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To the memory of Edith 



Preface to the Third Edition 

The widespread interest this book has found among professors, scientists and stu­
dents working in a variety of fields has made a new edition necessary. I have used 
this opportunity to add three new chapters on recent developments. One of the most 
fascinating fields of modern science is cognitive science which has become a meet­
ing place of many disciplines ranging from mathematics over physics and computer 
science to psychology. Here, one of the important links between these fields is the 
concept of information which, however, appears in various disguises, be it as Shan­
non information or as semantic information (or as something still different). So far, 
meaning seemed to be exorcised from Shannon information, whereas meaning plays 
a central role in semantic (or as it is sometimes called "pragmatic") information. In 
the new chapter 13 it will be shown, however, that there is an important interplay 
between Shannon and semantic information and that, in particular, the latter plays a 
decisive role in the fixation of Shannon information and, in cognitive processes, al­
lows a drastic reduction of that information. 

A second, equally fascinating and rapidly developing field for mathematicians, 
computer scientists and physicists is quantum information and quantum computa­
tion. The inclusion of these topics is a must for any modern treatise dealing with in­
formation. It becomes more and more evident that the abstract concept of informa­
tion is inseparably tied up with its realizations in the physical world. I have taken 
care of these fundamental developments in two new chapters, 15 and 16, where I 
have tried not to get lost in too many mathematical and physical details. In this 
way I hope that the reader can get an easy access to these fields that carry great po­
tentialities for future research and applications. 

I thank Prof. Juval Portugali for his stimulating collaboration on the concepts of 
information. My thanks go to my secretary, Ms. Petra Mayer, for her very efficient 
typing (or rather typesetting) of the additional chapters. I thank Dr. Christian Caron 
of Springer company for the excellent cooperation. 

Stuttgart, October 2005 Hermann Haken 



Preface to the Second Edition 

Since the first edition of this book appeared, the study of complex systems has 
moved further still into the focus of modem science. And here a shift of emphasis 
can be observed, namely from the study of states of systems to that of processes. 
The systems may be of technical, physical, economic, biological, medical or other 
nature. In many cases, because of their complexity, it is impossible to theoretically 
derive the properties of complex systems from those of their individual parts. In­
stead we have to make do with experimentally observed data. But quite often these 
data are known only over a limited space-time domain. Even within such a domain, 
they may be scarce and noisy. In certain cases, the experimental observation cannot 
be repeated, for instance in astrophysics, or in some measurements of electro- and 
magneto-encephalograms, i. e. of electric and magnetic brain waves. In other cases, 
we are overwhelmed by the flood of data. Can we nevertheless, in all these cases, 
gain insight into the mechanisms underlying the observed processes? Can we make 
predictions about the system's behavior outside the observed time and/or space do­
main? Can we even learn how to control the system's behavior? These are questions 
that are relevant in many fields including robotics. 

While in the first edition of this book the study of steady states of systems was 
in the foreground, in the present, second edition, the newly added material is con­
cerned with the modelling and prediction of processes based on incomplete and 
noisy data. The vehicle I shall use is again Jaynes' maximum information (entropy) 
principle that I have developed further so as to deal with discrete and continuous 
Markov processes. This will allow us to make unbiased guesses for these processes. 
Finally I shall outline the links to chaos theory. Although I shall not state it expli­
citly in the additional chapters, there again the basic insight of synergetics may be 
important, namely that close to instability points many systems are governed by a 
low-dimensional, though noisy, dynamics. 

I wish to thank Dr. Lisa Borland and Dr. Rudolf Friedrich for valuable discus­
sions. I am grateful to my secretary, Ms. I. Moller, who typed (or rather typeset) the 
additions including their complicated formulas quickly and perfectly. Last but not 
least, I wish to express my gratitude to Springer-Verlag, in particular to Prof. W. 
Beiglbock, Dr. A. Lahee, Ms. B. Reichel-Mayer, and Ms. E. Pfendbach, for the ex­
cellent cooperation that has become a tradition. 

Stuttgart, May 1999 Hermann Haken 



Preface to the First Edition 

Complex systems are ubiquitous, and practically all branches of science ranging 
from physics through chemistry and biology to economics and sociology have to 
deal with them. In this book we wish to present concepts and methods for dealing 
with complex systems from a unifying point of view. Therefore it may be of inter­
est to graduate students, professors and research workers who are concerned with 
theoretical work in the above-mentioned fields. The basic idea for our unified ap­
proach stems from that of synergetics. In order to find unifying principles we 
shall focus our attention on those situations where a complex system changes its 
macroscopic behavior qualitatively, or in other words, where it changes its 
macroscopic spatial, temporal or functional structure. Until now, the theory of 
synergetics has usually begun with a microscopic or mesoscopic description of a 
complex system. 

In this book we present an approach which starts out from macroscopic data. 
In particular we shall treat systems that acquire their new structure without 
specific interference from the outside; i.e. systems which are self-organizing. The 
vehicle we shall use is information. Since this word has several quite different 
meanings, all of which are important for our purpose, we shall discuss its various 
aspects. These range from Shannon information, from which all semantics has 
been exorcised, to the effects of information on receivers and the self-creation of 
meaning. 

Shannon information is closely related to statistical entropy as introduced by 
Boltzmann; A quite general formulation was given by Jaynes in the form of the 
maximum entropy principle which, for reasons to be explained in this book, will 
be called the "maximum information entropy principle". As was shown by Jaynes, 
this principle allows one to derive the basic relations of thermodynamics in a very 
elegant fashion and it provides one with an access to irreversible thermodynamics. 
Ingarden formulated what he called "information thermodynamics" introducing 
higher order temperatures. In spite of its success, the maximum information en­
tropy principle has been criticized as being subjective because the choice of con­
straints under which entropy is maximized seems to be arbitrary. But with the aid 
of the results of synergetics we can solve this problem for a large class of 
phenomena, namely, for self-organizing systems which form a new structure via a 
"nonequilibrium phase transition". Thus our approach applies to many of the most 
interesting situations. We shall illustrate our general approach by means of ex­
amples from physics (lasers, fluid dynamics), computer science (pattern recognition 
by machines), and biology (morphogenesis of behavior). The last example in par­
ticular emphasizes the applicability of our approach to truly complex systems and 
shows how their behavior can be modeled by a well-defined procedure. 



X Preface to the first Edition 

In this way our book will provide the reader with both a general theory and 
practical applications. I hope that it will turn out to become a useful tool both 
for studies and research work on complex systems. I am grateful to Prof. H. 
Shimizu for stimulating discussions on Sect. 1.6 and to my co-workers Dr. W. 
Banzhaf, M. Bestehorn, W. Lorenz, M. Schindel, and V. Weberruss for their pro­
of-reading. I wish to thank Ms. A. Konz and Ms. I. Moeller for their perfect typ­
ing of various versions of the manuscript, and Mr. A. Fuchs and Mr. W. Lorenz 
for the preparation of the figures. The financial support of the Volkswagenwerk 
Foundation Hannover for the project Synergetics is gratefully acknowledged. Last 
but not least I express my gratitude to Springer-Verlag, in particular to Dr. Angela 
Lahee and Dr. Helmut Lotsch for the excellent cooperation. 

Stuttgart, January 1988 K Haken 
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1. The Challenge of Complex Systems 

The aim of this book is to develop concepts and methods which allow us to deal 
with complex systems from a unifying point of view. The book is composed of two 
parts: The introductory chapter deals with complex systems in a qualitative fashion, 
while the rest of the book is devoted to quantitative methods. In Chap. 1 we shall 
present examples of complex systems and some typical approaches to dealing with 
them, for instance thermodynamics and synergetics. We shall discuss the concept 
of self-organization and, in particular, various aspects of information. The last 
section of this chapter gives an outline of our new theory, which may be viewed as 
a macroscopic approach to synergetics. In Chap. 2 a brief outline of the microscopic 
approach to synergetics is presented, while Chap. 3 provides the reader with an 
introduction to the maximum information entropy principle, which will play an 
important role in our book. Chapter 4 illustrates this principle by applying it to 
thermodynamics. 

The remainder of the book will then be devoted to our quantitative method and 
its applications; detailed examples from physics and biology will be presented. 
Finally, it will be shown that an important approach in the field of pattern recogni­
tion is contained as a special case in our general theory so that indeed a remarkable 
unification in science is achieved. Readers who are not so much interested in a 
qualitative discussion may skip this introductory chapter and proceed directly to 
Chaps. 2, or 3 and 4, or 5, depending on their knowledge. 

But now let us start with some basics. 

1.1 What Are Complex Systems? 

First of all we have to discuss what we understand by complex systems. In a naive 
way, we may describe them as systems which are composed of many parts, or 
elements, or components which may be of the same or of diffierent kinds. The 
components or parts may be connected in a more or less compHcated fashion. The 
various branches of science offer us numerous examples, some of which turn out to 
be rather simple whereas others may be called truly complex. 

Let us start with some examples in physics. A gas is composed of very many 
molecules, say of 10^^ in a cubic centimeter. The gas molecules fly around in quite 
an irregular fashion, whereby they suffer numerous collisions with each other 
(Fig. 1.1). By contrast, in a crystal the atoms or molecules are well-arranged and 
undergo only sHght vibrations (Fig. 1.2). We may be interested in specific properties. 
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such as the pressure or temperature of a gas or the compressibiHty of a crystal. Or 
we may consider these systems with a view to their serving a purpose, e.g. a gas Hke 
water vapor may be used in a steam engine, a crystal may be used as a conductor 
of electricity etc. Some physical systems are primarily devised to serve a purpose, 
e.g. a laser (Fig. 1.3). This new light source is constructed to produce a specific type 
of light. 

In chemistry we are again deaUng with complex systems. In chemical reactions, 
very many molecules participate, and lead to the formation of new molecules. 
Biology abounds with complex systems. A cell is composed of a compHcated cell 
membrane, a nucleus and cytoplasm, each of which contain many further com­
ponents (Fig. 1.4). In a cell between a dozen and some thousand metabolic pro­
cesses may go on at the same time in a well-regulated fashion. Organs are com­
posed of many cells which Hkewise cooperate in a well-regulated fashion. In turn 
organs serve specific purposes and cooperate within an animal. Animals them­
selves form animal societies (Fig. 1.5). Probably the most complex system in the 
world is the human brain composed of 10^^ or more nerve cells (Fig.1.6). Their 
cooperation allows us to recognize patterns, to speak, or to perform other mental 
functions. 

In the engineering sciences we again have to deal with complex systems. Such 
systems may be machines, say an engine of an automobile, or whole factories, or 
power plants forming an interconnected network. Economy with its numerous 
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Fig. 1.6. Net of nerve cells [from G.C. Quarton, T. Mel- • 
nechuck, F.O. Schmitt: The Neuro-scicnces (The Rockefeller 
University Press, New York 1967)] 

participants, its flows of goods and money, its traffic, production, consumption and 
storage of goods provides us with another example of a complex system. Similarly, 
society with its various human activities and their political, religious, professional, 
or cultural habits is a further example of such a system. Computers are more and 
more conceived as complex systems. This is especially so with respect to computers 
of the so-called 5th generation, where knowledge processing will be replacing the 
number crunching of today's computers. 

Systems may not only be complex as a result of being composed of so many 
parts but we may also speak of complex behavior. The various manifestations of 
human behavior may be very complex as is studied e.g. in psychology. But on the 
other hand, we also admire the high coordination of muscles in locomotion, breath­
ing etc. (Fig. 1.7). Finally, modern science itself is a complex system as is quite evident 
from its enormous number of individual branches. 
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We may now ask the question of why numerous systems are so complex and 
how they came into existence. In biology as well as in engineering, for instance, we 
readily see the need for complexity. These systems serve specific purposes and upon 
scrutinization we find that these purposes can be fulfilled only by a complex system 
composed of many parts which interact in a well-regulated fashion. When we talk 
about their coming into existence, we may distinguish between two types of systems: 
On the one hand we have man-made systems which have been designed and built 
by people so that these machines or constructs serve a specific purpose. On the 
other hand there are the very many systems in nature which have been produced 
by nature herself, or in other words, which have been self-organized. Here, quite 
evidently, the evolutionary vision, i.e. Darwinism, plays an important role in biol­
ogy, where an attempt is made to understand, why and how more and more complex 
systems evolve. 

After this rather superficial and sketchy survey of complex systems, let us now 
try to give a more rigorous definition. A modern definition is based on the concept 
of algebraic complexity. At least to some extent, systems can be described by a 
sequence of data, e.g. the fluctuating intensity of the light from stars (Fig. 1.8), or the 
fever curve of a sick person where the data are represented by numbers. So, let us 
consider a string of numbers and let us try to define the complexity of such a string. 
When we think of specific examples, say of numbers like 1, 4, 9, 16, 25, 36, . . . , we 
realize that such a string of data can be produced by a simple law, namely in this 
case by the law n^ where n is an integer. Therefore, whenever a string of data is 
presented, we may ask whether there is a computer program and a set of initial data 
which then allow us to compute the whole set of data by means of this program. 
Of course, depending on the construction of the computer, one computer program 
may be longer than that of another. 

Therefore, in order to be able to compare the length of programs, we must 
introduce a universal computer. Without going into details we may state that such 
a universal computer can be constructed, at least in a thought experiment as was 
shown by Turing (Fig. 1.9). Therefore, we shall call such universal computer a Turing 
machine. The idea then is to try to compress the program and the initial set of data 
to a minimum. The minimum length of a program and of the initial data is a measure 
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of the algebraic degree of complexity (Fig. 1.10). However, such a definition has a 
drawback. As can be shown by means of a famous theorem by Goedel, this problem 
of finding a minimum program and a minimum number of initial data cannot be 
solved in a universal fashion. In other words, there is no general algorithm available 
which could solve this problem. Rather we can develop such algorithms only in 
special cases. Indeed, occasionally one can construct shortcuts. Let us consider a 
gas. There, one might attempt to follow up the paths of the individual particles and 
their coUisions and then derive the distribution function of the velocity of the 
individual particles. This problem has not been solved yet, when one starts from a 
microscopic description. Nevertheless, it has been possible in statistical mechanics 
to derive this distribution function, known as the Boltzman distribution, in a rather 
simple and elegant fashion without invoking the microscopic approach, but using 
the concept of entropy (see below). A number of similar examples can be formulated 
which show us that there exist shortcuts by which an originally very compHcated 
problem can be solved in a rather direct fashion. Thus, we reahze that the concept 
of complexity is a very subtle one. Indeed the main purpose of our book will be to 
provide such shortcuts from a unifying point of view which will then allow us to 
deal with complex systems. 

A complex system may be considered from various points of view. For instance, 
we may treat a biological system at the macroscopic level by studying its behavior, 
or at an intermediate level by studying the functioning of its organs, or finally we 
could study the chemistry of DNA. The data to be collected often seem to be quite 
inexhaustible. In addition it is often impossible to decide which aspect to choose a 
priori, and we must instead undergo a learning process in order to know how to 
cope with a complex system. 

1.2 How to Deal with Complex Systems 

The more science becomes divided into speciaHzed discipHnes, the more important 
it becomes to find unifying principles. Since complex systems are ubiquitous, we are 
confronted with the challenge of finding unifying principles for deahng with such 
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systems. In order to describe a complex system at a microscopic level, we need an 
enormous amount of data which eventually nobody, even not a society, is able to 
handle. Therefore, we have to introduce some sort of economy of data collecting or 
of thinking. In addition, we can hope to obtain deep insights when we find laws 
which can be applied to a variety of quite different complex systems. 

When we look for universal laws it is wise to ask at which level we wish to 
formulate them; be it microscopic or macroscopic. Accordingly we may arrive at a 
quite different description of a system. For instance at a microscopic level, a gas is 
entirely disordered, whereas at the macroscopic level it appears to be practically 
homogeneous, i.e. structureless. In contrast, a crystal is well ordered at the micro­
scopic level, whereas again at the macroscopic level it appears homogeneous. In 
biology we deal with a hierarchy of levels which range from the molecular level 
through that of cells and organs to that of the whole plant or animal. This choice 
of levels may be far too rough, and an appropriate choice of the level is by no means 
a trivial problem. In addition, "microscopic" and "macroscopic" become relative 
concepts. For instance a biomolecule may be considered as "macroscopic" as 
compared to its atomic constituents, whereas it is "microscopic" as compared to a 
cell. Incidentally, at each level we are confronted with a specific kind of organization 
or structure. 

The method of modern western science can certainly be described as being 
analytical. By decomposing a system into its parts we try to understand the prop­
erties of the whole system. In a number of fields we may start from first principles 
which are laid down in fundamental laws. The field in which this trend is most 
pronounced is, of course, physics and in particular elementary particle physics. 
Usually it is understood that the parts and their properties are "objectively" given 
and that then one needs "merely" to deduce the properties of the total system from 
the properties of its parts. Two remarks are in place. First, strictly speaking, we in 
fact infer microscopic events from macroscopic data, and it is an interesting problem 
to check whether different microscopic models can lead to the same macroscopic 
set of data. Second, the analytic approach is based on the concept of reducibility, 
or in the extreme case on reductionism. But the more we are dealing with complex 
systems, the more we realize that reductionism has its own limitations. For example, 
knowing chemistry does not mean that we understand life. In fact, when we proceed 
from the microscopic to the macroscopic level, many new qualities of a system 
emerge which are not present at the microscopic level. 

For instance, while a wave can be described by a wavelength and an amplitude, 
these concepts are ahen to an individual particle such as an atom. What we need 
to understand is not the behavior of individual parts but rather their orchestration. 
In order to understand this orchestration, we may in many cases appeal to model 
systems in which specific traits of a complex system can be studied in detail. We 
shall discuss a number of model systems in Sect. 1.4. Another approach to dealing 
with complex systems is provided by a macroscopic description. For example, we 
do not describe a gas by fisting all the individual coordinates of its atoms at each 
instant, but rather in terms of macroscopic quantities such as pressure and tempera­
ture. It is a remarkable fact that nature herself has provided us with means of 
measuring or sensing these quantities. 
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In order to deal with complex systems, we quite often still have to find adequate 
variables or relevant quantities to describe the properties of these systems. In all 
cases, a macroscopic description allows an enormous compression of information 
so that we are no more concerned with the individual microscopic data but rather 
with global properties. An important step in treating complex systems consists in 
estabhshing relations between various macroscopic quantities. These relations are 
a consequence of microscopic events which, however, are often unknown or only 
partially known. Examples of such relations are provided by thermodynamics 
where, for instance, the law relating pressure and temperature in a gas is formulated, 
and derived by statistical mechanics from microscopic laws. In general we have to 
guess the nature of the microscopic events which eventually lead to macroscopic 
data. 

In this book we want to show how such guesses can be made for systems 
belonging to quite different disciplines. At the same time we shall see that at a 
sufficiently abstract level there exist profound analogies between the behavior of 
complex systems; or, in other words, complicated behavior can be realized on quite 
different substrates. Very often we recognize that the more complex a system is, the 
more it acquires traits of human behavior. Therefore, we are led, or possibly misled, 
into describing the behavior of complex systems in anthropomorphic terms. In the 
natural sciences it has become a tradition to try to exorcise anthropomorphisms 
as far as possible and to base all explanations and concepts on a more or less 
mechanistic point of view. We shall discuss this dilemma: mechanistic versus an­
thropomorphic in later sections of this chapter, in particular when we come to 
discuss information and the role of meaning and purpose. 

Let me conclude this section with a general remark. Not so long ago it was more 
or less generally felt that a great discrepancy exists between, say physics or natural 
science on the one hand and humanistics on the other, the latter deahng with truly 
complex behavior and complex systems. Physics was for a long time revered because 
of its ability to predict events within an unlimited future. As we shall see, the more 
physics has to deal with complex systems, the more we realize that new concepts 
are needed. Some of the characteristics which were attributed to physics such as the 
capabihty of making precise predictions are losing their hold. 

1.3 Model Systems 

The great success of physics rests on its methodology. In this, complex systems are 
decomposed into specific parts whose behavior can be studied in a reproducible 
fashion, whereby only one or very few parameters are changed. Famous examples 
of this method are the experiments by Galileo on falling bodies, or Newton's analysis 
of the motion of the planets by means of considering only a system composed of 
the sun and one planet. Or in other words, he treated a one-, or at maximum, a 
two-body problem. This approach gave rise to Newtonian mechanics. From its 
formulation it was deduced, e.g. by Laplace, that Newtonian mechanics implies total 
predictability of the future, once the velocity and positions of the individual particles 
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Fig. 1.11. Steel ball falling on a razor blade. Depending on its initial position, the ball is deflected along 
a wide trajectory to the left or to the right 

Fig. 1.12. Time variation of a quantity in a chaotic system 

of a system are known at an initial time. The concept of predictability has been 
shaken twice in modern physics. Quantum mechanics tells us that we are not able 
to measure the velocity and the position of a particle at the same time both with 
infinite precision and, therefore, that we are not able to make accurate predictions 
of the future path of a particle. 

More recently, the theory of so-called deterministic chaos has shown that even 
in classical mechanics predictabihty cannot be guaranteed with absolute precision. 
Consider the following very simple example of a steel ball falling on a vertical razor 
blade (Fig. 1.11). Depending on its precise position with respect to the razor blade, 
its trajectory may be deflected to the left or to the right. That means the future path 
of the particle, i.e. the steel ball, depends in a very sensitive fashion on the initial 
condition. A very small change of that condition may lead to quite a different path. 
Over the past years numerous examples in physics, chemistry, and biology have 
been found where such a sensitivity to initial conditions is present (Fig. 1.12). But in 
spite of these remarks the general idea of finding suitable model systems for a com­
plex system is still vahd. 

Here we wish to list just a few well-known examples of model systems. The Hght 
source laser has become a paradigm for the self-organization of coherent processes 
because in the laser the atoms interact in a well-regulated fashion so to produce the 
coherent laser wave (Fig. 1.13). Another example for the self-organized formation of 
macroscopic structures is provided by fluids. For instance, when a fluid is heated 
from below, it may show specific spatial patterns such as vortices or honeycombs 
(Fig. 1.14). Or when a fluid is heated more, it may show spatio-temporal patterns, 
e.g. oscillations of vortices. Chemical reactions may give rise to macroscopic pat­
terns, e.g. chemical oscillations where a change of colour occurs periodicaUy, for 
instance from red to blue to red etc. Other phenomena are spiral patterns or 
concentric waves (Fig. 1.15). In biology the clear water animal hydra has become a 
model system for morphogenesis. When a hydra is cut into two parts, a new head 
is readily formed where there was only a foot left and vice versa, a foot is formed 
where only a head was left (Fig. 1.16). 

Detailed experiments may allow us to draw conclusions on the mechanism of 
this restoration on the basis of the concept of chemical fields which are formed by 
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lamp Fig. 1.13. The basic difference between the 
Hght from a lamp and from a laser. In both 
cases the electric field strength of the field am-
pUtude is plotted versus time. On the left hand 
side the light from a lamp consists of individual 
uncorrected wave tracks. On the right hand 
side in the laser the light wave consists of a 
single practically infinitely long sinusoidal 
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Fig. 1.14. A pattern in fluid dynamics Fig. 1.15. Spiral waves in the Belousov-
Zhabotinsky reaction [from S.C. Miiller, T. 
Plesser, B. Hess (unpublished)] 
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Fig. 1.16. An experiment on hydra reveals that 
in this species the information on the differen­
tiation of cells cannot be laid down in the 
genes. From left to right: Intact hydra with 
head and tail is cut in the middle into two 
pieces. After a while the upper part regenerates 
by forming a tail, the lower part regenerates by 
forming a head 
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Fig. 1.17. Developmental stages of 
slime mold. From left to right: The indi­
vidual cells assemble, aggregate more 
and more, and finally differentiate to 
form the mushroom 

Fig. 1.18. Experimental setup to study 
involuntary changes of hand move­
ments [from J.A.S. Kelso: "Dynamic 
Patterns in Complex, Biological Sys­
tems: Experiment and Synergetic 
Theory" (preprint)] 

production and diffusion of chemicals. Another example of self-organization in 
morphogenesis is provided by slime mold (Fig. 1.17). This little fungus usually exists 
in form of individual cells which Hve on a substrate. But then within the lifecycle of 
sHme mold, these individual cells assemble at a point, differentiate and form the 
mushroom which then eventually spreads its spores, whereupon the Hfe cycle starts 
again. Another model system is the squid axon used to study nerve conduction, or 
the well-known example of Drosophila in genetics where the giant chromosomes, 
the rapid multipHcation rate and the possibihty of causing mutations make this 
httle animal an ideal object of study in this field. 

More recently human hand movements have become a model system for study­
ing the coordination of muscles and nerve cells and in particular the transitions 
between various kinds of movement (Fig. 1.18). We shall come back to this example 
and to other examples later in the book. The involuntary change of hand movements 
is strongly reminiscent of the change of gaits of horses, cats or other quadrupeds. 
Quite generally speaking, these model systems allow us to develop new concepts 
which can first be checked against a variety of relatively simple systems and then 
later applied to truly complex systems. In this way our subsequent chapters will be 
devoted to the development of such new concepts whose apphcabihty will then be 
illustrated by a number of explicit examples. 

1.4 Self-Organization 

As mentioned before, we may distinguish between man-made and self-organized 
systems. In our book we shall be concerned with self-organized systems. It may be 
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mentioned, however, that the distinction between these two kinds of systems is not 
completely sharp. For instance humans may construct systems in such a way that 
by building in adequate constraints the system will be enabled to find its specific 
function in a self-organized fashion. A typical example mentioned before is the laser 
where the specific set-up of the laser by means of its mirrors allows the atoms to 
produce a specific kind of light. Quite evidently in the long run it will be desirable 
to construct computers which do programming in a self-organized fashion. 

For what follows it will be useful to have a suitable definition of self-organization 
at hand. We shall say that a system is self-organizing if it acquires a spatial, temporal 
or functional structure without specific interference from the outside. By "specific" 
we mean that the structure or functioning is not impressed on the system, but that 
the system is acted upon from the outside in an nonspecific fashion. For instance 
the fluid which forms hexagons is heated from below in an entirely uniform fashion, 
and it acquires its specific structure by self-organization. In our book we shall 
mainly be concerned with a particular kind of self-organization, namely so-called 
nonequihbrium phase transitions. 

As we know, systems in thermal equilibrium can show certain transitions 
between their states when we change a parameter, e.g. the temperature. For instance, 
when we heat ice it will melt and form a new state of a liquid, namely water. When 
we heat water up more and more, it will boil at a certain temperature and form 
vapor. Thus, the same microscopic elements, namely the individual molecules, may 
give rise to quite different macroscopic states which change abruptly from one state 
to another. At the same time new quahties emerge, for example ice has quite different 
mechanical properties to those of a gas. 

In the following we shall be concerned with similar changes in the state of 
systems far from thermal equihbrium. Examples have been provided in Sect. 1.4, 
for instance by the liquid which forms a particular spatial pattern, by the laser which 
emits a coherent light wave, or by biological tissues which undergo a transition 
towards a differentiation leading to the formation of specialized organs. 

1.5 Aiming at Universality 

1.5.1 Thermodynamics 

Thermodynamics is a field which allows us to deal with arbitrarily complex systems 
from a universal point of view. For instance we may ascribe temperature to a stone, 
to a car, to a painting, or to an animal. We further know that important properties 
of systems change when we change their temperature. Just think of melting of ice 
at the melting temperature, or of the importance of measuring the temperature of 
an ill person. However, this example illustrates at the same time that temperature 
alone is certainly not sufficient to characterize a car or a painting in many other 
respects. A stone, a car, a dress and a painting have the properties of being in thermal 
equilibrium. Such a state is reached when we leave a system entirely on its own, or 
when we couple it to another system which is in thermal equihbrium at a specific 
temperature. 
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Fig. 1.19. Scheme of an open system which receives its energy from a source and dissipates the rest of 
the energy into a sink 

Another important and even central concept of thermodynamics is that of 
entropy. Entropy is a concept which refers to systems in thermal equilibrium which 
can be characterized by a temperature T. The change of entropy is then given by 
the well-known formula dS = dQ^^^/T. Here, Tis the absolute temperature and dQ^^^ 
is the amount of heat which is reversibly added to or removed from the system. The 
general laws of thermodynamics are: 

1) The first law which states that in a closed system energy is conserved, whereby 
energy may acquire various forms, such as the internal energy, work being done, or 
heat. So a typical form relating the changes dU, dA, dQ to one another reads 

dU = dQ-dA . (1.1) 

2) The second law tells us that in a closed system entropy can never decrease, 
but can only increase until it reaches its maximum. As we shall see later, the 
conservation laws, e.g. for energy, together with the so-called maximum entropy 
principle, allow us to derive certain microscopic properties of a system from macro­
scopic data. For instance we may derive the velocity distribution function of a gas 
in a straight forward manner. In the present book we shall be practically exclusively 
concerned with open systems (Fig. 1.19). These are systems which are maintained in 
their specific states by a continuous influx of energy and/or matter. As we shall see, 
traditional thermodynamics is not adequate for coping with these systems; instead 
we have to develop some new kind of thermodynamics which will be explained in 
detail in the following chapters. 

Thermodynamics can be considered as a macroscopic phenomenological theory. 
Its foundations lie in statistical physics upon which we shall make a few comments 
in the next section. 

1.5.2 Statistical Physics 

In this field an attempt is made, in particular, to derive the phenomenological, 
macroscopic laws of thermodynamics by means of a microscopic theory. Such a 
microscopic theory may be provided by the Newtonian mechanics of the individual 
gas particles, or by quantum mechanics. By use of appropriate statistical averages 
the macroscopic quantities are then derived from the microscopic laws. A central 
concept is again entropy, S. According to Boltzmann, it is related to the number W 
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of the different microscopic states which give rise to the same macroscopic state of 
the system, by means of the law 

S = k\nW (1.2) 

where k is Boltzmann's constant. A crucial and not yet entirely solved problem is 
that of explaining why macroscopic phenomena may be irreversible while all 
fundamental laws are reversible. For instance the laws of Newtonian mechanics are 
invariant under the reversal of time, i.e. when we let a movie run backwards, all the 
processes shown there in reverse sequence are allowed in Newtonian mechanics. 
On the other hand it is quite evident that in macroscopic physics processes are 
irreversible. For instance when we have a gas container filled with gas molecules 
and we open a valve the gas will go to a second vessel and fill both vessels more or 
less homogeneously. The reverse process, i.e. that one vessel is emptied spontane­
ously and all the molecules return to the original vessel is never observed in nature. 

Despite the difficulty in rigorously deriving irreversibiUty, by means of statistical 
physics we can explain a number of the phenomena of irreversible thermodynamics, 
such as relaxation processes, heat conduction, diffusion of molecules, etc. 

1.5.3 Synergetics 

The third approach to formulating universal laws vahd for complex systems is that 
of synergetics. In this field we study systems that can form spatial, temporal or 
functional structures by means of self-organization. In physics, synergetics deals 
with systems far from thermal equihbrium. Typical examples are fluids heated from 
below, or lasers. Systems from chemistry and biology can also be conceived as 
physical systems and can be treated again by synergetics. But synergetics deals also 
with other systems, such as those in economy or sociology. In synergetics we focus 
our attention on quahtative, macroscopic changes, whereby new structures or new 
functions occur. This restriction to quahtative, macroscopic changes is the price to 
be paid in order to find general principles. 

We shall remind the reader of the main principles of synergetics in Chap. 2. 
There we shall see that in physics, synergetics starts from a microscopic formulation, 
for example from the microscopic equations of motion. In other cases such as 
biology or chemistry a mesoscopic approach may be appropriate where we start 
from suitable subsystems, for instance adequate properties of a total cell in biology. 
It is assumed that the system under consideration is subject to external constraints, 
such as a specific amount of energy being fed into the system. Then when this control 
parameter is changed, an instability may occur in which the system tends to a new 
state. 

As is shown in synergetics, at such an instability point, in general just a few 
collective modes become unstable and serve as "order parameters" which describe 
the macroscopic pattern. At the same time these macroscopic variables, i.e. the order 
parameters, govern the behavior of the microscopic parts by the "slaving principle". 
In this way the occurrence of order parameters and their abihty to enslave allows 
the system to find its own structure. When control parameters are changed over a 
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'^ Fig. 1.20. An open system embedded in a closed system 
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Fig. 1.21. A closed system may be considered as the limiting case of an open system into and out of 
which energy fluxes are cut 

wide range, systems may run through a hierarchy of instabiUties and accompanying 
structures. 

Synergetics is very much an open-ended field in which we have made only the 
very first steps. In the past one or two decades it has been shown that the behavior 
of numerous systems is governed by the general laws of synergetics, and I am 
convinced that many more examples will be found in the future. On the other hand 
we must be aware of the possibihty that still more laws and possibly still more 
general laws can be found. 

As mentioned earlier, thermodynamics deals with systems in thermal equilib­
rium, whereas synergetics deals with systems far away from thermal equilibrium. 
But here quite a pecuHar situation arises. On the one hand we can always embed 
an open system into a larger closed one (Fig. 1.20). Earth for example, is an open 
system because it is fed with energy from the sun and it emits its energy during night 
into the universe. But taking the sun and, say, part of the universe as a whole system, 
we may consider the whole system as a closed one to which the laws of thermo­
dynamics apply. In so far we see that the laws of synergetics must not be in 
contradiction to those of thermodynamics. But on the other hand any open system 
may be considered in the Hmiting case, where the energy or matter fluxes tend to 
zero so that eventually we deal with a closed system (Fig. 1.21). Therefore, the general 
laws of thermodynamics must be obtainable as limiting cases of those of synergetics. 

As the reader will notice this program is not yet finished but leaves space for 
future research. Until now, synergetics has started from the microscopic or meso-
scopic level. In this book however, we shall attempt to present a second foundation 
of synergetics which we shall discuss in some detail in Chaps. 5-7 and then in greater 
detail in the following chapters. The starting point for this macroscopic approach 
is the concept of information and we shall deal with some of its most important 
aspects in the next section. 

1.6 Information 

The use of the word information is connected with considerable confusion. This is 
caused by the fact that the word information is used with many quite different 
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meanings. In every day language, information is used in the sense of message or 
instruction. A letter, a television transmission or a telephone call all carry informa­
tion. In the following we shall be concerned with the scientific use of the word 
information. We shall start with the concept of Shannon information where infor­
mation is used without any meaning. Then we shall briefly study information with 
respect to messages and finally we shall be concerned with the problem of the 
self-creation of meaning. 

Quite evidently, when dealing with physical systems, we wish to ehminate all 
kinds of anthropomorphisms because we wish to describe a physical system in an 
as objective manner as possible. But in biology too, this trend is quite obvious so 
that eventually we have a more or less physical or even mechanistic picture of 
biological systems. But strangely enough it appears with respect to the development 
of modern computers, e.g. those of the fifth generation, that we wish to reintroduce 
meaning, relevance, etc. Therefore, in this section we wish to discuss ways in which 
we can return from a concept of information from which meaning was exorcised to 
the act of self-creation of meaning. 

1.6.1 Shannon Information: Meaning Exorcised 

We shall discuss the concept of Shannon information in detail in Chap. 3, but in 
order to have a sound basis for our present discussion we shall elucidate the concept 
of Shannon information by means of some examples. When we toss a coin we have 
two possible outcomes. Or when we throw a die we have six possible outcomes. In 
the case of the coin we have two kinds of information, head or tail; in the case of 
the die we have the information that one of the numbers from one to six has 
appeared. Similarly, we may have answers "yes" or "no", etc. The concept of 
Shannon information refers simply to the number of possibilities, Z, which in the 
case of a coin are two, in the case of a die are six. As we shall see later, a proper 
measure for information is not the number Z itself but rather its logarithm where 
usually the logarithm to base 2 is taken, i.e. information is defined by 

I = log2Z . (1.3) 

This definition can be cast into another form which we shall come across time and 
again in this book. Consider for example a language such as English. We may label 
its letters a, fo, c, . . . by the numbers 7 = 1,2,... i.e. a-^l,b-^2 etc. Then we may 
count the frequencies Nj of occurrence of these letters in a particular book or in a 
library perhaps. We define the relative frequency of a letter labeled by j as 

N-

where N is the total number of letters counted, N = Y,Nj' Then the average 
information per letter contained in that book (or library) is given by 

i= -Y.Pjlog2Pj • (1-5) 
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For a derivation of this formula see Chap. 3. Shannon used his concept to study 
the capacity of a communication channel to transfer information even under the 
impact of noise. Two features of the Shannon information are of importance in what 
follows. 1) Shannon information is not related to any meaning. So concepts such as 
meaningful or meaningless, purposeful etc. are not present. 2) Shannon information 
refers to closed systems. There is only a fixed reservoir of messages, whose number 
is Z. 

1.6.2 Effects of Information 

In this section we wish to introduce a new approach which is a step towards a 
concept of information which includes semantics. We are led to the basic idea by 
the observation that we can only attribute a meaning to a message if the response 
of the receiver is taken into account. In this way we are led to the concept of "relative 
importance" of messages which we want to demonstrate in the following. 

Let us consider a set of messages each of which is specified by a string of numbers. 
The central problem consists in modeling the receiver. We do this by invoking 
modern concepts of dynamic systems theory or, still more generally, by concepts of 
synergetics. We model the receiver as a dynamic system. Though we shall describe 
such systems mathematically in the next chapter, for our present purpose a few 
general remarks will suffice. We consider a system, e.g. a gas, a biological cell, or an 
economy, whose states can be characterized at the microscopic, mesoscopic or 
macroscopic level by a set of quantities, q, which we shall label by an index ;, i.e. 
qj. In the course of time, the q/s may change. We may lump the q/s together into a 
state vector q{t) = [^i(0, ̂ 2(0? • • • > ^iv(0]- The time evolution of ^, i.e. the dynamics 
of the system, is then determined by differential equations of the form 

^ = Af(«, a ) + /•(() (1.6) 

where N is the deterministic part and F represents fluctuating forces. All we need 
to know, for the moment, is the following: If there are no fluctuating forces, once 
the value of q at an initial time is set, and the so-called control parameters a are 
fixed, then the future course of q is determined uniquely. In the course of time, q 
will approach an attractor. To visualize a simple example of such an attractor 
consider a miniature landscape with hills and valleys modeled by paper (Fig. 1.22,23). 
Fixing a means a specific choice of the landscape, in which a ball may shde under 
the action of gravity (and under a frictional force). Fixing q at an initial time means 
placing the ball initially at a specific position, for instance on the slope of a hill 
(Fig. 1.22). From there it will shde down until it arrives at the bottom of the valley: 
this is then an attractor. As the experts know, dynamic systems may possess also 
other kinds of attractors, e.g. limit cycles, where the system performs an indefinite 
oscillation, or still more comphcated are attractors such as "chaotic attractors". In 
the following, it will be sufficient to visualize our concepts by considering the 
attractor as the bottom of a valley (a so-called fixed point). When fluctuations Z'are 
present, the ball may jump from one attractor to another (Fig. 1.24). 
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Fig. 1.22. Visualization of a dynamical system with fixed 
point attractors by means of a miniature landscape formed 
of deformed paper 

Fig. 1.23. Isobases belonging to the 
landscape of Fig. 1.22 

Fig. 1.24. Illustration of the jumping 
of a system between two fixed point 
attractors 

jumping between at t ractors 

After these preparatory remarks let us return to our original problem, namely 
to attribute a meaning to a message. We assume that the receipt of a message by 
the system means that the parameters a and the initial value of q are set by the 
message. For the time being we shall assume that these parameters are then uniquely 
fixed. An extension of the theory to an incomplete message is straightforward (see 
below). We first ignore the role of fluctuations. We assume that before the message 
arrives the system has been in an attractor which we shall call the neutral state. The 
attractor may be a resting state i.e. a fixed point, but it could equally well be a limit 
cycle, a torus or a strange attractor, or a type of attractor still to be discovered by 
dynamic systems theory. We shall call this attractor q^. After the message has been 
received and the parameters a and the initial value q are newly set, in principle two 
things may happen. Let us assume that we are allowed to wait for a certain 
measuring time so that the dynamic system can be assumed to be in one of its 
possible attractors. Then either the message has left the system in the q^ state. In 
such a case the message is evidently useless or meaningless. 

The other case is that the system goes into a new attractor. We first assume that 
this attractor is uniquely determined by the incident message. Clearly, different 
messages can give rise to the same attractor. In this case we will speak of redundancy 
of the messages. 
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m e s s a g e 

Fig. 1.25. A message can reach two dif­
ferent attractors by means of internal 

a t t r a c t o r s fluctuations of the system by a process 
depicted in Fig. 1.24. In this way two 
attractors become accessible 

Finally, especially in the realm of biology it has been a puzzle until now how 
information can be generated. This can be easily visualized, however, if we assume 
that the incident message produces the situation depicted in Fig. 1,25, which is 
clearly ambiguous. Two new stable points (or attractors) can be realized depending 
on a fluctuation within the system itself. Here the incident message contains infor­
mation in the ordinary sense of the word, which is ambiguous and the ambiguity 
is resolved by a fluctuation of the system. Loosely speaking, the original information 
is doubled because now two attractors become available. In the case of biology 
these fluctuations are realized in the form of mutations. In the realm of physics 
however, we would speak of symmetry breaking effects. 

Taking all these different processes together we may Hst the elementary schemes 
shown in Fig. 1.26. Of course, when we consider the effect of different messages, more 
comphcated schemes such as those of Fig.1.27 may evolve. 

We shall now treat the question of how we can attribute values to the incident 
messages or, more precisely speaking, we want to define a "relative importance of 
the messages". To this end we first have to introduce a "relative importance" for 
the individual attractors. In reality, the individual attractors will be the origin of 
new messages which are then put into a new dynamical system and we can continue 
this process ad infinitum. However, for practical purposes, we have to cut the 
hierarchical sequence at a certain level and at this level we have to attribute values 
of the relative importance to the individual attractors. Since our procedure can 
already be clearly demonstrated if we have a one-step process, let us consider this 
process in detail. 
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Fig. 1.26. Various possibilities for a message to 
reach attractors 

Fig. 1.27. Another example of how messages 
can reach attractors 
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Let us attribute a "relative importance" to the individual attractors where the 
attractor 0 with q^ has the value 0, while the other attractors may have values 
0 < pj < 1, which we normalize to 

Z P ; = I . (1.7) 
J 

The assignment of pj depends on the task that the dynamic system has to perform. 
We may think of a specific task which can be performed just by a single attractor 
or we may think of an ensemble of tasks whose execution is of a given relative 
importance. Clearly the relative importance of the messages Pj does not only depend 
on the dynamic system but also on the tasks it must perform. The question is now: 
What are the values Pj of the incident messages? To this end we consider the links 
between a message and the attractor into which the dynamical system is driven after 
receipt of this message. If an attractor k (including the 0 attractor) is reached after 
receipt of the message j we attribute to this process the matrix element M^j^ = 1 
(or = 0). If we allow for internal fluctuations of a system, a single message can drive 
the system via fluctuations into several different attractors which may occur with 
branching rates M^j^ with Y^k^jk = 1- We define the "relative importance" p^ by 

k k ^ ^'^ 
J 

where we let 8 ^ 0 . (This is to ensure that the ratio remains determined even if the 
denominator and nominator vanish simultaneously.) We first assume that for any 
Pfe 7̂  0 at least one Mŷ  7̂  0. One readily convinces oneself that p^ is normalized 
which can be shown by the steps 

ZP.= 

k 1 ., 

= Z P * = I (1-11) 
k 

where the bracket in (1.10) is equal to 1. 
Now consider the case where for some fc-values, for which pĵ  7̂  0, all M^^^ = 0. 

In this case in the sums over k in (1.9) and (1.10) some coefficients ofp^^O vanish 
and, since Y,kPk = ^^ we obtain YjjPj ^ -̂ If this inequaUty holds, we shaU speak of 
an information deficiency. 

In a more abstract way we may adopt the left hand side of (1.8) as a basic 
definition where we assume 

I:LJ,<I, (1.12) 
j 

where the equality sign holds only when there is no information deficiency. 
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We note that instead of the requirement Mjj, = 1 as in case of a single final 
attractor for an incident message, Mj^ can be generalized to 

0<Mjk<l . (1.13) 

The form (1.8), left hand side, immediately allows us to write down the formulas 
for several systems that are coupled one after the other. For instance in the two step 
process we immediately obtain 

p. = E^J**pi = Zi^WI»K' (1.14) 
k kk' 

where one can convince oneself very easily that YjjPj ~ ^ provided YjkP'k^ 1 ^^^ 
Yjj^jk = 1- The individual steps read 

1PJ = 1 Z i^i^p^ = Z ( l L]V]L^'PW (1.15) 

= 1 

= IZ4l'pi' = i. (1-16) 
k' k 

= 1 

We may define 

L;,. = XLj,i)Lli!. (1.17) 
k 

Because the L's are positive we find 

Uj, > 0 (1.18) 

and because of the normalization properties (in case of no information deficiency) 

2-( ^jk' "~ 2 J 2-( ^jk ^kk' 
J k j 

W( 

so 

k 

s readily obtain 

L;,<I 

• that Ljk obeys the 

0 < Ljfc < 1 . 

1 

inequality 

(1.19) 

(1.20) 

(1.21) 

We mention that the recursion from p" or still higher order p̂ "̂  to p may depend 
on the paths. 

Our above approach not only introduces the new concept of relative importance 
of a message but it also provides us with an algorithm to determine Pj which has 
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some conceptual and practical consequences. With a given task or ensemble of tasks, 
this algorithm allows us to select the message to be sent, namely the one with the 
biggest Pj. If there are several pj of the same size it does not matter which message 
is sent. From the conceptual point of view we may then decide whether a dynamical 
system annihilates, conserves or generates information. To this end we make use 
of the concept of information in the sense of conventional information theory. 
But instead of the information content due to the relative frequency of symbols 
we use the relative importance within a set of messages, i.e. we introduce the 
quantities 

S*°*=-ZP, lnp , (1.22) 
J 

S*' '=-Zpilnpi, (1.23) 
k 

where Pj and p^ have been defined above in the text. If Y^uPk = 1? ^s is always 
assumed here, and Y^jPj < 1» ^^ information deficiency is present. In the case 
YjjPj = 1 we shall speak of annihilation of information if 

Ŝ )̂ < S<̂> (1.24) 

of conservation of information if 

S<̂> = S<̂ ^ (1.25) 

and of generation of information if 

5<i> > S<̂> . (1.26) 

The meaning of this definition quickly becomes clear when we treat special cases. 
If, for instance, two messages lead to the same attractor there is a redundancy in 
the system and the information content (in the traditional technical sense of the 
word) becomes smaller. It is reduced from 

5̂ 0) = - X [ i l n ( i ) + i ln( i ) ] = iCln2 (1.27) 

to 

5̂ 1) = - X l l n l = 0 . (1.28) 

In the case of a one-to-one mapping of Pj onto pj^ we find the transfer of {pj} into 
the same set {pi,}, except maybe for the permutation of indices, i,e. for different 
numbering of the states. In such a case (1.25) clearly holds. Finally, in the case (1.26), 
the pp where one Pj = 1 and all others = 0, are transferred into e.g. p' = p" =^ 
and all others are equal to 0. Then 5̂ ^̂  = — K • 1 • In 1 = 0 is enlarged to 

5(1) = - K [ i l n ( i ) + i ln( i ) ] = Khi2 . (1.29) 

Of course these examples are not meant to prove the definitions (1.24-26) but rather 
to illustrate their meaning. 
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Our approach based on synergetics has some further nice features. Semantics 
has become the problem of studying the response (attractors) of the dynamic system. 
The system may be error-correcting (or may supplement partial information). If the 
incident message does not set the initial state q on the attractor (i.e. not correctly), 
it may set the initial state q within the basin of the attractor i.e. on the slope of the 
hill surrounding the bottom of the specific valley which represents the attractor 
(fixed point). In this way the system pulls the state vector into the attractor corre­
sponding to that basin, i.e. into the correct state. It will be an interesting problem 
to determine the minimum number of bits required to realize a given attractor (or 
to reahze a given value of "relative importance"). 

Within our present scheme, the learning process of a system can also be modeled. 
A system can be "sensitized" or "desensitized" with respect to messages j e.g. by 
letting more or fewer parameters react to specific messages. 

In the above treatment we have assumed that the value of the messages is 
measured with respect to the same initial state of the receiver. In the next step of 
our considerations we may assume that messages apply to a receiver in another 
initial state which has been set for instance by a previous message. 

In such a way we obtain an interference of messages and the relative importance 
of a message depends on the messages previously delivered to the receiver. In the 
general case, the relative importance of a message will depend in a non-commuting 
way on the sequence of the messages. In this way the receiver is transformed by 
messages again and again and clearly the relative importance of messages will 
become a function of time. 

Another remark might be useful, particularly in relation to synergetic processes. 
A synergetic system not only needs to be a dynamical system showing e.g. limit cycle 
or chaotic behavior, but it might also be one in which irreversible processes leading 
for instance from a disorganized liquid state into a structured solid state occur. 

Let us conclude this part with a comment on pattern recognition which will be 
eludicated from various points of view in this book. Pattern recognition can be 
considered as a processing of incoming messages by a receiver, e.g. the brain or a 
machine. It is therefore an interesting task to discuss pattern recognition using the 
ideas just outlined. I suggest that pattern recognition, at least in general, is a 
multistep process in which the receiver takes an active part. In the first step, the 
pattern is received at a global level where, in general, several attractors can be 
reached. Then, the sensory system is requested to focus its attention on the explora­
tion of additional features so that a finer set of attractors can be selected. To be 
more explicit: In the first step for instance the global shape of the contour fines of 
an object are determined e.g. close to a circle, rectangular, etc. Then, in the case of 
a circle, there are several attractors: apple, face, wheel, tree. Then the receiver asks 
back for further details, e.g. color, vertical fines (nose?), etc. In this way the process 
can be continued. 

Note that our interpretation of pattern recognition differs from the "traditional" 
approach to which we shaU come in Chap. 12. There the pattern is first decomposed 
into its "primitives" or "features". Here we start from the global pattern (contour 
fine) and then proceed to more and more details. 
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This approach offers us an explanation (or at least a hint) as to why, in human 
pattern recognition, even interrupted contour Unes are supplemented such that a 
continuous Hne is "seen". 

1.6.3 Self-Creation of Meaning 

As was mentioned previously, synergetics may be considered as a theory of the 
emergence of new quahties at a macroscopic level. By means of a suitable interpre­
tation of the results of synergetics, we may thus study the emergence of meaning as 
the emergence of a new quality of a system, or in other words the self-creation of 
meaning. In order to study how this happens we want to compare a physical system, 
namely the laser, with several model systems of biology. Let us start with some 
general remarks on the role of information in biological systems. 

One of the most striking features of any biological system is the enormous degree 
of coordination among its individual parts. In a cell, thousands of metabolic 
processes may go on at the same time in a well-regulated fashion. In animals, 
miUions to bilHons of neurons and muscle cells cooperate to bring about well-
coordinated locomotion, heartbeat, breathing or blood flow. Recognition is a highly 
cooperative process, and so are speech and thought in humans. Quite clearly, 
all these well-coordinated, coherent processes become possible only through the 
exchange of information, which must be produced, transmitted, received, processed, 
transformed into new forms of information, communicated between different parts 
of the system and at the same time, as we shall see, between different hierarchical 
levels. We are thus led to the conclusion that information is a crucial element of the 
very existence of life. 

The concept of information is a rather subtle one and it will be the goal of this 
section to further elucidate some of its aspects. As we shall see, information is linked 
not only with channel capacity or with orders given from a central controller to 
individual parts of a system - it can acquire also the role of a "medium" to whose 
existence the individual parts of a system contribute and from which they obtain 
specific information on how to behave in a coherent, cooperative fashion. At this 
level, semantics may come in. 

Let us first have a look at physics. In closed systems the second law of thermo­
dynamics tells us that structures decay and systems become more and more homo­
geneous, at least on a macroscopic level. At the microscopic level complete chaos 
may occur. For these reasons information cannot be generated by systems in 
thermal equiUbrium; in closed systems thermal equilibrium is eventually reached. 
But a system in thermal equilibrium cannot even store information. Let us consider 
a typical example, namely a book. At first sight, it seems to be in thermal equilib­
rium, and indeed we can measure its temperature. But in spite of that, it has not 
reached its final state of complete thermal equilibrium. In the course of time, the 
printer's ink in the individual letters will diffuse away until a homogeneous state is 
reached. 

