data points based on their proximity. In this step, the
grouping rules are based on the grouping rule presented in [3] and two
types of constraints: velocity-spacing constraints and lane width con-
straints.
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Fig. 1. (a) Vehicle and world coordinate systems, (b) one frame of LIDAR data,
(c) the resulting clusters, each surrounded by a rectangle, and the shape category is
shown on the left side of each cluster.

Step 2: each cluster resulting from step 1 is classified into one of four shape
categories for future use in classification step. The four shape categories
are:
(1) ”V” shape: the cluster fits a vertical line segment.
(2) ”H” shape: the cluster fits a horizontal line segment.
(3) ”L” shape: the cluster fits two perpendicular line segments.
(4) ”O” shape: other than above three cases.

Fig. 1c shows the result of the clustering process on one frame of LIDAR data,
in which each cluster is surrounded by a rectangle and the shape category is
shown on the left side of each cluster.

2.2 Classification

The classification process tries to classify the clusters into two classes: vehicles
and non-vehicle objects. The classification process is developed in three stages:
density image construction, road boundary detection and final classification.

(1) Density Matrix Construction

By using supplementary devices including GPS and a gyroscope, the location
and heading of the probe vehicle can be measured so the LIDAR data points
measured relative to the vehicle’s coordinates can be converted into a world
coordinate system. At which point the density of LIDAR data are tallied in
world coordinates at 1 m resolution using data from multiple runs. Because the
vehicles are moving objects while the road boundaries are static, after several
runs the roadway will be covered with a relatively low density of observations
resulting from vehicles observations while the road boundaries will be much
denser because they are always observed in the same location.
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If the probe vehicle regularly passes through a congested region the den-
sity matrix may still contain high densities in the roadway, making difficult
the task of differentiating between vehicles and fixed objects. To compensate
this effect we look for evidence of vehicle passages, each cell in the matrix
is decreased by 10 each time a probe vehicle trajectory passes through that
location, and it is decreased by 3 each time an ”L” shape cluster is observed
at those coordinates since this shape usually corresponds to vehicles. Fig. 2a
shows the density image generated from 1 run only (no compensation), the
darker the cell the denser the number of observations. Fig. 2b-c show respec-
tively the density image generated from 11 runs no compensation, and the
same image after the compensation process (all negative values are forced to
zero in this figure).
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Fig. 2. The density matrix (a) from 1 run; (b) from 11 runs without compensation;
(c) from the same 11 runs with compensation (any negative values are forced to zero
in this figure for presentation only).

Comparing Fig. 2a and b, as the number of runs used in density image in-
creases, the contrast between the road boundaries and the area on the road
becomes larger. Comparing Fig. 2b and c, it can be seen that the compensa-
tion process further improves the contrast between road boundaries and the
locations on the road so that they are separable.

(2) Road Boundary Detection

The road boundaries can be detected based on the assumption of a simplified
road model in the vehicle coordinate system: the section of the road has left
and right boundaries at some yet to be determined x = w1 < 0 and x = w2 >
0, respectively, an orientation along the y axis and zero curvature. All of the
objects between the left and the right boundaries are assumed to be vehicles,
and all other objects are considered non-vehicle objects. The road boundary
detection process consists of following 3 steps.

Step 1: For each frame of LIDAR data, build a boundary-voting function
that describes how likely a point on the x axis is beyond a boundary.
Projecting the density matrix into vehicle coordinates, the density along
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the x axis is determined between −M and M (where the exact value of M
should be large enough to capture the entire road and is set empirically to
50 m for this study), e.g., Fig. 3a. A simple pulse detection method then
used to find the first peak on either side of the vehicle in this curve. Then
a boundary-voting function, which is piecewise constant, is built based
on the density function and the pulses detected to denote: likely road,
unsure, or likely off-road, e.g., Fig. 3b. This boundary-voting function
shows that the points beyond the detected peaks are likely to be beyond
the boundaries of the road, any points between the peaks are probably
road, and the points with a negative density are very likely to be roadway.
The boundary-voting function generated in this step in the i-th sample
(or frame) is denoted fi.

Step 2: Build boundary-voting functions based on the shape of the clusters
and the estimated tracking positions (as defined in Sec. 2.3 below) in each
frame. The process of deriving the shape and position based voting func-
tions is as follows. First for the i-th frame andN subsequent frames (where
N is large enough to extend beyond the range of the LIDAR) project the
future probe vehicle positions into the vehicle coordinate system of this
frame. For each cluster in the i-th frame, find the minimum absolute dis-
tance between the mean position of the points in the cluster and the
coordinates of the probe vehicle’s future trajectory along the road, x∗. A
boundary-voting function is built for each cluster based on its shape and
x∗, as shown in Fig. 4 for x∗ > 0. The previous classification is superseded
if the cluster is too large (width plus length exceeds 33.5 m) and instead
is labeled ”non-vehicle” shaped clusters. Finally, a boundary-voting func-
tion is generated for every estimated position of a tracked vehicle as well.
When x∗ < 0 the functions are simply reflected over the y axis. The result-
ing boundary-voting functions from Fig. 4 are denoted gk, and they are
used to modify the existing boundary-voting functions fk−T , . . . , fk+T , in
the adjacent frames (T is an integer constant, set to 5 in this study).

Step 3: Calculate the final boundary-voting function as a weighted sum of
all the boundary-voting functions built in steps 1 and 2. For frame k
corresponding to the given gk, adjust the fk in the adjacent frames by the
following weighting:

fk+t = fk+t + gk
T + 1 − |t|
T + 1

, t ∈ {−T, . . . , T}. (1)

Step 4: After completing steps 1-3 for all clusters that could influence the
current frame, the boundary positions are calculated for that frame. The
left boundary position is defined as wi

1 = max{x|x < 0, fi(x) > 0}, and
the right boundary position is defined as wi

2 = min{x|x > 0, fi(x) > 0}.
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Fig. 3. An example of pulse detection and the boundary-voting function: (a) the
stem plot of the density function as a function of x, with the pulse detected shown
in triangle markers; (b) the boundary-voting function corresponding to the density
function in (a), i.e., the resulting fi curve.

(3) Final Classification

Finally, each cluster in each frame is classified as vehicle or non-vehicle objects.
A given cluster is considered a vehicle if its coordinates fall on the road,
wk

1 < x∗ < wk
2 , otherwise it is classified as a non-vehicle object. Fig. 5 shows

the final boundary-voting function, the boundary locations, (w1, w2), and the
classification results of this frame of data.

-10 0 10
-2

-1

0

1

2

x (meter)

V Shape

x*

-10 0 10
-2

-1

0

1

2

x (meter)

H Shape

x*

-10 0 10
-2

-1

0

1

2

x (meter)

L Shape

x*

-10 0 10
-1.5

-1

-0.5

0

0.5

1

1.5

x (meter)

O Shape

x*

-10 0 10
-4

-2

0

2

4

x (meter)

Non-Vehicle Cluster

x*

-10 0 10
-5
-4
-3
-2
-1
0
1
2
3
4
5

x (meter)

Tracked Target Position

x*

w
ei

gh
t

w
ei

gh
t

w
ei

gh
t

w
ei

gh
t

w
ei

gh
t

w
ei

gh
t

Fig. 4. The boundary-voting function of objects with x > 0 for the four shapes, the
”non-vehicle” clusters and the estimated tracking positions. The curves are reflected
over the y axis for objects with x < 0.
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2.3 Tracking

The tracking process tries to associate the objects that are classified as vehicles
from frame to frame, keeping track of each vehicle individually. The tracking
algorithm is built based on a one-dimensional two-state Kalman-filter. For
each frame of LIDAR data the tracking process contains two sub-processes,
estimation and matching, as follows.

(1) Estimation

Based on the historical trajectories of the targets from the previous frames,
their estimated positions in the current frame can be calculated using a
Kalman-filter (the detailed process of Kalman-filtering based tracking algo-
rithm can be found in [9]). This work tracks the clusters in vehicle coordinates
using independent filters for horizontal and vertical movements.
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Fig. 5. (a) The boundary-voting function and the boundary locations; (b) the clas-
sification result, the points surrounded by rectangles are distinct clusters classified
as vehicles.

(2) Matching

The matching process matches each estimated position to either a measured
position or a newly initialized target. The matching process uses the following
two strategies:
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Strategy 1: lane-matching strategy: first distribute the measured positions
(MP) and the estimated positions (MP) laterally across the road into a
series of lane regions, where a given cluster is considered to be in the
k-th lane provided it satisfies, k · 3.6m − 1.8m ≤ x∗ < k · 3.6m + 1.8m.
Then the EPs and MPs are matched in order within each lane. A weighted
matching cost is calculated for each pair of matched EP and MP as c =
a(x̃i−xj)2+b(ỹi−yj)2, where a = 9 and b = 1 were established empirically
to penalize discrepancies in the x direction greater than the y direction.
If any pair has a cost c > cmax, the maximum tolerable matching cost, all
of the matching in the corresponding lane is cancelled and the matching
will be determined by strategy 2.

