
1

N
agl • M

arq
u

ard
t (E

d
s.)

Co
llab

o
rative an

d
 D

istrib
u

ted
C

h
em

ical En
g

in
eerin

g

LNCS

4970

Manfred Nagl Wolfgang Marquardt (Eds.)

 123

L
N

C
S

 4
9

7
0

Results of the IMPROVE Project

Collaborative
and Distributed
Chemical Engineering
From Understanding to Substantial
Design Process Support

Lecture Notes in Computer Science 4970
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Manfred Nagl Wolfgang Marquardt (Eds.)

Collaborative
and Distributed
Chemical Engineering

From Understanding to Substantial
Design Process Support

Results of the IMPROVE Project

13

Volume Editors

Manfred Nagl
RWTH Aachen
Institut für Informatik 3
Ahornstrasse 55, 52074 Aachen, Germany
E-mail: nagl@informatik.rwth-aachen.de

Wolfgang Marquardt
RWTH Aachen
Lehrstuhl für Prozesstechnik
Turmstraße 46, 52056 Aachen, Germany
E-mail: Wolfgang.Marquardt@avt.rwth-aachen.de

Library of Congress Control Number: 2008931577

CR Subject Classification (1998): J.2, I.6, J.6, D.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70551-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70551-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12438235 06/3180 5 4 3 2 1 0

Preface

Collaborative Research Center (Sonderforschungsbereich) 476, “Information
Technology Support for Collaborative and Distributed Design Processes in
Chemical Engineering” (IMPROVE), is a large joint project of research insti-
tutions at RWTH Aachen University, including different groups in engineering,
in particular process systems engineering, plastics processing, labor research,
and different groups in informatics, namely, communication, information sys-
tems, and software engineering. It is funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft, DFG), with more than 20 scientists
collaborating continuously in a long-term research effort since 1997.

In this volume we summarize the results of IMPROVE after 9 years of co-
operative research work. Together with master’s theses and the contribution of
technical personnel we report on the total effort of more than 200 person years
of scientific work. This includes research work done in dissertation projects.

The 9-year period of the CRC has been and will be continued by technol-
ogy transfer activities from mid 2006 to mid 2009 (Transfer Center 61 “New
Concepts and Tools for Chemical Engineering Practice”), also mostly funded
by the DFG. The main activities of this transfer center are also described in
this volume.

The focus of IMPROVE is on understanding, formalizing, evaluating, and,
consequently, improving design processes in chemical engineering. In particu-
lar, IMPROVE focuses on conceptual design and basic engineering, where the
fundamental decisions concerning the design or redesign of a chemical plant
are undertaken. Design processes are analyzed and evaluated in collaboration
with industrial partners.

The design of a plant for producing Polyamide-6 is used as the reference
scenario within IMPROVE. Based on this scenario, novel concepts, models,
and tools for supporting integrated forms of design processes in chemical en-
gineering have been developed.

The kernel of the approach is a formal process/product model for design,
which is regarded on different levels, covering domain models on the top to
internal models used for the realization of tools at the bottom. Infrastruc-

VI Preface

ture projects introduce research results on distributed platforms for computer
processes and data integration as part of the architecture of the overall envi-
ronment of supporting tools. The formal product/process model has already
gained a certain degree of maturity. However, further research work will be
needed to present it in a formalized way. We invite other research groups to
join our activities and to contribute to this challenging task.

The IMPROVE approach in particular deals with collaborative and dis-
tributed design processes across different organizations. Cross-company col-
laboration takes place every day. It is still a big problem for all engineering
disciplines with respect to in-depth understanding and a suitable tool support.
In order to improve the state of the art, not only organizational boundaries
have to be considered. Rather, knowledge across different specific domains and
design disciplines is needed and, therefore, has to be uniformly presented.

The goal of IMPROVE can also be seen from the tool integration perspec-
tive. There, we follow an approach which is based on existing tools and aims
at enriching their functionality (bottom-up or a-posteriori strategy). Hence,
integration does not only refer to system integration in the sense that all ex-
isting tools work coherently on top of a distributed platform. In contrast, new
tool functionality is added to support and, therefore, improve distributed de-
sign across different persons, roles, disciplines, or companies. For this purpose,
new informatics concepts are introduced to facilitate the design process, e.g.,
by reusing developers’ experience, controlling consistency on a fine-grained
level, direct multimedial communication of results, and by reactive project
management. Furthermore, the combination of these new functionalities is
studied providing further synergistic functionalities. This comprehensive tool
integration approach is unique and not yet covered by any available book on
tool integration.

Another unique feature is the derivation of new tool functionality from ex-
plicit models of the chemical engineering domain including the organization of
design processes, thereby embedding existing design support tools. The analy-
sis of industrial design processes is the basis of the formalization. The new tool
integration functionality is derived from the resulting formal models. Thus,
we do not build a new integrated environment and check afterwards whether
it matches the needs of the design processes of interest. Rather, the function-
ality is derived from validated practical models. This vertical and formalized
integration aspect demonstrates the close cooperation between chemical engi-
neering and informatics within IMPROVE.

Although chemical engineering is the application domain for which we pro-
duced conceptual and practical results in the form of models and software, a
substantial part of the research results contained in this volume hold true for
other engineering domains as well. Some results are directly valid in other
domains, others relate to approaches which can be carried over to other do-
mains without revision. Hence, this book can also be seen as dealing with
engineering design processes and their integrated support in general.

Preface VII

The results of IMPROVE have been reviewed four times by peers at the
beginning and after every 3 years. Furthermore, evaluation by the industry
has been implemented by affiliating a number of industrial partners with the
CRC. Transfer activities will strengthen the relations between IMPROVE and
the industry in the next few years. Both peer reviews and cooperation with
the industry imply a spiral research approach: Goals have been checked and
revised after a period of 3 years. Finally, the progress of one period is based
on the results of the preceding period.

This book intends to summarize the results of 10 years of interdisciplinary
research and future plans for an additional 2 years to present them to the in-
ternational community. The results are applicable to different design processes
including chemical engineering, mechanical engineering, electrical engineering,
or computer science. Thus, the book addresses the whole community of peo-
ple involved in the improvement of design processes in different engineering
disciplines, either in academia or in industry.

Hence, a specific goal of this book is to broadcast our results across different
disciplines. As informatics is the main focus, publication in the Lecture Notes
in Computer Science series is an obvious objective. However, engineers from
many disciplines are addressed as well.

There is no interdisciplinary joint project on design process modeling and
support of a comparable breadth and depth known to the editors. Therefore,
the approach and the results of the CRC received broad international recog-
nition in both the chemical engineering and informatics communities.

Results of IMPROVE have been published in many scientific journals or
conference and workshop proceedings, as compiled in the bibliography. The
aim of this book is to give a complete and uniform description of the corre-
sponding results with a quality of coherence which comes close to that of a
monograph.

Our thanks go to different institutions: The German Research Foundation
has given and will give us remarkable support during the last 10 years and
the 2 years to come. RWTH Aachen University and the Ministry of Science
and Research of the State North-Rhine Westphalia have also provided us with
additional funding. The funding sums to about 11 million euro. Without these
generous donations IMPROVE could not have been started. Section 1.3 gives
more detailed figures. Additional grants have been given to the research groups
participating in IMPROVE by the DFG, the Federal Ministry of Research in
Germany, or by the European Community for other and related projects. Their
results have been the basis for IMPROVE or they will continue the research
described in this book.

We are also indebted to several persons: Peers have visited us four times
to evaluate our proposals and to make remarks for improving the project.
Their engagement is especially acknowledged. Members of IMPROVE (see
Appendix A.2) have worked hard to achieve the results described in this book.
Furthermore, many master’s degree students contributed to the project during
their thesis work.

VIII Preface

Finally, Mrs. Fleck and Mr. Haase spent a lot of effort and time getting
the layout of this book in shape.

April 2008 Manfred Nagl
Wolfgang Marquardt

Contents

Preface . V

Part I Overview

1 Goals, Approach, Functionality of Resulting Tools, and
Project Structure . 1

1.1 A Model-Driven Approach for A-posteriori Tool Integration . . 3
W. Marquardt and M. Nagl

1.2 A Scenario Demonstrating Design Support in Chemical
Engineering . 39
R. Schneider and B. Westfechtel

1.3 The Interdisciplinary IMPROVE Project 61
M. Nagl

Part II Technical Results

2 Application Domain Modeling . 81

2.1 An Introduction to Application Domain Modeling 83
J. Morbach, M. Theißen, and W. Marquardt

2.2 Product Data Models . 93
J. Morbach, B. Bayer, A. Yang, and W. Marquardt

2.3 Document Models . 111
J. Morbach, R. Hai, B. Bayer, and W. Marquardt

2.4 Work Process Models . 126
M. Eggersmann, B. Kausch, H. Luczak, W. Marquardt,
C. Schlick,
N. Schneider, R. Schneider, and M. Theißen

X Contents

2.5 Decision Models . 153
M. Theißen and W. Marquardt

2.6 Integrated Application Domain Models for Chemical
Engineering . 169
J. Morbach, M. Theißen, and W. Marquardt

3 New Tool Functionality and Underlying Concepts 183

3.1 Using Developers’ Experience in Cooperative Design
Processes . 185
M. Miatidis, M. Jarke, and K. Weidenhaupt

3.2 Incremental and Interactive Integrator Tools for Design
Product Consistency . 224
S. Becker, M. Nagl, and B. Westfechtel

3.3 Multimedia and VR Support for Direct Communication of
Designers . 268
A. Schüppen, O. Spaniol, D. Thißen, I. Assenmacher,
E. Haberstroh,
and T. Kuhlen

3.4 An Adaptive and Reactive Management System for Project
Coordination . 300
M. Heller, D. Jäger, C.-A. Krapp, M. Nagl, A. Schleicher,
B. Westfechtel,
and R. Wörzberger

4 Platform Functionality . 367

4.1 Goal-Oriented Information Flow Management in Development
Processes . 369
S.C. Brandt, O. Fritzen, M. Jarke, and T. List

4.2 Service Management for Development Tools 401
Y. Babich, O. Spaniol, and D. Thißen

5 Integration Aspects . 431

5.1 Scenario-Based Analysis of Industrial Work Processes 433
M. Theißen, R. Hai, J. Morbach, R. Schneider, and
W. Marquardt

5.2 Integrative Simulation of Work Processes 451
B. Kausch, N. Schneider, S. Tackenberg, C. Schlick, and
H. Luczak

5.3 An Integrated Environment for Heterogeneous Process
Modeling and Simulation . 477
L. von Wedel, V. Kulikov, and W. Marquardt

Contents XI

5.4 Design Support of Reaction and Compounding Extruders 493
M. Schlüter, J. Stewering, E. Haberstroh, I. Assenmacher,
and T. Kuhlen

5.5 Synergy by Integrating New Functionality 519
S. Becker, M. Heller, M. Jarke, W. Marquardt, M. Nagl,
O. Spaniol,
and D. Thißen

5.6 Usability Engineering . 527
C. Foltz, N. Schneider, B. Kausch, M. Wolf, C. Schlick, and
H. Luczak

5.7 Software Integration and Framework Development 555
Th. Haase, P. Klein, and M. Nagl

6 Steps Towards a Formal Process/Product Model 591

6.1 From Application Domain Models to Tools: The Sketch of a
Layered Process/Product Model . 593
M. Nagl

6.2 Work Processes and Process-Centered Models and Tools 605
M. Miatidis, M. Theißen, M. Jarke, and W. Marquardt

6.3 Model Dependencies, Fine-Grained Relations, and Integrator
Tools . 612
S. Becker, W. Marquardt, J. Morbach, and M. Nagl

6.4 Administration Models and Management Tools 621
R. Hai, T. Heer, M. Heller, M. Nagl, R. Schneider,
B. Westfechtel,
and R. Wörzberger

6.5 Process/Product Model: Status and Open Problems 629
M. Nagl

Part III Transfer and Evaluation

7 Transfer to Practice . 641

7.1 Industrial Cooperation Resulting in Transfer 643
R. Schneider, L. von Wedel, and W. Marquardt

7.2 Ontology-Based Integration and Management of Distributed
Design Data . 647
J. Morbach and W. Marquardt

7.3 Computer-Assisted Work Process Modeling in Chemical
Engineering . 656
M. Theißen, R. Hai, and W. Marquardt

XII Contents

7.4 Simulation-Supported Workflow Optimization in Process
Engineering . 666
B. Kausch, N. Schneider, C. Schlick, and H. Luczak

7.5 Management and Reuse of Experience Knowledge in
Extrusion Processes . 675
S.C. Brandt, M. Jarke, M. Miatidis, M. Raddatz, and
M. Schlüter

7.6 Tools for Consistency Management between Design Products . 696
S. Becker, A. Körtgen, and M. Nagl

7.7 Dynamic Process Management Based upon Existing Systems . 711
M. Heller, M. Nagl, R. Wörzberger, and T. Heer

7.8 Service-Oriented Architectures and Application Integration . . 727
Th. Haase and M. Nagl

8 Evaluation . 741

8.1 Review from a Design Process Perspective 743
W. Marquardt

8.2 Review from a Tools’ Perspective . 753
M. Nagl

8.3 Review from an Industrial Perspective . 764
W. Marquardt and M. Nagl

8.4 Review from Academic Success Perspective 774
M. Nagl

Part IV Appendices, References

Appendices . 781

A.1 Addresses of Involved Research Institutions 781
A.2 A.2 Members of the CRC 476 and TC 61 783

References . 785

R.1 Publications of the IMPROVE Groups . 785
R.2 External Literature . 817

Author Index . 851

1

Goals, Approach,

Functionality of Resulting Tools,

and Project Structure

This chapter consists of three sections.
Section 1.1 gives a detailed problem analysis of design processes in Chem-

ical Engineering and the deficits of tools available in practice to support these
processes. Then, we describe the overall goals and approach of IMPROVE,
namely to introduce novel process aspects from the Engineering and the In-
formatics side to get a better support for designers. The resulting key problem
is to formalize design processes and their products. From the tool perspec-
tive the task is to build up an integrated environment for the cooperation of
different designers.

In Sect. 1.2 we present one practical result of IMPROVE, namely one ver-
sion of an integrated environment of existing, extended, and new tools, built
to support different facets of a cooperative and distributed design process
in Chemical Engineering and Plastics Processing. The results are shown by
giving a demo in form of a guided tour. We concentrate on those develop-
ment steps where the novel IMPROVE concepts induce a remarkably better
collaboration of developers.

In Sect. 1.3, finally, we explain the IMPROVE project structure. The
project addresses the problem of Sect. 1.1 and produces results like that of
Sect. 1.2. The section also characterizes the predecessor projects on which IM-
PROVE is based and gives an overview of the structure of this book. Finally,
this section contains figures about the funding of IMPROVE.

1.1 A Model-Driven Approach for A-posteriori Tool
Integration

W. Marquardt and M. Nagl

Abstract. The following section discusses the long-term approach of IMPROVE1.
We start with a careful analysis of current design2 processes in chemical engineering
and their insufficient support by tools. Then, we sketch how new ideas from the
engineering and informatics side can considerably improve the state-of-the-art. The
resulting tools according to these new ideas are sketched in the next section.

It should be remarked that both, the long-term goals and the principal approach
of IMPROVE [343], were not changed within the whole project period, i.e. – if
also counting preliminary phases of the project – within a duration of 11 years. This
stability of goals and approach shows that we have addressed a fundamental and hard
problem which cannot be solved in a short period. It, furthermore, shows that the
undertaken approach went in the right direction. Therefore, it was not necessary to
revise the approach within the whole project period, neither in total nor in essential
parts.

1.1.1 Chemical Engineering Design Processes and Their
Computer-Assisted Support

We first describe the application domain the IMPROVE project has been
focussing on. The next sections provide first a coarse characterization of the
design process in chemical engineering. A case study is introduced next for
illustration and benchmarking purposes. The major properties of industrial
design processes are reviewed and supporting software tools are described.
The practice of chemical design processes is critically assessed to identify
weaknesses and shortcomings of current computer-assisted support.

The Chemical Process Design Process

A chemical process system comprises of a set of interconnected physical, chem-
ical, biological and even information technological unit processes. The func-
tional task of a chemical process system is the transformation of the type,
properties and composition of given raw materials to result in a desired ma-
terial product with given specifications. This transformation process is imple-
mented in a process plant which consists of various pieces of equipment dedi-
cated to one or more related unit processes in order to achieve the sequence of
1 Collaborative Research Center 476 IMPROVE (in German Sonderforschungsbere-

ich, abbr. SFB) is funded by German Research Foundation (Deutsche Forschungs-
gemeinschaft, abbr. DFG) since 1997.

2 In this volume, we mostly speak of design processes. In other disciplines outside
Chemical Engineering they are called development processes. Analogously, we use
the term designer or developer.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 3–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 W. Marquardt and M. Nagl

the desired transformations. The equipment is interconnected by pipelines and
signal lines. Pipelines transfer material and associated energy streams between
apparatuses, while information flows are transferred between process control
devices, respectively. Hence, the chemical process system relates to a concep-
tual and functional representation of the manufacturing process whereas the
chemical process plant refers to its concrete technical realization [559].

The objective of a design process in chemical engineering is the develop-
ment of a manufacturing process to produce a newly developed or an already
known material product. We distinguish between grassroot and retrofit design,
if a chemical process plant is designed from scratch or if an existing plant is
modified or partly replaced to match new requirements of the changing eco-
nomical environment. The design process constitutes of all the activities and
their relations to solve the design problem in a team effort [1047]. It starts
from a rough description of the design problem and it ends with a complete
specification of the chemical process plant which comprises all the detailed
information necessary to build and commission the plant.

Processes and products (and in subsequent chapters the models for their
representation) have to be distinguished on two different levels. The term
process can either refer to the chemical process or plant or to the design
process. Likewise, the product can either refer to the result of the design
process or to the material product manufactured in the chemical plant. In
most cases, the meaning of the terms will be obvious from the context they
are used in. In order to eliminate any degree of ambiguity, we will often refer
to a chemical process and a design (or more generally a) work process and
likewise to a material product and to the product of the design process.

Like in any other engineering domain, the chemical process design process
can be subdivided in a number of distinct phases. In the first phase, the re-
quirements for the material products to be produced by the chemical plant
are fixed on the basis of an analysis of the market demand and the current
and expected supply by competitors. These requirements emphasize the busi-
ness objective of the design project and form the basis for a first description
of the design problem. The design problem formulation is further refined in
conceptual design, where the major conceptual decisions on the raw materi-
als, on the chemical synthesis route, on the process structure, and even on
the strategy for plant operation are taken. These conceptual considerations
are refined in front-end engineering and detailed and completed during basic
engineering [559, 638, 906].

At the end of basic engineering all major design data of the plant are fixed.
They typically include

• all raw materials and their origin,
• the chemical reaction pathways for chemical synthesis,
• the main and side products including their achievable product quality,
• the waste streams into the environment,
• the process units and their couplings in a process flowsheet,

A Model-Driven Approach for A-posteriori Tool Integration 5

• the nominal operating point which is given by flow rates and compositions
of all process streams as well as by the temperatures and pressures in all
the process units,

• the decision on the operational strategy for the plant and the plant-wide
control system structure,

• the selection of suitable equipment to implement the functional tasks of
process units,

• the major engineering design data for any piece of equipment,
• a rough plant layout, and
• an estimate of the total capital and operational cost per unit mass of

produced material.

Basic engineering is followed by detail engineering, where the design data
fixed during basic engineering are used to specify all pieces of equipment of
the plant including all the instrumentation and control systems in full detail.
The design process is completed at the end of detail engineering. The result
(or product) of the design process is a set of complete specifications which are
on a level of detail to allow procurement of all parts and construction of the
plant on site in the subsequent plant lifecycle phases.

The focus of our investigations on computer-assisted support of process
design processes in the IMPROVE project has been focussing on the early
phases of the design process, in particular on conceptual design and front-
end engineering. The late phases of basic engineering or detail engineering
have only been considered to a lesser extent during the project. In the first
place, a restriction on certain phases of the design process is mandatory to
pragmatically limit the complexity of the application scenario to benchmark
the information technology concepts and novel tools to a manageable level.

The decision to concentrate on the early phases of the design process has
been based on the following more specific considerations and arguments :

• Though only a small fraction of the total investment costs is spent during
the early phases of the design process, the impact of the decisions taken on
the economical performance of the plant during its total lifetime (i.e. the
cost of ownership of the plant) is most significant. The results of the early
design process phases not only form the basis for a subsequent refinement
during basic and detail engineering, but rather fix about 80 % of the total
production costs. Furthermore, an investment decision is typically taken at
some time during front-end engineering, which emphasizes the importance
of this phase of the design process.

• The engineering activities performed during the early phases of the de-
sign process reveal a high level of complexity because different aspects and
objectives have to be considered simultaneously to facilitate a holisitc de-
sign of the process system with a balanced trade-off between potentially
conflicting goals.

• The level of complexity can only be mastered if mathematical models of
the process system are used on various scales of resolution to support the

6 W. Marquardt and M. Nagl

synthesis of the process system and to analyze the performance of a certain
design alternative. Since only certain tasks during the design process can
be mastered by means of model-based approaches they have to be smoothly
integrated with manual design activities in the overall design process.

• While largely routine and therefore well-understood design activities are
more typical during detailed engineering, the design activities during the
early phases of the design process are of a creative nature. Since creative
work processes are usually poorly understood, they can neither be prop-
erly captured and formally represented nor properly planned in advance.
Therefore, this kind of design processes constitute a major challenge for
any information technological support.

product /
material

development

operability,
plant-wide control

equipment
sizing

plant

cost estimation

steady-state
analysis &

optimization

logistics and
scheduling

process
monitoring &

control

process
synthesis

chemical
research

market-
analysis

molecular
modeling

strategic
planning

corporate business
processes

Fig. 1.1. Development tasks and their interdependencies

The design activities which have been considered in more detail during the
IMPROVE project are depicted in Fig. 1.1. They include in particular the
development of a favorable material, the synthesis of the process flowsheet,
the determination of an economically optimal nominal operating point, the
sizing of the major equipment, the estimation of operating and investment
costs, the analysis of process dynamics and operability, as well as the synthesis
of a plantwide control system structure. Most of these major design activities
are closely related to each other. In particular, design decisions taken in one
of them will affect the decision making in another. These interdependencies
are often not transparent or even not well understood and are therefore only
handled incompletely during the design process [1016].

A Model-Driven Approach for A-posteriori Tool Integration 7

The Polyamide Process as Case Study

A scenario-based research approach has been used in IMPROVE in order to
identify the requirements, based on a concrete chemical process design case
study. A case study from the polymerization domain has been chosen because
there are much less mature design support tools as compared to petrochemical
processes. Therefore, tool integration and work process support are of consid-
erable interest in both, the end user as well as the software vendor industries.

The selected scenario comprises the conceptual design of a polymerization
process for the production of Polyamide-6 (PA6) from caprolactam [99, 104].
PA6 is a thermoplastic polymer with a world production capacity of more
than 4 million tons per year (as of 2006). The most frequent use of PA6 is
the production of fibers, which are used in home textiles, bath clothing and
for carpet production. In addition, PA6 is used as an engineering construc-
tion material if high abrasion resistance, firmness, and solvent stability are
required. Glass-fiber reinforced and mineral material-filled PA6 is a preferred
construction material if a combination of rigidity, elasticity and refractory
quality characteristics are required.

A complete process chain for moulded parts made of PA6 is shown in
Fig. 1.2. PA6 is synthesized in a polymerisation step from the monomers
caprolactam and water. The production of caprolactam itself can be traced
back to benzene which is isolated from crude oil or formed from crude oil in a
cracking process. The polymer melt is degassed from unreacted monomers and
then further processed to condition it for the manufacturing of semi-finished
products and of moulded parts. The polymer material in the moulded parts
may be eventually recycled and reused in the polymerisation after a polymer
degradation reaction has been carried out.

The figure 1.2 also emphasizes three distinct engineering domains, namely
chemical engineering, polymer processing, and material recycling. The design
problems in these domains are highly interrelated but typically treated in
almost complete isolation in different organizations. Any computer-assisted
design support system has to bridge these gaps to fully exploit the economical
potential of the design.

The PA6 molecule has two different end groups, namely an amide end
group and a carboxyl end group, which can react with each other to form
longer polymer chains. PA6 can be formed via an anionic or a hydrolytic reac-
tion route. The anionic mechanism is mainly used for special polymers whereas
the hydrolytic one is more often applied industrially. The case study considers
the design of a process to produce 40.000 t/a of PA6 via the hydrolytic route
with tight quality specifications. For example, impurity constraints are formu-
lated for the residues of caprolactam, cyclic dimer and water in the polymer.
A viscosity specification is added to guarantee favorable properties during
the following polymer processing step. The molecular weight is specified to
account for desirable mechanical properties of the moulded parts.

8 W. Marquardt and M. Nagl

Beckmann
rearrangement

polymeri-
sation

oximation

oxidationhydro-
genation

recyclingmonomer
degassing

crude oil /
natural gas

cyclohexane

cyclohexanonecyclohexanone
oxime

caprolactam

polyamide 6

additives
moulded

part

semi-finished
product

granulate

user

cracking

benzene

chemical engineering

polymer
processing

granulation &
compounding

Semi-finished
product

manufacturing

moulded
part manu-
facturing

Fig. 1.2. Process chain for Polyamide-6 (the section considered in CRC 476 is
shaded grey)

Figure 1.3 shows a possible flowsheet of a PA6 process. The process can be
decomposed into three sections, the reaction, separation, and compounding
sections. The monomers water and caprolactam are converted in a series of
polymerization reactors to the PA6 polymer. The monomer in the polymer
melt leaving the last reactor has to be separated from the mixture to meet
the quality requirements of the final product. There are various alternatives to
accomplish this separation step. The flowsheet in Fig. 1.3 shows a separation
alternative where caprolactam is leached from the polymer pellets formed
from the melt in the upstream granulation unit by means of hot water. The
residual water is removed from the polymer pellets in a subsequent dryer. The
separation is followed by a compounding step, in which fibers, color pigments,
or other additives are added to the polymer to adjust the polymer properties
to the specific customer product specifications. The extruder is not only used
for compounding but also for degassing of the monomer traces remaining in
the melt. The monomer is recycled from the compounding extruder to the
polymerization reactors.

A Model-Driven Approach for A-posteriori Tool Integration 9

The design process starts with requirements the final product, e.g. the
moulded part, has to fulfill. The mechanical properties of the moulded part
determine the properties of the polymer material, which have to be achieved
in the PA6 process by means of the integrated reaction, separation, and com-
pounding steps briefly introduced above. In particular, a certain molecular
weight, a specific melt viscosity, and a limited monomer residual have to be
guaranteed in the polymer product.

steam

caprolactam

polymerization
reactors

water bath

granu-
lator

tank

water

inert gas

dryer

leacher

additives

granu-
lator

extruder

monomer
recovery

(distillation)

vents

reaction separation compounding

Fig. 1.3. Flowsheet of the Polyamide-6 process

The conceptual design is accomplished in series of related design activities
which are described in detail elsewhere [99] following the methodology sug-
gested by Douglas [638]. First, the decision for a hydrolytic polymerization
in a continuous process is taken, based on qualitative design rules reflecting
domain experience. According to Douglas [638], the input-output structure
and the recycle structure are fixed in the next design activities. The results
form the basis for the design of the reactor network. The polymer reaction
can be carried out in stirred tank or plug flow reactors or in a combination

10 W. Marquardt and M. Nagl

thereof, with or without an intermediate separation of the condensate and
of the unconverted monomer. The design of the reaction section largely fixes
the quality of the reaction products which itself determines the design of the
separation section. The alternatives for the separation include devolatilisation
in a wiped-film evaporator [840, 935], the removal of low molecular-weight
components by leaching of polymer pellets followed by a drying step [930],
the degassing in the compounding extruder, or a combination thereof.

The close relation between the design problems related to the three process
sections (polymer reaction, separation, and compounding) becomes obvious if
the flowsheet alternatives are reflected in more depth. The design of the sep-
aration section is not independent of the design of the polymer processing
section because a decision has to be taken regarding the split of work for
monomer separation between the extruder and the upstream separation unit.
Further, polymer reaction and compounding are not independent, because the
polymer chains can be further grown if a reactive extrusion process [313, 734]
is considered as an alternative to the process flowsheet in Fig. 1.3, where
part of the polymer reaction is carried out simultaneously with polymer com-
pounding in the extruder. The activities during the design process have to
be coordinated across disciplinary boundaries in order to account for these
interdependencies. In particular, the separation of part of the monomer from
the melt and the increase of the mean molecular weight in the extruder allow
a reduction of the capacity of the upstream separation units and polymer-
ization reactors which consequently results in less investment cost. However,
the decisions on the most favorable process alternative are also determined by
product quality which is achieved by the synergistic interaction between all
the process units.

All these design steps require different types of mathematical models which
are preferably implemented in different types of modeling environments. The
models are used to analyze the performance of a certain design alternative
and to optimize the steady-state operating point [99]. A preliminary engineer-
ing design calculation has to be carried out by dedicated software to get a
rough idea of the equipment sizes as a basis for the subsequent estimation of
the investment cost. For example, MOREX [147] can be employed to identify
a favorable structure and geometry of the extruder screw and the type and
dimensions of the processing segments in the extruder. A rough description
of degassing and even polymer reaction processes is also covered. Finally, dy-
namic simulations are carried out to analyze the process dynamics and to
assess the operability of the process in order to build up the process under-
standing required to design a plantwide control system structure.

The design support software tools employed in the case study are of a
completely different nature. They include commercial as well as legacy tools.
Examples are Microsoft Excel, various process simulators such as Polymers
Plus from Aspen Technology, gPROMS from PSE, MOREX, BEMFlow and
BEMView from Institut für Kunststoffverarbeitung at RWTH Aachen Uni-
versity, the project database Comos PT from innotec, the document manage-

A Model-Driven Approach for A-posteriori Tool Integration 11

ment system Documentum from EMC2 as well as the platform CHEOPS for
run-time integration of different types of simulators, the repository ROME
for archiving mathematical models, and the modeling tool ModKit, all from
Lehrstuhl für Prozesstechnik at RWTH Aachen University.

Typically, despite the significant interdependencies, polymerization, sepa-
ration, and compounding are designed in different organizational units of the
same or even different corporations using different methodological approaches
and supporting software tools. An integrated solution of the design problem of
the PA6 case study has to overcome the traditional gap between polymer reac-
tion engineering, separation process engineering and polymer processing with
their different cultures as well as the problem of incompatible data and soft-
ware tools. Hence, the scenario poses a challenge for any integrated method-
ology for conceptual design and its supporting software environment.

Characteristics of Industrial Design Processes

The case study presented in the last subsection can also be taken to summarize
the characteristics of industrial design processes. This subsection abstracts
from the concrete example. The reader, however, may also relate the following
general statements to the polymerisation case study.

Industrial design processes are always carried out by a team of multi-
disciplinary experts from different organizational units within the same or
different companies. The team is formed to carry out a dedicated project, it
is directed by a project manager. Usually, a number of consultants, who have
expert knowledge on a very specific technological topic, are contributing to
the design activities in addition to the team members. All team members
are typically part of more than one team at the same time. Often, the team
operates at different, geographically distributed sites. The duration of a single
project may range from weeks to years with varying levels of activity at a
certain point in time. Hence, the team and the status and assignments of its
members may change over time, in particular in case of long project duration.
Inevitably, there is no common understanding about the design problem at
the beginning of the project. Such a common understanding, called shared
memory by Konda et al. [791], has to evolve during collaborative work.

The design process constitutes of all the related activities carried out by
the team members while they work on the design problem [1047]. This mul-
tidisciplinary process shows an immense complexity. It has to deal with the
culture and paradigms from different domains. Complicated multi-objective
decision making processes under uncertainty are incorporated in the design.
They rely on the typically incomplete information produced in the current and
previous design activities. In particular, conceptual design processes show a
high degree of creativity, they are of an inventive nature and do not just apply
existing solutions. Creative conceptual design processes are hardly predictable
and, therefore, can only be pre-planned on a coarse-grained level. An at least

12 W. Marquardt and M. Nagl

coarse-grained work process definition is mandatory to establish simultaneous
and concurrent engineering to reduce the total time spent on a design.

The lack of precise planning on a medium-grained level inevitably results
in highly dynamic work processes. They show branches to deal with the assess-
ment of alternatives and to allow for a simultaneous work on only loosely re-
lated subtasks. Iterations occur to deal with the necessary revision of previous
decisions and solutions. In the first place, they are due to inevitable uncer-
tainties during decision making because of lacking or incomplete information.
While the design process is carried out, this uncertainty can be continuously
reduced because of additional information becoming available. It is either col-
lected from various available but not yet exploited resources or it is generated
while the design process progresses. Additional information always gives rise
to new insight to either address a problem which has not yet been recog-
nized, to exploit an identified potential for improving an existing solution, or
to even evolve the design requirements. A strict and prescriptive definition of
the work process (as accomplished in many administrative business processes,
e.g. [671]) is not only impossible but also highly undesirable in the context of
a design process. It would largely constrain the creativity of the designer with
obviously undesirable consequences for the quality of the resulting design.

The team of experts typically uses a multitude of resources in the various
phases of the design process. For example, web-based text retrieval and brows-
ing systems are used to search the scientific and patent literature or internal
archives for information on materials or processing technologies. Lab-scale or
pilot-scale experiments allow the investigation of specific questions related to
physical properties, kinetics, scale-up of equipment, or the accumulation of
impurities in recycles and their impact on the process behavior. All kinds
of software tools with diverse and often overlapping functionality have been
increasingly used in the last two decades to support different design activities.

In the course of the design process, a complex configuration of different
types of information is created. This information appears in multiple ways.
There are, for example, standardized documents including equipment specifi-
cation sheets or design reports, informal texts like e-mail or telephone notes,
or input or output files of certain software tools containing problem speci-
fications or result summaries in a formal syntax. More recently, audio and
video clips may be included in addition. This information is typically held
in a decentralized manner in the local data stores of the individual software
tools, in document management systems, or in project databases. Typically,
the relationship between the various information units is not explicitly held
in the data stores. Information is exchanged in the design team by means of
documents, which aggregate selected data relevant to a certain work process
context.

Though a large amount of information is created and archived in some data
store during the design process, there is typically no complete documentation
of all the alternatives considered during the design. However, a full documen-
tation of the final conceptual design has to be compiled from the information

A Model-Driven Approach for A-posteriori Tool Integration 13

created during the design process. Typically, this documentation is handed
over to an engineering contractor to continue the design process during basic
and detail engineering.

Available Supporting Software Tools

Industrial design processes are supported by different kinds of software tools.
We do not want to elaborate on the functionality of an individual tool, but
try to classify various kinds of tools and to relate them to the process design
process described above. Largely, there are two different groups of software
tools in use in chemical process design.

The first group comprises generic software tools which are not specific
to chemical engineering but which are used in all industries to support col-
laborative work processes and administrative business processes. They include
word processing and spreadsheet systems, enterprise resource planning (ERP)
[781, 961], project management tools [777], workflow management systems
[762], decision support tools [915], document management systems [1064],
and groupware systems [654] which are completely independent of a specific
application domain and hence are established in all industrial segments. The
functionality of these tools is not driven by the needs of the (chemical process)
design process. Rather, these tools address the domain-independent needs of a
(much) larger customer base. Hence, such tools do not reflect the peculiarities
and the particular needs of the ill-defined, complex and dynamically chang-
ing, creative work processes, which typically occur in any (engineering) design
process. Furthermore, these tools do not account for appropriate interfaces to
relate activities, project schedules, or documents produced by individuals in
a design process in a transparent manner [355].

In contrast to these generic tools, the second group of domain-specific
software tools addresses certain tasks during the design process in the chemical
engineering domain. They can roughly be classified as data retrieval, synthesis,
and analysis tools. A typical example for data retrieval tools are physical
property systems [1048, 1053]. Synthesis tools include flowsheet synthesis [951,
1039], plant layout and pipe routing [955], model development [54, 558] or even
solvent selection [737]. The most prominent examples of analysis tools are
process simulators for steady-state [518, 556, 1046] and dynamic simulation
[288, 518, 916].

Though most simulators provide a library of standard models for pro-
cess units, there is only limited support for very specific units such as those
typically occurring in polymerization processes. Equation-oriented [895, 916]
and object-oriented [54, 1002] process modeling environments are suitable for
the development of customized models for non-standard units such as for the
leacher in the PA6 process. Complex transport problems involving fluid dy-
namics as well as other kinetic phenomena (i. e. chemical reaction, nucleation
and growth of particles, interfacial heat and mass transfer etc.) can be treated

14 W. Marquardt and M. Nagl

with computational fluid dynamics codes and their extensions. Such codes are
also available for polymer processing (e.g. [860, 889]).

Though these tools are still largely used in a stand-alone manner, there are
some attempts toward their integration. For example, Aspen Plus and Aspen
Custom Modeler, a steady-state and a dynamic simulator, have been inte-
grated by AspenTech to transfer models from one into the other simulation
environment. Run-time integration of different simulation tools has been re-
cently addressed by means of a generic framework [252, 409] which facilitates
the integration of block-oriented and equation-oriented simulators for steady-
state and dynamic simulation. All major vendors integrate their tools into
some design environment with interfaces to selected tools from cooperating
vendors to address particular aspects in the design process (e.g. AspenTech’s
Engineering Suite or Intergraph’s Smart Plant). In particular, these tools are
at least partly linked to engineering or product data management systems
[907] such as Aspen Zyqad, Comos PT or SmartPlant Explorer which persis-
tently store the information used and generated during the design process.

Most of the vendors offer more general interfaces to import and export data
between a product data management system and some software application.
XML is the preferred exchange format. The data schema is typically based on
the STEP modeling methodology [503] and on the STEP models standardized
as ISO 103030 and ISO 15026. None of these schemas covers the complete
design process. The collection of data exchange schemas does not comprise a
complete data model, since the relations and dependencies between the data
are not captured. A unifying data model across platforms offered by different
vendors is currently not available [506].

Some vendors also offer solutions for controlling and archiving the data
exchanged between applications, which are based on the idea of a central data
warehouse. Examples include TEF [746] of Intergraph, which builds on the
data warehouse SmartPlant Foundation [747] or the data warehouse VNET
[520] of AVEVA. However, these solutions only support the proprietary XML
models of the vendor.

There is no (or very little) integration, neither conceptually nor techni-
cally, between the two groups of tools supporting the administrative domain-
independent and the technical domain-specific business processes in the de-
sign process in chemical engineering. In particular, workflow management or
groupware systems do not provide any interfaces to the dedicated chemical
engineering tools. In more general terms, there are no tools available, which
integrate the design process and the design product perspectives in a sound
manner.

An Assessment of Current Design Practice

The analysis of current design practice reveals a number of weaknesses which
have to be overcome in order to successfully establish design process excellence
[791, 1047]. The most import issues are the following:

A Model-Driven Approach for A-posteriori Tool Integration 15

• There is no common understanding and terminology related to the de-
sign process and its results. Communication in the project team is largely
informal. A misinterpretation of the communicated data and information
often occurs due to the lack of common understanding.

• Creative design processes are not properly understood. Neither routine
tasks nor the experience of senior developers is properly captured. The
complex coordination tasks on the management level in a multi-project
and multi-team environment are not made explicit. The dynamics inherent
to creative design processes is not captured. Therefore, the design process
is not transparent for the project team. Intuition and experience have to
compensate the lack of a properly defined work process and of a systematic
reengineering of the work process for continuous improvement.

• Design processes and their results are not sufficiently well documented.
This lack of documentation prevents tracing (i) of ideas which have not
been pursued further for one or the other reason, (ii) of all the alterna-
tives studied, (iii) of the decision making processes, and (iv) of the design
rationale.

• A systematic analysis of all the relevant alternative solutions is not carried
out.

• The creation of knowledge through learning from previous experience is
not systematically supported by information technologies.

• There is neither a systematic evolution of requirements and nor an assess-
ment of the design objectives with respect to the requirements during the
design process. There is no systematic management of conflicts between
design information or change propagation mechanism between design doc-
uments. The quality of the reconciliation of different parts of a design
with each other or with possibly changing requirements and specifications
depends on the care of the designer.

• A coherent configuration of all the design data in the context of the work
process is not available. Time spent for searching and interpreting infor-
mation on a certain design in the course of the plant lifecycle is enormous.
Often, it is less effort to repeat a task rather than to retrieve the already
produced results from some source. Reuse of previous solutions and ex-
periences at a later time in the same or a similar design project is not
supported.

• There is no systematic integration of design methodologies based on math-
ematical models of the chemical processes with the overall design work
process.

In addition to these work-process oriented deficiencies, there are also serious
shortcomings with respect to the software tools supporting the design process
[783, 834, 1043, 1047, 1062]. Some important considerations are as follows:

• Tools are determining the design practice significantly, because there has
been largely a technology push and not a market pull situation in the past.
Tool functionality has been constrained by technology, often preventing a

16 W. Marquardt and M. Nagl

proper tailoring to the requirements of the design process. Usually, the
tools are providing support functionality for only a part of a design task or
a set of design tasks. Tool support is limited to determine and present the
result of some task in the design process. Relations to the work process
are not captured.

• Design data are represented differently in the various tools. There are not
only technical, but also syntactic and semantic mismatches which prevent
integration.

• There is a lack of managing relations between data and documents pro-
duced by different tools in different design activities.

• The implementation of the tools relies on proprietary information mod-
els and software platforms. Therefore, integration between tools is quite
limited and largely focuses on those of a single vendor or its collaborating
partners. The integration of legacy tools of an end-user into such a design
environment or the integration of the design environment into the software
infrastructure of the end-user is often difficult to achieve and induces high
development and maintenance cost.

• Tool integration is largely accomplished by data transfer or data inte-
gration via a central data store, neglecting the requirements of the work
processes.

• Project management and administration software is not at all integrated
with engineering design support software. Hence, proper planning and con-
trolling of creative design processes is difficult.

• Communication in the design team is only supported by generic tools like
e-mail, video conferences, etc., which are not integrated with engineering
design tools.

• The management of creative design processes is not supported by means
of domain specific tools.

• The heterogeneity of the software environment impedes cooperation be-
tween organizations.

These two lists clearly reveal the high correlation of the work processes and
the supporting software tools. Both have to be synergistically improved and
tailored to reflect the needs of the design process in a holistic manner. We
believe that a work process-oriented view on design and the required infor-
mation technology support is a major prerequisite to achieve design process
excellence. In particular, efficient computer-assisted support of complex engi-
neering design processes has to address the integration problem in different
dimensions in order to overcome isolated methodologies and informatics solu-
tions currently available [537].

These integration dimensions include

• the different application domains and disciplines such as polymer reaction
engineering, separations, polymer processing and materials engineering in
the PA6 case study,

A Model-Driven Approach for A-posteriori Tool Integration 17

• the different design tasks such as raw materials processing, material prod-
uct development, process synthesis, control system synthesis, or waste re-
duction and recycling,

• the participants with different disciplinary and cultural backgrounds in a
project team consisting of developers, manager, customers, and consulting
experts,

• the work processes of all the team members, and
• the various software tools employed during the design process.

1.1.2 Long-Term Goals and Solution Approach of IMPROVE

This subsection summarizes the key ideas of IMPROVE on the conceptual
level. After a short motivation, we introduce design process innovations from
the Engineering and the Informatics side, on which we later base our ideas for
novel design support. We then concentrate on the question, how subprocesses
of the work-process interact, or how their results are integrated. The formal-
ization of such results is called process/product model, in short PPM. We show
that this model has to be layered. Finally, we summarize all the requirements,
we can find for such a PPM.

Motivating a New Approach

The global aim of any support of a design process in chemical engineering or
in any other discipline is to improve efficiency and quality of the subprocesses
and their interaction as well as the integration of their results within the
overall work-process. The same holds true for the product.

This improvement is enforced by market pressure due to globalization
[675, 721]. The pressure extorts either a more efficient production of chemi-
cal bulk products or of specialty products [650, 651, 728]. Both are based on
improvements in the corresponding design processes. Especially, for polymer
products, there are many possibilities to adjust product properties [678].

Therefore, chemical process design is facing big challenges [704]. A pre-
requisite for addressing these challenges is to better understand the nature
of the design processes, to improve these processes by integratively regarding
all inherent aspects [293], and to accelerate these processes. This is required
for all integration dimensions referred to above. Especially, tool support has
to be shaped to bridge the gaps between different persons, their roles, design
disciplines, and companies.

The IMPROVE approach addresses the problems corresponding to the
three steps understand, improve, and accelerate, which have to be applied to
development processes: (a) We avoid – wherever possible – manual developer
activities by transferring the corresponding activities to process-supporting
tools. (b) We aim to understand, document, and reuse design results, design
knowledge, and the underlying design experience. (c) Design processes are

18 W. Marquardt and M. Nagl

accelerated by including all relevant aspects and by relying on both, concurrent
[494, 521, 539, 729] as well as simultaneous engineering [708].

Pragmatically, we want to use existing industrial tools, wherever possible.
However, these tools have to be extended to better support the design process
or cooperation within this process. In some cases, new tools have to be built,
if the required functionality is not available.

All tools have to form an integrated design environment, supporting all
essential activities of the design process. Therefore, developers are enabled to
mostly interact within this environment. The realization of this environment
is much more than a systems-engineering integration of existing tools. As a
consequence, a nontrivial software development process has been incorporated
into the IMPROVE project, dealing with extending existing tools, building
new tools, and integrating all these tools to a coherent design environment.

Design Process Innovations

The computer-assisted support of design processes, as presented in this book,
is based on a number of novel aspects which have been identified prior to
the start of the IMPROVE project in related research areas. The following
innovative aspects have been identified in various research projects by the
collaborators of IMPROVE.

The Engineering Perspective

1. Model-Based Process Design: Model-based procedures are increasingly
used in the chemical industry. They give an evaluation of a design de-
cision on one side and they reduce the costs by avoiding experiments in
chemical process development on the other. The development of mathe-
matical models, necessary for model-based design on different degrees of
detail, usually causes high costs. These costs can be reduced by shortcut
calculations [13, 467] or by introducing computer-based modeling tools to
derive detailed models [53]. Systematic and formalized mathematical mod-
els as well as corresponding model development processes [277, 303, 401]
are necessary.

2. Comprehensive View on Conceptual Design: Chemical process design can
be divided into different phases, each of them consisting of synthesis, anal-
ysis, and evaluation of process alternatives. Every result influences suc-
ceeding phases. Often, backtracking is necessary to achieve optimal de-
signs, which is sometimes skipped due to cost reasons. Furthermore, an
integrated treatment of different aspects in design [54, 98, 104] results in
better solutions [106]. Examples include the integration of process and
control strategy design [1], or an early consideration of safety, oparability,
and economic aspects.

3. Processes Analysis in Plastics Engineering: The compounding of plastics
materials requires a basic understanding of fluid dynamics and heat trans-
fer inside the extruders to realize the requested polymer modifications

A Model-Driven Approach for A-posteriori Tool Integration 19

[313, 314]. The implementation of these effects is done by selecting and
placing screw and barrel elements in order to configure the compounding
extruders’ flow channels. To optimize the screw configuration in critical
functional sections, the polymer flow is analyzed by numeric simulation to
gain process understanding in order to apply design modification on the
detailed level.

4. Ergonomic Analysis and Evaluation: When developing new groupware sys-
tems and adjusting them to a specific application field, neither the pre-
cise characteristics of the application field nor the mechanisms, rendering
the application of the groupware system profitable, are known at the be-
ginning of the development process. Therefore, it is necessary to collect,
understand, and document work and communication processes in a repet-
itive manner. This has to be done such that technical and organizational
design measures can be identified gradually and precise requirements of
an informational support [119, 395] can be deduced. For this purpose, an
adequate modeling methodology [221] is as essential as a corresponding
analysis procedure [283, 284, 482], a close interlocking between software
development [281, 486] and iterative evaluation [285], as well as an intro-
duction model adjusted to the business situation [178].

The Informatics Perspective

5. Direct Process Support of Human Actors [21, 93, 94, 189, 191, 194–196]:
Such support is achieved by investigating process traces of developers
[366, 469] and by offering best-practice traces by means of process frag-
ments [21, 156, 371]. Specifically, process actors are supported during de-
cision making and during negotiating to gain an agreement [192, 193, 458].
For that, heuristics are offered how to proceed. Basically, direct process
support is directed to facilitate or to standardize acting, and to temper co-
operation problems, both through best practices by using the experience
of developers. This experience is being incorporated in tools. Direct pro-
cess support is usable for all roles in the development process (developers,
manager etc.).

6. Product Support for Achieving Consistency [15, 26, 27, 33, 36, 37, 134, 229,
254, 334]: This kind of support is used to assure structural and value con-
straints of development products on the language or methodology level.
This holds true for single documents but, even more, for consistency han-
dling between different documents, usually produced by different devel-
opers. Corresponding constructive tools for such consistency maintenance
between different documents, called integrators, are offered for change pro-
cesses, where different developers are involved. These integrators help to
assure or to reinstall consistency across different documents. These tools
provide an essential support for modifications in a development process.
Actors are not directly regarded and their activity is not restricted.

7. Informal Multimedia Communication of Developers [317, 420, 453, 456]:
This type of spontaneous collaboration of developers is used for clarifying

20 W. Marquardt and M. Nagl

a problem, for discussing intermediate results, for preparing decisions or
agreements. Formal cooperation cannot substitute spontaneous communi-
cation“in between”which makes use of the ability of human actors to grasp
high-level information, ideas, suggestions from descriptions, especially in
the form of graphical representations. Spontaneous communication usu-
ally also influences later formal communication and can be a step of formal
cooperation, e.g. within a decision meeting. Multimedia communication is
valuable, especially if offered in an application-dependent form.

8. Reactive Administration [30, 160, 162, 174, 211, 355, 475, 476]: Most pro-
cess approaches for administration neglect the fact and the resulting prob-
lem that design processes are reactive, i.e. have to be permanently adapted
during the process itself. Adaptation is due to decisions, details in results,
upcoming problems, necessity of changing the proceeding, introduction
of method patterns [390], reuse rules, and the like. All these adaptations
are consequences of creative steps in the design process. Work processes,
products, and resources [391, 477] are not regarded in all details, when
managing design processes. A specific problem, addressed in IMPROVE,
is the management of distributed3 design processes [208].

Key Topic: Process/Product Model

Quality and efficiency improvement cannot be achieved by merely integrating
existing tools on a system-technical level [295]. Instead, additional functional-
ity has to be offered which is adjusted to cooperative development and which
is able to bridge the above mentioned gaps [296, 298, 343, 344, 346, 352]. This
requires that the interaction of subprocesses and the integration of subprod-
ucts is well-understood and also formalized. So, there is an urgent need for a
comprehensive and formal process/product model.

A process/product model has various advantages. It can be used to bet-
ter understand the cooperation between developers, to document current or
already finished design processes, to know how to support such processes by
tools, and to promote reuse of partial designs. Especially, such a model is nec-
essary for building an integrated design environment essentially supporting
the whole design process.

Design Processes and Products

In a design process different subprocesses interact. Any such subprocess results
in a subproduct which has to be integrated in the overall design product. The
interaction of subprocesses can vary. Consequently, we find different forms of
product integration. In the following, we discuss such aspects of interaction
and integration.

Basically, there are different granularities of subprocesses : A subprocess
may be an essential part of the work process of a developer. A subprocess may
3 also called cross-company processes or interorganizational processes

A Model-Driven Approach for A-posteriori Tool Integration 21

enclose the collaboration of two developers. Finally, a subprocess may require
a team of different developers. An essential task of that team collaboration –
again being a subprocess – is the coordination of team members.

noitazilausiV dleiF
wolF

noitatonn
AtcudorP

)noitacinu
m

mo
C aide

mitlu
M(

noitarugifno
C

wercS
baL

gnireenignE

kro
wte

N

srebif fo gnidnuop
moc

gnideef
noitazilitaloved

gn ix i
m ev isreps id

n oitazinego
moh

red urtxE gn idnuop
mo

C a ni snoitceS lanoitcnuF

(
)vp

z
t ropsnarT

∂∂
=

∇
=
1

p

∑
∇
=

∇
t

t (
,
,

,...,
) 1

1
=

∇
=

∇
a

t
t
p
T
g

g

kniS
ecruoS

egnahc xE
tropsnarT

noitalu
muccA

/
+

+
=

larut curtS
noit pi rcse

D

 fo
noitpi rcse

D
roivahe

B
ehtde ni ar

G -e sr ao
C

eht fo
noitpi rcs e

D
sseco rP re

my loP

noit cae
R

thgie
Wralucelo

M

yt isoc siV
tle

M re
myloP

re
woP evir

D
wercS

ssecorP re
myloP

eht fo ngise
Dlautpecno

C

dleiF
wolF

se ss ecorP

s tcudor P

secruoss e
R

tx etno
C

noitarugifno
C evitartsini

md
A

pag laida
R

ϕ

ϕ

ψ
ψ

noitc es g nihse
mretnI

ε

wZ
γ

γ

α

β
ϕ

A
del lif

A

A

A

ϕ

2 γ 1

2γ
2

α
2
γ 1

=
k2
π

-ϕ
K

-α

2
γ 2

 =
ϕ K

 -
α

ϕ

A

A

b

D
π
K

.
ϕ

2D.

2D. α

v 0

ϕ

rae
R

n ia
M

K

nia
M

nia
M

rae
R

rae
R

K

wercS ni

w T gnihse
mretnI esol

C fo yrte
moe

G cisa
B

skc ol
B g nidaen

K rof ledo
M

wolF dna sredurtxE

wolfssa
M

tle
M re

myloP
wolfssa

M
tle

M re
myloP

deniar
G-eniF

seicnednepe
D

tacificeps
deliate

D
redurtxE

eht fo
noi

Fig. 1.4. Overall configuration of the development product (cutout)

22 W. Marquardt and M. Nagl

Subprocesses yield results in the form of subproducts. More often than con-
structing new results, modifications have to be made due to mistakes, changed
decisions, or requirements. Furthermore, subprocess interaction is not only
that one subprocess constructs or changes a result which is needed, elabo-
rated, or detailed by the next. We also find that one subprocess determines
for another one, how to proceed, how the resulting products looks like, which
specific aspects have to be obeyed, and the like.

The result of a complex design process is a complex product, called overall
configuration(cf. Fig. 1.4). This configuration contains the various results of
all designers together with their mutual relations (technical configuration).
Logically separable parts of a moderate size, each usually constructed by one
designer, are called documents (e.g. a flowsheet for a certain part of a plant).
The overall configuration contains subconfigurations, e.g. for synthesis, analy-
sis, and evaluation of an essential part of a plant, together with corresponding
design alternatives and a design rationale.

Documents have a rich internal structure with mutual relations between
their parts, called increments. For example, the behavioral description of an
apparatus consists of terms with mutual syntactic and semantical relations.

Especially, there are many fine-grained relationships between increments
of different documents (see again Fig. 1.4). E.g., parts of the behavioral de-
scription of a plant are in close relation to the structural description. These
fine-grained relations are needed to estimate the effort of changes, to carry
out changes, to check consistency of the changes, etc.

An essential part of the overall configuration is the so-called administrative
configuration, the information of which is used for coordinating the collabo-
ration of developers. Here, we find information corresponding to the design
process, its product, the corresponding resources, but also of the context (de-
partment, company etc.) in which the process is carried out. The information
is coarse-grained: It is only interesting that a subprocess or subproduct exists,
in which state it is, but not how it is carried out or structured internally.

Figure 1.4 shows a cutout of an example for an overall configuration. In the
administrative configuration we find all the information necessary to coordi-
nate the corresponding group of designers. Especially, we find information for
product management. The biggest part of the configuration consists of tech-
nical documents, produced by different designers. Between those documents
there are many fine-grained relations which refine the coarse-grained relations
of product management data. As a result of direct communication between
designers, there are various visualizations and there are further annotations of
design products to denote decisions, identified problems and mistakes, hints
or references to indicate additional investigations etc.

In case of distributed design processes, the overall configuration is pro-
duced by and is spread between different companies. The different parts of
different companies are not completely disjoint, as any developer, subteam,
or company has to see the context, in which the corresponding part of the
product has to be developed. This distributed and partially redundant overall

A Model-Driven Approach for A-posteriori Tool Integration 23

configuration has to be kept consistent, as if the design process were carried
out within one single enterprise.

Above, we have argued only from the product perspective of a design
project. We could also and analogously have argued from the process per-
spective. Then, we would have found subprocesses which have a rich internal
structure, are built hierarchically, have different forms of complex interactions,
and so on.

Processes and products are dual to each other as any process has a result,
and a result needs a corresponding process. However, they contain different
information. Therefore, in the process/product model we are investigating,
we do not express one aspect implicitly by the other. Instead, we regard both
processes and products explicitly.

Interaction, Integration, and Reactivity

As already stated, Fig. 1.4 is a cutout of the results of a design process in
chemical engineering. It solely shows the product of the process, the process
itself cannot be found. So, we do not see how a manager creates the adminis-
trative configuration, how a designer synthesizes the flowsheet, how different
developers annotate products in a spontaneous discussion etc. For any doc-
ument or any bundle of relations between two documents there must be a
corresponding subprocess for that document or bundle.

Every designer does only see a specific part of the overall configuration
which is important for his subprocess. This part consists of the results the de-
signer is responsible for, but also the necessary context – produced by others –
namely necessary input, rules to obey, proceedings to follow, explanations for
the task to fulfil etc. These specific parts of the configuration are produced,
changed, and stored in a distributed manner.

The elimination of errors, the modification of a chemical process design,
the extension of the design product, the adaptation according to new re-
quirements, or the use of reuse techniques induce significant, often structural
changes within and of the overall configuration. To support those changes, the
subproducts of different designers have to be integrated.

Modifications of the overall configuration are changes of and within doc-
uments. Even more, there are induced changes due to modifications in other
documents enforced by fine-grained consistency constraints between docu-
ments. Both, changes and induced modifications, have to be regarded transi-
tively. Hence, we get change chains (in the product) or change traces (of the
process). These changes are coordinated using the information contained in
the administrative configuration. Hence, any change of the overall configura-
tion is a cooperative and distributed process.

Changes can seldomly be carried out automatically. Subprocesses for pro-
ducing documents are creative, as there are many ways to solve a subtask
resulting in different solutions. In the same way, a designer can give differ-
ent answers how to modify his document, as a consequence of changes done

24 W. Marquardt and M. Nagl

by other developers. Therefore, in cooperative and distributed development
processes we have interaction of subprocesses of different developers. This
interaction can have different forms, as already discussed.

The structure of a design process and its product is in most cases only
determined in the process itself, as design decisions predetermine following
processes and products. In the same way, made modifications or specific error
repairs imply what and how to do. Hence, the process can only be partially
fixed before it starts. We call this the dynamics within the process.

The results of a completed design process can be used in the following one.
They are just used and need not be developed. This drastically changes the
overall structure of this next process. Knowledge about processes and products
can be introduced in form of templates. Their use within the process, again,
evidently changes this following design process. Also, predeterminations of the
process influence future subproducts.

A subprocess produces a result, e.g. a flowsheet of the essential part of the
plant. The flowsheet determines the following subprocess, e.g. the analysis of
the design by simulation. We call this mutual relationship between subprod-
ucts of one subprocess and later subprocesses reactivity. This can also happen
backwards: One may detect an error in a resulting document of a subprocess.
The error, however, has been made in a preceding subprocess, which has to
be taken up again.

j

ji

i

Fig. 1.5. Dynamic interplay of processes (interaction, integration, reactivity)

Figure 1.5 shows the interplay of subprocesses (interaction) spi and spj, the
subproducts resi and resj which have to fit together (integration), as well as how
a subproduct influences the following subprocesses or vice versa (reactivity).
Furthermore, subprocesses and subproducts are dual to each other and have
to be seen as two parts of a whole.

As already explained, the interaction of subprocesses can serve different
purposes. In the same way, the subproducts to be integrated may express
different things (hierarchy, parallel views, fixing the structure of other and
following subproducts etc.). Therefore, in a design process we have dynamic
interaction of different subprocesses yielding different results to be integrated
to a consistent whole.

A Model-Driven Approach for A-posteriori Tool Integration 25

Improvement of quality and efficiency can now be achieved by a better
interaction of subprocesses, by a better integration of subproducts, by un-
derstanding and making use of the duality of subprocesses and subproducts,
or of the reactivity induced by their mutual relation. This is one of the key
messages of IMPROVE.

Layers of the Process/Product Model

Processes as well as products have to be regarded and modeled on different
levels, which we call modeling layers. The simplicity and uniformity of layers
as well as of the transformation between layers is a prerequisite for a simple
and uniform process/product model. From this model we later “derive” the
functionality of the integrated environment as well as its implementation (cf.
Fig. 1.6).

data storage distribution process
interaction

Layer 1 application models:
process, product,
communication models for
developers and their results
in a cooperation

Layer 2 external models::
presentation, user interface,
tool functionality
(extended environments)

Layer 3 internal models
for realization:

Layer 4 Basic Models for Mapping:

a

b c

d

internal forms for documents,
configurations, processes,
communication as data models or code

data storage/access, process
interaction, distribution,
communication using platforms

Fig. 1.6. Layered process/product model

Layers

• On layer 1 of this figure we find the application domain models for the
process, its product, but also the required forms of collaboration and com-
munication. Even more, to be seen later, we find models to prestructure the
application domain and its underlying knowledge. We find organizational

26 W. Marquardt and M. Nagl

knowledge of the process, carried out in a specific subdomain, company,
cooperation of departments, etc.

• The support of the design process by tools should be as close as possible
to these application models. This facilitates that the process is carried
out within the design environment and not outside of it. On layer 2, we,
therefore, find external models of tools for different kinds of users, where
the presentation of these tools corresponds to the languages and methods
used within the design process. Analogously, the user interfaces fit the
application domain, the organization of a process, its context, and the
like.

• On layer 3 we find internal models of tools which represent subconfigura-
tions, process structures, collaboration and communication structures etc.
on an abstract level, but containing all necessary details for tool construc-
tion. These internal models are either represented by suitable data models
within the tools of the environment, or these models act as a description
from which equivalent tool software is later derived. In any case, these
models have to guarantee that tools offer the functionality and user in-
terface of layer 2. Typically, these tools offer a suitable cutout view for a
certain user.

• Internal models have to be mapped onto services of distributed platforms.
In order to keep the realization of tool extensions or of new tools inde-
pendent of the specifics of the underlying platforms, we find basic models
on layer 4. They are used for tool implementation and they have to be
transformed to a chosen and specific proprietary platform.

We give some examples of what should be found on which layer : On layer 1
we find a formalization of incremental and iterative development processes,
incremental changes within results, or the integration of models for chemical
engineering and plastics processing. On layer 2 we have to offer tool behavior
and user interfaces to allow, support, and facilitate these new application
concepts, thereby regarding that users have different roles needing different
tool support. Layer 3 models tool internal structures – efficient data access
due to efficient structure-, attribute-, relation-changing commands – which
contain a lot of further details compared to layer 2. Layer 4 refers to the
internal structure of tools consisting of various computer processes and data
components to be mapped onto a given distributed platform, like CORBA.

A Layered PPM

Models for processes, products, collaboration/communication, subprocess in-
teraction, subproduct integration etc. occur on every of these four layers and
have to be mapped onto the next layer. So, we find the same basic notions on
every layer. Let us explain this by taking the notion of a process as example:
On level 1 we speak of work processes of designers, containing subprocesses,
which again contain process steps. On level 2 we speak of support of an essen-
tial step by a complex command of a tool, if the process is interactive, or of an

A Model-Driven Approach for A-posteriori Tool Integration 27

automatic tool if the subprocess can be carried out automatically. On layer 3
we structure complex commands, we organize the complex intermediate states
of tools, we organize how complex models are to be presented to the user and
how this is done (e.g. following the model-view-controller paradigm). On level
4 we organize how complex tool components can be mapped on operating
system processes.

In the same way, we find hierarchies on every of the four layers. Application
processes are in hierarchical order, from life cycle structures to work processes
and their steps. Tools on layer 2 have to support all hierarchical levels. On
layer 3 these hierarchies have to be organized, stored, and retrieved. On layer 4
automatic parts of that process hierarchy or command execution are mapped
on computer processes.

Hence, we see that the process/product model appears on any of the four
layers. What we have argued for processes, we could have done for the other
basic notions of above (products, collaboration, etc.) as well. In addition, the
specific forms of the process/product model on a layer have to be mapped
downwards to the next.

A great challenge for IMPROVE is to handle distributed development pro-
cesses across different departments of a company or even between companies.
In this case, Fig. 1.6 has to be seen in multiple occurrences. Different ap-
plication, external, internal, or basic models have to be integrated. Specific
problems arise, as different model universes can exist on both sides of cross-
company processes (chemistry, chemical engineering, plastics processing, etc.),
or different organizational structures, design process habits, underlying lan-
guages/methods (e.g. a strict sequential process on one side, simultaneous
engineering on the other). Nevertheless, the different layered process/product
models on each side of the cooperation have to be integrated.

Requirements for a Comprehensive Process/Product Model

The process/product model for distributed design is no static and fixed deter-
mination, as we have learned above when discussing dynamics of the process
and the various interaction forms for its subprocesses. We now discuss the
requirements this model should fulfill.

Requirements

The PP Model has to be open, extensible, adaptable, and dynamical. Here
are some of the reasons :

• A design process in chemical engineering looks different, depending on the
specific chemical process, the applied standards, the available knowledge
and experience, the used apparatus etc.

• The design subprocesses and subproducts are different. Hence, they cannot
be described and formalized equally well.

28 W. Marquardt and M. Nagl

• Departments, companies, and combines of companies structure and co-
ordinate their design processes differently. Furthermore, the creativity of
designers also enforces freedom and variety.

• The structure of design processes in most cases is only determined at
process runtime. The development process can rarely be structured and
prescribed before it starts.

Therefore, the comprehensive process/product model for development has to
describe in a formal way

• different forms of subprocesses (granularity, structure),
• different interactions of these subprocesses,
• different subproducts (granularity, structure),
• different integration mechanisms for these products,
• the duality and connection between subprocesses and products,
• the necessary reactivity mechanisms,
• the mapping from one layer to the next,
• parameterization mechanisms to handle the huge variety of underlying

process structures, and
• the cooperation of different processes to one distributed process.

Hence, if we talk about a uniform process/product model we think that there
has to be a comprehensive assembly of modeling constructs to express variety
of processes, interaction forms, . . . , difference and similarity of cooperating
processes within one cross-company process. So, uniformity applies to mod-
eling constructs. The corresponding models for different processes, evidently,
are different and not uniform.

We have to recognize that design processes are structured and carried out
by human actors which are supported by more ore less intelligent tools. It
is obvious that subprocesses and overall processes cannot be completely for-
malized, as creativity is beyond formalization. Furthermore, even if a process
were completely formalizable, this formalization can only be done piecewise,
as the process is developing and changing at process runtime. The above mod-
eling constructs have to be flexible enough to express the variety of processes,
having human actors as creative elements, and evolving at runtime.

A Nontrivial Task

The development of a comprehensive and uniform process/product model is
a nontrivial modeling task, since

• there were no formal notations for subprocesses, subproducts, interaction,
integration, and reactivity mechanisms at hand with precise syntax, se-
mantics, and pragmatics fulfilling the above requirements,

• consequently, there is no methodology for these notations,
• language definition, method definition, and modeling has to be started in

parallel,

A Model-Driven Approach for A-posteriori Tool Integration 29

• there is no uniform modeling methodology available (to use modeling con-
structs in a clean and approved way) within the layers, nor to describe the
transformation between layers,

• up to now nobody has regarded the breadth between application models
and operating system models to be a part of one big model,

• commonalities by structuring a model, use of common and general sub-
structures, introduction of generic models and use of generic instantiations
is not state-of-the-art, not even on one of the above layers,

• in case of distributed and cross-company development we have the ad-
ditional problem, that equal or similar circumstances may be structured
differently: Modeling should be able to deal with similarity, difference, and
correspondences of similar models.

There was little to be found in literature regarding this ambitious problem of
a comprehensive, uniform, and layered process/product model . There were
some ontology approaches [540, 617] or some coarse partial models [14] on the
application level. Also, there were some internal models available for tool con-
struction, e.g. to formalize tool behavior [334, 350]. So, setting the ambitious
goal of a process/product model is another key message of IMPROVE. This
general model must have a tight connection from application models down to
the realization of tools.

What we have achieved within IMPROVE are only partial solutions to
this big problem. They are described in Chap. 6. There is plenty of room for
continuing research.

1.1.3 Design Support by an Integrated Software Environment

Available tools are far from providing a complete and comprehensive support
for all designers of a cooperative project. We find gaps where no support
or no valuable support is available, and we find islands of good support.
Especially, we find areas, where the support of tools should be closer related
to the nature of design activities or to the patterns of the cooperation between
designers. Only experience or intuition of developers and organizational as well
as management rules give a chance that development processes nowadays are
successful.

In this subsection we argue that new integration functionality transforms
existing tools to personalized environments which facilitate cooperation. Such
cooperative personalized environments are then integrated to build up an
integrated environment for the cooperative design team. The integrated en-
vironment is based on an open framework and makes use of advanced reuse
techniques.

30 W. Marquardt and M. Nagl

Gaps of Support and Cooperative Environments

Gaps of Tool Support

There is usually a big gap between the application layer and the layer of
external models of tools (see again Fig. 1.6; separation line a): Tools only
support minor or primitive parts of the work processes of developers, support
does not fit to the task to be solved, the presentation of results is not evident,
or the communication between developers is done outside of tool environments
(phone, meetings, etc.). Work processes are mostly manual and tedious.

Especially, there is little support for the cooperation of different developers
(separation line b): Results of one developer are interpreted by another de-
veloper to infer what to do. In the same way, project coordination and design
are not integrated.

In the case of distributed and cross-company design processes, the situa-
tion is even worse (line c): There is at most data exchange in the form of
files, eventually in some intermediate or standard format. Cooperation is re-
markably hindered, because there may be different cultures in the partner
organizations.

Finally, the realization of environments may be completely different (see
separation line d): There is no standard structure for design environments
nor for their integration. One environment may directly use files, another a
data base, a third may use a standard for product data on top of a data base
system etc.

Bridging the Gaps by New Functionality

Developers and Tool Support : Processes of human actors are supported by
new semantical tool functionality, concentrating on major design steps
and/or eliminating bookkeeping effort.
As IMPROVE starts by investigating and evaluating industrial processes
from engineering and labor research perspectives before tool development
is started, there is a high probability that the new functionality is accepted
by the design team.
Approved action patterns (experience) are used for process support. If
there are structural conditions for results, tools may support to obey these
structures or even generate these structures.

Different Developers or Developers and Management : Integrator tools help to
assure fine-grained consistency relations between increments of different
documents produced by different developers. Action patterns can also be
used for actions of different persons. Both can be used for simultaneous
as well as concurrent engineering.
As argued above, there is much spontaneous communication among de-
velopers “in between”. The results of these discussions can be stored as
annotations to element objects of products. Project coordination can sup-
port to find the right partner for spontaneous communication, and it can
help to organize this communication.

A Model-Driven Approach for A-posteriori Tool Integration 31

Most dynamic effects result from details or problems, elaborated or de-
tected during design. Tools can extract the corresponding information
from master documents, describing the product of the design process, in
order to support dynamic coordination.

Different Subprojects of Distributed Development : It should be possible to pa-
rameterize tools for a specific context in an application domain, or for
well-defined or approved structures of processes or documents. The corre-
sponding adaptation should be possible from one project to the next, or
even better during a running project.
Subprojects are independent on one side and have to be integrated to one
project on the other, especially in cross-company design. This enforces
interactions between both, the designers’ and the management level.

Extended Personal Environments

New Concepts and A-posteriori Integration

The new informatics concepts of IMPROVE (see 1.1.2) do fit with a-posteriori
integration, i.e. to use existing tools (cf. Fig. 1.6):

Direct process support analyzes traces of developers, determines well-behaving
traces and chunks, and offers them in the form of complex commands.
Hence, we have additional functionality on top of existing tools.

Integrator tools for assuring fine-grained interdocument relations support to
keep results of different designers in a consistent state. They can also be
applied between designers and manager. These tools use views of docu-
ments, elaborated by conventional tools. These conventional tools are still
necessary to produce the designers’ results.

Multimedia communication replaces communication outside the design envi-
ronment (phone, meetings). Available tools are extended to support this
advanced communication. The results of communication are added as an-
notations to usual documents. Again, we use existing tools.

Reactive administration is for coordinating dynamic design processes. There
is no functionality at hand on top of which we could offer these reactive
mechanisms. Hence a new “generalized workflow system” was built. A
similar system can also be built on top of classical management tools (cf.
Chap. 7).

Not only the new informatics concepts can extend available functionality of
existing tools. The same holds true for the engineering innovations we dis-
cussed above (see 1.1.2): Introducing model-based design and supporting it
by further tools can also be seen as an a-posteriori extension, as conventional
tools will be necessary as well. The same holds true for the comprehensive view
on conceptual design by regarding additional aspects as costs, security, etc.

32 W. Marquardt and M. Nagl

Cooperative Personal Environments

An essential part of an integrated environment to support the whole chemical
design process are the personal environments for specific subprocesses of the
overall process. The informatics concepts can now be used to prepare avail-
able tools/environments for this cooperative overall process. This is done by
introducing interfaces for new cooperative functionality and by adding this
new cooperation functionality. Figure 1.7 shows the different parts of that
extension and explains their use.

functionality

existing and
new design

tools

fine-grained integration
changing dependent documents,
consistencies of parallel views,
visualization of interdocument

relations

direct process support
cooperation, decision,
negotiation support,
traceability of actions

multimedia communication
for problem solving,

agreement, exchange of
experience, organization of

meetings

,

cooperative

design process management
coordination of dynamic processes,

assign cutout of overall
configuration, offer workspace

Fig. 1.7. Cooperative environments around given or new tools

The aim of these cooperative environments is to support cooperation of hu-
man process actors such that they need not use auxiliary means outside their
personal environment. Therefore, the cooperative environment should be com-
plete w.r.t. all means necessary for cooperation within the design process.

An even more important goal of the extension of a given environment to
form a cooperative personal environment is to specialize this environment to
fit the corresponding personal and cooperative subprocess of the actor. All
the above new informatics concepts offer valuable support of a new kind (see
Fig. 1.7): Direct process support introduces experience and best-practice for
cooperation, decisions, and negotiations. Product consistency support facili-
tates to keep dependent documents or parallel views consistent to each other
and visualizes fine-grained dependencies. Multimedia communication supports
discussions to find out if and where there is a problem and to sketch the“right”
way to solve that problem. Reactive administration allows to handle project
coordination even if there are severe changes in the design process. So, by these
new functionalities, any given software environment (for synthesis, simulation
etc.) gets a new quality for being usable in the cooperative process.

New engineering concepts according to 1.1.2 yield new environments pro-
viding necessary, specific design functionality, usually not available or broadly

A Model-Driven Approach for A-posteriori Tool Integration 33

used today, as e.g. specific environments for mathematical modeling and the
like. Of course, these new environments can also be extended to cover the co-
operation aspects outlined above. Fig. 1.7 holds true for standard tools or for
new engineering design functionality. For both, additional cooperation func-
tionality is useful.

It should be mentioned that in a complete design environment for the whole
design process we do not only find technical environments for specific tech-
nical tasks (synthesis, simulation etc.) or coordination management, possibly
extended by collaborative functionality. There are also specific environments
for other purposes : (1) an environment to define process fragments extracted
from the designers’ experience, (2) an environment to introduce specific pro-
cess/product types or process knowledge on the coordination level, (3) an
environment to handle changes of the underlying platform, and many others.

Furthermore, and of another quality, there are specification environments
which we use to build tools. The latter environments are not part of the inte-
grated environment to support the design processes in chemical engineering.
Instead, these environments belong to the tool development process. There-
fore, they are not discussed here but in later chapters of this book.

Realization of the Integrated Environment by an Open Framework

The approach of IMPROVE is not to add specific environments to given ones
in order to get a more or less complete coverage for all activities in design.
Instead, we aim at getting a common and uniform approach for a-posteriori
integration. Thereby, we expect that the corresponding results are (at least in
parts) also applicable to other engineering application domains [353].

Uniform A-posteriori Integration Approach

Existing environments for technical tasks in the design process are extended,
as they have not been developed for integration using an integrated pro-
cess/product model [296, 298, 346]. Possibly, they have to be modified before
[88]. Extensions of environments thus consist of two parts : (a) to introduce
interfaces to couple new functionality, and (b) to offer this new and coopera-
tive functionality. (This new functionality can later be integrated again and,
therefore, offers further synergy [348].)

Finally, the extended environments are to be integrated again to an inte-
grated but distributed overall environment for the whole design process. As
we aim at tight integration, the goal of a common a-posteriori solution is a
scientific challenge.

Our approach essentially differs from other tool integration approaches,
e.g. [795, 950], but also from standardization approaches [751, 859], other
tool projects in chemical engineering [505, 524, 928], as well as approaches to
support specific parts of a design process [541, 622, 931, 952].

All these, but also other approaches, do not regard the specific require-
ments for cooperative, distributed, cross-company software environments for

34 W. Marquardt and M. Nagl

engineering design applications, namely loosely interacting subprocesses, inte-
gration of subproducts, reactivity etc., thereby also regarding technical aspects
as security, different views, various specific tools etc.

Integrated and Distributed Environment of Design Environments

Figure 1.8 shows the architecture of the integrated overall environment in a
simplified form (for a pragmatic understanding of architectures see [331, 336]).
Usual architectural sketches are even coarser [950]. The existing specific envi-
ronments for developers to be integrated are of different quality and complete-
ness. They, also, have quite different purposes in the development process but
are regarded as having the same rank on an architecture level.

Some remarks are to be made before we start the discussion of the archi-
tecture: The architecture reflects layer 3 and 4 of Fig. 1.6 and, in addition,
has a layer for existing platforms to be used. User interface handling does not
appear in the architecture, as our architecture is too sketchy. Therefore, layer
2 of Fig. 1.6 is missing. Layer 1 does not appear, as layer 2 should reflect the
application models with corresponding and suitable user interface functional-
ity. A further simplification of the architecture is that the distribution of the
overall environment is not shown. Finally, the specific environments of the last
subsection (for extracting developers’ experience, defining consistency rules,
or adapting a process, etc.) are also not shown.

The overall environment consists of different parts ordered in different
architectural layers, which we are going to discuss next:

• Given specific technical environments (for synthesis, simulation, etc.) are
to be integrated (white parts (1) of Fig. 1.8). The code of these environ-
ments usually handles proprietary data structures. Code and data usually
use a specific platform.

• Specific environments behave as personal and cooperating environments by
an interface and by additional cooperation functionality (see above). For
that purpose, given environments are connected via technical wrappers
(2.a). Furthermore, data and functionality of existing tools have to be
offered in a homogeneous form which is done by so-called homogenization
wrappers (2.b).

• New functionality is offered by an extension of existing tools. For that
purpose, new internal data models (3.a) are introduced to allow this new
functionality (document structures, process descriptions, fine-grained rela-
tions, annotations, administration information). To be more precise we do
not find the data descriptions and their states in the architecture but the
software components by which those representations are defined, retrieved,
or updated using some underlying and structured data. Furthermore, as
already sketched, new cooperation functionality (3.b) can again be inte-
grated, yielding further synergistic functionality (3.c).

• Components and data for new functionality as well as program and data
components of existing environments are mapped onto distributed plat-

A Model-Driven Approach for A-posteriori Tool Integration 35

control,
authentication

synergetic
integration

new
tools

direct process
support

fine-grained
integrators

multimedia
communication

reactive
administration

homogeneous
data

proprietary
data

existing
tools

data and service managment

distribution platform

existing
software
specific
parts
general
parts

(4)

(1)
(2.a)(2.a)

(1)

(3.a)

(3.b)(3.b)

(3.c)

(2.b) (2.b)

(5)

new
tools

existing
tools

proprietary
data

homogeneous
data

Fig. 1.8. Integrated environment of design tools: architectural sketch

form services. Thereby, we use existing platforms like CORBA [877] or
COM [846]. At the moment, the use of such platforms comes along with a
lot of details: On which computer are processes or data, how to reorganize
in case of bottlenecks or in case of breakdowns etc.? Furthermore, some
platform services are still missing (e.g. protocols for multimedia commu-
nication, security services [76]). Therefore, we have an additional archi-
tectural layer (4) in our architecture. The interface of that layer offers
all necessary services, the realization maps these interfaces onto services

36 W. Marquardt and M. Nagl

of existing platforms. Basic data models are introduced [262, 273, 421]
to administrate platform details as well as mechanisms to extract data
[11, 190].

• Figure 1.8 shows the extension of two given environments and their inte-
gration. Of course, the integration prototype, to be discussed in the next
section, integrates much more specific environments. Any extended and in-
tegrated environment has some component to start/end a user dialog (5).
In case of distributed and cross-company cooperation different integrated
environments, each for one location, have to be integrated to a distributed
and overall environment.

It should be said that integration of existing, extended, and newly built envi-
ronments for one location and their further integration to a distributed overall
environment results in a big software development process and project for tool
construction/extension/integration within IMPROVE. The underlying ques-
tion is practical as well as big and, therefore, needs software engineering and
architectural knowledge. The solution we have achieved leaves the size and
lucidity of textbook examples.

Framework and Reuse Aspects

Open Framework for A-posteriori Integration

Universality of IMPROVE’s tool integration approach means that we have to
show, (a) that the solutions can be adapted to a specific scenario in chemi-
cal engineering, (b) that the prototypical solution of IMPROVE is complete
w.r.t. covering all occurring scientific and practical problems, and (c) that the
fundamental concepts of the solution can also be applied outside of chemical
engineering to other engineering design processes.

Due to the realization effort of the challenging approach of IMPROVE this
can only mean that we do not aim at case-dependent solutions. Instead, we are
looking for a framework of reusable components (dark grey parts of Fig. 1.8)
and a carefully structured software development process to get a distributed
overall environment by making use of the framework.

In the following we discuss the reusable components of that framework:
Parts of the technical wrappers to enclose existing tools belong to the frame-
work (2.a). Technical wrappers also contain specific parts, not to be reused.
Mapping (layer 4) is completely reusable and, therefore, is a part of the frame-
work. Homogenization wrappers (2.b) as well as new data structures (3.a) con-
tain reusable parts. New tools (3.b) also are partly reusable (e.g. command
cycle elaboration) as well as the components for synergy (3.c). Finally (5) is
completely independent.

The framework is called open as arbitrary existing environments can be in-
tegrated. Thereby, the framework components remain unchanged. The frame-
work avoids inhomogeneity of environments, at least corresponding to new

A Model-Driven Approach for A-posteriori Tool Integration 37

code for new environments, integration functionality, synergy, etc. (see sepa-
ration line d of Fig. 1.6).

Integration approaches [950] often cite integration dimensions [1038], na-
mely control, presentation, data, and platform integration. This classification
is too narrow, as constituents for these dimensions can be found on every
layer of Fig. 1.8. To give the arguments for the data integration dimension,
which is mostly understood to put data into the “same” repository, or to
use the same data modeling (e.g. relational) approach: On the external level
(not contained in Fig. 1.8), we find corresponding functionality to build up
and consistently change data of the overall configuration of a design process.
These overall configurations have to fit the application models (again not
shown in Fig. 1.8). On the internal level, uniformly modeled corresponding
data structures (syntax, semantics) are necessary to achieve tight integration.
On the mapping level the data have to be stored in different data containers or
retrieved from them. On the platform level they are transported in a common
standard format.

Distributed systems [572, 573, 648, 665, 738, 980] in the form of bound and
coupled programs are different from cooperating design processes supported
by distributed overall environments. For design processes we need loose mech-
anisms for interaction, integration, reactivity, etc. which, nevertheless, have
to be as tight as possible. We will probably never be able to describe a design
process by a program, a statement [892] which raised some controversy. On
the other hand there are some similarities between distributed systems and
cooperating processes and their environments, which have to be detected.

Reuse Applied to Framework and Overall Environment Realization

Reusable components of the framework were not used from the very beginning
in IMPROVE. We needed some experiments and corresponding experience
to find commonalities, generic templates, general mechanisms, and the like.
Reuse within development of new cooperative tool functionality was mostly
detected and applied by the corresponding partner, offering and realizing this
new functionality. Nevertheless, some nice results corresponding to architec-
ture transformations in order to structure and in order to adapt the overall
architecture have been found (see Sect. 5.7).

Technical or homogenization wrappers appear in many occurrences in an
overall architecture. Therefore, some effort was spent in order to mechanize the
construction of those wrappers. Again, the corresponding results are described
in Sect. 5.7.

The underlying general platform and its mapping to services of existing
platforms also constitutes a major part of the reusable framework. The cor-
responding research work is described in Chap. 4.

All remaining components (not being components of existing tools, not
being completely reusable) are indicated in light grey in Fig. 1.8. They are
not part of the framework. These specific components are realized differently

38 W. Marquardt and M. Nagl

in IMPROVE: Some of them have been manually coded with or without
a clear methodology. In other cases, these specific components are speci-
fied and the specification is directly interpreted. Finally, in some cases gen-
erators are used to generate code from a specification. Thereby, generally
usable components were detected (interpreters, generators) which, however,
are not a part of the overall environment, but belong to the tool construc-
tion/extension/integration process.

1.2 A Scenario Demonstrating Design Support in
Chemical Engineering

R. Schneider and B. Westfechtel

Abstract. The IMPROVE demonstrator is an integrated research prototype of
a novel design environment for chemical engineering. Throughout the IMPROVE
project, it has been considered essential to evaluate concepts and models by build-
ing innovative tools. Moreover, an integrated prototype was seen as a driving force
to glue research activities together. Two versions of the demonstrator were imple-
mented. The first version was demonstrated after the first phase of the project (from
1997 to 2000). The second demonstrator built upon the first one and was prepared
at the end of the second phase (lasting from 2000 to 2003).

This section describes the second demonstrator, which shows interdisciplinary
cooperation (between chemical and plastics engineering), interorganizational coop-
eration (between a chemical engineering company and an extruder manufacturer),
and synergistic tool integration.

1.2.1 Introduction

From the very beginning, it has been considered crucial to address both con-
cepts and tools in the IMPROVE project. Elaborating concepts and models
alone bears the risk of doing fundamental research which cannot be put into
practice. Conversely, building tools without studying and developing the un-
derlying concepts and models ends up in software development activities which
do not advance the state of research.

For this reason, it has been decided to build demonstrators on a regular
basis. The demonstrators would provide feedback to evaluate the research
on concepts and tools. In the first place, demonstrators have to be built in
the individual subprojects to evaluate their respective contributions. However,
individual demonstrators were not considered sufficient, since integration has
been a key goal of the IMPROVE project. Integration has been addressed both
at the level of modeling (integrated process and product model for chemical
engineering) and at the level of implementation. The role of the IMPROVE
demonstrator is to bundle research activities in the IMPROVE project and
to show the added value of an integrated environment for chemical process
design which is based on innovative concepts and models.

Throughout the course of the IMPROVE project, building tools has been
a constant activity. Milestones in tool development were demonstrated after
the completion of the first and the second phase, respectively. This section de-
scribes the second demonstrator, which was successfully shown at the project
review that took place in April 2003. This demonstrator builds upon its prede-
cessor, which was demonstrated at the end of the second phase in May 2000.
Since the second demonstrator extends the functionality of the first one in

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 39–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 R. Schneider and B. Westfechtel

several areas, while it retains its most essential capabilities, only the second
demonstrator is discussed here.

The presentation focuses on the functionality and the user interface of
the IMPROVE demonstrator. It follows the lines of the demonstration given
for the project reviewers. Thus, the core part of this section consists of a tour
through the demonstrator, whose user interface is illustrated by several screen-
shots. Before starting the tour, we summarize the most essential contributions
of the demonstrator. We will briefly sketch the underlying concepts and mod-
els, which are described in depth in other sections of this book. Likewise, the
architecture of the demonstrator is discussed elsewhere.

The rest of this section is structured as follows: Subsection 1.2.2 provides
an overview of the demonstrator. A guided tour through the demonstrator
follows in Subsect. 1.2.3 and 1.2.4. Finally, a short conclusion is given in
Subsect. 1.2.5.

1.2.2 Overview

Case Study

The demonstration refers to a case study [17] which has been used in the
IMPROVE project as a reference scenario. The case refers to the conceptual
design of a plant for the production of Polyamide-6 (PA6), as introduced in
Subsect. 1.1.1. By means of this case study, the workflow of industrial design
processes is examined in order to identify weak points and to define require-
ments for the development of new tool functionalities or even new tools. The
case study therefore serves as a guideline for the tool design process and hence
constitues a common basis for research in the IMPROVE project. All tools
developed in IMPROVE are evaluated in the context of the case study. Fur-
thermore, these tools are integrated to a common prototype demonstrating
the interactions between the different tools and their support functionalities.
Following this working procedure, it is possible to evaluate whether the tools
really fulfill the defined requirements and contribute significantly to an im-
provement of design processes in chemical engineering.

Figure 1.9 shows different kinds of flowsheets which mark the start and
the end of the part of the overall design process which is covered by the
case study. At the beginning, the chemical process is described by an abstract
flowsheet which decomposes the process into basic steps without considering
the equipment to be used (upper part of Fig. 1.9). The process consists of
three steps: reaction of caprolactam and water, separation of input substances
which are fed back into the reaction, and compounding, which manipulates
the polymer produced in the reaction step such that the end product meets
the requirements. The lower part of Fig. 1.9 shows a process flowsheet which
consists of chemical devices and therefore describes the chemical plant to be
built – still at a fairly high level of abstraction. The process flowsheet serves
as input for detail engineering, which is beyond the scope of the case study.

A Scenario Demonstrating Design Support in Chemical Engineering 41

reaction separation
com-

pounding

capro-
lactam

water

additives

PA6

watercaprolactam,

dimer

water

caprolactam

caprolactam
water

water, caprolactam

PA6

water
capro-
lactam

Fig. 1.9. Flowsheets for the case study

A description of the design process [169] is given in Fig. 1.10 using the no-
tation and modeling concepts of C3, which will be introduced in Sect. 2.4.
This process description is based on three sources: study of the literature, self
observation, and interviews. Self observation refers to design activities that
were performed by the engineering partners participating in the IMPROVE
project. Furthermore, interviews were conducted with several industrial part-
ners. Based on these three sources, the design process was structured. On the
one hand, the design process was constructed such that it reflects industrial
practice and the scientific state of the art. On the other hand, we incorpo-
rated innovative concepts which are intended to advance the current state of
the art, e.g. with respect to the collaboration between chemical and plastics
engineering.

Figure 1.10 merely shows a simplified cutout of the overall design process
serving as a reference scenario within the IMPROVE project. Furthermore, the
diagram should be viewed as a trace rather than as a normative description.
That is, it shows a partially ordered set of steps parts of which will be covered
by the guided tour (shaded rectangles). Therefore, the figure serves as a map
for the guided tour. Of course, a process model for design processes in chemical
engineering has to be defined on a much more general level since it has to cover
a class of design processes rather than a specific instance.

The design process was modeled in WOMS [400], a modeling tool which
has been developed in one subproject of IMPROVE (see Sect. 5.1). The nota-

42 R. Schneider and B. Westfechtel

3D Simulation
Expert

Extruder
Simulation

Expert

Compounding
Expert

Reaction
Expert

Manager

AHEAD

FDE
FDE

Start of Project
Design Flow

Diagram
Design

Reaction
Alternatives

Design
Separation
Alternatives

Simulation
Reaction
System

Experimental
Investigation

CSTR

Meeting
Compounding

Meeting
Degassing
Concept

Meeting
Degassing
Concept

Simulation
Compounding

3D Simulation
Mixing
Section

Analysis of
Results

Analysis of
Results

Analysis of
Results

Decision
Process
Concept

Global
Simulation

Global
Simulation

Meeting
Compounding

Global
Simulation

Simulation
Separation

System

Simulation
WFE

Experimental
Investigation

Extraction

Experimental
Investigation

WFE

Experimental
Investigation

Extruder

Decision
Process
Concept

Decision
Process

Plant

Decision
Process

Plant

Delegation
Task Net

Simulation
Reaction
System

Continuous
Modification

Task Net

Separation
Expert

Laboratory
Expert

FD
E

ModKit

PolymersPlus

AHEAD

CHEOPS

CHEOPS

AHEAD

AHEAD

gPROMS

gPROMS

gPROMS

gPROMS

Polymers

Plus

KomPaKT

KomPaKT

MOREX

MOREX

Kom
PaKT

BEMView AHEAD

BE
M

flo
w

TR
A

M
P

Fig. 1.10. Overview of the design process

tion used to describe the design process is the C3 formalism [221], a modeling
language for the notation of work processes. The abbreviation C3 stands for
the three aspects of workflow modeling which are represented in this formal-
ism: cooperation, coordination, and communication. The elements of C3 are
roles (e.g. reaction expert), activities (e.g. design reaction alternatives), in-
put/output information (not shown in this figure), control flows (solid lines),
information flows (also not shown), and synchronous communication (repre-
sented by black squares and horizontal lines). For each role, there is a swimlane
which shows the activities executed by that role. A rounded rectangle which
contains nested rectangles corresponds to an activity whose subactivities can
be performed in any order. Finally, the notes attached to activities represent
the supporting tools. For example, a flow diagram editor (FDE) is used to
create flowsheets for reaction alternatives.

Different organizations contribute to the overall design process. The chem-
ical engineering company is responsible for the overall process design, includ-
ing reaction, separation, and compounding. Only the compounding cannot
be handled in the chemical engineering company alone. Rather, an extruder
manufacturer has to assist in designing the extruder. Altogether, this results
in an interorganizational design process. Up to a certain level of complexity,
the compounding expert and the extruder simulation expert (of the chemical
engineering company) may take care of the extruder design. The simulation

A Scenario Demonstrating Design Support in Chemical Engineering 43

AHEAD

Aspen Plus

Flow Diagram Editor

gPROMS

BEMView

MOREX CHEOPS

KomPaKT TRAMP

Integration Tools PRIME

Fig. 1.11. Tools of the demonstrator

expert of the extruder manufacturer is consulted only to solve those problems
which require specific expertise.

Besides the interorganizational cooperation, the tight interdisciplinary co-
operation between chemical and plastics engineering constitutes an innovative
key contribution of the case study. In this respect, the case study goes far
beyond the current state of industrial practice (and also advances the state of
research). First, the design of the extruder is considered in an early phase of
the design process by elaborating the interactions between the separation step
and the compounding step of the chemical process. Second, the compound-
ing expert and the extruder simulation expert of the chemical engineering
company closely cooperate with the 3D simulation expert of the extruder
manufacturer in designing the extruder. Third, the extruder is included in a
simulation of the overall chemical process.

Tool Support

The demonstrator is composed of a set of tools which are classified into two
categories (Fig. 1.11):

• The left-hand part of the figure shows technical tools which support en-
gineers in design and simulation activities. With the help of these tools,
engineers create flowsheets, prepare simulation models, run simulations,
analyze simulation results, etc. The flow diagram editor [21] is used to
create abstract and process flow diagrams. Steady-state and dynamic sim-
ulations of the chemical process are performed in the commercial tools
Aspen Plus and gPROMS, respectively. MS EXCEL (not shown) is em-
ployed for storing simulation results (instead of using a plain text file). 1D

44 R. Schneider and B. Westfechtel

Case study (I1)

 CHEOPS
(A1)

Flow
Diagram

Editor (B1)

 BEMView
(A3)

PRIME
(B1)

AHEAD
(B4)

KomPaKT
(B3)

TRAMP
(C1)

 Integrator
Global Sim-
ulation (B2)

 Integrator
FDE-AHEAD

(B2)

 MOREX
(A3)

gPROMS
Polymers

Plus

Service Management (C2)

A2 IMPROVE Tools External Tools

Software Integration (I3)
Service Management (C2)

Data Models (A2)A2

A2

A2

A2

A2 A2

Evaluation (I2)I2

I2I2

I2

Fig. 1.12. Synergistic tool integration

simulations of the extruder are carried out with the help of MOREX [147].
The commercial tool BEMFlow is used for 3D simulations. The results of
these simulations are visualized in BEMView [145]. Finally, simulations of
the complete plant are run in CHEOPS [462], which couples heterogeneous
simulation tools for individual steps of the chemical process. The subpro-
ject names (e.g. A1, B1, and I2) are explained in the next subsection.

• The right-hand part of the figure displays novel tools which provide added
value by new functionality, relying on and integrating technical tools (see
1.1.2). All of these tools have been developed in the IMPROVE project.
AHEAD [169, 355] is a management system which supports the coordi-
nation of design activities and provides for coarse-grained tool integration
(tools are launched via the work environment of the AHEAD system).
KomPaKt [456] supports synchronous cooperation in distributed multi-
media work sessions. PRIME [371] is a process engine which adds fine-
grained process support to other tools such as e.g. the flow diagram4 edi-
tor. TRAMP [188] is used to record and organize product and process data
in a multimedia data warehouse. Finally, the demonstrator also includes
various integrator tools to be explained below.

From the perspective of computer science, the key contribution of the demon-
strator not only comprises novel tool functionality [348], but also its synergistic
integration, to form an overall design environment. This environment, sketched
in Fig. 1.12, provides added value which goes beyond the use of the individual
4 The terms flowsheet and flow diagram are used as synonyms in this book. Also,

we use flowsheet editor and flow diagram editor in parallel.

A Scenario Demonstrating Design Support in Chemical Engineering 45

tools. Technical tools are located at the bottom, synergistic tools are placed
on top of the technical tools. The tools are connected by use relationships,
some of which are omitted (e.g., the use relationships between AHEAD and
technical tools are not shown). (This picture is more detailed than Fig. 1.8, as
it contains the existing tools of the scenario. It is more abstract, as it ignores
wrappers.) Let us briefly explain the use relationships, proceeding from the
top to the bottom and from left to right:

• CHEOPS couples different kinds of simulators to perform plant-wide sim-
ulations and therefore uses MOREX, gPROMS, and Polymers Plus.

• The process engine PRIME is used to extend the functionality of the flow
diagram editor by providing executable process fragments. Furthermore,
PRIME calls MOREX to launch 1D simulations of the extruder.

• AHEAD calls KomPaKt in order to initiate multimedia conferences. Con-
versely, KomPaKt relies on managerial data provided by AHEAD, e.g.,
data about participants of a conference.

• TRAMP calls BEMView, a tool built on top of BEMFlow, to visualize
simulation data.

• The integrator for plant-wide simulations composes a simulation model
for CHEOPS by querying the flowsheet for components to be simulated,
retrieving the simulation documents for components via AHEAD, and in-
cluding them into the set of files for CHEOPS.

• Finally, the integrator between the flow diagram editor and AHEAD ex-
amines the flowsheet to update managerial data in the AHEAD system
(such as updating of a task net after structural changes to the flowsheet
have been performed).

In addition to the tools and their synergistic integration, Fig. 1.12 also shows
other contributions which were indispensable for building the demonstrator:

• An IMPROVE subproject was responsible for the case study, which was
modeled in WOMS. Thus, this subproject served as a global coordinator
which integrated the contributions of individual subprojects into a coher-
ent design process.

• Another subproject contributed through the development of data models
for chemical engineering, which were collected and integrated in the overall
CLiP data model [491].

• Another subproject developed the service management layer [438], which
provides a communication platform for tool integration.

• Finally, the software architecture of the overall design environment was
also developed in a subproject, which provided the organizational frame-
work for software integration [26].

46 R. Schneider and B. Westfechtel

Process Integrated 1D Simulation

Interorganizational Management

3D Simulation/Conference

Heterogeneous Global Simulation

CHEOPS
(A1)

Fließbild-
werkzeug

(B1)

AHEAD
(B4)

Integrator Global
Simulation (B2)

MOREX
(A3)

gPROMS
Polymers

Plus

Couples Couples

ReadsReads

Creates

Reads Reads

Reads

Couples

Integration FDE - AHEAD

Integrator
FDE-AHEAD

(B2)

Flow
Diagram

Editor (B1)

AHEAD
(B4)

Updates
Task Net

Reads
Flow Diagram

IMPROVE Tools

External Tools

Flow
Diagram

Editor (B1)

PRIME
(B1)

MOREX
(A3)

Tight IntegrationLoose Integration

AHEAD
(B4)

Delegates
AHEAD

(B4)

Chemical Engineering
Company

Extruder
Manufacturer

AHEAD
(B4)

KomPaKT
(B3)

TRAMP
(C1)

Archives
Simulation

Data

Activates

BEMView
(A3)

Activates

Uses

Fig. 1.13. Key parts of the demo

Key Parts of the Demo

Figure 1.13 summarizes the key parts of the demo (see novel process aspects
of 1.1.2). These highlights are explained briefly below, following the order in
which they appear in the demo.

Process Integrated 1D Simulation

The design of the extruder is considered early in the design process. In order
to integrate the extruder design into the overall design, the extruder simula-
tion expert uses the flow diagram editor to model the extruder in terms of its
functional zones. The process engine PRIME is used to provide process frag-
ments to support the simulation expert above the level of basic commands. To
achieve this, PRIME is tightly integrated with the flow diagram editor (e.g.,
PRIME extends command menus, queries and controls user selections, etc.).
From such a process fragment, the simulation tool MOREX is called, which
is integrated with PRIME in a much looser way by means of wrappers.

Interorganizational Management

The cooperation between the chemical engineering company and the extruder
manufacturer is supported at the managerial level by the AHEAD system,
which is used to delegate the 3D simulation of the extruder. Both companies
run their own instance of the AHEAD system each of which accesses a local
database. In this way, the use of a central database is avoided. The manage-
ment data are kept consistent by a runtime coupling which is based on the

A Scenario Demonstrating Design Support in Chemical Engineering 47

exchange of events. Thus, the chemical engineering company is kept informed
about the state of execution of the delegated subprocess.

3D Simulation and Conferencing

The simulation expert performs the 3D simulation in BEMFlow (not shown
in the demo). Before running the simulation, he uses TRAMP to retrieve data
from previous simulations which may give hints on setting up the simulation
parameters. The simulation results are visualized in BEMView and are stored
and annotated in TRAMP in order to augment the experience database. The
results are discussed in a conference, which is performed with the help of Kom-
PaKt. The conference tool is launched via the AHEAD system. Conversely,
KomPaKt queries the AHEAD system for various kinds of data such as the
participants to be invited and the documents to be presented. BEMView is
used in the conference to visualize and discuss the simulation results.

Heterogeneous Plant-Wide Simulation

A plant-wide simulation is performed with the help of CHEOPS, which cou-
ples different kinds of simulators (MOREX, gPROMS, and Polymers Plus)
at run time. The input data for CHEOPS are generated by an integration
tool which queries the flowsheet for the components and their connections,
retrieves the respective simulation models via the AHEAD system, generates
an input file for CHEOPS, and also passes the simulation models to CHEOPS.
The integrator cannot run completely automatically, since the user still has
to select the simulation models to be used from sets of candidate models.

Integration between the Flow Diagram Editor and AHEAD

At the end of the demo, the requirements are changed with respect to the
properties of the chemical product (PA6). An integrator tool is used to assist in
propagating these changes. However, user interaction is required to determine
the consequences of the changes and the activities to be performed. This
interactive process results in an updated task net determining which new
activities have to be executed and which old activities have to be restarted.
Major decisions still rest (intentionally!) with the manager. For example, the
affected parts of the flowsheet cannot be determined automatically. Rather,
they have to be marked manually.

1.2.3 Demonstration

This subsection offers a guided tour through the IMPROVE demonstrator
2003. The demo was also documented by a set of video clips which may be
viewed online (http://se.rwth-aachen.de/sfbdemo).

48 R. Schneider and B. Westfechtel

Process Integrated 1D Simulation

The demo starts when the reaction and the separation have already been de-
signed in parallel. In the sequel, the compounding step of the chemical process
is addressed. At this stage, it has already been decided that compounding is
performed with the help of an extruder. The polymers fed into the extruder
are melted. Furthermore, glass fibers are added, and monomers are degassed.

The overall design process is managed with the help of the AHEAD sys-
tem, which will be shown later. AHEAD provides a management environment
which represents the design process as a task net. In addition, AHEAD sup-
ports the management of products (of the design process) and resources (the
design team). The products are represented as versioned documents such as
flow diagrams, simulation models, simulation results, etc. These documents
are created with the help of the technical tools which were introduced in
Subsect. 1.2.2.

In addition to the management environment, AHEAD provides a work en-
vironment for designers which displays a personalized agenda of tasks. When
a task is selected in the agenda, a work context is displayed containing the rel-
evant documents (input, output, and auxiliary documents). The work context
is used to start tools operating on these documents. All tools for performing
technical tasks (i.e., design and simulation tasks in the demo process) can be
activated via the work environment of the AHEAD system.

The following steps are concerned with the design of the compounding
step. They are supported by the flow diagram editor and the simulation tool
MOREX. The extruder simulation expert models the compounding process
as a part of the overall chemical process with the help of the flow diagram
editor. The respective part of the flow diagram is used to derive a model for
1D simulation in MOREX.

Both the flow diagram editor and MOREX are integrated with the PRIME
process engine. The user of the respective tool is not aware of the process
engine, which operates transparently. Rather, process fragments appear as
high-level commands which bundle basic commands of the tools to be invoked
manually without process support. Furthermore, the process engine may trace
user interactions for different purposes (event-based activation of process frag-
ments or recording of user interactions, see below).

Process integration was performed a posteriori for both tools: The flow
diagram editor is based on MS Visio, a commercial drawing tool. From the
perspective of the process engine, MOREX can be considered as a legacy
system. In both cases, the source code of the tool was not modified to perform
process integration. The achievable level of process integration was constrained
by the interfaces provided by the tools:

• For the flow diagram editor, tight process integration was implemented.
E.g., by modifying the command menus, it was possible to launch process
fragments directly from the editor.

A Scenario Demonstrating Design Support in Chemical Engineering 49

Fig. 1.14. Flow diagram editor

• Only loose process integration could be realized with MOREX. Basically,
PRIME may only trace the actions of MOREX and record these traces.
In addition, process fragments may be launched in an event-based fashion,
but it is not possible to activate process fragments directly via a command
offered in MOREX.

The flow diagram editor is invoked via the work environment of the AHEAD
system on the current flow diagram, which decomposes the chemical process
into the basic steps reaction, separation, and compounding. To model the
internals of the compounding step, the compounding expert creates a refining
subdiagram. The compounding process in the extruder is decomposed into
functional zones: simple polymer flow, degassing of monomers, addition of
glass fibers, and degassing of air (Fig. 1.14). Furthermore, parameters relevant
for the simulation are specified (e.g., the screw speed is defined as 300/min).
Finally, the compounding expert passes the flow diagram to the extruder
simulation expert for performing a 1D simulation in MOREX. Please note
that the addition of glass fibers cannot be simulated in MOREX; this will be
handled later in BEMFlow (3D simulation).

The 1D simulation expert opens the flow diagram using the flow diagram
editor. He activates a command for generating a simulation model for the
extruder. The simulation model contains the functional zones defined in the
flow diagram. The simulation model is opened in MOREX, a 1D simulator
which is used to simulate mass flows and heat flows in an extruder. Before the
simulation is run, the simulation expert refines the simulation model by adding
functional zones and enriching the functional zones with screw elements. The
flow diagram contains only sketchy information; for the simulation, the actual
geometry of the extruder is required.

50 R. Schneider and B. Westfechtel

MOREX is coupled loosely with the process engine PRIME. In this cou-
pling mode, PRIME can merely trace the actions performed in MOREX, but
cannot control user interactions actively. The traces observed by PRIME are
stored persistently and can be analyzed later. But traces can also be used to
support the user of MOREX in an active way. For example, the simulation
expert adds a functional zone for mixing and compounding processes. This
user interaction is observed by PRIME, which recognizes a context in which
previously acquired process knowledge can be applied. PRIME opens FZEx-
plorer, a tool for exploring functional zones (Fig. 1.15). The simulation expert
may select one of the realizations for the functional zone, which is added to the
simulation model via the COM interface of MOREX. Thus, even in the case
of loose process integration the user may be supported actively to a certain
extent5.

The simulation expert still has to add material and process parameters
to the simulation model. After the simulation model has been completed,
the simulation expert runs the simulation. The results, which are displayed
graphically (Fig. 1.16), include e.g. temperature and pressure profiles.

After the simulation has been completed, the modified extruder configu-
ration is propagated back into the flow diagram. Thus, the functional zone
which was added to the extruder configuration for the mixing and compound-
ing processes is also added to the subdiagram refining the extruder. Further-
more, the functional zones are extracted from the extruder configuration and
are written to a database which is accessed by the FZExplorer. In this way,
experienced-based process support is provided.

With the help of the 1D simulation performed in MOREX, some process
parameters cannot be determined. In particular, this refers to the mixing
quality which is achieved when glass fibers are added. Therefore, it is decided
to examine the flow conditions by means of a 3D simulation in BEMFlow.

Interorganizational Management

The 3D simulation cannot be performed locally: This task requires specific
expertise which goes beyond the capabilities of the staff of the chemical engi-
neering company. Therefore, 3D simulation is delegated to the extruder man-
ufacturer. Delegation is performed with the help of the AHEAD system. In
general, any connected subprocess may be delegated to an external organi-
zation. Here, the subprocess consists of a single task which is embedded into
its context. The contractor refines the task locally to decompose the contract
into manageable activities.

Delegation is performed in multiple steps. First, the client exports the
subprocess by activating a respective command offered by the management
environment (Fig. 1.17). The delegated process is written into an XML docu-
ment which is transferred to the contractor. Next, the contractor imports this

5 Please note that PRIME cannot modify the command menu of MOREX.

A Scenario Demonstrating Design Support in Chemical Engineering 51

Fig. 1.15. Function zone explorer

document into his local instance of the AHEAD system. Now, the database of
the contractor contains a local copy of the delegated subprocess, including the
context into which the subprocess is embedded. Finally, both the client and
the contractor connect to a communication server which is used to synchro-
nize the local databases. Messages which are relevant to the communication
partner are transmitted via the communication server. In this way, the local
copies are kept consistent. When an instance disconnects from the communi-
cation server, a message queue is maintained which is flushed on re-connect.

52 R. Schneider and B. Westfechtel

Fig. 1.16. 1D simulation in MOREX

Fig. 1.17. Export of a task to a subcontractor

The 3D simulation expert, who also plays the manager role for this small
subprocess, starts the task for 3D simulation. The corresponding state change
is propagated immediately via the communication server. Thus, the client
keeps informed about the operations performed by the contractor (and vice
versa). Subsequently, the 3D simulation expert refines the simulation task into
a sequence of subtasks for analyzing the results of 1D simulation, generating

A Scenario Demonstrating Design Support in Chemical Engineering 53

Fig. 1.18. Refinement of the imported task

Feeding

Melting

Simple Flow

Degassing

Reactive Extrus.

Mix. Flownumber

Mix. Shear Rate

Mix. Elongat. Vis.

Mix. Visc. Ratio

Mix. Cap. Numb.

Mix. Compatib.

Mix. Quality

Mix. General Thermoplastics

Poyl-Poly. Blend

Poyl-NPoly. Blend

Rubber

Static Mixer

Internal Mixer

Buss Kneader

Multi Screw Extr.

Twin Screw Cou.

Twin Screw - Co

Single Screw Ext.

T. ool for
R. epresentation &
A. nnotation of
M. ultimedia content in
P. lastics Engineering

Goal Material Machine Type

Feeding

Melting

Simple Flow

Degassing

Reactive Extrus.

Mix. Flownumber

Mix. Shear Rate

Mix. Elongat. Vis.

Mix. Visc. Ratio

Mix. Cap. Numb.

Mix. Compatib.

Mix. Quality

Mix. General Thermoplastics

Poyl-Poly. Blend

Poyl-NPoly. Blend

Rubber

Static Mixer

Internal Mixer

Buss Kneader

Multi Screw Extr.

Twin Screw Cou.

Twin Screw - Co

Single Screw Ext.

T. ool for
R. epresentation &
A. nnotation of
M. ultimedia content in
P. lastics Engineering

Goal Material Machine Type

Fig. 1.19. Analyzing simulation histories in TRAMP

the mesh required for the 3D simulation, performing the actual simulation by
solving a set of equations, and analyzing the results of 3D simulation. The
refining task net, which is shown in Fig. 1.18, is not visible for the client, who
may monitor only the public parts of the delegated subprocess.

1.2.4 3D Simulation and Conference

After having planned the subprocess for 3D simulation, the simulation expert
starts by analyzing the results of 1D simulation, which have been transmit-
ted via a file generated by MOREX. In the next step, he creates the sim-

54 R. Schneider and B. Westfechtel

Fig. 1.20. Visualizing simulation results in BEMView

ulation model. To this end, he makes use of historical data gathered from
previous simulation runs. This is supported by TRAMP, which maintains a
multi-media database of animated simulation results. TRAMP organizes its
database by domain-specific categories. When the simulation experts selects
the category“mixing quality”, the simulations matching this category are dis-
played by TRAMP. In the next step, TRAMP plays the simulation selected
by the expert (Fig. 1.19). After having investigated several simulations stored
in the database, the simulation expert creates the simulation model for BEM-
Flow.

The simulation is performed in BEMFlow off-line. Afterwards, the simu-
lation results are visualized with the help of BEMView, which animates the
flow conditions in 3D (Fig. 1.20). The simulations have been run with dif-
ferent screw speeds in order to compare the respective flow conditions. The
simulation expert, who took advantage of historical simulation data stored
in TRAMP, provides his own contributions by recording animations as video
clips, categorizing and annotating them, and storing the annotated videos in
the TRAMP database.

Subsequently, the simulation results for different screw speeds are dis-
cussed in a conference. The conference serves as an example of synchronous

A Scenario Demonstrating Design Support in Chemical Engineering 55

Fig. 1.21. Launching a conference from the AHEAD system

inter-organizational cooperation because both the client and the contractor
participate.

Since the conference was planned in advance, it is represented as a task in
the AHEAD system. The compounding expert, who is assigned to this task,
initiates the conference via the work environment of the AHEAD system. To
this end, he starts the task and opens its work context, from where external
tools may be activated. When the compounding expert activates the command
for initiating a conference, a dialog is displayed in which the participants of
the conference are selected from a menu of available participants (Fig. 1.21).
Likewise, all document versions contained in the work context are offered as
subjects of the conference. Here, the compounding expert selects the animated
simulation results for different screw speeds which have been prepared by the
3D simulation expert.

The conferencing tool KomPaKt is started via a CORBA wrapper. Kom-
PaKt accesses managerial data provided by the AHEAD system via the
CORBA wrapper. First, KomPaKt determines the participants to be invited.
When all participants are available, the compounding expert invites them to
join the conference. Each participant is informed by an invitation window and
accepts the invitation. Subsequently, the simulation results are discussed in
a joint working session. To this end, the respective documents are retrieved
from the management database of the AHEAD system via a CORBA wrapper.
Please note that wrappers play a crucial role in a posteriori integration.

For supporting joint working sessions, KomPaKt offers a sharing mode
called event sharing. Traditional application sharing requires to transmit high
volumes of data over the network since the actual contents of the screen has
to be sent to each participant. In contrast, KomPaKt passes more high-level
events to each application instance. This significantly reduces the amount

56 R. Schneider and B. Westfechtel

Fig. 1.22. Sharing BEMView in KomPaKt

of data traveling over the network. In the demo, event sharing is applied
to BEMView, which is used to visualize the simulation results. Figure 1.22
demonstrates sharing of BEMView among two participants of the conference.
However, event sharing works also for more than two participants. In the
demo, three experts take part in the conference from the very beginning.
Then, another expert from the extruder company, who is connected via a
low bandwidth telephone line, is invited ad hoc during the conference. Event
sharing also works for such a low bandwidth of 28.8 kbit/sec.

The participants of the conference agree on a screw speed of 400/min,
which differs from the screw speed proposed originally (300/min). The in-
creased screw speed guarantees an improved mixing quality. The compounding
expert updates the flow diagram accordingly. Subsequently, the 1D simulations
are performed once again for the updated screw speed.

Heterogeneous Plant-Wide Simulation

After having simulated the components of the chemical process individually,
a simulation of the overall process is performed. To this end, different kinds
of simulators have to be coupled to form a heterogeneous simulator. We have
shown that MOREX has been used for 1D simulation of the extruder. Fur-
thermore, reaction and separation simulations have been performed with the
help of the commercial simulators Polymers Plus and gPROMS, respectively.

The simulator framework CHEOPS couples different simulators at run-
time. CHEOPS requires an input file which describes the simulation models
and simulators for the components of the overall process, as well as their de-
pendencies. Based on this information, CHEOPS starts the simulators in the
correct order. In the case of feedback loops. CHEOPS iterates the simulation
runs until a steady state is reached. The input file for CHEOPS is created by
an integrator tool which operates on multiple data sources (product manage-
ment database, integration documents, and the flow diagram).

A Scenario Demonstrating Design Support in Chemical Engineering 57

Fig. 1.23. Integration tool for creating an input file for CHEOPS

As the first step, the flow diagram is opened in the flow diagram editor. Sub-
sequently, the simulation expert selects the regions to be included into the
simulation. Then, he starts the integrator tool for creating the CHEOPS in-
put file from the flow diagram editor. For the selected regions, the integrator
tool determines the simulation models which have been created for these re-
gions. This is done by using both coarse-grained dependencies stored in the
product management database and fine-grained dependencies stored in in-
tegration documents. For each region, the integration tool presents a list of
candidate models to the simulation expert, who selects an appropriate model
from the list (Fig. 1.23). Subsequently, the selected models are combined ac-
cording to the mutual connections defined in the flowsheet. For performing
the global simulation, the parameters of external streams have to be defined,
as well. Finally, the input file for CHEOPS is created as an XML document.

To initiate the global simulation, the CHEOPS server as well as the wrap-
pers of all participating simulators are started. Next, the simulation expert
specifies the input file for CHEOPS and runs the simulation. CHEOPS solves
the simulation in a sequential-modular mode: Each simulator is run in turn,
where the simulation results are passed from one simulator to the next. In the
case of feedback loops, this process is iterated until a steady state is reached
(i.e., the global simulation converges).

During the simulation run, the active region is highlighted in the flow
diagram editor. Furthermore, the respective simulation model is displayed, as
well. In Fig. 1.24, the reactor is highlighted in the flow diagram (background
window), and the corresponding simulation model is shown in Polymers Plus
(foreground window). After several iterations, the simulation converges, and
the plant-wide simulation run is terminated. The simulation results are written
into an MS Excel spreadsheet.

Integration between the Flow Diagram Editor and AHEAD

For the final part of the demo, we assume that the requirements to the product
of the chemical process are changed: Both the molecular weight and the purity
of the polymer product have to be increased. As a consequence, certain tasks

58 R. Schneider and B. Westfechtel

Fig. 1.24. CHEOPS at runtime: coupling heterogeneous simulators

have to be iterated, and certain documents have to be revised. Unfortunately,
it is difficult to assess the implications of the changed requirements. In particu-
lar, it is impossible to determine these implications completely automatically.
In contrast, the chief designer is supported by an interactive tool which em-
ploys both managerial data maintained in the AHEAD system and technical
data represented in the flowsheet. This tool is called FSE-AHEAD integrator6

because it assists in propagating (estimated) changes of the flowsheet into the
task net maintained by AHEAD. The updates of the task net determine which
actions have to be taken in response to the changed requirements.

To cope with the changed requirements, the reaction expert, who also
plays the role of the chief designer, inspects the flowsheet and identifies de-
vices which have to be investigated further. He concludes that both the re-
actor and the extruder may be affected, and marks these devices. Next, the
chief designer starts the FSE-AHEAD integrator from the flow diagram editor.
The FSE-AHEAD integrator receives the selected devices as inputs and deter-
mines the regions in which they are contained. Subsequently, all documents are
searched which refer to these regions. This is performed in a similar way as it

6 FSE stands for flowsheet editor

A Scenario Demonstrating Design Support in Chemical Engineering 59

Fig. 1.25. Determining affected documents and tasks

is done in the integrator tool for plant-wide simulation described in the previ-
ous subsection (i.e., both coarse- and fine-grained dependencies are queried).
All potentially affected documents are displayed to the chief designer, who
selects those documents he assumes to be actually affected (Fig. 1.25, left).

Subsequently, the FSE-AHEAD integrator determines all tasks which cre-
ated the documents selected in the previous step. These tasks are presented
to the chief designer, who selects those tasks he considers actually affected
(Fig. 1.25, right). The FSE-AHEAD integrator composes an agenda of tasks
which have to be re-activated. The chief designer annotates the agenda, which
is written by the FSE-AHEAD integrator into an XML document.

The agenda created by the chief designer does not become immediately ef-
fective. In contrast, it is inspected by the project manager, who makes the final
decision which tasks are going to be performed in response to the requested
changes (Fig. 1.26). When the project manager has released the agenda, the
FSE-AHEAD integrator creates a script which is sent as a batch command
file to the AHEAD system. After the script has been executed, AHEAD dis-
plays the changed task net. Subsequently, the project manager would assign
responsibilities to the tasks to be executed. However, the demo tour ends at
this point. The reader may imagine on his own how to carry on.

1.2.5 Conclusion

In this section, we have taken a short tour through the demonstrator prepared
at the end of the second phase of the IMPROVE project (in 2003). More
detailed information about the tools contributing to the demonstrator is given
elsewhere in this book. The demo tour presented here primarily serves to
demonstrate the tight integration of heterogeneous tools (given, extended, or
new) making up a novel design environment for chemical engineering. The key
message here is synergy: The interplay of the components adds value which
goes beyond the value of the individual components alone.

60 R. Schneider and B. Westfechtel

Fig. 1.26. Deciding on the actions to be performed

The second contribution refers to the underlying design process, which differs
from traditional design processes in two respects. First, the design process is
characterized by tight interdisciplinary cooperation, namely between chemical
and plastics engineering. Second, the overall design process involves interorga-
nizational cooperation, as well (between a chemical engineering company and
an extruder manufacturer). This cooperation may be used for iterations and
studies of alternatives within design processes, but also for error situations
and changing requirements.

Acknowledgments

The authors are deeply indebted to all participants of the IMPROVE project
who contributed to the demonstrator, directly or indirectly.

1.3 The Interdisciplinary IMPROVE Project

M. Nagl

Abstract. As already introduced in Sect. 1.1, IMPROVE is a joint project be-
tween different disciplines, namely Chemical Engineering and Informatics. Even
more, Plastics Engineering and Labor Research are also involved. Informatics it-
self is represented by three groups of different research fields.

Whereas Sect. 1.1 dealt with the problem to be solved and Sect. 1.2 discussed a
resulting integrated prototypical environment, this section discusses the project and
the research and development process to solve these problems.

The section is structured as follows: First, the IMPROVE project structure
is discussed, next its iterative and practical approach is introduced. Two further
characterizations are given, namely the funding of IMPROVE and the predecessor
projects. Finally, we give a survey of this book’s structure.

1.3.1 Project Structure and Policy

There are 6 research groups involved in the IMPROVE project the contact
data of which are given in Appendix A.1. Every subproject of this project is
carried out by exactly one research group.

Project Areas

In Fig. 1.27, the coarse structure of the IMPROVE project is presented as
three technical project areas and one area for integration. Any of these areas
is divided into several subprojects. Furthermore, there is a common research
topic dealing with the key problem of the CRC, namely to understand and to
evaluate design processes and, especially, to define a formal process/product
model. This topic is elaborated by all research groups and, therefore, by all
subprojects. Last but not least, there is a subproject Z for organization, ad-
ministration, and documentation of the results of the CRC. The latter is not
further discussed in this book. In the following, we discuss the research areas
and their corresponding subprojects.

Technical Project Areas

In area A Development Processes in Chemical Engineering on top of Fig. 1.27
we find the definition of problems to be solved, the specification of require-
ments for new tool support, and the formalization of underlying models for
processes and products on the application level. Three subprojects, A1–A3,
are included.

Area B New Methods and Tools deals with innovative concepts for sup-
porting development processes, the synergistic and integrative use of these
concepts, a methodology for implementing these new support concepts in the

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 61–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 M. Nagl

A
1:

 P
ro

ce
ss

es
 fo

r
M

od
el

-b
as

ed
D

es
ig

n
(M

ar
qu

ar
dt

/
Sc

hn
ei

de
r)

A
2:

 In
fo

rm
at

io
n

M
od

el
s

fo
r

C
on

ce
pt

ua
l

D
es

ig
n

(M
ar

qu
ar

dt
)

A
3:

 E
xt

ru
de

r
D

es
ig

n
P

ro
ce

ss
es

(H

ab
er

st
ro

h)

B
1:

E
xp

er
ie

nc
e-

ba
se

d
D

ev
e-

lo
pm

en
t

P
ro

ce
ss

es
(J

ar
ke

)

B
2:

In
cr

em
en

ta
l

In
te

gr
at

or
To

ol
s

(N
ag

l)

B
3:

M
ul

tim
ed

ia
C

om
m

un
ic

a-
tio

n
Su

pp
or

t
(S

pa
ni

ol
)

B
4:

 R
ea

ct
iv

e
P

ro
je

ct
M

an
ag

e-
m

en
t (

N
ag

l/
W

es
tfe

ch
te

l)

C
1:

 In
fo

rm
at

io
n

Fl
ow

M
an

ag
em

en
t

(J
ar

ke
)

C
2:

 S
er

vi
ce

M
an

ag
em

en
t a

nd

Tr
ad

in
g

(S
pa

ni
ol

)

I1
: S

ce
na

rio
-

ba
se

d
A

na
ly

si
s

(M
ar

qu
ar

dt
/

Sc
hn

ei
de

r)

I2
: P

er
so

n-
or

ie
nt

ed
W

or
k

P
ro

ce
ss

es
(L

uc
za

k/
S

ch
lic

k)

I3
: S

of
tw

ar
e

In
te

gr
at

io
n

an
d

Fr
am

ew
or

ks
(N

ag
l)

I4
: L

ab
or

R
es

ea
rc

h
D

es
ig

n
of

P

ro
ce

ss
es

(S
ch

lic
k)

In
du

st
ry

:
C

he
m

. I
nd

.,
P

la
nt

 B
ui

ld
er

s,
To

ol
 B

ui
ld

er
s

S
tru

ct
ur

e
of

 th
e

IM
P

R
O

V
E

 P
ro

je
ct

Im
po

rt/
A

da
pt

at
io

n

Te
ch

ni
ca

l P
ro

je
ct

 A
re

as
Ke

y
To

pi
c

C
om

pr
e-

he
ns

iv
e

P
ro

ce
ss

 /
P

ro
du

ct
M

od
el

C
on

ce
pt

s
/

St
an

da
rd

s
S

er
vi

ce
s

an
d

P
la

tfo
rm

s

A
: D

ev
el

op
m

en
t P

ro
ce

ss
es

 in
 C

he
m

ic
al

 E
ng

in
ee

rin
g

C
: M

ap
pi

ng
 o

nt
o

E
xi

st
in

g
P

la
tfo

rm
s

B
: N

ew
 M

et
ho

ds
 a

nd
 T

oo
ls

I:
In

te
gr

at
io

n

P
ro

du
ct

S
ta

nd
ar

ds
P

ro
ce

ss
M

od
el

s
To

ol
s

to
be

 in
te

gr
at

ed
N

ew
 P

la
tfo

rm
s/

S
er

vi
ce

s
S

tru
ct

ur
e

of
D

is
tri

bu
te

d
S

ys
te

m
s

In
te

gr
at

io
n

A
pp

ro
ac

he
s

M
M

 B
as

ic
S

er
vi

ce
s

Fig. 1.27. Project structure of IMPROVE

The Interdisciplinary IMPROVE Project 63

form of tools or tool extensions, thereby applying reuse techniques for tool
implementation. This project area consists of four subprojects, B1 to B4.

Finally, project area C Mapping onto New and Existing Platforms summa-
rizes unification, generalization, and use of different tool platform approaches.
The result is a generalized layer for data access and computing processes being
developed by the two subprojects C1 and C2.

Corresponding to the relations between the above project areas the follow-
ing remarks hold true:

1. The relation between areas A and B is more than specifying tool function-
ality in area A and realizing tools in area B. Instead, tools are realized in a
close cooperation between the engineering and computer science projects
in areas A and B, respectively. Furthermore, the engineering projects also
developed some tools to be described later.

2. Relation B and C: In most cases, the realization of engineering tools relies
on a specific underlying platform. To avoid this situation, project area C
defines an interface which unifies existing platform services. Furthermore,
there are functionalities not offered by existing platforms which, however,
are necessary for the realization of advanced tools. Hence, the platform
interface also gives an extension of existing platform functionalities.