This simple example teaches us that any memory consisting of a closed system 
is out of thermal equiUbrium and it is always necessary to ask how long the 
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atoms 

Fig. 1.28. Laser active atoms embedded in a crystal of 
a laser setup 

a t o m l i g h t w a v e ( s i g n a l ) 

Fig. 1.29. An excited atom emits a hght 
wave (signal) 

- • • ' \ / \ / \ / \ / \ / y Î "g- l-̂ O- When the light wave hits an ex­
cited atom it may cause the atom to amplify 

a t o m s igna l ampl i f i ed s igna l the original light wave 
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Fig. 1.31. A cascade of amplifying processes 

Fig. 1.32. The incoherent superposition of amplified 
light waves produces a still rather irregular light 

A field amplitude 

Fig. 1.33. In the laser the field amplitude is 
represented by a sinusoidal wave with a 
practically stable amplitude and only small 
phase fluctuations 

information can be stored in each specific case. Let us therefore consider open 
systems which are kept far from thermal equihbrium by an influx of energy and/or 
matter into the system. As was mentioned before, in open systems, even in the 
inanimate world, specific spatial or temporal structures can be generated in a 
self-organized fashion. Examples are provided by the laser which produces coherent 
Hght, by fluids which can form specific spatial or temporal patterns, or by chemical 
reactions which can show continuous oscillations, or spatial spirals, or concentric 
waves. Even at this level we can speak to some extent of creation or storage of 
information. On the other hand, we can hardly attribute words Hke relevance, 
purpose or meaning to these processes. 

Let us discuss the laser in some more detail because it allows us to introduce a 
terminology which is also useful for biological and other systems. In the laser a 
number of atoms are embedded, for instance, in a crystal such as ruby (Fig.L28). 
After excitation from the outside, these atoms may emit individual Hght wave trains 
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(Fig. 1.29). Thus, each atom emits a signal, i.e. it creates information which is carried 
by the Hght field. In the laser cavity the emitted wave trains may hit another excited 
atom and cause it to amplify the original wave (Fig. 1.30). In this way, the informa­
tion serves the purpose of enhancing the signal (Fig.1.31). Because the individual 
excited atoms may emit light waves indepently of each other and these may then 
be ampHfied by other excited atoms, a superposition of uncorrected, though 
amphfied wave trains results and a quite irregular pattern is observed (Fig. 1.32). 

But when the signal reaches a sufficiently high amplitude, an entirely new process 
starts. The atoms begin to oscillate coherently and the field itself becomes coherent, 
i.e. it is no longer composed of individual uncorrelated wave tracks but has become 
a practically infinitely long sinusoidal wave (Fig. 1.33). 

We have here a typical example of self-organization where the temporal struc­
ture of the coherent wave emerges without interference from the outside. Order is 
estabhshed. The detailed mathematical theory shows that the emerging coherent 
light wave serves as order parameter which forces the atoms to oscillate coherently, 
or in other words it enslaves the atoms (Fig. 1.34). Note that we are dealing 
here with circular causality: On the one hand the order parameter enslaves the 
atoms, but on the other hand it is itself generated by the joint action of the atoms 
(Fig.1.35). 

From the viewpoint of information, the order parameter serves a double role: 
it informs the atoms how to behave, and in addition, it informs the observer about 
the macroscopic ordered state of the system. While an enormous amount of infor­
mation is needed to describe the states of the individual atoms, once the ordered 
state is estabhshed, only a single quantity, namely the phase of the total Ught field 
is necessary, i.e. we have an enormous compression of information. We may call the 

field (order parameter) 

0 0 0© 

slaves 
Fig. 1.34. Illustration of the slaving principle. The 
field acts as order parameter and prescribes the mo­
tion of the electrons in the atoms. In other words the 
motion of the electrons becomes slave to the field 
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field (order parameter) 

slaves 

generate 
Fig. 1.35. Illustration of circular causaHty. On the one 
hand the field acting as order parameter enslaves the 
atoms. On the other hand the atoms by their stimu­
lated emission generate the field 
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( c e l l j *- ( c e l l ) T ( c e l l ) = ^ 
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Fig. 1.36. Illustration of the amplification of the number of cAMP molecules in the cells of slime mold 

cAMP 
c o n c e n t r a t i o n Fig. 1.37. Schematic illustration of the concentra-
w a v e tion wave of cAMP in sHme mold formation 

order parameter an "informator". Over the past years, it has been shown that these 
concepts apply to a large number of quite different physical, chemical and biological 
systems. 

To elucidate the role of information exchange at the level we are presently 
considering, let us take the example of slime mold {dictiostelium discoideum). Usually 
its cells live individually on a substrate but when food becomes scarce they assemble 
at a particular point. The mechanism of this kind of self-assembly is as follows: 

The individual cells start to emit the substance, cyclic Adenosinemonophos-
phate (cAMP); thus they send out a signal or a message, i.e. information. Once 
cAMP molecules hit other cells, these are induced to increase their production in 
much the same way as the laser atoms amplify the incoming signal (Fig. 1.36). Quite 
clearly, the elements themselves are not aware of the meaning of the information 
but through the interplay between emission, amplification and diffusion of the 
cAMP molecules, a spiral pattern of concentration of cAMP is formed, i.e. infor­
mation at a higher level is generated (Fig.1.37). Because this information is produced 
by the cooperativity of the system, we may call it synergetic information. The spiral 
waves form some kind of gradient field (the informator) which can be measured by 
the individual cells which then move towards the point of highest concentration in 
the field. Clearly we can distinguish here between the production of information, 
the information carrier and information receiver which in our case would be cell, 
cAMP and cell, respectively. However at the next level, we observe that a new 
meaning has arisen, namely the estabhshed pattern of a molecular concentration 
serves the purpose of guiding the cells to the center of their assembly. 

Basically the same idea holds for the concept of positional information. Here, 
it is assumed that the individual cell within a tissue receives its information from a 
chemical field which has been estabhshed by the production and diffusion of 
chemicals. In general, two kinds of molecules are assumed, namely activator and 
inhibitor molecules. Where activator molecules have a high concentration it is 
assumed that specific genes can be switched on which then cause the differentiation 
of a cell. In this way the chemical field plays the role of the informator. A particular 
model system has been hydra. 
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It is useful to recall what we have established so far. Quite evidently, there is a 
hierarchy of informational levels. At the lowest level, the individual parts can emit 
information which hits other parts of the system. Such an information transfer can 
take place between specific pairs of elements or the information can be transferred 
by a general carrier. An example for the first case are nerve fibers each connecting 
two neurons; examples of the second case are provided by hormones released to 
the blood, or by pheromones released into air. 

Although, in all these cases the exchange of information may initially occur at 
random, a competition or cooperation between different kinds of signals sets in, 
and eventually a new collective state is reached which differs qualitatively from the 
disordered or uncorrelated state present before. Thus, a new state is described by 
an order parameter or a set of order parameters or equivalently by one or several 
informators. The states of the individual parts are determined by means of the 
slaving principle. But one may describe this process in another way, namely that a 
specific consensus was reached among the individual parts of the system or that 
self-organization has happened. At the same time information compression takes 
place. The information appears manifest at a macroscopic level and, in many cases, 
increases the rehabiUty and/or efficiency of the system, or serves other purposes as 
mentioned above. 

This new collective level becomes observable to the outer world and by estab­
lishing this relationship or context a new semantic level is reached. By the way, the 
context may be established with the outer world but equally well within the same 
system. Here then words like useful, useless, or relevance can be applied. This is 
quite evident from the example of the laser where the cooperative state reaches a 
high efficiency. In the analogous case of a biological system, such behavior is then 
useful for the whole system. Beyond instabihty points the system can acquire 
different possible states and it needs additional information on which state to 
choose. One possibiHty is that this information is provided genetically, or by 
constraints established by other parts of the system. But often in such a case of 
degeneracy, the surroundings play an important role, or in other words, it is the 
context which judges the value of the kind of state to be estabhshed. In the opinion 
of the author it is here that information in the biological sense starts. Through 
instability a collective state is formed but it acquires its meaning only with respect 
to the surroundings and, in a way, with respect to its value for the survival of the 
whole system. 

These remarks also apply to the genetic code, though its very origin is not yet 
too well clarified. One may speculate that at first fluctuations occur which create 
some biological macromolecule with specific properties. The most important of 
these is that it can multiply in an autocatalytic fashion. The value of the information 
conveyed by this molecule to its phenotype is then judged by the environment to 
which other molecules with their phenotypes may also belong. By the interplay of 
mutation and selection new types of molecules and their corresponding phenotypes 
are then generated and in this way we observe the creation of new information. 
But whether this information is useful or not can be checked upon only by the 
interaction of the particular species with its environment. 
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In the considerations above we described the first steps of the formation of 
ordered or structured collective states. But in contrast to the physical systems 
mentioned above, such as lasers, fluid dynamics, or chemical reactions, a new feature 
appears in biology, namely a solidification. For instance, when the genes of a cell 
are switched on by activator molecules, the cell differentiates into a specific cell 
which now is no longer modifiable or can no longer be transformed back into the 
original cell. In a way dynamical processes may lead to solid structures like bones 
or organs. In a similar way, information is laid down in a rigid manner in DNA, 
i.e. in the genetic code. It appears that lower animals are constructed more or less 
by the rules given by the genetic code with a rather rigid "wiring" of their nervous 
systems. 

On the other hand in higher animals, in addition to rigid wiring of the nervous 
system a good deal of self-organization appears. The interaction of the system with 
its environment, together with the genetic information laid down in the system leads 
to the formation of new information. Through the continuous testing of the new 
information stored and created in the brain by the environment, new contexts are 
estabHshed and thus a new kind of semantics occur. But we may also expect that 
"soHdification" occurs at various hierarchical levels of semantic information and 
serves for making the system more reliable, and to store information (memory). 
While the concept of Hebb's synapse, one which is strengthened by its use, may be 
a correct concept, the building up of semantics requires a high degree of cooperativity 
within the system and a repeated interaction with the outside world. In this respect, 
semantic information is not a static property, but rather a process in which contexts 
and relevance are checked, reinforced or dismissed again and again. By the way, 
I believe that consciousness is not a static state, but a process in which information 
is continuously transferred between various parts of the brain and repeatedly 
processed there. 

At this point a word on pattern recognition may be in order. Lower animals 
immediately react to stimuH such as Ught flashes and only few criteria are needed, 
such as theshold of intensity, in order to respond to a signal. In higher animals, 
however, the incoming information will certainly be compared with stored informa­
tion. However, our picture of how this comparison is done is changing shghtly. 

Quite often it is assumed that the incoming pattern is compared with templates. 
However, the storage of a template would require quite a large amount of informa­
tion. Therefore, one might imagine in the sense of synergetics, that only specific 
characteristic features are stored in the form of order parameters which may then 
be called upon to generate a detailed picture. In this sense then, pattern recognition 
becomes an active process in which new patterns are formed in a self-organized 
fashion by the brain which, using certain hypotheses, checks them repeatedly 
against the incoming patterns. For instance, it is weU known that when people look 
at faces, they focus their attention on specific parts like eyes, or nose, or mouth and 
look at them again and again. 

Let us finally discuss a point which apphes specificaUy to humans. In contrast 
to animals, human beings can transfer information not only by the genetic code, 
but also by teaching which in the world of animals takes place only in a very limited 
way. So a good deal of our culture is based on this new way of transferring 
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information from one generation to the next. But here an enourmous difficulty arises 
because of the tremendous amount of knowledge which has been accumulated by 
humanity. Therefore, quite in the spirit of synergetics, it will be important to find 
unifying ideas and principles to cope with this large amount of information. 

In addition our approach provides us with a picture rather different from those 
conventionally drawn from biological systems. There, it is assumed that there exists 
one single command center, say in the brain which then organizes all the behavior. 
The model that we are strongly supporting calls rather for processes of self-
organization, and more recently we were able to prove this hypothesis by our 
quantitative theory of specific experiments on the correlation of hand movements 
and their changes. In these experiments, performed by S. Kelso, test persons were 
asked to oscillate their fingers in parallel. At an increased oscillation frequency 
an involuntary change to an antiparallel oscillation occurred. The way in which this 
transition occurs can be represented in all its details by the assumption of self-
organization of the behavior of neurons and muscles. 

This is certainly an extreme case and in general the information production and 
transfer in biological systems must be considered in two ways: the one is the 
conventional one in which specific motor programs serve for specific actions, 
whereas other phenomena occur in an entirely self-organized fashion. We may 
hypothesize that self-organization in information processing in biological systems 
plays a widespread and major role. This is borne out by the great flexibility of 
biological systems and their adaptabihty and plasticity. 

In my opinion, the study of information in biological systems is also of interest 
to modern society whose proper functioning relies on the adequate production, 
transfer, and processing of information. Perhaps the most important aspect which 
has emerged is that of circular causahty which results in a collective state which in 
sociology may represent a social climate, a general pubHc opinion, a democracy 
or a dictatorship. 

1.6.4 How Much Information Do We Need to Maintain an Ordered State? 

Let us consider our standard example, namely the laser. Let us assume that there 
are atoms in the laser each having two levels. The total number of atoms in the 
lower state will be denoted by AT̂ , the number of atoms in the upper state by ^2-
We have the relation 

iVi + iV2 = iV . (1.30) 

In the sense of quantum mechanics we may relate the occupation numbers N^ and 
N2 to the occupation probabiHty 

Pj = ~r, j=h2 (1.31) 

for a single atom. Thus, the information per atom is given by 

i= - P i l n p i ~P2^rip2 (1.32) 
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and then for all atoms by 

/ = -N{p,\np,+p2lnp2) . (1.33) 

As we know, an exited atom may emit a photon either by spontaneous emission, 
or if other photons are already present, by so-called stimulated emission. We may 
identify a single photon with a symbol that carries an element of information. 
As we know, photons can escape through the mirrors. Therefore, we may ask the 
question of what production rate of photons is necessary in order to maintain 
a coherent state? 

According to laser theory we must not only introduce the number of photons 
n as a variable, but in addition the inversion which is defined as the difference 
between the occupation numbers of the upper and lower state: 

D^N2-N, . (1.34) 

According to the theory the production rate of photons is given by the equation 

^ = WDn - iKfi . (1.35) 
dt 

The first term on the right-hand side describes the production rate of photons, where 
P^ is a rate constant for this production, whereas the second term describes the 
escape of photons through the mirrors so that the actual production is diminished. 
As is shown in laser theory, (1.35) describes the production of coherent photons; 
the production of incoherent photons is neglected. Because of the laser process 
the inversion also changes in time. Its rate of change is given by the equation 

dD Da- D 
— = -^ IWDn . (1.36) 
dt T ^ ' 

Here DQ is the inversion produced by the pump process and relaxation processes 
which do not give rise to laser light emission. T is the time in which any deviation 
of the inversion relaxes towards the inversion DQ. The last term in (1.36) stems from 
the laser process in which photons are produced. In general, the decay constant 
K is much smaller than the rate constant 1/T. This allows us to apply the so-called 
adiabatic approximation in which we may write 

dD 

^ « 0 . (1.37) 

Using (1.37) in (1.36) we can immediately solve (1.36) for D thus obtaining 

D = . (1.38) 

1 + ITWn ^ ^ 
When the laser is not too far above the onset of laser action, we may expand the 
denominator as a power series in the photon number n so that in the leading 
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approximation we obtain 

D^do-2DoTWn . (1.39) 

Inserting this result into the equation for the production rate of photons (1.35), 
we readily obtain 

^ = (WDo - 2K)n - ITW^DoYi" . (1.40) 
at 

While the second term in (1.40) will always lead to a decrease in the production rate 
of the photons, the first term will give rise to a positive production rate provided 
the inequality 

WDQ -2K>0 (1.41) 

holds. Equation (1.41) is identical with the laser condition. Thus (1.41) guarantees 
a positive net production rate of photons, or in other words, a positive net produc­
tion rate of signals. This is necessary for the maintainance of a nonzero flux of 
photons and thus for the ordered state of the laser. According to (1.41) this can be 
established only if the inversion DQ which is achieved by pumping is sufficiently 
high. From 

P r a ^ - ^ (142) 

we may deduce that the condition (1.41) guarantees a non-vanishing number of 
photons which must be present in the laser at all times. 

Let us now study the behavior of the information (1.32) or (1.33) when we 
increase the pump rate or in other words the inversion DQ. TO this end we insert 
(1.42) in (1.39) and obtain 

2K 
D^ — = const. ! f o r n > O o r (1.43) 

W 

D = Do (1.44) 

for n = 0. In other words when we start from a low pump rate, DQ is small and no 
photons are present. Then D increases at the same rate as DQ. But once laser action 
sets in, the inversion D becomes a constant according to (1.43) and shows no further 
increase. All the additional energy fed into the laser is transformed into coherent 
photons. Using (1.34) and (1.30) we have the relations 

N,=UN-D) (1.45) 

N^ = UN + D) (1.46) 

which can then be transformed according to (1.31) into the occupation probabilities 
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Inserting (1.47) and (1.48) into (1.32) we obtain 

- K ' - ^ > 4 - ^ -K-^>4-^ 
In the following we shall use the parameter y defined by 

D 
7 = N 

Because D takes values in the range 

D: -N,...,+N , 

y must he in the range 

y : - l . . . + l . 

(1.47) 

(1.48) 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

The behavior of i as a function of y is plotted in Fig.1.38. The result (1.49) jointly 
with (1.43) and (1.44) allows us to study the change in the information of an 
individual atom when we increase the pump rate DQ. According to Fig. 1.39 the 
information first rises, goes through a maximum and then saturates. Our present 
approach is not capable of dealing with the information contained in the fight 
field because so far we have not considered any fluctuations, i.e. any probabifity 
distribution over the photon numbers n. One of the main objectives of our book 
will it be to study the information as a function of pump strength not only for the 
atoms but also for the photons. 

Indeed we shall see that a surprising result is obtained, namely that the interesting 
information close to the point where laser action starts is contained in the photons 
rather than in the atoms. 

De/N 
Do /N 

Fig. 1.38. The information of an atom versus Fig. 1.39. The behavior of information of a single 
the parameter y atom in the laser 
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1.7 The Second Foundation of Synergetics 

After having discussed the qualitative aspects of information and self-organization 
in the previous sections, we now wish to come to the hard core of our approach 
which will then be followed up in the remainder of this book. Let us briefly recall 
what we have been doing in the field of synergetics so far. There, we started from 
the microscopic or mesoscopic level at which we formulated equations. Then, by 
using the concepts of instabihty, order parameters, and slaving, which can be cast 
into a rigorous mathematical form, we could show the emergence of structures and, 
concomitantly, of new quahties at a macroscopic level. 

In a way parallels can be drawn between the latter approach and that of 
statistical mechanics. We wish now to develop an approach which can be put in 
analogy with that of thermodynamics. Namely, we wish to treat complex systems 
by means of macroscopically observed quantities. Then we shall try to guess the 
microscopic structure of the processes which give rise to the macroscopic structure 
or the macroscopic behavior. The vehicle we shall use for this purpose is the 
maximum entropy principle, or the maximum information entropy principle which 
was developed quite generaUy by Jaynes. 

We shall give a detailed presentation of this principle in Chap. 3. Here it will 
suffice to summarize the basic idea. We start from macro-observables which may 
fluctuate and whose mean values are known. We distinguish the macro-variables 
by an index k and denote their mean values by fj,. We wish then to make a guess 
at the probability distribution Pj of the system over states labeled by the index j . 
This is achieved under the maximization of the information 

i=-Y,Pj\npj (1.53) 
j 

under the constraint that 

Y.Vjfl"'= fk • (1-54) 
j 

Evidently, fj^^ is the contribution of state j to the macro-variable labeled by k. 
Furthermore we require 

X P , = 1 , (1.55) 
j 

i.e. that the probability distribution Pj is normalized to unity. As was shown by 
Jaynes and as will be demonstrated in Chap. 4, this principle allows us to derive 
the basic formulas of thermodynamics in a very short and elegant fashion. For this 
derivation the constraints refer to the conserved quantities of a closed system, i.e. 
energy, particle numbers etc. The crux of the problem of extending this maximum 
entropy principle to systems far from thermal equilibrium or even to non-physical 
systems lies in the adequate choice of constraints. 

As we shall see, the constraints which have been used so far, of energy conserva­
tion or even of regulated energy fluxes into the system, are inadequate to treat open 
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systems and especially to treat the transition from a structureless to a structured 
state as occurs in non-equilibrium phase transitions. The maximum entropy prin­
ciple has been criticized occasionally because the choice of the constraints seems 
to introduce a certain subjectivity in that the constraints are said to be chosen 
arbitrarily at the will of the observer rather than by objective criteria. 

This criticism has been debated by Jaynes in detail, but I should Hke to add here 
another point of view. Scientific progress rehes on a general consensus being reached 
within the scientific community; results are made objective by general agreement. 
One might call this attitude "relative objectivism". This is actually the most which 
can be said about any physical theory because in the natural sciences a theory can 
never be verified but only falsified, a point quite correctly made by Popper. Thus, 
what we have to adopt is a learning process based on the correct choice of adequate 
constraints. This is in fact what has happened in thermodynamics where by now 
we all know that the adequate constraints are the conservation laws. 

In the field of non-equihbrium phase transitions, or more generally speaking, of 
open systems, we wish to make the first steps by showing what these constraints 
are. Indeed, when we confine our analysis to non-equilibrium phase transitions, 
we find complete agreement between the macroscopic approach by the maximum 
(information) entropy principle and the results derived from a microscopic theory 
for all cases where the microscopic distribution functions are known. Therefore, 
I am sure that a consensus can be found here too. 

There is another aspect important from the mathematical point of view. Namely, 
when we prescribe specific constraints which are given experimental mean values, 
the maximum (information) entropy principle will always provide us with distri­
bution functions which reproduce these mean values. In this sense we are deahng 
here with a tautology. Then, however, in the next step we may infer new mean values 
by means of the probabihty distribution and then predictions are made which can 
be checked experimentally. If these predictions are not fulfilled, we may choose these 
new experimental data as additional constraints which then give rise to altered 
probabihty distribution functions. In this way an infinite process has been started. 
But in spite of this cautioning remark, we may find a consensus on the proper choice 
of a limited set of constraints, provided we confine our analysis to specific classes 
of phenomena. 

One such class is, as mentioned, closed (thermodynamical) systems with their 
appropriate constraints. Another class consists of non-equilibrium phase transi­
tions which will be treated here. As we shall see, this class comprises numerous 
phenomena in various fields, such as the emergence of spatial patterns, of new types 
of information and even of oscillatory phenomena. The appropriate choice of 
constraints for processes leading to deterministic chaos remains, at least partly, 
a task for the future. 

As we shall see, the main new insight which we are gaining by our approach 
into the constraints is the following: In a first step one may guess that the adequate 
constraints must include the macroscopic variables, or in other words, the order 
parameters. But it is known that in non-equilibrium phase transitions critical 
fluctuations of the order parameters occur, i.e. that their fluctuations become 
macroscopic variables. Indeed, it wiU turn out that the inclusion of the fluctuations 
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of the order parameters is the crucial step in finding adequate constraints for this 
class of phenomena. 

Using the results of the microscopic theory as a guide, we are then able to do 
much more; namely, we can do without the order parameters from the outset. 
Instead our approach will start from correlation functions, i.e. moments of observed 
variables from which we may then reconstruct the order parameters and the 
enslaved modes. Incidentally, we can also construct the macroscopic pattern, or 
in other words we may automatize the recognition of the evolving patterns which 
are produced in a non-equilibrium phase transition. 

In conclusion, let us return to the discussion of the relation between the analytical 
(or microscopic) approach and the hohstic (or macroscopic) approach, and let us 
make a further point in favor of a macroscopic approach. Quite often, even the 
subsystems become very complicated so that it is difficult or even impossible to 
formulate the microscopic or mesoscopic equations expHcitly. When we go to the 
extreme case, namely the human brain, the subsystems are, for instance, the nerve 
cells (neurons) which are themselves compHcated systems. A nerve cell contains 
its soma, an axom and up to 80 thousand dendrites by which the cell is connected 
with other nerve cells. In the human brain there are about 10 bilHon nerve cells. 
It is proposed in synergetics that despite this enormous complexity, a number of 
behavioral patterns can be treated by means of the order parameter concept, where 
the order parameter equations are now estabHshed in a phenomenological manner. 

Recently, we were able to find a paradigm, namely the coordination of hand 
movements and especially involuntary changes between hand movements. Though 
the relevant subsystems are quite numerous and consist of nerve cells, muscle cells 
and other tissue, the behavior can be represented by a single order parameter. We 
shall describe these experiments in this book and elucidate our general approach 
by this example. Further examples will be taken from laser physics and fluid 
dynamics. Looking at the numerous examples treated from the microscopic point 
of view in synergetics, it is not difficult to find many more appHcations of our new 
macroscopic approach. In addition, numerous examples, especially in biology, can 
be found where only the macroscopic approach is applicable. 

We conclude with the remark that we shall use the expression "maximum 
information principle" exchangeably with "maximum entropy principle". But, as 
will transpire, the term information is the more appropriate to the situation in 
non-equihbrium systems. 
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2.1 Levels of Description 

In this chapter I present the basic concepts and methods which have been used in 
synergetics to study self-organization by means of a microscopic approach. Readers 
familiar with this approach may skip this chapter and proceed directly to Chap. 3. 
On the other hand those readers who are unfamihar with these concepts and 
methods and who wish to penetrate more deeply into them are advised to read 
my books "Synergetics. An Introduction" and "Advanced Synergetics" where all 
these concepts are explained in great detail. 

When we deal with a system, we first have to identify the variables or quantities 
by which we wish to describe the system. Such a description can be done at various 
levels which are, however, interconnected with each other. Let us discuss the 
example of a fluid (Fig.2.1). At the microscopic level, the fluid can be described as 
being composed of individual molecules. Thus, for a complete description of the 
fluid, we have to deal with the positions and velocities of the individual molecules. 
However, for many purposes it is suflicient to deal with the fluid at a mesoscopic 
level. Here, we start from volume elements which are stiU small compared to the 
total size of the fluid, but which are so large that we may safely speak of densities, 
velocity fields, or local temperatures. Finally, our concern wiU be the macroscopic 
level at which we wish to study the formation of structures, or of patterns, for 
instance a hexagonal pattern in a fluid which is heated from below. A similar 
subdivision of levels can also be made with respect to biological systems. But as 
the reader will recognize quickly, we have here a much greater arbitrariness in 
choosing our levels. 

Let us consider the example of a biological tissue. At the microscopic level we 
may speak of biomolecules or equally well of organelles and so forth. At the 
mesoscopic level we may speak of cells and finaUy at the macroscopic level we may 
be concerned with whole tissues or organs formed by these cells. Quite clearly, 
for the transition from the mesoscopic to the macroscopic level we must neglect 
many detailed features of the cefls and their constituents. Instead we must pick 
out those features which are relevant for the formation of organs. Therefore, at 
this mesoscopic level we are already dealing with an enormous compression of 
information. 

In this chapter we shaU mainly be concerned with the transition from the 
mesoscopic to the macroscopic level, though in a number of cases a direct transition 
from the microscopic to the macroscopic level can also be performed. Within 
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fluid 

m i c r o s c o p i c 

positions and 

velocities 

of molecules 

Fig. 2.1. Illustration of the micro­
scopic, mesoscopic and macroscopic 
approach by means of the example 
of a fluid 
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dens i ty - , 
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t empera tu re field 

m a c r o s c o p i c pa t te rn 

Table 2.1. Examples of mesoscopic variables 

Field of Study Variables 

chemical reactions, solidification 
fluids 
flames 
plasmas 
lasers, parametric osciflators 
solid state physics, Gunn oscillator, filamentation 
morphogenesis 
pre-biotic evolution 
population dynamics 
neuronal nets 
locomotion 
economy 
sociology 
synergetic computers 

densities of molecules in different phases 
velocity fields 
temperature fields 
electric and magnetic fields 
atomic polarization, inversion 
densities of electrons and holes 
densities of cells in tissues 
numbers of biomolecules 
numbers of animals 
firing rates of neurons 
elongation and contraction of muscles 
monetary flows 
number of people with specific attitudes 
activation of elements 

physics, the mesoscopic level can be reached by means of statistical mechanics 
where certain relevant variables are then introduced and treated. In most cases, 
however, such as in chemistry and biology we shall use phenomenological equations 
for the corresponding variables. 

Let us give the reader an impression of the variety of problems to be treated by 
means of hsting a number of examples of mesoscopic variables (Table 2.1). 

2.2 Langevin Equations 

A quite typical example for the description at the mesoscopic level is provided by 
the Brownian motion of a particle, say a dust particle, which is immersed in a fluid. 
Its motion is described by the Langevin equation where the variable q is then to 
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be identified with the velocity of the particle. The microscopic motion of all the 
molecules of the Hquid has two effects. On the one hand it leads to a damping of 
the velocity and on the other hand it leads to random impulses dehvered to the 
particle under consideration. The Langevin equation reads 

q = K{q) + Fit) (2.1) 

where in the case of the Brownian particle K is given by 

K{q)=-yq . (2.2) 

A form which we are quite often concerned with in synergetics is given by the 
non-linear expression 

Kiq) = aq- ^q' . (2.3) 

The fluctuating forces F are characterized by the properties 

<F(0> = 0 and (2.4) 

<F{t)Fin} = QS{t - n (2.5) 

where the average is taken over the stochastic process. When we deal with several 
variables qi,... ,qN which are lumped together into a state vector q, the Langevin 
equation reads 

q = K{q) + Fit) (2.6) 

and the fluctuating forces are assumed to possess the properties 

<î -(r)> = 0 (2.7) 

iF,{t)Fy(t')y = Qj3j,d{t - n . (2.8) 

Note that q may be a vector in a high dimensional space thus representing a very 
complicated system. In a number of cases the fluctuating forces are themselves 
dependent on the state variable q. In such a case a number of specific problems 
arise which were solved by the Ito or Stratonovich calculus. In the Ito calculus 
the Langevin equation (2.1) must be replaced by the following equation 

dqit) = K{qit)) dt + giqit)) dw(t) . (2.9) 

Here K and g are in general non-hnear functions of q whereas dw describes 
a stochastic process where we make the assumptions 

<Jw> = 0 (2.10) 

idw{t)dw(t')} = d{t - t')dt . (2.11) 

In the Ito formulas it is assumed that q{t) and dw which occur in the last term of 
(2.9) are statistically uncorrected. When we deal with a multidimensional state 
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vector with components ^ i , . . . , ^^ the Ito equation reads 

dq.it) = KMt))dt + X dimiq{t))dwM (2.12) 
m 

where dw^, which describes the stochastic process, has the properties 

<dw„> = 0 (2.13) 

idwjt)dw,it')y = di^5(t - t')dt . (2.14) 

To exhibit the special features of the Ito procedure let us consider an arbitrary 
differentiable function 

« = uiq) (2.15) 

and its differential. Because of the property (2.14) we have to go up to the second 
derivative according to 

Inserting (2.12) into (2.16) and keeping the terms including dt but neglecting all 
higher order terms we arrive at 

1 V d^U: 

2 Z J dqj^dqi 
Y^QkmGlndy^mdy^n • (2-17) 

Let us now briefly remind the reader of the Stratonovich approach. The stochastic 
equation for a single variable reads 

dq = K{q) dt + g{q) dw{t) (2.18) 

and for the components of a state vector 

dq, = K,{q)dt + ^ Qi^dw^ • (2.19) 
m 

In contrast to the Ito calculus, the last terms in (2.18) or (2.19) are now interpreted 
differently, namely they have to be evaluated according to the midpoint rule in 
which g{q{ti)) dw{ti) is replaced by 

gi^li'-^^^^dwiu) , (2.20) 

i.e. q and dw are no more statistically independent. As we shall see later, we can 
recover the Ito equation by means of a macroscopic approach. 



40 2. From the Microscopic to the Macroscopic World. 

23 Fokker-Planck Equation 

For many applications, especially when the problems are non-Hnear, i.e. when K is 
a non-linear function of q, it is advantageous to proceed to the Fokker-Planck 
equation which is formulated for the distribution function f(q, t). It describes the 
probabiHty of finding the variable q in the interval q-^ q -^ dq 3.t time t. 

The Fokker-Planck equation belonging to the Langevin equation (2.1) reads 

8t' 

d Q d^ 
(2.21) 

where the first term on the right-hand side is denoted as the drift term, and the 
second term is called the diffusion term. 

The stationary solution obeying 

dt 
= 0 

can easily be found, provided the boundary condition 

/(^)->0 for q-^ Too 

is fulfilled. Then the stationary solution reads 

/ = Nexp r-^^. 

(2.22) 

(2.23) 

(2.24) 

where N is the normaHzation factor so that the integral over / is equal to unity. 
In the case of a multidimensional state vector, we have to find the Fokker-Planck 
equation for 

This equation reads 

dt 
/ . 

(2.25) 

(2.26) 
jk 

Explicit solutions of (2.26) are available only in special cases, e.g. if K is linear in 
the variables q and Qj^ is independent of q. In such a case the time dependent and 
stationary solutions can be constructed expHcitly (cf. my book Advanced Synergetics). 
The stationary solution of (2.26) can also be constructed expHcitly, provided the 
so-called rule of detailed balance is fulfilled (see below, Sect. 2.4). 

When we start from the Tto differential equation, the corresponding Fokker-
Planck equation has the following form 

df xn 3 1 xn 5 

i^dq. 2 ^ dq^dqi ) QkmQlmf (2.27) 
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In the case of the Stratonovich calculus, however, the Fokker-Planck equation can 
be shown to read 

im I 

2.4 Exact Stationary Solution of the Fokker-Planck Equation 
for Systems in Detailed Balance 

In this section we show that under the condition of detailed balance the stationary 
solution of the Fokker-Planck equation may be found explicitly by quadratures. 

While the principle of detailed balance is expected to hold for practically all 
systems in thermal equilibrium, this need not be so in systems far from thermal 
equilibrium. Thus each individual case requires a detailed discussion (e.g., by sym­
metry considerations) as to whether this principle is appHcable. Also, an inspection 
of the structure of the Fokker-Planck equation will enable us to decide whether 
detailed balance is present. 

2.4.1 Detailed Balance 

We denote the set of variables ^ i , . . . , ĵv by ^ and the set of the variables under 
time reversal by 

q= {£i^i,. . . ,£^^^} , (2.29) 

where Si= — 1 (+1) depending on whether the coordinate q^ changes sign (does not 
change sign) under time reversal. Furthermore, 2. stands for a set of externally 
determined parameters. The time reversed quantity is denoted by 

I = K 1 I , . . . , V M A M } , (2.30) 

where v̂- = — 1 (+1) depends on the inversion symmetry of the external parameters 
under time reversal. We denote the joint probability of finding the system at t^ with 
coordinates q and at 2̂ with coordinates q' by 

P[q\q\h,h) . (2.31) 

In the following, we consider a stationary system so that the joint probabiUty 
depends only on the time difference t2 — t^ = T. Thus (2.31) may be written as 

P{q\q;t2,h)^Wiq\q;T) . (2.32) 

We now formulate the principle of detailed balance. The following two definitions 
are available. 
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1) The principle of detailed balance (first version) 

W(q\q',T,}.) = W{q,q';Tj) . (2.33) 

The joint probabiHty may be expressed by the stationary distribution/(^r) multiplied 
by the conditional probabiHty P, where stationarity is exhibited by writing 

P = P{q'\q;T,X) . (2.34) 

Therefore, we may reformulate (2.33) as follows: 

Piq'\q;^,mq.^) = P{q\q';Tj)f{q\X) . (2.35) 

Here and in the following we assume that the Fokker-Planck equation possesses 
a unique stationary solution. One may then show directly that 

M^) = f{qJ) (2.36) 

holds. We define the transition probabiHty per second by 

Mq\q;^) = L{d/dT)P{q'\q;T,>l)],=o • (2.37) 

Taking the derivative with respect to T on both sides of (2.35) and putting T = 0 
(but q^ q'\ we obtain 

2) the principle of detailed balance (second version) 

Hq\ qi mq. )̂ = w(̂ , q; X)f{q\ I) . (2.38) 

This obviously has a very simple meaning. The left-hand side describes the total 
transition rate out of the state q into a new state q\ The principle of detailed balance 
then requires that this transition rate is equal to the rate in the reverse direction 
for q' and q with reverse motion, e.g., with reverse momenta. It can be shown that 
the first and second version are equivalent. 

2.4.2 The Required Structure of the Fokker-Planck Equation and 
Its Stationary Solution 

Using the conditional probabiHty P (which is nothing but the Green's function) 
we write the Fokker-Planck equation in the form 

^P{q'\q; X, k) = L{q', X)P{q'\q; x, k) (2.39) 
ax 

where we assume that the operator L has the form 

L ( , ) = - ^ | - K . . ( , , . ) + l j ; ^ e , ( , , . ) . (2.40) 
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We may always assume that the diffusion coefficients are symmetric 

Qiu = Qki . (2.41) 

We define the following new coefficients: 

a) the irreversible drift coefficients 

Diiq, ^) = KUq, 1) + SiUq, I)] ^ Dt ; (2.42) 

b) the reversible drift coefficients 

Mq, A) = KKiiq, X) - s,KM, A)] = A' • (2.43) 

Ji transforms as q^ under time reversal. 
We write the stationary solution of the Fokker-Planck equation in the form 

/(?,>l) = ^e-*<»-^> , (2.44) 

where JV is the normalization constant and <I> may be interpreted as a generalized 
thermodynamic potential. The necessary and sufficient conditions for the principle 
of detailed balance to hold read 

Qa{qA) = eiSuQik(q^) , (2.45) 

A iLdq, IL ^'dq, ' 
I K,,j- , (2.46) 

k ^^ 

30 

dq 

If the diffusion matrix Qij^ possesses an inverse, (2.46) may be solved for the 
gradient of 0 

j = X(fi-k(^|f-2A) = ^.. (2.48) 

This shows that (2.48) implies the integrability condition 

f) Pi 

—A, = —Aj, (2.49) 
dqj dqi 

which is a condition on the drift and diffusion coefficients as defined by the right-
hand side of (2.48). Substituting Ai and Aj from (2.48), the condition (2.47) acquires 
the form 

Eg-'Z^-'-izt-".): - 0 . (2.50) 

Thus the conditions for detailed balance to hold are given finally by (2.45,49,50). 
Equation (2.46) or equivalently (2.48) then allows us to determine 0 by pure 
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quadratures, i.e., by a line integral. Thus the stationary solution of the Fokker-
Planck equation may be determined explicitly. 

2.5 Path Integrals 

The time-dependent solutions of the Fokker-Planck equation can be represented 
in the form of path integrals. For the sake of simpHcity we shall be concerned in 
the following with the case where the diffusion constant Q is independent of q. 
Let us first treat the one dimensional case, i.e. that ^ is a single variable. Let us spHt 
the time interval t into equidistant steps 

to, t^ = to -\- T,..., t^ = to -h TN . (2.51) 

The distribution function / at time t can be constructed as a multiple integral over 
all the intermediate positions ô? ^i > '̂ a? • • • (cf- Fig.2.2). The exphcit form of the path 
integral then reads 

/ (q , t )= l imJ-- - jDqe-« 'V(« ' , to ) 
Nz=t 

where we have used the abbreviations 

Dq = {2Qxn)~^'^ dqo,..., dq^^^ and 

1 
Kiq.-i) 

Q 

(2.52) 

(2.53) 

(2.54) 

The exphcit derivation of formula (2.52) is presented in Synergetics. An Introduction. 
Let us now consider the generalization of (2.52) to the case of a multi-dimensional 
vector q which has n components. We still assume that Q^„ is independent of the 
state variable q. We then obtain the following results 

/ (^ ,0=l im | - - - jZ)^e-« /V(? ' , to ) (2.55) 

Nz=^t 

^ 1 

to t , 

^ 4 

Fig. 2.2. The positions of a particle or of 
t the state of a system in the course of time 
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where we have used the following abbreviations 

Dq = Yl {(2mr'Hd^tQr''}{dq,,..., dq^ (2.56) 
,1=0 

9N = 9 I 9o = 9' (2.57) 

G = T X (4J - KU)Q-Hq. - K^-i) (2.58) 

q. = T-'iq. - q.-i) . ^v-i = ^(^v-i) , (2.59) 

where T denotes the transposed vector. 
Let us finally remind the reader of the master equation. Let us consider a discrete 

state space vector m. Then we are interested in the probabihty distribution P{m, t). 
Provided we are deahng with a Markovian process, P obeys the master equation. 

dP{m, t) 

dt 
= y w{m, n)P{n) - V w{n, m)P{m) . (2.60) 

n n 

Again, it is difficult to find exphcit solutions of (2.60). In the special case of detailed 
balance, the stationary probability distribution can be constructed expHcitly. When 
detailed balance is present, P fulfills the following relation 

w(n,m)Pim) = w(m,n)P{n) . (2.61) 

Then the steady state solution of (2.60) can be written down explicitly in the form 

P{m) = Ne^^'"^ (2.62) 

where 0{m) is defined by 

0{m) = 0(no) + y In {"^plll!^] and (2.63) 

m = n^ . (2.64) 

2.6 Reduction of Complexity, Order Parameters 
and the Slaving Principle 

In this section we treat systems which are composed of many parts. We wish to 
study quahtative changes in the behavior of the system. To this end we make several 
transformations of the variables and their equations. Then in Sects. 2.7,8 we shall 
present some important appfications. We start from a state vector q which describes 
the total system at the microscopic or mesoscopic level. 

q^q{x,t). (2.65) 
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For what follows we shall assume that the state vector is a function of the space 
coordinate x so that quite generally we shall assume that q obeys an evolution 
equation of the type 

q = N{q,a)-}-F{t) . (2.66) 

In this equation Â  is a nonhnear function of q that may also contain differential 
operators, for instance the Laplace operator differentiating q which respect to the 
spatial coordinates, a is a control parameter, e.g. the power input into a laser, or 
the amount of heating of a fluid, or certain signals impinging on a biological system, 
and F{t) is a fluctuating force. We now proceed in several steps. 

2.6.1 Linear Stability Analysis 

In the following we shall assume that for a fixed value of the control parameter, ao, 
the solution of the deterministic equation is known, i.e. that qo solves the equation 

q = N{q,ao) . (2.67) 

We then study the behavior of the solution when the control parameter a is changed. 
To this end we make the hypothesis 

a: q =^ qo -\- w . (2.68) 

We assume that qg changes smoothly with a 

^0 = ^o(a) . (2.69) 

We wish to study the stability of that solution qQ. We thus insert the hypothesis 
(2.68) into the equation (2.66) where F however, is dropped. We then obtain 

qo-\-^ = IS[{qo-^w,a) . (2.70) 

Under the assumption that w is a small quantity, we may expand the right-hand 
side of (2.70) into a power series in w and keep only the two leading terms 

qo + w = Niqo.oc) + L{qo)w + ••• . (2.71) 

On account of (2.67), the first term on the l.h.s. of (2.70) cancels with the first term 
on the r.h.s. of (2.71) so that we are left with the equation 

^ = L(qo)w . (2.72) 

Note that L, which depends on qQ, may still contain differential operators acting 
on the space coordinates in w. Nevertheless the general solution of (2.72) can be 
written in the form 

wit) = Q^'v . (2.73) 

where r is a time-independent vector. 
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We note that more general cases have also been treated, namely those where ^o 
is a periodic or quasiperiodic function. For the detailed results I must refer the reader 
to my book Advanced Synergetics. For what follows it is important to distinguish 
between the so-called unstable and stable modes. The unstable modes are those for 
which 

>̂  > 0 (2.74) 

holds. They shall be denoted by 

K. % . (2.75) 

The stable modes are characterized by 

X<Q (2.76) 

and shall be denoted by 

K. Vs • (2.77) 

Note that the terms "unstable" and "stable" refer only to the Hnear analysis. In fact, 
it will turn out that in general the so-called unstable modes will become stabilized 
by means of their interaction with the stable modes. Note further, that our approach 
is a fully nonhnear one and the linear stabiUty analysis serves only to find an 
adequate frame of reference in which to represent the desired solution q of (2.66). 

2.6.2 Transformation of Evolution Equations 

In order to solve (2.66) in the nonlinear and stochastic case, we make the hypothesis 

q = 9o + l Ut)Vu + Z isit)Vs . (2.78) 
u s 

In the case where L contains differential operators acting on space variables, v is 
a space dependent function 

V = v{x) . (2.79) 

When we insert (2.78) into (2.66) and project both sides onto the expansion functions 
r„ and i?̂ , we obtain equations for the mode amphtudes ^^ and (̂^ 

L = KL + K{^,,^,) + F,{t) (2.80) 

ts = K^s + K{L.L) + Fs{t) . (2.81) 

The indices u and s serve two purposes. Firstly, they indicate whether we are dealing 
with the amplitudes of the unstable or of the stable modes. Secondly, they serve to 
number the individual components of <J„ and ^5. For instance we may let u and s 
take the values u = 1, ..., M and s = M -\- 1, . . . . The context will show which 
meaning the indices w or s have to be given. The amphtudes ^„ will be called order 
parameters. 
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2.6.3 The Slaving Principle 

The transformation (2.78) of the equation (2.66) does not reduce the complexity, i.e. 
the equations (2.80) and (2.81) are fully equivalent to the equations (2.66). The 
slaving principle of synergetics allows us, however, to eliminate from (2.80) and (2.81) 
the slaved mode ampHtudes by means of an expHcit formula 

Ut) = fsLUt\tl . (2.82) 

The explicit construction of f^ is described in my book Advanced Synergetics and 
in special cases also in my book Synergetics. An Introduction. Here, we just illustrate 
the contents of (2.82) by means of a simple explicit example where we present the 
slaving principle in its leading term. To this end let us consider the equations for 
the amphtudes „̂ and ^5, namely (2.80,81), in the following form 

L = K^u-^hMu,^,) + FM (2.83a) 

L = KL + 9siQ + qsKiU + FM . (2.83b) 

Here it is assumed tjiat /z„ is a nonhnear function which starts with powers of at 
least second order in\(^„. Similarly, g^ is a function starting at the same power. It 
may then be shown tliat ^^ starts with powers of at least second order in (̂ „. In its 
simplest form, the slaving principle amounts to putting 4 iii (2.83b) equal to zero. 

Keeping the leading orders we readily obtain the result 

L^-YdsiU-Y^sit) • (2.84) 

This result can be proven rigorously to lowest order in F^ and ^„. We now wish to 
study what the slaving principle means for the solution of the Fokker-Planck 
equation. For this purpose we transform the Fokker-Planck equation from the old 
state vector q into the new variables ^„, ^̂  

q^L,^s- (2.85) 

The Fokker-Planck equation then acquires the general form 

p ( 4 , 4 ; 0 = L(4,4)P(^«,4;0 (2.86) 

where L is a linear operator. Let us now consider the steady state solution of (2.86). 
It can always be written in the form 

P{L,^.) = P{UUfiU (2.87) 

where the l.h.s. is a joint probabiHty whereas P on the r.h.s. is a conditional prob-
abihty. / is a distribution function for the order parameters alone. The slaving 
principle, in its leading approximation, now means that the conditional probability 
P on the r.h.s. of (2.87) can be written more specifically as 

P{is\U = UPsiUU • (2.88) 
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Our result (2.84) can now be used to give us an explicit example of what (2.88) 
may look like in this lowest order approximation of the slaving principle. The 
fluctuating forces are, as usual, Gaussian distributed, i.e. the probability of finding 
Fs within the interval F ^ F + dF is given by 

P{F<F,<F-\- dF) = N'exp(-F,yQ')dF . (2.89) 

Now we may solve the relation (2.84) for JF̂  

= -^{^^4 dsi^u) (2.90) 

This allows us to determine the conditional probabihty by using (2.89). In this way 
we obtain 

P{UU = Ncxp Y^siD is + ^gsiuflQ}dis- (2.91) 

where we have used the abbreviations 

Q-' = Q-'X^, (2.92) 

N = N'X, . (2.93) 

2.7 Nonequilibrium Phase Transitions 

In many cases of practical interest, the number of order parameters may be very 
small or even one, whereas the number of slaved modes is still very large. Let us 
consider the case of a single order parameter and let us drop the index u for 
simphcity 

(^„--(^,F„^F,^->A . (2.94) 

A typical order parameter equation then reads 

^ = Xi-l]e + F{t) , (2.95) 

as is shown in synergetics. 
The fluctuating force F{t) obeys the relation 

<Fit)F{n} = Qdit - n . (2.96) 

If we assume in addition that F is Gaussian distributed we may estabhsh a Fokker-
Planck equation belonging to (2.95) in the form 

f(i; t) = -~mi - ii^')n+f ^ / • (2-97) 
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Let us consider the steady state for which 

/ = 0 . (2.98) 

Then (2.97) can easily be integrated, 

f=NexplQ-'{ie-m'')l . (2.99) 

Equation (2.99) provides us with an exphcit and typical example for the distribution 
function / occurring in (2.87). Distribution functions for order parameters can be 
found also for several order parameters explicitly, provided the principle of detailed 
balance holds. Let us assume that X^ is real. A special case of the principle of detailed 
balance is the following: The Langevin equation has the form 

L = KL + ̂  + F,{t) (2.100) 

where F is a nonlinear function of ^„. We assume that 

<f„(OF„.(t')> = d,,.Q6(t - t') (2.101) 

holds. Then the solution of the Fokker-Planck equation belonging to the Langevin 
equation (2.100) can be written in the general form 

/(4„) = iVexp ^^^^"' ' (2.102) 
Q 
y] 

Even if the principle of detailed balance is not valid, but the distribution function 
is singly connected, it may always be written in the form 

/(^„) = iVexp[-0(^„)] (2.103) 

where 0 plays the role of a generalized thermodynamic potential. Now let us assume 
that a soft transition occurs when we change the control parameter so that the 
system becomes unstable and enters a new region. In such a case we may assume 
that the order parameters are still small, for instance that 

^u^K . ' O 0 (2.104) 

In such a case we may expand ^ as a power series with respect to ^„ 

^(4) = Z^"^« +Z^«t.'^«^„'+ E C^u'W'^uL'L" 
u uu' uu'u" 

+ E c„„.„.,„,„^„4.̂ „..̂ „,.. . (2.105) 
uu u u 

In most cases of non-equilibrium phase transitions, it is sufficient to retain the first 
4 powers, though in exceptional cases higher powers are also needed. In general. 
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systems possess internal symmetries that give rise to specific relations between the 
coefficients c of each order. 

2.8 Pattern Formation 

We now wish to show how our above formalism can describe the formation of 
patterns. If we are dealing with continuously extended media which are described 
by a space coordinate x, then in general, the operator L in the linearization (2.72) 
contains derivatives with respect to the spatial coordinate. In such a case w and 
thus V which occurs in (2.73) become functions of the space coordinate JC, (2.79). 

Quite generally the solution q of the nonlinear equation (2.66) can be written in 
the form 

^ = ^0 + I L{t)v,{x) + X Ut)Vs{x) . (2.106) 

which is just the same as our previous formula (2.78). 
As it turns out, (̂ „ is, in general, an order of magnitude larger than ^j , i.e. the 

evolving pattern is mainly determined by the first sum over u in (2.106) which we 
therefore call the mode skeleton. If only a single order parameter is present and r„ 
has the form 

r„ = L~ /̂̂  sin kx , 

then (2.106) is essentially given by 

^ = ^0 + iJf}J^~^'^ sin/ex . 

(2.107) 

(2.108) 

In many cases (̂ „ obeys an equation of the form (2.95) which describes the growth 
of (̂ „ out of an initial fluctuation to its final size (Fig.2.3,4). Quite evidently, with 
more order parameters and/or more compHcated functions r„, far more compHcated 
patterns than that described by (2.107), and (2.108) can be obtained. Thus, this 
theory is capable of deriving the emergent spatial structures of complex systems. 