Strategy 2: Without distributing the EPs and MPs into lane regions, find the
lowest possible cost of matching an unmatched EP to an unmatched MP;
if the lowest cost found is below cmax, match the corresponding EP and
MP, remove them from the unmatched set, and find the lowest remaining
matching cost and repeat until the lowest matching cost is above cmax,
match the rest unmatched MPs (if any) to newly initialized targets.

After the matching is complete for a frame of LIDAR data, the Kalman-
filter parameters are updated for the estimation step of the next frame [9].
Fig. 6 shows the tracking results from two consecutive frames. The tracking
numbers attached to the vehicle clusters show the association between the
detected vehicles in the two frames.
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Fig. 6. Tracking results from two consecutive frames: the numbers attached to the
vehicle objects are the tracking numbers describing the association between the two
frames; (a) is the earlier frame, and (b) is the later frame.
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3 Results

The clustering, classification and tracking processes are applied to probe ve-
hicle LIDAR data collected on a pre-defined route in Columbus, Ohio, USA.
Some results are verified manually against video from a camera mounted on
the probe vehicle.
The overall rate of error in the results are low, and the results show that the
approach proves to be reasonable and effective in most of the frames. However,
the quality of the results varies due to traffic conditions, more errors occurred
in congested traffic than under light traffic conditions. Examples of the three
typical errors found in the verified samples are shown in Fig. 7 and discussed
below.

Error type 1: Over-segmenting of one vehicle. In the clustering process one
vehicle may be separated into more than one cluster due to partial occlu-
sions. As shown in Fig. 7a, clusters numbered 5558 and 5572 are actually
from the same vehicle. The reason of this type of error is partial occlusion
of the vehicle and a low distance threshold setting for the measurement
angle in step 2 of the clustering process.

Error type 2: Failure to recognize an irregular-shaped vehicle. As shown
in Fig. 7b, on the left side of the future probe vehicle trajectory, some
vehicle features are incorrectly classified as road boundaries. From the
video images, the object on the left is found to be a semi-truck. Sometimes
trucks appear not to be a regular ”H” or ”L” shaped objects, as most
vehicles are expected to be, and this shape problem increases the value
of the boundary-voting function, resulting in classification of the truck as
non-vehicle object.

Error type 3: Incorrect classification due to GPS errors. As shown in Fig. 7c,
the future probe vehicle trajectory comes very close to a section of the road
boundary. The sudden shift evident in the figure is infeasible and arises due
to incorrect positions given by the GPS receiver. In this case the incorrect
GPS positions lead to an inaccurate future probe vehicle trajectory and
then result in incorrect classification results for the clusters.

4 Conclusions

The clustering, classification and tracking methods presented herein have sev-
eral advantages. First of all, in the classification process, the road boundary
detection method is effective in separating the vehicles from the road bound-
aries. Its performance only improves when the number of runs on the same
route is increased. Secondly, the road boundary detection method is robust to
most noise except GPS position errors. Finally, the clustering, classification
and tracking processes give a comprehensive analysis and reasonable interpre-
tation of the LIDAR range data.
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Fig. 7. Three typical errors found in the result verification process: (a) an example
of over-segmentation; (b) an example of irregular shaped objects; (c) an example of
GPS position errors.

The main limitation of the designed approach is that it is so sensitive to GPS
errors, which can result in wrong position or orientation of the probe vehicle
and finally incorrect classification results. The problem can be addressed with
inertial navigation tools that will allow for dead-reckoning. The approach also
needs to be improved to solve the over-segmentation problem and cope with
irregular shaped vehicles that occasionally appear in the LIDAR data. The
former can be addressed in part by looking at the evolution of the groups
over time, identifying cases where two targets merge or split off from a single
target. On-going work is progressing on the following improvements: (1) auto-
matic detection of GPS measurement errors when the probe vehicle trajectory
overlaps with or becomes very close to the road boundaries, (2) combining the
clustering and tracking processes together to solve the over-segmenting prob-
lem, (3) utilize multiple hypothesis approaches to decrease the error rate [10],
(4) Better verification methods to allow for the processing of much more data
than is feasible with manual verification.
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Summary. Using vehicle trajectories for a motorway collected from a helicopter,
and a newly developed approach to parameter identification, this paper provides
new empirical evidence of multi-anticipative car-following by estimating the driver-
specific parameters of the different multi-anticipative car-following models. We in-
vestigate the nature of the multi-leader stimuli, providing insight into the number
of vehicles ahead to which drivers react and the kind of stimuli drivers respond to.
The paper also shows that there is large inter-driver variability in multi-leader driv-
ing behavior. The implications of our research findings for microscopic modeling are
discussed as well.

1 Introduction

Several researchers have suggested that driving behavior cannot be described
adequately by only considering the vehicle directly in front. Drivers an-
ticipate on traffic conditions further downstream by considering also the
pre-predecessor or second-leader. The notion of multi-anticipative behavior
reaches back to the late sixties, when the well known car-following model of [1]
was extended by [2]. More recently, [3] extended the model of [4] to include
multiple vehicle interactions, showing how the reaction to multiple vehicles
stabilizes the dynamic behavior of the model, while retaining the fundamen-
tal macroscopic properties of the traffic flow. Moreover, the multi-anticipative
car-following model is able to describe synchronized traffic flow conditions.
In [5], a similar view is taken as the Ideal Driver Model (IDM) is generalized
with multi-vehicle interaction behavior.
The aim of our investigation is to provide empirical evidence for multi-
anticipative car-following behavior, while at the same time providing insight
into the type of stimuli to which a driver reacts. Furthermore, the availability
of microscopic data gives us the opportunity to quantify the inter-driver dif-
ferences in the car-following parameters, which turn out to be very important
to correctly describe multi-anticipative car-following behavior.
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2 Multi-Anticipative Car-Following Models

In this paper the models of [2] and [3] are taken as a starting point to in-
vestigate multi-leader car-following behavior from empirical trajectory data.

2.1 Bexelius Model Family

A straightforward model incorporating multi-anticipatory behavior is the
model of Bexelius, first proposed in [2]:

v̇i(t) =
m∑

j=1

αj (vi−j (t− τ) − vi (t− τ)) =
m∑

j=1

αj∆v
(j)
i (t− τ) . (1)

In (1), αj for j = 1, ...,m describes the sensitivity with respect to the relative
speed ∆v

(j)
i of vehicle i− j (the j−th vehicle ahead); τ denotes the reaction

time. The Bexelius model provides a simple description of multi-anticipative
car following behavior, enabling mathematical analysis of for instance platoon
stability. The model has several drawbacks. For instance, the additive form
may not always correctly capture multi-anticipative behavior. A driver may
respond to the second (or third, or fourth) leader when the relative speed
with respect to that specific leader is large. This is why we propose (and later,
cross-compare) the following, simple modifications of (1) (Bexelius type 2):

v̇i(t) = α̃min
{
∆v

(1)
i (t− τ) ,∆v(2)

i (t− τ) , ...,∆v(m)
i (t− τ)

}
(2)

and (Bexelius type 3):

v̇i(t) = min
{
α̃1∆v

(1)
i (t− τ) , α̃2∆v

(2)
i (t− τ) , ..., α̃m∆v

(m)
i (t− τ)

}
. (3)

The fact that drivers only respond to relative speeds and not to, for instance,
distances may arguably not yield a realistic description car-following behavior.
The Helly model (and its generalizations) discussed next aims to remedy that
by including a distance dependent factor as well.

2.2 Generalized Helly Models

The linear model of Helly [6] is given by the following relation:

v̇i(t) = α1∆v
(1)
i (t− τ) + β1

(
∆x

(1)
i (t− τ) − S

(1)
i

)
(4)

where the desired distance is defined by a simple linear function of the driving
speed

S
(1)
i = si + Tvi . (5)

In Eq. (4), ∆x(1)
i denotes the distance between vehicle i and the vehicle di-

rectly ahead; S(1)
i denotes the desired distance, which is assumed to be a
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function of the speed vi(t); β1 is the sensitivity with respect to the difference
between the current distance ∆x(1)

i and the desired distance S(1)
i .