Integration Project Area

Integration here has three different semantics :

• Subproject I1: Existing industrial design processes are analyzed and evalu-
ated; the corresponding results serve as an input for IMPROVE. Therefore,
real world problems are brought into IMPROVE. Conversely, new concepts
and new tool support of IMPROVE are made applicable to industry. This
mutual connection to industry is done by using different and graduated
scenarios as already described in Sect. 1.2. Therefore, I1 is, among others,
responsible for installing and maintaining relations between industry and
IMPROVE.

• Subprojects I2 and I4 deal with labor research aspects. In I2, work pro-
cesses are studied, requirements for tools are postulated, and new tools
of IMPROVE are evaluated, altogether corresponding to labor research
aspects. In I4, design processes are planned and simulated under the labor
research perspective, in order to make a prognosis about their time and
effort behavior, before they are carried out eventually.

• Subproject I3 deals with the software development process connected to
tool realization. On the one hand, the subproject gives architectural advice
for tool constructors such that newly developed tools or extended existing
tools later fit together. This was especially important during the devel-
opment of the integrated prototypes. On the other hand, the subproject
collects and administrates all reusable components of the integrated proto-
types we have realized so far. These reusable components are collected in
a framework. One specific topic, thereby, is to incorporate existing tools.

64 M. Nagl

Relations to the Outer World

These relations (see right side of Fig. 1.27), are mostly to industry, from which
problems, addressed in the IMPROVE project, are received and discussed. On
the other hand, results are transferred to industry.

Thereby, industry has three different appearances : (a) The users of chem-
ical process technology and of corresponding tools in the chemical compa-
nies, (b) the constructors and builders of chemical plants and, finally, (c) tool
builders supporting the process of developing chemical plants. In Chap. 7 we
explain our efforts to transfer results of the IMPROVE project to the industry
of these three forms.

The second relation to the outside world is import of results to be used in
the IMPROVE project. Here, also, import has different meanings: concepts
to be used/adapted, standards to be followed, platforms to build upon, and
tools to be used as a part of our realization. At the bottom of Fig. 1.27 the
different forms of imports are enumerated.

Comprehensive Process/Product Model

The most ambitious scientific problem to be solved by IMPROVE – in other
words the key topic of this project – is to develop a comprehensive and formal
process/product model for design processes. The importance of this model, its
appearance across different layers, its hierarchical structure in every layer, and
the mapping between different layers were already introduced in Sect. 1.1.

This key topic had to be addressed by all research groups of IMPROVE.
There were no special projects solely addressing this problem. Instead, every
project gave its specific contribution according to the layer structure intro-
duced in Fig. 1.6.

Projects A1, A2, A3, I1, I2, and I4 mainly contributed the application
layer of this model. B1, B2, B3, and B4 addressed the internal and concep-
tual models for tool development, and projects C1 and C2 contributed to the
platform layer. Of course, there was also a cooperation of projects on any of
these layers in order to discuss the models on each layer. Even more, there
was a cooperation in order to discuss the transitions of the models from one
layer to the next, from top to bottom.

For example, A1, I1, B1, and B4 cooperated for elaborating process models
on the fine-grained technical as well as on the coarse-grained management
level. This was done on the application side, the tool construction side, and
the transition between both. Cooperations like this are typical for model elab-
oration.

The contributions for the process/product model came from four differ-
ent directions, namely processes, products, cooperation, and communication.
Some projects are rather specific in their contribution, others deliver results
corresponding to more than one of these four aspects.

The Interdisciplinary IMPROVE Project 65

The current state of the layered process/product model is described in
Chap. 6. A brief summary how far we got is as follows: For specific topics (fine-
grained process models, fine-grained product models, coarse-grained product
and process models) we have some nice results. They deal with, how the models
look like on different layers and how the transition between these layers has to
be described and, especially, how they can be derived from application domain
models. However, there are still a lot of open problems.

1.3.2 Practical Relevance

This subsection characterizes the IMPROVE project by regarding different
perspectives: focus, procedure, role of demonstrators, and cooperation with
industry.

Focus and Procedure

Focus and Importance

As already argued, design processes have to be improved with respect to qual-
ity and efficiency. This is especially important in a developed industrial coun-
try, like Germany, with high salaries. The early phases of the development
process, furthermore, have great economical impact. In scientific terms, this
part of the process is a particularly challenging.

The current state of design processes can essentially not be improved by
making only small steps. Instead, a new approach is necessary. Thereby, we
face principal questions and nontrivial problems. We find new questions and
corresponding problems by coherently and uniformly modeling the application
domain and by defining new and substantial tool functionality. The layered
process/product model is a scientific question which – even in a long-term
project like IMPROVE – can only be answered partially.

Finally, the realization of an integrated design environment with new, in-
tegrated, and synergistic functionality on top of existing tools was specifically
difficult, as we aimed at tight integration and as we also tried to apply reuse
techniques for tool implementation.

By taking existing tools and by asking fundamentally new questions, the
IMPROVE project tried to balance between relevance for industry on the
one and scientific focus for research on the other hand. Usability is specifi-
cally addressed by carefully regarding application-specific aspects and by the
ergonomic evaluation of intended concepts and resulting tool functionality.
Model and tool integration is still a hot topic of practice and research. As
shown in Chap. 7, results of the IMPROVE project can be transferred to
industrial practice.

66 M. Nagl

Evolutionary and Iterative Procedure

The procedure for getting solutions for the ambitious problems described
above cannot just be top-down. Neither the comprehensive process/product
model nor the know-how to structure this model were at hand when the IM-
PROVE project started. In the same way, deep knowledge how to realize an
integrated environment with new functionality on top of existing tools was
not available.

Instead, it was necessary to start yo-yo: First steps for the process/product
model were made top-down and first steps towards the realization of an in-
tegrated environment were made bottom-up. Furthermore, a step-by-step ap-
proach was necessary, as difficult problems can only be clearly stated when
trying to start the realization of new tools. Fortunately, as to be explained
in Subsect. 1.3.4, the involved research groups had specific experience and
deep knowledge with respect to certain aspects and problems addressed by
IMPROVE.

Phase 1: exploration of new functionality
Phase 2: synergetic integration of new functionality

Phase 3: cross-company processes
Phase 4: technology transfer

Fig. 1.28. Logo symbolizing the spiral approach of IMPROVE

The Interdisciplinary IMPROVE Project 67

Therefore, we took an evolutionary and iterative proceeding for the long-
lasting IMPROVE project. This is to be seen by the IMPROVE logo (cf.
Fig. 1.28). Four cycles were planned, three of them are already finished. Below,
we describe the foci of cycles 1 to 4. By the way, the cycle periods correspond
to the funding periods, as money was only given by DFG for three years, and
a continuation is only granted after a successful peer review, evaluating the
results of the last funding period as well as the detailed research plan for the
next.

In every cycle the following steps were taken (see again the logo): We
regard the current situation of design processes in chemical industry (right
sector of the wheel), we derive new tool functionality (left sector), and we
realize this new functionality (bottom sector) making use of reuse results, if
available. Then, we start the next cycle. In the middle of the logo we find the
hard problem to be solved, namely the process/product model.

So, in every cycle we got an extension of the tool results and of the in-
tegrated development environment of the last cycle together with underlying
conceptual results. Extending the environment means (a) regarding an ex-
tended scenario by taking further tools into account, (b) having an extended
version of the process/product model and a deeper understanding of develop-
ment processes, (c) getting an improved knowledge of tool integration, (d) also
improving the reuse machinery for building new tools on top of existing ones
within an integrated environment, and (e) generalizing and unifying results of
the last cycle.

Key-Notes of Iterations

The key-note of the first cycle, from July 97 to June 2000, was the exploration
of new concepts on the engineering and informatics side (see Sect. 1.1). Their
use was demonstrated by a prototypical first integrated environment shown to
peers in the spring of 2000, who evaluated our results of the first phase and our
plans for the second. This first prototype showed the use of new functionality
for supporting new steps of design processes within suitable steps of the design
process. These steps were carefully selected from both, an application-specific
as well as an informatics perspective.

The key-note of the second cycle, from July 2000 to June 2003, was to
demonstrate synergistic integration of this new functionality and to show its
use for design processes, having a different form than state-of-the-art processes
of industry. Again, a prototype of an integrated environment was demonstrated
to peers in the spring of 2003. The corresponding review was to evaluate the
second cycle and the proposal of the third cycle. A round trip for this prototype
has been described in Sect. 1.2.

The third cycle, from July 2003 to June 2006, had the motto of considering
cross-department and cross-company development processes. We showed inte-
grated and synergistically cooperating new tools to bridge the gaps between
different departments or companies using different development tools, differ-
ent cultures, organizational forms etc. The peer review took place in March

68 M. Nagl

2006 evaluating the results of that third cycle and our plans for the next
fourth one. No new integrated prototype was demonstrated, as we spent our
effort for preparing the next transfer cycle. However, different but separate
demonstrators of the involved groups have shown the use of cross-company
support.

The last cycle, from July 2006 to June 2009, follows the key-note technology
transfer. The corresponding goals and work packages are to be described in
more detail in Chap. 7. Not every subproject of IMPROVE has a transfer
phase. There are 6 transfer subprojects which got through the review process
of DFG. Another CRC subproject transfers its research results on the basis
of other funding. The Collaborative Research Center 476 has been finished in
June 2006. The new Transfer Center (TC 61) was established for this fourth
cycle.

This book gives a survey on the results of IMPROVE in the past three
cycles. It also describes ongoing work on transfer in Chap. 7.

The Role of Scenarios and Demonstrators

In Sect. 1.1 we explained that the IMPROVE project studies the problems of
better understanding, formalizing, and supporting design processes in Chem-
ical Engineering, by taking a Polyamide-6 plant as a case study. This case
study defines the frame of IMPROVE’s exemplary view: early phases of de-
sign process, hydrolytic polymerization, the necessity of cross-company design,
concrete requirements for an improved and innovative design support etc.

More specific than the case study is the overall scenario of the IMPROVE
project. It defines which tools have to be incorporated into the design envi-
ronment, it describes which runs of an exemplary design process are regarded,
and how cooperation is carried out within one company or between different
companies. Of course, the overall scenario is based on the case study. The
scenario was the basis for an advanced environment for the first phases of a
design process in connection with the case study example. Clearly, the overall
scenario changed from project cycle to project cycle.

The overall scenario is characterized by the following attributes : Experi-
ments with cross-company cooperation by including a plastics expert into the
design process of a chemical company, extending the simulation of single de-
vices by an overall simulation of the whole plant, showing the necessity and
use of incremental and iterative changes within the design process.

As already mentioned, the IMPROVE project gave a demonstration of an
integrated prototype three times when being evaluated by peers: In the first
evaluation 1997 this was the prototype of the predecessor project SUKITS.
After the first cycle the prototype showed the first version of an integrated
environment demonstrating the ideas of a new kind of support. After the
second cycle, the demonstrator showed the integrated environment discussed
in Sect. 1.2, dealing with synergy of new support concepts and already dealing

The Interdisciplinary IMPROVE Project 69

with cross-company development. Demonstrations were worked out according
to this overall scenario.

After phases 1 and 2 a demonstration scenario showed a tour through the
corresponding available, integrated environment. The walk through consisted
of a reasonable and exemplary part of the design process and its corresponding
support. For this demonstration scenario a detailed script was elaborated.
Subsection 1.2.3 describes this tour.

Specific demos of the IMPROVE research groups gave and give a detailed
look on the corresponding research results. They usually deepen corresponding
parts of the demonstration scenario or they deal with possible extensions of
this scenario which could not be shown in an overall demonstration scenario
due to time reasons.

Cooperation with Industry

There were a lot of industry workshops having been organized by IMPROVE.
Their corresponding auditorium consisted mostly of chemical companies. How-
ever, also plant building companies as well as tool builders and vendors have
been cooperating with us.

Chemical companies went through a turbulent period in the last twenty
years: mergers, buy-outs, restructuring of the product portfolio etc. changed
the cooperation relationships. These events rendered cooperations with the
IMPROVE project more difficult. Nevertheless, there was a stable core of
partners for discussion which consisted of Bayer, BASF, and Degussa.

Cooperation with engineering and construction companies was not simple
as well. Market pressure made it difficult for these companies to think in
mid- or long-term goals. Nevertheless, we found cooperation partners for the
IMPROVE project. Stable partners were Uhde and Linde.

Even harder were the last 20 years for tool builders. Tool builders of our
partner Bayer are now with Bayer Technology Services. Aspen swallowed
Hyprotech and Icarus, among others resulting in internal re-organization,
which did not favor our collaboration. The German company innotec, however,
has been cooperating with us for many years.

Section 7.1 gives a report about industry cooperation within the last 10
years of the IMPROVE project. There were a lot of activities and correspond-
ing results.

For the planned transfer projects new industrial partners have been found,
or the cooperation with previous partners has been intensified. Chapter 7 gives
more details.

1.3.3 Funding and Total Effort

IMPROVE was installed in 1997 as a so-called Collaborative Research Center
(in German Sonderforschungsbereich, in short SFB, in the US similar to a
center of excellence), namely SFB 476 by German Research Foundation (in

70 M. Nagl

German Deutsche Forschungsgemeinschaft, in short DFG). As already told,
IMPROVE ran through three periods of financing. The corresponding pro-
posals have been peer-reviewed before any of these periods. The fourth period
is carried out in form of a technology Transfer Center (in German Transfer-
bereich, in short TB), namely as TB 61.

Funding

Most of the funding of the research activities of IMPROVE, as described
in this book, has been given by DFG. However, other sources have also been
involved. This subsection gives the figures of funding given by different sources

Funding of the CRC IMPROVE

The following table gives the funding in kEuros for the Collaborative Research
Center IMPROVE in the three 3year-periods from mid 1997 to mid 2006.

Table 1.1. Funding of CRC 476: Different Sources in kEuros (1e ∼= 1,3US$)

periods of CRC 476 funding by extra funding by funding by total
DFG RWTH Aachen Ministry of Research

University of North-Rhine Westphalia

1st period
mid 97 – mid 00 2.498 98 185 2.781

2nd period
mid 00 – mid 03 2.910 64 19 2.993

3rd period
mid 03 – mid 06 2.585 85 115 2.785

7.993 247 319 8.559

It should be noted that DFG funding is only given if the applying research
groups also invest a remarkable amount of money. We have no detailed figures
about the sum which was given by the IMPROVE research groups themselves.
It should be in the order of but less than one half of the money given by DFG.
This additional sum of approximately further 3 Mio Euros should be added
to the above total amount.

Funding of the Transfer Center

The fourth phase of IMPROVE was organized in form of a transfer center. It
is financed by similar sources as the CRC 476. In addition, also money from
industry was necessary to be given. The remark on an own contribution of
the research groups, given for CRC 476 above, also applies here.

It should also be remarked, that there is a further transfer project, which
is financed by other sources.

The Interdisciplinary IMPROVE Project 71

Table 1.2. Funding of TC 61 in kEuros

TC 61 funding by extra funding by funding by total
DFG RWTH Aachen industry

University

mid 06 – mid 09 1.500 76 appr. 800 2.300

Total Sum and Acknowledgements

Altogether, IMPROVE CRC 476 from 1997 to 2006 and TC 61 from 2006 to
2009 has spent/will spend the amount of 10.1 Mio Euros funding. If we also
count the contributions of industry and that of the involved groups, we end
up by more than 15.0 Mio Euros.

It is this long-term research funding instrument of Collaborative Research
Centers which makes such a fundamental and long-lasting project possible.
Thanks go to the sponsors, special thanks go to the DFG. We are deeply
indebted to the above mentioned organizations for their help

Total Effort

We did not really precisely accumulate the total human effort. However, 3
different rough calculations come to the same result of person years of fully-
paid scientists: (a) looking at the above total sum and regarding the average
salary, (b) counting the number of involved scientists of Appendix A.2 thereby
regarding which of them had looser connections and, therefore, should only be
counted part-time, and (c) looking on the number of finished Ph.d. projects
of Sect. 8.4.

We get an approximate number of 200 person years of fully-paid scien-
tists. Let us now regard that any of these persons is the advisor of master
projects, let’s say two a year. We now calculate the workload of a student
doing a Master’s Thesis by half of a year and multiply this by 0.5, as he/she
is not too experienced. Then, we get about additional 100 person years for
the contribution of Masters’ students.

So, finally, we end up with the estimation that IMPROVE and the fol-
lowing transfer center comprise a total personpower effort of about 300 p.y.,
including work of Masters’s students. This is a remarkable size for a university
project.

1.3.4 Predecessor Projects

The specific know-how needed for the topics, problems, and solutions ad-
dressed by some subprojects was gained by predecessor projects. In the fol-
lowing, we sketch these predecessor projects by explaining their goal, their
solutions, and in which way they influenced the IMPROVE project. All these
predecessor projects are of a reasonable size.

72 M. Nagl

SUKITS

The topics of the SUKITS project [110, 351, 352] (Software und Kommu-
nikation in technischen Systemen) was on tool integration. SUKITS was a
joint project between two groups of mechanical engineering and two groups
of computer science at RWTH (Informatics 3 and 4, both being also involved
in IMPROVE). The project was funded as a DFG researchers’ group from
90–97. Counting also the Masters’ Theses, SUKITS was a project of about
80–100 person years.

SUKITS was also on a-posteriori tool integration. Thereby, tool integration
was done by a project management system as a coarse-grained integration
instance and using a common generalized communication platform. To speak
in terms of IMPROVE, the topics of subprojects B4 and C2 were involved.
The two engineering projects dealt with modeling requirements aspects of
coarse-grained processes and products and on integrating specific mechanical
engineering design tools into the environment.

The focus of SUKITS was more narrow than that of IMPROVE. The
project management system was to coordinate a development project in which
classical tools are used for the specific roles of mechanical engineers. So, the
SUKITS integration approach only took one integration concept of IMPROVE
into account. Furthermore, there were no plans of developing an integrated
process/product model or to study cross-company development. There were
nice results published in a book [352].

IPSEN

The IPSEN project [226, 329, 330, 332–334] (Integrated Software Project
Support Environment) was a long-lasting research project financed by dif-
ferent sources; the biggest contribution has been given by DFG. IPSEN was
on novel support of software development, so solely within informatics. The
project was carried out from 1981–1996 with a total personal effort of about
110 person years at Chair Informatics 3 (Software Engineering), one of the
groups involved in IMPROVE.

The topic of IPSEN was a-priori integration. This means that IPSEN built
new tools for being integrated. Integration, therefore, is very tight. The new
tools were for requirements engineering, architectural design, programming,
documentation, and project management, and for making the transitions in
between.

Three integration dimensions were addressed. (a) Tight integration on one
document : This was shown by a tight integration of editor, analysis, execu-
tion, and monitoring tools for the programming task [108, 385]. (b) Also, tight
integration between different documents was discussed by offering fine-grained
integrator tools between the above mentioned working areas. For example, in-
tegrator tools were built between different views of requirements engineering
[229], from requirements engineering to architectural descriptions [184, 255],

The Interdisciplinary IMPROVE Project 73

from architectural descriptions to program modules [260] etc. Finally, (c) in-
tegration between fine-grained and coarse-grained descriptions were explored:
within management, objects and relations were studied on a fine-grained level.
From management to outside, only coarse-grained structures were regarded.

In current terminology, IPSEN was on model-driven development. Thereby,
models were not regarded on an outside level but only on a tool construction
level. All tools were specified by graph transformations [328, 350, 363, 412,
492]. From these specifications, tools were either manually but methodologi-
cally derived, or they were generated. In IPSEN, also the specification envi-
ronment PROGRES and corresponding code generators were developed, both
being an integral part of the tool production machinery.

From IPSEN the IMPROVE project borrowed several aspects: (a) On one
side the idea of integrator tools [33] was taken and also the way how the pro-
totypical versions of such tools are realized [350, 363]. However, the discussion
within IMPROVE on integrator tools is more elaborate, the application field
is now chemical engineering, and the machinery to generate these tools has
been improved. (b) The I3 subproject took over the architectural discussions of
IPSEN on tools as well as on tool integration. However, the discussion within
IMPROVE is not on a-priori but on a-posteriori integration [136]. Finally,
(c) IMPROVE also took over the idea of tightly integrating management into
a development process [475]. The ideas about how this management system is
structured and which functionality it offers, is more from SUKITS than from
IPSEN.

ConceptBase

In cooperation with the University of Toronto, the Chair of Informatics 5 (In-
formation Systems, Prof. Jarke) had been developing an adaptable, logic-based
conceptual modeling language called Telos since 1986. Telos was designed to
provide a uniform description of the different design artefacts within an in-
formation systems engineering process, such as requirements models, designs,
and implementations, as well as their static interdependencies and process
relationships. Telos was initially developed in the context of ESPRIT project
DAIDA [199, 202] and elaborated for the special case of requirements manage-
ment in ESPRIT Basic Research Project NATURE [200] (see below). Outside
the Entity-Relationship and UML language families, Telos has become the
most-cited conceptual modeling language of the 1990’s. A complete descrip-
tion of Telos together with its formal semantics was first given in [327].

Within the ESPRIT Basic Research Project on Computational Logic
(COMPULOG), Manfred Jeusfeld was able to show in his doctoral thesis
[203] that a slightly simplified version of the Telos object model could be el-
egantly mapped to Datalog with stratified negation which provided the basis
for an efficient implementation. From this result, a rather efficient and very
expressive metadata management system called ConceptBase was developed
[189]. ConceptBase has since been deployed in more than 350 installations

74 M. Nagl

worldwide for teaching, research, and industrial applications such as reverse
engineering, view management, or heterogeneous information systems integra-
tion [358, 425]. Several of these applications as well as some of the implemen-
tation techniques have also influenced the design of ontology languages and
XML databases.

Within CRC IMPROVE, ConceptBase has been used as the basis to de-
scribe the interrelationships between heterogeneous design artefacts and some
aspects of the semantics of design process guidance, mostly at the fine-grained
level [193]. In the course of the CRC, a large number of improvements were
made, including novel compilation and optimization techniques and new in-
terfaces, e.g. for XML. A recent system overview can be found in [205].

DWQ

The goal of the ESPRIT Long Term Research Project DWQ “Foundations of
Data Warehouse Quality”was to improve the design, the operation, and most
importantly the long-term evolution of data warehouse systems [192]. In the
years from 1996 to 1999, researchers from the DWQ partners – the National
Technical University of Athens (Greece), RWTH Aachen University (Chair
of Informatics 5; Germany), DFKI German Research Center for Artificial
Intelligence (Germany), the INRIA National Research Center (France), IRST
Research Center in Bolzano (Italy), and the University of Rome – La Sapienza
(Italy) had cooperated on these goals.

The primary result of the DWQ project consists of a neutral architectural
reference model covering the design, the operation, the maintenance, and the
evolution of data warehouses. The architecture model is based on the idea,
that any data warehouse component can be seen from three different perspec-
tives: The conceptual perspective, the logical perspective, and the physical
perspective. In the design, operation, and especially evolution of data ware-
houses, it is crucial that these three perspectives are maintained consistent
with each other.

Placed in a completely different and far more fixedly structured domain,
the results of the DWQ project were not directly transferable to the CRC 476
IMPROVE. For the support of creative design processes, different approaches
were – and are – necessary. Yet the approach of applying methods of meta
modeling in domain and application models was expected to succeed there
as well. Especially the use of ConceptBase, as described before, was used to
achieve a sound conceptual and ontological basis for the modeling aspects, the
process extensions to Data Warehousing as researched in the subproject C1,
and the meta process and product repository of the subproject B1.

NATURE

The ESPRIT Basic Research Project NATURE (Novel Approaches to Theo-
ries Underlying Requirements Engineering, 1992–1995) has investigated cen-

The Interdisciplinary IMPROVE Project 75

tral problems of Requirements Engineering (RE), especially the selection, vi-
sualization, and reuse of requirements, the management of non-functional re-
quirements, and the transformation of requirements from natural language
into formal semantics [187, 201]. Researchers from the City University London
(England), ICS-Forth Heraklion on Crete (Greece), SISU Kista in Stockholm
(Sweden), the Université Paris 1 Pantheon-Sorbonne (France), and from co-
operation partners in Canada and the US have worked under the leadership
of the Chair of Informatics 5 at the RWTH Aachen University. The aforemen-
tioned problems have been treated from the viewpoints of domain analysis,
process guidance, and formal representation.

The role of domain theory is mainly placed in facilitating the identification,
elicitation, and formalization of domain knowledge. Furthermore, concepts for
supporting experience reuse were developed, based on similarity mappings and
classifications.

As part of the process guidance, systems were designed to support soft-
ware design by context-based and decision-guided tools. The influence of do-
main knowledge onto actions like validation and view integration was also
researched.

A framework for domain analysis and process guidance was created. The
views of the system, the usage, and the subject world had to be integrated
into a common formal representation. This included the formal representa-
tion of characteristics of informal language like ambiguity, incompleteness,
inconsistency, simplification, or redundancy.

NATURE does not define a methodology, but rather a “meta-level” frame-
work that defines languages for thinking about, and organizing work in, RE.
Concrete specializations can then be designed to improve existing methodolo-
gies. To integrate and evaluate the theories developed based on the different
view points, they were represented in the formal modeling language Telos, im-
plemented in a prototype based on ConceptBase, and evaluated by exemplary
application scenarios.

The conceptual framework for Requirements Engineering in software de-
velopment represented by the NATURE project heavily influenced the CRC
476 IMPROVE, as many of the approaches could be adapted from software RE
to the elicitation, formalization, and analysis of requirements in chemical pro-
cess engineering. The knowledge representation framework based on Telos and
ConceptBase was used for the domain modeling in the subprojects of area A.
The design of a data and meta data repository for all aspects of the design
activities formed the basis of the Process Data Warehouse as developed in the
C1 subproject. The experiences from requirements traceability were employed
for the experience reuse in B1 and C1. With respect to (fine-grained) process
guidance, the modeling and guidance aspects of NATURE were applied in the
B1 subproject, including the adaption of the process-centered Requirements
Engineering development environment PRO-ART into the PRIME environ-
ment.

76 M. Nagl

1.3.5 Survey of This Book’s Structure

The structure of the book can easily be explained by taking the project struc-
ture of Fig. 1.27 and having a look on the iterations of IMPROVE’s evo-
lutionary approach of Fig. 1.28. The structure of this book as well as the
interdependencies of its sections are discussed here.

Survey

We are now at the end of the introductory Part I of this book. The fol-
lowing main part of this book about technical results can be derived from
IMPROVE’s project structure:

• Chapter 2 describes the results of the engineering partners (upper layer A
of Fig. 1.27),

• Chapter 3 gives the main contributions of the middle layer B about new
support concepts and their implementation,

• Chapter 4 explains our bottom layer C on platforms for tools,
• Chapter 5 on integration discusses various integration aspects (cf. right

column of Fig. 1.27) and, finally,
• Chapter 6 gives the results we have gained so far for the major topic

process/product model (left column of Fig. 1.27).

Chapters 2 –6 describe the status of the IMPROVE project after the third
project cycle. This description, for simplicity reasons and for giving a clear
view on the scientific outcome, is organized along the corresponding subpro-
jects of IMPROVE, essentially one section per subproject. This section collects
the results of the first three cycles of an IMPROVE subproject, if the results
are not overridden by later results. So, the book is not structured along the
timeline. Instead, it is structured along results for specific topics elaborated
by subprojects.

The fourth cycle, as already stated, deals with transfer of results to in-
dustry. Transfer is not only one-way directed. Also, new questions, problems,
and experiences are brought in by industrial partners. Not all subprojects of
IMPROVE are represented by a transfer project. Most of the transfer projects
are financed by the Transfer Center 61, funded by DFG. The transfer projects,
as described in Chap. 7, are given in the common order of areas (from A to
B and C) and in the order within a project area, as shown in Fig. 1.27.

Part III of this book gives a description of current/future activities on
the one and an evaluation of achieved results on the other hand. Chapter 7
describes the transfer project plans/activities (to be) carried out in the fourth
cycle. The plans are rather concrete, as we have already gone through 21
months of this transfer period. Chapter 8 of this book gives an evaluation
of IMPROVE’s results from different perspectives: How we contributed to a
better understanding of design processes, how we contributed to an improved
and elaborated support for design processes, why and how we contributed to

The Interdisciplinary IMPROVE Project 77

an improvement of the state-of-the-art in industry, and how we influenced the
scientific community.

The book contains an extended bibliography. This bibliography is split
into two parts, namely publications of IMPROVE and literature outside IM-
PROVE. This is done to give a quick survey on the scientific literature output
for the reviewing peers and our science companions.

Structure and Dependencies of This Book

We now discuss the structure of this book, which is given as a structure and
dependency graph in Fig. 1.29. The graph does not contain all nodes.

Tree Structure

The tree of Fig. 1.29 is the structure part of this graph.
The chapters and sections are given as an ordered tree (the root node

’book’ with five successors is not shown). The tree in preorder visit of its
nodes delivers the table of contents, i.e. the order of reading, if a reader goes
completely through the text, from its beginning to its end.

Part II and Part III are the main parts of the book describing the achieved
results, evaluations, and transfer still going on. So, the graph for this part
contains all the nodes down to sections.

Dependencies

There are many dependencies in the book, i.e. that one chapter or section
contains information necessary for the reading of another part.

There are trivial dependencies: Part I is a prerequisite for all chapters and
sections of the main part of this book. Analogously, every section of this book
contributes to the references.

Also, there are simple and being mostly 1:1 dependencies : A section of
the main Part II on technical results is a prerequisite for a corresponding
section in Part III of this book on future transfer activities, if this project is
involved in transfer. For example, there is a dependency between Sect. 3.2 on
integration and the corresponding transfer of integrator results in Sect. 7.6.

All these relations are either only given on a coarse level (as from Part II
to Part III) or not shown at all. When discussing the dependencies of this
book, we concentrate on the main part of the book, consisting of Parts II and
III. Furthermore, we only explain some examples, one per chapter.

The schema within Chap. 2 is rather simple: The introduction prepares for
all the following sections. Furthermore, the Sects. 2.2 to 2.5 are prerequisites
for understanding the Sect. 2.6, which summarizes all the discussed models.

For edges to be discussed, we now use an abbreviation: The target node
of an edge is given, the corresponding source nodes are all the nodes written
down on the edge with a corresponding section or chapter number.

78 M. Nagl

P
la

tfo
rm

Tr
an

sf
er

E
va

l.

Te
ch

n.
R

es
ul

ts

2
3

4
5

6
7

8

.1
.2

.3
.4

.1
.2

E
xp

.
C

on
s.

C
om

.
M

an
.

P
ar

t I
P

ar
t I

I
P

ar
t I

V

.1
.2

.3
.4

S
ce

n.
E

xt
r.

.5
.6

.7
.1

.2
.3

P
ro

c.
C

on
s.

.4
.5

In
f.

S
er

v.
S

yn
.

S
of

tw
.

R
ea

ct
.

O
p.

P
r.

P
ar

t I
II

M
ai

n
P

ar
t 3.

3
5.

1

3.
1 - 3.
4

2. 3. 4.
3.

4
5.

1

E
rg

.

3.

P
ro

c.
/

P
ro

d.
 M

.

S
im

.
H

et
.

M
od

.
O

v.

O
ve

rv
ie

w
R

ef
.

.1
.2

.3
.4

.5

P
D M

D M
W

P M
D M

In
tro

.6

IA
D M

N
ew

Fu
nc

t.

Tr
an

sf
.,

E
va

l.

A
pp

l.
M

od
el

s
In

te
gr

a-
tio

n

2.
2

2.
3

2.
3

2.
4

3.
3

3.
4

3.
1

3.
2

2.
2

2.
3

3.
2

2.
4

2.
5

3.
1

4.
1

2. 3.

2.
3

2.
4

2.
5

2.
2

2.
4

2.
5

3.
4

2.
3

2.
4

2.
6 3.

Fig. 1.29. A dependency graph describing the structure of this book

The Interdisciplinary IMPROVE Project 79

Let us take the incoming edges to node 3.1 of Chap. 3 as an example. We see
that Sects. 2.3 on document models, Sect. 2.4 on work process models, and
Sect. 2.5 on decision models are prerequisites for Sect. 3.1 on experienced-
based design process support.

For Sect. 4.2 on service management, as example of Chap. 4, Sect. 3.3 on
communication and Sect. 3.4 on management are the prerequisites.

The scenario-based analysis of work processes of Sect. 5.1 needs Sect. 2.2
on product data models, Sect. 2.4 on work process models, and Sect. 2.5 on
decision models. To see the relations to management, we also need input from
Sect. 3.4 on management on development processes.

For Sect. 6.2 on process/product models for experienced-based tools we
need again Sect. 2.4 and Sect. 2.5 on work processes and decisions, but also
Sect. 3.1 on experienced-based support, and Sect. 4.1 on the process data
warehouse.

2

Application Domain Modeling

This chapter deals with application domain modeling. It presents the various
models for the application domain of chemical process engineering, which have
been developed in the CRC 476. As already indicated and to be demonstrated
by the following chapters, application domain modeling is the input of the tool
construction processes.

The chapter is organized as follows : Section 2.1 gives an introduction to
application domain modeling. The subsequent two sections deal with the prod-
ucts of the application domain, whereas Sects. 2.4 and 2.5 discuss the process
and decision perspective. Section 2.6 discusses the integration of product mod-
els and process models into a coherent framework and gives a brief review of
the related work in this area.

2.1 An Introduction to Application Domain Modeling

J. Morbach, M. Theißen, and W. Marquardt

Abstract. This section serves as an introduction to application domain modeling.
Firstly, we will motivate the objectives of modeling. Next, we will suggest defini-
tions for different types of application domain models. Finally, a brief survey of the
modeling languages applied throughout this chapter will be given.

2.1.1 Objectives of Modeling

Different types of application domain models can be distinguished according to
the objective of the model. Information models are created to support the de-
velopment of software systems. Information models can be differentiated into
conceptual models, design models, and implementation models, which form a
series of consecutively refined models. Moreover, ontologies are to be men-
tioned here, whose aim is to provide an explicit specification of a conceptu-
alization of the application domain. In the following, more precise definitions
of these different types of models will be given.

Information Models

Information modeling is a commonly used method for the analysis and formal-
ization of information structures and work processes as the basis for software
design [862]. Three types of information models can be distinguished, which
are consecutively developed through refinement:

• The conceptual model describes the major entities of the domain of interest
and their interrelations on a conceptual level, irrespectively of a particular
application or implementation. Its function is to familiarize with the vocab-
ulary of the domain of interest and to establish a common understanding
of its key concepts. In the areas of software engineering and database de-
sign, conceptual models are used as a preliminary draft or template, based
on which more specific models can be created. In these communities, the
terms ‘domain model’ or ‘analysis (object) model’ are often used instead
of ‘conceptual model’ (e.g., [510, 673, 761]).

• Next, the conceptual model is transformed into a design model. It serves
the needs of the software engineer during software development. A de-
sign models defines the architecture and the internal data structures and
determines the user interfaces of the software system.

• Finally, the design model is implemented by means of some programming
language, resulting in the implementation model. Thus, an implementation
model is the realization of a design model in form of software.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 83–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 J. Morbach, M. Theißen, and W. Marquardt

Ontologies

‘Ontology’ is originally a term in philosophy, indicating a study field that
strives to provide a systematic account of existence. In the last two decades,
this term has been adopted by computer science, firstly used in the field of
artificial intelligence and recently in other areas, as well. While the meaning of
this term in computer science still appears controversial, the definition given
by Gruber [705] has been the one most widely cited: “An ontology is an ex-
plicit specification of a conceptualization”. As further explained by Studer et
al. [988], “conceptualization refers to an abstract model of some phenomenon
in the world by having identified the relevant concepts of that phenomenon.
Explicit means that the type of concepts used and the constraints on their
use are explicitly defined”. To this aim, an ontology will necessarily “include a
vocabulary of terms and some specification of their meaning. This includes def-
initions and an indication of how concepts are inter-related, which collectively
impose a structure on the domain and constrain the possible interpretation of
terms” [1007].

As explained by Uschold and Grüninger [1006], an ontology can be

• informal if expressed in natural language;
• semi-informal if expressed in a restricted and structured form of natural

language;
• semi-formal if expressed in an artificial and formally defined language; and
• rigorously formal if it provides meticulously defined terms with formal

semantics, theorems, and proofs of properties such as soundness and com-
pleteness.

In computer science, the notion of ontology is often restricted to the latter
two subtypes.

Relationship between Ontologies and Information Models

Ontologies and information models should not be regarded as mutually exclu-
sive. They have various characteristics in common. In particular, both concep-
tual models and ontologies provide conceptualizations of the problem domain.
Moreover, formal ontologies can be used directly by computer agents – in this
respect, they resemble implementation models.

The major difference between information models and ontologies results
form their different objectives. Ontologies emphasize the sharing of domain
knowledge, which requires the explicit definition of the meaning of terms.
Information models, aiming at the design and implementation of software
systems, do not need such definitions, since the semantics of the modeled
entities is implicitly known to the modeler.

In accordance with the above definitions, a conceptual model as well as an
implementation model can be considered as an ontology if it explicitly specifies
the meaning of its classes and relations. On the other hand, an implementation

An Introduction to Application Domain Modeling 85

model stated in a formal ontology language, such as the schema of a deductive
database, is not necessarily an ontology. Again, the necessary criterion to
qualify as an ontology is the availability of an explicit specification of the
meaning of terms.

2.1.2 Modeled Entities

In this subsection, definitions for different types of application domain models,
distinguished by the type of the modeled entities, will be given. We will dif-
ferentiate between process models describing work processes, product models
describing the products (i.e., the outcomes or results) of the work processes,
and decision models describing the decisions made during a work process.
Product models can be further subdivided into product data models, dealing
with the elementary data items, and document models, describing the aggre-
gation of product data into documents in a certain work context.

Product Data Models

In engineering disciplines, the term product data is used to denote data about
a technical product and its characterizing properties [19]. We will extend this
definition to the data representing the products (i.e., the outcomes or results)
of a design process. This agrees well with the conventional definition of product
data, since engineering design processes aim at the specification of a technical
product, such that their results characterize – either directly or indirectly –
a technical product. Thus, product data is defined as data about a technical
product and its characterizing properties as well as the data created or used
during some design process.

Consequently, a product data model defines the form and the content of
product data [839]. It classifies, structures, and organizes the product data
and specifies their mutual relationships.

In the context of chemical engineering, both the chemical plant and the
chemical substances produced by the plant can be regarded as products. Thus,
the following examples qualify as product data: the dimensions of a plant
equipment (e.g., volume, diameter), the operating conditions of a process step
(e.g., pressure, temperature), or the physical properties of a chemical com-
pound (e.g., density, boiling temperature).

Document Models

Product data can be aggregated to documents like reports, data sheets, or
process flowsheets, each of which represents a specific view on data. During
project execution, documents are used as carriers for the data they hold [940].
Thus, documents can be defined as carriers of data.

Physically, documents may come either in form of a hard copy (i.e., a stack
of paper) or in form of a soft copy (i.e., a data file within a computer system).

86 J. Morbach, M. Theißen, and W. Marquardt

A comprehensive document model should describe the different types of
documents used in a given application domain, their interrelations and con-
tents, as well as the dynamic behavior of documents over time [946].

Work Process Models

In contrast to product data and documents, the term process and its precise
meaning have not been agreed on in the literature. This is largely due to its
origin in different, at least partially unrelated disciplines. We therefore look
at different kinds of processes before we come up with the definition of a work
process model.

Business Process and Work Process

The term business process became a buzzword in the last decade of the past
century, but even today there is no widely accepted definition. The term is used
in particular by the business process reengineering and workflow management
communities.

According to Hammer and Champy [714], business process reengineering
(BPR) is the ‘fundamental rethinking and radical redesign of business pro-
cesses to achieve dramatic improvements in critical, contemporary measures
of performance, such as cost, quality, service and speed.’ In the BPR literature,
rather general definitions of a business process are proposed. Davenport [626],
for instance, defines it as a ‘structured, measured set of activities designed to
produce a specified output for a particular customer or market.’

Workflow management (WM) refers to the ‘automation of a business pro-
cess, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of proce-
dural rules ’ [1058]. The Workflow Management Coalition, a group of vendors,
users, and researchers of workflow management systems, defines a business
process as a ‘set of one or more linked procedures or activities which collec-
tively realize a business objective or policy goal, normally within the context of
an organizational structure defining functional roles and relationships ’ [1058].

Despite the universality of the definitions proposed in the BPR and WM
literature, BPR and WM typically focus on recurrent processes on the op-
erative level which are completely determined and therefore can be planned
in a detailed manner. Examples include the processing of a credit transfer in
a bank or of a claim in an insurance company. As a result, the term busi-
ness process is often used in this restricted sense. Other processes, such as
the design of an engineering artifact or the production of a physical good,
are commonly not considered to be business processes although they actually
meet the definitions cited above.

To overcome the ambiguities associated with the term business process,
we introduce the term work process and define it as follows: A work process
is a collection of interrelated activities in response to an event that achieves

An Introduction to Application Domain Modeling 87

a specific product for the customer of the work process. As this definition was
originally proposed by Sharp and McDermott [962] for business processes,
it becomes clear that there is no fundamental difference between business
processes and work processes. Though, a business process in the colloquial
meaning of the term is a special type of a work process.

Design Process

Mostow [858] characterizes design as a process whose ‘purpose is to construct
a structure (artifact) description that satisfies a given (perhaps informally)
functional specification.’ Hence, a design process is a special type of work
process aiming at the creation of a special product, that is, the specification
of an engineering artifact by means of documents which contain product data
describing the artifact.

Design processes in chemical engineering comprise all the activities related
to the design of a new product and the associated production plant including
the process and control equipment as well as all operation and management
support systems [299]. One of these design processes is the process design
process. According to Westerberg et al. [1047], its target is the ‘creation or
modification of a flowsheet capable of manufacturing a desired chemical.’

The focus of CRC IMPROVE is on the early stage of the chemical process
design process, called conceptual process design. The main product of concep-
tual process design is a process flow diagram – or a set of several diagrams –
specifying the basic layout of a plant or its parts, including important process
data such as mass or energy streams. Further documents are created during
conceptual process design, for instance, mathematic models of the chemical
process for the evaluation of different design alternatives. However, in general
not all of these documents are provided to the customer of the design pro-
cess, in particular if the customer is located at another organizational unit or
enterprise.

Work Process Models

A work process model, in the following referred to as process model for short,
contains the steps performed in a work process as well as their interdependen-
cies, for example a sequence of several steps or their parallel execution. In this
contribution, the steps are referred to as activities ; in contrast to other terms
which can be found in literature (e.g., action [880], function [949]), this term
emphasizes the temporal dimension of an activity which can itself be decom-
posed in several sub-activities which form a work process in their own right.
Depending on their purpose, process models can contain further information
beyond the activities, for instance about the products of activities, the people
performing the activities, or the tools required.

Process models can be descriptive or prescriptive [372]. The former de-
scribe a work process as it is or has been performed by the involved actors
(as-is models). Descriptive models can serve as part of the documentation of

88 J. Morbach, M. Theißen, and W. Marquardt

a particular design project. In CRC IMPROVE, descriptive models of design
processes are also used as an intermediate step for the creation of prescrip-
tive models which incorporate best practices for future design processes (to-be
models) and can serve as guidelines for designers or as a starting point for
implementation models required for automated process support.

Decision Models

In this contribution, we use the term decision model for both a representation
of design rationale [856], i.e., the decisions taken by a designer during a design
process that led to a particular artifact, and for a representation of some rules
or methods which can guide a designer confronted with a decision problem or
which can even solve a decision problem algorithmically.

Models of design rationale comprise at least the design problem under
consideration (e.g., Which reactor type?), the alternatives considered (e.g.,
VK-tube or CSTR), and arguments for or against the alternatives. Similar to
as-is process models, descriptive design rationale models can serve the docu-
mentation of past design projects – although this is rarely done in practice –
and they can be used for the identification of approved decision strategies to
be incorporated in a prescriptive model for future decisions.

2.1.3 Modeling Languages

For the representation of the different application models presented in this
chapter, various modeling languages have been used, which provide graphical
as well as lexical notations. In the following, a short introduction to those
languages and some references for further reading will be given.

The modeling languages can be divided in two groups. The first group
comprises generic modeling languages used to represent domain or applica-
tion models; these models, in turn, can be considered as application-specific
modeling languages, which constitute the second group7. For instance, the
elements of the Unified Modeling Language UML can be used to define the
vocabulary of the Decision Representation Language DRL, which can then be
employed to describe a particular case, such as a design decision.

Generic Modeling Languages

UML

The Unified Modeling Language UML (e.g., [673]) is a graphical modeling
language, which consists of a number of different modeling diagrams that
7 Note that this agrees well with the four-layer metamodel hierarchy proposed by

the Object Management Group (OMG) [882]: The generic modeling languages
correspond to the M2 layer, whereas the application-specific modeling languages
correspond to the M1 layer.

An Introduction to Application Domain Modeling 89

allow the graphical notation of all aspects of a software development process.
Of these different modeling diagrams, only the class diagram is used within
this chapter.

Within UML, domain entities are represented through classes and their
instances (objects). Classes can be hierarchically ordered and further charac-
terized by means of attributes. Additionally, binary relations, called associa-
tions in UML, can be introduced between classes. Associations can be either
uni-directional or bi-directional. The number of objects participating in an
association can be indicated by cardinality constraints. Additionally, UML
introduces two special types of associations: aggregation and composition.

O-Telos

O-Telos [327] is a conceptual modeling language that supports basic deductive
reasoning capabilities to assist schema development and maintenance. O-Telos
is implemented in the ConceptBase system [189], a deductive object base
intended for conceptual modeling.

An outstanding property of O-Telos is its capability for meta modeling:
The language supports not only the definition of classes but also the definition
of meta classes (and even meta meta classes); this leads to a layered model
structure where the entities on each level are instances of the entities on the
level above. Rules and logical constraints can be defined at any abstraction
level. Constraints specify conditions on the specialization and instantiation of
classes. Rules make implicit information explicit and thus derive new infor-
mation from the asserted facts. Within each level, binary relations between
the model entities can be indicated through so-called links, and the entities
can be further characterized by attributes.

DAML+OIL and OWL

The OWL Web Ontology Language [546] and its predecessor DAML+OIL [609]
are ontology markup languages that have been developed for publishing and
sharing ontologies in the Web. Their syntax is based on existing Web markup
languages, the most prominent of which is XML [1060]. By now, DAML+OIL
has been largely superseded by its successor OWL, which has been endorsed
as a W3C recommendation8

As OWL is derived from DAML+OIL, it shares most of its features (a
listing of the differences between the two languages can be found in Appendix
D of [546]). Therefore, only OWL will be discussed in the following.

Model entities can be represented through classes in OWL; their instances
are called individuals. Classes can be hierarchically ordered in OWL, thereby
allowing multiple inheritance. Complex class definitions can be constructed

8 A W3C Recommendation is the final stage of a ratification process of the World
Wide Web Consortium (W3C) concerning a standard for the Web. It is the equiv-
alent of a published standard in many other industries.

90 J. Morbach, M. Theißen, and W. Marquardt

by means of the following language primitives: set operators (union, intersec-
tion, complement of classes), equivalence of classes, disjointness of classes, and
exhaustive enumeration of the instances of a class.

Classes can be further characterized by means of attributes. Additionally,
binary relations can be introduced between classes. In OWL, attributes and
binary relations are represented through the same language primitives, the
so-called properties ; their ranges are different, though (data types and in-
dividuals, respectively). Properties can be hierarchically ordered, and their
usage can be restricted through cardinality constraints and type constraints.
Moreover, two properties can be declared to be equivalent or the inverse of
each other. Finally, additional logical information can be indicated about bi-
nary relations, namely the transitivity and the symmetry of a relation.

The OWL language provides three increasingly expressive sublanguages,
called OWL Lite, OWL DL, and OWL Full. Each of these sublanguages is
an extension of its simpler predecessor, both in what can be legally expressed
and in what can be validly concluded [971]. Throughout this chapter, only
the OWL DL subset is used for modeling. This sublanguage is compatible
with a particular type of description logic (DL) called SHOIN(D) [736]. As a
consequence, the models represented in OWL DL can thus be processed with
standard DL reasoners.

VDDL

The VeDa Definition Language VDDL [12] is a self-defined frame-based lan-
guage, which was specially developed for the representation of the VeDa Data
Model (cf. Subsect. 2.2.2). Combining features from object-oriented modeling
and description logics, VDDL is a highly expressive general modeling language
providing many different, specialized features. For sake of simplicity, only the
most important language elements will be discussed here.

Entities are represented through classes, which can be ordered by means
of superclasses and metaclasses. Class definitions can include attributes, pos-
sibly restricted through facets, as well as methods and laws. Different types of
attributes are distinguished. Among those, so-called relational attributes can
be used to represent binary relations between classes. Attributes values can
be restricted through both facets and laws. Methods represent numerical or
symbolical functions that allow to derive complex properties of an object from
known (simple) ones by executing some procedural piece of code.

Application-Specific Modeling Languages

C3

The C3 language has been developed within the CRC subproject I4 for the
representation of weakly structured work processes. In particular, C3 allows
the adequate capture of issues related to Coordination, Cooperation, and
Communication which are characteristic for design processes.

An Introduction to Application Domain Modeling 91

C3 is based on the state diagram and the activity diagram of UML. As
these diagrams do not cover the requirements for modeling cooperative work
processes [221], additional elements and concepts have been added to C3, such
as the blob element of the Higraphs [719], a modified subset of Role-Function-
Activity Nets [872], and some concepts of Task Object Charts [1069].

C3 allows for participative modeling, that is, the language is intentionally
kept simple to allow for an easy application and to enable the participation
of all stakeholders in a work process modeling session, independent from their
distinctive backgrounds and experiences in process modeling.

IBIS and DRL

Issue Based Information Systems (IBIS, [798]) and the Decision Representa-
tion Language (DRL, [808]) are both semi-formal modeling languages for the
representation of design rationales. The basic elements provided by IBIS are
the Issue denoting a problem to be decided on, the Position representing an
alternative, and the Argument, which supports or denies a Position. Thanks
to its ease of use, IBIS can be seen as a participative modeling language; its
proponents even advocate its use during meetings of design teams in order to
structure the evolving discussions [607].

In contrast to IBIS, DRL is characterized by a considerably richer set of
modeling elements, the most important extension being the Goal that allows
for a more adequate representation of the constraints to be met by the final
specification of an artifact.

Computer systems for cooperative modeling have been created for both
IBIS and DRL [608, 807], which demonstrate the usability of the languages in
academic and industrial settings and thus their empirical validation. Whereas
several applications of IBIS have been reported in literature (e.g., [54, 525]),
no results seem to be available for DRL. Nevertheless, we estimate the expres-
siveness of DRL as indispensable for the appropriate representation of design
decisions during conceptual process design.

Notation and Naming Conventions

There are considerable similarities between the components of the different
generic modeling languages applied in this chapter. In particular, all of them
provide language primitives for classes, relations, attributes, and instances
(though named differently within the respective formalisms). For sake of clar-
ity, we will use the term class to refer to classes as well as to concepts, frames,
or similar language constructs (however named) in the remainder of this chap-
ter. Similarly, the term relation is used to denote (inter)relations, properties,
slots, and associations; the term instance subsumes instances, individuals, and
concrete objects alike.

Throughout this chapter, UpperCamelCase notation in sans-serif font is
used to denote identifiers of classes, and likewise lowerCamelCase notation to

92 J. Morbach, M. Theißen, and W. Marquardt

represent relations. Instances are denoted by sans-serif font, yet without using
a special notation. Finally, italicized sans-serif font refers to structural elements
of a model, such as modules, packages, or layers.

In figures, the notation of UML class diagrams is used. Boxes represent
classes, lines represent relations, and dashed arrows represent instantiation.
Aggregation relations are represented through a white diamond-shaped arrow-
head pointing towards the aggregate class. Similarly, composition relations are
indicated by a black diamond-shaped arrowhead.

2.2 Product Data Models

J. Morbach, B. Bayer, A. Yang, and W. Marquardt

Abstract. This contribution summarizes the results of more than a decade of prod-
uct data modeling at the authors’ institute. In this effort, a series of consecutive
product data models has been developed for the domain of chemical engineering,
starting with the chemical engineering data model VeDa, followed then by the con-
ceptual information model CLiP and finally by the domain ontology OntoCAPE.
The evolution of these different models is described, and their similarities and dif-
ferences are discussed with regard to scope, structural design, conceptualization,
representation language, and intended usage.

2.2.1 Introduction

Due to the large number of domain concepts, ever-changing application areas,
newly arising insights, and the continuous update of technological capabil-
ities for model representation, the development of product data models for
a complex domain is deemed to be an evolutionary process. Since the early
nineties, several product data models have been developed by the authors and
their former colleagues, which model various aspects of the chemical engineer-
ing domain. The results are VeDa [10, 55], CLiP [14, 19], and OntoCAPE
[325, 326], the second version of which has been released lately.

While OntoCAPE is a formal ontology as defined by Uschold and Grüniger
[1006], CLiP and VeDa were historically called “conceptual models” (cf. Sub-
sect. 2.1.1 for a definition of these terms). However, since they agree with
Uscholds and Grünigers definition of semi-formal ontologies, they can be re-
garded as ontologies, as well.

In the following, the different models will be characterized, and their sim-
ilarities and differences with regard to scope, structure, conceptualization,
representation language, and intended usage will be discussed.

2.2.2 VeDa

The development of VeDa began more than a decade ago, when the subject
of conceptual information modeling received first attentions in chemical engi-
neering. It was initiated by Marquardt [289–291] to support the mathematical
modeling of chemical processes. VeDa provides concepts for the description
of mathematical models, the modeled objects, and – for documentation pur-
poses – the activities and the decisions taken during model building. Thus,
VeDa describes not only product data but to some extent work processes, as
well.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 93–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 J. Morbach et al.

Model Structure

VeDa relies on general systems theory (e.g., [578, 784, 901, 1015]) as a general
organization principle. General systems theory has been successfully applied
to represent complex structured systems in various application areas (e.g.,
systems theory was used by Alberts [499] and Borst [562] as an organizing
principle for the construction of large engineering ontologies). In VeDa, math-
ematical models as well as the modeled objects (i.e., the objects that are to
be represented by the mathematical models) are described as systems.

A technique for complexity reduction that is widely used in systems engi-
neering is the adoption of a viewpoint. A viewpoint is an abstraction that yields
a specification of the whole system restricted to a particular set of concerns
[744]. Adopting a viewpoint makes certain aspects of the system ‘visible’and
focuses attention on them, while making other aspects ‘invisible’, so that is-
sues in those aspects can be addressed separately [529]. In VeDa, viewpoints
are used to organize the description of mathematical models: A mathematical
model is considered from two distinct viewpoints, originally called complexity
coordinates [291]. The structural coordinate describes the structural elements
of the model and their interrelations, and the behavioral coordinate describes
the behavior of the model.

VeDa

product data work processes & decisions

Structural
Modeling
Objects

Geometrical
Modeling
Objects

Behavioral
Modeling
Objects

Material
Modeling
Objects

Model
Development

Process
Objects

Structural Classes

Basic Classes

Application Specific Classes

Fig. 2.1. Model structure of VeDa

VeDa is structured into three horizontal layers, separating so-called Structural
Classes, Basic Classes, and Application Specific Classes (cf. Fig. 2.1). The design
of each layer follows the principle of “minimal ontological commitment” [705],
meaning that each layer holds only those concepts that are essential for its
function; concepts that are more specific than the layer’s function are placed
on a lower layer.

Product Data Models 95

Vertically, VeDa is partitioned into five partial models, representing the-
matically distinct areas. The partial models Structural Modeling Objects and
Behavioral Modeling Objects describe mathematical models from a structural
and behavioral viewpoint, respectively. The description of mathematical mod-
els is complemented by the remaining partial models, which represent geomet-
rical concepts, materials, and the process of model building.

Representation Language

Since no prevalent general modeling language was available in the early
nineties, a frame-based language was developed for the representation of VeDa.
This language, called VDDL (Veda Data Definition Language), has been for-
mally specified in [12]. Combining features from object-oriented modeling and
description logics, VDDL is a highly expressive general modeling language,
which supports the definition of classes, metaclasses, and instances, as well as
different types of attributes and relations. Class definitions can include meth-
ods and laws. Methods represent numerical or symbolical functions that act
upon the objects. Laws restrict the possible instances of classes and attributes
by logic expressions.

Since VDDL does not provide a graphical representation, parts of VeDa
have been additionally represented through UML class diagrams for reasons
of clarity.

Scope and Content

The partial model Structural Modeling Objects [417] describes mathematical
models from a structural viewpoint. According to an organization principle
introduced by Marquardt [289, 292] and later refined by Gilles as ‘Network
Theory’ [693], a mathematical model can be decomposed into submodels for
devices and for connections. Device models have the capability for the ac-
cumulation and/or change of extensive physical quantities, such as energy,
mass, and momentum; they represent for example process units, or thermo-
dynamic phases. Connection models describe the interactions and fluxes (e.g.,
mass, momentum, or energy fluxes) between the devices; they represent for
instance pipes, signal lines, or phase boundaries. Structural Modeling Objects
also describes the mereotopological relations between these different types of
models. Furthermore, the partial model provides concepts for the representa-
tion of some modeled objects (e.g., various reactor types). A modeled object
is described as a system, which is considered from both a functional and a
structural viewpoint.

The partial model Geometrical Modeling Objects [418] is concerned with
the geometrical description of the structural modeling objects. It provides
concepts to represent surfaces, shapes, and spatial coordinate systems.

96 J. Morbach et al.

Behavioral Modeling Objects [55, 56] characterizes mathematical models
from a behavioral viewpoint. It introduces concepts to represent mathematical
equations, physical dimensions, and units.

Material Modeling Objects [461] represents the intrinsic characteristics and
the thermodynamic behavior of materials.

Finally, Model Development Process Objects [248] describes the (work) pro-
cess of model development, introducing concepts for the description of activ-
ities, goals, and decisions.

As indicated in Fig 2.1, the first four partial models are concerned with
the representation of product data; they can be considered as the origin of the
product data models of the CRC, which are presented in the following subsec-
tions. The fifth partial model, in contrast, addresses work process modeling;
it forms the basis of the later-developed work process and decision models
presented in Sects. 2.4 and 2.5. The partial models of VeDa’s product data
part are closely related to each other, and their mutual relations are explicitly
represented in the model. The process part, on the other hand, is somewhat
detached from the rest of the model as the interdependencies between the
product part and the process part have not been explicitly covered by VeDa.

Usage

VeDa is intended as a modeling language for the domain of process engineer-
ing, which can be used for the representation of specific mathematical models
of chemical process systems in a model library as well as for the representation
of knowledge about models and the modeling process in a knowledge-based
modeling environment.

Based on VeDa, implementation models for the model repository ROME
[463] and the modeling environment ModKit [52, 54], both described in
Sect. 5.3, have been developed. In this context, VeDa was refined and ex-
tended. While most of these changes were implementation-specific and there-
fore did not become part of the conceptual model, some were incorporated in
VeDa, like for example detailed taxonomies of physico-chemical phenomena
and physical properties.

2.2.3 CLiP

In succession to VeDa, the conceptual information model CLiP has been de-
veloped to provide a conceptualization for the domain of chemical process
design. CLiP covers the product data produced during the design process, the
mathematical models used in the various model-based design activities, the
documents for archiving and exchanging data between designers and software
tools, as well as the activities performed during process design.

Except for the partial model Geometrical Modeling Objects, CLiP comprises
all areas covered by VeDa and extends beyond its scope. Key notions from

Product Data Models 97

VeDa were reused in CLiP; however, there are essential differences with re-
gard to conceptualization due to the different objectives of the models. While
VeDa’s focus is on mathematical modeling, CLiP puts its main emphasis on
the products of the design processes, which VeDa covered only marginally, re-
ducing them to the role of modeled objects. In terms of representing chemical
process systems, VeDa focuses on its behavioral aspect to meet the need of
mathematical modeling, whereas CLiP highlights the function and realization
of process systems, as well, since they are important in the context of design.
As for work process modeling, the area of interest has been extended from
work processes targeting the development of mathematical models to work
processes targeting chemical process design.

Model Structure

Meta modeling has been used as a structuring mechanism to allow for an
efficient representation of recurrent model structures (Fig. 2.2). This way,
the coarse structure of the information model can be fixed, and a simple
categorization of the most important modeling concepts becomes feasible. We
distinguish the Meta Meta Class Layer , which introduces the concept of a
general system and its aspects, the Meta Class Layer , which introduces different
kinds of systems and their specific properties, and the Simple Class Layer ,
which defines concepts related to different tasks in the design process and
therefore corresponds roughly to VeDa’s Basic Classes Layer . Unlike VeDa,
CLiP has no layer for application-specific classes.

The open model structure of CLiP is achieved by assembling thematically
related concepts on the Simple Class Layer into partial models (cf. Fig. 2.3). In
comparison to VeDa, their number has been significantly increased, resulting
in a more fine-grained partition of the domain. This improves the extensibil-
ity and maintainability of the model, as the partial models can be introduced
and maintained largely independently from each other. The individual partial
models can usually be associated with design tasks, which are typically ad-
dressed independently during the design process. However, since the same real
object is often referred to in different design tasks from different viewpoints
with differing degree of detail, overlap, partial redundancy, conflicts, and even
inconsistency can hardly be avoided. Existing relationships between classes
are explicitly indicated. To reduce the specification effort and the complexity
of the resulting information model, only those relations are modeled that are
of relevance for the design process. This principle of systematic, task-oriented
decomposition and subsequent selective reintegration is considered an essen-
tial prerequisite to successfully deal with the inherent complexity of a large
product data model.

Representation Language

CLiP is implemented by means of different modeling formalisms. Both Meta
Layers and some parts of the Simple Class Layer have been implemented in

98 J. Morbach et al.

ConceptBase [189]. This system supports meta modeling and offers a logic-
based language and basic deductive reasoning capabilities to assist schema
development and maintenance. The concepts on the Simple Class Layer are
represented by means of UML class diagrams (e.g., [673]). This has been done,
since the a graphical notation like UML is better suited for the representation
and management of large and complex product data models than the frame-
based O-Telos language of ConceptBase. On the other hand, the UML does
not provide the flexibility of introducing several meta levels as they were
needed for the conceptual framework of CLiP. Therefore, the framework has
been developed with ConceptBase and the detailed class models have been
modeled in UML. There is no formal integration between the two models
given; rather, consistency is ensured by an overlap of major concepts on the
Simple Class Layer .

System

Meta Meta Class Layer
contains

Meta Class Layer

in connection with

Connection

Social Systeminteracts
with

Material
used in

Technical
System

Simple Class Layer

subclass association instantiation

references

modeled by

Processing
Material

Management
System

modeled by

Mathematical
Model

Material ModelProcessing Subsystem Model

Device

performs

refers to

Function
Requirement

Performance

is aspect of
Behavior

Constitution

Operating
Subsystem

Processing
Subsystem

managed by

Chemical
Process System

Activityworks on

processes

holds info
Product

Fig. 2.2. Model structure of CLiP

Product Data Models 99

Scope and Content

CLiP is structured according to the ideas of general systems theory. In com-
parison to VeDa, CLiP takes a more systematic approach by representing the
principles of systems theory explicitly on the Meta Meta Class Layer (Fig. 2.2):
The root class, from which all other classes can be derived, is the System, con-
sisting of interacting Subsystems and characterized by distinct Properties and
their different Values (not shown in Fig. 2.2). The class Aspect (and its sub-
classes) represent a System that is considered from a particular viewpoint. An
Aspect is again a System, which represents those components of a System that
are relevant to a particular viewpoint. Five major Aspects are of importance
in the context of system design: In addition to functional and structural as-
pects already established in VeDa (represented through the classes Function
and Constitution in CLiP), the aspects Behavior, Requirement, and Performance
are introduced.

Different kinds of Systems can be distinguished on the Meta Class Layer
(cf. Fig. 2.2). TechnicalSystems represent all kinds of technical artifacts. They
can be decomposed and do interact with other technical systems. Technical-
Systems are either Devices or Connections. Similar to the idea of device and
connection models in VeDa, Devices hold the major functionality and are
linked by Connections. Furthermore, Material and SocialSystem are introduced

documents

product data

Chemical Process System

CPS Performance

CPS
Function

CPS
Realization

Processing Subsystem

Process Plant

Operating Subsystem

Process
Control Sys.Control

CPS
Costs

CPS
Behavior

Chem. Engng.
Documents

work processes

Management System

Management
Function Personnel

Material

Substance Phase
System

Mathematical Models

Material
Model Cost ModelsCPS

Models
System
Models

Unstruct.
Models

Process
Models

Fig. 2.3. Partial models on the Simple Class Layer of CLiP

100 J. Morbach et al.

as instances of System. Material abstracts matter and substances, whereas
SocialSystem is the superordinate class for both a single person and a group of
people. SocialSystems perform Activities, which work on Products. A Product
represents a document version, or a part thereof, which may hold different
sorts of information, for example about a Technical System as indicated in
Fig. 2.2. Thus, a first attempt has been made to model the dependencies
between product data, documents, and work processes (see also [18]). This
matter is further elaborated in Sects. 2.3, 2.4, and 2.6.

On the Simple Class Layer , the TechnicalSystem class is instantiated and
thus further refined to ChemicalProcessSystem, which can be decomposed into
two distinguished parts: the ProcessingSubsystem and the OperatingSubsystem.
The ProcessingSubsystem holds the functionalities of material processing, in-
cluding chemical, physical, or biological procedures and their realization in
a plant in order to produce some specified product; the OperatingSubsystem
comprises the technology to operate the plant (i.e., observation and control).
The ChemicalProcessSystem is managed by the ManagementSystem, which rep-
resents the staff working on the chemical plant as well as the different man-
agement functions performed by the staff. ProcessingSubsystem and Operating-
Subsystem are instances of a TechnicalSystem, whereas the ManagementSystem
is an instance of a SocialSystem.

There are two different instantiations of Material on the Simple Class Layer :
the ProcessingMaterial, which is processed in order to get a chemical product,
and the ConstructionMaterial (not shown in Fig. 2.2) used to build the chemical
plant system. The behavior of these materials can be described by Material-
Models. These are referenced by ProcessingSubsystemModels describing the
ProcessingSubsystem. Both MaterialModels and ProcessingSubsystemModels are
refinements of MathematicalModel, which is an instance of TechnicalSystem.

Figure 2.3 shows the partial models on the Simple Class Layer . Three ma-
jor areas can be distinguished: product data, documents, and work processes.
Packages of the UML are used to represent the partial models in all three
areas. Each specific System as well as each of its Aspects are described in an
individual partial model, with the aspect packages being part of the system
package. Only the product data part of CLiP will be described here; the other
parts will be discussed in the following sections.

The Chemical Process System (CPS in short) describes the chemical process
and its different aspects, ranging from the function (CPS Function), the re-
alization (CPS Realization), the behavior (CPS Behavior) to the performance
(CPS Performance), which includes the cost of the chemical process system
(CPS Costs).

As mentioned before, a ChemicalProcessSystem can be decomposed into
a ProcessingSubsystem and an OperatingSubsystem. The partial models Pro-
cess and Control describe the functional aspect of the respective subsystems,
whereas the partial models Plant and Operating System represent the consti-
tution (i.e., technical realization) of the subsystem. The associated Manage-
ment System is also considered under the aspects function and constitution

Product Data Models 101

(Management Function and Personnel , respectively). The latter represents the
staff working at and with the chemical process system, while the former de-
scribes the management functions or roles exerted by the personnel.

The partial model Material is subdivided into the partial models Substance
and Phase System. Substance describes the intrinsic characteristics of materials
that do not alter in mechanical, thermo-physical, or chemical processes; Phase
System, on the other hand, holds those properties that change according to
the given physical context [491].

Reusing parts of VeDa and of the VeDa-based implementation models of
the afore mentioned research prototypes ROME and ModKit (cf. Sect. 5.3),
the partial model Mathematical Models comprises both generic concepts for
mathematical modeling and specific types of mathematical models. Within
the partial model Unstructured Models, models are described from a mathe-
matical point of view. Concepts of Unstructured Models can be used to specify
the equations of System Models, which model Systems in a structured man-
ner. Models for the description of ChemicalProcessSystems (as defined in CPS
Models) are examples for system models. Such models employ concepts from
Material Model to describe the behavior of the materials processed by the
chemical process system. Finally, the partial model Cost Models introduces
methods to estimate the cost for construction, procurement, and operation of
chemical process systems.

The CLiP partial models concerned with mathematical models are not as
detailed as their counterparts in VeDa. They introduce only the high-level
concepts required for mathematical modeling. Moreover, the representation
of units and physical dimensions has not been adopted by CLiP. An improve-
ment in comparison to VeDa is the strict distinction between partial models
describing the language of mathematics in terms of equations and partial
models describing the physical interpretation of these equations [152], which
enhances the reusability of the model.

Usage

CLiP provides a conceptualization of the most important entities and their
relations in the domain of chemical process design. However, CLiP is not
intended as a comprehensive, detailed product data model. Rather, it is un-
derstood as a conceptual model, based on which specialized implementation
models can be developed, such as data schemata for domain-specific databases
and tools, or neutral representation formats for the exchange of product data
between heterogeneous software systems. Within the CRC, several implemen-
tation models for domain-specific software tools have been elaborated on the
basis of CLiP.

• Section 4.1 presents an extended product reuse and method guidance sys-
tem, called Process Data Warehouse (PDW). An earlier version of the
PDW, which is described in Subsect. 4.1.3, has been implemented in Con-
ceptBase directly based on the CLiP partial models [96]. Note that the

102 J. Morbach et al.

current implementation of the PDW makes use of OntoCAPE instead of
CLiP, as will be explained in the next subsection.

• In Sect. 3.2, an integrator tool for the coupling of the process simula-
tor Aspen Plus [518] and the CAE system Comos PT [745] is described.
The integration is driven by integration rules, which have been partially
derived from the CLiP partial models Processing Subsystem and Mathe-
matical Model , as explained in [15]. See also Sect. 6.3, where a more recent
approach to derive such integration rules is described.

• The database schema of the CAE system Comos PT has been extended
according to the partial models describing the chemical process and the
plant, resulting in a design database for the lifecycle phase of conceptual
process design [22]. Some prototypical tool integrations have been realized
around that design database in order to demonstrate CLiP’s capability for
the integration of existing data and data models [24].

• The implementation model of ModKit+ [151] is based on the partial mod-
els Unstructured Models and System Models.

In addition to the above applications, CLiP can be utilized as an integration
framework to support the integration of existing data models [14, 23]. To this
aim, the classes of the data models that are to be integrated must be related
to high-level classes of CLiP, either through instantiation or subclassing rela-
tionships. By identifying those classes that belong to the same superordinate
class or meta class, a loose connection is established between them, which is
a first step towards a more tight integration.

Finally, CLiP can be used in the sense of an ontology: it provides a common
vocabulary for the domain of chemical engineering, which promotes a shared
understanding and facilitates the communication between people and across
organizations.

2.2.4 OntoCAPE

Starting in 2002, the formal ontology OntoCAPE [325, 326] has been devel-
oped, combining results of VeDa and CLiP. Structure and terminology of CLiP
have been adopted to the extent possible, especially for the part of represent-
ing chemical process systems. Besides, the VeDa partial models Geometrical
Modeling Objects and Behavioral Modeling Objects, which are not fully incorpo-
rated in CLiP, have been revisited and included. Several additional areas not
covered by the previous models, such as numerical solvers, have been newly
conceptualized in OntoCAPE.

Unlike CLiP and VeDa, OntoCAPE is solely concerned with product data;
it does not attempt to describe documents and work processes. However, doc-
ument models describing the types, structures, and contents of documents,
as well as the interdependencies between documents, can be integrated with
OntoCAPE (cf. Sect. 2.3). Moreover, OntoCAPE can be combined with for-
mal models of work processes and decision-making procedures, as presented

Product Data Models 103

in Sects. 2.4 and 2.5. The integration of these different types of application
models is discussed in Sect. 2.6.

OntoCAPE is represented in a formal ontology language, which allows
for a precise definitions of both the meaning of terms and the interrelations
between the individual classes, as well as for the indication of axioms and
constraints that restrict (and therefore clarify) the usage of the vocabulary.
By exploiting the potential of the language, OntoCAPE is able to incorporate
a significantly larger amount of domain knowledge than CLiP and VeDa.

The development of OntoCAPE started in the EU-funded COGents project
[70], which addressed the automatic selection of mathematical models and
numerical solvers for chemical process systems through cooperating software
agents. Within this project, version 1.0 of OntoCAPE has been established
as a shared communication language for human and computer agents. Due to
the focus of the COGents project, the 1.0 version of OntoCAPE particularly
emphasizes the areas of process modeling and simulation. Yet its overall model
structure, which was developed in close cooperation with the CRC 476, has
explicitly been designed for a later extension towards other areas of chemical
engineering.

After completion of the COGents project, the further development of On-
toCAPE was taken over by CRC 476. In 2007, version 2.0 of OntoCAPE has
been released [324], which, in addition to mathematical modeling and simu-
lation, also covers the design of chemical process systems. In the following,
OntoCAPE 2.0 is presented.

Model Structure

As shown in Fig. 2.4, OntoCAPE is organized by means of three types of
structural elements: layers, partial models, and modules. Subsequently, the
particular functions of these elements will be discussed.

Similar to VeDa and CLiP, OntoCAPE is subdivided into different levels
of abstraction, referred to as layers, in order to separate general knowledge
from knowledge about particular domains and applications:

• The topmost Meta Layer is the most abstract one9. It introduces domain-
independent root terms, such as Object or N-aryRelation, and establishes
an approach to represent mereotopological relations between objects. Fur-
thermore, generic Design Patterns (e.g., [682]) are introduced, which define
best-practice solutions for general design problems.

• The Upper Layer introduces the principles of general systems theory as
the overall design paradigm according to which the domain ontology is
organized; thus, it is comparable to the Meta Meta Class Layer of CLiP.

9 Conceptually, the Meta Layer is not a genuine part of OntoCAPE, but represents
a meta level on top of the actual ontology.

104 J. Morbach et al.

• On the Conceptual Layer , a conceptual model of the CAPE domain is
established. It corresponds to the Basic Classes layer of VeDa and to the
Simple Class Layer of CLiP.

• The subsequent layers refine the conceptual model by adding classes and
relations that are of practical relevance for certain tasks and applications.
The idea is similar to VeDa’s layer of Application Specific Classes, yet split

O
nt

oC
A

PE

m
at

er
ia

l

C
PS

_f
un

ct
io

n

pr
oc

es
s_

un
its

C
PS

_r
ea

liz
at

io
n

pl
an

t_
eq

ui
pm

en
t

pr
oc

es
s_

co
nt

ro
l_

eq
ui

pm
en

t

up
pe

r_
le

ve
l

M
et

a
M

od
el

ap
pl

ic
at

io
ns

m
od

el

pr
oc

es
s_

m
od

el

su
pp

or
tin

g_
co

nc
ep

ts

la
w

s

U
pp

er
La

ye
r

A
pp

lic
.

Sp
ec

ifi
c

La
ye

r

C
on

c.
La

ye
r

A
pp

lic
.

O
rie

nt
ed

La
ye

r

M
et

a
La

ye
r

no
ta

tio
n

m
od

ul
e

m
od

ul
e

La
ye

r

La
ye

r

pa
rt

ia
l m

od
el

m
od

ul
e

m
od

ul
e in
cl

ud
es

pa
rt

ia
l m

od
el

pr
op

er
ty

m
od

el
s

eq
ua

tio
n_

sy
st

em

sy
st

em

ne
tw

or
k_

sy
st

em

fu
nd

am
en

ta
l_

co
nc

ep
ts

da
ta

_s
tr

uc
tu

re
s

m
er

eo
lo

gy
to

po
lo

gy

fu
nd

am
en

ta
l_

co
nc

ep
ts

m
er

eo
lo

gy

m
et

a_
m

od
elto

po
lo

gy

lin
ke

d_
lis

t
bi

na
ry

_t
re

e
m

ul
tis

et
ar

ra
y

ph
as

e_
sy

st
em

m
ol

ec
ul

ar
_s

tru
ct

ur
e

at
om

s

SI
_u

ni
t

ph
ys

ic
al

_
di

m
en

si
on

sp
ac

e_
an

d_
tim

e

ge
om

et
ry

m
at

he
m

at
ic

al
_

re
la

tio
n

de
riv

ed
di

m
en

si
on

s

co
st

_
m

od
el

lo
op

ch
em

ic
al

_s
pe

ci
es

m
at

he
-

m
at

ic
al

_
m

od
el

m
at

er
ia

l

pr
oc

es
s_

m
od

el

as
pe

n_
pl

us
_m

od
el

te
ns

or
_q

ua
nt

ity
co

or
di

na
te

_s
ys

te
m

po
ly

m
er

s

ph
as

e_
sy

st
em

re
ac

tio
n

_t
yp

e

C
PS

_b
eh

av
io

r
C

PS
_p

er
fo

rm
an

ce

ec
on

om
ic

pe
rfo

rm
an

ce
be

ha
vi

or
sp

ac
e_

an
d_

tim
e

ge
om

et
ry

ph
ys

ic
al

di
m

en
si

on

m
at

he
m

at
ic

al
_r

el
at

io
n

S
I_

un
it

te
ch

ni
ca

l_
sy

st
em

pr
oc

es
s_

un
it_

m
od

el

m
ac

ro
-

m
ol

ec
ul

es su
bs

ta
nc

e
_c

la
ss

TG
L_

25
00

1
cl

as
si

fic
at

io
n

sc
he

m
a_

B

pr
oc

es
s

pr
oc

es
s

co
nt

ro
l

ch
em

ic
al

_
pr

oc
es

s_
sy

st
em

TG
L_

25
00

1
cl

as
si

fic
at

io
n

sc
he

m
a_

A

he
at

_t
ra

ns
fe

r
_u

ni
t

di
st

illa
tio

n
_s

ys
te

m

ch
em

ic
al

_r
ea

ct
or

m
ix

in
g

_u
ni

t

fla
sh

_u
ni

t

co
nt

ro
lle

r

fix
tu

re

sp
lit

tin
g

_u
ni

t

ap
pa

ra
tu

s

co
nt

ro
l_

in
st

ru
m

en
t

re
ac

tio
n_

m
ec

ha
ni

sm
pl

an
t

nu
m

er
ic

al
so

lu
tio

n
st

ra
te

gy

su
bs

ta
nc

e

de
riv

ed
S

I_
un

its
pr

oc
es

s_
co

nt
ro

l_
sy

st
em

m
ea

su
rin

g_
in

st
ru

m
en

t

ch
em

ic
al

_p
ro

ce
ss

_s
ys

te
m

su
bs

ta
nc

e

m
ac

hi
ne

Fig. 2.4. Model structure of OntoCAPE

Product Data Models 105

up into an Application-Oriented Layer and an Application-Specific Layer .
The former describes the diverse application areas in general, whereas
the latter provides specialized classes and relations for concrete tasks and
applications.

The notion of partial models as used in VeDa and CLiP has been refined in
OntoCAPE: here, modules and partial models are distinguished. Modules as-
semble a number of classes that cover a common topic, relations describing
the interactions between the classes, and some constraints defined on them.
A module can be designed, adapted, and reused to some extent indepen-
dently from other parts of an ontology [987]. Modules that address closely
related topics are grouped into partial models. The partial models constitute
a coarse categorization of the domain. Unlike modules, partial models may
stretch across several layers. While the boundaries of the modules are chosen
for practical considerations (e.g., to minimize interaction with other mod-
ules or to facilitate their handling with respect to the application at hand),
the boundaries of the partial models reflect the “natural” boundaries of the
domain. In the course of ontology evolution, the partial model structure is
therefore supposed to remain relatively stable, whereas the number of mod-
ules as well as their content and interrelations are likely to change over time
in order to adapt to new applications.

Representation Language

Two different specifications of OntoCAPE have been constructed: A formal
specification represents the ontology in a formal ontology language, such as
DAML+OIL [609] or OWL [546]. A supplementary informal specification
presents the ontology in a human-readable form and provides additional back-
ground information that cannot be coded within the ontology language.

An important function of the informal specification is to provide the devel-
opment team of OntoCAPE with a shared understanding of the domain before
the formal encoding of the ontology begins. Therefore, the informal specifica-
tion can be considered a conceptual model, based on which implementation
models, such as the formal specification of OntoCAPE, can be developed. The
formal specification can be regarded as an implementation model as it is en-
coded in a formal ontology language and can therefore be directly processed
and employed by software tools. Further, the informal specification serves as a
user manual, which supports new users in familiarizing with the ontology and
its design principles and understanding the intended usage of the individual
concepts. To this aim, all ontology modules have been represented by UML-
like class diagrams, which provide a graphical view of the main interrelations
between classes and their instances. In addition to graphical illustrations, the
informal specification comprises natural language descriptions of the meaning
of classes, attributes, relations, and instances.

In the course of creating the formal specification, modeling errors were
detected that had not been noticed before. On the one hand, the usage of a

106 J. Morbach et al.

formal ontology language compels the modeler to define the meaning of classes
more exactly and thus to revise the somewhat sloppy verbalizations given in
the informal specification and in its predecessors VeDa and CLiP. On the
other hand, as the ontology language is based on formal logic, it is possible to
check the consistency of the model statements through a reasoner. That way,
remaining inconsistencies within the model can be detected automatically.

The formal specification of OntoCAPE was initially represented by means
of the ontology language DAML+OIL, the state-of-the-art ontology modeling
language at the time when version 1.0 of OntoCAPE was developed. The for-
mal specification was created using the ontology editor OilEd [545] and verified
by the reasoner FaCT [735]. For the representation of version 2.0, the formal
specification was converted into the Ontology Web Language OWL (OWL DL
in particular, [546]), which has replaced DAML+OIL as a standard ontology
modeling language. This laborious task of conversion was supported by a con-
verter [2], which handled most of the translation effort automatically. However,
as OWL does not offer equivalents for all language elements of DAML+OIL,
some parts of the ontology had to be remodeled manually within the ontology
editor Protégé [979]. For the verification of the OWL version of the ontology,
the reasoner RacerPro [918] has been used.

In the formal specification of version 2.0, ontology modules are manifested
through different XML namespaces [1060], each of which is stored in a single
OWL file; connections between the modules are realized by using the import
mechanism provided by OWL. The partial models correspond to identically
named directories in the formal specification. That way, they establish a di-
rectory structure for managing the OWL files.

Scope and Content

The Meta Layer on top of OntoCAPE holds two partial models: the Meta
Model and the Core Ontology (the latter is not shown in Fig. 2.4). The Meta
Model introduces fundamental modeling concepts and design guidelines for
the construction of the OntoCAPE ontology. Its function is (1) to explicitly
represent the underlying design principles of OntoCAPE and (2) to establish
some common standards for the design and organization of the ontology. Thus,
the Meta Model supports ontology engineering and ensures a consistent mod-
eling style across the ontology. Details about the Meta Model can be found in
Subsect. 2.6.2.

The Core Ontology integrates the different ontologies that are required
for some application. Different applications require different core ontologies –
for instance, the ontology-based Process Data Warehouse described in Sub-
sect. 4.1.5 relies on a core ontology that links OntoCAPE with ontologies
for the description of documents, work processes, and storage systems (cf.
Fig. 4.6). Generally, a core ontology has the function (1) to retrieve the con-
cepts that are relevant for the respective application from the different ontolo-
gies, (2) to define how these concepts are to be used (i.e., interpreted) by the

Product Data Models 107

application, and (3) to introduce additional top-level concepts, which cannot
be retrieved from the existing ontologies.

The module system is the major ontology module on the Upper Layer . It
introduces important systems-theoretical and physicochemical primitives such
as System, Property, Value, PhysicalQuantity, Unit, etc., and specifies their mu-
tual relations: A System is characterized by its Properties, each of which can
take numerous Values. Furthermore, the system module introduces concepts to
represent mereological and topological relations between Systems. It also es-
tablishes the notion of an AspectSystem, which represents a System considered
from a particular viewpoint.

To distinguish the different Values of a certain Property, the concept of
a backdrop, as suggested by Klir [784], is introduced. Adapting Klir’s defini-
tion to the terminology of OntoCAPE, a backdrop is some sort of background
against which the different Values of a Property can be observed. In Onto-
CAPE, the Values of any Property can act as a backdrop to distinguish the
Values of another Property. Time and Space are typical choices of such dis-
tinguishing Properties: For example, the different Values of a Temperature10

arising in the course of an observation can be distinguished by mapping each
Temperature Value to a Value of Time. Thus, the backdrop concept enables the
representation of dynamic system behavior as well as of locally distributed sys-
tems, and it may be used to model any other type of distribution (e.g., particle
size).

The system module is supplemented by four ontology modules: The mod-
ule tensor quantity allows for the representation of vectors and higher-order
tensors. In coordinate system, the concept of a coordinate system is intro-
duced, which serves as a frame of reference for the observation of system
properties. The ontology module network system establishes the principles of
network theory; network theory has already been applied in VeDa, but is
now defined in a more general and systematic manner. Finally, the techni-
cal system module introduces the class TechnicalSystem as a special type of
a System which is developed in an engineering design process. In the design
lifecycle of a TechnicalSystem, five viewpoints are of particular interest, which
are represented as special types of AspectSystems: the system Requirements,
the Function of the system, its Realization, Behavior, and Performance. While
these classes have already been introduced by CLiP, OntoCAPE defines their
meaning more precisely and clarifies their interrelations.

On the Conceptual Layer, the CAPE domain is represented by four ma-
jor partial models: The central chemical process system represents all those
concepts that are directly related to materials processing and plant operat-
ing – just like the identically named partial model in CLiP. The partial model
material provides an abstract description of materials involved in a chemical
process, whereas model defines notions required for a description of models
and model building. Finally, the partial model supporting concepts supplies

10 a subclass of Property

108 J. Morbach et al.

fundamental notions such as space, time, physical dimensions, SI-units, math-
ematical relations etc., which do not directly belong to the CAPE domain but
are required for the definition of or as supplements for domain concepts. This
partial model is only rudimentarily elaborated, as it is not the objective of
OntoCAPE to conceptualize areas beyond the scope of the CAPE domain.

The organizing principle of general systems theory, which has been intro-
duced on the Upper Layer , is taken up on the Conceptual Layer : With the excep-
tion of supporting concepts, each of the aforementioned partial models holds
a key module describing the main System as well as supplemental modules
holding AspectSystems which reflect a particular viewpoint of the main Sys-
tem: For instance, the module chemical process system holds the main system
ProcessUnit, while the module process contains the class ProcessStep reflecting
the functional aspect of the ProcessUnit.

The Application-Oriented Layer extends the Conceptual Layer by adding
classes and relations needed for the practical usage of the ontology. Some ex-
emplary modules are shown in Fig. 2.4: substance, which analogously to CLiP
describes the intrinsic characteristics of materials, is supplemented by chem-
ical species data for atoms, molecules, and polymers. The process module is
extended by two alternative classification schemata for unit operations [20]
based on the national standard TGL 25000 [995]. The partial model process -
units contains descriptions of typical process units (i.e., modular parts of a
chemical process system); exemplarily shown are the modules mixing unit,
splitting unit, flash unit, chemical reactor , heat transfer unit, and distillation -
system. The module process model is extended by three ontology modules:
laws, which specifies a number of physical laws that are applicable in the con-
text of chemical engineering (e.g., the law of energy conservation); property -
models, which provides models that reflect the behavior of designated physic-
ochemical properties (e.g., vapor pressure correlations or activity coefficient
models); and process unit model , which establishes customary mathematical
models for process units, such as ideal reactor models or tray-by-tray models
for distillation columns.

The Application-Specific Layer holds classes and relations that are required
for particular tasks or applications. Figure 2.4 shows exemplarily a module for
the description of model files that are available in the format of the process
simulator Aspen Plus [518].

Usage

So far, OntoCAPE has been used in a number of software applications for
process modeling and design [479]:

• In the COGents project [70], OntoCAPE forms part of a multi-agent frame-
work, which supports the selection and retrieval of suitable process model-
ing components from distributed model libraries. Within this framework,

Product Data Models 109

OntoCAPE serves as a communication language between interacting soft-
ware agents, and between the software agents and the human users. Con-
cepts from OntoCAPE are used to formulate a modeling task specification,
which is then matched against available process modeling components also
described through OntoCAPE.

• OntoCAPE has been applied for the computer-aided construction of pro-
cess models following an ontology-based approach [489, 490]. This ap-
proach suggests constructing a mathematical model in two successive steps,
namely conceptual modeling and model generation. In the first step, a hu-
man modeler constructs a conceptual model of the chemical process; this is
accomplished by selecting, instantiating, and connecting appropriate con-
cepts from OntoCAPE that reflect the structural and phenomenological
properties of the chemical process. Based on these specifications, the math-
ematical model can automatically be created by a model generation engine:
The engine selects and retrieves appropriate model components from a li-
brary of model building blocks; these model components are subsequently
customized and aggregated to a mathematical model, according to the
specifications of the conceptual model. Note that the conceptual modeling
tool is an adaptation of the aforementioned ModKit+ [151], which itself is
a reimplementation of ModKit [54] (see also Sect. 5.3).

• The Process Data Warehouse (PDW) described in Sect. 4.1 acts as a sin-
gle point of access to all kinds of design information within an organi-
zation, regardless of the format and storage location of the original data
sources. The implementation of the PDW is based on loosely connected
ontology modules (cf. 4.1.5), some of which are provided by OntoCAPE
[62–64]. Within the PDW, concepts from OntoCAPE are used to annotate
electronic documents and data stores (cf. Subsect. 2.3.4). That way, one
obtains a consistent, integrated representation of the contents of these het-
erogeneous data sources. These content descriptions can be processed and
evaluated by the semantic searching and browsing functions of the PDW,
which support the navigation between and retrieval of resources.

• Like CLiP, OntoCAPE can be used to derive integration rules for the
integrator tools developed by subproject B2 (cf. Sect. 3.2). Section 6.3
describes the approach in detail.

2.2.5 Conclusion

A series of product data models has been developed for the domain of chem-
ical engineering. Model evolution occurred as a consequence of adopting new
modeling insights, encountering new applications, and taking advantage of
novel modeling languages. For the time being, OntoCAPE 2.0 represents the
final synthesis of this effort, incorporating the experience and consolidating
the results of more than a decade of product data modeling.

The scope of OntoCAPE 2.0 comprises both the area of process design pre-
viously covered by CLiP and the area of process modeling previously covered

110 J. Morbach et al.

by VeDa and OntoCAPE 1.0. Like CLiP and VeDa, OntoCAPE 2.0 is based
on general systems theory, yet defining the underlying theoretical concepts
more explicitly than the preceding models.

As for the modeling language, the expressiveness of OWL, which is em-
ployed for the representation of OntoCAPE 2.0, is comparable to VDDL, the
self-defined language used to represent VeDa, and to ConceptBase, the de-
ductive database language used to represent the upper levels of CLiP. At the
same time, OWL has the advantage of being an international standard lan-
guage, as it is the case with the less expressive UML used to represent the
class level of CLiP. Thanks to OWL’s roots in description logics, reasoning
support, which had already been experimentally used when developing certain
parts of VeDa [51, 61, 318, 384] and CLiP [20], could now be regularly applied
for the development and refinement of OntoCAPE.

Regarding structural design, the strategy of modularization, successfully
applied in the preceding models, is continued and refined in OntoCAPE: The
ontology has been partitioned into nested partial models, which are further
subdivided into ontology modules. Complementary, the concepts of the ontol-
ogy have been allocated across five layers, thus combining and improving the
structural layers of CLiP and VeDa: The meta modeling approach first applied
in CLiP is further elaborated, now clearly distinguishing between the generic
Meta Layer and the systems-theoretical Upper Layer. The layer of application
classes originally introduced by VeDa is adopted and split into two, with the
aim of further differentiating between application-oriented and application-
specific concepts.

The presented product data models have been developed as part of a con-
tinuous information modeling effort. In this effort, we have witnessed the
necessity of making various changes to existing data models or ontologies, as
the consequence of adopting new modeling insights or encountering new appli-
cations. While the preceding models already incorporate some organizational
mechanisms to support such evolutionary changes, OntoCAPE 2.0 further en-
hances these mechanism, thus allowing for an easy extension and reuse of the
ontology. This is of special importance, since OntoCAPE — unlike the con-
ceptual models VeDa and CLiP — is intended for direct use by intelligent
software systems; consequently, the ontology must be reconfigured regularly
in order to meet the requirements of new applications.

For future work, two major challenges remain to be addressed: (1) validat-
ing the ontology’s ability to describe and manage large amounts of real-world
data, and (2) further improving its capabilities for extension and reuse. To this
aim, we are going to apply OntoCAPE in an industrial project dealing with
the integration and management of technical data throughout the lifecycle of
a chemical plant (cf. Sect. 7.2). Within this project, which will be run in close
cooperation with two industrial partners, we are able to test the ontology in
industrial practice and, if necessary, adapt it to real-world requirements and
needs. The ultimate goal is to obtain a validated, comprehensive ontology that
is easily applicable to various applications in the process engineering domain.

2.3 Document Models

J. Morbach, R. Hai, B. Bayer, and W. Marquardt

Abstract. In this contribution, a comprehensive document model is presented,
which describes the types and dependencies of documents as well as their inter-
nal structures and dynamic behavior. Additionally, the contents of documents can
be indicated by integrating the document model with a product data model. Due to
these properties, the document model provides an adequate basis for a novel class of
software tools that support efficient document handling in development processes.

2.3.1 Introduction

Documents play a major role in chemical engineering work processes. Data
are often handled not as single instances but in the form of documents, which
act as carriers for the data during project execution. These documents dif-
fer widely in form and content, ranging from informal documents containing
natural language text, over formal ones like tables or simulation files with
well-defined syntax and semantics, to documents containing graphical data
or even multimedia contents. Documents such as flowsheets and equipment
specification sheets constitute the human perspective on the plant and the
plant data [914]. Executable documents like simulation files are used a means
for information exchange between users and/or software tools.

Various interrelations and dependencies exist between the different types
of documents – for instance, a Process & Instrumentation Diagram is a mas-
ter document that determines the content of peripheral documents such as
equipment lists. Further, it needs to be considered that documents and their
contents evolve over time: Each document has a lifecycle of its own, com-
prising creation, editing, review, approval, and release processes. During a
document lifecycle, different versions of a document are created that need to
be managed.

To obtain a complete description of documents, Salminen et al. [946] have
identified three important aspects about documents that should be reflected
by the document model:

• A static description of the documents given by a classification of the doc-
ument types together with a description of their interrelations.

• A description of the dynamic behavior of documents over time.
• A description of the document content by describing the internal struc-

ture (i.e., the syntax) of the document, for example through a document
template.

While we agree with this approach in general, the method for content descrip-
tion suggested by Salminen and coworkers is, in our opinion, not sufficient.
The expressiveness of a structural description is rather restricted. Only the

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 111–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 J. Morbach et al.

syntax of a document and of its contents can be given that way, but no in-
formation about the semantics of the contents can be provided. A semantic
description of the contents can be achieved by linking the single elements of
which the document is composed to corresponding classes of a product data
model, as we have suggested before [19].

In the following, we present an approach to document modeling that allows
to describe the three aspects postulated by Salminen et al. on a coarse-grained
level within a single representation language. Firstly, we will discuss how indi-
vidual document types and their dependencies can be described. Next, we will
introduce a method to describe the dynamic behavior of documents. Finally,
the modeling of syntactic as well as semantic content will be addressed.

2.3.2 Document Types and Dependencies

For the identification of the individual document types existing in a given
application area, document-oriented work process models can be exploited –
either generic work process models (e.g., [851]) or models of particular work
processes (e.g., [17] or Sect. 5.1 of this book). Other possible information
sources are articles and textbooks that cover the handling of documents in en-
gineering projects (e.g., [853, 957, 1004, 1027]), technical rules and standards
(e.g., [634]), or project execution manuals as they are available in various
chemical engineering companies.

Document types can be represented as UML classes. Figure 2.5 shows
a taxonomy of important document types involved in a chemical engineer-
ing design project, which has been derived from some of the above mentioned
sources. The class ChemEngDesignDoc subsumes all documents created or used
in such design projects. Four different types of ChemEngDesignDocs can be
distinguished: reference documents (ReferenceDoc), which are static resources
of information; technical documents (TechnicalDoc), which are created by the
chemical engineering department to specify or calculate technical informa-
tion about the chemical process and/or plant to be developed; supplementary
documents (SupplementaryDoc), which are created by other functions than the
chemical engineering department but are processed by chemical engineers; and
comprehensive documents (ComprehensiveDoc), which summarize the content
of other documents. These classes can be further refined as shown in Fig. 2.5.
The semantics of the individual classes is explicated in Table 2.1, which can
be found at the end of Sect. 2.3.

It should be noted, though, that the collection of the given document types
is not exhaustive, and the above classification schema is not the only feasible
one. In an analogous manner, alternative taxonomies can be developed to
represent the document types used in a certain domain or by a particular
organization.

Between the different types of documents, various dependencies as well
as other types of relations exist. In this context, dependency between docu-
ments means that, if document B depends on document A, the content of B

Document Models 113

C
he

m
En

gD
es

ig
nD

oc

D
at

aS
et

C
om

pr
eh

en
si

ve
D

oc

C
he

m
En

g
D

ia
gr

am
m

B
FD

PF
D

PI
D

B
ui

ld
in

gL
ay

ou
t

Si
m

ul
at

io
nD

oc

Te
ch

Li
st

M
ed

iu
m

Li
st

Li
ne Li
st

Eq
ui

pm
en

t
Li

st

Eq
ui

pm
en

t
Sp

ec
ifi

ca
tio

n
Sa

fe
ty

Va
lv

eS
pe

ci
fic

at
io

n

G
en

er
al

La
yo

ut

Fe
as

ib
ili

ty
A

na
ly

si
s

Pr
of

ita
bi

lit
yA

na
ly

si
s

D
es

ig
n

B
as

is

Pr
oc

es
s

C
on

ce
pt

Li
te

ra
tu

re
Su

m
m

ar
y

Ti
m

eT
ab

le

Pr
oc

es
sD

es
ig

n
R

ep
or

t

D
es

ig
nC

al
cu

la
tio

n

Te
am

Li
st

Su
pp

or
tin

gD
oc

Te
ch

ni
ca

lD
oc

O
rg

an
iz

at
io

nD
oc

Ec
on

om
ic

D
oc

Te
ch

Sp
ec

ifi
ca

tio
n In

st
ru

m
en

tS
pe

ci
fic

at
io

n

R
ef

er
en

ce
D

oc

Te
ch

A
na

ly
si

s

St
an

da
rd

An
dG

ui
de

lin
e

Te
ch

St
an

da
rd

G
ui

de
lin

e
Te

xt
An

d
G

ra
ph

ic
al

R
eq

En
vi

ro
nm

en
t

G
ui

de
lin

e
Sa

fe
ty

G
ui

de
lin

e

Pl
an

tL
ay

ou
t

G
en

er
al

P
la

n
D

et
ai

l
Pl

an

St
ee

lS
tr

uc
tu

re
B

ui
ld

in
gD

ra
w

in
g

Pi
pi

ng
S

pe
ci

fic
at

io
n

In
iti

al
P

ro
bl

em
St

at
em

en
t

D
et

ai
le

d
La

yo
ut

Si
m

ul
at

io
n

Sp
ec

ifi
ca

tio
n

Si
m

ul
at

io
n

R
es

ul
t

Fig. 2.5. A hierarchy of document types in chemical engineering design projects

114 J. Morbach et al.

is contingent on the content of A. Hence, changes in document A may require
consequent changes in document B. Figure 2.6 shows exemplarily some depen-
dencies between the document classes introduced in Fig. 2.5. Most of these
dependencies are explicated in [851]. Dashed arrows represent unidirectional
dependencies, solid lines denote mutual dependencies.

As can be deduced from the large number of depending documents, the
process & instrumentation diagram (PID) is the central document of the design
process. It collects information from various sources, such as the DesignBasis
or the PFD, and acts as master document for others, such as the EquipmentList
or the PlantLayout.

mutual dependencydepends on

PFD

DesignBasis

Process
Concept

BFD

EquipmentList

InstrumentSpecification

BuildingLayout

Feasibility
Analysis

InitialProblem
Statement

Literature
Summary

DataSet Equipment
Specification

MediumList

PID

PipingSpecification

LineList SafetyValveSpecification

PlantLayout

Fig. 2.6. Dependencies between the individual document types

Moreover, it can be observed that numerous mutual dependencies (e.g., be-
tween EquipmentSpecification and PID) as well as circular dependencies (e.g.,
between classes LineList, InstrumentSpecification, and SafetyValveSpecification)
exist between the document classes. Usually, such dependencies arise if several
versions or revisions of the documents are created during project execution.
For instance, in the case of the mentioned circular dependencies, a first version
of the LineList is created, based on which the InstrumentSpecification can be
developed. The SafetyValveSpecification in turn requires some input from the
InstrumentSpecification (namely the sizing information of the control valves).
The SafetyValveSpecification, however, has an impact on the LineList, as all
piping connected to a safety valve has to be sized according to the specified
relief rates, such that a second version of the LineList needs to be established.

Document Models 115

In order to represent such dependencies between document versions ex-
plicitly in the model, the dynamic behavior of documents needs to be taken
into account. This issue is discussed in the next subsection.

2.3.3 Dynamic Behavior

To describe the dynamic behavior of documents, their different versions and
configurations evolving over time need to be captured. In the following, we will
introduce a model that combines such a description with the static descrip-
tion of document types and their dependencies introduced in the preceding
Subsect. 2.3.2. In addition, the model reflects the structural composition of
documents and document versions. Figure 2.7 shows the top-level concepts
of this Document Model, which is represented both in UML and in OWL.
It is consistent with the Product Area of the PDW Core Ontology, which is
presented in Subsect. 4.1.5.

Product

Document

VersionSet
hasVersion
1..n

DocumentVersion DocumentGroup

hasSuccessor 0..n

hasPredecessor 0..n

isBasedOn

isVersionOf
1

1

0..n Configuration

ChemEngDesignDoc

hasCurrentVersion

aggregation
(part-whole)

specialization
(subclassing)

association

Information
dependsOn

Fig. 2.7. Top-level concepts of the Document Model

The Information is the root class of the Document Model. Through the rela-
tion dependsOn, generic dependencies between Information can be expressed.
Refinements of this relation can be introduced to denote special types of de-
pendencies, such as isMasterDocumentOf.

The class Product denotes all kinds of information objects existing in form
of a hard copy or a soft copy; for instance, a Product might be a part of or
even an entire text document, a (part of a) binary file, or even a particular
view on a database.

116 J. Morbach et al.

Different Products may represent different versions of the same informa-
tion object. In this case, the different versions can be linked to (and thus
managed by) a single VersionSet. The class VersionSet represents the informa-
tion object from a static perspective, while Product represents the different
versions of the information object that evolve over time. Products and the
corresponding VersionSet are connected through the relation isVersionOf and
its inverse hasVersion, respectively. Moreover, one of the Products is identified
as the current version of the VersionSet.

A DocumentVersion is a Product that represents a particular version of an
entire Document. A DocumentVersion may be decomposed into several Prod-
ucts, as it is indicated by the part-whole relation between these two classes.
Similarly, a Document may be aggregated of several VersionSets. Document
can be refined through detailed taxonomies like the one shown in Fig. 2.5 to
represent the types of documents used in a certain domain or by a particular
organization. Analogous to the CoMa model [473] developed by subproject
B4, DocumentGroup and Configuration are introduced to denote clusters of
interdependent Documents and DocumentVersions, respectively.

As mentioned before, all former versions as well as the current version of
a document can be indicated by instantiating the class DocumentVersion. An
example is provided in Fig. 2.8, within which the following notation is used:
The white boxes represent instances of the classes introduced above. Their
names are given on top of the respective boxes, while the names of the instan-
tiated classes are given within squared brackets on the bottom of each box. A
diagonal slash denotes a class/subclass-relation (e.g., Document/LineList).

Two DocumentVersions of a particular line list are shown in Fig. 2.8, namely
Line List PA6 Plant v1.0 and Line List PA6 Plant v2.0, respectively. Both are con-
nected with Line List PA6 Plant, an instance of the document type LineList, via
the hasVersion-isVersionOf relation. The actual version is additionally marked
through the hasCurrentVersion relation. The two versions are connected by

Line List PA6 Plant v1.0
[DocumentVersion]

Line List PA6 Plant
[Document/LineList]

hasVersion

Line List PA6 Plant v2.0
[DocumentVersion]

hasVersion

isVersionOf

hasCurrentVersion

Safety Valve Specification v1.0
[DocumentVersion]

Instrument Specification v1.0
[DocumentVersion]

isVersionOf

isBasedOn

isBasedOn

hasPredecessor

hasSuccessor

isBasedOn

Fig. 2.8. Relations between instances of Document and DocumentVersion

Document Models 117

the relation hasSuccessor and its inverse hasPredecessor, respectively. That
way, the version history of a document can be retraced.

The model allows to express dependencies not only between document
types but also between versions of documents. As it is shown in Fig. 2.8,
the aforementioned dependencies between documents of types LineList, Instru-
mentSpecification, and SafetyValveSpecification (cf. Subsect. 2.3.2) can now be
represented explicitly through the isBasedOn relation11: First, the Instrument
Specification v1.0 is created, based on which the Line List v1.0 can be estab-
lished. Next, the Safety Valve Specification v1.0 can be prepared, which in turn
is the basis for the generation of the Instrument Specification v2.0.

2.3.4 Document Content

As defined in Subsect. 2.1.2, a document is an aggregation of data and acts as
a carrier of product data in a certain work context. One possibility to represent
models of document contents is the use of the eXtensible Markup Language
(XML) [1060] and its Document Type Definitions (DTDs), as suggested by
Bayer and Marquardt [19]. Within a DTD, the structure of a specific doc-
ument type can be described. Figure 2.9 shows the (incomplete) DTD of a
specification sheet for vessels. Here, the different data items like temperature
or construction material are indicated to specify the piece of equipment. How-
ever, the expressiveness of such document type definitions is rather restricted.
A DTD specifies only the syntax of the document content but not its seman-
tics. One possibility to enrich the DTD with meaning is to relate the single
DTD elements to the classes and attributes of a product data model. This is
exemplarily shown Fig. 2.9, where relations between some DTD elements and
the corresponding classes of the product data model CLiP (cf. Subsect. 2.2.3)
are indicated.

Temperature

<!ELEMENT VesselSpecificationSheet(Header,EquipmentSpecification)>

<!ELEMENT Header(Site,Project,Plant,Version)>

<!ELEMENT EquipmentSpecification(Title,ProcessData,MechanicalLayout)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT ProcessData
(MaterialInformation,EquipmentData,Temperature,Pressure)+>

<!ELEMENT MaterialInformation (Material,MassFlow>
<!ELEMENT Material(CAS)>

<!ELEMENT EquipmentData(Volume,InsideDiameter,HeatingCooling?)>

Substance
CAS registry number
formula
molecular weight

Thermodynamic
Property

Fig. 2.9. DTD of an equipment specification sheet and corresponding classes in
CLiP

11 The isBasedOn relation is a refinement of the dependsOn relation that is solely
applicable between DocumentVersions.

118 J. Morbach et al.

A drawback of the approach is that it cannot be represented within a single
modeling language. Therefore, the CASE tool Rational Rose had to be used to
manage the relations between the product data model and the DTD elements.
In order to obtain a model represented within a single formalism, the Docu-
ment Model introduced in Fig. 2.7 has been extended, as shown in Fig. 2.10.
Newly introduced classes and relations are emphasized in bold print.

Product VersionSet
hasVersion
1..n

DocumentVersion DocumentGroup

hasSuccessor 0..n

hasPredecessor 0..n

isBasedOn

isVersionOf
1

1

StructuralElement

0..n Configuration

hasCurrentVersion

Information
dependsOn

ContentDescriptionhasContent

OntoCAPE
RootElement

Document

ChemEngDesignDoc

Fig. 2.10. Content description of documents on the class level

The class ContentDescription is introduced, which is connected with the In-
formation via the relation hasContent. ContentDescription acts as an extension
point, where a qualified product data model suitable for describing the content
of a Information can be integrated into the Document Model. Integration is
realized by declaring the classes of the product data model to be subclasses of
ContentDescription. For example, by defining the root element of OntoCAPE
(cf. Subsect. 2.2.4) as a subclass of ContentDescription, as it is indicated in
Fig. 2.10, all classes defined in OntoCAPE can be employed to characterize
the content of some Information. If the content of documents lies in another do-
main than that of computer-aided process engineering covered by OntoCAPE,
OntoCAPE can be replaced by a more appropriate product data model.

The relation hasContent is inherited by the classes Product and Version-
Set and their respective subclasses DocumentVersion and Document. Thus, it
can be employed to describe the content of both documents and document
versions. If the content of a document remains the same for all its versions,
a ContentDescription can be associated with a Document directly; if, on the
other hand, the content may change from one version to another, the differ-
ent ContentDescriptions should be linked with their corresponding Document-
Versions.

Document Models 119

Moreover, the hasContent relation can be used for both coarse-grained and
fine-grained content descriptions: For a coarse-grained description, a Content-
Description may be directly associated with a Document or DocumentVersion.
If a more fine-grained description is needed, a Document or DocumentVersion
should firstly be decomposed into its constituents (i.e., into Products and Ver-
sionSets, respectively); next, individual content descriptions can be specified
for each constituent via the hasContent relation.

So far, only the semantic content of documents has been addressed. In
order to provide some means for specifying the syntax of a document, as
well, the class StructuralElement is introduced to indicate the format of a
particular document element. StructuralElement can be refined to introduce
special format types: For instance, a text document could be composed of
structural elements like Heading, Paragraph, and Table whereas a block flow
diagram could be decomposed into Blocks and connecting Streams. However,
this part of the model has not been elaborated in detail, as the model does
not aim at providing fine-grained format definitions. Other technologies exist
for this purpose, including DTD and XML Schema.

models
BehaviorOf

Water
[ChemicalComponent]

Caprolactam
[ChemicalComponent]

hasReactant

Polyamide-6
[ChemicalComponent]

PA6 Reactor Model v1.0
[DocumentVersion]

Block R3 v2.0
[Product]

PA6 Reactor Model
[Document
/SimulationDoc]

Block R3
[StructuralElement

/Block]

has
Current
Version

has
Current
Version

BFD PA6 Plant v2.0
[DocumentVersion]

BFD PA6 Plant
[Document/BFD]

has
Current
Version

Reactor R3
[ContentDescription
/ChemicalReactor]

hasReaction
Product

has
Content

has
Content

considersPhenomenon

CSTR Model
[ContentDescription

/CSTR-Model]

takesPlaceIn

PA6 Formation Reaction
[ChemicalReaction]

Fig. 2.11. Exemplary description of document content on the instance level

An example of a content description is given in Fig. 2.11. Two instances of
Document are shown on the right hand side of the figure, namely PA6 reactor
model of type SimulationDoc and BFD PA6 Plant of type BFD. Below, one
particular StructuralElement of BFD PA6 plant is shown, namely Block R3 of
type Block. The current versions of PA6 Reactor Model and Block R3 (i.e., PA6
Reactor Model v1.0 and Block R3 v2.0) are associated with ContentDescriptions:
CSTR Model is an instance of the OntoCAPE class CSTR-Model, while Reactor
R3 is an instance of the OntoCAPE class ChemicalReactor.

The content descriptions are further specified through additional classes
from OntoCAPE, as shown on the left hand side of Fig. 2.11: The CSTR
model considers the PA6 Formation Reaction that takes place in Reactor R3.
Moreover, the ChemicalComponents involved in the ChemicalReaction are indi-
cated: Caprolactam and Water are the reactants and Polyamide-6 is the reaction
product.

120 J. Morbach et al.

In addition, the relation modelsBehaviorOf establishes a direct connection
between the content descriptions CSTR-Model and Reactor R3. That way, con-
cise semantic relations between documents can be specified via their content
descriptions. The semantic relations clarify the character of document depen-
dencies, which could only be indicated through the rather general dependsOn
relation before.

2.3.5 Usage

Document models, as the one presented above, provide the basis for efficient
computer support in various fields of application: Document models are a
first step towards the improvement of business processes and the solution of
problems related to document handling and information services [656]. For the
development of document management facilities, it is necessary to consider the
different document types and their dependencies (Subsect. 2.3.2) together with
their dynamic behavior (Subsect. 2.3.3) [14]. Models of document contents and
their integration with product data models (cf. Subsect. 2.3.4) can support the
automatic generation of documents [553], the retrieval of information from a
document base ranging from single data items over parts of documents to entire
documents [1064], as well as the exchange of information between dependent
documents [26].

The applicability of the above Document Model to the areas of information
integration and document management has been practically demonstrated by
utilizing the Document Model in two software development projects, as shortly
discussed next:

• Integrator tools manage fine-grained interdependencies between docu-
ments that arise in the course of a design project. Their goal is to keep
the vast amount of inter-document relations consistent and automatically
propagate changes through the network of dependent documents. With-
out such integrators, these fine-grained dependencies need to be managed
manually by developers without appropriate tool support - a tedious and
error-prone task, especially in case of concurrent and simultaneous engi-
neering.
Model-based integrators, as those developed by subproject B2 (Sect. 3.2),
rely on formal tool models that describe the entities of which the docu-
ments are composed as well as the relations between these entities. Such
tool models can be derived from the Document Model presented here.
In Sect. 6.3, the transition from document to tool models is described in
detail.

• The Process Data Warehouse (PDW) described in Sect. 4.1 collects, en-
riches, and manages the various information created during engineering
design projects. The implementation of the PDW is based on interrelated
ontology modules, which are built around a central Core Ontology (cf. Sub-
sect. 4.1.5). The Document Model presented here forms part of this Core

Document Models 121

Ontology, where it provides the concepts required for the management of
documents12. Within the PDW, a document is represented through meta-
data describing its structure, version history, and contents, as well as its
dependencies and semantic relations with other documents. These meta-
data are created by instantiating the Document Model, as explained in
the previous subsections. To enhance user acceptance and usability of the
PDW, converters are needed that automatically derive the required meta-
data from legacy documents. Some prototypical converters have been built
to demonstrate the feasibility of this approach (see [3] for the description
of a converter that maps XML data on a given OWL ontology).

2.3.6 Conclusion

In development processes, information are typically handled by means of doc-
uments, which act as carriers for the data during project execution. To better
support the needs of the developers, efficient tools for document handling are
required, which rely on formal models of documents.

In this section, a comprehensive Document Model has been presented,
which describes the types and dependencies of documents as well as their
internal structures and dynamic behavior. Moreover, by integrating the Doc-
ument Model with a product data model, the contents of documents and their
semantic relations can be indicated.

In order to validate the model and to prove its applicability to real-world
problems, it has been tested (and thus practically validated) in two software
development projects targeting the areas of information integration and doc-
ument management. Further testing will be performed in the near future by
applying the model in a large-scale industrial project dealing with the man-
agement and integration of design information across the project lifecycle of
a chemical plant (cf. Sect. 7.2).

Table 2.1. Semantics of the document classes shown in Fig. 2.5

Class Name Definition
BFD The Block Flow Diagram is a schematic representation of the

overall process. Block or rectangles represent a unit opera-
tion or groups of unit operations. The blocks are connected
by straight arcs, which indicate material and utility transfers
between the various units.

BuildingDrawing Detailed drawings of buildings.

BuildingLayout Documents provided by civil engineers and used by chemi-
cal engineers as a basis for arrangement of process units or
equipments.

12 Note that the class Information is named ProductObject within in the Core Ontol-
ogy.

122 J. Morbach et al.

Table 2.1. Semantics of the document classes shown in Fig. 2.5 (continued)

Class Name Definition

ChemEng-
DesignDoc

All documents used, created, or processed by chemical engi-
neers during conceptual design, basic engineering, or detail
engineering.

ChemEng-
Diagram

A graphical representation of a process, a chemical plant, or of
parts of them, viewed from a chemical engineering perspective.

Comprehensive-
Doc

This class denotes detailed reports based on documents of type
ReferenceDoc, TechnicalDoc, SupplementaryDoc and/or other
ComprehensiveDoc. They are usually written at the end of a
developing stage to outline all the important procedures and
the results, and to establish the foundation for the next devel-
oping stage.

DataSet A document in which some raw data (i.e., data without con-
text) is embodied, for example a cost database.

Design-
Calculation

Documents of this type contain design calculations of pro-
cesses, units and/or equipments. The calculations can be done
manually or by using software such as Aspen and Excel.

DesignBasis The design basis describes the feedstocks, the product specifi-
cations, and the utilities available. In principle, all the project-
specific requirements have to be listed here. Also a project-
specific numbering and codification system will be listed in the
design basis. The document is very central in the further exe-
cution of the project, and the information stated in the design
basis is essential for preparing the flowsheet [851].

DetailedLayout The detailed layout specifies the locations of main equipment
and equipment elevations.

DetailPlan A detailed drawing of buildings, structures, foundation, etc.

EconomicDoc A document containing a cost estimation or an economic anal-
ysis of the chemical process at different stages of the develop-
ment process.

Environment-
Guideline

A guideline that describes the environmental requirements on
a chemical process.

EquipmentList A list of all the equipments shown on the PID.

Equipment-
Specification

The equipment specification contains the process requirements
to the equipment and the basic mechanical requirements. De-
tails like orientation of nozzles are left to the detail designer.
The main objective of an equipment specification is to find
vendors, who can bid for the equipment [851].

Feasibility-
Analysis

The feasibility analysis is an important result of the conceptual
study, which gives technical and economic assessments of the
process, evaluations of different concepts, and a statement of
license application [1027].

Document Models 123

Table 2.1. Semantics of the document classes shown in Fig. 2.5 (continued)

Class Name Definition

GeneralLayout The general layout specifies the location of process units, util-
ities units, roads, building and fencing.

GeneralPlan A drawing that gives an overview on the functional zones of
the entire facility.

InitialProblem-
Statement

The initial problem statement, also called primitive design
problem statement [957], describes the point of origin of the
design project. It expresses the current situation and provides
an opportunity to satisfy a societal need [957]. A typical ini-
tial problem statement is given by [957]: ”An opportunity has
arisen to satisfy a new demand for vinyl chloride monomer,
on the order of 800 million pounds per year, in a petrochem-
ical complex on the Gulf Coast, given that an existing plant
owned by the company produces 1 billion pounds per year of
this commodity chemical. Because vinyl chloride monomer is
an extremely toxic substance, it is recommended that all new
facilities be designed carefully to satisfy governmental health
and safety regulations”.

LineList A list of all the pipes shown on the PID. Each pipe will be
identified with a unique number, which is printed on the PID
as well. Different projects have different requirements to the
actual content of the information in a line list. As a minimum,
the operating and design pressure and temperature, the nom-
inal diameter and the pipe class have to be listed. In some
projects a pressure-drop budget figure will also appear [851].

Literature-
Summary

A survey of project-related internal documents and publica-
tions in the open literature.

MediumList A listing of the different media involved in the process. Along
with the medium, which is usually designated with a two letters
code, normal operating temperature and pressure and design
temperature and pressure are listed. The last field is material
selection [851]

OrganizationDoc A document concerned with the work organization but not the
work content of chemical engineers.

PFD The Process Flow Diagram (PFD) shows the basic layout of
the unit. A heat and mass balance is included in the flowsheet.
Some flowsheets will show the basic control philosophy [851].

PID The Piping and Instrumentation Diagram (P&ID) shows in de-
tail all the equipment, how it is connected with piping, where
and what type of instrumentation and valves are used, the
location of temperature, pressure, level and flow controllers
(and indicators). Further it will show all the safety devices and
alarms. The PI&Ds give a comprehensive overview over the
plant or the unit and it is a common document for mechani-
cal, process, and instrumentation engineers in the downstream
activities [851].

124 J. Morbach et al.

Table 2.1. Semantics of the document classes shown in Fig. 2.5 (continued)

Class Name Definition

Piping-
Specification

This document specifies the piping material and defines the
different piping classes and to be used in the project. A pip-
ing class is a project specific standard of a piping material that
meets the mechanical requirements in a certain range tempera-
ture wise, pressure wise and corrosion wise. To complete piping
specification all possible fittings and valves to be used within
the piping class are specified [851].

PlantLayout The plant layout specifies the arrangement of the units, build-
ings, equipments etc.

ProcessConcept A conceptual report of possible solutions of the primitive prob-
lem. It indicates the resource of raw materials, the scale of the
process, an approximate location for the plant, and other re-
strictions [957].

ProcessDesign-
Report

This report gives the design details of a process and its prof-
itability. A recommendation on whether or not to invest further
in the process should be also included [957].

Profitability-
Analysis

A document supplying information on the profit potential of
the final plant. Several standard methods such as return on
investment, venture profit, payback period, and annualized cost
are used to calculate the expected profitability [957].

ReferenceDoc Static resources of information, which are independent of a
particular project and are not changed during project execu-
tion. Reference documents within chemical engineering are for
example material data sheets, patents, and technical articles.

SafetyGuideline A guideline that specifies the safety requirements on a chemical
process.

SafetyValve-
Specification

A series of documents specifying the sizes of the safety valves
in the plant. The reason for not just merging this group of
documents into the instrument specifications is that the sizing
calculations of the safety valves actually require the sizing of
the control valves [851].

SimulationDoc A document created or used by simulation software.

SimulationResult A document that contains the numerical results of the
simulation.

Simulation-
Specification

The input file for a simulator, specifying the simulation model
and/or the parameters.

StandardAnd-
Guideline

Standards and guidelines for developing a chemical process.

SteelStructure A detailed drawing of the steel structure of the plant.

SupportingDoc Supplementary documents created by other functions or de-
partments than chemical engineering that directly support the
work of chemical engineers.

Document Models 125

Table 2.1. Semantics of the document classes shown in Fig. 2.5 (continued)

Class Name Definition

TeamList A list of staff members, their responsibilities, and their contact
information.

TechAnalysis An analysis of a chemical process system from a technical
perspective.

TechList A listing that summarizes all technical items of specific type
involved in a particular chemical process.

TechnicalDoc Documents created and processed by chemical engineers at dif-
ferent stages of the chemical process design containing impor-
tant technical information.

Tech-
Specification

A document that specifies some technical details about a the
chemical process or plant to be developed.

TechStandard-
Guidline

Standards and guidelines for technical calculation and con-
struction [1004].

TextAnd-
GraphicalReq

Standards for text and graphics [1004].

TimeTable The time table includes the particular project definition, all
the different projected activities, the periodical review points,
the change points in project management, the requirement for
introduction of additional support teams, and the emphasis on
specific efforts [853].

2.4 Work Process Models

M. Eggersmann, B. Kausch, H. Luczak, W. Marquardt, C. Schlick,
N. Schneider, R. Schneider, and M. Theißen

Abstract. Empirical studies are a prerequisite for creating meaningful models of
work processes, which can be used to analyze, improve, and automate design pro-
cesses. In this contribution, a modeling procedure is presented, which comprises the
creation of semi-formal models of design processes, their analysis and improvement,
and finally the formalization of the models as a prerequisite for the implementa-
tion of supportive software tools. Several modeling languages have been created for
representing design processes, including the C3 language for participative modeling
of design processes on a semi-formal level and a Process Ontology for the formal
representation of design processes.

2.4.1 Introduction

According to current studies in German research and development depart-
ments, a substantial part of research and development expenditures is not
used efficiently [724]. Also, in [575] a significant potential to reduce develop-
ment times is identified. In order to exploit this potential, a better coordi-
nation of the developers involved in design processes is required, parts of the
design process are to be automated, and proven knowledge from previous de-
sign processes is to be reused in further projects. To this end, work process
models, providing the relevant information about design processes in a concise
way, are essential.

Design processes in chemical engineering are highly creative in nature, and
thus detailed models prescribing all the activities that might be performed
during a design process are infeasible. Thus, current modeling approaches for
design processes rather aim at a coarse-grained description of the process,
for example by defining the milestones of a design project and enumerating
some activities to reach these milestones (e.g., [638, 1019]). In few exceptional
cases, such as best practice guidelines, the focus is on a more detailed descrip-
tion of single tasks, comprising a small number of activities within a design
process. However, knowledge about design processes on a fine level of granu-
larity is scarce. Therefore, meaningful and sound models of design processes
require empirical studies addressing exemplary design processes [125]. Several
research groups emphasize the value of knowledge about past design processes
for future design projects [574, 1047].

A research project prior to IMPROVE has addressed a special type of
design processes: A methodology for the creation of mathematical models has
been elaborated and implemented in the modeling environment ModKit [54,
277] (cf. Subsect. 5.3.4). Part of the support offered by ModKit is based on the
tool’s workflow functionality. Thus, profound knowledge about mathematical
modeling processes was essential for the success of the ModKit project. This

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 126–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Work Process Models 127

knowledge was initially derived from case studies; subsequent steps included
an iterative enrichment and formalization of the process knowledge.

The modeling approach pursued in the ModKit project has been elaborated
and generalized in the IMPROVE projects A1 and I1 to cover the modeling,
improvement, and implementation of work processes during the conceptual
design of chemical processes. In Subsect. 2.4.2, this modeling procedure is
presented in detail. Practical application of the procedure relies on the avail-
ability of adequate modeling languages to describe complex design processes.
In Subsect. 2.4.3, we give a review of typical languages for work processes
and show that they do not comply with some fundamental requirements. In
consequence, new modeling languages had to be developed during IMPROVE.

In Subsect. 2.4.4, the first of these languages, called C3, is introduced.
C3 is an easy-to-use semi-formal language suited for the early phases of the
modeling procedure, when a fundamental understanding of a design process
must be reached. In Subsect. 2.4.5, we get back to some issues related to the
modeling procedure and make use of the C3 language.

The implementation of computer support for design processes requires
formal representations of the work processes. To this end, the conceptual
data model CLiP (cf. Subsect. 2.2.3) has been extended with a partial model
covering design processes. The experiences gained with this model have led to
its revision and re-implementation in form of a Process Ontology. Structure,
content, and usage of both approaches are described in Subsect. 2.4.6.

2.4.2 A Procedure for Modeling and Improving Design Processes
in Chemical Engineering

Fig. 2.12 shows the generic procedure for modeling, improving, and imple-
menting design processes in chemical engineering, which was elaborated dur-
ing the IMPROVE projects A1 and I1 [104, 437]. Three roles are involved in
the execution of the procedure:

• the designer, who has the best (tacit rather than explicit) knowledge about
a particular design process,

• a work process engineer, a person who has some background on interview
techniques and the domain of interest, chemical engineering in our case,

• and a work process modeler, who is familiar with different modeling ap-
proaches for work processes.

The first step is to define the scope of the subsequent modeling activities (1).
Depending on the intended usage of the model and the character of the design
process in consideration, it must be decided which aspects of the process are to
be incorporated in the model. For instance, if an analysis aiming at a reduction
of the execution time is envisaged, the time need for all activities should be
included, whereas it can be neglected in case of a model intended solely for
computer support of the design process.

128 M. Eggersmann et al.

Work Process Modeler Designer Work Process Engineer

no

yes

Semi-formal model of
improved design process

Result of
implementation

Experience collected during
new design processes

Formal model of
design process

Suggestions for improving
the work process

Agreed semi-formal
model of design process

Semi-formal model of
design process

Results of recording
(e.g., notes of interview)

Knowledge of
design processes

Define improved
design process

Perform
improved design

processes

Implement the
improved design

process

Create formal
model of design

process

Analyze model of
design process

Validate semi-
formal model of
design process

Validate semi-
formal model of
design process

Create semi-
formal model of
design process

Record a design
process

Record a design
process

Computer-
support
desired?

4

Sufficient level of
generality and detail?

no

yes

Define the modeling
scope

Define the modeling
scope

Define the modeling
scope

3

4

2 2

5

6

7

8

9

1 11

Fig. 2.12. Procedure for modeling and improving design processes (in C3 notation)

Work Process Models 129

Subsequently, an exemplary concrete design process as performed by a designer
is recorded (2). The recording is supported by the work process engineer, who
interviews the designer after the completion of (part of) the design process.
The roles of the designer and the work process engineer may coincide; in this
case the designer personally protocols what he/she is doing during the design
(self observation).

The work process modeler transforms the usually informal results of the
recording phase into a semi-formal work process model (3). As this model
must be validated by the designer in a subsequent step in order to eliminate
misunderstandings (4), it must be easily understandable for the designer, who
cannot be expected to be an expert of work process modeling. Simultaneously,
the model must allow to represent the main characteristics of design processes
in chemical engineering. To this aim, the C3 language for the semi-formal
representation of work processes is used (cf. Subsect. 2.4.4). Note that also the
depiction of the modeling procedure in Fig. 2.12 makes use of this intuitively
comprehensible notation.