^ ^u ^ t 

Fig. 2.3. Illustration of the behavior of the order parameter (̂ „ as a function of time. Left-hand side: The 
potential function Fin which a fictitious particle with coordinate „̂ may move. Right-hand side: The 
temporal evolution of ^„ 
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• 1 * 

qo 

t i 

Fig. 2.4. Development of a spatial pattern as de­
scribed by (2.108) in the course of time and described 
by the order parameter depicted in Fig.2.3 

Our example here is just a brief reminder of what has been presented in my 
books Synergetics and Advanced Synergetics. I just wish to remind the reader that 
considerably more general cases have been treated there, such as evolving time-
dependent patterns, namely limit cycles, quasi periodic motion, or chaos. But for 
what follows this brief reminder will, in most cases, be sufficient. 
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Principle (MIP) 

3.1 Some Basicldeas 

In this chapter we address the following question: Let some macroscopic quantities 
of a system be given. We then wish to devise a procedure by which we can derive 
the probabiHty distribution of macroscopic or even microscopic variables. In other 
words, we start from the macroscopic world and wish to draw conclusions about 
the microscopic world. Depending on the kind of systems we are treating, the 
adequate macroscopic quantities may be quite different. In closed physical systems, 
to which thermodynamics appUes, these quantities are energy, particle numbers etc., 
and we shall illustrate the general procedure by this example in Chap. 4. In open 
systems, e.g. in physics or biology, the adequate macroscopic quantities will turn 
out to be, for instance, intensities and intensity fluctuations. Indeed, it will be the 
main purpose of the following chapters, to deal with open systems. 

Since the starting point of our approach is the concept of information, we shall 
derive this concept in this Sect. 3.1. 

By some sort of new interpretation of probability theory we get an insight into 
a seemingly quite different discipline, namely information theory. Consider the 
sequence of tossing a coin with outcomes 0 and 1. Now interpret 0 and 1 as a dash 
and dot of a Morse alphabet. We all know that by means of a Morse alphabet 
we can transmit messages so that we may ascribe a certain meaning to a certain 
sequence of symbols. Or, in other words, a certain sequence of symbols carries 
information. In information theory we try to find a measure for the amount of 
information. 

Let us consider a simple example and consider RQ different possible events 
("realizations") which are equally probable a priori. Thus when tossing a coin we 
have the events 1 and 0 and RQ = 2. In the case of a die we have 6 different outcomes, 
therefore RQ = 6. Thus the outcome of tossing a coin or throwing a die is interpreted 
as the receipt of a message and only one out of the possible RQ outcomes is actually 
reahzed. Apparently the greater RQ, the greater is the uncertainty before the message 
is received and the larger will be the amount of information after the message is 
received. Thus we may interpret the whole procedure in the following manner: In 
the initial situation we have no information /Q, i.e., IQ = 0 with RQ equally probable 
outcomes. 

In the final situation we have an information I^ ^0 with R^ = 1, i.e., a single 
outcome. We now want to introduce a measure for the amount of information, /, 
which apparently must be connected with RQ. TO get an idea how the connection 
between RQ and / must appear we require that / is additive for independent events. 
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Thus when we have two such sets with RQ^ or RQ2 outcomes so that the total 
number of outcomes is 

^ 0 = ^^01^02 (3.1) 

we require 

I{RoiRo2) = moi) + I{Ro2) . (3.2) 

This relation can be fulfilled by choosing 

I = KlnRo (3.3) 

where K is a constant. It can even be shown that (3.3) is the only solution to (3.2). 
The constant K is still arbitrary and can be fixed by some definition. Usually the 
following definition is used. We consider a so-called "binary" system which has only 
two symbols (or letters). These may be the head and the tail of a coin, or answers 
yes and no, or numbers 0 and 1 in a binomial system. When we form all possible 
"words" (or sequences) of length n, we find î  = 2" realizations. We now want to 
identify / with n in such a binary system. We therefore require 

I = K\nR = Kn\n2 = n (3.4) 

which is fulfilled by 

K = ^ = log.e (3.5) 

With this choice of K, another form of (3.4) reads 

I = \og2R . (3.4a) 

Since a single position in a sequence of symbols (signs) in a binary system is called 
"bit", the information / is now directly given in bits. Thus if î  = 8 = 2^ we find 
1 = 3 bits and generally for R = 2^, I = n bits. The definition of information for (3.3) 
can be easily generalized to the case where we initially have RQ equally probable 
cases and finally R^ equally probable cases. In this case the information is 

I = K\nRo-K\nR^ (3.6) 

which reduces to the earlier definition (3.3), if R^ = 1. A simple example for this is 
given by a die. Let us define a game in which the even numbers mean gain and 
the odd numbers mean loss. Then RQ = ^ and î ^ = 3. In this case the information 
content is the same as that of a coin with originally just two possibilities. 

We now derive a more convenient expression for the information: We first 
consider the following example of a simplified Morse alphabet with dash and dot 
(in the real Morse alphabet, the intermission is a third symbol). We consider a word 
of length G which contains N^ dashes and N2 dots, with 

N,-^N2 = N . (3.7) 
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We ask for the information which is obtained by the receipt of such a word. In 
the spirit of information theory we must calculate the total number of words which 
can be constructed out of these two symbols for fixed AT̂ , N2. The analysis is quite 
simple. According to the ways in which we can distribute the dashes and dots over 
the N positions, there are 

possibilities. Or, in other words, R is the number of messages which can be transmitted 
by ATi dashes and N2 dots. We now want to derive the information per symbol, i.e. 
i = I/N. Inserting (3.8) into (3.3) we obtain 

/ = KlnR = KllnNl - InN^l - lniV2!] . (3.9) 

Using Stirling's formula in the approximation 

\nN\^Ni\nN-l) , (3.10) 

which is good for N > 100, we readily find 

/ ^ KlN{lnN - 1) - N^ilnN, - 1) - N2ilnN2 - 1)] , (3.11) 

and from (3.7) we then have 

i = — ^-K 
N 

(3.12) 

We now introduce a quantity which may be interpreted as the probabiHty of 
finding the sign "dash" or "dot". The probabiHty is identical to the relative frequency 
with which dash or dot are found 

p, = ^ , j=l,2. (3.13) 

With this, our final formula takes the form 

i = - = -K{p,\np,+p2\np2) . (3.14) 

This expression can be easily generaHzed to the case where we do not simply have 
two symbols but several, such as letters in the alphabet. Then we obtain, in an 
exactly analogous manner, an expression for the information per symbol which is 
given by 

i=-KY.PAnpj. (3.15) 
J 

Pj is the relative frequency of the occurrence of the symbols. F rom this interpretation 
it is evident that i may be used in the context of transmission of information, etc. 
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Before continuing we should say a word about information used in the sense 
here. It should be noted that "useful" or "useless" or "meaningful" or "meaningless" 
are not contained in the theory; e.g., in the Morse alphabet defined above quite 
a number of words might be meaningless. Information in the sense used here rather 
refers to the scarcity of an event. Though this may seem to restrict the theory 
considerably, the theory will in fact turn out to be extremely useful. 

The expression for the information can be viewed in two completely different 
ways. On the one hand we may assume that the p/s are given by their numerical 
values, and then we may write down a number for / by use of formula (3.3). Of 
still greater importance, however, is a second interpretation; namely, to consider 
/ as a function of the p/s such that if we change the values of the p/s, the value 
of / changes correspondingly. To make this interpretation clear we anticipate an 
application which we will treat later in much greater detail. Consider a gas of atoms 
moving freely in a box. It is then of interest to know about the spatial distribution 
of the gas atoms. We divide the container into M cells of equal size and denote 
the number of particles in cell /c by A/̂ . The total number of particles is N. The 
relative frequency of a particle to be found in cell k is then given by 

^ = Pk, k = l,2,...,M. (3.16) 

Pfc may be considered as the distribution function of the particles over the cells k. 
Because the cells have equal size and do not differ in their physical properties, 
we expect that the particles will be found with equal probability in each cell, i.e., 

P' = i - (3.17) 
M 

We now want to derive this result (3.17) from the properties of information. Indeed 
the information may be as follows: Before we make a measurement or obtain 
a message, there are R possibihties or, in other words, Kin jR is a measure of our 
ignorance. Another way of looking at this is the following: R gives us the number 
of realizations which are possible in principle. 

Now let us look at an ensemble of C containers, each with N gas atoms. We 
assume that in each container the particles are distributed according to different 
distribution functions p^, i.e., 

(1) (2) (3) 
Pk ^ Pk > Pk > • • • • 

Accordingly, we obtain different numbers of realizations, i.e., different information. 
For example, if N^ = N, N2 = N^ =-'-= 0,WQ have p[^^ = 1, p^^^ = p^^^^ = • = 0 
and thus /̂ ^̂  = 0. On the other hand, if N^ = N2 = N^ = '" = N/M, we have 
pf^ = 1/M, pf^ = 1/M,..., so that I^^^ = -Mlog2 (1/M) = Mlog2 M, which is a 
very large number if the number of boxes is large. 

Thus when we consider any container with gas atoms, the probabihty that it is 
one with the second distribution function is much greater than one with the first 
distribution function. That means there is an overwhelming probabihty of finding 
that probabihty distribution p^ realized which has the greatest number of possibihties 
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R and thus the greatest information. Hence we are led to require that 

— ̂  Pi In Pf = Extremum (3.18) 

under the constraint that the total sum of the probabihties Pi equals unity 

M 

E Z P. = 1 • (3.19) 

This principle will turn out to be fundamental for application to reaUstic systems 
in physics, chemistry, and biology and we shall come back to it later. 

The problem (3.18) with (3.19) can be solved using the method of Lagrange 
multipliers. This method consists in multiplying (3.19) by a still unknown parameter 
X and adding it to the left-hand side of (3.18) now requiring that the total expression 
becomes an extremum. Here we are now allowed to vary the p/s independently 
of each other, not taking into account the constraint (3.19). Varying the left-hand 
side of 

-Y,Pilnp,-^XY^p, = Extr . (3.20) 

means taking the derivative of it with respect to Pi which leads to 

- I n p , - 1 +/ l = 0 . (3.21) 

Equation (3.21) has the solution 

Pi = e^-^ (3.22) 

which is independent of the index /, i.e., the p/s are all equal. Inserting them into 
(3.19) we may readily determine X so that 

Me^-^ = 1 , (3.23) 

or, in other words, we find 

P. 4 (3.24) 

in agreement with (3.17) as expected. 

3.2 Information Gain 

The expression (3.15) for the information can be interpreted as an average over fj, 

i = Y,Pjfj, where (3.25) 

fj=-K\npj, pj^O (3.26) 

and the weight is Pj. 
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This suggests that /J- in (3.26) be interpreted as the information content of the 
symbol with index 7 and Pj as the probability (or relative frequency). 

Now let us assume that a set of measurements has led us to the relative frequency 
Pj for the symbol with index 7. Then let us assume that - possibly under different 
conditions - we determine a new relative frequency p-. What is the corresponding 
change of information, Ajl 

Adopting the interpretation of (3.26), we are immediately led to define it by 

Aj = Klnp;-Klnpj . (3.27) 

To obtain the mean change of information, we average (3.27) over the new distribution 
function ("relative frequency") Pj. We thus obtain the so-called information gain 
(or "KuUback information"). 

K{p\p) = Y^ pjAj = iC ̂  pjIn^ , (3.28) 
j j ^ 

where, of course, 

Z P , = 1 and (3.29) 
3 

Z p i = l . (3.30) 
j 

The information gain K{p\p) has the following important property. 

K{p\p)>Q . (3.31) 

The equahty sign holds if and only if 

p' = p, i.e. p'j^ = Pk for all /c's . 

3.3 Information Entropy and Constraints 

In this section and in the next chapter we will be concerned, in particular, with 
api. Jcations of the information concept to physics and shall thus follow the con­
vention of denoting the information by S, and identifying the constant K in (3.3) 
with Boltzmann's constant k^. For reasons which will appear later, S will be called 
information entropy. Because chemical and biological systems can be viewed as 
physical systems, our considerations apply equally well to these systems too. The 
general formaUsm of this chapter is also appHcable to other sciences, such as 
information processing, etc. We start from the basic expression 

S=-k^j:p,lnp,. (3.32) 
i 

The indices i may be considered as describing individual features of the particles 
or subsystems. Let us explain this in some detail. The index / may describe, for 
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instance, the position of a gas particle or it may describe its velocity or both 
properties. In our previous examples the index i referred to boxes filled with balls. 
In a more general interpretation the index i represents the values that a random 
variable may acquire. In this section we assume for simplicity that the index i is 
discrete. 

A central task to be solved in this book consists in finding ways to determine 
the PiS (compare for example the gas molecules in a container where one wants to 
know their location). The problem we are confronted with in many discipHnes is to 
make unbiased estimates leading to p/s which are in agreement with all the possible 
knowledge available about the system. Consider an ideal gas in one dimension. 
What we could measure, for instance, is the center of gravity. In this case we would 
have as constraint an expression of the form 

Y.p,q, = M (3.33) 
i 

where q^ measures the position of the cell i. M is a fixed quantity equal to Q/N, 
where Q is the coordinate of the center of gravity, and N the particle number. There 
are, of course, very many sets of p/s, which fulfill the relation (3.33). Thus we could 
choose a set {pj rather arbitrarily, i.e., we would favor one set against another 
one. Similar to ordinary life, this is a biased action. How may it be unbiased? When 
we look again at the example of the gas atoms, then we can invoke the principle 
stated in Sect. 3.1. With an overwhelming probabihty we will find those distributions 
realized for which (3.32) is a maximum. However, due to (3.33) not all distributions 
can be taken into account. Instead we have to seek the maximum of (3.32) under 
the constraint (3.33). This principle can be generalized if we have a set of constraints. 
Let, for example, the variable i distinguish between different velocities. Then we 
may have the constraint that the total kinetic energy £k?n of the particles is 
fixed. Denoting the kinetic energy of a particle with mass m and velocity Vi by 
fi [/i = (^/2)t??] the mean kinetic energy per particle is given by 

Z Vifi = ^kin • (3.33a) 
i 

In general the single system i may be characterized by quantities //^\ fc = 1, 
2, . . . , M (position, kinetic energy or other typical features). If these features are 
additive, and the corresponding sums are kept fixed at values Z ,̂ then the constraints 
take the form 

ZPJ/* ' = A . (3.34) 
i 

We further add the usual constraint that the probability distribution is normalized 

EPi = l . (3.35) 
i 

The problem of finding the extremum of (3.32) under the constraints (3.34) and (3.35) 
can be solved by using the method of Lagrange multipliers /l^, /c = 1, 2, . . . , M 
(cf. Sect. 3.1). We multiply the left-hand side of (3.34) by 1̂  and the left-hand side of 
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(3.35) by (A — 1) and take the sum of the resulting expressions. We then subtract 
this sum from {l/k^)S. The factor 1/k^ amounts to a certain normahzation of /I, Aĵ . 
We then have to vary the total sum with respect to the p '̂s 

^ r ^ s - (A - 1 ) ^ P; - ^ A, ̂  p,y;.<̂ >l = 0 . (3.36) 

Differentiating with respect to pt and setting the resulting expression equal to zero, 
we obtain 

- In p, - 1 - (A - 1) - X 4 # ' = 0 , (3.37) 
k 

which can be readily solved for pi yielding 

p,^cxp(^-X-l^XjA . (3.38) 

Inserting (3.38) into (3.35) yields 

e -^^exp(^- | :A, / / ' ' )^ = l . (3.39) 

It is now convenient to abbreviate the sum over i, Yjt ^^ (3.39) by 

X e x p ( - Z 4 / /* ' ) = Z(Ai, . . . , AM) , (3.40) 

which we shall call the partition function. Inserting (3.40) into (3.39) yields 

ê  = Z or (3.41) 

>l = lnZ , (3.42) 

which allows us to determine /i once the /i '̂s are determined. To find equations 
for the /Ifc's we insert (3.38) into the equations of the constraints (3.34) which lead 
immediately to 

<//"'> = ZPJ^ ' = e - ^ Z e x p ( - Z ^.P'^y^' . (3.43) 

Equation (3.43) has a rather similar structure to (3.40). The difference between these 
two expressions arises because in (3.43) each exponential function is still multipHed 
by p^\ However, we may easily derive the sum occurring in (3.43) from (3.40) by 
differentiating (3.40) with respect to X^. Expressing the first factor in (3.43) by Z 
according to (3.41) we thus obtain 
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or in still shorter form 

Because the /^ on the left-hand side are prescribed [compare (3.34)] and Z is given 
by (3.40) which is a function of the ^ s in a special form, (3.45) is a concise form 
for a set of equations for the Xjjs. 

We further quote a formula which will become useful later on. Inserting (3.38) 
into (3.32) yields 

^ S _ = A ^ p, + ^ 4 ^ pj^^ (3.46) 
^ i k i 

which can be written using (3.34) and (3.35) as 

f S„3, = A + y A,/, . (3.47) 

The maximum of the information entropy may thus be represented by the mean 
values fk and the Lagrange multipliers Â . Those readers who are acquainted with 
the Lagrange equations of the first kind in mechanics will remember that the 
Lagrange multipliers have a physical meaning, in that case, of forces. In a similar 
way we shall see later on that the Lagrange multipliers X^ have physical (or chemical 
or biological, etc) interpretations. In deriving the above formulas [i.e., (3.38,42) with 
(3.32,45,47)] we have completed our original task of finding the p's and Sĵ ax-

We now derive some further useful relations. We first investigate how the infor­
mation Sinax is changed if we change the functions p^^ and /^ in (3.34). Because S 
depends, according to (3.47), not only on the / ' s but also on /I and the /l '̂s which 
are functions of the / ' s , we must exercise some care in taking the derivatives with 
respect to the / ' s . We therefore first calculate the change of X (3.42) 

32. = SlnZ = -dZ . 
Z 

Inserting (3.40) for Z yields 

SX = e-̂  S E {-54//*' - 4¥/*'}exp(-Z A,//") 

which, from the definition of Pf (3.38) transforms to 

k [_ i i 

r(k) 

Equation (3.43) and an analogous definition of <,Sf^^^y allow us to write the last 
Hne as 

-ZC^4<//'"> + 4<«5//*'>] . (3.48) 
k 
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Inserting this into <5Sjnax from (3.47), we find that the variation of the X^s drops 
out and we are left with 

^S„ax = feB Z 4[5</ /"> - <Sf^'y:\ • (3.49) 
k 

We write this in the form 

SS^. = K1^MK (3-50) 
k 

where we define a "generahzed heat" by means of 

sQu = su^'^y - isf^'^y. (3.51) 

The notation "generahzed heat" will become clearer below when contact with 
thermodynamics is made. In analogy to (3.45), a simple expression for the variance 
of/-̂ ^̂ ^ may be derived: 

< # ' ^ > - < / . ' * y = ^ ^ . (3.52) 

In many practical appUcations, //^^ depends on a further quantity a (on a set of 
such quantities a^, a2, . . .)• Then we want to express the change of the mean value 
(3.34), when a is changed. Taking the derivative of/{^^ with respect to a and taking 
the average value, we find 

da ' l ' ° ^ - <"') 
Using the p/s in the form (3.38) and using (3.41), the right-hand side of (3.53) may 
be written in the form 

1 V- em 
Z L da exp Y^^jf^^), (3.54) 

which may easily be expressed as a derivative of Z with respect to a: 

( 3 . 5 4 ) = - i i ^ . (3.55) 
Z /ifc da 

Thus we are lead to the final formula 

1 a i n z /df/^j^ 

Xu da \ da 
(3.56) 

If there are several parameters â  present, this formula can be readily generalized 
by writing â  in place of a in (3.56). 

As we have seen several times, the quantity Z, (3.40), or its logarithm, is very 
useful [see e.g., (3.45,52,56). We want to convince ourselves that InZ = 1 [cf. (3.42)] 
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may be directly determined by a variational principle. A glance at (3.36) reveals that 
(3.36) can also be interpreted in the following way: Seek the extremum of 

Is-Y^X^Y^pjr (3.57) 
k 

under the only constraint 

lPi = l . (3.58) 

Now, by virtue of (3.34,47,42) the extremum of (3.57) is indeed identical with InZ. 
Note that the spirit of the variational principle for In Z is different from that for S. 
In the former case, we had to seek the maximum of S under the constraints (3.34,35) 
with/fc fixed and Ij, unknown. Here, only one constraint, (3.58), applies and the i^'s 
are assumed as given quantities. How such a switching from one set of fixed 
quantities to another one can be done will become more evident by the example 
from physics given in Chap. 4, which will also elucidate many other aspects of 
the aforegoing discussion. 

3.4 Continuous Variables 

In most appHcations that we have in mind, the variables £, are not discrete but 
continuous. One may then easily convince oneself that in such a case, at least in 
general, the information diverges. This is due to the fact that we have continuously 
many states. Therefore we have to discuss briefly how we can define information 
for continuous variables. We start from the definition of the probabiUty density 
given by 

Prob(z <^<x + ^i) = PiO^^ . (3.59) 

We now invoke the idea that measurements can be made only with finite accuracy. 
Therefore we introduce an interval of accuracy and define a new probabihty 
distribution by 

n ( j ) = j PiOdi . (3.60) 

Assuming that P{^) is continuous we may approximate (3.60) by 

PeU) ̂  P{^j)e • (3.61) 

We define the information with respect to the interval of accuracy a by means of 

h=~ZPeim^PeU) • (3.62) 
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Inserting (3.61) into (3.62) we obtain 

4 = - X eP{^j)lnPi^j) - X £P(^,)ln6 (3.63) 
J J 

SO that our final result reads 

I,= -jdiP(OlnP(^)-lns . (3.64) 

In the following we shall drop the constant and uninteresting term —In8. The 
extension to several variables is obvious. 
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To visualize the meaning of the index i, let us identify it with the velocity of a particle. 
In a more advanced theory Pi is the occupation probability of a quantum state i of 
a many-particle system. Further, we identify f^^J with energy E and the parameter 
a with the volume. Thus we put 

f^J = £,(F) ; fe = 1 , (4.1) 

and have the identifications 

/ , ^ L / ^ < E , > ; a^V; k, = p. (4.2) 

We have, in particular, set l i = jS. With this, we may write a number of the previous 
formulas in a way which can be immediately identified with relations well known 
in thermodynamics and statistical mechanics. Instead of (3.38) we find 

p, = e x p [ - 2 - i 8 £ , ( F ) ] (4.3) 

which is the famous Boltzmann distribution function. 
Equation (3.47) acquires the form 

-^S„3x = lnZ + ^ l / (4.4) 

or, after a slight rearrangement of this equation 

^-A^-x=-llnZ . (4.5) 

This equation is well known in thermodynamics and statistical physics. The first 
term may be interpreted as the internal energy U, \/p as the absolute temperature 
T multiplied by Boltzmann's constant k^. S^^^ is the entropy. The right-hand side 
represents the free energy, J^, so that in thermodynamic notation (4.5) reads 

U-TS = ^ . (4.6) 

By comparison we find 

# - = -/CfiTlnZ , (4.7) 

and S = iSjnax- Therefore we will henceforth drop the suffix "max". Equation (3.40) 
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now reads 

Z = ^e-^^^ (4.8) 
i 

and is nothing but the usual partition function. A number of further identities of 
thermodynamics can easily be checked by applying the above formulas. 

The only problem requiring some thought is the identification of independent 
and dependent variables. Let us begin with the information entropy, S^^^. In (3.47) 
it appears as a function of A, yî  and the fj,. However, /I and the 1^ are them­
selves determined by equations which contain the /^ and //^^ as given quantities 
[cf. (3.40,42,43)]. Therefore, the independent variables are /^ and //^\ and the 
dependent variables are X and Â , and thus, by virtue of (3.47), Ŝ x̂- ^^ practice 
the p''^ are fixed functions of i (e.g., the energy of state "z")? but still depending 
on parameters a [e.g., the volume, cf. (4.1)]. Thus the truly independent variables 
in our approach are the /^ (as above) and the a's. In conclusion we thus find 
S = S{fj,, a). In our example, f^ = E = U,(x = V, and therefore 

S = S(L/, V) . (4.9) 

Now let us apply the general relation (3.49) to our specific model. If we vary only 
the internal energy, U, but leave V unchanged, then 

^<//i)> = Sf,=SU^O , and (4.10) 

Sp'J = 3Ei(V) = —^SV = 0 , and therefore (4.11) 
oV 

SS = k^X^SU or 

| ^ = / C B A I ( = M ) - (4.12) 

According to thermodynamics, the left-hand side of (4.12) defines the inverse of the 
absolute temperature 

dS 1 

This yields j? = l/{k^T) as anticipated above. On the other hand, varying V but 
leaving U fixed, i.e., 

<̂y;-<'̂ > = 0 , but (4.14) 

<3fry = (^^^yv^0 (4.15) 

yields in (3.49) 
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(4.17) 

SS^k^{-X,)(^^\8V or 

^ = _ l / ^ \ . (4.16) 

Since thermodynamics teaches us that 

3S _P 

where P is the pressure, we obtain by comparison with (4.16) 

Inserting (4.13,17) into (3.49) yields 

3S = -3U +^PSV. (4.19) 

In thermodynamics the right-hand side is equal to dQ/T where dQ is heat. This 
explains the notation "generalized heat" used after (3.51). These considerations 
may be generaHzed to different kinds of particles whose average numbers Nj,; 
/c = 1, . . . , m, are prescribed quantities. We therefore identify /^ with E, but Z .̂+i 
with A/fc.; /c' = 1 , . . . , m (note the shift of index!). Since each kind of particle, /, may 
be present with different numbers Ni we replace the index / by i, iVj,. . . , N^ and put 

f(k+l) . f(k+l) _ pj 
Ji ^^ Ji,Ni,...,N^ — ^^k • 

To be in accordance with thermodynamics, we put 

where jû  is called the chemical potential. 
Equation (3.47) with (3.42) acquires (after multiplying both sides by k^T) the 

form 

TS = /cgTlnZ +U- /iiATi - //2^2 - ••• - l^mNm • (4.21) 

Equation (3.49) permits us to identify 

55 1 
- ^ = - ^ B 4 + I = 7̂ /̂ fc • (4.22) 
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The partition function reads 

Z = ^ ^ e x p | - ^ [ E , ( F ) - fi,N, - ••• - / /^ iVjj . (4.23) 

While the above considerations are most useful for irreversible thermodynamics, 
in thermodynamics the role played by independent and dependent variables is, to 
some extent, exchanged. It is not our task to treat these transformations which 
give rise to the different thermodynamic potentials (Gibbs, Helmholtz, etc). We just 
mention one important case: Instead of U, V (and N^, . . . , N^), as independent 
variables, one may introduce V and T = {dS/dUy^ (and N^, . . . , N^) as new 
independent variables. As an example we treat the U-V case (putting formally fx^, 
jU2,... = 0). According to (4.7) the free energy, J^, is there directly given as a function 
of T. The differentiation d^/dT yields 

dT TZLA ' 
i 

The second term on the right-hand side is just (7, so that 

d^ 1 
- — = fcBlnZ + - t / . (4.24) 

Comparing this relation with (4.5), where 1/jS = k^T, yields the important relation 

- ^ = S (4.25) 

where we have dropped the suffix "max". 
Readers who are interested in the application of the above formalism to irre­

versible thermodynamics, i.e. to relaxation phenomena, are referred to my book 
Synergetics, An Introduction. In the present book we shall be concerned with quite 
a different field, namely nonequilibrium phase transitions in physical and biological 
systems far from thermal equihbrium and in nonphysical systems (e.g. economy). 



5. Application of the Maximum Information Principle 
to Self-Organizing Systems 

5.1 Introduction 

According to Chap.l, self-organizing systems are systems which can acquire macro­
scopic spatial, temporal, or spatio-temporal structures by means of internal processes 
without specific interference from the outside. Hitherto, the distribution functions of 
the order parameters governing the macroscopic structures could only be calculated 
by microscopic theories (cf. Chap.2). In the present section we derive them from 
macroscopic quantities, and we demonstrate this procedure expHcitly by means of 
the single and multimode laser close to the lasing threshold. 

The maximum information entropy principle allows one to make unbiased 
estimates on the probability distribution of microscopic states of systems of which 
otherwise only certain averages, corresponding to macroscopic observations, are 
known. As we have seen in the preceding section this principle provides one with 
a very elegant access to many of the basic relations and concepts of thermodynamics, 
i.e. it can be applied very nicely to systems in thermal equihbrium. On the other 
hand no successful attempts are known of a general application of this principle 
to systems far from thermal equilibrium. 

In this section I wish to show how the maximum information entropy principle 
can indeed be very successfully applied to nonequilibrium systems provided they 
acquire macroscopic structures through self-organization. In this way we shall 
recover well-known distribution functions of such systems. These functions have 
been previously derived from microscopic theories (cf. Sects. 2.4,7). At the same 
time generalizations of these functions now become available, too. In order to 
illustrate our procedure we first focus our attention on lasers. 

5.2 Application to Self-Organizing Systems: Single Mode Laser 

Self-organizing systems are characterized by the occurrence of macroscopic structures 
which can be described by adequate order parameters. Instead of introducing 
abstract considerations we prefer to illustrate our procedure by means of explicit 
examples. It will be important to strictly stick to the basic notion of the maximum 
information entropy principle, namely to consider the macroscopically observed 
quantities. 

The quantities observed experimentally of a single mode laser are its intensity 
and the second moment of the intensity in the steady state case. It is well known 
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from laser theory that the basic difference between the light from lamps and that 
from lasers becomes apparent only when the second moments of the intensity are 
measured in addition to the first moment. Further measured quantities are intensity 
correlations, but because we have a time-independent theory in mind we shall ignore 
this information here. 

The space- and time-dependent electric field strength of a single mode laser can 
be written in the form 

E{x,t) = E{t) sin kx , (5.1) 

where the amphtude E{t) can be decomposed into its positive and negative frequency 
part according to 

+ B*e^^^ . (5.2) 

If we measure the intensity of the light field over time intervals large compared to 
an oscillation period, but small compared to the fluctuation times of B{t), the output 
intensity is proportional to 5*B and to the loss rate, 2K, of the laser. For the sake 
of simplicity we drop all other constants and put 

/ = 2KB*B . (5.3) 

Similarly, the intensity squared, if averaged over the same time interval, turns out 
to be 

P = 4K:^5*^52 . (5.4) 

Because of the fluctuations of the laser, 5* and B are random variables which belong 
to a stationary process. This leads us to identify B, B* with the indices i of Pi in 
(3.32), where we put k^ = 1 and interpret the right-hand side as information, i. 
Because the random variables B are no longer discrete but continuous we must 
replace the summation over the indices i by an integration 

i = -^p{B,B*)lnpiB,B*)d^B . (5.5) 

Equation (3.34) may be interpreted as integrals over d^B with the probabihty 
p{B,B*) as weight functions. Denoting these averages by brackets we are led to 
consider the following two constraints 

A = <2fcB*5> , (5.6) 

A = {4K'B*^B^y . (5.7) 

Furthermore by the same analogy we are led to define //^^ by means of 

/l^i* = IKB^B , (5.8) 

f3* = ^K^B'^^B^ . (5.9) 
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We are now in a position to apply formula (3.38) immediately and find 

p{B,B*) = exp[-A - A^IKB^B - l2^K^{B*Bf2 , (5.10) 

which in a somewhat different notation reads 

p{B,B*) = iVexp(-a|J5p - ^\B\^) . (5.11) 

This function is well known is laser physics. It was derived by Risken by solving 
the Fokker-Planck equation belonging to the laser Langevin equation derived 
previously by the present author. 

We note that in the laser case a must be negative. But close to threshold oc can 
take both negative and positive values. 

5.3 Multimode Laser Without Phase Relations 

In this case the field strength is decomposed into its modes according to 

E{x, 0 = Z ^M sin kix , (5.12) 

where for simpHcity we consider only axial modes. Again the mode ampHtudes ran 
be decomposed into their positive and negative frequency parts 

Ei{t) = Bi(t)Q-''''' + 5f(0'«'' . (5.13) 

The intensity averaged over time intervals long compared to an oscillation period 
and short to fluctuation periods is given by 

Ii - iKiB^Bi - Hi . (5.14) 

The extension of the results of Sect. 5,2 is straightforward provided we now consider 
either rii or equivalently B^ and Bi as stochastic variables. We obtain 

fi = <ni} , (5.15) 

fi,v = <ni.n,y , (5.16) 

and identifying k and i according to 

/ 

ir 
i^{n^,n2,...,nM) = n (5.17) 

we have 

fn''^ = n, , (5.18) 
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/i^'"^ = n^n, , (5.19) 

Pippin) . (5.20) 

The application of (3.38) is now straightforward and yields 

p{n) = p(ni , . . . , n3̂ ) = exp( -yl - X ^ini - ^ Kv^i^vj (5-21) 

as final result. Equivalently (5.21) can be written as 

Nexp( - X mi - Z ^ivnifiA . (5.22) 

This form can be derived from a multimode Fokker-Planck equation in special cases 
in which the solution can be explicitly constructed by means of the principle of 
detailed balance. 

5.4 Processes Periodic in Order Parameters 

We wish to show how guesses on distribution functions can be made if the processes 
considered are periodic in the order parameters. 

Let us consider as a specific example the angle coordinate (j) and let us consider 
moments which are periodic with In. Then it would seem sensible, instead of the 
moments of ^, to consider the corresponding moments of periodic functions i.e. 

<sin^> , <cos^> , . . . (5.23) 

or, more generally, 

<sinn^> , <cosn^> , (5.24) 

where n is a positive integer. 
In order to illustrate our procedure let us consider the special case in which for 

symmetry reasons 

<sin /t^> = 0 , for all n . (5.25) 

In our treatment above we retained only the first few moments. If, in analogy to 
that, we keep only the first two terms of (5.24), we readily obtain 

P(^) = exp(A + X^ cos (j) -^ X2 cos 2^) = exp[F(^)] . (5.26) 

As we have shown explicitly, the maximum information entropy principle allows 
us to derive the general form of distribution functions of a nonequiUbrium system, 
such as the laser, in a quite straightforward way. The results agree with distribution 
functions obtained from microscopic theories under certain restricting conditions. 
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It is now fairly obvious how one should proceed in other cases. The total state of 
the system q{x, t) must be projected onto functions which describe the observed 
macroscopic spatial or temporal pattern. In this way amplitudes are obtained of 
which moments can be measured and thus may serve as the functions defining ^ 
as well SLsf^^\ 

In spite of the success of our appHcation of the maximum information entropy 
principle we must bear in mind that only little can be said about the Lagrange 
multipliers which can, of course, now be determined experimentally. On the other 
hand it has been the advantage of the microscopic theory that these constants can 
be determined from first principles and therefore in particular it could be predicted 
that ai changes sign at instability points. However, it may also become possible to 
deduce such properties from a macroscopic theory. 

Our approach can be applied to a number of problems such as convection in 
fluids, pattern formation in chemical reactions, and growth of morphogenetic fields. 

In spite of the formal resemblance of our results to some of thermodynamics, 
there are still basic differences. First of all we realize that the constants have 
a physical meaning very different from those for systems in thermal equilibrium. 
For instance in nonequilibrium systems, such as lasers, we have to deal with output 
intensities whereas in equilibrium systems we deal with e.g. energies. This is also 
clearly reflected by a treatment on the microscopic level. While in the microscopic 
treatment of equilibrium systems energies play a decisive role, in nonequiHbriun\ 
systems rate constants and growth rates determine the evolving patterns. 

We may draw a number of rather far reaching conclusions. Until now, the 
maximum information (entropy) principle had been applied to thermodynamics and 
irreversible thermodynamics, but not to nonequilibrium phase transitions. Among 
the constraints used in the former two fields is the energy. In the present case 
we deal with the output intensity I. But what is stifl more important, we now have 
to include the intensity correlation in the form of the second moment, i.e. </^>. 
This is never done in equilibrium thermodynamics in the context of the maximum 
entropy principle. But now we see that the inclusion of </^> is quite obvious and 
necessary for nonequihbrium phase transitions. At or above threshold, >li > 0, and 
the integral over exp(/li \b\^) wifl diverge, reflecting the effect of critical fluctuations. 
Because of these, and in order to take care of their limitation due to saturation, 
{Py must be taken into account. In other words, close to nonequilibrium phase 
transitions fluctuations become "observables" and must be taken into account by 
adequate constraints. It appears to me a safe bet that the same is true for phase 
transitions of systems in thermal equihbrium and that an extension of the maximum 
information entropy principle is also required there. 



6. The Maximum Information Principle for 
Nonequilibrium Phase Transitions: Determination 
of Order Parameters, Enslaved Modes, 
and Emerging Patterns 

6.1 Introduction 

In the preceding chapter we formulated adequate constraints for the derivation of 
distribution functions of systems far from thermal equihbrium close to points of a 
nonequilibrium phase transition. Whenever a comparison was possible with pre­
vious results from a microscopic theory, perfect agreement was found. On the other 
hand our formulation was restricted to order parameters, i.e. we could derive the 
appropriate distribution functions for the order parameters only. It was assumed 
that the order parameters could be identified experimentally. In this section we wish 
to show that our treatment can be generalized in such a way that no prior knowledge 
of order parameters is required. By invoking adequate correlation functions instead, 
we shall be able to determine the order parameters as well as the enslaved modes 
and the emerging patterns by means of the formaHsm. 

6.2 General Approach 

We assume that the system to be studied is described by a state vector 

q = {q^,... ,^^) , (6.1) 

whose components are accessible to measurements. The index i of qi may stand for 
a cell, or for different kinds of physical or other quantities. We shall further assume 
that the statistical averages over the qi and their moments up to fourth order are 
known. We introduce the following quantities / as constraints: 

ft = iqd ; fi''' = qi , (6.2) 

fij = iqiQj} ; fij^^ = qi^j, (6.3) 

fijk = <qiqjqk> ; M^ = qiq^qk. (6.4) 

fijki = <qiqjqkqi> ; fm = qiqjqkqi • (6.5) 

Maximizing the information entropy by use of Lagrange multipHers A, which take 
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care of the constraints (6.2)-(6.5), we obtain for the probabiUty distribution 

P = exp[y(A,g)]. (6.6) 

In this V is defined by 

v{x, q) = 2,-\-Y. ^i^i + E h^i^j + E ^ijk^tmk + Z ^kiQimk^i • (6.7) 
i ij i/fc ijfcZ 

To make contact with nonequiHbrium phase transitions we seek the extremum of V 

dV 
-- = 0 i = l , . . . , i V . (6.8) 

In general we expect several extrema whose position we shall denote by q^. Having 
nonequilibrium phase transitions in mind we choose q^ so that V{q^ + w) has the 
highest symmetry with respect to w. In accordance with the spirit of the maximum 
information entropy principle this choice means that it is one without bias. Only 
lower symmetry would prefer a specific pattern and thus would introduce a bias. 
Another way of defining q^ appropriately as the position of the adequate extremum 
is given by following up q^ from the structureless state by changing a control 
parameter. Putting 

q^q^ ^w (6.9) 

we may rewrite V in the form 

V(X,q)=^V{Kw) with (6.10) 

f(I , M̂) = I + o + X li-v^iV^^ + X hk'^C^i^k + E hki^i^i^k^i ' (6.11) 
y ijft ijkl 

Here, 1^ for instance, is given by 

1 d^V 
k. = " ^HiH^ 

(6.12) 
1̂ 0 

Simultaneously the old constraints (6.2)-(6.5), which can be written in the form 

A = ( A K ) «C. (6.14) 

can be transformed into the new constraints 
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6.3 Determination of Order Parameters, Enslaved Modes, 
and Emerging Patterns 

Since the constraints (6.14) and (6.15) are symmetric in the indices i, j , so are the 
Lagrange multiphers 

k = k • (616) 
Therefore we may diagonahze the matrix 

A = ( 4 ) (6.17) 

with real eigenvalues 1^. This diagonalization is achieved by the transformation 

Wi = X«iK<̂ K where (6.18) 
K 

V{lw) = V{l^) (6.19) 

and the â ^ are orthogonal. 
By means of (6il8) the expression (6.11) is transformed according to (6.19), where 

the r.h.s. reads more expHcitly 

nU) = 1 + 1 L^i + E lx,Uxi, + I Lx,.Ux^,^. • (6.20) 

In general V represents the saddle point close to (? = 0. Accordingly we shall 
distinguish between positive and negative A's and write 

K̂ ̂  0 J ?c -^ w, total number A/„ 
(6.21) 

I^ < 0 ; K-^s, total number N^ . 

By a comparison with the results of the microscopic theory we may adopt the 
parlance of nonequilibrium phase transitions. We identify K belonging to ^ > 0 with 
the index u (unstable) and denote ^^ accordingly as order parameters. Furthermore 
we identify K with the index s for .1 < 0 and call ^̂  the ampHtude of the enslaved 
mode s. In correspondence to this decomposition we rewrite V in the form 

F(X ̂ ) = I + KiL L) + KiL L L. U (6.22) 

where the first part refers to the order parameters alone 

K< = X ^ " ^ " "•" X Ku'u"^u^u'^u" '^ X Ku'u"u"'iu^u'^u"^u'" • ( 6 .23 ) 
u uu'u" uu'u"u"' 

More expHcitly V^ reads 

K = T.i-\^s\0 + Z ^Lu'^sUu' + Z 4L„,„,.^,^„^„,<^„„ (6.23a) 
s SUM' SUU'U" 

+ sums over products of ^,4.(J„, i^^s'L^u'^ LL'is-, isL-is-L, L^s'L-is- • 
(6.24) 
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The integral 

\^^^d^^is = 9iU>0 (6.25) 

defines a function of the order parameters „̂ alone. We introduce the function h by 
means of 

g{L) = e-"**"' (6.26) 

and introduce a new function W^ via 

h{U + K = WMslU . (6.27) 

This definition guarantees that 

P{UU = exp[P^,(€J^J] (6.28) 

is normalized over the space of the enslaved modes for any ^^. In order that (6.22) 
remains unchanged by the introduction of h we introduce the new function W^ via 

l+t(LL)-HU==w^iU . (6.29) 

In conclusion we may thus rewrite (6.22) in the form 

V{U)=W^{U+WMs\U • (6.30) 

This allows us to write 

o^ = PiUPiaU with (6.31) 

P(4) = e^" (6.32) 

and PiUD defined by (6.28). 
Clearly Pi^sl^u) is a conditional probabihty, whereas P(<?„) is the distribution 

function of the order parameters alone. So far our approach has been quite general. 
Our approach allows us to determine the distribution function for the order param­
eters as well as the conditional probabihty distribution of the enslaved modes. In 
particular (6.31), when written out explicitly, represents a special case of the slaving 
principle (cf. Sect. 2.6). 

6.4 Approximations 

In order to make contact with the results of the microscopic theory and the form 
of the slaving principle in its lowest approximation, we introduce the following 
approximations. We assume that (̂ „ and 4 are small quantities so that the order of 
magnitude is 1^^^ ^l. In this spirit we shall neglect terms of order l^l, ^^ and higher 
in V^. Because of the normalization condition it readily follows that 
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Z ~ >;.,„, = - X \Ulis - fsiUV with (6.33) 
s 

fsi^u) = ^ f X ^LAuiu' + Y, 4i-'«"^«^""^"") • (6.34) 
2\K 

\ UU UU U I 

Note that h occurring in (6.26) is given by 

KU = Y^\K\f.\U • (6.35) 
s 

We quote another approach to approximate V^ which is still more in the spirit of 
the maximum information entropy principle. To this end we approximate P{^J\^^ 
by 

P = exp KU + Z KiU^s + E ^ss{Ue?\ (6.36) 

so that the constraints 

\PdHs='^, (6.37) 

J P^,dHs = I F(§J4)4'rf ' ' '4 , (6.38) 

I P^'^rf"'^. = I P{^s\Uild''<s (6.39) 

are fulfilled, i.e. we are now satisfied with the fulfillment of the constraints containing 
the first two moments instead of all four moments. In this way we obtain a quadratic 
expression in the exponential of (6.36) as it occurs in the lowest approximation of 
the slaving principle. 

6.5 Spatial Patterns 

The above approach allows us to determine the order parameters, the enslaved 
modes, and their distribution functions. When we identify the index i with a lattice 
point, the coefficients a^^ in (6.18) determine the spatial mode pattern belonging to 
the order parameter with index K. Thus the superposition of â ,̂ with K ranging over 
the indices of the order parameters, determines the mode skeleton (cf. Sect. 2.8). The 
total sum (6.18) determines the resulting patterns for a given set of order parameters 
and their corresponding enslaved modes where we assume that the symmetry of V 
is broken by a specific set of order parameters belonging to a minimum of V. From 
the formulation it follows that our procedure is not only good for the determination 
of evolving patterns governed by order parameters in physical systems, but it also 
serves as a tool for the recognition of the dominant structures in general patterns 
and it is hoped that our procedure will find useful applications in pattern recognition 
by machines and in theories of pattern recognition by man and animals. (See also 
Chap. 12.) 
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6.6 Relation to the Landau Theory of Phase Transitions. 
Guessing of Fokker-Planck Equations 

Our procedure casts new light on the Landau theory of phase transitions of systems 
in thermal equilibrium, where the starting point is the thermal distribution function 
in which in the exponent the free energy occurs. This free energy is then expanded 
into a power series of the order parameters. Quite clearly we can arrive at precisely 
the same expressions by invoking moments of the order parameters up to fourth 
order. Thus the maximum information principle gives us a new approach to the 
Landau theory of phase transitions with an entirely new interpretation. 

An interesting question is whether we can determine the Fokker-Planck equa­
tion which has as its stationary solution just the distribution function that we have 
determined by the maximum information principle. In order to elucidate this 
problem, let us consider the case of a single variable „̂ = ^. The general form of the 
Fokker-Planck equation with variable-dependent diffusion "constant" is chosen as 

f = - ; | m 4 m + | i > ( 0 | p . (6.40, 

By comparing its stationary solution with the distribution function we have deter­
mined above, (6.32), we readily obtain 

WAiu) = -] f | | r f ^ • (6.41) 

In other words the still unknown drift coefficient K and the diffusion coefficient D 
have to obey the relation 

-f=W;' (6.42) 

which can be fulfilled in many ways. 
The maximum information entropy principle is of no help in arriving at an 

appropriate choice of K and D. All guesses obeying (6.42) are actually equally 
probable. Therefore we must look for another criterion and the one we choose is 
simpHcity. To this end we put 

D = Q = const. (6.43) 

The Fokker-Planck equation then reduces to 

dP d d^P 
[K(^)P] + Q^rn (6-44) 

where Q still plays the role of a fixed, but unknown, parameter. The Langevin 
equation belonging to (6.44) reads 
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k = K{^) + F(0 (6.45) 

where the drift coefficient is given by 

Koc -dWJd^ (6.46) 

[on account of (6.42)], and JF is a Gaussian white-noise force. Inspecting (6.45,46) 
and the form of W^ (6.41) with D = Q = const, more closely, we discover that we 
have just found the Landau equation belonging to the Landau functional of the 
Landau theory of second-order phase transitions. This allows us to interpret the 
Landau theory anew. It represents a specific guess at the form of the Langevin 
equation close to a phase transition point. Quite clearly, the approach which we 
exempUfied for a single variable is not quite satisfactory, especially when we proceed 
to multivariable Fokker-Planck equations because here, the variety of possibihties 
of the proper choice of drift and diffusion coefficients, is quite large. 

Quite evidently new criteria or constraints are needed in order to fix the drift 
and diffusion coefficients. This can in fact be achieved if we take into account 
time-dependent correlation functions as will be shown in Chap. 9. 



7. Information, Information Gain, and Efficiency of 
Self-Organizing Systems Close to Their Instability Points 

7.1 Introduction 

In this section we wish to further elaborate on the results of the preceding chapter. 
There we have shown that we may split the joint probabiHty distribution function 
P(^„, ^s) which refers to the order parameters, (̂ „, and enslaved-mode ampHtudes, 
^5, into a product of the form 

piL,a = UPs(uafia • (7.1) 
This decomposition is in accordance with the slaving principle of the microscopic 
theory. We now want to show that the form (7.1) allows us to decompose informa­
tion and information gain into a part which refers to the order parameters alone 
and a second part which is a sum over the information of the enslaved modes 
averaged over the distribution of the order parameters. As we shall see, close to 
instabihty points the information of the order parameters changes dramatically 
whereas the information of the enslaved modes does not. Therefore close to these 
points it is sufficient to study the behavior of the order parameter information and 
information gain which is done expHcitly here for a large class of systems undergoing 
nonequilibrium phase transitions. It will be shown how information and informa­
tion gain as well as efficiency (in the sense defined in this section) can be measured 
directly. 

The information is defined by 

i= -Y^PA^PJ ^ (7.2) 
j 

and the information gain by 

K ^ p , l n | . (7.3) 
Pj 

We shall interpret Pj as probability distribution of states characterized by the index 
j . In (7.3) Pj and p- are two different probabiHty distributions. In order to make 
closer contact with the results obtained above, we shall identify the index j with the 
values which the stochastic variables ^„, ^̂  can take. As usual, we shall denote these 
values also by ^„, ^s- Note that via (2.78) the state vector q is determined once (J„ 
and ^s â G known. 
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7.2 The Slaving Principle and Its Application to Information 

We wish to show that the information (7.2) can be cast into a specific form by means 
of (7.1). To this end we insert (7.1) into (7.2). Replacing the logarithm of a product 
by a sum of logarithms we obtain 

'̂ = - Z n PsiiMJMu) UnfiU + Z InPsiUUl • (7.4) 

By use of the normalization condition 

lPs{UU=^ (7.5) 

we may cast (7.4) into the form 

i=-YMunnMu)- Z fiUPsiUainPMslU • (7.6) 

This relation can be written as 

i = If^l nUhiU , where (7.7) 

if^-lMun^Mu) (7.8) 

is the information of the order parameters, whereas 

Is=-j:PsiUa^nPMs\U (7.9) 

is the information of the enslaved subsystem or enslaved mode with index 5. As we 
shall show below, close to instability points If changes dramatically, whereas I^ 
changes only weakly. 

The information I^ is clearly an information under the hypothesis that (J„ has 
acquired a specific value. In our context it means that the order parameter enslaves 
the modes in a specific fashion which in turn guarantees a macroscopic structure 
via self-organization. 

7.3 Information Gain 

We distinguish the distributions corresponding to p and p' by the indices n and a. 
According to the definition (7.3), the information gain is then given by 

'Pa(^u,U 

Making use of (7.1), we can cast (7.10) into the form 

X = y P „ ( « „ , 4 ) l n ^ § ^ . (7.10) 
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^ = Z / « n Ps,n [in/n + E In P,,„ - In/„ - X In P.. J , (7.11) 

where again the logarithm of a product has been decomposed into a sum of 
logarithms. Making use of (7.5) we find after a sHght rearrangement of terms 

'• s,a fa 

which can be cast into the final form 

K = Kf + Y.lfnKs, (7.13) 

where Kf is defined by 

Kf=yf„ln^, (7.14) 

and K^ is defined by 

Ks^y PsAUUiri^:-''f;\f\ . (7.15) 

7.4 An Example: Nonequilibrium Phase Transitions 

In this section we wish to illustrate the usefulness of the formulas derived above by 
applying them to nonequihbrium phase transitions, (cf. Sect. 2.7). Here we shall 
assume that /l„ is real. To be more explicit we write down typical evolution equations 
for systems undergoing nonequihbrium phase transitions. In terms of order param­
eters ĉ„ and enslaved-mode amphtudes ^5, these equations can be written in the form 

tu = Kiu + hMu,U + FM , (7.16) 

ts = Us + QsiU + ^sKiU + • • • + FM . (7.17) 

If the system is controlled externally by a control parameter, all the quantities on 
the right hand sides of (7.16,17) depend on that control parameter, but in different 
ways. 

When we normahze the control parameter such that the instability occurs at 
a = 0, then .i„, and 4 depend on a in the following manner. 

^ X a'̂  , 4 = 4(0) + 0(a) ^ 4(0) , (7.18) 

where K is some positive number. Clearly, 4 depends very sensitively on a, whereas 
4 depends only weakly on it because the leading term is a nonvanishing constant. 
Similarly the functions /i„, g^, K, F„ and F^ depend only weakly on a. In order to 
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make our example as explicit as possible we apply the slaving principle in its leading 
approximation, which gives rise to terms that are obtained by the adiabatic elimina­
tion technique by using 

ts^O, (7.19) 

This allows us to solve (7.17) to leading order giving 

4 « - ^ . . ( U - ^ F . « . (7.20) 

In Sect. 2.6, Eq. (2.91), we derived the corresponding conditional probability distri­
bution, PsiislU- It reads 

PAis\L) = NQxp 
|2 

Q-'} . (7.21) 

We may now insert this exphcit result into /̂  (7.9). However, by introducing the new 
variable 

we can eliminate the dependence of the probabihty distribution of the enslaved 

variables on „̂ so that /̂  becomes independent of ^„. Therefore in (7.7) we may 

perform the integration over ^„ in the second term. We thus obtain 

/ = // + ZA (7.23) 
s 

where the second part does not depend on a, at least in the present approximation. 
Therefore the information change close to the instability point is governed by that 
of the order parameters alone 

/ ( a i ) - / ( a 2 ) ^ / / a J - / > 2 ) • (7.24) 

Using the same kind of approximation we may cast the information gain into the form 

K = Kf=\d-UiL,«2)ln^|^ . (7.25) 

In the following we shall study If in detail. In Sect. 7.11 we shall then investigate 
the dependence of 4 on a. As we shall see, I^ changes monotonically with A, whereas 
If shows some kind of "singular" behavior. 