To generalize the Helly model with multi-anticipatory behavior, we can for
instance include the speed relative to the second leader, or we can include the
distance with respect to the second leader. We propose the following Gener-
alized Helly (GH) model:

v̇i(t) =
m1∑
j=1

αj∆v
(j)
i (t− τ) +

m2∑
j=1

βj

(
∆x

(j)
i (t− τ) − S

(j)
i

)
(6)

where j = 1, . . . ,m denotes the leaders to which a driver responds. In (6), m1

and m2 denote the number of leaders with respect to whose relative speed
or deviation from the desired distance a driver response. We will refer to the
model using the notation GH-m1-m2 in the remainder of the paper. To keep
the number of parameters limited, we propose the following expression for the
desired distance S(j)

i :
S

(j)
i = S0 + jTvi . (7)

2.3 Model of Lenz

A recent approach to multi-anticipatory car-following modeling is due to [3]
(which will be referred to as the Lenz model in the remainder):

v̇i(t) =
m∑

j=1

κj

[
V

(
∆x

(j)
i (t)
j

)
− vi(t)

]
(8)

where V (∆x) is a equilibrium speed function describing the speed of the fol-
lower in relation to the distances to the vehicles ahead; the parameters κj

denote the sensitivity to the jth leader. Please note the direct relation with
the fundamental diagram describing the macroscopic properties of traffic flow.
Hoogendoorn and Ossen [7] showed poor average model performance com-
pared to the other car-following models. To improve performance, we propose
to include a true reaction time τ as follows:

v̇i(t) =
m∑

j=1

κj

[
V

(
∆x

(j)
i (t− τ)
j

)
− vi(t− τ)

]
. (9)

For the remainder of the paper, the following specification for the equilibrium
speed V is used:

V (∆x) = v0

[{
1 + exp

(
1000
γ∆x

− 10
2.1

)}−1

− 5.34 · 10−9

]
, (10)

where v0 (the free speed) and γ are parameters to be estimated from the data;
see [3] for details.
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3 Parameter Identification Approach

The driver-specific parameters of the considered car-following models are es-
timated using microscopic traffic data collected for individual drivers. The
vehicle trajectories used are collected by an airborne data collection system,
and describe the positions xi of all vehicles in the observed traffic stream at
fixed time instants tk. For the data considered here, positions are available
each 0.1 s, so tk = t0 + 0.1k. By using each trajectory separately, we in fact
find the car-following parameters for one specific driver.

3.1 Generalized Form of Car-Following Models

In discretized form all models considered here can be expressed as follows:

vi(tk+1) = vi(tk) + h · ai(tk|θ) (11)
= vi(tk) + h · ai(y(tk),y(tk − τ)|θ)
= f(h,y(tk),y(tk − τ)|θ)

In Eq. (11), θ denotes the set of parameters describing the car-following behav-
ior, such as the reaction time, the sensitivity, etc.; h > 0 denotes the time-step
used for discretization of the model. The vector y(tk) denotes the state that is
relevant for driver i at time instant tk. This state includes all stimuli that are
present in a specific model. We assume that the relation between the speed
data and the predicted speed is as follows:

vobs
i (tk+1) = vi(tk+1) + ε(tk) = f(h,y(tk),y(tk − τ)|θ) + ε(tk) . (12)

The error term ε(tk) is introduced to reflect errors in the modeling, similar
to the error term used in multivariate linear regression. Note that the error
terms ε(t) are generally serially correlated, which will be handled later in the
section. For now, let us assume that the error term is normally distributed
with mean zero and standard deviation σ.

3.2 Maximum Likelihood Estimation

Since we can generally observe (either directly or indirectly) the state y(tk)
from our available data, we can use Eq. (12) to determine a prediction for
the speed. According to the model, the difference between the prediction and
the observation follows the normal distribution with mean 0 and standard
deviation σ. Assuming that the errors are uncorrelated, the probability of a
set of observations k = 1, ..., n can be determined from Eq. (12), yielding the
log-likelihood L̃ of the sample:

L̃(θ, σ2) = −n
2

ln
(
2πσ2

)− 1
2σ2

n∑
k=1

(
vobs

i (tk+1) − f(h,y(tk),y(tk − τ)|θ))2 .
(13)
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Maximum-Likelihood (ML) estimation involves finding the parameters that
maximize the log-likelihood. A necessary condition for the optimum allows
determination of the standard deviation:

∂L̃(θ, σ2)
∂σ2

= 0 =⇒ σ̂2 =
1
n

n∑
k=1

(
vobs

i (tk+1) − f(h,y(tk),y(tk − τ)|θ))2 .
(14)

The ML estimate for the variance is given by the MSE of the predictions
and the observations. For the remaining parameters, the ML estimates can be
determined by numerical optimization.
Using the approach proposed in [8], serial correlation is dealt with by trans-
forming the non-linear regression mode. The estimates will be the same as in
case of the non-transformed model, and only the error term will be different,
enabling the correct statistical analysis of the model. The likelihood-ratio test
is used to cross-compare two different car-following models. The likelihood-
ratio test accounts for the number of parameters thereby enabling correctly
comparing simple and complex models.
Despite the fact that the presented approach is very generic, in the remainder
it will be applied only to relatively simple models with at most six parameters.
The main reason for this is the fact that the trajectory data only contains
sufficient ‘information’ to identify a relatively small number of parameters.

4 Trajectory Data Used

The vehicle trajectory data used here was collected using a new data collec-
tion approach [9] using an air-borne observation platform (a helicopter). Using
dedicated image processing software, vehicles are detected and tracked. This
yields trajectory data covering approximately 500 m of motorway roadway
stretch; the spatial resolution is smaller than 40 cm, while the temporal res-
olution is 0.1 s. Two datasets have been used in the parameter identification,
both pertaining to the afternoon rush-hour. One of these was collected during
the afternoon peak hour at the three-lane A15 motorway to the South of the
Dutch city of Rotterdam (referred to as the Waalhaven site). During the en-
tire period in which data were collected, congestion was quite heavy (average
speeds of 7 m/s). The other dataset (the Everdingen site) was collected at
the A2 motorway near the Dutch city of Utrecht and is characterized by stop-
and-go traffic conditions. From the collected data, all the relevant variables
(positions, distances, speeds, relative speeds, etc.) can be determined.

5 Overall Estimation Results

The average performance of a particular model is expressed in terms of the
average log-likelihood value (i.e. averaged over all driver-specific estimations).
For each individual driver we establish which of the model performs best in



692 Serge P. Hoogendoorn et al.

Everdingen Waalhaven

Model m L̃ % ref # best L̃ % ref # best

CHM (ref) 1 -550.6 0.0% 2 -1098 0.0% 3

Bexelius (GH-2-0) 2 -495.3 10.0% 5 -1024 6.8% 4

Bexelius (GH-3-0) 3 -467.3 15.1% 4 -980.1 10.8% 1

GH-1-1 2 -453.2 17.7% 8 -892.9 18.7% 8

GH-2-1 2 -408.4 25.8% 12 -832.5 24.2% 24

GH-3-1 1 -397.8 27.8% 18 -809.9 26.3% 23

GH-1-2 2 -438.4 20.4% 7 -862.5 21.5% 4

GH-1-3 3 -426.2 22.6% 8 -838.6 23.6% 7

GH-2-2 2 -394.9 28.3% 8 -790.7 28.0% 17

GH-m1-m2 72 91

Bexelius type 2 2 -558.9 -1.5% 4 -1628 -48.2% 1

Bexelius type 3 2 -548.1 0.5% 16 -1613 -46.9% 0

Lenz 2 -467.5 15.1% 52 -854 22.2% 45

Total 144 228

Table 1. Overview of estimation performance for the considered models. Note that
the differences in the values of the log-likelihood between the two sites (Everdingen
and Waalhaven) are primarily caused by the average number of sample points of
which a single observation consists.

log-likelihood terms. Best implies that the considered model passes the log-
likelihood test for the optimal parameter settings when compared to any of
the other models, including a zero-acceleration reference model. This kind of
analysis into inter-driver variability is discussed in detail in [10].