If the work process model is intended to support further design processes,
it must be both sufficiently general, i.e., it must cover possible variants of
the originally recorded process, and it must comprise details relevant for its
analysis and reuse. Given the complexity of industrial design processes, it is
infeasible to create a model with adequate generality and detail in a single step.
Instead, an iterative procedure is advisable until a model with the required
properties is built. Possibly, the scope of the model has to be reconsidered and
adapted during the iterations. For example, a coarse-grained model describing
the milestones of a project should not be overloaded with all software tools
ever used during its execution. In contrast, a model focusing on the activities
of single designers should cover such tools.

During an analysis of the semi-formal work process model (5), the work
process engineer may identify problems and shortcomings of the design process
and make suggestions for their improvement. Some examples for a manual
analysis are given in [99, 105]. The analysis can also be supported by tools
like discrete-event simulation systems (cf. Sect. 5.2).

From the analysis of a certain number of design processes, it should be
possible to define improved standard processes (6), which have proven to be
effective and can serve as some kind of template for future projects. Such
standard processes could be directly implemented (8) without the use of in-
formation technology: A project manager, for example, can use standard work
processes to organize his project, or a designer can employ a certain design
procedure to design a process unit.

Obviously, work processes can be even better supported by the application
of computer tools. A software tool which captures information about various
best practice work processes could guide a designer by suggesting appropriate
activities and advising him how to proceed. This requires the creation of a
detailed and sufficiently formal conceptual model of the design process to be
supported (7), which would then be used for the creation of a design model

130 M. Eggersmann et al.

required for the implementation (8) of the software tool (cf. Subsect. 2.1.1).
Due to the complexity of this conceptual model, it must be created by the
work process modeler.

After the application of the new design processes (9), their success has to be
evaluated, again starting with the recording of the work process. In Fig. 2.12,
this iteration is indicated by the feedback flow of the experience collected
during the new design process to the recording step (1) at the beginning of
the procedure.

The remainder of this section addresses different modeling languages for
work processes, which have been developed by the IMPROVE subprojects A1,
I1, and I4, taking into account the requirements imposed by the modeling pro-
cedure and the characteristics of design processes in chemical engineering. In
Subsect. 5.1.2, we discuss some issues related to the practical implementation
of the procedure, focusing on its implementation in industrial settings.

2.4.3 Modeling Approaches for Work Processes

The availability of adequate semi-formal and formal modeling languages for
design processes is an indispensable precondition for applying the modeling
procedure presented above. Research in fields like software engineering, work-
flow management [1058], and business process reengineering [714] has led to a
wide range of modeling approaches with different objectives. In the following
paragraphs, we will give a review of exemplary approaches. The subsection
concludes with an evaluation of the existing approaches with respect to their
suitability for design processes.

Business Process Modeling

The probably best-known modeling language for business processes is the ac-
tivity diagram of the Unified Modeling Language (UML, [560]). The roots of
UML are in software engineering, but nevertheless it is widely used in many
domains. UML 2.0 [880] comes with a rich set of concepts for a detailed de-
scription of the behavior of software. The user is free to extend UML with
the concepts needed for a similar expressiveness for other process types. Ac-
cording to [568] such extensions, denoted as profiles in UML, are in particular
required for business processes modeling. An exemplary extension for business
process is described in [884]

Both graphical representation and semantics of the Business Process Mod-
eling Notation (BPMN, [873]) are similar to that of UML activity diagrams.
BPMN addresses the creation of process models for workflow execution and
automation; for this purpose mappings from BPMN to executable languages
like the XML Process Definition Language (XPDL, [1059]) and the Web Ser-
vices Business Process Execution Language (WS-BPEL, [887]) have been de-
fined.

Work Process Models 131

Event Driven Process Chains (EPC, [842, 949]) also address the analysis
and execution of business processes. As the expressivity of an EPC in its
basic form is rather limited, several variants have been developed. Extended
Event-Driven Process Chains (eEPC, [958]), for example, cover organizational
units.

Task Object Charts (TOC, [1069, 1070]) are meant for the design of in-
teractive software systems and user interfaces. They provide a modeling ele-
ment called blob, which allows to include several activities in a model without
restricting their execution order. The blob has been adopted in C3 and is
discussed in Sect. 2.4.4. CoCharts [221], an enhancement of TOC, also cover
coordination mechanisms for groups of activities.

Diagrams like Gantt and PERT charts (e.g., see [777]) are tools for project
management and resource allocation. Consequently, their focus is on the rep-
resentation of resources and roles.

Mathematical Formalisms

In addition to the approaches described so far, mathematical formalisms like
Petri nets [770], state charts [718], and process algebra [551] have been de-
veloped which allow to describe the behavior of concurrent systems in an
unambiguous, mathematically sound way, which makes up their suitability
for computer-based applications. Petri nets, in particular, are an appropriate
basis for work process automation by means of workflow systems [1014] or
analysis by means of process simulation (cf. Sect. 5.2).

However, in their basic form Petri nets are unsuitable for modeling, plan-
ning, and documenting complex work processes, since even relatively simple
facts result in highly complex Petri nets (see also [939]). Thus, in order to bet-
ter exploit the advantages of Petri nets, mappings from some of the languages
described above have been defined (e.g., [986])13. A recent development is Yet
Another Workflow Language (YAWL, [1063]), whose semantics is formally de-
fined based on Petri nets. YAWL claims to incorporate all workflow patterns
provided by any workflow system and thus, the language is characterized by
a large expressivity.

Requirements for Modeling Languages for Design Processes

The characteristics of creative design processes induce several requirements
for adequate modeling languages. These requirements provide a basis for the
evaluation of the existing approaches in the next paragraph.

First of all, an adequate modeling language must be sufficiently expressive
to enable the modeling of all aspects relevant to documenting, analyzing,
and implementing design processes. These aspects comprise the activities in a

13 In case of executable languages, these mappings aim primarily at process analysis.
Implementations of the languages are typically not based on Petri nets.

132 M. Eggersmann et al.

design process and their interdependencies, the information produced during
the activities or needed for their execution, the roles or organizational units
of the actors, and finally the tools required for performing the activities [102,
103]:

• Information and information flow. Typically, the execution of activities
produces information (e.g., in form of documents, data, or oral messages),
which is then used in subsequent activities. The explicit representation of
information and information flows is crucial as the availability of input
information imposes restrictions on the order of activities.

• Activities and their interdependencies. Due to their creative character, de-
sign processes are weakly structured : In general, it is not possible to give a
detailed descriptions of all activities a priori. For instance, the necessity to
perform certain activities can depend on criteria which cannot be formu-
lated before some intermediate results of the design process are available.14

In addition to conventional modeling concepts for predetermined proce-
dures, which comprise activities in a well-defined order or with explicit
conditions for their execution, a modeling language for design processes
must provide powerful concepts for temporal and structural abstraction.
Temporal abstraction refers to the freedom to omit information about the
temporal relations between activities (e.g., by permitting a partial overlap
of two subsequent activities). An even stronger structural abstraction al-
lows to create process models which do not determine whether an activity
is performed at all.
A frequent pattern encountered in design processes is that of distributed
activities : Several simultaneous activities require a considerable exchange
of information between the actors involved (e.g., between several managers,
engineers, and technicians at a project meeting). Even if the exact nature
of this information is neglected in a model – for instance, if it is unknown
a priori – the strong interdependencies between the activities should be
recorded.

• Roles and organizational units. Current research results emphasize the
importance of roles and organizational structure in design processes. The
coordination of activities in different units depends substantially on their
spatial distribution, their fields of activity, and their competencies [981].
A modeling language for design processes must be able to represent work
processes across the borders of the organizational units involved.

• Resources and tools. The efficient execution of activities relies on the tech-
nical resources and tools used by the actors. In case of chemical engineering
design, these tools are typically software tools, but they can also comprise
physical resources like lab equipment.

14 In contrast to this terminology, the workflow community uses the term structured
workflow to denote workflows that are built according to certain rules (e.g., see
[778]).

Work Process Models 133

Table 2.2. Expressivity of business process modeling languages

+: satisfied, o: satisfied with restrictions, -: not satisfied

temporal/
structural
abstraction

dis-
tributed
activities

infor-
mation

infor-
mation
flow

re-
sources
(tools)

roles/
organi-
zations

UML activity
diagram

- - + + - +

BPMN - - + + - +

EPC/eEPC o - + + - +

TOC o - + + - o

Gantt Chart - - - - + +

A further requirement are flexibility and extensibility of the modeling lan-
guage. Depending on the intended purpose of a process model (e.g., analysis
and improvement, automation, compilation of best practices), the importance
of different aspects of a design process can vary. Hence, a modeling language
must allow to bring the relevant aspects into focus. This concerns the possibil-
ity to enrich the basic elements of a modeling language with relevant attributes
if need arises, but also the freedom to omit information which is considered
as irrelevant in a certain modeling context.

Evaluation of Existing Modeling Languages

A wide range of modeling languages and notations for work processes exists,
but none of them fulfils all requirements imposed by the characteristics of de-
sign processes in chemical engineering [221]. Table 2.2 gives an overview of the
expressivity of the most prominent of the modeling languages discussed above
with respect to the requirements. The most critical shortcoming common to
all approaches is their inability to represent work processes on different levels
of structural and temporal abstraction (except for TOC) and their limited
support for distributed activities; the existing languages are tailored to pre-
determined and well-structured work processes. Some requirements are met
to different degrees by several languages. In consequence, new modeling lan-
guages had to be developed within IMPROVE, building as far as possible on
proven techniques and extending them with missing concepts.

2.4.4 C3 – A Semi-Formal Language for Participative Modeling of
Design Processes

In order to receive detailed and reliable information about the different activ-
ities of designers and other experts in the entirety of the organizational units
involved in a design process, representatives from all roles must participate

134 M. Eggersmann et al.

in both the creation of the work process model and its validation (cf. steps 2
to 4 of the modeling procedure). In general, these people cannot be expected
to be experts of work process modeling. Thus, a prerequisite for participative
modeling is a rather simple semi-formal modeling language whose concepts
and elements are easily understood across the borders of the involved disci-
plines [694]. In addition, a small learning effort to get acquainted with the
modeling language reduces both the time and the costs for its introduction in
an organization and increases its acceptance among planners, decision makers,
and the designers themselves.

Building on a language developed earlier at IAW [424], the C3 language
for participative modeling of work processes has been developed with a spe-
cial focus on the requirements imposed by the creative character of chemical
engineering design processes as discussed above. The term C3 is an acronym
for Cooperation, Coordination, and Communication; it indicates the charac-
teristics of design processes which are in particular addressed by the language:

• Cooperation is a collective effort in working towards a common goal. Deci-
sions are made collectively, individual goals are subordinated to the overall
goal of the group, collective plans are developed, and the achievement of
the group as a whole is evaluated.

• Coordination refers to the management of such cooperation.
• Communication is a person-based, goal-oriented as well as non-anonymous

exchange of information.

C3 is intended for users below expert-level. The language is not meant for fine-
grained models, but rather to describe unstructured and partially structured
activities and work processes. C3 inherits from other languages, in particu-
lar UML activity diagrams, Task Object Charts, and state charts. Also, a
modified subset of Role-Function-Activity nets (RFA nets, [872]) for the rep-
resentation of information flows and cooperation partners has been adopted.

C3 diagrams contain two types of symbols, elements and connectors. In the
interest of usability, C3 provides a rather restricted number of core elements
and connectors, which are essential for the expressiveness demanded above.
Elements and connectors can be further specified by attributes. Whereas some
attributes should always be provided, such as a meaningful name and an ID
allowing for unambiguous reference, the adequacy of other attributes depends
on the purpose of the work process model and the users’ needs. For the sake
of illustration, some possible attributes are given in the following discussion
of the core elements.

Core Elements

As shown in Fig. 2.13, C3 provides four core elements: activities, information
elements, tools, and roles.

Activities are the central element of any work process model. They describe
what has been done or has be done. Some exemplary attributes for activities
are

Work Process Models 135

Create reactor model
id: activity_12
required qualifications:
 - polymerization knowledge
 - familiarity with modeling tool gPROMS
time: 2 days

Reactor model
id: information_17
description: model of a VK column for
 the polymerization of -caprolactam
format: gPROMS model

Polymerization expert
id: role_4
number of persons: 2
qualification:
 polymerization knowledge

id: tool_3

type: modeling tool

number of licences: 4

gPROMS

Fig. 2.13. Core elements activity, information, tool, and role with some exemplary
attributes

• the qualifications required for executing the activity or
• the execution time.

Information items can represent documents such as flowsheets or mathemat-
ical models, but also ideas, messages, or any information which is produced
during activities and further processed in other activities. Typical attributes
of information comprise

• a textual description of the information or
• the file format in case of an electronic document.

Tools are used during activities. In a C3 diagram, tool elements are attached
to the activities they are used for. The representation of tools may contain
attributes like

• the type of the tool (e.g., modeling tool) or
• the number of available tools (e.g., the number of licenses in case of a

software tool).

Roles can represent organizational units (e.g., R&D department), but also
people or groups with certain functions or qualifications (e.g., project leader
or chemical engineer). Like in UML activity diagrams, roles in C3 are depicted
as vertical swimlanes, in which the activities are placed. Thus, C3 diagrams
provide a clear view on the assignment of activities to roles. Typical attributes
comprise

• the number of persons performing in the role or
• the qualifications of these persons.

136 M. Eggersmann et al.

Create reactor
model

Polymerization expert Project leader

Perform
simulation studies

t d l

Reactor
model

Discuss simulation
results

Simulation
results

Discuss simulation
results

control flow

information flow

synchronous
communication

core connectors

Fig. 2.14. Core connectors control flow, information flow, and synchronous com-
munication: symbols and usage

Core Connectors

Three core connectors are available for representing interrelations between the
core elements (see Fig. 2.14).

The information flow shows the interaction between information elements
and activities. Information required for an activity is marked by an informa-
tion flow from the information item to the activity. Similarly, the information
produced by an activity is linked by an information flow from the activity to
the information.

In its basic form, the control flow represents a temporal sequence of two
activities. Further uses of the control flow are discussed below.

The third core connector is the synchronous communication; it connects
activities whose execution requires communication between the actors in-
volved (e.g., during project meetings).

Synchronization Bar

More complex relations between activities can be modeled by means of the
synchronization bar. One possible usage is depicted in Fig. 2.15 a). Here, two
synchronization bars indicate the beginning and ending of two independent
control flows to be followed in parallel. Both activities A1 and A2 are executed.

Conditional branchings are modeled by attaching conditions to the outgo-
ing control flows of a synchronization bar. In Fig. 2.15 b), these conditions are
mutually exclusive (either reaction rates available or no reaction rates avail-
able). Exactly one of the two activities A1 and A2 is executed. In general,

Work Process Models 137

a)

b)

c)

A1: Determine
reaction rates

A2: Create reactor
model

no conditions
both A1 and A2 are
executed

[reaction rates
available]

[no reaction
rates available]

A1: Use existing
data

A2: Perform lab
experiments

[documentation of
similar projects
available]

[similar cases
reported in
literature]

A1: Search former
projects for
appropriate

reaction paths

A2: Search
literature for
appropriate

reaction paths

non-exclusive
conditions
execution of A1
independent from
execution of A2

mutually exclusive
conditions
either A1 or A2 is
executed

Fig. 2.15. Usage of the synchronization bar

the conditions for outgoing control flows can be independent of each other
(non-exclusive conditions). An example is given in Fig. 2.15 c): For each of
the activities A1 and A2, a separate condition for its execution is given.

Modeling Concepts for Temporal and Structural Abstraction

Due to the creative and dynamic character of complex design processes, tem-
poral relations between activities are often undefined before a certain stage
in a design process has been reached. However, if some knowledge of a design
process is available a priori, it should be represented in a model. C3 offers

138 M. Eggersmann et al.

A1: Perform lab
experiments

A2: Create
reactor model

A1 A2

t

cases covered by a strict
sequence:

t A1, end t A2, start

strict sequence

Fig. 2.16. Strict sequence of activities

some modelings concepts for representing relations between activities without
forcing the user to give a definite order.

In contrast to a conventional (strict) control flow between activities, which
states that one activity must be finished before the next one can start (see
Fig. 2.16), a blob allows to represent the existence of activities in a design
process without restricting their temporal relation. In its most general form
as depicted in Fig. 2.17, a blob is equivalent to a representation using syn-
chronization bars.

Further modeling concepts fill the gap between the two extremal cases of
strict sequences and completely unrestricted sets of activities in a blob. A fre-
quent situation is that of overlapping activities, i.e., the second activity starts

A1: Perform lab
experiments

A2: Create
reactor model

A1: Perform lab
experiments

A2: Create
reactor model

t

A1 A2

...

exemplary cases covered by an
unrestricted temporal relation

unrestricted temporal relation:
representation with blob

unrestricted temporal relation:
representation with synchronization bars

=

Fig. 2.17. Unrestricted temporal relation between activities

Work Process Models 139

A1: Perform lab
experiments

A2: Create
reactor model

results arise during
activity A1 and enter
continuously during

activity A2

A1: Perform lab
experiments

A2: Create
reactor model

results of activity
A1 enter during

activity A2

A1

A2

t

A1: Perform lab
experiments

A2: Create
reactor model

results arise during
activity A1 and are
the initial condition

for activity A2

A1

A2

t

A1

A2

t

A1: Perform lab
experiments

A2: Create
reactor model

t A1, start t A2, start t A1, end t A2, end

activity A2 starts before
activity A1 is finished

A1
A2

t

overlapping activities: medium level of detail

overlapping activities: high level of detail

Fig. 2.18. Overlapping activities on different levels of detail

while the first activity is still performed. This can be modeled by splitting a
blob in horizontal segments as depicted in the upper part of Fig. 2.18. In case
a more detailed representation is wanted and if the required process knowl-
edge is available, several modifications of the control flow allow to distinguish
between different cases of overlapping activities, which discriminate by the
information transfer between the activities (see lower part of Fig. 2.18).

140 M. Eggersmann et al.

optional
activity

optional
information
optional

information shortcoming

Fig. 2.19. Optional elements and shortcoming element

Further Modeling Concepts

An exhaustive description of the C3 modeling language can be found in [221].
Here, we confine ourselves to briefly introducing two further concepts: Activi-
ties and information items can be declared as optional elements (indicated by
a shadow behind the symbol, see Fig. 2.19) if their existence in a work process
is uncertain at the time of modeling or depends on factors which go beyond
the scope of the model. A shortcoming element can be placed anywhere in a
work process to indicate possible problems.

2.4.5 Two Dimensions of Design Process Modeling

For the creation of C3 models, the prototypical Workflow Modeling System
WOMS has been developed at LPT (cf. Sect. 5.1). By means of WOMS, it
has been possible to pursue several academic and industrial case studies ad-
dressing the modeling and improvement of design processes. These case studies
have revealed the necessity to adapt the modeling procedure under certain cir-
cumstances in order to cope with the inherent complexity of design processes.
Before discussing these issues, we introduce a two-dimensional space in which
different models of a design process can be located. These two dimensions are

• the level of generality referring to the variety of potential design processes
covered by a model and

• the level of detail indicating the amount of information captured in a
model.

These levels should not be understood as some quantitative measures but
rather as an orientation guide helping a work process modeler – and other
persons involved – to focus on the relevant issues during the modeling process.

Level of Generality

The level of generality of a model refers to the number of systems which are
represented by the model. We adopt a definition given in [888], which states
that a model is more general than another if it applies to more real-world
systems. In case of work processes, we deal with non-material systems, both
in the past and in the future, which arises the question of what should be
considered a real-world system. Here, we regard a work process model B as
more general than a model A if B applies to all work processes covered by A
and if B applies to additional work processes which are not covered by A.

Work Process Models 141

level of generality
concrete case

Design reactor
alternatives

start: Oct 26
end: Oct 27

Simulate reactor
alternatives

start: Oct 28
end: Oct 28

Choose reactor
alternative

start: Oct 29
end: Oct 29

Model A:
Project XY1

Specification
XY1-RA1

Specification
XY1-RA2

Sim. results
XY1-RA1

Sim. results
XY1-RA2

Model B:
Reactor Design

Design
reactor

alternatives

Simulate
reactor

alternatives

Choose
reactor

alternative

Reactor
specifications

Simulation
results

Model C:
Reactor Design (generalized)

Reactor
specifications

Analysis
results

Design
reactor

alternatives

Analyze
reactor

alternatives

Evaluate
reactor

alternatives

adequate reactor
design found?

no

yes

Choose
reactor

alternative

Fig. 2.20. Reactor design on different levels of generality

Figure 2.20 shows three work process models, which are arranged according to
increasing level of generality. Model A is a simple model of a concrete Project
XY1 addressing the design of a chemical reactor. The model is essentially a
sequence of several activities representing the design of some reactor alterna-
tives, their subsequent simulation, and finally the choice of the most adequate
alternative. Obviously, Model A is restricted to the concrete Project XY1 as it
contains information specific to this project, i.e., information which cannot be
valid for any other design project (such as the project number, the dates when
the activities were performed, and the concrete information items produced
during the work process).

In contrast, the start and end dates of the activities in Model B are not
specified. Compared with Model A, the references to concrete reactor specifi-
cations and simulation results have been replaced by the general information
items Reactor specifications and Simulation results. Whereas Model A is re-
stricted to a single design process, the more general Model B applies to any
reactor design process in which an adequate reactor is chosen after first de-
signing and then simulating some alternatives.

Model C is even more general than Model B. The simulation of different
alternatives has been replaced by a more general analysis, which can comprise
a numerical simulation, but also other analysis activities such as checking the

142 M. Eggersmann et al.

Design reactor
alternatives

Simulate reactor
alternatives

Choose reactor
alternative

Design
plug flow reactor

start: Oct 26
end: Oct 26

Design
 VK column

start: Oct 27
end: Oct 27

Simulate
 plug flow reactor

start: Oct 28
end: Oct 28

Simulate
VK column

start: Oct 28
end: Oct 28

Compare plug flow
reactor and VK column

start: Oct 29
end: Oct 29

Choose VK
Column

start: Oct 29
end: Oct 29

Specification
XY1-RA1

Specification
XY1-RA2

Simulation results
XY1-RA1

Simulation results
XY1-RA2

level of generality
concrete case

Model D: Project XY1 (detailed)

Design reactor alternatives

Design agitated
tank reactor

Analyze reactor alternatives

Design VK
column

Design tube
reactor

Design
...

Check safety
constraints

Do
...

Perform dynamic
simulation

Perform steady-
state simulation

Check
operability

Reactor
specifications

adequate reactor
design found?

no

yes

Choose reactor
alternative

Evaluate reactor alternatives

Do
...

Compare reactor
alternatives

Analysis
results

Model E: Reactor Design (generalized, detailed)

Fig. 2.21. More detailed models of the reactor design process

compliance of reactor alternatives with safety regulations. Instead of the choice
of a reactor alternative after the analysis – which requires that an adequate
alternative has already been designed at this stage in the process – Model
C contains an evaluation activity and a subsequent branching of the control
flow depending on whether an adequate alternative exists; thus, Model C also
covers work processes with several design, analysis, and evaluation phases
before an alternative is chosen.

Work Process Models 143

Level of Detail

To a certain extent, the three models in Fig. 2.20 differ with respect to their
level of detail. These differences result from the necessity to remove or to add
information in order to generalize them, i.e., make them applicable to more
work processes. A more critical issue is the incorporation of more information
while keeping the level of generality.

Fig. 2.21 shows two further models of the reactor design process. Model D
is a more detailed representation of the concrete design project in Model A;
for each of the three activities in Model A – represented by blobs in the new
model – some sub-activities are given.

In Model E, a more detailed view of the generalized Model C is given.
In a similar way, the activities of the less detailed models have been replaced
by blobs containing sub-activities; the sub-activities themselves are marked as
optional, because in a typical reactor design process not all of the sub-activities
would be performed.

In these examples, the level of detail is increased by decomposing coarse-
grained activities. In an analogous manner, details could also be added by
decomposing other model elements such as information items or by including
new aspects such as the tools used for the activities. The following discussion
is restricted to the decomposition of activities, as this is the most critical issue
when sufficiently detailed and general models aiming at the support of future
design processes are to be created.

Implications for Design Process Modeling

Except for a concrete case, decomposing an activity practically always reduces
the generality of a model because there may be an almost infinite number of
different sub-activities that could be applied. However, in Model E the gen-
erality of Model C is more or less kept by incorporating some placeholder
activities (e.g., Do . . .) symbolizing possible sub-activities, which are not
modeled explicitly. In case of design processes, this approach is acceptable
in order not to restrict the designers’ creativity. Nevertheless, there may be
situations when such indeterminateness is inappropriate, for instance when
describing the process of checking the compliance of a design product with
safety regulations.

Whereas a more detailed version of a model with low generality – such as a
model of a concrete case – is rather uncritical, this is not true for more general
models. We briefly discuss two issues, which typically arise when activities in
a general work process are decomposed.

Choice of Adequate Discriminators

Typically, there are several possibilities to discriminate sub-activities of a given
activity. For instance, in Model E the design activity is decomposed in sub-
activities addressing the design of different reactor types, whereas the analysis

144 M. Eggersmann et al.

activity is decomposed in several analysis methods which can each be applied
to any reactor type (see Fig. 2.21). The choice for a useful discrimination
is of minor importance when a single model like Model E is considered, but
it becomes crucial when the sub-activities themselves are refined, i.e., when
they are modeled as sub-processes. Decomposing an activity should be made
in a way such that the sub-processes can be easily modeled and applied. In
case of complex processes, it is recommendable to model some representative
concrete cases in a first step, and then to analyze them in order to find out
their similarities. If significant differences are identified, it is preferable to
create several generalized models for different groups of the representative
cases rather than trying to include all cases in a single overloaded model.

Modeling Design Decisions

The generalized and detailed Model E in Fig. 2.21 comprises several sub-
activities for the design of reactor alternatives, but it does not provide any
criteria for the selection of an adequate sub-activity in the context of a partic-
ular project. In fact, the problem of selecting an appropriate sub-activity for
the design activity is actually the design problem of selecting an appropriate
reactor type. In some well-defined cases, it is possible to give best-practice
procedures for such decisions; for instance, some guidelines for the design of
separation systems are proposed in [530, 531]. However, these best-practices
are essentially lists of questions to be answered in order to exclude inappro-
priate separation alternatives. A similar example is given in [95] for selecting
the mode of operation of a chemical plant.

In general, design decisions are too complex to be represented by a set
of conditional branchings in a work process. Instead, a modeling approach
tailored to decision modeling should by pursued (cf. Sect. 2.5).

2.4.6 Formal Models of Design Processes

Step 7 of the modeling procedure for design processes addresses the formal-
ization of work process models (see Fig. 2.12). Two models for the formal
representation of design processes in chemical engineering have been created.
The first one, Process Models, is part of the conceptual information model
CLiP (cf. Subsect. 2.2.3). Taking into account the lessons learned from this
model, a Process Ontology has been developed. In the following, both models
are discussed.

Partial Model Process Models of CLiP

The focus of Process Models [95] is on concepts which are relevant for the
computer-based support of design processes. Process Models is in part based
on a modified version of NATURE, originally developed for requirements and
software engineering [201] (see also Subsect. 1.3.4), and IBIS (Issue-Based

Work Process Models 145

Product Activity

0..*0..*
0..*

0..*

0..*

0..*

0..*

0..*

GeneralActivity
begin: date
end: date

requires

provides

requires

hasSubactivity

hasInput

hasOutputGeneralProduct

Synthesis AnalysisDecision

Reactor
Analysis

Reactor
Synthesis

ReactionPath
Selection

has
Subactivity

Reactor
Specification

provides

Reactor
Specification

XY1-RA2
VKColumnAnalysisVKColumnSynthesis

requires

hasInput hasOutput

meta class layer of Process Models

simple class layer
of Process Models

instance layer
(not part of
Process Models)

instantiation (class)

specialization

instantiation (association)

associationprovides

provides

notation

begin: Oct 27
end: Oct 27

begin: Oct 28
end: Oct 28

Fig. 2.22. Structure of Process Models

Information Systems, [798]), a modeling approach addressing discussions and
argumentations related to ‘wicked problems’ such as design problems (see also
Sect. 2.5).

Structure

As shown in Fig. 2.22, Process Models comprises a meta class layer and a
simple class layer. The instance layer, on which concrete work processes are
represented, does not form part of Process Models.

146 M. Eggersmann et al.

The simple class layer enables the representation of generalized processes,
whereas the meta class layer provides the concepts required for modeling the
generalized processes. For example, by instantiating the meta classes Activity
and Product, classes like ReactorSynthesis, ReactorAnalysis, and ReactorSpec-
ification can be introduced on the class layer. Furthermore, as relations like
requires and provides are introduced on the meta layer, the fact that a Reac-
torSynthesis provides and a ReactorAnalysis requires a ReactorSpecification can
be expressed. Instances of the simple classes themselves represent concrete
cases; in the example, a VKColumnSynthesis, followed by VKColumnAnalysis,
has been performed. ReactorSpecification XY1-RA2, an instance of Reactor-
Specification is the output of the former activity and the input of the latter.

Content

Similar to approaches proposed by several authors (e.g., [564, 569, 852]), de-
sign processes are modeled as iterations of Synthesis, Analysis, and Decision
activities, linked by several auxiliary activities.

The interrelations between the Synthesis, Analysis, and Decision activities
are depicted in Fig. 2.23. An Issue is a question to be answered, such as an
appropriate solution for a reactor design problem. An Issue is further specified
by Requirements (not shown in the figure) indicating boundary conditions
such as a desired annual production or product purity. During a Synthesis
activity, a Position is generated or modified. A Position is a possible answer
to the Issue. It describes a GeneralProduct representing the design solution
itself. During an Analysis, the Position is enriched with further information
required for the Decision, during which the Position is selected or rejected.

use

GeneralProduct

Synthesis Analysis

Decision

Position

Issue

selectreject

answer

modify

generate

modify use modify use

describes

enrich

Fig. 2.23. Basic meta-model of the activity representation

Work Process Models 147

During both Synthesis and Analysis, the Issue may be modified, for instance
when Requirements turn out to be infeasible.

In [97, 98], typical sub-activities of Synthesis (e.g., generating an artifact
such as a reactor), Analysis (e.g., calculating the product purity reached by a
reactor), and Decision (e.g., comparing the product purities of different reac-
tors) are described. These sub-activities do not form part of Process Models
as they should not be understood as a formal classification, but rather as
in informal description which facilitates the assignment of an activity to one
of the types. They are meant as an aid to understand and structure design
processes and should help their planning within the framework of a support
environment. The feasibility of this approach has been demonstrated by mod-
eling the design process of a separation system for the recovery of ethylene
and byproducts from the steam pyrolysis of light hydrocarbons [98].

A role in C3 corresponds to an Actor in Process Model . The actor model of
Process Model [100] has been adopted in the Process Ontology; it is therefore
discussed in the next subsection.

Usage

The partial model Process Models extends CLiP’s range of use (see Sub-
sect. 2.2.3) to cover process-oriented aspects. Parts of Process Models are im-
plemented in the prototypical support environment COPS (Context Oriented
Process Support, [247]), which is integrated with the modeling environment
ModKit (cf. Subsect. 5.3.4). COPS supports the creation of mathematical
models by suggesting appropriate, context-dependent activities and guiding
the modeler through a predefined workflow.

In subproject B1, the PRIME system (PRocess-Integrated Modeling En-
vironments) has been developed for the experience-based process support at
technical workplaces. The usage of PRIME for a certain application domain
requires the definition of executable process models relevant to the domain.
Generalized work processes from chemical engineering design, represented in
Process Models, were used as a basis for the creation of such executable mod-
els. This transition is described in Sect. 6.2.

However, as parts of Process Models have been developed before or during
the elaboration of the modeling procedure described in Subsect. 2.4.2, some
difficulties can occur when Process Models is used for the formalization of C3
models. The modeling concepts of Process Models differ substantially from
those of C3. For instance, Process Models does not provide modeling concepts
equivalent to the synchronization bar in C3; in consequence, it must be para-
phrased using the available concepts. Thus, describing the formal content of a
generalized C3 model can be awkward or even impossible in some cases, even
before a formalization of the informal content of a C3 model – such as textual
annotations – is addressed.

148 M. Eggersmann et al.

WorkProcess
Documentation

WorkProcess
Template

WorkProcess

Process Ontology

Document Model

Fig. 2.24. Structure of the Process Ontology.

Process Ontology

The limitations of Process Models motivated its revision and led to the de-
velopment of an ontology for the representation of work processes. As CLiP’s
successor OntoCAPE (cf. Subsect. 2.2.4) is specified in the web standard OWL
(Web Ontology Language, [546]), it was decided to use OWL also for the
Process Ontology. Thus, OntoCAPE and the Process Ontology can easily be
combined in order to get an ontology covering both the work processes and
the products in chemical engineering design (see Subsect. 2.6.2 for details on
the integration). A further advantage of OWL is the existence of reasoners
which can check the internal consistency of the Process Ontology as well as
the consistency of process models represented by means of the classes of the
ontology.

The scope of the Process Ontology is beyond that of Process Models. Its
focus is not only on the support and (semi-)automation of work processes in
chemical engineering design, but also on the documentation of concrete work
processes and on their analysis and generalization.

Structure

Other than in Process Models, both generalized models and models of concrete
cases are represented on the instance layer. This is in part due to the fact that
OWL does not allow to represent graph-like structures – such as a network of
interrelated activities in a work process model – on the class layer. Besides, this
approach has some advantages with respect to the modeling procedure. First,
the transition from concrete to generalized cases is simplified as no change
of the modeling approach is required. Secondly, compared to the approach
in Process Models, which supports only two levels of generality (the concrete
case and the general case), it is possible to create a hierarchy of generalized
models.

The topmost module WorkProcess (Fig. 2.24) provides classes and relations
similar to the modeling elements of C3, extended by some additional concepts.
The semantics of the classes in Work Process is refined in two further mod-
ules, WorkProcessDocumentation for the documentation of concrete cases and
WorkProcessTemplate for the definition of generalized work processes. This

Work Process Models 149

WorkProcess

ModelingElement

isAKindOf

WorkProcess
Element

contains

WorkProcess
Node

WorkProcess
Relation

DirectedWork
ProcessRelation

Activity Information
(from DocumentModel)

ControlNode

SynchronizationBar

Flow

Control
Flow

Information
Flow

Input
InformationFlow

Output
InformationFlow

Information
Relation

...

hasSource

hasTarget

SynchronousCommunicationsynchronizes

isRefinedBy

Tool

isUsedFor

Fig. 2.25. Main classes of WorkProcess

distinction is necessary as the semantics of most modeling elements can vary
depending on whether they refer to a concrete or generalized work process.
For example, the assignment of an Actor to an Activity in a concrete case
states that the Activity has been performed by the Actor, whereas a similar
assignment in a generalized model recommends or prescribes the involvement
of the Actor in the Activity.

Content

As shown in Fig. 2.25, all classes of in the WorkProcess module are derived
from ModelingElement. That way, the isAKindOf relation is defined for all
classes. As demonstrated in a modeling example below, isAKindOf fulfills the
function of the instantiation in the partial model Process Models of CLiP (see

150 M. Eggersmann et al.

ActivityActor

IndividualTeam

Skill

isPerformedBy

hasSkill requiresSkill

Fig. 2.26. Actor and Skill model of WorkProcess

Fig. 2.22): it links work process models and their components on different
levels of generality.

A WorkProcess contains WorkProcessNodes like Information items and Ac-
tivities which are connected by WorkProcessRelations like ControlFlow and In-
formationFlow. The Information class is imported from the document model
introduced in Sect. 2.3.4. An Activity can be further refined by linking it to
another WorkProcess. All modeling concepts of C3 find their match in the
Process Ontology. In general, C3 elements map to classes and C3 connectors
to relations.15 Thus, the gap between semi-formal and formal representations
is closed, and the transition from C3 models to models represented in the
Process Ontology becomes simple and straightforward. Once the formal con-
tent of a C3 model (such as interrelations between activities) is transformed,
the informal content, for instance textual annotations describing the skills
required for activities, can be integrated in the formal model.

Fig. 2.26 shows the Actor and Skill model in WorkProcess, which has been
adopted from Process Models [100]. An Actor, corresponding to a role in C3,
is an abstract entity which can be refined to be either an Individual or a Team
(i.e., an aggregation of Actors). Individuals are characterized by the Skills they
provide. The set of Skills possessed by a Team is the union of the Skills of its
members. In addition, Activities can be linked to the Skills required for their
execution. The Actor and Skills model allows the assignment of an Activity to
an Actor who has the required skills.

For the reasons discussed in Subsect. 2.4.5, the Process Ontology does not
provide classes corresponding to Issue and Requirement within Process Models.
Design decisions are now covered by a separate decision model (cf. Sect. 2.5).

The InformationRelation is introduced as an abstract base class for any
relation between Information items. Its usage is exemplified in the section on
decision modeling.

15 Technically, C3 connectors map to classes derived WorkProcessRelation, a generic
relation class. Modeling relations as relation classes permits to declare attributes,
like it is done for the connectors in C3.

Work Process Models 151

Specification XY1-RA1
[WorkProcessDocumentation:

Information]

[WorkProcessDocumentation:
InformationFlow]

hasTarget

[WorkProcessDocumentation:
InformationFlow]

hasSource

Simulate reactor
alternatives (XY1)

[WorkProcessDocumentation:
Activity]

start: Oct 28
end: Oct 28

[WorkProcessDocumentation:
ControlFlow]

hasSource

hasTarget

Design reactor
alternatives (XY1)

[WorkProcessDocumentation:
Activity]

start: Oct 26
end: Oct 27

hasSource

hasTarget

Reactor specification
[WorkProcessTemplate:

Information]

[WorkProcessTemplate:
InformationFlow]

hasTarget

[WorkProcessTemplate:
InformationFlow]

hasSource

Simulate reactor
alternatives

[WorkProcessTemplate:
Activity]

[WorkProcessTemplate:
ControlFlow]

hasSource

hasTarget

Design reactor
alternatives

[WorkProcessTemplate:
Activity]

hasSource

hasTarget

isAKindOf

(contains all
WorkProcessElements
below)

Reactor Design (generalized)

Project XY1
[WorkProcessDocumentation:

WorkProcess]

contains ...

Reactor Design
[WorkProcessTemplate:

WorkProcess]

contains

containscontains

contains
(contains all
WorkProcessElements
below)...

contains

Reactor Design Generalized
[WorkProcessTemplate:

WorkProcess]

Analyze reactor
alternatives

[WorkProcessTemplate:
Activity]

contains

Project XY1 Reactor Design

Fig. 2.27. Modeling a concrete case and generalized processes on the instance layer.

As pointed out above, the WorkProcessDocumentation and WorkProcessTem-
plate modules adapt the classes in WorkProcess for the modeling of concrete
cases and generalized work processes, respectively. Further attributes and re-
strictions are introduced, as required for each of the model types. For instance,
an Activity in WorkProcessDocumentation can be characterized by a start and
end time, and it must not be the target of an isAKindOf relation.

Fig. 2.27 shows some fragments of the models discussed in Subsect. 2.4.5
(see Fig. 2.20), now represented by means of the process ontology. Project
XY1, a WorkProcess of the WorkProcessDocumentation module, represents a
particular case. It is linked to its generalization Reactor Design, an instance of
WorkProcessTemplate:WorkProcess, via isAKindOf. The latter process is a spe-
cialization of Reactor Design Generalized. The work processes are characterized
by the elements they contain as well as their interrelations. Specialization re-
lations between the elements of different processes are represented by further
instances of isAKindOf.

152 M. Eggersmann et al.

As argued in [95], the definition of specialization relationships between
Activities without considering their context can lead to problems, like very
flat hierarchies without practical use. In the approach proposed here, such
specializations are established while keeping their context within a work pro-
cess. The isAKindOf relation between Simulate reactor alternatives (within the
Reactor Design process) and Analyze reactor alternatives (as part of Reactor
Design Generalized) does not mean that a simulation is always an appropri-
ate analysis method. Simulation is rather the analysis method recommended
within the exemplary Reactor Design process. In other specializations of the
Reactor Design Generalized process, alternative techniques for analysis may be
scheduled.

Usage

Currently, no appropriate modeling tool exists that supports the process on-
tology to its full extent, which has inhibited its intensive application. WOMS,
originally developed for C3 modeling, can be used for creating work process
models covering activities, information items, and their interrelations. These
models can be converted to OWL files, which are then finalized manually by
means of the OWL editor Protégé. Also, a simple work around has been re-
alized which allows to include some further aspects in a WOMS model by
means of textual annotations in a prescribed format. This additional infor-
mation is kept during the conversion. So far, the available converters allow to
use the process ontology as a domain module for the Process Data Warehouse
described in Subsect. 4.1.5.

2.4.7 Conclusion

A procedure for modeling, improving, and implementing design processes in
chemical engineering has been elaborated. Two modeling languages – C3 and
the Process Ontology – addressing the requirements imposed by the charac-
teristics of creative design processes have been created. Case studies in coop-
eration with industrial partners (cf. Sect. 5.1) have been performed to ensure
practical relevance and usability of the scientific results.

The modeling procedure and the Process Ontology are planned to be fur-
ther elaborated in a future project described in Sect. 7.3. The project aims at
a generalization of the approach to cover different types of work processes in
the chemical industries. It is performed in cooperation with four major play-
ers of the process industries, thus indicating the increasing importance that
is attached to work process modeling by industrial users.

2.5 Decision Models

M. Theißen and W. Marquardt

Abstract. In this contribution, the last of the four application domain models is
presented. The model, implemented as an ontology, covers the rationale underly-
ing the decisions in design projects. The ontology supports the representation of
concrete decisions for documentation purposes as well as generalized decision tem-
plates, which can serve as guidelines for designers and help to reduce the effort for
documenting concrete decisions.

2.5.1 Introduction

During design processes, engineers do not only create technical specifications
and auxiliary documents such as flowsheets and mathematical models; they
also produce design rationale, i.e., ‘reasoning that goes into the design of the
artifact ’ [643], including evolving cognition of the requirements the artifact
must fulfill, the creation of design alternatives for the artifacts, the disclosure
of arguments for and against the alternatives, and finally the decision to choose
one alternative.

The benefits of documenting design rationale are manifold. Explicit rep-
resentations of design rationale support a consistent view among the stake-
holders involved in a design project, they help to keep track of possible effects
when requirements for an artifact change, and they can improve later design
projects when similar problems are to be solved.

However, design rationale is rarely captured in industrial projects. Pro-
ducing any kind of documentation is often seen as an unacceptable overhead
by designers (e.g., [810]), while the beneficiaries of the documentation are typ-
ically found later in the design process or even later in the life cycle of the
artifact [706], for example on the occasion of a retrofit of an existing plant.
A further obstacle is the reluctance to explicitly document discarded alterna-
tives as they might be conceived as an indication of not working efficiently.
Furthermore, unsuitable design decisions can be easily tracked at a later stage
with possibly undesirable consequences for the designer.

Some aspects of design rationale, such as the work processes during the
creation of a design artifact or the dependencies between different artifact
versions, are covered by the domain models presented in the previous sections.
This section most notably focuses on decision rationale, a term coined by Lee
and Lai referring to the evaluations of alternatives, the arguments underlying
the evaluations, and the criteria used for the evaluations [808].

In chemical engineering, several methodologies and procedures are applied
for decision making during design processes. Representative examples include
design heuristics, shortcut methods, decision analysis methods, and mathe-
matical optimization.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 153–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 M. Theißen and W. Marquardt

In the early stages of conceptual design, simple design heuristics permit to
exclude inadequate alternatives without detailed knowledge about the process.
For instance, [530, 531] propose some rules for the design of separation systems
for liquid and gas/vapour mixtures.

Approximations or boundaries of process variables can often be calculated
by means of shortcut methods. Like heuristics, such methods allow to identify
unsuitable alternatives based on a minimum of information. The rectification
body method (RBM), for example, allows to compute the minimum energy
demand of distillation processes [13].

Formal decision analysis methods, in particular Multi-Criteria Decision
Analysis (MCDA, see [960] for an overview) such as Utility Analysis and An-
alytic Hierarchy Process (AHP), seek to formally assess the importance of
several criteria and the grade to which the criteria are respected by differ-
ent alternatives, to detect inconsistencies in the assessments, and finally to
recommend the best fitting alternative. Several applications in the domain of
chemical engineering are reported in the literature, including the design of
urban wastewater treatment plants [672] and separation systems for hydro-
carbons [621].

Mathematical optimization seeks to minimize or maximize a real function
by choosing its arguments (real or integer variables or functions) from within
an allowed set [649, 692]. Optimization can be applied at different stages of
a design project for finding out optimal solutions for continuous (e.g., reactor
size) or discrete (e.g., number of stages in a distillation column) parameters
or for structural design decisions (e.g., the configuration of several distillation
columns).

Such methods are typically not applied independently of each other, but
their outcomes may interact; an example addressing the combination of short-
cut calculations with the rectification body method and rigorous optimization
is given in [231].

The section is organized as follows. In Subsect. 2.5.2, we give an overview
of notations and modeling approaches for design and decision rationale. The
requirements to be met by a decision model for chemical engineering design
projects are discussed in Subsect. 2.5.3. Building on existing approaches, a
decision ontology has been created; its structure, content, and usage are de-
scribed in Subsect. 2.5.4.

2.5.2 Approaches to Design and Decision Rationale

The first and probably best-known notation for design rationale is IBIS (Issue-
Based Information Systems), developed in the early seventies of the past cen-
tury [798]. IBIS provides a rather restricted set of modeling elements: Issues
are questions to be answered. Possible answers are represented by Positions,
which are backed or disapproved by Arguments. IBIS was originally devel-
oped for structuring and supporting discussions dealing with wicked problems
in the field of social policy. Among other things, IBIS’ author characterizes

Decision Models 155

wicked problems as ill-defined and open to an infinite set of potential solu-
tions [936]. As this also applies to many engineering design problems, IBIS
has been used for recording design rationale in several engineering disciplines.
A prominent example is the Knowledge Based Design System (KBDS) for
chemical engineering design [524]. Based on an IBIS representation of design
decisions, KBDS offers supportive functions like automatic report generation
and backtracking the effects of changes in specifications [525]. In a similar
way, the modeling environment ModKit makes use of IBIS for the documen-
tation of decisions during the creation of mathematical models [54] (see also
Subsect. 5.3.4).

Given its intended usage for capturing ongoing discussions, ease of use and
a small set of modeling elements were key design criteria for IBIS. A plethora
of further notations and models has been developed which focus on different
aspects of decisions and decision making procedures beyond those in IBIS.
PHI (Procedural Hierarchy of Issues, [835]), for instance, introduces sub-issues
as a means for structuring argumentations. The Potts and Bruns model [913]
emphasizes the derivation of detailed artifacts from more general predecessors.
Exhaustive presentations of design rationale approaches and systems are given
in [644, 857, 927]. In the following, we shortly describe two notations which
are of importance for our work on decision modeling.

The QOC notation was proposed as an auxiliary for Design Space Anal-
ysis, an analysis style that places an artifact in a space of alternatives and
explains why the particular artifact was chosen [826]. QOC stands for Ques-
tions, Options, and Criteria, thus indicating the main elements of the nota-
tion. In contrast to the more general Issues in IBIS, Questions are a means
to structure the design Options. The most notable difference to IBIS is the
explicit modeling of the Criteria which are the basis for Assessments of Op-
tions. Reusable Rationale Blocks (RRB, [733]) are a generalization of QOC:
Whereas a QOC model embodies the rationale for a concrete decision, an RBB
describes a generic design problem in conjunction with its available solution
options and their effects. When applying an RBB to a concrete problem, the
designer must evaluate the options in the context of the problem on hand.

The Decision Representation Language (DRL, [808, 809]) is a notation for
decision rationale. Its top-level element is the Decision Problem, equivalent
to the Question in QOC. Alternatives and Goals in DRL correspond to Op-
tions and Criteria, respectively. The outstanding characteristic of DRL is that
Claims, i.e., statements which may be judged or evaluated, can be linked in
a way that enables to represent complex argumentations in a straightforward
manner.

156 M. Theißen and W. Marquardt

2.5.3 Requirements for a Decision Ontology for Chemical
Engineering Design

In this subsection, we discuss the requirements to be fulfilled by a decision ra-
tionale model adequate for chemical engineering design. This model is referred
to as Decision Ontology in the remainder of the section. The requirements are
as follows:

• Obviously, concepts corresponding to the elements of IBIS (Issue, Alter-
native, Evaluation) are indispensable. In addition, we regard requirements
and constraints (denoted as Criteria in QOC and Goals in DRL) as funda-
mental elements of a Decision Ontology. To a large extent, design decisions
depend on the relevant goals. Vice-versa, decisions are only comprehensi-
ble if the goals are represented explicitly. Furthermore, goals might evolve
during the course of a project. For instance, the desired purity of a chem-
ical product may change during a design process due to changes in the
market. Also, the requirements for mathematical models (e.g., precision,
process variables considered, implementation tool) typically evolve during
a design project.

• In order to keep the Decision Ontology as simple and general as possible,
the detailed representation of these basic elements (in particular Alterna-
tives and Goals) should rely on the product data and document models
presented in Sects. 2.2 and 2.3.

• Decisions are the result of decision making processes. The temporal dimen-
sion of decisions should be reflected by a tight integration of the Decision
Ontology with the Process Ontology (Subsect. 2.4.6).

• Like for work process models, any successful application of the Decision
Ontology depends on the ability of its intended users (i.e., chemists, chem-
ical engineers, technicians) to use it without considerable learning effort.
Thus, at least the top-level concepts of the ontology should be kept as
simple as possible. For these top-level concepts, an intuitive graphical rep-
resentation should be provided (similar to the main concepts of the Pro-
cess Ontology, which can be represented in a C3 model, cf. Subsect. 2.4.4).
More complex features of the ontology, which are nevertheless required for
advanced applications, should be optional extensions.

• Similar to the ontology for work processes, the Decision Ontology should
allow both the documentation of concrete design decisions in a project
as well as the representation of generalized decision templates, which can
serve as guidelines for a design team confronted with a certain type of de-
cision problem. A further advantage is that parts of decision templates can
be incorporated in models of concrete cases. Thus, the overhead of model-
ing and documenting decisions during design projects can be considerably
reduced [434].

• Decisions concerning the different types of artifacts created during a design
project should be represented in a consistent – and thus easy to apply –

Decision Models 157

Decision
Documentation

Decision
Template

Decision

DecisionOntology

DocumentModel

Evaluation

ProcessOntology

DecisionAnalysis

includes

notation

module

Fig. 2.28. Structure of the Decision Ontology

manner. These artifacts comprise the main products of a design project,
i.e., specifications of chemical plants or their parts, but also auxiliary prod-
ucts like mathematical models.

• The Decision Ontology should represent the different methodologies and
procedures for evaluating and discriminating alternatives (e.g., heuristics,
decision analysis methods) in a consistent way.

2.5.4 Decision Ontology

The necessity to incorporate goals makes notations like QOC or DRL a good
starting point for a Decision Ontology. We have opted for the more expressive,
but also more complex DRL. However, QOC can be regarded as a subset of
DRL; there is no necessity for a decision modeler to apply the entirety of DRL
concepts when a simpler QOC-like representation is sufficient.

DRL is adequate for modeling and documenting concrete decisions, whereas
its applicability for decision templates is limited. By an approach similar to
Reusable Rationale Blocks for QOC, we have extended DRL to cover also
decision templates.

For similar reasons as for the Process Ontology (Subsect. 2.4.6), OWL
(Web Ontology Language, [546]) has been chosen as implementation language.
That way, the integration of the Decision Ontology with the other application
domain models is simplified, and description logics reasoners such as RacerPro
[918] can be used for consistency checks.

Structure

The structure of the Decision Ontology shown in Fig. 2.28 is analogous to
that of the Process Ontology. Common concepts are defined in a top-level

158 M. Theißen and W. Marquardt

module (Decisions); this module is imported by the DecisionDocumentation
and DecisionTemplate modules which serve the representation of the decisions
made in concrete projects and the representation of generalized guidelines,
respectively.

Similar to artifact specifications in form of documents, also the decision-
related information created during a design process (e.g., arguments for and
against design alternatives) is a product of the process. This tight integration
is reflected by the inclusion of the Process Ontology in Decisions; it is discussed
in more detail below.

The Evaluation module provides concepts for a more elaborate representa-
tion of the evaluation and weighting of arguments. When documenting deci-
sions, the use of the Evaluation module is optional and can be avoided to keep
the documentation simple. For decision templates, it is usually indispensable.

The DecisionAnalysis module demonstrates the extension of the Decision
Ontology with concepts required for representing a group of decision making
methodologies.

Content

Main Modules

The classes of the Decision module are shown in Fig. 2.29. All classes are
derived from the abstract DecisionObject. We first discuss the six classes lo-
cated in the left part of the figure; instances of these classes form the nodes
of a decision model. Gray shapes inside the class boxes depict the graphical
representation of their instances in the modeling examples below.16

A DecisionProblem is a design problem requiring a Decision. This can in-
clude design decisions related to the final artifact (such as the specification of
a chemical plant) like the choice of the mode of operation of a chemical plant
or the selection of an appropriate reactor type, but also decisions referring to
auxiliary artifacts like mathematical models. By linking a DecisionProblem to
another DecisionProblem by means of the IsASubdecisionOf relation, it can be
stated that solving the latter problem requires solving the former. The seman-
tics of IsASubdecisionOf does not require the sub-decisions to be independent
of each other nor does it require the entirety of sub-decisions to describe the
complete DecisionProblem.

Alternatives are options meant to solve a decision problem. For instance,
batch and continuous mode as well as their combinations would be Alter-
natives for the DecisionProblem to choose a mode of operation. Alternatives
can be linked to DecisionProblems by two different relations. The first one,
isAnAlternativeFor, does not express any evaluation or even preference of the
Alternatives. It is an auxiliary to capture any Alternatives which possibly solve
the DecisionProblem, before a suitable Alternative for the problem is eventually
evaluated by means of the second relation, IsAGoodAlternativeFor.
16 The representation of instances complies largely with the notation proposed by

the authors of DRL [808].

Decision Models 159

G
oa

l

D
ec

is
io

n
P

ro
bl

em

C
la

im

S
im

pl
eC

la
im

Is
R

el
at

ed
To

D
ec

is
io

nO
bj

ec
t

A
lte

rn
at

iv
e

Q
ue

st
io

n

Is
A

S
ub

go
al

O
f

Is
A

S
ub

de
ci

si
on

O
f

Ac
hi

ev
es

Is
AG

oo
d

A
lte

rn
at

iv
eF

or

S
up

po
rts

R
ai

se
s

D
en

ie
s

is
A

n
A

lte
rn

at
iv

eF
or

D
ec

is
io

n

R
es

ol
ve

s
se

le
ct

s

A
ns

w
er

s

Is
A

S
ub

go
al

O
f

Is
A

Su
bd

ec
is

io
nO

f

A
ch

ie
ve

s

Is
AG

oo
dA

lte
rn

at
iv

eF
or

R
ai

se
s

Is
AK

in
dO

f

R
es

ol
ve

s

A
ns

w
er

s

In
fo

rm
at

io
n

(fr
om

 D
oc

um
en

tM
od

el
)

W
or

kP
ro

ce
ss

(fr
om

 P
ro

ce
ss

O
nt

ol
og

y)
Is

A
nA

ns
w

er
in

g
P

ro
ce

du
re

Fo
r

P
re

su
pp

os
es

E
xc

ee
ds

S
up

po
rts

D
en

ie
s

P
re

su
pp

os
es

E
xc

ee
ds

Is
A

Ki
nd

O
f

Is
An

A
ns

w
er

in
gP

ro
ce

du
rF

or

In
fo

rm
at

io
nR

el
at

io
n

(fr
om

 P
ro

ce
ss

O
nt

ol
og

y)

cl
as

s no
de

 c
la

ss
 o

f
a

de
ci

si
on

m
od

el
re

pr
es

en
ta

tio
n

 o
fi

ns
ta

nc
es

re
la

tio
n

sp
ec

ia
liz

at
io

n
re

la
tio

n
cl

as
s

no
ta

tio
n

Fig. 2.29. Module Decision of the Decision Ontology

160 M. Theißen and W. Marquardt

Polymerization
reactor model

design

Model should
predict chain length

distribution
IsASubgoalOf

Calculation of chain
length distributions is not

required in the current
state of the project

Denies

Fig. 2.30. A SimpleClaim which Denies another Claim

Goals describe desired properties, requirements, and constraints to be fulfilled
by a suitable Alternative for a DecisionProblem. Annual capacity and product
purity are examples for Goals of a plant design DecisionProblem. The ability
to predict chain length distributions can be a Goal for the DecisionProblem
to select a mathematical model of a polymerization reactor. Goals can be
assigned to another Goal by IsASubgoalOf; this relation states that reaching
the sub-goal helps reaching the superordinate goal. Like for IsASubdecisionOf,
sub-goals are not necessarily independent, and a set of sub-goals does not
need to describe the entire super-goal. Alternatives are evaluated with respect
to Goals by means of the Achieves relation.

It should be noted that DecisionProblem is a subclass of Goal: A Deci-
sionProblem is a special type of Goal for which an Alternative is sought. The
evaluations of an Alternative with respect to subgoals – represented by Achieves
– influence the evaluation of the Alternative with respect to the superordinate
DecisionProblem, represented by IsAGoodAlternativeFor.

Questions are issues to be considered in the context of a decision problem.
For instance, the DecisionProblem to choose a mode of operation Raises the
Questions whether solids or strongly exothermic chemical reactions occur; the
answers of Questions can influence the evaluation of Alternatives. Similarly,
the selection of a suitable reactor model may depend on the Question whether
trustable parameter data are available. WorkProcesses describing procedures
for answering Questions can be assigned by IsAnAnsweringProcedureFor.

Finally, a Decision represents the selection of one Alternative that is meant
to resolve a DecisionProblem.

Any statement in a decision model which may be subject to uncertainty
or to disaccord, or, in general, may be evaluated, is a Claim. Claims are either
SimpleClaims or relation classes derived from IsRelatedTo. Most of the relations
introduced above are subclasses of IsRelatedTo, and thus they are actually
Claims. Statements which cannot be represented as a relation between two
DecisionObjects are modeled as SimpleClaims, typically qualified by a textual
annotation.

Decision Models 161

Modeling relations as Claims offers the possibility to argue for or against
them. For example (see Fig. 2.30), the adequacy of an IsASubgoalOf relation
between the Goal Model should predict chain length distribution and the Deci-
sionProblem Polymerization reactor model design can be doubted, for instance
because the Calculation of chain length distributions is not required in the cur-
rent state of the project. Such argumentations are modeled by means of four
additional subclasses of IsRelatedTo:

• A Claim can Support the validity of another Claim (argument).
• A Claim can Deny the validity of another Claim (counter argument).
• A Claim Presupposes another Claim if the validity of the other Claim is a

precondition for validity of the Claim itself.
• A Claim Exceeds another Claim if the first one is more valid than the second

one.

All classes described so far – including the relation classes derived from Claim
– are subclasses of DecisionObject, which is derived from the Information class
of the DocumentModel . Thus, the statements represented in a decision model
– such as considering a Goal as a constraint to be respected or finding out that
an Alternative IsAGoodAlternative for a DecisionProblem – are seen as potential
products of the Activities in a work process.

Integrating the work process and the decision model allows to remedy
the difficulties in defining subclasses of Activity as they were encountered
for the partial model Process Models of CLiP (called sub-activites there; see
Sect. 2.4.6). The relation class OutputInformationFlow defined in the Process
Ontology does not impose any restrictions on the type of Information created
in an Activity (see Fig. 2.31), whereas a DecisionActivity is required to produce
at least one DecisionObject. Subclasses of DecisionActivity are characterized by

DecisionObject

Information
(from

ProcessOntology)

Activity
(from

ProcessOntology)

isSource
Of

OutputInformationFlow
(from ProcessOntology)

has
Target

DecisionActivity

Deciding Decision

Synthesizing Alternative

Claiming Claim

isSource
Of

isSource
Of

isSource
Of

isSource
Of

has
Target

has
Target

has
Target

has
Target

OutputInformationFlow
(from ProcessOntology)

OutputInformationFlow
(from ProcessOntology)

OutputInformationFlow
(from ProcessOntology)

OutputInformationFlow
(from ProcessOntology)

Fig. 2.31. Some subclasses of Activity defined in the Decision Ontology

162 M. Theißen and W. Marquardt

Claim

Applicabilty

Weight

Evaluation

has
Applicability

has
Weight

has
Evaluation

Fig. 2.32. Module Evaluation of the Decision Ontology

the subclasses of DecisionObject created during their execution. For instance,
Claiming is a DecisionActivity whose output information comprises at least one
Claim, and Deciding must produce at least one Decision.

Evaluation Module

The optional Evaluation module defines additional concepts for more subtle
evaluations of Claims (see Fig. 2.32).

The Evaluation is an overall measure for the applicability and importance of
a Claim. The Evaluation class is not further specified in the Evaluation module.
Instead, tailored measurement units can be defined depending on the nature
of the decision problem in consideration. For instance, in the early stages of a
design process, a coarse-grained evaluation of Claims is sufficient because not
much knowledge about relevant aspects of a design problem is available and
heuristics as well as screening and short-cut methods are applied.

Often, in particular in case of decision templates, the evaluation of a Claim
cannot be given because the applicability of the Claim is unknown. Thus,
Applicability and Weight are introduced. The Weight reflects the Evaluation
of the Claim provided that the Applicability is high. The usage of Evaluation,
Applicability, and Weight is demonstrated in the modeling examples below.

DecisionAnalysis Module

The DecisionAnalysis module exemplifies the extension of the Decision Ontol-
ogy with concepts relevant for a certain group of decision making methods.

A decision model represented by means of the Decision Ontology contains
much information that is also relevant when an MCDA method is used (e.g.,
the hierarchy of the Goals). The application of such methods would be sim-
plified if this information could directly be used in an MCDA tool. However,
MCDA methods impose restrictions on the relations between the DecisionOb-
jects. For instance, AHP requires the sub-goals of a goal to be independent of
each other. These restrictions are formally defined within the DecisionAnalysis
module.

Decision Models 163

Plant design

Mode of operation

Continuous
mode

Batch mode

isAnAlternativeFor

isAnAlternativeFor

Annual
capacity of

40,000 t

Heuristic:
Annual capacities

 greater than 5,000 t
 can better be achieved by

a continous mode of
operation.

IsASubdecisionOf

IsAGoodAlternativeFor

Denies

Achieves

IsASubgoalOf

Achieves

Supports

Long reaction
 times

Denies

Simulation
 resultsSupports

Raises

Long reaction
 times?

Answers

Fig. 2.33. Documenting parts of the argumentation for selecting a Mode of opera-
tion

Modeling Examples

Decision Documentation

Figure 2.33 gives a simple example for using the DecisionDocumentation mod-
ule. The model describes part of the argumentation for selecting the Mode
of operation of a chemical plant. This problem IsASubdecisionOf the overall
Plant design problem. To reach an annual capacity of 40,000 t IsASubgoalOf
the overall problem. Two Alternatives (Batch mode and Continuous mode) are
mentioned for the Mode of operation. A heuristic, modeled as a SimpleClaim,
states that for annual capacities greater than 5,000 t, a continuous mode is
preferable in general. Thus, the heuristic Supports that the Continuous mode
Achieves the capacity Goal, and simultaneously it Denies that the Batch mode
Achieves the capacity. However, the choice of the Mode of operation requires
more issues to be considered, for instance the Question whether Long reaction
times? occur. Simulation results Support that there are in fact Long reac-

164 M. Theißen and W. Marquardt

Mode of operation Chemical Plant
design

Batch mode

Continuous
mode

Annual capacity
between 500 t

and 5,000 t

Annual
capacity greater

than 5,000 t

Annual
capacity smaller

than 500 t

IsASubgoalOf

hasApplicability: ?
hasWeight: H+
hasEvaluation: ?

IsASubgoalOf

hasApplicability: ?
hasWeight: H+
hasEvaluation: ?

IsASubgoalOf

hasApplicability: ?
hasWeight: H+
hasEvaluation: ?

Achieves

hasEvaluation: H

Achieves

hasEvaluation: L

Achieves

hasEvaluation: L

Achieves

hasEvaluation: M

Achieves

hasEvaluation: M

Achieves

hasEvaluation: H

IsASubdecisionOf

hasEvaluation: H+

isAn
AlternativeFor

isAn
AlternativeFor

Fig. 2.34. Part 1 of a decision template for selecting a Mode of operation

tion times, which Denies that the Continuous mode IsAGoodAlternative for the
Mode of operation.

Decision Template

An example for a decision template, generalizing the above documentation
model, is shown in Figs. 2.34 and 2.35. The template has been split in two
parts to keep it more readable: The first part exemplifies the generalization
of the evaluation of Alternatives with respect to Goals, whereas the second
part shows the generalization of Questions and their answers, which can affect
decisions. In the example, we use a simple measure for Evaluations ranging
from very high (H+) via high (H), medium (M), and low (L) to very low
(L−).

Three sub-goals are given for the overall Chemical plant design Decision-
Problem (Fig. 2.34), each representing a possible range for the annual capacity
of the plant. The applicability of the three instances of IsASubgoalOf is un-
known. When the template is applied in a concrete plant design problem, a
high applicability would have to be chosen for one IsASubgoalOf instance –
depending on the capacity actually required for the concrete plant. The ap-
plicability of the remaining IsASubgoalOf instances would be low. The weight

Decision Models 165

of each IsASubgoalOf is very high. Thus, the evaluation of an IsASubgoalOf
should be very high if it is considered as applicable, reflecting the importance
of the annual capacity when designing a plant. The Mode of operation is as-
signed to the plant design problem as a sub-goal. The IsASubgoalOf relation
has a very high evaluation; it is considered for granted that choosing a Mode
of operation is inevitable when designing a plant. The template proposes two
Alternatives for the mode of operation17. Each of the Alternatives is linked
to each of the Goals representing different annual capacities; these Achieves
relations are evaluated according to the same heuristic rule already used in
Fig. 2.33.

The second part of the template (Fig. 2.35) lists some of the Questions
arising when deciding on the Mode of operation of a plant. Furthermore, some
SimpleClaims are shown, representing different answers to the Questions. For
instance, the SimpleClaim Strongly exothermic reactions is a possible answer
of Strongly exothermic reactions? The applicability of the Answers relation
is unknown and can only be decided in the context of a particular decision
problem. Strongly exothermic reactions Deny that Batch mode IsAGoodAlter-
nativeFor the Mode of operation. Also for the Denies relation, the applicability
and thus the evaluation are unknown. However, the weight is considered as
high, which means that Strongly exothermic reactions would be an important
argument against Batch mode.

Usage

As argued in Subsect. 2.4.5, the Process Ontology – like any modeling lan-
guage for work processes – is not adequate for representing complex decision
rationale, in particular decision templates. The concepts introduced in the De-
cision Ontology, complementary to those of the Process Ontology, permit to
apply the modeling procedure described in Subsect. 2.4.2 for the improvement
of those parts of design processes, in which complex decisions are made [434].
When performing design processes, engineers gain tacit knowledge about both
their work processes and the rationale underlying their design decisions. These
two aspects are recorded in an explicit decision process model (DPM), an in-
tegrated model of both the design process and the decision rationale, which is
meant to support the original design process, subsequent phases in the lifecycle
of the same artifact, and other similar design processes in various ways.

Supporting the Original Design Process

The DPM helps to improve the communication between different stakeholders
on the status of the design project. Team members add criteria, alternatives,
and evaluations of the alternatives with respect to the criteria to the DPM. For
17 It should be noted that this does not prevent a user of the template from adding

other alternatives for a concrete case, such as combinations of batch and contin-
uous mode.

166 M. Theißen and W. Marquardt

Strongly
exothermic
reactions?

Strongly
 exothermic reactions

hasEvaluation: ?

Mode of operation

Batch mode

Continuous
mode

Answers

hasApplicability: ?

IsAGoodAlternativeFor

hasEvaluation: ?

IsAGoodAlternativeFor

hasEvaluation: ?

Denies

hasApplicability: ?
hasWeight: H
hasEvaluation: ?

No strongly
 exothermic reactions

hasEvaluation: ?

Answers

hasApplicability: ?

Denies

hasApplicability: ?
hasWeight: H
hasEvaluation: ?

Long
 reaction times

hasEvaluation: ?

Short
reaction times

hasEvaluation: ?

Strongly
exothermic
reactions?

Answers

hasApplicability: ?

Answers

hasApplicability: ?

Raises

hasEvaluation: H

Raises

hasEvaluation: H

Fig. 2.35. Part 2 of the decision template for selecting a Mode of operation

this purpose, easy access to the DPM must be provided to all team members.
In order to simplify the use of methods like decision analysis and mathematical
optimization, the information contained in the DPM must be easily reusable
in suitable software tools.

Supporting Subsequent Phases in the Lifecycle of the Same Artifact

The DPM constitutes a valuable asset for later phases in the life cycle of
the artifact. For instance, assume a damaged reactor in a plant which needs
to be replaced. Due to technical progress and changes in the market since
the design and construction of the plant, there may be better alternatives

Decision Models 167

than the installation of a reactor of the same type. However, normally only a
technical specification of the old reactor is available at best, but there is no
documentation of the requirements to be met by the reactor, which would be
necessary for the selection of a better reactor.

Supporting Further Design Processes

Knowledge from previous design projects can be reused in similar design
tasks. Concerning the rationale aspect, a DPM contains information about
constraints to be respected and questions to be posed which otherwise might
be neglected or forgotten. A crucial issue for this kind of support is the pro-
vision of adequate retrieval mechanisms for relevant DPMs.

However, each DPM is specific to a particular project, and the information
relevant for a new project may be scattered among several models. Therefore,
knowledge from completed projects which is considered to be important for
other design projects can be collected, generalized, and finally represented
by work process and decision templates which provide for simpler retrieval
than a set of concrete DPMs. As the relevant parts of a decision template
can directly be incorporated into the new DPM, the effort for documenting
decision rationale in a new project is considerably reduced.

Even better support for both decision making and decision documenta-
tion can be provided if parts of the design process are automated. As the
implementation of software tools for such support requires the involvement
of experts from other domains than chemical engineering, empirically proven
expert knowledge about chemical engineering design must be made available
to the developers of the tools. In addition to the process models mentioned
in the original modeling procedure, this knowledge transfer is simplified by
decision templates.

2.5.5 Conclusion

We have presented a Decision Ontology which enables the representation of
both concrete design decisions and generalized decision templates. As for the
documentation of design processes and decisions, our approach enables the
integrated modeling of the process and rationale perspective (as well as prod-
uct data and documents, see Subsect. 2.6.2). As for templates, our work has
addressed the separate modeling of process templates (cf. Subsect. 2.4.6) and
decision templates. Future work will have to cover the integration of process
and decision templates.

The representation of decision models on the instance level is still an open
issue. The simple modeling examples in Figs. 2.33 – 2.35 suggest that increas-
ing complexity hinders the readability of larger and more realistic models, as
indicated by a set of decision models addressing the reactor choice in the IM-
PROVE reference scenario (cf. Subsect. 1.2.2) [228]. Decomposition of decision
models into clearer parts is not straightforward due to the complex network

168 M. Theißen and W. Marquardt

of relations that can exist between its nodes. Also, alternative representa-
tions may be adequate. Parts of DRL have been implemented by its authors
in SYBIL [807], a system using two-dimensional matrices in addition to the
graphical representations. However, no experiences concerning the usability of
this approach are reported.

Like for the Process Ontology, no modeling tool is available that fully
supports the Decision Ontology (apart from general-purpose tools like the
OWL editor Protégé [979]). However, as all DecisionElements are derived from
Information, the Workflow Modeling System WOMS (cf. Subsect. 5.1.3) can
be used as a modeling tool for DPMs to a certain extent. The incorporation of
decision templates in models of concrete decisions is still restricted to simple
copy and paste. The converter already mentioned for the Process Ontology
also supports the Decision Ontology; hence, the Decision Ontology can be
used as a domain module for the Process Data Warehouse (Subsect. 4.1.5),
which provides the necessary access and retrieval functions.

The pivotal obstacle to decision rationale documentation in industrial prac-
tice is the overhead for its production. We claim that this effort can be reduced
significantly by means of decision templates. The transfer project described
in Sect. 7.3 aims at the further elaboration of our modeling approach for work
processes and decision rationale, the implementation of a suitable modeling
tool (based on the experiences gained with WOMS), and the validation of the
approach in several case studies in cooperation with industrial partners.

2.6 Integrated Application Domain Models for Chemical
Engineering

J. Morbach, M. Theißen, and W. Marquardt

Abstract. A comprehensive summary of the application domain models presented
in this chapter is given, and their integration into a common framework is discussed.
Other existing application domain models of comparable scope are reviewed and
compared to the models presented herein.

2.6.1 Introduction

A major research objective of the IMPROVE project is the development of
an integrated process/product model, which enables a comprehensive and for-
mal description of the products and processes of the application domain. As
previously argued in Subsect. 1.1.2 and later elaborated in Sect. 6.1, the ap-
plication domain models presented in this chapter jointly constitute the upper
layer of such a process/product model (cf. Figs. 1.6 and 6.1). This, of course,
requires the formal integration of the different application domain models into
a common framework.

While some aspects of model integration have already been discussed ear-
lier in this chapter, a coherent summary of the dependencies and interrelations
between these different models is still missing and shall be given in this section.
First, the integration of the individual application domain models is discussed
in Subsect. 2.6.2. Next, we briefly review the related work on application do-
main modeling and contrast it with our modeling efforts (Subsect. 2.6.3). The
section concludes with a detailed comparison of our integrated model against
the benchmark of the ISO 15926 information model (Subsect. 2.6.4).

2.6.2 A Comprehensive Model for the Chemical Engineering
Domain

Four different types of models have been presented in the preceding sec-
tions, each describing a particular aspect of the application domain: product
data models (Sect. 2.2), document models (Sect. 2.3), work process models
(Sect. 2.4), and decision models (Sect. 2.5). These models were not developed
independently of each other, but were designed in such way that they may
be easily combined into a comprehensive model of the application domain.
Hereafter, we denote this comprehensive model as C2EDM (abbr. for Com-
prehensive Chemical Engineering Domain Model); the individual application
domain models that constitute the C2EDM are referred to as submodels of
the C2EDM.

As a prerequisite for a formal integration, all four submodels must be rep-
resented in a common modeling language. The Web Ontology Language OWL

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 169–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 J. Morbach, M. Theißen, and W. Marquardt

[546] has been chosen for this purpose. Consequently, only the most recent,
OWL-based versions of the individual submodels are considered here: that
is, OntoCAPE 2.0 (cf. Subsect. 2.2.4) as a submodel for product data, the
latest version of the Document Model (cf. Subsect. 2.3.4), the Process On-
tology (cf. Subsect. 2.4.6) for the representation of work processes, and the
Decision Ontology (cf. Subsect. 2.5.4) for the modeling of design decisions.
The integration of some of the earlier versions of these submodels has been
presented elsewhere: [19] describes the integration of product data and doc-
uments within the conceptual information model CLiP (cf. subsection 2.2.3);
in [96] and [299], the interrelations between product data, documents, and
design activities in CLiP are discussed.

The remainder of Subsect. 2.6.2 is organized as follows: firstly, the general
dependencies between the individual submodels are described; next, the inter-
relations between the submodels’ top-level concepts are clarified; and finally,
the function of the superordinate Meta Model is discussed.

Submodel Dependencies

DecisionsWork processesProduct data Documents

OntoCAPE
(Upper Layer)

Chemical
Engineering

Work
Processes

Chemical
Engineering

Design
Documents

Meta Model
includesontology

notation

OntoCAPE
(Conceptual Layer

and below)

domain-independent

domain-specific

Process
Ontology

Document
Model

Decision
Ontology

Chemical
Engineering
Decisions

Fig. 2.36. General dependencies between the individual submodels

Figure 2.36 displays the structure of the four submodels of the C2EDM as
well as their interdependencies on a coarse-grained level. As indicated in the
figure, each submodel can be split into a domain-independent and a domain-
specific part. Since the individual parts are represented as OWL ontologies,
inclusion relations18 can be established between them by means of the OWL
18 Inclusion means that if ontology A includes ontology B, the ontological definitions

provided by B are included in A. Inclusion is transitive – that is, if module B
includes another module C, the definitions specified in C are valid in A, as well.

Integrated Application Domain Models for Chemical Engineering 171

import mechanism. As can be seen in Fig. 2.36, the Meta Model is situated
on top of the inclusion lattice; it constitutes a common design framework for
the submodels, as will be explained in Subsect. 2.6.2.

Furthermore, the following conclusion can be drawn from the figure:

• OntoCAPE is independent of the other submodels.
• Similarly, the core of the Document Model is self-contained. However, it

relies on a product data model to describe the contents of documents
(cf. Subsect. 2.3.4). Thus, the domain-specific extension of the Document
Model imports OntoCAPE as a means to characterize the documents cre-
ated or used in an engineering design project.

• The Process Ontology requires concepts from the Document Model to
describe the handling of (domain-independent) documents as input and
output information of activities. Consequently, its extension specific to
chemical engineering (Chemical Engineering Work Processes) includes the
domain-specific extension of the Document Model. That way, the docu-
ment types specific to engineering design processes can be referenced in a
work process model.

• As argued in Sect. 2.5, the elements of a decision model (e.g., alternatives,
goals . . .) are conceived as information which is created in a work process;
thus, the Decision Ontology imports the Process Ontology and (implicitly)
the Document Model. By importing Chemical Engineering Work Processes,
the Chemical Engineering Decisions model extends the Decision Ontology
with concepts required for the enrichment of the generic model elements.
For instance, an alternative can be linked to the chemical engineering
document which contains a detailed specification of the alternative.

Interrelations between Top-Level Concepts

To illustrate how the four submodels are integrated on the class level, Fig. 2.37
shows the interdependencies between the essential top-level concepts of the
C2EDM19; the affiliation of a concept to a particular submodel is indicated
by the grey-shaded boxes in the background of the figure.

From the Process Ontology (module WorkProcessDocumentation), the fol-
lowing concepts are shown: The class Activity represents a single step of a
work process. Activities are performed by Actors, often with the help of some
(software) Tool. A connection to the Document Model is established via the
Information class. Information can be both input or output of an Activity.

Within the Document Model, Information subsumes the classes Product and
VersionSet; the former denotes all kind of information objects, the different
versions of which can be logically bundled (and thus managed) by the latter.
Since Products are typically not handled in an isolated manner, they can
be assembled into documents, which act as carriers of Products during the
19 Note that some of the concepts described here also form part of the Core Ontology

of the Process Data Warehouse, which is presented in Subsect. 4.1.5.

172 J. Morbach, M. Theißen, and W. Marquardt

work process. The class DocumentVersion denotes the individual versions of a
document that arise in the course of a project, which can again be bundled
through a (logical) Document.

An Information can be further characterized through a ContentDescription.
For the domain of chemical engineering, classes (or composite expressions)
from the OntoCAPE ontology can be used as such.

In the Decision Ontology, special types of Information are defined, such
as the DecisionProblem, the Alternative, the evaluation of an Alternative with
respect to a DecisionProblem (modeled by means of the IsAGoodAlternativeFor
relation class), and the Decision to select a certain Alternative. Also, special Ac-
tivities are introduced, which are qualified by the type of Information produced
during their execution. For instance, during an Evaluating activity, it may be
found out that an Alternative is a good alternative for a DecisionProblem. The
information created during Deciding is the Decision to select an Alternative.

Meta Model

The Meta Model is defined on top of the C2EDM. Like the submodels of the
C2EDM, it is implemented in OWL to enable a formal model integration.

Decision
Problem

Content
Description

OntoCAPE
RootElement

IsAGood
AlternativeFor

Alternative

Decision
VersionSetInformation

Product Document
Version

Tool

ActorActivity
Deciding

Evaluating

Document

Input
Information

Flow

isVersionOf

Output
Information

Flow

Output
Information

Flow

OntoCAPE

Document
Model

Output
Information

Flow

WorkProcess
Documentation

hasTarget hasTarget

DecisionObject

hasTargetselects

Decision
Documentation

hasSourcehasSource

hasSource
hasContent

is
PerformedBy

isUsedFor

hasSource hasTarget

hasSourcehasTarget

Fig. 2.37. Interdependencies between the essential top-level concepts of C2EDM

Integrated Application Domain Models for Chemical Engineering 173

The Meta Model is imported by all four submodels, as indicated in Fig. 2.36.
That way, the ontological assertions of the Meta Model are included in the
submodels.

Complementary to the mechanisms discussed above, the Meta Model is not
concerned with the integration of the submodels. Rather, it serves as a general
design framework, establishing common standards for the construction and
organization of the four application domain models, thus ensuring a consistent
modeling style. This is achieved (1) by introducing fundamental concepts from
which all the classes and relations of the individual submodels are derived
(either directly or indirectly), and (2) by providing design patterns that define
best-practice solutions to common design problems.

• The fundamental concepts are the basic classes and relations of the Meta
Model. They form the topmost layer of the concept hierarchy; all other
classes and relations – those in the Meta Model as well as those in the
submodels – are specializations (i.e., subclasses or subrelations) of these
fundamental concepts20. RelationClass is a good example of such a fun-
damental concept: The class is a means for representing n-ary relations
in OWL (by default, the OWL language provides language primitives for
binary relations only). Specializations of RelationClass are utilized in all
four submodels of the C2EDM.
By linking a submodel concept to a fundamental concept, its role within
the model is characterized. That way, a user or a software program is ad-
vised how to properly treat that particular concept. To give an example:
submodel classes that are derived from RelationClass are obviously aux-
iliary constructs for the representation of n-ary relations. Consequently,
instances of such classes do not need to be given meaningful names (cf.
[869]). Thus, if a subclass of RelationClass is instantiated, a user or an in-
telligent software program can conclude that the instance can be labeled
automatically, according to some standard naming convention.

• A design pattern is a best-practice solution to a commonly occurring mod-
eling problem. It is formed by a set of interconnected classes and rela-
tions, which jointly define a sort of template that can be applied within
a submodel of the C2EDM. That way, patterns encourage a consistent,
uniform modeling style across the individual submodels. An example for
the application of a pattern is the representation of mereological relations
(part-whole relations), which appear numerous times in the submodels: In
the Document Model, mereological relations are used to assemble Docu-
ments and DocumentVersions from VersionSets and Products, respectively;
in the Process Ontology they are utilized to compose WorkProcesses from
WorkProcessElements; in OntoCAPE, mereological relations are, amongst

20 Conceptually, the application domain concepts should be derived from the meta
model concepts via instantiation. However, as current OWL reasoners do not
support this kind of meta modeling, the application domain concepts are currently
linked to the meta model concepts by specialization.

174 J. Morbach, M. Theißen, and W. Marquardt

others, applied to decompose a System into Subsystems. As a common ba-
sis for these different cases, a design pattern defines a standard way of
modeling this relation type, which is then adopted by all submodels.

While the Meta Model is highly useful during model design, it is less relevant
for practical applications. Under certain conditions, the Meta Model may even
prove harmful, as its highly abstract concepts may confuse an inexperienced
user rather than support him/her. For that reason, the interconnectivity be-
tween the Meta Model and the C2EDM needs to be minimized such that they
can be separated easily, once the design has been completed. To this end, the
classes and relations defined in Meta Model are not directly used within the
individual submodels of the C2EDM. Rather, they are redefined and subse-
quently linked to the original concepts in the Meta Model. Thus, only the
links to the Meta Model need to be disconnected if a stand-alone usage of the
C2EDM is desired.

2.6.3 A Review of Related Work

In the area of chemical engineering, various application domain models have
been developed over the last decades. Some of these are conceptual mod-
els, intended to clarify the interrelations between domain entities and to ob-
tain a better understanding of the domain; others are implementation models
that are targeted at specific applications, such as information storage or data
exchange. In the following, the most outstanding of these models will be re-
viewed. Only application domain models of a scope comparable to our C2EDM
are considered here; that is, models which enable a comprehensive description
of product data, documents, work process, and decision-making procedures.
Models focusing on single aspects like work processes (Sect. 2.4) or decision
rationale (Sect. 2.5) are discussed in the respective sections. Also, since an
extensive review of application domain models in chemical engineering has
already been published elsewhere [18], the present review focuses solely on
the more recent developments: It discusses the later changes of the models
covered in [18] and reports on newly evolved models.

ISO 10303

The international standard ISO 10303, widely known as STEP (STandard
for the Exchange of Product data) proposes a series of data models for
the exchange of engineering data between computer systems. The STEP
model framework has a modular architecture: Basic modules introduce generic
classes, methods, and building blocks; from these, domain-specific models, the
so-called Application Protocols (AP), can be constructed. For the domain of
process engineering, the following APs are of major interest21:
21 There are further APs that cover more peripheral aspects of chemical engineer-

ing, such as the AP 212 Electrotechnical Design and Installation or the AP 230
Building Structural Frame: Steelwork.

Integrated Application Domain Models for Chemical Engineering 175

• AP 221 Functional Data and their Schematic Representation for Process
Plant [754] is being developed for the file-based exchange of process design
information between large data warehouses. The model describes process-
plant functional data and its 2D schematic representations, such as piping
and instrumentation diagrams and datasheets. Its main focus is on the
identification and description of the plant equipment. Additionally, two
types of work process activities can be described, namely operating activi-
ties that transform or transport processing materials and design activities
that create or modify some plant equipment. Currently (as of 2007), the
AP 221 is still under development. Its completion is delayed due to the
need for harmonization with the ISO 15926 data model (see below).

• AP 227 Plant Spatial Configuration [755] focuses on the exchange of the
spatial configuration information for plant equipment with an emphasis on
piping systems. A specification of the material streams and the operation
conditions, as it is needed for the design of a piping system, is also included.

• The objective of AP 231 Process Engineering Data: Process Design and
Process Specifications of Major Equipment [752] is to establish a common
neutral data exchange format for conceptual process design and basic en-
gineering. AP 231 describes unit operations, process simulations, stream
characteristics, and design requirements for major process equipment. AP
231 also covers (experimental) material data, thermodynamic data, and
chemical reaction data. Further, process flow diagrams, detailed process
and plant descriptions, and basic control strategies can be specified. Cur-
rently (as of 2007), work on the AP 231 has stopped, and the project has
been withdrawn by the responsible subcommittee TC184/SC4 of the ISO
organization.

Based on the activity models of these application protocols, the PIEBASE
consortium (Process Industries Executive for Achieving Business Advantage
Using Standards for Data Exchange, [909]) has developed a generic model
describing the design and production processes in the process industries, called
PIEBASE activity model [908]. The model is represented in the NIST standard
IDEF∅ for functional modeling [788]; additional constraints are imposed on the
usage of the IDEF∅ standard by introducing a general process template with
which any specific work process needs to comply. The template distinguishes
three different types of activities (Manage, Do, and Provide Resources), which
exchange certain types of information in a predetermined way.

While STEP is an established standard in some industrial sectors like
the automotive industry, it is less accepted in the chemical process industries
(with the exceptions of the AP 221 and its companion standard ISO 15926 in
the oil and gas industries). There are several reasons for the poor acceptance
of STEP: A major problem is the sheer complexity of the standard, which
complicates its application [14, 726, 815]. Yet in spite of its magnitude, the
data scope of the model is not sufficient; important areas are not covered
by the available APs [18, 401, 726, 898]. Furthermore, the individual APs

176 J. Morbach, M. Theißen, and W. Marquardt

have too much overlap with each other and are not sufficiently harmonized
[401, 726, 909].

ISO 15926

ISO 15926 is an evolving international standard that defines information mod-
els for the integration and the exchange of lifecycle data. Even though its title,
Industrial automation systems and integration – Integration of life-cycle data
for process plants including oil and gas production facilities, suggests a focus
on the oil and gas industry, the data model is rather generic and allows to
represent the lifecycle data of all kinds of process plants. The standard con-
sists of seven parts; the first two parts have already been released [756, 757],
while the others are still under development [758–760]. Eventually, the stan-
dard will comprise information models for the representation of product data,
documents, and activities. These models describe the physical objects that ex-
ist in a process plant (materials, equipment and machinery, control systems,
etc.) as well as the design requirements for and the functional descriptions
of these objects; they cover the lifecycle stages of development, construction,
operation, and maintenance. In the original ISO publication, the models are
represented in the EXPRESS modeling language [753]; an alternative repre-
sentation in the Web Ontology Language (OWL, [546]) is under development
[994], which will be discussed later in this subsection.

The development of ISO 15926 originated from the STEP AP 221 (see
above). It was motivated by a new approach to information sharing between
software tools, which differs from the one followed by STEP: The STEP ap-
proach advocates the exchange of data files at designated points in the plant
lifecycle. By contrast, the ISO 15926 propagates the continuous information
sharing via a common database, which contains all the information emerging
over the lifetime of the plant. This requires an information model that is able
to represent the evolutionary changes to a plant over its lifecycle – an objective
that is outside the scope of STEP [806]. Thus, a new information model has
been developed for ISO 15926, the core idea of which is the 4D approach for
change representation: According to this paradigm, which is formally founded
in [983], objects are extended in space as well as in time, and they may be de-
composed both spatially and temporally22. While the spatial parts represent
the physical constituents of the object, the temporal parts represent segments
of the object’s life time. An example is the conversion of a steel bar into a
pipe, where steel bar and pipe are modeled as different temporal parts (or
states) of the same object [542]. The 4D approach also supports the defini-
tion of so-called“replaceable parts” [1045], which have functional, rather than
material continuity as their basis for identity [542].

The ISO 15926 standard is organized in a layered architecture:
22 The 4D paradigm is based on a philosophical theory known as perdurantism. The

perdurance theory is opposed to endurantism, which assumes that a (physical)
object is wholly present at every moment of its existence.

Integrated Application Domain Models for Chemical Engineering 177

• On top, a high-level Data Model (cf. part 2 of ISO 15926) introduces
generic classes like physical object, activity, and event, and defines generic
relations, such as composition, connection, containment, and causality.
Also, the aforementioned 4D approach is established here. The Data Model
is domain-independent and contains roughly 200 classes.

• The Data Model is extended by the Reference Data Library, RDL (cf. part
4 of ISO 15926). The RDL establishes the different terminologies (i.e., the
Reference Data) required for the individual application domains. Particu-
larly for the chemical process industries, taxonomies for the description of
materials, plant equipment, physical properties, and units are introduced
by refining the classes of the Data Model. The RDL is to be harmonized
with the STEPlib library of the AP 221 (cf. Annex M of ISO 10303-221).
Currently (as of 2007), merging of these originally independent libraries is
still in progress. So far, about 15,000 classes have been defined in the RDL.
It is expected that the RDL will contain up to 100,000 standard classes in
the end.

• On the next lower layer, approximately 200 Templates are introduced (cf.
part 7 of ISO 15926). A Template retrieves classes from the Data Model
and correlates them via n-ary relations; that way, it defines a configuration
of interconnected classes, which jointly represent some generic modeling
concept. Thus, Templates are comparable to the Design Patterns described
in Subsect. 2.6.2.

• The subsequent layer introduces specialized Templates, the so-called Object
Information Models, OIM (cf. parts 4 and 7 of ISO 15926). An OIM refines
a Template by replacing the generic classes from the Data Model involved
in the Template by more specific classes from the RDL.

In addition to the above layers, which are specified by the ISO 15926, the
standard allows for user-specific extensions, thus allowing user organizations
to configure the model to their individual requirements. Besides specialized
Reference Data and specialized OIMs, an organization may define its corpo-
rate Document Types. A Document Type is a model for a particular document;
it specifies the document’s structure and places constraints on its contents.
The structure is indicated by decomposing the document into its structural
elements, called Document Cells. The contents are specified by referring from
a Document Cell to some Reference Data or OIM, which characterizes the
information content of the respective Document Cell. Thus, the approach to
document modeling taken by the ISO 15926 is very similar to the Document
Model presented in Sect. 2.3: Both models decompose a document into its
structural constituents and define the semantic contents by linking the con-
stituents to corresponding classes defined in an (external) product data model.
As a further similarity, both models have a similar understanding of the con-
cept of a document: Any collection of data is considered as a document; valid
examples are a simulator input file or (parts of) an entire database

178 J. Morbach, M. Theißen, and W. Marquardt

Upper Ontology for ISO 15926

The objective of the OMPEK (Ontologies for Modeling Process Engineer-
ing Knowledge) project [799] is to provide foundation ontologies that can
be extended for use in knowledge-based applications in the process engineer-
ing domain. These ontologies shall eventually cover the areas of substances,
physicochemical processes, production plans and operations, processing equip-
ment, human systems, and value-chains. Ontology development is based on
an Upper Ontology, which defines general-purpose concepts and theories (such
as mereotopology and causality) and acts as a foundation for more specific
domain ontologies. An earlier version of the Upper Ontology was based on
the SUMO ontology [865] and was represented in the DAML+OIL language
[609]. A more recent version, which is described in [542, 543], is an OWL [546]
implementation of the ISO 15926 Data Model ([757], see above). To this end,
the EXPRESS code [753] of the ISO 15926 has been translated into OWL,
and some axiomatic definitions and constraints have been added, which could
not be represented in the original model because the EXPRESS modeling
language lacks the necessary expressiveness. Also, some parts of the Upper
Ontology (e.g., the part concerned with the modeling of physical quantities)
differs from the original Data Model, as the OWL language enables a more
advantageous conceptualization of the model contents. Presently (as of 2007),
the Upper Ontology comprises about 200 concepts.

Two extensions of the Upper Ontology have been published so far, which
go beyond the scope of the ISO 15926. Suzuki, Batres, and co-workers [990]
have added a theory of causality to represent and query knowledge about plant
accidents and hazards and operability studies (HAZOP). Fuchino, Takamura,
and Batres [679] introduce concepts for representing IDEF∅ activity models
and integrate the PIEBASE Activity Model [908] with the Upper Ontology.

POPE Ontology

Zhao and co-workers are developing an information management system to
support the design of pharmaceutical products and processes, which is based
on an ontology named POPE (Purdue Ontology for Pharmaceutical Engi-
neering) [1021, 1065–1067]. Within the suggested framework, part of the in-
formation created by the different application tools is to be stored in shared
ontologies (represented in OWL) to enable the information exchange between
tools and the systematic storage and retrieval of knowledge.

Some domain ontologies have been developed, which so far cover only a
small portion of the chemical engineering domain: They enable the represen-
tation of material properties, experiments and process recipes, as well as the
structural description of mathematical models. In parallel, an ontology for the
modeling of work processes and decisions has been built. Yet the representa-
tion of work processes is confined to deterministic guidelines, the input/output
information of activities cannot be modeled, and the acting persons are not

Integrated Application Domain Models for Chemical Engineering 179

considered. Moreover, the approach to decision representation is somewhat
limited, as it presumes that the decision criterion can be explicitly modeled
by means of a logical expression – an assumption that, based on our experi-
ence, does usually not hold true. Summarizing, the POPE ontologies specialize
in particular aspects of pharmaceutical products and processes, and are con-
sequently not as generic and broadly applicable as the application domain
models presented herein.

To date (as of 2007), a detailed documentation of the POPE ontologies has
not been published, but from the available information it can be concluded
that there is no common model framework for the different ontologies. Instead,
the ontologies are being developed independently and are only partially inte-
grated. Thus, consistency between the different ontologies is not guaranteed.

2.6.4 A Comparative Evaluation

From all the reviewed models, the ISO 15926 information model bears closest
resemblance to the C2EDM; in the following, we use it as a benchmark against
which our model is compared. To this end, the two models will be contrasted
with respect to model quality, scope, level of detail, structure and organization,
representation of temporal changes, and modeling language. As for the Upper
Ontology for ISO 15926, it basically constitutes a reimplementation of the
ISO standard itself; thus, the following considerations apply to it, as well.

Model Quality

Generally, the ISO 15926 can be criticized for being of mediocre quality, at
best. In particular, Smith [970] lists a number of systematic defects of the ISO
Data Model, which cause it to be both unintelligible and inconsistent. Oppos-
ing the ISO 15926, Smith states some general principles for model quality,
which should be satisfied by any good information model. The first four of
these principles are rather generic: The author advises to supply intelligi-
ble documentation, provide open access, keep things simple, and reuse avail-
able resources. These are well-known targets for information models (e.g.,
[538, 589, 705, 944]), which we were aiming to achieve right from the start of
the model development process (e.g., [18, 303, 326]). The remaining principles
are more specific, suggesting best practices to avoid the deficiencies of the ISO
model, particularly its lack of terminological coherence and its unintelligible
and faulty concept definitions. Since most23 of these best practices have been
applied in the C2EDM, we may claim that the C2EDM constitutes a model
of superior quality.
23 Excluded are principles no. 8 and 12, which state rules that govern the construc-

tion of compositional concept names; they do not apply to the C2EDM, as we do
not utilize such compositional terms. Principle no. 13 is debatable: It advices to
avoid ambiguous words in concept definitions, such as ‘which may’, ‘indicates’,
‘characterizes’, etc. While we certainly tried to define concepts as precisely as pos-
sible, words like ‘characterize’ and ‘indicates’ have been used regularly, in order

180 J. Morbach, M. Theißen, and W. Marquardt

Scope

While both models have a similar coverage of documents, their scopes are not
identical: The lifecycle phases of plant operation and maintenance, which are
addressed by the ISO 15926, are only partially considered in the C2EDM; how-
ever, coverage of these areas will be enhanced in the near future (cf. Sects. 7.2
and 7.3). On the other hand, the subject of mathematical modeling, a major
focus of OntoCAPE, is not well covered by the ISO 15926.

As for process modeling, while the ISO 15926 allows to model activities, the
other components of a work process model (i.e., actors/roles, information . . .)
are not provided. Decision rationale, which we consider an important type
of information created during design processes (complementary to product
data), is also not covered by ISO 15926.

Level of Detail

The ISO 15926 standard defines an implementation model intended for shared
databases and data warehouses as well as for electronic product catalogues.
Consequently, it gives a fine-grained and highly detailed description of the
domain, resulting in a very complex data model that incorporates a large
number of specialized classes. A drawback of this approach is that the ISO
15926 model is only accessible to modeling experts, who are willing to spend
a considerable amount of time to get acquainted with it.

In contrast, we propagate less complex process and product models, which
can be easily understood and applied by less experienced practitioners. To
this end, we have tried to keep the models as simple and intuitive as possible.
In consequence of this principle, it is sometimes necessary to trade accurate-
ness and precision against usability, which leads to a coarse- to mid-grained
description of the application domain. However, this level of detail has proven
to be sufficient for many applications like those presented in the later chapters
of this book.

Structure and Organization

In spite of its complexity, the ISO 15926 model is not sufficiently organized.
While the layers constitute at least a coarse model structure, the concepts
within each layer are organized by subclassing only, which is certainly not
sufficient to manage ten thousands of classes. A complementary organizing
principle is provided through the Templates, which are comparable to the
design patterns defined in our Meta Model; but again their large number

to define relations that actually have the function of indicating/characterizing a
particular class. Also, the phrase ‘which may’ is often utilized to denote a cardi-
nality of 0..n. If used this way, we do not consider these words to be ambiguous,
thusly not violating the above principle.

Integrated Application Domain Models for Chemical Engineering 181

makes it difficult for the user to find and apply a desired Template. A possi-
ble improvement would be the grouping of thematically related concepts into
modules, partial models, and finally submodels, as it is done in our approach.
Moreover, introducing the idea of different perspectives, as realized in Onto-
CAPE through the notion of aspect, might further improve the organization
of the ISO 15926 Data Model.

Representation of Temporal Changes

An important difference in conceptualization between the ISO model and the
C2EDM is the representation of temporal changes: The ISO 15926 advocates
the perdurantistic (or 4D) view, while the C2EDM takes the endurantisitc
(or 3D) perspective. Generally, the representation of temporal persistence is
subject of controversial debate in philosophy – a summary of the different
arguments is, for example, given in the Stanford Encyclopedia of Philosophy
[725, 867]. Also in ontology engineering, the issue is disputed: For example,
the SUMO project of the IEEE has finally (and only after some discussion)
adopted the 3D paradigm [865].

In the end, the decisive factor is always the practicability of the chosen
approach: Due to its intended use as a schema for shared databases, the ISO
15926 sets a high value on the representation of temporal changes, for which
the 4D perspective seems advantageous. By contrast, temporal changes are less
relevant for the applications targeted by the C2EDM, such that we consider
the 3D paradigm more practicable for our purposes: It has the advantage of
being more intuitive, which supports our goal of an easily usable ontology.
Note that the submodels of the C2EDM provide alternative mechanisms for
the representation of temporal changes: OntoCAPE introduces the backdrop
concept for the description of dynamic system behavior; the Document Model
allows for the versioning of documents; procedures and work processes are
modeled by means of the Process Ontology.

Modeling Language

The original ISO 15926 standard utilizes the EXPRESS modeling language
for the formal representation of the data model. EXPRESS provides language
features that go beyond the expressiveness of OWL; particularly, class defini-
tions may include functions and procedures, which allow formulating complex
statements with local variables, parameters, and constants just as in a pro-
gramming language. On the other hand, EXPRESS is a rather uncommon
language, and consequently there is a lack of available tools supporting it.
Moreover, having been developed in the late 80s, the language has limited
compatibility with modern Web technologies.

OWL is less expressive than EXPRESS, but it is still sufficient for most
applications. Particularly OWL DL, the DL-based language subset used for
the representation of our C2EDM, constitutes a favorable compromise between

182 J. Morbach, M. Theißen, and W. Marquardt

expressiveness and computational scalability (cf. Subsect. 2.1.3). This allows
supporting the modeling process through reasoning services like consistency
checking and automatic classification. Thanks to its status as a Web-enabled
standard endorsed by the W3C, OWL has received wide attention both in
academia and industry. Although it has only been released lately (in 2004),
there are already a number of compatible software tools available, commercial
as well as open-source.

Due to these advantages, a reimplementation of the ISO 15926 in OWL
is currently in progress. However, judging from the preliminary samples pre-
sented in [542] and [668], the ISO models will not be realized in OWL DL, but
in the more expressive sublanguage OWL Full (cf. Subsect. 2.1.3). OWL Full
supports such advanced language features as metamodeling (i.e., instantiation
across multiple levels) or augmenting the meaning of the pre-defined language
primitives, yet at the cost of loosing scalability and compatibility with DL
reasoners.

Concluding Remarks

The comparison against the benchmark of the ISO 15926 information model
demonstrates that the C2EDM makes a valuable contribution to the field of
application domain modeling. Nevertheless, the model cannot be considered
to be complete. Information modeling is an incessant effort, demanding the
continuous improvement and adaptation of the model according to prevailing
conditions and requirements. Our next goal is the application and evaluation
of the C2EDM submodels in industrial practice, as explicated in Sects. 7.2
and 7.3. That way, the models will be validated against industrial requirements
and, if necessary, adapted to practical needs.

3

New Tool Functionality and

Underlying Concepts

Four new informatics concepts have been introduced in IMPROVE to support
chemical engineering design processes in a novel way (cf. Sect. 1.1 for their
introduction and 1.2 for their usage in a prototype). This chapter gives their
detailed description.

In the corresponding sections, not only the new concepts are discussed but,
moreover, their realization resulting in new tool functionality. This new func-
tionality is mostly implemented on top of given tools, following the bottom-up
approach of IMPROVE. We are going to learn that in most cases sophisti-
cated reuse techniques have been used for the implementation of this new
functionality. Reuse forms include tool specification.

Tool specification has to do with modeling. It contributes to the layered
process/product model which is the overall goal of IMPROVE. The corre-
sponding contributions to this formal process/product model are discussed in
Chap. 6.

Section 3.1 introduces process chunks to support and process traces to keep
track of the experience of developers in a design process. Section 3.2 discusses
how links between the contents of different documents can support change
processes. These links are automatically introduced by interactive tools, called
integrators. Direct communication of designers is an essential part of any de-
velopment process and complements organized communication and coopera-
tion. Section 3.3 introduces corresponding audio and video tools on one hand
and virtual reality tools on the other hand. Finally, Sect. 3.4 introduces novel
management tools to organize the collaboration in a design process. These
tools regard changes within the design process, parametrization in order to
meet a specific context, and interorganizational coordination.

3.1 Using Developers’ Experience in Cooperative Design
Processes

M. Miatidis, M. Jarke, and K. Weidenhaupt

Abstract. The process industries are characterized by continuous or batch pro-
cesses of material transformation with the aim of converting raw materials or chem-
icals into more useful and valuable forms. The design of such processes is a complex
process itself that determines the competitiveness of these industries, as well as their
environmental impact. Especially the early phases of such design processes, the so-
called conceptual design and basic engineering, reveal an inherent creative character
that is less visible in other engineering domains, such as in mechanical engineering.
This special character constitutes a key problem largely impacting final product
quality and cost.

As a remedy to this problem, in cooperation with researchers and industrial
partners from chemical and plastics engineering, we have developed an approach
to capture and reuse experiences captured during the design process. Then, fine-
grained method guidance based on these experiences can be offered to the developer
through his process-integrated tools. In this section, we describe the application of
our approach on the case study of the IMPROVE project. We first report on ex-
periments made with a prototypical implementation of an integrated design support
environment in the early project phases, and successively describe how it has been
reengineered and extended based on additional requirements and lessons learned.

3.1.1 Introduction

Undoubtedly, engineering design is a process of major importance for the
production lifecycle of a chemical product. Its main concern is the investigation
and application of novel, state of the art methodologies on the product design
process, in order to increase its expected quality in a profitable way. Especially
the early stages of the development and reengineering of chemical processes,
the so-called conceptual design and the basic engineering are of particular
interest, since they already predetermine to a large extent the competitiveness
of the final product (see Sect. 1.1).

As a consequence, the computer-based process support of early phases of
chemical engineering design has drawn considerable attention from the re-
search society. Various paradigms, frameworks and environments have been
developed in order to address the need for design process improvement and ex-
cellence. Their support can be provided at two granularity levels. At a coarse-
grained level, it cares for the efficient project planning and coordination of
the whole design project in order to establish Concurrent/Simultaneous Engi-
neering and reduce the total design time [299]. At a fine-grained level, on the
other hand, the interest shifts to the direct process support of the developers.
Especially in the chemical engineering domain, fine-grained process support
has to adequately address the inherent dynamics of design.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 185–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 M. Miatidis, M. Jarke, and K. Weidenhaupt

The second variation of process support constitutes the central topic that
the subproject B1 “Experience-Based Support of Cooperative Development
Processes” deals with. In the subproject B1, in cooperation with researchers
and industrial partners from chemical and plastics engineering, we have de-
veloped the idea to provide direct process support based on the reuse of ex-
periences gained during design processes. Process support is offered to the
developer in the form of methodical guidance while interacting with process-
integrated software tools. Because of design creativity and uncertainty, such
guidance is only possible for certain well-understood working and decision
steps that tend to repeatedly occur across several design processes. On the
other hand, our approach is able to capture interesting experiences from the
process execution, and provide them to the developer for situation-based reuse
in analogous design processes in the future.

This section pinpoints the quest for our research and details the solutions
we have provided. In Subsect. 3.1.2, we briefly identify the creative nature
of engineering design and elaborate the key ideas behind our approach for its
direct experience-based support. In Subsect. 3.1.3, we outline the prototypical
flowsheet-centered design support environment that we pursued during the
first phase of the project. The feedback given by domain experts on our first
prototype provided us with additional requirements for improvements and
extensions (Subsect. 3.1.4). The consideration of these requirements led to
a significant reengineering of our approach undertaken during the last two
phases of the project. The reengineered environment and its underlying key
ideas are detailed in Subsect. 3.1.5. In Subsect. 3.1.6, we observe the current
state of practice concerning the various aspects of our approach and make
a brief comparison. Finally, in Subsect. 3.1.7, we draw some conclusions and
provide an outlook to future work.

3.1.2 Motivation

In this section, we provide the motivation for our research. First, we pinpoint
the high degree of creativity of chemical engineering design and next, we
outline the solution ideas behind our approach for its direct experience-based
support.

The Creative Character of Engineering Design

Engineering design, as not only in chemical engineering, is a highly cooperative
process (see Subsect. 1.1.1). It involves extensive communication and collab-
oration among several developers working synergistically for the definition,
analysis and evaluation of the possible alternatives for the design of a prod-
uct. Each developer is assigned a set of responsibilities (tasks) in the context
of the process, according to the roles he carries. Developers synergistically
working for a shared goal are usually grouped together in interdisciplinary
teams, possibly geographically distributed across different company sites.

Using Developers’ Experience in Cooperative Design Processes 187

Product Transformation

Pr
oc

es
s C

om
ple

tio
n

0%

100%

Input Products Output Products

Trace 1

Trace 2

Method Fragment

Fig. 3.1. Two arbitrary traces of the same design process

A design process constitutes all the tasks assigned to team members while
working on a design problem. Throughout these tasks, developers are chal-
lenged to tackle a broad range of unexpected design complications in order to
meet last-minute changes in plans and requirements. Thus, they often have
to invent a solution “on the fly” appropriate to the current problem, or heav-
ily tailor an Existing Solution According To The Problem’S Individualities
Rather than simply reuse it. In either cases, the inherent human problem solv-
ing nature of the design process is revealed. Then, the developer is demanded
to exploit his knowledge background in order to come to the optimal solution.
The knowledge background concentrates mental stimulus from previous expe-
rience, education, know-how and guidelines stemming from the company, or
even pure instinct.

In such highly knowledge-intensive settings, developers may interpret the
design in different ways and thus, employ diverse“ways of working”in order to
resolve a design problem. Some of these ways of working might work efficiently
and deliver good results in reasonable time, while others can perform less
effectively than expected. Thus, design shows an inevitable high degree of
creativity. This creativity disturbs the planning at a fine-grained level and
makes the prediction of the followed ways of working hard.

Figure 3.1 shows the traces of two arbitrary instances of the same design
process projected on an orthogonal Cartesian system. Its two axes represent
the design progress and design product transformation dimensions respec-

188 M. Miatidis, M. Jarke, and K. Weidenhaupt

tively. Along the horizontal axis a number of input products are being pro-
cessed in order to deliver a set of final products. Along the vertical dimension,
the completion of the process increases until the design is 100% complete.
Each instance starts at a specific point (initial state) where a number of ini-
tial design products are available. By the end of the design (final state), the
final design products are delivered.

Both processes continue in a mostly unpredictable and poorly-structured
way, as a consequence of their creative nature. Nevertheless, there exist cer-
tain process chunks which tend to appear with a relatively high frequency
across several design processes and are therefore well-understood and can be
adequately defined. These might be parts of the process where a single way of
working tends to be followed by the overwhelming majority of the developers,
either because it is the only known way to produce acceptable results at the
specific situations, or because it constitutes a prescribed company expertise
asset that is enforced to the employees. We call these well-understood ways
of working method fragments [94, 919].

Approach to Direct Process Support

Many contemporary process support systems are driven by explicit process
models that capture in a precise way the whole lifecycle of the enacted pro-
cess. The prominent focus of such systems is the complete automation of
the work through the provision of prescriptive guidance to the worker. This
kind of support is mainly suitable for domains with complete, rigid and well-
structured process patterns that can be thoroughly predetermined in advance,
such as business processes, and has been widely adapted by workflow man-
agement systems [1014]. Such complete guidance of engineering design would
severely restrict the choices of the developers and thus, obscure the creativity
of the overall process.

Based on this consideration, we have developed the approach to provide
direct experience-based support based on the reuse of captured experiences
during design processes. On one hand, captured experiences (traces) can be
directly reused in similar design processes. On the other hand, certain method
fragments that appear with high frequency among several instances of a design
process can be formalized and guide the performer, when it is applicable. In
the following, we outline the three basic ideas behind our approach, sketched
in Fig. 3.2.

Situated Method Guidance

Method guidance is intended to influence the way that a design process is
performed based on the reuse of best practices. The support provided to the
developer can take two forms with regards to its way of application [642]. At
one extreme, guidance strives for a strict conformity of the developer’s actions
to the process prescriptions through enforcement. Such enforcement does not

Using Developers’ Experience in Cooperative Design Processes 189

SituatedSituated

Method GuidanceMethod Guidance

ProcessProcess--IntegratedIntegrated

ToolsTools

Reuse of RecordedReuse of Recorded

ExperiencesExperiences

Environment and

Traceability Models

Environment and

Traceability Models

Method Fragments

Tool Descriptions

Process Traces

Direct Experience-Based

Support

Direct Experience-Based

Support
Cooperating

Developers

Cooperating

Developers

Fig. 3.2. Basic structure of direct, experience-based process support

mix well with the nature of engineering design, as it stands in the way of
human creativity. On the other hand, guidance can be provided in the form of
advice, and it depends on the judgement of the developer whether he follows
it or not. According to our approach, only limited guidance is provided to the
developer in the form of advice, inside well-understood process parts where a
method fragment can methodically guide him. Thus, a prerequisite for such
guidance is the identification of the process situation. When a valid situation
with eligible method fragments for enactment is addressed, the developer gets
notified, and can selectively request their enactment.

Process-Integrated Tools

A prerequisite for method guidance is the effective dissemination of the
method guidance information to the developer. Traditionally, this kind of
support has been given in the form of handbooks. Since handbooks are totally
decoupled from information systems, separate guidance tools have been built
providing task manager interfaces notifying the developer about the next task
to be performed (e.g. [870]). Nevertheless, their guidance is typically coarse-
grained and there is no way, during a method fragment enactment, to check
the conformance of the developer’s actions with the method definitions. We
argue that the limitations of separate guidance tools can be avoided by pro-
viding integrated method guidance inside the software tools used during the
design process (i.e. CAD, simulation and modeling tools), through the process
integration mechanism. A process-integrated tool can trace a situation where
method guidance can be provided, and directly inform the developer about the
applicable method definitions through dynamic adaptation its user interface
and exposed services (process sensitivity). Further, a process-integrated tool
can automatically provide feedback information concerning the developer’s

190 M. Miatidis, M. Jarke, and K. Weidenhaupt

actions. This information is necessary for the adjustment of the enactment
state (i.e. situation detection and loading of applicable method fragments)
according to the current process performance inside the tool.

Reuse of Process and Product Traces

The feedback information provided by a process-integrated tool is organized
according to a concrete traceability metamodel adjusted to our project-specific
needs [368]. According to this model, the recorded information provides evi-
dence of the dependencies between the design products (flowsheets, simulation
models etc.), the so-called supplementary products (goals, decisions etc.) and
the process observation data concerning the changes that the products have
undergone (i.e., process steps). Consequently, captured traces closely monitor
the developer’s design history (i.e., design process trace depicted in Fig. 3.2).
Whereas prescriptive process definitions are biased by perceptions, captured
traces provide an objective abstraction of the reality and faithful evidence of
design evolution and improvement. Thus, observation and comparative analy-
sis of the captured traces can set the foundation for experience-based explica-
tion and dissemination of design knowledge: in the short term, for empowering
the developer to reuse best practices abstracted from design experiences; in
the long run, for providing accountability of good and bad practices, as well
as lessons learned.

3.1.3 The Prototypical Flowsheet-Centered Design Support
Environment

The work of the first project phase (1997–2000) concentrated on the sup-
port of developers in small groups inside the same company. The support has
been provided through embedding systematic method guidance in the design
process on the basis of detailed method fragments, and through the process
integration of design support tools. The mechanical interpretation of method
fragments resulted in the partial automation of certain activities inside the
process-integrated tools and the dynamic adaption of their user interface ac-
cording to the actual process state.

The PRIME24 approach developed at our chair25 has been used as the
integration framework for our process-integrated design support environ-
ment [367, 370]. PRIME fulfills the requirements for our design environment
through four solution ideas:

1. The explicit definition of method fragments using the NATURE situation-
based process metamodel [366, 937]. A process engine can mechanically
interpret method definitions and, based on their enactment, provide situ-
ated support.

24 PRIME: PRocess-Integrated Modelling Environments
25 The initial version of PRIME has been developed in the frame of the DFG project

445/5-1 “Process Integration of Modelling Workplaces”.

Using Developers’ Experience in Cooperative Design Processes 191

2. The integration of the method definitions with tool models into the so-
called environment metamodel that lays the foundation for the process
integration of tools.

3. The recording of design history according to a concrete traceability struc-
ture capturing traces along the three orthogonal dimensions of specifica-
tion, representation and agreement [365, 366].

4. The definition of a generic object-oriented implementation framework
for the interpretation of environment model definitions by the process-
integrated tools and the dynamic adaptation of their interactive behavior.

Originally, PRIME has focused on the support of software engineering de-
sign processes, and facilitated only the a-priori process integration of newly-
implemented tools. Nevertheless, in the context of the IMPROVE project, we
have been interested in the a-posteriori integration of existing tools. As im-
plication, we were confronted with the challenge of defining the criteria that
an existing tool should fulfill in order to become process-integrated, and the
need to design a generic mechanism for their criteria-wise integration.

In this section, we outline the prototypical PRIME based design support
environment we developed during the first phase of the project. First, we
describe the generic mechanism for the a-posteriori process integration of ex-
isting tools. Next, we demonstrate how it has been applied for the process
integration of a flowsheet editor. In the end, we present the coupling of the
flowsheet editor with other domain-specific tools, complemented by generic
tools for the documentation of design rationale and visualization of traces,
and illustrate their interplay on a demonstration example.

A-posteriori Process Integration of Existing Tools

The PRIME process metamodel for the definition of method fragments is
organized around the situation-based NATURE process metamodel, originally
proposed for the requirements engineering domain.

The NATURE process metamodel explicitly represents situations and in-
tentions. A situation describes the subjectively perceived state of the process
and is based on the individual states of the products undergoing development.
An intention reflects the goal that the human actor has in his mind. The
process knowledge of how to reach a specific intention in a given situation is
represented by a context that can be refined into three kinds of chunks:

• Executable contexts describe pieces of the process that can be automated
and are usually applied by tool actions.

• Choice contexts capture the most creative process parts where a decision
among several alternatives is demanded. For each alternative, supporting
or rejecting arguments can be provided.

• Plan contexts define workflow strategies and systematic plans and can
recursively contain contexts of all three types.

192 M. Miatidis, M. Jarke, and K. Weidenhaupt

output

input

SituationSituation

ProductProduct ActionAction

ContextContext

Executable

Context

Executable

Context

Plan

Context

Plan

Context
Choice

Context

Choice

Context

IntentionIntention

Tool

Category

Tool

Category

Graphical

Shape

Graphical

Shape

Command

Element

Command

Element

Command

Icon

Command

Icon
Pull-Down

Menu

Pull-Down

Menu
Shortcut

Key

Shortcut

Key

related situation related intention

based on

composed of

changes

applied by

provides
provides

provides

provides

alternatives

Process

Metamodel

provides

Process

Metamodel

Tool

Metamodel

Identical

Concepts

Associations of

Environment Model

displays

intention of

Display

Fig. 3.3. Integrated environment metamodel

Process integration in PRIME is based on the integration of the contextual
description of the design process steps with descriptions of the tools respon-
sible to perform these steps. A tool model is constructed in a tool modeling
formalism describing its capabilities (i.e. services provided) and GUI elements
(menu items, tool bars, pop-up menus etc.). Process and tool metamodels are
integrated within the so-called environment metamodel (Fig. 3.3). The inter-
pretation of environment models enables the tools to adapt their behavior to
the applicable process definitions for the current process state. Thus, the user
is able to better understand and control the process execution.

The explicit definition of a tool metamodel and its integration with the
contextual process metamodel, allows the formalization of the following six
requirements on the APIs exposed by a tool in order to be fully process-
integrable (cf. Fig. 3.4, [369, 469]):

A1 A service invocation API required for triggering the services provided by
the tool.

A2 A feedback information API required for keeping track of the results ob-
tained from executing a tool service.

A3 A command element API for introducing additional command elements in
the tool’s user interface.

A4 A product display API for highlighting the actual situation product parts.
A5 A selectability API for adapting the tool’s user interface to the feasible

alternatives when a choice context is active.
A6 A selection API for obtaining notification about user selections of products

or command elements.

Using Developers’ Experience in Cooperative Design Processes 193

Context Manager

Process

Engine

Process Integration Wrapper

Software Tool

Operations

Data Model

User Interface

A1 A2 A3 A4 A5 A6

Process

Data

Warehouse

Action

Adapter

UI

Adapter

State Manager

Context

Executor

Context

Matcher

Message

Interface

Repository

Interface

Context Manager

Process

Engine

Process Integration Wrapper

Software Tool

Operations

Data Model

User Interface

A1 A2 A3 A4 A5 A6

Process

Data

Warehouse

Action

Adapter

UI

Adapter

State Manager

Context

Executor

Context

Matcher

Message

Interface

Repository

Interface

Fig. 3.4. Generic tool wrapper architecture

A generic tool wrapper architecture (Fig. 3.4) defines the basic guidelines for
the construction of wrappers that mediate the interactions between the process
engine and process-integration tools. A tool wrapper has three responsibilities:

1. It hides the heterogeneity of the above sketched APIs.
2. By interpreting the relevant parts of the environment model, it is able

to restrict the interaction capabilities of the tool, and notify the process
engine of human-triggered requests for guidance through the tool’s GUI
elements.

3. It is responsible for the communication with the process engine according
to a strict interaction protocol [469].

Some parts of the generic tool wrapper architecture have been reused from
the original PRIME process integration specification. The message interface
and the state manager are responsible for the communication with the pro-
cess engine and the exchange of messages. The context manager cares for the
process definition conformed behavior of the integrated tool. It uses adapter
modules specialized for each of the tool-specific API interfaces. Method frag-
ments, product object schemas and tool models are maintained in a Process
Data Warehouse (PDW) (see Sect. 4.1).

194 M. Miatidis, M. Jarke, and K. Weidenhaupt

The Process-Integrated Flowsheet Editor

Within the IMPROVE project various commercial tools like CAE tools, sim-
ulators and model builders are employed for the support of the design and
construction of a chemical plant. As a prototypical example of a-posteriori
process integration, we have developed a fully process-integrated flowsheet
editor extending a commercial CAE tool [21]. In the following, we present
the motivation behind its integration, as well as some details of its technical
realization.

The Flowsheet as Cornerstone of Chemical Engineering Design

During the development of a chemical process, many information pieces are
created which have to be maintained and kept easily accessible. Among these
documents, flowsheets (a graphical representations of the structure of a plant)
play a prominent role. The importance of flowsheets is not only stressed in
various text books about chemical engineering (e.g. [559, 638]), but can also
be observed in chemical engineering practice.

Indeed, one of the findings of a workshop we conducted with developers
and managers from a large chemical engineering department was that the
flowsheet reflects in a natural manner the assumptions made by the various
stakeholders (chemical engineers, material engineers, costing people, safety
engineers, managers etc.) about the current state of plant design [767]. Thus,
the flowsheet acts as the main communication medium across several organi-
zational units, and throughout the often decade-long lifecycle of a chemical
plant or chemical production process. Moreover, the flowsheet is used as an
anchoring point and structuring device for information pieces such as sim-
ulation specifications and results, cost calculations, design rationales, safety
considerations etc.

The manifold relationships of the flowsheet to other information units
are illustrated on Fig. 3.5, which additionally depicts the tools used in the
IMPROVE demonstration scenario.

Realization of the Process-Integrated Flowsheet Editor

In current practice, flowsheets are frequently created using drawing tools or
CAD systems. These tools provide no specific support for chemical engineer-
ing, and often confront the user with superfluous functionality. In competition
to these pure drawing tools, dedicated tools for chemical engineering, such
as block-oriented simulators (Aspen Plus, PRO/II) have been augmented by
flowsheet user interfaces. This pragmatic trend reflects the close relationship
between flowsheet design and mathematical models, and provides the user
with considerable support as long as he does not have to leave the boundaries
of the tool. The enrichment of simulation programs with flowsheet functional-
ity has indeed led to monolithic, hardly maintainable software systems, which
rarely provide open interfaces for extensions. As a consequence of such“islands

Using Developers’ Experience in Cooperative Design Processes 195

SteadySteady--State Simulation (Pro/II, Aspen Plus)State Simulation (Pro/II, Aspen Plus)Extruder Design (Morex)Extruder Design (Morex)

Costing (Excel)Costing (Excel)DynamicDynamic

ModellingModelling

((ModkitModkit))

Dynamic Simulation (Dynamic Simulation (gPROMSgPROMS))

Extruder Data Process

Block Diagram

Simulation

Parameter

Simulation

Specification

Simulation

Results

Mass Balances

Cost Calculation,

coarse-grained

Cost Calculation,

fine-grained

Structural Model

Behavioral Model Material Model

Specification for

Dyn. Simulation

Linearized

Behavioral Model

Design (Flowsheet Editor)Design (Flowsheet Editor)Design (Flowsheet Editor)

Abstract Flowsheet Diagram

Process Flowsheet Diagram

Fig. 3.5. Role of the flowsheet in the overall IMPROVE scenario

of automation”, flowsheet information is repeatedly entered manually, e.g. if
different simulators are used within one project. Moreover, as flowsheet editors
of common simulators do not allow to annotate individual flowsheet elements
with, e.g. cost calculations or safety remarks, isolated flowsheet documents
emerge in these working environments, too.

The development of a completely new flowsheet editor is a formidable task,
and the result is unlikely to be able to compete with the rapid advances in
chemical engineering design tools. Our process-integrated flowsheet editor has
therefore been realized according to the a-posteriori philosophy of PRIME, on
top of an existing tool. None of the commercially available flowsheet tools ful-
filled the requirements concerning flowsheet refinement and extensible type
systems for flowsheet components. Thus, the existence of open interfaces,
which allow the addition of the above-mentioned functionality (besides the
process integration), became the most important criterion during the choice
of the tool. We finally decided for Microsoft VISIO [845], a widely used tool
for creating technical drawings. VISIO’s strengths lie in its comprehensive and
extensible symbol libraries and its add-on mechanisms based on COM inter-
faces. These interfaces provide to external extensions a fine-grained access to
VISIO’s internal object model.

Figure 3.6 depicts the coarse-grained architecture of the flowsheet editor
and a snapshot of its user interface. The VISIO based flowsheet tool fulfils the

196 M. Miatidis, M. Jarke, and K. Weidenhaupt

Flowsheet

Database

PDW

Process Integration

Wrapper

Data Model

VISIO

E
x

t
e

n
d

e
d

F
u

n
c

t
i
o

n
a

l
i
t
y

Fig. 3.6. Architecture and user interface of the flowsheet editor

following essential functionalities from a chemical engineering perspective for
constructing and maintaining flowsheets:

Complex Refinement Structures. Flowsheets are refined across various hier-
archical abstraction levels and depicted in specific representation formats.
In the context of the IMPROVE project, we are mainly interested in two
of the three commonly used flowsheet variants: the abstract flow diagram
(AFD) and the process flow diagram (PFD). Thus, the flowsheet editor
supports the full hierarchy of complex stepwise refinement operations from
AFD to PFD and assures a set of consistency constrains in order to pre-
serve their semantic correctness.

Rich and Extensible Type System. The organization of flowsheet compo-
nents in an expressive type system is an indispensable prerequisite for
guiding consistent flowsheet refinement. However, the richness and the
rapid growth of knowledge goes beyond the abilities of typical object-
oriented type systems: there are many conceivable process steps and pos-
sible stream types. Thus, the type system of the flowsheet provides a se-
mantically rich characterization of individual flowsheet components that
is extensible. The chemical engineer is empowered to define his own flow-
sheet components and characterize them semantically in order to promote
their reuse in future projects.

The data model of the flowsheet editor is closely related to the partial models
Chemical Process and Plant of the conceptual IMPROVE product data model
(see Sect. 2.2). Its design was also influenced by emerging data exchange
standards in chemical engineering (e.g. the process data exchange interface
standard PDXI in the STEP context [623]).

Using Developers’ Experience in Cooperative Design Processes 197

VISIO’s user interface and the data model layer are used by the enhanced
functions modeled as method fragments, for the realization of operations such
as creating a new refinement within the same flowsheet, or navigating inside
existing hierarchical refinement structures.

The Integrated Flowsheet-Centered Architecture

The fact that the flowsheet plays a prominent role in manifold development
activities (Fig. 3.5) leads to two important requirements for a design support
environment. From a developer’s perspective, the flowsheet editor should be
seamlessly integrated into the design lifecycle (e.g. simulation, costing and
safety engineering), and the corresponding tools used in each design step. Of
course, tight coupling between tool functionality of different working domains
should be avoided in order to remain sufficiently flexible and not to fall in the
trap of monolithic solutions. Further, in order to support the central role of
the flowsheet during engineering design, the flowsheet editor should serve the
role of a unified interface for the exchange of data across other design support
tools.