7.5 Soft Single-Mode Instabilities 

As we have seen in the last section, the change of information and information gain 
of the total system close to instability points is practically identical to the change 
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of information and information gain, respectively, of the order parameters. In this 
section we wish to calculate i and K using the expUcit form of the order parameter 
distribution function where we take the example of a single order parameter under­
going a second order nonequilibrium phase transition. As we have seen in Sect. 2.7, 
the distribution function / has the form 

M) = N^xp{oie-P^^) . (7.26) 

Inserting (7.26) into the definition of the information (7.8) we readily obtain 

I^=-lnN-aiey-^Pi^^y , (7.27) 

where we have used the abbreviation 

+ 00 

<«">= J fm-di . (7.28) 
—oo 

Similarly the information gain (7.14) acquires the expUcit form 

KiLJJ = [fM^d^ = IniV(a) - InN(ao) + (a - ocoX^}. • (7.29) 

7.6 Can We Measure the Information and the Information Gain? 

7.6.1 Efficiency 

The expHcit study of the behavior of self-organizing systems, e.g. of the laser, reveals 
that a measure for the macroscopic action of such a system is provided by the square 
of the order parameter. 

For instance in the laser the field mode acts as an order parameter and laser 
action can be measured by the field mode amplitude squared. This suggests that we 
introduce the quantity 

f2(a) = <̂ „2> (7.30) 

as a measure for the macroscopic action, or perhaps more precisely, the work of the 
system. The average is defined by 

<ey^i^'M)di, (7.31) 

where we shall use the explicit distribution function 

M) = Ncxp{ae-Pi^) (7.32) 

with the normalization factor defined by 

+ 00 

N-i = J expia^''- Pi*)di . (7.33) 
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We define the efficiency, W, by the rate of change of Q when the control 
parameter a is changed because in a number of self-organizing systems a is con­
nected with the power input. Note that for the time being we shall interpret a directly 
as power input. 

W = ^ . (7.34) 
da 

Using (7.31-33) we readily find 

^ f r exp(a^^ - p^*)d^ [|exp(«^^ - Pi^K'djy 

which can be written 

w=aty-<euy (7.36) 
(where we write (̂ „ instead of (). If the control parameter OL enters the distribution 
function (7.32) in an impHcit fashion, 

exp[A(a)^„2 - Pin , (7.37) 

we have to replace (7.36) by 

w = ^{<.ity-<i^y'). (7.38) 
doc 

It is not difficult the evaluate W well below and well above the instabiUty point and 
we shall present the corresponding results below. 

7.6.2 Information and Information Gain 

Let us now turn to the evaluation of the information If. Using the explicit form 
(7.32) with (7.33) we readily obtain 

- / ^ ^ l n A r + a<^^>-)8<^^> . (7.39) 

While the second and fourth moments can be directly measured, the logarithm of 
N is still to be connected with measurable quantities. In a first step towards this we 
differentiate In N with respect to a and obtain 

da. jexp(a<j2-/S^'^)d{ ^ ' ' 

which can clearly be cast into the form 

^ - - « ' > . (7.4.) 
dOL 

Integrating (7.41) we obtain 
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InN = -] i^^yda + lnNioco) . 

Inserting this result into (7.39) we obtain 

-If=-] <eyda + IniV(ao) + a<^^> - K^^} . 

(7.42) 

(7.43) 

In order to eliminate In AT, we calculate the corresponding information for OCQ and 
obtain our final result 

(7.44) 

or in differential form 

dL 
/ _ 

dcK, -oc<ey + a<(̂ >̂ + Kex^^y - Ki'y 
Similarly the information gain acquires the form 

(7.45) 

(7.46) 

7.7 Several Order Parameters 

We now wish to generalize the results of Sect. 7.6 to the case of several order 
parameters. We adopt the following form for the distribution function / 

MJ = NexpW A.io^Ki + hiU^ , (7.47) 

which can be explicitly derived in a number of cases from microscopic models 
(cf. Sect. 2.4) or according to Chap. 6 by the maximum information principle. 

Here, we shall present the results for the information gain which turns out to be 
insensitive to the specific form of the nonlinear functions h provided they do not 
depend on the control parameters. In reaHty they will depend on a but in general 
only in a weak fashion. Inserting (7.47) into the definition of Kf we readily obtain 

Jo k 

X jlniV - InNo + X \_A,{o^) - A,{ocomi\d"i (7.48) 

which can be written in the form 
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K = In JV - In ATo + Z [^.W - ^.(«o)] <il \ • (7-49) 
k 

It remains to calculate In N. To this end we differentiate In N and obtain 

X(5A/5a)J ,̂2^ '̂'exp(...) 
^InN 

da jd"(^exp(...) 

which can be reexpressed as 

(7.50) 

k 

Integrating (7.51) with respect to a and inserting the result into (7.49) provides us 
with the final result 

i^ = - j ^ ^ <̂ f >. 'ia + X t̂ -̂ ^̂ ) - -̂̂ (̂ o)] <a \ • (7.52) 
do k k 

In conclusion we wish to calculate the efficiency with respect to the order 
parameter ^i. Its output is defined by 

Q{a) = i^f} . (7.53) 

A Httle calculation shows that the efficiency is given by 

k 

In this section we have shown that the information change, the information gain 
and the efficiency, are quantities which can be expressed in terms of the order 
parameters. This sheds new fight on the behavior of self-organizing systems which, 
with respect to the just-mentioned quantities, also behave as if they were governed 
by only a few degrees of freedom. In particular it was shown that information, 
information gain, and efficiency are measurable quantities; it can be expected that 
these quantities can be measured in a similar way as the entropy of a system in 
thermal equilibrium is a measurable quantity. However, the internal mechanism by 
which the order in nonequilibrium systems is produced, is quite different from 
the mechanism by which order in systems in thermal equilibrium is established. 
Similarly the physical meaning of thermodynamic entropy and information is 
different in the two cases. 

7.8 Explicit Calculation of the Information of a Single 
Order Parameter 

We now expficitly calculate the information of a single order parameter close to a 
nonequilibrium phase transition, i.e. (7.27). With reference to this result we then 
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discuss why the relevant quantities are interpreted as information rather than as 
entropy. 

We recall that the order parameter is continuous. In such a case we must use 
the definition 

If=-jdiM)\nM)-\ne , (7.55) 

where e is an interval (in dimensionless units) which represents the accuracy with 
which measurements are done. 

Using (7.26), we wish to evaluate (7.27) 

If= - l n i V - a < ^ ^ > + j8<(^^>-ln8 . (7.56) 

In the regions well below and well above threshold (7.56) can be evaluated explicitly 
in a simple fashion. 

7.8.1 The Region Well Below Threshold 

In this region a is negative and its absolute value fairly large so that in (7.26) only 
the term quadratic in £, is important. So we have to evaluate (7.56) with respect to 
the Gaussian 

/ ; ^ i V e x p ( - | a m • (7.57) 

The normalization factor can easily be determined and is given by 

N= — . (7.58) 
V n 

The integrals which occur in (7.56) can be easily evaluated and we obtain in 
particular 

i a |<^^>=i and (7.59) 

which for large enough |a| can be neglected against (7.59). Therefore we are left with 
the final result 

I^= - i l n | a | + i + i l n 7 r - l n 8 . (7.61) 

Let us now discuss the behavior of In |a| and Ine. Since £ is a measure of the 
degree of accuracy, we may assume that it is a small quantity so that 

e ^ O and —Ine-^+oo . (7.62) 

On the other hand, because the system is well below threshold, we may assume 

|a|-^oo , —^ln|a|-^—00 . (7.63) 
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When we keep e fixed and let |a| grow, If will become 0 and eventually negative 
which is forbidden for mathematical reasons because the information is a positive 
quantity. But what is still more important, there is a physical reason why |a| cannot 
grow beyond a certain value, namely the distribution function (7.26) is then essen­
tially only different from zero within the region of the accuracy of measurement, s. 
This means that it has become meaningless to distinguish between different states 
of the system within this interval or, in other words, it is almost certain that the 
system is just in a specific state within that interval. At this moment there is still 
some ambiguity as to how we wish to fix a, i.e. how to define what "almost certain" 
means. For instance we may require 

lf = 0 (7.64) 

from which a condition for a follows 

- i l n | a | + i + ^ ln7c- lne = 0 . (7.65) 

Since we shall be concerned only with changes of the information we may choose 
the zero of the information arbitrarily so that we may equally well require 

Ij. = ^-^^lnn {1,66) 

which is chosen in such a way that the relation between a and a becomes particu­
larly simple, namely 

- i l n | a | - l n e = 0 . (7.67) 

From it we can readily deduce 

|a |^ /2=i . (7.68) 

7.8.2 The Region Well Above Threshold 

A Httle study of the behavior of the distribution function (7.26) reveals that it can 
be approximated by Gaussian functions provided a is big enough. To implement 
this we apply the method of steepest descent and write (7.26) in the form 

/(^) = iVexp[^(C)] , (7.69) 

where, of course, 

g{i) = ae - Pi^ . (7.70) 

The extremum of (7.70) and therefore of / is determined by 

9\0 = 0 = 2a^ - 4pe (7.71) 

and this possesses the solutions 
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io=±J^, (7.72) 

where for now we will choose the plus sign. We introduce a new variable TJ defined 
by 

^ = ^0 + '7 • (7.73) 

By means of the expansion 

0(0 = giio + ri) = giio) + g'iioh + k"iio)ri' (7.74) 
we may cast (7.69) into the form 

f = Ncxp\^^-2oir,'j, (7.75) 

where the normalization is now to be taken in the interval — oo < (̂  < H-oo. The 
normalization factor is then given by 

So far we have been dealing with only one maximum of / . Let us first evaluate 
the information for the case in which only one maximum can be realized, i.e. in 
which we break the symmetry artificially. In this case If can be easily evaluated and 
is given by 

If = ^Ina - ^ln2 + ̂ InTr + ̂  - Ins . (7.77) 

We now turn to the main case of interest which takes into account the total 
distribution function which shows two maxima, i.e., roughly speaking, the system 
can be in one of two states (cf. Fig.7.1). Evidently we can store information in the 
system because we may identify one state with 0 and the other one with 1. 

The normalization factor N is determined by 

+ 00 

J NQxpia^^ - p^^)d^ = 1 . (7.78) 
— 00 

Because the maxima he symmetrically with respect to the origin ^ = 0 we may 
replace the left-hand side of (7.78) by 

00 

2N ^ Qxp{(xi^ - P^^)d^ . (7.79) 
0 

Under the condition that we evaluate the integral only for one maximum we can 
replace the integral from 0 to oo by the integral from — CXD to +oo 

j ^ 7 exp(a{2 - P^'')di . (7.80) 
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Fig. 7.1. 1st row: As is well known, the distribution function (7.69) with (7.70) can be interpreted as that 
of the coordinate of a particle which moves in a potential well and is subjected to an additional fluctuating 
force. The left hand side shows this potential for negative a, where the sohd hne refers to a value of a 
close to 0, whereas the dashed hne refers to a bigger value of |a|. Quite evidently there is only one 
minimum to which the particle can relax. The right hand side shows the potential for a > 0. The soHd 
line refers to a small positive value of a, whereas the dashed line refers to an increased value of a. Quite 
clearly, the potential becomes steeper and exhibits two minima. 2nd row, Lh.s.: The distribution function 
/ belonging to the potential with the single minimum shows one maximum, r.h.s.: For a > 0 two distinct 
maxima of/have developed. 3rd row, l.h.s.: With increased value of |a| the distribution function becomes 
narrower and has one minimum, r.h.s.: The two-peaked distribution function has become narrower and 
each of its distributions falls into the Umit of accuracy s. Note that the scale of / is different from the 
row above. 4th row: Sketch of the information versus a. The behavior of the information is shown close 
to the accuracy limits 

According to the above calculation this integral can be approximated by 

/a^ 
^^^(4^) I ^^P("^^^ )̂̂ ^ (7.81) 

where the integral in (7.81) can be evaluated to give 

(7.82) 

Using (7.79-82) we may calculate the normalization factor N hy means of (7.78) 
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and obtain 

^ = e x p | - ^ 'a 
' 2 ^ 

(7.83) 

In order to evaluate If we repeat these steps in an analogous fashion and obtain 
the final result 

If = - i l n 2 a + |ln7r + ln2 H - ^ - I n e . (7.84) 

Now let us compare (7.84), which holds well above threshold, with (7.61) which 
holds below threshold. 

Let us first discuss the role of the accuracy limit e. In Sect. 7.8.1 we put s in 
relation with a, which obviously describes how quickly the Gaussian decreases. As 
is evident, e.g. from (7.81), the decay constant in the case well above threshold now 
reads 2a instead of |a| below threshold. By the same physical argument as before 
we therefore have to require 

- i l n 2 a - l n e = 0 . (7.85) 

Taking now the difference between (7.84) and (7.61), using (7.85) and (7.67) we find 

Alf = \n2 . (7.86) 

If we recall that for a proper definition of the information we should have used the 
logarithm to the base 2 instead of the natural logarithm, we find 

AL 'f = l0g2 2 = 1 (7.87) 

This means that the system well above threshold can store one bit reliably whereas 
below threshold no bit can be stored. We shall come back to a discussion of this 
interpretation in Sect. 7.8.4 below. 

7.8.3 Numerical Results 

In Fig.7.2 we have evaluated If for e = 1 and P = I. With respect to the results of 
Sects. 7.8.1,2 it is interesting to note that the information proceeds from negative to 
positive values of a via a hump. The origin of this is clear for physical reasons. Close 
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to a = 0 critical fluctuations, well known from phase transitions, occur which cause 
a spread of/ and therefore an increase of If. When a goes to negative values, / 
centers around one maximum (cf. Fig.7.1) so that If drops, whereas for growing 
positive values of a, / acquires two distinct maxima and the information drops again 
though to a higher level than for equivalent negative a's. For sake of completeness 
we have also calculated the information gain which is defined by 

K= j dUMf 
- 0 0 ^'^O 

where / is given by 

/ , = Ar(a)exp(ae i^D. 

(7.88) 

(7.89) 

In order to calculate (7.88) in the vicinity of threshold we have put j8 = 1 and 
calculated K for ao fixed and a taking values from —15 to 15 (Figs.7.3-5). 

7.8.4 Discussion 

Above we have presented an expHcit calculation of the information change of a 
self-organizing system that is described by a single order parameter and undergoes 
a second-order phase transition. As we have seen the information change is 
quite small but represents precisely what we expect on physical and information-



7.9 Exact Analytical Results for the Case of a Single Order Parameter 95 

theoretical grounds. The system has become able to store one bit of information 
provided we may realize either one of the two possible states by means of symmetry 
breaking. This is one reason why we prefer the notion of information to that of 
entropy when we apply (7.55) to systems far from thermal equihbrium. On the other 
hand, the behavior close to threshold shows that here the information can increase 
considerably due to critical fluctuations. In this case one may be inclined to prefer 
the term "entropy". However, there is yet another reason which makes me reluctant 
to apply the term "entropy". As we saw in Chap. 5, the constraints under which the 
information entropy (7.55) is maximized are quite different for systems in thermal 
and away from thermal equihbrium. Among the constraints of systems in thermal 
equilibrium there is always energy and when the maximum entropy principle is used 
the corresponding Lagrange parameter is the inverse temperature. A further remark 
may be in order: 

As is well known from nonequilibrium phase transitions, e.g. in lasers and fluid 
dynamics, in the region a > 0 ordered structures appear. Our result exhibited in 
Fig.7.2 tells us that in this ordered state the information entropy is higher than in the 
disordered state. This result is counterintuitive and indeed some authors have 
claimed that dS <0 for the transition from the disordered to the ordered state, both 
in equilibrium and nonequihbrium situations. But such conclusions are not justified. 
This becomes evident when we look more closely at thermodynamics. According 
to thermodynamics, entropy and thus disorder may increase but not decrease in a 
closed system. Thus, when we keep the total energy of a system constant, and 
compare two states, then the one with higher entropy is connected with greater 
disorder. But in the situation of an open system treated above, we do not compare 
states of a system with the same energy. Clearly, when we cut down the energy in-
and outputs of the system, e.g. of a laser, and keep it now at a constant energy, the 
system will rearrange, increase its entropy and abandon its ordered state. In general, 
we may not draw conclusions on disorder or order in open systems if we consider 
the (information) entropy alone. From a more formal point of view, the difference 
in the interpretation of entropy and information entropy rests on the different 
constraints to be used for closed or open systems. 

Let us assume that we have found the information entropy under the constraints 
for an open system. Then let us calculate the mean energy for the distribution 
function. When we take this energy as a new constraint, the entropy is not maxi­
mized by the distribution function of the open system but rather by a function for 
which just energy is the given constraint. We shall elucidate this result from still 
another point of view in Sect. 7.10. 

7.9 Exact Analytical Results on Information, Information Gain, 
and Efficiency of a Single Order Parameter 

In this section we shall present exact analytical expressions for the information. If, 
the information gain, Kf, and the efficiency W, all of which will be evaluated for 

M) = Nexp{a^^-pi^). (7.90) 
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We briefly repeat these quantities: 

If=-\nN-a{^'y+Pi^^y , (7.91) 

where the nth moment of the distribution function f{£) is given by 

+ 00 

<{">= I mi'di . (7.92) 
- 0 0 

^ / = -K/Zo = In N - In JVo + (a - ao) <.̂ " >, . (7.93) 

Finally, since the second moment <^^ >„ is a measure of the intensity of radiation 
and hence of the work done, the efficiency of the system can be estabhshed to be 

W = ^ ^ ^ . (7.94) 
da 

Using (7.90) to evaluate (7.94) results in [cf. (7.36)] 

^=<^^>a-<<^ '>a ' . (7.95) 

It is interesting to find out the relationship between If, Kj- and W and the control 
parameters a and j?. As we have seen above, depending on the magnitude of a there 
are various regimes, i.e. the instabiUty region when a ?̂  0 and the stable regions 
when |a| » 0. 

The main mathematical tool we shall employ is the standard integral 

00 

[ x"exp(ax2'" - Px'^'^)dx 
0 

= (2m)-i(2jS)-<"^i>/^'"rf'^^ /)-,„+IV2M(A) exp(AV4) (7.96) 
, 2m , 

where X = —a/yjl^, F is the gamma function and D is the parabolic cyHnder 
function. Since 

+ 00 

N-^= J Qxp{a.e - H'^)d^ (7.97) 
— 00 

simple application of (7.96) to (7.97) yields for the normalization constant N 

N = (2iS)̂ /̂ 7r-̂ /2 e-^'/^[D_i/2(>^)]~' • (7.98) 

Similarly, using (7.92) and (7.96) we can easily calculate the second and the fourth 
moments of/((^) as 

iey = i2pri2^^^ and (7.99) 

<<r*> = ( 8 / S ) - ^ ^ = ^ , (7.100) 
^-1/2 W 



7.9 Exact Analytical Results for the Case of a Single Order Parameter 97 

respectively. Having found N, {^^y and (ĉ "̂ ) in terms of the control parameters a 
and P alone, we can simply substitute these formulas into the expressions for If, Kf 
and W, i.e. (7.91,93,95). The information contained in the system with the distribu­
tion f{^) is then obtain as 

I, = 0.3991 - i l n ^ + iA^ + Ini)_,,,(i) + ^^/^^^-^/^^ + (y^^^-^i^W ^^ ^^^^ 
^ - 1 / 2 (A) 

Similarly, the information gain on changing the parameter a in /(£,) from XQ to a 
can be calculated to be 

_ a g - « ^ , ,„-P-i/2(^) , , , , •P-3/2W 
^//o = o o + ' » rT / r - (̂  - ^0) ̂ " ; ' (7.102) 

where AQ = '-'^o/s/'^P- Finally, the efficiency of the system is found from 
(7.95,99,100) to be 

3i)_3;,(A)g-i;,(A)-[D-3,,(A)]^ 

It is worth emphasizing that all the formulas presented in this section, i.e. 
(7.98-103), are expressed in terms of analytic functions of the control parameters a 
and j5, provided p ^0 and a < 00. The quantities of special interest to us. If, Kf 
and W, depend in a critical way on L Since the paraboHc cyUnder function D is a 
special function, our expressions (7.101-103) cannot, in general, be further simplified 
unless we tabulate the functions for selected values of )6. However, there exist three 
special cases which are worth investigating. The first is when the instability point 
itself occurs when a = 0, hence 1 = 0. In the second, the immediate vicinity of the 
instability point is characterized by a ^ 0 and /I ̂  0. In the third case, the stable 
region is characterized by A » 1. We shall analyze each of these special cases in 
detail. 

7.9.1 The Instability Point 

The parabolic cyhnder function is related to the Weber function via 

^ - . - i / 2 W = t / ( p , ^ ) . (7.104) 

At the instability point a == 0, we use the property 

UiP,0) = ^ ^ r { l + ^^ (7.105) 

and find that the normalization constant N achieves a maximum of 

N, = 0.5516jS^̂ ^ . (7.106) 

The second and the fourth moments are given by 
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(^^^y^ = 0.3380j8- /̂2 and (7.107) 

<(̂ ^X = 0.2500r ' , (7.108) 

respectively. Consequently, we find that the information If at the instability point is 

/^ = 0 . 8 4 4 9 - i In jg . (7.109) 

Similarly, the information gain on going from the distribution /^ (a = 0) to / is 

Kj-f^ = 0.5949 - ilnjS + IniV + oci^^}, . (7,110) 

Finally, the efSciency at the instabihty point can be readily shown to be 

PT, = 0.1358^^ . (7.111) 

Obviously, all these values depend only on P (except for the information gain) and 
it will be shown that they represent the maxima of their functions with respect to 
a. It is interesting to explore the approach to these maxima as a -^ 0. 

7.9.2 The Approach to Instability 

In order to study the immediate vicinity of the instability point we use the following 
asymptotic expansion of the Weber function 

UiP, + \M) « [^r(l + )̂"]ê /̂̂ ^ (7.112) 

where /i « 0 and thus higher powers of A have been neglected in the exponential 
function. Using this, we easily obtain the dominant behavior of iV, <(̂ >̂ and < '̂̂ > 
close to 2 = 0: 

iV-iV,e-^'/* (7.113) 

< ^ ' > ^ < ^ ' > c e + ' and (7.114) 

<^^>^<e^Xe+N/^^ (7.115) 

where N„ i^^}, and <(̂ *>, are those of (7.106), (7.107) and (7.108) respectively. In 
(7.114) and (7.115) the negative sign corresponds to A > 0 (a < 0) and the positive 
sign to 2 < 0 (a > 0). Therefore, upon approaching a = 0 the values of N, <^^> and 
{^"^y increase exponentially and tend to their critical values N^, <^^>c and <(̂ ''̂ >c, 
respectively. Applying these results to If gives 

If^h-^ ^^4 + 0.478Aexp( + A) + 0.250[exp( + y2A) - 1] (7.116) 

which also approaches its critical value /^ along a combination of exponential 
functions of 2. The information gain achieved on changing the distribution function 
from /o to / , both of which are close to / ^ can be calculated as 
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^ / / o ^ - ^ / / . + § - « o < ^ ' > « . (7.117) 

Thus, Kff^ approaches Kff^ via a combination of a Hnear term in ao and a quadratic 
term in ao- Obviously, ao -^ 0. Allowing A ^ 0 we can further reduce (7.117) to 

Kff^ ^Xl-X^-{- 0.478(/l - ^)e+^ . (7.118) 

Finally, we can calculate the efficiency function close to the instabihty point 
obtaining 

W^W.Q-^^ . (7.119) 

We conclude by noting that all quantities of interest to us, except for K, 
approach their critical values via exponential functions or combinations of ex­
ponential functions. This will be shown to be in sharp contrast to their behavior in 
the stable region. 

7.9.3 The Stable Region 

The other asymptotic Umit, /l ^ oo, can be achieved either by increasing a and 
keeping j8 constant, or (as in the mean field approximation) by letting both a and 
P tend to infinity at the same rate, e.g. by increasing the volume of the system. We 
shall therefore depart asymptotically from the instabihty point. The relevant expan­
sion for the Weber function is 

U{p, X) -e-^'/^A-^-'/^ (7.120) 

where we have dropped higher powers of (l/A). Applying (7.120) to (7.98) yields for 
the normalization constant 

/ ; \ i / 2 

iV-(2iS)i/^(-j (7.121) 

and it obviously requires that a < 0. The second moment is similarly obtained as 

<(^2>-i(2i5)-^/2/i-^ (7.122) 

and the fourth moment as 

< ^ ^ > ^ | r ' r ^ . (7.123) 

Substituting these expressions into (7.91) gives the information 

If ĉ  0.5724 - i ln A - iln(2i5) + ^ + f^r^ . (7.124) 

This formula for If also applies only when a < 0 and it represents a predominantly 
power-law decrease of If to zero as A -^ oo. Of course, there is a maximum value of 
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X beyond which (7.124) cannot be used since it would otherwise produce a negative 
information. Moreover, in such a case one needs to re-incorporate the effects due 
to the enslaved modes which become significant. 

Next, we calculate the information gain on going from /̂ ^ to /„ and find 

2 ao 
1 

1 (7.125) 

Finally, the efficiency of the system is found to be 

(7.126) 

which decreases monotonically as l tends to infinity. We therefore see that the 
relevant quantities decrease with increasing X according to various power laws. 

7.9.4 The Injected Signal 

Without introducing an external field that couples with ^ via a term — cr̂ , the most 
likely value of ^ is doubly degenerate, i.e. both { = +(a/2j?)^/^ and { = -{alip)^'^ 
are equally probable. Injecting a signal with amplitude o will remove such de­
generacy and cause the value of £, with the same sign as o to be preferred. In such 
a case we should modify our distribution function to 

/,(f) = iVexp(-^^ + a ^ ^ - i 8 r ) (7.127) 

We shall henceforth denote the properties in the presence of the injected signal by 
a subscript ' V and in the absence of it by a subscript "0". With f„{^) given by (7.127) 
we can no longer afford exact formulas since (7.96) does not apply to it. Instead, we 
shall expand /^(f) in a series about /o(0 of (7.90) in powers of o. Since o is assumed 
to be small compared to a and j5, we shall include only the lowest terms in our 
analysis and approximate N„ at the outset by NQ of (7.98). Simple apphcation of 
(7.96) to the series expansion oi f„{^) yields to the lowest order of approximation: 

i^y^^i^yo [i 
+ 3 D_ 

2)S D^iA^) 
5/2 W ^2 + 

and 

< r > . ^ <£.^y {{ 
+ 5 D.,i^(X) ^ , ^ 

2)8 £>-5/2W 

(7.128) 

(7.129) 

where <î ^>o and <{*>o are those of (7.99) and (7.100), respectively. In both of these 
expressions the amplitude, a, of the injected signal enters via a correction term and 
appears squared in the lowest order. We can analyze these terms in more detail 
when we specify the regime of X. In the vicinity of the instabihty point we obtain 

<^'>. ^ <'^'>o[l + 0.3698r'"exp( + 0.4142A)<T ]̂ (7.130) 
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and 

ie>a - <r>oCl + 0.5070)5-1/^exp( + 0.31781)(T^] . (7.131) 

So the correction due to a is modified by an exponential function of /I and thus it 
becomes more and more pronounced as we approach the instabihty point. We can 
carry it further to evaluate its effect on the information and efficiency. There, 

h ^ h - 0.1768)5-1/2 exp( + V2;i)[>l - 0.7172exp( + 0.9036/l)](72 (7.132) 

and 

W; - Ŵo + 0.0845r'^''exp( +2.4142/1) [1 -h 1.5 exp( ±0.0964/1)ja^ . (7.133) 

Again, the correction terms are dominated by factors quadratic in c and modified 
by exponential terms in X. 

On the other hand, far away from the instability point we obtain for the second 
and the fourth moments 

ie^a ^ <^'>o(l + 0.5303A-ir'^'^') (7.134) 

<^^>. ^ <^^>o(l + 0.8839rir'^^<7') (7.135) 

both of which have correction terms quadratic in o and decreasing linearly with 
/l"!. As a result the information is given by 

4 - /o - 0.1326r'^^>i"^(a - 5)52-1) (7^35) 

and the efficiency is approximated by 

W^c^Wo^- 0.5966)5-1/2A-̂ o-̂  . (7.137) 

7.9.5 Conclusions 

In the neighbourhood of the instabihty point both information and efficiency of a 
self-organizing system increase exponentially with respect to the power input a and 
thus are hkely to overshadow the contributions from the enslaved modes. On the 
other hand, far away from the instabihty point the information and efficiency of the 
system decrease according to a second power of the power input a. 

Therefore, the enslaved modes will reenter the scene in this region. It is interest­
ing to note that the quantity i^^^^y^K^'^y has a constant value in both limits. In the 
neighbourhood of the instability it equals 0.4570 signalling a much higher intensity 
than that of the stable region where <<̂ >̂V<<̂ '̂ ) is only 0.083. Since we have also 
given general formulas for <(̂ ^>, < '̂̂ >, //, Kj-j-^ and W, which apply to all values of 
a and j5, and which are analytic functions, we expect to find all the values between 
0.083 and 0.4570 in the intermediate region between X= co and /I = 0. The injected 
signal has been found to introduce correction terms to the unperturbed expressions. 
The dominant contributions are proportional to the square of the amplitude of the 
injected signal. 
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7.10 The ^-Theorem of Klimontovich 

In this section we wish to do two things. First we will show how the laser distribution 
function, which we derived in Sect. 5.2 by means of our macroscopic approach, can 
also be found by the microscopic theory. We then shall use this result in order to 
illustrate a theorem of KHmontovich which he called the iS-theorem and which sheds 
new Hght on our result that in a system far from equilibrium the entropy may 
increase inspite of the fact that the system enters a state of higher order. 

But let us start first with the microscopic theory. We consider a complex order 
parameter ^. We shall consider the case in which it obeys the equation 

t = X^ - Pi\^\^ + Fit) . (7.138) 

In the following we shall decompose £, into its real and imaginary parts 

^ = «i + i«2 • (7-139) 

We decompose the fluctuating force F in a similar fashion 

F = JFI + iF2 , (7.140) 

where F^ and F2 are assumed to be real. Then the order parameter equation (7.138) 
can be split into the equations 

qj = Iqj - ^qjiql + qj) + î - , j = 1, 2 (7.141) 

for the real quantities q^ and ^2- They can also be written in the abbreviated form 

qj = Kj{q„q,) + Fj. (7.142) 

As a more detailed analysis shows, the fluctuating forces have the following 
properties 

<Fjm = 0 (7.143) 

<Fj(t)F,it') = Sj,Q3it - n . (7.144) 

The rules of Sect. 2.3 allow us immediately to establish the Fokker-Planck equation 
corresponding to (7.141) or (7.138); it reads 

Sqi dq2 2\dqi dqij 

One may readily convince oneself that the conditions for detailed balance are 
fulfilled. Therefore, for the stationary state with 

f = 0 (7.146) 

we immediately find 
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/ ( « l , 4 2 ) = ' ^ e x p Mqi + ql)-^iqt + qt) Q-'} . (7.147) 

For what follows, it is convenient to transform the distribution function to new 
coordinates. To this end we consider the probability function 

f{quq2)dq,dq, . (7.148) 

We now introduce new coordinates defined by 

q^=r cos (/) (7.149) 

q2 = rsm<f> (7.150) 

or equivalently 

^ = rexp(i^) . (7.151) 

In these new coordinates r and (/> the volume element can be written as 

dV = dq^ dq2 = rdrd(/> . (7.152) 

Therefore (7.148) can be written explicitly in the form 

f{r)rdrd(t) = ^exp[(;ir2 - ^Pr'')Q-^^rdrd^ (7.153) 

when we use the new coordinates r and (f>. Now let us introduce the quantity U 
according to 

r^ = U . (7.154) 

It may be interpreted in a number of cases in physics as potential energy. From 
(7.153) and (7.154) we immediately obtain 

fiU)dU = jr Qxpl(W - yU^)Q-^JidU , (7.155) 

where we have omitted the common factor d^. For the following we shall require 
that f{U) is normahzed according to 

] f{U)dU=l . (7.156) 
0 

In order to prepare ourselves for the explanation of the S-theorem, we shall consider 
the information entropy 

00 

i=-^f{U)lnfiU)dU, (7.157) 
0 

and the average energy which is defined by 

00 

<l/> = J UfiU)dU . (7.158) 
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In order to be able to present explicit formulas for (7.157) and (7.158), we consider 
three limiting cases which are well known from laser physics, but which can also be 
found in other areas. 

7.10.1 Region 1: Below Laser Threshold 

In this region we have /I < 0. In this case the laser oscillator is excited only weakly 
so that its energy obeys the inequality 

^U^«\A\U . (7.159) 

Under this assumption we may neglect the quadratic term in comparison to the 
linear term in the distribution function (7.147). Then it is simple to calculate (7.158) 
explicitly which yields 

< C / > = | . (7.160) 

Using (7.160) in (7.159) we may cast the inequahty (7.159) into the form 

^ « i . (7.161) 

The distribution function used in this case reads explicitly 

where we have included the exact normalization factor. It is now a simple task to 
calculate (7.157) and (7.158) to obtain 

/ ^ = l n - | - + l , and (7.163) 
\A\ 

< C / > . = | . (7.164) 

Because we are calculating (7.157) and (7.158) in the regime 1, i.e. below theshold, 
we have added the index 1 to i and <l/>. When we pump the laser higher, that is 
when we increase the pump power, X decreases. Equation (7.164) then tells us that 
the average energy increases. Let us now consider the region at which the laser is 
at threshold. 

7.10.2 Region 2: At Threshold 

In this case the control parameter /I fulfills 

2 = 0 . (7.165) 
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The corresponding distribution function reads 

/ 2 ( ^ ) = / -^exp - ^ (7.166) 

We have added the index 2 to indicate the threshold region. It is again quite simple 
to calculate the information entropy and the mean energy: 

1 7cQ 1 

'̂̂  = 2 V ^ 2 ' 

< ^ > 2 = 

(7.167) 

(7.168) 

7.10.3 Region 3: Well Above Threshold 

In this region we have A > 0. We shall consider the region where the inequahty 

« i (7.169) 

holds. In such a case the distribution function / may be well approximated by 

/3(C/) = ^ e x p 
22 u p. 

(7.170) 

where the index 3 labels the region well above threshold. The information entropy 
and mean energy can easily be calculated yielding 

1 2nQ 1 
(7.171) 

<l/>3 = 
P 

(7.172) 

We may now compare the information entropies in the regions 1, 2 and 3, and 
also the mean energies in these regions. We can readily convince ourselves that they 
obey the inequaUties 

I, <IT < Ir, and 

<1/>1 < <t/>2 < <t/>3 . 

(7.173) 

(7.174) 

With increasing pumping the information entropy increases, a result which we have 
already found for a real order parameter in Sect. 7.9. In that section we already 
observed that an adequate comparison of the entropies can be made only when we 
take them at the same energies. So according to an idea of Klimontovich, we now 
choose the fluctuation strength Q in such a way that the energies become equal. In 
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Other words we shall change the fluctuating forces in the cases 1 and 2 so that we 
now obtain 

<Uy,,r=<Uy2,r=<Uy,,r . (7.175) 

We want to study the consequences in detail and start in the region below threshold. 
To obtain a constant energy with decreasing A, we must decrease the noise level 

Q in proportion to X. It is interesting to discuss the corresponding results in terms 
of laser physics. When we decrease A, i.e. when we increase the pump strength, the 
process of stimulated emission occurs which means that the individual wave tracks 
of the light field are enhanced. As a consequence the mean energy increases. On the 
other hand, when we decrease the noise level, then the spontaneous emission events 
become scarcer. When we decrease the noise level or the production rate of spon­
taneous emission according to the enhancement factor, we may readily find the 
conditions under which the energy remains constant. At the same time we find that 
the information entropy remains constant, i.e. in the so-called Unear amplifier region 
the information entropy remains constant under the circumstances just described. 

Klimontovich chose another comparison; he used the equality (7.175) for a fixed 
mean energy above threshold according to 

<U>3.r = ^ , (7.176) 

where 1 and p are now fixed quantities. In the equation 

<t/>2,r= / ^ (7.177) 

we now choose Q = 62 so that the relation 

<^>2,. = ^ (7.178) 

is fulfilled. For Q2 we then obtain 

e . = 2 y . (7.179) 

Inserting (7.179) in the expression for the information entropy (7.167), we readily 
obtain 

i^ ^ = - I n ^ + - = In— + - . 7.180 
'̂ 2 2̂ 5 2 2iS 2 

We do the same thing for region 1. In the equation 

<t/>i.. = 7r7 (7-181) 
l^ll 
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we choose 2 = Qi such that 

<t/>i,. = | . (7.182) 

We readily obtain 

e . = ^ . (7.183) 

Inserting this result into the expression for the information entropy (7.163) we find 

fi,, = l n - f i - + l = l n ^ + l . (7.184) 

When we recall the inequahty 

^ « 1 , (7.185) 

we now obtain the following inequality for the entropies 

h,r > H,r > h,r ' (7.186) 

Thus when we keep the mean energy fixed by adjusting the noise level, we indeed 
obtain the result that the entropy decreases when we increase the control parameter 
and achieve a more ordered state of the system, e.g. laser action. This decrease of 
information entropy upon ordering, or, in other words, the occurrence of self-
organization, was called the S-theorem by Klimontovich. He also considered the 
general case of regions intermediate between 1 and 3 considered here. His theorem 
was derived by considering the change of energy and information entropy with 
changing control parameter. 

In this treatment Klimontovich considered only the change of energy with 
respect to the control parameter but not the simultaneous change of the noise level 
which is required to keep the energy constant. Therefore, the derivation of his 
theorem requires a slight change which we shall not present here. 

7.11 The Contribution of the Enslaved Modes to the Information 
Close to Nonequilibrium Phase Transitions 

In Sect. 7.2 we have shown that we may decompose the information of the total 
system into the information of the order parameters and that of the enslaved modes. 
In the previous sections we have calculated the information of the order parameters. 
We shall now turn to a study of the information of the enslaved modes. To this end 
we use the slaving principle in its leading approximation. As we have shown in 
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(7.21), the conditional probability P is then given by 

P(is\a = > ; e x p | - t M i ± ^ £ ( ^ J , (7.187) 

where the normalization factor J^l is given by 

^s = \K\Wsr'" • (7.188) 

In the following we shall allow 1 ,̂ Q^ and thus the normahzation factor J^, to be 
functions of the control parameter a. 

K = A.(a) , (7.189) 

Qs = es(a) , (7.190) 

^s = ^.(a) • (7.191) 

We may further assume that g^ depends on this control parameter a and that 

ŝ(O) = 0 . (7.192) 

The information of the mode s for a given fixed value of the control parameter ^„ 
is given by 

IsiL,o^) = - 1 PiUUinPiiMJdis . (7.193) 

Note that the integral is extended from minus infinity to plus infinity. We now 
introduce a new variable ^' instead of ^^ t>y means of the definition 

L + T = ^' • C'-i^^) 

Using (7.187) and (7.194) in (7.193) we obtain 

I, = - j jr^(oc)cxp(-^) X l n r > ; ( a ) e x p ( ' - ^ ' ) j r f ^ ' . (7.195) 

In order to eliminate the dependence of I^ on a as far as possible we make the 
following substitution 

\umQs{c^r"H' = \uo)\QAor"'rj, (7.196) 
or solving for ^' we write 

^.j^(my\, (7,97) 

Considered as a function of the order parameter (̂ „ and of the control parameter a, 
4 then acquires the form 
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x l „ m > ; ( 0 ) e x p r - ^ l | x ^ ( | f | ) - ^ ' ^ , . (7.198) 

Note that this expression is now independent of the order parameter (̂ „ as indicated 
by the argument 0 in Ẑ . Using the relation (7.188) we observe that a number of 
factors in (7.198) cancel so that (7.198) can be written in the simpler form 

4(0,a) = - > ; ( 0 ) | e x p r - ^ ^ ^ l { ^ +B}dri , (7.199) 

where A is given by 

V.(0)' 
and B by 

B = ln|j^,(0)exp 
2*,2-

" QsiO) 

(7.200) 

(7.201) 

Since ^ is a constant, the integral over the Gaussian function can be evaluated 
immediately and yields, together with a normalization factor, unity. One can easily 
convince oneself that the integral which contains the term B is just the definition of 
the information I^ for the control parameter value a = 0. Therefore, we may cast 
(7.199) into the form 

4 ( 0 , a ) = - l n : § ^ +4(0,0) . (7.202) 

Using the explicit definition of the normalization factor ^ (7.188), (7.202) can also 
be represented in the form 

7,(0, a) = - I n •m(my].u... 
We now recall the general decomposition of the information i of the total system 
into the information of the order parameters If and of the enslaved modes. Since I^ 
is independent of ^^, the integration over the order parameters can be performed 
immediately and yields the factor 1. Therefore, we obtain as a final result 

s s 

When we wish to compare the information for two different values of the control 
parameter a2 and aj , we may form 
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iia^) - i{a,) = /„(a,) - I,{oc,) - V I n ^ ^ j ^ . (7.205) 
s 

Note that J^~'^ corresponds to the partition function of thermodynamics, and In JV' 
corresponds, according to 

lnjr=-2. (7.206) 

to the free energy. Clearly (7.204) then allows a generalization of the concepts of 
thermodynamics. When the control parameter a is chosen in such a way that at the 
critical point a = 0, we may easily calculate the change of 4 in the vicinity of the 
critical point by taking the derivative. This yields 

dis 
da 

' ^ ^ (7.207) 
|a=0 ^s(O) 

An Explicit Example: The Single-Mode Laser 

Let us now study the behavior of the information of the enslaved modes close to 
non-equihbrium phase transitions by means of an explicit example. One of the 
simplest examples in this respect is provided by the single-mode laser. Therefore we 
wish to remind the reader briefly of the corresponding theory. The laser is composed 
of a single field mode which has an ampHtude h{t) and which is made dimensionless. 
\b\^ can be interpreted as the average number of photons present in the laser. 

The laser is further composed of the laser-active atoms which are assumed to 
possess only two levels. The atomic dipole moment is described by a dimensionless 
variable a .̂ Finally the inversion of each atom, i.e. the difference between the 
occupation number of the upper and the lower level is given by d^. The laser 
equations then have the following form 

b = (_ ico - K)fe - i^ X ôM Ĉ -̂ OS) 

â  = ( - ico - y)a^ + igh d^ (7.209) 

d, = y\\{do - d^) + 2i^(a^^* - a*^) , (7.210) 

where co is the optical transition frequency of the laser atoms, K is the decay constant 
of the field mode and g is the coupling constant between the field mode and the 
atomic dipole moment, y is the decay constant of the dipole moment of the atom 
and 711 is the relaxation constant of the atomic inversion, do is the prescribed 
inversion given by the pump strength with which the atoms are excited and by 
incoherent relaxation processes. 

In order to eliminate the constant co, we make the hypothesis 

b = 5e-^"' , â  = A^Q-''^' , (7.211) 

where B and A^ are time-dependent variables. Inserting (7.211) into (7.208-210) we 
readily obtain the equations 

B=-KB-igY,A^ (7.212) 



7.11 Contribution of Enslaved Modes Close to Nonequilibrium Phase Transitions 111 

^,= -yA^ + igbd^ (7.213) 

d, = yiiido ~ d^) + 2ig{A^B^ - A*B) . (7.214) 

dQ may be identified with the control parameter. As it is known that for weak 
inversion do, no laser action takes place, we first study this case. In it the field 
vanishes and also the atomic dipole moments are zero, whereas the inversion t/̂  
acquires a value identical with that of the inversion d^ described by the pump 
process and incoherent relaxation processes. Therefore we obtain 

Bo = 0 , A^^o = 0 , d^^o = do . (7.215) 

We now wish to study under which values of ^Q the solution (7.215) is stable and at 
which critical value do it loses its stability. To this end we make the usual stability 
analysis described in Sect. 2.6, namely, we make the hypothesis 

B = Bo^SB , A^ = A^^o + ^A^ • (7.216) 

Inserting (7.216) into (7.212-214) and using (7.215) we obtain in the leading ap­
proximation, i.e. in the linear terms, the equations 

SB= -K3B-igY,SA^ (7.217) 

3A^= -ySA^-\-igdBdo . (7.218) 

In addition it turns out that (7.214) yields no first-order change of rf^. Note that the 
equations (7.217) and (7.218) are of the same form as equation (2.72) of Sect. 2.6 and 
illustrate the set of linear equations derived there. In order to solve the equations 
(7.217) and (7.218) we make the usual hypothesis 

3B{t) - SB{0)c^' (7.219) 

3A^{t) = 3A^{0)Q'' , (7.220) 

where the time-independent ampHtudes and X are still unknown quantities. In­
serting (7.219) and (7.220) into (7.217) and (7.218) we obtain the linear algebraic 
equations 

3BmX + /c) = -ig X ^^,(0) (7.221) 

SA^miX + y) = igdBiO)d^ . (7.222) 

The determinant belonging to (7.221,222) reads 

-K — X 

^gdo 

^gdo 

-k 
-y-X 

0 

-\g 
0 

-y-X 

-^9 
0 

0 

igdo 0 0 ... —y — X 
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It can easily be evaluated and we obtain 

- ( K + 7)(y + If + g^doN{y + Xf'' = 0 . (7.223) 

The eigenvalues X are: 

a) for the stable modes, 1^: 

^1 = - ^ ^ - \^{K-yf + 4g'Do ; Do = Ndo (simple) (7.224) 

and for 5 = 2 , . . . , AT 

Xs= -y ie. (AT - l)-fold. (7.225) 

b) for the unstable mode, ^ : 

K -{- y 1 

2 + 2 ^ ^ " " ^ ^ ' ^ " ^ ^ ' ^ ' ^^'^^^^ 

which can also be written in the form 

A = - ^ + iyC/c - yf + 4g'Do (7.227) 

The unstabiHty condition then yields the critical inversion D ,̂ namely 

^ > 0 ; D, = ^ . (7.228) 

We now wish to study the change of the information of the enslaved modes close 
to the instability point. To this end we put 

Do = Z)e + a' = ^ + a' (7.229) 
g 

where a' plays the role of a control parameter. 
Let us now assume, in accordance with usual laser theory, that the fluctuating 

forces do not depend on the control parameter. Under such an assumption, and 
because of (7.188), the relation (7.207) reduces to a calculation of 

dl 

da' 
'^(°'' = '^ s=l,...,N. (7.230) 

l,.=o A,(a' = 0) 

We readily obtain the result that (7.230) = 0 for s = 2 , . . . , iV and 

A ; ( 0 ) ^ g' ^,g^ ^K I 

h{0) {K + yf ~y' y Z)e 

where we have specialized the result to the case in which 

(7.231) 
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K«y (7.232) 

which is vahd for most lasers. Thus our final result is given by 

^0!=:--^ foTs=i (7.233) 

= 0 otherwise . 

This tells us that with increasing pump rate represented by a', the information 
decreases. This result can be easily interpreted when we recall the general form of 
the probabiUty distribution of the enslaved modes given by (7.187). If Q̂  is a constant 
and after g^ has been transformed away according to (7.194), the information of the 
enslaved modes depends on a Gaussian distribution function, the width of which 
decreases when the absolute value of X^ increases which is the case for increasing a'. 
A narrower distribution function, however, means a greater certainty and at the 
same time a decrease of information. 

In the leading approximation of the slaving principle, therefore, we notice that 
the information entropy of the laser atoms decreases when the laser is pumped 
harder. Let us finally relate the control parameter a', which we introduced in (7.229), 
to the control parameter a which occurs in the distribution function of the order 
parameter in the equation 

/ = ^exp(a^^- i^^^) . (7.234) 

To achieve this we must recall some results of laser theory for the special case (7.232) 
and some basic equations of the microscopic theory. 

If we assume for the time being, and just for illustration, that the field ampHtude 
b is a real variable, we may identify it with ^ occurring in (7.234). Then in laser 
theory it is shown that B = £, obeys a Langevin equation of the type (2.1) with 
(2.3). This Langevin equation may be transformed into a Fokker-Planck equation 
whose stationary solution is then just given by (7.234) where we may make the 
identification 

a = —— . (7.235) 

Here Q^Q^ is the total fluctuating force acting on the laser field, whereas >l„(a') is just 
given by 

K = - ^ + \^iK + yf + 4g^oc- (7.236) 

where we have used (7.226,229). Equation (7.236) can be easily expanded into a 
series of powers of a' where the leading term is given by 

l „ « - ^ . (7.237) 
K + y 
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Comparing (7.235) with (7.237) we obtain the relation between the two types of 
control parameters a and OL': 

OL — • 
g^ 

{K + 7)etot 

Using a result from laser theory according to which 

Qu 
2KN2, 

~D7 

(7.238) 

(7.239) 

where N25 is the number of excited atoms, we may cast (7.238) into the form 

a' 
a = -2N^. 

(7.240) 

where we have used the relations (7.229,232). To a good approximation we may put 

N 
N,. ^ ^ (7.241) 

where N is the total number of laser active atoms. 
By means of (7.240,241) we may transform (7.231) into 

—^/Ai = and -7^ = 0 f o r s > 2 
da I y D^ doc 

and thus the information change (7.230) into 

N 

1 da a = 0 

K N 

7^ 

(7.242) 

(7.243) 

Dc/N can be interpreted as the critical inversion per atom, d^. For typical data of 
the hehum-neon laser we obtain for a complex laser ampHtude 

m"; da 
10« (7.244) 



8. Direct Determination of Lagrange Multipliers 

8.1 Information Entropy of Systems Below and Above 
Their Critical Point 

It is well known from the theory of nonequilibrium phase transitions that the 
distribution function of the order parameters simplifies when the system is brought 
to a region well below or well above the critical point. The critical fluctuations of 
the system close to a critical point then give way to normal fluctuations described 
by Gaussian distributions of the order parameters. In addition, below the critical 
point, i.e. in the disordered phase, the order parameters ^„ are relatively small so 
that in 

Qs 
(8.1) 

we may put <̂„ = 0. 
Above threshold, the system settles down (by means of symmetry breaking) into 

a state (J„ = ^o 7̂  0, but where again the fluctuations are smaU so that we may 
replace ^„ by ^0 in (^l)- Thus the joint distribution function P(^„,^s) becomes a 
Gaussian. In this section we shaU show how we can determine the Lagrange 
multipliers explicitly using only the first and second moment. The higher order 
moments are then uniquely determined. The comparison between the higher mo­
ments which are thus calculated, and the experimentafly determined moments may 
then serve as a check of the validity of the Gaussian approximation. 

Let us write the distribution function whose Lagrange multipliers we wish to 
determine in the usual form 

/( i ,^) = exp 
J Jk 

(8.2) 

and let us compare it with the following distribution function 

f(q) = (Iny'^iar" exp[-i(«r - mfQ-^q - «.)] , (8.3) 

where we use the vector notation. The superscript T means transposed vector, and 
2 = {Qik) is a matrix; | 2 | is the determinant of Q. The function (8.3) is normalized 
to one in ̂ -space as can readily be shown. One can also easily convince oneself 
that 
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nij = {qj} and that (8.4) 

Qij = <{qi - mdiqj - m,.)> = iqtqj} - iqd < ,̂> . (8.5) 

This means that once the moments < ĵ> and <^i^j> are known (or given), we may 
determine m and Q occurring in (8.3). 