5.1 Model Performance Comparison

Tab. 1 shows an overview of the performance of the considered models, in-
dicating the number of leaders m, the average log-likelihood L̃, the relative
improvement of the log-likelihood compared to the CHM model, and the num-
ber of times a specific model performed best.
The results depicted in Tab. 1 provide valuable insights into nature of multi-
anticipative of car-following behavior. Let us start by concluding that includ-
ing multiple leaders yields a much better description of car-following behavior,
as can be seen from the average values of the log-likelihood of the multi-leader
models compared to the single-leader models. From a behavioral point of view,
this result provides empirical evidence that drivers do not only react on their
direct leader, but anticipate further downstream, reacting on the behavior of
the second and even the third leader. The extent in which this occurs will be
considered in the next section.
We see that the Generalized Helly models with multiple leaders on average
have the best log-likelihood values. In particular, the GH-2-2 model has an
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average log-likelihood value of -394.9 and -790.7 for the Everdingen and Waal-
haven datasets respectively. The average improvements over the reference
CHM model are respectively equal to 28.3% and 28.0%. In comparison, the
Lenz model shows improvements of only 15.1% and 22.2% (compared to the
CHM model) respectively for the two sites. Note that also the performance of
the GH-3-1 model is also very good. This implies that including a third leader
will further improve the description of car-following behavior.
From the respective model performances, we can also conclude that including
the relative speed differences with respect to the second and third leader (GH-
2-1 and GH-3-1 models) yields a larger improvement than including the multi-
leader differences between the current and the desired distance (i.e. the GH-
1-2 and GH-1-3 models). It appears that regarding the second, third leader,
drivers are more susceptible to relative speeds than to distances (although
from a human factors viewpoint, the opposite might be expected).
Note finally that, although the percentage for which a specific model of the
Generalized Helly model family performs best is small (e.g. the GH-2-2 model
is only optimal for predicting driving behavior in 28.3% and 12.4% of all cases
for the Everdingen and Waalhaven sites), we see optimal performance in 50.0%
and 66.4% of the cases, for the respective measurement sites if we look at the
entire family of Generalized Helly models. This leads to the conclusion that
the Generalized Helly models are well suited to describe multi-leader driving
behavior. Nevertheless, the percentage of drivers for which the Lenz model
yields an optimal description is considerable (for 24.1% and 32.8% of all drivers
respectively for the two data sets). This provides evidence for the hypothesis
that multi-anticipative behavior cannot be captured correctly by one single
model type. Rather, different modeling paradigms – i.e. the Generalized Helly
models and Lenz type models – are required. This is in line with other findings
regarding variability in driving behavior [10]. That said, the GH model family
turns out to provide on average the best description of car-following behavior.

6 Analysis of Generalized Helly Models

This section provides an analysis of the Generalized Helly models GH-3-1 and
GH-2-2. These models have been chosen due to their relative good perfor-
mance.

6.1 Parameter Distribution of GH-3-1 Models

Let us start by considering the GH-3-1 model. We are interested in the corre-
lations between the parameters of the model. Tab. 2 shows the results of the
analysis which was established by considering all drivers for which the GH-3-1
model performed best (in 39% of all cases). Note also that the table shows
the average results for both datasets (Everdingen and Waalhaven).
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τ α1 β1 α2 α3

average 1.213 0.289 0.060 0.065 0.072

std. dev. 0.281 0.307 0.083 0.113 0.133

correlation matrix

τ α1 β1 α2 α3

τ 1 -0.300 -0.255 -0.138 -0.027

α1 1 -0.056 -0.161 0.012

β1 1 0.179 -0.100

α2 1 -0.159

α3 1

Table 2. Estimation results for GH-3-1 model. The table shows the average param-
eter estimates, the standard deviation and the inter-driver parameter correlations.

Note that the estimate for the reaction time τ is of the correct order, given
the findings reported in literature. The table shows that drivers are on aver-
age most sensitive to the behavior of first leader, as is to be expected. The
sensitivities with respect to the second and third leader are approximately of
the same size. The sensitivities are approximately 25% of the sensitivity to
the first leader. We can thus again conclude that multi-anticipative behavior
plays a significant role when describing car-following behavior. It is also inter-
esting to see that the sensitivity with respect to the second and third leader
is not declining. Note also that the standard deviations are very high, in par-
ticular regarding the sensitivities to the relative speed. This implies that the
inter-driver differences in the response to the first, second and third leader
are large. In part, this is explained by the fact that the vehicle composition is
heterogeneous (person-cars, trucks, etc.). Also note that looking at the inter-
driver correlations, we can conclude that these are relatively small (all are less
than 0.35).
Interestingly, if we compare the sum of the sensitivities αi, for i = 1, 2, 3 to the
sensitivity α1 in the original Helly model (GH-1-1), we see that these values
are both approximately equal to 0.4 s−1. In a way, the sensitivity is spread
out over the different leaders. This holds approximately for all models of the
Generalized Helly family.

6.2 Parameter Distribution of GH-2-2 Models

Tab. 3 shows the results of the analysis. Note that these results only pertain
to the drivers for which the GH-2-2 model outperformed the other two models
(which occurred in 25% of all cases).
From Tab. 3 the average values of the reaction time and the sensitivities be-
come apparent. Although the sensitivities describing the response to the direct
leader are larger than those describing the response to the second leader, we
can again conclude that the latter is considerable. This holds in particular
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τ α1 β1 α2 α3

average 1.231 0.278 0.052 0.107 0.021

std. dev. 0.371 0.272 0.079 0.107 0.039

correlation matrix

τ α1 β1 α2 β2

τ 1 -0.338 -0.254 0.084 -0.257

α1 1 0.131 -0.200 -0.131

β1 1 0.112 0.363

α2 1 -0.066

β2 1

Table 3. Estimation results for GH-2-2 model. The table shows the average param-
eter estimates, the standard deviation and the inter-driver parameter correlations.

τ κ1 κ2 v0 γ

average 1.035 0.196 0.150 32.255 7.093

std. dev. 0.397 0.205 0.206 7.323 7.124

correlation matrix

τ κ1 κ2 v0 γ

τ 1 -0.143 -0.143 0.061 -0.002

κ1 1 0.290 -0.086 0.457

κ2 1 -0.236 0.090

v0 1 -0.229

γ 1

Table 4. Estimation results for Lenz model (with two leaders). The table shows the
average parameter estimates, the standard deviation and the inter-driver parameter
correlations.

for the parameter α1, which is only two times as large as the parameter α2,
meaning that the multi-leader behavior is indeed considerable. Also note that
the standard deviations in the parameter values are relatively large, in par-
ticular for the parameters β1 and β2. The correlations between the parameter
values are small.

7 Parameter Distribution of the Lenz Model

Let us now consider the Lenz model. Tab. 4 shows an overview of the average
parameter estimates, the standard deviations, and the correlation between
them, determined for all drivers for which the Lenz model performed better
than the two other models (in 36% of the cases). In particular note the average
value of the reaction time of 1.04 s, which was neglected in the original work
of Lenz et al. [3].
The table shows that the sensitivity to the first leader is higher than the
sensitivity to the second, although the differences are not particularly large.
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The results also show that the estimate for the free speed is in line with our
expectations (recall that the data was collected from two motorways, which
have a maximum speed of 33.3 m/s). The correlations between the parameters
are not particularly high: all are less than 0.5. The variances are however quite
substantial, again indicating large differences between the drivers.

8 Conclusions and Recommendations

In this paper we have applied a new maximum likelihood estimation approach
to identify driver-specific parameters of multi-anticipative car-following mod-
els using vehicle trajectory data. The approach allows for statistical analysis
of the model estimates. For instance, the standard error of the parameter es-
timates can be determined, as well as the correlation of the estimates. Also,
we can easily test whether a specific model outperforms the other models us-
ing the likelihood-ratio test. The estimation approach has been applied to a
number of existing as well as new car-following models that somehow include
multi-anticipative behavior. The estimation results show that incorporating
multi-anticipative behavior substantially improves the extent in which the
models can explain driver behavior. In a several number of cases it turns out
that the best performing models include three leaders. Drivers appear to be
more responsive to the relative speed than to the difference between the de-
sired distance and the actual distance with respect to the second and third
leader.
Not all multi-anticipative behavior can be described by one single modeling
paradigm. Rather, it turns out that different modeling approaches are needed
to correctly explain driving behavior for specific drivers. Specifically, gener-
alized Helly models and the model of Lenz both show good performance,
but generally for different drivers. This is in line with other findings regard-
ing variability in driving behavior [10]. Based on inter-driver variances in the
parameter estimates, it turns out that differences between drivers who are de-
scribed by the same model are also large. From this we can conclude that the
extent in which drivers react to the second and the third leader can vary sub-
stantially between drivers. Inter-driver parameter correlations are generally
small.
These findings have important implications to the current microscopic sim-
ulation practice. For one, most of the commercial simulation models include
only the first leader, while in fact multiple leaders are to be considered to cor-
rectly describe driving behavior. Furthermore, differences in driving behavior
are generally described – if at all – by considering a limited number of homo-
geneous groups of drivers which differ only in the parameter values describing
their behavior. Our analyses have shown that on top of different parameter
values, different models are needed to correctly describe driver heterogeneity.
Such inter-driver differences are studied in detail in [10].
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Future research is aimed at identifying more involved multi-anticipative car-
following models, including more leaders, but also including higher model
complexity. This however requires modifications to the parameter estimation
procedure proposed here, in such a way that it would be possible to include
data from multiple drivers in order to have sufficient data available to identify
the multitude of model parameters. Another approach would be to collect
more data for a single driver. This requires improvements to the current data
collection system. Current research is guided in both directions.
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Summary. We present results of a statistical analysis of empirical floating-car data.
Our investigations are based on analyzing the time series of four basic quantities
namely velocity, velocity difference, spatial gap and the acceleration associated to
some instrumented cars. We try to identify the moving phases of the instrumented
vehicle according to the statistical properties of its velocity time series. Moreover, by
exploring the two-point joint probabilities, we propose a new approach for modelling
vehicular dynamics based on the floating car data.