Process integration offers the potential to couple different tools more flex-
ibly and to provide high quality support for the developer at the same time.
Explicit, easily modifiable method fragments guide the developer during ac-
tivities across multiple tools, while the tools themselves only cover a limited
scope. In this way, process integration complements data integration mech-
anisms, which maintain structural consistency between documents of differ-
ent tools, and component-based approaches such as the CAPE-OPEN ap-
proach [72].

In order to support the central role of flowsheets during engineering design,
we have implemented a prototypical flowsheet-centered architecture (Fig. 3.7).
The central element of this architecture is the VISIO based flowsheet editor
that, based on the PRIME process integration mechanism, is operationally
linked to other domain-specific tools and acts as the prominent communication
medium among developers.

Within the database of the flowsheet editor, only prominent information
about the flowsheet elements is stored, including characteristic parameters of
process steps and equipment items as well as stream and piping information.
This information needs to be shared for the development of further mathemat-
ical models inside modeling tools, the cost analysis of different process parts,
as well as the specification of steady-state dynamic simulations in simulators.

To this end, we have partially process-integrated the generic Microsoft
Excel application [844] for the user-triggered calculation of the mass flow in
streams of flowsheet process groups. In a similar manner, a partial integration
between the flowsheet editor and the MOREX dedicated simulation tool [147]
has been realized for the transfer of information concerning the simulation of
compounding extruders.

198 M. Miatidis, M. Jarke, and K. Weidenhaupt

Process Engine

Flowsheet Data Models

Process Tracer

Process Guide

Flowsheet

Database

Process Integration Wrapper

Component

Database

Decision Editor

PRIME External Components

Administration System

Frontend

ASPEN Plus

Guidance Integrator

Process

Data

Warehouse

E
n

h
a
n

c
e

d

F

u
n

c
t
i
o

n
a

l
i
t
y

PRIME Tools

Partially Process-Integrated

Tools

MOREX

Microsoft Excel

Dependency Editor

Fig. 3.7. Integrated flowsheet-centered architecture

Some domain-specific tools, do not provide at all open interfaces for the expo-
sure of their functionality for a potential process integration (e.g. the Aspen
Plus block-oriented simulator [516]). For these cases, we have used integra-
tors for exchanging information and ensuring consistency between data stor-
ages and documents [27]. Specialized integrators have also been used for the
definition of mapping rules between the constructs of the process-integrated
flowsheet editor and the AHEAD administration system [212]. Both of these
cases of integration involve extensive synergy with other subprojects, and are
described in Sect. 5.5.

The overall environment is complemented by a number of generic PRIME
interactive tools for several other supplementary aspects (see [469] for a de-
tailed description):

1. A decision editor allows the capture of the developer’s design rationale
though documenting the decisions taken during choice contexts together
with the arguments that led to them (cf. Sect. 2.5). More specifically, the
developer can set an initial issue, one or more positions about it, and
support or reject each of them through pro or contra arguments.

Using Developers’ Experience in Cooperative Design Processes 199

2. A process guide gives advice to engineers how to use poorly integrated
tools, and allows them to document the use of such tools with respect to
conceptually defined process guidance.

3. A process tracer allows the developer to explore the complete history of
a process, organized chronologically and hierarchically according to the
decomposition of contexts and with linkage to the objects created.

4. A dependency editor allows local analysis and editing of dependencies of
product objects with other process objects.

Contributions to the IMPROVE Scenario

The benefits of the direct process support have been validated on the basis
of the Polyamide-6 conceptual design scenario used in the IMPROVE project
(cf. Sect. 1.2). In the following, we briefly deal with three parts of the overall
scenario.

Guidance through Flowsheet Refinements

During the creation of a flowsheet diagram, many variants have to be consid-
ered, e.g. the reaction part can be realized through a stirred tank reactor, or
a tubular reactor, or the interconnection of these reactor types with an inter-
mediate separator. Method fragments can guide the process by automatically
generating the chosen alternatives.

The upper part of Fig. 3.8 shows the first refinement level of the Polyamide-
6 design process in the flowsheet editor. The reaction expert expresses his
decision to refine the Reaction process group by selecting it and activating
the “Refine” menu item from the menu bar. Then, a suitable choice context
becomes active that retrieves from the PDW the four possible refinement al-
ternatives, and the “Guidance” menu gets automatically adapted to display
their intention. Additionally, two items with the respective intentions “Gener-
ate all Alternatives” and “Quit Refinement” are displayed. Lets suppose that
the developer selects the menu item to generate all alternatives. In accordance
with the definitions of the method fragment, automatically four groups of re-
finements for the Reaction process group are inserted into the flowsheet editor
window (lower left part of Fig. 3.8). As a final step, the method fragment re-
quests the developer to document which of these alternatives should be first
examined (lower right part of Fig. 3.8).

Tool-Spanning Method Fragment

Process integration offers the potential to couple other tools participating in
the design with the central flowsheet editor. We show, how a method fragment
can guide the export of flowsheet process group information to the Excel tool
for the calculation of the mass balance of the process.

Figure 3.9 shows the enactment of a method fragment involving multiple
tools. In the flowsheet editor (left), the developer has selected the refinement

200 M. Miatidis, M. Jarke, and K. Weidenhaupt

Refine by CSTR

Refine by PFR

Refine by PFR-CSTR

Refine by CSTR-CSTR

Generate all Alternatives

Quit Refinement

Fig. 3.8. Method fragment guided flowsheet refinement

1

2

Process Engine

< Method Fragment >

Simulation

in Excel

3

4

Fig. 3.9. Method fragment guided tool interoperability

Using Developers’ Experience in Cooperative Design Processes 201

PC Specify Block <CSTR>

CC Specify Holdup

PC Specify Simulation Model

EC Specify Chemical Components

EC Specify Thermodynamic Method

EC Specify Pressure

EC Specify Temperature

EC Specify Volume

PC Specify Stream <Feed>

EC Specify Mole <CL>

EC Specify Mole <H20>

EC Specify Pressure

EC

Initial Search for Operation Point

EC Run Simulation

Sequence

Specify Temperature

EC No Vapor/Liquid

Keine Modellierung des F -/D-Gleichgewichts

Simulation Result CSTR

Simulation Model CSTR

PC Specify Block <CSTR>

CC Specify Holdup

PC Specify Simulation Model

EC Specify Chemical Components

EC Specify Thermodynamic Method

EC Specify Pressure

EC Specify Temperature

EC Specify Volume

PC Specify Stream <Feed>

EC Specify Mole <CL>

EC Specify Mole <H20>

EC Specify Pressure

EC

Initial Search for Operation Point

EC Run Simulation

Sequence

Specify Temperature

EC No Vapor/Liquid

Keine Modellierung des F -/D-Gleichgewichts

Simulation Result CSTR

Simulation Model CSTR

PC Specify Block <CSTR>

CC Specify Holdup

PC Specify Simulation Model

EC Specify Chemical Components

EC Specify Thermodynamic Method

EC Specify Pressure

EC Specify Temperature

EC Specify Volume

PC Specify Stream <Feed>

EC Specify Mole <CL>

EC Specify Mole <H20>

EC Specify Pressure

EC

Initial Search for Operation Point

EC Run Simulation

Sequence

Specify Temperature

EC No Vapor/Liquid

Keine Modellierung des F -/D-Gleichgewichts

Simulation Result CSTR

Simulation Model CSTR

PC Specify Block <CSTR>

CC Specify Holdup

PC Specify Simulation Model

EC Specify Chemical Components

EC Specify Thermodynamic Method

EC Specify Pressure

EC Specify Temperature

EC Specify Volume

PC Specify Stream <Feed>

EC Specify Mole <CL>

EC Specify Mole <H20>

EC Specify Pressure

EC

Initial Search for Operation Point

EC Run Simulation

Sequence

Specify Temperature

EC No Vapor/Liquid

Keine Modellierung des F -/D-Gleichgewichts

Simulation Result CSTR

Simulation Model CSTR

Fig. 3.10. Traceability of process steps and decisions

of a process group (step 1). Instantly, the situation based on this product is
matched by the process engine, and menu items that show the tool actions
as well as method fragments that can be applied to the selected situation are
enabled. The developer chooses the menu item “Simulation in Excel” (step 2).
As this menu item is not related to an action provided by the flowsheet editor,
a corresponding method fragment is enacted by the process engine (step 3).
According to the definition of the method fragment, the process engine invokes
Excel (right) and creates a spreadsheet which mathematically calculates the
mass balance of the selected process group.

Use of Process Traces

The documentation of major decisions taken during the design contributes
to the better understanding of the overall design. We show, how captured
process traces can help to improve the unsuccessful modeling decision for the
simulation of a stirred tank reactor.

After the simulation of the reaction process through a continuous stirred
tank reactor (CSTR), the laboratory expert is requested to make experiments
on the simulation results. At the end of the experiments, the expert realizes

202 M. Miatidis, M. Jarke, and K. Weidenhaupt

that discrepancies exist between the results of the laboratory and the simu-
lation. In order to find the possible false decisions that led to this deviation,
he traces back to the steps and decisions taken during the simulation. In the
dependency editor, he selects the icon “Simulation Result CSTR” (left upper
part of Fig. 3.10) and selects the menu item “Show Trace”. Then, a process
tracer window opens that displays the hierarchical decomposition of the re-
spective trace chunk (right part of Fig. 3.10). By browsing through the trace
chunk elements, the expert can recognize the wrong decision that has been
taken during the simulation, and he can use the decision editor (lower left
part of Fig. 3.10) to revise it and provide pro and contra arguments.

3.1.4 A Critique

The first experiences gained by the application of our approach on the IM-
PROVE Polyamide-6 scenario suggested that the direct process support of-
fered significant assistance to the work of the developer. However, some short-
comings showed up that provided the starting point for extensions and im-
provements in the next two phases.

Our initial approach for process support has been provided across multi-
ple design tools intended to be used by a single human actor (developer or
groups of developers) at a single technical workplace. This hypothesis does not
match well with the highly cooperative nature of engineering design. Thus, two
prominent requirements were posed for the integration of multi-user aspects
to the existing infrastructure. From an implementation perspective, multi-user
support means the exploitation of new standards and technologies allowing
distribution of the process support across multiple technical workplaces. From
a modeling perspective, process models should get extended in order to cap-
ture the user dimension and the context of the information that is allowed
to be transferred from one user to the other, based on enterprise rules and
policies.

The main research goal of the first period had been the provision of direct
process support by means of an a-posteriori process integration of interactive
design tools. The developed approach was illustrated through the full pro-
cess integration of the VISIO based flowsheet editor. However, our experience
showed that the realization of the VISIO wrapper has been a very labor-
intensive and lengthy task of high expenditure. Moreover, our generic tool
wrapper architecture could not sufficiently accommodate tools only partially
supporting the six APIs required for full process integration. The integration
of such tools, is especially vital for the thorough support of the demonstrative
Polyamide-6 scenario, where the complexity lies not only in the flowsheet de-
sign during the synthesis phase, but also in the exchange of information with
the analysis steps taking place in various simulation tools.

Last but not least, the trace visualizer developed during the first phase
displayed in a chronologically and hierarchically organized way the sequence
of process actions traced during the lifecycle of a design process. It was mainly

Using Developers’ Experience in Cooperative Design Processes 203

intended to be used by certain specialists for the observation of operational
sequences of actions of developers and trace of design failures and inconsis-
tencies. However, domain experts pinpointed us the great benefit of the use
of such kind of tools also by the designer himself. Due to the creativity of
design, some parts of it are not clearly-defined and sometimes, especially for
the inexperienced developer, the path to be followed is ambiguous and full of
assumptions. To this end, specialized tools can be developed for the selective
retrieval and exploration of best practices in product design from the past,
complementing the process support based on well-known method fragments.

3.1.5 The Reengineered Design Support Environment

During the rest of the project (2000–2006), we have improved and extended
the original concepts of our approach based on the above considerations. In
this section, we detail the key ideas behind the reengineered design support
environment, and we show how they have been validated on extended case
studies in the IMPROVE context.

Cooperative Extensions to Direct Process Support

Engineering design involves an intricate interplay of conceptual synthesis of al-
ternative requirements and design configurations, preliminary impact analysis
of these alternatives using complex simulations, and human decision making.
Such activities exhibit a highly multidisciplinary character and thus, cannot be
carried out by a single person or organization. Instead, they employ numerous
human performers carrying diverse knowledge backgrounds and heterogeneous
skills.

Initially, each developer has a set of goals in his mind that reflect the
strategic contributions of his assigned role to the complex interplay of design
activities. These goals can be shared with other developers (e.g. belonging to
the same engineering team), or even depend on the achievement of other goals
by others (e.g. during cross-disciplinary activities). In the course of design,
cooperation arises inside or across functional teams and company boundaries
in order to synergistically attain common goals that otherwise would have
been too complex and time-consuming to be attained.

Different empirical studies have shown that an engineer typically spends
as much as 35-50% of his whole daily time while cooperating with his col-
leagues [221]. Nowadays, cooperation has become even more intense due to
increased global competition that forces manufacturing companies to develop
even increasingly complex products in even decreasing times. As a response to
these demands, today’s companies require even more cooperative work across
cross-functional teams along their supply chains resulting to the establishment
of extended enterprises. Thus, the importance of cooperation in modern de-
sign processes cannot be underestimated. Indeed, cooperation and teamwork

204 M. Miatidis, M. Jarke, and K. Weidenhaupt

has been extensively covered by several systematic approaches for design excel-
lence and improvement ranging from the Total Quality Management paradigm
to the more modern Participatory Engineering and Concurrent/Simultaneous
Engineering approaches that try to bring together design and manufacturing
activities [576].

As a consequence, cooperation inside the multidisciplinary settings of engi-
neering design is inevitable, and support is demanded for the efficient and ef-
fective dissemination of information among developers. In order to adequately
capture the cooperative character of design, we have to take into considera-
tion the various facets of process information and goals from each individual
developer’s viewpoint. These facets provide answers to questions of the type
what work has to be done, who is going to do it, when should it be done and
how should it be done. Based on these considerations, a modeling formalism
capturing cooperative work should underlie the following aspects [619]:

• functional aspects, describing what process steps are to be followed, and
what flow of information will take place during them;

• behavioral aspects, describing how something has to be done (i.e. routing
information of process steps and their flow of information), as well as when
it can happen (i.e. preconditions and criteria);

• informational aspects, detailing what kind of data will be produced, con-
sumed or transformed by a process step;

• organizational aspects, outlining where and by whom a process step is
going to be realized.

A modeling language (i.e. metamodel) that combines the above four aspects,
as well as their domain specific interdependencies and constraints, is able to
consistently describe the design process. Our existing NATURE based envi-
ronment metamodel captures the ways of working that support the enactment
of developers while cooperating. In order to touch cooperative work, it will
have to be extended with further elements of a cooperation metamodel that
describes the above aspects. The cooperation metamodel is compatible with
the basic elements of the C3 formalism for the description of cooperative work
that has been developed in the IMPROVE project (see Subsect. 2.4.4). The
extended environment metamodel in shown in Fig. 3.11.

The logical pieces of work that require the support of human and machine
resources for their execution are captured in the task. A task represents the
elementary activity level inside which the real work happens. High level tasks
corresponding to management activities refined until elementary tasks are
only interesting for systems of the administration level (see Sect. 3.4) and are,
thus, not considered.

Each task requires a number of resources in order to be carried out. We
distinguish two kinds of them: human actors that perform a task and the en-
gaged software tool categories. Human actors are indirectly associated to their
assigned tasks via their roles. Roles are distributed according to the knowledge
background, skills and assigned responsibilities of the human actors. During

Using Developers’ Experience in Cooperative Design Processes 205

Context

Situation Intention

*

1
contains_situation

1

*

contains_intention

Executable

Context

Choice

Context

Plan

Context

2..*

*

2..*

*

has_subcontext

Tool

Category

ActionProduct

*

*

based_on

**
has_input

* *

has_output

* *

changes

1..*

1..*

displays_product

1..*

1..*

provides_action

Command

Element

1..*1..*
provides_ce

*

1

provides_ec

*

1

provides_cc* *

applied_by

*

*

displays_intention

*

*
produces_product

*

*

consumes_product

*

*

engages_tool

*

*

from_task

*

*

to_task

* 1
assigned_to_role

*

*

plays_role

Role

Human

Actor

Selective

Routing

Parallel

Routing

Sequential

Routing

Routing

*

* has_intention

*

*

guided_by_cc

Alternative

Argument

*

1

pro

1

*

contra

Task

*

1

has_mapped_context

*

*

has_subproduct

 Associations of the

Extended Environment

Metamodel

Identical

Concepts

Cooperation

Metamodel

Environment

Metamodel

Fig. 3.11. Extended environment metamodel

the task enactment, human actors and computer agents work on objects of
the real world (e.g. project specifications, flowsheets, simulation results and
mathematical models). All these objects are captured as products produced
or consumed by a task.

The routing element models the different ways of control flow organization
among tasks. Three basic routing types (specializations) are distinguished: se-
quential routing when the tasks are carried out one after the other, parallel
routing when more than one tasks can be active at the same time (i.e. AND-

206 M. Miatidis, M. Jarke, and K. Weidenhaupt

split and AND-join) and selective routing for the situation when a specific
task among several others has to be selected based on the evaluation of pre-
conditions (i.e. OR-split and OR-join).

The integration of the NATURE based environment metamodel with the
cooperation metamodel has been built upon the identical concepts of product
and tool category, and three additional relationships:

• Each developer is provided with method guidance while enacting his as-
signed tasks. This method guidance occurs through the enactment of spe-
cific methodologies described as contexts by the NATURE process meta-
model. Thus, a has mapped context relationship represents the possible
contexts that guide the enactment of a task.

• At the cooperation level, products are usually considered as pieces of in-
formation at the level of document. Method guidance, on the other hand,
requires a further refinement of the product to its comprising parts that
are changed by tool actions. Thus, there was a need to bring the product
decomposition relationship has subproduct to the metamodel level in order
to distinguish the two cases.

• The intention of the NATURE process metamodel represents the goal that
a developer wants to attain. In order to bring these goals to the cooperation
level and capture the decisions of developers while cooperating, we added
the has intention relationship between a human actor and the context of
his intention.

To sum up, the extended environment model presented above is based on
the integration of a number of concepts that model selected aspects of the
cooperative work among several technical workplaces, and the existing PRIME
environment metamodel for fine-grained and flexible method guidance inside
each individual technical workplace. The integration of the two metamodels
has been realized through three prominent associations that preserve:

• Data integration: the products worked upon by a task are related to the
products transformed by the tools engaged during the task.

• Control integration: an external coordination system can directly influence
the work at a technical workplace by directly requesting the enactment of
a method fragment mapped to the actual task.

• Consistency management : monitoring information can flow from process-
integrated tools to the coordination level.

• Confidentiality: the plan contexts that the method guidance provided to a
developer is based on, are restricted to the allowed ones (i.e. plan contexts
whose intention is associated with him).

A Comprehensive Framework for Process Integration

As mentioned earlier, tools can offer different degrees of accessibility to their
internal structures and functions though the APIs they expose. At one ex-
treme, some of them might not allow at all their external control and thus,

Using Developers’ Experience in Cooperative Design Processes 207

Process Integration Degree

Full

Parameterization

Manipulation

Control

Loose

(Re)Implementation
T

o
o

l
In

te
ra

c
ti

o
n

 L
e
v
e
l

Fig. 3.12. Possible degrees of process integration

their process integration potential is restricted to a simple starting of the tool
with command-line parameters (like the one supported by the WFMS refer-
ence metamodel). At the other extreme, though not so often, a tool might
provide facilities for external invocation of its services and changes of its user
interface, or send back notifications concerning its internal state. Tools of
this last class are required by the original PRIME process integration mech-
anism. The most interesting and usual case though, is that of a tool that lies
somewhere in the middle of the spectrum. Such a tool, does not offer all the
necessary APIs for process integration but only a subset of them.

In order to address the problem of process-integrating the latter case of
tools that do not fully comply to all PRIME requirements, we extended the
original process integration framework with ideas towards a more flexible and
easily adaptable mechanism for the integration of a broader range of tool
categories. To this end, we have identified a number of discrete interaction
levels that can be established with external tools and assigned to them cor-
responding degrees of process integration (cf. Fig. 3.12). The horizontal axis
represents the process integration spectrum from non existing and loose, up
to the extreme of full. The vertical axis represents the four possible levels of
interaction with a tool, inspired by [999].

At the very first level of tool interaction (parameterization), a tool is em-
bedded in the process as a black box. The only possible ways of interacting
with it is by providing it with input information when it starts up. Such input

208 M. Miatidis, M. Jarke, and K. Weidenhaupt

Table 3.1. Correspondence between tool interaction levels for process integration
and PRIME APIs.

Interaction Level/API A1 A2 A3 A4 A5 A6

Parameterization
Control x x
Manipulation x x x x x x
Reimplementation x x x x x x

is usually given in the form of command line parameters that either initialize
the internal tool state, or activate specific execution modes, or even load a
specific product. After the tool has been started, it provides no means for
its external control (e.g. triggering of a service inside it), or retrieval of no-
tification concerning the interaction of the user with its user interface. Thus,
the potential of such degree of process integration is limited to the on-time
opening of the tool. When the tool uses an open product format, then specific
product information can be loaded inside it too.

In order to offer method guidance to such a poorly-integrated tool, albeit
externally, a specialized guidance tool that is part of the generic PRIME archi-
tecture called ProcessGuide can be employed. The idea behind ProcessGuide
is similar to that of agenda managers widely used by workflow management
systems. The interface of ProcessGuide provides the user with information
concerning the available contexts that he can manually execute inside the
tool. It is, then, the responsibility of the user to correctly execute the context
inside the tool, and document his action back in the ProcessGuide. Since the
ProcessGuide has been developed with process-integration in mind (a-priori),
the process engine can virtually control the consistency of the guidance inside
the tool and automatically trace the user’s actions. Nevertheless, experience
has shown that this kind of process support is highly complex and error-prone
because it depends on the user to firmly and on-time report his execution
progress [371].

With the second level of tool interaction (control), we introduce the notion
of loose process integration. Loose process integration corresponds to the most
often addressed case of commercial tools that restrict their external interac-
tions to those of service invocation and notifications for tool events. Such
tools provide service invocation (A1) and feedback information (A2) APIs
(Table 3.1), but they provide no means for extending their user interface with
new command elements (A3), or increasing their process sensitivity by high-
light product shapes or command elements and returning feedback concerning
their selection (A4, A5 and A6).

Using Developers’ Experience in Cooperative Design Processes 209

Thus, a loosely process-integrated tool is not able to provide by itself
integrated method guidance based on method definitions. The guidance of
the user inside the tool is restricted by the interaction patterns prescribed by
its tool vendor. Nevertheless, the loose process integration of a tool can bring
benefits in the following two cases:

• Tool-spanning method fragments (plan contexts) offered as guidance alter-
natives inside a fully process-integrated tool, can couple it with a loosely-
process integrated one, and allow control and/or information flow from
one to the other.

• Traces of specific tool actions captured from a loosely process-integrated
tool can be used as signals of situation matchings that, then, initiate the
execution of plan contexts.

The third degree (manipulation) captures fully process-integrated tools like
the VISIO based flowsheet editor, that can be fully manipulated both in terms
of interactions with tool services and command elements. A fully process-
integrated tool exploits all six APIs (Table 3.1) and is able to faithfully follow
the process definitions and accordingly guide the user when he demands it.
Obviously, full process integration brings the highest potential level of inte-
grated method guidance, albeit requires ideal tools that are not so often found
in the market.

For completeness reasons, the last degree ((Re)implementation) captures
the tools that have been implemented from scratch, or have been largely reim-
plemented in order to obey in a hardwired way their intended process-aware
behavior (a-priori process integration). (Re)Implementation guidelines for the
a-priori process integration of tools, as well as external guidance techniques
for tools allowing limited interaction at the level of parameterization have
been studied in the PRO-ART framework that preceded PRIME [366]. Nev-
ertheless, in the context of the IMPROVE project we are not interested in
this case.

The described process integration framework is complemented by a new
generic tool wrapper architecture. Our goal was to reengineer the existing
one in order to reduce the effort expenditure of the wrapper creation process
and make it flexible enough to accommodate both fully and loosely process-
integrated tools. The UML 2 component diagram [880] shown in Fig. 3.13
gives an overview of the major pluggable components comprising the new
wrapper architecture.

In the new architecture, the burden of maintaining context-specific infor-
mation has moved to the process engine. Wrappers are able to comprehend
strictly tool-specific information. Thus, each time that context information
has to flow to a tool, a module inside the process engine is responsible to
convert it to tool-specific calls and forward them to the appropriate tool. The
state manager is responsible for the maintenance of the wrapper’s internal
state based on the exchange of messages with the process engine using precise
interfaces. The action adapter maintains mappings between actions in the tool

210 M. Miatidis, M. Jarke, and K. Weidenhaupt

Tool Wrapper

State Manager

Action
Adapter

GUI
Adapter

Software Tool

A1

Data
Converter

IToolControl IToolNotify

A2 A3 A6A4 A5(Tool-Specific Protocol)

Fig. 3.13. New component-based tool wrapper architecture

model and services of the wrapped tool for the dispatching of service invoca-
tions and receival of feedback information (A1 and A2 APIs). Similarly, the
GUI adapter uses the appropriate APIs provided by the wrapped tool in order
to send or receive messages concerning changes in its user interface (A3-A6
APIs). The data converter is responsible for the conversion of the internal tool
product format to the neutral one used in the PDW, and vice-versa. Obvi-
ously, the architecture for the case of a loosely process-integrated tool can be
reduced to the first two or three components.

Improvement-Oriented Reuse of Captured Experiences

So far, we have contended that because of the high degree of creativity in
engineering design, it cannot be fully prescribed in advance. Our PRIME
based design support environment tackles this problem by providing effective
process support based on the explicit knowledge of well-understood method
fragments where an agreed way of working dominates engineering practice.
The PRIME process support chain can be summarized as follows (Fig. 3.14):

1. The process support chain starts with the knowledge acquisition phase.
Here, domain experts (i.e. process engineers) define the specifications, re-
quirements, and design methodologies of the addressed design scenarios.
This domain knowledge is, then, formalized as NATURE based method
fragments that are stored in a process repository.

Using Developers’ Experience in Cooperative Design Processes 211

Process

Repository

Trace

Repository

Process

Engine

Process-Integrated

Tools

Method

Definitions

Process

Traces
interpreted

by

guides

enactment

generate

stored in

Domain Experts Developers

provide know-how use

stored in

Fig. 3.14. PRIME process support chain

2. Method definitions are integrated with tool models in environment mod-
els. These environment models are enriched with runtime semantics (e.g.
Petri-Net extensions) and can get mechanically interpreted by the process
engine, when method guidance is demanded.

3. The interpretation of environment models can control the enactment at
the technical workplace through the process-integrated tools that the hu-
man actor interacts with.

4. Design history inside process-integrated tools is automatically recorded
and organized in trace chunks using a concrete traceability model. Finally,
the captured trace chunks are stored in a trace repository.

The method definitions stored in the process repository of PRIME represent
the capitalized knowledge of the company that is provided to its workers
on demand. This knowledge constitutes a valuable strategic asset, that is
disseminated to the designers in appropriate situations through their process-
integrated tools. Further, the stored trace chunks at the end of the chain
describe the real design lifecycle in a systematic way. Except for the prescribed
process parts, they further capture the “unrestricted” parts where no well-
known way of working exists and the human actor’s decisions are solely based
on his experience background.

As a consequence, PRIME can be seen as a knowledge-based engineering
framework that facilitates the computer-based internalization and external-
ization knowledge conversion processes, according to the SECI model of Non-
aka and Takeuchi [866]. The internalization of explicit knowledge (method
definitions) is supported via the method guidance provided through process-
integrated tools. On the other hand, externalization of human choices, men-

212 M. Miatidis, M. Jarke, and K. Weidenhaupt

Cooperative

Design Practice
Design Know-How

externalization

internalization

socialization combination

Method

Guidance

Traceability

Experience

Reuse
Process Repository

(process definitions, traces)

Process-Integrated

Tools

Fig. 3.15. Cooperative knowledge management in engineering design practice and
PRIME contributions

tal models and technical skills (the so-called tacit knowledge) is empowered
through traceability. Concerning the other two knowledge creation processes,
the socialization process is outside the scope of PRIME, since it requires some
kind of social network and collaboration environments. The explicit knowl-
edge maintained by PRIME is provided through external processes based on
interviews, observations and discussions between domain experts. Thus, the
process of combination is neither supported.

Figure 3.15 puts the SECI model in engineering design context, using con-
cepts from the cooperative information systems framework described in [186].
We distinguish the cooperative design practice domain where the actual de-
sign process is being enacted, and the design know-how domain that captures
the formalized company knowledge. The stored traces at the end of the in-
ternalization process, reflect the experiences of developers while working with
their software tools (operational knowledge).

The developer can greatly benefit from reusing knowledge extracted di-
rectly from traces of the past that apply to his current context. Observation
and comparative analysis of the captured traces can set the foundation for
experience-based dissemination and reuse of design knowledge: in the short
term, for empowering the human actor to reuse best practices abstracted from
design experiences and improve his mental models and technical skills; in the
long run, for providing accountability of good and bad practices, as well as
lessons learned.

As a result, we were challenged to provide support to the developer fa-
cilitating the context-based internalization of design knowledge clustered in
experiences from the past (captured traces). To this end, we extended the
original PRIME support chain according to a reuse infrastructure illustrated
on Fig. 3.16. Specialized reuse interfaces constitute the cornerstone of this in-
frastructure, which can provide solution or advice for the actual situation on
demand , by utilizing knowledge of recorded experiences from the past. The

Using Developers’ Experience in Cooperative Design Processes 213

Trace Repository

Process-Integrated
Tool

retain

request

reuse/revise

present
Interface for

Reuse of Traces

1

2

3

4

5

query/retrieve

Fig. 3.16. Infrastructure for the reuse of captured traces

very essence of a recorded experience is represented using the basic NATURE
formalism:

• A situation describes the process state in which the experience was cap-
tured.

• An intention reflects the sought goal.
• A context encapsulates the intended solution.
• A product represents the assets that the solution worked upon.

Whenever the developer feels like he would benefit from experience-based
support, he can trigger the appropriate reuse interface of the infrastructure
on demand. Then, support is provided following the workflow of five steps
shown in Fig. 3.16:

1. Request : Initially, the developer requests the reuse interface for support.
The interface is embedded inside PRIME and, is thus able to retrieve the
actual situation of the developer’s work that is an important criterion for
the identification of the relevant stored traces.

2. Query/Retrieve: The reuse interface queries the trace repository and re-
trieves the stored traces that fit the situation at hand. The query is pro-
cessed and executed by an analysis module having direct access to the
trace repository (not shown in Fig. 3.16)

3. Present : The retrieved results (if any) are presented to the developer
through the reuse interface using an appropriate representation formal-
ism. If the developer is interested in process experiences, the respective

214 M. Miatidis, M. Jarke, and K. Weidenhaupt

chunks are organized chronologically and hierarchically according to their
contextual decomposition. Product experiences are displayed in a user-
friendly hierarchical way showing the product decomposition along with
a graphical visualization (when applicable).

4. Reuse/Revise: The developer can, then, decide to reuse the traces or revise
them inside his process-integrated tool. In the case that he decides to
revise a proposed solution, he can optionally document his decision using
the PRIME decision editor.

5. Retain: Any previous experiences reused (without or after revision) are
automatically recorded by the process-integrated tool and their trace is
stored in the trace repository. From now on, they also constitute pieces
of recorded experience that can be provided for support to analogous
situations in the future.

Validation

In the following, we illustrate the application of the new PRIME ideas on
some demonstration examples from the IMPROVE project.

Traceability across Workplace Boundaries

By integrating the cooperative work perspective to our NATURE based meta-
model, we have been able to extend the PRIME process support in order
to support the cross-functional interplay among developers. More precisely,
PRIME is able to remotely trace the process enactment at several workplaces
and transfer information from one to the other, when needed, using a shared
ontology that obeys company policies and rules. In order to show the effec-
tiveness of the distributed process support, we have implemented a tool called
cooperation console that is able to visualize the workflow of elementary activi-
ties of the design process, provide information concerning its execution status,
and to unfold the design history for each developer.

Figure 3.17 shows a snapshot of the PRIME cooperation console. The
simplified workflow shown for demonstrative reasons, is described using the
C3 formalism (cf. Subsect. 2.4.4). The tasks with black border have already
been delegated to the developers, whereas the ones with gray border are still
inactive. The highlighted task “1D-Simulation of Compounding Alternatives”
is currently active. By double clicking on any task, a pop-up window opens
that displays the design history of the developer during that specific task
(lower left part of the figure). In order to protect confidential data, only process
traces of specific tasks are shown to specific classes of developers who use
this tool, according to a classification schema of information. For example,
a developer assigned with a central managerial role, can observe the design
history of the whole process, whereas a group leader can only access the design
history of his own group members.

Using Developers’ Experience in Cooperative Design Processes 215

Fig. 3.17. User interface of the cooperation console

Loose Process Integration of MOREX

The concept of loose process integration has been validated with the prototyp-
ical integration of the one-dimensional simulation tool MOREX. Concerning
the requirements for process integration, MOREX, as typically the case for a
broad range of commercial tools, exposes only the A1 (service invocation) and
A2 (feedback information) APIs using COM interfaces. Based on these APIs,
we have built a MOREX wrapper employing on our new generic wrapper ar-
chitecture with little effort. Since MOREX maintains its product information
in XML files, the data exchange of the wrapper with the process engine has
been realized based on a standardized XML interface format. Simultaneously
with the process integration of MOREX, we have extended the original hier-
archical model of the compounding extruders inside the flowsheet editor with
in intermediate level of functional zones that are refined by screw element
types, which can then be simulated inside MOREX.

The contribution to the overall scenario is summarized through the three
process steps shown in Fig. 3.18. Suppose that the developer has finished pro-
cessing the initial version of the extruder functional zones in the flowsheet
editor. This information is sent, under the control of the process engine, to
MOREX (step 1). MOREX receives the extruder configuration, along with
material and process parameters via XML. The engineer, then, starts the

216 M. Miatidis, M. Jarke, and K. Weidenhaupt

Process Engine

Flowsheet Data Models

Flowsheet

Database

Process Integration Wrapper

Component

Database
E

n
h

a
n

c
e

d

F

u
n

c
t
io

n
a

lit
y

Process Integration Wrapper

XML

MOREX

1

2

XML

3

XML

Process

Process

Extruder

Degassing

Separation CompoundingReaction

Additives

Mixing

Fibers

Mixing

Flash

Degassing
Reaction

Air

Degassing

Granulator

Pressure

Enrichment

Decomposition

Specialization

Fig. 3.18. Process-integrated interactions between the flowsheet editor and
MOREX

analysis by running simulations and creating visualizations and diagrams of
the results (step 2). Based on the results, he can change and optimize accord-
ingly the original extruder configuration in MOREX. When the optimized
configuration appears satisfactory, the developer can send it back to the flow-
sheet editor (step 3). In both cases of information exchange, guidance based
on the corresponding method fragments is requested through menu items of
the fully process-integrated flowsheet editor.

Domain-Specific Reuse of Product Traces

The introduction of the intermediate level abstraction of functional zones can
empower the reuse of product traces with two goals: on the one hand for the
effective composition of an extruder configuration from functional zones and,
on the other hand, for the reuse of experience-based knowledge of successful
realizations of functional zones in real devices. Being unable to integrate such
reuse support inside the existing MOREX simulation tool, a special loosely
process-integrated tool has been realized to help the engineers selectively reuse
mappings between the (shared) functional zones flowsheet and the (discipline-
specific) screw configurations associated with one or more adjacent functional
zones. We call this domain-specific reuse tool FZExplorer (Functional Zones
Explorer).

Using Developers’ Experience in Cooperative Design Processes 217

Fig. 3.19. Experience-based reuse of functional zones in MOREX

Figure 3.19 sketches a small scenario demonstrating the FZExplorer usage.
At the upper left part, the window of the flowsheet editor is shown and next
to it, is the MOREX tool that has just received the functional zones from
the flowsheet editor. In MOREX, the functional zones will be added to a new
project process data configuration, and the received process and geometry
parameters will be loaded. Possibly, existing functional zones should be en-
riched with screw elements, or new ones zones should be added. To help this
reuse task, the FZExplorer is invoked by a PRIME process context (center
of the figure). After querying the PRIME traces repository for the requested
information, the FZExplorer retrieves it and displays it in a user-friendly hi-
erarchical way, along with a graphical visualization of the screw elements to
the user. The user can then select the appropriate configuration and import
it back to MOREX. At the lower left part is shown the text window of the
automated tracing of the execution of the whole sequence of described actions
(EC stands for executable context and CC for choice context).

Method Advice Based on Recorded Process Traces

Whereas method definitions are biased by perceptions, process traces provide
an objective abstraction of reality: they further describe the experience that
was acquired by a developer in a specific problem context. Due to creativity

218 M. Miatidis, M. Jarke, and K. Weidenhaupt

Fig. 3.20. Petri-Net based visualization of retrieved trace chunks in the method
advisor’s user interface

of design, the process traces might considerably deviate from the method
definitions and, thus, provide faithful evidence of design change and evolution.

Thus, the developer can benefit from method advice that exploits captured
traces of the PRIME environment, generalizes knowledge from the experiences
indirectly captured inside them that apply to the current process situation,
and mediates them for reuse. Then, it remains in the hand of the developer
to evaluate the appropriateness of each one of the retrieved proposals to his
actual context, and decide which one, if any, fits better. A chosen proposal,
either in its original or altered form, can be manually enacted by the developer
in his process-integrated tools.

The above strategy of method advice is implemented by a specialized mod-
ule of the PRIME architecture that executes the FIST algorithm for find-
ing relevant process traces, developed in [80]. The returned trace chunks are
presented to the developer through the method advisor reuse interface. The
method advisor continually traces the current situation and previous actions
of the developer. At any time during his task (e.g. while interacting with
MOREX, where no method guidance is offered), the developer can request the
method advisor for method advice giving the preferred values for the FIST

Using Developers’ Experience in Cooperative Design Processes 219

algorithm parameters. The process traces returned (if any) are visualized in
the Method Advisor’s user interface using either a Petri-Net based (Fig. 3.20)
or a tree-like structure (not shown here).

The Petri-Net based visualization depicts a sequential, flat view of the trace
chunks consisting of the addressed situations and the contexts executed at
each situation. The displayed trace chunks are sorted according to their Bayes
factor calculated at the final step of the FIST algorithm, and annotated with
values of their timestamp, similarity, frequency and Bayes factor. Moreover,
the displayed situations that are similar to the current one are highlighted,
and their exact similarity to the current situation can be shown by clicking
on them.

3.1.6 Comparison with the State-of-the-Art

Contributions that are relevant to our work can be identified in various re-
search areas. The direct, fine-grained process support relates to approaches
from the areas of computer-based process support and tool integration. For
experience-based reuse, research results about traceability and reuse support
infrastructures from the disciplines of software and chemical engineering are
applicable.

Process Support Systems

Numerous process support systems have been developed for the computer-
based coordination of processes. Traditionally, they mainly fall into two broad
categories. Process-centered (software) engineering systems are often used to
support (software) engineering design processes [501, 628], whereas workflow
management systems care mainly for the support of business processes [954,
1014]. Both of these categories of systems strive for the effective and efficient
coordination of work among several participants based on the interpretation
of formal models, usually employing Petri-Net based languages. Nevertheless,
most of the identified approaches are suited for deterministic processes that
are well-known in advance. They do not fulfill the requirements for the support
of open, creative and knowledge-intensive processes like engineering design. A
partial solution has been given with the introduction of runtime exception
handling and workflow adaptability [586, 984] that, nevertheless make the
models more complex. In addition, the exceptions have to be modeled in
advance, resulting to an anaemic treatment of eventuality.

In contrast, our solution follows a situation-based approach and models the
context only in situations where a well-defined method fragment exists. When
such a situation occurs, the user is offered the opportunity to, on demand,
follow the methodical guidance of the process engine, without being restricted
to do so. Further, most of the existing approaches use process modeling for-
malisms with a coarse- or medium-grained representation of the process. Thus,

220 M. Miatidis, M. Jarke, and K. Weidenhaupt

they are more appropriate for project administration purposes and they pro-
vide no real support in terms of fine-grained method guidance at the technical
workplace, like PRIME does.

Tool Integration

In the literature, there have been several discussions on the benefits of tool
integration as part of a system development environment [768, 950, 998]. Most
of the proposed solutions center around the five kinds of integration initially
identified by Wasserman [1038]: platform integration, concerned with environ-
ment services; presentation integration, concerned with the offering of uniform
interface; data integration, concerned with the exchange of data; control in-
tegration, concerned with the sharing of functions; and process integration
concerned with the process-guided behavior. According to our approach, pro-
cess integration plays a first citizen role among all other kinds of integration,
as it provides the means to provide integrated method guidance to the user
through the increased process sensitivity of his tool. In the context of the IM-
PROVE project, our research on process integration is complemented by that
of other subprojects that investigate data integration (cf. Sect. 3.2), control
integration (cf. Sect. 4.2), and platform integration (cf. Sects. 4.1 and 4.2).

Several traditional approaches emphasize only control and data integration
aspects of tools. For example, some researchers propose component-oriented
approaches for control integration in open tool environment [948, 1052], or
combine them with emerging standards like XML Metadata Interchange
(XMI) for the integration of tools in the context of conflicting data mod-
els [624]. Other paradigms are exemplified by agent-based approaches for the
orchestration of tools in heterogeneous distributed environments, encapsulat-
ing them into agents [614]. In the workflow management arena, the Workflow
Management Coalition (WfMC) has defined, as part of its workflow reference
model, a standardized interface for the communication of workflow enactment
services with external applications (“invoked applications”) [1057]. This inter-
face mainly supports the starting and stopping of external tools according to
the Workflow Application Programming Interface (WAPI). In practice, tools
are integrated with workflow aspects of the process using middleware tech-
nologies like CORBA and DCOM (e.g. SAP Workflow).

The modern horizontal business landscape has forced companies to find
new ways to integrate their business processes across organizational bound-
aries [837]. This new reality had a great impact on the traditional tool inte-
gration trends that have been reworked and shifted towards ubiquitous inte-
gration. The resulting movement of application integration strives to capture
the heterogeneity of systems, applications and legacy tools, in order to inte-
grate them inside business processes and increase the competitiveness, agility
and market responsiveness of a company [819]. Service-Oriented Architec-
tures (SOA) play a key role in application integration by providing guidelines
for the loose-coupling of heterogeneous applications in a coherent whole that

Using Developers’ Experience in Cooperative Design Processes 221

exposes selected functionality to the outside world as services [659, 740]. Al-
though there already exist several mature technologies for the implementation
of SOAs, the most recent trends converge on the use of internet technologies
for communication employing platform-independent Web Services [500, 814].
The reengineered PRIME framework employs SOA principles for the process
integration of tools using Enterprise Java Beans and CORBA. Specifically, ser-
vices of PRIME process-integrated tools are uniformly described (using the
environment metamodel semantics), and orchestrated by the process engine.

Experience-Based Reuse and Improvement

Reuse of lifecycle experiences and products has drawn a lot of attention in
the (software) engineering domain, as a means of increasing final product
quality and productivity, while at the same time reducing overall cost of oper-
ations [818]. Several improvement paradigms have been proposed that employ
reuse through feedback loops in order to improve quality for various processes
at different levels [533, 741]. As a special form of experience-based reuse,
traceability in (software) product families engineering has recently drawn a
lot of attention [544, 912]. Traceability, facilitates the development and main-
tenance of a product family, while at the same time offering the potential
for discovering commonalities and variabilities of the product family artifacts,
and learning from them.

In the domain of engineering design, experience reuse has drawn a lot of
attention among researchers. The KBDS system attempts to capture design
rational of chemical engineering and evaluate it by tracking the interrelations
between design alternatives, objectives and models inside a flowsheet tool
(similarly to our VISIO based flowsheet editor) [524]. The n-dim approach
promotes the collaborative character of design and proposes a classification
schema for the organization of diverse types of information from multiple
developers along multiple dimensions that allow the capture of evolution and
reuse [989]. More recent research efforts concentrate on the experience reuse
inside the frame of specific design support tools and employ the CBR (Case-
Based Reasoning) paradigm for the retrieval, reuse and adaption of design
cases from the past [588, 805].

Our approach differs from the above identified contributions with respects
to some of its key ideas. Most of the other approaches implement external
experience repositories decoupled from the running system, and the user has
to manually provide a description of the problem and query them. In contrast,
the PRIME reuse interfaces exploit the process integration mechanism in order
to continually monitor the actual situation at the technical workplace and, on
demand, directly present to the user the relevant experiences from the past.
Moreover, while the experience gathered by most other CBR systems captures
a pure description of the problem and its related solution, PRIME exploits
whole trace chunks that further capture the temporal dimension of the solution
in the form of precise steps that other users followed (the interested reader is

222 M. Miatidis, M. Jarke, and K. Weidenhaupt

referred to [848] for a similar work). Last but not least, in our approach, the
user does not have to explicitly document the revision of a solution that he
might reuse. A reused solution, in an original or revised form, is automatically
recorded by process-integrated tools without requiring user intervention.

3.1.7 Conclusions and Outlook

The chemical engineering domain brings out some problems in large-scale
design which are perhaps less clear in the more widely discrete domains such as
mechanical or software engineering. In this section, we focused on the question
how to bring knowledge to the engineering workplace as directly as possible
(i.e. in a process-integrated manner) even if the knowledge is complex, and
undergoes continuous change.

Our solution to this challenge has been exemplified through the flowsheet-
centered design support environment we have developed, based on the PRIME
approach. PRIME was originally able to provide integrated method guidance
based on the a-priori process integration of tools. Empowered by its solution
ideas and driven by project requirements, we extended the original PRIME ap-
proach towards the a-posteriori process integration of commercial tools, cross-
functional support among developers, and situated visualization and reuse of
process and product traces.

In further informal experiments with our environment by chemical and
plastics engineering researchers and practitioners, the efficiency gain of inte-
grated method guidance in supporting their tasks has been quite substantial.
Together with the automated capture of process traces, according to their
evaluation, a major step towards the reuse of design experiences has been
accomplished. Reported key success factors that distinguish our approach in-
clude:

• the promotion of the contextualized nature of design through our NA-
TURE based metamodel that can be exploited both for the purposes of
guidance and traceability;

• the provision of methodical guidance directly from inside the domain-
specific tools, increasing their process sensitivity;

• the integration of several experience reuse tools empowering learning based
on the comparison of accumulated experiences from the past.

The experience with the IMPROVE case study has further shown that full and
loose process integration, while conceptually building on the same framework,
should not necessarily use the same implementation techniques. The PRIME
object-oriented implementation framework for tight process-integration was
originally implemented in C++, using COM [846] and CORBA [877] for in-
tegrating tools. The succeeding reengineered framework that further incor-
porated loose process integration was implemented as a three-tier service-
oriented architecture employing EJB and JMS [504] for service orchestration,

Using Developers’ Experience in Cooperative Design Processes 223

and COM/CORBA for the communication with loosely process-integrated
tools. In order to take advantage of subsequent standardization efforts, but
also to enable better support for the security aspects of internet-based cross-
organizational integration, we are planning to employ Web Services [500] for
loose process integration. This implementation will also be strongly based on
ontology specification languages like OWL [546].

Until now, we have focused on the experience reuse on a project basis.
Equally important is the experience reuse on a corporate basis in order to feed
and improve the existing company know-how. To this end, we are planning
in the near future to develop a methodology for the bottom-up capitaliza-
tion of knowledge by abstracting from individual experiences across several
project instantiations (high level cases). Inadequate methodologies can then
be detected through the identification of certain ways of working that perform
poorly according to qualitative metrics, whereas new ones can elaborate with
a statistical analysis of frequent process violations and discrepancies.

The current implementation of our environment provides a client/server
model for process enactment. One central enactment server is used to sup-
port many developers who are connected to it. In real world scenarios, a
design process can span among several geographically distributed engineering
teams. In such a case, our central enactment mechanism might become the
bottleneck. Thus, more than one enactment mechanisms should be provided
to ensure adequate performance, each one residing at different company sites.
Only well-defined interfaces for the exchange of specific process and prod-
uct information will be available for their intercommunication, resulting to a
better preservation of confidentiality constraints.

3.2 Incremental and Interactive Integrator Tools for
Design Product Consistency

S. Becker, M. Nagl, and B. Westfechtel

Abstract. Design processes in chemical engineering are inherently complex. Vari-
ous aspects of the plant to be designed are modeled in different logical documents
using heterogeneous tools. There are a lot of fine-grained dependencies between the
contents of these documents. Thus, if one document is changed, these changes have
to be propagated to all dependent documents in order to restore mutual consistency.

In current development processes, these dependencies and the resulting consis-
tency relationships have to be handled manually by the engineers without appro-
priate tool support in most cases. Consequently, there is a need for incremental
integrator tools which assist developers in consistency maintenance. We realized a
framework for building such tools. The tools are based on models of the related
documents and their mutual relationships. Realization of integrators and their inte-
gration with existing tools is carried out using graph techniques.

3.2.1 Integrator Tools for Chemical Engineering

Introduction

Development processes in different engineering disciplines such as mechan-
ical, chemical, or software engineering are highly complex. The product to
be developed is described from multiple perspectives. The results of develop-
ment activities are stored in documents such as e.g. requirements definitions,
software architectures, or module implementations in software engineering or
various kinds of flow diagrams and simulation models in chemical engineering
(cf. Sect. 1.1). These documents are connected by mutual dependencies and
have to be kept consistent with each other. Thus, if one document is changed,
these changes have to be propagated to dependent documents in order to
restore mutual consistency.

Tool support for maintaining inter-document consistency is urgently nee-
ded. However, conventional approaches suffer from severe limitations. For ex-
ample, batch converters are frequently used to transform one design repre-
sentation into another. Unfortunately, such a transformation cannot proceed
automatically, if human design decisions are required. Moreover, batch con-
verters cannot be applied to propagate changes incrementally. Current tool
support in chemical engineering is mainly characterized by numerous soft-
ware tools for specific purposes or isolated parts of the design process. How-
ever, a sustainable improvement of the design process can only be achieved
by the integration of single application tools into a comprehensive design en-
vironment [548]. During the last years, commercial environments like Aspen
Zyqad [517] or Intergraph’s SmartPlant [605] have been developed. They are
mainly restricted to the tools of the corresponding vendor. The adaptation

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 224–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrator Tools for Design Product Consistency 225

of the tools to specific work processes of developers within a company or
the integration of arbitrary tools, especially from other vendors, are unsolved
issues.

In this paper, we present incremental integrator tools (integrators) which
are designed to support concurrent/simultaneous engineering and can be tai-
lored to integrate any specific interdependent documents from any application
domain. The only restriction is that documents have to be structured such that
a graph view on their contents can be provided.

The key concept of our tools is to store fine-grained relationships between
interdependent documents in an additional integration document which is
placed in between the related documents. This integration document is com-
posed of links for navigating between fine-grained objects stored in the respec-
tive documents. Furthermore, these links are used to determine the impact of
changes, and they are updated in the course of change propagation. Changes
are propagated and links are established using an extension of the triple graph
grammar formalism originally introduced by Schürr [413].

Integrator tools are driven by rules defining which objects may be related
to each other. Each rule relates a pattern of source objects to a pattern of
target objects via a link. Rules may be applied automatically or manually.
They are collected in a rule base which represents domain-specific knowledge.
Since this knowledge evolves, the rule base may be extended on the fly. The
definition of rules is based on domain knowledge. Rules for our integrators for
chemical engineering design processes are defined using the model framework
CLiP [20] (cf. Subsect. 2.2.3).

Integrator tools for specific documents are built based on a universal inte-
grator framework and by specifying a corresponding rule base. Additionally,
some tool-specific extensions, like wrappers for the tools to be integrated, have
to be implemented.

There has been a tight cooperation of this subproject with the CLiP project
at the department of process systems engineering (LPT) [15]. All chemical
engineering examples used throughout this paper have been elaborated in
cooperation with the LPT and our industrial partner innotec [745].

Motivating Example

We will use the sample scenario in Fig. 3.21 to illustrate how integrator tools
assist the design team members. The scenario deals with the integration of
process flow diagrams (PFD) and simulation models. A PFD describes the
chemical process to be designed, while a simulation model serves as input to a
tool for performing steady-state or dynamic simulations. Different tools may
be used for creating flowsheets and simulation models, respectively. In the
following, we assume that the flowsheet is maintained by Comos PT [745] and
simulations are performed in Aspen Plus [516], both of which are commercial
tools used in chemical engineering design.

226 S. Becker, M. Nagl, and B. Westfechtel

PFR Flashing

Splitting

HE PFR

HEATER RPlug
REQUIL

HE

FLASH

SPLIT
RPlug

REQUIL

L L L L L L L L L
1.)

2.)

3.b)

3.a)

4.)

flowsheet

simulation model

of structure of attributes

HE

propagation propagation

Fig. 3.21. Sample integration scenario: integration of PFD and simulation model

PFDs act as central documents for describing chemical processes. They are
refined iteratively so that they eventually describe the chemical plant to be
built. Simulations are performed in order to evaluate design alternatives. Sim-
ulation results are fed back to the PFD designer, who annotates the flowsheet
with flow rates, temperatures, pressures, etc. Thus, information is propagated
back and forth between flowsheets and simulation models.

Unfortunately, the relationships between both results are not always
straightforward. To use a simulator such as Aspen Plus, the simulation model
has to be composed from pre-defined blocks. Therefore, the composition of
the simulation model is specific to the respective simulator and may deviate
structurally from the PFD.

The chemical process taken as example produces ethanol from ethen and
water. The PFD and simulation models are shown above and below the dashed
line, respectively. Two subsequent versions of both models are depicted side
by side. The integration document for connecting both models contains links
which are drawn on the dashed line26. The figure illustrates a design process
consisting of four steps:

1. An initial PFD is created in Comos PT. This PFD is still incomplete, i.e.,
it describes only a part of the chemical process (heating of substances and
reaction in a plug flow reactor, PFR).

2. The integrator tool is used to derive a simulation model for Aspen Plus
from the initial PFD. Here, the user has to perform two decisions. While
the heating step can be mapped structurally 1:1 into the simulation model,
the user has to select the most appropriate block for the simulation to be
performed. Second, there are multiple alternatives to map the PFR. Since
the most straightforward 1:1 mapping is not considered to be sufficient, the

26 This is a simplified notation. Some details of the document and integration model
introduced later are omitted.

Integrator Tools for Design Product Consistency 227

user decides to map the PFR into a cascade of two blocks. These decisions
are made by selecting among different possibilities of rule applications
which the tool presents to the user.

3. a) The simulation is performed in Aspen Plus, resulting in a simulation
model which is augmented with simulation results.
b) In parallel, the PFD is extended with the chemical process steps that
have not been specified so far (flashing and splitting).

4. Finally, the integrator tool is used to synchronize the parallel work per-
formed in the previous step. This involves information flow in both di-
rections. First, the simulation results are propagated from the simulation
model back to the PFD. Second, the extensions are propagated from the
PFD to the simulation model. After these propagations have been per-
formed, mutual consistency is re-established.

An integrator tool prototype has been realized to carry the design process out
in this example. This was part of an industrial cooperation with innotec [745],
a German company which developed Comos PT.

Requirements

From the motivating example presented so far, we derive the following re-
quirements:

Functionality An integrator tool must manage links between objects of inter-
dependent documents. In general, links may be m:n relationships, i.e., a
link connects m source objects with n target objects. They may be used for
multiple purposes: browsing, correspondence analysis, and transformation.

Mode of operation An integrator tool must operate incrementally rather than
batch-wise. It is used to propagate changes between interdependent doc-
uments. This is done in such a way that only actually affected parts are
modified. As a consequence, manual work does not get lost (in the above
example the elaboration of the simulation model), as it happens in the
case of batch converters.

Direction In general, an integrator tool may have to work in both directions.
That is, if a source document is changed, the changes are propagated into
some target document and vice versa.

Integration rules An integrator tool is driven by rules defining which object
patterns may be related to each other. There must be support for defining
and applying these rules. Rules may be interpreted or hardwired into
software.

Mode of interaction While an integrator tool may operate automatically in
simple scenarios, it is very likely that user interaction is required. On the
one hand, user interaction can be needed to resolve non-deterministic situ-
ations when integration rules are conflicting. On the other hand, there can
be situations where no appropriate rule exists and parts of the integration
have to be corrected or performed manually.

228 S. Becker, M. Nagl, and B. Westfechtel

Time of activation In single user applications, it may be desirable to propa-
gate changes eagerly. This way, the user is informed promptly about the
consequences of the changes performed in the respective documents. In
multi user scenarios, however, deferred propagation is usually required. In
this way, each user keeps control of the export and import of changes from
and to his local workspace.

Traceability An integrator tool must record a trace of the rules which have
been applied. This way, the user may reconstruct later on, which decisions
have been performed during the integration process.

Adaptability An integrator tool must be adaptable to a specific application
domain. Adaptability is achieved by defining suitable integration rules
and controlling their application (e.g., through priorities). In some cases,
it must be possible to modify the rule base on the fly.

A-posteriori integration An integrator tool should work with heterogeneous
tools supplied by different vendors. To this end, it has to access these tools
and their data. This is done by corresponding wrappers which provide
abstract and unified interfaces.

Not every integrator tool has to fulfill all of these requirements. E.g., there
are some situations where incrementality is not needed. In other situations,
the rule base is unambiguous such that there will never be user interaction.
In such cases, it has to be decided whether a full-scale integrator tool based
on the integrator framework is used anyway, or some other approach is more
suitable. In IMPROVE, we implemented both types of integrator tools for dif-
ferent parts of our overall scenario. For instance, in addition to the integrator
tool described in the motivating example, we created a tool that generates
the input file for heterogeneous process simulation with CHEOPS ([409], see
Subsect. 3.2.6). This tool only uses small parts of the integrator framework
and most of its behavior is hand-coded instead of being directly controlled
by rules. Other tools have been realized using completely different approaches
like XML and XSLT [567, 602]. Even for the realization of these simpler tools,
the experiences gained with the full-scale integrator tools were helpful.

Organization of This Paper

The rest of this paper is structured as follows: In the next Subsect. 3.2.2, we
give a short overview of our integrator framework. Our modeling formalism
for integration is explained in Subsect. 3.2.3. Subsection 3.2.4 addresses the
integration algorithm and its relation to the triple graph grammar approach.
We support two approaches for the implementation of integrators, which are
introduced and compared in Subsect. 3.2.5. In our project, furthermore, some
integrators have been realized following a modified or an entirely different
approach. They are sketched in Subsect. 3.2.6. Subsection 3.2.7 compares our
approach to other integration R&D work. In Subsect. 3.2.8, we give a summary
and an outlook on open problems.

Integrator Tools for Design Product Consistency 229

3.2.2 Integrator Framework

Architecture Overview

In each application domain, e.g. in chemical engineering, there are a lot of
applications for integrator tools. As a consequence, the realization of a specific
integrator tool has to require as little effort as possible.

We are addressing this by two means: First, our approach allows to de-
fine rules for integrator tools based on already-existing domain models (cf.
Sect. 6.3) and to derive an implementation for such tools (process reuse within
the integrator development process). Second, we provide a framework for inte-
grator tools that offers most parts of the integrator functionality in predefined
and general components (product reuse) [27, 251]. To create a specific inte-
grator tool, only some additional components have to be implemented and
integration rules have to be defined.

Figure 3.22 provides an overview of the system architecture for integrator
tools. It shows an integrator tool between Comos PT (source, lower left cor-
ner) and Aspen Plus (target, lower right corner) as example. Note that the
terms “source” and “target” denote distinct ends of the integration relation-
ship between the documents, but do not necessarily imply a unique direction
of transformation. For each pair of related Aspen and Comos documents, their
fine-grained relationships are stored as links in an integration document. The
structure of the integration document is the same for all integrator tools re-
alized using the framework and will be discussed below.

Integrator Core

Integration
Document

Integration Rule
Editor

User
Interface

Integrator

ASPEN

Aspen Wrapper

COMOS

Comos Wrapper

Precompiled
Rules

Rule
Defini-
tions

Fig. 3.22. System architecture of an integrator

230 S. Becker, M. Nagl, and B. Westfechtel

The integration is performed by the integrator core. It propagates changes
between source and target documents and vice-versa and modifies the links in
the integration document. The integrator core includes an implementation of
the integration algorithm which will be explained in detail in Subsect. 3.2.4. It
is a universal component that is used by all framework-based integrator tools.

The core does not access source and target tools directly but uses tool
wrappers. These wrappers provide a standardized graph view on the tools’
documents to keep the integrator code independent of the tools’ specific in-
terfaces. Additionally, they provide functions for launching tools and locating
specific documents. For each tool, a new wrapper has to be implemented. To
minimize the required programming efforts, the model-based wrapper specifi-
cation approach described in [136] and in Sect. 5.7 of this book can be used.

During integration, the integrator core is controlled by integration rules,
which can be provided following different approaches :

First, they can be defined using the integration rule editor (upper right
corner of Fig. 3.22), be exported as rule definition files, and then be executed
by a rule interpreter being part of the core. The formalism for defining inte-
gration rules will be explained in Subsect. 3.2.3. Depending on whether the
integrator supports the definition of integration rules on the fly, the rule edi-
tor is considered either a part of the framework or a part of the development
environment for integrators.

Second, they can be implemented manually in a programming language,
compiled, and linked to the integrator tool in order to be executed. This can
lead to a better performance during execution and allows to define rules whose
functionality goes beyond the rule definition formalism and the predefined
execution algorithm.

Third, as a combination, rules can be specified using the rule editor, then
translated automatically into source code, and then compiled and linked to
the integrator tool.

The integrator user interface (upper left corner of Fig. 3.22) is used to
control the integrator interactively. Here, the user has the possibility to choose
between different rule applications or to manipulate links manually. Although
there is a generic user interface implementation, in most cases an application-
specific GUI should be provided to facilitate the integration process for the
user.

Integration Document

An integration document contains a set of links which represent the rela-
tionships mentioned above. Each link relates a set of syntactic elements (in-
crements) belonging to one document with a corresponding set belonging to
another document. A link can be further structured by adding sublinks to a
link. A sublink relates subsets of the increments referenced by its parent link
and is created during the same rule execution as its parent.

Integrator Tools for Design Product Consistency 231

Link

SubLink

1

Increment

toDominantSource
toDominantTarget
toNormalSource

toNormalTarget
toContextSource
toContextTarget

111 1 1

1

*

*
*
*

*
*

1

*
toSource

toTarget

{xor}

context Increment inv:
 self.dm->notEmpty() implies self.nm->isEmpty()

dm dm nm

nm
cm
cm

{xor}

Fig. 3.23. Link model

Figure 3.23 shows the structure of links in a UML class diagram [560]. Most
constraints needed for a detailed definition are omitted, only examples are
shown. An increment can have different roles w.r.t. a referencing link: Incre-
ments can be owned by a link or be referenced as context increments. While
an increment can belong to at most one link as owned increment, it can be
referenced by an arbitrary number of links as context increments. Owned
increments can be created during rule execution, whereas only existing incre-
ments can be referenced by new links as context increments.

Context increments are needed when the execution of a rule depends on
increments belonging to an already existing link that was created by the ap-
plication of another rule. Context is used for instance to embed newly created
edges between already transformed patterns. Owned increments can be further
divided into dominant and normal increments. Dominant increments play a
special role in the execution of integration rules (see Subsect. 3.2.4). Each link
can have at most one dominant increment in each document. A link can relate
an arbitrary number of normal increments.

There is additional information stored with a link, e.g. its state and in-
formation about possible rule applications. This information is needed by the
integration algorithm but not for the definition of integration rules.

232 S. Becker, M. Nagl, and B. Westfechtel

3.2.3 Definition of Integration Rules

Overview: Different Levels for Modeling Rules

To create a specific integrator, a set of integration rules specifying its behavior
is needed. Therefore, we provide a modeling formalism for such rule sets. The
explicit modeling of rules has several advantages over implicitly coding them
within an integrator: First of all, it is much easier to understand rules and
their interdependencies if they are available as a human readable visual model.
Additionally, our modeling approach is multi-layered and allows consistency
checking between the layers. This cannot guarantee the complete correctness
of rule sets but at least prevents some major mistakes and thereby ensures
the executability of rules.

Another advantage is that the source code of integrators is independent of
specific rules or – if rules are linked to the integrator (see above) – dependen-
cies are limited to certain sections of the code. This facilitates the adaptation
of integrators to new applications or changed rules. If integration rule sets
are interpreted using the rule interpreter of the integrator framework, even
learning new rules on the fly is possible.

In most application domains, domain models already exist or are at least
under development. Consequently, the information has to be used when defin-
ing integration rules. For instance, in another project of IMPROVE the prod-
uct data model framework CLiP [20] was defined (see Sect. 2.2). Such domain
models normally are not detailed enough to allow for the derivation of integra-
tion rules or even integrator tools. Nevertheless, they can serve as a starting
point for integration rule definition [15]. Together with some company-specific
refinements, they can be used to identify documents that have to be integrated
and to get information about the internal structure of the documents as well
as about some of the inter-document relationships. Of course, the models have
to be further refined to be able to get executable integration rules. The process
of refining domain models to detailed definitions of the behavior of integrator
tools is described in detail in Sect. 6.3. In this section, the focus is on defining
integration rule sets without a strong relation to domain models.

For the definition of integration rules, we follow a multi-layered approach as
postulated by OMG’s meta object facility (MOF) [874], based on the Unified
Modeling Language (UML) [560]. Figure 3.24 provides an overview of the
different modeling levels and their contents for the running example. Using
MOF as meta-meta model, on the meta level the existing UML meta model
is extended. Additional elements are added that form a language to define
models of the documents to be integrated and to express all aspects concerning
the documents’ integration.

The extension on the meta level comprises two parts : First, graph- and
integration-related definitions are added. These are used by all integration
rule sets. Second, domain-specific extensions can be made. They can facilitate
the definition of integration models when being combined with domain-specific

Integrator Tools for Design Product Consistency 233

meta model

UML
meta model

graph and integration
meta model extension

(document + integration)

model
type level

abstract instances

Aspen Plus and
Comos PT

document models

Aspen Plus and
Comos PT integration

link types

Aspen Plus and
Comos PT
integration

link templates

Aspen Plus and
Comos PT integration

linking rules

concrete instances

instance of

instance of

ex-
tends

uses

domain-specific meta
model extension (PFD)

(document + integration)

ex-
tends

Fig. 3.24. Levels of modeling

visualization. To express the relation between meta model and model, we use
the approach sketched in [391], where UML stereotypes are used on the model
level to express the instance-of relationship between meta model elements and
model elements. A more detailed description of the meta level can be found
in [26].

On the model level, we distinguish between a type (or class) level and an
instance level, like standard UML does. On the type level, document models
for specific types of documents are defined. They are expressed as class hier-
archies describing the documents’ underlying type systems. In our example,
documents containing simulation models for Aspen Plus and flowsheets for Co-
mos PT are defined. To be able to perform an integration of these documents,
link types that relate classes contained in the documents’ class hierarchies
are defined. All occurrences of links in further definitions on lower levels are
instances of these link types and are thereby constrained by these types.

The instance level is divided into an abstract and a concrete level. On
the abstract instance level, link templates and linking rules are specified using
collaboration diagrams. Link templates are instances of link types relating

234 S. Becker, M. Nagl, and B. Westfechtel

a pattern (which is a set of increments and their interrelations) that may
exist in one document to a corresponding pattern in another document. A
link template only defines a possible relation between documents. It is not
imposed that the relation always exists for a given set of concrete documents.

Link templates can be annotated to define executable linking rules. The
annotations provide information about which objects in the patterns are to
be matched against existing objects in concrete documents and which ob-
jects have to be created, comparable to graph transformations. Linking rules
are executed by integrators and are thus also called integration rules. Rule
execution is described in detail in Subsect. 3.2.4.

While on the abstract instance level only patterns are defined that may
appear in source, target, and integration document, on the concrete instance
level, concrete existing documents and integration documents can be mod-
eled. The resulting models are snapshots of these real documents, which can
be used as examples, e.g., to document rule sets. As this is not vital for defin-
ing integration rules, models on the concrete instance level are not further
described here.

In the following, selected aspects of the integration rule model are de-
scribed in more detail. For further information, we refer to [26, 39, 40]. The
modeling approach presented here is based on work dealing with a purely
graph-oriented way of specifying integration rules and corresponding tools
[131–134].

Type Level Modeling

Before integration rules for a given pair of document types can be defined, doc-
ument models describing the documents’ contents have to be created. In our
current modeling approach, this is done by providing class hierarchies defin-
ing types of entities relevant for the integration process (increment types) and
the possible interrelations of increments being contained in a document. To
facilitate the definition of integration rules, it is planned to use more advanced
document models that address further structural details (see Sect. 6.3). Here,
simple UML-like class diagrams are used to express the type hierarchies.

To illustrate our modeling approach, we use excerpts of the underlying
rule base of the motivating scenario presented in Subsect. 3.2.1. Figure 3.25
shows a part of the Aspen Plus type hierarchy. The figure is simplified, as it
does not show stereotypes, cardinalities, and association names. It only shows
an excerpt of the simulation document model. The type hierarchy does not
reflect the whole Aspen Plus data model as offered by Aspen’s COM interface.
Instead, it is the model offered by our Aspen tool wrapper which supplies
only information relevant for our integration between simulation models and
flowsheets.

On the lowest layer on the left side of the type hierarchy we find incre-
ment types for some of the simulation blocks and streams that are predefined

Integrator Tools for Design Product Consistency 235

Class increment
type (UML class)

inheritance

edge type
(UML association)

HeatExchanger

HEATX HEATER

Reactor

REQUIL RPlug

AspenStream

MATERIAL HEAT

AspenComponent AspenPort

AspenInPort

AspenConnection

AspenDevice AspenOutPort

Fig. 3.25. Aspen Plus document model (UML class diagram)

in Aspen Plus (e.g. RPlug modeling the behavior of plug flow reactors and
MATERIAL, the type of stream transporting substances between blocks).

One layer higher, the blocks are further classified by grouping them into
categories that correspond to the tabs holding the blocks in the Aspen user
interface. All blocks and streams inherit from AspenComponent (top layer).
Each component can have an arbitrary number of ports (AspenPort) which can
be further refined regarding their orientation (AspenInPort and AspenOutPort).
AspenConnection is used to express that two ports of opposite orientation are
connected by referencing them via associations.

In Fig. 3.21, blocks are represented as rectangles, streams are shown as
arrows inside source and target document. Connections and ports are not
represented explicitly (rather, they may be derived from the layout), but they
are part of the internal data model.

The document model for Comos PT is not presented here, since it is struc-
tured quite similarly. This similarity is due to two reasons: First, both types
of documents, simulation models and PFDs, describe the structure of chem-
ical plants by modeling their main components and their interconnections.
Second, technical differences between the internal models of both applications
are eliminated by tool wrappers. Nevertheless, the remaining mapping be-
tween simulation models and PFDs is not straightforward, as we have already
discussed above.

As a first step for defining integration rules, link types are modeled. They
are used for two different purposes: First, each link that is contained in an
integration document or occurs in an integration rule on the instance level
has to be an instance of a link type. As a result, it is possible to check the
consistency of integration rules against a set of link types. This cannot ensure
the semantical correctness of integration rules but facilitates the definition
process by eliminating some mistakes.

236 S. Becker, M. Nagl, and B. Westfechtel

Second, it is very likely that for a new integrator a basic set of integration
rules is defined top-down using domain knowledge [15]. For instance, in our
running example it is common domain knowledge that devices in a PFD are
simulated by predefined blocks in Aspen Plus. More concrete statements can
be made as well: A reactor in the PFD could be simulated by some reactor
block in Aspen Plus. Each of these statements can be translated easily in a
link type definition. Thereby, our modeling formalism provides a means of
formalization and communication of domain knowledge concerning the rela-
tionships between documents. The resulting link types can be further refined
and, finally, on the abstract instance level, integration rules can be defined
accordingly.

ComosDevice
(from Comos)

ComosPort
(from Comos)

Reaction
(from Comos)

PFR
(from Comos)

ReactorCascadeLink

Reactor
(from Aspen)

AspenPort
(from Aspen)

RPlug
(from Aspen)

REQUIL
(from, Aspen)

AspenConnection
(from Aspen)

MATERIAL
(from Aspen)

AspenBlock
(from Aspen)

AspenComponent
(from Aspen)

AspenStream
(from Aspen)

PFRLink

RCPortMapping

PFRPortMappingComos document model Aspen document model

Class
increment type (UML class)

link type (UML class with
user-defined stereotype)

to dominant increment

to normal increment

sublink type (UML class with
user-defined stereotype)

Fig. 3.26. Reactor link types (UML class diagram)

Figure 3.26 shows an example class diagram defining two link types concerning
the relation between reactors in PFDs and simulator blocks in Aspen Plus.
The left side of the figure contains an excerpt of the Comos document model,
the right side one of the Aspen document model. In between, link types and
sublink types are depicted. While the documents’ increment types are shown
as plain UML classes, link and sublink types are presented using graphical
stereotypes. This can be applied to increment types as well if domain-specific
elements are defined in the meta model together with corresponding graphical
stereotypes. For instance, all reactor increment types could be displayed with
a reactor symbol. The usage of graphical stereotypes facilitates the readability
of models for domain experts having little UML knowledge.

Integrator Tools for Design Product Consistency 237

In the figure, a link type called PFRLink is defined. This example link type
expresses that exactly one instance27 of the specific reactor type PFR (plug
flow reactor) can be simulated by exactly one instance of the specific reactor
block RPlug in the simulation model. The reactors in both documents can
have an arbitrary number of ports which are mapped by the link as well. To
assign corresponding ports, the link may have sublinks each mapping pairs of
ports28. Both reactors are referenced as dominant increments. This link type
is rather specific, as it forms relatively tight constraints for all of its instances.

In general, it is not always possible to simulate a reactor in the PFD
by one single simulator block, but rather a cascade of reactor blocks can be
necessary. This is the case in our running example. Therefore, another link
type, namely for mapping reactor devices to reactor block cascades is defined
(ReactorCascadeLink in Fig. 3.26). It assigns one Reaction (or one of its sub-
types’) instance to multiple instances of Reactor subtypes29. These instances
are connected via their ports and connections with MATERIAL streams trans-
porting the reacting substances. Again, sublinks help identifying related ports.

The ReactorCascadeLink type is rather generic compared to the PFRLink.
For instance, it does not specify the number of reactor blocks used in the
simulation, nor does it specify their concrete types. Even how they are con-
nected by streams, is not further specified. To get an executable rule, a lot of
information is still missing, which is supplied on the abstract instance level
(see below).

The type level definitions of the rule set for our running example comprise
much more link types. Some of them are more concrete, others are more generic
than those discussed above. Even from the link types described so far, it can
be seen that the definition of the relations between given document types is
quite ambiguous. This reflects the complexity of the domain and the need for
engineers’ knowledge and creativity during integration. Thus, our integration
models only provide heuristics to support the engineers at their work.

Abstract Instance Level Modeling

In general, the information modeled on the type level is not sufficient for gain-
ing executable integration rules. Link types constrain links but do not fully
specify the structures to be related by links. Therefore, on the abstract in-
stance level, a detailed definition of the corresponding patterns related by a
link is made. This is done by defining so-called link templates in UML collab-
oration diagrams. These instances are abstract because they do not describe
concrete documents but situations that may occur in one concrete document
at runtime and how the corresponding situation in the other document could

27 Cardinalities are not shown in the figure.
28 To keep the figure simple, it is not distinguished between ports of different orien-

tation, as it is done in the real model.
29 The Reactor class is abstract, thus no instances of it are allowed.

238 S. Becker, M. Nagl, and B. Westfechtel

Comos

R1:
PFR

P1:
ComosInPort

P2:
ComosOutPort

TR1:
RPlug

TP1:
AspenInPort

TP2:
AspenOutPort

L1: PFRLink

SL1: PFRPortMapping

SL2: PFRPortMapping

Aspen

Aspen

R1:
PFR

P1:
ComosInPort

P2:
ComosOutPort

TR1:
MATERIAL

TP3:
AspenInPort

TP4:
AspenOutPort

L1:
ReactorCascadeLink

SL1: PFRPortMapping

SL2: RCPortMapping

TR1:
RPlug

TP1:
AspenInPort

TP2:
AspenOutPort

TR2:
REQUIL

TP6:
AspenOutPort

TP5:
AspenInPort

TC1:
AspenConnection

TC2:
AspenConnection

Comos

a)

b)

increment node
(UML object)

link node
(UML object)

sublink node
(UML object)

to dominant
increment

to normal
increment

Fig. 3.27. Reactor link templates (UML collaboration diagram)

look like. From link templates operational integration rules that describe ac-
tions like “if the described pattern was found in the source document, create
a corresponding pattern in the target document” can be derived easily.

To illustrate the definition of link templates, we again use the rule set
of our running example. Figure 3.27 shows two UML collaboration diagrams
defining link templates which are instances of the link types introduced in the
previous subsection.

The link template in Fig. 3.27 a) relates a plug flow reactor (PFR) with
two ports to a RPlug block with two ports in the simulation model. All incre-
ments are referenced by the link L1, which is refined by the sublinks SL.1 and
SL.2 to map the corresponding ports. The port mapping is needed later to
propagate connections between ports (see below). The link L1 is an instance
of the PFRLink type. It could be an instance of the more generic link type Re-
actorCascadeLink as well, with the cascade just consisting of one reactor block.

Integrator Tools for Design Product Consistency 239

However, a link should always be typed as instance of the most concrete link
type available that fits its definition. Link types reflect domain knowledge
and the more concrete a link type is the more likely it is that its instances are
supported by domain knowledge.

In the running example, the simple link template of Fig. 3.27 a) was not
applied, because a single simulator block does not suffice to study the reaction
of the plug flow reactor. Instead, the PFR was mapped to a reactor cascade.
Figure 3.27 b) contains the link template that is the basis of the corresponding
integration rule. The PFD-side pattern is the same as in Fig. 3.27 a). On the
simulation side, a cascade of a RPlug and a REQUIL block are defined. Sub-
stances are transported by a MATERIAL stream, whose ports are connected to
the reactors’ ports. Again, all increments in both documents are referenced by
the link, which is an instance of ReactorCascadeLink, and the external ports
of the cascade are associated with the PFR ports by sublinks.

The link types and templates discussed so far and some other rules in our
running example address the mapping of devices and blocks together with
their ports. If rules are derived from these templates and are then used, e.g.
to transform the devices of a PFD into a simulation model, it is necessary to
transform the connections between the ports as well. This is done with the help
of the definitions in Fig. 3.28. Part a) of the figure contains the link template
for mapping a ComosConnection to an AspenConnection. While the mapping

Comos

C1:
ComosConnection

P1:
ComosOutPort

P2:
ComosInPort

TC1:
AspenConnection

TP1:
AspenOutPort

TP2:
AspenInPort

L1: ConnectionLink

SL1: PortMapping

SL2: PortMapping

Aspen

Comos

C1:
ComosConnection

P1:
ComosOutPort

P2:
ComosInPort

TC1:
AspenConnection

TP1:
AspenOutPort

TP2:
AspenInPort

L1: ConnectionLink

SL1: PortMapping

SL2: PortMapping

Aspen

a)

b)
to context
increment

to normal
increment

to dominant
increment

sublink node
(UML object)

link node
(UML object)

increment node
(UML object)

new increment node
(UML object with
constraint {new})
new link node
(UML object with
constraint {new})

to dominant
increment {new}

to context
increment {new}

Fig. 3.28. Connection link template (a) and forward rule (b)

240 S. Becker, M. Nagl, and B. Westfechtel

is quite simple with regard to its 1:1 structure, there is a particularity about
this link template: To be able to embed the edges leading from the newly
created connection in the target document to the correct ports, the source
document ports have to be already mapped to their corresponding ports in
the target document. As a result, the ports and their mapping are referenced
as context information by the link L1. This ensures that the rule transforming
connections is applied only after the ports have been mapped by applications
of other rules and thus it can be determined which ports to connect. Then, the
edges from the newly created connection to the ports can be created easily.

Modeling Operational Rules

The link templates described so far are purely declarative and just describe
which patterns could be related by fine-grained inter-document links. They do
not contain operational directives for transforming a document into another
one or for establishing links between documents. Following the triple graph
grammar approach [413], operational integration rules can be easily derived
from link templates.

For each link template, three integration rules can be derived30:

• Forward transformation rules look for the context in source, target, inte-
gration document, and the non-context increments in the source document,
as well as for all related edges. For each match, it creates the corresponding
target document pattern and the link structure in the integration docu-
ment.

• Backward integration rules do the same but in the opposite direction from
target to source document.

• Correspondence analysis rules search the pattern in source and target doc-
ument including the whole context information. For each match, the link
structure in the integration document is created.

The derivation of a forward transformation rule from a link template is illus-
trated in Fig. 3.28, as an example, using the rule to transform a connection.
Part b) shows the forward rule corresponding to the link template in part a).
All dotted nodes (L1 and TC1) and their edges are created when the rule is
executed. To determine whether the rule can be applied, the pattern without
these nodes is searched in the documents. Here, the already related ports and
the connection in the PFD are searched and the corresponding connection in
the simulation model is created.

The notation of integration rules can be compared to graph transforma-
tions [328, 652] with left-hand and right-hand sides compressed into one dia-
gram. The dotted nodes and edges are contained on the right-hand side only
and thus are created during execution. The other nodes and edges are con-
tained on both sides and are thus searched and kept.
30 Additional rules can be derived if consistency checking and repairing existing links

are taken into account.

Integrator Tools for Design Product Consistency 241

So far, only the structural aspects of link templates and rules were ad-
dressed. In practice, each increment is further defined by some attributes
and their values. Using a subset of the OCL language (Object Constraint
Language [879], part of the UML specification), conditions based on these at-
tributes that further constrain the applicability of the resulting integration
rules can be added to link templates.

To deal with the consistency of attributes, link templates can be enriched
with different attribute assignment statements using a subset of the OCL
language as well. An attribute assignment can access all attributes of the in-
crements referenced by a link. There are different situations in development
processes in which an integration is performed. Depending on the situation, an
appropriate attribute assignment is chosen. For instance, for each correspon-
dence (i.e., for the set of resulting rules) there is one attribute assignment for
the initial generation of the simulation model, one to propagate the simulation
results back into the flowsheet, etc.

Rule Definition Round-Trip

Figure 3.29 shows the interrelations between the different parts of the modeling
formalism from a practical point of view. The meta model serves as basis both
for the implementation of integrator tools and the rule modeling process.
It is defined according to domain-specific knowledge like, in our case, the
information model CLiP [20] for chemical engineering and the requirements
concerning integration functionality.

linking rules

ab
st

ra
ct

in
st

an
ce

 le
ve

l
ty

pe
 le

ve
l

m
et

a
le

ve
l

link types

consistency check

interactive
refinement

document and
integration
meta model

consistency check

integration tool

implementation based on

link templates

co
nc

re
te

in
st

an
ce

 le
ve

l

abstraction

controlling integration

integration tool

domain
specific

knowledge

source
document

integration
document

target
document

Fig. 3.29. Layers of modeling and modeling round-trip

242 S. Becker, M. Nagl, and B. Westfechtel

Basically, there are two ways to define integration rules: top-down, before
the integrator tool is applied, or bottom-up, based on situations occurring
during the usage of the tool. It is most likely that in practice first a basic set
of rules is defined top-down by a modeling expert and then the rule base is
extended bottom-up by the engineer using the integrator tool.

Before any further definitions can be made, the documents to be integrated
have to be modeled on type level as described above, which is not shown in
this figure. Next, link types have to be defined on type level that declare types
for possible correspondences on the abstract instance level. Again, for both
tasks domain-specific knowledge has to be used.

Following a top-down approach, link templates on the abstract instance
level are modeled based on the link types of the type level. These are then
refined to linking rules. The resulting set of rules is used by the integrator
to find corresponding parts of source and target document and to propagate
changes between these two documents. The corresponding document parts
are related by links stored in the integration document. If no appropriate
rule can be found in a given situation, the chemical engineer performing the
integration can manually modify source and target document and add links
to the integration document.
To extend the rule base bottom-up, the links entered manually in the inte-
gration document can be automatically abstracted to link templates. Next, a
consistency check against the link types on the type level is performed. If the
link templates are valid, the engineer is now guided through the interactive
refinement of the link templates to linking rules by a simplified modeling
tool. The rules are added to the rule base and can be used for the following
integrations.

This can be illustrated by an extension of the scenario presented above:
Initially, there is no rule for mapping a plug flow reactor to a cascade of two
reactors. Instead, the first time the situation occurs, the mapping is performed
manually: The user creates the reactor cascade in the simulation model and
adds a link to the integration document. From this link, the link template in
Fig. 3.27 b) is abstracted. The link template is consistency-checked against
the available link types. It is detected that the link template fits the Reac-
torCascadeLink type from Fig. 3.26 and, therefore, it is permanently added to
the rule base and applied in further runs of the integrator.

3.2.4 Rule Execution

In this subsection, the execution algorithm for integration rules is presented.
First, the triple graph grammar approach which serves as the basis for our
approach is briefly sketched. Furthermore, it is explained how our work relates
to this approach and why it had to be extended. Second, an overview of our
integration algorithm is given, using a simple and abstract scenario. Third,
the individual steps of the algorithm are explained in detail, using the inte-
gration rule for a connection as an example. In this subsection, the execution

Integrator Tools for Design Product Consistency 243

of the algorithm with PROGRES [414] is considered. Please note that the
execution with PROGRES is only one approach for building integrator tools
(cf. Subsect. 3.2.5).

Triple Graph Grammars and Execution of Integration Rules

For modeling an integration, the source and target documents as well as the in-
tegration document may be modeled as graphs, which are called source graph,
target graph, and correspondence graph, respectively. If the tools operating on
source and target documents are not graph-based, the graph views can be
established by tool wrappers (cf. Subsect. 5.7.4). Moreover, the operations
performed by the respective tools may be modeled by graph transformations.

Triple graph grammars [413] were developed for the high-level specifica-
tion of graph-based integrator tools. The core idea behind triple graph gram-
mars is to specify the relationships between source, target, and correspondence
graphs by triple rules. A triple rule defines a coupling of three rules operating
on source, target, and correspondence graph, respectively. By applying triple
rules, we may modify coupled graphs synchronously, taking their mutual re-
lationships into account. In the following, we give a short motivation for our
integration algorithm only. For a detailed discussion of the relation between
our approach and the original work by Schürr, the reader is referred to [37].

transformation ConnectionSynchroneous * =

‘2 : ComosOutPort ‘3 : AspenOutPort

‘5 : AspenInPort‘4 : ComosInPort

‘1

‘6

flow sheet (source) simulation model (target)correspondence

toTrgIncrtoSrcIncr

toTrgIncrtoSrcIncr

: Sublink

: Sublink

::=

2’ = ‘2 3’ = ‘3

5’ = ‘54’ = ‘4

1’ = ‘1

6’ = ‘6

7’ : ComosConnection 9’ : AspenConnection8’ : Link

flow sheet (source) simulation model (target)correspondence

AC2AOutPort

AC2AInPort

toConTrgIncr

CC2CInPort

CC2COutPort

toTrgIncrtoSrcIncr

toTrgIncr

toConSubl

toConSrcIncr

toConTrgIncrtoConSrcIncr

toDomSrcIncr toDomTrgIncr

toConSubl

toSrcIncr

end;

Fig. 3.30. Triple rule for a connection

244 S. Becker, M. Nagl, and B. Westfechtel

An example of a triple rule is given in Fig. 3.30. The rule refers to the
running example to be used for the integration algorithm, namely the creation
of connections as introduced in Fig. 3.28 a). Here, the triple rule is presented
as a graph transformation in PROGRES [414] syntax.

A graph transformation consists of a left-hand and a right-hand side, which
are displayed on top or bottom, respectively. Each side contains a graph pat-
tern consisting of nodes and interconnecting edges. When a graph transforma-
tion is applied to a graph, the left-hand side pattern is searched in the graph
(pattern matching) and replaced by the right-hand side pattern. All nodes on
the left-hand side and new nodes on the right-hand side are further specified
by giving their type. The nodes on the right-hand side that appear on the
left-hand side as well are related to the corresponding left-hand side nodes by
their node numbers.

Both sides of the triple rule ConnectionSynchronous span all partici-
pating subgraphs: the source graph (representing the PFD) on the left, the
correspondence graph in the middle, and the target graph (for the simulation
model) on the right. The triple rule can be seen as a different representation of
the link template in Fig. 3.28 a). Its left-hand side is composed of all context
nodes of the link template: It contains the port nodes in the source and target
graphs, distinguishing between output ports and input ports. Furthermore, it
is required that the port nodes in both graphs correspond to each other. This
requirement is expressed by the nodes of type subLink in the correspondence
graph and their outgoing edges which point to nodes of the source and target
graph, respectively.

The right-hand side contains all nodes of the link template: All elements
of the left-hand side reappear on the right-hand side. New nodes are created
for the connections in the source and target graph, respectively, as well as for
the link between them in the correspondence graph. The connection nodes
are embedded locally by edges to the respective port nodes. For the link
node, three types of adjacent edges are distinguished. toDom-edges are used
to connect the link to exactly one dominant increment in the source and
target graph, respectively. In general, there are additional edges to normal
increments (not needed for the connection rule). Finally, toContext-edges
point to context increments.

Figure 3.30 describes a synchronous graph transformation. As already ex-
plained earlier, we cannot assume in general that all participating documents
may be modified synchronously. In the case of asynchronous modifications, the
triple rule shown above is not ready for use. However, we may derive asyn-
chronous forward, backward, or correspondence analysis rules as explained
in Subsect. 3.2.3. Figure 3.31 shows the forward rule for a connection from
Fig. 3.28 b) in PROGRES syntax. In contrast to the synchronous rule, the
connection in the PFD is now searched on the left-hand side, too, and only
the connection in the simulation model and the link with its edges are created
on the right-hand side.

Integrator Tools for Design Product Consistency 245

transformation ConnectionForward * =

‘4 : ComosInPort ‘5 : AspenInPort

‘3 : AspenOutPort‘2 : ComosOutPort ‘1

‘6

‘7 : ComosConnection

: Sublink

: Sublink

CC2COutPort

CC2CInPort

toScrIncr

toSrcIncr

toTrgIncr

toTrgIncr

::=

4’ = ‘4 5’ = ‘5

3’ = ‘32’ = ‘2 1’ = ‘1

6’ = ‘6

9’ : AspenConnection8’ : Link7’ = ‘7

toConSubl

toSrcIncr toTrgIncr

CC2COutPort

CC2CInPort

toDomSrcIncr
toDomTrgIncr

toConTrgIncr

toConTrgIncr
toConSubl

toSrcIncr toTrgIncr

AC2AOutPort

AC2AInPort
toConSrcIncr

toConSrcIncr

end;

Fig. 3.31. Forward rule for a connection

Unfortunately, even these rules are not ready for use in an integrator tool as
described in the previous section. In case of non-deterministic transformations
between interdependent documents, it is crucial that the user is made aware of
conflicts between applicable rules. A conflict occurs, if multiple rules match the
same increment as owned increment. Thus, we have to consider all applicable
rules and their mutual conflicts before selecting a rule for execution. To achieve
this, we have to give up atomic rule execution, i.e., we have to decouple pattern
matching from graph transformation [33, 255].

Integration Algorithm

An integration rule cannot be executed by means of a single graph transforma-
tion. To ensure the correct sequence of rule executions, to detect all conflicts
between rule applications, and to allow the user to resolve conflicts, all in-
tegration rules contained in the rule set for an integrator are automatically
translated to a set of graph transformations. These rule-specific transforma-
tions are executed together with some generic ones altogether forming the
integration algorithm.

While the algorithm supports the concurrent execution of forward, back-
ward, and correspondence analysis rules, we focus on the execution of forward
rules here. Also, we present the basic version of the algorithm only, without
optimizations. A full description of all aspects can be found in [29] which is
an extended version of [33].

246 S. Becker, M. Nagl, and B. Westfechtel

create
half links

find possible rule
applications

detect
overlappings

find unambiguous
rule

find decisions

ask for user
decision

check context

delete obsolete
half links

delete impossible
rule applications

delete obsolete
overlappings

execute rule

construct

select
execute and

cleanup

[no decisions]

[unambiguous
rule found]

[decisions pending]

[no unambiguous
 rule]

generic

rule specific

Fig. 3.32. Integration algorithm

The execution of integration rules is embedded in an overall algorithm which
can be briefly sketched as follows: When performing an integration, first all
links already contained in the integration document are checked for consis-
tency. Links can become inconsistent due to modifications applied to the
source and target documents by the user after the last run of the integra-
tor tool. In this case, they can be interactively repaired by applying repair
actions proposed by the integrator tool or fixed manually by adding or re-
moving increment references to the link or by simply deleting the link. For
an initial integration the integration document is empty, so this applies only
to subsequent integrations. After existing links have been dealt with, rules
are executed for all increments that are not yet referenced by links. In case
of a subsequent integration, these increments have been added by the user to
source and target documents since the last run of the integrator tool.

Figure 3.32 shows a UML activity diagram depicting the integration al-
gorithm. To perform each activity, one or more graph transformations are
executed. Some of these graph transformations are generic (white), others are
specific for the integration rule being executed (grey and italics). Thus, the
algorithm is composed of all generic and rule-specific graph transformations,
the latter for all integration rules contained in the rule set. The overall al-
gorithm is divided into three phases, which are described informally in the
following using the example of Fig. 3.33. The example is rather abstract and
is not related to specific rules of our scenario.

Integrator Tools for Design Product Consistency 247

I1

I2

I3

L1

L2

a) create half links

b) find possible rule applications

c) detect overlappings

d) check context

e) execute rule

f) cleanup

I1

I2

I3

L1

L2

Ra

Rb

O1

C1

C2

Rc

I1

I2

I3

L1

L2

Ra

Rb

Rc

I1

I2

I3

L1

L2

Ra

Rb

O1

Rc

I4

I5

I1

I2

I3

L1

L2

Ra

Rb

O1

C1

C2

Rc

I4

I5

I1

I2

I3

L1

Ra C1

L2 Rc

Fig. 3.33. Sample integration

During the first phase (construct), all possible rule applications and conflicts
between them are determined and stored in the graph. First, for each incre-
ment in the documents that has a type compatible with the dominant incre-
ment’s type of any rule, a half link is created that references this increment.
In the example, half links are created for the increments I1 and I3, and named
L1 and L2, respectively (cf. Fig. 3.33 a).

Then, for each half link the possible rule applications are determined. This
is done by trying to match the left-hand side of forward transformation rules,
starting at the dominant increments to avoid global pattern matching. In the
example (Fig. 3.33 b), three possible rule applications were found: Ra at the
link L1 would transform the increments I1 and I2; Rb would transform the
increments I2 and I3; and Rc would transform increment I3.

Here, two types of conflicts can be found. First, the rules Rb and Rc share
the same dominant increment. Second, the rules Ra and Rb share a normal in-
crement. Both situations lead to conflicts because each increment may only be
transformed by one rule as normal or dominant increment. To prepare conflict-
resolving user interaction, conflicts of the second type are explicitly marked
in the graph by adding an edge-node-edge construct (e.g. O1 in Fig. 3.33 b).

In the second phase (select), the context is checked for all possible rule
applications and all matches are stored in the graph. Only rules whose context
has been found are ready to be applied. In the example in Fig. 3.33 d), the

248 S. Becker, M. Nagl, and B. Westfechtel

context for Ra consisting of increment I3 in the source document was found
(C1). The context for Rb is empty (C2), the context for Rc is still missing.

If there is a possible rule application, whose context has been found and
which is not involved in any conflict, it is automatically selected for execution.
Otherwise, the user is asked to select one rule among the rules with existing
context. If there are no executable rules the algorithm ends. In the example in
Fig. 3.33 d), no rule can be automatically selected for execution. The context
of Rc is not yet available and Ra and Rb as well as Rb and Rc are conflicting.
Here, it is assumed that the user selects Ra for execution.

In the third phase (execute and cleanup), the selected rule is executed. In the
example (Fig. 3.33 e), this is the rule corresponding to the rule node Ra. As a
result, increments I4 and I5 are created in the target document, and references
to all increments are added to the link L1. Afterwards, rules that cannot be
applied and links that cannot be made consistent anymore are deleted. In
Fig. 3.33 f), Rb is deleted because it depends on the availability of I2, which is
now referenced by L1 as a non-context increment. If there were alternative rule
applications belonging to L1 they would be removed as well. Finally, obsolete
overlappings have to be deleted. In the example, O1 is removed because Rb
was deleted. The cleanup procedure may change depending on how detailed
the integration process has to be documented.

Now, the execution goes back to the select phase, where the context check
is repeated. Finally, in our example the rule Rc can be automatically selected
for execution because it is no longer involved in any conflicts, if we assume
that its context has been found.

In the following, some of the rule-specific and generic graph transforma-
tions needed for the execution of the connection rule will be explained in more
detail.

Construction Phase

In the construction phase, it is determined which rules can be possibly applied
to which subgraphs in the source document. Conflicts between these rules are
marked. This information is collected once in this phase and is updated later
incrementally during the repeated executions of the other phases.

In the first step of the construction phase (create half links), for each in-
crement, which type is the type of a dominant increment of at least one rule,
a link is created that references only this increment (half link). Dominant
increments are used as anchors for links and to group decisions for user inter-
action. Half links store information about possible rule applications; they are
transformed to consistent links after one of the rules has been applied.

To create half links, a rule-specific PROGRES production (not shown) is
executed for each rule. Its left-hand side contains a node having the type of
the rule’s dominant increment, with the negative application condition that
there is no half link attached to it yet. On its right-hand side, a half link

Integrator Tools for Design Product Consistency 249

node is created and connected to the increment node with a toDomSrcIncr-
edge. All these productions are executed repeatedly, until no more left-hand
sides are matched, i.e., half links have been created for all possibly dominant
increments.

The second step of the construction phase (find possible rule applications)
determines the integration rules that are possibly applicable for each half link.
A rule is possibly applicable for a given half link if the source document part
of the left-hand side of the synchronous rule without the context increments
is matched in the source graph. The dominant increment of the rule has to
be matched to the one belonging to the half link. For potential applicability,
context increments are not taken into account, because missing context incre-
ments could be created later by the execution of other integration rules. For
this reason, the context increments are matched in the selection phase before
selecting a rule for execution.

Figure 3.34 shows the PROGRES transformation for the example forward
rule for a connection of Fig. 3.28 b). The left-hand side consists of the half
link (‘2) and the respective dominant increment (‘1), as all other increments
of this rule are context increments. In general, all non-context increments
and their connecting edges are part of the left-hand side. The link node is
further constrained by a condition that requires the attribute status of the
link to have the value unchecked. This ensures that the transformation is
only applied to half links that have not already been checked for possible rule
applications.

On the right-hand side, a rule node is created to identify the possible rule
application (4’). A transfer is used to store the id of the rule in its attribute
ruleId. A possibleRule-edge connects it to the half link. A role node is
inserted to explicitly store the result of the pattern matching (3’). If there are
more increments matched, role nodes can be distinguished by the roleName-
attribute. The asterisk (*) behind the production name tells PROGRES to

transformation + Connection_ForwardRule_propose * =

‘1 : ComosConnection
toDomSrcIncr

‘2 : Link

::=

1’ = ‘1
toDomSrcIncrisAssignedTo

3’ : role

hasRole
4’ : rule

possibleRule

2’ = ‘2

condition ‘2.getStatus = unchecked;

transfer 4’.ruleId := "Connection_ForwardRule";

3’.roleName := "CC";

end;

Fig. 3.34. Find possible rule applications

250 S. Becker, M. Nagl, and B. Westfechtel

transformation + GEN_detectRuleConflicts * =

‘7 : clsIncrementinconsistentLink
inconsistentLink

conflictsWith

conflictsWith

hasRole

hasRole

isAssignedTo

isAssignedTo

possibleRule

possibleRule

‘5 : rule

‘4 : overlapping

‘3 : rule‘1 : Link

‘2 : Link ‘8 : role

‘6 : role

::=

7’ = ‘7

hasRole

hasRole
isAssignedTo

isAssignedToconflictsWith

conflictsWith

possibleRule

possibleRule
5’ = ‘5

3’ = ‘3

4’ : overlapping

2’ = ‘2 8’ = ‘8

6’ = ‘61’ = ‘1

end;

Fig. 3.35. Detect overlappings

apply this production for each possible matching of its left-hand side. When
executed together with the corresponding productions for the other rules, as
a result all possibly applicable rules are stored at each half link. If a rule is
applicable for a half link with different matchings of its source increments,
multiple rule nodes with the corresponding role nodes are added to the half
link.

In the selection phase, for each link that is involved in a conflict all possible
rule applications are presented to the user who has to resolve the conflict by
selecting one. Thus, these conflicts are directly visible. Conflicts where possi-
ble rule applications share the same normal increment are marked with cross
references (hyperlinks) between the conflicting rule applications belonging to
different links. This is done with the help of the generic PROGRES produc-
tion in Fig. 3.35. The pattern on the left-hand side describes an increment
(‘7) that is referenced by two roles belonging to different rule nodes which
belong to different links. The negative node ‘4 prevents the left-hand side
from matching if an overlap is already existing and therefore avoids multiple
markings of the same conflict. The arrows pointing at the link nodes, each
labeled inconsistentLink, call a PROGRES restriction with one of the link
nodes as parameter. A restriction can be compared to a function that has to
evaluate to true for the restricted node to be matched by the left-hand side.
The definition of the restriction is not shown here. It evaluates to true, if the
link’s attributes mark it as being inconsistent.

On the right-hand side, the conflict is marked by adding an overlap node
(4´) is inserted between the two rule nodes. Again, this production is marked
with an asterisk, so it is executed until all conflicts are detected. Besides de-
tecting conflicts between different forward transformation rules, the depicted

Integrator Tools for Design Product Consistency 251

production also detects conflicts between forward, backward, and correspon-
dence analysis rules generated from the same synchronous rule. Thus, to pre-
vent unwanted creation of redundant increments, it is not necessary to check
whether the non-context increments of the right-hand side of the synchronous
rule are already present in the target document when determining possible
rule applications in the second step of this phase.

Selection Phase

The goal of the selection phase is to select one possible rule application for
execution in the next phase. If there is a rule that can be executed without
conflicts, the selection is performed automatically, otherwise the user is asked
for his decision. Before a rule is selected, the contexts of all rules are checked
because only a rule can be executed whose context has been found.

transformation + Connection_ForwardRule_contextCheck * =

‘8 : ComosOutPort

‘7 : ComosInPort

‘6 : AspenOutPort

‘5 : AspenInPort

toDomSrcIncrisAssignedTo

‘3 : role

hasRole

‘4 : rule

possibleRule

‘2 : Link

consistentLink

consistentLink

toTrgIncrtoSrcIncr

‘10 : Sublink

toTrgIncrtoSrcIncr

‘9 : Sublink

CC2CInPort

CC2COutPort

‘1 : ComosConnection

not Connection_ForwardRule_contextAlreadyFound
 (‘1, ‘2, ‘3, ‘4, ‘5, ‘6, ‘7, ‘8, ‘9, ‘10)

::=

8’ = ‘8

7’ = ‘7

6’ = ‘6

5’ = ‘5

toDomSrcIncrisAssignedTo

3’ = ‘3

hasRole

possibleRule

2’ = ‘2

toTrgIncrtoSrcIncr

10’ = ‘10

toTrgIncr

toSrcIncr
9’ = ‘9

CC2CInPort

CC2COutPort

1’ = ‘1

possibleContext

4’ = ‘4

ctxtRoleIsAssignedTo

12’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

13’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

14’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

15’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

16’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

17’ : CtxtRole

hasCtxtRole

11’ : context

condition ‘4.ruleId = "Connection_ForwardRule";

‘2.getStatus = checked;

‘3.roleName = "CC";

transfer 12’.roleName := "AC.In";

13’.roleName := "AC.Out";

14’.roleName := "CC.In";

15’.roleName := "CC.Out";

16’.roleName := "CLPM.In";

17’.roleName := "CLPM.Out";

end;

Fig. 3.36. Check context

252 S. Becker, M. Nagl, and B. Westfechtel

The context check is performed in the first step of this phase. The context
is formed by all context elements from the synchronous rule. It may consist
of increments of source and target documents and of links contained in the
integration document.

Figure 3.36 shows the PROGRES production checking the context of the
example integration rule. The left-hand side contains the half link (‘2), the
non-context increments (here, only ‘1), the rule node (‘4), and the role nodes
(‘3). The non-context increments and their roles are needed to embed the
context and to prevent unwanted folding between context and non-context in-
crements. For the example rule, the context consists of the two ports connected
in the source document (‘7, ‘8), the related ports in the Aspen document (‘5,
‘6), and the relating sublinks (‘9, ‘10). The restrictions make sure that the
sublinks belong to a consistent link.

On the right-hand side, to mark the matched context, a new context node
is created (‘11). It is connected to all nodes belonging to the context by role
nodes (12’, 13’, 14’, 15’, 16’, 17’) and appropriate edges. If the matching of
the context is ambiguous, multiple context nodes with their roles are created
as the production is executed for all matches.

As the selection phase is executed repeatedly, it has to be made sure that
each context match (context node and role nodes) is added to the graph only
once. The context match cannot be included directly as negative nodes on
the left-hand side because edges between negative nodes are prohibited in
PROGRES. Therefore, this is checked using an additional graph test which
is called in the restriction on the rule node. The graph test is not presented
here as it is rather similar to the right-hand side of this production31.

The context is checked for all possible rule applications. To make sure that
the context belonging to the right rule is checked, the rule id is constrained
in the condition part of the productions. After the context of a possible rule
application has been found, the rule can be applied.

After the context has been checked for all possible rule applications, some
rules can be applied, others still have to wait for their context. The next step
of the algorithm (find unambiguous rule) tries to find a rule application that
is not involved in any conflict. The conflicts have already been determined in
the construction phase. As any increment may be referenced by an arbitrary
number of links as context, no new conflicts are induced by the context part
of the integration rules. The generic PROGRES production in Fig. 3.37 finds
rule applications that are not part of a conflict. On the left-hand side a rule
node is searched (‘1) that has only one context node and is not related to any
overlap node. It has to be related to exactly one half link (‘2) that does not
have another rule node.

For forward transformation rules, a rule node belongs to one link only,
whereas nodes of correspondence analysis rules are referenced by two half

31 In the optimized version of the integration algorithm, the context check is per-
formed only once for each rule, thus this test is avoided.

Integrator Tools for Design Product Consistency 253

transformation + GEN_selectRuleAndContextAutomatically1L

(out selRule : rule) =

‘7 : rule

‘5 : context

‘4 : context
possibleContext

possibleContext

‘1 : rule

possibleRule

‘6 : Link

possibleRule

possibleRule

‘2 : Link

conflictsWith

‘3 : overlapping

::=

4’ = ‘4
selectedContext

1’ = ‘1

selectedRule

2’ = ‘2

return selRule := ‘1;

end;

Fig. 3.37. Select unambiguous rule

links. Therefore for correspondence analysis rules, another production is used
which is not shown here.

A rule node is not selected for execution if there are conflicting rules, even
if their context is still missing. As the context may be created later, the user
has to decide whether to execute this rule and thereby making the execution
of the other rules impossible.

If a match is found in the host graph, the rule node and the context
node are selected for execution by substituting their referencing edges by se-
lectedRule and selectedContext edges, respectively (cf. right-hand side of
production in Fig. 3.37). The rule node is returned in the output parameter
selRule. Now, the corresponding rule can be applied in the execution phase.

If no rule could be selected automatically, the user has to decide which
rule is to be executed. Therefore, in the next step (find decisions), all conflicts
are collected and presented to the user. For each half link, all possible rule
applications are shown. If a rule application conflicts with another rule of a
different half link, this is marked as annotation at both half links. Rules that
are not executable due to a missing context are included in this presentation
but cannot be selected for execution. This information allows the user to select
a rule manually, knowing which other rule applications will be made impossi-
ble by his decision. The result of the user interaction (ask for user decision) is
stored in the graph and the selected rule is executed in the execution phase.

If no rule could be selected automatically and there are no decisions left,
the algorithm terminates. If there are still half links left at the end of the
algorithm, the user has to perform the rest of the integration manually.

254 S. Becker, M. Nagl, and B. Westfechtel

Execution Phase

The rule that was selected in the selection phase is executed in the execution
phase. Afterwards, the information collected during the construction phase
has to be updated.

Rule execution is performed by a rule-specific PROGRES production, see
Fig. 3.38. The left-hand side of the production is nearly identical to the right-
hand side of the context check production in Fig. 3.36. The main difference is
that, to identify the previously selected rule, the edge from the link (‘2) to the
rule node (‘4) is now a selectedRule edge and the edge from the rule node
to the context node (‘11) is a selectedContext edge. The possibleRule
and possibleContext edges are replaced when a rule together with a context
is selected for execution either by the user or automatically in the previous
phase of the algorithm (see above).

On the right-hand side, the new increments in the target document are
created and embedded by edges. In this case, the connection (18’) is inserted

transformation + Connection_ForwardRule_apply

(nrule1 : rule) =

‘8 : ComosOutPort

‘7 : ComosInPort

‘6 : AspenOutPort

‘5 : AspenInPort

toDomSrcIncrisAssignedTo

‘3 : role

hasRole

selectedRule

‘2 : Link

toTrgIncr
toSrcIncr

‘10 : Sublink

toTrgIncrtoSrcIncr

‘9 : Sublink

CC2CInPort

CC2COutPort

‘1 : ComosConnection

selectedContext

‘4 = nrule1

ctxtRoleIsAssignedTo

‘12 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘13 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘14 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘15 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘16 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘17 : CtxtRole
hasCtxtRole

‘11 : context

::=

8’ = ‘8

7’ = ‘7

6’ = ‘6

5’ = ‘5

toDomSrcIncrisAssignedTo

3’ = ‘3

hasRole

appliedRule

toTrgIncrtoSrcIncr
10’ = ‘10

toTrgIncrtoSrcIncr
9’ = ‘9

CC2CInPort

CC2COutPort

1’ = ‘1

appliedContext

4’ = ‘4

ctxtRoleIsAssignedTo

12’ = ‘12

hasCtxtRole

ctxtRoleIsAssignedTo

13’ = ‘13

hasCtxtRole

ctxtRoleIsAssignedTo

14’ = ‘14

hasCtxtRole

ctxtRoleIsAssignedTo

15’ = ‘15

hasCtxtRole

ctxtRoleIsAssignedTo

16’ = ‘16

hasCtxtRole

ctxtRoleIsAssignedTo

17’ = ‘17

11’ = ‘11

toDomTrgIncr

AC2AOutPort

AC2AInPort

18’ : AspenConnection

toConTrgIncr

toConTrgIncr

toConSrcIncr

toConSrcIncr

toConSubl

toConSubl

2’ = ‘2

hasCtxtRole

condition ‘4.ruleId = "Connection_ForwardRule";

‘2.getStatus = checked;

‘3.roleName = "CC";

‘12.roleName = "AC.In";

‘13.roleName = "AC.Out";

‘14.roleName = "CC.In";

‘15.roleName = "CC.Out";

‘16.roleName = "CLPM.In";

‘17.roleName = "CLPM.Out";

transfer 2’.setStatus := ruleBased;

end;

Fig. 3.38. Execute rule

Integrator Tools for Design Product Consistency 255

and connected to the two Aspen ports (5’, 6’). The half link (2’) is extended
to a full link, referencing all context and non-context increments in the source
and the target document. The information about the applied rule and roles etc.
is kept to be able to detect inconsistencies occurring later due to modifications
in the source and target documents.

The last steps of the algorithm are performed by generic productions not
shown here that update the information about possible rule applications and
conflicts. First, obsolete half links are deleted. A half link is obsolete if its
dominant increment is referenced by another link as non-context increment.
Then, potential rule applications that are no longer possible because their
potentially owned increments are used by another rule execution are removed.

3.2.5 Implementation

Besides realizing integrators completely on an ad-hoc hardwired basis, there
are four different alternatives for implementing a given set of integration rules
(see Fig. 3.39).

PROGRES
system

specification

(1) interpretation

program code

UPGRADE
visual tool’s

framework

translation by
generator

(2)

rules in
interpreter

form
integrator reuse

framework

interpreter
component

(3)

program
code

integrator reuse
framework

manual or
automatic
translation

(4)

Fig. 3.39. Four different possibilities for realizing integrators based on a specifica-
tion, (2) and (3) being discussed in detail below

Different Realization Strategies

Two of them are based on the academic PROGRES system which allows for
defining and executing graph transformation systems [414]. Both have in com-
mon that the set of integration rules has to be available as a PROGRES graph

256 S. Becker, M. Nagl, and B. Westfechtel

transformation specification, which can be generated as described in the previ-
ous subsection. Following alternative (1), the specification is interpreted within
the PROGRES system. As the PROGRES interpreter does not offer domain-
and application-specific visualization and graph layout, this alternative is not
considered in this paper.

The second alternative (2) is based on first generating program code from
the PROGRES specification and then compiling it together with the UP-
GRADE visual tool’s framework [49]. This results in a PROGRES-indepen-
dent prototype with graphical user interface.

Alternatives (3) and (4) are based on a specific framework designed for
the realization of integrator tools by making use of reuse. These alternatives
follow a more industrial approach. So, they do not need the academic platform
used for alternatives (1) and (2). Following alternative (3), integration rules
are interpreted at runtime by a specific interpreter component. Alternative
(4) is to include program code for all integration rules – either generated
automatically or written manually – into the framework.

In the following, we are focusing on alternatives (2) and (3) which are com-
pared in Fig. 3.40. We give a short overview and explain the common ground
as well as the differences of both approaches. In the following subsections, we
will present each of them in more detail.

Both implementation approaches rely on a set of integration rules as hav-
ing been described in Subsect. 3.2.3. For modeling these rules, we provide a
special editor which is shared by both approaches. To reduce the implementa-
tion efforts, the rule editor uses the commercial case tool Rational Rose [743]
as a basis, since it already provides basic modeling support for all types of
UML diagrams needed by our modeling approach. To supply modeling fea-
tures specific for integration rules, a plug-in implemented in C# (about 8600
lines of code) was created.

rule editor

framework-based integrators

PROGRES-based integrators

UPGRADE + code
generated by PROGRES

GRAS

generated
PROGRES
code

rule definitions (XML)

IREEN(2)

(3)

(4)

Fig. 3.40. Different implementation approaches

Integrator Tools for Design Product Consistency 257

The integration rule editor comprises all layers of our modeling approach
which are organized in different model packages: The meta layer package con-
tains class diagrams for the generic integration meta model, which are fixed,
as well as for domain-specific meta model extensions, which can be added
and modified. In the type layer package, class diagrams for document type
definitions and class diagrams for link type definitions can be created. In the
abstract instance package, link templates and rules can be defined using UML
collaboration diagrams.

The plug-in provides consistency check support between the layers: the
type layer is checked against the meta layer and the instance layer is checked
against the type and meta layers. For both checks, all detected inconsistencies
are listed in the user interface and the affected model elements are highlighted.
This helps the user to remove the inconsistencies. Additionally, the plug-in is
able to derive forward, backward and consistence analysis rules from a given
link-template. After the model is checked for its consistency and integration
rules are derived, integration rules are exported in the XML dialect for graphs
GXL [567, 732].

Both implementation approaches apply the integration algorithm presented
in Subsect. 3.2.4. They differ in how the algorithm is executed.

Following the approach in the upper half of Fig. 3.40 (2), PROGRES code
is derived for the rule-specific steps of the algorithm from the GXL rule defini-
tions and combined with a predefined specification of the generic ones. Then,
using PROGRES’ code generation capabilities and the UPGRADE framework
[49], an integrator prototype with a GUI is derived. Up to now, integrators
realized by this approach are not connected to existing real-world applica-
tions. Instead, they are used for the quick evaluation of integration rules and
of the integration algorithm itself. This realization method is called IREEN
(Integration Rule Evaluation ENvironment). Current work at our department
aims at providing a distributed specification approach for PROGRES [50] and
interfaces to arbitrary data sources for UPGRADE [46]. Forthcoming results
of this work could be used in the future to connect integrators realized by this
approach to existing tools.

Up to now, integrator tools to be used in an industrial context and in-
tegrating existing applications are realized differently. Integration rules con-
tained in GXL files are interpreted at runtime by a C++-based integrator
framework (lower half of Fig. 3.40, (3). This approach was already sketched
in Subsect. 3.2.2 (cf. Fig. 3.22). Besides interpreting rules, which is done for
most rules, pre-compiled rules can be linked to the integrator as well (4). Up
to now, these rules have to be hand-coded, but a C++ code generation com-
parable to the PROGRES code generation could be realized. The integrator is
connected to the existing applications by tool wrappers which provide graph
views on the tools’ data.

258 S. Becker, M. Nagl, and B. Westfechtel

Realization with PROGRES and Prototyping

Figure 3.41 gives an overview of how a PROGRES-based integrator prototype
including a graphical user interface can be derived from a given integration rule
set, following the IREEN method. First, from each synchronous triple graph
rule being contained in the integration rule set to be executed a forward,
a backward, and a correspondence analysis rule is derived as explained in
Subsects. 3.2.3 and 3.2.4.

As mentioned before, the integration algorithm for rule execution con-
sists of rule-specific and generic graph transformations. The rule-specific graph
transformations are automatically derived from the UML collaboration dia-
grams containing all forward, backward, and correspondence analysis rules
using a code generator. The generator output is an incomplete PROGRES
graph transformation system [412, 414, 481] containing all rule-specific trans-
formations for all rules.

To obtain a complete and executable specification, the partial specification
has to be combined with three generic specification parts : One specification
contains the static integration-specific parts, which are the integration graph
scheme, the overall integration algorithm control, and the generic transfor-
mations for the algorithm. Additionally, for both source and target document
there is a specification containing the document’s graph scheme and some
operations allowing the user to modify the document. Currently, the specifi-
cations for source and target documents are constructed manually. In general,
it is possible to – at least partially – derive these specifications from UML
models as well.

The complete specification is compiled by the PROGRES system resulting
in C code which is then embedded in the UPGRADE framework [49, 206]. This

MS1
: MaterialStream

MS1.In
: AspenInPort

MS1.Out
: AspenOutPort

: AspenComp
2AspenPort

: AspenComp
2AspenPort

: AspenConn
2AspenInPort

AC2
: AspenConn

RQ1
: REquil

: AspenConn
2AspenOutPort

RQ1.In
: AspenInPort

: AspenComp
2AspenPort

RQ1.Out
: AspenOutPort

: AspenComp
2AspenPort

: AspenConn
2AspenOutPort

AC1
: AspenConn

RP1
: RPlug

RP1.Out
: AspenOutPort

: AspenComp
2AspenPort

RP1.In
: AspenInPort

: AspenComp
2AspenPort

: AspenConn
2AspenInPort

PFR1
: PFR

PFR1.In
: ComosInPort

PFR1.Out
: ComosOutPort

: ComosComp
2ComosPort

: ComosComp
2ComosPort

RL1.PM1
: ReactorlinkPM

RL1.PM2
: ReactorlinkPM

: RLPM
2AspenPort

: RLPM
2ComosPort

: RLPM
2ComosPort

L
RL1

: GenericLink

: RL2NorMatStream

: R
L2

N
or

As
pe

nP
or

t

: RL2NorAspenPort

: RL2NorAspenPort

: RL2NorAspenPort

: R
L2N

orA
spenPort

: R
L2

Nor
Asp

en
Por

t

: RL2ReactorlinkPM

: R
L2

Rea
cto

rlin
kP

M

: RL2NorAspenConn

: R
L2

Nor
Asp

en
Con

n

:R
L2N

orA
spenR

eactor

: R
L2

D
om

As
pe

nR
ea

ct
o r

: RL2NorComosPort

: RL2NorComosPort

: RL2DomComosReactor

: RLPM
2AspenPort

Simulationsfließbild-Inkremente (Aspen)

Verfahrensfließbild-
Inkremente

(Comos)

synchroneous
TGG rule

section generated (* @CC_WriteBackup *)

3011XC2
218,108 @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
2' : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* @CC_LG 3004C @*)

end
transfer 2'.setStatus := unchecked;

end;

transformation + Connection_ForwardRule_propose * =
(<OptPrecondDecl>)
(* declare node: dominant source increment *)

begin
obl_node `1 : AspenConnection;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
obl_node `2 : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(96,154)(97,29) @*)
`2 -> `1 : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* @CC_LG 3004C @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(72,56)(97,29) @*)
obl_node 2' = `2;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(72,350)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* declare one role node for the dominant source increment *)
(* @CC_LG
3004C7
48,308
48,280
24,252
24,140
48,112 @*)
3' : role;
(* declare isAssignedTo edge from role node to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
3' -> 1' : isAssignedTo;

rule specific
graph
transformations

section generated (* @CC_WriteBackup *)

3011XC2
218,108 @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
2' : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* @CC_LG 3004C @*)

end
transfer 2'.setStatus := unchecked;

end;

transformation + Connection_ForwardRule_propose * =
(<OptPrecondDecl>)
(* declare node: dominant source increment *)

begin
obl_node `1 : AspenConnection;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
obl_node `2 : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(96,154)(97,29) @*)
`2 -> `1 : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* @CC_LG 3004C @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(72,56)(97,29) @*)
obl_node 2' = `2;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(72,350)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* declare one role node for the dominant source increment *)
(* @CC_LG
3004C7
48,308
48,280
24,252
24,140
48,112 @*)
3' : role;
(* declare isAssignedTo edge from role node to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
3' -> 1' : isAssignedTo;

generic graph
transformations
and graph
scheme

section generated (* @CC_WriteBackup *)

3011XC2
218,108 @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
2' : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* @CC_LG 3004C @*)

end
transfer 2'.setStatus := unchecked;

end;

transformation + Connection_ForwardRule_propose * =
(<OptPrecondDecl>)
(* declare node: dominant source increment *)

begin
obl_node `1 : AspenConnection;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
obl_node `2 : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(96,154)(97,29) @*)
`2 -> `1 : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* @CC_LG 3004C @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(72,56)(97,29) @*)
obl_node 2' = `2;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(72,350)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* declare one role node for the dominant source increment *)
(* @CC_LG
3004C7
48,308
48,280
24,252
24,140
48,112 @*)
3' : role;
(* declare isAssignedTo edge from role node to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
3' -> 1' : isAssignedTo;

rule specific
transformations

section generated (* @CC_WriteBackup *)

3011XC2
218,108 @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
2' : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* @CC_LG 3004C @*)

end
transfer 2'.setStatus := unchecked;

end;

transformation + Connection_ForwardRule_propose * =
(<OptPrecondDecl>)
(* declare node: dominant source increment *)

begin
obl_node `1 : AspenConnection;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
obl_node `2 : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(96,154)(97,29) @*)
`2 -> `1 : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* @CC_LG 3004C @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(72,56)(97,29) @*)
obl_node 2' = `2;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(72,350)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* declare one role node for the dominant source increment *)
(* @CC_LG
3004C7
48,308
48,280
24,252
24,140
48,112 @*)
3' : role;
(* declare isAssignedTo edge from role node to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
3' -> 1' : isAssignedTo;

source and
target document
graph schemes
and operations
(PROGRES
specification)

section generated (* @CC_WriteBackup *)

3011XC2
218,108 @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
2' : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* @CC_LG 3004C @*)

end
transfer 2'.setStatus := unchecked;

end;

transformation + Connection_ForwardRule_propose * =
(<OptPrecondDecl>)
(* declare node: dominant source increment *)

begin
obl_node `1 : AspenConnection;
(* declare node for main link *)
(* @CC_LG 6007(96,56)(97,29) @*)
obl_node `2 : Link;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(96,154)(97,29) @*)
`2 -> `1 : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* @CC_LG 3004C @*)

end
(* declare node: dominant source increment *)
::=
begin

obl_node 1' = `1;
(* declare node for main link *)
(* @CC_LG 6007(72,56)(97,29) @*)
obl_node 2' = `2;
(* declare edge from main link to dominant source increment *)
(* @CC_LG 6007(72,350)(97,29) @*)
2' -> 1' : toDomSrcIncr;
(* declare one node for each normal source increment *)
(* declare one Progres edge for each edge between normal and dominant source nodes *)
(* declare one role node for the dominant source increment *)
(* @CC_LG
3004C7
48,308
48,280
24,252
24,140
48,112 @*)
3' : role;
(* declare isAssignedTo edge from role node to dominant source increment *)
(* @CC_LG 6012(96,154)(97,29) @*)
3' -> 1' : isAssignedTo;

complete
specification

PROGRES code
generation

combining specifications

c code
generation,
embedding in
UPGRADE framework

prototype with GUI

rule
derivation

(PROGRES
specification)

(PROGRES
specification)

MS1
: MaterialStream

MS1.In
: AspenInPort

MS1.Out
: AspenOutPort

: AspenComp
2AspenPort

: AspenComp
2AspenPort

: AspenConn
2AspenInPort

AC2
: AspenConn

RQ1
: REquil

: AspenConn
2AspenOutPort

RQ1.In
: AspenInPort

: AspenComp
2AspenPort

RQ1.Out
: AspenOutPort

: AspenComp
2AspenPort

: AspenConn
2AspenOutPort

AC1
: AspenConn

RP1
: RPlug

RP1.Out
: AspenOutPort

: AspenComp
2AspenPort

RP1.In
: AspenInPort

: AspenComp
2AspenPort

: AspenConn
2AspenInPort

PFR1
: PFR

PFR1.In
: ComosInPort

PFR1.Out
: ComosOutPort

: ComosComp
2ComosPort

: ComosComp
2ComosPort

RL1.PM1
: ReactorlinkPM

RL1.PM2
: ReactorlinkPM

: RLPM
2AspenPort

: RLPM
2ComosPort

: RLPM
2ComosPort

L
RL1

: GenericLink

: RL2NorMatStream

: R
L2

N
or

As
pe

nP
or

t

: RL2NorAspenPort

: RL2NorAspenPort

: RL2NorAspenPort

: R
L2N

orA
spenPort

: R
L2

Nor
Asp

en
Por

t

: RL2ReactorlinkPM

: R
L2

Rea
cto

rlin
kP

M

: RL2NorAspenConn

: R
L2

Nor
Asp

en
Con

n

:R
L2N

orA
spenR

eactor

: R
L2

D
om

As
pe

nR
ea

ct
o r

: RL2NorComosPort

: RL2NorComosPort

: RL2DomComosReactor

: RLPM
2AspenPort

Simulationsfließbild-Inkremente (Aspen)

Verfahrensfließbild-
Inkremente

(Comos)

(PROGRES
specification)

forward,
backward,
correspond.,
rules

integration
algorithm

Fig. 3.41. Composition of PROGRES specification

Integrator Tools for Design Product Consistency 259

leads to a prototype with a graphical user interface which allows construction
and modification of source and target documents as well as performing runs
of the integrator tool. All documents reside in the underlying graph database
GRAS [8]. Some additional coding is required for application-specific layout
algorithms and user interfaces. However, these efforts can be kept small be-
cause the resulting prototypes are not targeted at the end user. Instead, they
are intended to serve as proof of concept, i.e., for the evaluation of integration
rules without having to deal with real applications.

Industrial Realization

For the practical realization of integrators, i.e. for demonstrators in industry,
an integrator framework is used. The framework is implemented in C++ and
comprises about 14.000 lines of code. We focus here on a sketchy survey,
because an overview of the system components of this framework has already
been given in Subsect. 3.2.2 (cf. Fig. 3.22),

The architecture of the integrator framework is displayed in Fig. 3.42. The
package IntegratorCore contains the execution mechanism and the overall con-
trol of the integrator. The package IntegrationDoc provides functionality for
storing, retrieving, and modifying links in the integration document. Docu-
mentWrapper consists of interface definitions that all tool wrappers have to
implement. As there are no generic wrappers, there is no implementation in
this package. The packages mentioned so far correspond to the main compo-
nents in the system architecture of Fig. 3.22.

There are two additional packages: First, IntegrationGraphView provides an
integrated graph view on source, target, and integration document. Therefore,
it uses the corresponding document packages. Second, GraphPatternHandling
supplies graph pattern matching and rewriting functionality. This functional-
ity is rather generic and could be used for arbitrary graph rewriting tasks.