Therefore, in order to determine the Lagrange multiphers in (8.2), we must 
estabhsh a relationship between m and Q on the one hand, and between A, Xp X^^. 
on the other. The steps are trivial, and the result reads 

exp[-A] - (27c)-"/2|e|-^/^exp[-i/ii^e-i/ii] (8.6) 

^j, = m-'lk (8.7) 

k 

Now we may use formula (3.47), which we may cast in the form 

i = x + Y. ̂ Mjy + Z ^jk<mk> • (8.9) 
J jk 

Inserting (8.6-8) into (8.9) and using (8.4,5) we obtain 

i = ^ln27r + ^Iniei + ^ ^ [Q"^V<g,g,> - <g,><g,>) • (8.10) 

But the matrix relation 

E iQ-%Q,j = E {Q-'Q)jj = E 1 = n (8.11) 
jk j j 

allows US to obtain our final result for the information belonging to the distribution 
function (8.2) with the constraints (8.4,5): 

i=^ln27r + ^ l n | e | + ^ . (8.12) 

Quite evidently, the first moments < f̂> drop out. 
A comparison with (7.61) shows that (8.12) can be interpreted as a sum over n 

information entropies of independent Gaussian distributions of widths l/a^, where 

I n | e | = - X l n 2 a , . (8.13) 
k 

Exercise: Verify the normalization oif(q) in (8.3) and also the relations (8.4,5). 

Hint: Diagonalize Q by means of a transformation q = A^. 
Verify the relations (8.6-8). 

Hint: Multiply out the brackets in (8.3) and compare (8.3) with (8.2) term by term 
in the exponent. 
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8.2 Direct Determination of Lagrange Multipliers Below, 
At and Above the Critical Point 

In this section we wish to show how we can determine the Lagrange multiphers 
which we need in the maximum information entropy principle without the evalua­
tion of integrals. The price we have to pay is the following: We shall have to assume 
that we are dealing with a specific kind of transition, for instance a soft mode 
transition as treated in Sects. 7.4-9. We shall proceed in two steps. Starting from 
the constraints of the form 

fj=<qjy, fjj. = <qjqj.},... (8.14) 

where we consider moments up to the fourth order, we transform the variables qj 
to a new set of variables and determine the corresponding transformations. Then 
we specialize to the case of a soft mode instabihty and show how the unknown 
Lagrange multipliers can be determined exphcitly. At the same time self-consistency 
relations for the constraints (8.14) are derived. By means of these conditions one 
may check whether the system in question undergoes a soft mode transition in 
accordance with our original hypothesis. 

To facilitate the calculation we shall introduce the following notation: Taking 
for instance fjj> in the form (8.14) we may form a matrix and this matrix can be 
considered as a direct product of the vector q with itself 

<^°^> = «^ ;^ /» • (8.15) 

In a similar fashion with respect to three indices 7, / , / ' , we may form 

iqoqoqy = [iq.q.,q..y) , (8.16) 

where on the right-hand side we have to take all the combinations of j , / , / ' . The 
fourth order moments can be treated in a similar fashion. We now have a look at 
the microscopic approach where we have represented the state vector ^ as a 
superposition of the form 

9 = qo + T.^,v,, (8.17) 
k 

where q^ is a constant state vector which we shall put equal to zero 

^0 = 0 . (8.18) 

It is not difficult, however, to include the case where qQ ^ 0. ^^. are stochastic 
variables whereas r̂  are constant vectors which remain to be determined. We 
introduce the adjoint vector by means of 

Vu = {vfi,vlt2,^^-,v^„) , (8.19) 

and we assume the orthogonaHty relation 
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v,v,. = 5,,. . (8.20) 

Taking the average over (8.17) we immediately obtain 

<9> = Z <ii^>k • (8.21) 
k 

Multiplying (8.21) by means of the adjoint vector t;̂ , we obtain 

v,<q> = <i,y (8.22) 

as a result of (8.20). Introducing the abbreviation 

Q s F , < 9 > (8.23) 

we may write (8.22) in the form 

<«.> = Q . (8.24) 

Multiplying (8.15) by the adjoint vectors v in an appropriate manner and using the 
relation (8.20) we immediately find 

<ikik'} = <hq-Vu'q>^C,,, , (8.25) 

where the last equation is a definition of Q^. The middle part of (8.25) is defined 
more exphcitly by 

<Vk9'Vk'q> = Z ^ki^i'll^k'i'Qv • (8.26) 
I I' 

In exactly the same manner we find 

<44'<Jfc"> = i\r^k'q-'^k"Q> = Ckk'k" . (8.27) 

and 

4 

a 
v==l 

<<^*4'4"4"'> = {U\9) = C«-,..,... (8.28) 

for the third and fourth order moments. So far we have transformed the old 
moments in terms of q into new moments in terms of the new variables ij,. In the 
following we shall assume that the old moments (8.14) are given experimentally, 
whereas the new moments 

<idw--> (8.29) 

together with the vectors r̂  must still be determined. To this end we now exphcitly 
assume that the phenomenon we are dealing with and which is described by the 
moments (8.14) is a soft mode instability. To proceed further we remind the reader 
of the approach at the microscopic level. Below threshold, the system is very well 
approximated by a Gaussian distribution in all the variables of the system. Then it 
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is sufficient to deal with the first and second moments only. In order to find the 
appropriate mode vectors Vj, we diagonalize 

iqoq}. (8.30) 

By means of the diagonalization we obtain real eigenvalues which represent the 
second moments of the modes. Now we know that within a soft mode instabiUty 
one mode will show critical fluctuations when we approach the critical point. Thus 
we expect that one eigenvalue will become very large whereas all others remain 
small. The eigenvalue becoming large will then denote the unstable mode and the 
other eigenvalues must belong to the stable modes. In this way we can distinguish 
between the soft mode and the stable modes. 

Note, however, that in contrast to the mathematical linearization in which the 
eigenvalue of the soft mode will diverge, in the present case the eigenvalue will 
remain bounded because we are deahng in (8.30) with experimental data where the 
nonlinearities will prevent the eigenvalue from becoming infinitely large. 

We now make the distinction between unstable and stable modes: 

vj->v^,v, . (8.31) 

Furthermore we shall consider the typical soft mode transition in which, for to 
symmetry reasons, 

<Ly=0. (8.32) 

In the following we shall additionally assume that 

<Us> = 0 . (8.33) 

To be quite explicit we shall further assume that the joint probability function over 
which the average is taken has the form 

Pi4u,a = Mu)UPMs\U , (8.34) 
s 

which we may take from a microscopic approach or from the macroscopic approach 
according to Chap. 6. Here/ is the distribution function of the order parameter and 
Ps is the conditional probability for the enslaved mode amplitude 4 given by 

P, = ̂ ,exp|-t^^^:^^^J . (8.35) 

In the following we shall consider a special case, but one which is quite often ful­
filled, namely that g^ is an even function of the order parameter. By making the 
transformation 

L = l + gAa , (8.36) 

average values can easily be calculated, for instance 
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<4> = <l + OsiUy = <l> + <gsiL)} • (8.37) 

On account of (8.35) we have the condition 

<l> = 0 . (8.38) 

In the following we shall abbreviate the variables ^̂  and (̂ „ by the indices s and u 
alone: 

4 - ^ 5 , ^ „ ^ M . (8.39) 

In this new notation (8.37) reads 

<5> = <S + ^,> = <5> + <^,> . (8.40) 

We now study the expressions (8.24,25,27,28) in the Ught of the specific form of the 
distribution function, namely (8.34,35). From (8.32,23,24) we readily find 

Vu<g> = 0 , (8.41) 

which is now a condition on the average value of q, as well as 

<s} = <gsiu)> = Q , (8.42) 

which, as we shall see, will fix g^ under suitable assumptions. From (8.25), by 
identifying k = u,k' = u, we obtain 

<«'> = C„„ . (8.43) 

Identifying k~u,k' = s and using the forms (8.34,35) we obtain 

<«5> = 0 = Q , , (8.44) 

which is a condition on Q^. Finally identifying /c = s, fc' = s\ we obtain 

<ss'> = <s2>4.- + iQsgA = Q . . (8.45) 

By using 

<s'y = e. (8.46) 

we may cast (8.45) into the form 

Qs^s'-^ <gs9s'y = C,,. . (8.47) 

As we shall see later, this equation may serve to determine Q^. We now study the 
consequences of the relation 

(^.•^r^") = Qr*" . (8.48) 

1) We first make the identifications 

k = u , k' = s \ k" = s" (8.49) 
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or permutations thereof. We readily find 

Q,v' = 0 (8.50) 

which results from the properties of the left-hand side of (8.48). This is again a con­
dition that the experimentally found moments must satisfy. 

2) We now make the identification 

k = u , k' = u , k" = s" (8.51) 

or permutations thereof. We obtain 

i^uQADy = C^us" . (8.52) 

3) We consider the case 

k = u , k' = u , k" = u (8.53) 

and readily obtain 

C„„.„.. = 0 (8.54) 

which again is a condition that must be satisfied by the experimentally found 
moments. 

4) We identify 

/c = s , k' = s' , k" = s" . (8.55) 

We now use the decomposition (8.36) in the notation used in (8.40). We then obtain 
instead of (8.48) 

i{s + g,W + g,){r-^gs")y . (8.56) 

We now multiply out the factors in (8.56) and consider the individual terms thus 
resulting. We readily obtain 

< s s V > = 0 . (8.57) 

Furthermore we obtain 

<5 5'^,.> = 4X5'><^s"> , (8.58) 

<s^s'^."> = 0 , (8.59) 

and finally the expression 

i9sgs'Gs"y , (8.60) 

which cannot be simplified further for the time being. Collecting the terms (8.57-60) 
together with their appropriate permutations, we obtain the following relation 

QsKs'iGs"y + Qs^ss"iGs'y + Qs'^s's"iGs> + iGsGs'Gs"} = Css's' , ( 8 . 61 ) 
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which follows from (8.48). For the sake of completeness we now represent the results 
stemming from 

<^.^r4"4-"> = Qwwk''' , (8.62) 

but the impatient reader may immediately proceed to the final result presented in 
formula (8.83) below. 

In assigning the set of indices /c, k\ k'\ k'" we distinguish various cases. 

1. M, U\ U'\ U'" . 

We obtain 

\ M / = y-^uuuu • 

2. M, M, M, 5̂ ' for which 

C — 0 

3 . U, M, 5", S'" . 

We make the decomposition (8.36) which yields 

Wis" + g,.){r" + 3s"')> , 

and consider the individual terms for which we readily obtain 

WT'T"} = <M^>e,.-4'v" 

Wrg,...y = 0 and 

Wgs'-ds-y ^ 0 . 

4 . M, S', S", S'" . 

For symmetry reasons as mentioned above we have 

^us's"s'" ~ ^ • 

w/. l3j 0 y Ij y !J . 

(8.63) 

(8.64) 

(8.65) 

(8.66) 

(8.67) 

(8.68) 

(8.69) 

(8.70) 

(8.71) 

(8.72) 

(8.73) 

(8.74) 

Again making the appropriate decomposition, we have to consider the expression 

<(5 + g.W + gs')ir + Qs'W + Qs'")} , (8.75) 

and may then treat the individual terms. In order to evaluate the term 

(jrrr'y (8.76) 

we have to consider those combinations of the indices s which give rise to non-
vanishing mean values. These are those combinations where two pairs of indices 
coincide, i.e. we must fulfill the relations 
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s = s' s" = s'" 

s = s" s' = s'" (8.77) 

s = s'" s' = s" . 

Thus, instead of (8.76) we find the expression 

(jrrr'y = <s^><r^>4..4-v" + <s^><5'̂ >4...4v" 

+ <s^><5'̂ >4.-"4v • (8.78) 

The next term to be considered is of the type 

<js'rg,.,y=0 (8.79) 

and its permutations in which g^ replaces one of the other s-terms. A further term 
consists of 

<Js'g,.g,.,y = <s^>4s'<^s"S^s"'> 

= QsSsA9s''9s"'y , (8.80) 

where we must choose 5" = s"' in order to find a non-vanishing result. We also find 
other terms of this type by exchanging the indices. For terms of the form 

<sgs'9s"gs"'y = 0 (8.81) 

we obtain the indicated result. Finally we have the term 

<9s9s'9s"9s"'y ' (8.82) 

Collecting all the terms from (8.64-82) we obtain our final result in the form 

+ Qsl^SS'<9s"9s"'y + ^SS"<9s'9s-y + ^SS"'<9s'9s"yi 

+ Qs' [4'." < 9s9s'" y + 4's'" < 9s9s" y ] 
+ Qs"^s"s"'i9s9s'y + <9s9s'9s"9s"'y = C,s's"s- (8.83) 

which stems from (8.62) for the case in which all indices are of 5-type. Let us now 
have a look at our results in order to fix the unknown quantities which occur as 
Lagrange multipliers in the distribution function (8.34,35). We confine our analysis 
to a region not too far above threshold in which we may approximate g^ by the 
leading term, namely 

g,{u) ̂  ay . (8.84) 

We further make an explicit hypothesis about the form of the distribution function 
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of the order parameters, namely 

/(u) = JT expCaw^ - jSu )̂ (8.85) 

in accordance with our previous results from the microscopic and macroscopic 
theory. Thus, we now have the following constants to determine: a, j5, Q ,̂ a^. The 
constants a and ^ and the normahzation factor Jf are determined by means of 
(8.43,64), i.e. by the relations 

<w'> = Q , (8.86) 

<w >̂ = Q _ . (8.87) 

a^ can be determined by the relation (8.42), i.e. by 

as<w'> = C, . (8.88) 

Finally g^ is fixed by (8.47) when we choose s = s', and by the relation 

<^s'> = «s'<w^> , (8.89) 

which follows from (8.84). Thus Q̂  is determined by 

e . = = Q . - ^ ^ 9 ^ . (8.90) 

In this way we are able to fix all unknown constants and one can easily convince 
oneself that in this way we have determined the Lagrange multipHers which occur 
in (3.38) or now equivalently in the specific form (8.34,35,84,85). It should be noted 
that the system is overdetermined, i.e., there are more equations than unknowns. 
Therefore, the remaining relations which have been estabhshed above and in which 
the measured quantities C occur, are self-consistency conditions for the occurrence 
of a non-equilibrium phase transition with a single soft mode. 

It is not difficult to generalize the above results to more complicated cases, for 
instance when (8.84) also contains odd and/or higher powers of „̂ or when several 
order parameters occur. 



9. Unbiased Modeling of Stochastic Processes: How to 
Guess Path Integrals, Fokker-Planck Equations and 
Langevin-Ito Equations 

9.1 One-Dimensional State Vector 

In the previous chapters we have shown how the maximum information entropy 
principle allows us to derive the distribution functions of nonequilibrium systems 
by a suitable choice of constraints. While in these chapters we focussed our attention 
on the steady state distribution function, in the present chapter we wish to study 
time-dependent distribution functions. A suitable starting point is provided by the 
maximum calibre principle due to Jaynes, who extended his maximum entropy 
principle by maximizing an entropy-like functional over a space-time domain. 
Jaynes himself applied his principle to derive important formulas applicable to 
irreversible thermodynamics in order to study relaxation processes. 

Here we wish to show that by choosing appropriate constraints we may treat 
arbitrary physical (or other) systems close to, or far away from, equilibrium. The 
formulation of our procedure becomes particularly elegant if we assume that the 
underlying process is continuous Markovian. In such a case we find a very quick 
access to the path integrals and the Fokker-Planck equation, whose drift and 
diffusion coefficients can be determined expHcitly. Thus our method can be con­
sidered as a tool to derive the underlying deterministic and fluctuating forces from 
experimental data. 

We consider a sequence of times tQ,t^,... ,tf^eit which the system is measured, 
with measured values of the state vector qi at time t̂ . We wish to make an unbiased 
estimate on the joint distribution function 

PN = P{9N^hl9N-utN-u- I 9o,to) ' (9.1) 

To this end we maximize the information / or, in the formulation of Jaynes, the 
calibre 

i = -j^qP In P (9.2) 

with respect to P under given constraints, ^q is the integration volume element 
over the space spanned by all vectors qj. 

As is well known, in this type of problem the crucial task is the adequate choice 
of the constraints. This choice is greatly facihtated if we assume that the underlying 
process which leads to (9.1) is Markovian. Under this assumption (9.1) can be split 
into 

PN=U Pi9i^uti^i\9i,ti)'Po{qo.to) . (9.3) 
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In order to simplify the notation we shall drop the times ti so that the individual 
factors of (9.3) acquire the form 

Piqi^ilqd • (9.4) 

The expression in (9.4) is the conditional probabiUty. In the first part of this chapter 
we shall assume that we are deahng with a stationary process. 

In order to bring out the essentials we consider a single variable q instead of a 
state vector. We now introduce the constraints 

/ i = <^m>., and (9.5) 

f2 = <qhiy,, (9.6) 

which are defined by 

fk = iP{qi^i\qi)qhidq,^, . (9.7) 

In this way we are considering the first and second moment of q at time t̂ +i under 
the condition that qi was measured at time ti. Applying the maximum informa­
tion entropy principle to (9.4) with the constraints (9.5) and (9.6) we immediately 
obtain 

Piqt+iki) = exp(A + ^i^,+i + A^ f̂+i) . (9.8) 

Note that /^ and /2 are functions of qi so that 1, /ii, I2 will also become functions 
of qi, at least in general. Since we shall have the limit T -> 0 in mind, in what follows 
we write q{i + T) instead of ^(i + 1). We now impose the usual requirements on (9.8) 
namely that 

iP{qi^.\qi)dqi^, = l . (9.9) 

Furthermore we have to require 

T^O:Piq,^Mi)^Hqi^r-qi) • (9.10) 

The ^-function of the r.h.s. is to be understood in a specific manner, namely that P 
behaves similarly to a ̂ -function provided we integrate over qi+^. 

To exploit the conditions (9.9) and (9.10) further we cast the r.h.s. of (9.8) into 
the form 

exp 

Since 

(9.11) 

|exp(-|A,|q^)d^ = v W | A j (9.12) 

the normalization condition (9.9) can be written as 
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SO that P acquires the form 

Piqi+Mi) = VUzteOIMexp -\^2\(qi.r- ^' ^ ' (9.14) 
2\X2 

In order that (9.14) becomes a (5-function for T -^ 0 we must require the behavior 

| ; i 2 l = - forr-^O . (9.15) 
T 

(Another function oft which vanishes for T -> 0 would just mean another scaUng of 
time, the scaHng function being a function of time itself.) 

From (9.10) we further deduce that for T -^ 0 

L 

Z\A2\ 

or, in other words. 

For finite but small times T (9.17) clearly generalizes to 

^' =q^ + tKiqd + r'H{q,) + .... (9.18) 
2IA2 

Evidently we can state that the l.h.s. of (9.18) is required to behave as an analytic 
function of T for T small enough. With (9.14) and (9.18) we obtain the main result of 
this section, namely the conditional probabihty in the short time limit. 

Piqi^Mi) = V 'G/Mexp | - ^ [ g , + , -q,- xK{q,)A . (9.19) 

Note that G may be still a function of qi. 

9.2 Generalization to a Multidimensional State Vector 

In this section we want to make an unbiased guess of the conditional probability 
occurring in (9.3) under the assumption of a stationary continuous Markov process. 
We denote the components of the state vectors at times i + T and / by 

qS + T), q,ii) . (9.20) 
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As a generalization of the first and second moment of a single variable (9.5,6), we 
introduce the following first and second conditional moments 

fui = <^i(i + ^)>.(o (9-21) 

f2,i,k = <qi{i + ^)qk{i + )̂> (̂o • (9.22) 

Applying the maximum information entropy principle to the conditional prob-
abiUty we obtain 

P(q(i + T)k(i)) - exp L + X X^qiii + )̂ + E Ki^kii + ^Mi + )̂ (9.23) 

where the Lagrange multipliers may still be functions of q{i). In the following we 
shall assume that the problem is nondegenerate, which means that 

D e t ^ ^ / O . (9.24) 

A simple algebraic manipulation shows that (9.23) can be cast into the form 

P == exp | l + X lq,{i + T) - hJl,,lqS + T) - hj\ (9.25) 

where hi is defined by 

h,-=TA,^X„lqm • (9.26) 
m 

We denote the matrix with elements Ij^i by ^. A in (9.26) is defined by 

A = y-' . (9.27) 

Note that the matrix A is symmetric. Furthermore X occurring in (9.25) is given by 

l = A-YhAihi . (9.28) 
kl 

In generalization of condition (9.10) we require that for T ^ O P behaves as a 
^-function provided we integrate over q{i + T) 

P->^[^(i + T ) - ^ ( 0 ] . (9.29) 

The singular behavior of the ^-function is achieved by putting 

4z = --G*,[«(0] • (9.30) 
T 

Generalizing (9.18) we expand hj, into a power series in T and keep the first term 

h = q,(i) + TK,lq{i):i + .... (9.31) 
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Taking the results (9.25,28,30,31) together, we can cast the conditional probabihty 
into the form 

P = exp[I(^f)] exp j - - ^ iQuii + T) - ^^(0 - TKJJ 

X G,ilq,ii + T) - ^,(0 - TK, ] j . (9.32) 

Abbreviating the first factor in (9.32) by J^iqi) we may write the result of (9.32) also 
in the form 

P = ^(^,)exp(if,) . (9.33) 

Inserting (9.32) into (9.3), where PQ is a prescribed distribution function on which 
guesses can be made if required by prescribing a certain number of moments of ̂ o> 
we obtain our desired final result, namely the joint distribution function (9.1). 

In practical applications one is mainly interested in the conditional probability 
which is the distribution function of q at time T provided the state vector q was 
known at time T = 0. This probabihty can be obtained by integrating out over all 
^'s at intermediate times. Setting 

Nx = T (9.34) 

and identifying Ĵ ^ by means of (9.33,32) we write the desired result as 

fN-l 

J 
, i=0 

P{q{TMO)) = \^qexpl | S'A (9.35) 

where J^iqi) is contained in ^q. 
In the limit T -^ 0 the sum over i is converted into an integral and (9.35) is just 

the familiar path integral formulation of P. It is obvious from Sect. 2.5 on the path 
integral solution of the Fokker-Planck equation that (9.35) with (9.33) and (9.32) is 
the solution of a Fokker-Planck equation with drift coefficients Ki and the difTusion 
matrix given by the inverse matrix with the components G ĵ. 

Within our context it suffices to know that (9.35) is the solution of a Fokker-
Planck equation with the just mentioned drift and diffusion coefficients (compare 
Sect. 9.4). 

To conclude this section we mention that our approach can easily be extended 
to a time-dependent continuous Markov process. In such a case, in general, the 
substitutions 

KLqm-^Klq{i);tJ, (9.36) 

G « [ * ( 0 ] - G « [ # ) ; ^ ] (9.37) 

must be made. 
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9.3 Correlation Functions as Constraints 

In the preceding sections we have used conditional moments, i.e. moments of the 
variables qi^^ provided that qi has been measured. In a number of practical ap-
phcations we may not know qi but rather we may measure correlation functions of 
the type 

<«.+,«<> (9.38) 

which have to be interpreted as averages over joint distribution functions according 
to 

iQi+xQi} = U dqi+,dqiqi+,qiPiqi+,,qi) . (9.39) 

It will then be our task to make unbiased estimates of the joint distribution functions 
occurring in (9.39) instead of the conditional probabilities studied previously. To 
facihtate our task we assume that the measurements are made under steady-state 
conditions. In this case we can express the joint probability by a product of the 
conditional probabihty and the steady state probabihty distribution 

PiQi^r, qd = P{qi^Mi)Pst{qi) • (9.40) 

Because we have no precise information on q^ but only an information via correla­
tion functions we now need more constraints. The constraints we are going to use are 

<^r> , / x = l , . . . , m , (9.41) 

{qt^^qj) , v = 0 , . . . ,n , (9.42) 

<ql.q^y , K = 0,...,k (9.43) 

where the numbers m, n, and k obey certain self-consistency conditions discussed 
below and must be chosen such that a reasonable convergence of data is achieved. 
Close to nonequihbrium phase transitions we expect that n and k may be confined 
to n = /c = 3. There is a fundamental difference between the present section and the 
foregoing one. Note that now the multiphers Â  are independent of qi. Because the 
maximum information entropy principle or, more precisely speaking, the maximum 
calibre principle refers to two variables ,̂+^ and qi the maximum information 
entropy principle yields 

P, = exp(' ,̂ +|;^^,,,^A (9.44) 

while the maximum calibre principle provides us with the following expression for 
the joint probability 

Piqt+r,qd = exp[Ao + a{qi) + qt+Mqi) + qlMqi)'] . (9.45) 

Here we have used the abbreviations 



9.3 Correlation Functions as Constraints 131 

m 

«(«.) = I A{,"«f ' (9-46) 

b(«0 = t ^'"''it , (9.47) 
v=0 

Ciqd = i Alî '̂ r • (9.48) 
K = 0 

Using (9.40) we may determine the conditional probability occurring in that formula 
to be 

Piqi+Mi) = exp[i + afe) + qt^Mqi) + ^f+tCfe)] (9.49) 

with the abbreviations 

X = XQ- l,t and (9.50) 

m 

^ = « - 1 ^ . .««r . (9.51) 

In this way we have found a form for the conditional probabihty which can be put 
in direct analogy to the form (9.8). From now on we may proceed in precisely the 
same way as in Sect. 9.1 by making the following identifications. 

A(qd<>X + d{qd , (9.52) 

^dqd^biqi) , (9.53) 

^2iqi)^C(q^) . (9.54) 

Note that some self-consistency requirements with respect to the r.h.s. of (9.52-
54) must be fulfilled because X depends on 1^ and /I2 [cf. (9.13)]. This dependence 
becomes somewhat comphcated if ^2 is a function of QI because the relation (9.13) 
requires, at least in principle, infinitely high powers of ̂ ^ or, in other words, infinitely 
many moments as constraints. 

In practical cases, however, we may expect that a few moments will still be 
sufficient. On the other hand if X2 is dependent of qi, it is a polynomial of order 
m = In. It is now quite obvious how the results of this section, which refer to a single 
variable at given time, can be extended to a state vector at given time. In order to 
save space we shall not write down the corresponding results expUcitly. 

In this section we have shown how simple moments or correlation functions, 
when used as constraints, allow us to derive basic expressions of statistical physics, 
namely the joint probabilities and path integrals which in turn may be interpreted 
as solutions of an underlying Fokker-Planck equation. Thus our approach allows 
us to make guesses about underlying mechanisms of observed experimental data; 
we may determine the drift coefficients, which are the deterministic forces, and 
diffusion coefficients, which are a measure of the fluctuating forces. In practical cases 
we may not always assume that the underlying process is Markovian or continuous 
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Markovian. In such a situation, however, our approach represents a guess of 
the underlying deterministic and fluctuating forces. Clearly our approach can be 
generalized in various directions, for instance taking into account higher order 
moments or correlation functions. We may make guesses of joint distribution 
functions or conditional probabilities for longer time intervals. On the other hand 
in such cases at least the elegance of our approach may be lost. 

9.4 The Fokker-Planck Equation Belonging to the Short-Time 
Propagator 

The derivation of the Fokker-Planck equation belonging to (9.35) is a well-known 
procedure. In order to show expHcitly which type of Fokker-Planck equation (Ito 
or Stratonovich) belongs to (9.32) we briefly indicate the main steps. Since the 
Fokker-Planck equation refers to infinitesimal time steps it is sufficient to consider 
two subsequent times i and (i + T). 

The corresponding probability distribution functions are connected by 

P{qi^r) = iP(9i^r\qi)P{9t)d''qt (9.55) 

where the conditional probabihty has been given by (9.32). We wish to derive a 
differential equation for P(^f+J. To this end we multiply (9.55) by an arbitrary 
function g{qi+r) which yields 

= J d^%P(q,) J d^qnMqi.r)Piqi^.\qi) • (9.56) 
^ V ' 

Fiqi) 

To evaluate F{qi) we introduce a new variable vector 

q,^, -q,- xK{q,) = ^ which yields (9.57) 

F = \d^^J^{qdoxp(~i^^)glq, + TK{q,) + Q . (9.58) 

In order to evaluate the integral up to terms linear in T we expand g in (9.58) into 
a power series of g up to second order and into a power series in T up to first order. 
Then, using 

j ^ ( ^ , ) e x p ( - ^ - ^ J d ^ f - 1 and (9.59) 

\^{q,)cxp(^-^~^y,^,d^^ = '-(G-% (9.60) 
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and knowing that integrals over odd powers of ^ vanish we readily obtain 

Inserting (9.61) into (9.56) and performing a partial integration we obtain instead 
of(9.56) the relation 

A = \d'qig{qi)i^l - rF^M9i) + ^ J^^^LG-\q,):i,i^P{qd . (9.62) 

We now introduce the notation 

P{q,^r)^f{q;t + r) , (9.63) 

P{qc)^f{q;t) • (9.64) 

Because g, which occurs in the middle part of (9.56) and on the r.h.s. of (9.62), is an 
arbitrary function, the corresponding expressions must be equal even without 
integration. This leads us to the relation 

f{q;t + T)=fiq;t) + TLf{q;t) (9.65) 

where L is the Fokker-Planck operator 

Lf=- F,{K{q)f) +~Y^ ^^ilG-Hq)\J) (9.66) 
kl ^^ ^^ 

which occurs in the Tto calculus. We thus recognize that we have found the short-
time propagator for the Ito-Fokker-Planck equation. 

9.5 Can We Derive Newton's Law from Experimental Data? 

In this section we wish to discuss whether our procedure of Sects. 9.1,2,4 can enable 
us to derive Newton's law 

P = K(q) (9.67) 

from experimental data concerning a specific motion (e.g. of planets) and a force K 
giving rise to that motion. 

First of all, it is clear that we must consider the Hmiting case of vanishing noise, 
for which the conditional probability is a ^-function, so that in the one-dimensional 
case 

Piqt^Md = <5 f ? ^ ± l ^ ^ - K{q,) 1 (9.68) 
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or in its multidimensional generalization, 

Piq^^Mi) = ^ ( ^ ^ ^ ^ - ^ (?a ) • (9.69) 

At first sight it appears that in this way we shall not obtain Newton's law (9.67) but 
rather 

q = K{q) . (9.70) 

Such laws had indeed been used in science before the advent of Newtonian 
mechanics and represented overdamped motion. But we may easily recover New­
ton's law when we include in the set of observed variables q not only the positions 
of the particles (or celestial bodies), hut also their momenta {or velocities)! It is a simple 
exercise to check what the conditional moments (9.5,6) then look hke (when we 
assume Newtonian mechanics) and to convince oneself that now indeed (9.67) 
results. 

By a translation of our procedure into quantum mechanics one may hope to 
derive fundamental laws for elementary particles. 

Exercise: Start from Newton's law p = K{q) and evaluate (9.21,22) 

<^Z,f+r\^., , <(ll,i+ryq^,, , / = 1, 2; /c = 1, 2 

with 

for infinitesimal r. Apply the above formalism to derive (9.69)! 



10. Application to Some Physical Systems 

Today, numerous nonequilibrium phase transitions are known which occur in a 
wide variety of systems. In Sects. 5.2,3 the single mode and the multimode laser 
(without phase relations) served as an explicit illustration of our new ideas. In this 
section we shall first elaborate further on the laser, where we shall treat still more 
compHcated cases. Then we shall turn our attention to the convection instability in 
fluid dynamics. 

10.1 Multimode Lasers with Phase Relations 

We consider the ring laser in which the electric field strength E can be represented 
as 

£(x, t) = Y. Bi{t)Qxp{ikiX - icoit) + c.c. (10.1) 
I 

where / is the index of the cavity modes and Bi{t) their time-dependent amplitudes 
which have the physical dimension of electric field strength. 

We assume that the waves are propagating in one direction only and the values 
of k and co are taken from a certain interval small compared to the central wave 
number /CQ and the central frequency COQ, respectively 

ki e kQ ± Ak , COIE CDQ ± Aoj . (10.2) 

We now consider spatial and temporal averages of E and its powers where the 
temporal average is defined as in Chap. 5. We readily obtain 

£ = 0 , (10.3) 

Eiix, t)Eyix, t) = ISiyBiB* (10,4) 

EiEyEi. = 0 . (10.5) 

By performing the integration over plane waves and using /:-selection rules we 
readily obtain the result 

EiEyEi.Ei,. = CY, S{±ki±ki,±ki.±kr,)Bi^BitB^^Bit . (10.6) 
± 

where B^ = J5* and B~ = B. 
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The following identifications can now be made (cf. Sect. 3.3): 

index i ofpr i = iB,,B*,B2,B*,..., B^^B*) , (10.7) 

constraints:/, = <A*B^> , (10.8) 

fi,r,rj- = iBrBfB,,By.yd{k, 4- k, - k,, - k,.,) . (10.9) 

Application of the maximum information entropy principle yields the final result 

P{B, 5*) = exp - A - X X^B^Bi 

- Z K,,r,r>BrB?BrB,.S{k, + k, - k,, - V ) l • 
ll'V'V" J 

(10.10) 

This result has previously been derived from a microscopic theory for the case where 
the principle of detailed balance holds. 

10.2 The Single-Mode Laser Including Polarization and Inversion 

We treat here a single-mode laser for which the polarization and inversion of the 
atomic system are included as dynamic variables. For simpUcity we shall consider 
travelling waves. We then have the following variables 

E{x, t) = B{t) exp(i/cx - icot) + c.c. field, (10.11) 

P{x,t) = P(t)Qxp(ikx — icot) + c.c. polarization, (10.12) 

D(x, t) slowly varying inversion, (10.13) 

where B(t), P(t) and D are slowly varying functions of time. When we perform spatial 
averages we readily obtain 

£ = p = 0 , D = 0 , (10.14) 

E*E = IB^'B, E*E*EE = 4B*B*BB , (10.15) 

|P(x,Or = 2P*{t)P{t), P*E = 2P*{t)B{t) . (10.16) 

In extension of our previous approach, we shall keep all non-vanishing terms up to 
fourth order. The distribution function will then acquire the form 

P = exp(>l + / i i |£p + ••• + yl27Z)̂ ) . (10.17) 

Unfortunately there is no microscopic theory in which a distribution function for 
the present problem can be calculated exactly. Therefore let us again make the 
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adiabatic approximation, where, however, we shall keep the distribution functions 
for P and D explicitly. We again start from the laser equations (cf. Sect. 7.11) 

E= -KE-\-gP-{-F , (10.18) 

p = -yp + gED + r , (10.19) 

D = 7|,(i)o -D)- g{EP* + E*P) + Fj, . (10.20) 

When we invoke the adiabatic approximation 

P = D^O (10.21) 

where we include the fluctuating forces F, F and Fj) we obtain from (10.19) the 
relation 

F=yP- gED . (10.22) 

But because we know that the fluctuating force F has a Gaussian distribution, we 
find that the expression 

yP - gED (10.23) 

has the same distribution function. Similarly we find from (10.20) a distribution 
function for the difference of the first two brackets on the r.h.s. of that equation. 
Finally, eUminating P and D adiabatically close to threshold, we obtain instead of 
(10.18) 

E = -KE ^ GE - CE\E\^ + Ft̂ t , (10.24) 

where G and C are constants. 
Equation (10.24) can easily be transformed into a Fokker-Planck equation and, 

as we have seen before, this equation can readily be solved in the steady state. The 
total distribution function for JE, P and D is then the product of the distribution 
functions belonging to E, P, D, and it reads 

/ = e^exp(a|£p-fo|£|^) 

x e x p { - ( l ^ ^ - ^ ^ ^ ^ l ^ ) - ( ^ ^ ^ ^ ^ * + ^ ^ ^ ) r ^ " ^ ^ - ^ » ) ^ ^ ) } . (10.25) 

When we compare this distribution function (10.25) with the guessed function (10.17) 
we find that a number of the Lagrange parameters X vanish identically as is exhibited 
in Table 10.1. Whether this vanishing of the >l's is a consequence of our adiabatic 
elimination procedure or whether it holds even in the case of the general equations 
(10.18-20) remains at present an open question. 
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Table 10.1. Vanishing (/) and nonvanishing (x ) Lagrange parameters 
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10.3 Fluid Dynamics: The Convection Instability 

We begin by briefly reminding the reader of the convection instability. Let us 
consider a fluid in a rectangular vessel which is heated from below. If the temperature 
difference between the lower and the upper surface of the fluid is small, heat is 
transported by heat conduction and no macroscopic motion is visible. If however, 
the temperature difference exceeds a critical value, a macroscopic motion in the 
form of a roll pattern sets in. It is characterized by a vertical velocity field with a 
wavelength X which equals twice the diameter of a roll. Because this sinusoidal 
variation of the vertical velocity field represents the evolving pattern, it is tempting 
to introduce the ampHtude of the corresponding sine-wave (or plane wave) as order 
parameter. Using its moments up to fourth order and observing that for symmetry 
reasons the odd moments must vanish, we almost immediately obtain the distribu­
tion function 

m = Ncxp{Xe-Pi' (10.26) 

which indeed agrees with the one found from the microscopic theory. 
If we assume that the first four spatial correlation functions of the velocity field 

are measured, we may apply the method of Chap. 6 to determine the joint distribu­
tion function P(^„,^s) in the form 

p=Mump(UL). (10.27) 

But since this approach is rather lengthy, and does not give us any new insights, we 
shaU not pursue this pioblem any further. 

We consider instead another phenomenon in which, for instance in a circular 
vessel, and for certain fluids, hexagons may be formed. These can be interpreted as 
superpositions of plane waves ^̂  exp[i k • x] whose wave vectors form an equilateral 
triangle. Therefore we shall use the complex amplitudes of these plane waves as 
order parameters, ^, and distinguish them by the indices 0,7r/3, In/S according to 
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their orientation in the plane parallel to the surface of the fluid. By arguments 
analogous to the selection rules derived above (Sect. 10.1) for the multimode laser, 
we may show that a number of moments vanish. As a consequence, only certain 
moments and their Lagrange multipliers appear. These non-vanishing moments are 
the following 

<I^0P> , <l^./3l'> , <I^2./3P> , (10.28) 

iio^n/s^in/s} ^^^ cyclic permutations, and finally 

< I ^ / I 4 P > , with7,/c = a n y o f O , | , y . (10.29) 

It is then obvious how to construct the distribution function - which is again in 
agreement with the microscopic theory. 



11. Transitions Between Behavioral Patterns in Biology. 
An Example: Hand Movements 

In this chapter we want to show how the methods developed in the previous 
chapters can be apphed to biological systems. Here it will become particularly clear 
how powerful our approach can be for the modehng of the behavior of complex 
systems. 

11.1 Some Experimental Facts 

While researching into the voluntary oscillatory motions of the two index fingers, 
Kelso observed an interesting phenomenon. Under instructions to increase the 
frequency of out-of-phase, antisymmetric motion (involving simultaneous flexor 
and extensor muscle activities), the subject's finger movements shifted abruptly to 
an in-phase symmetric mode that involved simultaneous activation of homologous 
muscle groups (Figs. 11.1,2). This finding was not restricted to finger movements. In 
later work employing similar experimental manipulations, modal transitions in 
hand motions around the wrist were also observed: the antisymmetric phase rela­
tionship between the hands was replaced by symmetric phasing. Moreover, al­
though the phase transition occurred at very different frequencies of hand motion 
for different subjects, it was nevertheless predictable. When the transition frequency 
was expressed in units of preferred frequency, i.e., an independent measure of the 
rate at which each subject was content to cycle the hands "as if he or she were going 
to do it all day", the resulting dimensionless ratio or "critical value" was constant 
for all subjects. Introducing a frictional resistance to movement systematically 
changed both the preferred and the transition frequencies for each subject, but did 
not change the critical value across all subjects. 

The most dramatic aspect of these simple experiments is the sudden and com­
pletely involuntary change in the ordering or phasing among muscle groups that 
occurs at a critical, intrinsically defined frequency. In this respect, the hand move­
ment data share a likeness to gait transitions in locomotion. For example Shik et 
al. showed that a steady increase in electrical stimulation to the midbrain region of 
the decerebrate cat is sufficient not only to induce an increase in locomotion rate, 
but, above a certain value of current, gait shifts as well. As in the hand experiments 
in which "flipping" from one mode to another occasionally occurred at higher 
movement frequencies, the latter experiments also showed the presence of unstable 
regions in which the cat shifted from trotting to galloping and back again. Though 
the hand data as well as these findings on quadruped gait strongly suggest that 
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Fig. 11.1. The involuntary change of the parallel motion of fingers (l.h.s.) to an antiparallel symmetric 
motion (r.h.s.) 

A. TIME SERIES 
l i l i l i l i l i l ; l i l i l i l i l i l i l i i : i ; l : l i i : i : l ; l : l i ini H H I l l l l l i n i l t i i i l h l l i i 
IWWWIMMI 
B. POINT ESTIMATE OF RELATIVE PHASE 

Fig. 11.2. Top: Displacements over time of left {solid line) and right {dashed line) hands. The subject 
is simply increasing cycling frequency in an antisymmetric mode in response to a verbal cue from the 
experimenter. Bottom: Phase relationship between the two hands. The peaks of one hand movement act 
as a "target" file and their phase position is calculated continuously relative to the peak-to-peak period 
of the other "reference" file. The graphic display repeats the phase curve so that phase lags and leads 
can be noted 

changes in coordination may be ordered by changes in a single parameter, the neural 
processes underlying such motoric phase transitions are still poorly understood. 

To summarize, the main features of the experiments described briefly above are: 
(i) the presence of only two stable phase (or "attractor") states between the hands 
(which one is observed is a function of how the system is prepared, i.e., an instruction 
to move the hands in the out-of-phase or in-phase mode); (ii) the abrupt transition 
from one attractor state to the other at a critical cycling frequency; (iii) beyond the 
transition, only one mode (symmetric in-phase) is observed; and (iv) when the 
cycHng frequency is reduced, the system stays in the symmetric mode, i.e., it does 
not return to its initially prepared state - a result that suggests coexistence of the 
basins of attraction for the symmetric and antisymmetric modes and the depletion 
of one of them. 

11.2 How to Model the Transition 

Let us now try to model these findings by means of the methods introduced above. 
Let us denote the displacement of the two fingertips by q^ and ^2 ^s shown in 
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Fig. 11.1. Then we put 

q^ = r^cosicot -h ^ J (11-1) 

^2 = r2COs{(ot + ^2) » (11-2) 

where r̂  and r2 are the ampHtudes which according to the experimental findings 
can be considered as independent of time but which depend on the frequency co 
prescribed for the finger movement. The phases ^^ and ^2 ^^y t>e slowly varying 
functions of time. 

In the following we shall put 

/•i = r 2 = r . (11.3) 

In order to apply our general approach we consider q^ and ^2 ^s the observed 
quantities whose moments can be determined, for instance 

<qjy or iqjq^y . (11.4) 

In accordance with our previous approach we shall consider moments up to the 
fourth order. In analogy to the laser we are not interested in the relatively fast 
oscillation but rather in the slowly varying phases ^i and ^2- We first consider the 
time average as defined by 

1 ^ 
<qj>t = ,i;\ qjdt , (11.5) 

^ 0 

where the time T is given by 
2n 

T = — . (11.6) 
(O 

Because we assume in accordance with the experiments that <f>i and ^2 ^^^ slowly 
varying functions of time we may use 

1 ^ 
— [ cos{cot H- (/>j)dt = 0 (11.7) 

or, when the cosine function is decomposed into exponential functions, equivalently 

1 ^ 
— f Qxp{i(ot + i^j)dt = 0 . (11.8) 

0 

On account of (11.8) we may even require 

1 ^ 
-jexp[in(cof + ^,.)]^t = 0 , (11.9) 

0 

where n is an integer. From (11.7) we obtain 
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1 ^ 
- \ qjdt = 0 . (11.10) 

^ 0 

Let us now consider the second moments 

1 ^ 
7̂  I* mudt , (11.11) 
^ 0 

where we shall use the decomposition 

qj = ^{exp[i((ot + (/>j)2 + cxpl-i{cot + ^,.)]} . (11.12) 

Let us discuss the various terms which we obtain when we insert (11.12) into (11.11). 
The term 

1 ^ 
- f exp(2ia)t + i(f>j + i^k)dt = 0 (11.13) 

0 

evidently vanishes because of (11.9). On the other hand in 

1 ^ 
- j exp[i(^,. - ^,)] dt = exp[i(^, - 4 ) ] (11.14) 

the rapidly oscillating parts are no longer present and therefore we may replace the 
left-hand side by the right-hand side. Taking the results (11.13) and (11.14) together, 
we obtain 

1 r r^ 
^ J aj^k^t = y cos(̂ .̂ - 4 ) . (11.15) 

Let us now distinguish two cases. 

a) ; = k. Because of (11.15) we readily obtain a time independent constant. 

(11.15) = const. . (11.16) 

Since this term no longer contains any variables, we may ignore it in the following 
considerations. 

b) j ^ k. The result (11.15) suggests that we introduce the abbreviation 

^ 2 - ^ 1 = ^ (11.17) 

so that we may write 

(11.15) = - c o s ^ . (11.18) 

Let us now consider the moments of third order: 
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1 ^ 
(11.19) 

We have immediately written down the result as it turns out that in (11.19) on the 
left-hand side only expressions of the form 

exp(ia)t) , exp(3icf;t) (11.20) 

or their complex conjugates occur which according to (11.9) will give rise to 
vanishing contributions. Therefore let us finally consider the moments of fourth 
order 

1 ^ 
dt 

Inserting (11.12) into (11.21) we readily obtain expressions containing 

exp(4i(wO , exp(2icot) 

(11.21) 

(11.22) 

or their complex conjugates. When averaged over a time interval T these expressions 
will vanish. But finally we obtain expressions in which the rapidly oscillating terms 
no longer appear so that we are only concerned with expressions of the form 

exp[i(4 + 4 - 4 - ^ J ] (11.23) 

or expressions which are obtained by any permutation of the indices j ^ . . . j ^ . 

Table 11.1. Combinations of the / s and the resulting 
exponents 

h 

1 
2 
1 
1 
2 
2 

1 
1 
2 
1 

2 
1 
2 
2 

1 
2 

J2 

1 
2 
2 
2 
1 
1 

1 
1 
1 
2 

1 
2 
2 
2 

1 
2 

A 

1 
2 
1 
2 
2 
1 

2 
1 
2 
2 

1 
1 
1 
2 

2 
1 

k 

1 
2 
2 
1 
1 
2 

1 
2 
2 
2 

1 
1 
2 
1 

2 
1 

Exponent 

0 
0 
0 
0 
0 
0 

^ 1 - ^ 2 ' 

^1 - ^ 2 

<̂ 1̂ - ^ 2 

^ 1 - ^ 2 , 

<̂ 2 - ^1 ~ 

^ 2 - < ^ 1 

^ 2 - ^ 1 

^ 2 - ^ I J 

. = - ^ 

. = ^ 

2 ( < ^ i - ^ 2 ) = - 2 ^ 
2(^2-^i) = 2^ 
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Let us now study which kind of expressions we shall obtain when we assign the 
values 1 or 2 to the indicies J i . . . J4. This is shown in Table 11.1. 

Using the results of this table we may write 

< îî j2 ĵ3 ĵ4X = Q + C2Cos^ + C^cos{2(f>) . (11.24) 

Here the coefficients C^, C2 and C3 are proportional to r"̂ . Since Q no longer 
contains any variables of the system, this term is uninteresting. The second term is 
already taken care of by the second-order moments and can be subtracted from 
(11.24). Therefore the only relevant constraint is contained in the last term of (11.24). 
Collecting our results we may formulate the following constraints which follow from 
the second- and fourth-order moments 

r2<cos^>=/ i 

r\cos(2^)y = f2 

(11.25) 

(11.26) 

It is now a simple task to apply the maximum information entropy principle and 
to obtain the distribution function P in the form 

P{<p) = exp[ —>! — l i cos^ — /i2Cos(2^)] (11.27) 

Note that the Lagrange multipHers A, 1^ and I2 will be functions of co, not only 
because of the factors r^ and r"^ in front of (11.25,6) but also because the average 
values indicated by the brackets depend on co as exhibited by the experiments. The 
exponent appearing in (11.27) can be represented by a potential function 

V((/>) = /ii cos ̂  H- ^2 cos(2^) . (11.28) 

This potential function determines the stable and unstable states of the system. It is 
plotted for various ratios of/l^ and X2 in Fig.11.3. Quite evidently in the upper left 

^y \ -" V 
V 

/ 
/ 

\J 

1.000 

V'* Tr 

Fig. 11.3. The potential V for the varying values of A2/>ii. The numbers refer to the ratio A2/A1 
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corner there is a local minimum which corresponds to the parallel movement of the 
fingers. But when the parameter ^2/^^! decreases this minimum becomes flatter and 
flatter and eventuaUy disappears so that the ball which represents the state of the 
system will fall down to the lower minimum which now represents the antiparallel 
(or in other words symmetric) motion of the two fingers. So our result can easily 
model the transition of the fingers which we described above. The only assumption 
is that the ratio of /I2M1 depends on the driving frequency co. But our model can 
also do much more. Let us consider a situation where the driving frequency is 
so high that only the state with the symmetric motion of the fingers is realized. 
Then when we lower the frequency we easily deduce from Fig. 11.3 that the ball, 
i.e. the system, wiU now remain in the state with ^ = 0. That means the test 
persons are expected to continue moving their fingers in a symmetric fashion even 
below the critical frequencies. This prediction was tested by Kelso and found to be 
realized. 

In order to describe time-dependent processes in which ^ varies we now try to 
guess the Fokker-Planck equation which belongs to the distribution function 
(11.27). As we have seen in Sect. 6.6 this guessing is not unique because the noise 
source may depend on the variables. But let us make the simplest assumption, 
namely that the noise is independent of </>. In such a case we may immediately 
identify (11.27) with 

P{(^) = jrQ-'^ (11.29) 

where we use the abbreviation 

f = ^V (11.30) 

and where Q is the strength of the noise source. According to the microscopic theory 
presented in Chap. 2, the Fokker-Planck equation reads 

Pi</>,t) = - ^ [ K W P ] +w^P ' (11-31) 

where we have used the abbreviation 

dV 
m)=-—. (11.32) 

As we have seen in that chapter, the Fokker-Planck equation (11.31) belongs to the 
Langevin equation 

^ = K{(I>) + F{t) , (11.33) 

where by means of (11.27,28,30,32,33) we may write down the right-hand side 
expHcitly 

^ = fl sin ̂  + Z? sin(2^) + F{t) (11.34) 
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where a = QX-^/2 and h = QX2. This equation imphes new predictions about the 
behavior of the finger movement: We may now solve (11.34) and thereby calculate 
correlation functions for ^ at various times. In other words we may now study 
transient phenomena from the theoretical point of view and compare them with the 
experimental findings. 

11.3 Critical Fluctuations 

Let us now start with equation (11.34) as our model equation. It contains three 
parameters, a, b, and, impHcitly, the strength of the fluctuating force F{t) which we 
shall write in the form ^ / g f where ^ has the following properties: 

< O = 0 , (11.35) 

iUt'y = ^{t-t') . (11.36) 

Let us first study the fluctuations of the phase in the symmetric mode. Since in this 
case the system is close to ^ = 0 we may hnearize the Langevin equation (11.34) 
or equivalently the Fokker-Planck equation (11.31). The Langevin equation for 
example, acquires the form 

^ = _ ( 4 ^ + a)^ + y e ^ ^ . (11.37) 

It is not difficult to solve the linearized Fokker-Planck equation and then to 
calculate the mean value of the absolute phase 

<l«^l>sta.= f ^<^l<»IA.a.W = ^ 'r'^^^ff? (11-38) 
J^ ^ndQn{nd] 

where Pstat(^) is the time-independent probability distribution of ^, and the mean 
square deviation 

2d^ dQri{nd] '•\ut - <I<^I>L. = ^ - ^ , „ ! ; , , , ' - <\<f>\yLt • (11-39) 

Quite evidently the results (11.38) and (11.39) depend on a single parameter d which 
is given by 

Our results will allow us to compare the experimental findings on the phase 
fluctuations with our model. We first refer the reader to Fig. 11.4 which represents 
the experimental results. 

In Fig. 11.5 we have plotted (11.38) and (11.39) versus d as solid lines, with the 
experimental values, which may be derived from Fig. 11.4, shown as dashed lines. 
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In this way we can fix d. From the experimental value 

<|^|>;^8° , we find 

3 < ^ < 5 . 