1 Introduction

Empirical observations on the spatio-temporal structure of traffic flow have
revealed inherent complexities both on microscopic and macroscopic levels [1–
12]. Quite recently significant progress has been made towards the thorough
understanding of traffic flow dynamics by introducing several improved mod-
els [13–19]. Inevitably, in order to compare the microscopic single-vehicle pre-
dictions of each model to reality, one has to know the empirical behaviour of
typical cars in different traffic states. So far the empirical data were mainly
gathered via induction loops installed at fixed locations of the road. Although
one obtains useful information about the flow, this scheme is inadequate to
provide the necessary information about the long time behaviour of individual
cars. In order to get insight into the real-life driving behaviour of individual
drivers, one needs a time record of individual cars. Principally, this type of
data can be obtained by instrumentation of a car with lidar/radar detectors.
These detectors can simultaneously measure the velocity and the accelera-
tion of the instrumented car, the velocity of its leader and the spatial gap
to its leader. This floating-car data can be used to test the validity or the
development of more sophisticated models of vehicular movement.
It is our major objective in this paper to report on a detailed statistical anal-
ysis of empirical floating car time series of four basic quantities i.e., velocity,
velocity difference, spatial gap and acceleration/deceleration. On the account
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of this analysis, we try to classify the driving states of the floating car. This
can give useful information about the traffic state in the environment of the
floating car. Besides, we try to introduce a new approach for treating the
car-car interaction on more realistic grounds.

2 Time Series Analysis of Floating-Car Data

If we look at the velocity record of a typical vehicle during a finite time inter-
val, we would certainly realize that this velocity, v(t), is a seemingly erratic
and fluctuating function of time and its statistical properties depend on the
global traffic congestion around the vehicle. Similar arguments correspond to
the other single-vehicle quantities such as the spatial gap, or headway as is
often called, to the leader vehicle g(t), the vehicle acceleration a(t) and the
velocity difference ∆v(t) = vl(t)− v(t) to its leader vehicle (vl(t) denotes the
leader’s velocity). It is our objective in this paper to introduce some char-
acteristic aggregate statistical functions which give us a better insight into
the stochastic aspects of traffic flow and enables us to establish a more real-
istic modelling framework of the driving rules and strategies. We shall now
focus on the velocity of a particular vehicle say i. In empirical measurements,
time is measured in discrete multiples of τ and the position of each vehicle is
recorded as the multiple of a space grid denoted by δx. The time and space
discretisation induces a discretisation for the velocity denoted by δv which is
given by δv = δx

τ . Regarding this fact, the integer-valued velocity ranges from
0 to vmax = nmaxδv. By this notion, the velocity time series gives rises to
the integer-valued velocity distribution function denoted by P i(v; δv, T ). It is
the relative frequency of the integer velocity v of the i-th vehicle during the
period [n1τ, n2τ ].

3 Empirical Results

In this section we obtain some of the distribution functions in the above
sections. We recall that most of the present data in the literature has been
gathered through loop detectors at various points of the road [11, 12, 21–26].
We do not intend to discuss these types of data. The readers can refer to re-
view articles and related papers in the field [4, 5, 9, 10, 12, 21–23, 25, 26]. There
are basic differences between floating-car data and those obtained from fixed
loop detectors. Each of these types of data give their own useful informa-
tion. Specifically, fixed detectors measure the local properties of traffic flow,
namely flow, occupancy, average velocity etc, at certain locations of the road.
However, they can not give us illustrative information about the individual
cars behaviour unless lots of detectors are installed which seems infeasible. On
the other hand, to gain significant insight into the vehicular dynamics, it is
salient to analyse the car-car interaction. Fixed detectors are inadequate and
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unable to provide enough information for such vital analysis. Therefore, hav-
ing floating-car data seems unavoidable [27–29]. Recently there has been an
increasing attempt to gather floating vehicle data mainly in order to calibrate
the parameters needed for the modelling of vehicular dynamics in the frame-
work of car-following models [20, 31–34]. The data we have analysed have been
gathered from some equipped cars on German highways [30]. They contain
time series of v, ∆v, g and a. These four quantities have been recorded at 0.1 s
intervals. The leader velocity is measured with radar while the follower velocity
is measured by Lidar technique. The number data in each figure is ten times
the duration of measurement. The precision of acceleration is 0.125 m/s2.
Let us begin by showing the time series of v, ∆v, g and a. The following sets
of figures exhibit the time series of above-mentioned quantities for different
driving situations. We have analysed the statistical properties of these time
series by taking direct time averaging. Based on their statistical properties,
four relatively different driving states have been identified. We call them fast
(F), relatively fast (RF), slow (S) and very slow (VS) states. Fig. 1 considers
the fast driving state.
Generally speaking, the relative deviations are small. We have evaluated the
temporal auto-correlation of v,∆v and g. All of them are weakly correlated
over time scales up to 10 s. and anti correlated for τ greater than 10 s. As
can be seen from the graphs (and confirmed by mathematics) there is strong
anti-correlation between velocity and the velocity difference to the leader up
to 10 s. Between velocity and the gap, One observes a weak short correlation
up to 3 s and a strong anti correlation between 4 s and 20 s. Between g and
∆v we observe a rather strong correlation up to 20 s.
Next (Fig. 2) we consider a relatively fast driving state. The driving behaviour
can be inferred by looking at the velocity time series. In comparison to the fast
driving time series, one observes that fluctuations are enhanced. The average
velocity of the car has reduced to 28 m/s. The range of velocity is wider and in-
cludes 22 to 32 m/s. The velocity standard deviation has notably increased to
2.56 m/s. Consequently the velocity relative deviation has sharply increased.
Concerning the velocity difference, both the average, and its standard devia-
tion have increased. For the gap, both standard and relative deviations have
increased. Auto-correlation analysis shows that the velocity is correlated up
to 18 s while ∆v and g are more correlated (up to 30 s). v and g are correlated
up to 6 s and uncorrelated after 6 s. Similar arguments apply to the case of
v and ∆v. Concerning the velocity difference and the gap, they are weakly
correlated up to 5 s and then become uncorrelated (τ > 5 s).
Fig. 3 exhibits the floating car behaviour in a slower driving state. As ob-
served, the average velocity is further reduced to 19 m/s. This may corre-
spond to moving in a higher congested environment. Compared to Fig. 2,
velocity standard and relative deviations are notably reduced. However the
velocity difference turns out to be more erratic since its standard deviation
has increased in comparison to Fig. 2. Furthermore, the gap fluctuations are
suppressed. Besides the value of the average velocity, a distinctive feature of
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Fig. 1. Single-vehicle time series: velocity, velocity difference, gap and acceleration
for an 80-second drive in fast driving state. Statistical properties of the time series
are as follows: v = 31.6 m/s, σv = 0.64 m/s; ∆v = 0.1 m/s, σ∆v = 0.57 m/s;
g = 44.9 m, σg = 4.15 m.

the time series of Fig. 2 is the reduction of the velocity standard deviation.
This may be related to a high degree of synchronisation of the vehicle’s veloc-
ity to its leader’s velocity. Since the driving interval is not long enough, the
auto- and cross-correlations do not give rise to meaningful results.
The next set of figures (Fig. 4) exhibits the floating car behaviour in a very
much slow driving situation. Although the average velocity is very small, the
velocity standard deviation is relatively very large leading to a large velocity
relative deviation. In comparison to Fig. 3, the velocity standard deviation has
a considerable larger value. Concerning velocity difference, the average value is
nearly zero but its standard deviation is larger than the value in Fig. 3. Finally,
while the average gap has decreased to 8 m, the gap standard deviation is
relatively high. The very slow state has the highest relative deviation of gaps
among the times series discussed so far. v and g are correlated up to 20 s.
In sharp contrast, ∆v is correlated only over short time scales up to 3 − 4s.
Concerning the cross-correlations, there is correlation between v and g up to
100 s. v and ∆v are nearly uncorrelated. Between ∆v and g one observes a
fluctuating cross-correlation between negative and positive values.
We have summarized the statistical properties of the above time series denoted
by fast (F), relatively fast (RF), slow (S) and very slow (VS) in Table 1.
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Fig. 2. Single-vehicle time series: velocity, velocity difference, gap and acceleration
for a 200-second drive in a relatively fast driving state. The statistical properties
are as follows: v = 28.1 m/s, σv = 2.56 m/s; ∆v = 0.27 m/s, σ∆v = 1.21 m/s;
g = 34.5 m, σg = 11.7 m.

traffic state → F RF S VS
v (m/s) 31.6 28 19 3.7
σv (m/s) 0.64 2.56 0.28 0.8
∆v (m/s) 0.1 0.27 −0.13 0.06
σ∆v (m/s) 0.57 1.21 0.27 0.8

g (m) 45 34 29 8
σg (m/s) 4 11 1.5 4

Table 1: Statistical properties of different driving states.