IntegratorCore

«functional module»
IntegrationControl

«abstract data object module»
IntegrationConfiguration

«abstract data object module»
RuleTable

RuleExecution

CodedRules RuleInterpretation

«functional module»
RuleHandling

«functional module»
RuleInterpreter

«abstract data type module»
RuleSpecification

«uses» «uses»

«uses» «uses»

«uses» «uses»

«uses»

«uses»

GraphPatternHandling

IntegrationGraphView

IntegrationDoc

DocumentWrapper

«uses»

«uses»

«uses»«uses»

«uses»

«uses»

«uses»

«uses»

Fig. 3.42. Integrator framework

260 S. Becker, M. Nagl, and B. Westfechtel

Indeed, some of the pattern matching algorithm optimizations incorporated
in PROGRES have been re-implemented in the package. But as the graph
rewriting formalism for integration rules is limited, so far the package only
supplies the features needed for integrators.

The module IntegrationControl in the integrator core provides the overall
control for enacting integrations. For instance, its interface offers methods
that are used by the GUI to start or restart the integrator. To customize
a run of the integrator, administrative settings are stored in IntegrationCon-
figuration and read by IntegrationControl. At the start of the integrator, all
integration rules are stored in the module RuleTable. The sub-package Rule-
Execution implements the integration algorithm introduced in Subsect. 3.2.4.
Rule-independent steps of the algorithm are implemented in RuleHandling.
Rule-specific steps are either implemented directly in the sub-package Cod-
edRules or executed by the rule interpreter (sub-package RuleInterpretation).
The module RuleHandling serves as a “router”, either calling a rule-specific
piece of code in CodedRules for coded rules, or handing the execution over to
the rule interpreter. For either type of rule, the realization of the algorithm
steps is mostly based on graph pattern handling. But unlike the PROGRES-
based implementation, some algorithm steps can be implemented by calling
methods of the integration document package directly to provide a more spe-
cific and, thereby, more efficient implementation.

Prototype Demonstrator

Our integration approach described so far has been applied in a cooperation
with our industrial partner innotec GmbH. Innotec is a German software
company and the developer and vendor of the integrated engineering solution
Comos PT. In our cooperation, the integrator for Comos PT process flow
diagrams and Aspen Plus simulation models as described in the motivating
example (cf. Subsect. 3.2.1) has been implemented.

The integrator realization is based on an early version of the C++ integra-
tor framework which is interpreting integration rules at runtime. Integration
rules are modeled using the formalism described in Subsect. 3.2.3 with Ratio-
nal Rose, the rule modeling plug-in is used to export the rules to XML files.
Figure 3.43 shows the graphical user interface of the integrator.

The user interface is integrated into the Comos PT environment as a plug-
in. It is divided into two parts : On the left-hand side, all pending decisions
between alternative rule applications are listed. The user has to choose a
rule before the integration can proceed. On the right-hand side, all links in
the integration document are shown. Symbols illustrate the links’ states and
for each link a detailed description showing the related increments can be
opened. The integrator realized so far only addresses the integration of PFDs
and simulation models. Future work aims at providing an integration platform
for Comos PT for arbitrary integration problems (cf. Sect. 7.6).

Integrator Tools for Design Product Consistency 261

Fig. 3.43. User interface of the integrator for Comos PT PFDs and Aspen Plus
simulation models (in German)

3.2.6 Additional Integrators

Apart from integrators described so far, some further integrators have been
realized in IMPROVE and for predecessor projects that only partially make
use of the described concepts and infrastructures. In this section, we will
provide a short overview of these tools. Some tools will be described in more
detail in Sect. 5.5 and Sect. 7.6.

CHEOPS Integrator

In the IMPROVE scenario (cf. Sect. 1.2), the tool CHEOPS [409] (cf. Sub-
sect. 5.3.5) is used for the simulation of the overall chemical process. This
simulation consists of multiple simulation models for different heterogeneous
simulation tools. The task of CHEOPS is to perform partial simulations with
the appropriate tools and to exchange simulation results between them.

An integrator was implemented to generate the XML file that is used
to control CHEOPS for a specific process. This integrator differs from the
ones described so far. Unlike other integrators, it deals with more than two
documents. It unidirectionally generates the XML document out of multiple
input documents: It reads the top-level PFD, the AHEAD product model
(cf. Sect. 3.4) and the single simulation models. Additionally, links contained
in integration documents between PFDs and the simulations are exploited.
Another difference is the kind of user interaction taking place. There are no

262 S. Becker, M. Nagl, and B. Westfechtel

conflicts as explained in Subsect. 3.2.4. Instead, the user has to select which
simulation model to use if more than one is available for a part of the process
and to supply initial values for external input streams.

Therefore, the integrator was implemented manually using only parts of
the integrator framework. The rules that describe how the XML file has to
be integrated are hard-coded into the prototype. This does not lead to prob-
lems here as the rules are simple and static. Additionally, rule execution is
much simpler as in other integrators because of the lack of real conflicts. This
integrator is described in more detail in Sect. 5.5.

Integrating Technical and Design Level

Most integrators integrate the results of technical activities in the development
process, like PFDs and simulation models. Unlike that, the PFD-AHEAD inte-
grator performs the integration of a technical master document, the PFD, with
the administrative configuration of the development process in the AHEAD
system (cf. Sect. 3.4) being some organizational master document.

As the PFD is a master document that serves as overview of the whole
chemical plant to be designed, it can be used to provide an interface to the
administration of the development process. The PFD-AHEAD integrator does
this to help the chief engineer in a development process to determine the con-
sequences of changes that are made to a part of the plant design. To do so, the
chief engineer marks components in the PFD that have to be redesigned due
to a change. After that, the integrator interactively determines how project
coordination in AHEAD has to be adapted to contain tasks that deal with
these changes. The process manager reviews the changes to the AHEAD pro-
cess and either modifies them or directly applies them.

For this integrator as well, a realization approach different from the one for
normal integrators has been applied. The main reason for this are the pecu-
liarities of the user interaction needed: Instead of selecting between conflicting
rule applications, the chief engineer annotates the source document (PFD) to
make his decisions. Later, he interactively refines his annotations with the
help of the integrator.

Additionally, user interaction is performed by two different roles in the de-
velopment process. The first is the chief engineer, who uses a PFD-related user
interface. The second is the project manager, whose user interface is closely
related to the AHEAD system. As a result, the integrator was implemented
manually. Nevertheless, the experience with other integrators was quite helpful
as some concepts of the original approach could be applied resulting in a clean
architecture and a straight-forward integration algorithm. This integrator is
also described in more detail in Sect. 5.5.

Other Integrators within and Outside of IMPROVE

Some additional integrators have been built which are listed below. Due to
space restrictions, they are explained very briefly only.

Integrator Tools for Design Product Consistency 263

• An integrator collecting data from production control has been realized in
an industrial cooperation with the German company Schwermetall [956]. It
integrates a large number of heterogeneous data sources into a centralized
database with the mapping being quite simple. This integrator is not based
on the framework sketched above.

• Two XML-based integration tools have been built in the area of process
management. The first translates AHEAD (cf. Sect. 3.4) process definitions
into the petri net dialect used as workflow language by the commercial
workflow management tool COSA [615]. The second handles the import of
workflow definitions made with WOMS (cf. Sect. 2.4) into AHEAD. Both
made use of the XML transformation language XSLT [602].

• During the first phase of IMPROVE, an integrator between Aspen Plus
and the flowsheet editor (FBW) of IMPROVE (cf. Sect. 3.1.3) and one be-
tween the modeling tools gPROMS and ModKit have been implemented
manually [84]. The experience gained with their implementation was im-
portant for the design of the integrator framework.

• After the first version of the framework was implemented, the integrator
between FBW and Aspen Plus has been reimplemented to evaluate the
framework.

• At our department, integrator tools for other domains have been built: In
the ConDes project, an integration between a conceptual model of a build-
ing with the concrete building architecture is performed. Additionally, dif-
ferent ontologies modeling common knowledge about building architecture
are integrated [234, 241].
In the CHASID project, written text is integrated with a graph structure
describing its contents [128].
In the domain of reverse- and reengineering, triple graph grammars have
been applied to integrate different aspects [81–83, 88, 89].
The integration of different logical documents was first studied for de-
velopment processes in software engineering [109, 260]. For instance, the
relationship between requirements engineering and software architecture
has been studied [74, 184, 185, 254]. Theses studies have been broadened
during the IPSEN project [334] dealing with a tightly integrated develop-
ment environment [229, 256–259].

• In our cooperation with innotec, we currently develop an integrator tool
between the data structure definition of Comos PT and corresponding
UML models.

3.2.7 Related Work

Our approach to the specification of incremental and interactive integrator
tools is based on triple graph grammars. Therefore, we will discuss the rela-
tionships to other research on triple graph grammars in the next subsection.
Subsequently, we will address competing approaches to the specification of
integrator tools which do not rely on the triple graph grammar approach.

264 S. Becker, M. Nagl, and B. Westfechtel

Related Work Based on Triple Graph Grammars

The triple graph grammar approach was invented in our group by Schürr [413],
who gave the theoretical foundations for building TGG-based integrator tools.
The work was motivated by integration problems in software engineering [349].
For example, [259] describes how triple graph grammars were applied in the
IPSEN project [334], which dealt with integrated structure-oriented software
development environments.

Lefering [255] built upon these theoretical foundations. He developed an
early framework for building integrators which was based on triple graph
grammars. The framework was implemented in C++, rules had to be trans-
formed manually into C++ code to make them operational. The framework
was applied to the integration of requirements engineering and software ar-
chitecture documents, but also to integrate different views of requirements
engineering [229].

Other applications of triple graph grammars have been built using the
PROGRES environment. In our reengineering project REFORDI [88], syn-
chronous triple rules were transformed manually into forward rules (for trans-
forming the old system into a renovated one being based on object-oriented
concepts). The PROGRES system was used to execute forward rules – which
were presented as PROGRES productions – in an atomic way.

Our work on rule execution differs from systems such as REFORDI (or,
e.g., VARLET [766] from another department) inasmuch as a single triple
rule is executed in multiple steps to detect and resolve conflicts, as originally
introduced by Lefering.

Our work contributes the following improvements:

• We added detection, persistent storage, and resolution of conflicts between
integration rules.

• We provide a precise formal specification of the integration algorithm. In
[255], the algorithm was described informally and implemented in a con-
ventional programming language.

• Likewise, rules had to be hand-coded in Lefering’s framework. In contrast,
synchronous triple rules are converted automatically into specific rules for
execution in our approach.

• We used the specification in two ways : First, IREEN was constructed by
generating code from the formal specification (Fig. 3.41). Second, an im-
plementation designed for industrial use was derived from the formal spec-
ification (Fig. 3.42).

To conclude this subsection, we will briefly discuss related work on triple graph
grammars:

The PLCTools prototype [528] allows the translation between different
specification formalisms for programmable controllers. The translation is in-
spired by the triple graph grammar approach [413] but is restricted to 1:n

Integrator Tools for Design Product Consistency 265

mappings. The rule base is conflict-free, so there is no need for conflict detec-
tion and user interaction. It can be extended by user-defined rules which are
restricted to be unambiguous 1:n mappings. Incremental transformations are
not supported.

In [786], triple graph grammars are generalized to handle integration of
multiple documents rather than pairs of documents. From a single synchronous
rule, multiple rules are derived [787] in a way analogous to the original TGG
approach as presented in [413]. The decomposition into multiple steps such as
link creation, context check, and rule application is not considered.

In [579, 1033], a plug-in for flexible and incremental consistency manage-
ment in Fujaba is presented. The plug-in is specified using story diagrams
[670], which may be seen as the UML variant of graph rewrite rules. From
a single triple rule, six rules for directed transformations and correspondence
analysis are generated in a first step. In a second step, each rule is decomposed
into three operations (responsibility check, inconsistency detection, and incon-
sistency repair). The underlying ideas are similar to our approach, but they
are tailored towards a different kind of application. In particular, consistency
management is performed in a reactive way after each user command. Thus,
there is no global search for possible rule applications. Rather, modifications
to the object structure raise events which immediately trigger consistency
management actions.

Other Data Integration Approaches

Related areas of interest in computer science are (in-)consistency checking
[975] and model transformation. Consistency checkers apply rules to detect
inconsistencies between models which then can be resolved manually or by
inconsistency repair rules. Model transformation deals with consistent trans-
lations between heterogeneous models. Our approach contains aspects of both
areas but is more closely related to model transformation.

In [658], a consistency management approach for different view points [669]
of development processes is presented. The formalism of distributed graph
transformations [992] is used to model view points and their interrelations,
especially consistency checks and repair actions. To the best of our knowl-
edge, this approach works incrementally but does not support detection of
conflicting rules and user interaction.

Model transformation recently gained increasing importance because of
the model-driven approaches for software development like the model-driven
architecture (MDA) [876]. In [689] and [776] some approaches are compared
and requirements are proposed.

In [977], an approach for non-incremental and non-interactive transfor-
mation between domain models based on graph transformations is described.
The main idea is to define multiple transformation steps using a specific meta
model. Execution is controlled with the help of a visual language for specifying
control and parameter flow between these steps.

266 S. Becker, M. Nagl, and B. Westfechtel

In the AToM project [627], modeling tools are generated from descrip-
tions of their meta models. Transformations between different formalisms can
be defined using graph grammars. The transformations do not work incre-
mentally but support user interaction. Unlike our approach, control of the
transformation is contained in the user-defined graph grammars.

The QVT Partner’s proposal [509] to the QVT RFP of the OMG [875]
is a relational approach based on the UML and very similar to the work of
Kent [498]. While Kent is using OCL constraints to define detailed rules,
the QVT Partners propose a graphical definition of patterns and operational
transformation rules. These rules operate in one direction only. Furthermore,
incremental transformations and user interaction are not supported.

BOTL [565] is a transformation language based on UML object diagrams.
Comparable to graph transformations, BOTL rules consist of an object di-
agram on the left-hand side and another one on the right-hand side, both
describing patterns. Unlike graph transformations, the former one is matched
in the source document and the latter one is created in the target document.
The transformation process is neither incremental nor interactive. There are
no conflicts due to very restrictive constraints for the rules.

Transformations between documents are urgently needed, not only in
chemical engineering. They have to be incremental, interactive, and bidirec-
tional. Additionally, transformation rules are most likely ambiguous. There
are a lot of transformation approaches and consistency checkers with repair
actions that can be used for transformation as well, but none of them ful-
fills all of these requirements. Especially, the detection of conflicts between
ambiguous rules is not supported. We address these requirements with the
integration algorithm described in this contribution.

3.2.8 Summary and Open Problems

In this section, we presented the results of the IMPROVE subproject B2. The
main contributions of this section are the integration algorithm defined in the
PROGRES specification of IREEN, the specification method for integration
rules, and the integrator framework. Our framework-based integrator proto-
types realized so far could be implemented with considerably lower effort than
those that were built from scratch. The explicit specification of integration
rules helped improving the quality of the resulting tools.

First practical experiences have been gained in a cooperation with our in-
dustrial partner innotec. The cooperation will be continued in a DFG transfer
project, see Sect. 7.6.

Another important aspect of methodolodical integrator construction is the
step-wise refinement of coarse-grained domain models or ontologies to fine-
grained specifications defining the behavior of operational tools. In this sec-
tion, this topic has only been sketched, focusing mostly on the fine-grained
definition of integration rules. The relationship to domain models will be dis-
cussed in more detail in Sect. 6.3.

Integrator Tools for Design Product Consistency 267

Besides evaluation in industry, current and future work will address some
major extensions to the integration approach. For instance, more language
constructs of graph transformations, e.g. paths and restrictions, are to be
incorporated into the integration rule language. Additionally, the framework
will be extended to offer repair actions for links that have become inconsistent
due to modifications of documents. Further research will be conducted to
support the integration of multiple documents considering complex multi-
document dependencies.

3.3 Multimedia and VR Support for Direct
Communication of Designers

A. Schüppen, O. Spaniol, D. Thißen, I. Assenmacher, E. Haberstroh,
and T. Kuhlen

Abstract. The development of design processes in chemical engineering and plas-
tics processing requires close cooperation between designers of different companies
or working groups. A large number of communication relationships is established,
e.g. for the clarification of problems within single tasks, or within project meetings
covering the discussion about interim results. With the ongoing development of a
process, different types of communication relationships will occur, as the required
communication form as well as the extent of communication are depending on the
work task. For an efficient support of the communication between designers, support
tools are needed to enable cooperative computer-aided work tailored to an actual
task and to obtain a speed-up of the development of a process.

This section discusses several activities to improve the communication between
engineers by multimedia and Virtual Reality tools and protocol mechanisms for sup-
porting new forms of cooperative work in the design of a process. To ease the usage
of those tools and protocols within the work processes, they are integrated into
the normal working environments of the designers. For communication processes in-
volving geographically distributed designers, the communication platform KomPaKt
was developed, which integrates the new communication and cooperation tools for
different purposes in a single, configuration-free, and intuitive user interface. As a
specially interesting case of cooperation between designers, the technology of im-
mersive Virtual Reality for simulation sciences was examined in more detail using
the example of compound extruders, as Virtual Reality technology plays a key role
in interdisciplinary communication processes.

3.3.1 Direct Communication

A design process in the considered application domain comprises several dif-
ferent forms of communication and cooperation. To give only a few examples,
video conferences can be planned for the discussion about interim results of
a design step between geographically distributed designers, shared document
editing helps in document manipulation and presentation in distributed work
groups, and informal communication could be necessary if a question arises
which can only be answered by a remotely located project partner.

For an efficient support of all communication needs, certain requirements
have to be met:

• Currently available tools that support communication only integrate some
simple functionalities like e-mail or address books, or they are realized
as independent and possibly incompatible products for special tasks. This
can cause a huge amount of time that a designer has to spend on learning
how to efficiently use these communication tools. Ultimately, this may lead

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 268–299, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multimedia and VR Support for Direct Communication of Designers 269

to a complete refusal of such supporting tools. To avoid such problems, a
designer should only need to use a single interface comprising all different
functionalities for communication in a design process. This interface should
provide intuitive usability, and should free the designer from configuration
tasks.

• To facilitate a better exchange of ideas in a communication process be-
tween geographically distributed engineers, a combination of documents
and video/audio data is needed. Only this combination enables a discus-
sion about results.

• Tasks on which several engineers work together have to be supported
by functionalities of common, simultaneous manipulation of design doc-
uments. This should be realized on one hand by enhancing existing tools
for document manipulation, but on the other hand also by new interactive
environments, like Virtual Reality.

• Changes in design documents produced during a communication session
should be restored in the document management system. To do so, an
integration of the tools with the product model is needed.

• Results of one design step, or of a whole design process have to be discussed
in a group of geographically distributed designers. For this purpose, group
communication is necessary, not only comprising multicast communication
but also conferencing control.

To meet these requirements, a communication platform was developed which
enables a designer to use multimedial communication mechanisms in his work
process (see Subsect. 3.3.2). This platform integrates synchronous and asyn-
chronous communication tools into one graphical interface. A major design
goal was the intuitive usability of the communication platform. Through in-
tegration with the administration system (described in Sect. 3.4), contact
information of cooperation partners as well as the actual documents can be
aggregated without any additional configuration work.

The platform makes it possible to access several communication tools ;
some stand-alone tools were integrated, and some new tools and communi-
cation mechanisms were developed. Most important in this context are the
so-called event sharing for cooperative document manipulation in distributed
work groups together with the required mechanisms for the adaptive trans-
fer of multimedia data (see Subsect. 3.3.3), as well as Virtual Reality (see
Subsect. 3.3.4 and 3.3.5) as a new way to represent results.

For the control of a cooperative work session, the Scalable Conference Con-
trol Service (SCCS) was developed as a signalling protocol (see Subsect. 3.3.6).

A description of work related to the communication platform and the tools
and services (Subsect. 3.3.7) closes the section.

3.3.2 The Communication Platform KomPaKt

When introducing new forms of cooperation, it is important to get accep-
tance of the mechanisms by the target user group. Thus, the communication

270 A. Schüppen et al.

platform Kommunikationsplattform für die Prozessentwicklung und -analyse
in der Kunststoff- und Verfahrenstechnik (KomPaKt) was developed [456].
This platform integrates several communication tools and offers the designers
a single interface for accessing them.

The tasks of developing the platform not only comprised the set-up of an
interface and the integration of communication tools, but also the development
of new tools for supporting the steps in a design process on one hand, and
of an infrastructure for conference management on the other. The new tools
and the conference management infrastructure are covered in the following
subsections. This subsection only focuses on the communication platform’s
functionality and its integration.

Conception of the Communication Platform

To integrate synchronous and asynchronous communication tools into dis-
tributed work sessions, a framework was created which modularly incorporates
different tools into one interface. In this context, synchronous communication
comprises all those services which support multimedia conferencing. This in-
cludes not only the real-time transmission of audio/video data, but also the
usage of locally installed design tools by the whole team.

In synchronous communication, all involved team members have to be
available at the same time. So, all services belonging to this category need
some mechanisms for ensuring the communication availability of all partici-
pants. The typical conferencing scenario in the given application domain is a
project meeting of a group of designers. In the usual working environment it
cannot be expected that special conferencing rooms with audio/video equip-
ment are available for such a group at any time it would be needed. Instead,
it should be possible for the designers to join a distributed conference during
their work from their workstations, i.e. standard PCs, equipped with common
audio/video devices.

In contrast, asynchronous communication does not require the availabil-
ity of all participants at the same time. The most popular functionality here
is e-mail. Additionally, an analogous service can be thought of for voice: By
allowing the generation of audio messages which can be sent to the communi-
cation partner, a functionality like a phone mailbox is provided, allowing the
communication partner to replay it when he has time to do so. Such func-
tionalities are of use for delegating tasks, exchange of results of process steps,
or questions which do not need to be answered immediately. The advantage
using asynchronous communication is its simplicity, as no coordination of the
involved project partners is necessary.

The means for synchronous and asynchronous communication are de-
scribed in Fig. 3.44, showing all communication functionality considered in
KomPaKt. These functionalities were realized by developing and implement-
ing new tools (for audio/video transmission [183] and event sharing [317]),

Multimedia and VR Support for Direct Communication of Designers 271

IP based

Network

Programs

Sound

Video

Sound

Text

Ideas

Video Tool

Audio Tool

Application Sharing/
Event-Sharing

Whiteboard

?!

E-Mail

Audio Messages

Hello Mr. Schlüter,
do you have evaluated the
simulation results?

s
y
n

c
h

ro
n

o
u
s

a
s
y
n

c
h

ro
n

o
u

s

Fig. 3.44. Functionalities of the communication platform

or by integrating commercial products (for application sharing, shared white-
board, e-mail, and audio messages). A scenario for the usage of those func-
tionalities was defined in cooperation between project partners from commu-
nication systems and plastics processing.

The minimum functionality for a distributed work session is the exchange
of audio and video information. Data streams can be sent independently; if
a coordinated interaction is needed in a conferencing, a so-called floor con-
trol as part of a conference management realizes a coordinated access to the
communication channel. Additionally, one participant (usually the initiator
of the distributed meeting) manages the conferencing session. Communica-
tion between the participants considers certain social interaction rules [1036],
e.g. signalling of the wish to ask a question before sending it (as audio/video
data). Furthermore, secure communication is to be provided; authentication
and conference access assure that only authorized users can participate in
a conference. Thus, in addition to floor control, conference access control is
provided for the communication tools.

Figure 3.45 shows the protocol stack upon which the communication tools
are based. The Internet protocols TCP and UDP in combination with RTP
[902] are used for data transmission. The audio/video tools were developed
for transmission over the Internet considering possible congestions; thus, they
realize an adaptive transmission where the transmission rate is adapted to
currently available capacities [304], [465]. Both, the video and audio tool,
use RTP for transmission and the capabilities of the corresponding RTCP

272 A. Schüppen et al.

SCCS

IP/IP-Multicast

TCPUDP

T.122

Application Sharing Tool

User Interface

RTP/RTCP

Event Sharing Tool

T.124 T.128

Audio Tool Video Tool E-Mail /
Audio Msg.

POP3 SMTP

Fig. 3.45. Protocol stack of KomPaKt

to exchange state information about Internet traffic, thereby discovering free
capacities of the networks. Based on the RTCP messages, the compression
scheme of the audio/video data can be changed to adapt the required capac-
ity, keeping the quality of the transferred data as high as possible. In case
of only two participants, IP is used as a network protocol, for conferences
comprising more participants, IP multicast is used. The same holds for the
so-called event sharing used for distributed work on a single document. Addi-
tionally, a transmission channel for sending the event sharing data is provided
here by the Scalable Conference Control Service (SCCS). SCCS implements a
signalling protocol which handles the conference and floor control mechanisms
for synchronous communication.

Similar to the event sharing, but also suited for other application scenar-
ios, is the so-called application sharing [850]. We selected application sharing
provided by Microsoft’s NetMeeting [841]. It is based on the ITU-T T.120
protocol family. While T.128 defines the data exchange, T.124 provides con-
ference management functionality. Both use T.122 for transferring application
and management data. T.122 is independent of the used network by avoid-
ing to use IP multicast. It maps point-to-multipoint transmission onto a set
of point-to-point connections using TCP. Clearly, this network independence
causes additional transmission costs.

Before discussing more details of the communication tools and services, an
introduction to the capabilities provided for the engineers is given, focussing
on the user interface and the relation to other supporting functionality.

User Interface and Functionality

A simple and intuitive interface for the users [410] is an important yet often
neglected point. Multimedia communication tools are perceived as just an ad-
ditional support in process design, but not as absolutely necessary for solving
a task. Thus, the usage has to be simple in order to motivate the designer to
use the additional functionality. Consequently, the design of the user interface
has been carried out in cooperation with the project partners of the process
engineering and ergonomics departments.

Multimedia and VR Support for Direct Communication of Designers 273

Fig. 3.46. User interface of KomPaKt

As a result, the user interface of KomPaKt was designed, implemented, and
evaluated. The evaluations have shown that KomPaKt is very well suited for
sporadic usage in the context of a design process. All test persons, experienced
as well as unexperienced computer users, could solve all tasks for initiating
and performing a communication without problems. More details on these
results are described in Sect. 5.2.

The user interface manages information about all persons involved in a
design process. This enables the presentation of a clear list of possible com-
munication partners relevant in a work context. The willingness of all planned
participants is a pre-requisite for initiating a synchronous multimedia confer-
ence. Thus, an awareness functionality has been integrated into KomPaKt.

274 A. Schüppen et al.

Fig. 3.47. Invitation window of KomPaKt

In principle, it would be possible to automatically detect the availability of a
user by simply detecting keyboard or mouse input. Yet, this would not only
violate security guidelines, but would also only indicate an information about
availability, though availability does not necessarily signal willingness to com-
municate. The awareness functionality enables a user to signal his willingness
for communication: It allows to indicate whether he is available for commu-
nication, whether he does not want to be disturbed, whether he is away, and
possibly when he will be back, see Fig. 3.46. This information is visible for all
other users and can help planning a conference. Additionally, each user can
leave a file with contact data for urgent situations.

The first step in the initiation of a communication relation is to choose the
communication type (synchronous or asynchronous). An invitation window
opens, to which participants from the address book can be added by drag and
drop (see Fig. 3.47).

It is not necessary to deal with any configuration details (e.g. providing
the IP address of the communication partner) before starting a conference.
The corresponding address information about project partners from the ad-
dress book, as well as documents for a work session are transparently pro-

Multimedia and VR Support for Direct Communication of Designers 275

vided through a connection to the administration system AHEAD, which is
described in Sect. 3.4. This connection is one of the reasons why it was not
possible to just use commercial products for multimedia support. Some tools
and services had to be newly developed to allow for the necessary connections
to other supporting tools developed in IMPROVE.

Connection to the Administration System AHEAD

The administration system AHEAD manages the resources of a design pro-
cess, which also include the representation of the involved project members.
By implementing a connection to AHEAD, information about designers and
their contact data is transparently gathered by KomPaKt. Additionally, the
documents used in a work session can be identified and used in a conferencing
session.

At this point it is important to make a distinction between two types
of multimedia conferences. Planned conferences, e.g. meetings for discussing
about intermediate results obtained in the design process, can be modeled as
tasks in the process management of AHEAD. Thus, KomPaKt can be initi-
ated, like any other tool, through the work context for a task, directly gath-
ering all documents and contact information of the assigned project members
for this task.

However, KomPaKt can also be used for spontaneous conferencing, for
instance, if an engineer wants to discuss problems with partners. In this case,
KomPaKt uses the project team management of AHEAD to determine the
possible participants of a conference.

Last but not least, results of a simulation conference (e.g. protocols, video
recordings, annotated documents, etc) can be stored by using the document
management of AHEAD. On the technical layer, the connection to the ad-
ministration system is based on CORBA.

For the integration with AHEAD, the communication process is indepen-
dent from the process models described in Chapter 2. The communication
process adds communication and cooperation possibilities to the C3 model
(see Sect. 2.4). Detailed information about synchronous communication for
certain tasks is provided. On the one hand, this is done by specifying require-
ments in terms of Quality of Service for the transmission. Figure 3.48 shows
the parameters necessary for different communication types.

On the other hand, four abstraction layers have been considered to model
communication processes. First, the description layer gives information about
given input or output functionality, and if the data are persistent. On the
next abstraction layer, data sources and sinks are combined to transmission
channels, characterized by the media coding used. In general, an application
will use several channels, e.g. one for audio and one for video transmissions.
To integrate these channels into a communication process, contexts between
channels are created on the third layer. So far, the whole specification is
independent from communicating applications located on the users’ hosts.

276 A. Schüppen et al.

Fig. 3.48. Communication requirements for different media

Thus, the fourth layer locates the involved components. The layered model is
linked to the model of AHEAD, to allow for modelling multimedia conferences
as own tasks, but also to enable KomPaKt to obtain configuration information
from AHEAD.

3.3.3 Communication Tools

The user interface of KomPaKt only gives a unified way of accessing syn-
chronous and asynchronous communications. This interface integrates some
useful existing communication tools. For the considered application domain,
also the development of some new tools was necessary. These tools are de-
scribed in this subsection.

Audio and Video Transmission

Video conferencing needs the transmission of both audio and video data. Since
a designer should be able to use the functionality from his own PC, no as-
sumptions about the underlying network can be made. It can be an Ethernet
with 100 MBit/s, or it can be based on ISDN with up to 2 MBit/s. For video
and audio transmission, therefore, there is a need to adapt to the network ca-
pabilities. Products like NetMeeting were designed to work over low-capacity
networks, with reduced video quality. Thus, dedicated video and audio trans-
mission tools were developed, better adapting to the network.

The video transmission tool is able to adapt to available capacities of
the network by changing the video codec and/or the compression ratio be-
fore sending the data [304]. As shown in Fig. 3.45, this approach uses the
Real-Time Transmission Protocol RTP for a connectionless data transmission
without error handling. RTP also provides a control protocol named RTCP,
by which the receiving party can give feedback information about the received
data and the error ratio. The sending party uses this feedback information to

Multimedia and VR Support for Direct Communication of Designers 277

estimate the available network capacity and correspondingly changes coding
and compression of the video data stream. Integrated error detection and cor-
rection, also using information from RTCP, prevents the error propagation
in the received video stream, which is typical for commercial products like
NetMeeting [306], [307]. A corresponding tool for transferring audio data was
also developed [465], [464] and integrated into the KomPaKt environment.

While these video and audio transmission methods were realized as sep-
arate tools, together offering a mechanism for video conferencing, in a later
project phase the functionality was generalized to offer an independent mul-
timedia data transmission service which can be used in conjunction with a
broader spectrum of tools. The communication service which arose from this
effort is presented in Subsect. 3.3.6.

Event Sharing

In a typical cooperation process, not only video and audio information are
to be exchanged. Also, designers discuss about documents, and maybe these
documents are modified. Thus, in addition to the conferencing some way of
shared document editing is needed. A well-known technology is application
sharing [850].

Application sharing simply means that one application is started locally
on one host and shared with a number of other hosts. The graphical output
of the application is distributed to all participants. Also, the input can be
switched between all parties, allowing one participant at a time to take over
the control of the application. If a document is opened in the application,
everyone can take over control and modify the document. The modifications
are immediately visible to all others.

The disadvantage of this technique is the large volume of screen data which
is to be transferred to all partners to display the current state simultaneously
for all users. The scenario in question was the cooperative work of a distributed
team regarding 3D-animations using BEMView in plastics processing (see
Subsect. 5.4.6). The amount of data to be transferred for shared working with
an animation sequence is intolerably high.

Thus, as a first solution, 3D-animation of simulations of streams in an
extruder were recorded as a video sequence and streamed to all participants.
This method reduces the influence of congestions in the network compared to
application sharing, but does not allow to modify the document. The chance
for spontaneous interaction in the evaluation of animation sequences is lost.
Even simple things, like having a look at the extruder from another angle is
impossible - one would have to wait for the sequence to end and to produce a
new video sequence. This makes a cooperative evaluation very uncomfortable
and will hardly be accepted by any user.

An alternative approach was developed, which enables the transmission
of a visualized extruder simulation as a 3D-world. The compressed data files
that are storing the simulation results for usage with BEMView contain all

278 A. Schüppen et al.

Application Sharing:

Bilddaten

User events, if necessary

Event-Sharing:

All needed events

Program is
only started
on one host

Program is started on both hosts

Requirement: identical platforms

(e.g. „Key Pressed“, „Mouse Moved“)

Fig. 3.49. Comparison of application and event sharing

information about the 3D-animation, and at the same time are only slightly
larger than the recorded video sequences. Only user information which is to
be provided during the loading of the file are not available (angle of view,
distance, start time of simulation).

To address these problems the so-called event sharing was developed [317].
While in application sharing the screen information is transferred to all par-
ticipants, event sharing needs to run the application on all hosts and only
distributes events which are causing a change in the application’s state. This
way, an input of one participating host is sent to all partners and processed by
the locally running application instances. All instances are kept in the same
state, such that all users have the same view, like in application sharing. Such
events can be user inputs (mouse, keyboard) or system inputs (system time,
data). Figure 3.49 compares application and event sharing.

Figure 3.50 shows the architecture of the event sharing tool : The compo-
nent Conference is responsible for conference management and for the man-
agement of the data transfer channels. As these tasks are not specific to event
sharing but are needed for conferencing in general, they are managed by the
control service SCCS, which is described in Subsect. 3.3.6.

The Controller is the interface for initializing the event sharing and controls
the interaction of the other components. For example, first it checks whether
the conference service is available. If so, the Synchronizer/Sender is invoked
which provides a messaging interface for mapping events to a data channel
provided by the conference service. The Synchronizer/Sender enables synchro-

Multimedia and VR Support for Direct Communication of Designers 279

Fig. 3.50. Components of the event sharing architecture

nization by forwarding new events only when all participating hosts are in the
same state. Subsequently, the other components are started.

The Interceptor grabs the events that change the state of the shared pro-
gram. How to implement the Interceptor depends on the operating system;
most operating systems offer mechanisms for stopping or adding events. Only
one user has control over the program; his host copies and distributes the
events to the other parties. On all other sites events are blocked and replaced
by the received ones. The Resource Grabber recognizes which resources are
used by the program and makes reservations on all other sites.

The latter two components are responsible for distributing documents
needed in the shared work process. The Starter/Static Replicator takes over
that task upon startup; it distributes the necessary documents to all parties
and starts the shared program. During the work session, the Dynamic Repli-
cator tracks the program run and distributes newly loaded documents to all
sites. As a brief comparison, Fig. 3.51 summarizes the most important char-
acteristics of application and event sharing.

The plastics processing’s application BEMView was used for realizing and
evaluating the event sharing approach. A clear reduction of necessary trans-
mission capacity could be observed. Additionally, as a side effect, a new type
of interaction with a shared application was found: By loosening the process-
ing or blocking of events, it is possible to realize a loose coupling, thus allowing
each user his own view at the displayed simulation results within the same
document.

280 A. Schüppen et al.

Fig. 3.51. Application sharing vs. event sharing

Unfortunately, the approach has also disadvantages compared to application
sharing: Only users who have installed the shared application, can participate
in shared work. Additionally, the event sharing mechanism has to be adapted
to an application in order to be able to grab all events necessary for syn-
chronization. Thus, the installation process causes much more effort than for
application sharing. It depends on the application area whether application or
event sharing is more useful. Event sharing is not to be seen as a replacement
of application sharing, but as an alternative.

Nevertheless both, application and event sharing, have shown a disadvan-
tage in the application domain of plastics processing: extruder simulations
consist of large, complex sets of data, which are hard to be handled by the
engineers even with tools like BEMView. For this application scenario, Virtual
Reality was promising to be a much more effective communication medium,
although it needs special hardware and thus cannot be integrated with Kom-
PaKt. Because of the extensive examinations regarding this technology, an
own subsection is spent to present the results (see Subsect. 3.3.4).

Other Functionalities

Not all communication tools integrated in KomPaKt have been newly devel-
oped, also some existing and well-functioning tools were integrated. For syn-
chronous communication, a shared whiteboard delivered together with Net-
Meeting was integrated for providing a mechanism for drawing sketches or
writing down some ideas in spontaneous meetings. For asynchronous com-
munication, an e-mail service was integrated, also supporting the sending of
audio messages.

Furthermore, it was planned to develop a general shared editor which
would be able to store annotations to documents to provide a mechanism

Multimedia and VR Support for Direct Communication of Designers 281

for informal comments on design documents. Due to the complexity of such a
tool it was decided not to pursue this as one function. Instead, several mech-
anisms for specific document types were developed.

Most important here was the annotation of video sequences. As the record-
ing of video sequences had already been implemented as predecessor of the
event sharing tool, video sequences of simulation runs or screenshots of those
sequences can be stored. The tool TRAMP (see Sect. 4.1) provides the func-
tionality of storing and also annotating such sequences.

3.3.4 Virtual Reality in Multimedia Communication

In the following, Virtual Reality is introduced as an effective instrument to
interpret application data and to communicate on these interpretations.

Virtual Reality for Interdisciplinary Communication

Virtual Reality, as a technology, aims at presenting synthetic worlds with
which a user can interact in realtime with his natural senses. Despite this
rather abstract definition, the additional value in concrete application exam-
ples comes from the naturalness of perception and presentation of abstract
data. As such, Virtual Reality technology plays a key role in interdisciplinary
communication processes (cf. Fig. 3.52). An important observation in interdis-
ciplinary projects is, that people from different fields of science or engineering
often use a very different language when discussing about the same topic.
In Virtual Environments, the participants often start talking about the very
same object of visualization they see, in conjunction with gestures and full
body maneuvering. This obviously allows an easier access to the ideas of the
conversational partner, which indicates the usage of virtual reality for com-
munication.

Although this is already possible in room mounted Virtual Environments,
such as CAVE-like or workbench environments, these setups are typically
optimized for single users. As such, they have a little drawback for the coop-
erative work of many users. More possibilities result from the idea of Collab-
orative Virtual Environments (CVE), where more than one Virtual Environ-
ment is coupled on an application level and users interact remotely through
teleconferencing mechanisms, avatar representations, and specific interaction
metaphors.

Computational Fluid Dynamics Post-Processing in Virtual
Environments

In the last few years, simulation of technical and physical processes has be-
come an important pillar in engineering. In particular, the simulation of flow
phenomena – also known as Computational Fluid Dynamics (CFD) – is nowa-
days an indispensable and essential tool for the development of, e.g., airplanes,

282 A. Schüppen et al.

Fig. 3.52. Discussing engineers in a CAVE-like environment

cars, combustion engines, turbines etc. [883]. Even in medicine, CFD is going
to play an important role in the analysis of flow within blood vessels and the
development of artificial blood pumps, or in order to understand the air flow
within the human respiratory organs. Today, CFD is the preferred technique
to assess flow fields while the classical experimental approach is mainly used to
validate the simulation results. Due to the considerable costs of experiments,
flow simulations continuously push forward.

CFD simulations produce numerical data which cannot be interpreted by
the engineer without further treatment. Efficient post-processing approaches
are needed to extract structures and features from these raw data. Scien-
tific visualization methods provide a comprehensive overview of underlying
datasets by converting the data into geometrical objects that can be rendered
on computer displays.

Although mathematical and physical models for the description of flows
have been developed, for a long time only rather simple flows could be simu-
lated numerically. This situation changed dramatically with the availability of
high performance computing (HPC) systems. The enormous growth of com-
puting power was also for the benefit of CFD. Today, flow phenomena are
increasingly simulated in three instead of only two dimensions, based on very
fine grids containing up to several million cells. In addition, researchers are in-
vestigating unsteady flow phenomena, where the flow field changes over time,
resulting in huge datasets, especially when used in combination with highly
refined grids.

Due to the high complexity of the simulated phenomena, the analysis pro-
cedure of the resulting datasets becomes more explorative. In an explorative
analysis, the hypotheses about the characteristics of a flow phenomenon still
have to be made during the analysis procedure, resulting in a trial-and-error
process. This is a contrast to the confirmative approach of data analysis,

Multimedia and VR Support for Direct Communication of Designers 283

where regions of interest or specific parts of the simulation are selected for
a visualization beforehand. During the explorative analysis session, the engi-
neer continuously defines parameter values to extract flow features which are
thereafter often rejected because of unsatisfying results. Then, the parameters
are modified for a renewed feature extraction. This iterative scheme is applied
until a comprehension of the flow characteristics will be attained. Thus, an
explorative analysis relies heavily on the interactivity of the underlying sys-
tem.

All in all, researchers are going to examine physical phenomena of such a
high complexity that traditional methods of post-processing, like producing
static images or at best animations, are no longer neither an effective nor an
efficient approach to understand the simulated flow fields. Instead, engineers
demand interactive exploration of their data in 3D space, eventually leading
to the use of Virtual Reality technology.

This requirement comes along with the statement made by [1010] that the
size of computed simulation results increases faster than the possibilities of
data processing and data analysis. In the long term, they expect that only ar-
tificial intelligence techniques will solve this problem by offering a completely
automatic pre-processing of raw data. Then, the user would only be con-
fronted with pre-structured, handy quantities of prepared data. For the near
future, they propose the employment of Immersive Virtual Reality (IVR) that
combines interactive visualization with immersive sensation. Appropriate sys-
tems have to ensure the complete integration of users into virtual, computer-
generated worlds in order to enable an interactive investigation of phenomena
located in simulation datasets.

After all, we identify the following potentials of IVR in comparison to
traditional post-processing and visualization:

• 3-D viewing. It is obvious that a 3D simulation can be understood much
more intuitively when visualized in 3D space, using stereoscopic projection
and head tracking to produce a quasi-holographic representation of the
three-dimensional flow phenomena. In comparison to 2D or at best 2 1

2D
visualizations, the one-to-one spatial relationship between the real world
and VR reduces the mental workload considerably. This is especially true
for CFD visualizations, because unlike in, e.g., architectural applications,
there hardly exist any psychological clues for 3D viewing of abstract data.
Thus, the user has to rely even more on the physiological clues, like stereo
and motion parallax provided by viewer centered projection, e.g., when
following the course of a path line in 3D space.

• Navigation. In an animation-based visualization, a full animation sequence
has to be generated, in case it becomes necessary to assess a dataset from
a different viewpoint. This makes this approach completely unsuitable for
an explorative analysis. In VR, the user can navigate through the dataset
in real-time, actually allowing an explorative analysis within a reasonable
time. Besides interactivity, a further benefit of IVR is that – depending

284 A. Schüppen et al.

on the number of screens installed – a multiple of information can be pre-
sented at once as compared to a monitor-based presentation with its lim-
ited field of view. As a consequence, the engineers cannot only physically
walk around the flow phenomena or just position themselves in the middle
of the dataset, but can also examine single features without loosing track
of the whole dataset. Unlike in a monitor-based solution, intuitive orien-
tation within the data is guaranteed even when zooming into interesting
details.

• Interactivity. In VR, interactivity is not only limited to navigation, but it
also includes the manipulation of a virtual scene or virtual objects. For that
reason, a VR-based post-processing should by definition provide function-
alities for interactive feature extraction and for variation of visualization
parameters, thus inherently supporting the trial-and-error procedure in an
explorative analysis.

• 3D, multimodal interaction. A lot of publications exist which approve
that 3D interaction techniques significantly increase a user’s performance
and acceptance when positioning tasks or manipulative tasks have to be
accomplished in 3D space. These general findings can be directly trans-
ferred to VR-based post-processing. For instance, the setting of path- and
streamlines is an important and often executed task during an explorative
analysis. Making use of 3D input devices, positioning and orienting of
seed points can be intuitively and precisely achieved even in complex 3D
datasets. Besides three-dimensionality, multimodality is another attribute
of VR. Possibly, a multimodal interface including acoustics, haptics, or
speech input may have the potential to improve or accelerate a CFD anal-
ysis further.

• Communication. A 3D presentation of the data representing simulated
flow phenomena, is considered to be much easier to understand, espe-
cially for non-experts. As a consequence, the design of a newly developed
turbine, motor or in our case an extruder can be communicated to cus-
tomers, project partners etc. Also, interdisciplinary discussion of CFD re-
sults within a company, which today becomes more and more important
in the product development process, can be improved by means of Virtual
Reality.

Virtual Reality for the Analysis of Flow Phenomena in Compound
Extruders

In plastics processing, polymers are usually processed within twin extruders.
Due to the complex and unsteady flow phenomena within such extruders, their
design and optimization is a complicated task in which people from different
disciplines are involved.

In particular, engineers are going to combine 1D simulations with FEM
and BEM methods in the 3D domain throughout the optimization process,

Multimedia and VR Support for Direct Communication of Designers 285

which by ViSTA and its framework Viracocha all had to be integrated into
one exploration tool.

As the numerical simulation of flows inside a compound extruder is a com-
plex task, engineers usually do not simulate complete units but concentrate
on functional zones. Due to the modularity of a compound extruder, a wide
variety of configurations is possible for any functional zone. 1D simulations
calculate averaged functions or determine an overview of a specific configura-
tion on an empirical level. They are used to select a specific extruder setup to
be simulated with finite element (FEM) or boundary element (BEM) methods.

Even though in principal, the visualization of 1D simulations in a three-
dimensional space is not too meaningful, the visualization of a number of
1D-functions with exact geometrical placement can be an interesting alterna-
tive. In addition to that, the simple and natural interaction metaphors that
are used in VEs can ease the task of configuration construction. Figure 3.53
depicts the prototype we developed for the interactive configuration of twin
screw extruders that uses fast 1D simulations to prepare functional zones for
expensive FEM simulations.

Fig. 3.53. PME Screenshot

As in other application areas that examine flow phenomena, in plastics pro-
cessing numerical simulations replace the common model-based experiment.
With increasing complexity, the requirements on the methods for the visu-
alization rise. Traditionally, visualization software allows the simple anima-
tion of transient data sets. This is not enough for the interactive exploration
of complex flow phenomena, which is, in contrast to a confirmative analysis,
comparable to an undirected search in the visualization parameters for a max-
imum insight into the simulation. In a worst case scenario, important features
of a flow are not detected. Due to this fact, the interactive explorative analysis
in a real-time virtual environment is demanded by scientists.

It turns out that the interactive setting of seed points and visualization
of particle traces is the most adequate technique to understand the flow in-
side an extruder. Thus, the application particularly profits from the parallel

286 A. Schüppen et al.

calculation of pathlines in Viracocha as well as from their efficient rendering
by Virtual Tubelets (see Fig. 3.54). A special challenge in the application is
to find intuitive representation metaphors for physical and chemical processes
that directly depend on the flow characteristics inside an extruder.

Fig. 3.54. Pathlines inside a simulated twin extruder, rendered as Virtual Tubelets

3.3.5 A Framework for Flow Analysis in Virtual Environments

As a comprehensive application of VR in the application scenario, in the
following we will introduce a comprehensive tool under development, where
among many other features, minimum system response time and a maximum
frame-rate are respected, in order to allow for an explorative analysis of com-
plex, unsteady flow phenomena in IVRs. The main components of this tool are
ViSTA, ViSTA FlowLib, and Viracocha. ViSTA covers basic VR functionality
like navigation, interaction, and scenegraph handling, whereas ViSTA FlowLib
[386] provides special features for flow visualization. While ViSTA and ViSTA
FlowLib both run on the graphics computer, a framework called Viracocha
[130] is running on a different computer – preferably the simulation host or an-
other HPC system – where parallel feature extraction and data management
are held. In Fig. 3.55, the overall architecture is depicted.

Immersive Display Technology

Nowadays, immersive multi-screen displays like CAVEsTM are driven by off-
the-shelf PC clusters with consumer graphics cards instead of multipipe,
shared memory graphics computers. This reduces the costs for IVR infra-
structure dramatically. VR toolkits supporting PC clusters must inherently
have a distributed software architecture, and data synchronization is an issue
in such frameworks. Besides a client-server approach, where the scenegraph
is distributed over the cluster nodes, a master-slave approach is most often

Multimedia and VR Support for Direct Communication of Designers 287

�����
���	
��

���� ���� ����

������

��	�
����

���� ����

������ ������

����������
������� �����	��	�

���� �������������������

Fig. 3.55. Architecture and communication concept of ViSTA FlowLib and Vira-
cocha

used. Here, copies of the same application run on every node, and events are
propagated via network from one dedicated master node to the slave nodes.
Details about these concepts will be explained in Subsect. 3.3.5.

Our framework represents a combination of both approaches. In principle,
ViSTA follows the master-slave concept. In the context of CFD postprocessing
however, the master requests and gets data from the simulation host, which
then has to be propagated to the slaves in order to be rendered. To com-
bine both design patterns, a so-called data tunnel has been implemented into
ViSTA, working in clustered and non-clustered environments.

In the clustered case, the master data tunnel consists of a dispatcher for-
warding received data packets to all connected render nodes. Additionally,
slave data tunnels exist which ignore all computation request to the HPC
backend. Consequently, only requests by the master are processed. The hy-
brid architecture is depicted in Fig. 3.56.

The following section will explain the very basics of Virtual Reality ap-
plications in a distributed setting. Parts of the technology are applied for the
realization of PC cluster setups in order to drive large VR displays. On a
technological level, much of the applied methods also count for collaborative
applications. As a consequence we will illustrate this technology and then
extend them to the collaborative setting.

Virtual Reality in Distributed Environments

Distributed environments that are used for collaboration usually suffer from
a number of problems, and a huge number of remedies exist. The most basic
problems arise from distributed working memory of the participating nodes
and the need for sophisticated data locking strategies over network connec-
tions.

288 A. Schüppen et al.

Fig. 3.56. Hardware setup for the distributed visualization system

In the field of Virtual Environments, this is a severe constraint, as these ap-
plications require a real-time environment to run in. This can usually not
be fulfilled and is stated in the Consistency-Throughput Tradeoff [966]: “It is
impossible to allow dynamic shared state to change frequently and guarantee
that all hosts simultaneously access identical versions of that state”. As such it
states that a dynamic VE can not support dynamic behavior and consistency
across all connected sites simultaneously.

One approach to this situation is to research low latency update mecha-
nisms across a group of participants, either by sophisticated communication
schemes or the sheer reduction of information that has to be synchronized. A
Virtual Reality application usually processes a lot of data for the visualization.
In comparison to that, interaction events that actually steer the application
are both, small in size and less frequent in comparison to video interrupts from
the graphics hardware. A simple, but working approach is to share interac-
tion events between collaborative applications in order to ensure data locking.
This approach can be used for the synchronization of PC cluster based large
displays and is depicted in the following section.

Event Sharing in PC Clusters

A complex large display driven by a PC cluster architecture needs tight syn-
chronization for an immersive sensation in a VR application. The following
passages describe a software-based solution to the data- and swap locking prob-
lem that arise in this task. It will explain the difficulties and necessary terms
in detail and close with a presentation of an abstracted framework that can
deal with data flow and synchronization issues in a more general way. All
software described is completely implemented in the ViSTA VR toolkit.

As stated above, room mounted multi-screen projection displays are nowa-
days driven by off-the-shelf PC clusters instead of multi-pipe, shared memory
machines. The topology and system layout of a PC cluster raises fundamental

Multimedia and VR Support for Direct Communication of Designers 289

differences in the software design, as the application suddenly has to respect
distributed computation and independent graphics drawing. The first issue in-
troduces the need for data sharing among the different nodes of the cluster,
while the latter one raises the need for a synchronization of frame drawing
across the different graphics boards.

Data locking deals with the question of sharing the relevant data between
nodes. Usually, nodes in a PC cluster architecture do not share memory. Re-
quirements on the type of data differ, depending whether a system distributes
the scene graph or synchronizes copies of the same application. Data locked
applications are calculating on the same data, and if the algorithms are de-
terministic, are computing the same results in the same granularity.

An important issue especially for Virtual Reality applications is render-
ing. The frame drawing on the individual projection screen has to be precisely
timed. This is especially true for active stereo displays where a tight timing be-
tween the activation of the shutter glasses and the presentation on the display
is vital to see a stereoscopic image. Tight frame locking usually is achieved
with specialized hardware, e.g. genlocking or frame locking features, that are
available on the graphics boards. However, this hardware is not common in
off-the-shelf graphics boards and usually rather expensive. In addition to this,
while exact synchronization is mandatory to the active stereo approach, it is
not that important when using passive stereo, where frames for the left and
the right eye are given simultaneously on the projection surface. Ideally, a
software-based solution to the swap synchronization issue would strengthen
the idea of using non-specialized hardware for Virtual Reality rendering thus
making the technique more common.

Additionally, the scalability requirement is important as well. This means,
that a programmer and the application should not need to be aware of the fact
that it is running in a distributed environment or as a stand-alone application.
Ideally, the same application can run in a cluster environment as well as on a
laptop setup with minor modifications.

Data locking deals with the issue of distributing knowledge between appli-
cations. In Virtual Reality applications, it is usually distinguished between two
types of knowledge, the graphical setup of the application (the scenegraph)
and the values of the domain models that define the state of the application.

Distributing the scenegraph results in a simple application setup for cluster
environments. A setup like this is called a client-server setup, where the server
cluster nodes provide the service of drawing the scene, while the client dictates
what is drawn by providing the initial scenegraph and subsequent modifica-
tions to it. The client node performs all user interaction and is usually not a
part of the rendering environment. As a consequence, the client node should
provide enough computational resources to deal with the additional complex-
ity of user input dispatching and calculations. The server nodes need only
enough graphics performance, as they do not do additional calculations.

The client-server technique is usually embedded as a low level infrastruc-
ture in the scenegraph API that is used for rendering. Alternatives to the

290 A. Schüppen et al.

������

����������	

���	��

�	���	�

���	��

�	���	�

���	��

�	���	�����	��	������
�
��������
��	�����	�

���������	
�	����� ��������	�
�����	

������

����������	

�	���	�

���	�

����������	

�	���	�

���	�

����������	

�	���	�

���	�

����������	

�	���	�

����	��	������
�
��������
��	�����	�

Fig. 3.57. Client-Server and the Master-Slave model for PC cluster applications

distribution of the scenegraph can be seen in the distribution of pixel-based
information over high bandwidth networks, where all images are rendered
on in a high performance graphics environment [677], or the distribution of
graphics primitives, e.g., parameters of OpenGL primitive calls.

A totally different approach respects the idea that a Virtual Reality appli-
cation that has basically the same state of its domain objects will render the
same scene, respectively. It is therefore sufficient to distribute the state of the
domain objects to render the same scene. In a multi-screen environment, the
camera on the virtual scene has to be adapted to the layout of your projection
system. This is a very common approach and is followed more or less, e.g., by
approaches such as ViSTA or NetJuggler [978]. It is called the master-slave,
or mirrored application paradigm, as all slave nodes run the same application
and all user input is distributed from the master node to the slave nodes. All
input events are replayed in the slave nodes and as a consequence, for deter-
ministic environments, the state of the domain objects is synchronized on all
slave nodes which results in the same state for the visualization. The master
machine, just like the client machine in the client-server approach, does all the
user input dispatching, but as a contrast to the client-server model, a master
machine can be part of the rendering environment. This is a consequence from
the fact that all nodes in this setup merely must provide the same graphical
and computational resources, as all calculate the application state in parallel.

Figure 3.57 depicts both architectures in their principal layout. This is a
higher-level approach than the distribution of the scenegraph, as the state of
domain objects is usually depending on user interaction and to some extent on
non-determinism, e.g. time and random number calculations. One can select
between the distribution of the domain objects or the distribution of the in-
fluences that can alter the state of any domain object, e.g. user input. Domain
objects and their interactions are usually defined on the application level by
the author of the VR application, so it seems more reasonable to distribute

Multimedia and VR Support for Direct Communication of Designers 291

the entities of influence to these domain objects and apply these influences to
the domain objects on the slave nodes of the PC cluster.

A common model for interactive applications is the frame-loop. It is de-
picted on the left side of Fig. 3.58. In this model, the application calculates
its current state in between the rendering of two consequent frames. After
the calculation is done, the current scene is rendered onto the screen. This is
repeated in an endless loop, until the user breaks the loop and the application
exits. A single iteration of the loop is called a frame. It consists of a calculation
step for the current application state and the rendering of the resulting scene.
Our solution assumes that user interaction is dispatched after the rendering of
the current scene and any state change of an interaction entity is propagated
to the system and the application using events. An event indicates that a
certain state is present in the system. E.g. pressing a button on the keyboard
represents such a state. All events are propagated over an event-bus.

rendering

interaction-
update

event bus

application
update

system update

application start

application end

interaction
update

application
update

event observer net listener

application
update

event bus
master node

event bus
slave node

serialized events

0101011101101
1010110101011
01010010110...

cluster’s intranet

ti ti+1 ti ti+1

domain objects domain objects

Fig. 3.58. Left: A typical endless loop of a VR application. Right: Data locking by
event sharing.

We can see that the distribution of user interaction in the form of events is
a key component to the master-slave approach. As a consequence, in a well-
designed system it is sufficient to mirror application events to a number of
cluster nodes to transparently realize a master-slave approach of a clustered
virtual environment. The task for the framework is to listen to the events
that run over the event bus during the computational step in between the
rendering steps of an application frame, and distribute this information across
a network. The following paragraphs will focus on the recording, serializing
and reproducing of application events.

In an interactive Virtual Reality application, a frame rate of at least 30
scene renderings per second is a fundamental requirement. This enforces any
calculation and time for the actual rendering to happen in less than 33 ms. For
a cluster setup this includes graphics rendering, application calculation, and
network handling. In VR programs, it is a typical idiom to delegate i/o han-
dling to separate threads to give more time to the rendering and calculational
part of the application. This will relax the model of a PC cluster setup to a

292 A. Schüppen et al.

thread that handles network communication, buffering, deserializing and in-
termediate object creation, and the VR core part that is basically the same as
in the stand alone version. Between two render requests, an arbitrary number
of events can occur at a high frequency. Furthermore, in a networked envi-
ronment, it is better to send few large informational chunks instead of a high
number of small ones. The latter approach increases communication overhead
and reduces the chances of a successful buffering scheme.

As a consequence, we introduce the term of an application frame. It consists
of the ordered sequence of real world events that happen in between two
rendering steps. A master node thus collects an application frame, chooses a
proper encoding, and sends the frame as a complete collection to all the slave
nodes, where the sequence will be reconstructed and injected to the local
event bus. As shown above in Fig. 3.58, this will result in the same state of
the domain objects right before rendering.

Event Sharing for Collaborative Virtual Environments

A central part of all collaborative systems is the communication between
participating users. Any VR application reacts mainly on user input that is
derived from a number of sensors. The types of input are more versatile than
input from desktop PC devices like mouse or keyboard. This is easily seen
in the higher number of degrees of freedom for typical VR devices and the
essential requirement on Virtual Reality applications to demultiplex user input
from different modalities at the same time. However, the occurrence of user
input can be represented by events that have to be handled whenever the user
triggers a sensoric device for a specific modality. As such, a number of events,
or in a very simple case, the complete stream of events can be used as input
for distributed VR applications, once they are transmitted over a network
interface.

A small example will illuminate this setting. Users that participate in a
collaborative session in an immersive VE are usually tracked and use mouse-
like input devices that provide six degrees of freedom and additional buttons
for specific commands that can be used to interact with the system. As stated
above, the collaborative part of this setting is that more than one user interact
in the same shared virtual world. That means that all users have access or
at least the possibility to interact with the presented objects at the same
time, usually with a mouse-like device, gestures or speech recognition. E.g.,
the system detects the push of a button on the 3D-mouse over a virtual object
and utters an event to the application that has then the possibility to interpret
the push of the button over the object as a try to select that object for further
manipulation, e.g., dragging around. In a different implementation, the user
application does not see the push of the button as such, but is presented an
event that indicates the selection of an object within the world and can react
on that.

Multimedia and VR Support for Direct Communication of Designers 293

No matter what granularity is chosen for the concrete implementation,
the important point is that at some stage a selection of an object is detected
and rendered as an event. By promoting this event to all participants in the
collaborative session over the network interconnect, a (delayed) synchronicity
can be achieved by simply replaying the event on the remote sites.

A complete solution is not as simple, as any participant in a collaborative
session is basically a loosely coupled system over a shared space, and conflicts
might arise when two or more users try to manipulate the same object. In
order so solve this, additional locking conflict solving strategies are needed,
but are beyond the scope of this article.

Data Streaming

The shift of the post-processing to an HPC system, parallelization strategies,
and the innovative data management mainly aimed at the reduction of to-
tal runtime. On the other hand, these approaches are not sufficient to fulfill
the demand of short system response times needed for interactive exploration
tasks. Because of the size of today’s datasets, it is not possible to meet this
criterion fully since the speed-up of an algorithm cannot be increased signifi-
cantly. However, a fast representation of first temporary or approximate results
leads to a considerable reduction of noticeable delays by simply decreasing the
latency time of an algorithm.

This is the motivation and the main goal for the integration of stream-
ing functionalities into Viracocha. Normally, the term streaming is used to
describe a special mode of data transmission where the incoming data is pro-
cessed right after reception. For example, the streamed parts of a digitized
movie can be played back long before the transmission finally terminates. Dur-
ing the transmission process, the data are completely known to the sender but
not to the receiver. In our notion, streaming describes the process of transfer-
ring intermediate or approximate results to the visualization system during
an ongoing computation.

Using streaming schemes, meaningless extraction processes can be identi-
fied early during the execution. Then, running jobs can be discarded immedi-
ately in order to continue the investigation at another point. Thus, streaming
supports the trial-and-error process of an explorative analysis and contributes
to a higher user acceptance.

3.3.6 Communication and Management Services

After the presentation of tools for supporting communication and cooperation
of designers, some technical topics are still open: A framework for the trans-
mission of multimedia data streams, a conference control service, and security
services.

294 A. Schüppen et al.

Framework for Transmission of Multimedia Data Streams

Based on the adaptive audio and video transmission described above, a stream-
ing protocol was developed as a generalization. It adapts video data to be
transferred taking into account the current network situation [59, 60].

Figure 3.59 shows the framework for this service. The Video Data Adapter
regulates the data stream depending on the network situation. Congestion
Control (CC) tries to detect overload situations by monitoring its own sender
buffer and the loss rate in the network. From this information a target value
for the transmission capacity is computed and transferred to the Video Data
Adapter. Jitter Control (JC) estimates the delay on the transmission path as
well as the buffer load at the receiver side. Based on this estimation, the
sending of further packets is slowed down or sped up. Loss Control (LC) rec-
ognizes packet losses and schedules retransmissions if the ration of lost data
is important for avoiding error propagation. Transport is not specified in the
framework. It can be any protocol able to provide fast transmission as well as
statistics about the network state. Again, RTP is the best choice here.

Fig. 3.59. Video transmission framework

Conference Management

A conference management system is an important mechanism for formalizing
interactions between communicating parties. Only such a system enables a
controlled flow of a synchronous communication.

The basic functionality that is to be provided by a conference management
is the announcement and initialization of a conference. To this end, a confer-
ence mediation functionality as well as a conference announcement channel

Multimedia and VR Support for Direct Communication of Designers 295

are required. In addition, it is necessary to have a function for inviting other
parties to the conference after conference setup. Last but not least, moderated
conferences are often desirable, where single users get special rights, e.g. for
excluding certain users from the conference, and performing access control.

To serve these needs, the Scalable Conference Control Service (SCCS)
[450], [451] was developed and integrated into KomPaKt. SCCS differs from
common conference control systems by offering a flexible control structure,
independent from the real network topology, creating a tree-like structure of
control connections, see Fig. 3.60. Thus, a directed and efficient signalling
between the involved parties is possible [454], [452]. If the current control
structure becomes inefficient, e.g., through introduction of new users during
runtime, a re-configuration of the signalling channels is done to speed-up the
signalling. This re-configuration is done without changes to the transmission
quality [455], [457].

Furthermore, for conferences to be secure, access rights and authentication
are necessary. In SCCS this is done using a password for each user and an
additional acknowledgement by the conference leader. Thus, unknown users
do not have access to the conferences. Also, an encryption of data is optional by
using the Multicast Transport Protocol (MTP) [959] for point-to-multipoint
transmission [453].

Conference server

Network node

Control connection

Network connection

Fig. 3.60. Control structure of the conference management system SCCS

Security Aspects

Security aspects were briefly mentioned before: Only certain users should get
access to a conference, which is controlled by SCCS together with a conference
leader. Also, it is important to encrypt data which are exchanged if team
members from different companies are having a conference with confident
information. This functionality is included in MTP, which is used by SCCS
for multicast communication.

296 A. Schüppen et al.

One more security aspect also concerns the cooperation between compa-
nies. If no third party should know about the cooperation partners, methods
to guarantee privacy and anonymity in the Internet are necessary.

This can be done by using so-called mix servers [58], [57]. A mix server
makes tracing of data packets nearly impossible. It receives a packet (which
has to be encrypted), re-codes it, and forwards it with some delay. This delay
causes several packets received by the mix server to be permuted in their order
in the sending process. The re-coding is done with an asymmetric encryption
method. The sender encrypts the packet with the public key of the mix server,
the mix server decrypts it with the corresponding private key and forwards it.
It is also possible to create a chain of mix servers for increased security. Due
to the delay caused for decrypting and also for forwarding the packets in a
different order, this techniques is unsuited for synchronous communication.

3.3.7 Comparison with Related Work

In general, no tools exist which provide all functionalities presented in this
section. Typically, comparable systems offer only a part of the functions neces-
sary for a comprehensive support of cooperative work. Furthermore, a common
and simple usage of these systems is not possible. Furthermore, such environ-
ments do not integrate tools needed in a design process. Only with such an
integration, communication tools can take special requirements of the design
process into account and are able to hide technical details from the users.

For instance, most systems have a focus on improving the synchronous
communication. Reference [549], for example, provides a framework for the
development of conferencing systems with high quality by proposing several
optimizations on the technical layer. Yet, only video and audio transmission as
well as application sharing are considered; the handling of shared documents
and tools with support of more complex information structures (annotation
mechanisms, change management) as well as an integration into a certain work
process are neglected.

Approaches for the realization of such additional functionality neverthe-
less exist. Reference [1037], for example, presents an approach for an improved
support of distributed work sessions by offering a simple mechanism for ini-
tiating a communication session and by providing a session-oriented man-
agement of meetings with an integrated document management. Furthermore,
a shared editor is realized, which enables the presentation of semantic con-
structs, necessary for a simple capturing of meeting results. The latter aspect
is of particular importance, as it can happen with handwritten notes that im-
portant details are missing. Not everything can be written in time, or short
comments are misinterpreted later on [1050]. However, the mechanisms for
conference initiation and document management are isolated and proprietary.
In KomPaKt, an integration with AHEAD is done, allowing for the reuse of
existing information from the design process. Additionally, KomPaKt offers a
broader range of cooperation functionalities by providing event sharing.

Multimedia and VR Support for Direct Communication of Designers 297

Also, several other approaches exist for the recording of video sequences.
Reference [982] records presentations and presenter. Commercial products like
NetMeeting also offer such mechanisms. Reference [690] sketches an architec-
ture for the management of shared work processes and the control of doc-
uments. Synchronous as well as asynchronous activities are supported. The
core aspect of the presented system is to capture information and to integrate
it with already existing information. For this purpose, meetings are recorded
as video sequences to provide an information base about past meetings [932].
Furthermore, the system comprises an annotation mechanism for PowerPoint
presentations. The central problem with these approaches is the handling of
recorded, possibly annotated sequences. Again, work process integration is
missing; it would allow for a feedback of results or changes into the work
process itself.

A central aspect of KomPaKt is the awareness functionality of the user
interface. Contacting a project partner is easier if that partner will probably
not be disturbed by the contact attempt. Thus, awareness of the willingness to
communicate simplifies initiating a spontaneous communication [561]. Early
work regarding that awareness is described in [639]. Video cameras are used
to record persons at their work place, and the recordings are available on
a web page with access restricted to a certain work group. Observing the
current activity of a person, it can be decided if that person could be dis-
turbed by a communication attempt. Clearly, the acceptance of this system is
low because it has the possible potential for complete work monitoring [640],
[698] – on this reason such techniques are highly illegal. Another approach
would be the monitoring of user activity at his computer, e.g. by monitoring
keyboard activity [698]. Using e-mail, an activity notification can be sent to
all project members. However, this approach implies a willingness for com-
munication, independent of the current task. Better mechanisms with more
expressive descriptions about a user’s communication willingness are offered
by messengers like ICQ. Those mechanisms only offer the sending of short
messages and of files, other communication tools are not integrated with the
awareness functionality.

The event sharing tool was newly developed in this project. Commercial
tools only implement application sharing. The implementation of event shar-
ing was questioned in the literature [850]. Implementation approaches had
not led to products which could be used in the design process. Sometimes
only prototypes were developed, which are not available, or implementations
are only for a certain type of programs, e.g. Java Applets. Hewlett Packard
had developed two prototypes to share 3D CAD/CAM applications in an X
window environment. While the Reduced Event Set Application Sharing only
transmits a restricted set of event, the input of keyboard and mouse [717], the
Event Distribution Application Sharing needs a central server for delivering all
events to the connected clients [716]. Both approaches were not further con-
sidered by Hewlett Packard in ongoing developments. A working approach,
the Java Applets Made Multiuser, was developed at the Virginia Polytech-

298 A. Schüppen et al.

nic Institute [547]. Yet, this solution is not usable for general Windows or
Unix/Linux applications.

Regarding the transmission of audio and video data over networks with
limited capacity, a framework was developed to adapt the amount of data
transmitted to the currently free capacity. One possible way of reaction to
a bottleneck causing packet loss is to use Forward Error Correction [903].
To avoid jitter unacceptable for a continuous playout, [666] and [802] cover
the optimization of transmission and playout of multimedia data streams.
Furthermore, [1017] gives an overview of several other adaptive techniques
in multimedia data transmission. The approach realized in IMPROVE partly
uses these technologies but additionally covers the applicability in wireless
networks for supporting mobile project partners.

3.3.8 Conclusions

This section describes the multimedia and VR support for the communication
of designers from chemical engineering and plastics processing. First, a com-
munication platform for supporting the cooperative work between chemical
and plastics processing engineers was developed. This communication platform
integrates several forms of synchronous and asynchronous communication in
one graphical interface. An automated interaction with the administration
system AHEAD frees the user from configuring the communication tools be-
fore starting a cooperation, and at the same time it enables the provisioning of
all documents related to the cooperative task. Partly, existing communication
tools were integrated, but also some new tools had to be developed because
the user should be able to perform the communication at his normal working
place. Important in this context were an audio/video transmission tool and an
event sharing tool for cooperative work on documents over limited bandwidth.

As a special form of cooperation, collaborative Virtual Reality environ-
ments were introduced. VR communication can be considered as an additional
component in the tool chain for the support of communication of designers.
However, due to the complex nature of the analysis process, special technology
as discussed in this section has to be applied. Thus it is impossible to integrate
this technology so tightly within KomPaKt as it was possible for the other
forms of direct communication.

Collaborative Virtual Reality environments are needed for such complex
tasks as designing and optimizing an extruder by studying the flow phenomena
in detail. Although visualization is much more complex in this case, it was
shown that event sharing can be used also in distributed VR applications.
Studying the impact on and the possibilities of VR in specific development
processes is a rather new field of research in engineering and computer science.

Last but not least a communication framework was set up together with
a conference management service to handle cooperative work sessions.

Still, several improvements have to be made. First, it is only possible to
obtain and modify all task-related documents for planned communication ses-

Multimedia and VR Support for Direct Communication of Designers 299

sions. In case of spontaneous cooperations the administration system AHEAD
is not involved and cannot provide related documents. Here, a mechanism for
document retrieval and integration needs to be developed that also supports a
spontaneous communication session. However, not only this interaction with
AHEAD needs to be improved; a closer integration with the process integra-
tion framework PRIME (Sect. 3.1) or the integrator tools (Sect. 3.2) would
also be of further use.

Also, tools and services already developed can be further refined. The event
sharing mechanism is a good addition to the well-known application sharing
approach. As event sharing offers a loose coupling of application instances, one
could think of the creation of different synchronization levels where a user can
leave exact synchronization and perform some own operations before again
joining the synchronization. This would enable a more flexible cooperation
process. Also, new compression methods can be examined to be used in the
event sharing or in video conferencing to further reduce the amount of data
in a multimedia cooperation, at the same time also allowing users with low-
capacity communication lines, e.g. mobile users, to take part in such a work
session. For the application of Virtual Reality in the engineering process, a
lot of research has to be done in the field of interaction. The main focus here
is to create persistent knowledge from more or less volatile visualizations in
immersive environments.

3.4 An Adaptive and Reactive Management System for
Project Coordination

M. Heller, D. Jäger, C.-A. Krapp, M. Nagl, A. Schleicher, B. Westfechtel,
and R. Wörzberger

Abstract. Design processes in chemical engineering are hard to support. In par-
ticular, this applies to conceptual design and basic engineering, in which the fun-
damental decisions concerning the plant design are performed. The design process
is highly creative, many design alternatives are explored, and both unexpected and
planned feedback occurs frequently. As a consequence, it is inherently difficult to
manage design processes, i.e. to coordinate the effort of experts working on tasks
such as creation of flowsheets, steady-state and dynamic simulations, etc. On the
other hand, proper management is crucial because of the large economic impact of
the performed design decisions.

We present a management system which takes the difficulties mentioned above
into account by supporting the coordination of dynamic design processes. The man-
agement system equally covers products, activities, and resources, and their mutual
relationships. In addition to local processes, interorganizational design processes are
addressed by delegation of subprocesses to subcontractors. The management system
may be adapted to an application domain by a process model which defines types of
tasks, documents, etc. Furthermore, process evolution is supported with respect to
both process model definitions and process model instances; changes may be prop-
agated from definitions to instances and vice versa (round-trip process evolution).

3.4.1 Introduction and Overview

As design processes are highly creative, they can rarely be planned completely
in advance. Rather, planning and execution may have to be interleaved seam-
lessly. In the course of the design process, many design alternatives are ex-
plored which are mutually dependent. Furthermore, design proceeds itera-
tively, starting from sketchy, coarse-level designs to detailed designs which are
eventually needed for building the respective chemical plant. Iterations may
cause feedback to earlier steps of the design process. It may also be neces-
sary to revoke inadequate design decisions. Finally, design involves coopera-
tion among team members from different disciplines and potentially multiple
enterprises, causing additional difficulties concerning the coordination of the
overall design process.

Technical tools such as flowsheet editors, simulators for steady-state and
dynamic simulations, etc. are crucial aids for effectively and efficiently per-
forming design tasks [354]. In addition, managerial tools are required which
address the coordination of design processes. In fact, such tools are crucial for
supporting business decision making [174]. In the course of the design pro-
cess, many decisions have to be made concerning the steps of the chemical
process, the relationships among these steps, the realization of chemical pro-
cess steps by devices, etc. To perform these decisions, design alternatives have

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 300–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Adaptive and Reactive Management System for Project Coordination 301

to be identified and elaborated, and the respective design tasks have to be
coordinated regarding their mutual interfaces and dependencies. To support
business decision making, managerial tools must provide chief designers with
accurate views of the design process at an adequate level of granularity, offer
tools for planning, controlling, and coordinating design tasks, thereby taking
care of the dynamics of design processes.

The management system AHEAD (Adaptable and H uman-Centered En-
vironment for the MAnagement of Design Processes [120, 161, 162, 207, 209,
212, 249, 355, 392, 474–476, 478, 488]) addresses the challenge of supporting
dynamic engineering design processes. It has been developed in the context of
the long-term research project IMPROVE [299, 343, 352] described in this vol-
ume which is concerned with models and tools for design processes in chemical
engineering. The management tool AHEAD is primarily developed to support
design teams in the industrial practice. In order to develop concepts and tools
which can be transferred into practice, we have chosen to use a case study
in the IMPROVE project as a reference scenario and a guideline for our tool
design process ([17], and Sects. 1.1, 1.2). The case study refers to the concep-
tual design and basic engineering of a plant for the production of Polyamide-6
(PA6). This approach has been greatly supported by the fruitful collaboration
with our engineering partners in the IMPROVE project.

AHEAD equally covers products, activities, and resources and, therefore,
offers more comprehensive support than project or workflow management sys-
tems. Moreover, AHEAD supports seamless interleaving of planning and ex-
ecution – a crucial requirement which workflow management systems usu-
ally do not meet. Design processes are represented by dynamic task nets,
which may evolve continuously throughout the execution of a design process
[159, 160, 163, 242, 243, 472]. Dynamic task nets include modeling elements
specifically introduced for design processes, e.g., feedback relationships for it-
erations in the design process which cannot be represented in project plans.
This way, AHEAD improves business decision making since it offers a more
natural, realistic, and adequate representation of design processes.

Initially, the AHEAD system focused on the management of design pro-
cesses within one organization. In particular, we assumed that all management
data are stored in a central database which can be accessed by all users.
This assumption breaks down in case of interorganizational design processes.
Each of the participating organizations requires a view on the overall design
process which is tailored to its needs. In particular, it is crucial to account
for information hiding such that sensitive data are not propagated outside the
organization.

To support the management of interorganizational design processes, we
have developed an approach which is based on delegation [30, 208]. A subpro-
cess may be delegated to a subcontractor, passing only those data which are
relevant for the contract. Both the contractor and the subcontractor use their
own instances of the management system, which maintain their data in local

302 M. Heller et al.

databases. The management systems are coupled at runtime by exchanging
state information.

We have further developed this initial cooperation approach and extended
it to a view-based cooperation model for the AHEAD system supporting in-
terorganizational development processes. Organizations can create dynamic
process views onto their local processes and publish them to other organiza-
tions. We utilize process views to enable organizations to manage how their
local processes are integrated with other processes. A broader spectrum of
cooperation scenarios besides delegation is supported. Additionally, contracts
between organizations can be explicitly modeled and configured according to
individual cooperation needs.

The AHEAD system may be applied to processes in different domains –
including not only chemical engineering, but also other engineering disciplines
such as software, electrical, or mechanical engineering. In fact, the core func-
tionality is domain-independent and relies on general notions such as task,
control flow, etc. AHEAD may be adapted to a certain application domain
by defining domain-specific knowledge. For example, in chemical engineering
domain-specific task types for flowsheet design, steady-state simulations, dy-
namic simulations, etc. may be introduced.

Domain-specific knowledge is formalized by a process model definition (cf.
Sect. 2.4) which constrains the process model instances to be maintained at
project runtime. As a consequence, the manager may compose task nets from
predefined types and relationships. The process model definition is represented
in the Unified Modeling Language (UML [560]), a wide-spread standard no-
tation for object-oriented modeling. A process model is defined on the type
level by a class diagram which has been adapted to the underlying process
meta model for dynamic task nets [388, 389].

The current version of AHEAD provides for evolution both on the defini-
tion and the instance level. Changes on the definition level may be propagated
to instances during their execution. If required, process model instances may
deviate from their definitions under the control of the project manager who
may switch off consistency enforcement deliberately and selectively (i.e., in
designated subprocesses of the overall process). Knowledge acquired on the
instance level may be propagated to the definition level, resulting in improved
versions of process model definitions. This way, AHEAD provides for round-
trip process evolution.

AHEAD is a research prototype which cannot be applied immediately
in industry in a production environment for various reasons. In addition to
deficiencies with respect to stability, efficiency, and documentation – problems
which are faced by many research prototypes –, an important prerequisite of
industrial use constitutes the integration with other management tools which
are used in industry. Therefore, we integrated AHEAD with several commercial
systems for workflow, document, and project management. The ultimate goal
of these research activities is technology transfer into industrial practice.

An Adaptive and Reactive Management System for Project Coordination 303

This section describes 10 years of research on management of design pro-
cesses. It should be clearly pointed out that this research within IMPROVE
was carried out in close cooperation with subproject A1 (see Sections 2.4 and
2.5) and I1 (see Section 5.1), but also with B1 (see Section 3.1). The latter
subproject also supports processes, but on another level and with different
support mechanisms.

The rest of this section is organized as follows: Subsect. 3.4.2 introduces
the AHEAD core system, which supports integrated management of products,
activities, and resources for dynamic design processes. In the core system, pro-
cess model definitions were static, and management was constrained to local
processes within one organization. The next subsections describe extensions of
the core system, namely on one hand the adaptation capabilities of AHEAD
as well as round-trip process evolution (Subsect. 3.4.3) and on the other hand
interorganizational coordination of design processes (Subsect. 3.4.4 and 3.4.5).
Subsection 3.4.6 is concerned with related work. A conclusion is given in Sub-
sect. 3.4.7.

3.4.2 AHEAD Core System

Basic Notions

In general terms, management can be defined as “all the activities and tasks
undertaken by one or more persons for the purpose of planning and controlling
the activities of others in order to achieve an objective or complete an activity
that could not be achieved by the others acting alone” [996]. This definition
stresses coordination as the essential function of management.

More specifically, we focus on the management of design processes by
coordinating the technical work of designers. We do not target senior man-
agers who work at a strategic level and are not concerned with the details
of enterprise operation. Rather, we intend to support project managers who
collaborate closely with the designers performing the technical work. Such
managers, who are deeply involved in the operational business, need to have
not only managerial but also technical skills (“chief designers”).

The distinction between persons and roles is essential: When referring
to a “manager” or a “designer”, we are denoting a role, i.e., a collection of
authorities and responsibilities. However, there need not be a 1:1 mapping
between roles and persons playing roles. In particular, each person may play
multiple roles. For example, in chemical engineering it is quite common that
the same person acts both as a manager coordinating the project and as a
(chief) designer who is concerned with technical engineering tasks.

In order to support managers in their coordination tasks, design processes
have to be dealt with at an appropriate level of detail. We may roughly dis-
tinguish between three levels of granularity:

• At a coarse-grained level, design processes are divided into phases (or work-
ing areas) according to some life cycle model.

304 M. Heller et al.

• At a medium-grained level, design processes are decomposed further down
to the level of documents or tasks, i.e., units of work distribution.

• At a fine-grained level, the specific details of design subprocesses are con-
sidered. For example, a simulation expert may build up a simulation model
from mathematical equations.

Given our understanding of management as explained above, the coarse-
grained level does not suffice. Rather, decomposition has to be extended to
the medium-grained level. On the other hand, usually management is not in-
terested in the technical details of how documents are structured or how the
corresponding personal subprocess is performed. Thus, the managerial level,
which defines how management views design processes, comprises both coarse-
and medium-grained representations.

In order to support managers in their coordination tasks, they must be
supplied with appropriate views (abstractions) of design processes. Such views
must be comprehensive inasmuch as they include products, activities, and
resources (and their mutual relationships, see Sect. 1.1):

• The term product denotes the results of design subprocesses (e.g., flow-
sheets, simulation models, simulation results, cost estimates, etc.). These
may be organized into documents, i.e., logical units which are also used
for work distribution or version control. Complete results are subconfigu-
rations.

• The term activity denotes an action performing a certain function in a
design process. At the managerial level, we are concerned with tasks, i.e.,
descriptions of activities assigned to designers by managers, but also com-
plex tasks performed by subproject groups.

• Finally, the term resource denotes any asset needed by an activity to be
performed. This comprises both human and computer resources (i.e., the
designers and managers participating in the design process as well as the
computers and the tools they are using). Please note that also resources
might be atomic or composed.

Thus, an overall management configuration consists of multiple parts repre-
senting products, activities, and resources. An example is given in Fig. 3.61.
Here, we refer to the Polyamide-6 design process introduced earlier. On the
left, the figure displays the roles in the design team as well as the designers
filling these roles. The top region on the right shows design activities con-
nected by control and data flows. Finally, the (versioned) products of these
activities are located in the bottom-right region.

Below, we give a more detailed description of Fig. 3.61:

• Products. The results of design processes such as process flowsheets,
steady-state and dynamic simulations, etc. are represented by documents
(ellipses). Documents are interdependent, e.g., a simulation model depends
on the process flowsheet (PFD) to which it refers (arrows between ellipses).

An Adaptive and Reactive Management System for Project Coordination 305

Fig. 3.61. Management configuration

The evolution of documents is captured by version control (each box within
an ellipsis represents a version of some document).

• Activities. The overall design process is decomposed into tasks (rectan-
gular boxes) which have inputs and outputs (white and black circles, re-
spectively). The order of tasks is defined by control flows (thick arrows);
e.g., reaction alternatives must have been inserted into the flowsheet be-
fore they can be simulated. Finally, data flows (arrows connecting circles)
are used to transmit document versions from one task to the next.

• Resources. Employees (icons on the left) such as Schneider, Bayer, etc. are
organized into project teams which are represented by organization charts.
Each box represents a position, lines reflect the organizational hierarchy.
Employees are assigned to positions (or roles). Within a project, an em-
ployee may play multiple roles. E.g., Mrs. Bayer acts both as a designer
and as a simulation expert in the Polyamide-6 team.

• Integration. There are several relationships between products, activities,
and resources. In particular, tasks are assigned to positions (and thus indi-
rectly to employees). Furthermore, document versions are created as out-
puts and used as inputs of tasks.

It is crucial to understand the scope of the term“management”as it is used in
this section. As already stated briefly above, management requires a certain
amount of abstraction. This means that the details of the technical level are
not represented at the managerial level. This is illustrated in Fig. 3.62, whose
upper part shows a small cutout of the management configuration of Fig. 3.61.
At the managerial level, the design process is decomposed into activities such
as the creation of reaction alternatives and the simulation of these alterna-
tives. Activities generate results which are stored in document versions. At
the managerial level, these versions are basically considered black boxes, i.e.,

306 M. Heller et al.

Fig. 3.62. Managerial and technical level

they are represented by a set of descriptive attributes (author, creation date,
etc.) and by references to the actual contents, e.g., PFDs and simulation mod-
els. How a PFD or a simulation model is structured internally (and how their
contents are related to each other), goes beyond the scope of the managerial
level. Likewise, the managerial level is not concerned with the detailed per-
sonal process which is executed by some human to create a PFD, a simulation
model, etc.

This does not imply that technical details are ignored. Rather, it must be
ensured that the managerial level actually constitutes a correct abstraction of
the fine-grained information at the technical level – and also controls technical
activities. In fact, the management system described in this paper is part of
an integrated environment for supporting design processes in chemical engi-
neering. As such, it is integrated with tools providing fine-grained product and
process support [21, 26]. The interplay of the tools of the overall environment
is sketched only briefly in this section; see [348].

Particular attention has to be paid to the dynamics of design processes:
The design process is not known in advance. Rather, it continuously evolves
during execution. As a consequence, all parts of a management configuration
evolve continuously:

• Products. The product structure is determined only during the design pro-
cess. It depends on the flowsheets which is continuously extended and
modified. Other documents such as simulation models and simulation re-
sults depend on the flowsheet. Moreover, different variants of the chemical
process are elaborated, and selections among them are performed accord-
ing to feedback gained by simulation and experiments.

An Adaptive and Reactive Management System for Project Coordination 307

• Activities. The activities to be performed depend on the product struc-
ture, feedback may require the re-execution of terminated activities, con-
current/simultaneous engineering calls for sophisticated coordination of
related activities, etc.

• Resources. Resource evolution occurs likewise: New tools arrive, old tool
versions are replaced with new ones, the project team may shrink due to
budget constraints, or it may be extended to meet a crucial deadline, etc.

However, a management configuration should not evolve in arbitrary ways.
There are domain-specific constraints which have to be met. In particular,
activities can be classified into types such as requirements definition, design,
simulation, etc. (likewise for products and resources). Furthermore, the way
how activities are connected is constrained as well. For example, a flowsheet
can be designed only after the requirements have been defined. Such domain-
specific constraints should be taken into account such that they restrict the
freedom of evolution.

Overview of the AHEAD System

Since current management systems suffer from several limitations (see intro-
duction and section on related work), we have designed and implemented a
new management system which addresses these limitations. This system is
called AHEAD [212, 355]. AHEAD is characterized by the following features :

• Medium-grained representation. In contrast to project management sys-
tems, design processes are represented at a medium-grained level, allowing
managers to effectively control the activities of designers. Management
is not performed at the level of milestones, rather, it is concerned with
individual tasks such as “simulate the CSTR reactor”.

• Coverage and integration at the managerial level. AHEAD is based on an
integrated management model which equally covers products, activities,
and resources. In contrast, project and workflow management systems pri-
marily focus on activities and resources, while product management sys-
tems are mainly concerned with the products of design processes.

• Integration between managerial and technical level. In contrast to project
management systems, the AHEAD system also includes support tools for
designers that supply them with the documents to work on, and the tools
that they may use.

• Support for the dynamics of design processes. While many workflow man-
agement systems are too inflexible to allow for dynamic changes of work-
flows during execution, AHEAD supports evolving design processes, allow-
ing for seamless integration of planning, execution, analysis, and monitor-
ing.

• Adaptability. Both the structure of management configurations and the
operations to manipulate them can be adapted by means of a domain-
specific object-oriented model based on the UML [560].

308 M. Heller et al.

Fig. 3.63. Major components of the AHEAD system

Figure 3.63 gives an overview of the AHEAD system. AHEAD offers envi-
ronments for different kinds of users, which are called modeler, manager, and
designer. In the following, we will focus on the functionality that the AHEAD
system provides to its users. Its technical realization will be discussed later.

The management environment supports project managers in planning, an-
alyzing, monitoring, and controlling design processes. It provides graphical
tools for operating on management configurations. These tools address the
management of activities, products, and resources, respectively [244]:

• For activity management, AHEAD offers dynamic task nets which allow for
seamless interleaving of planning, analyzing, monitoring, and controlling.
A task net consists of tasks that are connected by control flow and data flow
relationships. Furthermore, feedback in the design process is represented by
feedback relationships. Tasks may be decomposed into subtasks, resulting
in task hierarchies. The manager constructs task nets with the help of
a graphical editor. He may modify task nets at any time while a design
process is being executed.

• Product management is concerned with documents such as flowsheet, simu-
lation models, cost estimations, etc. AHEAD offers version control for these
documents with the help of version graphs. Relationships (e.g., dependen-
cies) between documents are maintained as well. Versions of documents
may be composed into configurations, thereby defining which versions are
consistent with each other. The manager may view the version histories

An Adaptive and Reactive Management System for Project Coordination 309

and configurations with the help of a graphical tool. This way, he may
keep track of the work results produced by the designers.

• Resource management deals with the organizational structure of the en-
terprise as far as it is relevant to design processes. AHEAD distinguishes
between abstract resources (positions or roles) and concrete resources (em-
ployees). The manager may define a project team and then assign employ-
ees to the project positions.

Management of activities, products, and resources is fully integrated : Tasks
are assigned to positions, inputs and outputs of tasks refer to document ver-
sions. Moreover, AHEAD manages task-specific workspaces of documents and
supports invocation of design tools (see below).

AHEAD does not only support managers. In addition, it offers a work
environment for designers which consists of two major components:

• The agenda tool displays the tasks assigned to a designer in a table con-
taining information about state, deadline, expected duration, etc. The de-
signer may perform operations such as starting, suspending, finishing, or
aborting a task.

• The work context tool manages the documents and tools required for ex-
ecuting a certain task. The designer is supplied with a workspace of ver-
sioned documents. He may work on a document by starting a tool such as
e.g. a flowsheet editor, a simulation tool, etc.

Please note that the scope of support provided by the work environment is
limited. We do not intend to support design activities in detail at a techni-
cal level. Rather, the work environment is used to couple technical activities
with management. There are other tools which support design activities at a
fine-grained level. For example, a process-integrated flowsheet editor [21] may
be activated from the work environment. “Process-integrated”means that the
designer is supported by process fragments which correspond to frequently oc-
curring command sequences, see Sect. 3.1. These process fragments encode the
design knowledge which is available at the technical level. This goes beyond
the scope of the AHEAD system, but it is covered by the overall environ-
ment for supporting design processes to which AHEAD belongs as a central
component.

Both the management environment and the work environment access a
common management database. However, they access it in different ways, i.e.,
they invoke different kinds of functions. The work environment is restricted
to those functions which may be invoked by a designer. The management en-
vironment provides more comprehensive access to the database. For example,
the manager may modify the structure of a task net, which is not allowed for
a designer.

Before the AHEAD system may be used to carry out a certain design pro-
cess, it must be adapted to the respective application domain [211]. AHEAD

310 M. Heller et al.

consists of a generic kernel which is domain-independent. Due to the general-
ity of the underlying concepts, AHEAD may be applied in different domains
such as software, mechanical, or chemical engineering. On the other hand,
each domain has its specific constraints on design processes. The modeling
environment is used to provide AHEAD with domain-specific knowledge, e.g.,
by defining task types for flow diagram design, steady-state and dynamic
simulation, etc. From a domain-specific process model, code is generated for
adapting the management and the work environment.

A Tour through the AHEAD System

In the following, we introduce the tool support provided by the AHEAD sys-
tem with the help of a small demo session. The demo refers to the overall
reference process of IMPROVE, namely the design of a chemical plant for
producing Polyamide-6 (see Sect. 1.2). Here, we focus on the design of the re-
action which proceeds as follows: After an initial PFD has been created which
contains multiple design variants, each of these variants is explored by means
of simulations and (if required) laboratory experiments. In a final step, these
alternatives are compared against each other, and the most appropriate one is
selected. Other parts of the reference process will be addressed in subsequent
sections of this paper.

Modeling Design Processes

Before the AHEAD system is used to manage some actual design project,
it is provided with a domain-specific process model definition (cf. Sect. 2.4)
which should capture the conceptual design and basic engineering of arbitrary
chemical design processes to meet our own demands in the IMPROVE project.

As we have discussed earlier, all parts of a management configuration
evolve throughout the course of a design project. This kind of evolution is
called instance-level evolution. While process model instances evolve continu-
ously, we would like to constrain this evolution in such a way that a domain-
specific design process is followed.

Object-oriented modeling is well suited to meet this requirement. The core
of an object-oriented model is defined by a class diagram of the widely known
Unified Modeling Language (UML). The UML class diagram declares types of
tasks as classes and relationships between task types as associations which can
be constrained by multiplicity restrictions. Object diagrams contain instances
of classes (objects) and associations (links) which follow these restrictions.
Object diagrams represent reusable task net patterns on the instance level.
Both diagram types represent the structure of a process model. For behavioral
aspects, state and collaboration diagrams are used.

Although the UML is a general object-oriented language, it has to be
adapted to be suitable for process modeling. We use the extension mechanism
of the UML to introduce new meta classes and meta attributes in the UML
meta model [391].

An Adaptive and Reactive Management System for Project Coordination 311

Fig. 3.64. UML model of a design process in chemical engineering (modeling envi-
ronment)

In the following, we give a small example of structural modeling with the help
of class diagrams; for more information, see [211, 390]. Furthermore, we will
deal only with the modeling of activities, while a comprehensive process model
must define products and resources, as well.

Figure 3.64 shows an excerpt of the UML model for design processes. The
window on the left displays a hierarchy of packages, which are used to orga-
nize the overall model of the design process. On the right, a class diagram
is presented which defines a part of the activities of the design process32.
Here, task classes are modeled rather than specific instances. Instances are
created dynamically at project runtime, implying that the topology of a task
net is determined only at runtime. This object-oriented approach takes care
of the dynamics of design processes and contrasts with the static workflows
as defined in workflow management systems.

The class diagram introduces a complex task ConceptualDesign – dealing
with the conceptual design of a certain part of the chemical process – and
one of its possible realizations StdDesign. The realization contains multiple
task classes, which is expressed by aggregations stereotyped with may contain.
A contained task class may again be complex, resulting in a multi-level task
hierarchy. For each contained task class, a cardinality is specified. E.g., 1..*
means that at least one subtask is created at runtime33. Control flow associa-
tions (stereotype cflow) define the potential orders of task executions. E.g., a
Comparison of design alternatives is performed at the very end of the design
process.

32 For the sake of simplicity, input and output parameters of tasks as well as data
flows were removed from the diagram.

33 The default cardinality is 1..1.

312 M. Heller et al.

Fig. 3.65. Initial task net (management environment)

From the UML model, code is generated to customize the functionality pro-
vided by the AHEAD system. For example, the project manager may instan-
tiate only the domain-specific classes and associations defined in the class
diagrams. The core system as presented in this section enforces consistency
with the process model definition. In this way, we can make sure that design
proceeds according to the domain-specific model. A more flexible approach
will be discussed in the next section (extending process evolution beyond
consistency-preserving instance-level evolution).

Managing Design Processes

In this subsection, we illustrate the functionality of the AHEAD system pro-
vided at the instance level. This is performed with the help of a demo session
which mainly focuses on the management environment, but also introduces
the work environment.

Figure 3.65 presents a snapshot from the management environment taken
in an early stage of the Polyamide-6 design process for reaction design. The
upper region on the left displays a tree view of the task hierarchy. The lower
left region offers a view onto the resources available for task assignments (see
also Fig. 3.66). A part of the overall task net is shown in the graph view on the
right-hand side. Each task is represented by a rectangle containing its name,
the position to which the task has been assigned, and an icon representing
its state (e.g., the gear-wheels represent the state Active, and the hour-glass
stands for the state Waiting). Black and white circles represent outputs and
inputs, respectively. These are connected by data flows (thin arrows). Fur-
thermore, the ordering of task execution is constrained by control flows (thick
arrows). Hierarchical task relations (decompositions) are represented by the
graphical placement of the task boxes (from top to bottom) rather than by
drawing arrows (which would clutter the diagram).

Please recall that the demo session deals only with the reaction part and
particularly with its design (DesignReaction in Fig. 3.65). In this early stage,
it is only known that initially some reaction alternatives have to be designed

An Adaptive and Reactive Management System for Project Coordination 313

Fig. 3.66. Resource view (management environment)

(DesignFlowDiagram) and documented in a flowsheet. Furthermore, at the end
these alternatives have to be compared (Compare), and a decision has to be
performed. Other tasks of types defined in the class diagram of Fig. 3.64 are
either left out (e.g. Estimation) or will be filled in later.

In addition to the initial task net, the manager has also used the resource
management tool for building up his project team (Fig. 3.66). The region on
the left displays the structure of the Polyamide-6 design team. Each position
(represented by a chair icon) is assigned to a team member. Analogously,
the region on the right shows the departments of the company. From these
departments, the team members for a specific project are taken for a limited
time span. Tasks are assigned to positions rather than to actual employees (see
task boxes in Fig. 3.65). This way, assignment is decomposed into two steps.
The manager may assign a task to a certain position even if this position has
not been filled yet. Moreover, if a different employee is assigned to a position,
the task assignments need not be changed: The tasks will be redirected to the
new employee automatically.

The work environment is illustrated in Fig. 3.67. As a first step, the user
logs into the system (not shown in the figure). Next, AHEAD displays an
agenda of tasks assigned to the roles played by this user (top of Fig. 3.67).
Since the user Bayer plays the role of the design expert, the agenda con-
tains the task DesignFlowDiagram. After the user has selected a task from
the agenda, the work context for this task is opened (bottom window). The
work context graphically represents the task, its inputs and outputs, as well

314 M. Heller et al.

Fig. 3.67. Work environment

as its context in the task net (here, the context includes the parent task which
defines the requirements to the flowsheet to be designed). Furthermore, it dis-
plays a list of all documents needed for executing this task. For some selected
document, the version history is shown on the right (so far, there is only one
version of the requirements definition which acts as input for the current task).

From the work context window, the user may activate design tools for
operating on the documents contained in the workspace. Here, the user invokes
a flowsheet editor [21] in order to insert reaction alternatives into the flowsheet
for the Polyamide-6 process. The flowsheet editor, which was also developed
in the IMPROVE project, is based on MS Visio, a commercial drawing tool,
which was integrated with the PRIME process engine [371].

The resulting flowsheet is displayed in Fig. 3.68. The chemical process
is decomposed into reaction, separation, and compounding. The reaction is
refined into four variants. For our demo session, we assume that initially only
two variants are investigated (namely a single CSTR and PFR on the left
hand side of Fig. 3.68).

After the generation of the two variants, the manager extends the task net
with tasks for investigating the alternatives that have been introduced so far
(product-dependent task net, Fig. 3.69). Please note the control flow relation
between the new tasks: The manager has decided that the CSTR should be
investigated first so that experience from this alternative may be re-used when
investigating the PFR. Furthermore, we would like to emphasize that the de-
sign task has not terminated yet. As to be demonstrated below, the designer
waits for feedback from simulations in order to enrich the flowsheet with sim-
ulation data. Depending on these data, it may be necessary to investigate
further alternatives.

Subsequently, the simulation expert creates a simulation model (using
Polymers Plus) for the CSTR reactor and runs the corresponding simulations.

An Adaptive and Reactive Management System for Project Coordination 315

Decomposition of PA6-Process

Separation CompoundingReaction

2: Additives,
Fibers, Fillers

4: H2O

3: Nylon

5: CL, CD, ACA

6:
1: Feed 7:

Separation, Compounding

Realization of Reaction by CSTR <-> CSTR

Separation
Polymer
Reactor
CSTR

Polymer
Reactor
CSTR

11: H2O5: CL, CD, ACA

1: Feed

6:

10:

9:

Realization of Reaction by CSTR

CSTR

5: CL, CD, ACA

1: Feed

6:

Realization of Reaction by CSTR <-> PFR

Polymer
Reactor
CSTR

Separation
Polymer

Reactor PFR12:

8:
13: H2O5: CL, CD, ACA

6:
1: Feed

Realization of Reaction by PFR

PFR

5: CL, CD, ACA

1: Feed 6:

Fig. 3.68. Reaction alternatives in the process flowsheet

Fig. 3.69. Extended task net (management environment)

The simulation results are validated with the help of laboratory experiments.
After these investigations have been completed, the flowsheet can be enriched
with simulation data such as flow rates, pressures, temperatures, etc. To this
end, a feedback flow – represented by a dashed arrow – is inserted into the
task net (Fig. 3.70) [245, 246]. The feedback flow is refined by a data flow,
along which the simulation data are propagated. Then, the simulation data
are inserted into the flowsheet.

Please note that the semantics of the control flow from DesignFlowDiagram
to SimulateCSTR is defined such that these tasks can be active simultaneously
(simultaneous engineering) [576]. As a consequence, we cannot assume that

316 M. Heller et al.

Fig. 3.70. Feedback and simultaneous engineering (management environment)

Fig. 3.71. Far-reaching feedback (management environment)

the work context of a task is stable with respect to its inputs. Rather, a
predecessor task may deliver a new version that is relevant for its successors.
This is taken care of by a sophisticated release policy built into the model
underlying dynamic task nets [475].

After the alternatives CSTR and PFR have been elaborated, the evalu-
ation expert compares all explored design alternatives. Since none of them
performs satisfactorily, a far-reaching feedback is raised to the design task.
Here, we assume that the designer has already terminated the design task.
As a consequence, the design task has to be reactivated. Reactivation is han-
dled by creating a new task version, which may or may not be assigned to
the same designer as before. New design alternatives are created, namely a
CSTR-CSTR and a CSTR-PFR cascade, respectively (see again Fig. 3.68).

An Adaptive and Reactive Management System for Project Coordination 317

Fig. 3.72. Product view (management environment)

Furthermore, the task net is augmented with corresponding simulation tasks
(Fig. 3.7134). After that, the new simulation tasks are assigned to simulation
experts, and simulations are carried out accordingly. Eventually, the most
suitable reactor alternative is selected.

So far, we have primarily considered the management of activities. Man-
agement of products, however, is covered as well. Figure 3.72 shows a tree
view on the products of design processes on the left and a graph view on the
right. Products are arranged into workspaces that are organized according to
the task hierarchy. Workspaces contain sets of versioned documents.

Generally speaking, a version represents some state (or snapshot) of an
evolving document. We distinguish between revisions, which denote temporal
versions, and variants, which exist concurrently as alternative solutions to
some design problem. Revisions are organized into sequences, variants result
in branches. Versions are connected by history relationships. In Fig. 3.72,
there is a history relationship between revisions 1 and 2 of SimulationCSTR,
the simulation model for the CSTR reactor. In general, the version history
of a document (flowsheet, simulation model, etc.) may evolve into an acyclic
graph (not shown in the snapshot).

There is only one version of the flowsheet in Fig. 3.72. Here, we rely on
the capabilities of the flowsheet editor to represent multiple variants. Still, the
flowsheet could evolve into multiple versions at the managerial level (e.g., to
record snapshots at different times). Moreover, in the case of a flowsheet editor
with more limited capabilities (no variants), variants would be represented at
the managerial level as parallel branches in the version graph.

Finally, it is worth noting that the support for process managers provided
by the AHEAD system so far could easily be extended with respect to pro-
cess analysis and simulation aspects. Within another sub project I2/I4 in

34 Task parameters and data flows have been filtered out to avoid a cluttered dia-
gram.

318 M. Heller et al.

meta schema

21 3 31

basic operations

process schema

Change_Mod_Start
(task : Change_Mod)

begin
Consume(task.-inp->...

refined operations

generic
specification part

specific
specification part

management
environment work

environment

modeling environment

PROGRES System

generates

g
ene

ar
set

offers view
UPGRADE

application logic
library

GUIs

interacts

definition level

instance level

po
re

e ta
s

no

Fig. 3.73. Architecture of the AHEAD system

the CRC 476 IMPROVE, comprehensive support for detailed analysis of pro-
cess activities, organizational structure, and information flow as well as the
identification of weak spots within individual work processes has been devel-
oped. The chosen analysis and simulation approach and the research results
are thoroughly described in Sect. 5.2 below. Although the focus in that work
is on fine-grained work processes, a process manager could easily profit from
similar analysis and simulation support on the medium-grained administra-
tive management process layer above the work process layer. Further research
in that direction is therefore needed.

Realization of the AHEAD Core System

Figure 3.73 displays the architecture of the AHEAD system. It also shows in-
ternal tools (left hand side) and thereby refines the overview given by Fig. 3.63.

Internally, AHEAD is based on a formal specification as a programmed
graph rewriting system [206]. To this end, we use the specification language

An Adaptive and Reactive Management System for Project Coordination 319

PROGRES as well as its modeling environment, which offers a graphical ed-
itor, an analyzer, an interpreter and a code generator [414]. Both the process
meta model and process model definitions are specified in PROGRES. The
former was created once by the tool builders of AHEAD; the latter ones are
generated automatically by the modeling environment (cf. Subsect. 3.4.3).

The overall specification, consisting of both the process meta model and
the process model definition, is translated by the PROGRES compiler into C
code. The generated code constitutes the application logic of the instance-level
tools. The application logic library operates on the management data which
are stored in the graph-based database management system GRAS [220]. The
user interface of the management tools is implemented with UPGRADE, a
framework for building graph-based interactive tools [49].

3.4.3 Process Evolution and Domain-Specific Parameterization

Motivation

As stated above, the AHEAD system may be applied to processes in different
domains – including not only chemical engineering, but also other engineering
disciplines such as software, electrical, or mechanical engineering. The core
functionality is domain-independent and uses general notions such as task,
control flow, etc. AHEAD may be adapted to a certain application domain by
defining domain-specific knowledge [164]. For example, in chemical engineer-
ing domain-specific task types for flowsheet design, steady-state simulations,
dynamic simulations, etc. may be introduced. Within a process model defini-
tion, domain-specific knowledge is defined which constrains the process model
instances to be maintained at project runtime.

In the initial version of the AHEAD system, process model definitions
were constrained to be static throughout the whole project lifecycle. Either
no process model was defined at all, relying on a set of unconstrained stan-
dard types, or a process model had to be provided before the actual project
execution could be started. Thus, evolution was constrained to the instance
level (interleaving of planning and execution). However, gathering and fixing
process knowledge beforehand turned out to be virtually infeasible for design
processes, in particular in conceptual design and basic engineering of chemical
plants. Therefore, support for process evolution was generalized considerably
[171, 172].

While working on the Polyamide-6 reference process, it turned out that
even process model definitions cannot be determined completely in advance.
Therefore, we generalized evolution support to include all of the following
features (cf. [171–173, 387, 390]):

• Instance-level evolution. Planning and enactment of dynamic task nets
may be interleaved seamlessly (already part of the core system).

320 M. Heller et al.

Fig. 3.74. Conceptual framework

• Definition-level evolution. At definition level, evolution is supported by
version control at the granularity of packages (modular units of process
definitions).

• Bottom-up evolution. By executing process instances, experience is ac-
quired which gives rise to new process definitions. An inference algorithm
supports the semi-automatic creation of a process model definition from a
set of process model instances.

• Top-down evolution. A revised process model definition may be applied
even to running process model instances by propagating the changes from
the definition to the instance level.

• Selective consistency control. The project manager may allow for devia-
tions of process model instances from their respective definitions resulting
in inconsistencies. These deviations are reported to the project manager
who may decide to reinforce consistency later on.

Conceptual Framework

Levels of Modeling

Our work is based on a conceptual framework which distinguishes four levels
of modeling (Fig. 3.74). Each level deals with process entities such as products,
activities, and resources. Here, we focus on activities, even though our frame-
work equally applies to products and resources. Process evolution may occur

An Adaptive and Reactive Management System for Project Coordination 321

on every level. Furthermore, adjacent levels are connected by propagation and
analysis relationships. Propagation is performed top-down and constrains the
operations that may be performed on the next lower level. Conversely, analysis
works bottom-up and aims at providing feedback to the next upper level.

The process meta model introduces the language (or meta schema) for
process model definitions. The meta model is based on dynamic task nets. It
provides meta elements for structural (tasks, control and data flows etc.) and
for behavioral aspects (e.g. state machines for tasks) of these task nets.

Process (model) definitions are created as instances of process meta mod-
els and are defined in the UML using class diagrams at the type level and
collaboration diagrams for recurring patterns at the abstract instance level.
Process definitions are organized into interface packages defining the interface
of a task (in terms of its inputs and outputs) and realization packages (of a
complex task) containing the class diagram and the collaboration diagrams of
the respective subprocess. UML model elements are adapted to the process
meta model with the help of extension mechanisms provided by the UML
(stereotypes and tagged values).

Process (model) instances are instantiated from process model definitions.
A process model definition represents reusable process knowledge at an ab-
stract level whereas process model instances abstract from only one real world
process. A process model instance is composed of task instances which are cre-
ated from the task classes provided by the process model definition.

Finally, the real-world process consists of the steps that are actually per-
formed by humans or tools. The process model is used to guide and control
process participants, who conversely provide feedback which is used to update
the process model instance.

Wide Spectrum Approach

In general, a wide spectrum of processes has to be modeled, ranging from
ad hoc to highly structured. Moreover, different subprocesses may exhibit
different degrees of structuring. This requirement is met by defining for each
subprocess a corresponding package which contains a model at an adequate
level of structuring. As illustrated in Fig. 3.75, we may distinguish four levels
of process knowledge to be discussed below.

On the untyped level (Fig. 3.75a), there is no constraining process knowl-
edge (ad-hoc process). The process manager may create and connect any num-
ber of tasks with the help of unconstrained types (which are constrained only
by the underlying meta model).

On the partially typed level, the process modeler is capable of defining
domain-specific types of tasks and relationships, but he also permits the use
of unconstrained types on the instance level. In particular, this allows to leave
out exceptions like feedbacks in the definition. When feedback does occur
during enactment (e.g., a design error is detected during implementation),
it can be handled by instantiating an unconstrained type of feedback flow
without necessarily changing the process model definition.

322 M. Heller et al.

Fig. 3.75. Wide spectrum approach

The completely typed level requires complete typological knowledge of the re-
spective subprocess and therefore permits only domain-specific types. There-
fore, it excludes the use of unconstrained types and permits only domain-
specific types. The only degree of freedom at the instance level is the car-
dinality of tasks which also can be constrained in the process model. For
example, the cardinality [1:1] enforces exactly one instance of the respective
task type.

The instance pattern level (Fig. 3.75d) deals with (abstract) instances
rather than with types. Then, the process modeler may define an instance-level
pattern which may be inserted in one step into a task net. An instance pattern
for a whole subprocess is also called an instance-level process definition.

Consistency Control

Below, we discuss vertical consistency relationships between framework levels.
As argued before, we assume consistency of process definitions w.r.t. the meta
model.

Inconsistencies between process model instances and real-world processes
are frequently caused by inadequate process models. The vast majority of pro-
cess management systems demands consistency of the process model instance
with the process model definition. As a consequence, the process model in-
stance cannot be updated to represent the deviations taken by the process
participants.

In our approach, we allow for inconsistencies between a process model
instance and its definition. This way, the process model instance can match the
real-world process as closely as possible. By default, a process model instance
must be (strongly or weakly) consistent with its definition, but each subprocess
can be set to allow for temporary inconsistencies (e.g., insertion of a task of
some type that is not modeled in the respective process model). It is up to the
process manager to decide whether these subprocesses containing controlled

An Adaptive and Reactive Management System for Project Coordination 323

Table 3.2. Potential consistency levels

untyped partially typed typed

untyped w w i
partially typed i w, i i
typed i s, i s, i

deviations finally have to be again consistent with their respective definitions
or if they can be left inconsistent.

Like in object-oriented modeling, we distinguish between a structural
model (defined by class and object diagrams) and a behavioral model (de-
fined by state and collaboration diagrams). Accordingly, a process instance
is structurally (behaviorally) consistent if it satisfies the constraints of the
structural (behavioral) model.

We distinguish three levels of consistency ordered as follows: inconsistent
(i) < weakly consistent (w) < strongly consistent (s). We introduce the level
of weak consistency to account for the use of unconstrained types (partial pro-
cess knowledge). Table 3.2 summarizes potential consistency levels for combi-
nations of instance- and type-level processes (rows and columns, respectively)
depending on the respective degree of typing. For example, an untyped pro-
cess instance is inconsistent with a typed process definition, which excludes
the use of unconstrained types. Furthermore, a typed process instance is ei-
ther strongly consistent or inconsistent with a typed process definition (weak
consistency is only possible in the case of unconstrained types).

Process Evolution

In principle, process evolution may be considered at all levels of our conceptual
framework though we assume a static meta model here to avoid frequent
changes of the process management system itself.

Evolution of process instances is inherent to dynamic task nets. The pro-
cess meta model is designed such that planning and enactment may be inter-
leaved seamlessly. Evolution of process definitions is performed at the level of
packages. To maintain traceability, packages are submitted to version control.

After new package versions containing improved process definitions have
been created, migration of currently enacted process instances may be per-
formed selectively. During migration, process instances are to be updated such
that they are consistent with the improved process definition. It is crucial that
temporary inconsistencies do not prevent migration because a consistent state
is reached only eventually (if ever).

By permitting weakly consistent and inconsistent process instances, we
may not only minimize the gap between process instance and real-world pro-
cess. In addition, we support bottom-up evolution of process definitions by
allowing for selective adaptation of incorrect or incomplete process models
according to new experience expressed in the evolved process instance.

324 M. Heller et al.

Subprocess
Design

<<Realization>>
SimulationBased

Flowsheet
Subprocess

Design

<<Task>>
Flowsheet

Alternatives

Flowsheet

Flowsheet

1

1

1

1

<<dflow>>

<<may_contain>>

<<Task>>
Simulation

Simulation
ResultSimulation

Result
10..*

1<<dflow>>

<<cflow>>

<<cflow>>

<<m
ay_contain>>

<<dflow>>

src trg

src trg

1 1..*

0..*0..*

<<Task>>
Evaluation

Subprocess
Design

Sim.
Result 1

1..*

<<cflow>>
src trg
1..* 1

<<may_contain>>

1 11..*

<<dflow>>

<<dflow>>

1

<<
df

low
>>

Sim.
Result

<<RealizationPackage>>
R_SimulationBased_1

{EnactmentOrder = simultaneous}{EnactmentOrder = simultaneous}

<<Task>>
Subprocess

Design
Flowsheet

<<may_have>>

<<may_have>>
1

1

 <InterfacePackage>>
 I_SubprocessDesign

<<may_have>>

SubProcess
Design

0..1

Flowsheet
src0..1trg0..1

<<fback>>

{AllowStandardTypes = true}{AllowStandardParameters = false}

0..* src

SubProcess
Design

Fig. 3.76. Class diagram for a design subprocess

After having gained sufficient experience at the instance level, the process
modeler may propagate these changes from the process definition to the in-
stance level (top-down evolution). Changes may be propagated selectively,
and inconsistencies may be tolerated either temporarily or permanently – de-
pending on whether it pays off or it is considered necessary to reestablish
consistency. Altogether, our approach supports round-trip process evolution.

Sample Process

The example below shows a process evolution roundtrip: During the execution
of the design process, changes are performed which introduce inconsistencies
with respect to the process definition. In response to this problem, an improved
version of the process definition is created. Finally, the process instance is
migrated to the new definition. In contrast to the previous section, we will
deal with a different part of the overall reference process, namely the design
of the separation (Sec. 1.2).

Figure 3.76 presents a process definition on the type level of a subprocess
design as it can be used for any part of the overall chemical process (i.e., not
only for the separation, but also for the reaction and the compounding). This

An Adaptive and Reactive Management System for Project Coordination 325

version of the process definition will be replaced by an improved version later
on.

The subprocess design is defined in two UML packages containing class
diagrams for the interface and the realization, respectively. The class diagrams
are adapted to the underlying process meta model by the use of either textual
(<<Task>>) or graphical stereotypes (black/white circles for input/output
parameters). Further meta data are represented by tagged values which are
used to annotate model elements (shown as notes in the diagram).

The interface is defined in terms of inputs and outputs. A task of class Sub-
processDesign receives exactly one flowsheet for the overall chemical process
and (potentially) the design of a preceding subprocess. The output parameter
denotes the result of the subprocess design, including the flowsheet for the
subprocess, simulation models, and simulation results.

The realization is described by a class diagram containing a class for the
respective task net as well as classes for the subtasks. Although multiple
realizations may be defined, we discuss only a simulation based realization
(SimulationBased35). The inputs and outputs attached to SimulationBased are
internal parameters which are used for vertical communication with elements
of the refining task net.

The refining task net36 comprises several serial and parallel tasks and is
defined in a similar way as in Fig. 3.64.

Modeling elements are decorated with tagged values which define both
structural and behavioral constraints. A few examples are given in Fig. 3.76:

• Structural constraints. The tag AllowStandardTypes is used to distinguish
between partially and completely typed processes (Fig. 3.75b and c, re-
spectively). Likewise, AllowStandardParameters determines whether a task
may have untyped parameters.

• Behavioral constraints. The behavior of control flows may be controlled by
the tag EnactmentOrder. The value simultaneous allows for the simultane-
ous activation of tasks connected by a respective control flow.

In addition to the process definition given above, the composition of subpro-
cesses (PreStudy, ReactionDesign, SeparationDesign, Compounding and Deci-
sion; see top part of Fig. 3.77) into an overall design process has to be defined.
When the overall process definition is available, a process instance is created
according to the process definition. In the sequel, we will focus exclusively on
separation design.

Initially, separation design is decomposed into a task for designing Flow-
sheetAlternatives and a final Evaluation task for comparing these alternatives.
Now, the following problem is recognized: In order to design the separation
additional data on the reaction are required. Waiting for these data would

35 The <<may realize>> association to the corresponding task class (see Fig. 3.64)
was omitted from the figure.

36 Data flows along feedback flows were omitted to keep the figure legible.

326 M. Heller et al.

Fig. 3.77. Task net with inconsistencies

severely slow down the design process. Therefore, the manager of the sepa-
ration design calls for and inserts an initial Estimation of these data so that
design may proceed using initial estimations until more detailed data finally
arrive.

Since the Estimation task is not defined in the class diagram, the manager
makes use of the unconstrained type Task to insert it into the task net as an
untyped task. This modification degrades the consistency level of the task net
to weakly consistent. Unfortunately, inconsistencies are introduced, as well:
The flowsheet design task has to be supplied with the estimation as input
parameter. This was excluded in the process definition by the value false of
the tag AllowStandardParameters. Therefore, the manager has to switch off
consistency enforcement explicitly to make the modification feasible.

Figure 3.77 illustrates how weak (grey) and strong inconsistencies (red)
are signaled to the manager37.

Execution may continue even in the presence of inconsistencies. Further
modification, like the insertion of parallel tasks SimulationDistillation and Sim-
ulationExtraction may cause additional inconsistencies.

At this stage, it is decided to clean up the process definition so that it
includes the recent process improvements. Since the old definition may not be
modified for the sake of traceability, a new version is created instead. Among
others, the class diagram presented in Fig. 3.76 is revised (see Fig. 3.78, where
the changes are emphasized in bold face).

37 Unfortunately, there is hardly any difference between grey and red in grey-scale
reproduction.

An Adaptive and Reactive Management System for Project Coordination 327

<<Realization>>
SimulationBased

Flowsheet

SubprocessDesign

<<Task>>
Flowsheet

Alternatives

Flowsheet

1

1

1

1

<<dflow>>

<<may_contain>>

<<Task>>
Simulation

Flowsheet

Simulation
ResultSimulation

Result
10..*

1<<dflow>
>

<<cflow>>

<<cflow>>
<<

m
ay_contain>

>

<<dflow>>

src trg

src trg

1 1..*

0..*0..*

<<Task>>
Evaluation

Subprocess
Design

Sim.
Result 1

1..*

<<cflow>>
src trg
1..* 1

<<may_contain>>

1 11..*

<<dflow>>

<<dflow>>

1

<<
df

lo
w

>>

Sim.
Result

<<RealizationPackage>>
R_SimulationBased_2

{EnactmentOrder = simultaneous}{EnactmentOrder = simultaneous}

<<Task>>
Estimation

Flowsheet

1

1

Estimation
0..1

<<dflow>>

<<dflow>>

<<may_contain>>

src
0..1

trg
1

<<cflow>>

src0..1trg0..1

<<fback>>

Flowsheet

{AllowStandardParameters = false} {AllowStandardTypes = false}

Estimation

Estimation

0..1<<dflow>>

<<cflow>>

{EnactmentOrder = sequential}

{EnactmentOrder = sequential}

1..* trg

src0..1

0..* src

0..1

Fig. 3.78. Revised process definition

<<TaskPackage>>
+ Estimation

<<TaskPackage>>
+Subprocess_Design

<<InterfacePackage>>
+ I_Subprocess_Design_1

<<RealizationPackage>>
- R_Simulation_Based_1

<<RealizationPackage>>
- R_Simulation_Based_2

<<TaskPackage>>
+ Simulation

<<InterfacePackage>>
+ I_Simulation_1

<<realizes>><<realizes>>

<<import>> <<import>> <<import>>

...

<<InterfacePackage>>
+ I_Estimation_1

...

...

<<successor>>

<<InterfacePackage>>
+ I_Simulation_2

<<successor>>

Fig. 3.79. Package versions

Figure 3.79 illustrates the evolution on the definition level by a package dia-
gram. A task package serves as a container for interface and realization pack-
ages. The interface package for the subprocess design is not affected. For the
realization, a new package version is derived from the old one. In addition, a
new task package for the estimation is created. Finally, the interface package
for the simulation task has to be revised such that the simulation task may
be supplied with an estimate of a preceding subprocess.

The process evolution roundtrip is closed by propagating the changes at the
definition level to the instance level. In general, migration has to be performed

328 M. Heller et al.

Fig. 3.80. Task net after migration

interactively since it is not always possible to uniquely determine e.g. the
target type of migration.

All tasks whose types were already contained in the old definition can
be migrated automatically to the new type version. In our example, this rule
applies to the design task and the simulation tasks. In contrast, the estimation
task’s target type cannot be determined uniquely since it was introduced as
an untyped task. After all objects have been migrated, the relationships can
be migrated automatically. This is possible even for untyped relationships
provided that there is only one matching relationship for each pair of object
types.

The task net after migration is shown in Fig. 3.80. The control flow from
the estimation task to the flowsheet design task is marked as behaviorally in-
consistent (emphasized by red color). Both tasks are currently active, while the
revised process definition prescribes a sequential control flow. This illustrates
that migration does not necessarily result in a task net which does not contain
inconsistencies. Migration can always be performed – even if inconsistencies
persist.

Realization

Figure 3.81 displays the architecture of AHEAD extended by details of the
modeling environment concerning process evolution (see upper right corner).

The process modeler uses a commercial CASE tool – Rational Rose – to
create and modify process definitions in the UML. Rational Rose is adapted

An Adaptive and Reactive Management System for Project Coordination 329

meta schema

21 3 31

basic operations

process schema

Change_Mod_Start
(task : Change_Mod)

begin
Consume(task.-inp->)

refined operations

generic
specification part

specific
specification part

management
environment

work
environment

modeling environment
PROGRES System

setareneg

offers view
UPGRADE

application logic
library

GUIs

interacts

analyzer
transformer

inference tool

generates prov. data

knowledge
base

sledo
m .vorpretrieves instance data feeds

Rational
Rose

Fig. 3.81. Architecture of the AHEAD system with process evolution support

with the help of stereotypes which link the UML diagrams to the process
meta model. A class diagram is represented as shown in Fig. 3.76. An analyzer
checks process model definitions for consistency with the process meta model.
The analyzer is coupled with a transformer which translates the UML model
into an internal representation hidden from the process modeler [211].

Finally, the inference tool closes the loop by assisting in the inference of
process definitions from process instances. The inference tool analyzes process
instances and proposes definitions of task and relationship types. These defini-
tions are stored in a knowledge base which may be loaded into Rational Rose.
In this way, bottom-up evolution is supported. For a more detailed description
of the inference tool, the reader is referred to [390].

To conclude this section, let us summarize how process evolution is sup-
ported by AHEAD. The sample process presented in the previous section
assumes that a type-level process definition has already been created. For a
while, the design process proceeds according to the definition. Planning and
execution are interleaved seamlessly, the task net is extended gradually (in-
stance evolution). Then, the manager detects the need for a deviation. Con-
sistency enforcement is switched off in the task net for the separation design,

330 M. Heller et al.

and the estimation task is inserted. These steps are performed with the help
of the management tool. Execution continues even in the presence of incon-
sistencies until it is decided to improve the process definition. To this end, the
process modeler creates new package versions in Rational Rose. This results in
an extension of the process definition, i.e., the old parts are still present. The
extended definition is transformed into the PROGRES specification, which in
turn is compiled into C code. Now the process manager may migrate the task
net to the improved definition.

3.4.4 Delegation-Based Interorganizational Cooperation

So far, we have assumed tacitly that the overall design process is performed
within one company. However, there are many examples of processes which
are distributed over multiple organizations.

We have developed a delegation-based model for cooperation between com-
panies and a generalization thereof. We first concentrate on the delegation-
based cooperation and introduce a scenario for this kind of interorganizational
cooperation.

Delegation of Subprocesses

Figure 3.82 illustrates the key components of the distributed AHEAD system
[30, 166, 167, 169, 208]. The local systems are structured as before; for the
sake of simplicity, the modeling environments are not shown. The extension
of AHEAD to a distributed system is illustrated by the arrows connecting
different instances of the AHEAD system.

AHEAD may be used to delegate a subprocess to a subcontractor. In gen-
eral, a delegated subprocess consists of a connected set of subtasks; delegation
is not confined to a single task. When the subcontractor accepts the delega-
tion, a database is created which contains a copy of the delegated subprocess.
Subsequently, execution of the subprocess is monitored such that the contrac-
tor may control the progress of work performed by the subcontractor.

The delegation model underlying the AHEAD system meets the following
requirements :

• Delegation of subprocesses. A delegated subprocess consists of a connected
set of subtasks. This way, the contractor may define milestones for con-
trolling the work of the subcontractor.

• Delegation as a contract. The delegated subprocess serves as a contract
between contractor and subcontractor. The contractor is obliged to provide
the required inputs, based on which the subcontractor has to deliver the
outputs fixed in the contract.

• Autonomy of contractor and subcontractor. The autonomy of both parties
is retained as far as possible; it is restricted only to the extent required by
the contract.