From 

(T.t.f ^ 4.5° we obtain 

(11.41) 

(11.42) 

(11.43) 

d^3 . (11.44) 

Quite evidently both experimental results can be matched by the assumption that 

d^4. (HAS) 

The relaxation time of the system around ^ = 0 can easily be obtained by solving 
the Hnearized Langevin equation in the deterministic case, i.e. without fluctuating 
forces. We readily obtain 

^(r) = ^(0)exp[-(4foH-a)t] (11.46) 
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The inverse of the factor multiplying t in the exponent defines the relaxation time 
so that we obtain by means of (11.40) 

4b -^ a d^Q 

This relaxation time occurs in a wide variety of different relaxation and reaction 
phenomena, for instance when we have to lift our foot from the gas-pedal when the 
traffic-lights turn red. A rough estimate of trei is 0.25 s. From this value and the 
value ^ ;^ 4 we readily obtain by means of (11.47) 

e - 0 . 2 5 Hz . (11.48) 

The same result can be obtained from a theory which takes into account fluctuations 
and studies the correlation function of (j) at two different times. Let us now do the 
same for the antisymmetric mode in which case ^ is centered around + TT or — TT so 
that we may introduce the small quantity e which is defined by 

^^U-n for 0 < ^ < . 
[(̂  + 7r for - 7 r < ^ < 0 . 

Using e and keeping only linear terms in the Langevin equation (11.37) we im­
mediately obtain 

e = _(4fe_a)£ + yQ^^ . (11.50) 

The corresponding Hnearized Fokker-Planck equation is easily obtained. Its sta­
tionary solution reads 

fita.(e)= /-^^, , e-/^-^ , (11.51) 
yjn erf{7r/j 

where we have introduced the parameter 

Using the same definition as before for the mean value of the phase and for the 
standard deviation, and using (11.51) we readily obtain 

<l<*l>stat = n- <|£|X., = TT - ^ '^'^^'fi''^ (11.53) 
^nferi{nf} 

ffstal = <<l>^\x^t - i\<l>V>Li = <e^>stat - < |e |>s ta t 

1 v^exp( - ; r^ /^ ) , (11-54) 

2p /erf{7t/} ^'"^^'^' • 
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The values of (11.53) and (11.54) are plotted versus the parameter / in Fig.11.6 
According to Fig. 11.4 we may read off the mean value of ^ and the standard 
deviation for each value off. Introducing such pairs of values into Fig.11.6 we may 
readily find the corresponding / . The relaxation time is now given in analogy to 
(11.47) by 

1 1 
'^rel — 

4b PQ 
(11.55) 

Again adopting the value T̂ ei « 0.25 s and using a value of / in the range of 1-4 
according to the experimental data, we obtain Q in the range of 0.25-4 which agrees 
in order of magnitude with the previous result on the symmetric mode. From 
(11.40,52) we have the relations 

4fc + a = Qrf̂  4fo - a = Qf^io) (11.56) 

Since / is now known as a function of the oscillation frequency m of the fingers, we 
may deduce the frequency dependence of a and b from (11.56): 

«(/) = 
Qd^ Q 

Pico) (11.57) 

M/) = ^ 4 / » (11.58) 

The corresponding results are plotted in Fig. 11.7. Taking the value of the frequency 
at which the transition occurs and the corresponding value of/we find the following 
results: for ^ :^ 4, Q = 0.25 Hz it follows a^ = 4bc and thus we have the approximate 
values 

a, = 2.0 Hz 

b, = 0.5 Hz . 

(11.59) 

(11.60) 
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Fig. 11.7. The model parameters / , a and b as a 
function of the experimental control parameter 

ransi ion frequency F = co as detennined from the data on 
mean and SD and an estimate of relaxation time 

2.25 F[Hzl 

To summarize we may state that it has been possible to fix the parameters in a 
reasonable fashion and that we are able in each case to match four experimentally 
determined values, namely the mean absolute phases and the standard deviations 
of the symmetric and the antisymmetric modes, by means of three model parame­
ters. Of course the model can still be improved but I beheve it shows in a convincing 
manner that our approach is capable of modehng the behavior of a complex system. 

11.4 Some Conclusions 

i) Motor-Program Versus Self-Organization 

In biology, in order to explain the high coordination between muscles, the idea of 
a "motor-program" has quite often been proposed. According to this idea the 
neurons act more or less like a computer in which a specific program is stored and 
which, after having been invoked once, starts to steer individual motions. But in 
such a case it is hard to understand why fluctuations should occur at all. After all, 
a motor-program is a fixed program which does not allow any fluctuations. On the 
other hand, critical fluctuations are quite typical for nonequilibrium phase transi­
tions which occur when self-organization happens. For this reason we believe that 
the fluctuations, found in these experiments, strongly support the idea that muscles 
and neurons form a self-organizing system, perhaps in analogy to the laser which 
may also show transitions between different kinds of behavior upon the change of 
a single control parameter. The experiments do not allow us to tell whether self-
organisation occurs in the total system of neurons and muscles or merely in the 
neuronal subsystem. 

ii) Information Compression 

The high coordination of muscles and neurons is manifest in the occurrence of 
specific kinds of macroscopic motion which, in the case dealt with above, can be 
described by a single order parameter. Connected with the occurrence of this single 
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order parameter is a very small amount of information in comparison to the 
information necessary to describe the individual states of all the neurons and 
muscles. 

iii) Morphogenesis of Behavior 

As we know from numerous examples in physics and chemistry, self-organizing 
systems may produce specific temporal patterns. Here we see that a biological 
system may produce a certain behavioral pattern e.g. a specific kind of motion of 
fingers. We have seen that the maximum information entropy principle allows us 
to find the adequate order parameter and, furthermore, even its corresponding 
equation. It may be hoped that more complex behavioral patterns can also be 
described by a small number of order parameters. 



12. Pattern Recognition. Unbiased Guesses of Processes: 
Explicit Determination of Lagrange Multipliers 

In this chapter we first wish to show how my general approach allows us to deal 
with central problems in pattern recognition. In Sect. 12.1 we will rederive relations 
allowing feature selection that will be explained below. In Sect. 12.2 we present the 
basic scheme for the construction of a parallel computer for pattern recognition. The 
subsequent sections, 12.3 and 12.4, show how such a system can learn patterns to 
be recognized. Finally, Sects. 12.5-12.11 extend these results to the learning of pro­
cesses. Section 12.1 is a bit formal so that readers who are only interested in the 
most important topics of this chapter need to read this section only as far as equa­
tion (12.1) and may then proceed to the subsequent sections. 

12.1 Feature Selection 

Since we will not assume that the reader is familiar with the problem of pattern 
recognition we start with a brief survey. In this section we shall confine our attention 
to digital pattern recognition. In this approach a pattern is decomposed into so-
called features. Consider as an example letters and let us consider a particularly 
simple case, namely that we have only two letters X and 0 (Figs. 12.1,2). Then 
we may attribute to the bracket which is open to the left the number 0 and to 
the bracket which is open to the right the number 1. Using this coding we can 
attribute the combination (0,1) to the letter X and the combination (1,0) to the 
letter O. 

More generally speaking, we may decompose a pattern into features and attribute 
to each feature a component QJ. In this way the total pattern is described by a pattern 
vector q = (^i,^2j--?<?n) (Fig.12.3). Of course, a vector can be represented by its 
end points in a multi-dimensional space. In this way we attribute a vector or 
correspondingly a point to each pattern. The components of the vector q need not 
only acquire the values 0 or 1, but they can also be continuous. For instance when 
we decompose a pattern into individual cells and attribute an intensity qj to each 
point;. So at this stage we may say that the recognition of patterns is performed in 
two steps. Once the features have been selected, we must attribute the vector q to 
the features by specific measurements. Then we have to look within the feature space 
to estabhsh to which pattern this vector q belongs. 

In practice, there are some difficulties, however. First of all, features can be 
selected in various manners. Therefore, one is confronted with the problem of 
selecting features in an adequate fashion. Here, adequate means that the feature 
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^ Fig. 12.1. Example of a decomposition of the 
letters X and O into features to which numbers 
0 or 1 are attributed 
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Fig. 12.2. The feature space belonging to the symbols of Fig. 12.1. Here the point (1,0) corresponds to 
the letter 0, whereas the point (0,1) corresponds to the letter X 

space should not be too large but that the patterns can nonetheless be clearly 
distinguished. Small dimension means that not so much information must be 
processed. A further difficulty Kes in the measurement itself, or in the patterns, 
because measurements may introduce random noise or patterns may fluctuate 
internally. Thus it turns out that we are not dealing with deterministic vectors, q, 
but rather with vectors having components which are random variables with 
a certain probabiHty distribution function. 

In the following we shall be concerned with two problems: 

1) How can we determine this probability distribution function from experiments? 
2) How can we extract features in such a manner that the information to be 

processed becomes a minimum? 

In order to derive the probability distribution function P(^), we invoke the 
maximum information principle. Namely, we assume that we have made measure­
ments on the correlation functions 

<^i^i> = Gy (12.1) 

over the ensemble of patterns we wish to classify or to study. Without loss of 
generality we may assume that the average <(̂ > vanishes: 

p a t t e r n 2 

p a t t e r n 1 Fig. 12.3. Visualization of a general feature space. The end 
points of the vectors indicate a prototype pattern, whereas the 
surrounding of them represents patterns which deviate sHghtly 
from the prototype pattern and can then be recognized as the 
specific patterns 
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<^> = 0 . (12.2) 

Otherwise we may always introduce new pattern vectors by simply subtracting the 
non-vanishing average value from these vectors. The application of the maximum 
information entropy principle immediately yields 

P{q) = NQxp(-q^Mq) , (12.3) 

where we have used (12.1,2) as constraints. The Lagrange multipliers can be 
arranged within a matrix M which is related to the correlation matrix Q via 

M = Q-' , (12.4) 

where Q is defined by (12.1). 
We now transform (12.3) in much the same way as we did before in Sect. 6.3 

where we wanted to derive the pattern associated with the modes close to a non-
equilibrium phase transition. We first seek the eigenvectors Uj and the eigenvalues Xj 
belonging to the equation 

Quj = XjUj . (12.5) 

These eigenvectors diagonalize the matrix Q. We wish to show that these eigenvectors 
also diagonahze the matrix M. For this purpose we form the matrix U consisting 
of the eigenvectors Uj according to 

{u,U2...u^)=U , (12.6) 

where the matrix elements of U are now given by 

u,j = U,j . (12.7) 

The index k distinguishes the individual components of each vector, whereas the 
index7 distinguishes the different eigenvectors. Using U we may write the individual 
equations (12.5) as a single matrix equation of the form 

QU =UA , (12.8) 

where A has components 

A,j = XjSj, . (12.9) 

The matrix equation (12.8) reads in components 

Za*[/y = I"«^« = V» • (12.10) 
k I 

In the following we shall assume that Q is non-singular as is already impHed in 
(12.4). We now multiply (12.8) from the left by Q~^ so that we obtain 

U = Q-^UA . (12.11) 
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Multiplying this equation by A~^ from the right we obtain 

UA-^ = Q-^U . (12.12) 

As a result of (12.4) we may rewrite this equation in the form 

MU=UA , (12.13) 

where we have used the abbreviation 

A = A-'' . (12.14) 

Because Q is a symmetric matrix we know that 

V'U = 1 (12.15) 

where U^ is the transpose of U, We now expand the general vector q into the 
eigenvectors qj. This decomposition may be written in the general form 

q^U^ (12.16) 

or more exphcitly in the form 

q = Y.ij'*j (12.17) 
j 

Note that the vector ^ is a random variable whereas the eigenvectors Uj are deter­
ministic. Consequently, the vector ^ which appears in (12.16) or (12.17) must have 
components which are random variables. We now wish to transform the exponent 
occuring in (12.3), i.e. 

q'^Mq (12.18) 

to the new variable ^. To this end, we introduce the transposed vector belonging to 
(12.17), namely 

q^^^^U"". (12.19) 

In this way we obtain 

q^Mq^^V^MU^ . (12.20) 

Making use of (12.13,14), we transform (12.20) into 

MU^i^V^UA-'^ , (12.21) 

which because of (12.15,14) can be simplified to yield 

q^Mq = ^'^Ai . (12.22) 

As is well known from the transformation of probabiUty distribution functions, 
we have not only to transform the exponent of the probabiUty distribution function 
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but also the volume element. This transformation is given by the Jacobian which 
in our case turns out to be 

Det (7 = 1 (12.23) 

so that this transformation leaves the volume elements unchanged. In this way 
we obtain our new probabihty distribution function: Instead of (12.3) we now have 

P(^) = ^ e x p ( - r J ^ ) . (12.24) 

Making use of the fact that ^ i s a diagonal matrix, we may write (12.24) in the form 

P(^) = ^ e x p ( - X ^ , ^ n . (12.25) 

The right-hand side may now be written as a product 

P{4) = Umj)^ (12.26) 
j 

where each factor is given by 

Pji^j)^J^j^xpi-Xjif) (12.27) 

and the normalization constant ^ is chosen in such a way that Pj is normalized to 
unity. The specific form (12.26), together with (12.27), yields the following correlation 
function 

<< ,̂̂ ,> = lj5j, , (12.28) 

i.e. the correlation matrix has now become diagonal. We further note that the 
smallest Ij corresponds to the biggest Ij. 

Let us now examine what we have achieved by the transformation from ^ to ^ 
in terms of the information. The information is given quite generally by 

/ = - J ^ ^ P ( ^ ) l n P ( ^ ) , (12.29) 

which can be transformed using the above procedure into the form 

i = -j^^(JP(^)lnP((?) . (12.30) 

Using the specific form (12.25) we may rewrite (12.30) as a sum over individual 
contributions 

i=-^\d^jPjmnP,(^,) (12.31) 
3 

or in an abbreviated form 

i = Y^ij. (12.32) 
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Making use of (12.27), we can immediately calculate the information and obtain 

i.= -^InXj-^^lnn + i (12.33) 

in terms of the eigenvalues Ij. Since Ij = 1/Xj, we may rewrite the information ij as 

ij = ^\nXj-h^lnn + i . (12.34) 

By means of (12.33,34) we recognize that the largest contribution to the information 
is that belonging to the largest Xj and the total information appears as a sum of 
uncorrelated information contributions. Let us now discuss what these results mean 
for pattern recognition. 

We started from specifically selected features to which we attributed a vector q. 
By means of specific linear combinations in the form (12.17) we now make a different 
selection of features. Or in other words we extract now a new type of features. But 
these new features have the very pleasant property that the information becomes 
a sum over individual contributions (12.34). At this stage we may make contact with 
methods used in digital pattern recognition. The expansion (12.17) with the «'s 
chosen as in (12.5) is called the Karhunen-Loeve expansion. In that context the 
quantity i is called the population entropy. Our results may now be interpreted in 
the following manner: The Karhunen-Loeve expansion provides us with a method 
for decomposing the pattern into uncorrelated components (features). In this way 
a reduction of the number of components or features is achieved, as we shall discuss 
below. The coordinate system Uj belonging to the Karhunen-Loeve (K-L) expansion 
is deterministic. The components or more precisely speaking thp coefficients contain 
all the information needed for the reconstruction of the pattern. The coefficients 
with largest Xj contain most of the information about the pattern vector q. 

Thus, in order to recognize a pattern we need only consider the coefficients with 
the largest eigenvalues, while a coefficient with a small variance (identical to the 
eigenvalue) convey a negligible amount of information. In other words we may say 
that the transformation of q into the K-L coordinate system yields an information 
compression. Once we have determined the K-L coordinate system, it is identical 
for all patterns we wish to put into classes, where patterns belonging to the same 
class are considered to be equivalent (identical). 

In this way all the discriminatory information must be carried by the coefficients 
^j of the expansion because most of the information is compressed into a small 
number of these coefficients ^. The problem is less complex computationally when 
we carry out the subsequent decision making in a lower dimensional feature space. 
The use of the information has another very nice feature. The greater the dispersion 
of the eigenvalues Xj the smaller is the corresponding population entropy i and 
the greater the information compression. Conversely when we have uniformly 
distributed A's we have a great uncertainty, a large entropy and the observation of 
one coefficient ^ reduces the uncertainty or the entropy only httle. 

It is interesting to interpret this procedure from the point of view of non-
equilibrium phase transitions. When a system is first in the disordered state and 
approaches the transition point, the fluctuations of the order parameters grow 
and become particularly large compared to all the other modes. RecaUing this 
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interpretation we may say that the ĉ /s with the largest variance or, correspondingly, 
with the largest values Xj correspond to the order parameters which determine the 
pattern. In this region the probability distribution function is well characterized by 
its moments up to second order in accordance with the above treatment of this 
section. The next section will be devoted to pattern recognition "above the transition 
point" (to use the interpretation of pattern recognition as a nonequihbrium phase 
transition). 

12.2 An Algorithm for Pattern Recognition 

As explained in Sect. 12.1, we describe a pattern by an iV-dimensional vector, q, 
whose individual components represent features encoded by numbers. We assume 
that a number M of prototype patterns are given and represented by the state 
vectors 

vf\ 
(12.35) 

where k runs from 1 to M. Depending on their number, these vectors span the feature 
space fully or in part. In the latter case additional, "idle" vectors must be introduced. 
The patterns (12.35) are stored in the computer in a way we shall describe below. 
When a pattern to be recognized by the computer is offered, it may not exactly 
coincide with one of the vectors (12.35) because of noise, incomplete data (lack of 
some features), etc., but it may be close to one of the prototype patterns, i.e. close 
to one of the axes of the feature space. Now our basic idea is this: Let us describe 
the offered pattern by a vector ^(0) where the argument 0 refers to the initial time 
t = 0 of the pattern recognition process. Then we devise equations for a time-
dependent vector q(t) so that it develops from its initial state ^(0) into a final state qf 
that agrees with one of the prototype vectors v^^\ The equations will be constructed 
in such a way that this specific vector v^^^ is precisely the one, to which ^(0) comes 
closest, i.e. for which {v^''^^• q{0))/i\v^''^\\q{0)\) (12.35) had the smallest value. We 
assume 

This procedure has two pleasant consequences. (1) Even if an initial pattern is 
incomplete, it will be completed, i.e. our system acts as "associative memory". 
For instance in a telephone directory, the name (corresponding to ^(0)) will be 
complemented by the telephone number, where name + number correspond to 
a specific v^^\ (2) If we store faces + names as prototype patterns v^^^ and offer only 
a face (^(0)), the system will drive q{t) into face + name. When we read off the name, 
the face has been recognized (by the machine). 
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Our equations by which all this is achieved read 

^ = -g r ad^F + F(0 . (12.36) 

In it the potential function V is given by 

V{q) =Vo+V, + V2 where (12.37) 

k 

(12.39) V,-

^kk' 

V2-

= I 
kjtk' 

> 0 

= Cq^ 

C^Av^'^^qriv'"''^ 

and (12.40) 

(12.41) 

VQ serves to pull q into the subspace spanned by the prototype patterns. In the 
parlance of nonequihbrium phase transitions, this is simply the order parameter 
space. Fi serves for the discrimination of ^-vectors within that subspace. This can 
be easily seen from the property that the minimum of V^ is adopted according to 

l̂ i,min = 0 for^||r<^o) (12.42) 

i.e. when the state vector q becomes parallel to one of the prototype vectors and 
thus the initial state vector ^(0) is identified with such a prototype pattern. V2 
provides for saturation, i.e. 1 |̂ is eventually pulled into a fixed point attract or on 
the v^''^^ axis. The constant /I in (12.38) plays the role of a control parameter. A < 0 
determines the region below "threshold", whereas 1 > 0 determines the region 
above "threshold". In this section we assume /I > 0. 

In order that q is more easily pushed into one of the prototype vectors, we have 
added a fluctuating force Fin (12.36). As usual we assume that the fluctuating forces 
have the properties 

<F(t)y = 0 , (12.43) 

<F,{t)Fj(ny = QS,jS{t - n . (12.44) 

Our approach has been tested by computer calculations for the recognition of faces 
and excellent results were obtained. Here, however, we shall be concerned with the 
fundamental aspects. Namely, while in our above equations we had to implement 
the prototype vectors in the equations, we wish to show how a computer can 
learn the prototype patterns. As vehicle for this we employ an analogy between 
pattern recognition as described by the above equations and nonequihbrium phase 
transitions. 

We proceed by transforming the Langevin-type equations (12.36) into the Fokker-
Planck equation 
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The stationary solution can be found explicitly and reads [cf. (2.44)] 

f = Ncxp(-^] (12.46) 

which means that the stationary solution is explicitly given by the potential function 
V (12.37) and the size of the fluctuations Q. The maxima of f{q) correspond to 
the minima of V{q). A simple analysis shows that the minima of V{q) are precisely 
at the positions q = v^^\ i.e. at the prototype patterns. While this holds for >! > 0, 
for /I < 0 the minimum Hes at g = 0, i.e. even if initially patterns are presented to 
the system, they will decay. 

12.3 The Basic Construction Principle of a Synergetic Computer 

Let us assume that a system can receive a set of data that are described by a state 
vector q. We further assume that the detecting system is composed of elements 7, 
where element 7 measures the component q^ (feature) of ^. In the following we shall 
study what properties these elements and their connections must have in order to 
perform pattern recognition. If there is a stationary process the incoming signals 
will obey a probability distribution f{q). In the spirit of much teaching in schools 
we shall assume that some specific patterns are offered again and again so that 
the maxima of 

f{q) = max! (12.47) 

correspond to these patterns. 
How can a system determine f(q) from measurements? To this end we assume 

that the system can measure moments 

<(id. iQi^j}. iqiqjQk}, <QiqjqkQi> • (12.48) 

In order to guess f{q) from given moments we employ the maximum information 
entropy principle and discuss the minimum order of moments necessary to arrive 
at a sensitive guess of/. If we employ only linear moments, then according to the 
maximum information entropy principle / must be of the form f{q) = N exp( — Iq) 
where /i is real. Quite evidently f{q) cannot be normaHzed in the space of q if the q 
variables run from minus infinity to plus infinity, so this approach is not possible. 
When we employ moments up to second order, the general form of the distribution 
function will be 

f(q) = iVexp(a(y + qoc - qBq) . (12.49) 

Introducing the new variable ^ via 
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^ = ^ + 5-^a , (12.50) 

(12.49) can be cast into the form 

f(0 = N'cxp{-m) . (12.51) 

Because B must be a positive definite matrix, the maximum of (12.51) can be 
acquired for one single value of ^ only, namely ^ = 0. 

By using (12.50) we realize that there is only one maximum, i.e. only one pattern 
which is in practically all cases in contradiction to the set of patterns actually 
offered. This leads us to consider moments up to fourth order. For the sake of 
simplicity we shall assume that the moments of odd order vanish. The distribution 
function then acquires the form 

f{q) = iVeXpf - X ^ijqiQj - Z ^UmnQi^jarnQn ) (12.52) 

according to the maximum information entropy principle. We now wish to show 
how we can construct a network which reproduces (12.52). For this we assume that 
(12.52) is the result of a continuous stationary Markov process that is described by 
the Fokker-Planck equation (12.45) where, in our present case, F is a still unknown 
potential function. To make contact between (12.52) and the desired quantities 
V and Q in (12.45) we abbreviate the bracket in (12.52) by 

( . . . )= -F(^,A) (12.53) 

and require that the stochastic forces Fj of the Langevin equation belonging to 
(12.45) obey the relations (12.43,44). We further set 

^ IV 
F = — . (12.54) 

The Langevin equation belonging to the Fokker-Planck equation (12.45) has 
the same general form as (12.36), namely 

* , - - ^ + i^W . (12.55) 

However, Fis now determined by (12.53,54), i.e. by means of measurements. Thus 
we obtain 

- ^ = Qi > ^ij(lj + 2 > Xij^„qjqmq„ ^ • (12.56) 

We now observe that (12.55) with (12.56) has a form similar to that of the network we 
introduced in the previous section, or in other words we are capable of constructing 
a network that reproduces the distribution function f{q), provided that this function 
is known by its second and fourth order moments. The only function the network 
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must perform is to transfer the value of a quantity qj of the element j , multiplied 
by a "synaptic strength" lij to the element i [first term in (12.56)], or to transfer 
the value q^q^n from elements j , m, n, multiplied by Xi^^^ to the element i [second 
term in (12.56)]. Then in the corresponding element i a summation is performed. 

There is a further quite general and important conclusion: If the network can 
measure only a specific set of correlation functions (12.48) (or higher order), we need 
only include the corresponding terms in (12.56). Because of the attractor states of 
the potential dynamics, any initial state will be pulled into any of the local minima 
of V{q) that are located at the points of the prototype patterns. If the initial state 
is close enough to one of these minima, that minimum will be realized and in this 
way an initially incomplete pattern will be completed, i.e. the whole formalism acts 
as "associative memory" and thus as a pattern recognizer. 

12.4 Learning by Means of the Information Gain 

In this section we will show how the system can learn the strengths of /L̂y and X^j^^. 
Let us identify the given distribution function of the incoming patterns by f{q) 
and the distribution function generated by the system by f{q). Let us introduce 
information gain (KuUback information) as a measure of the distance between these 
two distribution functions 

X = |7ln('4)d^>0 (12.57) 

where we have to observe the constraints 

Ifd'^q = 1 (12.58) 

Ifd'^q = 1 . (12.59) 

Because / is a fixed quantity and (12.57) can be written in the form 

K = j / l n / r f ^ g - j f In fd^q (12.60) 

it will suffice to maximize the expression 

jf\nfd''q = max! (12.61) 

To be specific, let us assume / to have the form 

7 = expT-I - X W^)] (12.62) 

where Vj may contain polynomials in q up to an order to be fixed by us. Xj are 
parameters which can be varied. The left-hand side of (12.61) (multiplied by —1) 
can be cast into the form 
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W = -lf\nfd\ = I + j / I I,V;.(«r)d''̂  . (12.63) 
J 

We now assume that the ly are subject to an evolutionary strategy, e.g. the network 
may undergo fluctuations of its connectivities. A particularly elegant evolution 
strategy is that involving gradients of some potential function. We consider (12.63) 
as a potential function to be minimized in which we express I by means of 

I = In J expT-i: I,T^(^)j^^^ . (12.64) 

The gradient strategy now amounts to subjecting the Lagrange parameters ly to 
the equation 

dW 
h=-y-^' (12.65) 

In order to evaluate the right-hand side we insert (12.64) into (12.63) and form 
the derivative 

dW \cxp\-Y^XjVj(q)[d''q[ ^Vjiq) 

xexpJ -Y^XjVj{q)[d''q + \mVj{q)d''q . (12.66) 

A simple consideration shows that the expression in the square bracket of (12.66) 
can be interpreted as the average value: 

[ ] = <Vj(q)yf (12.67) 

whereas the last expression in (12.66) is the average value 

iVjiq)}, . (12.68) 

Equation (12.65) can thus be written in the very concise form 

^i = ? « ^ > / - < W (12.69) 

where the first expression on the right-hand side is Vj averaged over the distribution 
function / , whereas the second part is the same function but averaged over the 
distribution function prescribed by the outer world. By comparing these two values 
the system can adjust its connections I correspondingly and thus learn its task. 
Equation (12.69) is the basis of a machine built by Sejnowski et al. and called the 
Boltzmann machine. These authors used correlation functions ^̂ -̂ ^ where the ^'s 
can acquire only two values, +1 in the sense of a "spin-glass" model. 
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12.5 Processes and Associative Action 

In the previous sections I have shown how a physical system can learn patterns of 
signals and reproduce their probability distribution. In the following I wish to show 
how a system can learn to reproduce or to recognize processes. While in the 
preceding sections we did not prescribe the path along which the system reaches 
the final attractor states corresponding to the originally offered patterns, we now 
wish to show that the system can even learn to reproduce a specific path. To this 
end we make a basic assumption, namely that the processes which the system has 
to learn are Markovian. We assume that the process is stationary and continuous. 
A Markovian process is characterized by the conditional probabilities 

Piqi^ilqi) , (12.70) 

which represent the probability of finding the system at a position qi^^ at time 
tj+i = tf + T provided the system was at time ti at the position qi. We denote the 
components of the state vectors at times t.+i and ti by 

Qiii + T) , q,(i) . (12.71) 

We introduce the following first and second conditional moments 

fui = <q,{i + T)>,(O (12.72) 

f2.i.k = <qiii + ^hkii + T)>,(O . (12.73) 

We now use some results of Chap. 9. The application of the maximum information 
entropy principle to the conditional probabiUty allows us to obtain 

P(qii + t)\q{i)) = exp - A - X ^,q,{i + )̂ - I ^kiqkii + ^)qiii + ^ (12. 74) 

where the Lagrange multipliers may still be functions of q{i). [Note the change of 
signs as compared with (9.23)]. We introduce the column vector 

(12.75) A = 
r'\ h\ 

vJ 
and the matrix 

^ = (A«) 

and define a new vector h by 

h = AA-^X. 

(12.76) 

(12.77) 
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We further define the quantities Ĝ^ and X^ by 

hi = -Guiiq{i)) , (12.78) 

T 

and for T -^ 0 

h = q,ii) + rK,(qii)) , (12.79) 

respectively. Then according to Sect. 9.2 the Fokker-Planck equation reads 

f = Lf (12.80) 

where the Hnear operator L is defined by 

Lf=- V,(K(q)f) + ^ ^ - ^ {{G-\q)\J} . (12.81) 
kl ^^ ^^ 

This Fokker-Planck equation refers to the Ito-calculus from which we can easily 
construct the Ito-Langevin equation (see below). In contrast to the results of 
Sects. 12.3 and 12.4, the fluctuating forces will become at least in general q dependent. 
But otherwise the analogy with the results of Sect. 12.3 is entirely retained and thus 
we may construct our physical system. If we have a physical system in which only 
a finite number of links are established, we may proceed in analogy to Sect. 9.3. 
Since in the case of several variables, qi, this procedure is not trivial we shall 
describe it. In a number of practical applications we may not know qi but rather 
we may measure correlation functions of a type to be discussed next. We assume 
that the measurements are made under steady state conditions. In this case we can 
express the joint probability by a product of the conditional probability and the 
steady-state probability distribution 

Piqt^r.qi) = P{qi^Mi)P.Mi) • (12.82) 

In order to define moments or other correlation functions we shall introduce 
the functions ^(^i) which may be assumed e.g. in the form 

mqd ^ Uj^i = citU^h ''' ^N% /ii + /i2 + • • • + /x^ = i? . (12.83) 

Note that the index i refers to the time index whereas the other indices 1,2,... refer 
to components of a vector. We then introduce the following constraints 

<Ul\'> (12.84) 

(qkj^rUL^}} , / c = l , . . . , i V , m = l , 2 , . . . and (12.85) 

{qk,i+rqi,i^rU^^]) /:=1,...,A^, /=!,...,7V, n = l , 2 , . . . . (12.86) 

For a more detailed discussion of these constraints we refer the reader to Sects. 9.7-
9.11. 
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Using our previous results we may immediately determine the steady state distri­
bution in the form 

Pj9i) = exp (̂  - A, - X A,,,. U}}^ . (12.87) 

We now make use of a generalization of the maximum information entropy principle 
to the space-time domain, i.e. we may now subject a multi-time joint probability 
to this principle. For our present approach it is sufficient to consider the two-time 
joint probabihty, which, from the maximum information entropy principle, acquires 
the form 

P(qi^r.9i) = exp[-Ao + Aiqd + B{q,)q,^, + qi^,Ciq,)q,^J , (12.88) 

where we have used the following abbreviations 

A{q,)=-Y^ipUj'\q,) , (12.89) 
J 

BM)=-lA'2u!„'\9i) , (12.90) 
m 

Cu=-lKinUi'\qd, (12.91) 
n 

where the i's are the Lagrange multipliers. 

Using (12.82,87,88) we readily obtain (12.70) in the form 

Pi^i+rl^i) = e x p [ - ^ + Aiq,) + Biq,)q,^, + ^,+,C(i2r,)^,+J (12.92) 

where we have used the abbreviations 

X = lo-1,, and (12.93) 

A=A+Y.ks^^^''(qi) . (12.94) 
j 

A comparison of the result (12.92) with (12.74) reveals that we may now make 
the following identifications between the previous Lagrange parameters and those 
which appear now, namely 

liqd^X-Aiqd (12.95) 

^ii9i)-^-B,iqd and (12.96) 

h,i9i)^-C,,iqd . (12.97) 

In this way we may again derive an tto-Fokker-Planck equation. 
If we use the constraints in the form of the functions (12.83) we have polynomials 

in the drift and diffusion coefficients. Because of the formal analogy between 
two-time probabihty distribution functions and the stationary distribution function 
we may transcribe the leaming procedure of Sect. 12.4 to our present case (cf. 
Sects. 12.6-12.11). 
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We now derive the Ito-equation [of. (2.12)] belonging to the Fokker-Planck 
equation. The Ito-equation reads 

dqM = KMit)) dt + Y. Oimiqit)) dwM (12.98) 
m 

where the stochastic process is defined by [cf. (2.13,14)] 

<dw„> = 0 and (12.99) 

idwJt)dw,(t)y = S^^dt . (12.100) 

The diffusion coefficients of the Fokker-Planck equation (12.80,81), {G~^)ki, are 
connected with the functions ^̂ ^ by the following formula [cf. (2.27)]: 

UG-\t = l^g,„9„n. (12.101) 
m 

We introduce the matrices G and g by means of 

(Gui) = G; {g,J = g (12.102) 

so that (12.101) can be written in the form 

G-' = gg , (12.103) 

where ^ means the transposed matrix. For the solution of (12.101) it will be sufficient 
to assume that ^ is a square matrix and also that g and G~^ are symmetric. 
Equation (12.103) then acquires the form 

G~' = g^ . (12.104) 

The solution matrix g can be easily determined by assuming that G, which is positive 
definite, can be diagonalized by means of the orthogonal matrix U. We introduce 
the diagonal matrix D with matrix elements Di and have 

D = UG-'U = {UgUf where (12.105) 

UiJ = 1 (12.106) 

holds. We then immediately find 

{VgV)u = \iV^i (12.107) 

from which we may calculate g immediately. 
We have shown how a physical system that reproduces a Markov process can 

be constructed. It is to be expected that such a system cannot only reproduce the 
Markov process under initial conditions which are completely determined, but in 
the sense of associative memory may restore incomplete or partly incorrect data to 
complete sets. In this way we may expect that the system runs through a self-
correcting trajectory. This behavior may be called associative action. 
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12.6 Explicit Determination of the Lagrange Multipliers of the 
Conditional Probability. General Approach for Discrete 
and Continuous Processes 

A major task in the application of the maximum information (entropy) principle 
consists in the explicit calculation of the Lagrange multipliers: At first sight it might 
seem that in the preceding sections we have accomplished that task by deriving, for 
instance, the Ito-Fokker-Planck equation. But when we scrutinize our approach 
more closely, we shall observe the following: We employed only a few general 
properties the Lagrange multipliers must have, namely their functional dependence 
on the time-interval T in the limit r —> 0. But so far the question remained open as 
to how we can determine the functional dependences of these multipliers or, equiva-
lently, of the drift coefficients Ki and of the diffusion coefficients ( G ^ / ) on q{i) ex-
plicidy, based on the experimentally available data. 

In this and the following sections I want to demonstrate how these multipliers 
that occur in the conditional probability can be calculated. As it will turn out, this 
can be done if the variables are measured at a discrete time-interval T ("strobo-
scopic" measurements) or at practically continuous time-intervals, where we may as­
sume T —> 0. In the first case, the conditional probability (12.74) can then be used 
to calculate the probability distribution P{t) for arbitrary later times t = nz and arbi­
trary initial conditions by means of path integrals (9.35), provided we may assume 
that the underlying stochastic process is stationary. If the measurements are such 
that we can extrapolate to r —> 0, we may even derive the Fokker-Planck or Ito-Lan-
gevin equation with explicitly determined drift and diffusion coefficients. If not 
otherwise stated, we assume stationarity also in this case. 

We assume that the (unknown) conditional probability P{q{i + r) | q{i)) is ex­
perimentally, but impHcitly given by (12.72), (12.73). We wish to approximate P by 
(12.74), where the Lagrange multipliers Â  and Xke are unknown, and are, in gener­
al, functions of q{i), i.e. X^ = X^{q{i)),Xu = hi(q{i))- We note that A in (12.74) is 
fixed by the normalization condition 

/ • 
d^qii + x)P{q{i + T) I q{i)) = 1, (12.108) 

so that 

N{q{i))-'=^xv[X{qm (12.109) 

jdfq{i + T) exp • Y^ Xeqeii + ^) - X^ heqkii + '^)qe{i + T) 

We define the Kullback information by 

K= / p i n f | j d V ^ - h T ) > 0 , (12.110) 
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where we integrate only over q{i + r), but not over q{i) so that K is still a function 
of q{i). In addition to (12.108) we assume 

jf^, 'q{i + T) = l. (12.111) 

Instead of minimizing (12.110), it is sufficient to minimize 

W=- /pinPd^^(/ + T), (12.112) 

which due to (12.74) and (12.111) acquires the form 

•̂  V ^ k£ I 

(12.113) 

We invoke a gradient dynamics (cf. (12.65)) and obtain, in analogy to (12.69), 

k = li({qi{i + T))^^^(,) - (^,(/ + T))P;^(J, (12.114) 

A)t̂  =-7H((<?Jt(̂  + T)^^(/ + T))p̂ (̂̂ ) - (̂ /t(? + T)̂ K '̂ + ^)>p>(o)- (12.115) 

Because of the use of conditional probabilities P,P, the brackets on the r.h.s. of 
(12.114), (12.115) are functions of q(i) and so are h,lu in (12.114), (12.115). 
While the first term on the r.h.s. of each equation is considered as experimentally 
given, the second term is a function of the Lagrange parameters. We shall show 
how we can express these brackets by means of /l^, Xu- To this end we recall the de­
finitions of (12.72), (12.73), or equivalently (9.21), (9.22) by means of a generaUza-
tion of (9.5)-(9.7) to the multi-dimensional case. Using the explicit form of P 
(12.74), we thus have 

where [...] = ->l - ^ kqe{i + ^) - X^ heqk{i + 'c)qe{i + T) [12.116) 

which in analogy to the transition from (9.23) to (9.25) can be cast into the form 

{qt{i + )̂>P,̂ (o = j ^""qii + ^)qt{i + )̂ exp[..], (12.117) 

where now 
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exp[..J = exp -X - "^{qkii + T) - h)he{qe{i + T) - he) (12.118) 

(Note the change of sign of the 2's). While k is again determined by the normaliza­
tion condition (12.108), the vector 

'h\ 
h = (12.119) 

.hM/ 

is connected with the vector 

/ ^ i \ 

(12.120) 

y^N/ 

by means of 

2 

where J is a matrix defined by 

^ = (AH). 

(12.121) 

(12.122) 

These simple algebraic relations can be directly checked by inserting (12.121) into 
(12.118) and absorbing a resulting constant term (i.e. independent of q{i -f- T)) in L 

In order to evaluate (12.117) with (12.118), we make the substitution 

(12.123) q{i + r) = 

which yields 

{qe{i + T)) 

^ + h 

P.q{i) = 

5 

-he fd' "iexpl 

+ Jd''^^cxp 

-i-

-I 

-^A^ 

-4^^] (12.124) 

where the first integral is equal to one because of normalization and the second 
vanishes for symmetry reasons so that 

In a similar fashion, we obtain (cf. (9.60)) 

(12.125) 
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{qk{i + r)qS + T))P,,(,.) = - {A-^)^^+hkh, (12.126) 

or because of (12.125) 

{qk{i + r)qe{i + ^))i',,(,) - (?*(« + ^))p,,(o(^<(' + '^))PA({. I) 
1 

= -^{^-\, (12.127). 

Now we are able to write down our first important result: The equations for the La­
grange multipliers read explicitly 

h = ~le[{q^{i + r))p,qii)-he). (12.128) 

where hi can be expressed by the I's via (12.121), (12.122), and 

he = -lu ({qkii + T)qiii -f T))P^^(,) - hhe - i (^-^)^J • (12.129) 

Since we are interested in the values of h^ke at the minimum of their potential 
function, we put Â  = Xk£ = 0. Using a vector notation, we obtain 

{qii + ^))p,,ii)-h^O, (12.130) 

and, replacing the h's in (12.129) by means of the components of (12.130), 

{qk{i + x)qt{i + ^))p,q[t) - {qk{i + ^))p,q(i){qe{i + ^))p,q(i) 

-\{^-X=^- (12.131) 

Using an obvious matrix notation with Q= (Qke), we can write (12.131) in the 
form 

Q-^J-'=0. (12.132) 

Since the brackets are experimentally given quantities, we can easily first solve 
equation (12.131), (12.132) for J by matrix inversion and then the equation 
(12.130) by means of (12.121). Thus we are able of determining the Lagrange mul­
tipliers. It is illuminating to check what the equations (12.130) and (12.131) mean 
for the drift and diffusion coefficients of, e.g., the Fokker-Planck equation. To this 
end, we recall the relationships (9.31) between the drift coefficients Kk[q{i)] and hk, i.e. 

hk:=qk{i)+zKk[q{i)], (12.133) 

and the diffusion matrix D = {Du) (cf. also (9.30), (9,66)) 



12.6 Explicit Determination of the Lagrange Multipliers of the Conditional Probability 173 

D{qii})=\G-'=j-^J-\ (12.134) 

Using (12.130), we obtain, in the limit T —> 0, 

1 
KkMi))] = - {{qk{i + T))P,,(,-) - qk{i)) 

= i ( (^ , ( i + T)-^,(0));.,,(,), (12.135) 

which coincides with the conventional definition of the drift coefficients of the Fok-
ker-Planck equation. Let us consider 

- {qk{i + T))P,,(/)(^K^* + ^)W-)}- (12.136) 

This expression is formally different from 

-{{qk{i-^T)-qk{i)){qi{i + T)-q^{i)))p^^^^, (12.137) 

which in the limit r -^ 0 conventionally serves as the definition of the difiusion 
coefficients 

DH = lim(12.137). (12.138) 

Therefore we shall denote (12.136) as generaHzed diffusion coefficients. We note, 
however, that in the Hmit T -^ 0 the expression (12.136) reduces to (12.138). To this 
end, we again recall (12.130) and (12.133). Taking the difference between (12.136) 
and (12.137) and inserting (12.130), (12.133), we readily obtain zK^Kk, which in 
the limit r -^ 0 vanishes. (The interested reader can easily verify this by using pa­
per and pencil.) Thus our optimization approach leads us to the conventional defini­
tions of the drift and diffusion coefficients via the quantities appearing on the r.h.s. 
of (12.135) and (12.136) (or (12.137)). 

On the other hand, we must note that there is still a gap between theory and 
practical applications. Theory requires that the quantities in (12.135) and (12.137) 
are known for the continuum of ij-values, and precisely. In practice, neither require­
ment is fulfilled: the experimental data are finite and they are of limited precision. 
In a number of cases it may also happen that the measured range of g-values is lim­
ited and that we must extrapolate to a wider range. Furthermore quite often we do 
not want just a numerical list of the functions K and Dki, but explicit functions in 
the sense of data-compression by means of algorithms, or to get a deeper insight 
into the nature of the process. For all these purposes we must make an unbiased 
guess on the stochastic process underlying the available observed data. We shall do 
this in the next sections (Sects. 12.7-12.9). 
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A comment regarding the limit T -^ 0 is in order at this moment. In the case of 
a continuous Markov process, i.e. with T —> 0, the process is fully determined by 
the drift and diffusion coefficients, i.e. in the frame of our present approach by the 
constraints (12.72) and (12.73) (see above). Thus in the Hmit T —> 0 and if all re­
quired data in g-space are available, our procedure is exact. In practice, however, T 
is always a finite quantity. In this case we can consider our procedure as an un­
biased guess under the knowledge of the constraints (12.72), (12.73). In this way, 
we give approaches that directly start from the definition of the drift and diffusion 
coefficients a deeper foundation. In addition, in the case of finite r, we may im­
prove our guess, or check its vaHdity by including constraints containing higher mo­
ments (or cumulants) of q{i -h T). For example, in the case of a single variable, such 
constraints read {q{i + "^Y)q(i)- To give the reader a feeling of what the conditional 
probability then looks like, at least formally in the frame of the present approach, 
we quote the result of the one-dimensional case 

P{q{i + T) I q{i)) = exp 
M 

^ ^ ( ^ ( / ) ) ^ ( ? H - T ) ' 
u=0 

The Lagrange multipliers ^u{q{i)) can be determined in a way analogous to 
Sects. 12.6-12.9. A further discussion of this approach, however, is beyond the 
scope of this book. 

12.7 Approximation and Smoothing Schemes. 
Additive Noise 

For reasons that will become obvious later, we start from the Kullback information 
for joint probabilities. To distinguish between conditional probabilities and joint 
probabilities, we add an index j to the latter. 

Pjiqii + ^),qii)) (12.139) 

refers to the experimentally observed process, whereas 

Pjiqii + ^lq{i)) (12.140) 

refers to the joint probability by which we want to model the observed process. The 
integration in the Kullback information now refers both to q{i -f r) and q{i). As in 
Sect. 12.6 it suffices to minimize 

W=- j JPM + A ?(0) lnP>(g(/ + T), q{i))d%{i + ̂ ) A(0- (12.141) 

We shall use the relationship between joint, conditional, and possibly stationary 
probability distributions, namely 
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Pj{q{i + T), q{i)) = P{q{i + r) | q{i))Ps,{q{i)), (12.142) 

Pjiqii + Aqii)) =Hq{i + ^) I q{i))Ps,{q{i)). (12.143) 

As we shall see below, the explicit form of P^t is not needed, whereas our results de­
pend on Psf This distribution function depends on the past history of the system in­
cluding its initial condition and on the kind of measurements, for instance on a single 
system or on an ensemble. In the ideal case, if the measurements are made after a 
sufficiently long transit time, Pst may be identified with the steady state distribution, 
but this requirement is not needed for the following analysis. We shall discuss the 
practical determination of P̂ ^ after (12.178). Inserting (12.142) into (12.141) yields 

W=Wc + Wst, (12.144) 

where 

W, = - f fpjlnP{q{i + T) I ^(/ + T))d^^(/ + T)d^^(0, (12.145) 

Wst = - j jPj\nPst{q{i))d''q{i + T)d^q{i). (12.146) 

Since, for instance, for the derivation of drift and diffusion coefficients we need 
only the conditional probability, we focus our attention on (12.145). We make again 
the hypothesis (12.74) for P{q{i + T) | q{i)), but make a special hypothesis for 
h{^{i)) in the form 

A (̂q(0) = E41'f^i'H9(0), (12.147) 
m 

where UJ^\q{i)) are appropriately chosen functions, e.g. in the form (12.83). Be­
cause of (12.74), we may decompose Wc (12.145) 

W,=J+Wc, (12.148) 

where 

I = J JPM(i + ^)' q{miqii))d''q{i + r)d''q{i) (12.149) 

and 

Wo= [ jPM{i+^)^qi.^){Y.^flu'iKq{i))q,{i + T) 
•^ •' em 

+ Yl ^«^*(' + )̂̂ (̂'' + )̂}<l'̂ (̂'' + ^)d^?(0- (12.150) 
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Because of (12.109) and (12.147), X{q{i)) in (12.149) reads 

X{q{i)) ^ In { / d^( / + T) exp [ - ; ^ 4>i'Hg(0)^K^- + ^) 
-^ em 

M 

Equation (12.149) can be further simplified. By means of (12.143) we transform it into 

I = f jP{q{i + T) I q^M^Kld^^^lii + ̂ )d''9(0, (12.152) 

which because of the normalization of P{q{i + r) | q{i)) reduces to 

^ = I PsMmiqii))d''qii), (12.153) 

where (12.151) must be inserted. 
We now apply a gradient strategy to determine the parameters A Ĵ that actually 

play the role of Lagrange multipliers belonging to the constraints (12.85). The sole 
constraints we employ with respect to Xki are (12.86) with /7̂ ^̂  = 1. 

We form (putting the usual constants 7 = 1 ) 

According to the decomposition (12.148), we consider the individual terms, where­
by we use for (12.147) the abbreviation 

Xe=f,(q{i),x2). (12.155) 

We first obtain from (12.150) 

- | ^ = - / fPj{qii + T),q(i)){[dfe/dXfJ:)qeii + r)}d''q{i+T)d''qi{), 

(12.156) 

or, in short, 

- S - -(̂ H '̂ + )̂̂ /V 4̂̂ )̂p.' (12.157) 

where (...)p refers to the joint probability (12.139). The negative derivatives of 2, 
(12.153) with (12.151), can be evaluated in an obvious way, which yields consecu­
tively 
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X exp ' Y^feqeii + '̂ ) - X^ kiqk{i + 'c)qe{i + r) }A(0 (12.158) 

= jPs.{q{i))^Jd\{i + T) {df,/dXf])q,{i + T) ex^\..]A%{i), (12.159) 

where the curly bracket coincides with that of (12.158). The integral over q{i + T) 
divided by the curly bracket can be abbreviated by 

so that we finally obtain 

dx 
j PsM{i))df,/dX^^{q,{i + T))^,^(,)d^(0. 

(12.160) 

(12.161) 

We now add the contributions (12.161) and (12.157). In order to obtain a result as 
symmetric as possible with respect to P and P, we rewrite the r.h.s. of (12.157) 
using (12.143). Our final result then can be written in the rather concise form 

X \^{q^{i + T))^^^(.) - {q^{i + ^))p,g(/)}-

The derivation of equations for Xu is even simpler and yields 

hi = / Pst{q{i))[{qk{i + T)qe{i + T))^^^^.) 

(12.162) 

(12.163) 

Now we have to evaluate the brackets (..•)P^^(A that occur in (12.162) and (12.163), 
where we may use the results of Sect. 12.6, (12.125), (12.126). We thus obtain 

and because of (12.121) 

(12.164) 

(12.164) = - i ( J - U ) , . - l ( ^ 5 : ( j - 0 , , A , | (12.165) 
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In the following, we shall express /l^ =/^/ by means of (12.147). Because of 
(12.133), we can express (12.164) by means of the drift coefficients K^ 

he-qe(i)=TKe{q{i)). (12.166) 

Having this relation in mind, we subtract and add q£{i) in the curly bracket of 
(12.162). Furthermore, at the minimum of Wc we may assume X\Jl = 0. Then, after 
performing the steps described after (12.164), we derive from (12.162) the follow­
ing equation 

/ • •d^(OP.(q(o)t/£^(g(0){-5E(^'0«'E4?>Fi'(«(0)-?Ko} 

= I d''qii)Ps,{qim'^iqif}){Mi + ^))pMi) ' ^^O}- (12.167) 

In order to simplify this equation, we introduce the abbreviation 

/ ' 
d''qii)PAq{miq(i)) = {U)p„ (12.168) 

and use the relation 

j d\{i)P,,{q{i))U{q{i)){q,{i + T))^_,(,) = {q,{i + r)[/(^(0)p.,,(,.), (12.169) 

which results from (12.146) and the definition of the brackets. When we further as­
sume that A~^ is independent of q(i) (see below the discussion following (12.175)), 
we can cast (12.167) into the concise form 

m' 

= {{qe{i + r) - ?KO)f/£'(q(0)>P,,(0- (12-170) 

2 . 

— 1 (2) 

If A is known, (12.170) provides us with as many linear equations for 1\,^, as 
there are these unknowns. In view of (12.166) these equations must be solved in the 
limit r —̂  0 after dividing both sides by r. Equation (12.170) contains averages over 
Pst according to the abbreviation (12.168). Thus we may concentrate the evaluation 
of the drift coefficients (or equivalently l^'s (12.147)) on those ^-regions that are 
most important for the process under study. In order to achieve such a result, we 
used the joint probabilities in the Kullback information at the beginning of this sec­
tion. 

We are left with the further treatment of (12.163). We first recapitulate the re­
sult (12.127) and insert it on the r.h.s. of (12.163). Again we put Xk^ = 0. We thus 
obtain: 
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- {qdi + ^))p,,(t){qi{i + ^))PM0 -\(^~')H}- (12.171) 

In this equation, there are two sets of unknowns, namely A~^ and {qk{i-\-'^))p^q{j[)' 
We may assume that by means of the solution of (12.170) we have already deter­
mined {qk{i -h '̂ ))p,q(/)» which means we may put 

{qk{i + T))^^^(,) = {qk{i + T))P^^(,), (12.172) 

where the r.h.s. is experimentally given. When we further assume that A~^ is inde­
pendent of q{i), we may transform (12.171) into 

11 {A-')^= 1 { j d^qmM^) [{qdi + r)q,{i + T))̂ ,̂ (,) 

- {qk{i + r))p^qii){qi{i + ^)>p,̂ (o}^ (12-173) 

where we have divided both sides by | to secure that both sides do not vanish (at 
least in general) in the limit T ^^ 0. 