3.1 Two-Point Distribution Functions

Although one-point distribution functions give us useful information on quan-
tification of driving behaviours, many important features lie beyond the one-
point functions and one has to consider higher joint distributions. In this
section we present some two-point functions obtained from the empirical data
and will discuss their importance for a successful modelling of vehicular dy-
namic at the microscopic level. Here we show two basic two-point distribu-
tion functions, namely P2(v, g), P2(∆v, g) for the traffic states discussed so
far. The grid values are the same as for the one-point functions, i.e., veloc-
ity grid = 1 m/s, velocity difference grid = 0.25 m/s, gap grid = 1 m and
acceleration/deceleration grid = 0.1 m/s2.
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Fig. 3. Single-vehicle time series for velocity, velocity difference, gap and accelera-
tion for an 30-second drive in a slow driving state. The statistical properties are as
follows: v = 19.2 m/s, σv = 0.28 m/s; ∆v = −0.13 m/s, σ∆v = 0.27 m/s ; g = 29 m,
σg = 1.5 m.

We shall now investigate, in some detail, the characteristics of these distri-
butions. First, let us discuss P2(v, g). From this distribution we get useful
information which relates the velocity to the gap value. According to the free
flow graph, the relative frequencies are scattered in a 2D area. If in the two-
dimensional v − g plane we mark those grids having large amplitudes in the
P2(v, g), then we can obtain insight on how the gap and velocity are depen-
dent on each other. The same arguments can be applied to P2(v,∆v) and
P2(∆v, g).
In the RF driving state, one observes that the degree of dependence between
velocity and gap has increased at more points. This can be verified by close
examination of the diagram. In fact, we notice the number of relatively large
columns are increased which consequently gives rise to more marked points
in the 2D g − v plane. This implies the optimal velocity assumption can be
justified (although not precisely). The optimal velocity curve can be obtained
by fitting through the points in v − g plane at which P2(v, g) has notable
values. We have not plotted the two-point functions in the S state due to
insufficient number of data points. Finally in the VS state, the dependence
between v and g substantially reduces. This is manifested by looking at the
distribution itself and noting the small number of grids having notable value
of P2(v, g). This may limit the validity of the optimal velocity assumption in
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Fig. 5. Two-point functions P2(v, g) and P2(∆v, g) for a fast (F) driving state.

this driving state. Nevertheless, we remark the confirmation of this conclusion
needs analysis of further data.
Next, we discuss the characteristics of P2(∆v, g) in different states. As can be
seen by examining the high value grids, in F and RF states, ∆v and g are
dependent to each at certain points in the 2D g−∆v plane. This is suppressed
in the VS state. Concerning P2(v,∆v), the diagrams (not shown here) tell us
that in the fast state, v and ∆v are dependent only in a limited curve-like



706 M. Ebrahim Fouladvand and Amir H. Darooneh

Fig. 6. Two-point functions P2(v, g) and P2(∆v, g) for a relatively fast (RF) driving
state.

region of the v−∆v plane whereas, in RF state, the dependence region appears
as 2D area in the v−∆v plane. By contrast, in the VS state, the dependence
region shrinks and appears in a more restricted region of the v −∆v plane.

Fig. 7. Two-point functions P2(v, g) and P2(∆v, g) for a very slow (VS) driving
state.

4 Summary and Concluding Remarks

In this paper we have analysed the floating-car data taken from instrumented
vehicles. Our findings suggest the existence of four different driving states
classified as fast, relatively fast, slow and very slow state. Generally speaking,
our analysis demonstrates that the degree of validity of the optimal velocity
assumption depends on the driving state. This gives a rather important hint
for the improvement of the car-following approach [33]. Knowing the distri-
bution functions, allows us to develop a general framework for modeling of
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vehicular dynamics. As explained, the diverse types of driver reactions to stim-
uli received from the traffic ahead of them gives rise to heterogeneous driving
strategies. The manifestation of these strategies is reflected in the non-trivial
joint distribution functions of driving quantities. This suggests that if we can
measure these joint functions in different traffic situations i.e., free, synchro-
nized and congested, then one can make use of them in order to establish
a realistic choice of driving strategies by the appropriate designation of the
acceleration a in terms of v, g and ∆v. Let us clarify this point. Apparently
we know that the car’s acceleration a is related to its velocity v, its gap g and
the velocity difference ∆v but we do not know the quantitative relationship.
The subtle point is that this relationship is not a functional form in which
a is assumed to be a function of v, g and ∆v. The empirical data confirms
the existence a multitude of acceleration values for fixed values of v, g and
∆v. Therefore we are talking about the probability of having an acceleration
value provided the velocity, gap and the velocity difference have values v, g and
∆v, respectively. The following procedure gives us this conditional probabil-
ity on a numerical basis. First we evaluate the four- and three-point functions
P4(a, g, v,∆v) and P3(g, v,∆v). Then we proceed by finding the conditional
probability that the car’s acceleration is a given the velocity, gap and the
velocity difference have the values v, g and ∆v respectively. This conditional
probability is obtained as follows:

P (a|g, v,∆v) =
P4(a, g, v,∆v)
P3(g, v,∆v)

(1)

Moreover, for those car-following models which use a functional dependence
of the acceleration in terms of v, g and ∆v, the above conditional form of the
dependence of a in terms of v, g and ∆v can be exploited to derive a functional
form by finding the average value of the acceleration with respect to the above
probability distribution as follows:

a(g, v,∆v) =
∑

a

aP (a|g, v,∆v) (2)

Finally, it must be mentioned that our data is related to only a few instru-
mented cars. In order to draw decisive and exhaustive conclusions, one has to
obtain sufficiently large data-sets from a variety of drivers. Analysis of future
floating-cars data will shed more light upon the problem.
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Summary. Scale-free features in traffic flow are discussed based on observed data.
The observed traffic flow is known to contain some periodic motions reflecting our
social activities. By employing the DFA (Detrended Fluctuation Analysis) method,
the traffic flow can be shown to exhibit daily periodic oscillations with scale-free
fluctuations.

1 Introduction

Understanding properties of traffic flow on expressways has improved mainly
based on mathematical models and their computer simulations since early the
1990’s [1, 2]. Many interesting features have been studied from the viewpoints
of nonequilibrium statistical physics, pattern formation and transportation
phenomena. Since the early data analysis by Kerner and Rehborn [3], we have
been aware of the proper complex behavior of the traffic flow observed on real
expressways. The complexity appearing in the fundamental diagram (density-
flow relation) has been discussed in the context of synchronized flow [4].
The observed temporal behavior of the expressway traffic is a complex mixture
of various time-scales from the dynamical behavior of cars and external sources
including human social activities. The characteristic response time of cars, for
instance, is of the order of one second. The phase transition between the free-
flow and congestion states takes of the order of 10 minutes. The daily periodic
behavior of the congestion seems to reflect human social activities.
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The existence of power-law fluctuations in traffic flow has been discussed pre-
viously. Since the pioneering observation by Musha and Higuchi [5], however,
a limited number of observational studies have been reported on power-law
fluctuations in expressway traffic flow [6–8]. The observed power-law fluctua-
tion in these studies is limited to time-scales shorter than a few hours.
Power-law fluctuations in traffic flow have also been discussed based on simu-
lation results [9–11]. Granular flow in vertical pipes, which has been thought
to be a related phenomenon, also shows f−4/3 fluctuations [12]. These results
will correspond to the observed power-law fluctuations on short time-scales.
We need a filter to extract the proper dynamical fluctuations from raw data.
One of methods for subtracting trends from non-stationary raw sequential
data is the detrended fluctuation analysis (DFA) method [16, 17]. In this re-
port, by employing the DFA, we study the long-range correlation hidden in
the raw data of the traffic flow.