An Adaptive and Reactive Management System for Project Coordination 331

Designers

Project

manager

Designers
Project

manager

Project

manager

Delegation of subprocesses

Monitoring of subprocesses

AHEADAHEAD

AHEAD

Designers

Data

base

Data

baseData

base

Fig. 3.82. Distributed AHEAD system

• Need-to-know principle. The parties engaged in a contract share only those
data which are needed for the contract. This includes the respective sub-
process as well as its context, i.e., its embedding into the overall process.
Other parts of the process are hidden.

• Refinement of delegated subprocesses. The subcontractor may refine dele-
gated subprocesses if this is required for managing the local work assign-
ments. Since these refinements are not part of the contract, they are not
visible to the contractor.

• Monitoring of process execution. The contractor is informed continuously
about the state of execution of the subprocess delegated to the subcon-
tractor. In this way, the contractor may monitor execution and control
whether set deadlines are met.

• Support of dynamic design processes. Support for process dynamics is ex-
tended to interorganizational design processes. In particular, contracts can
be changed dynamically. However, this requires conformance to a change
protocol because cooperation among different enterprises requires precisely
defined formal rules. The change protocol ensures that the contract may
be changed only when both involved parties agree.

332 M. Heller et al.

Delegation is performed in the following steps :

1. Export. The contractor exports the delegated subprocess into a file. A copy
of the delegated subprocess is retained in the database of the contractor.

2. Import. The subcontractor imports the delegated subprocess, i.e., the file
is read, and the local database is initialized with a copy of the delegated
subprocess.

3. Runtime coupling. The AHEAD systems of contractor and subcontractor
are coupled by exchanging events. Coupling is performed in both direc-
tions. This way, the contractor is informed about the progress achieved by
the subcontractor. Vice versa, the subcontractor is informed about oper-
ations relevant for the delegation (e.g., creation of new versions of input
documents).

4. Changing the contract. The contract established between contractor and
subcontractor may be changed according to a pre-defined change protocol.
The change is initiated by the contractor, who issues a change request. In
a first step, the proposed change is propagated to the subcontractor. In a
second step, the subcontractor either accepts the change – which makes
the changes valid – or rejects it, implying that the propagated change is
undone.

Please note that steps 1–3 are ordered sequentially. Step 4 may be executed
at any time after the runtime coupling has been established.

Sample Process for Delegation-Based Cooperation

Scenario

When designing a chemical plant, expertise from multiple domains is required.
For example, in the case of our Polyamide-6 reference process experts from
chemical engineering and plastics engineering have to cooperate. Plastics en-
gineering is needed to take care of the last step of the chemical process, namely
compounding, which is performed with the help of an extruder.

The scenario to be discussed below involves two companies. The overall de-
sign of the chemical plant is performed in a chemical company. Compounding
is addressed by an plastics engineering company. Designers of both companies
have to cooperate closely with respect to the separation step of the chemi-
cal process since separation can be performed partly still in the extruder. In
Fig. 3.83, a detailed extruder configuration including the polymer feeding, a
mixing section, a degassing section followed by the fiber adding and the de-
gassing of air is shown. The substances fed into the extruder still contain a
small fraction of monomers which are fed back into the reaction step. Thus,
a major design decision concerns the question to what extent separation can
still be performed in the extruder.

Further on we will concentrate on the delegation of the activities from
chemical engineering to plastics engineering. The compounding expert receives

An Adaptive and Reactive Management System for Project Coordination 333

Fig. 3.83. Functional sections in a compounding extruder

the compounding steps and information about process boundary conditions
such as mass flow, estimated viscosity, and thermophysical polymer proper-
ties (e.g., heat capacity, thermal conductivity). Afterwards he estimates com-
pounding specific process parameters like the machine size, the extruders’
rotational speed, the mass flow in every extruder, and the number of needed
extruders.

Because the degassing process in the extruder can be quantified only with
high experimental effort or by a simulation program [147], at first the degassing
section is investigated by the compounding simulation expert. In a meeting,
all necessary tasks are discussed and afterwards the compounding simula-
tion expert starts a calculation to quantify the amount of degassed monomer
while the compounding expert estimates the process behavior for the fibre
adding section by his experience based knowledge. In the following meeting,
first design results are discussed with the separation expert representing the
chemical company. This collaboration for the design of the separation process
is necessary, because the separation of volatile components like monomers and
solvents from the polymer is possible both in e.g. the wiped film evaporator
and the compounding extruder as mentioned above.

As a result of the interdisciplinary meeting, the members decide to make
a detailed analysis of the homogenization processes in the mixing section by
use of 3D-CFD tools (Computational Fluid Dynamics). Afterwards the results
are discussed among the plastics engineers in a second meeting to prepare a
report for the chemical engineering contractor.

The parallel activities in chemical and plastics engineering require powerful
and smart management tools which can handle the highly dynamic concurrent
processes. If any of the analyzed process steps turns out to be not feasible or
not economically reasonable, various activities can be affected and a large part
of the complete project has to be reorganized or in the worst case canceled.

Initial Situation

The example session described here deals only with the part of the overall
design process which is related to the design of the extruder. The chemical
company acts as a contractor and delegates the task of designing the extruder
component to its subcontractor, the plastics engineering company.

334 M. Heller et al.

Design
Compounding

<unassigned>

Det. Process
Parameters

<unassigned>

Det. Degassing

<unassigned>

Det. Fibre
Content

<unassigned>

Investigate
Extruder

<unassigned>

Evaluate

<unassigned>

contractor
(Chemical Company)

Smith

Manager

Lincoln

Reaction
Expert

Miller

Separation
Expert

Client
Resources:

Requirements

Design
Extruder

Design
Extruder

Process
Parameters

Degassing

Fibre
Content

Project group

Role

Human resource

Task Input, Output

Control flow

Data flow

In Definition

Waiting

Active

Suspended

Done

Failed

Task states:

Prepare
Requirements
Manager

Design
Reaction

Reaction Expert

Design
Separation

Separation Expert

Decide Plant
Design
Manager

Order

Flow
Diagram

Result
Reaction

Result
Separation

Result
Compounding

Design
Plant

Fig. 3.84. Task net after refinement of task Design Compounding

The task net in Fig. 3.84 results after the manager of the chemical company,
acting as the contractor, has refined the extruder design task by a subnet. The
task Design Compounding and all subtasks will be delegated to the subcon-
tractor. The task definition of Design Compounding can be seen as a contract
between both companies, where the subcontractor has to produce a certain
output (extruder design alternative) based on the inputs (requirements) which
are provided by the contractor.

As stated before, in this subprocess an extruder is developed according to
a set of desired product properties. The subtask Determine Process Parameters
receives a product quality specification and the extruder’s properties as input
and produces rough estimates for the extruder’s parameters. The content of
fibres as well as the degassing of volatile components of the plastics are in-
vestigated in separate tasks. The subsequent investigation of the extruder’s
functional sections in task Investigate Extruder is based on the output of the
three previous tasks. The results are evaluated and if the desired properties are
met, the extruder design is propagated as a preliminary result to the parent
task Design Compounding.

Establishing the Delegation

The delegated subprocess Design Compounding and its refining task net is are
exported to a file. For further monitoring, all delegated tasks remain in the
local data base and in the task net view on the contractor side but are as-
signed to a newly created resource Remote: Plastics Engineering Company. The

An Adaptive and Reactive Management System for Project Coordination 335

Project group

Role

Human resource

Input, Output

Control flow

Data flow

In Definition

Waiting

Active

Suspended

Done

Failed

Task states:

subcontractor (Plastics Engineering Company)

Johnson

Manager

Mayer

Compounding
Expert

Grant

Compounding
Simulation
Expert

Contractor
resources:

Private task

Monitored task

Remote task

Remote:
Chem. Eng.
Company

Det. Process
Parameters

Compounding Expert

Det. Degassing

Comp. Sim. Expert

Det. Fibre
Content

Compounding Expert

Investigate
Extruder

Comp. Sim. Expert

Evaluate

Comp. Sim. Expert

Requirements

Design
Extruder

Design
Extruder

Process
Parameters

Degassing

Fibre
Content

Result
Compounding

Design
Compounding

Compounding Expert

Prepare
Requirements

Remote: Chem.Eng.
Flow
Diagram

Design
Separation

Remote: Chem.Eng.

Result
Separation

Decide Plant
Design

Remote: Chem.Eng.

Fig. 3.85. Task net on subcontractor side after delegation and resource assignments

export file also contains contextual information about the delegated process,
namely those tasks that are not delegated but connected via control flows to
a delegated task (here: Prepare Requirements, Design Separation and Decide
Plant Design). They can be monitored on the subcontractor side in contrast
to private tasks that are not in the context (e.g. Design Reaction).

The plastics engineering company (subcontractor) imports the process de-
scription file into its AHEAD system. Figure 3.85 shows the corresponding
task net and its context, which are instantiated in the local database on the
subcontractor side. All delegated tasks are still in state In Definition, so that the
manager on the subcontractor side can ask the contractor for a revised version
if he does not agree with the contract consisting of delegated tasks, their pa-
rameters, control flows and data flows. If the subcontractor agrees to execute
the delegated process, he may begin with the execution of the corresponding
task net in his management environment, e.g. by assigning all delegated tasks
to either the role Compounding Expert or Compounding Simulation Expert as
shown in Fig. 3.85.

The management systems of contractor and subcontractor are loosely
coupled together by exchanging events. The contractor is informed about
changes of the delegated tasks’ execution state which are considered mile-
stone activities. Vice versa, the subcontractor is informed about changes of
the context tasks which are executed on the contractor side. For instance,
if Prepare Requirements is changed from Active to Done on the contractor
side, a change event triggers the same change on the subcontractor side (cf.
Fig. 3.85).

336 M. Heller et al.

The delegated task Design Compounding is activated by a Compounding
Expert. During execution of the delegated tasks, roles are assigned (e.g. Com-
pounding Expert for Determine Process Parameters), task states are changed,
and results are passed according to the defined data flows. All these updates of
the delegated tasks by the subcontractor can be monitored by the contractor
as well as the produced result, the first version of the extruder design.

Changing the Delegated Task Net Dynamically

In our example, the contractor and the subcontractor agree that the prelim-
inary design alternative for the extruder could be optimized if the mixing
quality of the materials in the extruder is investigated further. This is done
by performing a three-dimensional simulation of the polymer flow in the ex-
truder. The subcontractor agrees to carry out the additional simulation and
the contract between contractor and subcontractor can be extended. Chang-
ing a delegated process after having started its enactment is not unusual in
the design process of a chemical plant.

AHEAD supports dynamical changes of the contract between contractor
and subcontractor. Changes are allowed only when both parties agree on them.
Therefore, the delegated task net is changed according to a formal change
protocol. The delegated task net is at every time in exactly one of the three
delegation states Accepted, Change, and Evaluate. As described below, the
transitions between these states define the commands which can be executed
either on contractor and subcontractor side during the change process.

Initially, the subcontractor has issued the command Allow changes (from
Accepted to Changed) to signal that he agrees to the change proposal of the
contractor. After that, the contractor is able to modify the delegated process.
The contractor adds a new task Determine Mixing Quality in the subnet of the
Design Compounding and adds the appropriate control and data flow relation-
ships from Determine Process Parameters and to Investigate Extruder. While
the contractor changes the task net, all changes to the task net are propa-
gated to the subcontractor. Eventually, the contractor may either discard his
changes by using the command Reset Changes (Changed→Accepted) or he may
signal that the structural changes are finished by using the command Changes
Finished (Changed→Evaluate).

In our example, the subcontractor evaluates and accepts the proposed
changes of the delegated process. Triggering the command Accept Changes
(Evaluate→Accepted) yields an update of both processes on the contractor
side and the subcontractor side according to these changes. As an alterna-
tive, the subcontractor may reject the change of the contract by use of the
command Reject Changes (Evaluate→Changed). In this case, the changes are
discarded and the contractor would be informed about the rejection. Both
partners then would have to talk about the problem again before eventually
the subcontractor would accept a proposal made by the contractor.

An Adaptive and Reactive Management System for Project Coordination 337

Project group

Role

Human resource

Input, Output

Control flow

Data flow

In Definition

Waiting

Active

Suspended

Done

Failed

Task states:

subcontractor
(Plastics Engineering
Company)

Johnson

Manager

Mayer

Compounding
Expert

Grant

Compounding
Simulation
Expert

Contractor
resources:

Private task

Monitored task

Remote task

Remote:
Chem. Eng.
Company

Requirements

Result
Compounding

Design
Compounding

Compounding Expert

Prepare
Requirements

Remote: Chem.Eng.
Flow
Diagram

Design
Separation

Remote: Chem.Eng.

Result
Separation

Decide Plant
Design

Remote: Chem.Eng.

Det. Degassing

Comp. Sim. Expert

Degassing

Det. Fibre
Content

Compounding Expert

Det. Mixing
Quality

Comp. Sim. Expert

Mixing
Quality

Investigate
Extruder

Comp. Sim. Expert

Design
Extruder

Evaluate

Comp. Sim. Expert

Design
Extruder

Det. Process
Parameters

Compounding Expert

Process
Parameters

Generate
meshes

Comp. Sim. Expert

Perform 3D-
Simulation

Comp. Sim. Expert

Simulation
results

Evaluate

Comp. Sim. Expert

Mixing
Quality

Prepare
Simulation

Comp. Sim. Expert

Parameters
Estimates

Mesh

Fig. 3.86. Private refinements of the delegated process on the subcontractor side

Information Hiding Regarding Delegated Processes

The complex new task Determine Mixing Quality in the delegated process is
refined by the manager on the subcontractor side by a private subnet to break
it down into smaller working units and assign separate resources to each of the
tasks. This refining task net comprises the tasks Prepare Simulation, Generate
Mesh, Perform 3D-Simulation and Evaluate as shown in Fig. 3.86. The subnet
is not part of the contract between contractor and subcontractor and can
therefore be hidden from the contractor by means of private tasks.

Finishing the Delegation

After the process has been resumed, on the subcontractor side a second ver-
sion of the extruder design has been finally produced and released to the
task Design Compounding. This result should be taken as the final outcome of
the delegated task. The subcontractor can signal this to the contractor with
the command Complete Delegation stating that he wishes to complete the con-
tracted delegation relationship. The contractor can confirm this with the com-
mand Confirm or reject it with the command Reject. If the result is accepted,
the coupling of the two AHEAD systems of contractor and subcontractor is
finished. In the other case, the rejection is signaled to the subcontractor and
the coupling is maintained.

338 M. Heller et al.

3.4.5 View-Based Interorganizational Cooperation

Motivation

In the previous subsection, a delegation-based relationship between cooper-
ating organizations has been explained, where a contractor delegates a part
of his process to a subcontractor organization. This model is now criticized.
We want to generalize the model in order to support a broader spectrum of
cooperation scenarios.

The previously discussed delegation-based relationship is restricted with
respect to its flexibility and adaptability to different cooperation scenarios:

• The visibility of elements in the contractor process for the subcontrac-
tor can only be defined for tasks in the direct neighborhood of the dele-
gated process. Thus, it is not possible to expose process parts without a
delegation-relationship.

• AHEAD currently supports only a delegation-relationship for the coop-
eration between processes where both parties have different roles during
the collaboration (namely contractor and subcontractor) implying different
rights to define all cooperation aspects. However, other possible coopera-
tion scenarios should also be possible. For example, the same rights and
duties can be given to the partners of a peer-to-peer cooperation.

• Only connected parts of a process can be delegated. If multiple parts of a
process are delegated, they are all regarded as independent new processes
on the subcontractor’s side. They cannot be composed into an overall pro-
cess with a shared process context. Following this approach, the integration
of pre-existing processes with each other is not possible.

• Cooperation can require less formal or more formal configurations regulat-
ing the procedures and mechanisms used by the organizations for defining,
executing, and evaluating interorganizational processes. Therefore, flexible
and configurable cooperative processes for interorganizational processes
need to be supported by the AHEAD system. For example, not every del-
egation requires very strict and formal contracts about the agreements and
procedures between the partners. Currently, the cooperation protocols for
delegation within AHEAD are built-in and cannot be tailored to specific
cooperation needs according to a higher or lower level of trust between the
cooperating organizations.

Hence, we have identified two important requirements for flexible coopera-
tion support in dynamic development processes: (1) An organization should
be able to use powerful and flexible mechanisms for defining the visibility of
process information shared with other organizations. (2) Interoganizational
cooperation has to be supported insofar as the different processes of the coop-
eration partners can be integrated with each other not exclusively according
to delegation-based relationships between them. A broad set of customizable
cooperation relationships has to be supported instead.

An Adaptive and Reactive Management System for Project Coordination 339

Dynamic Process Views

Our approach to interorganizational cooperation in development processes
builds on the definition of dynamic process views onto development processes
as its foundation [175–177]. Dynamic process views support better visibility
management for process elements carried out within an organization.

A dynamic process view is defined for a process instance (i.e. a dynamic
task net) with its products and resources and it resembles a subconfiguration
of the process instance. A process view constitutes a certain cut-out of its
underlying process with products and resources which should be made visible
to external parties.

A process view basically contains the following elements :

• A view name and a unique view identifier.
• A subgraph of a dynamic task net (partial abstraction): This subgraph

represents a fragment of a dynamic task net which is structurally and
behaviorally consistent with respect to the process meta-model of DYNA-
MITE [243]. Zero or more tasks can be part of the process view and not
all of a task’s parameters need to be in the process view. Only a subset
of the existing flow relationships between tasks needs to be represented in
the process view.

• A view product workspace maintaining all view-related products and prod-
uct versions which are contained in the underlying process and should be
visible within the process view.

• Aview resource space which contains all view-related resources, i.e., all
abstract or concrete resources of the underlying process which should be
made visible within the process view.

• View definition rules : A set of rules defines which elements of the under-
lying private process are also part of the process view. For instance, some
specific model elements (i.e. tasks, products, resources, or flow relation-
ships) can be assigned to the view, or all model elements of a specific type
can be chosen instead.

The process view concept is illustrated by an example in Fig. 3.87. The top
part of the figure shows a part of the Polyamide-6 process (used through-
out the entire subsection) as it is seen from the perspective of the Chemical
Company. In the middle part of Fig. 3.87, a process view definition named Re-
actionSimulationTasks for this process is shown which contains two simulation
tasks Simulate CSTR and Simulate PFR with their input and output parame-
ters from the overall process, while the control flow between both tasks is not
included in the process view.

Process views can be used to provide different perspectives of the under-
lying private process. For instance, managers can use process views to gain
overview with minimum technical process information. Technical experts can
use process views containing all necessary process information with respect to

340 M. Heller et al.

Chemical Company

Smith

Manager

Lincoln

Design
Expert

Miller

Simulation
Expert 1

Resources:
Design Reaction

Manager

Design Flow
Diagram

Design Expert

Simulate CSTR

Simulation Expert 1

Requirements

Flow
Diagram

Define
Requirements

Req. Expert

Detail
Engineering

Unassigned

Simulate PFR

Simulation Expert 2

Compare

Unassigned

Reaction

Req. Sim.
CSTR

Sim. PFR

Simulate CSTR

Simulation Expert 1

Simulate PFR

Simulation Expert 2
Sim.
PFR

Sim.
CSTR

view V1 ReactionSimulationTasks for process instance Polyamide6
begin
include instance task T1 Simulate CSTR
include instance task T2 Simulate PFR
include type output parameter for task T1
include instance input parameter P1 Sim. CSTR of T1
include instance output parameter P2 Sim. PFR of T2
include instance position Simulation Expert 1
include instance position Simulation Expert 2

end

View Definition V1
of Process Polyamide6

Baker

Simulation
Expert 2

Result

Flow
Diagram

Flow
Diagram

Simulate
CSTR

Simulation Expert 1

Simulate PFR

Simulation Expert 2
Sim.
PFR

Sim. CSTR

Flow
Diagram

Simulation
Analysis

Sim.Analysis Manager

Create
Report

Sim.Analysis
Manager

Create Analysis
Framework

Sim.Analysis Manager

Req.

Analyze sim.
result for CSTR

Analysis Expert

Analyze sim.
Result for PFR

Analysis Expert
Analysis
PFR

Process instance used by a Plastics Engineering Company with embedded view instance V1

Analysis
CSTR Report

View Instance for View V1
(Evaluation Result)

(Products used within the Chemical Company)

(Products used within the Plastics Engineering Company)

Plastics Engineering
Company

publish

subscribe

evaluate

Done

Failed

Input Control flow

Data flow

In Definition

Waiting

Active

Suspended

Task states:Private task

Remote task Output

Deuter

Proj. Mgr

Bolton

Design
Engineer

Heith

Lab Expert

Resources:

Fig. 3.87. Dynamic process view for the Polyamide-6 process

An Adaptive and Reactive Management System for Project Coordination 341

a specific information need. In our opinion, a view-based approach is a natural
approach for managing the visibility of process elements to external parties.

Process view definitions are published by one organization (publisher) and
they can subsequently be subscribed by other organizations (subscribers). The
application of a view definition to a process results in a view instance con-
taining all process elements which are visible according to the (automatic)
evaluation of the view definition rules of the subscribed process view. The
subgraph, view workspace, and view resource set of a process view exactly
contain all process elements which are determined by the view definitions
rule set.

Subsequently, the process elements of a view instance can be embedded
into private process instances of the subscriber. Thereby, any new restric-
tions on the embedded elements, e.g. new incoming control flows, have to be
negotiated between the subscriber and publisher before they can take effect.

Process view instances change, either when the underlying private process
or when their corresponding view definition are modified. Therefore, view
instances are re-evaluated whenever the underlying processes or the view def-
initions are changed, in order to update the contents of the process view. For
example, the lower part of Fig. 3.87 shows the private process of the Plastics
Engineering Company with the embedded view instance of View 1.

Private processes contain local as well as remote tasks embedded from
other organizations within process views. The embedded view elements (here
tasks Simulate CSTR and Simulate PFR) can be interconnected with tasks of
the private process where the view is embedded by control flows, feedback flows
or data flows to establish inter-process cooperation. This provides the basis
for interorganizational cooperation as explained in the following paragraph.

View-Based Interorganizational Cooperation Model

We are now in the situation to introduce our interorganizational cooperation
model which is based on dynamic process views [175–177]. The model is de-
scribed according to three layers which are located on top of each other starting
at the bottom of the layer stack (Fig. 3.88):

• The private processes are modeled on the private process layer, where
the process manager of each organization defines, controls and monitors a
task net instance reflecting the development process within the respective
organization.

• Dynamic process views are located at the process view layer above. Parts
of the overall process within each organization are made externally visi-
ble by the definition and publication of one or more process view defini-
tions. These process view definitions are subscribed by other organizations,
where the respective private processes are extended with the contents of
the corresponding view instances. In our approach, the remote process
view elements are directly embedded into the private task nets to allow

342 M. Heller et al.

private process layer

process view layer

cooperation layer
evolution

evolution

evolution

publish
publish

process A process B

subscribe subscribe

interaction relationship

has view

...

...

...

...view B1view A1

refined by

publish

has view

(e.g. subscribed by
other organizations)

process Bprocess A

interaction relationship

Fig. 3.88. Layers of the view-based interorganizational cooperation model

for a complete overview of all process elements together. Process views are
used to enable inter-process coupling as described below.

• Details about the intended cooperation relationships between organiza-
tions are contained in the cooperation layer on top of the process view
layer. Different kinds of cooperation relationships, e.g. outsourcing rela-
tionships, are introduced here (described later). Cooperation relationships
model the interactions between project teams residing in different organi-
zations and they prescribe how control and data can be transferred between
the organizations.

Our approach to interorganizational view-based cooperation management
comprises the following cooperation phases :

1. Private task net planning. Within each organization, the process manager
plans its own private process instance.

2. Process view publication. The process manager creates process views to
make certain cut-outs of his managed process instance externally visible.
View definitions with view rules on the instance-level and the type-level

An Adaptive and Reactive Management System for Project Coordination 343

are created and subsequently published to other organizations. Selected
tasks of a process view definition can be marked as outsourced in order to
execute them within other organizations.

3. Process view subscription. The process manager of another organization
subscribes the published process view definition to embed a corresponding
view instance into his private process instance (dynamic task net).

4. Process inter-connection. By connecting private and remote process ele-
ments with each other, process instances are coupled across organizational
borders.

5. Cooperation policy definition. The process manager can define the coop-
eration relationship on the cooperation layer. Additionally, he can assign
selected process view definitions to the cooperation policy. Each relation-
ship can be further refined with a contract, if needed.

6. Process coupling. The AHEAD systems of the cooperating organizations
are coupled to exchange process update messages with each other. The
different processes are executed locally in the organizations. All process
views are updated upon changes of the underlying process instance. When-
ever a process instance is modified locally, the respective AHEAD system
computes all affected process views. Subsequently, it notifies all those re-
mote AHEAD systems about the change, wherein the computed process
views are embedded.

7. Completion of process inter-connection. The process manager of each or-
ganization decides autonomously when to terminate or cancel the process
interconnection. Therefore, he marks a selected process view definition as
completed. After that, the corresponding view instance is not updated any
more and the process instances evolve independently from that moment
on (although all embedded view elements remain in the private processes
of all subscribers).

Layers and Components of the Cooperation Model in Detail

We now describe the different layers and components of our cooperation model
in the following four subparagraphs in more detail.

Private Process Layer

Within the private process layer we allocate the process instances of each
organization. Of course, all process aspects are visible within the organization.
But due to a lack of trust, in most cases it is not suitable to expose private
process details completely to other parties but only a certain fraction of the
overall process. For this purpose, the process view concept is introduced.

Process View Layer

All process views are located on this layer above the private process layer.
Process views are used to enable inter-process connection. The private pro-
cesses can contain tasks which are executed locally as well as tasks which are

344 M. Heller et al.

embedded locally using subscribed process views from other organizations. A
private process can contain local process elements as well as remote process
elements. Therefore, process managers can oversee their local process together
with all connections to process parts executed in other organizations within a
single task net representation.

In order to achieve inter-process coupling, the process instances of the
cooperating organizations can be connected by control flows, feedback flows, or
data flows. We do not need an additional modeling language for modeling the
coupling of processes. Instead, we re-use the known control flow, feedback flow,
and data flow concepts of dynamic task nets. While other approaches favor
to model intra-organizational and inter-organizational control and data flows
differently, we aim at modeling both in the same way. From a manager’s point
of view, control flow is transferred between two tasks regardless if they both are
locally executed or not. Of course, intra- and inter-organizational dependencies
between tasks have to be handled differently, but they can be modeled the
same way for ease of use. Intra-organizational and inter-organizational flows
can be identified, because the source and target tasks of these flows are either
both local tasks or not. We believe, that modeling intra-organizational as well
as interorganizational cooperation in a uniform way is feasible and should be
supported by a modeling approach that is simple to understand and to use
by process managers.

Cooperation Layer

On the cooperation layer, we model basic cooperation relationships between
processes. This model represents which connections to other organization’s
processes exist and how they relate to each other. We distinguish between
monitoring relationships, interaction relationships, and outsourcing relation-
ships.

A process view instance can be embedded into a private process of an
organization in order to observe the progress of the process cut-out visible
by that process view. Such monitoring relationships are the simplest form
of cooperation because no direct inter-connection of process elements from
different organizations is needed here. Using monitoring relationships helps
process managers to oversee their own processes as well as interesting remote
process parts in one uniform representation.

If local and remote process elements are connected by control flows, feed-
back flows, or data flows, we model interaction relationships between the cou-
pled organizations on the cooperation layer. Interaction relationships resemble
situations where control flow or data are transferred between processes. For
example, local tasks can be restricted to start only after some remote tasks
have terminated by inter-process control flows. This allows interweaving dif-
ferent processes in the sense that the processes are executed in parallel while
they are loosely coupled at the same time.

We define outsourcing relationships to model cooperation in a customer-
producer relation. In our approach, outsourcing means that an organization

An Adaptive and Reactive Management System for Project Coordination 345

(termed as customer) can plan single process tasks or a task net fragment to
be executed by another organization (termed as producer) within the process
view definition. The outsourced tasks are then transferred to the other or-
ganization and regarded there as a local task in the future. The outsourcing
organization will no longer be responsible for the outsourced tasks, because
they are executed within the other organization. In an extreme scenario, co-
operation can even happen without outsourcing (or delegation) at all. This
represents a useful scenario when different organizations cooperate with each
other with the goal to allow access to selected parts of the private processes
while prohibiting any further process coupling. Interaction relationships and
outsourcing relationships can complement each other and can exist between
two organizations at the same time.

Contracts

The extent of trust is a key factor in cooperations and must be modelled
appropriately. For instance, if an organization wants to delegate a process
to another organization, different cooperation relationships are possible. If
the contractor has not worked with the planned subcontractor before, a very
strict and formal cooperation setting may be suitable. If the partners know
each other well, or if they are engaged within a long-term relationship, it may
be more appropriate to work together in a less formal relationship, without
fixing all details fixed within a contract beforehand.

In our approach, contracts are used to tailor cooperation relationships to
individual cooperation needs. For example, the object of discourse, the differ-
ent partner roles, or other data are defined within the contract. Additionally,
selected process views can be assigned to the contract if the task net struc-
ture of some process fragments shall be a part of the contract between the
cooperation partners.

A broad spectrum of cooperation scenarios can be realized with different
contract configurations. On the cooperation layer, all three basic cooperation
relationships (monitoring, interaction, and outsourcing) between processes are
orthogonal to contracts. They can optionally be refined by contracts. The ba-
sic idea is to implement a very light-weight default contract protocol for the
interaction between partners and to provide contracts as a means to further
define the fine-grained structure of a cooperation between partners if this is
needed. Formerly, only one fixed contract between a contractor and a sub-
contractor was supported in the delegation-based management approach of
AHEAD.

Sample Process for View-Based Cooperation

We now demonstrate the view-based approach to interorganizational cooper-
ation. In the example described below, we focus on the part of the overall
design process which is related to the design of the reaction and separation as
well as the design of the extruder. The Chemical Company acts as a customer

346 M. Heller et al.

P1

P2 P3

P7P6P5P4

tree-like cooperation structure between
processes with hierarchical relationships

network-like cooperation structure between
processes with multiple peer-to-peer relationships

Plastics
Engineering
Company

Design
Department

next-level subcontractors

P1

P2 P3

P7P6P5P4

Chemical Engineering
Company

Plastics
Engineering
Company

Design
Department

Chemical Engineering
Company

P1 Process P1 Hierarchial cooperation relationships New peer-to-peer cooperation relationships

Fig. 3.89. Cooperation relationships in the example scenario

organization and outsources the task of designing the reaction and separation
to another organization, the Design Department, having an own project man-
ager who manages his own process, products, and resources independently.
The task to design the compounding is outsourced to an Plastics Engineering
Company.

The Chemical Company works together with its subcontractors, the Design
Department and the Plastics Engineering Company, in outsourcing relation-
ships. For the moment, we will deal with the situation after these outsourcing
relationships have been established in order to show how a direct cooperation
relationship between both subcontractors can be achieved with the process
view concept. After that, we will explain how outsourcing relationships can
be configured with process views.

This kind of direct cooperation between organizations resembles a graph-
like network cooperation structure in a peer-to-peer mode which is not sup-
ported in the former delegation-based concept of AHEAD: Both subcontrac-
tors cannot cooperate with each other directly but only through their com-
mon contractor, the chemical company (shown in the left part of the Figure).
In this way, only tree-like cooperation structures are possible. Although this
delegation-based process decomposition approach is sufficient in many situa-
tions, often direct cooperation between all partners of a cooperative network
of companies is needed as well.

Initial Situation

Fig. 3.90 shows the process part which has been delegated to the Design De-
partment from the manager of the Chemical Company: Some tasks for the
investigation of multiple reaction or separation alternatives will be carried
out in the Design Department. The tasks Define Reaction Alternatives and De-

An Adaptive and Reactive Management System for Project Coordination 347

Design
Compounding

Plastics Eng. Comp.

Prepare
Requirements
Manager

Design
Reaction

Reaction Expert Design
Separation

Separation Expert

Decide Plant
Design
Manager

Order

Flow
Diagram

Result
Reaction

Result Sep.

Result
Compounding

Design
Plant

Design Reaction and Separation

Design Department ManagerFlow Diagram
Reaction and
Separation Result

Define Reaction
Alternatives

Reaction Expert

React. Alt.

Simulate CSTR

React. Expert 1

CSTR
Result

Simulate PFR

React. Expert 2

PFR
Result

Define Sep.
Alternatves

Separation Expert

Sep.Alt.

Simulate
Extraction

Sep.Expert 1

Extr.
Result

Simulate
Degassing

Sep. Expert 2

Distill.
Result

Unknown subprocess of
compounding design

task carried out in
plastics engineering

company

Input Control flow

Data flow

In Definition

Waiting

Active

Suspended

Task states:Private task

Remote task Output

Design Department

Decide Reaction
Design

Reaction Expert

Decide Sep.
Design

Separation Expert

Fig. 3.90. Initial situation

fine Separation Alternatives have been refined, while four new tasks Simulate
CSTR, Simulate PFR, Simulate Extraction, Simulate Degassing still need further
refinement.

The subnet of the task Design Compounding contains several tasks (not
shown in the figure): First, the expected output of the extruder will be roughly
estimated in order to provide a starting point for the extruder design (task
Determine Process Parameters). Second, separate tasks deal with the investi-
gation of the fibers content and the degassing of volatile components of the
plastics and all results will be used in the central task Investigate Extruder.
Third, the extruder design is forwarded as a preliminary result to the parent
task Design Compounding.

View Definition, Publication, and Subscription

The process manager of the Design Department can provide different views
onto his private process (Fig. 3.91):

• A process view V1 provides information about the reaction part of the
overall process. The tasks Define Reaction Alternatives and Simulate PFR
for the simulation of the plug flow reactor is published for that purpose.

348 M. Heller et al.

p
u

b
lish

view V1 PFR-Information for process instance Polyamide6
begin
 include instance task T1 Define Reaction Alternatives
include instance task T2 Simulate PFR
include type input parameter for task T1
include instance output parameter P1 Flow Diagram of T1
include instance input parameter P2 Flow Diagram of T2
include instance output parameter P3 Sim. PFR of T2
include instance controlflow from T1 to T2
include instance dataflow from P1 to P2
include instance position Design Expert
 include instance position Simulation Expert 2
end

Sim. Extraction

Sep. Expert 1

Sim. Degassing

Sep. Expert 2
Dist.
Result

Extr.
Result

view V2 TwoSimulationTasks for process instance Polyamide6
begin
 include instance task T1 Sim. Extraction
include instance task T2 Sim. Degassing
include type output parameter for task T1
include instance input parameter P1 FlowDiagram of T1
include instance input parameter P1 FlowDiagram of T2
include instance output parameter P3 Distill.Result of T2
include instance position Sep. Expert 1
 include instance position Sep. Expert 2
end

Define Reaction
Alternatives

Reaction Expert
Flow
Diagram

Req.

Simulate PFR

Simulation Expert 2

View Definition V2
of Process Polyamide6

Process Instance Polyamide6

Flow Diagram Flow Diagram

Sim Extraction

Sep. Expert 1

Sim Degassing

Sep. Expert 2
Dist.Result

Extr. Result

Flow Diagram

Design
Compounding

Plastics Eng. Comp.

Evaluate

<unassigned>

Det. Process
Parameters

<unassigned>

Req.

Process instance of
Plastics Eng. Company

with embedded
process view V2

Report

View Definition V1
of Process Polyamide6

View Instance for View V2
(Evaluation Result)

View Instance for View V1
(Evaluation Result)

Design Reaction and Separation

Design Department Manager
Flow

Diagram
Reaction and
Separation Result

Input Control flow

Data flow

In Definition

Waiting

Active

Suspended

Task states:Private task

Remote task Output

...... Flow Diagram

publish publish

evaluate evaluate

subscribe

Design Department

Fig. 3.91. Definition, publication and subscription of process views

• A process view V2 gives access to the simulation parts of the reaction
design and contains the tasks Simulate Extraction and Simulate Degassing
with some of their input or output parameters.

After both process views have been published, the manager of the Plastics
Engineering Company can subscribe both process views and embed the corre-
sponding process fragments into his own private process. This would result
in the situation, that both processes are connected at two different locations
(views V1 and V2) which can be planned and evolved independently. This
demonstrates the advantage of our process view approach, where multiple co-
operation contexts between both processes can be maintained simultaneously
within logically separate process views. In the sequel, only the process view
V2 is subscribed while the view V1 is neglected (lower part of Fig. 3.91).

Changes in the published process parts are transmitted particularly from
the Design Department’s AHEAD system to the Plastics Engineering Com-

An Adaptive and Reactive Management System for Project Coordination 349

Design
Compounding

Plastics Eng. Comp.

Design
Separation

Separation Expert Result Sep.

Result
Compounding

Design Reaction and Separation

Design Department ManagerFlow Diagram
Reaction and
Separation Result

Define Sep.
Alternatves

Design Dpt. Mgr.

Sep.Alt.

Extr.
Result

Distill.
Result

Det. Process
Parameters

Plastics Eng. Comp.

Det. Degassing

Plastics Eng. Comp.

Det. Fibre
Content

Plastics Eng. Comp.

Investigate
Extruder

Plastics Eng. Comp.

Evaluate

Plastics Eng. Comp.

Requirements

Design
Extruder

Design
Extruder

Process
Parameters

Degassing
Result

Fibre
Content
Result

Decide Sep.
Design

Separation Expert

Distill. Result

Input Control flow

Data flow

In Definition

Waiting

Active

Suspended

Task states:Private task

Remote task Output

Simulate
Distillation

Sep. Expert 2

Simulate
Extraction

Sep.Expert 1

Control and data flows to
remote process elements

Fig. 3.92. Interconnections between Design Department process and Plastics Engi-
neering process

pany’s AHEAD system and displayed immediately. For example, the activa-
tion of task Define Reaction Alternatives on the side of the Design Department
would be propagated to the AHEAD system of the Plastics Engineering Com-
pany through the process view V1.

Bottom-Up Process Composition

Both parallel processes in the Design Department and the Plastics Engineer-
ing Company can be inter-connected (Fig. 3.92). According to the plan of the
process manager in the Design Department, the two simulation tasks Simu-
late Extraction and Simulate Distillation shall be synchronized with the task
Determine Process Parameters of the other organization with respect to their
execution states and documents shall be transferred between these tasks. This
is an example of inter-organizational control and data flow.

The process manager of the Design Department creates new control flow
and data flow dependencies between these tasks in his private process instance.
It is important whether a flow dependency goes from a local task to a remote
task or vice versa. Locally relevant inter-process dependencies between tasks
(going out of a remote task into a local task) do not cause problems since they
do not impose new behavioral restrictions on the remote tasks. But remotely

350 M. Heller et al.

relevant inter-process dependencies (going from a local task into a remote
task) are problematic. In our example, both new control flows going into
the remote task Determine Process Parameters are remotely relevant and the
intended changes are only allowed if the manager of the Plastics Engineering
Company agrees to them.

The process manager of the Design Department can either re-use an already
existing process view definition or create a new process view definition. Here,
he decides to re-use the process view definition V2 and inserts all related tasks
(Simulate Extraction, Simulate Distillation, and Determine Process Parameters)
as well as all new control and data flows there. After that, he publishes the
view (view definition evolution).

The manager of the Plastics Engineering Company subscribes the published
view definition V2 (if it is not already subscribed there). Then he inspects
the changes in the view definition. If he accepts them, the changes become
persistent in both systems. The Design Department manager could also make
modifications to the changed task net fragment under discussion. He can even
choose to discard the modifications if no consensus can be reached.

After the changes have been carried out in both management systems,
the managed process instances remain coupled with each other. Both process
instances evolve autonomously and they are only loosely coupled with each
other through the two newly inserted control and data flows between elements
of both processes.

Top-Down Process Decomposition with Outsourcing

We now demonstrate the outsourcing of a task from a customer organiza-
tion for execution within a producer organization. The manager of the Design
Department requests the Plastics Engineering Company to investigate the dif-
ferent alternatives for separation as soon as possible. In this way, possible
design flaws within the separation alternatives or their interplay with other
design details can be detected very early. This helps to reduce the risk of
far-reaching process feedbacks in later project phases due to closer commu-
nication between the partners in the beginning. Then, the manager of the
Design Department creates a new task Investigate Distillation and outsources it
to the Plastics Engineering Company (Fig. 3.93).

In this situation, he refrains from re-using an existing process view and
creates a new process view V3a instead with the new task and its control and
data flows to the tasks Define Separation Alternatives and Decide Separation
Design. He marks the task Investigate Distillation as outsourced in the view
definition. After that, he calls a command to add a minimal context of the
outsourced task in order to maintain consistency with the surrounding task
net. In the example, the context comprises the predecessor task Defines Sepa-
ration Alternatives and the parameter Flow Diagram as well as the control and
data flows to task Investigate Distillation. The process view V3a is published
by the manager of the Design Department.

An Adaptive and Reactive Management System for Project Coordination 351

Design
Compounding

Plastics Eng. Comp.

Design
Separation

Separation Expert Result Sep.

Result
Compounding

Design Reaction and Separation

Design Department ManagerFlow Diagram
Reaction and
Separation Result

Define Sep.
Alternatves

Design Dpt. Mgr.

Sep.Alt.

Simulate
Extraction

Sep.Expert 1

Extr.
Result

Simulate
Distillation

Sep. Expert 2

Distill.
Result

Det. Process
Parameters

Plastics Eng. Comp.

Det. Degassing

Plastics Eng. Comp.

Det. Fibre
Content

Plastics Eng. Comp.

Investigate
Extruder

Plastics Eng. Comp.

Evaluate

Plastics Eng. Comp.

Requirements

Design
Extruder

Design
Extruder

Process
Parameters

Degassing
Result

Fibre
Content
Result

Decide Sep.
Design

Separation Expert

Distill. Result

Input Control flow

Data flow

In Definition

Waiting

Active

Suspended

Task states:Private task

Remote task Output

Design Department

Investigate
Distillation

Plastics Eng. Comp.

Flow
Diagram

Fig. 3.93. Outsourcing of a task net fragment to external organization

Upon publication, the marking outsourced is detected and the system uses a
special outsourcing procedure on both sides in the sequel. When the manager of
the Plastics Engineering Company subscribes the process view V3a, he is asked
to accept the process view as usual. When he accepts the view, he also accepts
the announced task outsourcing therein. Then a new task instance Investigate
Distillation is created in the private process of Plastics Engineering Company.
This task is private upon creation and has to be published within a process
view definition. Therefore, a new process view V3b (back view) is created
and filled with the outsourced task and its context, where V3a and V3b are
structurally the same, but the role of local tasks and remote tasks is reversed
in the view. This new process view V3b is published to the Design Department.
The manager there is also asked to accept this announced view. If he accepts
also, then both managers have accepted the new cooperation situation and
the outsourcing relationship between both processes is fully established. The
outsourced task Investigate Distillation is executed by the Plastics Engineering
Company. The other context tasks are not transferred between organizations
so that they are executed by the Design Department as before. In this way, the
delegation model presented in the previous section is simulated with the view
model.

352 M. Heller et al.

Integration of Workflow Processes in the Design Process

The view-based cooperation model presented so far addresses the inter-
organizational integration of design processes carried out in several organi-
zations. In AHEAD, design processes are represented by dynamic task nets,
which may evolve continuously throughout the execution of a design pro-
cess. We now extend the cooperation model with an approach for the intra-
organizational integration of processes executed within heterogeneous process
management systems, for example workflow management systems.

Although the overall design process cannot be planned fully in advance and
thus cannot be executed completely within workflow management systems,
this may be possible for some fragments of the overall design process (e.g.
the design of an apparatus may be predictable). If the structure of such static
fragments of the design processes is well-defined and most of the needed plan-
ning information is available, then these fragments can be specified in advance
on a fine-grained level as a workflow process. Although workflow management
systems have originally been designed to support repetitive business processes
(e.g., in banks or insurance companies), the use of workflow management sys-
tems for design process support is investigated in other research projects, as
well (e.g., in [832]). In contrast to workflow management systems, AHEAD
supports the seamless interleaving of planning and execution – a crucial re-
quirement which workflow management systems usually do not meet [475].

We have developed an approach to integrate workflow processes into the
overall design process and have realized a coupling of workflow management
systems with AHEAD for use within an organization. Our approach is char-
acterized by the following properties:

• Within an organization, AHEAD serves as the central instance for the
planning of the overall process, e.g. it is used for its global coordination.
The composition of process fragments into a coherent overall process is
realized using dynamic task nets, so that the dynamic character of the
design process is adequately supported by AHEAD.

• Predefined parts of the overall process are executed in workflow manage-
ment systems. Existing process definitions can be reused (a-posteriori in-
tegration). This approach addresses the observation, that often in the be-
ginning of a design process only part of it are understood well enough to
support them using a workflow management system.

• Through a view-based integration, partial processes running in workflow
management system can be represented in AHEAD as dynamic task net
fragments within the overall design process. Thus the manager can mon-
itor all parts of the process in AHEAD using only one adequate process
representation regardless if or how they are executed by other management
systems.

• In order to reduce the effort for the integration of multiple workflow man-
agement systems, we make use of the neutral exchange format XDPL from
the Workflow Management Coalition [1059]. The transformation between

An Adaptive and Reactive Management System for Project Coordination 353

processes described in XPDL format to dynamic task nets does not need
to preserve the full semantics of both formalisms, because this would lead
to very rigid requirements for the systems to be integrated. Moreover, this
is not necessary, since the workflow fragments are used in AHEAD for
monitoring purposes only, and therefore it seems tolerable if some process
information is lost during the generation of the workflow fragments.

There are several alternatives for the mapping of predefined partial workflow
processes into dynamic task nets. On the one hand, the whole workflow pro-
cess can be represented as a single task in the dynamic task net. Its activation
reflects the start of the workflow instance within the workflow management
system, while the termination of this task reflects the termination of the work-
flow instance. In this case, the fine-grained activity structure of the workflow
process is hidden (black-box approach). This simple form of integration is suf-
ficient in many situations, but because of the encapsulation it is impossible to
monitor the progress of the activities in the workflow process within AHEAD.

On the other hand, all details of the workflow process can be mapped to
a task net (white-box approach). This alternative suffers from the following
disadvantages. First, this extreme form of transparency is often not feasible,
if some details of the workflow should be hidden because of confidentiality
reasons. Second, the language of dynamic task nets has to be capable of ex-
pressing all aspects and peculiarities of the modeling language used for the
definition of the workflow process. Because the mapping is carried out to allow
for the monitoring of these processes in AHEAD, we can afford to map only
a filtered portion of all details of the workflow process, e.g. control structures.
Third, both modeling languages are used on different levels and for different
purposes. Workflow definition languages target at the automatic execution of
the described workflows within the workflow management system. This re-
quires describing a lot of necessary technical details on a very low abstraction
level. In contrast, dynamic task nets describe processes with respect to the
coordination of their tasks on a very high abstraction level.

Our mapping approach is in the middle of these two mapping alternatives.
Only selected details of the workflow process, which are necessary to represent
the coordination aspects of the activities in the workflow, are mapped into a
dynamic task net (gray-box approach). For example, such workflow fragments
do not contain workflow relevant process variables which are only needed
internally by the workflow engine to automatically decide which activities to
execute next upon the termination of workflow activity.

To illustrate our approach, we revisit our scenario on the design process of
a plant for Polyamide-6 (PA6) carried out within a chemical company, which
is used throughout this paper. There we can easily identify a static process
fragment in the plastics engineering part of the process as a good example,
namely the determination of the mixing quality within the extruder through
a complex and expensive 3D-simulation (see Fig. 3.86). Because this process
fragment is small, static and well-understood, it is feasible to model it as a

354 M. Heller et al.

Rückgriff

AHEAD

WFMS

Command calls and exchange of
workflow information

Organization A

Fließbild

Spez.

Parameter-
wahl Untersuchung im Extruder Entscheidung Aufbereitungskonzept

Fließbild Aufbereitungskonzept

Aufbereitung
s-konzept

Ergebnis
(Extruder)

Ergebnis (Mischgüte)

Trennungskonzep
t

Spezifikation

Aufbereitung

...
Untersuchung

Mischgüte Fließbild

Spez.

Parameter-
wahl Untersuchung im Extruder Entscheidung Aufbereitungskonzept

Fließbild Aufbereitungskonzept

Aufbereitungs-konzeptErgebnis (Extruder)

Ergebnis (Mischgüte)

Trennungskonzept

Spezifikation

Aufbereitung

...

Untersuchung
Mischgüte

Rückgriff

Eingebetteter Workflow „3D-Simulation“ (Aufgabennetz)

Fließbild

Spez.

Parameter-
wahl Untersuchung im Extruder Entscheidung Aufbereitungskonzept

Fließbild Aufbereitungskonzept

Aufbereitungs-konzeptErgebnis (Extruder)

Ergebnis (Mischgüte)

Trennungskonzept

Spezifikation

Aufbereitung

...

Untersuchung
Mischgüte

Extended
workflow definition (WD’)

Initial
workflow definition (WD)

Workflow Instance Inst(WD’)

1Import of
workflow template

2

3

Embedding

Integration of the workflow
process with context tasks

4 Extension

5 Initiation

Workflow Execution ServiceWorkflow Repository

6Coupling
Infrastructure

Workflow Instance

Fig. 3.94. Integration of workflow processes in AHEAD

workflow process and support its execution within a workflow management
system.

The AHEAD system and the workflow management system SHARK from
ENHYDRA [660] have been integrated with each other to support this sce-
nario. The manager of the chemical company uses AHEAD to manage the
overall design process, and a dedicated team of simulation experts is responsi-
ble for performing 3D-simulations. Because all 3D-simulations have to follow
a best-of-breed practice, developed once within the company, a workflow pro-
cess has been defined to enforce this simulation procedure. As illustrated in
Fig. 3.94, we describe the different phases of workflow processing using an
example session:

• Workflow Embedding. The manager decides within the compounding part
of the process that a 3D-simulation is needed in order to analyze quality-
affecting problems of the current parameterization of the extrusion process.
He opens a browser displaying all available workflow processes, chooses the
3D-simulation workflow and imports its dynamic task net representation
(called workflow fragment or workflow template below) into the compound-
ing subnet (1). Then the workflow fragment is embedded within the subnet
of the compounding task where other compounding subtasks also reside
(alternatively it is possible to embed a new single task first and embed the
workflow fragment as its subnet) (2). All formal parameters of the work-
flow regarding the input and output to it are located at the tasks which
represent workflow activities processing these parameters. These are the
first and last tasks in the workflow fragment.

• Workflow Context Definition. The manager connects the isolated work-
flow fragment with other tasks by adding control flows and data flows to
at least the first and last tasks of the workflow fragment (3). After that,
he sets the execution state of the workflow tasks to Waiting and subse-

An Adaptive and Reactive Management System for Project Coordination 355

quently all workflow tasks are set to this state, too. An extended workflow
definition with additional workflow process data for the workflow context
is generated (4). After that, the context definition phase is finished within
AHEAD.

• Workflow Instantiation. AHEAD automatically contacts the workflow
management system and requests the creation of an instance of the cor-
responding workflow process definition. A new instance of the workflow
definition is created and a reference to the instance is handed back to
AHEAD (5). After all defined input data is transferred and provided as
actual parameters to the workflow instance, the workflow is finally started.

• Workflow Monitoring. Workflow activities are assigned to members of the
3D-simulation team. They can accept and start assigned activities, read
and update workflow relevant data and finally commit workflow activities.
The workflow management system automatically routes the control and
data flow to the next workflow activities. All process changes which are
relevant for the monitoring within AHEAD, like status changes or doc-
ument processing, are forwarded to AHEAD via an event-based coupling
infrastructure (6). The manager can thus monitor the progress of the work-
flow process within AHEAD.

• Process Traceability. After the termination of the last workflow activity,
the workflow instance is terminated in the workflow management system
automatically. In AHEAD, the workflow fragment is still visible with all
terminated workflow tasks of this fragment. All documents produced dur-
ing the course of the workflow remain accessible in AHEAD. This allows
for traceability of the overall process regardless if a part has been executed
in AHEAD or in a workflow management system.

With this approach workflow processes can be embedded within the overall
dynamic process. The process manager can monitor and control the execution
of workflow fragments within the AHEAD system. The coupling of workflow
management systems and the AHEAD system is achieved by an event-based
coupling infrastructure. Both systems generate events about relevant process
changes and forward them to the coupled system via the coupling infrastruc-
ture [471].

Features of the View-Based Cooperation Model

The new view-based cooperation model can be characterized and summarized
by the following features :

• Dynamic process view model. Managers can use dynamic process views
to configure the access rights to selected parts of the private process by
external organizations. Process views are highly flexible and support the
provision of different perspectives onto a process fragment according to

356 M. Heller et al.

individual cooperation needs. With the concept of process views, each pro-
cess manager can manage autonomously which process parts shall remain
private and which process parts shall be published to other organizations.

• Process view evolution on definition-level and instance-level. Planning and
enactment of dynamic task nets may be interleaved seamlessly so that
the private processes are constantly changed (process evolution). Conse-
quently, our process view concept allows for the dynamic evolution of the
process views as well. Process view instances are always kept consistent
with their underlying process by incrementally updating the view contents
according to the process view definition upon process changes.

• Uniform modeling of processes and process inter-connection. Intra- and in-
terorganizational processes are uniformly modeled by re-using elements of
dynamic task nets (e.g. tasks, parameters, control flows, data flows, and
feedback flows). In this way, process managers do not need to use differ-
ent modeling languages for the modeling of intra- and interorganizational
process fragments.

• Contract-based support for different cooperation scenarios. The concept of
process views allows to support different cooperation relationships between
organizations. For instance, monitoring relationships, interaction relation-
ships, or outsourcing relationships across organizations can be configured
within the same process management system. Contracts can be established
to fix all necessary agreements between the partners, like the different or-
ganizational roles with rights and duties, the involved process views, as
well as different kinds of cooperation policies for changes of the contract
or related process view definitions. Additional parameters can be stored
in contracts as well (e.g. cost or time schedules).

• Conformance monitoring and inconsistency toleration. Another important
feature of our approach (not presented here) is the monitoring and control
of the inter-organizational cooperation. Upon modification, each process
view is checked by the management system for conformance with the pro-
cess meta-model of dynamic task nets. Detected violations of structural
and behavioral constraints are reported to the process managers. They
may either modify the process views in order to re-establish consistency
or tolerate the violation.

• Integration of workflow processes. Workflow processes can be embedded
into the overall dynamic task net in order to monitor and control their
execution from within the AHEAD system. To achieve the desired inte-
gration, workflow processes are mapped to dynamic task nets and the re-
sulting workflow fragments are subsequently integrated with the dynamic
parts of the process. Therefore, all aspects of the design process within all
of its static or dynamic parts are represented in a unique process model-
ing formalism. On the technical level, workflow management systems are
coupled with the AHEAD-System using an event-based coupling infras-
tructure. At process runtime, both management systems exchange events
to keep each other informed about relevant process changes.

An Adaptive and Reactive Management System for Project Coordination 357

System Architecture for Interorganizational Cooperation Support

Both the delegation-based and the view-based cooperation model are realized
on the basis of an event-based coupling mechanism [208]. The graph-based
realization of the coupling concept is described in Fig. 3.95. Two AHEAD
systems are coupled together using a communication server.

Let us first concentrate on the AHEAD system on the left-hand side. Each
AHEAD system consists of a graphical user interface, the AHEAD core (con-
taining the application logic library and the UPGRADE framework) and the
underlying graph database. The task net shown in the graphical user interface
is created step by step by invoking special user interface commands, for exam-
ple, to insert a new task or a new control flow relationship between two tasks.
Each user interface command calls a graph transaction of the application logic
in the AHEAD core. The execution of a graph transaction leads to the ma-
nipulation of the graph data stored in the graph database. In the example,
at the graphical user interface a task T1 is displayed. Invoking a user inter-
face command to activate task T1 leads to a change of one of the attributes
of the corresponding graph node in the database. The database propagates
all changes on the graph data back to the AHEAD core. According to these
change events the current state of the graphical user interface is updated.

If one of the AHEAD systems is temporarily disconnected, the communi-
cation server stores the events for subsequent delivery. In the coupled system,
corresponding graph transactions in the AHEAD core are called for each of
these change events. Accordingly, the graph data stored in the graph database
is manipulated and the graphical user interface is updated. Therefore, changes
regarding the monitored task T1 are also displayed in the GUI on the right
hand side. Every AHEAD system can at the same time act as a producer of
change events regarding all elements which are monitored in coupled systems
and as a consumer of change events regarding all elements which are executed
elsewhere and only monitored locally.

The realization of the view-based cooperation model has required a num-
ber of extensions to this coupling mechanism with respect to the coupling of
AHEAD systems and workflow management systems [129, 471]. Mainly, the
application logic of AHEAD was substantively changed and extended in order
to realize the new view-based concepts for process views, cooperation rela-
tionships, flexible configuration support, as well as the needed user interfaces
for a view editor environment.

3.4.6 Related Work

AHEAD Core System

In the following, we will discuss the state of the art of tool support for manag-
ing design processes. From the previous discussion, we derive a set of crucial
requirements for management tools for design processes:

358 M. Heller et al.

Graph Database

T1

task node

Graph Database

Graphical User Interface

Call of graph

Transaction

T1

Execution

of graph

transaction

Creation and

propagation of

change events

AHEAD Core

GUI

Update

Execution

of graph

transaction

Creation and

propagation of

change events

AHEAD Core

GUI

Update

Communication

Server

Graphical User Interface

Forwarding

 of change events

between systems

Client Contractor

T1

task node

Private task Remote task Monitored task

T1

Fig. 3.95. Realization of the coupling of two AHEAD systems

• Medium-grained representation. The management of design processes has
to be supported at an appropriate level of detail.

• Coverage and integration at the managerial level. Management tools have
to deal equally with products, activities, resources and their relations.

• Integration between managerial and technical level. Managerial activities
have to be coupled with technical activities: Designers have to be supplied
with the documents they to be manipulated, as well as with the corre-
sponding tools.

• Dynamics of design processes. Design processes evolve continuously during
execution (product evolution, feedback, simultaneous/concurrent engineer-
ing).

• Adaptability. Management tools have to be adapted to a specific application
domain and they must provide domain-specific operations to their users.

AHEAD meets all of these requirements. In industry, a variety of commer-
cial systems is being used for the management of design processes, including
systems for project management, workflow management, and product man-
agement, see below. All of these systems only partially meet the requirements
stated above (Table 3.3):

An Adaptive and Reactive Management System for Project Coordination 359

Table 3.3. Comparison of AHEAD with commercial management systems

Project management systems [777] such as e.g. Microsoft Project support man-
agement functions such as planning, organizing, monitoring, and controlling.
The project plan acts as the central document which may be represented in
different ways, e.g., as a PERT or GANTT chart. It defines the milestones
to be accomplished and provides the foundation for scheduling of resource
utilization as well as for cost estimation and control. Project management
systems are widely used in practice, but they still suffer from several limita-
tions: project plans are often too coarse-grained, products (documents) are
not considered, project plans are not integrated with the actual work per-
formed by engineers, and there is no way to define domain-specific types of
project plans.

Workflow management systems [763, 803], e.g., Staffware, FlowMark, or
COSA, have been applied in banks, insurance companies, administrations, etc.
A workflow management system manages the flow of work between partici-
pants, according to a defined procedure consisting of a number of tasks [836].
It coordinates user and system participants to achieve defined objectives by
set deadlines. To this end, tasks and documents are passed from participant
to participant in a correct order. Moreover, a workflow management system
may offer an interface to invoke a tool on a document either interactively
or automatically. Their most important restriction is limited support for the
dynamics of design processes. Many workflow management systems assume
a statically defined workflow that cannot be changed during execution. This
way, dynamic design processes can be supported only to a limited extent (i.e.,
the statically known fractions can be handled by the workflow management

360 M. Heller et al.

system). Recently, this problem has been addressed in a few university proto-
types (see e.g. [628, 688]).

In the context of this paper, the term product management system refers
to all kinds of systems for storing, manipulating, and retrieving the results
of design processes. Depending on the context in which they are employed,
they are called engineering data management systems (EDM), product data
management systems (PDM [722]), software configuration management sys-
tems (SCM [1000, 1049]), or document management systems. Documentum
and Matrix One are examples of such systems which are used in chemical
engineering. Documents such as flowsheet, steady-state and dynamic simula-
tion models, cost estimations, etc. are stored in a database which records the
evolution of documents (i.e., their versions) and aggregates them into config-
urations. In addition, product management systems may offer simple support
for the management of activities (e.g., change request processes based on fi-
nite state machines), or they may include workflow components, which suffer
from the restrictions already discussed above. Their primary focus still lies on
the management of products; in particular, management of human resources
is hardly considered.

The approaches cited above do not depend on a certain application domain.
For instance, workflow management systems can be applied to business pro-
cesses in different disciplines, and product management systems can be used
in different engineering disciplines. Only a few approaches target the domain
of chemical engineering directly. For example, KBDS [524] allows to manage
different design alternative together with the change history; n-dim [1047] sup-
ports distributed and collaborative computer-aided process engineering. But
these approaches do not really support the integrated management of pro-
cesses, products, and resources. Moreover, they are restricted to their single
application domain and cannot be used in different domains.

Process Evolution and Parametrization

The need for a wide spectrum approach to process management was recognized
as a research challenge in [963]. It is explicitly addressed in GroupProcess [742],
a project that has been launched recently, but does not seem to have produced
technical results yet. In addition, this matter is addressed in some workflow
management systems which originally focused on highly structured processes.
For example, in Mobile [727] and FLOW.NET [773] the process modeler may
define the control flow as restrictively as desired and may even introduce new
control flow types. In addition, many commercial systems allow for deviations
such as skipping, redoing or delegation of activities. Finally, exception han-
dling [712] may be used to deal with errors and special cases. However, the
main focus still lies on highly or moderately structured processes. In contrast,
our approach covers the whole spectrum, including also ad hoc processes.

There are only a few other approaches to process management which are
capable of dealing with inconsistencies. [616] and [861] both deal with in-

An Adaptive and Reactive Management System for Project Coordination 361

consistencies between process definitions and process instances. In PROSYT
[616], users may deviate from the process definition by enforcing operations
violating preconditions and state invariants. However, all of these approaches
do not deal with definition-level evolution, i.e., it is not addressed how incon-
sistencies can be resolved by migrating to an improved definition.

A key and unique feature of our approach consists in its support for
round-trip process evolution. To realize this approach, we have to work
both bottom-up and top-down: we learn from actual performance (bottom-
up) and propagate changes to process definitions top-down. In contrast,
most other approaches are confined to top-down evolution. For example, in
[727, 764, 772, 792], the process definition has to be created beforehand, while
we allow for executing partially known process definitions.

Modifications to process definitions may be performed in place, as in [598,
1044]. However, it seems more appropriate to create a new version of the
definition in order to provide for traceability. Version control is applied at
different levels of granularity such as class versioning [772, 792] and schema
versioning [584]. Our approach is similar to class versioning (interface and
realization packages for individual task types are submitted to version control).

Different migration strategies may be applied in order to propagate changes
at the definition level to the instance level. A fairly comprehensive discussion
of such strategies is given in [584]. We believe that the underlying base mech-
anisms must be as flexible as possible. For example, in [727, 772, 792], both
structural and behavioral consistency must be maintained during migration.
This is not required in our approach, which even tolerates persistent inconsis-
tencies.

Finally, there are a few approaches which are confined to instance-level
evolution (e.g., [526, 929]). A specific process instance is modified, taking the
current execution state into account. However, there is no way to constrain
the evolution (apart from constraints which are built into the underlying pro-
cess meta model). In contrast, in AHEAD instances are evolved under the
control of the process definition. Inconsistencies can be permitted selectively,
if required.

Interorganizational Coordination

A lot of workflow management systems deal with distributed processes. How-
ever, a distributed process need not be interorganizational as addressed in this
paper. The term ”interorganizational” refers to cooperation between different
enterprises, while the term ”distributed” can be used to describe processes
where tasks are distributed either within a single enterprise or across enter-
prises. For instance, the workflow management system Mentor [1055] supports
distributed processes by providing multiple workflow servers. In this approach,
work is distributed within a single enterprise among workflow servers, accord-
ing to a sophisticated load balancing algorithm.

362 M. Heller et al.

[1012] provides an overview of paradigms for interorganizational processes.
Among others, the following paradigms are identified:

• Process chaining. From some process p, a process q is launched to continue
the overall process. The only interaction between p and q occurs when q
is started. Subsequently, p and q perform independently of each other.

• Subcontracting. A task t of the overall workflow is passed to a subcontrac-
tor, which executes t and passes the results back to the contractor. From
the perspective of the contractor, t appears to be atomic. The contractor
and the subcontractors interact both at the start and at the end of the
execution of the subcontracted process.

• Loosely coupled processes. Processes are executed in parallel in different
organizations. Occasionally, they interact at pre-defined communication
and synchronization points.

• Case transfer. The workflow is seen as a case which has to be transferred
among different organizations. Transferring the case includes transfer of
documents and transfer of the current state of execution. Only one orga-
nization at a time may execute the case.

Some of these aspects are investigated in literature: The work of [1012] pri-
marily focuses on case transfer and an extended variant thereof. In [1013], the
same author discusses loosely coupled processes. The interaction paradigms
process chaining and subcontracting are supported by the standards defined
by the Workflow Management Coalition (WfMC [803]). In addition, subcon-
tracting was introduced as early as 1987 by the Istar system [641] into the
software engineering domain.

The delegation model of the AHEAD system adds a new paradigm to the
classification scheme presented above. It differs from process chaining inas-
much as the contractor and the subcontractors do interact while the delegated
subprocess is being executed. The delegation-based approach also differs from
the case transfer model because both parties perform their parts of the over-
all process in parallel: The contractor is not suspended when a subprocess is
delegated to a subcontractor. Delegation constitutes a significant extension
of subcontracting because subprocesses rather than single tasks may be dele-
gated in general. Like loosely coupled processes, contractor and subcontractor
may interact during the execution of the delegated subprocess rather than
merely at the start and the end, respectively. Delegation differs from loosely
coupled processes because there is a hierarchical relationship between con-
tractor and subcontractor (while loosely coupled processes are peer to peer in
general). Finally, the delegation-based approach supports dynamic changes,
while loosely coupled processes have been introduced for statically defined
workflows.

Besides this work, we have extended AHEAD to provide additional sup-
port for the paradigm of loosely coupled process integration mentioned above
and we introduced a new cooperation layer above the execution-oriented pro-
cess view and private process layers. In the following, we restrict ourselves to

An Adaptive and Reactive Management System for Project Coordination 363

highlighting related work addressing similar view-based approaches to support
interorganizational processes.

Some other researchers like Finkelstein [669] use the concept of a view in
different way than we do. These approaches focus on the consistent integration
of these views in order to maintain a consistent and up-to-date representation
of the whole development process by superimposition of all views. While these
approaches focus on the problems of view-based process definition that arise
with modifiable views, we use views which usually are not modified by anyone
else than the view publisher, so we do not face problems of consistent inte-
gration to that extent. Because we do not use different modeling formalisms
for all process views (we always use dynamic task nets in all process views),
we do not face the problem that two views onto the same process part model
different aspects of it in a conflicting way.

In our application domain of development processes in chemical engineer-
ing, we put more focus on the processes at the instance level rather than on
the definition level when interorganizational cooperation is concerned. Using
a view-based approach to process coupling, the views published for a process
instance and the process instance can easily become inconsistent upon modifi-
cations because the processes evolve with the time. Process views are directly
embedded into the private processes of other organizations (no integration
process are used), where remote elements and local elements are connected
with control flows, feedback flows, or data flows.

Several approaches target the modeling of the integration aspects between
separate processes. To model the interconnection of existing workflow pro-
cesses, the used workflow modeling language can be extended with additional
modeling elements. For example, new modeling elements can be introduced
to express the publication and interception of events which are exchanged
between workflows processes of different organizations (like the approach de-
scribed by Casati and Discenza [585]). Alternatively, explicit synchronization
points can be modeled, as proposed by Perrin et al. [905]. In this case, the
existing workflow modeling language is not extended and a separate modeling
language is introduced. This approach allows to replace one of the two used
modeling languages by another modeling language without affecting the other
modeling language.

Van der Aalst [1011] focuses on independently running but loosely cou-
pled interorganizational workflow processes, modeled in a language based on
Petri-Nets. This approach is based on a predefined communication structure
between the private partner processes which cannot be changed during run-
time. Another approach is to split a workflow into several workflow fragments
which are executed by the cooperation partners afterwards. Here, definition-
time and run-time are strictly separated. In these two approaches, a top-down
approach is used which is feasible if the overall process structure is known in
advance. In our application domain of dynamic development processes, this is
not feasible, since development processes cannot be planned fully in advance.
New integration points between already existing partial processes of the part-

364 M. Heller et al.

ners should be creatable and modifiable whenever needed. So, a mixed top-
down and bottom-up approach is more feasible. But at the same time it is
important to ensure that all partial processes can be managed autonomously
by the process managers of the cooperating organizations.

Three important view-based approaches of interorganizational workflows
have been proposed by Liu and Shen [821], Chiu et al. [595], and Tata, Chebbi
et al. [590, 993]. All three concepts provide support for routine business pro-
cesses and they separate definition-time from run-time. Workflow definitions
can be re-used as view definitions to model the public workflow parts which are
accessible by other organizations. These view definitions cannot be changed
after the overall workflow has been started. The workflow definitions usually
do not need to be modified frequently, because the modeled business processes
are not changed too often. For example, Liu and Shen use additional process
definitions (“integration processes”), which contain the coupling of private
workflow definitions and foreign view workflow definitions. This eases rapid
composition of business processes from pre-existing processes as further goal
of these approaches. In contrast, in our view-based approach the process views
represent processes at the instance-level (not on the definition-level). Process
views are directly embedded into private processes of other organizations (no
integration processes are necessary). Furthermore, the other mentioned ap-
proaches do not focus on the interleaved definition and execution of process
and views.

The view-based cooperation model in AHEAD also has related work in
the research field of communication-oriented interorganizational cooperation.
For example, Weigand and de Moor [1040] work on workflow modeling that
considers both customer relations and agency relations to chart complex or-
ganizational communication situations. Here, “agency” means that a relation
between a principal and some agents exists where both roles have different
rights and duties. An agent acts for the benefit of someone, the beneficiary,
and at the same time conducts an operation on behalf of someone else, the
principal. The authors propose a modeling method with the following steps:
(1) the process is defined and all process tasks can be decomposed into sub-
tasks, (2) selected tasks can be delegated to intra-organizational resources for
execution (introducing new agency relations), and (3) selected tasks can be
outsourced to other organizations (introducing new customer relations). The
authors present an extended workflow loop model to separate between the
workflow execution task and the control task. This extended model is used for
modeling both the agency and customer relations. In AHEAD, we deal with
all three mentioned aspects of decomposition and composition of processes as
well as intra-organizational and interorganizational cooperation relationships.
Our new cooperation layer introduces three different cooperation relationships
(monitoring, interaction, and outsourcing) as well as contracts for defining the
formal guidelines structuring the cooperation.

An Adaptive and Reactive Management System for Project Coordination 365

3.4.7 Conclusion

In this section, we argued that design processes in chemical engineering are
hard to support because they are highly creative, many design alternatives are
explored, and both unexpected and planned feedback occurs frequently. These
difficulties are taken into account by the reactive management system AHEAD
which has been developed as the main contribution of the subproject B4 of
IMPROVE. AHEAD addresses the management (or coordination) of complex
and dynamic design processes in chemical engineering and supports the plan-
ning, execution and control of design processes, which continuously evolve
during process execution. Design processes, e.g. for the design of a chemical
plant, are represented as process model instances and process model defini-
tions for the description of classes of design processes are created in order to
adapt AHEAD to different application domains.

The system has a number of outstanding features which contrasts it from
competing process management systems: First, AHEAD supports seamless in-
terleaving of planning and execution which is a crucial requirement which tra-
ditional workflow management systems usually do not meet. Second, AHEAD
integrates products, activities, and resources, and their mutual relationships
on a medium-grained level. Third, process evolution is supported with respect
to both process model definitions and process model instances; changes may
be propagated from definitions to instances and vice versa (round-trip process
evolution). Fourth, in addition to local processes, interorganizational design
processes are addressed by providing flexible and configurable cooperation
support. These contributions on the conceptual level have been demonstrated
by several research prototypes. Summing up, the AHEAD system in its cur-
rent state is the result of one habilitation project and four dissertation projects
carried out by the members of the subproject B4.

Another important aspect of reactive management of design processes is
the incorporation of process knowledge contained within application models
which are developed by our partners in IMPROVE. We have not covered this
topic explicitly here, because it is addressed in more detail in Sect. 6.4.

We have applied the AHEAD system successfully to the reference scenario
studied in the IMPROVE project, which was elaborated in cooperation with
industrial partners. But AHEAD is a research prototype which cannot be ap-
plied immediately in industry (i.e., in a production environment) for various
reasons. In addition to deficiencies with respect to stability, efficiency, and
documentation – problems which are faced by many research prototypes –,
an important prerequisite of industrial use constitutes the integration with
other management tools which are used in industry. Therefore, we have inte-
grated AHEAD with several commercial systems for workflow, document, and
project management in order to prepare the technology transfer into industrial
practice as the ultimate goal of the research activities carried out within the
subproject B4 of IMPROVE (see Sect. 7.7). Since we are convinced that the
developed concepts and mechanisms in the AHEAD system can contribute

366 M. Heller et al.

significantly to the state-of-the-art of commercial process support tools, we
will investigate in the future how dynamic processes can best be supported on
the basis of existing management systems. Together with our partners from
industry, this research is planned to be carried out within the transfer project.

4

Platform Functionality

Two subprojects of IMPROVE deal with platform problems. More precisely,
they discuss the question, how the construction of new or the extension of
given tools (see previous chapter) can be made independent of the underlying
and used platform.

Each of these subprojects is represented by one section. In Sect. 4.1 in-
formation flow management and process data warehousing is discussed. It
gives general support w.r.t. administration of heterogeneous data used in in-
tegrated environments. Especially, this subproject delivers specific support for
its companion subproject on direct process support (see Sect. 3.1).

Section 4.2 deals with management of platform services, namely trading,
load balancing, distribution, and similar questions. This, again, is a general
question to be dealt in realizations of different and integrated tools in a dis-
tributed environment.

These two subprojects belong to the third layer of IMPROVE’s project
structure (see Fig. 1.27).

4.1 Goal-Oriented Information Flow Management in
Development Processes

S.C. Brandt, O. Fritzen, M. Jarke, and T. List

Abstract. The research of the IMPROVE subproject C1 “Goal-Oriented Informa-
tion Flow Management in Development Processes” aims at the development and
evaluation of database-driven methods and tools to support and optimize the dis-
tributed storage and routing of information flows in cooperative design processes.
The overall concept of a Process Data Warehouse (PDW) has been followed which
collects, and selectively transforms and enriches required information from the en-
gineering process. The PDW has been conceptually based on interrelated partial
domain and integration models which are represented and applied inside a meta-
data repository. This allows to query and apply experience information based on
semantic relationships and dependencies. Special attention has been paid to aspects
of cross-organizational cooperation.

4.1.1 Introduction

The management of organizational knowledge is becoming a key requirement
in many engineering organizations. In many cases, it is difficult to capture
this knowledge directly, as it is hidden in the way-of-working followed by
networks of highly qualified specialists. Moreover, much of this knowledge is
strongly context-dependent, requiring the rule applications to be augmented
by adequate situation analysis. Hardware and software tools used within the
creative design processes in these organizations are strongly heterogeneous,
involving significant effort of usage and very different kinds of data.

Structure of This Section

This section describes the research done as part of the subproject C1 of IM-
PROVE. During the nine years of its existence, several different aspects of
goal-oriented information flow management in development processes have
been approached, examined, and evaluated.

After an introduction into the topics of this section, Subsect. 4.1.2 will
present some general issues of supporting creative processes by information
science, including related research approaches. Subsection 4.1.3 will describe
the prototype of the PDW designed to enable extended method guidance in
cooperation with the PRIME process-integrated environment. The following
subsection treats a different aspect, as it shows the management of heteroge-
neous multimedia trace information in plastics engineering. Subsection 4.1.5
introduces the Core Ontology and its extensibility as a new technological basis
for the PDW. Additionally, some extensions are described, that integrate sev-
eral of the models of IMPROVE. Afterwards, a concrete usage scenario of the
PDW is described, which is extended in Subsect. 4.1.7 towards the problems

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 369–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

370 S.C. Brandt et al.

of cross-organizational cooperation. The section closes with some conclusions
and an outlook into further research problems.

Data Warehouses for Engineering Design

Data warehouses have established themselves in the information flow archi-
tectures of business organizations for two main reasons: firstly, as a buffer
between operational and transactional tasks on the one hand, and analyti-
cal strategic tasks on the other; secondly, to capture the history of business
transactions for the purpose of archiving, traceability, experience mining, and
reuse.

The same basic arguments apply to engineering applications. In these ap-
plications, the buffer function of data warehousing may be even more impor-
tant. Research results are often obtained by expensive simulations or even
more expensive laboratory experiments, such that analytic processing on de-
mand from information sources is only possible with exceptional effort.

Similarly, from the viewpoint of history management, many engineering
organizations complain that simulations and experiments are repeated unnec-
essarily, or at least, that too few lessons for analogous cases concerning promis-
ing or useless simulation/experimentation are drawn beyond the experiences of
individual engineers. Several organizations are therefore embarking on large-
scale traceability or process-capture programs [920, 938]; other organizations
pursue the introduction of large-scale document management systems [707]
(e.g., the Documentum product [657]) that make at least a coarse-grained
representation of products and processes available electronically.

This trend is particularly strong in the research-intensive and law-suit
prone process industries (chemicals, oil, food, pharmaceuticals, biotechnology)
where global competition with many mergers is largely decided by timely and
cost-effective invention of novel products with high market potential. In these
industries, data exchange standards, interoperation standards, web-based in-
formation distribution and portals, groupware and workflow are being devel-
oped within companies and on a scale of worldwide cooperation and compe-
tition. However, few coherent approaches have emerged.

Process Data Warehousing is proposed as a solution strategy for some of
these issues. We define a Process Data Warehouse (PDW) as a data warehouse
which stores histories of engineering processes and products for experience
reuse, and provides situated process support. According to the authors’ ap-
proach, a PDW synchronizes features from document management systems,
engineering databases, and traceability tools through active repository tech-
nology. It is centered around a knowledge-based metadata repository which
records and drives a heterogeneous engineering process, supported by selected
materialized instance data. We follow a concept-centered approach expanding
ideas from the European project “Foundations of Data Warehouse Quality”
(DWQ, see Subsect. 1.3.4 and [769]). At least one major organization in the

Goal-Oriented Information Flow Management in Development Processes 371

German chemical and pharmaceutical industry has implemented a similar sys-
tem, in part based on earlier research results of the authors [785].

In the context of IMPROVE, as described in this book, the PDW has been
designed to offer design information from existing software environments, both
to the users and the tools designed as part of this research. The primary pur-
pose of the PDW is to offer an integrated service platform for model-based
access of experience traces, to be used by the various tools and tool platforms
of the CRC. By integrating and enriching information from the various sources
of a design process, the PDW offers a uniform access structure onto this mul-
titude of sources and resources. Additionally, experience reuse methods are
applied to structure and analyze this data, enabling situation-based reuse as
part of further development cycles. Constructed around a set of interrelated
partial models, the conceptual core of the PDW is easily extensible for the ap-
plication in various domains. Its flexibility also allows adjusting to the fluently
changing requirements in creative domains like chemical engineering design.

While initially designed as a service platform to be used by other CRC
subprojects, much of the functionality of the PDW has been validated by
specialized information and experience management tools that have been de-
veloped as part of this subproject (C1). In the remainder of this section, this
interplay between service platform and application tools will reappear regu-
larly.

The PDW as a Service Platform

A short overview is given here about the various services offered by the subpro-
ject C1, and the experience repository of the Process Data Warehouse as its
primary result. It is also described, in which way they are, or can be, used by
other subprojects of the CRC. Offering the services described here has formed
the driving force behind many of the C1 and PDW design decisions, to enable
an integrated and homogenized access onto the most important artifacts of
design processes.

By model-based integration of the data sources available in the design pro-
cess, a comprehensive access layer has been developed, that allows to search
for, access, and manipulate the instance data of different origins in a homog-
enized way. Thus, extended search functionality (e.g., semantic searching),
and an integrated view onto the relations between the different sources has
been established, especially by relating and combining the process and the
product aspects. The services offered by this access layer have been used es-
pecially in conjunction with the PRIME environment of the subproject B1
(cf. Subsects. 3.1.3 and 3.1.5), and other integrated tools with PRIME (e.g.,
the AHEAD project management system of B4, cf. Subsect. 3.4.2).

In addition to relational databases, application tools, and other non-
standardized databases and data sources, several special kinds of sources have
been treated, as described in the following. Document management systems
have been integrated, which allows to manage documents the same way as

372 S.C. Brandt et al.

other artifacts. Documents and their contents can thus be linked with other
artifacts of the supported processes, i.e., with the products of other tools. Un-
structured documents can also be enriched with semantical annotations and
categorization, based on the repository’s integrated view.

A special approach has been researched to support the management and
annotation of weakly structured multimedia artifacts, i.e., videos, resulting
from technical simulations in plastics engineering. This approach was devel-
oped in tight cooperation with the subproject A3 (cf. Subsect. 5.4.2), and
PRIME (cf. Subsect. 3.1.3).

Some of the research results have been extended onto the experience-based
management of semantic information transfers in cross-organizational coop-
erative settings. This offers places for tight cooperation with aspects of inter-
organizational project management, as researched in subproject B4 (cf. Sub-
sect. 3.4.4). Also, multimedia-supported direct communication can well be
applied here, for remotely discussing delegation results (subproject B3, cf.
Subsect. 3.3.2).

To demonstrate and evaluate the conceptual functionality offered by the
PDW’s services, several prototypical and specialized tools have also been de-
veloped as part of this subproject. In addition to preparing the ground for
service offering, some of them also have been necessary for developing and
administrating the PDW itself, e.g., for managing the conceptual models.

4.1.2 Information Management in Dynamic Design Processes

The inherent dynamics of the work processes pose one of the main problems
in engineering design and development. In these processes, the requirements
and other parameters change from one project to the next, and can also evolve
during the lifetime of a single project. As no methods in the sense of “best
practice” are known, the driving influence is the personal experience of the
experts working on the project. In the following, these aspects will be treated
in more detail, including the presentation of other approaches in this and
related fields.

Issues

The software environment used within complex and creative design and devel-
opment processes usually comprises tools from different disciplines, vendors,
and usage paradigms. Each of these tools is normally based on its own propri-
etary model and contains only some generic import and/or export functions.
A unified access structure is generally missing that would allow to access all
the resources and results over the full lifetime of a project.

Cooperation, especially in interdisciplinary settings, requires to transfer
information from one expert to another – and thus, from one tool to another.
In many cases, the functions for data export/import, or even data integration,
do not offer enough possibilities. Some information transfer still needs to be

Goal-Oriented Information Flow Management in Development Processes 373

done “by hand”, i.e. on paper, by verbal communication, or by re-entering
data into a new tool.

All these work processes, including the correct and “optimal” usage of
the tools themselves, are based on the experts’ experience only. It is often
necessary to transfer this tacit knowledge from one expert to another. This
transfer normally requires a long-term process which prominently consists of
more or less successful trials and errors.

Problems may also appear that cannot be solved by the experts inside the
company itself which is currently designing a complex system. A certain part
of the process needs to be delegated to another company. An external contrac-
tor (a party taking over a certain task) needs to be found by the delegating
company (the contractee). After finding potential partners, business negoti-
ations need to be conducted about the task(s) to be delegated, and about
important constraints like timing and costs.

Because of all these problems, it would be helpful to offer fine-grained
computer and information science support to the experts working on such
non-deterministic processes. Here, some approaches for unified product data
management, experience management and reuse, work process management,
and cross-organizational cooperation will be introduced.

Related Work

During the last decade, many manufacturing enterprises have implemented
Product Data Management (PDM) systems, and/or their extended successor
of Product Life-cycle Management (PLM). Their aim is to integrate the manu-
facturing processes (usually CAM/CIM-based) with product design activities
on the one hand, and Enterprise Resource Planning (ERP) processes on the
other hand. Yet most of these existing systems still lack essential aspects
needed for supporting phases of conceptual design, e.g. knowledge or experi-
ence management. Some more recent approaches exist to extend these systems
by integrating concepts of artificial intelligence [780], or by using ontological
models and tools [684]. Common to all these approaches is their placement in
domains like automotive engineering where the design processes are relatively
well-documented, strict and deterministic, allowing prescriptive definitions.
On the other hand, highly dynamic design processes, as found in domains
like computer-aided process engineering (CAPE), need far more flexible ap-
proaches for fine-grained process support. Otherwise, the unpredictability of
the processes, and the complexity and size of the models, would leave them
hardly manageable.

For some time it has been known that experience and understanding of
one’s own work is necessary to enable process evolution and improvement
[741]. This insight has resulted in several approaches based on the basic con-
cept of experience reuse. Many approaches to the problem of experience and
knowledge management are based on the concept of organizational memory,
as described in [606]. Another set of well-researched approaches is based on the

374 S.C. Brandt et al.

definition and reuse of cases which represent knowledge, based on certain prob-
lem characterizations and the lessons applicable for reusing this knowledge.
The possibilities offered by this Case-Based Reasoning (CBR) are described
e.g. in [493].

The authors of the TAME project [535] propose a process model for sup-
porting creative software development processes which is based on the their
own experiences in software requirements engineering. This approach focuses
strongly on quantitative and metrics-based method evaluation for the later
steps of software engineering. In the Experience Factory approach, an inde-
pendent logical organization is responsible for gathering the knowledge and
core competencies of a development group and offering this information for
reuse [534].

Some other research approaches exist in the area of engineering design pro-
cesses. In [696], a knowledge-based approach for product design is examined
which is based on integrating partial domain models and using patterns to
represent the non-deterministic behavior of design processes. Another project
is developing a process platform which supports the experience-based manage-
ment and reuse of coarse-grained aspects of software development processes
[854]. A different approach to reuse the experience of product development is
shown in [1032]. This case stresses the manual processing of expert knowledge
and its reuse by less experienced colleagues, by storing the knowledge and the
contact information of experts who know more about it, in a corporation-wide
experience portal.

An important research project to support the cooperation on the level
of business agreements is “Negoisst” (see [405, 406]) which drives electronic
negotiations between potential contract partners. It uses a three-phase state
model to represent the different phases and steps of a contract negotiation.
Semantic models and technologies are used to integrate the informal (textual)
representation of a contract and its formal (exact) conceptualization. This
allows web- or email-based discussions to be based on the exact concepts,
attributes, and values. It also enables the tracing of the final results and their
intermediate steps.

Early approaches on the technical level of Enterprise Application Integra-
tion (EAI) were usually based on proprietary formats and printed documents.
Many developments have taken place since the advent of the semi-structured
data model of XML. Current approaches are based on semantic models, tech-
nologies and languages like OWL (see [546]), together with standardized data
formats and exchange protocols – electronic mail, XML, http, WebDAV. Se-
mantic web services (OWL-S, see [831]) play a major role in this area as well.
These technologies simplify, and in the first place enable, the integration be-
tween the application environments and business processes of different com-
panies. Other, more informal systems – video conferencing, electronic mail,
web server access, or web-based cooperative work support systems – may also
be used for support on the technical side.

Goal-Oriented Information Flow Management in Development Processes 375

The results described in this section also need to be seen in relation to
the new tool functionalities of the CRC, as presented in the previous chap-
ter, especially with respect to the PRIME approach in Sect. 3.1. The PDW
cooperates closely with the PRIME environment in two primary directions.
The models, their realizations, and the extended semantic functionalities, as
described in this section, offer a set of services to the fine-grained process sup-
port described there; on the other hand, the traceability mechanisms needed
for process guidance provide part of the functionality required for the process
data warehouse approach.

4.1.3 Approaching the Process Data Warehouse

Beyond the approaches described so far, there is the need of integrated tech-
nical support for the early phases of creative system design, specifically con-
cerning complex technical systems. Therefore, the authors’ research group
has examined the possibilities offered by recording and reusing the traces of
work processes in technical design. The research deals with the product -based
view as well as the concepts of direct process support, already investigated in
previous projects. It has led to supporting creative design and development
processes by integrated method guidance [371]. These views have been ex-
tended and adapted to the domain of chemical engineering. Most of the ideas
described in this subsection have been originally published in [193].

Process Tracing

The Process Data Warehouse (PDW) has been designed to capture and ana-
lyze the traces of design processes: products, process instantiations and their
interdependencies. The artifacts (the technical system) to be designed and
modified during the process are traced, and related to the processes which
perform these modifications. From these semantically structured product and
process traces, the relevant information can be extracted in an analysis step,
and then reused in further process executions. This information can be pre-
sented to the experts as experience knowledge in order to solve the problems
of later development cycles more easily, efficiently, and autonomously.

The central issue of this approach is that of supporting traceability. To
enable traceability, first of all the conceptual relations between products, pro-
cesses and their dependencies need to be examined. Therefore, in [376] the
traceability reference model shown in Fig. 4.1 was abstracted from a large
number of industrial case studies. This model distinguishes between product-
oriented and process-oriented trace objects.

The product-oriented traces describe the properties and relationships of
concrete design objects. A high-level object defines some goal or constraint
that needs to be satisfied by a number of product objects on a more fine-
grained level of modeling. This implies dependencies (depends-on) between

376 S.C. Brandt et al.

Product
Object

depends-on
satisfies

evolves-to
rationale

Stakeholder

Sources Process Objects

Fig. 4.1. Traceability reference model from [376]
.

these lower-level objects which also comprise the special cases of generalization
and aggregation.

The process-oriented traces represent the history of actions that led to the
creation of the product objects. Two link types exist between those process
objects: evolves-to which describes the temporal evolution of a lower-level
design object towards a higher level, and rationale which captures the reason
for this evolution. The integrated presentation of the product and process
traces in this “onion-shell” meta model symbolizes the fact that they cannot
be reasonably separated as one strongly depends on the other.

As visible in the left part of Fig. 4.1, the role of the stakeholder during
product creation or documentation is of importance as well. It is also necessary
to record and connect the sources which contain and display the information.

The description of this reference model shows that recording the process
traces needs to include all related influence factors, like the actual problem
situation, the resulting artifacts, and the decisions that led to the final results.

From these traces the semantically relevant information can be extracted
in an analysis step. Due to the complexity of the traces, automated analysis is
impossible in most cases. When working on complex processes with only few
repetitions and few concrete product instances, this analysis step can often
be left out. The decision between the available information can be done in
the moment of reuse. If there are too many data to be retraced this way, a
so-called method engineer is responsible for extracting and explicitly modeling
method fragments and situations, often supported by methods of data mining.

When an expert needs to solve a certain problem, the current process and
product situation is analyzed by the PDW to find matching solutions from the
recorded (and analyzed) traces. If an adequate method or product fragment is
found, it can be offered to the expert for reuse through a guidance mechanism.
Yet it is his own decision whether to adapt and use this information, to request

Goal-Oriented Information Flow Management in Development Processes 377

more details, or to discard it. In many cases a small hint should suffice that
the step currently enacted, conforms to the experience gathered up to now or,
even more important, conflicts with it.

It also has to be recorded whether the problem was successfully solved,
and how far the process support provided was appropriate, as a final feedback
information. By using this information the system and the support it offers,
can be evaluated and improved.

Extended Method Guidance by the PDW

To achieve the goals stated above, we derive from the concept of Data Ware-
housing as established for domains with fixedly structured process and product
models, to enable the support for creative processes in chemical process engi-
neering. The extensions necessary to support process data warehousing in this
domain are mainly twofold. At the conceptual level, the “enterprise model” of
the DWQ approach [769] has to be split into a set of loosely connected partial
models which look at different facets of the chemical engineering process. At
the logical and physical level, heterogeneity of the process engineering tools is
far greater than traditionally considered in OLTP data sources [192]. There-
fore, an intermediate standardization step is necessary, not only at the level
of data but also at the level of services. This is due to the fact that often the
data of engineering tools are not sensibly accessible directly but only via the
tool services.

As a coherent conceptual model cannot be built, a multitude of partial
information models have to be considered with poorly understood intercon-
nections. In the IMPROVE context, these models have been systematically
developed, resulting in the Conceptual Lifecycle Model CLiP and in its succes-
sor, the OntoCAPE ontology, as described in Subsect. 2.2.3. Empirical studies
of chemical process design demonstrate that one family of closely related sub-
models, visualized through flowsheets, has a clearly dominating role in the
communication between different designers. Coherence between the partial
models is thus achieved through concepts contained in the process flowsheet.
It forms the key access structure to heterogeneous information sources and
documents.

These flowsheets may describe very complex processes and evolve in com-
plex refinement structures, including operations such as enrichment of ob-
ject definitions, decomposition of functions, specialization of choices, and re-
alization of functions by (combinations of) device types. Additionally, process
synthesis decisions are made under uncertainty of their impact. A complete
analysis of all design choices is impractical due to the high effort in setting up
simulations or laboratory experiments. However, this may result in backtracks
in the engineering process. There also is a huge and continuously growing
number of different devices, connections, and specialized functions that can
be used in chemical engineering; estimates speak about roughly 50.000 types
to be considered. The information models of a meta database for process data

378 S.C. Brandt et al.

warehousing must therefore be easily extensible by new product and process
knowledge, and cannot be mapped one-to-one in tool functionality.

The requirements of the process engineering domain strongly support the
case of a concept-driven approach for data warehousing. They also require
further refinements of metadata handling concerning information model in-
tegration, structural and behavioral refinement, the interplay of design and
analysis, and the extensibility with a growing body of knowledge.

The diversity of the information models at the conceptual level is exacer-
bated by the diversity of data formats and service accessibility at the technical
level of engineering tools and databases. Current process engineering environ-
ments often hide this problem through monolithic software architectures with
fixed means of access. These make it close to impossible to include company-
specific knowledge or home-grown specialist tools.

The European process industries have therefore embarked on the CAPE-
OPEN initiative [71] in order to accomplish a standardization of simulation
interfaces, such that a component-based approach can be followed. This stan-
dard has been defined at the conceptual level through UML models. At the
middleware implementation level, the standard is both defined in DCOM [847]
and CORBA [877]. In IMPROVE, the CORBA version is used.

CAPE-OPEN has identified the following standard components of a pro-
cess simulator from the conceptual point of view [997]:

• Unit Operation Modules, often merely termed units, represent the behavior
of physical process steps (e.g. a mixer or a reactor).

• Physical Properties (Thermodynamics) Packages : An important function-
ality of a process simulator is its ability to calculate thermodynamic and
physical properties of materials (e.g. density or boiling point).

• Numerical Solvers: The mathematical process models of a unit operation or
a complete plant are large and highly non-linear. As analytical solutions are
impossible, iterative, numerical approaches are used to solve the equations.

• Simulator Executive: This is the simulator’s core which controls the set-up
and execution of the simulation, i.e. analyzing the flowsheet and calculating
the units. Furthermore, it is responsible for a consistent flowsheet set-up
and error checking.

The Process Data Warehouse, as described in this subsection, has been im-
plemented using the deductive object-base ConceptBase [204]. The lifecycle
model CLiP was realized in ConceptBase (see Subsects. 1.3.4, 2.1.3, and 2.2.3),
while the tool environment uses the interfaces offered by the CAPE-OPEN
initiative to integrate physical properties, mathematical models, and simu-
lators. Subsequently, it will be shown how this setup is used in an example
scenario. In this scenario, the services offered by the PDW Query Assistant
are used by the PRIME process integrated environment (cf. Subsect. 3.1.3)
for extended situation analysis.

Goal-Oriented Information Flow Management in Development Processes 379

The PDW Query Assistant

As an example, it will be presented here how the standard interfaces from
CAPE-OPEN supplement the process data warehouse in the chemical engi-
neering domain. The prototype combines techniques for integrating the highly
heterogeneous information sources in the application domain with the stan-
dard interfaces for unit operations and physical properties packages. The pro-
cess data warehouse client operates on this prototype, called “cross-tool situ-
ation analysis”. It uses the domain knowledge captured in the meta database
to give guidance to the chemical engineer via the process-integrated flowsheet
editing tool of the PRIME environment (see Subsect. 3.1.3 and [194]).

To this aim, the current development situation is analyzed via the product
state of several source databases or tools. The scenario shown here is a sim-
plification of a part of the design scenario described in Subsect. 1.2.2. Here,
the selection and adaption of a mathematical model is treated, to simulate
the separation of the final product Polyamide-6 from the residue monomer
Caprolactam.

In the early conceptual design stage a chemical engineer draws a flowsheet
of the plant. The blocks in the flowsheet represent unit operations, such as
mixing, reaction or separation. These functional units can be further refined
and realized in concrete apparatuses, the behavior of which can be simulated
by mathematical models.

SeparationCSTR
Mi xe rCaprolactam

Water

Polyamide6,
residue Monomer

Monomer recycle

Polyamide6
Mixer

Fig. 4.2. A simple example flowsheet

As a (very simple) example, we consider the flowsheet in Fig. 4.2. The flow-
sheet has been designed in the process-integrated flowsheet editor that forms
part of the PRIME environment (cf. Subsect. 3.1.3). The simulation model
for the reactor device (CSTR – continuous stirred tank reactor) is already
given. The developer’s task is to find a suitable model to represent the sepa-
ration. The designer can choose between several separation models, including
complex combinations with recycle streams (backflows).

The detailed setting is: Two input streams feed an initial mixer. The sub-
stances Caprolactam (monomer) and water are fed through the streams into
a mixing device, then into a reactor modeled by a CSTR. The result is the
Polyamide-6 product and the residual non-reacted monomer. These substances
have to be separated, as the monomer has to be fed back into the reactor. Now
the task of the chemical engineer is to find a useful model for the separation
unit.

380 S.C. Brandt et al.

PC1() {..}
PC2() {..}

...

Process

Fragment

DB DataSource
= StoffDB

DataConn
= CORBA

Query
= Ask...

DB-

Trader
PC 1
PC 2
PC 3

Process

Fragment

Models

QueryClass
Special ..

...
end

Operation
Special..
end

Partial

Models Queries

Meta-

Queries

Special
DB

CORBA

Wrapper

Flowsheet EditorFlowsheet Editor Process Data WarehouseProcess Data Warehouse Material DatabaseMaterial Database

∑ ai = ...

PDW Query

Assistant

RDB
CORBA

Wrapper

PC1() {..}
PC2() {..}

...

Process

Fragment

DB DataSource
= StoffDB

DataConn
= CORBA

Query
= Ask...

DB-

Trader

DataSource
= StoffDB

DataConn
= CORBA

Query
= Ask...

DB-

Trader
PC 1
PC 2
PC 3

Process

Fragment

Models

PC 1
PC 2
PC 3

Process

Fragment

Models

QueryClass
Special ..

...
end

Operation
Special..
end

Partial

Models Queries

Meta-

Queries

Special
DB

CORBA

Wrapper
Special

DB
CORBA

Wrapper

Flowsheet EditorFlowsheet Editor Process Data WarehouseProcess Data Warehouse Material DatabaseMaterial Database

∑ ai = ...

PDW Query

Assistant

RDB
CORBA

Wrapper

Fig. 4.3. The PDW Query Assistant

The extended situation analysis function of the process data warehouse, as
described in [193], is able to provide some hints: which models should be
considered for this task if some of the properties of the reactor’s output stream
(containing Polyamide-6 and Caprolactam) are known, e.g., temperature and
pressure of the mixture in the stream, the fraction of each substance in the
stream, and their boiling temperatures.

Figure 4.3 describes the functionality of the cross-tool situation analyzer
of the warehouse. A client tool (here: the flowsheet editor) calls the the ser-
vice offered by the PDW Query Assistant, a Java-based control program. The
call contains an identifier for the selected flowsheet element (the separation
device) and an operation to be executed on the device (realize). This infor-
mation is available in the process-integrated flowsheet editor as part of the
current situation, intention and the currently running process fragment (cf.
Subsect. 3.1.3). This process fragment will also be responsible for handling
the information returned by the Query Assistant later on.

The warehouse itself contains several sub-meta databases that are queried
during the processing of this request for extended situation analysis:

• Call back patterns are used to determine which additional information is
needed to answer the request.

• The DB trader contains information from which tool or database and how
this information can be accessed. The calling client will be one of the tools
that are accessed. In the example, a larger part of the flowsheet is needed
to classify the context of the call.

Goal-Oriented Information Flow Management in Development Processes 381

• The mediator patterns for materialization are then used to materialize the
additional data into the data warehouse such that they become instances
of the partial models of the data warehouse.

• The analysis and result patterns are now applied to calculate useful results
for the original query.

• The presentation of the results is highly dependent on the client tool that
initiated the query. The client model is used to transform the result into
a suitable form. The special process integrated features of the flowsheet
tool can be used to directly insert a proper refinement of the separation
into the flowsheet. Details on the flowsheet tool and its interaction with
the process data warehouse can be found in [194].

These data sources are accessed a nested way so that only those information
sources are accessed, that are needed to answer the specific query, instead of
gathering all information in advance.

The call back queries used in these steps are not purely queries to source
databases. For example, the needed simulation results of the reactor are re-
sults of an aggregation function. In this sense the results are the results of a
(highly complex) query on the data warehouse store. As simulating is a time
consuming and expensive task we also store the results in the data warehouse
for reuse. To gain access to the units the DB trader contains meta informa-
tion about the CAPE-OPEN components. As a result of the usage of the
CAPE-OPEN compliant units we do not need to handle very different simu-
lators such as Aspen Plus, Pro/II or gPROMS, but only have to create the
CAPE-OPEN objects used by the units. This especially concerns the material
object for each substance contained in the input ports of the unit. The process
data warehouse produces these CORBA objects and is then able to start the
simulation of the unit.

As final step, the results of the analysis, i.e. one or more models appropriate
for representing the simulation, are delivered back to the tool that requested
the extended situation analysis. In the scenario described here, the PRIME
process fragment is then responsible to offer the model alternatives to the user,
and to allow him or her to integrate them into the flowsheet as refinements of
the separation block.

4.1.4 Heterogeneous Trace Management in Plastics Engineering

In this subsection, a special case of experience traces will be addressed. In
contrast to the structural models described in the last subsection, multimedia
information usually does not provide any possibility of extracting meaningful
semantic information. As a concrete application scenario, the visualizations re-
sulting from three-dimensional plastics engineering simulations can be stored
as short video clips, and then structured and annotated according to an ap-
propriate domain model. This allows the retrieval and thus the reuse of these
complex simulation results, together with the domain experts’ interpretations.

382 S.C. Brandt et al.

Thus, a service is offered that combines the domain models and application
cases from the subproject A3 (cf. Subsect. 5.4.2) with the experience-based
functionality of B1 (PRIME, cf. Subsect. 3.1.3). This service is then used by
the application tool TRAMP which will be described in the second part of this
subsection. The research results presented here have been originally published
in [188], [197] and [198].

Simulation Analysis in Plastics Engineering

As part of the polymerization scenario described in Subsect. 1.2.2, the com-
pounding extruder is to be designed by a company specializing on extruder
design and construction, supported by simulations. As the necessary knowl-
edge is often not present in chemical companies, aspects of cross-organizational
cooperation come into play, which will be treated later in Subsect. 4.1.7.

The compounding of thermoplastic polymers usually employs closely inter-
meshing, co-rotating twin screw extruders. Based on a modular concept, the
screw geometry must be designed most precisely to realize the desired mix-
ing of fillers and other material modifications, in a maximally effective and
economical way. A detailed analysis of the flow effects inside a compounding
extruder must be resolved in three dimensions. For complex flow channels,
this is only possible at high numerical effort using the Finite Element Method
(FEM) or the Boundary Element Method (BEM). Currently, these methods
can only be used on fully filled screw sections, but the modeling of flows with
free surfaces is under development.

A more detailed description of the simulation and design tasks can be found
in Subsect. 5.4.2 (subproject A3). For the possibilities of experience-based
support for extruder design, refer also to the FZExplorer tool in Subsect. 3.1.5.
Here, we will concentrate on structuring the domain model for annotation of
the videos resulting from simulation.

In the example scenario, the BEM-based program BEMFlow is used be-
cause of its efficient way to generate the simulation meshes. BEMView is
a special postprocessor for the visualization of BEM-calculation results in
videos. The visualization by means of stream lines facilitates the investigation
of flow phenomena of interest such as local spots with low residence time or
vortices [145].

The main purpose of these process analysis activities is to evaluate goal
achievement in terms of polymer product properties. For example, the resi-
dence time as well as the deformation history of a single particle is an indica-
tion for the polymers’ thermal and mechanical degradation.

Figure 4.4 shows how the results of simulation calculations can be catego-
rized in three goal categories. Primary and secondary effects are direct results
from the conservation equations or can easily be calculated. By means of these
values the user can assess the process behavior, but cannot quantify abstract
phenomena like the deformation or the melting of polymer. For this case, ex-

Goal-Oriented Information Flow Management in Development Processes 383

Directly from the
Conservation Equations

• Pressure
• Velocity
• Strain
• Viscosity
• Density

Primary Effects

Calculated by differentiation
and integration from primary effects

• Acceleration
• Gradients‘ Tensor
• Volume Flow
• Force

Secondary Effects

Abstract phenomena with
an empirical definition

• Melting
• Deformation
• Mixing
• Residence Time

Distribution

Tertiary Effects

Fig. 4.4. Layers of effects/goals in polymer flows

plicit modeling of processing goals is necessary which in plastics engineering
are called tertiary effects [676].

It is obvious that, besides other goals, the consideration of cost is very
important. Sections or zones of the extruder that need high capital investment
for their realization have to be further investigated. The same applies to zones
that can cause side effects to other components of the plant, or cause high
running production costs.

As a result of both, 1D and 3D simulation, the screw-configuration of the
extruder will be modified in an iterative design and analysis cycle for each
functional zone. The results of the simulations have to be interpreted by the
users who then have to asses product quality based on their experience [145].

TRAMP: Linking Goals, Domain Ontologies, and Multimedia
Scenarios Efficiently

The multimedia (mostly video) visualizations of the flow through an extruder
are a side effect of running a 3D simulation. This side effect is extremely
important, as only this visualization enables the experienced plastics engineer
to evaluate a proposed decision alternative with respect to the actual goals
and obstacles relevant to the next stage in the supply chain. Additionally, it
is possible to visualize the primary vector-oriented simulation results directly
as interactive media.

However, extruder design usually requires many simulations before a sat-
isfactory solution can be found. Comparing all the videos with respect to
multiple goals can take a long time even for a single design step. The problem
(but also the opportunities to establish a good solution and avoid a waste
of time) grows when the reuse of similar situations is enabled, so even more
videos must be viewed and compared. Simple linkage of video clips to goals,
as studied by [723], is not sufficient here.

Drawing on the analogy of the well-known phenomenon of “zapping”
rapidly across TV channels to find interesting ones, we have therefore de-
veloped a system which allows “semantic zapping” among multimedia sce-

384 S.C. Brandt et al.

Mix. General

Mix. Quality

Mix. Compatb.

Mix. Cap. Numb.

Thermoplastics

Mix. Visc. Ratio

Mix. Elongat. Vis.

Mix. Shear Rate

Mix. Flownumber

Poly-Poly. Blend

Reactive Extrus.

Degassing

Simple Flow

Melting

Feeding

Poly-NPoly. Blend

Rubber

Single Screw Ext.

Twin Screw Co-R.

Twin Screw Countr

Multi Screw Extr.

Buss Kneader

Internal Mixer

Static Mixer

Mix. General

Mix. Quality

Mix. Compatb.

Mix. Cap. Numb.

Thermoplastics

Mix. Visc. Ratio

Mix. Elongat. Vis.

Mix. Shear Rate

Mix. Flownumber

Poly-Poly. Blend

Reactive Extrus.

Degassing

Simple Flow

Melting

Feeding

Poly-NPoly. Blend

Rubber

Single Screw Ext.

Twin Screw Co-R.

Twin Screw Countr

Multi Screw Extr.

Buss Kneader

Internal Mixer

Static Mixer

Fig. 4.5. Tool for Representation & Annotation of Multimedia content in Plastics
Engineering (TRAMP)

narios according to both goals and domain ontologies. This system allows to
organize and annotate the information both according to the MPEG-7 mul-
timedia metadata standard [419], and according to the goal hierarchies and
domain models of the Process Data Warehouse. Additionally, the PRIME
trace database (see Subsect. 3.1.3) was extended with semi-structured inter-
faces and storage mechanisms based on XML, to allow the integration of the
PRIME process and decision traces with the the semantic multimedia anno-
tations of the PDW. For demonstrating and evaluating the functionality and
usage of the system, a tool called TRAMP (Tool for Representation and An-
notation of Multimedia content in Plastics engineering) has been developed,
as described in the following.

Figure 4.5 shows a screenshot of TRAMP. The three columns of buttons
on the right were generated from the domain models. They represent three
different dimensions of characterizations. The left column contains a list of
relevant goals (tertiary effects) to be achieved, whereas the other columns
refer to the domain categories of materials and extruder types.

The following dimensions, or domain categorizations can be selected:

Goal: mixing (general), mixing (quality), mixing (compatibility), mixing (vis-
cosity ratio), mixing (elongation viscosity), mixing (shear viscosity), mix-
ing (flow number), reactive extrusion, degassing, simple flow effects, melt-
ing, feeding.

Material: thermoplastics, polymer-polymer blend, polymer-non-polymer
blend, rubber.

Goal-Oriented Information Flow Management in Development Processes 385

Machine Type: single screw extruder, twin screw extruder (co-rotating), twin
screw extruder (counter-rotating), multi screw extruder, buss co-kneader,
internal mixer, static mixer.

By selecting a combination of buttons (multiple choices are possible in each
column), the thumbnail gallery gets filled with visualizations of 1D and 3D
simulation results relevant to the indicated combination of goals, materials,
and device types. By dragging one of these thumbnails into the center, the
corresponding multimedia objects gets enlarged and – if it is a video – played,
thus enabling human judgement, but also rapid zapping to another thumbnail
candidate. When changing the center object, the context also shifts, so new
similar objects can appear in the thumbnail gallery, old ones can vanish, and
slowly the context of goal, materials, and device metadata can shift as well.

Alternatives the engineer finds particularly interesting (in the positive or
negative sense) can be drawn into the personal collection at the bottom left of
the tool, and annotated with arguments linking them to the goal hierarchy, or
to choices in a decision editing tool. This allows semi-automated construction
of decisions to be taken, and, later on, to document the decision itself, with
all relevant alternatives and arguments.

As a result, these process and decision documentation traces can be reused
by tools that access the underlying services of the PDW. For example, the
TRAMP tool is directly integrated with the decision editing functionality of
the PRIME environment (subproject B1, cf. Subsect. 3.1.3). Other tools can
also access these services, to track and reproduce the simulation steps and
their rationale, and possibly to intialize necessary modifications.

4.1.5 The Ontologies of the PDW

On the path from the conceptual prototype described in Subsect. 4.1.3 towards
a flexible and extensible service base and application framework, a decision
was taken to use the ontology languages from the Semantic Web approach for
modeling the Process Data Warehouse (PDW). This decision went together
with the porting the simple class layer of the conceptual lifecycle mode CLiP
into the ontology-based version OntoCAPE (see Subsect. 2.2.4). As ontologies
do only support one modeling and one instance (token) level, it was necessary
to abandon the powerful features offered by meta modeling.

To achieve the projected functionality, this new realization of the PDW
was developed around the so-called Core Ontology. This central conceptual
model was originally a result of the IMPROVE subproject C1 and the research
described in this section. Some aspects of the Core Ontology have already been
introduced and described in Subsect. 2.2.4. Based on these ontological models,
the PDW has been designed to offer an integrated access environment onto
all the product and process artifacts of the supported design processes. In the
following, it will be described how these models and services are exemplarily
applied and used by the application tools of the PDW. In the end of the

386 S.C. Brandt et al.

subsection, it will be shown how the various subprojects of the CRC can, or
do, use these services for their own integrated purposes. The conception and
application of the Core Ontology was originally published in [64], [65] and
[66]; its application in chemical engineering is also described in [62] and [63].

The Core Ontology

The various partial models of the Process Data Warehouse are interconnected
through the Core Ontology which consists of four primary areas of concep-
tualization: products, processes, descriptions, and storage. This central model
comprises the concepts of process modeling and enactment, of products and
documents, dependencies, decision support and documentation, for the de-
scription of content and categorizations, and other integration models.

Around these fundamental and domain-independent models, extension
points are placed that can be used to add the models of a specific appli-
cation domain or other specializations. The concrete data are then stored as
instances of the appropriate ontological concepts. This allows modifications
and extensions of the partial models used, even during project execution.

For reasons of interoperability, the Ontology Web Language (OWL) [546]
standard, as already used for OntoCAPE (Subsect. 2.2.4), would have been
the first choice for the representation of ontologies. However, current OWL-
based ontology repositories do not offer an efficiently searchable storage in
(relational) databases, nor do they easily support client/server-based archi-
tectures to, e.g., facilitate update synchronizations.

The KAON system [871] was chosen instead. It is based on the Resource
Description Framework (RDF) that also forms the base of OWL. KAON en-
ables semantic queries directly on the backend repository (stored in a rela-
tional database) by transforming the query into SQL, at the cost of loosing
some of the expressiveness of OWL. Translation of OWL ontologies, such as
OntoCAPE, into the KAON system has been realized, based on their common
RDFS characteristics.

The Core Ontology is formed by the aforementioned four areas of concep-
tualization, arranged around the object as the abstract central concept. It is
shown in Fig. 4.6.

• The product area (top) contains basic models for the artifacts created or
modified during the design processes – documents, document versions and
their structural composition.

• The descriptive area (left) contains basic concepts for describing the con-
tent or role of documents and products on a high semantic level. This in-
cludes content descriptions, sources, and categorizations which are grouped
into categorization schemes. Type definitions are also placed here that
characterize, e.g., a large number of products that have been created from
the same template.

Goal-Oriented Information Flow Management in Development Processes 387

Object

ProductObject

Product

StoragePlace

Store

Category

ContentDescription

ProcessObject

ToolElement UserElementProcesElement

DescriptiveObject

aggregatedOf

storedAt

storedIn

manipulatedBy

containsCategory

describedBy

Product Area

Process Area

Descriptive Area
Storage Area

StorageObject

Document

dependsOn

belongsTo
UserWorkGroupProcessActionProcessTrace

VersionSethasVersion

currentVersion

Core Ontology

OntoCAPE

DMS, e.g. EMC

Documentum

UsersDesign ActionsSoftware tools

Documents

Organization

DRL-Decision

Documentation

characterizedBy

TypeDefinition

typedBy

CategorizationScheme

categorizedBy

State

Plastics

Engineering

Type Definitions

Plastics

Engineering

DocumentVersion

Plastics

Engineering

Tertiary Goals

PRIME

StorageQuery

resultsFrom

hasQuery
ERP SystemsTransformation

transformedBy

Fig. 4.6. The Core Ontology with some embedded extension models

• The process area (bottom) contains the concepts needed to describe the
process steps which modify the artifacts. This comprises process defini-
tions or actions which can be enacted (method fragments), process traces
resulting from enactment, and users who guide the enactment.

• In the storage area (right), external stores and repositories are integrated
into the PDW. This applies to document management systems, databases,
external tools, and others. Rules for the execution of queries on the stor-
age backends, and the necessary transformations of the results (and other
document contents) are also represented here.

Dependencies have been introduced as a global concept to enable specialized
relations between elements independent of their concrete relationships. They
are also described in the traceability reference model in Subsect. 4.1.3. This
hierarchy of relationship types is modeled inside an additional area which can
be seen as orthogonal to the four areas.

Around the core ontology, several extensions can be found. The most elab-
orate of these is OntoCAPE, the already mentioned large-scale ontology for
the description of the process engineering domain (Subsect. 2.2.4, [489]), which
covers fields like physicochemical properties, process equipment, and mathe-

388 S.C. Brandt et al.

matical modeling. Here, it extends the descriptive area by refining the Content
Description concept (refinement is indicated by dashed arrows in Fig. 4.6).

As another example, the storage area offers the basic models for file stor-
age inside a document management system, relating file-based documents with
their conceptual representation inside the Process Data Warehouse. This al-
lows accessing the documents’ contents and their physical storage places, in-
cluding the visualization or modification inside appropriate tools.

To apply these concepts, the EMC Documentum system [657] has been
integrated by extending the concepts, and implementing specialized function-
ality. The integration of ERP systems has exemplarily been realized for the
SAP R/3 system [947].

Based on the ontology concepts of StorageQuery and Transformation (see
Storage Area in Fig. 4.6), a flexible mechanism for integrating external data
sources or stores has been developed. Specific connectors for the various kinds
of stores – relational databases, tools, ERP systems, etc. – are able to save
the data resulting from specified Storage Queries in an intermediate XML
format. After transforming these XML documents into a generic XML or OWL
format, a generic importer is responsible for importing the data into the PDW,
creating instances of the appropriate concepts. This transformation, e.g. by
stylesheet transformations (XSLT, [602]), is organized by related instances of
the ontology’s Transformation concept.

Product Models for Plastics Engineering

As an example, it will be described here how the concepts and ontologies
for plastics engineering are embedded around, and into, the Core Ontology.
The structural composition of compounding extruders by a set of functional
zones like Polymer Stream, Boiling Degassing or Reactive Extrusion, and their
realization by conveying elements and kneading blocks, is described in further
detail in [147].

Several important regions of this model can be identified in Fig. 4.7.

• The extruders and their structural composition, as created by the MOREX
tool (see Subsect. 5.4.2), are extensions of the Product and Document
concepts. Each Document has a set of Document Versions that in turn
contain the Extruder realizations, and other Plastics Engineering (PE)
Devices.

• The various types of Functional Zones are added as specializations of this
concept, such as Polymer Stream or Boiling Degassing.

• The Screw Elements themselves are split up into two different kinds, the
Kneading Blocks and the Conveying Elements. Many different types of
these elements can exist, each with different default attribute values (e.g.,
Length or Diameter as shown in Fig. 4.7). It was decided to use a Screw
Element Type concept, and two specializations, as part of the descrip-
tive area. Instances of these concepts define the possible screw element

Goal-Oriented Information Flow Management in Development Processes 389

Object

Core Ontology

R 42/42

L 20/10

Length Diameter NoOfFlights
Phi

instanceOf

...

...

Product
Description

Process
Storage

Product Document

MorexProjectPEDevice

Extruder

FunctionalZoneScrewElement

KneadingBlock

ConveyingElement

Type
Definition

Categ.
Scheme

PEDevice
Type

ScrewElem
Type

Conveying
Elem.Type typedBy

SEtypedBy

KBtypedBy

KN 28/90

KR 42/45

Goal

Material

Machine
Type

hasVersion

Documentum
StoragePlace

Documentum

storedAt

storedIn

PE Tertiary
Goal

composedOf

composedOf

PEDocument

Document
Versioncontains

CEtypedBy

Kneading
BlockType

BoilingDegassing

ReactiveExtrusion

PolymerStream

Fig. 4.7. Embedding the plastics engineering domain

types. Each concrete kneading block or conveying element is typed by one
of the derived screw element type instances: kneading block type or con-
veying element type, respectively. The instantiations shown in the figure
(KR 42/45, R 42/42) are, of course, not complete (indicated by “. . . ”).

• The tertiary goals of extruder simulation as introduced in Subsect. 4.1.4,
and some other categorizations, are modeled as categorization schemes in
the descriptive area. Each of the schemes is composed of a set of categories
(which are not shown in Fig. 4.7). This allows to integrate the TRAMP
functionality of annotating weakly structured (multimedia) documents.

• As the MOREX tool stores its projects in simple unversioned XML files,
the document management system (DMS) Documentum [657] has been
integrated into the PDW for file storage. This allows the versioning of the
project files on the one hand, and the extruder realizations stored inside
the PDW on the other hand. Also, when checking in a new version into
the DMS, the PDW is automatically notified of this new version. This
allows to import the information, or to annotate it using the available
categorization schemes. A simple function has been implemented to import
the MOREX project files into the PDW repository; this function still has to
be integrated into the storage transformation concept as described above.

Process Models

Process models form a very important part of IMPROVE. In diverse subpro-
jects, they are modeled in different levels of granularity and with emphasis
on different aspects. The PDW Core Ontology was designed to allow the in-
tegration of these models around one central core. One important aspect is

390 S.C. Brandt et al.

the separation of Process Actions, i.e. task, activity or method definitions
that can be enacted or executed by users and/or tools, and Process Traces
that result from enactment. More about this characterization can be found in
Subsect. 3.1.2.

For the construction of the PRIME environment (Subsect. 3.1.5) on top of
the PDW, the NATURE process meta model [201] has also been embedded as
an extension of the Core Ontology. The concepts of Contexts (EC, PC, CC)
have been derived from the Process Action, while the process tracing concepts
are children of Process Trace. Organizational elements like users, work groups,
and companies have also been extended from the appropriate concepts.

Similar work is being done to integrate the administrative and work-
flow level concepts of IMPROVE into the Core Ontology. This concerns the
C3 modeling formalism and method as described in Subsect. 2.4.4, and the
AHEAD task management concepts from Subsect. 3.4.4.

Ontological Search and Access Services

As part of the subsection closing here, it has been described how the models
of various other CRC subprojects have been, or could be, integrated into the
experience repository of the PDW, including the instance data based on these
models. This allows to offer a homogenized access, search, manipulation, and
analysis service to all interesting parties. Especially the data integration across
the various models, layers, and application domains offers a unified view onto
the traces that is not available otherwise. This includes the following:

B1: the process integration and support models of PRIME, based on the NA-
TURE process meta model;

A3: the models for extruder design, and for the annotation of simulation re-
sults;

B4: the process models for coarse-grained intra- and inter-organizational task
management support; and

I2: the C3 process modeling formalism.

As another example for using this service, the next subsection will describe
how the application tools of the PDW itself can be used to work with, browse
through, and apply the information of the repository as part of the experience-
based support of work processes.

4.1.6 The Process Data Warehouse for Engineering Design

To demonstrate the conception and realization of the Process Data Ware-
house, we will describe how a concrete application scenario is supported by
the experience reuse functionality of the PDW. The scenario of designing and
analyzing the compounding extruder by one-dimensional simulation is part of
the complete scenario described in Subsect. 1.2.2.

Goal-Oriented Information Flow Management in Development Processes 391

Documentum©

PDW-ServerPDW-Frontend

2. Change extruder,
Save project file

6. Read metadata

7. Identify document,
user and session

8. Create new document version
9. Transform document content

12. Enter metadata,
Categorise and annotate,
Add content information

Browser

1. Log in to PDW front-end

Morex
3. Create new

document
version 4. Store new

document
version

10. Notify Client/GUI

Network

11. Read ontology data
13. Store meta data

5. Poll change
notification

Fig. 4.8. Scenario: creating a new document version

Capturing Experience Traces

Figure 4.8 describes the activities which result in the capturing of the prod-
uct and process traces. This includes the interactions between the user (a
compounding or plastics engineering expert), the MOREX design tool (as de-
scribed in Subsect. 5.4.2), the document management system Documentum
[657], and the Process Data Warehouse. The continued scenario which shows
the reuse of this recorded experience, will be described afterwards.

The following steps are shown here:

1) The experts starts the PDW front-end and logs into the PDW Server.
2) The expert works with the MOREX tool to design and simulate the

functional zones and their screw element realizations.
3) When reaching an important stage in the design, the experts checks in a

new version of the project file into Documentum. This can be done via
the Documentum Webtop browser plugin.

4) The new version is stored in Documentum.
5) The PDW polls for change notifications via the Documentum audit

mechanism. The creation of the new version is thus recognized.
6) The metadata of the new document version is read by the PDW: docu-

ment name, version and ID, user and session information, etc.
7) The PDW uses this metadata to identify the correct StoragePlace and

Document concept instances inside the repository.
8) A new Document Version instance is created in the repository and re-

lated to the Document instance as its new and current version.

392 S.C. Brandt et al.

9) The document content is fetched and analyzed, and the structural com-
position is then transformed into the conceptual representation of the
PDW (Extruder, Functional Zone, Screw Element and their specializa-
tions in Subsect. 4.1.5).

10) The PDW front-end is notified of the change.
11) The front-end reads the new information from the PDW server.
12) The expert can now annotate and enrich the document and the structural

information of the new extruder realization. The categorization schemes
can be used for this purpose.

13) The annotation information is stored in the PDW repository.

After these activities, the project file is stored in the DMS, while its structural
content (the realization of the extruder) is stored inside the PDW repository,
together with additional information like domain model annotations and en-
richments. Importing of information into the PDW is done via an XML format
that is directly based on, and thus convertible into, the core ontology concepts.
External resources need to be transformed into this format, based on the rules
defined by derivations of the Core Ontology’s Transformation concept, and
implemented e.g. by XML stylesheet transformations (see Subsect. 4.1.5).

The same flow of activities can be used with any different tool and doc-
ument information. Depending on the degree of integration, the document
content may be converted into the ontological format of the PDW (see also
Subsect. 3.2.1 about fine-grained product relationships and conversions), or
enriched and annotated based on a coarse-grained categorization model. While
the former has been applied in the scenario described here, the latter concept
is used in the TRAMP tool as described in Subsect. 4.1.4.

Reusing Experience Traces

In a different design project within the case study described here, possibly an
altered organizational context, an expert reuses the recorded information by
searching the PDW via its front-end. Older, or recurring traces can be found
with the help of a query language that is based on the semantic relationships
of the PDW’s integrated partial models. Similar to the concepts of Case-
Based Reasoning (CBR, see [493]; see also Traces-Based Reasoning, [848]), the
comparison and adaptation of the retrieved cases enables their direct reuse.

This results in an advisory system where the retrieved cases are manually
adapted to the current context by the user. The case reuse and the adaption
are both traced for later review and repetition. To simplify the search for
matching cases, the integrated tools can directly query the experience repos-
itory based on their current situation or context. Another approach applied
here is the manual building of semantic example-based queries (Query-By-
Example, QBE).

The system also offers the possibility of analyzing the data to detect recur-
ring fragments. Fine-grained product and process support can then be offered

Goal-Oriented Information Flow Management in Development Processes 393

to the user by guiding him or her through these fragments, or even enacting
them in the process engine of the process integrated environment (see PRIME
in Subsect. 3.1.3).

The experience reuse framework consists of the Process Data Warehouse,
the process-integrated development environment PRIME, the Documentum
repository, and a set of integrated tools, e.g., MOREX. This framework is
able to specify the current problem situation based on the integrated rules,
and tries to find a matching process trace or a recurring method fragment in
the experience base of the PDW.

In the scenario described here, the expert needs to find sensible realizations
of the functional zones that form the compounding extruder. In MOREX, he or
she selects the current functional zone (a“Filler Adding”, in the case described
here), and “asks” for a set of alternative realizations. The current problem
situation is analyzed by the environment, and a semantic query is composed
that can be executed on the experience repository. This problem definition
consists of elements of several of the four areas introduced in Subsect. 4.1.5.

Each of the elements is the concrete instance of one of the semantic con-
cepts contained in the PDW’s ontologies.

• The product part of the situation is composed of the design elements dis-
played in MOREX, i.e. the extruder, the functional zones, and already
finished screw element realizations. The materials being compounded, and
attributes like temperature or pressure, also need to be taken into consider-
ation. For some of the elements, their user interface state is also important,
as the currently selected zone is to be used as the “central” aspect of the
query.

• Some of the relations and dependencies reach into the description area, as
chemical components, states, and categorizations are found here.

• The most important process element is the user’s intention in this situation,
i.e. “Realize the current functional zone”. This is normally determined by
a user interface element being activated, e.g. a menu item being clicked.
The current activity type of “Create extruder realizations” – synthesizing
a model, in contrast to analyzing a number of alternatives or deciding on
one of them – is also part of the situation.

This situation definition can then be passed on to the Process Data Ware-
house to search for matching experience information. In the example scenario,
several different realizations are found and returned. This information is then
presented to the expert in the PDW client front-end, as visible in Fig. 4.9. Two
different visualizations can be applied here. A generic representation shows
the concept instances, their attributes and relations in UML instance nota-
tion, while the specific representation in this case shows a graphical snapshot
of the screw elements.

Now the expert needs to decide which realization to use. He may decide on
reusing one of the alternatives offered. Then a method fragment inside PRIME
is activated that directly executes the steps in the flowsheet editor which are

394 S.C. Brandt et al.

Fig. 4.9. Generic (left) and specific (right) visualizations of one returned realization
alternative

needed to add the new refinement and to insert the selected alternative. If he
or she wants to adapt the realization, or to create a new one, this can be done
using the normal functionality of MOREX.