Let us write (12.173) as 

-^^{^-X=QH, (12.174) 

where Qki is an abbreviation for the r.h.s. of (12.173). Obviously the determination of 
J amounts to an inversion of the matrix Q = (Qke) which is, indeed,independent of 
q{i). Our procedure assumes that the experimentally given generalized diffusion matrix 

-{{qk{i + r)qe{i + T))P^^^^ - {qk{i + T))P,^(/)(^K^' + ^))P,^(O} (12.175) 

is independent of q{i) ("additive noise")- We are now in a position to discuss the 
meaning of (12.173). Because of (12.81) with (12.76) and (12.78), the l.h.s. of 
(12.173) is the diffusion matrix that occurs in the Ito-Fokker-Planck equation, 
whereas the r.h.s. of that equation represents the experimentally given (generalized) 
diffusion matrix that in the limit T —̂  0 coincides with the conventional diffusion 
matrix. Thus in the case of additive noise, we are only concerned with an approxima­
tion of the drift coefficients. Whether or not the process under study is governed by 
additive noise may be checked by looking at the dependence of (12.175) on q{i) for 
T -> 0, though a certain scatter of values of (12.175) must be admitted in practice. 

Before we illustrate our method by means of an explicit example, we discuss how 
to evaluate the expressions that occur in our above equations. These are of the form 

J Ps,{q)Fiq)d''q, (12.176) 
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{leii + ^))pMi)^ (12.177) 

{qkii + r)qe{i + t))p^^^-^. (12.178) 

In all cases we decompose, according to the experimental resolution, the q space 
into cubes with indices j and edge lengths e so that qj belongs to cube j . Then 

il2.m)=^^''£n{qj)F{qj) (12.179) 
j 

with 

Z = ^'£n(qj), (12.180) 
j 

where n(qj) is the number of q's found in cube/ The plot n{qj) versus qj is called 
a histogram. The practical determination of n(g) depends on the experimental con­
ditions, where we mention the following cases: 

1. Measurements over a time interval AT on a. single system that undergoes a sta­
tionary process and has reached steady state conditions. In this case we sample 
all qj that are observed over AT. 

2. If the process observed on a single system is nonstationary or transient, or both, 
but has a slow time-dependence of its drift and diffusion coefficients, we may 
scan the process by a shifting time-window AT of suitable length. 

3. If we are in a position to make measurements on an ensemble of systems under 
the same conditions for each member, we can cover both stationary and insta-
tionary processes, where we sample the g '̂s at the same time t ̂  i (or small 
time-interval T). Then n{qj) is the number of q's found in cube 7 in all the mem­
bers of the ensemble. 

To determine (12.177), we start from a specific cube 7*0 in which q{i) Hes. Then 

(12.177) =i-6^;^m(^^.)^,,- (12.181) 

with 

Zc = €^^m(^^.)- (12.182) 
j 

In (12.181) q£j is the component £ of the vector q that lies in cube 7 and m(^) the 
number of q's found in cube 7 after time T, when in each case the system had been 
found before in cube 7*0. Thus instead of m(g^) we could write m{qj \ q^^). The plot 
of m{qj I qj^) against q^ and q^^ is again a histogram. In the same fashion we can de­
termine {q£{i + T) - qe{i))p^qi^i) by replacing q^j in (12.181) by qej - qej^. The eval­
uation of (12.178) is analogous. 
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12.8 An Explicit Example: Brownian Motion 

We now discuss a simple example, namely that of Brownian motion. This example 
may also be used as a check, because in this case we know the stationary solution 
Pst and the conditional probability P explicitly. We treat the one-dimensional case. 
The Langevin equation reads (in the sense of (12.98)) 

dq{t) = -aqdt + gdw{t), (12.183) 

where the stochastic process is defined by (12.99) and (12.100). The Fokker-Planck 
equation belonging to (12.183) reads (cf. 12.80, 81) 

where according to (12.101) 

lG-'=g\ (12.185) 

The stationary probabiUty distribution can be determined from (12.184) with / = 0 
and reads 

^^t = . A^expf-4^'Y (12.186) 

while the conditional probabihty density P is given by 

P{gii + T) I g(0)=-Uexpf-^^('"^"^~^^'Y (12.187) 

where 

a = — {l -exp(-2aT)) (12.188) 

and 

Z7 = ^(/)exp(-aT). (12.189) 

In (12.186) and (12.187) we denoted the P's by means of a tilde to indicate that in 
our model we consider these quantities as experimentally given but, so to speak, un­
known to us. Thus our formaUsm should recover these results. 

In principle, to provide the "experimental" data, we should run the solutions of 
the Langevin equation (12.183) on a computer with randomly generated realizations 
of dw{t). For our present purposes may it suffice to calculate {q{i-\-T:))p qU) ^^^ 
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{q{i + T) )p^qf{\ directly by means of (12.187). From Sect. 12.6 we know how to do 
this and we obtain 

{^{i + )̂)p,̂ (0 =b = Q{i) exp(-aT), (12.190) 

or, for small T, 

{^{i + ^))p,,(i) - ^(0 = -«^^(0- (12.191) 

We further obtain 

W + ^f)pm - (^(' + )̂)L(0 = 5«' (12.192) 

and, for small r, 

(12.192) ^^^^T. (12.193) 

The expressions (12.186), (12.191), (12.192) with (12.193) are now our "experi­
mental" data. Our task will be to guess K{q) and g^ =^G~^ from these data. To 
this end we choose "appropriate" constraints (12.85), or correspondingly (12.147). 
Since the forces K are quite often of a polynomial character with a small power, we 
choose (with ^ == 1), 

Ŝ̂ Ê '̂̂ '̂"- (12-194) (̂2) _ 

m=0 

We first consider (12.173) and obtain, due to (J )̂ = ̂ i / , 

--Un'=-8'r. (12.195) 
T 2 T 

Because of (9.30), (12.104), we obtain, quite correctly, the "experimental" diffusion 
constant g^. Let us now treat (12.170). We first calculate 

{U?M)p„ = {q")?^ ̂ c„ M = '« + m'. (12.196) 

We readily obtain (using (12.186) and putting 7 = a/g^) 

(12.196) = 0 for /x odd (12.197) 

and 
(12.196) = 1 for /x = 0 (12.198) 

= hj~^ for ^ = 2 
^7 ^ for /i = 4 

= Y 7 ~ ^ f̂^ /x = 6. 
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Finally we calculate 

Mi^^)-q{mflq{i)). Pi 

^ I dq{i)P,Mi))Mi + ̂ ) - ^mP,,iiM%{i)y (12.199) 

Using (12.191), we obtain 

(12.199) = (-aT^(rMr)p, , , (12.200) 

^-aT{q{r^%^,. (12.201) 

which can be evaluated by means of (12.196)-(12.198). Using the results (12.195)-
(12.201), we formulate the equations (12.170) explicitly 

3 

g^ ̂  ^frl'^m+m' " ^m+i = -a^c^+i, m = 0,1,2,3. (12.202) 
m'=0 

The solution of (12.202) is a simple matter (and perhaps a nice exercise) and reads 

4^) = Af) = i f ) = 0; Af̂  - (1 - aT)/g^. (12.203) 

Thus according to (12.147) 

M={l-aT)/g^-q (12.204) 

so that finally with aid of the definition (12.135) of the drift coefficient, we obtain 

K{q) = -aq. (12.205) 

In this way we have fully recovered the "experimental" process. This example illus­
trates the applicability of our approach. The general case of (12.170) seems to be 
clumsy. It is, however, a simple matter to establish a corresponding computer pro­
gram to automate the data-analysis, and thus to model stochastic processes. 

We now turn to processes in which the diffusion coefficients depend on the 
variables q. In such a case it is tempting to employ, besides the constraints (12.85), 
also the constraints (12.86). In some special cases this is, indeed, possible, provided 
we allow for negative powers in (12.85), (12.86), as was shown by Borland (cf. ref­
erences). In order to cover the general case, we proceed in the next section in a dif­
ferent way, where we approximate the drift and diffusion coefficients more directly. 
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12.9 Approximation and Smoothing Schemes, 
Multiplicative (and Additive) Noise 

We first explain our procedure by means of an example of an approximation 
scheme well-known in mathematics. In order to approximate a given function a{q) 
by a polynomial Y^I^Q c^q"" , we form 

V{co,...,Cn) = Jdql^c^q' -a{q)] =min! (12.206) 

and seek the minimum of V by an appropriate choice of the Cj,'s by means of 

^ = 2y"d^<f^c.g' '-a(9)j=0. (12.207) 

This gives rise to a set of n linear algebraic equations for the n unknowns c„ 

^ c, / (t+>'dq = f q''aiq)dq. (12.208) 
U=0 

The generalization to the multidimensional case and a general set of "test" functions 
is obvious and yields 

V(co,..., Cn) = / A [ ^ c,U,{q) - a{q) J = min!, (12.209) 

Y,cJ U,{q)UM)^^q = / U,{q)a{q)d.''q. (12.210) 

The approach becomes especially elegant if 

j U^{q)U,{q)6^q=d^,, (12.211) 

i.e. if the f/^'s are orthonormal. 
In the following we wish to approximate the experimentally observed drift and 

diffusion coefficients in a suitable way. The results of Sect. 12.7 suggest the inclu­
sion in the approximation scheme of a weight function, namely Pst{q{i)). We, there­
fore, minimize the expression 

Ve = l d''q{i)Ps,{qii})^Keiq{i)) - ^ ({qi{i + z))p_,(,.) - ^,(0) } (12-212) 

with 



12.10 Explicit Calculation of Drift and Diffusion Coefficients. Examples 185 

^K9(0)=E4'>1'H9(0) (12.213) 
V 

by a proper choice of the coefficients /l)̂ .̂ This leads to 

(12.214) 

The solution of this set of linear equations allows us to calculate the drift coeffi­
cients (12.213). To obtain the diffusion coefficients, we proceed in an analogous 
fashion. With the definition 

Vu = y A\{i)Ps,{'m{GHW)) - \ {{qk{i + r)qi{i + r))^,,(,.) 

- {qd' + ^))pMi)(^li' + ^))^,9(o)} (^2.215) 

and the hypothesis 

G« = E42t/12(q). (12.216) 
n 

we obtain 

E ^fllP-UfLuflA^ii) = \jp.,uf^^ {{q,{i + T)q,{i + T)),,,(0 

-{qk{i + ^)p,^-{qi{i + T))p,,(0)d''?(0, (12.217) 

whose solution fixes the diffusion coefficients (12.216). 
Both in this section as well as in the preceding ones the r-dependence of the ex­

perimental data is not obvious. Rather one has to extrapolate to r —> 0 either with 
respect to the experimental data which (occasionally) will be difficult, or extrapolate 
the A's. 

12.10 Explicit Calculation of Drift and Diffusion Coefficients. 
Examples 

In Sects. 12.6-12.9 I have demonstrated how, by means of an optimization proce­
dure the conditional probability of an unknown process, that is hypothesized to be 
Markovian, can be calculated. If the process can be assumed to be continuous Mar-
kovian, this optimization procedure automatically leads to the conventional defini­
tions of drift and diffusion coefficients. In this section I present some numerical cal­
culations due to Siegert, Friedrich and Peinke (cf. references), who calculate the 
drift and diffusion coefficients according to the conventional definitions (e.g. 
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(12.135), (12.137)) for several models. Their results shed light on the question of 
whether smoothing according to Sects. 12.7, 12.8 is needed or not. In their first ex­
ample they solve the Langevin equation (cf. also (2.1), (2.3)-(2.5)) 

q^eq-q^-\-r{t) (12.218) 

with € = 0,1 and fluctuation strength Q = (0.05)^ numerically. They determine the 
conditional probability distribution (i.e. the histogram) of the noisy time series and 
by means of them (cf. (12.181)) the drift and diffusion coefficients. As it turns out, 
the scatter of data around the "true" coefficients is very small, and we need not re­
produce their results here. Their next example, however, is more illuminating. They 
solve the Langevin equation (cf. also the related equations (11.33, 34)) 

(;6 = a; -h sin 0 -h r{t) (12.219) 

with a; = 0,2, j2 = (0.6)^ and a; = 1,0,2 = (0.005)1 Here we represent their re­
sults for the latter case. The upper part of Fig. 12.4 shows the time series of the 
phase </), whereas in its lower part the numerically determined drift coefficient D̂ ^̂  
is plotted together with the "true" function (solid curve). Two features are remark­
able. Even a rough study of the data indicates that the drift coefficient is a periodic 
function of (/>, which suggests using periodic test functions in the smoothing proce­

ss 
Q 
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Fig. 12.4. Phase difference (f> versus 
time t and drift coefficient D^^^ versus 
(j). The noisy time series belongs to the 
Langevin equation 0(0= 1.0+sin ((/)(r)) 
+0.05 F(0, where F{t) is a Gaussian 
distributed fluctuating force. In the sec­
ond part of the figure the corresponding 
numerically determined drift coefficient 
D̂ ^̂  is plotted together with the theoret­
ical function (solid curve) (after S. Sie-
gert, R. Friedrich, J. Peinke (1998)) 
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dure of Sects. 12.7 and 12.9. Furthermore, in spite of the relatively weak fluctuating 
force, the scatter of data is remarkable. Thus it seems at least advisable to invoke a 
smoothing procedure. Such a procedure is, of course, still more necessary if the ex­
perimentally available data are scarcer. 

I conclude this section with their third example which refers to two variables 
q\, q2 that obey the equations 

qi = eqi - 7^2 + {q] + ql)(f^qi - ^qi) + A ( 0 , (12.220) 

h = iqi + ^qi + {q\ + ^2) i^qi + W2) + A ( 0 . (12.221) 

where the fluctuating forces /"i,/"2 are assumed uncorrelated and of equal 
strengths, Q — 0.04. The parameters are chosen as e = 0.05,7 = 1,M = —5, a; = 7.5 
and thus lead to a Hopf bifurcation, i.e. to an oscillatory solution of (12.220), 
(12.221). As the authors find, the numerically calculated drift coefficients agree well 
with the exact ones in the central region, but at the borders differences occur that 
are caused by too few variable values in these regions. It is Hkely that smoothing 
(or, in other words, extrapolation in the sense of Sect. 12.7) may improve these results. 

12.11 Process Modelling, Prediction and Control, Robotics 

Since we are coming close to the end of this chapter and, with the exception of the 
quantum theoretical chapter (Chap. 13), to the end of this book, let us recall the pur­
pose of our enterprise. We want to gain insight into the mechanisms underlying pro­
cesses in complex systems. But we have only limited knowledge about the pro­
cesses for several reasons: 

1. Because of the complexity, we cannot (at least in general) derive the properties 
of the whole system from those of its individual parts. Thus we must rely on di­
rectly observed data. 

2. The processes can be studied only over a limited time-interval AT. 
3. They cannot be repeated indefinitely or may even occur once only. 
4. The data can be collected only over a limited domain 0 of variables. For exam­

ple, the rotation of a robot arm may be studied only over a limited range of an­
gles 01 < (/>< 02-

5. The data are noisy. 
6. The data may be scarce (in the observed domain JT, O). 

In this book, and especially in this chapter, we have shown how to make an un­
biased guess of the unknown process including a best fit. The formalism is based 
on the assumption that the process is discrete or continuous Markovian. This as­
sumption can be checked in a self-consistent way as we will discuss in the next sec­
tion. When we recollect the approach oudined in Sects. 12.6-12.10, we recognize 
that a crucial task consists in the choice and adaptation of the constraints (12.85) or, 
more generally, in the test function f/(g). In this author's opinion, the use of test-
functions is indispensable. Even if in a continuous process the data are dense and al-
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low the determination of drift and diffusion coefficients with small scatter (cf. the 
process of (12.218)), the drift and diffusion coefficients are known only numerically. 
To gain insight into the nature of the process and to be able to extrapolate outside 
the known f^-domain, we need these coefficients in an analytical form. In practice, 
we often have to deal with scarcer data that possess considerable scatter. Then the 
use of test-functions is indispensable and we have to discuss this important issue. 
Quite often a glance at the scattered data of (generalized) drift and diffusion coeffi­
cients will provide us with the type of test-functions, e.g. periodic (superpositions of 
sine- and cos-functions) or low-order polynomials with adaptable coefficients. In a 
number of cases, we may possess some prior knowledge, for instance about general 
properties of the process studied. When training robots, we may equip them with a 
class of test-functions that can be improved by learning through feedback. Once the 
test-functions and their coefficients are fixed, we may calculate 

1. the transition probability P for finite T (discrete process) or 
2. the drift (D^) and diffusion {Dkt) coefficients of the Ito-Fokker-Planck equation 

and the Ito-Langevin equation (continuous process). 

The dependence of P or D^ and Du on q{i) via explicit test-functions allows exten­
sions of the guessed process into larger domains. The extrapolation into the future is 
possible provided the process is stationary, i.e. there is no explicit time-dependen-
ceof the transition probability or of the drift and diffiision coefficients. 

In case 1, we form the path integral according to (2.52), but without the limit 
T -^ 0. In it, the exponent G is of the form 

C = '^L{q{i -h T),g(/)), t = zL 
i 

The variations Sq{i) of C with SC = 0 define an extremal path and if C maxi­
mum, the most probable path q^^\i). The expansion of C around q^^\i) yields the 
probability of the corresponding fluctuations. It may also be possible that several ex­
tremal paths with C (local) maximum occur. In this case we then can study the rela­
tive probabilities of various paths and fluctuations around them. We are familiar 
with such phenomena in the case of nonequilibrium phase transitions. 

In case 2, we may resort to direct solutions of the Fokker-Planck equation. Thus 
we may obtain f{t) fort>T for arbitrary initial conditions and because of the ex­
plicit knowledge of the test-functions, we can extrapolate from the region Q and in­
terpolate within it. This leads us to one interpretation of the concept of associative 
action. Even if a process had been studied over a domain ft (which need not be 
dense in variable space), we can define it on a dense space, including new initial 
conditions. Thus the system's behavior is modelled and predicted with respect to 
processes that haven't been studied or were executed before. I believe that our pro­
cedure has considerable potential going beyond the examples of Sect. 12.10. Robots 
may learn movements, such as walking and grasping, and the coordination of arms, 
hands, and legs. Since noise is admitted, the robot can learn walking in rough ter­
rain and under uncertainty. Actually it is known from studies of movements, such as 
walking or running, that movements are not at all exacdy periodic; in fact devia-
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tions occur from cycle to cycle. The same is true for grasping; each time hand and 
arm follow a somewhat different trajectory. 

In conclusion, one fundamental problem in all inter/extrapolation schemes 
should be mentioned. Let us consider the movement of a robot arm around an axis 
and assume we model it around 0 < (j) <^\, Quite evidently, we can extrapolate 
this movement until it hits an obstacle which represents a "singularity". Thus, in the 
end, the main task of a robot will be to learn singularities and how to get around 
them. This can be done, e.g., by trial and error, but a more detailed discussion is be­
yond the scope of this book. 

One last word, namely on the control of systems, may be in order. Once we 
know the test-functions U and their properties, we can change them by adjustment 
of suitable parameters that via the drift coefficients may lead to desired types of be­
havior. This implies, of course, that we find a suitable mapping between the model 
parameters and the real, accessible parameters of the system. A simple, though 
rather general example is provided by the case in which the drift coefficients can be 
derived from a potential fiinction, and the diffusion matrix is diagonal and a con­
stant. In this case the fixed points of the system are known. Such an idea lies at the 
root of the pattern recognition algorithm of the synergetic computer (Sects. 12.2, 12.3). 

12.12 Non-Markovian Processes. Connection with Chaos Theory 

12.12.1 Checking the Markov Property 

In this book I have made the assumption that the process under study is Markovian, 
i.e. that the joint probability distribution function (9.1) can be split into the product 
(9.3). To check whether the experimental data can be attributed to a Markov pro­
cess, the following procedure, which is equivalent to (9.3), is useful. 

We first define the conditional probability distribution function by 

where the P/s are the joint probability distribution functions. Then the necessary 
and sufficient condition for a Markov process is given by 

P{^n^tn I q^_,,tn-i]^^r,q^,t^)=P{q^,tn \ q^-i.tn-x) (12.223) 

for tn > tn-\ > ... > to. 

By means of histograms (cf. Sect. 12.7) (12.222) can be checked numerically, 
provided n remains a small number. 

We now discuss the case in which the process is not Markovian. It has long 
been known that, by the introduction of suitable additional variables, a non-Marko-
vian process can be made Markovian. But, as it seems, it was left to chaos theory to 
devise practical conceptual and numerical methods that allow us to introduce these 
variables. The procedure is known as reconstruction of an attractor or, more gener-
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ally, as time-series analysis. In order to illustrate the basic ideas, we ignore the ef­
fect of noise and start with a very simple example. 

12.12.2 Time-Series Analysis 

Let us consider a pendulum. Its motion can be visualized in the phase-plane, where 
we plot a trajectory as a function of the coordinate x and the velocity v (Fig. 12.5). 
In view of later generalisations, we shall denote the jc-axis by the coordinate qi and 
the v-soiis by the coordinate ^2- The velocity is, of course, connected with the posi­
tion X by 

v=x, (12.224) 

where the dot means as usual the time-derivative. In the new notation we may also 
write (12.224) in the form 

q2=qi- (12.225) 

Furthermore we note that the coordinate jc, or equivalently qu obeys the oscillator 
equation 

q^=-kqu (12.226) 

where A: is a positive constant. 
Let us consider the case where we measure only the qi coordinate, which we 

plot as a function of time according to Fig. 12.6. In it q\ is given by 

qi =Asina;^ (12.227) 

Then we ask ourselves: Can we reconstruct from this time series the trajectory or 
the attractor in the phase-plane of Fig. 12.5. In the present case this is quite simple, 
because of the relation (12.225), i.e. 

q2=qi^ (12.228) 

From this we can immediately deduce 

q2 =UJA cos LOt. (12.229) 

By plotting (12.227) and (12.226) in the phase-plane, as time t proceeds, we obtain, 
of course, the trajectory of that figure. 

These relations can be cast into a more general and abstract form. Let us as­
sume that a system described by the variable qi obeys an equation of the form 

91 =f{qu^i), (12.230) 

where / is a given function of qi and qi. We may deduce the new variable ^2 by 
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Fig. 12.5. A trajectory described by qi = A sin cot, q2 -
qi = (oA cos cot 

x,q, 

A q, = A,sin(o)t) Fig. 12.6. Example of a time series 
q\ = A sin cot 

q2=qi (12.231) 

and may now replace the system of equations (12.230) and (12.231) by 

qi = qz (12.232) 

and 

qi=f{quq2)- (12.233) 

This means that we can represent the trajectory in the phase-plane by these two 
equations. Quite evidently, to deduce a trajectory in the phase-plane from a time se­
ries is a trivial task. 

These considerations can easily be generalized to the case of n-dimensions. The 
basic assumption, however, is that we are dealing with a dynamical system and that 
we know the dimension of the phase space, i.e. the number of independent vari­
ables. We first introduce an abbreviation for the jth derivative 

^^^1 _ ^ij) 

dp ri (12.234) 

We assume that the dynamics is described by an equation of the form 

qt^=f{qr,q['\...Jr'^). (12.235) 

We may introduce the new coordinates 
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qf^ = q, (12.236) 

and 

.(/•-I) qj-qi • (12.237) 

Equation (12.235) can then be immediately replaced by the following set of equa­
tions: 

qx = qi. (12.238) 

qi=q2 = q3, (12.239) 

qn=f{quq2.-.qn)^ (12.240) 

These define trajectories in a phase space with n dimensions. Following the se­
quence of time, we may immediately construct the trajectory simply by taking high­
er and higher derivatives of q\ according to (12.237). In this way one can easily cal­
culate the attractor. 

There is, however, a basic difficulty when one wishes to apply this procedure to 
actually measured time series. Because any time series can consist only of discrete 
points and is, in reality, neither continuous nor even differentiable, the evaluation of 
derivatives introduces considerable numerical errors. Therefore, another method for 
constructing an attractor was introduced by Takens and others and has become very 
useful. Again our goal is to reconstruct the trajectory of Fig. 12.5 from a time series 
as given in Fig. 12.6. The basic idea is to introduce a time-shift T so that the coor­
dinate qi 

qi=Asmut (12.241) 

is transformed into 

q2{t) = Cqi{t + T) 

= CAsm[uj(t + T)], (12.242) 

which is actually the time-sequence of the variable q2, provided uT = n/2. The 
quantity C in (12.242) is a scaling constant. This example shows that we can recon­
struct the trajectory of Fig. 12.5 by means of a suitable time-shift T. However, a dif­
ficulty arises in practical applications, because we do not know a priori from the ex­
perimental data what time-shift T must be used. Thus we consider the case where T 
is different from that used in (12.242). From the second line in (12.242) we readily 
obtain 

q2 = CA (sin a;? cos a;r + coscjf sina;r). (12.243) 

With help of (12.243), we may show that q\ and qi now obey an equation of the 
form 
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l^% Fig. 12.7. Reconstructed trajectory (see text) 

(?2 - aqif+pq", = {CAf 

with 

a = C cos uT 

fi = Csin UJT. 

(12.244) 

(12.245) 

The resulting new trajectory is shown in Fig. 12.7. From a comparison between 
Figs. 12.7 and 12.5 we may conclude that by using an arbitrary time-shift or time-
delay r, we obtain essentially the same attractor but now rotated and deformed in 
phase-space. A pathological case occurs if p = 0 which happens for T = ITL/UJ. In 
this case, (12.244) can be replaced by 

qi - Cqx = ±CA (12.246) 

and the attractor consists of two individual lines only, i.e., the attractor is no longer 
resolved. This example shows clearly that the reconstruction of an attractor can, at 
least in some cases, depend sensitively on the choice of T. Below we shall show 
how to reconstruct attractors for more complicated systems. But before we do so, 
we discuss how to determine the dimensions of an attractor, in particular of a chao­
tic attractor. 

Let us consider the case in which the time-series q\{t) of a single variable is 
given, but where we have to introduce additional variables to obtain the Markov 
property. Since we do not know a priori the dimension of the underlying phase 
space, we have to try different dimensions in phase space. The procedure of choos­
ing a dimension n of phase space is called embedding, i.e. we embed the trajectory 
in an /2-dimensional phase space by constructing an adequate number of n variables. 
The procedure is as follows: We choose a time delay T and form the vector 

q{t) = {qi{t),qx{t-T),...,qn{t-nT)). (12.247) 

When time t runs, this vector forms a trajectory in that n-dimensional space, n must 
be chosen big enough so that the trajectory does not hit itself. As it turns out, such 
a trajectory does not fill the phase space so that the concept of fractal dimension 
must be used. These and related questions are beyond the scope of our book, and it 
must be mentioned that a number of problems have not yet found a definite solu-
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tion. Such problems include how to cope with noisy data and what to do if the mea­
sured time-series are not stationary over a long enough time interval. A final remark 
is in order: In many cases the attractors are found to be irregular, i.e. chaotic, and 
thus chaos theory has been developed to study and classify the mathematical proper­
ties of these attractors. 



13. Information Compression in Cognition: 
The Interplay between Shannon 
and Semantic Information 

In this chapter^ we return to our discussion of different aspects of "information" 
where we wish to shed new light on the relation between Shannon information and 
what we called semantic information. (Actually, in the literature the latter is occa­
sionally called "pragmatic information".) As we have seen, Shannon information 
does not carry any meaning. On the other hand, we were able to define semantic in­
formation by invoking some basic concepts of dynamic systems theory, in particular 
that of attractors. These two concepts of information are not independent of each 
other, as one might think at first sight, but they are closely interlinked. This link is 
established by cognition. First, recall that in order to calculate Shannon information, 
we have to label objects which implies that we have to distinguish them. The ob­
jects may be quite simple, such as letters or numbers, but they may be also compli­
cated, such as buildings in a city. At any rate, distinction relies on pattern recogni­
tion where we may invoke the attractor concept. Thus, Shannon information de­
pends on semantic information. In our opinion, one of the main tasks of our cogni­
tive system (in other words: our brain) consists of compressing information, i.e. of 
reducing the amount of Shannon information. This can be done in a variety of 
ways. Below, as an example we shall demonstrate how symmetries can be used. 

13.1 Information Compression: A General Formula 

In order to elucidate our approach to information compression we consider a series 
of experiments with outcomes each composed of two joint events which we distin­
guish by indices k and j , respectively. An example is provided by throwing time 
and again two dice where each throw ("event") defines an outcome with k eyes of 
one die and j eyes of the other die. For sake of generality we assume that the faces 
carry different weights. Thus we consider the probabilities 

Pkj (13.1) 

which are assumed to be normalized 

Y^Pkj = l. (13.2) 
jk 

The results of this chapter are based on part of a joint study with Juval PortugaH. 
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The corresponding Shannon information is given by 

i =-^Pkjlnpkj . (13.3) 

(As everywhere in this book we use In instead of log2 for the definition of informa­
tion.) 

Now let us assume that pkj is independent of j . (In the case of the dice this 
means, that the outcomes of the throws of the second die have the same probabil­
ities.) How is Shannon information then transformed? We introduce the probability 
distribution p^ and put 

Pkj = Mpk. (13.4) 

We assume the normalization condition 

Y,Pk = 1 (13.5) 
k 

and we want to determine the still unknown multiplying factor M. We insert (13.4) 
into (13.2) and observe (13.5). This leads us to the equation 

J2Mpk=NMj2Pk = l (13.6) 

kj k 

(where N is the number of indices j) and 

M=l/N. (13.7) 
Substituting (13.7) in (13.4) and this latter quantity in (13.3) we arrive at 

i = -J2{pk/N)ln{pk/N) (13.8) 
kj 

which can be transformed into 

= -J2l/N'J2pkHpk/N) (13.9) 
j k 

or 

= -J2Pk^^Pk + J2pklnN (13.10) 
k k 

so that we obtain the final result 

i = ir^lnN (13.11) 
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where ?V (reduced information) is defined by the first sum in (13.10). Rearranging 
(13.11) we obtain 

ir = i-\nN (13.12) 

which is an explicit formula for the reduced information as function of the complete 
information / and the logarithm N. Note that in all these cases finally a correction 
factor K must be added that makes up for the replacement of log2 by In. 

13.2 Pattern Recognition as Information Compression: 
Use of Symmetries 

After this simple but general consideration let us turn to the main issue of this 
chapter, namely to pattern recognition by the human brain or a computer. To be 
quite concrete we consider the following case: We decompose a two-dimensional 
picture into its pixels that are distinguished by an index vector. 

J=(J.Jy) (13.13) 

with integer components jx = 1, 2,..., j"y = 1, 2,... We attribute a grey value qj to 
each pixel. Then a pattern is described by the pattern vector (see also Sect. 12.2) 

kj ^q= (qiuqu^-^qnn) = q(j) = {qj} (13.14) 

whereby the former indices of Sect. 13.1, k and j , are replaced according to (13.14). 
In order not to deal with boundary conditions we assume that the boundary is peri­
odic as it is actually the case when we include a 360° turn of our heads. We also 
change the notation (cf. Sect. 12.2). 

pkj ^ m (13.15) 

where / is the corresponding probability distribution of patterns described by the 
pattern vector q. 

Now let us assume that a human or a computer is exposed to all sorts of pat­
terns. Then the Shannon information is given by 

i = -Y,mHq) (13.16) 

where we assume as usual the normalization condition 
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In accordance with the usual assumptions made on learning of patterns we assume 
that patterns are learned according to their frequency of occurrence. 

Now consider the learning of a face by a baby who sees the face of his or her 
mother again and again but at quite different positions. In accordance with the con­
cept of semantic information we may assume that these faces have the same im­
pression on the baby irrespective of their position in space. Thus the baby will not 
learn all these faces as different but as a single face that is relevant to the baby. 
Thus the distinction of the face at different places as different is superfluous. This 
allows us to reduce Shannon information in the following sense: Let us assume that 
a face at a specific position in space is described by a prototype vector q'. Then we 
can find the prototype vector of the same face at a place in space by a transforma­
tion T via 

q = Tq'. (13.18) 

Using the transformation (13.18), we split the total sum into 

E = EE- (13-19) 
q T q' 

We note that the transformation T has the effect 

Tq'^Tq'{j)=q{j^a), (13.20) 

a: displacement vector. 
We observe, however, that we may consider also other transformations, e.g. rota­

tions. In complete analogy to what we described above, we assume that the distribu­
tion function / is invariant against the transformation T up to a constant factor Mj. 

f{Tq')=MTf{q') (13.21) 

We determine M^ by the normalization condition 

E/(«') = 1 (13-22) 

SO that 

E/(«') = EE^^/(«') = l (13.23) 
q T q' 

follows. Thus we obtain 

J2^T = l (13.24) 
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where the sum over T yields the number of transformations Â .̂ Because of the 
homogeneity of space we may assume that Mj is independent of T which leads us 
to the relationship 

NTMT = 1. (13.25) 

These intermediate steps allow us to cast (13.21) into the form 

f{Tq')=f{q')/NT. (13.26) 

Using (13.26) in (13.16) and (13.19) we obtain our final result 

i = iT^lnNT (13.27) 

where we introduced the abbreviation 

iT = -J2f{q')lnf{q'). (13.28) 

To interpret (13.27), we write this relation as 

iT = i-lnNT. (13.29) 

Thus using the semantic information that the patterns (e.g. faces) are just the same 
but merely shifted in space or rotated, the decrease of Shannon information is expli­
citly described by (13.29). To be quite precise, the case of rotation is somewhat 
tricky, because - in contrast to computer vision - a human observer is not capable 
of fully distinguishing an upside down face from one in its normal position. 

13.3 Deformations 

We now turn to objects that are deformed with respect to some kind of normal 
form, e.g. we may observe the emotional expressions on faces which, of course, 
lead to deformations. We start from the pattern vector 

q' = v(J) (13.30) 

where we conceive v as a (practically) continuous function of the two-dimensional 
vector / In a number of cases these deformations can be visualized by means of 
patterns drawn on a rubber sheet which is then deformed. An example of this kind 
is provided by D'Arcy Wentworth Thomson's model of the occurrence of different 
kinds of fish. We introduce an abstract deformation operator D that transforms the 
"normal" face into a face with an emotion. In order to go from the deformed pat­
tern to the undeformed one, we have to apply the inverse D~^. Now by means of 
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semantic information we identify the deformed pattern with the undeformed one so 
that we introduce a relationship 

f{D-'q')=f{q')-MD (13.31) 

where as just said D~^q' corresponds to the normal face. Because facial expressions 
appear not so often as normal faces and this frequency may depend on deformations 
(laughing, being depressed, etc.) we assume that Mr, depends on the kind of deforma­
tion D. Generally speaking, in spite of the fact that laughing occurs less frequently 
than a normal face, the effective frequency of f{q') may be enhanced by emotions 
of the observer, i.e. by an increase of attention. On the other hand in this case more 
information is required for the storage of associations so that in the end the Shannon 
information of a face without laughing is smaller than that with laughing. We now re­
place the sum over ^ by a double sum over the various displacements D and the normal 
set ^^ In this way we introduce the normalization condition 

Y,f{D-\') = \ (13.32) 

which because of (13.31) can be cast into the form 

Y,MuY.f^q') = l (13.33) 

D q' 

with the result 

^ M z ) = l (13.34) 
D 

because of the normalization requirement for the sum over q'. Generally speaking 
we may say that the dependence of M on D is given by the relative frequency of 
appearance compared to the normal case up to a common normalization factor that 
is determined by (13.34). Inserting (13.31) into the expression for the total informa­
tion / yields 

i = -Y,MDf{q')HMDf{q')) (13.35) 
Dq' 

from which we deduce 

= - E / ( « ' ' ) l n / > ' ) - ^ M o l n M o . (13.36) 
1' 1' 

Thus we obtain the important result 

i = iD + ^D (13.37) 



13.4 Reinterpretation of the Results of Sects. 13.1-13.3 201 

where we used the abbreviations 

iD = -Y.f{q')W{q') (13.38) 

and 

^D = -^MulnMu (13.39) 

Resolving (13.37) for i^ we obtain the final result that the Shannon information / is 
reduced by the amount A/) because of the use of semantic information. 

13.4 Reinterpretation of the Results of Sects. 13.1-13.3 

The relationships we derived above can be interpreted by means of considerations 
which are closely related to those of Sect. 2.6.3. This will allow us to reduce Shan­
non information still more. Again, as in 2.6.3, but using a somewhat different nota­
tion, we start from the notion of joint probability p(j^k) where j and k both can 
stand for a whole set of indices. We assume the normalization condition 

Y,P{h k) = \. (13.40) 

We further use the notion of conditional probability, i.e. the probability for the oc­
currence of an event characterized by j provided that the event k has occurred. We 
denote this probability as usual hy p{j\k). We assume the normalization condition 

Y^pim = 1. (13.41) 

Furthermore we introduce a suitably chosen probability distribution p(k) with the 
normalization condition 

J2p{k) = 1. (13.42) 

Then according to probability theory we may use the decomposition 

p{j,k)=p{j\k)p{k). (13.43) 

The idea is now to express the Shannon information 

i = -J2pU,k)lnp{j,k) (13.44) 



202 13. Information Compression in Cognition 

by means of the decomposition (13.43). The intermediate steps are just generaliza­
tions of what we have done before and can easily be performed via 

= - E^(-/'l^)^W ^^(pU\k)p{k)), (13.45) 

= - E^(^1^)P(^) ^^(PU\k)) - E P ( ^ 1 ^ ) ^ ( ^ ) 1"^(^) ' (13.46) 
jk jk 

and because of (13.41) 

= E ^ W ( - Y.P^J\^) Inp(jl^)) - Y^Pik) lnp{k). (13.47) 
k \ j y k 

This allows us to write our final result in the following specific form 

i = J2pik}ii{Jm + ii{k}) (13.48) 
k 

SO that the Shannon information is decomposed into the Shannon information for 
the distribution function p{k) and an average over the conditional Shannon informa­
tion i{{j})\k) where the weights are just given by the distribution function p{k). 

In the spirit of our book we now introduce the following interpretation, k refers 
to the states of one or several order parameters and the index j describes the indi­
vidual enslaved parts of the system. In other words, once an order parameter k is 
given this implies a specific probability distribution of j , i.e. an order parameter k 
implies a specific enslaved state. The important step now is the following. By se­
mantic information we "know" that the state of a complex system microscopically 
described by the indices j is fixed or known once the order parameter or a subset of 
order parameters k is fixed. This insight allows us to drop the indices j entirely so 
that the total Shannon information is reduced to the far smaller Shannon informa­
tion of the order parameters 

/total ^ / ( W ) . (13.49) 
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14.1 Why Quantum Theory of Information? 

So far we have been dealing with classical systems whose dimensions are macro­
scopic. In this chapter we wish to consider systems that must be described by means 
of quantum theory. Let us look at a few examples of systems where quantum effects 
play a role. The first example is provided by the laser. Its individual atoms must be 
treated by quantum mechanics and in it the field is produced by quantum mechani­
cal events, namely those of spontaneous and stimulated emission. Therefore, a 
rigorous theory of the laser must be based on quantum mechanics. In the previous 
chapters we based our laser theory on the so-called semiclassical treatment which 
can be derived from the fully quantum mechanical treatment by a method called 
quantum classical correspondence which will not be pursued here. 

A further important example is provided by computer elements. These are being 
made smaller and smaller so that eventually quantum effects will become important. 
Thus we shall have to consider one or few electrons trapped in so-called quantum 
wells. We may have oscillations of electron currents in the Gunn oscillator, or we 
may have formation of filaments by electrons in semiconductors. Electrons or holes 
in different trapped states may store information and electrons may form temporal 
or spatial patterns. Biological molecules may store information and we may expect 
the construction of devices which combine molecules with semiconductors as a 
means to store and process information. Therefore it would be worthwhile to 
attempt an extension of our previous results to the world of quantum mechanical 
processes in these microscopic devices. 

In the following we shall see that this goal is, to a large extent, realizable. We 
shall assume that the reader is familiar with basic notions of quantum theory, but 
we begin, nonetheless, with a reminder of some of its most important features. To 
proceed from classical physics to quantum mechanics, we have to replace observa-
bles qt such as the position and momentum of a particle by the corresponding 
operators, which we shall denote in the following also by qt (consult Table 14.1). In 
this way not only can classical mechanics be translated into quantum mechanics, 
but so can the theory of electromagnetic fields. Here, the amplitude E{x) of the 
electric field at position x must be replaced by an operator E{x). When we consider 
the electron wave function ^(x) which is a solution of the Schrodinger equation, as 
a classical field, we may replace it by an operator ^(x). This is the process of so-
called second quantization. Accordingly the electron density becomes an operator 
(cf. Table 14.1). 



204 14. Quantum Systems 

Table 14.1. Analogies between the classical and the quantum-
mechanical formulations 

Classical 

observable qt 
field amplitude E(x) 

at position x 
electron wave function y/(x) 
electron density p(x) = y/* (x)y/(x) 
distribution function/(^) 
moments: 

4!! = <*•>=//(9)*'^"'? 
4 ' = (*•%) = SMm^d^q 
i = -Jflnfd''q 

Quantum mechanical 

operator qt 
E{x) 

y/{x) 
~p(x) = \i/+{x)\i/{x) 
density matrix p = [p^j) 

(qt) ^Tr {qtp} 
Trlqtqjp} 
i = —Tr{/?ln/?} 

Let us now make an important step further, namely the inclusion of statistical 
mechanics. In Chap. 2 we dealt with the distribution function, f{q), where ^ is a 
vector of dynamic variables, e.g. positions of particles. In quantum theory this 
distribution function must be replaced by the density matrix, /?.While the distribu­
tion function obeys for instance the Fokker-Planck-equation, the density matrix 
obeys for instance the so-called master equation. In the following we are aiming at 
a macroscopic derivation of the explicit form of the density matrix p in complete 
analogy to our previous "macroscopic" derivation of f{q). Therefore we shall not 
dwell here on the form of the density matrix equation or the master equation, but 
will instead elaborate on another analogy, namely that with respect to moments. 
Examples of moments of the classical theory are presented in the third last and the 
second last row on the left hand side of Table 14.1. The corresponding expressions 
on the right hand side tell us how the analogous moments are defined in quantum 
theory. The abbreviation Tr means trace. For a matrix A with elements atk, the trace 
is defined by 

Tr{A} = Y,ajj. (14.1) 

A difficulty which arises when we try to translate the results of classical physics into 
quantum mechanics stems from the fact that, at least in general, the operators qi do 
not commute; i.e., in general we find 

As well known from quantum theory, the operators qt must eventually be applied 
to a wave function. But depending on the sequence in which we apply these 
operators to a wave function, different final functions will result. For this reason it 
will be very important to carefully consider the sequence in which operators occur. 
In most of the applications we shall consider, we shall use a symmetrized product 
of qi^qj so that the sequence of operators is no longer important. The formal 
resemblance of the classical and quantum mechanical expression (Table 14.1) 
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immediately suggests the definition of information in quantum theory as given in 
the last row of Table 14.1. 

After these preparatory remarks we may now turn to the quantum mechanical 
formulation of the maximum information principle. 

14.2 The Maximum Information Principle 

In this section we shall utilize the correspondence scheme presented in Table 14.1. 
We shall denote the information or entropy by the letter S. The individual steps in 
the further translation of the maximum information principle are summarized in 
Table 14.2. We now require that not only the expression for S in the classical case 
becomes a maximum, but also its corresponding quantum-mechanical expression 
given in Table 14.1, each time under given constraints. The constraints are sum­
marized in the second row of Table 14.2. The normalization is given in the third 
row. Again we shall make use of Lagrange multipliers in order to perform the 
maximization. We multiply the expressions in the second row by ^k and in the last 
row by A — 1. We then subtract the resulting expressions from S and require that the 
variation of the resulting expression vanishes. 

Tr{plnp} - (1 - l ) T r M - ^ 4 T r { / V } ] = 0 . (14.3) 

When we perform the variation, some care must be exercised, because in general 
the variation Sp will not commute with p. 

\PM^P^P-^PP^^- (14.4) 

On the other hand, we can make use of an important property of the trace, namely 
its cyclic property: 

Tr{A5} =Tr{5A}. (14.5) 

In order to perform the variation in (14.3), let us consider the individual terms 
beginning with 

Table 14.2. The maximum information entropy principle 

Classical 

S = - / / l n / r f " , ? = 

f<')=jfg('')(q)dV 

jfd^q = 1 

Quantum mechanical 

max! S = —Tr {p In/?} = max! 

constraints 

normalization 
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STY{P}. (14.6) 

Taking the variation means that we compare the value of Trp taken for a value of 
the density matrix, p, with that of another one, p + Sp, where Sp is small. Thus the 
variation of (14.6) is defined by 

^Tr {p} =Tr{p + Sp} - Tr {p} = Tr {Sp} (14.7) 

where to obtain the last equality we have made use of the linearity of a trace 
operation. In a similar fashion we immediately find 

<5Tr{/V}=Tr{/)<5/7}. (14.8) 

The variation of the first term in (14.3) requires some care because of (14.4). Using 
the definition that the variation of the trace is the difference of the two traces taken 
for p -\-Sp and p we obtain 

STriplnp} = TY{{P^SP) \n{p^Sp) - plnp} . (14.9) 

By subtracting and adding a term we transform (14.9) into 

= Tr {(/? + Sp) ln{p + Sp)-p ln{p + Sp)} 

+ TT{{pln{p + Sp)-plnp}. (14.10) 

The first difference can immediately be evaluated to give 

Tr {Spln{p + Sp)} = Tr {Spinp} , (14.11) 

where we have kept only terms linear in Sp. In order to evaluate the second differ­
ence we use a trick, namely we write Inp in a form that allows us to use the usual 
expansion of the logarithm into a Taylor series: 

oo 

Inp = ln(l +P-1) = Y1 ^v{p - 1) ' . (14.12) 
v=0 

In quite the same fashion we obtain 
oo 

ln{p + Sp) = J2^v{p-l+Sp)\ (14.13) 
v=0 

Now let us consider an individual term of the sum and let us start with v = 1. Here 
we have 

p-l^Sp. (14.14) 

For V = 2 we readily obtain 

{p - 1)' + {P- ^)Sp + Sp{p - 1) + {Spf (14.15) 
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where we have taken care of the precise sequence of the operators p — I and Sp. 
Keeping the leading terms we obtain for the general term v 

ip -1)*' + {p- ly-'sp+ip- iy-'sp{p -i) + ip- ly-'spip - if +... 
+sp{p - ly-' + {p- iy-\spy +.... (u.ie) 

In the following we shall retain only terms independent of or linear in Sp. In this 
approximation we now multiply the term (14.16) from the left by p and take the 
trace. To exhibit the essentials we pick out a general term of (14.16) which yields 

Tr{p{p-iy-''-'Sp{p-ir}. (14.17) 

We now may use the cyclic property (14.5) and obtain 

(14.17) =Tr{<5K/^- l y X / ^ - 1)*'-"-'}. (14.18) 

Because p commutes with /? — 1, we can finally write down the result of (14.17) in 
the form 

TT{dpp{p-iy-'}. (14.19) 

What we learn from the above transformation is the following: When we take the 
trace operation we obtain the same result as if p and Sp commute. So from now on 
we can skip all the algebraic details in evaluating 

TT{{pln{p + Sp)-plnp}. (14.20) 

We merely may assume that p and Sp commute formerly, or in other words, we 
may treat p and Sp as c-numbers (i.e. classical numbers, in contrast to operators) 
for the evaluation of (14.20). Using the usual property of the logarithm we obtain 
instead of (14.20) 

TT{pln{l+Spp-^)} (14.21) 

or if we retain the leading term 

(14.20) =Tr{Sp}. (14.22) 

Using the results (14.7, 8, 20, 22) we may evaluate (14.3) and obtain 

-TY{Sp\np} - ATr {Sp} - ^ 4 T r {Spg^^^ = 0. (14.23) 
k 

In order to perform the variations Sp explicitly we may use any representation of p 
with respect to a set of eigenstates possessing a discrete or a continuous spectrum. 
Using such a representation we may write /?, Sp, and ^̂ ^̂  as matrices. 

Let us express the various terms in (14.23) using the definition of the trace (14.1): 

Y^iSp lnp)jj = Y.{Sp)j,{\np)y (14.24) 
J Ji 
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Emj (14.25) 
j 

Y.^^P)M%' (14-26) 
ji 

Inserting the corresponding expressions in (14.23) we obtain 

Y.mji{(^^p)ij+^ij + E^^(^^'^)/i} = 0 (14-27) 
j k 

where we have made use of the Kronecker symbol Sij = 1 for I =j and = 0 for 
/ ^ j . Because of the use of the Lagrange multipliers we may assume that the varia­
tions (Sp)ji are independent of each other. As a consequence, (14.27) can be ful­
filled only if the curly bracket vanishes for each pair I J. But the whole bracket can 
be considered as the element of a matrix with indices I J. Therefore the vanishing 
of the curly brackets in (14.27) is equivalent to the following matrix equation 

ln/7 + A/ + E 4 ^ ) = 0 (14.28) 
k 

where / is the unit matrix. This matrix or operator equation possesses the solution 

/? = exp - A - ^ W M . (14.29) 

The Lagrange multipliers 1 and Ik can now be determined, at least in principle, by 
the normalization condition 

Tr{p} = l (14.30) 

and by the constraints 

T r { / V } = / ^ ^ - (14.31) 

Inserting (14.29) into (14.30) yields 

Tr {p} = e-^Tr | exp U ^ 4 / ^ ) f ^ ' ^^^'^^^ 

This immediately leads us to the relation 

:Z = T r | e x p ( - ^ W " U , (14.33) ê  

which also contains the definition of the quantum mechanical partition function, Z. 
A number of the relations which we derived in Sect. 3.3 can be translated into 
the quantum mechanical case. But as the reader will notice, some care is needed 
and some tricks must be used. We shall not present the full translation, but will 
merely indicate some of the main steps and then write down an important result. 
In order to derive the quantum mechanical analogues of the relations (3.44, 45), we 
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have to learn how to differentiate an exponential function containing operators 
which, in general, do not commute. Since the rest of this section is of a rather tech­
nical nature, the reader not interested in such technical details may just take note of 
the final formula (14.43) and then proceed to the next section. 

Let us define our goal. We wish to evaluate 

d 
Trip}. (14.34) 

i.e., we wish to learn how to differentiate the density matrix p under the trace. To 
this end we consider the exponential function occurring on the left-hand side of 

exp(A + A'5) = Texp fdt{At + A'5,) (14.35) 

which contains a parameter A' with respect to which we wish to differentiate the ex­
ponential function. But since A and B are assumed not to commute with each other, 
this differentiation cannot be done in the usual way. Instead we have to apply a 
trick in which we introduce so-called time-ordered operators. We label A and B 
with an index t and we replace the left-hand side of (14.35) by the expression on 
the right-hand side of that equation. T means time ordering. When we evaluate the 
exponential function, operators with a smaller index t must operate prior to opera­
tors with a higher value of t. Under this provision we may formally treat At and Bt 
as if these operators commute with each other. Therefore we may write (14.35) in 
the form 

T exp ( JdtAt j exp ( Jl'dtBt 

We now differentiate (14.35) or equivalently (14.36) with respect to 1' 

d 

and obtain 

idt{At + }!Bt) 
.0 

(14.36) 

(14.37) 

1 
TjBfdfexp 

0 
fdt{A + I'B)^ (14.38) 

According to the time ordering convention some of the operators appearing in the 
exponential function, i.e. those for which t < t', must be applied prior to Bf. On the 
other hand the operators in the exponential function with f < t must be applied 
after the operator B^. Thus we may explicitly perform the time ordering by splitting 
the exponential function accordingly and obtain 

(14.39) 
1 

jdt' exp 
0 

"i 

jdt{A + /5)^ 
t' 

Bt' exp 
t' 

Jdt{A + l^B)^ 
0 
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Now that the individual time ordering has been performed, we may replace the op­
erators At and Bt by operators without the index t and perform the integrals. This 
yields 

1 
fdfexp[{l - f){A + l'B)]Bexp[t\A + l^B)]. (14.40) 
0 

We now take the trace of (14.40) and utilize the cyclic property (14.5), which allows us 
to bring the first exponential function in (14.40) to the right-hand side. The two expo­
nential functions can be amalgamated into a single one, which no longer depends 
on f. We may now perform the integral over f immediately, and this yields unity. 
We further observe that the order of the differentiation and trace operations can be 
exchanged, giving the desired result: 

47Tr{exp(A + A'5)} =Tr{5exp(A + A'5)}. (14.41) 
dA 

Let us now recall our initial goal. We wanted to differentiate the trace of p with 
respect to Aŷ. To this end we identify B with ^̂ ^̂  and the rest of the exponential 
function of p with A. We then immediately obtain our desired result 

^ T r M = T r { / V } (14.42) 

Using again the explicit form of p and the definition of Z, we readily obtain our 
final result 

/ , = T r { / V } = - ^ l n Z , (14.43) 

which is the complete analogue of (3.45). When we wish to take second derivatives 
of Z with respect to Ik, some of the above tricks can be used again, but the final 
result looks somewhat more complicated than the corresponding results of Sect. 
3.3. 