2 Detrended Fluctuation Analysis

The detrended fluctuation analysis (DFA) has been invented first for analyzing
the long-range correlation in DNA (Deoxyribonucleic Acid) sequences [16, 17].
The method has been applied to various non-stationary time series.
The method is described as follows. First the profile y(t) of the raw temporal
data {u(t)} (0 ≤ t < T ) is defined:

y(t) =
t∑

i=0

[u(i) − 〈u〉] , (1)

where 〈u〉 = T−1
∑T−1

t=0 u(t) is the temporal average value of the raw data
{u(t)}.
The entire time sequence of the profile y(t) of length T is divided into T/l non-
overlapping segments of length l. The local trend ỹn(t) in the n-th segment
is defined by fitting the raw profile y(t) in the segment. Here we employ the
first order DFA method, where the linear least square method is used to fit
the profile.
The detrended profile yl(t) is defined as the deviation of the original profile
y(t) from the local trend ỹn(t):

yl(t) = y(t) − ỹn(t), if nl ≤ t < (n+ 1)l. (2)

The variance of the detrended sequence is defined as the mean-square of the
detrended profile:

F 2(l) =
1
T

T−1∑
t=0

y2
l (t). (3)
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By analyzing the dependence of the variance F (l) on the segment length l,
we find the long-range correlations in non-stationary time sequences. If the
variance F (l)) obeys a power law

F (l) ∼ lα, (4)

the power spectrum P (k) of the time sequence u(t) behaves as

P (k) ∼ k−β , β = 2α− 1. (5)

3 Data and Results

In this report we analyze the observed traffic flow data provided by the Japan
Highway Public Corporation [18]. The data was obtained at the 468 km point
near Seta East IC (Interchange) on the Meishin Expressway connecting Kobe
to Nagoya. There were two lanes bound for Kobe (West) in 1999, when the
observation was performed. The time sequence of the flow for 5 minutes on
Aug. 11th, 1999, is shown in Figs. 1. Traffic congestion in the morning and
the evening is observed, which can be seen in the behavior of the average
speed. No significant indication for congestion, however, can be recognized in
the time-sequence of the flow.

Fig. 1. The time sequence of the traffic flow observed on Aug. 11th, 1999 for the
fast lane (right) and the slow lane (left).

The power spectrum of the monthly traffic flow data shows a power-law spec-
trum on long time-scales. The power spectrum contains the largest peak cor-
responding to the daily periodic motion. It is difficult to see the power-law be-
havior in the short time-scale region, which is observed by Musha-Higuchi [5].
The Detrended Fluctuation Analysis (DFA) is applied to the one year data
of the traffic flow observed there in 1999. The profile y(t) is constructed from
the traffic flow q(t):

y(t) =
t∑

i=0

[q(i) − 〈q〉] . (6)
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Fig. 2. The dependence of the variance F (l) on the segment size l for the traffic
flow data of 1999.

The dependence of the variance F (l) on the segment size l is shown in Fig. 2.
There are three crossover time-scales: 1 hour, 24 hours and 15 days. Both in
the short time-scale less than 1 hour and in the long time-scale greater than
15 days, the exponent shows α ∼ 1 which corresponds 1/f fluctuation [19].
The feature shown in Fig. 2 is typical: a power-law fluctuation with a periodic
trend, which has been studied with artificial time sequences by Hu et al. [20].
The central crossover point indicates the period of the trend. The exponent in
both outer regions shows the exponent of the fluctuation. Namely, the traffic
flow seems to be a periodic time sequence of one-day period with power-law
fluctuations.

4 Modified Traffic Flow Without Daily Trend

Here we confirm that the observed traffic flow consists of a periodic time
sequence with power-law fluctuations. The time sequence contains a daily
trend as shown in Fig. 2. Hence we define the daily trend of the traffic flow
q̃daily(τ) as follows:

q̃daily(τ) =
1
D

D−1∑
d=0

q(d× Tday + τ), (7)

where 0 < τ < Tday = 24 · 60 minutes and D is the number of days in a year
(D = 365 for the year 1999). Then the traffic flow data q(t) is replaced with
the modified traffic flow q′(t):

q′(t) = q(t) − q̃daily(t mod Tday). (8)
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Fig. 3. The dependence of the variance F (l) on the segment size l for the modified
traffic flow data q′(t) of 1999.

The DFA method is applied to the modified traffic flow q′(t) (Fig. 3). The weak
daily trend remains. The variance F (l), however, can be fitted by F (l) ∼ lα

with α ∼ 0.92. Namely the power-law fluctuation is certainly observed in
the wide range from the short time-scale of the order of minutes to the long
time-scale of the order of months.
The power-law fluctuation discussed here is a proper feature of traffic flow. It
is independent of whether the flow contains a congestion or not. We analyze
other observational data, which was taken at the 133.11 km point near Taki IC
of Ise Expressway. The traffic at this point flows smoothly without congestion.
Moreover the road has only one lane at the observational point. The DFA
method is also applied to the modified traffic flow without daily trend. The
observed features, however, are almost the same as those in Fig. 3.

5 Summary and Discussion

The time sequence of traffic flow is analyzed and the existence of power-law
fluctuations is discussed. Musha and Higuchi have found power-law fluctu-
ations on time-scales shorter than a few hours. A simple power spectrum
analysis shows the power-law fluctuations on a time-scale longer than a day.
We employ the detrended fluctuation analysis (DFA) method to analyze the
long-range correlation in the observed traffic flow data. The result shows that
there are three crossover time-scales: one hour, 1 day and 15 days. The feature
is typical for a periodic sequence with power-law fluctuations.
To confirm that the traffic flow is a mixture of a daily periodic motion with a
power-law fluctuation, modified traffic flow data is defined by extracting the
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averaged daily trend from the raw data. The modified traffic flow data shows
power-law fluctuations on a wide range of time-scales by the DFA method.
We employed the first-order DFA method, in which local trends are fitted with
linear equations. The DFA method can be extended to n-th order by using n-
th order polynomials to construct local trends. We applied higher-order DFA
methods up to fourth order and obtained qualitatively the same results as
with the first order DFA method.
The power-law fluctuation observed in simulations will correspond to the ob-
served fluctuations in the short time-scale region. Namely the power-law fluc-
tuation in the short time-scale comes from the microscopic dynamical behav-
ior. A small fluctuation of the car motion in the headway distance or speed will
be relaxed according to the microscopic dynamical laws. The density fluctua-
tion will propagate upstream. The propagation of the high density fluctuation
is extinguished in the low density region. This is the origin of the power-law
behavior on the short time-scale.
There is no obvious explanation why the power-law fluctuation extends to
time-scales longer than a few months and with the same exponent. It is difficult
to think that the microscopic dynamics generates such a long range power-
law fluctuation. Some macroscopic dynamical laws seem to have the same
properties as the microscopic traffic dynamics.
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Summary. The paper analyses traffic flow data collected in the Lefortovo tunnel
(Moscow) in 2004/05. First, it shows the presence of cooperative traffic dynamics
in this tunnel and, second, studies the phase portrait of the vehicle ensemble in the
velocity-density plane. In particular, the regions of regular and stochastic dynamics
are found and the presence of dynamical traps is demonstrated.

1 Traffic Flow in Long Tunnels

Traffic flow dynamics in long highway tunnels has been studied individually
since the middle of the last century (see, e.g., Refs. [1, 2]). Interest in this
problem is due to several reasons. The first, and maybe main one, is safety.
Jam formation in long tunnels is rather dangerous and detecting the critical
states of vehicle flow leading to jams is of prime importance for the tunnel op-
eration. However, the tunnel traffic in its own right is also an attractive object
for studying the basic properties of vehicle ensembles on highways because,
on one hand, the individual car motion is more controllable inside tunnels
with respect to velocity limits and lane changing. On the other hand, long
tunnels typically are well equipped for monitoring the car motion practically
continuously along them, which provides a unique opportunity to receive a
detailed information about the spatio-temporal structures of traffic flow.
By this paper we start the analysis of the basic properties exhibited by con-
gested tunnel traffic based on empirical data collected during the last time in
several new deep long tunnels located on the 3rd circular highway of Moscow.
Here preliminary results for the Lefortovo tunnel (Fig. 1) are presented. It
comprises two branches where the upper one is a deep linear three lane tunnel
with a length of about 3 km. Exactly in this branch the presented data were
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Fig. 1. Lefortovo tunnel structure.

collected. The tunnel is equipped with a dense system of stationary radiode-
tetors distributed uniformly along it chequerwise at spacing of 60 m. Because
of the technical features of the detector traffic flow on the left and right lanes
is measured at a spacing of 120 m whereas on the middle lane the spatial
resolution is 60 m. The data were averaged over 30 s.
Each detector measures three characteristics of the vehicle ensembles; the flow
rate q, the car velocity v, and the occupancy k for three lanes individually.
The occupancy is analog to the vehicle density and is defined as the total
relative time during which vehicles were visible in the view region of a given
detector within the averaging interval. It is measured in percent.