In any case, the solution is recorded in the Process Data Warehouse. Apart
from the product information (the selected realization), the intermediate pro-
cess steps and situations are traced and related to the decision that led to
this alternative, including some additional arguments the expert may want to
enter manually.

This is only a preliminary decision, as the chosen realization still has to be
analyzed. The PDW can also serve as the integration point for simulation runs
in the appropriate tool(s). After the simulation, the same cycle will have to be
repeated for other, alternative refinements. In the end, the expert can decide –
and document – which of the alternatives should be kept for further steps in
the development process. The arguments entered earlier and the simulation
results related to them will be needed for supporting the decision process here.
This information is only kept in the PDW.

Choosing an extruder realization, furthermore simulating the realization,
documenting the results and entering some notes or arguments, forms a re-
peated cycle that concludes with the final decision-making. This may be rec-
ognized as a single recurring method fragment, through analyzing the process
traces. In this analysis phase, the method engineer may decide to add a loosely
modeled method fragment into the experience base. It can then be activated

Goal-Oriented Information Flow Management in Development Processes 395

by the expert when facing this or a similar problem situation again, to guide
him or her more efficiently through these tasks.

Graphical User Interface

As already partially visible in Fig. 4.9, several ways of visualizing the content
of the PDW experience repository exist.

• The generic visualization is based on displaying the concepts, instances,
relationship types and relation links, and the attribute types and attribute
values in UML static structure notation. This is also called the semantic
repository browser (see next subsection). It is the primary interface of
the PDW front-end, mainly aimed at the domain specialists responsible
for creating and structuring the domain models (also called the Knowledge
Engineer). The generic visualization also offers the possibility to add icons
and images to all elements (instances and concepts), to allow the domain
end user to recognize the usual symbols connected with certain elements
of his or her work, as the class and instance notation in itself may be too
hard to understand. Examples can be seen in Fig. 4.9 and Fig. 4.11.

• The semi-specific visualization uses additional information about certain
concepts, instances and their relationships to achieve a more conclusive
presentation. As an example, the ordered composition hierarchy (tree) in
Fig. 4.10 displays the composition and realization hierarchy of an extruder.
All information necessary for this presentation is stored as meta-level anno-
tations of the appropriate concepts (Extruder, Functional Zone and Screw
Element), and their respective relations. Thus, the same presentation can
be easily applied to any other model fragment that conforms to the same
or a similar structure. Another possible application is to present a flow-
sheet as a network of devices and streams, by using a different kind of
annotations.

Fig. 4.10. Semi-specific presentation of an ordered composition hierarchy: the re-
alization of an extruder

396 S.C. Brandt et al.

• For most application domains, specialized user interfaces for the PDW will
have to be developed. At the moment, work is under way for a graphical
interface to give production line foremen a concrete view of the production
history of their line, e.g. process faults and countermeasures taken by the
operators.

4.1.7 Cross-Organizational Cooperation

In the interdisciplinary setting of an engineering design process, knowledge and
tools needed for a certain step are sometimes not found inside the company
that is working on the design. Other companies then need to be integrated
into the design process by delegating part of the process to them. While the
AHEAD administration system in Subsect. 3.4.4 treats the administrative
issues of passing part of the process to an external contractor, here we will
concentrate on experience-based guidance of the information transfer itself
between contractee and contractor.

In such a cross-organizational cooperation process, information needs to be
passed based on strict rules of intellectual property and need-to-know. Besides
the problems of business agreements, communications, and the technologies
for information transfer, other aspects need to be addressed in this case.

Only very specific and selected information may be passed across organiza-
tional boundaries. The cooperation partner may only be allowed a restricted
and well-controlled view onto the repository. To define such a view on the
side of the contractee (the delegating party), cooperative discussions among
the experts are necessary. The reuse of these traces in later cooperation cy-
cles is enabled by recording the discussion results, decisions taken and their
arguments, and the data to be transferred, into the PDW.

While the task is being solved at the cooperation partner’s site, informa-
tion may be recognized there to be missing. It has to be inquired from the
contractee. The PDW allows to find this data and, possibly, find the decision
that led to its exclusion. This decision may now either be revised (allowing
the data to be sent), or confirmed. As a last part of the cooperation process,
the information returned from the contractor needs to be reviewed, discussed,
and then integrated into the project flow through the PDW’s repository. Of
course, the design of the PDW is kept generical enough to mirror the support
functionality, if it is applied by the contractor, instead of the contractee as
described here.

The three-dimensional BEM-based simulations in plastics engineering as
described in Subsect. 4.1.4 will be used as a concrete example. The knowledge
for this kind of analysis is usually found inside an extruder manufacturing
company only. The initial design of a compounding extruder, as described in
the IMPROVE scenario in Subsects. 1.2.2 and 4.1.6, is placed in a chemical
company. Thus, the integration of the two scenarios needs the two companies
to cooperate.

Goal-Oriented Information Flow Management in Development Processes 397

Fig. 4.11. The semantic repository browser with the extruder and related objects

The Process Data Warehouse (PDW) can be used here to help finding the
necessary prerequisites. The designed realization of the extruder needs to be
analyzed in reference to earlier projects. If an identical realization was already
examined in an earlier simulation, it may be possible to reuse the results. If
the examination of a similar realization was delegated before, and the results
of it were acceptable, the same delegation may be sensibly used again. In the
scenario at hand, it is decided to delegate this simulation to a certain external
contractor.

The task and its requirements need to be discussed, and aspects like ex-
penses and delivery dates need to be agreed on. Here, the aforementioned
Negoisst system may be used [405]. The results of such a negotiation – the
terms agreed on – might then be used as input information to the PDW, for
tracing the fulfillment phase of the agreement.

On the contractee’s side, the PDW as data mediator and integrated data
storage should already contain all necessary information in an explicit form.
Of course, it has to be examined and decided which information is needed
for the delegated task, and which information may not be transferred, as it
contains intellectual property. Using the conceptual object of the extruder as
stored in the PDW, the semantic repository browser allows the user to browse
and navigate through its database. Starting from this object, all other con-
nected instances can be browsed, searched for, and displayed. The different
types of relationships and dependencies, including generalization and special-
ization, can be followed. In Fig. 4.11, the instances, their relationships and

398 S.C. Brandt et al.

their attributes can be seen in the UML static structure notation of the PDW
front-end.

Based on the results of this semantic navigation, a concrete view can then
be defined by “marking” some of the displayed instances, including certain
attribute values, and certain relationships and relationship targets. As shown
in Fig. 4.11, the extruder and some related instances are marked, including
some of their attribute values. This marking is represented visually by col-
oring and highlighting the appropriate text labels. The extruder, two of its
functional zones, the screw element realizations of these two zones, and their
respective screw element types, are marked here. The information about the
other functional zones and about the input stream is not marked, including
the chemical component being extruded (PA6); neither are some instances
from the organizational context like project, document or user.

The navigation path and the processes that led to this view, and the view
itself, are recorded in the PDW as traces. This includes decisions about why
to include or exclude certain data. The materialized view is then exported
into an ontological (i.e. semantic) format like OWL.

This allows to transfer the data to the cooperation partner. If he supports
the same – or a matching – domain model, the information can directly be used
there. Otherwise, a transformation into some proprietary format, a generic or
specific XML representation, or a structured textual form (e.g. HTML) can be
done. The information itself can be transferred via (secured) electronic mail,
or it can be accessed via the inter-organizational interfaces of the PDW which
are based on web services and web pages.

As OWL supports the access and inclusion of ontology files via http://
web addresses, the web interface of the PDW is able to offer the appropriate
files for direct opening in OWL tools such as Protégé [979]. Semantic Web
Services [831] as the coming standard for Enterprise Application Integration
(EAI) may also be used here. By extending the syntactical interfaces defi-
nitions with their semantics, the semantic models can be directly integrated
with the transfer mechanism.

Instead of navigating through the concepts and relationships to determine
the data for transfer, an older view (possibly from a different project) can also
be searched for in the experience base. The related information – the type of
project, the cooperation partner, the extruder type and its realization – are
used to graphically formulate a search query. This query is then executed on
the experience base.

The resulting set of information views passed to contractors in earlier
projects, are displayed in the PDW client. This allows to reuse them by “ex-
changing” the central concept instance (the extruder). The project, the user,
and some other parameters also need to be bound according to the current
situation which enables the PDW to automatically find the related data. The
resulting view can be adapted, transferred, and recorded as described above.
A view definition can also be derived from the view in a Query-by-Example

Goal-Oriented Information Flow Management in Development Processes 399

manner, stored persistently, and possibly transformed into the semantic query
language.

The scenario ends with the discussion of the information returned from
the contractor. Video conferencing tools, as developed by the subproject B3,
can well be applied here to allow direct communication between the experts
of chemical and plastics engineering (cf. Subsect. 3.3.2). After entering the
final decision into the PDW, earlier design steps might need to be revisited
if a central assumption of the extruder design had to be changed, e.g., the
rotational speed. In cooperation with the AHEAD administration system,
PRIME and the PDW can follow the traces and determine the necessary
steps (see Subsect. 3.2.6).

The scenario of cross-organizational cooperation has been described, as
supported by the application tools of the PDW. Of course, many of the steps
are designed to be used by, or in cooperation with, existing and newly de-
signed domain applications, and thus as services offered by the PDW. This
primarily includes the tools of the CRC subprojects themselves. As described
in the beginning of this subsection, the AHEAD administration system real-
izes delegation- and view-based support for inter-organizational cooperation
processes on the task management level (cf. Subsect. 3.4.4). The services of-
fered by the PDW can be used to integrate the coarse-grained task manage-
ment (“What should the contractor do?”, “Which documents does he need?”)
with the semantic information access (“What information does the document
need to contain, so that the contractor can achieve the given task(s)?”). On
the fine-grained process support side, there is a tight connection between the
PDW and the PRIME environment, especially concerning the recording of
process traces, as described above for the side of the contractee. Last but not
least, an important task of the PDW in this cross-organizational setting is
the ontology-based information exchange, offering interfaces that are to be
accessed by any kind of tool available at the cooperation partner’s site, e.g.,
via the web or web service interfaces.

4.1.8 Summary and Conclusions

The conceptualization and implementation of the authors’ Process Data Ware-
housing approach has been illustrated, as realized as part of the research done
in the subproject C1. Aiming at goal-driven information flow management,
three different prototypes have been described in their application and evalu-
ation for engineering design process support.

The Query Assistant of the PDW has been designed to aid the PRIME
process-integrated environment by extended situation analysis and method
guidance. It has been demonstrated in the context of a process engineering
design scenario, guiding the expert through the realization of a separation
unit as part of a polymerization plant design. For the enrichment and an-
notation of weakly structured traces, the TRAMP tool has been described

400 S.C. Brandt et al.

with its support functionality for plastics engineering simulations. The mul-
timedia artifacts (videos and images) resulting from three-dimensional BEM
simulations of compounding extruders, can thus be recorded and reused as
experience traces.

The Core Ontology has been introduced and exemplarily extended with
the domain model(s) of extruder design. The current prototype of the PDW,
as realized on top of this Core Ontology, has been demonstrated in an example
scenario from plastics engineering. It has been shown how the process steps
and product artifacts are captured, structured, and later on offered for reuse
in the scenario. Extensions for cross-organizational engineering have been in-
troduced and described.

The research described here resulted in the Process Data Warehouse
(PDW) as a process and product tracing and reuse platform for engineering
design processes. Tools have been realized and integrated to directly apply this
reuse functionality. Additionally, this service platform is offered to the other
projects of IMPROVE. Using an integration-by-concept approach, a docu-
ment management system was connected to the PDW to enable distributed
and versioned file storage.

By integrating the partial models of several of the other subprojects –
A2, A3, B1, B4, and the C3 modeling formalism – some support has already
been realized, while other application scenarios are still in design or planning.
Using the integrated models and the services offered by the PDW environ-
ment, the tools of these subprojects are provided with extended functionality;
even basing their data directly on the models and storage functionality of the
repository is possible.

For future research, several open problems need to be examined. The as-
pects of cross-organizational cooperation have only been treated in an initial
approach that needs to be extended further. Also, there are plans to extend
the traceability approach onto the full life cycle of a chemical plant, integrating
the design traces with operation, modification, and reengineering processes.
Work also has to be done in the transition between process and control engi-
neering, as integrated support for passing and converting design information
between those phases is mostly missing.

For the plant operation phase, the integration-by-concept scheme is be-
ing extended to enable the integration of ERP systems (Enterprise Resource
Planning, especially SAP) on the one hand, and the shopfloor MES (Man-
ufacturing Execution Systems) and other operation data recording systems
on the other hand. The latter systems are usually even more heterogeneous
than those used during design. Often, no integrated capturing of the data is
done at all. A project is in preparation to transfer the results of the research
presented here, into the design and management of rubber recipes, and onto
production control systems of the extrusion processes based on these recipes
(see Sect. 7.5).

4.2 Service Management for Development Tools

Y. Babich, O. Spaniol, and D. Thißen

Abstract. Tools used in development processes in chemical engineering and plas-
tics processing are often highly heterogeneous with respect to the necessary software
and hardware. In the previous chapter, several functionalities for improving a devel-
opment process in different aspects was presented. But one problem still remains:
when coupling such heterogeneous tools, many technical details are to be considered.

This section describes a service management platform that aims at hiding such
technical details from new tools as well as from developers, and at ensuring a perfor-
mant execution of all tools and services. The integrative support presented in this
section is located at a lower level. Here, the focus is on the provision of a transparent,
efficient, and fault-tolerant access to services within the prototype developed in IM-
PROVE. A framework was developed that allows efficient communication support,
and the management of both, integrated tools and external services. The framework
also allows an a-posteriori integration of existing development tools into the man-
agement platform. Framework and management are applied at platform level in this
section.

4.2.1 Introduction and Problem Area

Tools and methods described in Chap. 3 implicitly rely on infrastructure com-
ponents at a lower level of abstraction. These are hardware, networks, oper-
ating systems, and distribution platforms as opposed to the higher-level logic
of direct support for developers [264]. This section deals with a service man-
agement platform that offers common interfaces for communication and coop-
eration to other tools and internally maps physical resources to logical ones
(see Subsect. 4.2.3). This frees the other projects from the need to consider
technical details of platforms, tools, services, and documents [443].

The solution presented here is based on CORBA [877], a wide-spread and
mature middleware platform. CORBA provides direct support for a multi-
tude of service management aspects in distributed systems [262]. Furthermore,
there are many stable implementations. Thus, a first step was the selection
of an appropriate CORBA implementation, based on an evaluation of the
runtime characteristics (see Subsect. 4.2.3). For an a-posteriori integration of
non-CORBA-based tools (e.g. those which were designed for Microsoft Win-
dows) with the CORBA infrastructure, Microsoft’s COM/DCOM [847] inter-
face is used and wrappers were developed to integrated those technologies (see
Subsect. 4.2.4).

At the same time, by introducing a service management platform which
separates tools, documents, etc. from physical resources, management of ef-
ficient and fault-tolerant execution of development tools can be integrated
transparently [422]. The service platform includes various functionality to do
so. A basic functionality is the integration of a service trader which can find

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 401–429, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 Y. Babich, O. Spaniol, and D. Thißen

services and tools that can perform certain tasks with a certain quality. These
tasks include e.g. simulations and direct communication. Here, response time
is most important, thus the service selection optimizes the response time (see
Subsect. 4.2.5).

Furthermore, the tools and services must be configured according to the
needs specified in the higher layers of the environment. During the execution,
applications must be observed. In case of a failure they must be either recov-
ered, or the execution must be transferred to another instance of the same
(or a compatible) application (see Subsect. 4.2.6). In addition, Web Services
technology is supported as more and more such services are available on the
Internet (see Subsect. 4.2.7).

4.2.2 Overview of Related Work

A comparison with some closely related publications is provided in the fol-
lowing subsections. Here, only a brief overview of related work in the area of
service management and trading in distributed systems is given.

While service management systems for specific application domains are
generally disregarded, definitive progress has been made in standardizing ap-
plication domains as part of middleware platforms [878]. The virtual enterprise
concept is similar to the scenario discussed in this book. General approaches
to implement a framework for the management of virtual enterprises are sug-
gested, for instance, in [893].

Trying to optimize the runtime performance of the tools in the develop-
ment environment, requires an adequate Quality of Service (QoS). QoS in the
network can be implemented with IntServ, DiffServ or MPLS [1068]. However,
in the scenarios considered here, a host’s performance usually plays a greater
role for the overall performance. Moreover, no QoS management is available
in the application domain considered. There are, however, other, more flexible
approaches, e.g. the application of mobile agent technology to network and
system management, evaluated for example in [557] and [1001].

Service trading is a mechanism that supports the selection of one out
of a set of similar services offered by different providers. An early work to
consider performance aspects in service selection was [1056], which proposed
the usage of a“social”service selection mechanism. Such a mechanism does not
guarantee an optimal selection for each client, but tries to optimize the global
behavior of a system by using load balancing. Load balancing in distributed
systems was a successor of techniques such as scheduling of batch processing
in time sharing systems [965]. Papers such as [953] describe so-called relative
load metrics for the load balancing process.

4.2.3 Architecture of the Management System

This subsection considers two topics: On one hand it gives an overview for our
service management system by sketching its architecture. On the other hand

Service Management for Development Tools 403

it describes the analyzes we have carried out before deciding for CORBA as
the underlying implementation of our system.

The Architecture

The architecture, depicted in Fig. 4.12, reflects the tasks that are performed
by the management platform. Task distribution, performed primarily by the
service trader and load balancer (see Subsect. 4.2.5), plays a central role here.
Configuration, performance, fault, and security management are separate en-
tities and are described in Subsect. 4.2.6. The problem of the integration of
legacy tools is described in Subsect. 4.2.4.

Fig. 4.12. Architecture of the management platform

The management system relies on the Common Object Request Broker Ar-
chitecture (CORBA) to deal with the problem of heterogeneity. CORBA is a
prominent example of a distribution platform [877]. The CORBA architecture
consists of five functional areas [1024]:

• Object Request Broker (ORB), which is responsible for transparent com-
munication between objects, i.e. clients and servers,

• CORBAservices, that perform basic tasks for implementing and using ob-
jects in a distributed environment,

• CORBAfacilities, a set of generic services,
• Domain Interfaces, oriented towards a specific application domain, and
• Application Services, developed by third party companies.

The data transfer in CORBA is realized by the ORB which transmits requests
and results between clients and servers. This mechanism is based on the Re-
mote Procedure Call (RPC). Data structures that should be transmitted must

404 Y. Babich, O. Spaniol, and D. Thißen

be defined in the CORBA Interface Definition Language (IDL). All objects
must be described as IDL data types. Prior to sending, the ORB serializes
(marshals) these objects and transfers them as strings of octets.

As all communication was envisaged to be based on CORBA, the first step
was an investigation of data transfer methods provided by CORBA, to find out
if the communication mechanisms are suitable for the application domain.

Evaluation of Data Transfer in CORBA

The CORBA implementation Orbix from IONA Technologies [750] was used
in the project. Yet, before implementing all project software on top of Or-
bix, it was examined with regard to performance in data transmission [447].
Orbix is a fairly efficient implementation. It implements large parts of the
CORBA specifications, and has a very broad installation base in companies.
Another important criterion was Orbix’ provision of extended features that
support object and communication management. Although it had a number
of deficiencies at the time of decision making, it was clear that it was rapidly
developed further [421].

Studies on Orbix (version 2.3; later a transition to a newer version was
made) consisted of the analysis of the influence of different hardware archi-
tectures on communication in CORBA, the overhead produced by commu-
nication operations, a comparison between different modes of data transfer,
the applicability of updating methods, and the realization of multicast com-
munication. Synchronous, oneway, deferred synchronous, and the use of the
CORBA Event Service for asynchronous communication were investigated.
The data transferred in each experiment were strings, due to the lack of con-
tainer objects in CORBA.

The following results were obtained:

• Relatively low data transfer rates of some Kbyte/s reduce the usefulness
of CORBA. Even if concrete values depend on server and network infra-
structure, the general conclusion is that CORBA should not be used for
transmission of continuous data streams like e.g. video or audio.

• For direct transmission, the synchronous data transfer mode is more suit-
able than the asynchronous mode. If multicast is required or frequent dis-
ruptions occur, the asynchronous data transfer mode is preferable.

• For all transfer modes, the transmission of data within a small number of
large packets is the most efficient method.

Furthermore, it is important how servers obtain continuous data (e.g., load
data from monitors, see the next subsections). We considered two strategies
called caching and polling. Caching involves a ’passive’ server that regularly
collects data sent by other system components, whether or not the information
is actually needed. In case of polling the update process is initiated upon
request from the server.

Service Management for Development Tools 405

Fig. 4.13. Comparison of caching and polling performance in Orbix

To compare these strategies the following scenario was set up. A client requests
a service from a server, which in turn needs information from three other
system components to provide this service. This information is transmitted as
a sequence of strings, using polling and caching.

Figure 4.13 shows the results obtained for this scenario. It can be seen that
the requests are processed faster when caching is used rather than polling,
even if the server is under high load through a large number of requests and
small update intervals. Thus, caching seems to be the more suitable method.
However, the network load caused by caching must not be ignored. In case
of 500 client requests, polling achieves a transfer rate of about 0,1 Kbyte/s.
The caching method with one update each 25 ms needs to transfer more than
60 Kbyte/s. This value is independent of the number of requests, whereas the
transfer rate in the case of polling decreases with a reduced number of requests.
Scalability is another difference between caching and polling. Because of the
transmission process structure, polling has no scalability problems. In contrast,
there are limits for the caching mechanism, see Fig. 4.14.

These results had shown that it is not recommended to do all data transfer
via CORBA. For certain data types, e.g. video and audio data, other transfer
mechanisms had to be integrated. Nevertheless, for small amounts of data,
especially control information and for monitoring purposes, it was decided to
use CORBA because of its ability to handle heterogeneity.

4.2.4 A-posteriori Integration

A coordinated interworking of tools is necessary since failure or blockage of one
component must not defer the entire development process. Hence, bottlenecks
and breakdowns have to be found and eliminated in the fastest possible way.
Consequently, a service management system for managing the execution and
interaction of the development tools and the supporting services is needed

406 Y. Babich, O. Spaniol, and D. Thißen

Fig. 4.14. Scalability of caching

to guarantee high availability, fault tolerance, efficiency, and reliability. For
the reasons discussed above, CORBA was chosen as basis for this system to
handle heterogeneity and to enable the cooperation of the development tools.

Unfortunately, existing tools usually do not provide an off-the-shelf COR-
BA interface out-of-the-box, which would allow for control operations to
be performed. Often, however, the tools can be controlled through other,
operating-system-specific or proprietary interfaces. In order to integrate tools
into our CORBA-based environment, wrappers were developed that perform
the communication between the CORBA service layer and the tools. Thus,
the tools are represented by CORBA interfaces. Wrappers were enriched with
tool management functionality and constitute so-called management proxies.

Access to Legacy Applications

There are several potential ways of integrating the management extensions’
functionality into systems like those developed in IMPROVE.

• Direct integration: This is a very specific approach, where the management
code is directly embedded in the original source code. It allows full control
over the application and provides all information necessary for the manage-
ment evaluation. Such an embedded approach, however, is not advisable,
as it is application-specific and very difficult to maintain and to modify.
This is often even impossible because the source code is not available.

• Interface extension: Object interfaces in CORBA are defined in IDL, in
order to hide implementation details and heterogeneity in distributed sys-
tems. Extending the IDL specification with management functions, yields
a modular approach. The management functionality provided by the ob-
ject can be accessed by management components via the standardized
interface and thus be modified without having to reconstruct the entire

Service Management for Development Tools 407

system. However, although the process of adding the code can be auto-
mated as part of the IDL compilation process, it still requires the explicit
modification of source code.

• Linking: Adding management functions to an object at a later point can
be done through the linking process. Pre-configured libraries containing
the management part can be linked to the original application.

Although the linking approach does not require an explicit modification of an
object’s source code, it still requires the code to be available for re-compilation.
However, in the case of management of the development tools, problems arise
from the fact that an a-posteriori integration has to be made. As the source
code of most development tools was not available, the approaches mentioned
above cannot be used. Instead, a new approach was needed which is capable
of adding a uniform management functionality to each of the development
tools.

Unfortunately, the tools offer different capabilities for adding manage-
ment functionality. Some provide OLE interfaces, which enable access over
a CORBA-COM interface. Although the general approach is the same, no
uniform access functions are given, because the OLE interfaces of the appli-
cations are different. Some applications offer CORBA bridges, which usually
provide limited access operations. Some applications, however, offer neither.

In order to provide a uniform management functionality which allows man-
agers to access these applications via standardized interfaces and thus avoids
proprietary and application-specific management solutions, a new approach
was chosen, which is presented in the following.

Management Proxies

For the integration of legacy applications into a CORBA-based management
system, different approaches are possible: The most simple approach is to use
only the management information which can be provided by the ORB. This
could be the number of requests to a server or the response time of the server.
This can for example be achieved via so-called interceptors, see the CORBA
specification [877]. Yet, this approach merely gives minimal access to servers,
and only a limited set of management information can be used. Furthermore,
this approach requires applications to provide a CORBA interface.

A more promising approach deploys the concept of management wrappers,
or management proxies [275], see Fig. 4.15.

Such a proxy hides the details of an application by encapsulating its inter-
face and offering a new CORBA interface to clients and management applica-
tions. The requests made by clients are simply passed to the original interface
of the application. This way, for a client the functionality of the application
remains the same. Internally, the wrapper contains additional functionality,
which is made available to management applications (as well static manage-
ment components as mobile agents) through a uniform CORBA interface.

408 Y. Babich, O. Spaniol, and D. Thißen

Fig. 4.15. Management proxies

Thus, the service manager itself does not need to adapt to each managed ap-
plication; it has one general management interface, which is mapped by the
proxy internally to specific application interfaces. This concept allows a man-
ager to obtain more detailed management information and to perform more
complex management actions by using the specific interface of an application
and additional features of the wrapper, for example measurements, surveying
of thresholds, and statistics. Thus, this concept is suitable as an a-posteriori
approach.

Moreover, the uniform interfaces allow new management approaches to be
easily deployed. For instance, a mobile agent locally executing a management
task can access the applications management data via the same methods as
a central management component. Based on the needs of the aspired envi-
ronment, this structure of the wrapper’s interface was determined. It must
be taken into consideration that the introduction of the management wrap-
pers adds an overhead to the underlying system, causing increased execution
times.

4.2.5 Trader and Load Balancer

To save cost and time, the tools and services in a development process should
be executed as efficiently as possible, i.e., if there are several instances of a
service that could be integrated, the cheapest one or the one with the shortest
processing time should be used.

Thus, a method for assessing and choosing tools and services with respect
to their quality was developed [265]. The term quality, or Quality of Service,
refers to non-functional properties of a service, for instance cost, performance,
or availability. Suitable services must be found by the management layer upon
request. It is of further substantial benefit if applications and services, such as
simulators or communication tools, can be selected from a set of interchange-
able instances. This is very likely to be the case in collaborative distributed
scenarios.

Service Management for Development Tools 409

The choice of a service that meets the needs of the caller is performed by
a component called service trader. This is a variation of a name server, where
searching for services is done in terms of service type (the kind of service)
and non-functional service properties. The CORBA specification includes a
standard trading service, which has, in our view, a major drawback (e.g., for
multimedia applications): It only performs a hard match (yes/no) of the ser-
vice parameters onto the request parameters, and does not allow for selection
of services that do not exactly fulfill the requirements but have almost the
desired properties.

Trader

Our approach [265, 440, 445] enhances the simple selection mechanism of
the CORBA trader to consider QoS. Here, an importer (which is the client
using a trader to search for a service) describes a service by service type
and service properties as before, but it is possible to specify roles for several
values of the same property, namely a target value for the property, a lower
bound (minimum acceptable quality) and an upper bound (maximum useful
quality). This enhancement allows a client to formulate wishes and limits on
service properties, see Fig. 4.16. Additionally, preferences for specifying the
importance of properties can be expressed. These values, describing different
aspects for the same quality criterion, are called Service Request Property.
The importer can specify a whole vector of such properties to express its
complete requirements on a service through different QoS aspects. In a similar
way, a server offering a service can describe its limitations and capabilities by
expressing upper and lower bounds for the quality aspects it can deliver.

When a client searches for a service, it now formulates the Service Request
Property Vector and sends it, together with the searched service type, to the
trader. The trader matches it against all Service Offer Property Vectors of
services with the same service type, and selects the best match. In this context,
matching means that a quality score is computed for each service offer, and
the service with the lowest value is chosen as the best service.

Fig. 4.16. Service properties in the request and offer descriptions

410 Y. Babich, O. Spaniol, and D. Thißen

The matching is done in two steps. First, a so-called distance is computed
between the single elements of Request and Offer Vectors. For that purpose, a
set of rules was defined [265] to consider all roles which can be specified for
one element. The result of this computation is a vector of differences between
the client’s demands on certain quality aspects and a server’s capabilities. A
number of distance functions on vectors are well-known in analysis, especially
the maximum, Euclidean, and Manhattan metrics. Those were integrated to
map the difference vectors to scalar values, assessing the usefulness of a service
for the client’s demands. Minimization over the values for all available service
instances returns the best fitting service, and the client can start using this
service directly.

Load Balancer

Trading is a valuable concept to support binding between clients and servers
in large open systems. Still, individual servers can be overloaded. To avoid
such an overload, load balancing can be used. A load balancer tries to realize
a perfect distribution of the clients’ requests to the available servers. Yet, it
can only select one server in a particular group; in large open systems, the
load balancer would have to know exactly the type of the service to select a
server. Additionally, the load balancer can only select a server based on its
load, not on its service properties.

Thus, a combination of trader and load balancer seems to be a suitable
solution for a load-oriented assignment of servers to clients in a distributed
environment [439, 441, 442]. A simple approach would be the usage of load
values as dynamic service properties within the trader. The trader could per-
form a load distribution based on these attributes. Yet, it could be hard or
even impossible for a service provider to offer an additional interface where
the trader could request the information about dynamic attributes, especially
in cases where legacy applications are used. Furthermore, this concept is in-
flexible, as a more differentiated interpretation of the load value would be
hard. Therefore, this simple solution is not feasible in our environment.

For a better enhancement of a trader with a load balancing mechanism
some design issues had to be kept in mind: It must be possible to use the
trader with or without load distribution. The load distribution process has
to be transparent for the user, but it should offer the option to influence
the process, e.g. by defining special service properties. Such properties could
refer to the information whether or not load balancing should be performed,
or which influence the load parameter should have compared to the service
quality. The load balancer should be integrated into the trader to achieve a
synergistic effect by exchanging knowledge between trader and load balancer
[448, 449]. Furthermore, the load balancer should be flexible to enable the use
of several load balancing strategies and load definitions.

The architecture of the enhanced trading system is shown in Fig. 4.17.
A monitor is installed on each server host to observe all local servers. The

Service Management for Development Tools 411

Fig. 4.17. Architecture of a trader combined with a load balancer

monitor is connected to the load balancer, which is located on the trader
host. A client imports a service from the trader and uses the selected server.

Service usage can be determined using a variety of metrics, e.g. the CPU
load, the network load, or the load caused by I/O operations. To determine
the CPU load, the servers’ queue length, the service time, and the request
arrival rate can be used. Each participating server is equipped with a sensor,
which collects this information and sends it to a monitor. As most applications
in our scenario are legacy applications, the management wrappers were used
to enhance an application by the necessary functionality. Load information
includes the service time, the process time of the service, the available CPU
capacity, and the queue length. The load information is passed to the monitor.
This monitor manages a local management information base of load infor-
mation and enables the load balancer to access it. It has a list containing all
hosted servers and their respective load. As different load metrics should be
possible, all load information - which is transmitted by a sensor - are stored.

The monitor not only stores the received load values, but also calculates
additional, more ’intelligent’ values. This includes the computation of a float-
ing average value for the load values as well as an estimation of the time
required to process all requests in a server’s queue. This estimation uses the
mean service time of the past service usages and the time for the current
request to estimate the time the server will need to process all requests.

As no outdated load information should be used by the load balancer,
a monitor uses a caching strategy to update the load balancer’s information
at the end of each service usage. Some values, e.g. the queue length and
an estimation of the time to work, are also sent to the load balancer upon
each start of a service usage. Based on the load values’ access and change
rates, a dynamic switch between caching and polling can be performed. This
mechanism is shared by load balancer and monitor. In case of the polling
strategy the monitor knows about access and change rates, thus it can switch
to the caching mechanism. On the other hand, if caching is used the load
balancer has this information and can switch to the polling mechanism if
necessary.

412 Y. Babich, O. Spaniol, and D. Thißen

Based on a client’s service specification the trader searches its service direc-
tory. Services meeting the specification are stored in a result list. The sorting
of the service offers is done according to the degree of meeting the client’s
quality demands.

For the integration of a load balancer this sorting is not sufficient, as the
servers’ load must also have an influence on this order. Thus, we had to
introduce some modifications to our trader. When a new entry is added to
the result list, the trader informs the load balancer about the corresponding
server. As the load balancer only knows about load aspects, it cannot do the
sorting according to the client’s constraints. To enable the consideration of
both the trader’s sorting and load aspects, the trader must assign a quality
score characterizing the degree to which the client’s requirements are met by
each service offer.

After searching the whole service directory, the trader calls the load bal-
ancer to evaluate the most suitable service offer instead of sorting the result
list relating to the quality scores. To influence the evaluation, information
about the client’s weights regarding quality score and load are also passed
to the load balancer as well as the metric to combine both values. The load
balancer returns an index identifying a service offer in its list. The object ref-
erence belonging to this offer is returned to the client. In addition to the load
balancer’s mechanisms the trader implements a random strategy to determine
an order for the services found. This can be seen as a static load balancing
strategy which can be used for evaluating the gain achieved by using the load
balancer’s strategies.

The load balancer manages two tables (Fig. 4.18). One contains the man-
agement information about the known servers (ServerMonitorTable). In this
table, each server in the system is listed together with the monitor responsi-
ble for measuring the load, and the load itself. The other table, ScoreTable, is
created when the trader receives a service request. Each service offer found by
the trader for this request is recorded in the table together with the quality
score computed by the trader.

After the trader has searched the whole service directory, the load balancing
process begins. The approach chosen here consists of two steps. First, the load
for all recorded servers is obtained from the ServerMonitorTable and inserted
into the ScoreTable. Getting the load for all service offers at this time implies
that no old load information is used. The ’load’ field in the ServerMonitorTable
does not contain a single value, but a set of load values for all different load
balancing strategies.

Currently, three strategies which try to minimize the system’s load regard-
ing to a particular load metric are implemented:

• Usage Count (UC) only counts the past number of requests mediated by
the trader.

• Queuelength (QL) considers the current number of requests in a server’s
queue.

Service Management for Development Tools 413

Fig. 4.18. Internal data used by the load balancer

• Estimated Time to Work (ETTW) calculates the estimated time a server
will have to work on the requests currently in its queue.

The load value represents a score for a server. That is, the server with the low-
est score has the lowest load. The load values corresponding to the chosen load
balancing strategy are copied into the ScoreTable. The second step combines
the score obtained by the load balancer with the quality score calculated by
the trader. Metrics are used to calculate an overall score for each service offer.

Measurement results indicate that the random strategy yielded the worst
request distribution with respect to mean response time, which was to be
expected (Fig. 4.19). UC is second worst in high load situations, as it does
not consider the service times for the incoming requests. For lower system
loads, UC is more suitable than ETTW. As the service times vary heavily,
errors may occur in the estimation of ETTW, which then cause a wrong
decision for the next request distributions. Only for high load situations this
error is smaller than the unfavorable distribution caused by UC. The error in
estimation is also the reason for ETTW performing poorer than QL. QL only
counts the number of unserved requests; in this case, a distribution without
more information about the requests is better than using potentially wrong
information.

The optimization of service selection with respect to the servers’ respec-
tive load is a worthwhile enhancement of the trader. The response times of
servers offering a service which is available in several places can be significantly
reduced. The cost for this advantage is an increased service mediation time,
but this overhead is very small. The usage of trader-internal knowledge, like
a server’s number of mediations, is of substantial advantage only in idealized
scenarios. In a heterogeneous environment, it does not help to significantly im-
prove the load situation. For such environments, dynamic strategies are more
suitable. A simple strategy, e.g., considering the servers’ queue length, proves
best for most situations. The weighting of the load influence against the ser-

414 Y. Babich, O. Spaniol, and D. Thißen

Fig. 4.19. Gain of load balancing strategies depending on the system load

vice quality should be the user’s choice, but some experiments indicated that
it is best to give them equal weight. Network transfer quality was a topic also
considered, but it had been shown that much more effort is necessary than
justified [114].

4.2.6 Service Management Components

A service trader is only used to support the binding between a client and a
server; after the binding process, the trader is no longer involved. That is, the
trader cannot guarantee that the quality is kept during the whole service usage
process. Therefore, a management system is needed to control the execution
of all applications and their runtime behavior.

In classical network management, such functionality is subdivided into
five categories: configuration management, fault and performance management
(which we treat as one category), security management, and accounting man-
agement (not relevant in the given context). The realization of the function-
ality is done separately for each category.

Furthermore, the management system is split into management proxies
that reside on the same hosts as the managed applications (see Subsect. 4.2.4)
and the management components that are responsible for particular tasks
(fault, security, etc.) and can reside somewhere in the network or can be im-
plemented as mobile agents (see below). A hierarchical approach to create
a structure of management components for scenarios with cross-enterprise
cooperation is discussed in [438]. In the following, only the management com-
ponents for the different functional areas are described.

Service Management for Development Tools 415

Dynamic Configuration Management

In network and system management configuration refers to the placement,
adjustment, and interworking of hardware and software components in a com-
pound of applications. Providers of developer tools can suggest configurations
in order to provide better performance or better reliability. Additionally, a
system administrator can define optimality criteria. The decision about con-
figuration parameters can depend on the current usage pattern, so dynamic
reconfiguration may become necessary.

In our system, the configuration manager supplies control data (such as
parameters that are to be monitored) to the management proxies and monitors
at run time. It is based on the Common Information Model (CIM) [636], which
is a standardized model for representing various aspects of management of
applications, systems, and networks.

CIM is subdivided into three layers : the core model, common models,
and extension schemas. The core model consists of a small number of classes
for a unique description of all components. Common models enhance this
basic information for special domains like database, application, or networks.
Extension schemas can be defined for adopting the descriptions of the common
models to specific products.

To use CIM, several enhancements had to be made. A Restriction class
was introduced to describe situations when a product licence is limited to
certain network addresses, or to describe information necessary to enable high-
performance execution of tools. As CIM lacked a user concept, we extended
it by a User class [438].

We subdivided the system description into the static structural model view
and the dynamic configuration view. The current configuration of the develop-
ment environment based on the information model is provided by the configu-
ration manager. It holds all static environment information. The configuration
manager is dynamic, i.e. it can reconfigure the environment at runtime. To
ease the use of the service in the distributed environment, it is implemented
according to the CORBAservice paradigm.

Run-time information about integrated tools is obtained with the help of
management proxies, as described in Subsect. 4.2.4. Additionally, host moni-
tors (Subsect. 4.2.5) provide application-independent performance parameters
of systems and networks.

From the specification of a service given by the information model policies
are generated which define rules for monitoring and controlling the service.
Management proxies and host monitors obtain policies from the configura-
tion manager. They are instructed about the parameters which need to be
monitored during service execution.

The system administrator can use the configuration manager to formu-
late restrictions for applications, to install new software, or to make re-
configurations. Additionally, the administrator can obtain a dynamic view
from the monitors via the performance and fault service. In case of a perfor-

416 Y. Babich, O. Spaniol, and D. Thißen

mance problem or a fault, the dynamic view provided by monitors, and the
static view provided by the configuration service, can be used by the system
administrator to detect the problem’s source, choose a reconfiguration method,
and compute the new configuration. One approach for partly automating this
error handling, involving mobile agents, is described in the next subsection.

Distributed Management with Mobile Agents

For effective performance and fault management mobile agents were employed
[269]. Mobile agents are autonomous pieces of application code that can move
from host to host carrying their code, data, and status with them. This leads
to local instead of remote communication, which reduces network load and
response times.

There are special platforms for mobile agents, but inter-agent communi-
cation can also be based on CORBA [266, 267, 273], which integrates them
better into the management system and allows to use the agents for managing
CORBA objects.

The general assumption that mobile agent based solutions perform better
than those relying on remote communication is not correct, as it ignores the
impact of the overhead introduced by mobile agent migration [263]. Rather,
the benefit of migrating agents depends on many factors such as mobile agent
size, size and number of communication requests, parameters of the underlying
network, etc.

Using mobility only in certain situations can help to improve performance;
thus the concept of strategic mobility was developed in which an agent decides
whether or not it makes sense to migrate or if a remote call is to be preferred
[270–272, 274]. To develop a decision algorithm for mobile agents which en-
ables them to decide if migration or remote communication via RPC performs
better in a given scenario, we first had a look at the basic properties of both
alternatives. We evaluated the respective execution times in different scenarios
to provide the agents with decision rules based on observations of the num-
ber of interactions, the size of requests, and the status of the network. The
strategically mobile agents can decide freely whether or not to migrate prior
to processing a task.

To evaluate this new mobility concept, the expected response times have
been calculated. The same has been done for static agents, which always
communicate remotely, and for mobile agents which exclusively communicate
locally, i.e. always migrate prior to communication. At the same time, several
ratios of correct and erroneous decisions of strategically mobile agents were
compared to examine best and worst cases of agent decisions.

The results are shown in Fig. 4.20 (left). The more a scenario is in favor of
RPC communication, the better RPCs will perform and the lower the expected
response time will be. For mobility, an analogous situation can be observed.

Figure 4.20 also shows that the performance of strategically mobile agents
can differ widely, depending on the quality of the decision process. The two

Service Management for Development Tools 417

extreme cases of a strategically mobile agent are also shown in the left graph
of Fig. 4.20: A strategically mobile agent always making the right decision
on the one hand vs. one always making the wrong decision. Between these
extreme cases there is a wide range of possible outcomes of strategic mobility,
depending on the decision algorithm of an agent.

The right graph in Fig. 4.20 reveals a high potential of strategic mobility
with regard to performance. Compared to pure RPC and migration based
task processing, the strategic mobile agents can achieve a high performance
improvement. However, it is important to keep in mind that inadequate deci-
sions can also considerably deteriorate the performance.

Fig. 4.20. Evaluation of strategic mobility

The usefulness of migration depends on the interaction pattern. We abstained
from using mobile agents for the collection of dynamic service properties re-
quired by the load balancer [362], because the interaction pattern suggests to
use the PRC.

Nevertheless, mobile agents were used for detecting network and system
problems which can alter the service properties as considered within the trad-
ing process [361, 364].

Error Detection with Alarm Correlation

Frequently, there are complex dependencies between services and some events
that occur during their execution. In such cases it is not easy to find the reason
for a particular error which occurs during interaction between several tools
and services.

In common network management, network or system components (which
in this context are treated as managed objects) can notice an exception, i.e. an

418 Y. Babich, O. Spaniol, and D. Thißen

error or a bottleneck. In this case they send an alarm message to the respon-
sible management component. Similar to this standard approach, the tools in
the application area are integrated as managed objects by the management
proxies. The management proxies can sent out alarms if necessary.

To provide a management that is transparent to the upper layers, these
alarms have to be collected and analyzed, to pinpoint and solve the problem.
Often, only a specific combination of alarms is meaningful. For instance, when
simulation data is sent from one tool to another and the data flow stops, in-
formation on, e.g., the source host, the source application, the network, the
network subsystem of the target host, or some combination of them can be
the source of the problem. The process of finding a meaningful combination
of alarms is called alarm correlation. Usually, a set of rules is defined that
describes dependencies in a complex system and allows for locating the com-
ponent which causes the problem.

In a first step, a system for alarm correlation to collect data and react
on alarms was developed purely based on mobile agents [268]. The system’s
drawback was poor scalability. For large systems with a multitude of alarm
types and complex correlations, the logic of mobile agents would grow and
make the migration overhead unacceptable. This could be solved by using
only simple correlation mechanisms, but then the error recognition rate would
deteriorate considerably.

For this reason, an alarm correlation service was designed as a static com-
ponent, only supported by mobile agents [272]. It should be noted that this
service is implemented like a CORBAservice, thus there could be several co-
operating instances of the service distributed over a large system, responsible
for individual administrative subsystems.

The structure of an alarm correlation service is shown in Fig. 4.21. The
three main functionalities of the correlation service are

• collection of static and dynamic information and suitable representation,
• collection of alarms, and
• correlation of alarms and providing results to mobile agents.

Each correlation service is composed of three modules, which correspond to
those three functionalities. The information module collects static and dy-
namic information on all system components, builds a class hierarchy, and
constructs a correlation graph. This graph is used as input to the correla-
tion module, which converts this information into a system matrix, holding
all information about correlations of alarms and sources of errors. A mobile
agent does not need to make a correlation itself, it can simply contact the
correlation module, which constructs a codebook according to the correlation
requests of the mobile agents, containing only the information relevant for the
mobile agent. The monitoring module takes care of the collection of alarms
and reports these alarms to the correlation module.

The correlation services communicate on two levels. On the correlation
module level, they exchange subscriptions of events for cross-domain correla-

Service Management for Development Tools 419

Fig. 4.21. Structure of the alarm correlation service

tions. On the monitoring module level, they exchange collected events accord-
ing to these subscriptions.

The role of the agents is restricted to error handling and does not involve
error detection. In contrast to the attempt to realize alarm correlation only
with mobile agents, this implementation shows much better scalability. Unfor-
tunately, an automated reaction to identified problems often is not that easy
to realize, as it usually needs a system administrator to react (e.g. in case of
hardware failure). Thus, for some faults, the correlation service only sends a
notification to the administrators.

Security Management

Data transmitted between computers may be subject to corruption and theft.
Industrial espionage can aim at obtaining simulation results and information
about the workflow, or an adversary may want to manipulate important data,
which would lead to incorrect results. Thus, security management was an
important part of the project.

420 Y. Babich, O. Spaniol, and D. Thißen

Main Concepts of Security Management

One part of the solution is encryption, which is a must when transmitting
sensitive data over the Internet, but less important in physically closed envi-
ronments. Encryption needs to be complemented by user and site authentica-
tion. Here, it is crucial that the users do not compromise the authentication
mechanisms by circumventing it.

Inside a company’s network, the cornerstone security measures are control
of physical access, prevention of social engineering, and systems for intrusion
detection and response. The former two are more of an organizational nature;
here, we briefly present an approach to intrusion detection, for details we refer
to [78] and [75].

Intrusion detection allows to secure the system against attacks by rec-
ognizing suspicious activity. Intrusion detection techniques to monitor users,
processes and communication protocols can be generally categorized into mis-
use and anomaly detection [823].

Misuse detection is based on the specification of the undesirable or negative
behavior of users, processes and protocols. It tries to detect patterns of known
attacks within the data stream of a system, i.e. it identifies attacks directly.
In order to do so it explicitly specifies attack patterns and monitors the data
stream for any occurrences of these patterns. The problem is that the set of
possible attack signatures is usually not completely known. Therefore, it is
difficult to make a clear statement about the limits and the coverage of a
misuse detection technique. In monitoring of a critical infrastructure, misuse
detection techniques alone cannot be used for a reliable state determination.

A dual approach is the specification of the desired or positive behavior
of users, processes and protocols. Based on this normative specification of
positive behavior attacks are identified by observing deviations from the norm.
Therefore, this technique is called anomaly detection. The positive behavior
can be specified through learning or specification.

The approach of specification-based anomaly detection was first proposed in
[789] and is based on the formal description of positive behavior. Specification-
based anomaly detection techniques do not rely on attack signatures as they
compare the actual behavior of a protocol or a process with the expected
behavior given by a specification. Therefore, the limits and the coverage of a
specification-based anomaly detection technique are clearly defined, although
not every deviation necessarily constitutes an attack.

However, from the monitoring and control perspective, even harmless
anomalies are usually of interest to a network administrator, as they are a po-
tential indication of error conditions or misconfiguration. Hence, specification-
based anomaly detection can have an advantage over misuse detection if the
specification itself is known.

Specifications of communication protocols and processes are either given
(e.g. a protocol specification) or can be derived. Thus, specification-based
anomaly detection can easily be used for a reliable state determination. How-

Service Management for Development Tools 421

ever, the general approach does not allow for further differentiation of detected
anomalies, which would be essential for the initiation of effective countermea-
sures.

The concept of transaction-based anomaly detection [76] provides the nec-
essary classification of anomalies.

Transaction-Based Anomaly Detection

The transaction concept is a major cornerstone of database theory. Transac-
tions are used to describe atomic operations, i.e. operations which are free
from interference with operations being performed on behalf of concurrent
clients; and either an operation must be completed successfully or it must
have no effect at all.

Transactions can be characterized by the ACID properties :

1. Atomicity: All operations of a transaction must be completed, i.e. a trans-
action is treated as an indivisible unit.

2. Consistency: A transaction takes the system from one consistent state to
another.

3. Isolation: Each transaction must be performed without interference with
other transactions.

4. Durability: After a transaction has successfully been completed, all its
results are saved in permanent storage.

For database transactions, the properties of atomicity, consistency and iso-
lation guarantee the avoidance of database anomalies (e.g. inconsistencies,
phantom updates etc.). But the ACID properties are also suited to classify
anomalies and related attacks in critical communication infrastructure.

Information exchange processes in a communication infrastructure can be
modeled as transactions that have to fulfill the ACID properties. If a trans-
action does not properly proceed and finish, the ACID properties provide a
direct categorization of the related anomaly. Based on this categorization, ap-
propriate and effective countermeasures can be applied. A direct violation of
the atomicity property, for example, corresponds to a denial-of-service attack,
as the transaction is not completed and therefore the requested service is not
provided. A buffer overflow represents a violation of consistency, and a race
condition a violation of isolation. Other attacks can be classified accordingly.
The corresponding anomalies can be detected by comparing protocol and pro-
cess runs with the given specifications, which are represented by extended
finite state machines.

A component-based prototype for intrusion detection and response has
been realized. It is based on Microsoft’s component architecture, the Com-
ponent Object Model (COM) and its extension, the Distributed Component
Object Model (DCOM).

The architecture of the prototype follows the layered approach of the
TCP/IP protocol stack. For each layer and protocol a corresponding ana-
lyzer is provided. Currently, the stateless analysis of Ethernet, IP, ICMP, and

422 Y. Babich, O. Spaniol, and D. Thißen

UDP packets and the stateful analysis of fragmented IP and TCP packets is
supported.

Mathematical analysis and performance measurements have shown that
it is possible to monitor a 100 Mbit/s network with standard hardware and
packets being analyzed on three layers (data link, network, transport layer).
However, for the monitoring of additional layers or higher bandwidths special
hardware or a combination of several intrusion detection systems has to be
used.

Based on the reported anomalies and information from other sources such
as network management, firewalls, etc. countermeasures can be initiated. To
initiate and control these countermeasures an appropriate mechanism is re-
quired. Continuing the analogy between intrusion detection and database the-
ory, the theory of active databases (see e.g. [899]) is applied. The theory of
active databases is built around the concept of active rules. An active rule has
the following ECA form:

on event E
if condition C
do action A

Based on active rules and the different information sources an active response
system can be defined as a tuple (S, E, R), where S = {s1, s2, . . . sl} denotes
the set of monitored system components, E = {e1, e2, . . . em} denotes the set
of related events, and R = {r1, r2, . . . rn} denotes the set of ECA rules defined
for S and E.

Figure 4.22 shows a simple rule set for monitoring and control of a critical
infrastructure. The rule set is layered according to the criteria given above,
with ri denoting a rule, Si denoting a layer, and Pi denoting the priority of
layer Si. The first three layers belong to the class of corrective actions. Layer
5 gives an example for a preventive and layer 6 for a forensic action.

For each layer a corresponding post condition is defined. The first three
layers ensure that each transaction obeys the A, C, and I of the ACID prop-
erties. The activation of a rule in a layer (e.g. r22 in S2) can result in the
activation of other rules within other layers (e.g. r51 in S5 and r61 in S6). For
the different layers different priorities are defined. Rules belonging to a layer
with higher priority can trigger rules at a layer with lower priority, but not
vice versa.

An implementation showed that employment of several intrusion detection
systems in parallel not only increases the fault tolerance but is also a scalability
parameter, allowing for adoption to changing network load; for further results
see [77].

4.2.7 Management of External Services

While the project started with choosing CORBA as communication infra-
structure and all applications and services were seen as objects [182], Web Ser-

Service Management for Development Tools 423

Fig. 4.22. An example rule set for intrusion detection and response

vices [1061] are becoming increasingly popular for loosely coupled distributed
applications that can be used across enterprise boundaries. They are not as
efficient as CORBA and similar middleware technologies, and can hardly com-
pete in terms of management flexibility. In fact, Web Services are generally
used as front-ends to some legacy systems. Yet, while keeping CORBA as the
basis for the management layer we also want to offer managed access to ex-
ternal services (not integrated into our environment) and provide a prototype
implementation for Web Services.

Ensuring Quality of Service for external services is difficult or even impos-
sible but necessary when they are used in conjunction with integrated tools.
We extended our architecture to allow for plugging external Web Services into
the CORBA based system with quality aware service selection. The monitor-
ing subsystem was extended to observe the behavior of remote Web Services
and to forecast the possible values of the relevant QoS parameters.

424 Y. Babich, O. Spaniol, and D. Thißen

Communication with a Web Service (using the XML-based Simple Object
Access Protocol, SOAP [974]) is normally comprised of uncompressed text
messages. The invocation of a Web Service is performed by a specially formed
request to a web server or an application server. No absolute guarantees can
be made either regarding the reachability of a particular Web Service or its
temporal characteristics.

Most research on QoS with respect to Web Services (e.g. [523, 625]) makes
use of Service Level Agreements (SLA) between the companies involved. This
is, however, not always possible, and new Web Services cannot be used imme-
diately.

In these approaches the provider is primarily in charge of offering the
required QoS. There is no possibility to use Web Services offered from a less
intelligent infrastructure, and if the provider fails to observe the SLA there
are no recovery mechanisms foreseen for the client.

In contrast, our focus is on communication with potentially unreliable ser-
vices and consumer side measures to handle the failures and to optimize the
execution quality. There are several points in the execution path of a Web
Service that need to be addressed in order to give at least statistical QoS
guarantees. They include: the network; the server side; the registry; and the
client side. We focus on the client-side implementation, having no control over
the remote Web Services and the network.

Integration of Web Services into the Environment

There are many tools that help encapsulating existing CORBA applications
and offering them as Web Services, but here we face a complementary task.
We assume that we have no control over the network and the Web Service
itself, and focus on the QoS relevant measures on the consumer side.

Several integration scenarios of different levels of integration have been
considered:

1. The framework’s applications can directly handle Web Services.
2. A registry is coupled with the trader.
3. The applications do not communicate directly with Web Services.
4. Applications are not necessarily aware of the Web Service protocols.

In our environment applications and services communicate in a very specific
way. Translating CORBA requests to SOAP cannot be performed by a generic
gateway without the complete knowledge of the interfaces. Solution 3 is there-
fore most feasible, allowing for QoS monitoring and control.

All requests are sent as CORBA requests to a Web Service gateway that
translates them into SOAP requests and forwards them to the correspond-
ing Web Service. In this case, the run-time behavior of the Web Service can
be observed and information for load balancing can be gathered. The major
drawback here is that a single gateway could become a bottleneck if there

Service Management for Development Tools 425

Fig. 4.23. Access to Web Services (WS) in the management layer

are too many requests, or too large ones. This can be solved, for example, by
creating a dedicated gateway instance for each Web Service.

Figure 4.23 shows the extensions for access to Web Services that have
been developed. They do not affect the principal architecture as described in
Subsect. 4.2.3.

Finding Web Services that can be used from within our environment is
not trivial. Using UDDI would be the most natural approach but there is
no common, world-wide UDDI registry. Instead, many companies maintain
their own registries. The difficulty is that potentially interchangeable services
may have different syntax or, conversely, services with syntactically identical
interface may have different semantics. Hence, in the absence of a universal
ontology that would allow for automatic checking of semantical equality we
have decided to manually load the descriptions of Web Services of interest into
a separate repository, and to not use the UDDI features directly. The manual or
semi-manual selection process will typically include searching and checking for
formal metadata (primarily syntax), informal annotations (usually semantic)
and potentially test requests and the inspection of results if the description is
not exhaustive.

Service Assessment and Selection

The objective of the selection process is to improve the execution characteris-
tics of those Web Services that are used quite often. We describe a statistical

426 Y. Babich, O. Spaniol, and D. Thißen

approach [6], which provides the more reliable results the more intensive the
usage of the observed Web Service is.

We primarily consider the following aspects of QoS: availability and reli-
ability on the one hand, as well as response time on the other hand. Clearly,
we can only observe the cumulative behavior of the Web Service itself and
the network. Execution behavior is logged and the most recent information is
used for comparison of Web Services potentially to be selected. We measure
the rate of successfully answered requests to address both availability and
reliability.

With respect to response time we want to address both static, long-term
service properties and dynamic, short-term characteristics. Static properties
are usually determined by the complexity of the task performed by the service,
the capacity of the server and the network between client and server. They
are usually accounted for by calculating a mean value, in this case the average
response time.

Dynamic properties depend on the current server load and congestions in
the network, as well as on short recoverable breakdowns of a server or the
network. As future server and networks states are not known in advance, a
prediction has to be made. Such a prediction is not very reliable if it is only
based on the most recent information. Rather, fluctuation patterns, period-
icity, and deviations from the average also need to be considered in service
selection.

The selection process, however, must not suffer from too complex algo-
rithms. Thus, we need a reasonable compromise between accuracy and speed.
Therefore, we ignore potential patterns that may change dynamically any-
way. We can thus concentrate on the recent average, the trend, and recent
deviations.

In the prototype implementation, the access to the Web Services is realized
by gateways, placed between the applications that want to call a Web Service
and the Web Services themselves. The gateways monitor execution success
and execution times of the services that were called, and store this information
in a database. This information is used for selection of services as follows.

First, a probability of successful completion of the next request is estimated
for each service. Next, a prediction of the response time under the condition
of successful completion is done. Finally, both values are added with some
weighting factor, and the service with the best value is selected.

Since the calls are discrete events we also choose a discrete time scale, as in
Lamport’s clocks [801]. This is motivated by the impossibility to assign mean-
ingful values to real points in time when there were no prior invocations of
the service. Moreover, we assume that the time span between two subsequent
calls is of no great importance for the evaluation and selection algorithm, or
that at least the relevant effects are accounted for indirectly, e.g. by preserving
the daytime fluctuations in the measurement series.

To provide a smooth user interaction on the client side, the maximum
response time should be selected for optimization rather than the average.

Service Management for Development Tools 427

According to the Extreme Value Theory [587] the maximum values of a ran-
dom process can be approximated by a Gumbel distribution. We selected this
distribution for characterization and selection of the Web Services, and took
an approach similar to [917], applied to end-to-end service parameters instead
of network traffic.

The Gumbel distribution for maxima is given by

F (x) = exp
[
− exp

(
−x − α

β

)]

with location parameter α and shape parameter β.
To find the parameters α and β of the approximating Gumbel distribution it
is sufficient to calculate the expected value and the variance. This is done as
follows.

Let y(τ) be the total execution time of a Web Service (including the round
trip time of the communication) measured at the current time τ , or another
varying parameter of Web Services that we use for selection. A monitor logs
the values y(τ0), y(τ0 +δ), y(τ0 +2δ), etc., where τ0 is the first measured value
and δ is an elementary time slot, which is always equal to one in case of a
logical clock. Subsequently, envelopes for the measured values (e.g. maximum
execution time envelopes) are computed for the last M blocks of duration Tδ.
They describe the dynamics from short-term fluctuations (iY1) to long-term
trends (iYT) where i = 1 . . .M and k = 1 . . . T :

iYk =
1
kδ

· max
τ−(T−k)≤t≤τ

t∑
u=t−k+1

y(u)

Now the empirically expected value Y and the variance σ2 can be computed:

Yk =
1
M

M∑
i=1

iYk

σ2
k =

1
M − 1

M∑
i=1

(
iYk − Yk

)2

and a set of Gumbel parameters can be determined as:

βk =

√
1

1.644934
σ2

k

αk = Yk − 0.577216βk

With this set of Gumbel distributions a set of predicted maxima Fk(τ + δ) for
the next call can be calculated, but for selection of the best service it is more

428 Y. Babich, O. Spaniol, and D. Thißen

practical to consider the confidence interval and choose the service with the
smallest value of

max
k=1...T

(
Yk + ε

√
σ2

k

)

with some confidence parameter ε.
The algorithm thus has three optimization parameters to achieve a reason-

able trade-off between accuracy and efficiency: T , M , and ε.
Apart from the temporal behavior, reliability is also taken into account.

Penalties are assigned to Web Services that fail to send a response, so that
these services can be excluded from being selected for some period of time.

Evaluation of Web Service Integration

The selection aims at minimizing the probability of forwarding the request
to a server that has a high response latency or a high failure-to-success ratio.
The execution times of Web Services that were tested was within the range
of few seconds if they had been reachable and not under heavy load. The
delay can vary heavily depending on the time of day. This can be mainly
attributed to the server load but also to network congestions. Under these
conditions the overall performance of the extended CORBA environment does
not noticeably degrade compared with services integrated into the CORBA
environment. Delay variations and occasional service failures confirm that a
flexible, automatically adapting selection algorithm can considerably improve
the Quality of Service.

The computational overhead for the selection algorithm is quite low and
negligible for the interaction with a human developer. For delay sensitive tasks
that can be found, for instance, in visualizations in a video conference, remote
calls to Web Services should be avoided altogether and full integration should
be preferred.

4.2.8 Conclusion and Outlook

Support of collaborative engineering design processes involves many applica-
tions, services, and platforms. To provide smooth operation, a management
system is necessary. We introduced a service management layer that is based
on the CORBA middleware technology and prototypically implements the
core functions. We suggested an architecture that takes into account the het-
erogeneity, the need for integration of legacy tools, and that can manage the
Quality of Service. Many of its concepts are useful not only for highly spe-
cialized environments, like support of engineering design processes, but also
in open service markets [444].

CORBA as the basis for the management layer offers good performance,
and extensibility. Even when integrating other technologies such as Web Ser-
vices, it is still a very reasonable choice for the core infrastructure.

Service Management for Development Tools 429

A-posteriori integration of existing applications is not trivial and can
hardly be fully automated, see also Sect. 5.7. However, the trading process
and course grain management operations could be kept quite generic, so that
little manual work is necessary to integrate new tools into the service man-
agement layer.

Not all services can be integrated into the collaborative environment. We
investigated loose management of Web Services offered by third parties. The
basic approach towards their integration into the service management plat-
form is the same, but they have to be handled differently: since direct man-
agement is not possible, only statistical quality can be dealt with. As Web
Services have become an important concept in industry, we aim at a closer
integration of Web Services within our environment. First steps have been
done to transfer our concepts from CORBA to Web Service technology and
to consider automated composition of services [446].

Developers with light-weight mobile devices have not been considered ex-
plicitly in our scenarios. Their role is likely to increase in the next future, so
that a management layer like ours should be extended to support nomadic
clients using mobile middleware.

Security is crucial to the acceptance of support systems as described in this
book. We investigated various aspects, yet a real operational system must be
more comprehensive and integrate security policies and tools of the institu-
tions and companies involved. This is also part of our current work.

5

Integration Aspects

This chapter deals with integration in a further sense. Thereby, integration
has different meanings, each meaning being represented in one section of the
following chapter.

Whereas Chap. 2 discussed integration on application domain models,
Chap. 3 in the sense of bridging insufficient tool support by new cooperative
functionality, and Chap. 4 by giving a uniform platform integrating various
existing ones, we now deal with interesting further aspects of integration.

In Sect. 5.1, we mainly discuss integration with respect to work processes
in industry. A tool for denoting work processes is introduced as well as a proce-
dure for work process modeling, the practical use of both being demonstrated
in case studies.

Section 5.2 gives the first links to labor research. It demonstrates a simu-
lative method by which design processes can be analyzed in order to find out
suitable organizational forms.

Section 5.3 gives information about a tool able to integrate different and
heterogeneous unit simulations into one plant-wide simulation.

In 5.4 it is shown, how plastics processing is integrated in the chemical
engineering development process. Furthermore, specific flow simulation ap-
proaches together with their virtual reality presentation are studied.

Section 5.5 integrates the novel informatics concepts of Chap. 3, by showing
their synergistic mutual application (two-level integration). Three examples
for this synergistic integration are given.

Section 5.6 is the second link to labor research. It discusses the ergonomic
evaluation of our findings in IMPROVE.

Finally, 5.7 studies software engineering and architecture modeling aspects
common to all tool construction or extension processes within IMPROVE.
Wrapper techniques and a specific architecture tool are presented.

432 5 Integration Aspects

This chapter corresponds to the project area “integration” of Fig. 1.27.
However, it also discusses further results not delivered by the subprojects of
that area.

5.1 Scenario-Based Analysis of Industrial Work
Processes

M. Theißen, R. Hai, J. Morbach, R. Schneider, and W. Marquardt

Abstract. In this section, the modeling procedure for design processes introduced
in Subsect. 2.4.2 is discussed from a more application-oriented point of view. The
Workflow Modeling System WOMS, which has been developed for the easy mod-
eling of complex industrial design processes, is described. Many case studies have
been performed during the elaboration and validation of the modeling methodology
and the tool, several of them in different industrial settings. In this contribution,
some case studies are described in more detail. Two of them address different types
of design processes. A third case study, demonstrating the generalizability of our
results, deals with the work processes during the operation of a chemical plant.

5.1.1 Introduction

As emphasized in Sect. 2.4, empirical studies are a prerequisite for capturing
the knowledge required for analyzing and improving design processes. Whereas
in Sect. 2.4 the focus is on the models used for representing design processes,
this section treats the implementation of the procedure for modeling, analyz-
ing, and improving work processes, which has been sketched in Subsect. 2.4.2.
We first discuss some general issues related to the practical application of the
procedure in industry (Subsect. 5.1.2). The implementation of the procedure
requires an easy-to-use modeling tool for creating and processing work pro-
cess models. To this end, the Workflow Modeling System WOMS has been
developed by the authors. The tool and its functions are described in Sub-
sect. 5.1.3. WOMS supports the semi-formal C3 notation (cf. Subsect. 2.4.4),
which has been developed taking into account the characteristics of creative
design processes (cf. Subsect. 2.4.3). In this contribution, three case studies
are described in more detail (Subsect. 5.1.4). Two of them address design
processes (process and product design in an international chemical company;
basic and detail engineering at an engineering consultant). The third case
study deals with the operational processes of a chemical plant.

5.1.2 A Procedure for Work Process Modeling and Improvement
in the Chemical Industries

In Subsect. 2.4.2, a procedure for modeling, analyzing, and improving design
processes in chemical engineering is presented. In the following, we give a
more detailed presentation of the practical issues arising when the procedure
is applied in an industrial setting. This subsection gives a summary of our
experiences gained in several case studies with industrial partners. As a large
assortment of literature from these communities is available, we focus on those

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 433–450, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

434 M. Theißen et al.

issues that result from the peculiarities of creative design processes. The num-
bering of the steps in the following paragraphs refers to the C3 model of the
modeling procedure (cf. Fig. 2.12).

Step 1: Defining the Modeling Scope

Defining the Goal

Before a work process is modeled, the questions to be answered and the issues
to be addressed by means of the model have to be identified. They depend on
the goals of a particular case study. In general, the overall goal is to improve a
real work process. Nevertheless, as there is usually at least some consciousness
about the problems in the real process, this goal can often be specified more
precisely in order to focus on the relevant issues and limit the complexity of
the models to be created. Some examples of specific goals are

• to reduce the cycle time for executing the work process,
• to balance the workload of the available human or technical resources, or
• to identify the requirements for an improved IT system supporting the

work process.

As far as a-priori knowledge about the work process permits, these goals
should be specified; as discussed below, they affect the process aspects to
be captured in the model and the choice of an appropriate as-is process.

Setting the Modeling Focus

The work process models to be created during the modeling sessions must be
sufficiently rich to provide the information relevant for the goals. For instance,
if one of the goals were to reduce cycle times, then information like the number
of actors performing a certain activity and the total working time spent for
the activity would have to be captured. In contrast, such aspects could be
neglected in a case study addressing an improved information flow between
the experts involved in the work process.

Choosing an As-Is Process

The first model to be created when performing a case study should reflect
the design process as it is currently performed (as-is process). That way, the
advantages and shortcomings of the current practice can be identified (and
later on considered when an improved to-be process is defined).

The adequate level of generality of the as-is process depends on the com-
plexity of the process in consideration (see also Subsect. 2.4.5). For typical
business processes, such as procurement processes for standard plant equip-
ment, it is often possible to start with a generalized model, whereas generalized
models of design processes are usually too complex to be created in a single
step. Instead, models of one or several representative concrete processes should

Scenario-Based Analysis of Industrial Work Processes 435

be created first; after their validation, they can support the creation of more
complex generalized models.

Like the modeling focus, the choice of appropriate as-is processes depends
on the goals. For example, in a case study aiming at the definition of best
practices, a successfully completed project can serve as a first step towards
the to-be process. If time allows, it is also useful to model the critical parts of
less effective projects. If the reasons for the problems which came up during the
project can be identified, the to-be process can be amended to avoid similar
problems in future projects.

Planning the Modeling Sessions

In particular for complex work processes with many actors, it is helpful to
create a first coarse-grained model with a manager and possibly the leaders
of the involved groups. This model can be used to identify the required par-
ticipants for the subsequent modeling sessions, which will focus on different
parts of the process in order to create a more detailed model. The number of
participants in the sessions should be limited (not more than 5-7 people) so
that all of them can participate actively in the creation of the model. Finally,
a schedule listing the participants and topics of each session should be created
and distributed to ensure the availability of the involved persons.

Step 2: Recording the As-Is Process

When our case studies were performed, the concrete processes had already
been completed. Thus, no records explicitly destined for our modeling activ-
ities were available. However, during design projects a plethora of records is
produced which can serve as additional sources of information complementary
to the memories of the actors, including the products of the design process
(such as process flow diagrams and equipment specifications), written com-
munication between team members, minutes of project meetings, and possibly
the information stored in a project management system. In our case studies,
it has proven helpful to guarantee easy access to such information during the
modeling sessions.

Steps 3 and 4: Modeling and Validating the As-Is Process

The modeling of an as-is process is essential for further elicitation of the
pending issues and weaknesses in a work process. Before an improved to-be
process can be created, all participants must be aware of the problems in the
current work processes.

The modeling of an as-is process is done cooperatively by the staff involved
in the work process and one or preferably two moderators. During a modeling
session, the participants describe their activities during the work process.

436 M. Theißen et al.

The moderators guide the sessions in an interview-like style. They pose
questions, structure the evolving process knowledge, and clarify issues. Simul-
taneously, the moderators create a work process model by means of WOMS,
a modeling tool for work processes (cf. Subsect. 5.1.3). If possible, the model
is projected onto a screen that is visible for all participants. This immedi-
ate visualization of the work process supports a first validation of the model,
in particular the identification of contradictory statements about the work
process and the correction of misunderstandings between the participants.

We have observed that the modeling sessions encourage the participants to
reflect, discuss, and scrutinize their work processes. Often, improvements for
shortcomings are suggested. They are recorded in the minutes for later reuse,
but are not modeled explicitly. Before any profound assessment of alternatives
can be made, an overall view of the work process is needed. Spontaneous
proposals might overcome local difficulties in one part of the work process,
but they are likely to cause problems in another part. Given the complexity
of industrial work processes, such issues cannot be detected before a complete
process model is available.

Step 5: Analyzing the As-Is Process

The analysis aims at the identification of shortcomings in the as-is process.
Typical questions that are posed comprise:

• Are all activities necessary with respect to the purpose of the process?
Does an appropriate performer handle each activity? Does each activity
occur at the best point in the process?

• Are appropriate media used for information exchange? Is the information
provided to the recipient in a comprehensible form? Is the recipient notified
in case information is updated?

• Are the project meetings efficient? Do they have a well-defined goal? Do
their different professional backgrounds impede the communication be-
tween the participants?

The shortcomings are inserted into the model of the as-is process (by means
of the shortcoming element of C3, cf. Subsect. 2.4.4). The result is a com-
prehensive model correlating the activities with the associated shortcomings
as well as with their position in the overall process. Thus, the hasty changes
mentioned above can be avoided when the to-be process is defined.

Step 6: Defining the To-Be Process

Based on the results of the precedent analysis, an improved work process is
created. Changes of the as-is case may affect all elements of the work process
model. For instance, superfluous activities may be canceled, the order of ac-
tivities may be rearranged to better comply with the objectives for the overall

Scenario-Based Analysis of Industrial Work Processes 437

process, and further activities may be introduced. Inappropriate data formats
are replaced by alternatives accounting for the needs of the information con-
sumer.

The to-be process undergoes the same analysis as the as-is process in order
to detect further shortcomings before the process is put into practice.

Step 7: Formalizing the Process Model

Formal work process models are a prerequisite for automating well-understood
parts of work processes. So far, our industrial case studies have focused on
semi-formal modeling. Besides other issues, the formalization of models of
industrial work processes will be addressed in the transfer project described
in Sect. 7.3.

Step 8: Implementing the Improved Process

The final model of a to-be process can serve the implementation of an improved
process in different ways.

In the first instance, it is an excellent guideline for the people actually
performing the work process. They become aware of their contribution to the
overall process. Even in situations that are not covered by the work process
model, the model supports the choice of an appropriate reaction. For instance,
assume that in a design process a chemist discovers an error in a physical prop-
erty data sheet that has been forwarded to a group of chemical engineers. The
information flow depicted in the work process model allows to determine those
people and groups that have based their work on the incorrect information.
As no time must be wasted for a costly and long search, the concerned people
can be informed immediately.

The work process model also provides valuable information about the re-
quirements for an integration of the software tools used by the actors. For
example, it can be decided whether a dynamic coupling of two software tools
would be necessary due to a continuous information exchange, or whether a
simple file conversion would be sufficient.

Furthermore, the model contains the required process knowledge in case
some workflow management system should be installed for supporting repet-
itive sub-processes of the overall design process. An efficient usage of these
systems is often impeded by insufficient and imprecise definitions of the work-
flows to be supported.

5.1.3 Workflow Modeling System WOMS

During the first empirical studies within IMPROVE, semi-formal work pro-
cess models were created manually. Sometimes small paper charts posted on
a white board to represent modeling elements like activities or tools were

438 M. Theißen et al.

Fig. 5.1. WOMS user interface

used, which could be rearranged easily. This way, the involved designers could
participate actively in the modeling process. However, further processing of
such models was difficult and time consuming, which impeded their analysis
and storage with software tools and their exchange between geographically
distributed team members.

Soon, the need for a modeling tool emerged, which should allow to im-
plement the modeling procedure with acceptable time and effort for all par-
ticipants. As argued in Subsect. 2.4.3, conventional modeling languages such
as activity diagrams of UML [560], the Business Process Modeling Notation
[873], or Event Driven Process Chains [949] do not meet the requirements
imposed by the characteristics of creative design processes. Hence, none of
the existing modeling tools for these languages fitted our needs. Instead, we
had to create a modeling tool for C3, the modeling language created during
IMPROVE for the semi-formal representation of design processes in chemical
engineering (cf. Subsect. 2.4.4).

This tool, the Workflow Modeling System WOMS 38, was developed in
parallel with the further elaboration of the modeling procedure and the C3
language. WOMS is based on the commercial drawing tool Visio [845]. The

38 The term workflow in the name of the tool is due to historical reasons; according
to the terminology defined in Subsect. 2.1.2, Work Process Modeling System would
be more appropriate.

Scenario-Based Analysis of Industrial Work Processes 439

Project manager Reaction Expert Separation expert

MS

Project

Simulation models for
reaction system alternatives

Alternatives for
reaction system

Alternatives for
separation system

Simulation models for
separation system alternatives

Simulation results

Concepts for
reaction system

Concepts for
separation system

Overall simulation models

Initialize
project

Design alternatives for
reaction system

Design alternatives for
separation system

Create simulation
models for reaction
system alternatives

Create simulation
models for separation
system alternatives

Create overall models for
combinations of reaction

and simulation
alternatives

Create overall models for
combinations of reaction

and simulation
alternatives

Perform integrated
simulations (reaction and

separation)

Perform integrated
simulations (reaction and

separation)

Evaluate
alternatives for
reaction and
separation

system

Discuss concepts for
reaction and separation

Discuss concepts for
reaction and separation

Evaluate
alternatives for
reaction and
separation

system

Evaluate
alternatives for
reaction and
separation

system

Aspen gPROMS

Cheops Cheops

Cheops
Cheops

Fig. 5.2. Simple WOMS model of a PA6 design process

440 M. Theißen et al.

Fig. 5.3. Pop-up window of an activity

first version of the tool, created in 2003, was not more than a stencil providing
shapes for C3 elements (such as activities and roles), which can be placed in
the modeling window by simple drag-and-drop operations. Intensive usage of
WOMS in different areas motivated its continuous extension with additional
functions for the creation, exchange, analysis, and execution of work process
models. In the following paragraphs, these functions are described. It should
be noted that an important part of the functionality of WOMS is based on
the integration of existing software tools and technologies, such that the im-
plementation effort could be kept low.

Support for Creating Work Process Models

The principal elements of the WOMS user interface (see Fig. 5.1) are the
stencil with C3 modeling elements (on the left) and the modeling window itself
(on the right). The modeling window in the figure shows part of a simplified
model of the PA6 design process from the IMPROVE reference scenario (cf.
Subsect. 1.2.2). In the remainder of the subsection, this model will serve to
illustrate some functions of the tool; for reference the entire model is depicted
in Fig. 5.2.

For some modeling elements such as roles, activities, tools, and information
items, attributes can be specified in pop-up windows. To give an example,

Scenario-Based Analysis of Industrial Work Processes 441

Fig. 5.3 shows one page of the pop-up window of an activity. Several text
fields permit to give the role the activity is assigned to (called swimlane in
WOMS), the actor who has performed or should perform an activity, a more
extensive textual description of the activity complementing the short text
in the graphical model, and so on. Existing information items and tools are
shown in a list inside the activity window and can be assigned to the activity.
This prevents multiple definitions of the same object with different names and
ensures the syntactical correctness of WOMS models.

WOMS models of complex work processes consist of a large number of
activities and information items, and consequently they comprise a multitude
of control and information flows, often spanning large parts of the model; this
is in particular true for information flows, because information produced in one
activity is typically used in several subsequent activities (for instance, see the
multiple information items entering the evaluation activities at the bottom of
Fig. 5.2). As a result, graphical representations of complex work processes can
become unclear or even incomprehensible. In order to simplify the handling
of complex models, certain types of modeling elements can be hidden. Thus,
users of the tool can focus their attention on those aspects of a process which
are relevant in a certain context, without being distracted by less important
elements. For example, when the order of activities is edited, only activities
and control flows need to be shown, whereas tools and information items can
be hidden.

WOMS provides a hyperlink function, which enables a user to link a re-
source file or a directory to the corresponding information item in the model.
For instance, assume that the simulation models for different alternatives for
the reaction system (cf. Fig. 5.2) are stored in a single directory; this direc-
tory could then be linked to the information item named Simulation models
for reaction system alternatives. Once such links are established, users can ac-
cess the resources from WOMS by clicking on the information elements. This
function is in particular useful for documenting concrete processes, because
the model can then be used as an access structure to the documents created
and used during the work process. This way, an integrated documentation of
the complete history of the design process and the documents produced can
be created.

Support for the Exchange of Work Process Models

To enable the exchange of work process models between WOMS and other
software tools, two tool-independent output formats, a HTML format and a
XML format, are supported.

HTML Export

The HTML export creates a vendor-neutral representation of the model that
can be viewed and explored with any web browser. The resulting HTML page

442 M. Theißen et al.

User-Defined
Properties

Field Value

Fig. 5.4. HTML page showing the WOMS model from Fig. 5.2

contains two frames, the right one showing the graphical WOMS model, and
the left one the attributes of a selected element (see Fig. 5.4). By choosing a
suitable zoom factor, users can obtain an overview of the entire work process
model or focus on the details they are interested in. This output format facili-
tates the publication of a WOMS model in the internet or intranet. This way,
a given model of a work process can be shared at any time with a selected
group of users, even if they do not make use of the WOMS tool. This feature
is especially useful if a design process is carried out by an organizationally or
geographically distributed team.

XML Export

Using the XML export function, a work process model can be stored in a
structured standard format, which is a universal exchange format for a num-
ber of software tools. As XML files can be easily rearranged or altered into a
user-defined format by means of XSLT (Extensible Stylesheet Language Trans-
formations, [602]), the XML export is useful when WOMS models are to be
used by other software applications. Some examples are given in the following
subsections.

Support for the Analysis of Work Process Models

Explicit graphical representations of work processes (i.e., in C3 notation like
in the modeling tool or in the HTML output) enable a first process analysis

Scenario-Based Analysis of Industrial Work Processes 443

Fig. 5.5. Part of the role centric view of the WOMS model from Fig. 5.2

by an individual or by a group of people in order to detect deficiencies of the
work processes modeled.

In addition, specific views can be generated by transforming the XML
output of WOMS by means of template rules defined in XSLT. We briefly
discuss the different views in the following.

Role-Centric View

The role-centric view is displayed in a table, which lists the activities, actors,
and tools that are assigned to each role. The role-centric view of a design
process model provides answers to the following questions:

• Which roles are involved in the design process?
• Which tasks are assigned to a certain role?
• Who performs the activities of a certain role?
• Which tools are used by a certain role?

The expertise needed for certain roles can be easily determined with the role-
centric view. All roles are arranged alphabetically. Figure 5.5 shows a part of
the role-centric view of the sample design process shown in Fig. 5.2.

444 M. Theißen et al.

Actor-Centric View

The actor-centric view gives information about the expertise and the work
load of individual designers. It enables to answer the following questions:

• Which actors are involved in the design process?
• What are the roles played by a certain actor?
• Which tasks are assigned to an actor?
• Which tools are used to perform the tasks?

Tool-Centric View

The tool-centric view can be used to support the management of technical
resources. This view allows to answer the following questions:

• Which tools are required for the entire design process?
• Which tool is required to perform a certain activity?
• Which role uses a certain tool?
• Which actor uses a certain tool?

Activity-Centric View

The activity-centric view contains comprehensive information about the whole
design processes; it is displayed as a table listing all activities. For each activity,
the following information is depicted:

• the input and output information,
• the predecessor and successor of the activity considered,
• the role and actor associated with the activity,
• the tools needed to perform this activity,
• its duration, and
• a textual description.

Information-Centric View

Finally, an information-centric view lists all information items and gives the
activities that create or use it. This view is important for the rearrangement of
a work process, because the logical dependencies between different activities
can be determined with this view.

The major items in each view, except the activity-centric view, are ar-
ranged alphabetically. In the activity-centric view, the activities are arranged
chronologically. In addition” hyperlinks between different views are also sup-
ported to facilitate the analysis of large and complex design processes.

Scenario-Based Analysis of Industrial Work Processes 445

Table 5.1. Application of WOMS

Guidelines

• Namur Arbeitsblatt 35: Abwicklung von PLT-Projekten [863] (handling
PCT projects, see also [397])

• VDI guideline 3633: simulation of systems in materials handling, logistics
and production [1020]

University

• IMPROVE reference scenario (see also Subsect. 1.2.2)
• self-observation during modeling and simulation
• business processes at Fakultätentag für Maschinenbau und Verfahrens-

technik

Industry

• optimization projects
• product and process development process (see also Subsect. 5.1.4)
• design processes in basic and detail engineering (see also Subsect. 5.1.4)
• operational processes of a chemical plant (see also Subsect. 5.1.4)

Support for the Automation of Design Processes

In case a routine design process is well-understood, it can be completely speci-
fied in advance on a fine-grained level for execution in various project contexts.
The execution of such generalized process templates can easily be automated
by means of workflow engines; the prescriptive work process models required
can be created by WOMS and further enriched and transferred into a formal
XPDL model [1059] by means of XSLT [154]. The established formal design
process model can be processed directly by a workflow engine such as Enhydra
Shark [660].

During the execution of the design process, the workflow engine manages
the flow of work between participants and passes tasks from one participant
to another in the predefined order. To allow the designers to quickly identify
their current tasks, each designer gets a list with the assigned tasks. This list
is updated automatically when the designer completes one task or receives
a new task. Work process monitoring is also supported by the workflow en-
gine Enhydra Shark to provide information on the current state of the design
process, e.g., which tasks are completed or which are still in progress.

Applications of WOMS

WOMS has been applied in several case studies carried out by the authors and
their colleagues (see Table 5.1). It should be noted that not all of these studies

446 M. Theißen et al.

address design processes. The flexibility of WOMS and the underlying C3
notation made it possible to apply the tool also for more or less predetermined
work processes such as business processes. In the following subsections, some
of the case studies in cooperation with industrial partners are discussed in
detail. Here, we give a brief description of the different applications of WOMS,
which were – to a varying degree – relevant for the successful completion of
the different case studies.

• Documentation. During its execution, a work process can be modeled and
thus documented by the actors themselves. The resulting model is a concise
representation of the work process as it has actually been carried out.
Information items can be linked to documents produced during the process
to provide an easy-to-use access structure.

• Planning. Before or during a work process, the activities to be performed
can be scheduled. In case of a complex process involving several actors,
discussions between team members about the schedule are simplified be-
cause a common understanding of the tasks to be performed by each actor
and their interdependencies can easily be established this way.

• Education. Well-understood chunks of routine design processes can be rep-
resented by WOMS as intuitive graphical models to document best prac-
tices in a corporation. This model can serve as a guideline for a novice to
learn how certain tasks ought to be preferably performed. The model can
also be used as a template for the planning or for the documentation of
to-be or as-is processes after copying and modifying the template to the
desired work context.

• Analysis. Models of design processes can be analyzed to achieve differ-
ent goals. An analysis of an as-is process typically aims to identify weak
points and possible improvements of the design process. It should aim at
conclusions how design processes of the same or a similar type can be
reengineered to be more efficient in future projects. An analysis of the in-
formation flow can help to identify the types and number of documents
exchanged between software tools. Such findings form the starting point of
requirements definition for tool integration. In case an inter-organizational
(as-is or to-be) process model is analyzed, the character of the collabora-
tion can be easily assessed. In particular, the interface between the organi-
zations, which is implemented mainly through the documents exchanged
between activities performed in different organizations, can be identified.
Such analysis techniques are effectively supported by the various views on
the work process models introduced above.

• Communication. A common understanding of complex design processes
is necessary for an effective cooperation between the designers involved.
Graphical models of design processes can serve as a common basis for a
discussion of the features of a particular design process.

Scenario-Based Analysis of Industrial Work Processes 447

5.1.4 Case Studies

In this section, three industrial case studies are described which demonstrate
the application of the modeling procedure and of WOMS in different settings.
The first two case studies address different types of design processes. The
third one deals with the start-up of a chemical plant, i.e., with an operational
process.

Product and Process Development at a Large Multi-National
Company

Product and process development processes in multi-national companies are
characterized by an enormous complexity; actors in dozens of roles perform
hundreds of interdependent activities, often located in geographically dis-
tributed teams. This case study, still in progress, deals with the product
and process development processes for specialty chemicals at Air Products
and Chemicals, Inc., Allentown, PA, USA. The overall goal is to reduce cycle
times, as time-to-market is essential for the economic success of innovative
chemicals.

Two approaches are pursued in the project. The first one is to provide a
detailed compilation of the best practices in product and process development
as performed at Air Products. Preliminary discussions with Air Products have
shown that an improved communication between different departments is de-
sirable. In order to understand and improve information exchange between
different departments, the interactions between different departments need to
be captured explicitly in a concise model of the development process. Such
a model, combined with contact information about the people involved in a
particular project, allows to determine all actors and roles who are affected
by a particular situation, thus streamlining the work process.

The second approach is to apply simulation studies in order to identify
bottlenecks in the process and to examine the influence of additional human
or technical resources on the cycle time.

As both approaches require a generalized, detailed, and (in case of the sim-
ulation approach) formal model of the work process, they can only be realized
in the long term. Several iterations of the modeling procedure are required to
construct the required models. So far, models of two concrete projects have
been created on a medium level of detail. The first model deals with a rather
small project; it was planned as a demonstration of our methodology and
was used by Air Products to assess the suitability of the methodology for
their needs. The second model describes a rather complex design process with
more than a dozen roles, several dozens actors, and more than one hundred
activities. The project is continued as part of the transfer project described
in Sect. 7.3.

448 M. Theißen et al.

Basic and Detail Engineering at an Engineering Consultant

A further case study has been performed at an engineering consultant com-
pany in Germany which offers services like conceptual, basic, and detail en-
gineering of chemical plants as well as the supervision of their construction
and start-up. The subject of the case study were the work processes during
basic and detail engineering. The case study was motivated by the insufficient
integration of some standard software tools used at the consulting company,
including spreadsheets, databases, and CAD tools. The problem as stated by
our project partner was that data had to be entered several times in different
tools. The solution to this issue as envisioned by the consulting company was
a better integration of the different software tools.

However, we could convince the management that an integration of the
software tools would be infeasible without a precise definition of the require-
ments for their integration. We proposed to first analyze the work processes
during basic and detail engineering in order to better define these require-
ments. We also assumed that part of the integration problem could be solved
by reengineering the work processes, for instance by replacing some software
tools whose usage was not mandatory.

Thus, it was planned to model a design project which had suffered from the
insufficient tool integration. This model was elaborated in several interview
and modeling sessions, equivalent to a total time effort of approximately 15
hours. During the sessions, it turned out that several deficiencies of the work
process did not result from the integration problem. In the following, we give
two examples.

• As the responsibilities for some routine activities were not clearly defined,
such tasks were often not done by the most appropriate actor. For instance,
one of the engineers participating in the modeling sessions stated that he
always did the calculations for heat exchangers himself. Another engineer
pointed out that such calculations could also be done by technicians with
a considerably lower wage rate. The first engineer was not aware that also
technicians had the required qualifications.

• In some cases, inappropriate procedures and documents had been estab-
lished for the information transfer between engineers and technicians. En-
gineers used some simple forms, implemented in a word processor, in which
they entered basic data for equipment such as reactors. These forms were
electronically sent to technicians, who had to add further data. Though, the
simple forms did not provide the entry fields required by the technicians; in-
stead, they used other forms, implemented in a spreadsheet application, in
which they had to reenter the data delivered by the engineers. During the
modeling sessions it emerged that the two types of forms were simple elec-
tronic versions of some paper forms which had been used several years ago
and which may have been justified at that time. Nevertheless, there was no
reason why the more detailed forms should not be used by the engineers.
This way, reentering of data could be avoided in a very simple way.

Scenario-Based Analysis of Industrial Work Processes 449

Thus, some deficiencies of work processes during basic and detail could be
remedied by rather simple measures such as assigning activities to roles and in-
troducing uniform data forms. Unfortunately, this cooperation was suspended
when the engineer who had initiated the project changed to another employer.
Nevertheless, the case study has shown that participative modeling of work
processes makes actors reflect and discuss their daily practices. In particular,
shortcomings could be detected and feasible solutions could be found without
performing an explicit analysis step.

Operation of a Chemical Plant

In contrast to the case studies described before, which deal with design pro-
cesses, the case study described in this subsection addresses an operational
process: In cooperation with Bayer Technology Services (BTS), the start-up
process of a semi-batch column has been investigated [436].

Before we started the project, the start-up process was specified by means
of several check lists, each of them providing detailed instructions for sub-
processes like preparation or inertization. These check lists were represented
in a simple textual form. A first version of the check lists had been created
after the construction of the plant, and occasionally they had been modified
to take into account the experiences made by the operators during their daily
work. However, complete revisions of the check lists had never been done, such
that no explicit record of the valuable know-how of the operators existed.
Furthermore, the effects of some modifications of the control system of the
plant had never been incorporated in the lists, which therefore contained some
out-dated information. In consequence, not all instructions given in the check
lists were followed by the different operators, who rather performed individual
start-up procedures, resulting in a considerable variance of the start-up time
and the quality of the chemical product.

The main goal of this cooperation was to ensure better start-up processes.
In particular,

• the time required for the start-up should be reduced,
• failures during start-up (and also during operation) should be minimized,

and
• the reproducibility of the start-up should be improved.

In order to reach these goals, a procedure comprising three partially overlap-
ping steps was applied: (1) the collection of the available knowledge of the
start-up process, (2) the definition of an improved up-to-date specification
of the process, and finally (3) the implementation of the improved specifica-
tion, i.e., measures to ensure the execution of the process according to the
specification.

(1) Collection of the available knowledge. The existing knowledge about the
start-up process was distributed among the different members of the op-
erating personnel and other experts, in particular the responsible plant

450 M. Theißen et al.

engineer. In addition, the old check lists as well as process and plant data
were available. In order to capture this knowledge, a WOMS model of the
process was created and incrementally enriched and modified to include
information from different sources.
As the existing check-lists already provided a detailed and structured rep-
resentation of the process, they were used to create a first version of the
WOMS model. Subsequently, discussions with the operating personnel and
the plant engineer addressed the shortcomings of the process as specified
in the old check lists and the variants actually followed during plant oper-
ation.

(2) Definition of an improved up-to-date specification of the start-up process.
Several deficiencies of the original process could be remedied. For instance,
in some cases the location of equipment, hand valves, etc. hat not been
considered when the original check lists had been created. Thus, a staff
member strictly following these sequences would have to cover a consider-
able distance within the plant during a start-up. By rearranging some of
the sequences, such distances could be reduced.

(3) Implementation of the improved start-up process. As the plant will further
on be operated manually, the implementation of the improved start-up
process had to ensure that the operating personnel will follow the proce-
dures defined there. To this end, the relevant information must be passed
to the staff. As the representation of the start-up process by means of
check lists is widely established, it has been decided to transform the final
WOMS model into a set of check lists.

5.1.5 Conclusion

We have discussed several issues concerning the application of the generic
modeling procedure for design processes introduced in Subsect. 2.4.2. The
Workflow Modeling System WOMS is a prerequisite for the successful imple-
mentation of the modeling procedure. Several case studies in both academic
and industrial settings have proven the practicability of the modeling proce-
dure.

So far, our cooperation projects with industrial partners have focused on
the actual modeling of design processes (and, in the explorative case study
described in Subsect. 5.1.4, the modeling of an operational process). In the
transfer project sketched in Sect. 7.3, the methodology will be further elabo-
rated. First, more attention will be given to the formalization of work process
models, as it offers promising advantages for both process analysis and im-
plementation. Secondly, the methodology will be extended to cover different
types of work processes, including different types of design processes, but also
operational processes.

5.2 Integrative Simulation of Work Processes

B. Kausch, N. Schneider, S. Tackenberg, C. Schlick, and H. Luczak

Abstract. The design and optimization of creative and communicative work pro-
cesses requires a detailed analysis of necessary activities, organizational structure,
and information flow as well as the identification of weak spots. These requirements
are met by the C3 modeling technique, which was specifically developed for design
processes in chemical engineering (cf. Subsect. 2.4.4). C3 is also the foundation of the
simulation-based quantitative organizational study described in this section. There-
fore, a transformation technique from semi-formal models of work organizational
dependencies into formal workflow models has been developed and implemented.
The verified results of test-runs show the various fields of application of this tech-
nique, including its benefits for the reduction of cycle times, for the optimization of
the operating grade of the employees, and for the capacity utilization of tools and
resources.

5.2.1 Introduction

Only 13 percent of work in projects in Germany is actually value-adding, re-
sulting in a total “loss” of approximately 150 billion Euros [700]. The reasons
for these deficits are wrong decisions during project selection and also the
insufficient definition of goals. While these problems affect the project en-
vironment in the context of business philosophy, there is another area that
affects the project structure itself. This area covers the development and con-
tinued use of findings and information in projects. So the project planning
at its very early stage, along with the accurate implementation of employee
competence and availability as well as resources, must be improved. Many
existing tools for workflow planning do not provide sufficient functionalities
to take all important factors in consideration at the same time and to get
a quantitative comparisons between different project structures. In addition,
the high amount of different influencing factors makes it impossible for the
planner to select the best project structure according to different criteria like
project duration, project costs, or human resource allocation. Simulation has
been proven to be an effective tool for planning and improving complex sys-
tems according to multicriteria optimization problems. However, at present
simulation is mainly applied for technical problems. The approach described
in the following shows its application in the field of project planning.

The C3 technique for recording and modeling cooperative work processes
(cf. Subsect. 2.4.4) is the foundation of the simulation model presented here.
In order to allow for a dynamic simulation of different organizational designs
including measures of technical work support, however, the C3-model must
be extended by elements and attributes, e.g., according to time and frequency
distributions and combinatorics. These should be systematically combined in
various constituent models that roughly cover the areas of human, technology,

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 451–476, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

452 B. Kausch et al.

and organization. Furthermore, “organizational calculation rules” that permit
a simulation of the relations in complex organizations must be developed first.

In the sense of a sensitivity analysis, simulation is not restricted to the
identification of time-critical activities; it also allows the human-oriented eval-
uation of organizational alternatives such that an integrative work process
design and assessment becomes possible. So far, the organizational analysis
and optimization of industrial design processes are restricted to sound con-
siderations of the management, either ex post based on some documentation
of a process, or ex ante based on a draft of the target process. A simulation-
based instrument with the necessary functionalities is not at hand. Such an
instrument must be suited for the participatory design of design processes in
chemical engineering. This can be reached by a graphical modeling language
whose elements and relations are easy to use.

Our research aims at the creation of an organizational simulation model,
which is adequate for the participatory design of complex workflows and
project structures (see Sect. 3.4) in the process industries. The research ap-
proach is based on the C3 notation. The notation’s plain graphical basic el-
ements and the consideration of an advanced methodical approach, e.g., for
communication analysis, is an adequate foundation for simulation studies by
means of high level Petri nets.

In other areas (e.g., production processes [630, 1071], design processes in
mechanical engineering [793, 925]), simulation is often used for analyzing well
defined work processes. Similarly, the simulation of activities in design pro-
cesses and their interrelations can be used as a foundation for the prospective
analysis and design of a design process to be implemented. Thus, variants of
a work process (e.g., a work process with additional work tools) can be exam-
ined. Also, the influence of humans – which in the scope of this sub-project
have a particular role in the sense of socio-technological system design – is a
major difference to conventional simulation approaches.

According to VDI guideline 3633 [1020], there are four basic categories
with respect to the level of detail when human behavior in production pro-
cesses is considered: (1) material flow simulation, (2) person-integrated and
person-oriented simulation, (3) anthropometric simulation and (4) biological
simulation. However, only the first and the second category are more closely
examined in the following, as they are the only ones related to the activities
in IMPROVE.

5.2.2 Workflow Simulation Model

A workflow simulation model of the PA6 design process has been developed in
subproject I4 of IMPROVE. Although steady state and dynamic simulations
are well known aids for the effective and efficient design of engineering artifacts
[354], project planning and coordination are typically not supported by simu-
lation in a satisfactory manner. In consequence, managerial tools are required

Integrative Simulation of Work Processes 453

that address the coordination of design processes. Although several support-
ing tools exist (cf. Subsect. 3.4.1), so far the support of planning processes in
project management by means of simulation is unusual.

With respect to the human-centered simulation approach, it is necessary to
consider the two different representations of humans in the simulation environ-
ment. In guideline 3633, VDI distinguishes between person-integrated models
(person as reactive action model) and person-oriented models (consideration
of various additional traits possessed by person) [1020, 1072].

Furthermore, two basic forms of model logic can be found in simulation
models of design and development processes [1018]:

1. In the case of actor-oriented simulation models, system dynamics are pro-
duced by actors (persons or organizational units) based on specific activ-
ities [261, 426, 599, 604, 771, 813].

2. In process-oriented simulation models, system dynamics are produced by
activities through the usage of resources (persons, tools) [571, 596, 597,
691, 925].

According to this terminology, the model presented below is person-oriented
and process-oriented.

5.2.3 State of Research

In the field of design and development processes, only very few high fidelity
simulation models can be found.

The Virtual Design Team (VDT) is an actor-oriented model for the simula-
tion of product development projects that was created at Stanford University.
Early versions of VDT were already able to model actors and activities as well
as the information flow between them [599, 604]. In subsequent versions, the
different goals of actors, the construction of exceptions, and exception han-
dling [771, 812, 813] were accounted for. A process engineering context was not
considered in this model. The methodology does not support the participative
creation of simulation models.

Independent of VDT, Steidel [426] developed a further detailed actor-
oriented simulation model for product development processes at Berlin Uni-
versity of Technology. This model also ignored the particularities of process
engineering. Likewise, the participative creation of the simulation model or
the optimization of workflow management were also not supported by the
methodology. Additionally, bottlenecks caused by the insufficient availability
of resources could not be represented. In chemical process design, such bottle-
necks can be caused by the restricted capacities of laboratories, for example.

Also at Berlin University of Technology, Raupach and Krause [925] have
examined a process-oriented approach for the simulation of product devel-
opment processes such that consistency can be asserted in different design
solutions. In this approach, the product structure is accounted for in great

454 B. Kausch et al.

detail. Neither a process engineering context, nor the participative creation
of the process model, nor the optimization of workflows are addressed. In-
terdependencies between project success criteria and factors influenceable by
technical planning have not been examined.

At Massachusetts Institute of Technology, several process-oriented simula-
tion models have been developed. We briefly discuss two examples: Browning
[570, 571] used a design structure matrix which makes the modeling of complex
projects very uncomfortable and unnecessarily complex. His simulation model
was based on the assumption that an unlimited supply of resources (in this
case, employees) exists. In consequence the simulation results of this model are
limited in their predicative and predictive power. Cho’s [596, 597] simulation
model does account for the limitation of resources available in design and de-
velopment project, but a corresponding processing of multiple activities is not
yet possible. There is no relation to chemical engineering; also, participative
modeling is not intended. Interdependencies between project success criteria
and factors influenceable by technical planning can hardly be considered.

A process-oriented model for the simulation of a factory planning project
was developed by a research group at the University of California at Berke-
ley [691]. This model accounted for the effects of altered requirements on the
planning process and on the duration of construction projects. Particularly,
so-called postponement strategies are examined, in which the start of a suc-
ceeding operation is delayed on purpose in order to increase the quality of the
work results of the preceding operation. Similarly to other approaches, the
simulation model assumes an unlimited supply of resources. However, partic-
ipative modeling and the optimization of work processes are not dealt with.
Interdependencies between the technical planning of influenceable factors and
project success criteria are not sufficiently taken into consideration.

Like the approach followed in IMPROVE, which is described in the fol-
lowing subsections, the method by Krause [794] uses colored Petri nets in
combination with stochastic procedures in order to sufficiently depict these
decisions during simulation. First, the planner roughly models the activities
of a design or development process; these activities are then further specified
during the simulation run by means of a library. This dynamic calculation of
the model structure adequately depicts the uncertainty-afflicted character of
planning processes. However, participative modeling and optimization of the
processes according to defined restrictions and target criteria are missing.

Recently, a further person-centered simulation model was developed by
Licht [261] at RWTH Aachen University. It offers an – according to our re-
quirements – more suitable approach for analyzing design and development
processes in the chemical industries. The model includes many different spe-
cific aspects of the process, such as the type and the complexity of products,
the characteristics of employees, tools, and organizational structure, etc. Due
to the person-oriented approach, the model also serves as a realistic method
for employee management by addressing the employees’ behavior. A negative

Integrative Simulation of Work Processes 455

consequence, however, is that the model is very complex and therefore quite
difficult to apply.

5.2.4 Implementation of the Workflow Simulation Model

The simulation model presented here offers a suitable technique for project
planners in order to compare several alternative ways of project organization
with respect to the number of involved persons, tools, time budget, and further
decision variables at an early stage. With its close connection to C3, the
model enables a transparent, very concise, understandable, and well-applicable
representation of project organization. The goal of this simulation model is to
combine the advantages of C3 (inherent simplicity and intuitive applicability)
and the advantages of the simulation (the possibility of analyzing, planning,
and rearranging the design or development process based on mathematical
constraints). In addition, the model offers the chance to optimize the process
with respect to duration and costs.

To maintain the distinctiveness of the C3 language, the simulation model
was implemented using a person-oriented and process-oriented approach.
For the formal representation and implementation of the simulation model,
Timed Stochastic Colored Petri Nets were used. The development process was
mapped to a directed graph consisting of places, transitions, arcs, and addi-
tionally its markings. A great advantage of this approach is that a stepwise
simulation can easily identify weak points. In this case, Petri net tokens as
representatives for active work activities indicate the status as well as the
progress of the design process; they indicate possible weak points and bottle-
necks resulting from this status.

The simulation model was implemented using the Java-based high level
Petri net simulator Renew [796, 797]. Renew is a tool for the development
and execution of object-oriented Petri nets. It provides synchronous channels
and seamless Java integration for easy modeling.

The entire Petri net model, according to the description of the PA6 de-
sign process, is composed of different sub-networks (constituent models). The
core element is the Activity Network, which connects i) the activities, ii) the
employees, iii) the work tools or resources, and iv) the information to be pro-
cessed. These four elements and their behavior are represented in more detail
in four sub-networks that use different smaller networks for additional func-
tionalities, such as the import and export of data or the visualization of the
simulation progress.

In the following,we present the Activity Network and its constituentmodels.

The Activity Network

The design and development of a new or the modification of an existing chemi-
cal process or plant usually take place in process respective plant development
projects. The complexity concerning the organizational structure as well as

456 B. Kausch et al.

the workflow dynamics of such projects should become apparent and – as far
as possible – it should be reduced. The model concept of the Activity Net-
work – first generated by using the C3 notation and later on transformed in
an executable Petri net – describes the work processes within the project. The
individual phases of the project are divided in activities. This decomposition
into constituent models is done to enable the planner to rearrange the dif-
ferent activities and their sequence without touching the detailed constituent
models of the different activities, actors, employees, tools, resources, and in-
formation items. Predecessor-successor-relationships between the activities,
which specify their logical execution order, are represented in the Activity
Network. The Activity Network is visualized using the C3 modeling language
(cf. Subsect. 2.4.4). The work activities of the Activity Network are assigned
to organizational units for execution. Apart from the chronological sequence of
activities, the assignment of work equipment to the activities is also displayed
in the Activity Network. Thus, necessary input and output of the activities is
represented in the Activity Network itself, but administrated in more detail
in an adequate partial model (Information Model, see below).

An example of a simple Activity Network of a process with nine activities
is displayed in Fig. 5.6 in C3 notation. This model has been created using
the workflow modeling system WOMS, a software tool for the participative
creation of C3 models (cf. Subsect. 5.1.3).

To develop the project simulation model, we consider – as an example –
the PA6 design process (cf. Subsect. 1.2.2), which was used as a reference
scenario in IMPROVE. This model describes the different activities for the
conceptual design of a production process for Polyamide-6; it consists of 79
activities organized in eight organizational units (swim lanes) in the work or-
ganizational model. The Activity Network describes the structure of the design
process. The predecessor-successor relationships between individual activities
are defined in this Activity Network and in its corresponding Petri net.

In C3, there are several possible relations between activities such as sequen-
tial activities, concurrent synchronized activities, and activities that model the
communication between different organizational units or persons. Within the
scope of the activity-driven approach, activities can be represented by places
in a Timed Colored Petri Net; thus, the tokens visualize the control flow,
which again determines the activity sequence.

In order to simulate sequential activities, the termination of a predecessor
activity has to be checked by means of a transition. In addition, the required
tools and information as well as at least one person who is able to execute the
activity must be available. The example process in Fig. 5.6 contains several
sequential activities. Activity 1 and Activity 4 of swim lane 1, for example,
are sequential activities that need one tool (catalogue) and some information
for their processing. The corresponding activities in the simulation model are
presented in Fig. 5.7 on the upper right side.

The simulation of synchronous activities is carried out by checking the
termination of both synchronized activities before executing the subsequent

Integrative Simulation of Work Processes 457

Process engineer 1
Organizational unit 1

[PC]
Personnel communication

e.g. via teleconference

Catalogue

Forward
decision to

purchase
agent

9

Discuss
product
attributes

8
Discuss
product
attributes

7

Prepare
product

data file
6

Propose
appointment
time

4
Confirm
appointment
time

5

Search a
new product on
the web

3
Product

inquiry by
phone

2

Product
inquiry by
catalogue

1

Inquiry for

new product

Information to

manager

Found
appropriate

article

Result of
co-worker

Process engineer 2
Organizational unit 2

Activity

Tool

Information

Organizatio-
nal unit

Key:

Fig. 5.6. An example of an Activity Network in C3 notation

activities. Furthermore, the execution of the activities relies on the availability
of the required tools and information. A sufficient number of persons allocated
to the activities can result in the parallel execution of synchronized activities.
For instance, Activity 4 and Activity 5 in Fig. 5.6 are synchronized activities
situated in different swim lanes. These two activities are transformed into two
places of the Petri net, which are, according to the C3 model, graphically
arranged in two different swim lanes (cf. Fig. 5.7). The successor activities,
“prepare product data file”and“discuss product attributes”, have to wait until
both activities are terminated.

Communication can begin as soon as both developers arrive at the commu-
nication activity. The communication between different organizational units
is a parallel activity that starts and ends in both swim lanes at the same

458 B. Kausch et al.

ktivität

Information

Werkzeug

Neäufigkeit / Blob

Kommunikation

Swimlane1 Swimlane2

[PC]

Catalogue

Upon
approval by

boss

Result of co-
worker

Information
to boss

Found
appropriate

article

Inquiery for
new product

Forward
decission to

puchase
agent

9

discuss
product

attributes
8

discuss
product

attributes
7

Go to room of
swimlane 16

book time for
meeting4

book time for
meeting5

search a new
product in the

web
3

product
inquiry by

phone
2

product
inquiry by
catalogue

1

Dynamisches
SimulationsmodellK3 Modell

search a new
product in the

web
3

product
inquiry by

phone
2

[PC] discuss
product

attributes
8

discuss
product

attributes
7

Catalogue

t
b

Upon
approval by

boss

Go to room of
swimlane 16

task

Info

tool

task1 task2

task1 task2

Semaphore

Aktivität

Information

Werkzeug

Nebenläufigkeit / Blob

Kommunikation

Swimlane1 Swimlane2

[PC]

Catalogue

Upon
approval by

boss

Result of co-
worker

Information
to boss

Found
appropriate

article

Inquiery for
new product

Forward
decission to

puchase
agent

9

discuss
product

attributes
8

discuss
product

attributes
7

Go to room of
swimlane 16

book time for
meeting4

book time for
meeting5

search a new
product in the

web
3

product
inquiry by

phone
2

product
inquiry by
catalogue

1

Dynamisches
SimulationsmodellK3 Modell

search a new
product in the

web
3

product
inquiry by

phone
2

[PC] discuss
product

attributes
8

discuss
product

attributes
7

Catalogue

t
b

Upon
approval by

boss

Go to room of
swimlane 16

task

Info

tool

task1 task2

task1 task2

Semaphore

Process engineer 1
Organizational unit 1

[PC]
Personnel communication

e.g. v ia teleconference

Cat
alog

ue

Forward
decisionto

puchase
agent

9

Discuss
product
attributes

8
Discuss
product
attributes

7

Prepare
product
data file

6

Propose
appointment
time

4
Confirm
appointment
time

5

Search a
new product on
the web

3
Product

inquiry by
phone

2

Product
inquiry by
catalogue

1

Inquiry for

new product

Information to

manager

Found
appropriate

article

Result of
co-worker

Process engineer 2
Organizational unit 2

Activity

Tool

Information

Organizatio-
nal unit

Key:

Synchr. Communication

Blob

Tool

Information

Activity

C3 Model Activity Network
(Dynamic Simulation Model)

Fig. 5.7. Transformation rules from C3 to the Activity Network (Petri net)

time. The simulation of a single communication event can be realized by a
semaphore variable that guarantees a synchronous processing. The discussion
of product attributes between two persons or organizational units (Activities
7 and 8 in Fig. 5.6) is such a kind of activity. Both activities have to start and
end simultaneously.

Figure 5.7 shows the C3 example model on the left and the transformed
Petri net (implemented in Renew), which represents the Activity Network, on
the right. The underlying basic transformation rules are given at the bottom

Integrative Simulation of Work Processes 459

of the figure. For illustration, Fig. 5.8 shows a section of the Activity Network
of the PA6 design process.

Based on the process-oriented approach, the Activity Network the indi-
vidual employees, the tools or resources, and the information items. Rough
correlations, such as possible alternatives, the coordination of work processes,
and resources required for the individual activities, are kept in the Activ-
ity Network. However, the exact processing of activities is represented in the
Activity Net.

The Activity Net

Whereas the Activity Network consists of different activities of the design pro-
cess, the behavior of each individual activity is described in the Activity Net.

For each activity, there is information about the subject matter to be
processed, a necessary work tool, a skill profile of possible persons to execute
the activity, input and output information of the activity, and a duration
distribution. The distribution of the duration includes an expected value and
a variance value. The distribution of the time consumption (e.g., Gaussian,
right- or left-skewed β-distribution) may also be used for the calculation of
possible buffer times. For the execution of an activity, a qualified person and,
if necessary, adequate tools are selected to achieve the goal of the activity. As
a result, the net for the representation of the execution of a single activity
builds the link between the partial models of the work tool and the employee
(Person Net and Tool Net, see below).

For each person, a value is determined that reflects his or her qualifica-
tion for a certain activity. This value is calculated from the weighted sum of
the person’s assigned characteristics (cf. Person Net). The weighting and the
different attributes are not constant and can vary depending on the area of
application. The most highly qualified person will we chosen for the activ-
ity. If several persons are qualified for an activity, the person with the best
efficiency, i.e., the best anticipated quality of the working results within the
shortest time, will execute the activity. This efficiency is affected by the quality
level QL, which is calculated as follows:

QL = α · P + β · Qw + γ · Qt .

The weights α, β and γ determine give the influence of an attribute on the
quality level of a person. According to the model concept of the person, the
attributes productivity (P), qualification based on the field of work (Qw),
and the ability and qualification to handle a work tool (Qt) are viewed as
independent variables.

With respect to these constraints, the Activity Net aims to reserve and
provide the person who will execute the activity. Similarly, the resources to
be used for the activity (such as tools or laboratories) are chosen and reserved.

Occasionally, it may happen that the basic skills needed for a certain ac-
tivity are not possessed by anyone available. In this case, the activity cannot

460 B. Kausch et al.

Fig. 5.8. Section of the Activity Network of the PA6 design process

Integrative Simulation of Work Processes 461

be completed until someone qualified for the activity is available. The activ-
ity can only be executed if the adequate employee and essential tools and
resources are available. The duration depends on the underlying distribution
(Gaussian or Beta), on the qualification for the necessary tool, on the field of
work, and on the productivity of the person who is employed for the activity.

As mentioned above, the duration of an activity is another variable deter-
mined by the Activity Net. Effort and duration for the processing of an activity
depend on the estimated average execution time and on the qualification and
proficiency level of the specific employee. The choice of work tools used along
with the procurement of additional information can also have an effect on the
duration and processing of an activity. In order to estimate the execution time
of an activity, the concept of a probability distribution is employed. The first
step is the estimation of a mean processing time. The variance around this
mean value is represented by a Gaussian distribution. To allow for the realis-
tic trend of activities to take longer than expected, the Gaussian distribution
can be replaced by a right-skewed β-distribution. A normal distribution with
relative variance between 10 and 30 percent of the mean was used for the runs
of the simulation model.

The Activity Pool is an auxiliary network for the administration of the
activities in a process. This comprises the import of the activities and their
attributes from a database as well as the formatting into a new format ade-
quate for the further processing in the Petri net simulator. All activities are
initialized, imported, and managed by the Activity Pool.

The Person Net

According to the person-oriented simulation approach, the definition of the
characteristics of employees is of particular importance. At the same time, an
attempt is made to model persons as realistically as possible. This includes the
employees’ characteristics and abilities that have an influence on the allocation
of persons to the various activities, the execution times for the activities, and
the work quality achieved in the activities. Therefore, the employees involved
in the process, along with their behavior, characteristics, and capabilities, are
implemented in the Person Net.

The described attributes of an employee are summarized in the following:

• Productivity of an employee: To each person, a numerical value is assigned
that describes the productivity of the person. This value allows to select
the most qualified employee for an activity. It also has an influence on the
execution time of an activity.

• Qualification in terms of a particular area of work: The activities of the
process are arranged in swim lanes in accordance with C3 modeling. These
swim lanes describe areas of work, such as the simulation of chemical pro-
cesses (done by simulation experts) or the design of separation units (done
by separation experts). The persons possess abilities and skills that qualify

462 B. Kausch et al.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Iterations

Q
ua

lif
ic

at
io

n
in

 [%
]

0

8

15

30

50

Q0 =

Fig. 5.9. Learning curve with different start qualifications

them for the execution of activities in certain areas of work, but they may
make them unsuitable for others. According to these qualifications, the
appropriate persons can be assigned to the activities to be executed.

• Ability to deal with particular work tools: Several activities require a work
tool such as a software tool or a machine. The persons possess abilities and
qualifications that describe how well they can handle certain tools. This
means that a person must not only have the appropriate qualifications to
execute an activity, but must also have the ability to carry out the activity
with the necessary tool.

• Learning aptitude: An employee begins his career with certain basic qualifi-
cations, i.e., knowledge, skills, and abilities that have been acquired during
education or training, and further inherent characteristics like retentiv-
ity or technical comprehension. During the course of a career, however, a
person’s abilities can change. Due to routine activities and new methods
and expertise, certain qualifications can actually be improved. Conversely,
abilities not used over a long period of time can also decrease. This ca-
pacity to learn and unlearn is represented by means of a learning curve
that is attributed to each person. Activity-specific abilities of a person are
improved, thereby increasing the corresponding attributes of the person
when an activity is executed. This learning ability of the employee follows
the characteristics shown in Fig. 5.9.
It was not possible to deal with the learning ability of every single em-
ployee; instead, a general function was used. One aim of further research
activities is to individualize the learning and unlearning rate by employee-
specific factors based on empirical studies and results attained in the field
of psychology [647] and education science.

Integrative Simulation of Work Processes 463

Fig. 5.10. Person Net

Personal qualifications are taken into account in the model concept to recog-
nize that each person is able to carry out a variety of activities. This portfolio
of possible activities can be directed at specific job descriptions that are rep-
resentative for the different organizational units and work means related to
the process. In Fig. 5.10, a section of the Person Net is shown.

The management of employees is organized in an auxiliary net, the so-
called Person Pool. Here, the current number of available persons as well as
their current status – “currently in processing” or “free for the next available

464 B. Kausch et al.

Fig. 5.11. Person Pool

activity” – is deposited. Before an activity is executed, an adequate employee
is searched in the Person Pool. The Person Pool net is shown in Fig. 5.11.

The Tool Net

The influence of work tools on the execution of activities is represented by
means of the Tool Net. As mentioned above, the assigned work tools can have
an influence on the completion of individual activities. The allocation of work
tools for activities results from the work organization of the project. Informa-
tion about possible assignments of tools to activities is already included in the
Activity Network.

Due to their scarcity, work tools must be reserved prior to their use. Also,
a tool can be used by only one employee at a time, though more than one tool
can be used for a specific activity. The amount of possible work tools in the
project cannot be exhaustively declared since the amount of possible activities
in need of completion, detached from individual case examples, cannot be
given a priori.

Thus, similar to the Activity Network and the work organization, a list of
work tools must be created. This list is specific for the design or development
project to be simulated. The level of detail is also to be specified individually

Integrative Simulation of Work Processes 465

for each case. For instance, it may suffice to differentiate between drawing
boards and CAD systems as exemplary tools for the creation of technical
drawings; in other projects, a distinction between different operating systems
for the CAD tools may be necessary.

The work tools available for the process are administered in the Tool Net
and its corresponding auxiliary net, the Tool Pool. In the model presented
here, a name and a distinct identifier are sufficient to characterize a work
tool. Similar to the Person Pool for employees, the Tool Pool implements the
maintenance of work tools; the current number as well as status of available
work tools is represented here. A tool from the Tool Pool is allotted to a
person needing the tool. However, in case another person is already using this
specific tool, waiting times must be accepted.

Information Model

Information is already assigned to activities in the Activity Network and
has an influence on the duration of the project. Information elements can
be grouped into input and output information.

1. Investigation
of degassing

by wiped-film
evaporator

1. Investigation
of extraction by

leacher

- Chemical components
- Thermodynamic data

Well known methods for
degassing

Two possible alternatives
for separation:
1. Wiped-film evaporator
2. Leacher

Generation of
different

alternatives for
separation

Request for
further

literature

Decision for contract
placing for subcontractors
or further company internal

processing

Rough information about
necessary equipment,
investment and resources for
degassing by wiped-film
evaporator

Rough information about
necessary equipment,
investment and resources
for extraction by leacher

13 14

18 22

25

Fig. 5.12. Section of the PA6 design process

466 B. Kausch et al.

Input information such as files or documents is essential for the execution
of an activity. Depending on the quality or type of the information, an activity
cannot start or it must be executed differently if information is missing. For
example, Activity 14 in Fig. 5.12 requires some information about degassing
methods as well as information about the chemical components involved and
their thermodynamic properties. Based on this information, an expert gen-
erates alternatives for the separation such as a wiped-film evaporator or a
leacher. Both methods are analyzed in more detail (Activities 18 and 22).

Networks for Additional Functions

In addition to the constituent models described so far, a supporting model
composed of further auxiliary networks exists. In this supporting model, func-
tions such as the initialization of the model and the output of simulation
results are implemented. It acts as a link between the various nets.

The input data of the simulation model (the description of the activities
in the process, the required personnel, the necessary resources, the number
and characteristics of the employees involved, and work tools available) is
organized in tables. A user interface has been designed and implemented for
the modification of these tables. To give an example, Fig. 5.13 shows the
form for the specification of the attributes of a person such as the abilities
to use the different tools or to perform special activities depending on the
organizational unit. These parameters can be varied by changing the values
in the boxes. Alternative values that have to be calculated separately must be
divided by semicolons; such values are highlighted in green color.
In a second step, the number of possible combinations can be restricted. The
interface provides the possibility to reduce and combine possible variables in
test scenarios. These scenarios are administrated in a clearly arranged tree
structure as shown in Fig. 5.14.

The test scenarios are saved in a special data structure and can be viewed
with the help of the initialization network. This data structure contains tables
that describe the parameters of the simulation model that have an influence
on the duration and on the resource utilization.

Additional functions, e.g., the calculation of the normal distribution of
the execution time or the printout of simulation results, are implemented in
independent Java classes, whose functions are invoked and performed in the
corresponding parts of the network.

5.2.5 Validation of the Simulation Model

Validation means to prove that a developed system (product, program, pro-
tocol, ...) meets some goals that have been specified a-priori. Thus, before
models can be used to identify causes and effects [1009], it must be checked
whether they are valid representations of the systems in consideration. To
meet these requirements for the simulation model of the PA6 design process,

Integrative Simulation of Work Processes 467

Fig. 5.13. User Interface for the variation of parameters

the model was developed in close cooperation between process experts from
industry and academia. In addition, VDI 3363 [1020] suggests the comparison
of real data to simulation results. Therefore further projects will be recorded
and transferred into a simulation model in the future. A further step is to
compare the real project structure, the project duration, and the operating
grade of the employees with the simulation results.

Concerning the structural validation of the simulation model, the adjust-
ment of the numerous parameters is particularly critical; these parameters
include the number of actors (more than 20 attributes for each actor), the
number of tools (five attributes for each tool), the dispersion and the variation
of the activity durations, the probability of occurrence of certain activities, and
many more. The values of these parameters can result in extremely complex
system dynamics. Therefore, in the first runs of the organizational simulation,
the number of persons was varied, and afterwards it was set to the optimal
number. Subsequently, the number of tools was also varied. The other factors
were not examined in the first test runs. Then, the influence of the number of
actors and tools on the simulation results for the total time of project duration
was examined in order to judge the internal validity of the simulation model.
To do so, the expected durations of the individual activities were established
in multiple expert workshops. As described in the following, these test runs

468 B. Kausch et al.

Fig. 5.14. User Interface for the configuration of test scenarios

showed consistent behavior of the simulation model with respect to the vari-
ation of the total time of project duration, to the organizational structure of
the activities, and to the operating grade of the employees when the input
variables (number of persons, number of tools) were varied.

Dependence of the Total Duration on the Number of Employees

The relationship between the total duration of the project and the number
of organizations involved – in the present case identical to the number of
persons – was analyzed in simulation runs. The analysis was restricted to
the simple case that a single activity is executed by a single person. Further
extensions of the simulation model will allow for the synchronous execution
of single activities by several persons.

Hypotheses

The following three null hypotheses were formulated for a comparative assess-
ment of the simulation results related to the PA6 design process:

• H01: “The dependent variable ‘total time of project duration’ (TTpd) is
not influenced by the independent variable ‘number of persons involved’
(Nip).”

Integrative Simulation of Work Processes 469

• H02: “There is no effect of the independent variable ‘variance of the activity
duration’ (Vtd) on the dependent variable ‘total time of project duration’
(TTpd).”

• H03: “The dependent variable ‘total time of project duration’ (TTpd) is not
influenced by the independent variable ‘total number of tools’ (TNot).”

The Petri net simulation was used to investigate these different comparative
hypotheses. Independent variables were the number of persons, the variance
of the duration of each single activity, and the number of available work tools.
The main dependent variable was the total time of project duration TTpd.
These results can conversely give the indication of the optimal project con-
stellation of persons and work tools.

Analysis of Input Data

In practice, all simulation models are stochastic models, i.e., both input and
output variables are random variables. In a simulation run, only one specific
constellation of possible random variables can be generated, and only the
corresponding simulation results can be analyzed. In the present case, the ac-
tual time consumption of each individual activity is calculated from the input
duration and the attributes of the activity, the tools, and the persons. This
input duration disperses between freely definable limits, normally distributed
around a predicted mean value. The determination of this variation is acquired
with random numbers and ranges to 99 percent between freely definable limits
of ± 10, 20, or 30 percent. The random numbers are between zero and one;
they were tested for autocorrelations smaller than 0.005 for a sample of 1000
random variables (u1, ..., u1000). By means of the Box-Müller Method [855],
the equally distributed random numbers were converted into random numbers
(z1, ..., z1000) with a normal distribution (µ = 0, σ = 1):

z1 =
√−2 ln(1 − u1) · cos(2πu2)

and

z2 =
√−2 ln(1 − u1) · sin(2πu2)

It is assumed that the predicted time consumption is normally distributed
within the given range.

Pre-test Conditions

To compare different constellations of input variables in this project, the total
number of involved persons was varied between one and eleven. For more than
five persons, no significant reduction of the total time of project duration
could be detected. To ensure that 5 is the optimum number of persons for this
project, the number of persons was increased up to eleven. For six or more
persons, no significant effects could be detected (satiation). The variance of
each expected activity duration, estimated by experts, was regarded as an

470 B. Kausch et al.

independent variable. This variable was changed in the simulation experiment
in three steps (10, 20, and 30 percent of the mean) such that for this pre-
test n = 10 runs were performed for each of the possible 33 combinations of
variables (the number of combinations results from of the number of persons
(11), multiplied with the number of variances (3)). The sample size of ten runs
is suggested by Goldsman and Nelson [695] as adequate for determining the
optimal number of final runs. As each run took roughly two hours, the total
time for the simulation runs was approximately one month. This extremely
low system performance is due to the insufficient appropriateness of Petri
nets for reading, sorting, and writing tables, a functionality that is used very
often for selecting and evaluating the different attributes in this simulation
concept. Another reason is the online processing and the visual presentation of
the simulation progress and its results. Finally the high amount of interfaces
in this modular simulation system causes many approval processes between
the modules of the model.

The corresponding hypothesis states that the duration of the design project
decreases for each additional employee. Experts had predicted that the in-
fluence of the number of employees would have the most significant impact
on the variable ‘total time of project duration’. The experts also had given
another reason to analyze this independent variable: personnel expenditures
affect more than 80% of the total costs of development projects. Therefore, the
total duration and the operating grade of the employees were to be analyzed.

Simulation Results

First, ten simulation runs were performed with some selected combinations for
the number of persons (0 < Nip < 12) and for the variance of the individual
activity durations (Vtd=10%, 20%, 30%). For these results, a two-way analysis
of variance (ANOVA) was performed. The factorial ANOVA is typically used
when the experimenter wants to study the effects of two or more treatment
variables [945]. This method allows to test multiple variables at the same
time rather than having to run several different experiments. By means of
this method, interaction effects between variables can be detected.