To conclude this section we mention that the results of Chap. 4 on thermo­
dynamics can also be translated into the quantum mechanical case. For instance 
when we use the energy of the system as constraint we obtain 

p = Z-'cxp(^-^^ (14.44) 

where H is the Hamiltonian operator, k Boltzmann's constant and T the absolute 
temperature. The partition function, Z, is defined by 

H-m^ Tr exp - - . (14.45) 
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14.3 Order Parameters, Enslaved Modes and Patterns 

In this section we wish to study how we can translate the results of Chap. 6 into quan­
tum mechanics. For this purpose we make again a specific choice of the constraints 

/ , = T r { / V } , (14.46) 

namely, we shall replace/^ by symmetrized moments, i.e. by 

{qj) (14.47) 

{qjqk + qkqj) (14.48) 

etc. In the following we shall include moments up to the fourth order. The density 
matrix which maximizes the information is then given by 

p = exp (-X-J2 ^jlj - E î/'W - - ) (14-49) 
\ J if J 

where the exponent contains expressions up to fourth order in qj. In the following 
we shall abbreviate the exponent by K where 

/7 = e^. (14.50) 

We shall follow as closely as possible the procedure of Chap. 6. We thus wish to 
eliminate the linear terms in (14.49, 50). Therefore we make the hypothesis 

qj = Cj^qj (14.51) 

where Cj is a c-number. When we insert (14.51) into (14.49), we obtain in particular, 
terms which are linear in qj and the coefficients of these are now required to vanish. 

î + Zl(^ii'9'+^j790 + - :0 . (14.52) 

One may easily convince oneself that the expression (14.52) can be arrived at if we 
require 

BV 
^ = 0 for^y (14.53) 
dqi ^ 

whereby we treat qj as c-numbers. 
We make the identification 

^° ^qj = 0 (14.54) 

SO that Cj is given by 

Cj = ql (14.55) 
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In this way we have transformed (14.49) into 

exp[-y(^)] (14.56) 

where V is replaced by 

Viq) = I + J2h'm' + - (14.57) 
jf 

Because we have chosen symmetrized moments we can be sure that 

ljf=lfj. (14.58) 

We now make the hypothesis 

'lJ = J2ikVkj (14.59) 
k 

where Vkj are c-numbers whereas ^j^ are operators. Inserting the hypothesis (14.59) 
into (14.57) we obtain for the quadratic term 

kk' [ jf ) 

We now choose Vkj in such a way that 

Yl '^Jf^kjVk'f = hhk' • (14.61) 
jf 

Because Jijf is a symmetric matrix we may choose Vkj to be a real matrix, and the 
values Ik are real. Under these transformations (14.49) is replaced by 

Piimis) =exp -I -J^Ul - E^^^' + "̂(̂ «) + ^si^u.U (14.62) 

where again we have distinguished between positive 1^ and negative X so that we 
can clearly distinguish between order parameters and enslaved modes. 

We now introduce a density matrix which refers to the order parameters ^^ 
alone by means of 

A,( '?«)=Tr,{/.(4,4)}- (14.63) 

Because the total trace is normalized, it follows that 

Tr{pJ = 1. (14.64) 

In analogy to the procedure in Chap. 6 we now with to split the density matrix p, which 
depends on the operators of the order parameters and enslaved mode, into a product of 
a density matrix (14.63) and a kind of conditional density matrix according to 

p{iu,is)=Pu{iu)ps{iM.)- (14.65) 
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When we take the trace on both sides over the variables which refer to the operators 
4 we obtain on the left-hand side (14.63) by definition. On the right-hand side we 
obtain 

p,{i,)Tx,{p,{Q^,)}. (14.66) 

Comparing the left- and right-hand sides we immediately obtain the relation 

Tr,{pMs\U} = 1 • (14.67) 

We now wish to transform (14.62) in such a way that it can be written in the form 
(14.65). This is by no means a trivial task because the operators ^ do not commute. 
In order to solve this problem we write (14.62) in the form 

p{^„, Q = exp[y„(c^„) + U^,„ Q] (14.68) 

where the notation is obvious and it is left open whether I is put into Vu or Vs. 
We now add and subtract an operator function h, so that we obtain 

(14.68) = exp[K + h{U - KU + VsiL. Q] • (14.69) 

It will be our goal to cast (14.69) into the form (14.65). To achieve this we need an 
auxiliary theorem. We shall consider the expression 

Texp 
1 
jdt{At + Bt) 
.0 

(14.70) 

which results from (14.35) by putting 1 = 1 . T is again the time ordering operator 
and At and Bt are operators which must be time ordered. We now utilize Feynman's 
disentangling theorem. According to this theorem (14.70) can be written in the form 

= e^re^ where (14.71) 

^ =/J^e-^^^e^Or • (14.72) 
0 

We now make the identifications 

Vu^h=A; -h + Vs=B. (14.73) 

This immediately allows us to derive the relation 

/7,(4) = exp[K + /.] (14.74) 

whereas the conditional density matrix is defined by 

/ . , (4 |4) = re«. (14.75) 

The still unknown operator function, h, must be determined in such a way that 

Tr,{p,{QU} = 1 • (14.76) 
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Let us summarize what we have achieved in this section. Starting from operator 
moments up to the fourth order we have constructed the density matrix by means 
of the maximum information entropy principle. Then by diagonalizing the bilinear 
part we have identified the operators that belong to the order parameters and to the 
enslaved modes. Finally, we were able to write the joint density matrix for ĉ^̂, 4 as 
a product, where the factor p^ is the density matrix referring to the order parameters 
alone, whereas p^ can be interpreted as a conditional density matrix. In complete 
analogy to the classical case, we may interpret Vkj as the pattern at the space points 
j belonging to the mode k, provided qj is, for example, an intensity attached to a 
space point j . It is quite remarkable that t' is a classical quantity, which means that 
the emerging patterns are described by classical quantities and can thus be inter­
preted without knowledge of any quantum mechanical wave function. 

To end this chapter we wish to demonstrate that the information can be split into 
two parts, one containing only the order parameters and the other containing the 
conditional density matrix, i.e. the enslaved modes. 

14.4 Information of Order Parameters and Enslaved Modes 

We start from the expression for the information of the total system 

/ = Tr{/?ln/?} (14.77) 

and insert into this the form (14.65), where the two factors are defined by (14.74) 
and (14.75), respectively. Using (14.69) in addition we obtain 

(14.77) = Tr {p,p,[{Vu + /̂ ) + {-h + V,)]} (14.78) 

which can be split into the sum of 

Tr4/7,(Tr,{/7j)(K + /.)} and (14.79) 

TVu{Pu^v,{pX-h^Vs)}}. (14.80) 

Because of (14.67) the expression (14.79) simplifies to 

Tr4/^.(K + /^)} (14.81) 

while the trace over s in (14.80) can be interpreted as the information belonging to 
the enslaved mode s. Because it depends on the operators ^^ it is an operator ex­
pression for the information and we write 

4 , op (U=Tr . t e ( - / j + ^ . )} - (14.82) 

Abbreviating (14.81), which refers to the order parameters alone, by /„, we obtain 
the final resuh for / (14.77): 

i = iu+Txu{puis,ov{iu)]- (14.83) 
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Thus in complete analogy to the classical case, it is possible to decompose the 
information of the total system into that of the order parameters and that which 
refers to the enslaved modes which is then to be averaged over the distribution or 
density matrix of the order parameters. 

In conclusion we can claim that it is possible to carry over a good many of the 
results that were obtained in the framework of the classical theory to the case of 
quantum mechanical operators. In particular our procedure allows us to identify 
patterns evolving in quantum systems by means of the matrix Vkj so that classical 
patterns can be recognized within quantum systems. 
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In the preceding chapter we have shown in which way we may extend the previous 
results of our book which refers to classical systems in physics, to the quantum do­
main. In particular we have seen how we can replace statistical averages by quan­
tum statistical averages where we replaced distribution functions by the density ma­
trix. This allowed us in particular to extend the maximum entropy principle into 
quantum physics. The use of these averages and corresponding ensembles implies 
implicitly that the systems under consideration undergo phase-destroying processes, 
be it because of internal interactions in large systems or be it because of the interac­
tion of the system under consideration with its environment. In the field of quantum 
information, which we wish to briefly present now, the phase relations, which we 
shall discuss below, must be strictly conserved and not disturbed by any external in­
fluences. 

15.1 Basic Concepts of Quantum Information. Q-bits 

As we have seen in this book, the basic unit of (classical) information theory is one 
bit. This is a set of two numbers 0 and 1, or the set "no", "yes", or "false", "true". 
The one bit unit can be realized by a variety of physical systems, e.g. "current off, 
"current on", or "atom in lower state", "atom in upper state", etc. In the context of 
classical physics it is important to note that in all cases we know with certainty that 
the system is in the one or in the other state. 

Let us now proceed to the concept of quantum information. Its basic unit is the 
n 

Q-bit. It can best be visualized by means of a spin of size - where h is Planck's 
constant, divided by In. In the context of quantum information we may ignore the 
factor h/2. With respect to a preferential direction, say the z-axis, the spin may 
show upwards or downwards. Each state is described by a wave function 0 which 
can best be represented in Dirac's bra- and ket-notation, namely as 

"spin up": 0 = |T) (15.1) 

"spin down": 0 = |i) (15.2) 

To have a more explicit representation of these spin states we may use a vector 
notation with two components so that 
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l t )^( J l l i ) ^ f ? V (15.3) 

So far nothing has changed as compared to the classical bit unit. However, the cru­
cial difference of a Q-bit compared to the usual bit consists in the fact that we may 
form coherent superpositions between the spin states, 

W = a\i)+m, (15.4) 

where a and jS are complex coefficients which must be normalized so that 

\a\' + m' = l. (15.5) 

All the states which can be written in the form (15.4) under the condition (15.5) 
form a Q-bit. The vectors (15.3) with (15.4), (15.5) span a 2-dimensional Hilbert 
space. Being realized by physical systems such as spins a Q-bit can be manipulated 
from the outside. E.g. a spin which is connected with a magnetic moment can be 
changed in its direction by means of an applied oscillating electromagnetic field 
(for details see Sect. 16.6). Choosing its frequency co = AE/h, where AE is the en­
ergy difference between the two spin-directions "up" and "down" in a constant 
magnetic field, a specific field strength and duration, a spin which shows initially in 
the minus z-direction can be flipped to any other chosen direction ranging from the 
minus z-direction to the plus z-direction. Because the electromagnetic field is ap­
plied for only a specific time, one speaks of pulses and in correspondence to the 

71 71 

final direction of the spin one speaks e.g. of - - and 7r-pulses. Here a —pulse trans­
fers a spin which initially shows in the -\-z or -z-direction into the equatorial plane 
whereas a 7r-pulse transfers it to the opposite direction. From the mathematical 
point of view these flips can be described by operators in form of 

f C0SW2) s i n W 2 ) \ 
^"-(^-8^(^/2) cosW2)J- ^̂ -̂̂ ^ 

acting on the states (15.3) or their superpositions (15.4). Readers who want to learn 
more about the spin formalism are referred to Sections 16.5, 16.6. 

These matrices are unitary. We remind the reader of the property of a unitary 
transformation. Let the matrix U have the matrix elements 

U={Ukj) (15.7) 

and the matrix U^ 

C/+ = (C/+) (15.8) 

with the property 
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Utj = U;, (15.9) 

(where * denotes the complex conjugate) 

then the matrix elements must obey relations so that the matrix product obeys 

UU^ = 1 (15.10) 

where 1 is the unity matrix I 1. Other physical realizations of Q-bits are by 

two-level atoms or by photons with their polarization, to mention but a few exam­
ples. The concept of quantum information was mainly introduced in order to dis­
cuss and eventually construct quantum computers. 

15.2 Phase and Decoherence 

The general wave function corresponding to a Q-bit has the form 

\w)=a\^)+m- (15.11) 

As is well known from quantum theory, in order to extract numerical measurable 
values from (15.11) one has to form expectation values of the corresponding opera­
tors. Let us consider, as an example, the expectation value of the x-component of 
the spin. We denote the corresponding spin operator by Sx. Then in the bra- and 
ket-notation, which we use everywhere in this chapter, the expectation value is giv­
en by 

(^|.,|v.) = | ap( rk |T) + | j f f | ' a k x | i ) + a W k U ) + « r ( i k x | T ) - (15.12) 

Because a and jS are complex quantities we can write them in the form 

a = ne'^\ fi = r2e'^^ (15.13) 

where n , r2 are real amplitudes and Xi^ Xi phases. As can be seen from (15.12), 
what matters is the relative phase 

/ = / i - / 2 - (15.14) 

Now assume that the spin under consideration is coupled to an environment which 
pushes the spin all the time so that one may speak of spin-diffusion. What happens 
to the coefficients which appear in (15.12) when we now make an average over 
these different spin orientations? Because this phase does not appear in the absolute 
values 

\a\\ m\ (15.15) 
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where we denote the average by a bar, a phase average leaves them unchanged. On 
the other hand because during spin diffusion the relative phases may take all kinds 
of orientations the average vanishes so that 

a^^O. (15.16) 

The terms a*ŷ , ajS* are typical for a quantum mechanical superposition. However, 
when the spin is coupled to its environment these terms vanish and the quantum 
mechanical coherence gets lost. Thus we must speak of decoherence. In the follow­
ing it shall be understood that the coupling of our quantum system to the environ­
ment is zero so that no decoherence effects appear. 

15.3 Representation of Numbers 

One of the main goals of the theory of quantum information is to construct a quan­
tum computer. This is a device which processes numbers. In order to learn how this 
can be done I briefly remind the reader of some basic facts of mathematics. Our 
conventional number system is a decimal system in which each number can be re­
presented as a polynomial of powers of 10, i.e. in the form 

N = GnlO'' + Gn-llO''-^ + ... + GQ , (15.17) 

where it is understood that the coefficients obey 

0<aj < 9 , j = 0, l,...,/2. 

E.g. the number N = 137 is then represented in the form 

137 = 1 •10^ + 3 -101+7 . (15.18) 

Instead of the basis 10 we may use any other basis. The most common and impor­
tant basis is the number 2 in which case N can be written as 

N = bm2^ + bm-i2^-^ + ... + ^0 . (15.19) 

Consider as an example 

7 = 1-2^+ 1 - 2 + 1 , (15.20) 

which can be written in analogy to the decimal system in the form 

111. (15.21) 

Let us take as another example the above number 137, then one can easily check 
that 
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137 = 1 • 2'̂  + 0 • 2^ + 0 • 2^ + 0 • 2^ + 1 . 2^ + 0 • 2^ + 0 • 2 + 1 (15.22) 

holds so that in this binary system the number N is written as 

10001001. (15.23) 

15.4 Register 

How can we store these numbers physically? We consider a set of non-interacting 
spins. Consider as a simple example three spins which are described by their wave 
functions 

n 92 93 • (15.24) 

Because these spins are non-interacting we may simply form their product in order 
to represent the total system. Consider the spin configuration given by 

4>i = IT), <p2 = \ i ) , h = IT) (15.25) 

so that (15.24) acquires the form of the left hand side of 

IT)li)IT) = ITiT)- (15.26) 

Now theoretical physicists as well as mathematicians are lazy people, at least what 
the writing of formulas is concerned. Thus instead of writing the left hand side one 
introduces the right hand side of (15.26). Note that the right hand side is just a 
shorthand of the left hand side and that the sequence of arrows indicates the index 
of the corresponding spin, i.e. more precisely the left hand side of (15.26) reads 

IT)ili)2lT)3- (15.27) 

Now a simple but remarkable trick can be used time and again, namely we can rep­
resent any number in a variety of ways, be it in the decimal system, or in the binary 
system, or eventually by means of physical states represented by (15.26), e.g. 

(decimal) 5 ^ 1 • 2^ + 0 • 2̂  + 1 • 1 

^ 1 0 1 (binary) 

^ I n t ) (spins) (15.28) 

Or we may use as a shorthand the bra- and ket-notation and use 

| 5 ) ^ | 1 0 1 ) ^ | T i T ) . (15.29) 

In this way, any number can be represented by a sufficiently large number of spins. 
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15.5 Entanglement 

One of the most surprising facts is that of entanglement which has been strongly at­
tacked by Einstein jointly with Rosen and Podolsky but which is now well estab­
lished experimentally. As an example consider the wave function 

Mr)Mi) + MDM^) • (15.30) 

It implies that when spin no. 1 is measured with "spin up" then necessarily spin no. 
2 must be in the "spin down" state. When we use photons instead of spins where 
the polarization direction replaces the spin direction, then experiments show that 
two photons exhibit this entanglement even if they are kilometres apart from each 
other; first the two photons are produced in an entangled state in a crystal, then 
they propagate in different directions. When the polarization of one photon is mea­
sured, the corresponding polarization of the other photon is fixed. 
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The present situation of quantum computation reminds me of the early days of laser 
physics. At that time it was felt that the concept of the laser is a wonderful idea but 
hardly any application of the laser was seen at that time. It was said that the laser 
was a solution to problems which still have to be found. As we all know, this situa­
tion has dramatically changed in the meantime with the overwhelming variety of 
applications of the laser. At present it is said that the quantum computer is a fasci­
nating concept but still there are only few applications where it can show its super­
iority to classical computers and even here the really convincing applications are 
still ahead of us. At present, one of the few outstanding possible applications of 
quantum computers is Shor's algorithm for the factoring of large numbers. We post­
pone the presentation of the motivation to tackle this problem to Section 16.4 be­
low. In this chapter we proceed as follows. We first remind the reader of the basic 
elements of classical computers, i.e. gates. Then we discuss their quantum analo­
gues. Finally we present Shor's approach to factor large numbers by means of the 
quantum computer. 

16.1 Classical Gates 

Gates, be them classical or quantum, process information. Let us consider first of 
all logical operations and let us illustrate the whole procedure by simple physical 
systems. Let us consider two wires A, B in sequence which can be switched to be 
active or non-active for an electric current. Clearly at the output an electric current 
arrives only if both wires are in their active state. This result can be represented by 
a truth table representing the logical operation AND. 

Table 1 

A\B 
0 
1 

6.1 

0 
0 
0 

1 
0 
1 
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When we arrange the wires in parallel, we can readily convince ourselves that this 
device realizes the operations OR. 

Table 16.2 

A\B 
0 
1 

0 
0 
1 

1 
1 
1 

An important operation is the exclusive OR (XOR) which is represented by 

Table 16.3: 

A\B 
0 
1 

0 
0 
1 

1 
1 
0 

Here a non-vanishing output appears only if either A or B are on but not both. 
These truth tables reveal a very important aspect of conventional classical compu­
ters, namely in each case two input numbers are used to produce only one output 
number. This implies that these processes are not invertible mathematically or, 
physically speaking, that the processes are irreversible. The irreversibility implies 
heat production. Thus in the past a number of schemes referring to classical compu­
ters were proposed to minimize heat production which becomes quite a problem 
when the devices are miniaturized. However, the price to be paid for a reversible 
computer is that additional information must be stored. 

It is well known mathematically that the logical operations such as AND and 
OR form a Boolean algebra, which physically can be realized by a network of cor­
respondingly connected gates. With respect to quantum computers and classical 
computers as well we note that there is an equivalence between logic operations 
such as represented by AND and OR and algebraic manipulations such as addition 
and multiplication (or their combinations). E.g. the operation AND corresponds to a 
multiplication in the binary system as is easily checked by comparing 

0 • 0 = 0, 0 • 1 = 0, 1 • 0 = 0, 1 • 1 = 1 (16.1) 

with the truth Table 16.1. 

16.2 Quantum Gates 

In the quantum domain the gates described in the preceding section are replaced by 
quantum gates which are reversible and can be mathematically described by unitary 
transformations. We already encountered the action of a quantum gate acting on an 
individual spin in Section 15.1. Writing instead of "spin down" and "spin up" the 
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numbers 0 and 1, respectively, we may rewrite the action of the gate represented by 
(15.6) with ^ = 7i/2 in the form 

f/|0) = |0) + |l) (16.2) 

up to a normalization factor —=z 1. Consider the simplest example of a register 
V2, 

composed of only two spins and consider gates transforming simultaneously the in­
dividual Q-bits (spins). We introduce the product of operators 

f/tot = UixU2 (16.3) 

with the actions 

Uj\0}j=\0)j + \l)j. (16.4) 

(The sign x indicates the direct product.) 
Then we may form 

C/to,|00) = C/i|0)iC/2|0)2 

= (|0) + |1))(|0) + |1)) (16.5) 

or by multiplying the products out we obtain 

= |00) + |01) + |10)+|11) 
4' 4' 4' 4' 

= 0 + 1 + 2 + 3 . (16.6) 

In our example the operation (16.5) with (16.4) has produced out of the state zero 
four states representing the numbers from 0 to 3 in binary representation. In pro­
ceeding from the upper to the lower row in (16.5) we dropped the indices referring 
to the individual spins because these indices can be read off, at least implicitly, by 
means of the sequence of factors (remember the laziness principle!). Quite gener­
ally, by flipping simultaneously all the N spins of a register from the down state 
into the superposition (16.4), we obtain a superposition of states 

M 

f/tot|00...0) = ^ | / 2 ) , (16.7) 
n=0 

where M = 2 ^ - 1. 
Quite generally we may state that a quantum logic gate is a device which per­

forms a fixed unitary operation on Q-bits in a fixed period of time. A quantum net­
work is a device consisting of quantum logic gates whose computational steps are 
synchronized in time (D. Deutsch, Proc. R. Soc. Lond. A 425, 73 (1989)). 

Let us consider examples of important quantum gates. The Hadamard gate is re­
presented by the matrix 
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" ^ 7 1 ( 1 - 0 "'•̂ *' 
acting in the state space 

,0,. c 

|l) = ( i ) ^ (16-9) 

It acts on the vectors (16.9) according 

/ / | v ) = - J = ( ( - i n v ) + ( l - v ) ) (16.10) 

or more explicitly 

H | 0 ) = - ^ ( | 0 ) + |1)) 

/ / | 1 ) = - L ( ( - 1 ) | 1 ) + |0)). (16.11) 

In a pictorial representation it is given by Fig. 16.1. 
In terms of spins, this gate flips a spin from its -z or z-direction into the hori­

zontal plane. The phase shift gate is represented in the same space by 

with the result 

U^\v)=e'^\v) (16.13) 

and represented by Fig. 16.2. 
The Hadamard and phase shift gates allow us to generate the most general state 

of a single Q-bit as shown in Fig. 16.3. 

| v ) ^ ^ ( - l ) » + | l - v ) 

Fig. 16.1. Representation of the Hadamard transform 

|v) • e'^'^lv) 

Fig. 16.2. Representation of the phase shift operator 
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2^ + < 

|o)̂ m- •cosi^|0) + ^''^sini^|l) 
2 

Fig. 16.3. A combination of Hadamard and phase shift operation 

Note that the most general wave function can always be written in the form 
shown on the right hand side of Fig. 16.3 because the coefficients a and j^ of the 
representation (15.11) are only determined up to a common phase factor. 

The most important two-Q-bit-gate is the controlled-Not or XOR-gate which 
can be considered as the extension of the classical XOR-gate into the quantum 
domain. This gate flips the second Q-bit (target) if the first (control) Q-bit is |1) 
and does nothing if the control Q-bit is |0). If a representation of the basic vectors 
is chosen in the form 

100) 

110) 

0 
0 

101) = 
1 
0 vo/ voy 

0 
1 

Vo^ 
l l l ) = 

0 
0 

vl 
(16.14) 

the matrix operation corresponding to XOR is given by 

^XOR 

/ I 
' 0 

0 

0 
1 
0 
0 

0 
0 
0 
1 

0 
1 
0 / 

(16.15) 

So far we have shown the most important steps which allow us to build a quantum 
computer. To repeat, such a computer consists of a register composed of individual 
Q-bits represented e.g. by spins, each in a specific initial state, e.g. "spin down", 
and using a network of devices, the logical gates, these spins are subjected to physi­
cal operations so that eventually a specific final state of the register is reached. 
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16.3 Calculation of the Period of a Sequence 
by a Quantum Computer 

In this section we want to explain the core of Shor's approach where the concept of 
the quantum computer enters in a decisive fashion. This relies on the fact that the 
quantum computer allows the calculation of a very large number of initial inputs in 
parallel. The task to be solved is this: We start from positive integers /i = 0,1,2,... 
and form functions f{n) = x^ where x is some integer number. Then by a simple 
algorithm one can change this function so that it becomes periodic, i.e. 
f{n + L) =f(n). If n, L are large numbers the determination of L becomes an ex­
tremely time consuming problem for conventional computers which at present rep­
resents an insurmountable problem for numbers with, say, 250 digits. 

We start from a register with K spins so that there are M = 2^ states. In other 
words, the register can represent numbers from zero till 2^ — 1. We use a second 
register which is large enough so that the results of the evaluation of the function 
f{n) can be stored. We start with a state in which both registers are in their zero 
state, i.e. "all spins down" 

|0,0) = |0,0,...;0,0,...). (16.16) 

We now apply the spin flip operator (16.7) to the first register 

f/tot|0,0...;0,0,...) (16.17) 

so that we obtain a new state 

1 M - l 

l '^ )=^El«50) - (16.18) 

Now we let the computer do its first calculation which is achieved by a series of 
transformations which are altogether a unitary transformation Uc- This can be done 
to each individual state according to 

C/c|n;0) = !«;/(«)). (16.19) 

But now the crucial point of the quantum computer enters, namely we may apply 
Uc also to the total wave function in (16.18). Because of the linearity of quantum 
mechanics we obtain 

1 M - l 

Uc\'P)=^=J2Uc\n;0)^\r) (16.20) 

and using (16.19) the result 
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1 M - 1 

l'^')=;^E !«;/(«))• (16-21) 

Though the sum over n is very large, sending the wave function (16.18) through the 
computer according to Uc, we obtain the results of all the numerous calculations si­
multaneously. 

In order to find the period, we subject the state \n) to a quantum Fourier trans­
formation which can be achieved by unitary transformations 

-I IVI — I 

Inserting (16.22) into (16.21) we obtain 

, M - l A f - l 

=0 k=0 

It is quite crucial that during the whole process quantum coherence is preserved as 
is witnessed by the superpositions in (16.18), (16.20), (16.21), and (16.23). This re­
quires that no measurements are made during this process and, of course, that the 
whole process is not disturbed by the environment. Now in the final step a measure­
ment is made on the first register by measuring all the spins with respect to their z-
components. What is the probability of finding a specific spin configuration, i.e. 
finding a specific number kl A clear-cut answer can be given if the function / is 
periodic. As we shall show in detail, the sum over n yields a constructive interfer­
ence from the exponential functions only when (k/M) is a multiple of the reciprocal 

period - . 

Periodicity of/(/i) implies that for 

/2 = 0 , . . . ,L- 1 (16.24) 

the functions f{n) are all different from each other but that for larger n the corre­
sponding repetitions occur. Therefore we write 

n = n +L'l, / = 0,1,.. . , n =0,...,L- 1 (16.25) 

and split (16.23) into the sums 

M - l L-1 M'-l 

^ = ^ ^ + r e s t (16.26) 
n=0 n'=0 1=0 

where M' = I 
M 

is the largest integer < — and the rest is given by 



16.4 Coding, Decoding and Breaking Codes 229 

M-1 

rest= Yl . (16.27) 
n=LM'-l 

We may assume that for sufficiently large M the rest can be neglected. Inserting 
(16.26) into (16.23), splitting n according to (16.25), and rearranging sums we ob­
tain 

1 L - l M'-l 

k n'=0 1=0 

The last sum is a geometric series which can be evaluated to yield 

-ĵ  _ ^2niLM'k/M 

\ _ ^IniLkjM ' 
(16.29) 

According to quantum mechanics, the probability of finding a specific configuration 
^ = ^Ms given by the absolute square of the coefficient of the state \k'). This coeffi­
cient is essentially determined by (16.29). It tells us that the maxima of its absolute 
square lie at values k = kd 

M 
kd = —d, J =1,2. . . (16.30) 

and that the probability distribution has a comb structure. From this we can deduce 
the length (minimal) according to 

L = ^ . (16.31) 

As is well known the peaks of the absolute value of (16.29) are the more pro­
nounced the larger the ratio M/L. This allows precise estimates of the accuracy of 
this approach. 

Note that the results of the measurements are of a probabilistic nature so that 
the measurement of the spins in the first register must be made sufficiently often 
(for precise estimates cf. references). 

16.4 Coding, Decoding and Breaking Codes 

Presently quantum information is playing an increasingly important role in coding 
and possibly decoding. In order to show the relevance of the quantum approach we 
briefly remind the reader of results in classical information. We start with some 
simple mathematical concepts. 
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16.4.1 A Little Mathematics 

An integer TV > 2 is said to be prime if it is divisible only by 1 and N. The greatest 
common divisor of two integers N and N^ is the greatest positive integer D which 
divides both N and N\ We denote D by 

D = gcd{N,N'). (16.32) 

Two integers TV, N' are coprime if 

gcd{N,N') = 1. (16.33) 

The modulo-formalism 
Consider two positive integers a, N. We put 

amodN = r (16.34) 

where r is a positive integer. It can be found by the formula 

a = mN + r (16.35) 

where m is a positive integer and 

0 < r < T V - l . (16.36) 

In other words, in order to find r we divide a by N and retain only the rest. The 
modulo-formalism has a number of rules. One of their most important ones are 

{a ' b) mod N = {a mod N){b mod N) mod N (16.37) 

and 

{a ± b) mod N = {a mod N ^b mod N) mod N. 

16.4.2 RSA Coding and Decoding 

In our time cryptography is based on computational complexity, i.e. the difficulty of 
breaking codes numerically. One of the most popular codes is that of RSA (Rivest, 
Shamir, Adleman). If someone wants to receive an encoded message, this person 
can publish a so-called public key which consists of two numbers N and ^. In it TV 
is a product of two large prime numbers, p and q 

N=p'q. (16.38) 
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e must be coprime to both p — 1, ^ — 1. In order to send a message, in the first step 
it is encoded by numbers, e.g. a number is attributed to each letter of the alphabet. 
Then the message is broken into pieces each representing a number with 

m<7V. (16.39) 

To encode this piece the formula 

c = m'mod7V (16.40) 

is used. Decoding can be done again by a simple formula, namely 

m = c^mod7V. (16.41) 

Here the exponent d is determined by 

ed = 1 mod {p - l){q - 1). (16.42) 

The solution of (16.42), i.e. the determination of d, can be done by conventional 
procedures and does not require too much effort. However, the difficulty consists in 
knowing the factors p — 1,^ — 1, or, in other words, the factors p and q of N. Ac­
cording to present computational algorithms the decomposition of a known number 
N into its prime factors according to (16.38) requires a very large time which even 
for moderately large numbers N can last longer than the age of the universe. Thus 
one of the main objectives of quantum computers is to solve this problem. The first 
crucial steps, which involve quantum computation, were described in Section 16.3. 
Now we want to show how the determination of the length of a period can be used 
to solve (16.38). 

16.4.3 Shor's Approach, Continued 

As we have seen, Shor's formalism of the quantum computer allows us to determine 
the period of functions which are generated by some algorithm. Following the same 
author we want to show how we are now able to factor a number N. To this end we 
choose an integer number x and assume that Â , x are coprime. We consider the 
function 

f{n) =jc^mod7V (16.43) 

for /I = 0,1,2,.... This series acquires the form 

1,JC,JĈ  ...,jc^-i; l,jc,jc^ ...,jc^-i;... (16.44) 

where L is the first number where 

jĉ  = lmod7V (16.45) 
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holds. L is the smallest length of the period. We assume that L has been determined 
by the quantum computer. More technically speaking, we require N^ <M = 2^ for 
a sufficient resolution of the Fourier transform step according to Shor (1994), Ekert 
and Josza (1996). Provided L is even we may write (16.45) in the form 

(jc /̂̂  + l)( jc^/^- 1) = 0 mod TV. (16.46) 

If L is not even we must choose another x. To draw further conclusions from 
(16.46), we write it in the form 

^ = m (16.47) 

where according to the modulo-formalism m must be an integer. Here 

a = (jc /̂̂  + 1) (16.48) 

and 

b = (jc /̂̂  - 1) . (16.49) 

Invoking the modulo-formalism we may assume 

0<a<N, 0<b<N. (16.50) 

Can a and b be equal to zero? The relation 

b = OmodN (16.51) 

implies 

jc^/^ = lmod7V (16.52) 

which says that the period is L/2 but not L in contradiction to the assumption that L 
is the shortest period. In the case a = 0 we have 

jc^/^ + 1 = 0 mod TV (16.53) 

which implies that a is divisible by N and we cannot deduce any factors from N by 
the formalism. Thus we must try the procedure with another x. Note that the whole 
procedure fails, of course, if N is prime. But in this case we do not need any factor­
ing at all. In the following we assume 

jc^/^ + 1 ^OmodTV. (16.54) 

Both a and b must have common factors with Â , which is illustrated by the follow­
ing example where N is a. product of two prime factors 

N=pq. (16.55) 



16.5 The Physics of Spin 1/2 233 

Then (16.47) acquires the form 

^ = m, (16.56) 
p-q 

which means that a must be divisible by p (or q) and b must be divisible by q (or 
p). Generally, in order to find factors of N we have to calculate the greatest com­
mon divisors of a and b individually with Â , i.e. 

di = gcd{a,N), d2 = gcd{b,N). (16.57) 

Actually both divisors (16.57) must be factors of TV we have sought. 

16.5 The Physics of Spin 1/2 

In the context of the mathematics of quantum computation only the z component of 
the spin, i.e. ^̂ , appears explicitly. When we wish to deal with the underlying phys­
ics, especially with respect to physical realizations of a quantum computer, we must 
take care of the fact that s^ is just a component of a 3-dimensional vector 

s = {sjc,Sy,Sz). (16.58) 

In a suitable quantum mechanical description the components are operators de­
scribed by Pauli matrices 

where h is Planck's constant, divided by In. Because these operators do not com­
mute (actually they obey commutation relations of the quantum mechanical angular 
momentum) we can determine eigenfunctions just to one of these components. 
Usually one chooses the eigenfunctions to s^. They are given by two-dimensional 
vectors 

h ^ IT) = Q (16.60) 

and 

4^1 ^ li) = ( i ) (16.61) 
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and thus fulfil the equations 

h h 
Sz(t>i=2^h Sz(t>i = -2^i- (16.62) 

As we shall see below, we have to consider also superpositions of the form 

(/) = a ( / ) t + M = ( ^ ) (16.63) 

with the normalization condition 

|«P + |ySp = 1. (16.64) 

\a\ and \fi\ are the probabilities for finding the +z and -z direction, respectively, 
when the z-component of the spin-state (16.63) is measured. In order to visualize 
the physical content of the superposition (16.63), we form expectation values which 
in the notation of vectors and matrices are defined by 

(.,) = ( a * , r K ( ^ ) . (16.65) 

A simple evaluation using (16.63), (16.60), (16.61), and (16.59) yields 

{s,}=^ia*/i + an, (16.66) 

:h{af^*-a*f^), (16.67) 

{s.)=l{\a\'-\fi\') (16.68) 

whose verification we leave as a little exercise to the reader. We note that all physi­
cally relevant results, e.g. those expressed by the expectation values, are indepen­
dent of a common phase factor e^^ of a and fi 

(f)^e'^(f). (16.69) 

In order to elucidate the meaning of the results (16.66)-( 16.68), we write the coeffi­
cients a,y^ in the form 

a = c o s | , ŷ  = ^^^sin|. (16.70) 
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We then obtain 

h 1^ 1^ 

{sx) = - s i n - c o s - • 2cos / (16.71) 

or using a trigonometric identity we find 

h 
{sx) =-sin ' i^cos/ . (16.72) 

Similarly after a little calculation we obtain 

h 

(sy) =-s in i^s in / (16.73) 

and 

{s,)=^cos^. (16.74) 

Quite clearly i^ is an angle which the spin forms with the z direction whereas / is 
an angle between the spin projection on the x-y plane with the corresponding axes. 

16.6 Quantum Theory of a Spin in Mutually Perpendicular 
Magnetic Fields, One Constant and One Time Dependent 

A number of important experiments on spin have been carried out with the follow­
ing arrangement: both a constant, spatially homogeneous magnetic field in the z di­
rection and an oscillating field in the x-y plane are applied. This leads to the inter­
esting phenomenon of spin flipping which is fundamental for quantum computation. 

We shall see that we can easily solve these problems using the spin formalism 
introduced in Sect. 16.5. We write the magnetic field expressed as a time-dependent 
and a time-independent part: 

B=Bo+B^{t), (16.75) 

where the vectors of the magnetic fields are defined as 

^0 = (0,0,5^) (16.76) 

and 

B^{t) = {B^,{t),Bl{t),0). (16.77) 



236 16. Quantum Computation 

The spin wave functions must obey, as always in quantum mechanics, a Schrodin-
ger equation in which a Hamilton operator acts on the wave function and thus de­
termines its time evolution. This Hamilton operator is obtained by "translating" 
classical observables in the energy function into their corresponding operators. In 
the present case of spins, these are the Pauli matrices and the Schrodinger (or Pauli) 
equation reads 

-^{Bs)4) = m^ (16.78) 

(e: charge of spin-particle, mo its mass). 
We write the solution of the Schrodinger equation in the general form 

<t>{t) = c,m^+c2mi^(^j^^^. (16.79) 

To arrive at equations for the still unknown coefficients ci and C2 we substitute 
(16.79) in (16.78). Observing the decomposition (16.75-16.77) and using the matrix 
form of Sx^Sy, and s^ we obtain the Schrodinger equation in the form 

where ju^ = eh/{2mo). If we multiply the matrix, we obtain more explicitly 

(-Hcoojci+jUBiBl - iB'y)c2 = ihci, (16.81) 

IIB{BI + B'^)ci - -hcooC2 = mc2 . (16.82) 

Here we have introduced the frequency 

(Oo =2iij^Byh (16.83) 

as an abbreviation. In order to simplify the following calculation, let us think of the 
transverse magnetic field as rotating with the frequency (o. In other words, the mag­
netic field has the form 

B^ = F cos cot, 

B'y =Fsmcot. (16.84) 
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Since B^ and B^ appear in (16.81, 16.82) in a combined form, let us first consid­
er these expressions. We can express them as an exponential function, due to ele­
mentary relationships between sines and cosines: 

B^ ± iBy = F{coscot ± isincot) = Fcxp{±icot). (16.85) 

Then (16.81, 16.82) simplify to 

{hcoo/2)ci -\- JUQFexp{—icot)c2 = ihci, (16.86) 

JUQFexp{icot)ci — {hcoo/2)c2 = ihc2 . (16.87) 

We shall solve these two equations in two steps. In the first, we put the coefficients 
Cj{t) into the form 

ci(t) = di{t) exp(-/a;oV2); C2{t) = d2{t) tx^{icDot/2). (16.88) 

If we substitute this in (16.86), (16.87), perform the differentiation and rearrange, 
we obtain 

li^Ftx^[—i{(o — (OQ)t\d2 = iMi, (16.89) 

li^Ftx^[i{(o — (Oo)t\di = iM2 . (16.90) 

These equations become very simple when we set the rotational frequency of the 
magnetic field oj equal to the spin frequency COQ: 

CD = CDQ, (16.91) 

which corresponds to a typical experimental arrangement. We then obtain 

jUQFd2 = ihdi , (16.92) 

ju^Fdi =md2. (16.93) 

With the abbreviation jUsF/H = Q, the solution to (16.92), (16.93) reads 

di =asm{Qt + 0), (16.94) 

d2 = iacos{C2t + <P), (16.95) 

where the amplitude a and phase <P are free to vary. The normalisation condition 
for the spin wavefunction requires that a = I. If we substitute (16.94), (16.95) in 
(16.88) and this in (16.79), and do the same with (16.94), we obtain the desired 
spin wavefunction 
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(t){t) = sm{C2t) cxp{-i(Oot/2)(j)^ + icos{C2t) cxp{i(Oot/2)(j)i. (16.96) 

The spin functions and the spin formalism naturally seem very unintuitive. In order 
to see the meaning of the above equations, let us remember that the immediate pre­
dictions of quantum mechanics can be read from the corresponding expectation val­
ues (Sect. 16.5). We shall first develop the expectation value of the spin operator in 
the z direction. A comparison of (16.63) with (16.96) shows that we can now ex­
press the a and jS of (16.63) in the form 

a = sin(^^) exp{—icoot/2), 

j3 = icos{Qt) exp{i(jQot/2). (16.97) 

These can be immediately substituted into the end results (16.66-16.68), however, 
to give 

{s,) = {h/2) s,m^{Qt) - cos^(Qt) 

= -{n/2)cos{2Qt). (16.98) 

According to (16.98), the z component of the spin oscillates with the frequency 2Q. 
If the spin is originally down at ^ = 0, it flips up, then down again, and so on. 

For the other components, 

h 
{sjc) = --sm(2Qt) sm{coot), (16.99) 

H 
(sy) = --sm{2Qt) sm{(jQot). (16.100) 

These equations indicate that the spin motion in the x-y plane is a superposition of 
two motions, a rapid rotational motion with the frequency COQ and a modulation 
with the frequency 2Q. The entire result (16.98-16.100) can be very easily inter­
preted if we think of the expectation value of the spin as a vector s with the compo­
nents {sx), {sy), and {s^). Obviously the projection of the vector on the z axis is 
{H/2)cos{2Qt), while the projection in the x-y plane is {H/2)sm{2Qt). As can be 
seen from the formulae, the spin gradually tips out of the -z direction toward the 
horizontal, and then further into the -\-z direction, while simultaneously precessing. 
The spin thus behaves exactly like a top under the influence of external forces. 

We shall consider this process again, in more detail. At a time ^ = 0, 

{s,) = -h/2. (16.101) 

We now ask when the spin, considered intuitively, is in the horizontal position, i.e. 
when 

{s,)=0. (16.102) 
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Fig. 16.4. Visualization of spin flips 

This is clearly the case when the cosine function vanishes, that is when 

2Qt = 7i/2 (16.103) 

holds, or when the time 

t = 71/{4Q) = 7ih/{4jUBF) (16.104) 

has passed. If one allows the transverse magnetic field to act upon the spins for this 
time, they will be pointing in the horizontal position (Fig. 16.4). In other words, 
they have been rotated by an angle 7i/2. We therefore speak of a 7i/2 or of a 90° 
pulse. 

Naturally, we may allow the magnetic field to act for a longer time, for example 
until the spins are pointing up, i.e. 

{L) = n/2. 

This occurs when 

cos (2̂ 2̂ ) = - 1 

is fulfilled, i.e. after the time 

t = 7IH{2JUQF) . 

(16.105) 

(16.106) 

(16.107) 

In this case, we speak of a TT or of a 180° pulse (Fig. 16.4). 
With these considerations, we have sketched the most important traits of spin 

resonance. By applying a rotating magnetic field, we can cause the spin to flip from 
one direction to another. In practice, of course, one does not apply a magnetic field 
rotating with the spin frequency, but a linearly oscillating magnetic field. This can 
be pictured as a superposition of two fields rotating in opposite directions. Then 
one of the fields rotates with the spin, as before, while the other rotates with twice 
the frequency, as seen from the point of view of the rotating spin system. 

The corresponding equations have practically the same form as those above, ex­
cept for an additional, rapidly oscillating term, which comes from the "oppositely 
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rotating" magnetic field. To a good approximation, this can be ignored; the result is 
the "rotating wave approximation". 

In conclusion of this section we make contact with the notation used in quantum 
information and quantum computation. To this end we make use of the fact that 
wave functions are fixed only up to (constant) phase factors, which we now adjust 
appropriately. The result (16.96) can be expressed as 

4' = e-'--^'(. " " ^ t . ^ ,V (16.108) 

We write the wave function in such a form that at an initial time to it coincides with 
the "spin up" or "spin down" wave functions, respectively, which we used in chap­
ter 15 and the previous section. We want to count the time in such a way that the 
initial states are given by t = 0. Thus we make the replacement 

t^to + t (16.109) 

in (16.108) which yields 

0(O=.--o^/V-oW2f '';^'''^''\'-^\. V (16.110) 

To meet the condition (note the new phase factor!) 

</'(0)=(^) (16.111) 

we drop the constant phase factor in front of (16.110) and make the choice 

Qto+ 0 = 0, €'"'''' =-i. (16.112) 

Thus our result with the initial condition (16.111) reads 

V^os Qt' ^'^07 

In order to fulfil 

(16.113) 

m = Q (16.114) 

we make the choice 

Qto + 0 = n/2, e''^''' = -i (16.115) 

and obtain 
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^ y-sinQt'e'^^otJ ^ ^ 

From (16.113) and (16.116) we can construct a unitary transformation that when 
applied to (16.111) or (16.114) just yields (16.113) or (16.116), respectively. This 
unitary transformation reads 

^^^-ic^ot/if COS Qt sin Qt \ 
y-sinQte''^'' cosate'"^''J ' l i o . i i / ; 

At this instant we can make contact with the unitary operator (15.6) which has been 
introduced in the context of the quantum computer above. When choosing a vanish-
ingly small constant field we may put 

600=0. (16.118) 

Equivalently and more realistic, we may measure the spin in a corotating frame. 
Identifying Qt with i^/l in (16.70) we realize that by these operations we obtain 
the flip of the spin from the -z direction into the horizontal plane or into the +z di­
rection. In this way we may see the physical realization of the unitary transforma­
tion (15.6). Choosing somewhat different initial conditions with other phase factors 
one may convince oneself that the Hadamard transformation introduced in (16.8) is 
also just a spin flip operator from the -z direction into the horizontal plane. 

16.7 Quantum Computation and Self-Organization 

In conclusion of this chapter let us discuss whether quantum computation has some­
thing to do with self-organization as studied in this book. In my approach self-organi­
zation is understood as a process in which systems without specific interference from 
the outside are able to produce spatial or temporal patterns in physical systems or, 
more generally speaking, are compressing information in a specific way. This kind 
of selection process requires competition mechanisms which in turn require dissipative 
processes in one way or another. These dissipative processes are at least in general in­
troduced by coupling a system to the environment or, if we are dealing with large sys­
tems, by internal thermo-dynamical processes. This is surely in contradiction to the 
basic assumptions underlying quantum computation which abhors any dissipative pro­
cesses. The concepts of quantum information have revolutionized our understanding 
of information and especially show that we cannot ignore the physical basis of infor­
mation, be it in the classical, be it in the quantum domain. We expect that the future of 
quantum computation will show a careful combination of purely quantum coherent 
processes with dissipative processes so that maximum speed, efficiency, and reliability 
can be obtained. Such a combination will surely be necessary when quantum compu­
ters comprise more and more components and thus become more and more sensitive to 
disturbances. Quite clearly, a fascinating development of this field is still ahead of us. 



17. Concluding Remarks and Outlook 

In this concluding chapter I wish to discuss what we have achieved in this book 
and to point out some areas where open questions remain. 

In Chap. 1 we dealt with the nature of complex systems. Their most salient fea­
ture seems to be that they are practically inexhaustible with respect to our efforts to 
fully understand them. We must be content to study specific aspects of these systems 
which seem to us particularly suited for our purposes or interests. Accordingly, we 
have made an attempt in this book to cope with complex systems by choosing a 
rather general feature: we have focussed our attention on those situations in which 
complex systems change their macroscopic behavior qualitatively. More precisely, 
we have studied situations in which a so-called nonequilibrium phase transition 
occurs. This approach does not only allow us to deal with physical systems such as 
lasers and fluids but also with far more complex systems, such as biological systems. 
Undoubtedly a great variety of further applications can be found. As is witnessed 
by the laser example, our approach also enables us to treat oscillatory phenomena, 
but the extension to chaotic systems remains an open question. It is certainly a field 
for further research. The vehicle we have used in our approach is information. As 
we have seen, the word information may have quite different meanings so that we 
first had to discuss various definitions of the word. In particular we saw that the 
concept of information in the Shannon sense seems to be more appropriate in some 
cases than that of entropy. This is based on the fact that, in physics, at least entropy 
has a quite specific meaning and is defined for systems in thermal equilibrium. When 
we deal with physical systems far from thermal equilibrium or biological systems, 
we have to interpret the results anew and we must use new constraints in order to 
maximize the information or (statistical) entropy. 

In particular we saw that, in a certain sense, a new type of information arises, a 
type of information that refers to the collective variables or order parameters. This 
suggests that we call the part of information that refers to the order parameters, 
and which mirrors the collective properties of the system, "synergetic information". 
At the same time the order parameters adopt a new meaning, namely that of 
"informators". 

It is important to discuss what kind of information, in the usual sense of the 
word, can be revealed by our general approach based on the use of moments of 
variables. As we have seen, in this way we can determine the order parameters and 
their stationary distribution functions. Whether this kind of information is sufficient 
or not, depends on what we are aiming to achieve. Let us consider the example of a 
laser. The stationary distribution function is quite sufficient to characterize the 
steady-state intensity and intensity fluctuations of laser light. But this distribution 
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function does not tell us anything about a very important property of laser light, 
namely its temporal coherence. To learn about this one has to deal in much greater 
detail with the dynamics. In the framework of our approach this kind of dynamics 
can be guessed from the time-dependent moments and from the transitional prob­
abilities that can be derived from them by means of the maximum information 
entropy principle. Generally speaking, once averages over specific macroscopic 
data are known, the whole procedure allows us to guess microscopic events and 
processes. 

It is tempting to conclude that in systems far from thermal equilibrium or even 
in nonphysical systems, (Shannon) information plays the same role as entropy in sys­
tems in thermal equilibrium or close to it, namely as the cause of processes. I am 
reluctant to follow this interpretation for the following reason: First of all we found 
that the results of our analysis depend on properly chosen constraints. Here we were 
able to define adequate constraints for a class of phenomena which can be charac­
terized as nonequlibrium phase transitions. And we make guesses on the 
stationary distribution function. In that respect we may say that we can define a 
kind of potential which drives the system to specific stationary states. But this 
stationary potential does not give us a unique prescription for deriving for instance 
the Fokker-Planck equation which determines the dynamics, an aspect stressed by 
R. Landauer time and again. Thus it seems that the maximization of information 
(or entropy) is not a fundamental law which drives systems in a unique way. On 
the other hand there have been very remarkable studies by Graham and Tel and 
others on the construction of potentials for stochastic processes in situations where 
bifurcations occur. We have not attempted here to compare our approach with 
theirs, and this remains an interesting problem for further research. 

These ideas are of basic importance for questions concerning biological evolu­
tion or development, or in other words, phylogenesis and ontogenesis, of animals. 
The question, of course, is whether evolution and development are governed by 
extremal principles, especially extremal principles connected with a single function, 
such as entropy or information. Our results might be a hint that such a function 
exists, but the price to be paid is that nothing or only little can be said about the 
dynamics. But whether such a function really exists, also remains an open question. 
On the other hand the fact that the choice of moments provided us with the adequate 
constraints for information in nonequilibrium phase transitions demonstrates the 
power of our approach. The behavior of the moments reflects the tendency of 
systems to become coherent. So what we have been studying here is the emergence 
of coherence and macroscopic order in complex systems via self-organization. But 
whether biology may be viewed totally from this point of view is another un­
answered question. As we said before, complex systems seem to be inexhaustible. 

Thus although a deep and fundamental question remains open, the method we 
have outlined in this book is certainly a powerful tool to study the coherence 
properties of complex systems close to nonequilibrium phase transitions from a 
unifying point of view. 
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