2 Observed Cooperative Motion of Vehicle Ensemble

This section demonstrates that the observed traffic flow indeed exhibits coop-
erative dynamics when the vehicle density becomes high enough. To do this
figure 2 (upper frames) depicts the phase planes {k, v} and {k, q} with the
distribution of the traffic flow states fixed by all the detectors on 31.05.2004.
These phase planes were divided into cells of size about 1% × 2 km/h and
1% × 0.02 car/s, respectively. The number of states is measured with fre-
quency 1/30 s−1 and those falling in a chosen cell were counted, giving the
corresponding distributions. These distributions are represented here in some
relative units in form of level contours. The left side of each window matches
the free flow states as is clearly seen in the right window, where the dark-
ened region visualizes an upper fragment of the flow-density relation of the
free car motion. However the obtained distributions even for the free flow are
widely scattered which seems to be due to the essential heterogeneity of the
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Fig. 2. Fundamental diagrams (upper frames) and autocorrelations in the occu-
pancy, car velocity, and flow rate measured by differing detectors vs. the distance
between them (lower frame).

free flow with respect to the headway distances. The middle parts of these
windows visualize another mode of traffic flow corresponding to the so-called
widely scattered states or the synchronized vehicle motion (for a review see
Refs. [3, 4]). In fact here the distribution levels cover rather wide regions and
do not follow each other so frequently as in the left part. Exactly this mode
is usually related to the cooperative vehicle motion.
Figure 2 (lower frame) exhibits the spatial autocorrelations in the occupancy,
car velocity, and flow rate measured by different detectors at the middle lane
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on 28.09.2005 when congested traffic was dominant. In agreement with the
single-vehicle data [5] the congested vehicle motion is characterized by essen-
tial correlations especially in the car velocity. The flow rate measurements are
correlated substantially only within several neighboring detectors (on scales
about several hundred meters) whereas the velocity measurements as well as
the occupancy ones are correlated at half of the tunnel length, i.e. at scales
about one kilometer.

3 Pattern of Vehicle Ensemble Dynamics in the Phase
Space

The characteristics of the vehicle ensemble dynamics in the phase space {k, v}
were studied in the following way, replicating actually the technique of Ref. [6]
used in a similar analysis. The plane {k, v} is divided into cells {C} of size
2.5%×2.5 km/h. Let at time t the traffic flow measurements of a given detector
fall in a cell Ci and in the averaging time dt = 30 s the next measurements
of the same detector are located in a cell Cj . Then the vector dr := {dkt, dvt}
such that dkt = kj − ki and dvt = vj − vi describes the system motion on
the phase plane at the given point ri := {ki, vi} at time t. These vectors
were calculated using the data collected on 28.09.2005 by all the detectors.
Averaging the vectors found gives the drift field Vm(r) = 〈dr〉 /dt and the
intensity D(r) of an effective random force determined as

Ddt =
√
〈|dr|〉2 − 〈dr〉2 .

Figure 3 exhibits these fields. The upper window depicts the ratio η :=
D/|V|m, namely, its variations from 0 up to 3.5. The white region comprises
the cells where no measurements were obtained. The hatched domain matches
the ratio η > 3.5, where the vehicle ensemble dynamics can be regarded as
purely random. The region between them contains several levels of the vari-
ation of the ratio η. The level η = 1.0 is singled out in Fig. 3. For smaller
values of η the dynamics of the vehicle ensemble becomes practically regular.
The lower window of Fig. 3 shows the drift field Vm(r). Since its intensity
changes essentially at different parts of the plane {k, v} two frames are used to
visualize it. In the left frame the drift field is zoomed in by three times relative
to the right one. Let us consider them individually. The system dynamics
in the right frame is rather regular and the fie;d Vm(r) corresponds to the
irrelievable drift of vehicle ensemble to smaller velocities and higher densities.
In other words, it is some visualization of the jam formation. In fact one or
two jams were obvserved on that day. It should be noted that the transition
region separating the left frame pattern being rather chaotic and the given
one is relatively thin. It is located at k = 35% and has a thickness less then
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Fig. 3. The upper window visualizes the distribution of the ratio between the
random and regular components of the effective forces. The lower window depicts
the regular drift field.

5% . So the observed jam formation seems to proceed via some breakdown in
the cooperative vehicle motion, which is an agreement with other data [4].
The pattern shown in the left frame matches the upper one in structure. Inside
a neighborhood Q0 of the decreasing frame diagonal the traffic dynamics is
practically pure chaotic, at least, the found values of Vm(r) are relatively small
and their directions do not form any regular pattern. As it must, outside this
domain the field Vm(r) becomes more regular and the obtained data enable us
to estimate its characteristic direction. Unexpectedly, it turns out that the field
Vm(r) crossing this neighborhood does not change its direction for backward
one as it should be if the domain Q0 has contained a zero set of the regular
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field Vm(r). Such behavior of a dynamical system can be explained using the
notion of dynamical traps predicting also the existence of a long-lived state
multitude as a consequence of some nonequilibrium phase transitions caused
by the human bounded rationality [7–9].

4 Conclusions

The paper presents a preliminary analysis of traffic flow data collected in the
Lefortovo tunnel located on the 3rd circular highway of Moscow or, more pre-
cisely, in its upper linear branch being a deep three lane tunnel of length 3 km.
Radiodetectors for vehicle motion are distributed chequerwise at practically
uniform spacing of 60 m. The measured data are averaged over 30 s.
It is shown that the observed congested traffic in fact exhibits cooperative phe-
nomena in vehicle motion, namely, there is a region of widely scattered states
on the fundamental diagrams which is related typically to the appearance of
synchronized traffic. Besides, the spatial autocorrelations in the occupancy,
vehicle velocity, and flow rate measured by different detectors are found to be
essential. Especially it concerns the correlations in the velocity and occupancy,
their correlation length takes values of about 1 km. The occupancy data are
correlated on substantially shorter scales about 200–300 m.
The phase portrait of the vehicle ensemble dynamics on the occupancy-
velocity plane is also studied. It is demonstrated that there are two sub-
stantially different regions on it. One matches the cooperative vehicle motion
and encloses some kernel where the dynamics is purely chaotic. It is essential
that the found regular drift outside this region does not change the direction
when crossing it. The latter feature is some prompt to apply the concept of
dynamical traps for describing phase transition in congested traffic. The other
part of the phase plane corresponds to the irreversible stage of jam formation.
The two regions are separated by a rather narrow transition layer located
at k = 35%, which demonstrates that the observed jams originated inside a
congested traffic via some breakdown.
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Parc Valrose
06108 Nice Cedex 2
France
audoly@unice.fr

Marcel Ausloos
Supratecs
University of Liège
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Switzerland
roger.kouyos@env.ethz.ch

Pavel Kraikivski
Max Planck Institute of Colloids and
Interfaces
Science Park Golm
14424 Potsdam
Germany
Pavel.Kraikivski@mpikg.mpg.de

Klaus Kroy
Institut für Theoretische Physik
Universität Leipzig
Augustusplatz 10/11
04109 Leipzig
Germany
Klaus.Kroy@itp.uni-leipzig.de

Florian Kranke
Volkswagen AG
Postfach 011/1895
D-38436 Wolfsburg
Germany
florian.kranke@volkswagen.de

Christof A. Krülle
Experimentalphysik V
Universität Bayreuth
D–95440 Bayreuth
Germany
christof.kruelle@uni-bayreuth.de

Natalia Kruszewska
University of Technology and Agricul-
ture
Bydgoszcz PL85-796
Poland
nkruszewska@atr.bydgoszcz.pl

Reinhart Kühne
German Aerospace Center
Institute of Transportation Research

D–12489 Berlin
Germany;
reinhart.kuehne@dlr.de

Torsten Kühne
Max Planck Institute of Colloids and
Interfaces
Science Park Golm
14424 Potsdam
Germany
Torsten.Kuehne@mpikg.mpg.de

Ambarish Kunwar
Department of Physics
Indian Institute of Technology
Kanpur 208016
India
ambarish@iitk.ac.in

Sylvain Lassarre
GARIG
Institut National De Recherche Sur Les
Transports Et Leur Securite
Champs Sur Marne, France
lassarre@inrets.fr

Jorge A. Laval
Laboratoire Ingénierie Circulation
Transport LICIT
(INRETS/ENTPE)
France
jlaval@gmail.com

Boris Lifshits
Research and Project Institute for City
Public Transport
Sadovo-Samotechnay 1
Moscow, 103473
Russia
atp@mgtnip.ru

Mao Lin
School of Automobile and Traffic
Engineering
Jiangsu University
Zhenjiang
Jiangsu
maolin19821126@163.com



List of Contributors 733

Stefan J. Linz
Westfälische Wilhelms-Universität
Münster
Institut für Theoretische Physik
Wilhelm-Klemm-Str. 9
D-48149 Münster
Germany
slinz@uni-muenster.de

Reinhard Lipowsky
Max Planck Institute of Colloids and
Interfaces
Science Park Golm
14424 Potsdam
Germany
lipowsky@mpikg.mpg.de

Thomas Lippert
Central Institute for Applied Mathe-
matics
Forschungszentrum Jülich GmbH
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Germany
an@thp.uni-koeln.de

Paul Nelson
Department of Computer Science
Texas A&M University
College Station
Texas 77843-3112
pnelson@cs.tamu.edu

Mario Nicodemi
Dip.to di Scienze Fisiche
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