A highly significant (F10;297 = 1226, 015; p < 0.0001) dependence of the
total time of project duration on the number of persons (independent variable)
was discovered. The variance of the predicted processing times, however, was
not significant.

Therefore, the null hypothesis H01 must be rejected. Instead, its nega-
tion H1 (“The dependent variable ‘total time of project duration’ (TTpd) is
influenced by the independent variable ‘number of persons involved’ (Nip)”)
is confirmed. Furthermore, the expectation that a proper estimation of the
duration of each activity can abbreviate TTpd is not fulfilled; instead, the null
hypothesis H02 is confirmed.

This result holds independently of the predicted duration; it describes a
balancing effect on the variance of a large number of activities (a = 79).

Integrative Simulation of Work Processes 471

Table 5.2. Post-hoc test

Variation/Change of project duration by variation of number of persons(*)
Changes of

proj.duration in Number of
persons

Mean
(in sim.units)

Test
runs

Std.deviation
(in sim.units)

sim.units %
Sig.

1 453,5 10 4,7
2 269,9 10 6,5 -183,6 -40,49 0,000
3 220,4 10 8,3 -49,5 -18,34 0,000
4 191,8 10 5,1 -28,6 -2,98 0,000
5 182,9 10 3,8 -8,9 -4,64 0,038
6 182,6 10 7,6 -0,3 -0,16 1,000
7 182,4 10 5,1 -0,2 -0,11 1,000
8 182,6 10 5,0 0,2 0,11 1,000
9 182,5 10 5,5 -0,1 -0,05 1,000
10 181,4 10 3,9 -1,1 -0,60 1,000
11 183,5 10 7,1 2,1 1,16 0,999

Total 219,41 110 78,9
(* with boundless number of tools and 10% deviation from expected task duration)

Experience shows, however, that projects usually do encounter delays, which
is why the variance in the redesign of the simulation should be replaced by
a right-skewed β-distribution. This measure shifts the mean of the random
activity durations to the right side of the distribution. Hence, in contrast to a
symmetrical Gaussian distribution, for more than 50% of the activities a longer
execution time will be used in the simulation than estimated by the experts.
This way, the quality of planning and the response to unexpected activity
delays can be improved (longer buffer times, better risk management).

According to Eimer [653], the measure of effect (o2) of the individual vari-
ables occurs as follows: 97.4% of the variance is due to the number of persons,
whereas the variance of the individual activity durations, the interaction fac-
tor (number of persons, multiplied with the variance), and the errors are not
significant. Thus, independent of the variance of the individual activities, there
are no significant differences within the individual groups. Next, the total time
of project duration was related to the different values for the number of per-
sons. Starting at one person, the number of persons involved was successively
increased by one. In addition, the variable“variance of activity duration”(Vtd)
was held constant at 10%.

The Tukey test was used post-hoc to compare the individual groups con-
sisting of a constant number of persons to each other (see Table 5.2): up to
5 persons, increasing the number of persons resulted in a significant decrease
of the total time of project duration (TTpd). Beyond 5 persons, no significant
reduction of the total time of project duration can be attained (cf. Fig. 5.15).

Furthermore, the simulation has shown that the duration can be reduced
by approximately 60 percent by employing five persons instead of a single
person. Though, six or more persons do not result in a significant additional

472 B. Kausch et al.

11 10 09 08 07 06 05 04 03 02 01
Persons

450

300

150

To
ta

l t
im

e
of

 p
ro

je
ct

 d
ur

at
io

n
[S

U
] (

1
SU

 ~
 0

,5
d)

30 %
20 %
10 %

Variance
of the
task

duration

Fig. 5.15. Effect of the number of persons on the simulated total time of project
duration and on the variance of the expected value (average values shown)

reduction. This is due to the structure of the activity network for the project:
there are never more than five activities which can be executed at the same
time. As we have assumed that an activity is performed by a single person,
additional persons do not have any effect. If several persons can be employed
simultaneously for particular activities, these circumstances will change. This
motivates further research to implement the time-shared execution of a single
activity by several actors. This will require additional attributes for the ac-
tivities. For instance, the activity duration depends on the number of actors
available. There are activities that must be executed by more than one person
at the same time. For other activities, there is a maximum number of actors.
This approach will be examined in further studies.

There is a further influence of the synchronous communications on the
project duration. Synchronous communications between the activities occupy
the required persons of the participating organizational units. Employees are
picked from the activity network and “scheduled” for the discussion by the
simulation model. These employees cannot execute other activities during
this time. Such communication relationships are a characteristic for design
processes, and therefore their effect should be examined more carefully in
future.
The arrangement of the activities and the workload of the employees can be
analyzed based on the graphical representation of the simulation results.

For instance, Fig. 5.16 the shows the results of a simulation with 2 per-
sons (actors), whereas Fig. 5.17 gives the results for 5 persons. In the second
simulation, the activities are parallelized as far as possible. Nevertheless, the
decrease of the total project duration is not large (180 simulation units [SU]

Integrative Simulation of Work Processes 473

Detailed activity information:
• ID: 47
• Description: Result discussion

Experiment Extraction
• Org. Unit: Lane 5
• Start time: 48
• End time: 57
• Duration. 10

A
re

a
of

 h
ig

h
lo

ss
es

 o
f p

ro
je

ct
 ti

m
e

du
e

to
 o

bl
ig

at
or

y
se

qu
en

tia
l

ac
tiv

ity
 p

ro
ce

ss
in

g
(s

eq
ue

nt
ia

l s
tru

ct
ur

e
of

 th
e

ac
tiv

iti
es

 a
nd

pa

ra
lle

liz
at

io
n)

Involved in Person-ID: Person workload: Graphical workload:

Involved in Person-ID: Person workload: Graphical workload:

Task
duration

Task
ID

Fig. 5.16. Simulation results for two actors visualized as bar charts

in contrast to 267 SU for the first simulation). The calculated project du-
ration ranges from 127 to 142 days for the first simulation (two persons),
and from 88 to 110 days for the second simulation (five persons). This ef-
fect results from synchronous activities such as communication, which impede
any re-arrangement of the activities. A further effect are different average
workloads: The average workload of the two persons in the first simulation is
approximately 79% (employee A: 80%; employee B: 78%), whereas the aver-
age workload for the five persons in the second simulation is approximately
40 percent (individual values between 16% and 58%).

Dependence of the Total Project Duration on the Number of
Work Tools

The influence of the number of tools on the total simulation time was examined
in further simulation runs. According to the results of the first examination,
the parameter ‘number of persons’ was set to the optimum value (5 persons,
cf. Fig. 5.15).

As the total project duration does not significantly depend on the variance
of the expected process duration (as described above, variances of 10%, 20%,
and 30% have been examined; see also Fig. 5.15), a variance of 30% was chosen
in an arbitrary manner. That way, the different activity durations mentioned

474 B. Kausch et al.

Detailed activity information:
• ID: 30
• Description: 1. Experiment

Extraction
• Org. Unit: Lane 5
• Start time: 48
• End time: 57
• Duration. 10

Ar
ea

 o
f s

tro
ng

 a
bb

re
vi

at
io

n
by

 o
rg

an
iz

at
io

na
l

m
ea

su
re

s
(c

om
pa

ct
 s

tru
ct

ur
e

of
 th

e
ac

tiv
iti

es
 a

nd
 p

ar
al

le
liz

at
io

n)

Fig. 5.17. Simulation results for five actors showing a different project organization

by the experts can be considered. Ten simulation runs were conducted for
each combination of the parameters.

Hypothesis

The total quantity of arbitrary work tools (total number of tools, TNot) does
not play a crucial role; in contrast, the number of very specific work tools,
depending on the structure of the process, is important.

Therefore, a fourth hypothesis is introduced:

• H3a: “There is no significant difference between
– increasing the total number of available tools in a project and
– increasing the number of project-specific tools
on the total time of project duration.”

For the PA6 design project, the minimum total number of tools is 9. This
means that each work tool must be available at least once; otherwise the
project cannot be carried out. If some work tools are available more than
once, the effect on the total project duration is specific to the work tool.
Moreover, several work tools are needed only once or only in a work area with
sequential activities; in these cases, additional work tools of the same type
have no positive effect on the duration of the process.

Through simulation, it is thus possible to identify those work tools which
have a significant effect in bottleneck situations in the overall process.

To substantiate this fact, two groups of simulation runs were performed. In
the first group (a), the total number of tools was varied (9, 18, 27, and 36 work

Integrative Simulation of Work Processes 475

Quantity of available Tools

9 Tools
18 Tools 36 Tools 21 Tools

17 Tools
13 Tools

9 Tools27 Tools

To
ta

l P
ro

je
ct

 D
ur

at
io

n
in

 S
im

ul
at

io
n

U
N

its
[1

SU

0,
5

da
ys

]

To
ta

l P
ro

je
ct

 D
ur

at
io

n
in

 S
im

ul
at

io
n

U
N

its
[1

SU

0,
5

da
ys

]

Quantity of available Tools

240

230

220

210

200

190

180

170

240

230

220

210

200

190

180

170

Fig. 5.18. Connections between the total time of project duration and the number
of tools under procedures a) and b)

tools), whereas in the second group (b), only the number of four selected work
tools was changed (4, 8, 12, and 16 instances of these four tools). These four
tools were identified to be the reason for bottlenecks. Increasing the number
of these tools could also have an influence on the duration of the example
process due to its structure. This procedure is used to identify the optimal
number of specific tools. In industrial practice, it allows to reduce the capital
investment for such tools.

Simulation Results

The results for both groups of simulation runs are displayed in Fig. 5.18.
They confirm the hypothesis that the simulated time is more dependent on
the number and combination of specific tools than on the total number of
work tools.

In the second group, only four specific tools were added in each case. A
Levene test proved that the variances within the two groups did not differ
significantly. Thus, the results for the two groups could be compared. A sig-
nificant (F6;69 = 110, 081; p < 0.05) reduction of the total time of project
duration (TTpd) between 9 and 13 work tools could be shown using a one-
way ANOVA. Between 13 and 17 tools and beyond, the reduction of time
consumption is not significant.

Thus, the“naive”duplication of all work tools – resulting in a total number
of 18 – has the same result as duplicating only 4 selected tools – corresponding
to 13 tools in total. Analogous statements hold for total numbers of 27 and 17,
as well as 36 and 21. In addition, the sensitivity analysis showed that increasing
the number of persons has a stronger influence on TTpd than increasing the

476 B. Kausch et al.

number of work tools. As the measure of effect o2 for manipulating the number
of work tools on the total time of project duration is only 48.98% [653], there
is only a weak effect if the number of work tools is varied.

A slight regressive tendency can be seen when the number of tools in-
creases. This can be explained through the structure of the process; there is
no situation in which more than three identical work tools are needed simul-
taneously.

5.2.6 Summary and Outlook

The simulation model described here consists of five constituent models. It
allows project planners to study and optimize the structure of design and
development projects and to allocate human resources effectively. The ap-
proach allows to apply simulation studies for planning design and development
projects both before project start and during the projects.

The simulation model offers a graphical representation of the process due
to its close connection to the C3 modeling language and the Renew simulation
tool.

The influence of the quantity of persons and tools were investigated in
the first simulation runs. These experiments produced satisfactory results.
Additional analyzes are planned for the further validation of the simulation
model.

We have identified two extensions to be studied in the future in more
detail. These are the inspection of a right-skewed β-distribution as well as the
execution of a single activity by several persons.

Additionally, investigations are planned concerning the influence of staff
qualification on cycle times. The employment of highly specialized experts in
comparison to the employment of workers with broad qualifications (gener-
alists) should be observed. Also, the variation in the weighting of different
employee characteristics is to be surveyed.

The application-oriented enhancement of the simulation model presented
here is planned in the transfer project “Simulation-supported Workflow Op-
timization in Process Engineering” (cf. Sect. 7.4). The long term goal is the
all-around support for project engineering through advanced project simula-
tion in order to increase validity and to optimize time and resource planning.
Thus, improved risk management in daily project planning is also allowed for.

5.3 An Integrated Environment for Heterogeneous
Process Modeling and Simulation

L. von Wedel, V. Kulikov, and W. Marquardt

Abstract. The development of chemical processes requires the consideration of
different areas such as reaction, separation, or product conditioning from several
perspectives such as the economic efficiency of the steady-state process or the per-
formance of the control system during operation. Mathematical modeling and com-
puter simulation have become vital tools in order to perform such studies. However,
various applications are supported by a number of tools with different strengths and
weaknesses. Unfortunately, the formulation of the mathematical model and the data
structures underlying the implementations of these tools are incompatible. Their
integration at runtime for chemical process development poses technical problems
to the engineer who carries out the work. This section describes an environment
that accounts for the differences of mathematical modeling and simulation tools,
and facilitates modeling and simulation across the boundaries of incompatible tools.
The use of this environment is illustrated in the context of the IMPROVE refer-
ence scenario, addressing the production of Polyamide-6 from ε-caprolactam (cf.
Subsect. 1.2.2); the simulation tools used in this case study are currently used in
industrial design processes.

5.3.1 Introduction

Mathematical modeling of chemical processes has become a convenient means
for process engineers in order to plan, evaluate, and assess design alternatives
for chemical plants. Continuous improvement of modeling and simulation tools
over a long period of time has resulted in the mature commercial systems
available today. These tools provide domain-specific modeling languages for
representing a chemical process through mathematical abstractions (such as
variables and equations). Further, they provide algorithms to perform a nu-
merical analysis of the models. Such an analysis, carried out in the sense of
a virtual experiment inside a computer, is subsequently termed simulation.
Simulation permits to study aspects of a chemical process that are expensive,
difficult, or even impossible to study in real life. Such aspects can relate to
economical, environmental, or safety aspects. For example, the effect of dif-
ferent controller settings on product quality and quantity, or the behavior of
a process in hazardous situations may be safely evaluated.

In this section, the term model refers to a mathematical model which
consists of equations describing the physical and chemical behavior of the
process under consideration. Modeling and simulation are also employed in
other areas. For example, a simulation study of the work processes during the
conceptual design of a chemical process is presented in Sect. 5.2. However,
the concepts used in languages for workflow analysis (such as activities or
actors) differ strongly from the mathematical models and numerical methods

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 477–492, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

478 L. von Wedel, V. Kulikov, and W. Marquardt

employed in the simulation of chemical processes, which is the topic of this
section.

Modeling and Simulation in the Chemical Industries

Several decades of research in simulation technology have led to a high level
of maturity of modeling languages and numerical algorithms to analyze chem-
ical process systems. More recently, a lifecycle modeling approach has been
identified to be an important research topic in model-based process engineer-
ing [303]. This approach is characterized by an integrated view of the work
processes conducted during the design and the operation of a chemical plant
as well as of the information created and consumed by the activities during
these work processes. The ultimate goal is to understand process design as
a continuous work process in which all information required is invented (and
entered) only once and is then enriched along the work process towards the
final goal, i.e., the complete specification of a chemical plant.

However, current tools are often too narrow in focus, and many of them are
used by different specialists when designing or analyzing chemical processes;
in the following, we give some representative examples:

• Simple economical considerations are based on linear mass balance models,
which are often evaluated using a spreadsheet application such as Microsoft
Excel.

• The performance assessment of process flowsheets is often supported by
steady-state process modeling tools (also known as flowsheeting packages)
such as Aspen Plus [516].

• Important process units such as a reactor or a non-standard separation
unit (e.g., a crystallizer) are often modeled by means of special-purpose
packages.

• Tasks like controller design or the assessment of start-up procedures require
dynamic simulation studies, which are supported by dynamic simulators
such as gPROMS [916].

Hence, chunks of the overall design process are well supported by diverse
software tools. However, the desired integration of these chunks into a coherent
work process requires also an integration of the respective software tools to
overcome the solution islands. A manual integration requires (at least) the re-
entering of information to specify the simulation of the various tools. Manual
integration could be overcome, if an omnipotent simulation tool were available
which covers all aspects of the design process. Considering the efforts that have
been invested into the various process modeling and simulation packages, it
becomes quickly obvious that the development of such an omnipotent software
tool would be a formidable task. Instead, a promising pragmatic approach
seems to be the a-posteriori integration of the existing simulation tools at
run-time.

An Integrated Environment for Heterogeneous Process Modeling 479

Integration of Heterogeneous Models

The information system described in this contribution integrates process mod-
eling tools to be employed during the process design lifecycle such that the
engineer may freely choose among available tools for modeling and simulation
on an arbitrary level of granularity. When developing new models, it shall
be possible to employ the best-suited modeling tool for different parts of the
chemical process without bothering about conceptual or technical aspects of
their aggregation in advance. The reuse of existing models and their aggrega-
tion to new ones should be supported, regardless of the modeling paradigms
or software technologies that were used to develop and implement the models.

Hence, model integration must be supported to permit model development
based on existing simulators representing parts of the complete chemical pro-
cess. This integration is particularly difficult because the existing models have
been developed using different process modeling tools, which are incompati-
ble with respect to the underlying modeling concepts and languages as well as
simulation algorithms. Hence, an a-posteriori integration approach is needed
to permit an efficient reuse of these models.

Model integration comes in two flavors [303]. Horizontal model integra-
tion covers process parts of comparable granularity, but of different kind to
be combined to a model of the whole process. For example, a CFD model
(computational fluid dynamics) of a reactor might be integrated with a neural
net model of a melt degassing unit and with lumped mass and energy bal-
ance models of the remaining process units to form the model of a complete
polymerization process. In contrast, vertical model integration refers to the
case where submodels are introduced in a supermodel in order to increase the
degree of detail of the description of the physical and chemical phenomena
occurring. For example, the reaction rates of a polymerization model may be
considered in detail to reflect the complete kinetics covering all the reaction
steps rather than lumping all physico-chemical effects with an overall reaction
rate.

The technical implementation of model integration is determined to a large
extent by the way the models are represented [303]. We distinguish procedu-
ral and declarative representations, respectively. Declarative model represen-
tations are coded in a generic modeling language and are completely indepen-
dent of the solvers applied. The term solver refers to any numerical algorithm
applied to a model to accomplish a simulation or an optimization. The in-
tegration of declarative models requires the aggregation of submodels on the
level of the modeling language and is therefore similar to the concept of data
integration in software engineering [1038].

In contrast, procedural model representations are intimately intertwined
with a solver and are coded in some programming language. The integration
of procedural models requires some concept of control integration [1038] to
execute the partial models according to the way they are interconnected to
form the complete model.

480 L. von Wedel, V. Kulikov, and W. Marquardt

ROME

CHEOPS

gPROMS

Wrapper

Aspen Plus

Wrapper

…

Wrapper

API

API

M
od

K
it

Fig. 5.19. Conceptual overview of the integrated modeling environment REALMS

The distinction of declarative and procedural representations is directly re-
lated to the classification of the models from the point of view of an external
solver [303]. Open-form model representations provide interfaces to access the
full equation system of the model, for example, in form of a CAPE-OPEN
equation set object [894]. Alternatively, the closed-form model representation
provides interfaces which only enable to set inputs and to retrieve outputs
of the model. Typically, declarative representations require an external solver
and use an open-form interface, whereas procedural representations come with
an integrated solver and usually have an interface of the closed-form type.

An Environment to Support Heterogeneous Process Modeling

A modeling environment supporting the reuse of heterogeneous software mod-
ule of very different nature as described above roughly requires the support
of three important aspects of model integration [459]. The modeling environ-
ment REALMS developed in the research group of the authors essentially
consists of three software tools, each of them covering one of these aspects
(see Fig. 5.19):

• Model maintenance and archival along the lifecycle of process design must
be supported. The model repository ROME [24] provides functionality for
model management and archival. ROME accesses proprietary modeling
tools in order to extract information about the models being maintained.
ROME stores only metadata about the models being archived and can
therefore easily reference models in a variety of representations, open-form
or closed-form as well as declarative or procedural models.

• A symbolic perspective of model integration permits the aggregation of
model building blocks that originate from heterogeneous process modeling

An Integrated Environment for Heterogeneous Process Modeling 481

tools. The modeling toolkit ModKit [52, 54] uses model building blocks
made available by the model repository ROME to support model devel-
opment across the boundaries of existing modeling languages and tools.
Since ModKit permits aggregation as well as refinement of models, hori-
zontal and vertical integration of model building blocks is supported.

• The execution of heterogeneous simulation experiments is enabled by the
simulation environment CHEOPS [409]. It supports run-time integration,
i.e., heterogeneous models can be used together to simulate a complete
plant. CHEOPS builds on the native solving capabilities of the proprietary
simulators to ensure that the models are computed with exactly those
algorithms that have been used during their development. This applies to
declarative as well as procedural models. In case open-form and closed-
form models are used in a mixed setting, suitable wrappers are supplied
to make the different forms interoperable.

Furthermore, in order to simplify the technical realization and maintenance of
the environment, abstract interfaces for tool wrappers have been introduced
to render models from external tools, including gPROMS and Aspen Plus (cf.
Fig. 5.19). These abstract interfaces permit the development of generic func-
tionality in the environment. Furthermore, future changes in the simulation
tools only influence the corresponding wrapper implementation; they do not
need to be accounted for in the implementation of the functional modules of
the overall environment.

Before discussing the individual elements of the heterogeneous modeling
environment in detail, we present a scenario to illustrate the issues addressed
above (cf. Subsect. 5.3.2). The model repository ROME is discussed next in
Subsect. 5.3.3, followed by an explanation of ModKit in Subsect. 5.3.4. More
details on CHEOPS are given in Subsect. 5.3.5. Subsection 5.3.6 presents the
work process for solving the scenario problem introduced in Subsect. 5.3.2 by
means of the heterogeneous modeling environment. Concluding remarks and
a summary are finally given in Subsect. 5.3.7.

5.3.2 Production of Polyamide-6 – An Illustrative Scenario

The development of a Polyamide-6 (Nylon 6) production process as described
in Sect. 1.2 is employed to illustrate the issues discussed in the previous subsec-
tion. Besides being a process of industrial relevance, it has certain properties
which stress the importance of a neutral model integration platform. First,
the behavior of polymer materials is more difficult to describe than that of
ordinary fluids which are handled quite well by most state-of-the-art simula-
tion packages. Further, non-standard pieces of equipment are used to realize
the Polyamide-6 process in a technically and economically efficient manner. In
addition, the complete process is supposed to be analyzed including the down-
stream extrusion of the material. This extrusion step is not only required to
formulate the polymer product into a particulate material, but it also could

482 L. von Wedel, V. Kulikov, and W. Marquardt

Polymers Plus

gPROMS MOREX

CSTR
Split

CSTR

WFE Extruder

Fig. 5.20. Model flowsheet of the process; CSTR, Split, WFE, and Extruder re-
fer to model types, while Polymers Plus, gPROMS, and MOREX denote available
simulation tools

be used as an additional separation step to recycle unconverted monomer to
the reaction and separation sections of the process [99].

The monomer feed is converted into Polyamide-6 by polycondensation and
polyaddition reactions [930]. This reaction step can be realized by a complex
reactor which can be modeled as a sequence of stirred tank and plug-flow
reactors. An exemplary model flowsheet comprising two reactors (CSTR) with
an intermediate water separation (Split) is shown in Fig. 5.20. Such a model of
the reaction section can be analyzed by means of Polymers Plus, an extension
of Aspen Plus for handling polymer materials [513].

The reaction section is followed by a separation section which separates
unconverted monomer from the effluent of the reaction section. Two alterna-
tive realizations using either a leacher or, as shown in Fig. 5.20, a wiped-film
evaporator (WFE) are described in [99]. Models of an appropriate level of
detail are neither available for the leacher nor for the wiped-film evaporator
in standard libraries of process modeling tools. Therefore, customized models
have been developed for both apparatuses by means of the gPROMS modeling
environment.

Finally, the polymer is processed in an extruder, where polymer properties
(such as the chain length distribution) are adjusted by means of a sequence of
different functional zones of the extruder. Further modifications of the polymer
properties can be achieved by adding additives to the polymer melt. The
extrusion step can be simulated by a special purpose tool called MOREX [146,
394]. Given geometry data of the extruder, it calculates the required energy
demand and the properties of the resulting polymer. In addition, it can be
used to calculate the vapor stream of ε-caprolactam which can be stripped of
if a considerable amount of ε-caprolactam is present in the polymer melt.

An Integrated Environment for Heterogeneous Process Modeling 483

As shown in Fig. 5.20, there are two (potential) recycles across the system
boundaries covered by the simulation tools. In order to analyze their economic
benefits and to determine to what extent the extruder should perform a sepa-
ration function, an integrated treatment of the simulation problem is required
which ideally reuses the separate submodels implemented in different tools.

Since these submodels are incompatible, their run-time integration for the
simulation of the overall process is difficult. The integration is complicated
by the fact that several experts are responsible for modeling different parts of
the process. A unified platform for model storage and archival facilitates an
overview on the mathematical models that have been developed for a certain
sub-process. Second, the models are represented in a combination of declar-
ative and procedural models. The reaction model is represented in a proce-
dural manner in Aspen Plus. Evaluation of the closed-form model is possible
through the automation interface of Aspen Plus. The separation model exists
as a declarative representation in gPROMS and can be evaluated using the
CAPE-OPEN equation set object interface. The extruder model is coded as a
set of procedures within the tool MOREX, which permits evaluation through
an automation interface.

5.3.3 ROME – Management and Archival of Heterogeneous
Process Models

In the current situation, modeling in the chemical industries is characterized
by a number of modelers working independently. The modelers are often not
aware of models which have already been developed by others previously, and
chances are low that models are reused when their developers are no longer
members of the process design team. In the Polyamide-6 scenario presented
above, the different models may have been developed in different projects
(probably even for different plants) so that there is probably no single person
that knows about the existence of all models that are applicable in a certain
context.

Model management can ensure that models developed in early stages of
the design phase can be reused properly in later phases. The model repository
ROME has been proposed to provide model management functionality and a
central storage for models across projects [463]. The repository stores models
in a neutral format and integrates different applications by providing import
and export capabilities from and to existing applications [552]. In the environ-
ment presented, ROME acts in the sense of a model server [288, 293, 303, 532],
supplying models and model-based services for a variety of activities in the
area of process design or operation.

In order to achieve this objective, ROME stores existing model implemen-
tations (cf. Fig. 5.21) in their native representation. Such model implemen-
tations for proprietary modeling tools comprise text files such as the ASCII
files of gPROMS or Aspen Plus, but also binary components such as dynamic
link libraries containing foreign objects for gPROMS.

484 L. von Wedel, V. Kulikov, and W. Marquardt

Model
Implementations

Model
Documentation

Neutral Model
Representation

Categorization

Fig. 5.21. Conceptual view of model repository contents

It has proven useful to abstract these proprietary models into a neutral model
representation (cf. Fig. 5.21) to allow functionality to be developed without
the need to consider the specific tools with which these models have been built.
This neutral model representation is used as a substitute for the incompatible
native model implementations in the sense of metadata. Such metadata are
described by an object model and cover the structure of the model (e.g.,
blocks and their connectivity) as well as its behavior (e.g., variables denoting
process properties and equations representing relations among properties). It
should be noted, that this neutral representation is an abstraction and not
a complete translation. The actual model development process as well as the
step of computing a model is still based on the original implementation of the
model rather than on its abstraction stored in ROME. Otherwise, it would
not be possible to reuse the evaluation or solution functionality of the original
model that is provided by the respective process modeling environment.

Required metadata are extracted automatically when a model is imported
into the repository. For the scenario presented above the following actions
are performed to import the elementary models: In case of Aspen Plus, the
automation interface is used to extract blocks and their connecting streams
from the model definition. For gPROMS, a fragment of XML is added to the
model input file as a special comment. This XML fragment is extracted and
interpreted at import. A fully automated solution would be feasible but has
not been realized due to the effort associated with parsing the gPROMS model
definition. For MOREX models [146, 394], a fixed set of connecting ports is
specified in the implementation of ROME. For other tools to be connected to
ROME, the degree of possible automation for import may vary according to
documented interfaces or file formats that are required to access information
about the model to be imported.

Functionality such as searching or browsing for models within ROME is
performed without actually using the incompatible model implementations.
Instead, the metadata abstraction stored in the model repository is traversed
for this purpose. In addition to simple search strategies, models can be ar-

An Integrated Environment for Heterogeneous Process Modeling 485

ranged into hierarchically organized categories (cf. Fig. 5.21) to build up a
library of process models which is easy to navigate for the user.

As a further advantage, model documentation (cf. Fig. 5.21) can be at-
tached to the neutral model representation; it is maintained independently
from the tool in which the model was developed. Besides storage and organi-
zation of model implementations, the model abstraction in ROME is also able
to represent structured, hierarchically decomposed models. This property is
used by ModKit (cf. Subsect. 5.3.4) to aggregate heterogeneous process mod-
els. Further services like configuration and version management can also be
based on the uniform model representation in future developments.

ROME has been implemented using C++ [985] and the object-oriented
database management system VERSANT [1022]. It provides an API for ex-
ternal services through the CORBA [877, 1024] middleware standard. This
communication layer has been implemented using omniORB [701].

More recently, the AixCAPE consortium ([496], see also Subsect. 7.1.3)
and LPT [278] have continued work in the area of model management in
cooperation with industrial partners (Shell, Lanxess, BASF) and developed
a model management system similar to ROME in scope and functionality.
The metamodel has been largely retained, but is focused on industrial re-
quirements such as storage of chemical components and their relations with
process models. In addition, metadata about property models employed (e.g.,
NRTL, UNIFAC, etc.) and reaction stoichiometries have been added. As op-
posed to ROME, this extension permits detailed queries about the availability
of models considering certain mixtures of substances in combination with par-
ticular reactions and property models. Importing capabilities have also been
improved further so that users can now add models to the system through a
web interface. Currently, automated import is possible for Aspen Plus, Pro/II
[749], and ChemaSim, the in-house simulator of BASF. As a technical basis
for the system the web-based application server ZOPE [1073] together with
the content management system Plone [911] have been used to realize the
web-based application entitled MOVE (Model Organization and Versioning
Environment, [1029]). At the time of writing, first installations have been
deployed on-site at industrial project partners, who use MOVE routinely as
part of their business. Further industrial partners are evaluating its use and
consider extensions for importing from other modeling tools as well.

5.3.4 ModKit – Model Construction with Heterogeneous Process
Models

The modeling toolkit ModKit aims at simplifying the model development
process by providing reusable model building blocks [52]. Further, ModKit
provides interactive support for the user during the assembly phase of the
model building blocks.

A graphical editor is used to define the structure of the process model.
The editor manipulates structural modeling objects representing compart-

486 L. von Wedel, V. Kulikov, and W. Marquardt

ments (devices) of the process and flows (connections) between them. These
objects have attribute tables which store the phenomena occurring in the
structural entities of the process. With this structured information the mod-
eler can easily use the behavior editor to provide the equations and variables,
called behavioral modeling objects, describing the behavior of the process. As
an alternative, reusable model building blocks on various levels of granularity
(from phases to complete pieces of equipment) may be reused from a palette
by cloning and tailoring them to the modeling context. A documentation edi-
tor allows to add informal documentation to the structural modeling objects.
This information is organized in hypertext nodes, allowing to reference other
modeling objects and documentation thereof. A decision made during the pro-
cess of setting up a model can be documented using an implementation of the
IBIS model [608].

A first development phase of ModKit [52, 54] is based on the G2 expert
system shell [720] together with additional functionality to analyze models and
simulate them on different simulators. Code generators for target languages
such as gPROMS [916] or SpeedUp [512] are available in order to translate
the modeling concepts into the language compatible with the desired modeling
tool. This code generation capability permits the use of different numerical
solution algorithms without additional effort for reformulating the model in
different modeling languages. A screenshot of the implementation is given in
Fig. 5.22.

More recently, a re-implementation of ModKit (named ModKit+, [151])
was undertaken in order to overcome shortcomings of the G2-based proto-
type in the areas of persistence, modularization, and licensing cost associated
with the expert system shell. This new development phase aimed at an in-
tegration of ModKit+ with ROME in order to permit model building blocks
maintained in ROME to be used for model development in ModKit+. In ad-
dition, models natively developed using ModKit+ are also stored in ROME
so that aggregation of process models from elementary pieces can make use
of heterogeneous process models imported from simulation tools as well as
process models developed on a first-principles basis using ModKit+.

Whereas ROME addresses the management of information about heteroge-
neous models, ModKit+ provides domain specific logic about model building
and uses elementary services provided by ROME. The result of these activ-
ities is a process model in which the equations and variables are augmented
with information about the underlying physico-chemical concepts they are
describing. This complements the ability of the model repository ROME to
store and manage legacy models in the often proprietary modeling languages
of simulation tools [293]. These languages usually include only information
on equations and variables and their structure. They do not provide means
to associate phenomenological concepts or extensive documentation with the
mathematical representation of models.

ModKit+ is implemented in Python [824], a scripting language which per-
mits tight iteration cycles within the software development process; that way,

An Integrated Environment for Heterogeneous Process Modeling 487

Fig. 5.22. Screenshot of ModKit

488 L. von Wedel, V. Kulikov, and W. Marquardt

experiences concerning the usability of the tool could easily be accounted for
during the development process. Communication with the model repository
ROME is established through the CORBA communication middleware and
has successfully been tested in a network of computers with mixed Windows
and UNIX operating systems.

In order to realize the Polyamide-6 scenario problem presented in Sub-
sect. 5.3.2, a process description is defined using ModKit+. The elementary
models for the reaction section, the separator, and the extruder, already im-
ported into ROME, are added as submodels of the overall process. Further, a
mixer is defined in order to combine feed and recycle streams; corresponding
mass balances are added to the elementary mixer model. After this modeling
activity the model repository ROME contains all necessary models for the
overall Polyamide-6 process. The model behavior is partly described by equa-
tions (for the mixer) and partly described by model implementations in the
form of input files for the modeling tools Aspen Plus, gPROMS, and MOREX.

5.3.5 CHEOPS – Integrated Simulation of Heterogeneous Process
Models

In the environment presented in this contribution, the modeling process is
supported by ModKit+, which allows for model integration on the basis of
conceptually consistent model building blocks with common interfaces. When
it comes to simulation, integration of process models faces a technical prob-
lem due to different implementation of the models in the respective simulation
tools. An attempt to recode these models would be tedious and often impos-
sible without the loss of model quality or validity. Instead, reusing the im-
plementation of the models within specialized tools (e.g., the fluid dynamics
model of a reactor in a CFD tool) is the desired option. Hence, a simula-
tion environment is needed that simulates complex models built from several
submodels, which are possibly of different types.

Such a simulation environment should support technical solutions to enable
communication with various external simulation tools and an internal mecha-
nism for the integration of existing model implementations where the overall
problem has been formulated in ModKit+. To support lifecycle management,
the problems to be solved by such an environment should involve steady-state
and dynamic simulation, parameter identification, and optimization.

These concepts are implemented in the integration platform CHEOPS
(Component-Based Hierarchical Explorative Open Process Simulator) [252,
409, 462]. The platform provides generic component prototypes and interfaces
for the integration of models, solvers, and tools. The generic components are
instantiated at run-time by concrete software components and classes repre-
senting actual unit operation models, solvers, etc. That way, arbitrary com-
ponents from the list of available components can be used in the simulation.
The list of model and solver components can easily be extended with the
components that comply with the abstract structure and interface definitions.

An Integrated Environment for Heterogeneous Process Modeling 489

The flowsheet component represents the structure of the full problem and
contains references to unit operation components and couplings. Couplings
describe the exchange of information between the units and determine the
topology of the flowsheet. Unit operations are the containers to store the
model for a single unit of the flowsheet.

The abstraction of the model in CHEOPS is a CHEOPS model represen-
tation component, which defines the inputs, outputs, states, and parameters
of the model available for CHEOPS. The CHEOPS model representation is
associated with the model source, which is a tool-specific implementation of
the model. CHEOPS distinguishes the open-form representation of the model,
which provides access to all states and the equation system, and the closed-
form representation, which provides access only to model inputs and outputs.
Separate CHEOPS model representation classes are defined for each type of
the model, OpenFormModelRepresentation and ClosedFormModelRepresenta-
tion, respectively.

The type of model representation determines the type of the solver com-
ponents used in the simulation. CHEOPS supports the equation-oriented and
the modular simulation approach. The equation-oriented simulation approach
can be used if all models are formulated in open form. A joint model is derived
by retrieving and concatenating the model equations of the individual mod-
els and adding extra identity relations for coupling variables. Such a model
can be solved in CHEOPS by general numerical solvers, which are available
from a library of numerical algorithms (such as LptNumerics [408]) containing
numerical codes from a number of sources. This is an implementation of the
concept of horizontal model integration.

Alternatively, closed-form model representations require a modular simu-
lation approach, where each closed-form model is computed using the internal
solver of the software tool the model is implemented in. The algorithm sets
the model inputs, performs control over the simulation, and retrieves the out-
puts of each model through the commonly defined interface of the closed-form
model representation, independently of the specific implementation. These
outputs are propagated to the inputs of downstream units, and the simu-
lation continues until all the units are computed. If the flowsheet contains
recycles, an iterative strategy is performed until convergence of the flowsheet
variables in tear streams is achieved.

Both the equation-oriented and the modular simulation approaches are
implemented in CHEOPS for steady-state and for dynamic models.

The tool-specific part of the implementation is done in the dedicated tool
wrapper, which is an instance of the closed-form model representation compo-
nent derived for the specific tool. Its function is the translation of commands
and data between the tools’ specific interfaces and the generic interface of
CHEOPS. This enables CHEOPS to communicate with the tools as if they
were its own components and provides the technical and algorithmic solution
for the tool integration. Currently, CHEOPS internally supports gPROMS
[916] and MODELICA Equation Set Objects [655], and contains tool wrap-

490 L. von Wedel, V. Kulikov, and W. Marquardt

pers for Aspen Plus [516], Hysys [519], Parsival [601], and FLUENT [507].
Further tools can be integrated into this framework with a moderate effort to
develop appropriate tool wrappers components.

Besides steady-state and dynamic simulation, CHEOPS supports a number
of further applications like solving steady-state parameter identification and
optimization problems for open-form models. It also supports a ‘hybrid’ model
formulation, where only one model is explicitly formulated in an open form,
while the other one is represented in a closed form, and the full problem
requires transformation to a single representation. The framework supports
the addition of further application components.

CHEOPS is developed using C++ first under Unix, then under Microsoft
Windows. However, certain components, in particular the tool wrappers, can
be developed using other programming languages (e.g., Python, Fortran) even
under different platforms. An inherent feature of CHEOPS is the support of
inter-platform communication between the components using CORBA mid-
dleware. For instance, the tool and the corresponding wrapper component can
run on a software platform other than Windows.

The specification of a simulation problem in CHEOPS is done by means of
setup files in XML format which describe the structure of the flowsheet to be
solved as well as variables of various types (scalars, vectors, time profiles, and
distributions). The variables are classified into inputs, outputs, parameters,
and states. Inputs and parameters should be specified by the user. The setup
files define references to the models, their types and associated tools, and the
type of simulation with a respective set of simulation options.

These setup files can also be exported from an existing model specification
in ModKit+. In this case ModKit+ acts as a mediator between the user, the
model repository ROME, and the simulation framework CHEOPS. ModKit+
then provides specifications of the problem, the simulation setup, and correct
references to the models which must be imported as files (cf. Subsect. 5.3.3).

A different method to construct the setup files for a simulation in CHEOPS
is realized in the IMPROVE demonstration platform described in Sect. 1.2.
There, an integrator composes a simulation model by querying the flowsheet
editor for the components to be simulated and retrieves the corresponding sim-
ulation documents for these individual components from the AHEAD system
(cf. Sect. 3.4).

With the features discussed, CHEOPS constitutes a powerful platform
for heterogeneous process simulation, which can collaboratively work with
ROME and ModKit+ at various stages of the lifecycle of the process. Current
applications of CHEOPS include the simulation of the Polyamide-6 process,
the simulation of a process for ethylene glycol production described by semi-
empirical models [409], the modular dynamic simulation of a pentaerythritol
crystallization process [252], and the coupled simulation of crystallization and
fluid dynamics problems [253].

An Integrated Environment for Heterogeneous Process Modeling 491

5.3.6 Solving the Scenario Problem

The integrated simulation of the Polyamide-6 process involves models originat-
ing from the modeling tools Aspen Plus, gPROMS, and MOREX as presented
in Subsect. 5.3.2. The first step is to import these existing models into the
model repository ROME. This import should be done by the various modelers
as soon as their models have reached a useful and stable state.

The input files for all models are imported by a tool that is invoked via
the command line of the Windows operating system shell. Based on the file
extension of the model input file, this tool decides which wrapper to run. The
wrapper will then inspect the given file and determine the metadata to be
transferred to the model repository. Most notably, this concerns the connection
points of the model itself and the variables describing these connection points.
This information is at least necessary in order to permit connection to other
models in the modeling tool ModKit+.

As a second step, ModKit+ is used to define the flowsheet model of the ε-
caprolactam process, using the imported models from Aspen Plus, gPROMS,
and MOREX as building blocks. The flowsheet topology is defined accord-
ing to Fig. 5.20. The next step concerns the specification of a simulation
experiment to be executed by the CHEOPS simulation framework. ModKit+
supports this step by generating a template of an input file for CHEOPS,
which contains the necessary information except for the actual values of the
feed streams and the parameters of the simulation. These have to be filled in
by the user before he finally launches the simulation in CHEOPS.

CHEOPS obtains this setup file in XML format from ModKit+. Tool wrap-
pers are started according to this XML file. The input files required for the
modeling tools Aspen Plus and gPROMS are obtained from the model repos-
itory ROME. CHEOPS applies a sequential-modular simulation strategy im-
plemented as a solver component because all tool wrappers are able to provide
closed-form model representations. The iterative solution process invokes the
model evaluation functionality of each model representation, which refers to
the underlying tool wrapper to invoke the native computation in the modeling
tool the model originated from. Finally, the results of all stream variables are
written to a Microsoft Excel table when the simulation has terminated.

The resulting heterogenous process model facilitates to study the complete
process based on detailed models of all process sections including recycles.
Without a tool such as CHEOPS, the manual effort for setting up a tailored
integration of the tools described would be far too high to be economical.
Rather, simplified models would be used for some sub-processes (e.g., the sep-
aration equipment) as opposed to the detailed models developed in gPROMS
and MOREX. These models would then be fitted against results obtained from
stand-alone simulation experiments with these tools. However, this approach
would not permit to study the influences between separation performance and
the recycle, for example. In addition, the integrated simulation using CHEOPS
ensures that the results obtained are indeed computed consistently, whereas

492 L. von Wedel, V. Kulikov, and W. Marquardt

the manual transfer of results through communication media like phone or
email may lead to transmission errors or a wrong set of values being employed
to specify a simulation.

5.3.7 Conclusions

The analysis of the current situation of tool support in chemical process mod-
eling reveals that a significant potential is left to be exploited by considering
modeling from a lifecycle perspective. In particular, the use of a neutral model
definition and the integrated consideration of models and the work processes
for their creation have been identified as important issues. Further, the in-
tegration of existing tools and models into a software environment to sup-
port modeling in the process design lifecycle must be ensured. An advanced
software architecture has been presented as an initial step to address these
problems. An overview of individual subsystems of the architecture has been
presented and their relevance with respect to the idea of modeling support
along the process design lifecycle has been emphasized.

We are confident that the solution sketched in this section does actually
contribute to a better and more widespread use of models within process de-
sign. However, the heterogeneity of the model representations used by different
modeling tools is hard to overcome by a single research initiative given the
required robustness for such a software environment. Standardization activi-
ties in the area of process modeling and simulation such as MODELICA [655]
or CAPE-OPEN [997] are therefore important steps towards a fully interop-
erable world of process modeling and simulation software. They are, however,
only an enabling factor but cannot deliver complete solutions for the problems
posed. Hence, future work must further develop open standards and promote
their use within an environment as the one outlined above before industrial
solutions can finally be achieved and offered to the end-users in the process
industries.

5.4 Design Support of Reaction and Compounding
Extruders

M. Schlüter, J. Stewering, E. Haberstroh, I. Assenmacher, and T. Kuhlen

Abstract. This section describes the different dimensions of integration inside the
plastics processing domain as well as cross-organizational integration and collabora-
tion issues. The presented results range from work process modeling up to technical
process analysis for the design of compounding extruders in the chemical engineering
context. Standard practices for the design of polymer compounding extruders were
analyzed and afterwards formalized in cooperation with subproject I1 using meth-
ods and tools developed and used in the CRC 476. Fragments of these workflows
were redesigned using innovative informatics functionality provided by the CRC’s
B-projects which provided the novel tool functionality. Exemplarily, the extruder
simulation tool MOREX was integrated with the process-integrated modeling envi-
ronment PRIME and coupled with BEMflow. The distributed analysis of 3D simula-
tion results using KOMPAKT and TRAMP was developed, and a scenario showing
the integration of the project management system AHEAD with the plastics en-
gineering design tools was designed participatively. Another focus was set on an
integrated visualization environment using Virtual Reality technology for different
data from a number of simulation tools.

5.4.1 Introduction

Within the IMPROVE project, the plastics processing and engineering domain
is characterized by some significant differences when compared to the chemical
process engineering domain. In the course of the relatively short history of
industrial plastics processing since the mid 20th century, plastics processing
methods and machinery have been particularly developed based on experience
knowledge and experimental efforts. New machine concepts and technologies
were required especially for conveying, manipulating, and mixing of these
fluids which are characterized by very high viscosity and shear thinning flow
behavior.

In particular the new and complex machines and processing methods were
developed and optimized by separate engineering groups in different compa-
nies. The compounding extruders which transform the polymer into a ready-
to-use material in the form of pellets, belong to the domain of plastics pro-
cessing which is disjunct from the domain of chemical engineering. Within the
design and development of industrial chemical plants (see Sect. 1.2), from the
workflow modelling view the design of compounding concepts and machines
normally is a completely separated work process (see Fig. 5.23).

But also inside the plastics engineering domain, the knowledge of the ex-
perts was gradually complemented by explicit process models and documented,
formalized knowledge which was elaborated by the scientific community, e.g.
within research projects. Therefore, with the help of experiments and com-
puter simulation, abstract and validated process models were developed for

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 493–518, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

494 M. Schlüter et al.

Fig. 5.23. Information barriers in current chemical process design processes

nearly every processing technology. Based on such process models, simula-
tion programs are available today also for the qualitative and quantitative
analysis of polymer compounding processes. These methods can especially be
used in conceptual process design phases to asses and analyze several process
alternatives objectively (see Sect. 1.2).

Thus, a common basis for the methodic integration in comprehensive de-
sign processes is available. In this subproject the integration has been investi-
gated from the conceptual level up to the concrete implementation and vali-
dation for the first time. The aspects and dimensions of integration presented
and discussed here contain interfaces to all participating project partners in-
side the CRC 476.

In the following sections, the integration aspects are shown along three
different sub-scenarios which are all based on the demonstration scenario pre-
sented in Subsect. 1.2. The special characteristics of theses use cases are iden-
tified as:

• The interaction and collaboration with the chemical engineering expert for
separation processes (Fig. 1.10 in Subsect. 1.2.2), where the focus is on the
exchange of process and product data within the domains.

• The interface between the compounding expert and the compounding sim-
ulation expert, where inter-domain optimizations are developed and ap-
plied.

• The interplay with the work processes at the 3D simulation expert work-
place, who is considered to be located in an external company. On the
administrative level this use case demonstrates the delegation based coop-
eration (see Subsect. 3.4.4). On the operational level these work processes
were analyzed and improved by application of virtual reality-based meth-
ods and tools.

Design Support of Reaction and Compounding Extruders 495

5.4.2 Domain Characteristics and Scientific Challenges

Polymer compounding is practiced on different levels of machine size and
mass throughput. Polymer production plants with very high capacity of a
single polymer and use the biggest compounding extruders, whereas plants for
the production of a variety of special polymer materials, produced in smaller
quantities, use much smaller compounding equipment and have to be flexible
in their production program. In the first case, the big compounding extruders,
e.g., for polyolefines, can have screw diameters up to 380 mm and a length of
about 10 m. Mass throughputs come up to 70 t/h and even more. As large-
scale and mid-scale extruders, which are integrated in chemical plants, cause
the highest investment costs, we will focus on this class of machines in the
following. Here the ratio of investment to design costs is very high.

Polymer Compounding

The tasks of polymer compounding can be the mixing of the polymer with
additives and fillers (such as glass fibers), and the degassing of volatile com-
ponents such as monomers. It can even mean to carry out chemical reactions
in the extruder. Usually extruders with two intermeshing screws, so called
co-rotating twin screw extruders, are used.

As a result of the compounding process, the raw polymer is transformed
into plastic material with a well defined property profile. The specific prop-
erties of the product are influenced by the melt flow and mixing processes in
the extruder.

Co-rotating twin screw extruders are the dominant type of compounding
machines. A broad variety of compounding tasks can be executed efficiently
[790]. The main advantages of this type of machine are the following [730]:

• The design structure of the extruder is extremely flexible due to the mod-
ular screw and barrel concept.

• The volatile components can be removed (degassing).
• Residence time distribution and mixing capability can be influenced by

the screw design.

As outlined above, compounding extruders usually contain several different
functional sections which are combined and highly integrated like the devices
of a chemical process plant. The extruder’s functional sections are all coupled
along the axis by the fact that all screw elements rotate at the same rate. Along
the screw and barrel system, additives or fillers can be added to the polymer
stream by auxiliary sidefeeders or hoppers (cf. Fig. 5.24, second barrel element
from the left). Also volatile components can be removed by degassing notches
(cf. Fig. 5.24, second barrel element from the right). Due to the modular screw
and barrel concept the extruder can be configured and specialized in nearly
any way to match specific process requirements. Additionally, two or more
extruders can be combined to form an extruder cascade.

496 M. Schlüter et al.

Fig. 5.24. Modular machine concept of co-rotating twin screw extruders

Design of Compounding Processes

The process of designing a compounding process has always to be seen in tight
relation with the design of the extruder it is to be executed on. Both the initial
design of such a process and its optimization, consist of the follwing tasks:

• the pre-estimation of process characteristics and process costs,
• the selection of appropriate extruder size,
• the design of screw and barrel configuration,
• the selection of auxiliary units (sidefeeders, vacuum pumps etc.), and
• the definition of process parameters (e.g. temperature, screw speed, resi-

dence time etc.).

Nowadays, the extruder design itself and the specification of process param-
eters are usually done on an empirical basis. This is due to the fact that a
high number of different screw and barrel elements exist which allow for a
huge number of combinations. Some special features of the compounding pro-
cess, for example the degassing capability, can not be assessed adequately by
empirical methods.

The high integration density of the many complex partial processes, their
interaction and interdependencies in one single extruder require a high level
of knowledge about these processes in order to combine them in an optimal
way. Therefore, the use of simulation software for the enhancement of process
understanding and knowledge is helpful and can significantly reduce experi-
mental effort and costs.

Optimal mixing capability of a compounding extruder can only be achieved
by intricate forms of melt flow, especially in the intermeshing sections of the

Design Support of Reaction and Compounding Extruders 497

screws, and in special kneading elements. For the melt flow analysis in these
sections, it is necessary to use simulation software based on 3D models using
the Finite Element Analysis (FEA) or the Boundary Element Method (BEM).

Improvement and Impact by Integration and Innovative Methods

The work presented here is focused on the conceptual (re)design and integra-
tion of design and development processes. The simulation and visualization
of melt flows in co-rotating twin-screw extruders as part of the design pro-
cesses will be discussed as follows, as well as supporting these processes by
experience knowledge and innovative multimedia tools:

• integration of domain simulation software with the PRIME framework
[371] for reusing experience knowledge for extruder design tasks;

• management of organization-spanning administration processes in cooper-
ation with the AHEAD system (Fig. 3.85);

• using multi-media video conference system for supporting communication
in distributed design and analysis processes;

• managing and retrieving multi-media data from simulation processes by
the TRAMP tool;

• using methods of virtual reality for exploration and analysis of 3D simu-
lation results.

5.4.3 Computer-Aided Analysis of Extrusion Processes

For the coarse estimation of extruder size and screw speed, simple mass and
energy balances based on a fixed output rate can be used. For the more de-
tailed design of a twin-screw extruder configuration it is necessary to combine
implicit experience knowledge with simulation techniques. Theses simulation
techniques cover a broad range from specialized programs based on very sim-
ple models up to detailed Computational Fluid Dynamics (CFD) driven by
Finite Element Analysis (FEA) or Boundary Element Method (BEM).

The complex geometry of the compounding extruder’s flow channels, par-
ticularly the intermeshing zone of the screws, complicates the modeling of the
polymer flow (see Fig. 5.25). For example, even in a highly simplified flow
channel model, substantial effects, such as high velocity gradients in the in-
termeshing zone, cannot be completely modeled. As the flow description is
not complete, detailed analysis of flow effects can not be done with this type
of software. Therefore the conservation equations must be solved in three di-
mensions. For the considered complex flow channels this is only possible with
a high numerical effort (FEA or BEM).

Both methods imply major drawbacks especially for the analysis of com-
pounding processes. On the one hand, the BEM lacks a mature implementa-
tion for the non-Newtonian (shear-thinning) material behavior. On the other
hand the FEA needs a high manual and computational effort for the transient

498 M. Schlüter et al.

Radial gap

ϕ

ϕ

ψ
ψ

Intermeshing section

ε
Zw

γ

γ

α

β
ϕ

Afilled

Fig. 5.25. Geometry cross section for closely intermeshing co-rotating twin screw
extruders

FEA: For each timestep a new
mesh must be generated

BEM: The meshes for the
rotors can be rotated for

each timestep

Fig. 5.26. Comparision of FEA and BEM meshes for transient flow channels

flow channel geometry in twin screw extruders (see Fig. 5.26). Currently, both
methods can only be applied for fully filled screw sections, however the mod-
eling of flows with free surfaces is under development [1008].

As highly specialized simulation software, the FEA and the BEM can be
seen complementarily to each other. Thus, all outlined methods were chosen
for the conceptual redesign of integrated work processes in the CRC scenario
to combine their advantages. This will be discussed shortly in the following
subsections.

Design Support of Reaction and Compounding Extruders 499

Extended Analytical 1D Process Models

The MOREX simulation software is based on a physical process model, which
regards aspects of flow and heat transfer in closely intermeshing, co-rotating
twin screw extruder [699]. It contains the description of the screw geometry
for the conveying elements and kneading blocks (Fig. 5.25). The conservation
equations are solved in an extended 1D model with partial models for the flow
in the intermeshing section and in the radial gap in a vertical cross-section of
the extruder. In this model, the extruder’s flow channel is divided into slices,
for each of which an energy and mass balance is formulated. For example,
integral pressure and temperature values along the screw axis are calculated
for the flow channel cross sections with a geometry as shown in Fig. 5.25.
Also the beginning and the end of the completely filled sections is determined
automatically.

Conveying elements (bottom mid of Fig. 5.24) differ due to their pitch
and the number of flights. The model which is essential for the description
of the flow in these elements, considers besides the above parameters the
leakage flows in the radial gap as well as the particular geometric proportions
in the intermeshing zone. The latter are important for the calculation of the
maximum drag volume flow.

The cross-sectional areas and the pitch of a main conveying and rear con-
veying channel are calculated for the description of kneading blocks depending
on the off-set angle of the single discs of a kneading block [699]. With these pa-
rameters the total throughput rate of a kneading element can be determined.
For the calculation of flow processes, the special geometry has to be taken
into account. The high energy input effects a rapid melting of remaining non
melted pellets. The heat transfer coefficient between the polymer melt and
the barrel surface must be set for the calculations.

FEA Simulation Characteristics

The most common way for three-dimensional simulations is the application of
the FEA. The 3D analysis of flow processes in co-rotating twin-screw extruders
is very time-consuming, because for transient geometrical adjustment in the
intermeshing zone a new volume mesh must be generated for each new screw
position (see top of Fig. 5.26).

To reduce this effort, the software Polyflow (Fluent, Lebanon, USA) con-
tains a special module to avoid the remeshing of the flow channel for every
single timestep. This is called the “Mesh Superposition Technique”, where the
inner barrel and the screw are meshed separatly. The discrete meshes are
overlayed to create one system where the surfaces of the screw define the
channel boundary. A major issue with this method is that the flow channel
volume varies as the intersection of the surface elements leads to unequal sums
over all elements. This is compensated by a compression factor on which the
simulation results react very sensitively.

500 M. Schlüter et al.

0 [bar]

47 [bar]

0 [bar]

47 [bar]

0 [bar]

47 [bar]

Fig. 5.27. FEM result: pressure distribution within an extruder mixing zone

The calculation commonly starts with a simple FEA model and then incre-
mentally adds model refinements. Examples for model refinements are

• time-independent → time-dependent;
• isothermal → non-isothermal;
• Newtonian → non-Newtonian.

After every simulation pass, the results are tested for plausibility. Furthermore,
the independence of the simulation results of the fineness of the mesh is tested.

Figure 5.27 shows the pressure distribution in a mixing zone of a twin-
screw extruder as an example for FEA simulation results [149]. The pressure
is visualized on a cutting plane through the flow area. The flow direction is
from the right to the left.

BEM Simulation Characteristics

As one alternative in this subproject, the complex flow conditions in co-
rotating twin screw extruders are analyzed by means of the simulation software
BEMflow [889], which is based on the Boundary-Element Method (BEM). For
this method just the boundaries of the examined region have to be meshed.
The particular surfaces can be moved relatively to each other.

As an alternative to the FEA, which is based on volume integrals, the
conditional equations can be formulated as surface integrals following the di-
vergence theorem. It relates the flow of a vector field through a surface to the
behaviour of the vector field inside the surface. For polymer flow this means,
that all phenomenea and effect inside the volume are completely determinated
by the conditions on the volumes boundary. This is also called the Boundary
Element Method (BEM) and can be used for 3D analysis analogous to the
FEA [890]. For practical use, this approach differs in some points from estab-
lished commercial FEA systems. First of all, the result of the solved integrals
are only availible on the volumes or flow channel surface. That means, that
for a detailed analysis and optimization inside the flow one has to explicitly
calculate the flow state for every single point which has to be analyzed in-
side the volume. As the approch is relativly new and not yet widely used,

Design Support of Reaction and Compounding Extruders 501

no specialized pre- and postprocessing tools for the workflow exist. This is
compensated by converting the data to standard interface formats and then
using generic commercial CAD or visualization tools.

From the mathematical point of view the complexity is reduced because
the system of equations which has to be solved is a function defined on the
two-dimensional manifold of the control volumes boundary and leads to a
dimension reduction. Practically the discretisation of the boundary usually
is more simple than the meshing of complex three dimensional volumes. Es-
pecially this pertains to the transient flow channel geometry in co-rotating
twin screw extruders. The surface meshes for the screws can independently be
rotated inside the screw and barrel mesh analogous to the batchwise working
internal mixer (Banbury Mixer) shown in the bottom part of Fig. 5.26.

To determine the flow status inside the volume, so called ’Internal Points’
are calculated in the BEMflow software. From these points on, streamlines
are calculated for a number of specified timesteps. For steady state flows,
streamlines and pathlines are identical, while for transient flow channels as in
the extruders the pathlines have to be calculated from the results for every
single timestep respectively every relative screw position. This leads to an
additional task for the flow analysis [145].

5.4.4 Integrated Workflows in Domain Spanning Design Processes

Based on the aforementioned basics of polymer compounding and process
analysis the focus will now be on the formal integration issues within the CRC
and its scenario. All the presented use cases were improved by the requirements
from the application domains and vice versa. For example the discussion and
formalization of the interfaces between plastics and chemical engineering lead
to simulation tools enhancements and new features which themselves showed
effects on the work processes within the domain and to external partners.

In order to conceptually design and integrate the discussed issues efficiently
within the chemical engineering design processes, a comprehensive analysis
and formalization of the overall work process was done. Only in this way
dependencies and similarities could be found and documented completely.
The identified relations were used for a conceptual redesign of the engineering
tasks, particularly the integrated demonstration scenario (see Sect. 1.2). In
Fig. 5.28 the adopted methods from the CRC partners are shown, ordered by
their formalization grade and granularity. The modeling started at the upper
right by defining simple use cases (using UML notation) as a basis for the
C3 models for the demonstration scenario which was elaborated participatory
together with the project partners (see Subsect. 1.2.1). In an iterative design
process the models were refined, validated and redesigned several times in the
course of the subproject.

One major result of these requirements engineering tasks is the integration
of MOREX and PRIME to gain fine granulated, experience based user sup-
port while using the software for simulation calculations [198]. The use and

502 M. Schlüter et al.

C3 models

NATURE UML task net

use-cases

direct process support reactive administration system

scenario

de
gr

ee
 o

f a
bs

tr
ac

tio
n

workflow's degree of granularity

fine granular mid granular coarse granular

tool

model

FBW-PrimeFBW-Prime AHEAD

WoMS

scenario definition

VisioVisio

Fig. 5.28. Granularity and formalization grade of the used methods

integration of MOREX in the scenarios marked the initial point on the inte-
grated simulation environment and other innovative technologies discussed in
the following subsections.

A precondition for all the integration was the availability of a domain
spanning product model for the polymers material description. Therefore,
simultaneously to the process modelling of the demonstration scenario a par-
tial model for the produced material based on CLiP (see Subsect. 2.2.3) was
adopted in the plastics engineering domain. This will be discussed later on.

Contribution to the Demonstration Scenario

The following plastics engineering specifications for the required polymer and
for the polymerization process were fixed in the early design phases:

• residual content of caprolactame ≤ 0.1 %
• residual content of cyclic dimer ≤ 0.04 %
• residual content of water ≤ 0.01 %
• relative viscosity in m-Cresol at 2.7 (determined using a 1 % by weight

solution of the polyamide in m-cresol at 25◦ C)
• cylindric pellets with 2 mm length and 2 mm diameter
• propionic acid as reaction controller
• complete recycling of caprolactam and oligomer
• flame resistance of minimum UL-94 V-0
• tensile strength of 180 MPa minimum

Design Support of Reaction and Compounding Extruders 503

In Fig. 1.10, one can see the domain spanning scenario with three roles from
the plastics engineering domain. In the following it will be discussed, how
the workflow has been analyzed and optimized in detail. The activities (cf.
Fig. 2.13) are further decomposed and refined in Fig. 5.29 and Fig. 5.31. It
can be seen that an intricate interplay between the involved roles and the
external party from chemical process engineering takes place.

The result of this exemplary partial process is the C3 model for the delega-
tion of the computational process anlysis to an externel partner in the scenario.
Complementary to these interdisciplinary work processes also collaboration
aspects within the plastics engineering domain were examined. Therefore the
tasks of process analysis by integrated 1D and 3D simulation as well as the
interactive exploration of huge simulation result data in a virtual 3D space
were improved by innovative tools and methods driven by real world scenarios.

The development and elaboration of the demonstration scenario, the re-
quirements for the processing process and the polymer were carried out in
subproject I1 of the CRC 476 [355]. The process chain and a flow sheet of
a chemical processing plant for the production of polyamide 6 were already
shown in Fig. 1.2 and Fig. 1.3. The plastics processing related aspects of the
partial scenarios from compounding extruder design, the integration of the
activities of plastic and process engineering to make use of synergies in the
process design and application of concurrent and simultaneous engineering to
reduce the development times are discussed in more detail below.

A generalized coarse granular sequence of the demo scenarios aggregated
activities is shown in the C3 model Fig. 1.10 as an overview and framework for
the detailed work procedures. On the left side, the chemical engineering and
on the right side the plastics engineering development and design processes are
depicted. The single activities before the start of development in manager level
(left) should not be further deepened. The process simulation results have to
be validated by laboratory scale experiments. More detailed information about
the demonstration scenario can be found in [124].

In the following the focus is on the activities of the roles of the com-
pounding technology and their interfaces to other activities (see Fig. 1.10).
The compounding concept is in this scenario developed by the compounding
expert, who delegates the simulation part to the simulation experts and the
3D simulation experts. To estimate the process quality, together with the sim-
ulation experts a simple 1D simulation is made to evaluate the compounding
concept.

As for the mixing capabilities of the process no reliable information is avail-
able, an extensive 3D flow analysis is planned and disposed. Simultaneosly,
the compounding expert together with the separation expert from chemical
process engineering are working on the degassing concept (4). Independently
inside the plastics engineering domain the compounding expert and the 3D
simulation expert are discussing and reviewing the simulation results (5). To
evaluate the degassing concept with the monomer feedback, an integrated over-
all simulation (reactor, separation and extruder) is planned (6). In a meeting

504 M. Schlüter et al.

in which all roles are present (not shown in Fig. 1.10) the plant’s process
concept and first equipment specifications are fixed.

Based on the diagram in Fig. 1.10 two alternative workflows for this sce-
nario in the compounding domain were further elaborated for the aforemen-
tioned and described activities. For the first alternative (A, Fig. 5.31) the 3D
simulation will be operated in an external company. In this case, additional
requirements to almost every used tool are necessary. The second alternative
(B, Fig. 5.32) models the case, that all simulation tasks are located in one
company. In reality this is mainly the case for big raw material producers
which have own resources for detailed CFD studies.

Common Workflow for Both Alternatives

At first, in the details of the demonstration scenario discussed above, the ac-
tivities are identical as far as the 3D simulation. At the beginning of the design
process, it is the task of the process engineering, to analyze and formalize the
requirements for the chemical process with a literature research and based on
personal experience, and to design an integrated compounding concept for the
whole chemical plants including the compounding extruder.

The integrated polymerization and compounding concept for energy effi-
ciency is designed in a way that the raw polymer which leaves the separation
device is not to be cooled down and melted again for compounding. So in this
scenario the extruder is fed with polyamide melt and does not need a feed-
ing, compacting or melting section like for the compounding of plastics resin.
The specified residual content of caprolactame of 0.1 % requires a two stage
degassing concept for the extruder processing concept. Only by experimenal
or simulation based analysis the degassing capabilities can be quantified.

Another requirement (see above) refers to the polymer’s flammability. To
meet the UL 94 specification, the addition of chemical additives is necessary.
Here a concentration of 8 % of ethylenebistetrabromophthalimide and 8 %
antimonytrioxide is chosen to gain the class V-0 [680, 1005]. A special mixing
section including kneading blocks and left handed conveying elements enables
the homogenization of the compound.

The required tensile strength of 180 MPa is realized by adding approx.
40 % of glass fibers [581, 591]. The air which is brought in together with the
fibers must be removed downstream in another degassing section.

Considering these requirements, the compounding expert designs a ma-
chine concept and an initial screw configuration (cf. Fig. 5.30). To get a first
guess of the process quality, e.g. temperature profile, shear energy and pres-
sure profile, the simulation expert configures and executes a first simulation
with MOREX (see Subsect. 1.2.1). By this simulation the length and position
of the completely filled screw sections, where 3D simulations can be applied, is
determined. A quantitative analysis of mixing capabilities is not possible with
MOREX because of the simplified process models such that 3D simulation
has to be arranged with the 3D simulation expert.

Design Support of Reaction and Compounding Extruders 505

KT- 3D-Sim.-
Meeting

Degassing
Extruder

16

Literature
Research

17

Estimation
Fiber Content22

Required
Additive s

23

Fixing
Processpara-

meters
25

Design
Initial

Screw
Concept

31

Preparation
1D-

Simulation
34

Preparation
1D-

Simulation
35

MOREX
Simulation43

Discussion
Desgin
Results

46
Discussion

Design
Results

45

Design of
Not Modelled

Sections
39

MOREX

Fixing
Sections for
3D-Simulation

49

Preparation
3D-

Simulation
52

Preparation
3D-

Simulation
53

Accutrate
Identification Of

Completely
Filled Sections

44

Providing
Other

Parameters
40

Configuration
Degassing

Modell
38

Durchführung
von Testrech-

nungen
42

Fixing Func-
tional Sections29

Scale

Speed
Range

Functional
Sections

Screw
Configuration

Estimation
Additiv
Addition

41

MOR

Meeting
Degassing
Extruder

16

Literature
Research

17

Estimation
Fiber Content22

Required
Additive s

23

Fixing
Processpara-

meters
25

Design
Initial

Screw
Concept

31

Preparation
1D-

Simulation
34

Preparation
1D-

Simulation
35

MOREX
Simulation43

Discussion
Desgin
Results

46
Discussion

Design
Results

45

Design of
Not Modelled

Sections
39

MOREX

Fixing
Sections for
3D-Simulation

49

Preparation
3D-

Simulation
52

Preparation
3D-

Simulation
53

Accutrate
Identification Of

Completely
Filled Sections

44

Providing
Other

Parameters
40

Configuration
Degassing

Modell
38

Durchführung
von Testrech-

nungen
42

Fixing Func-
tional Sections29

Scale

Speed
Range

Functional
Sections

Screw
Configuration

Estimation
Additiv
Addition

41

MOREX

MOREX

compounding expert simulation expert 3D sim. expertcompounding expert simulation expert 3D sim. expert

Screw
Configuration

Functional
Sections

Machine
Scale

Fig. 5.29. Decomposition of the polymer compounding activities of the demonstra-
tion scenario (I)

506 M. Schlüter et al.

Degassing in
Extruder

Feeding of
Additives

Mixing of
Fibers

Degassing of
Air

Pressure
buildup

Conceptual Level

Realization

Degassing in
Extruder

Feeding of
Additives

Mixing of
Fibers

Degassing of
Air

Pressure
buildup

Conceptual Level

Realization

Fig. 5.30. Compounding concept and draft of screw configuration

As the following tasks differ due to the above discussed forms of organisation
within the company, two alternatives have to be described.

Alternative (A)

In this variant, the 3D simulation to predict the mixing quality, is done by
an external service provider, as not all raw material producers have an own
employee for that. For this case, the extruder manufacturing company offers
the knowledge and competencies for the 3D simulation. The communication
within the design team with external participants is realized by phone, video
conferences and email. Hence for nondisclosure issues the interfaces to the
external partner are non- or semiformal, which means, that just a few process
parameters and anonymized data will be exchanged but no complete specifi-
cations. This is called the ’need to know’ principle [1051].

The C3 model for this part of the scenario can be seen in Fig. 5.31. As
mentioned before, information like process, material and geometry parame-
ters aren’t exchanged automatically by service oriented applications in terms
of product data models but as single values in e-mails or by fax. For 3D simu-
lation preprocessing firstly the screw geometry is modeled using a commercial
CAD system followed by meshing the surfaces and then converting the meshes
to the simulation programs format. After this being done, the 3D simulation
expert starts the BEMflow calculation and analyzes the results.

As it seems that the dispersive mixing of the additives could be improved
by increasing the melt shear rate, in the video conference the 3D simulation
expert proposes a modification of the screw configuration as well as the screw
speed. This is accepted by the team leader, a new MOREX simulation is done
and the compounding extruder configuration is fixed.

This workflow is supported by several tools developed by the CRC project
partners (e.g. KOMPAKT, AHEAD, BEMView) and is further described in

Design Support of Reaction and Compounding Extruders 507

3D-Sim. Experte

Discussion
Experiments
Degassing
Extruder

56

Preparation
3D-

Simulation
52

Preparation
3D-

Simulation
53

Kom
pa

kt

Configuration
input3d.dat

File
58

Perform
BEMFlow
Simulation

60

Discussion
3D-Sim.
Results

65

Neue
Schneckendr

ehzahl

Discussion
3D-Sim.
Results

64

Invitation
External Sim.

Expert
66

Discussion
3D-Sim.
Results

67
Discussion

3D-Sim.
Results

68

MOREX Sim.
With New
Speed Range

73

Discussion
3D-Sim.
Results

71
Discussion

3D-Sim.
Results

72
Discussion

3D-Sim.
Results

70

Discussion
Simulation
Results

76
Discussion
Simulation
Results

75

TRAMP

Kompakt

Kompakt

TRAMP
Kompakt

TRAMP

Kompakt

TRAMP

Kompakt

TRAMP

Kompakt

TRAMP

Kompakt

TRAMP

Discussion
Experiments
Degassing
Extruder

56

Preparation
3D-

Simulation
52

Preparation
3D-

Simulation
53

Kom
pa

kt

Configuration
input3d.dat

File
58

Perform
BEMFlow
Simulation

60

Discussion
3D-Sim.
Results

65

Neue
Schneckendr

ehzahl

Discussion
3D-Sim.
Results

64

Invitation
External Sim.

Expert
66

Discussion
3D-Sim.
Results

67
Discussion

3D-Sim.
Results

68

MOREX Sim.
With New
Speed Range

73

Discussion
3D-Sim.
Results

71
Discussion

3D-Sim.
Results

72
Discussion

3D-Sim.
Results

70

Discussion
Simulation
Results

76
Discussion
Simulation
Results

75

TRAMP

Kompakt

Kompakt

TRAMP
Kompa

Discussion
Experiments
Degassing
Extruder

56

Preparation
3D-

Simulation
52

Preparation
3D-

Simulation
53

Kom
pa

kt

Configuration
input3d.dat

File
58

Perform
BEMFlow
Simulation

60

Discussion
3D-Sim.
Results

65

Neue
Schneckendr

ehzahl

Discussion
3D-Sim.
Results

64

Invitation
External Sim.

Expert
66

Discussion
3D-Sim.
Results

67
Discussion

3D-Sim.
Results

68

MOREX Sim.
With New
Speed Range

73

Discussion
3D-Sim.
Results

71
Discussion

3D-Sim.
Results

72
Discussion

3D-Sim.
Results

70

Discussion
Simulation
Results

76
Discussion
Simulation
Results

75

TRAMP

Kompakt

Kompakt

TRAMP
Kompakt

TRAMP

Kompakt

TRAMP

Kompakt

TRAMP

Kompakt

TRAMP

Kompakt

TRAMP

compounding expert simulation expert 3D sim. expertcompounding expert simulation expert 3D sim. expert

New Speed
Range

Fig. 5.31. Decomposition of the polymer compounding activities of the demonstra-
tion scenario (II)

Subsect. 3.3.2. Especially the distributed analysis of 3D results with a visu-
alization tool shows the impact and improvement using event sharing (see
Subsect. 3.3.3) for synchronizing locally running BEMView instances as well
as the role of the dynamic and reactive administration tool AHEAD for ad-
vising the workflow fragment.

Simultaneously to the 3D simulation issues another team consisting of the
separation expert, compounding expert and simulation expert is working on
the degassing concept validation. Therefore an integrated overall CHEOPS
simulation is prepared and executed to quantify the degassing capacities of
every single system component. This is described in Subsect. 5.3.5.

Alternative (B)

Within the scenario’s second alternative all design and simulation tasks for
compounding processes are done in one company. This means that a tight
coupling and integration of the computer based tools is possible and can be

508 M. Schlüter et al.

Preparation
3D-

Simulation
2

Preparation
3D-

Simulation
1

[PG]

Loading
Process File

5

Selection
of

Completely
Filed Section

4

Generation
of

Surface
Meshes

6

Setting
numerical
Parameters

8

Start
Simulation

9

Checking
Meshes

7

Selection
Completely

Filled Sections
3

[VK]

Cooperative
Analysis of
Results

12
Cooperative
Analysis of
Results

11
[VK]

MOREX
MOREX

BEMPrepro

cessor

MOREX
MOREX

BEMme

sh

GambitBEMView

BEMPrepro
cessor

BEMPrepro
cessor

BEMflow

Kompakt

BEMView

Kompakt

BEMView

Cooperative
Analysis of
Results

10

Kompakt

BEMView

MOREX Sim.
With New
Speed Range

13

MOREX

Discussion
Simulation
Results

15
Discussion
Simulation
Results

14

Kompakt

Kompakt

Preparation
3D-

Simulation
2

Preparation
3D-

Simulation
1

[PG]

Loading
Process File

5

Selection
of

Completely
Filed Section

4

Generation
of

Surface
Meshes

6

Setting
numerical
Parameters

8

Start
Simulation

9

Checking
Meshes

7

Selection
Completely

Filled Sections
3

[VK]

Cooperative
Analysis of
Results

12
Cooperative
Analysis of
Results

11
[VK]

MOREX
MOREX

BEMPrepro

cessor

MOREX
MOREX

BEMme

sh

GambitBEMView

BEMPrepro
cessor

BEMPrepro
cessor

BEMflow

Kompakt

BEMView

Kom

Preparation
3D-

Simulation
2

Preparation
3D-

Simulation
1

[PG]

Loading
Process File

5

Selection
of

Completely
Filed Section

4

Generation
of

Surface
Meshes

6

Setting
numerical
Parameters

8

Start
Simulation

9

Checking
Meshes

7

Selection
Completely

Filled Sections
3

[VK]

Cooperative
Analysis of
Results

12
Cooperative
Analysis of
Results

11
[VK]

MOREX
MOREX

BEMPrepro

cessor

MOREX
MOREX

BEMme

sh

GambitBEMView

BEMPrepro
cessor

BEMPrepro
cessor

BEMflow

Kompakt

BEMView

Kompakt

BEMView

Cooperative
Analysis of
Results

10

Kompakt

BEMView

MOREX Sim.
With New
Speed Range

13

MOREX

Discussion
Simulation
Results

15
Discussion
Simulation
Results

14

Kompakt

Kompakt

compounding expert simulation expert 3D sim. expertcompounding expert simulation expert 3D sim. expert

Fig. 5.32. Decomposition of the polymer compounding activities of the demonstra-
tion scenario (III)

automated. Consistent data models and services can be used for informa-
tion exchange, communication, support and administration. Such a framework
based on generalized data models and with the a posteriori integration of tools
was one major challenge and goal of the CRC 476 (see Sect. 1.1).

In this second alternative the use of standardized interfaces based on inte-
grated product and process models enables the design and seamless interplay
of several modules e.g. for the generation of simulation input data. The re-
structured scenario builds the basis for the integrated 1D and 3D simulation
where MOREX and BEMFlow were coupled (see Subsect. 5.4.5).

Already before the 3D simulation the media database TRAMP offers access
to multi-media clips containing documentation of earlier simulations. Screen-
shots as well as animations can be searched for annotations and browsed based
on a category scheme [196]. After a short study of recent simulations and re-

Design Support of Reaction and Compounding Extruders 509

sulting annotations, the design process starts with configuring the extruder
screw in MOREX.

The completely filled sections are determinated by a MOREX simulation
analogous to alternative (A). But now the user is supported by an integrated
surface mesh module where the time consuming process of manual mesh gen-
eration is automated by special algorithms. Additionally, all simulation pa-
rameters can be configured inside the MOREX module, such that no further
preprocessing in other tools is necessary before starting the calculation.

The TRAMP database content (see Subsect. 4.1.4) is generated by the
systems users during the analysis of flow effects with commonly used postpro-
cessors. After identifying significant and characteristic effects, screenshots and
animations are recorded by a capture program and then stored with annota-
tions into the database by using the category scheme. Similar as in alternative
(A) after discussing and reviewing the 3D simulation results, another MOREX
simulation with the modified process parameters is done to check the impact
on the other partial processes inside the extruder.

Common Sequence of Both Alternatives

For both scenario alternatives the degassing of monomer (caprolactame) and
other volatile components is an important aspect for the integrated chemi-
cal process and compounding extruder design. If these interrelationships can
be considered and quantified both at chemical process engineering and plas-
tics engineering, synergies can be developed for dimensioning the different
degassing modules. It has to be taken in consideration that the degassed
monomer has to be fed back to the reactor. This way, the degassing in the
extruder can contribute to an improved and efficient production process.

The C3 models development from analyzing the existing processes until
the optimization can be found in [398]. As described in detail before, the
following aspects were improved by the redesign:

• Improvement and integration of the workflow by simultaneous engineering
and coherent data models.

• Distributed analysis of 3D simulation results using the event sharing mech-
anism.

• Management and adminstration of domain spanning work processes be-
tween the simulation expert and the external 3D simulation expert.

• Integration of MOREX to CHEOPS simulation environment to enable an
integrated process simulation (especially for degassing issues).

• Integration of MOREX to PRIME and to the flowsheet editor to enable
experienced based user support to the simulation expert.

The identified potential for optimization by the use of consistent process and
product models for data exchange already in the early design phases enables
broad understanding and quantitative knowledge about process alternatives.

510 M. Schlüter et al.

Dependent tasks can be initiated automatically when the needed information
is available. Independent tasks can be started directly with preliminary pre-
sumptions if the results can help to assess other tasks within a first analysis.

5.4.5 Models, Methods, and Tools Supporting the Integration

Complementary to the scenario fragments described above, concrete integra-
tion work was done by defining requirements as well as developing, implement-
ing and validating product and process models. This was done by realizing the
demonstration scenario from the compounding extruder’s design viewpoint in
the CRC 476 context together with the project partners. Thereby the A3 sub-
project contributes to the integrated process and product models and provides
a real world background story.

The other way around the A3 subproject participated from new and in-
novative methods and models as discussed above. In the following subsection
selected integration aspects are discussed with focus on the application inside
our domain. Informatics details and innovations are presented by the other
project partners’ contributions in this book. Especially the storyboard for
the delegation to external service providers for the AHEAD system should
be mentioned here (see Subsect. 3.4.4 and [169]), as well as the multi-media
communication supported by KOMPAKT within the demonstration scenario
(see Subsect. 3.3.2).

Refined and Extended Material Product Model

To enable coherent storage and information exchange inside the domain [146]
and to collaboration partners, an adequate data model for material properties
and behavior was necessary. Therefore, a concrete refinement and extension of
the CLiP data model (see Subsect. 2.2.3) towards an implementation model
has been done for the support of design processes in thermoplastic polymer
processing.

In plastics engineering, especially in the domain of extrusion lines design
and compounding plants design, a comprehensive, unified method for manag-
ing material data has not been addressed in previous work. There are basically
two aspects in material data management in this domain. One is about the
efficient exchange of data between applications as well as that between these
applications and others from chemical engineering used for example during
the design of the polymer production plant. The second aspect is the conve-
nient storage of data, especially parameters of mathematical models in files or
databases. Apparently, these two aspects need to be supported by a unified
material data model.

In this application example, a unified data model for plastics engineering
has been developed based on the generic conceptual model. With the support
of the material management component, simulation tools can be used in a
stand-alone version without connections to databases. In the following, the

Design Support of Reaction and Compounding Extruders 511

attributes
+ massFraction: TPhysicalProperty;
+ moleFraction: TPhysicalProperty;
+ phaseThermophysicalProperties: TPhaseThermop
+ physicalContext: TPhysicalContext;
+ volumeFraction: TPhysicalProperty;

TPhaseSystem

TMultiPhase TSinglePhase

attributes
+ density: TDensity;
+ phaseSystemModel: TPhaseSystemModel;
+ specificEnthalpy: TSpecificEnthalpy;
+ specificEntrophy: TSpecificEntropy;
+ specificHeatCapacity: TSpecificHeatCapacity;
+ thermalConductivity: TThermalConductivity;

TPhaseThermophysicalProperties
attributes

+ composition: TComposition;
+ dynamicCondition: TDynamicCondition;
+ solidStateCondition: TSolidStateCondition;
+ thermodynamicCondition: TThermodynamicCondition;

TPhysicalContext

attributes
+ enthalpy: TPhysicalProperty;
+ pressure: TPhysicalProperty;
+ temperature: TPhysicalProperty;

TThermodynamicCondition

attributes
+ shareRate: TPhysicalProperty;

TDynamicConditionTSolidStateCondition

subphase
n

1

1

1

1

1

1

1

1

1

1

Fig. 5.33. Implementation of CLiP phase systems partial model based on the com-
posite design pattern

data model is explained with a focus on the phase systems’ dynamic material
behavior. It should be mentioned that, as determined by the domain of this ap-
plication (i.e. plastics processing), it is essential to model the non-equilibrium
properties and behavior of material.

In most of the existing work in plastics engineering, polymer flow is mod-
eled only considering single phases. However, often multiple phase systems
like gas and melt phase or two different polymers phases in blending pro-
cesses are processed. Thus, a multiple phase model for describing the polymer
system and its dynamic behavior is required. To meet this requirement, the
CLiP concept of multiple phase system in the generic conceptual data model
is adapted for the implementation model shown in Fig. 5.33. Here, a phase
system has a list of phase system properties containing the thermophysical
and the rheological properties.

The physical context concept in the conceptual model is extended to de-
scribe the behavior of plastics in the form of pellets through the class solid
state condition which encapsulates properties such as pellet type. This part of
the implementation model concerns the mathematical modeling of some of the
properties of polymers, which correspond to their dynamic or flow behavior.
A class for a concrete mathematical model not only holds declarative informa-
tion such as the list of parameters, but also provides a method for calculating
the value of the property modeled. This method requires an implementation
which is usually different from the one for another mathematical model. There-
fore, mathematical models are organized in this application through further
classification.

512 M. Schlüter et al.

TDeformationBehaviour

TMechanicalBehaviourModel

TPhaseSystemModels

attributes
* ReferenceTemperature: TTemperature;
* TemperatureShift: TTemperatureShift;

TShearViscosityModel

attributes
* A: TModelCoefficient;
* B: TModelCoefficient;
* C: TModelCoefficient;

TCarreau

attributes
+ ReferenceTemperature: TTemperature;

TTemperatureShift

attributes
* A1: TModelCoefficient;
* A2: TModelCoefficient;
* Alfa: TModelCoefficient;
* NeutralViskosity: TModelCoefficient;

TVinogradov

attributes
* ArrheniusConst: TModelCoefficient;

TArrhenius attributes
* Const1: TModelCoefficient;
* Const2: TModelCoefficient;
* StandardTemperature: TTemperature;

TWLF

attributes
* TemperatureShiftYS: TTemperatureShift;
* YieldStress: TModelCoefficient;
* YieldStressRefTemp: TModelCoefficient;

THerschelBulkley
attributes

+ YieldStress: TModelCoefficient;
* TemperatureShiftYS: TTemperatureShift;
* YieldStressRefTemp: TModelCoefficient;

TCarreauYS

TPhaseSystemModel

attributes
* K: TModelCoefficient;
* n: TModelCoefficient;

TODW

TemperatureShiftYS

1

1

TemperatureShiftYS

1

1

DeformationBehaviour

TemperatureShift

1

1

Fig. 5.34. Extended partial model dynamic material behavior

The hierarchy of mathematical model classes is developed as follows. First,
the concept phase system model in the conceptual model is set as the super
class of all concrete phase system models holding common attributes such as
assumptions and validity range. The rheological behavior model, as a subclass
of phase system model, represents a type of mathematical models that is of
major concern of this application. Especially, the derivation of the subclasses
of shear viscosity model has been given most consideration up to now. As a

Design Support of Reaction and Compounding Extruders 513

major issue in modeling plastics melt flow, the typical viscoelastic material
behavior has to be considered by solving the conservation equations [829].
Extrusion dies, single- and twin-screw extruders, and injection molds contain
flow channels for the polymer flow. Usually, the dependency of the shear-
viscosity on the shear rate is described by models like the power law or the
Carreau-equation. This has lead to the classes ODW (for the power law),
and Carreau, respectively (see Fig. 5.34). If a temperature shift (defined as a
subclass of phase system model) of the yield stress has to be considered, the
approaches can be extended with an Arrhenius or WLF model. In the data
model they are called HerschelBulkley and CarreauYS. Material parameters
for simulation models are often measured by companies (e.g. the raw material
producers) and research institutes with their own methods and instruments.
It is even possible that new parameters are introduced into a certain model.
Therefore, the data model is subject to extensions in order to represent new
mathematical models.

MOREX Integration to PRIME and the Flowsheet Editor

In addition to the usual machine oriented modeling of compounding extruders
the functional view on these machines will be introduced. This is a specializa-
tion of the CLiP partial model ProcessingSubsystem and was inspired by the
CLiP modeling approach. It represents a logical abstraction of the extruder,
which is composed of screw and barrel elements, onto the functional sections
for material processing. This method shows an analogy to the abstraction in
chemical process engineering flowsheets, where the single components initially
are represented by simple blocks connected by material and engergy streams
and are refined and specialized step by step [119].

Concretly the arrangement of functional sections in the compounding ex-
truder can be compared to chemical unit operations in an abstract flow di-
agram. By connecting several functional sections, a compounding extruder
can be configured like a chemical process including feedback connectors. For
all functional sections the input and output streams are constant except for
sidefeeder or degassing sections. In Fig. 5.35 a schematic diagram from the
abstract to the realization level by enrichment and decomposition is shown.

The functional sections in co-rotating twin screw extruders are sequentially
arranged and usually have no back coupling upstream due to the partially filled
sections. Thus material modifications or flow effects have no influence and are
decoupled one another unlike in single-screw extruders, for example.

Based on the concepts described above MOREX has been integrated to
PRIME (PRocess Integrated Modeling Environments, see Sect. 3.1). This inte-
gration provides context-dependent assistance to the user and is not explicitly
shown in the design process fragment in Subsect. 1.2.2. For example, PRIME
shows different decision possibilities that have proven to be reasonable in the
past. The first step was to develop a product model of the MOREX interface.

514 M. Schlüter et al.

Process

Enrichment
Process

Decomposition

Reaction Separation Extrusion

Specialization

Reaction Flash-
Degassing

Extruder
Degassing

Mixing of
Additives

Mixing of
Fibers

Degassing
of Airr

Granulator
pressure

Realization

build-up

Fig. 5.35. Concept of functional zones in the flowsheet editor analogous to chemical
unit operations

With this context model, the workflow of the user is traced. If simulation pa-
rameters are changed (e.g., the number of revolutions of the extruder), this
information is transferred to PRIME.

Integration of 1D and 3D Simulation

The above described scenario of integrated MOREX and BEMFlow calcula-
tions is based on models and modules described in the following. The mate-
rial model (see subsection Refined and Extended Material Product Model) in
MOREX is already used to store the material parameters, thus a transfer of
these between other programs and the management of the parameters in a
central database is possible.

The model for the geometry description in MOREX contains a complete
three dimensional, parametrized description of conveying- and kneading el-
ements. Based on this model a surface mesh can be exported to the BEM-
software. For the structure of these meshes the cross section can be seen in
Fig. 5.36. Additionally the visualization of the screws in MOREX is based on
these meshes. The boundary conditions for the numerical methods as well as
the velocity profile at the flow channel inflow and the viscosity can be given in
a specified module in MOREX, resp. are overtaken from a previous MOREX
calculation.

Screw elements such as specialized mixing-elements, which are not sup-
ported for automatic mesh generation in MOREX, can be modeled with 3D-
CAD system and meshed afterwards. Thereby it is possible, to convert meshes

Design Support of Reaction and Compounding Extruders 515

Fig. 5.36. Principle mesh structure for conveying elements and kneading blocks

which are generated with I-DEAS with a special tool delivered with BEMflow.
For MOREX an additional converter for meshes which are generated with the
FLUENT pre-processor GAMBIT has been developed.

To visualize and explore BEM results, the postprocessor BEMView has
been developed [144, 145]. One functionality of BEMView is to visualize the
BEM mesh, such that the user can check it before starting the simulation.
With BEMView, the boundary conditions can be visualized as vectors and the
screws can be animated. BEMView can be seen as a part of the demonstration
scenario in Subsect. 1.2.2 and is further described in Subsect. 1.2.4. It reads the
BEM simulation results file and provides a quick visualization of BEM results
like particle streamlines already on a desktop computer. Another possibility
for results visualization is the visualization within a Virtual Reality (VR)
environment.

5.4.6 Interactive Exploration and Visualization of Simulation
Result Data

Furthermore, a workflow combining 1D- and 3D-simulation tools has been
studied. The VR prototype TECK has been developed to offer visualization
and interactive exploration of simulation results [149, 315, 428, 429]. The VR
interface allows an interactive configuration of extruders and an online visual-
ization of 1D-simulations. The tool can be used for the configuration process
as well as the knowledge transfer between different users, as simulation and
documentation data are displayed in real-time in a single environment.

In order to configure extruders and to visualize 1D-simulation results in
a VR environment, the software tool TECK (Twin-screw Extruder Configu-
ration Kit) has been developed. For extruder configuration, TECK offers the
following functions:

516 M. Schlüter et al.

Fig. 5.37. Interactive exploration of simulation results in the CAVE

• Selection of screw elements from an element catalogue.
• Positioning of an element in the screw configuration.
• Variation of screw element parameters.
• Visualization and interaction with simulation results.

For the visualization of simulation results in a Virtual Reality environment,
it is necessary to convert the data into a file format that is appropriate for
Virtual Reality. Consequently, several converters have been developed in or-
der to convert the simulation data (MOREX, BEM, FEM) into the VTK
(Visualization Tool Kit) file format [5].

Different extraction functions, for example cutting-, clipping- or iso-planes
for interactive data exploration, are implemented in TECK. They are all fil-
tering functions for the simulation data sets that help to reduce the overall
visual complexity. Fig. 5.37 shows a user who interacts with simulation data
in the CAVE. He is using the iso-surface and cutting-plane functions.

ViSTA-FlowLib is a software framework developed at the Institute for Sci-
entific Computing of RWTH Aachen University [386]. It comprises algorithms
for the interactive visualization of data sets produced by Computational Fluid
Dynamics (CFD). Special attention is paid to unsteady and large-scale data
sets.

The technique of virtual tubelets has been developed for the visualization
of particle streamlines. The streamlines are visualized as geometrical tubes.
This allows a more intuitive tracing of particles in a three-dimensional environ-

Design Support of Reaction and Compounding Extruders 517

Fig. 5.38. Visualizations of MOREX simulation results are depicted as colored
surfaces, using per vertex coloring (left) and a texture mapping based per pixel
coloring (right). TECK uses texture mapping in order to realize a per pixel coloring
that avoids artefacts resulting from per vertex coloring schemes.

ment. An example of the virtual tubelets is shown in Fig. 3.54. The tubelets are
realized with polygons that are oriented to the observer (billboard-technique).
The colors of the streamlines demonstrate the calculated values of the Ottino
mixing criterion. This criterion refers to the rate of surface enlargement of a
fluid particle in the flow; it is an example for a tertiary flow parameter.

TECK uses MOREX as its primary source for simulation data by direct
run-time coupling. In particular, when a user changes parameters in TECK,
a MOREX 1D-simulation is triggered as a remote procedure, and the simu-
lation results are returned and visualized. The instant visual feedback allows
the frequent variation of simulation parameters by the engineer. Information
about the pressure and temperature distribution is obtained at an early stage
of the simulation and configuration process, without using 3D-simulations.
Once the configuration shows desired attributes in the 1D-simulations, it can
be considered for the more time consuming 3D-simulations as depicted above.

The VR environment helps in the overall process, as it uses real-time ren-
dering algorithms and allows the usage of large-screen displays that better
match the human physical resolution of the visual sense. 1D-simulation re-
sults are displayed with high frequencies using texture mapping and advanced
graphics hardware technology. This visualization enables the precise map-
ping of simulation results to the extruder geometry as exemplarily shown in
Fig. 5.38.

518 M. Schlüter et al.

5.4.7 Conclusion

In this section, it has been shown that the research done by the subproject A3
had a huge impact on the issues of integration between the domains of plastics
engineering, chemical engineering, and computer science. Before the start of
the CRC, the plastics engineering domain was characterized by very detailed
and precise knowledge about its production processes on the one hand, but
nearly no expertise with regard to abstract data and workflow modeling or
domain spanning integration issues, on the other.

The integration endeavor of linking work and design processes between
the chemical process engineering and the plastics engineering domain was
achieved by abstract data modeling as well as by the mediation of domain
specific engineering knowledge. Within the elaboration of this basics, we have
formalized work processes and build domain specific data models together
with the CRC partners.

The huge impact of this work was especially visible in the transfer of con-
crete results within the MErKoFer and the VESTEX projects. In MErKoFer
(see Sect. 7.5), the process-integration approach of PRIME (cf. Subsect. 3.1.3)
was extended and adapted for the support of machine operators in rubber ex-
trusion processes. This approach was supported by extensive data mining, and
by modeling the domain knowledge based on the Core Ontology of the subpro-
ject C1, and validated directly in industrial work and production processes. In
the VESTEX project, the use of virtual reality to support and improve work
processes in the plastics engineering domain was investigated, particularly
concerning the design of compounding extruders.

For the future, several activities are planned to continue the successful
interdisciplinary work between engineering and informatics. For example, the
MErKoFer project results will be further developed and commercialized, and
the CRC scenarios extended to other applications or domains. Thereby, the
created data models, tools and methods are to be enhanced and augmented
further. As most of today’s and tomorrow’s innovations will be based on the
optimization of current technology through software and computer science,
the subproject A3 shows a broad potential to exploit prospective synergies.

5.5 Synergy by Integrating New Functionality

S. Becker, M. Heller, M. Jarke, W. Marquardt, M. Nagl, O. Spaniol,
and D. Thißen

Abstract. The novel informatics concepts presented in Sects. 3.1 to 3.4 can be
integrated again to fully exploit their synergistic potential. This section shows three
interesting examples of such synergistic integration. The examples bridge different
roles or companies in the design process. They also bridge between the efforts of
different research groups within IMPROVE.

5.5.1 Introduction

In Sect. 1.1, we introduced novel informatics concepts for supporting design
processes. This section is intended to discuss concepts and implementation of
their synergistic integration.

The section gives three examples of synergistic integration (see Fig. 5.39).
In Subsect. 5.5.2 the process-centered process flow diagram tool, called FBW39

(subproject B1, see Sect. 3.1), is connected to the reactive management sys-
tem AHEAD (subproject B4, see Sect. 3.4) via an integrator (subproject B2,

sub-
section

3

sub-
section

4

subsection 2

process-oriented
PFD tool

FBW
B1

reactive manage-
ment system

AHEAD
B4

integrator
with additional

interactivity
B2

heterogenous simulation
environment

CHEOPS
A1

multimedia
tool

KomPaKt
B3

polymer
process

simulator
BEMFlow/
BEMView

A3

integrator
B2

integrator
B2

using
information
of AHEAD

Fig. 5.39. Synergistic integration between different IMPROVE software tools

39 The terms flowsheet and process flow diagram are used as synonyms, they are
called Fließbilder in German. FBW is a corresponding flowsheet tool.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 519–526, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

520 S. Becker et al.

see Sect. 3.2). The integrator combines two master documents and offers ad-
ditional functionality in comparison to the integrators of Sect. 3.2.

The following Subsect. 5.5.3 combines FBW with the heterogenous sim-
ulation environment CHEOPS (subproject A1, see Sect. 5.3), again by an
integrator. The necessary information is available in the PFD and in the in-
tegration documents linking PFD and existing simulation models.

The last subsection of this paper describes how a multimedia tool (sub-
project B3) can be connected to AHEAD, also by an integrator. In particular,
the multimedia tool integrates BEMFlow and BEMView (subproject A3, see
Sect. 5.4). Furthermore, the integration spans across organizational units.

Of course, many further examples of synergistic integration could have
been presented.

5.5.2 Integration between Technical Documents and Process
Management

In most design processes, consistency management support is offered only
for the results of technical activities like process flow diagrams or simulation
models. Changes of technical data may also have consequences for the future
course of the design process on the managerial level. As the PFD is a master
document serving as a reference for the chemical process to be designed, it
can also serve as an interface to the management of the design process. There-
fore, any modifications of the flowsheet will likely have consequences on the
management of the design process.

In this subsection, the integration of the technical and the managerial level
of the design process is shown. It is achieved by integrating the technical data
contained in the process flow diagram with the process and product data on
the managerial level. The main goal of this integration is to provide advanced
functionality to the chief designer and design process manager as users of
the process flow diagram tool FBW and AHEAD, respectively. The aim is
to interactively determine the consequences of major technical changes and,
especially, their impact on the design process.

To achieve this ambitious goal, the functionalities of FBW and AHEAD
are synergistically combined, to offer additional benefit to the end users which
cannot be provided by any of the tools. The integration itself is performed
by a FBW-AHEAD integrator to link both tools. This integrator combines
two master views of the design process, namely process flow diagrams as the
technical master documents and the task net as the master document for
developers’ coordination.

Our approach for integrating the data of FBW and AHEAD is illustrated
in the left part of Fig. 5.40:

• FBW is used to synthesize and to maintain all the process flow diagrams of
the plant. The PFD contain all essential plant units on the technical level
together with their mutual interdependencies. FBW allows to organize

Synergy by Integrating New Functionality 521

4: H2O

2: Additives,
Fibers, Fillers

1: Feed

5: CL, CD, ACA

Reaction Separation Compound-
ing6:

7:

process flow diagram tool (FBW)
regions affected
by modifications

related
documents

SeparationPreparation

Reaction

Extrusion

Final Decision

AHEAD process model

AHEAD product model

selected
documents

related tasks

select tasks

adapt
task net

te
ch

ni
ca

l l
ev

el
m

an
ag

er
ia

l l
ev

el

FBR
Sim.

Int.
FBR

Sim.

Int. FBR Sim.
Int.

… (detailed PFDs) … (detailed PFDs) … (detailed PFDs)

Fig. 5.40. Synergy between the process-centered PFD tool FBW and the reactive
management system AHEAD

process flow diagrams hierarchically, such that any flow diagram can be
further refined with detailed ones.

• Exploiting the dependencies between flow diagrams, the user of FBW can
determine all regions in the overall process flow diagram which are affected
by a possible change in the product data.

• AHEAD stores more coarse-grained data about design documents which
are needed for management purposes. Technical process flow diagrams
are represented within the product model of AHEAD as product versions
which are interconnected by dependency relationships.

• AHEAD also maintains a model of the overall design process with all design
tasks and their interdependencies. Within the process model of AHEAD,
the input and output documents of the design tasks are defined and re-
lated to product versions of the product model (indicated as links between
product model elements and process model elements).

• Integration of process flow diagrams and the corresponding products or
tasks in AHEAD requires an integration document. This document con-
tains the interdependencies between elements of the process flow diagram
on the one and design product as well as process elements of AHEAD on
the other hand. This integration document is created and updated by the
integrator between FBW and AHEAD.

We now briefly sketch how the integration procedure of the FBW-AHEAD-
integrator (right part of Fig. 5.40) works:

522 S. Becker et al.

1. The chief designer starts the process flow diagram tool (FBW) and selects
some devices which have to be modified. He can use the tool to determine
the consequences of the modifications for other parts of the design in the
process flow diagram.

2. Additionally, the chief designer can get a list of all documents stored in
AHEAD which are related to the affected regions. For example, all simu-
lation documents related to the affected devices are returned.

3. Next, the chief designer marks those documents that are probably affected
by the initial modifications. The selection discussed in 1. above occurs only
within the FBW. However, the selection also covers other documents such
as those of the simulations.

4. The affected tasks of the work process are determined. The chief designer
gets a list of all tasks of the process model of AHEAD which use the
affected documents either as input or output documents. These tasks pro-
cess the affected documents and therefore they have to be checked, e.g.
whether they need to be revised in order to cope with the modifications.

5. The chief designer finally selects those tasks which are affected by the
modification according to his knowledge as a technical expert.

6. Now the design process manager receives the list of all tasks which might
be affected by the modifications. He starts the integrator which suggests
modifications to the tasks in the task net. For all affected tasks, it is
estimated whether new feedback flows need to be created for running
tasks, already terminated tasks need to be restarted, or whether tasks
remain unaffected with respect to the modifications.

7. The list of change proposals produced by the integrator can be reviewed
by the process manager and each change can be interactively accepted,
rejected, or modified. After the list of all proposed task modifications has
been processed, the process manager can trigger the necessary modifica-
tions in the task net while the process is running.

8. The process manager now interactively changes the management data
using AHEAD functionality. As a result, the process manager gets an
adapted task net that reflects the necessary re-work needed to answer
the initial process flowsheet modifications performed by the chief designer
using FBW.

The modification have to come in cycles since the consequences of a change
can only be determined locally. Corresponding changes are managed. Then,
they are carried out by engineers with different roles. When doing the changes,
further consequences come up. They, again, have to be managed and carried
out. This procedure is continued iteratively.

It can even get worse in case a change is due to a backtracking step. When
carrying out the corresponding changes iteratively, further backtracking steps
might occur. This example shows that managing the changes within a design
process is an activity affecting the whole process and, therefore, is a difficult
task.

Synergy by Integrating New Functionality 523

This integrator between the FBW and AHEAD differs from other inte-
grators mentioned in Sect. 3.2. It offers specific user interfaces for both the
chief designer and the design process manager roles. As a result, the integra-
tor has been implemented manually without using the integrator framework
introduced in Sect. 3.2. Nevertheless, some concepts of the original integrator
approach have been applied, resulting in a clean architecture and a straight-
forward integration algorithm.

This integrator clearly shows the benefit of the synergistic combination of
new tool functionality which has been developed within IMPROVE. It com-
bines the process-centered FBW (subproject B1) with the reactive manage-
ment system AHEAD (subproject B4) using an integrator (subproject B2).

5.5.3 Support for Configuring CHEOPS Simulation Models

In the CRC scenario (cf. Sect. 1.2), CHEOPS [409], described in Subsect. 5.3.5,
is used for the simulation of the overall PA6 production process. CHEOPS uses
different existing simulation tools to carry out the overall process simulation
by an a-posteriori runtime integration approach. The task of CHEOPS is to
perform all partial simulations, each with the appropriate tool, to exchange
simulation results between them, and to converge recycle streams which may
occur in the flowsheet.

CHEOPS is controlled by an XML-file containing references to the partial
simulation models and their parameters and initial guesses. In our scenario,
this file is generated with the help of an integrator.

The generation of the CHEOPS control file is again an example for the
synergy resulting from combining the advanced functionalities and underlying
concepts created in the IMPROVE project. Only this combination allows to
derive the control file with minimal user interaction.

Generating the CHEOPS control file involves data from several IMPROVE
tools (cf. left part of Fig. 5.41):

• FBW (see Sect. 3.1) contains the overall structure of the plant as process
flow diagrams consisting of plant regions and their interconnections. Thus,
it can also provide the structure of the corresponding overall simulation
model. Furthermore, it contains detailed flow diagrams for all regions.
Only a tool with a clean concept of hierarchical flow diagrams like FBW
can provide the necessary information about the relationships between
flowsheets of varying degree of detail.

• AHEAD provides a medium-grained model of all the products of the de-
sign process. For the generation of the CHEOPS control files, we em-
ploy information about detailed process flow diagrams existing for a given
plant region, corresponding simulation models created in which simula-
tor, and integration documents containing the interrelations between the
two. Again, these data are only provided because of the advanced model
structure of AHEAD: There are partial models for the design process, the
resulting products, and the employed resources.

524 S. Becker et al.

plant regions

streams between
plant regions

external
streams

simulators and
chosen models

connectors parameterized
ports

CHEOPS configuration
FBW- CHEOPS integrator

4: H2O

2: Additives,
Fibers, Fillers

1: Feed

5: CL, CD, ACA

Reaction Separation Compound-
ing6:

7:

AHEAD product model

FBR

Sim.

Int.
FBR Sim. Int. FBR Sim. Int.

integration
documents

simulation
models

process flow diagram tool (FBW)

FEED

VAPOR2

R1OUT

VAPOR

R2IN

S1

R2OUT

4

3

CSTR-1

FLASH
PFR

B1B2

 <?xml version=
- <x:Morex

<name>C:\temp
<role>Press</ro
</dljkasdf>

- <sec id="2
<role>Port</role>
</sec>

- <long id="1">

 <?xml version="1.0" ?>
- <x:CheopsSimulation
 <name>C:\temp\NeueInte
 <role>Aspen</role>
 </document>
- <document id="2201.5851">
 <role>FBW</role>
 </document>
- <link id="1">
<state>Block</state>

- <increment id="Comp_5539" type=""
documentRole="FBW">
 <integrationRole>DSI</integrationRole>
 </increment>
- <increment id="FEED!Streams" type=""
documentRole="Aspen">

CHEOPS control file

simulators and
available models

Fig. 5.41. Synergy between flowsheet tool FBW, management system AHEAD and
integrators: creation of the CHEOPS simulation file

• Integration documents referring to detailed process flow diagrams and the
corresponding simulation models provide the relationships between exter-
nal streams of each plant region and the corresponding streams in the
simulation model. They are created by integrators during the elaboration
of flow diagrams and simulation models. This information is needed by
CHEOPS to connect the simulation models provided by the simulators at
runtime (see below). Without using integrators, collecting this information
would be difficult.

The main activities performed by the integrator and their dependencies are
depicted in the right part of Fig. 5.41. We will explain each activity in more
detail subsequently to illustrate how the data sources are used to create the
CHEOPS control file.

First, the plant regions to be contained in the simulation are marked by the
engineer and the integrator is started using FBW. A PRIME process fragment
(see Sect. 3.1) ensures that the identifiers of the selected regions are passed to
the integrator as parameters. Next, the integrator identifies streams coded in
a particular simulator connecting plant regions and external streams acting as
inputs to the overall simulation by reading the abstract process flow diagram.

By querying the AHEAD product model, all simulation models available
for the plant regions to be simulated are determined. Then, user interaction
is performed to select one model for each plant region.

Now, for each stream connecting a source and a target plant region, a
CHEOPS connector has to be set up. A connector is used by CHEOPS at
runtime to get values from the simulation results of a certain output stream

Synergy by Integrating New Functionality 525

of the source simulation model and to provide these results as input param-
eters for a certain input stream of the target simulation model. Up to now,
only the identifiers of the abstract and detailed process flow diagram streams
are available to the integrator. Thus, the integrator uses the integration docu-
ments relating detailed flow diagrams to the corresponding simulation models
to locate the related streams in source and target simulation models. Their
identifiers are then used for the definition of the connectors.

For each external input stream, a set of input values has to be provided to
CHEOPS. Using the same approach as for internal streams, the corresponding
simulation model stream is determined. Then, the simulation model is queried
for all parameters that have to be set for this stream. Now, the user is able to
supply the required values.

After all necessary data have been collected, the CHEOPS configuration is
saved in an XML file and the CHEOPS simulator is activated using a PRIME
process fragment.

The integrator sketched here is different of those described in Sect. 3.2: It
integrates more than two documents, it works unidirectional, there are no con-
flicting rules, and the user interaction is very specific (see also Subsect. 3.2.6).
Thus, this integrator was implemented manually, only partially making use
of the integrator framework introduced in Sect. 3.2. All integration rules are
static and have thus been hard-coded.

It is only possible to use this simple integrator implementation here, as all
information needed is already available in a structured way. This demonstrates
how the novel tools do not only perform the tasks they have been designed
for but also provide the basis for realizing even more advanced support.

5.5.4 Synergy with Multimedia Communication

As discussed in Sect. 3.3, supporting designers’ communication by new forms
of media can improve a design process. A problem with introducing novel
media and communication forms, however, is their acceptance by the users. As
a first step towards a communication platform, KomPaKt (see Subsect. 3.3.2)
provides a single interface for all new communication forms,.

These new communication forms, for example, were used to support the
cooperation of plastics processing engineers : The tool BEMView for 3D pre-
sentations of extruder simulation results was enhanced with an event sharing
mechanism, allowing for cooperative work on simulations by geographically
and possibly organizationally distributed users. Event sharing on one hand
enables the synchronized presentation of the 3D simulations on several com-
puters. This is extensively discussed in Sect. 3.3. On the other hand, it is also
possible to switch over to a mode of loose synchronization, in which differ-
ent engineers can view the simulation results from different perspectives. This
way, two new forms of cooperation can be realized. In addition, it is also pos-
sible to capture simulation runs and the associated discussions in the design
team as a video sequence enriched by respective annotations.

526 S. Becker et al.

To further improve acceptance, an integration with AHEAD (Sect. 3.4)
is accomplished. AHEAD manages the resources of a design process, which
also include the involved project members. By implementing a connection
to AHEAD, information about designers and their contact data could be
transparently gathered by KomPaKt. Additionally, the documents used in
some part of the design process can be determined and used in a conferencing
session.

KomPaKt is managed by AHEAD, as all other tools used in the design
process. Thus, for example, planned meetings for discussions and decisions
about intermediate results can be modeled as own tasks of work process man-
agement by AHEAD. Additionally, KomPaKt can be used for spontaneous
conferencing, if an engineer wants to discuss with team members in case of
problems occurring unexpectedly. In this case, KomPaKt uses the project
team management information of AHEAD to determine the possible partici-
pants of the conference. Last but not least, results of a multimedia conference
(e.g. protocols, video recordings, annotated documents, etc) can be stored by
using the document management part of AHEAD.

For an integration with AHEAD, the communication process during a
cooperation is to be seen independent of the process models of the other IM-
PROVE subprojects in the first step. The communication process extends the
C3 model of communication and cooperation possibilities. To do so, detailed
information about synchronous communication for certain tasks is provided.
This is achieved by using a layered model (see Sect. 3.3) of communication
relationships. This model is connected to the model of AHEAD to offer the
possibility to model multimedia conferences as separate management tasks,
for enabling KomPaKt to get configuration information from AHEAD etc.

Advanced functionality cannot only be realized by the integration of Kom-
PaKt with AHEAD but also with the other tools. In case of integration with
PRIME, multimedia cooperation can become a part of a process fragment
to store the multimedial outcomes of informal discussions when a process
fragment supports inter-organizational cooperation. Also, synergies can be re-
alized between KomPaKt and the integrators if the interactive parts of an
integration process are supported with new cooperation forms.

5.5.5 Summary

This section has introduced three examples of synergistic integration of novel
support concepts and tools. It is shown that this integration results in more
than the sum of the corresponding functionalities. It also shows that this
synergistic functionality is, essentially, a consequence of connecting interesting
engineering results (either technical or managerial) during the design process.

There are many further possibilities for the realization of synergistic func-
tionality. The selected examples are especially interesting, as they also bridge
different roles or organizational units within the design process. They also
bridge between different groups within IMPROVE.

5.6 Usability Engineering

C. Foltz, N. Schneider, B. Kausch, M. Wolf, C. Schlick, and H. Luczak

Abstract. The number of employees working exclusively with computers increased
almost 20 percent within the last four years. In technical offices and in the field
of research and development the largest amount, 94 percent, can be found. Hence
the focal point of the research project was composed of the development and pro-
totypical implementation of software tools for the support of the work of process
development engineers. This field of application provides a large range of innovative
computer support because of its high amount of creative work processes hardly to
support by strictly structured software tools. Additionally the exploration of many
design alternatives and weakly structured constraints between different activities
with unexpected or planned iterations can scarcely supported in a conventional
way. For this research objective several specialized applications were developed and
the ergonomics of their user interfaces were evaluated. These application specific
evaluation methods form the groundwork for the redesign based on the design rec-
ommendations.

The following section describes the foundations of software ergonomics with cor-
responding international norms. It will also be shown, that software ergonomics
knowledge alone, however, is not sufficient in order to be able to assess the quality of
the software support. So the well known ergonomic requirements were supplemented
by methods for work analysis. In general, the support of creative and communica-
tive work processes requires a detailed analysis of necessary activities, organizational
structure, and information flow including the identification of organizational bottle-
necks. The basis for the conducted evaluation of work thus constitute three different
models of work analysis which are introduced and discussed.

A suitable procedure was presented, not only for the development of evaluation
criteria, but also for application scenarios for the following evaluation of subjects.
The scenarios will be briefly described, and the results of the various evaluations of
subjects will be introduced. These findings show the quality of the developed pro-
totypes in terms of their area of application and give recommendations for possible
improvements.

5.6.1 Introduction

The number of people using computers increased continuously in recent years.
According to the German Federal Statistical Office, in May 2000 52 percent of
employees in Germany worked at PC workstations; in March 2004 the number
was already increased to 59 percent. The amount of workers that use PCs for
their jobs varies considerably depending on the type of occupation. The largest
amount of PC users, 94 percent, are the group of those who are employed in
(technical) offices and in the field of research and development and are there-
fore in the main focus of software-ergonomic improvements. Empirical studies
in recent years describe the change of the content requirements that can be
observed through the introduction of computer-operated work means in offices
and PC workstations [891, 1028]. Along with constantly increasing demands

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 527–554, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

528 C. Foltz et al.

for qualification, employees that work primarily with software systems must
strive for continuous learning. In addition, the meaningful improvement of so-
cial, communicative and methodical competencies is necessary. A significant
strategic advantage results if these requirements can already be supported by
the software tools through a user-centered system design.

5.6.2 Basic Principles of Software Ergonomics and Work Analysis

Software ergonomics or usability engineering can be regarded as the inter-
section between the research areas of ergonomics and computer science [926].
Experts in this field (software ergonomists or usability engineers) analyze,
design and evaluate the use of interactive computer systems to optimize the
interaction of all components that determine the work situation: human, task
and organizational frame [710, 825, 864, 941]. When using a computer, the
worker is confronted with two kinds of problems [645]:

• task-related, i. e., to solve the work task on the basis of his professional
knowledge, skills, and abilities;

• interaction-related, i. e., to use the software system utilizing the graphical
interface, keyboard, etc.

To cover these aspects when designing a software system, methods of work
and more specific task analysis must be applied and ergonomic requirements
have to be met. Furthermore, to validate if both task-related and interaction-
related issues have been considered, an evaluation is necessary.

Ergonomic Requirements

The legislation of minimum requirements for workplace design, particularly
in the design of workstations with monitors, is set through legislation in the
context of occupational health and safety. The EU visual display unit guideline
1 [502] is currently the most important regulation in the area of workstations
with displays. The German Occupational Health and Safety Act [577] ensures
that EU guidelines are put into national legislation, accident prevention and
further regulations.

All aspects of working with computers are covered in the multi-part stan-
dard ISO 9241 [632]. Originally titled“Ergonomic requirements for office work
with visual display terminals (VDTs)”, it has been retitled by ISO to “Er-
gonomics of human-system interaction” in 2006.

An overview of the goals and the other parts of the standards is given
in Part 1. Guidance on task requirements is given in Part 2. Parts 3 to 9
address the physical characteristics of computer equipment and environment,
for example work desk, display, keyboard etc.

Parts 10 to 17 deal with usability engineering aspects of software, also
referred to as software ergonomics. Two parts are of particular importance.

Usability Engineering 529

Part 10 – renamed Part 110 in the 2006 edition – titled “Dialogue principles”
presents a general set of principles for the design of different types of dialogue.
Part 11 “Guidance on usability” gives a general guidance on the specification
and measurement of usability.

The other parts deal with the presentation of information (Part 12), user
guidance (Part 13), menu dialogues (Part 14), command dialogues (Part 15),
direct manipulation dialogues (Part 16) and form filling dialogues (Part 17).
In the 2006 edition of ISO 9241 new parts such as “Guidance on World Wide
Web user interfaces”(Part 151) and“Guidance on software accessibility”(Part
171) have been added.

Aside from this standard, guidelines and so-called“style guides”of software
manufacturers like Microsoft or Apple exist to ensure a uniform look and feel
[886, 964]. They also contribute to a standard interface design. Therefore, new
applications, such as those developed in the scope of IMPROVE, try to adapt
to these guidelines and to use standardized symbols and functions. In this
manner, the software system should be familiar to the user. Furthermore, the
programming effort can be reduced.

As mentioned above, the principles of dialogue design described in Part 10
of ISO 9241 are of particular importance. These seven design and evaluation
criteria are described briefly in the following.

Suitability for the Task

Suitability for the task describes the characteristics of a user interface to
effectively support the user in doing his work. This means that the dialogue
only shows information which is related to the actual problem and therefore
important for solving the task. To avoid confusing the user and to ensure
efficient work, additional or unnecessary commands should not be provided.

Self-Description

A system has the ability of self-description if every dialogue step is directly
understandable by feedback signal, or if it can be made understandable to the
user on his demand. Not every user has the same knowledge of computer or
software systems, so it is very important that the feedback signals are adapted
to the situation and to the vocabulary of the user.

Controllability

To ensure that an interactive system is controllable, the user should be able
to regulate the speed of the dialogue procedure. Additionally, the user should
be enabled to decide on type and extent of the input and output as well as on
the order of the dialogue steps. Controllability of a system also includes the
ability to undo the last dialogue steps.

530 C. Foltz et al.

Conformity with User Expectations

Conformity with user expectations describes the uniformity and consistency
of a dialogue system. Consistency means the rule observance of the design
of the user interface and the dialogue steps, so that similar user inputs lead
to similar reactions of the system in related situations. Conformity with user
expectations also includes the adaptation of the dialogue system to the user’s
characteristics. It includes understanding the state of knowledge of the user
in his field of work, his education and experience, as well as the generally
accepted conventions.

Error Tolerance

A system is called error tolerant if the intended task result can be achieved
without or with minimum effort of correction by the user despite incorrect
input. The dialogue system should support the user in finding and avoiding
input mistakes, and it should secure that under no circumstances an incorrect
user input leads to data loss or even a system break down.

Suitability for Individualization

A dialogue is suitable for individualization if the dialogue system is adaptable
to the work task as well as to the preference and skills of the user. On the
one hand, the system should be able to conform to the speech and cultural
singularity of the user. On the other hand, the system’s speed of reaction
should adapt to the user’s needs; it should also be possible to individualize
the extent and availability of commands of a work situation.

Suitability for Learning

A dialogue is called suitable for learning if it supports the user in learning the
dialogue system. The dialogue system should enable the user to familiarize
himself with the basic design principles and operational concepts. In doing so,
the user can visualize a picture or model of the function of the system.

However, ergonomic requirements alone are not sufficient. They are closely
connected to the user’s task: “The dialogue principles in ISO 9241-10 cannot
be used for design or evaluation without first identifying the context of use.
Some of the dialogue principles are closely related to specific aspects of the
context of use” [554].

Therefore, ISO 13407 “Human-centered design processes for interactive
systems” [631] describes a generic approach to a systematic consideration of
context or task-related issues.

Work Analysis

While ergonomic requirements address the interaction-related issues of work-
ing with computers, task analysis [280, 782] or work analysis are used to solve

Usability Engineering 531

the task-related problems. The existing techniques for work analysis can be di-
vided into normative, descriptive and formative approaches [118, 923, 1023].

First, normative models (“The one best way?”) prescribe how a work sys-
tem should behave. Normative models can be found in textbooks about sys-
tems engineering [901], or more specifically, in monographs, e.g. about chemi-
cal process design [556, 559, 957]. The emphasis is on identifying what workers
(or engineers) should be doing to get their job done. However, the relatively
well-ordered transformation from an abstract problem formulation to an ex-
act equipment illustration does not describe in sufficient detail what engineers
are really doing. Design is iterative and depends on the experience, the skills
and competence of the engineer [989]: “Furthermore, no two designers design
a complex process following exactly the same steps” [957]. In particular, nor-
mative models describe novice rather than expert performance [924]. To avoid
misunderstandings, normative models are important for curriculum purposes
but not sufficient to derive implications for the design of computer support-
based systems.

Second, descriptive models (“What workers really do”) seek to understand
how workers (or engineers) actually behave in practice. This goal is accom-
plished by conducting field studies. However, as far as chemical engineering
is concerned these studies are very rare [16, 125, 1047]. As an exception, the
well-known participant observation of an engineering design project involving
the design of a high-pressure, high-temperature system for testing materials
in a simulated coal gasification environment can be mentioned [713]. More-
over, a huge effort is necessary to gain insight into a complete development
process from the cradle to the grave. Additionally, it would only be a unique
example. Even a development process with a similar problem formulation may
differ significantly from the other. Furthermore, results from those studies are
limited in at least two ways. Current practice is, on the one hand, always tied
to existing technology, i.e. it is device-dependent and contains work-around
activities that are caused by inappropriate computer support [1023]. On the
other hand, engineers are adaptive, so the introduction of a new design results
in new work practices [279]. This interdependence is known as task-artifact
cycle in the human-computer interaction literature [583, 697]. In summary,
descriptive techniques are important and useful in order to understand what
engineers really do and what they would like to do. Nevertheless, there are
serious limitations in extracting design implications from descriptive models.

Third, formative models (“Workers finish the design”) focus on identifying
requirements, both technological and organizational, that need to be satisfied
if a device is going to support work effectively. The workers will be given some
responsibility“to finish the design”locally as a function of the situated context.
Formative approaches overcome the difficulties which occur when normative
or descriptive approaches for system design are used [1023]. Currently, two
formative approaches are described in the literature: contextual design [555]
and cognitive work analysis [1023], based on the work of Rasmussen [924]. The

532 C. Foltz et al.

latter one, cognitive work analysis (CWA) comprises five steps or concepts and
will be discussed in more detail.

The first concept, work domain, represents the system being controlled,
independent of any particular worker, automation, task, goal, or interface,
i.e. the work domain shows the possibilities for action. The goal of this de-
sign procedure is to identify the requirements which have to be realized to
guarantee effective work of a supporting system. Only the tool-independent
description of work activity permits an analysis which can lead to the de-
velopment of designing methods enabling the user to accomplish his work in
an adequate way, as well as making it possible to design new ways of opera-
tion [924, 1023]. The work domain will be represented by a two-dimensional
abstraction-decomposition space (ADS). The first dimension, the abstraction
hierarchy (AH) or functional means-ends dimension, supports knowledge-
based reasoning and decision making in terms of functional relationships
among the information objects. To form a two-dimensional problem space,
orthogonal to the AH a decomposition dimension specifies the part-whole
relationship of a system. Each of these levels represents a different level of
granularity. Therewith, two main strategies for problem solving - abstraction
and aggregation - can be covered [922, 924, 1023]. Certainly, very often a
change of the decomposition level is coupled with a change in the abstraction
level. Nevertheless, these two dimensions are conceptually separate.

The second concept, control task, are the goals that need to be achieved,
independently of how they are achieved or by whom. In other words, the focus
is on identifying what needs to be done, independent of the strategy (how) or
actor (who). The third concept, strategies, are the generative mechanisms by
which particular control tasks can be achieved, independent of who is execut-
ing them. They describe how control task goals can be effectively achieved,
independent of any particular actors. The fourth concept, social organization
and cooperation, deals with the relationship between actors, whether they be
human workers or software tools. This representation describes how responsi-
bility for different areas of the work domain may be allocated among actors,
how control tasks may be allocated among actors, and how strategies may
be distributed across actors. Finally, the fifth concept, worker competencies,
represents the set of constraints associated with the workers themselves. Dif-
ferent jobs require different competencies. Thus, it is important to identify
the knowledge, rules, and skills that workers should have to fulfil particular
roles in the organization effectively [924, 1023].

Information Representation for Computer-Supported Chemical
Process Engineering

The computer-aided design of work processes in process engineering has, as in
other branches, contributed to a multiplication of information volume and an
increase in modification iterations, thereby it let to an increasing complexity
and intransparency of work processes. In fact, in the last decade systems were

Usability Engineering 533

developed that make the entire storage of all process development-related
information possible [559, 1047].

However, chemical process design is not supported appropriately and con-
tinuously by software tools [195, 335, 401, 834]. Furthermore, often these tools
usually can only be used by experts instead of “normal” chemical engineers
[834]. In other words, software support in chemical engineering is concerned
with task-related and interaction-related problems.

As far as the task-related issues are concerned, the following can be stated.
Chemical process design is characterized as a complex, iterative, and creative
activity typically starting as an ill-defined problem [1047]. In order to cre-
ate new processes and plants or to retrofit existing ones, an interdisciplinary
team develops and uses different models [17, 401]. Decisions in chemical pro-
cess design arise from goals and constraints incorporated in these models,
constituting knowledge about the process and the plant, respectively.

In other words, in a complex network of causal and functional depen-
dencies, the chemical process engineer should be able to solve problems and
make decisions more quickly with the aid of a computer-based support sys-
tem. Therefore, it is necessary that these systems not only support the method
knowledge of the developer, but that they also correspond to the way of think-
ing the developer has become accustomed to, i.e. the task-specific mental
model. The smaller the gap between the computer-aided representation of
knowledge structures and the developer’s mental model to be carried out,
the more efficiently the developer can fulfill his tasks [924, 1023]. The sup-
port of the special abilities of the human problem-solver through structur-
ing and information visualization is therefore a major concern rather than
computer-supported automation of problem solving. Therewith, this knowl-
edge describes the work domain the process designer is acting on.

To develop a representation of the work domain of chemical process design
the introduced abstraction-decomposition space has been developed [117–119].
The announced abstraction hierarchy or functional means-ends dimension sup-
ports knowledge-based reasoning and decision making in terms of functional
relationships among the information objects. Each level in the hierarchy rep-
resents the goals or ends for the functions of the level below and potential
resources or means for the level above. In other words, the AH spans the gap
between purpose and material form.

For chemical process design the part-whole dimension contains the fol-
lowing five levels: system (e.g., process), subsystem (e.g., separation process),
functional unit (e.g., distillation column), subassembly (e.g., valve tray), and
component (e.g., float valve).

Similarly, the functional means-ends dimension discriminates five levels
(Fig. 5.42):

• Functional purpose: textual description of what is desired like “production
of Polyamide-6, residue of water less 0.01% . . . ” for the system or “allow
part load” for a float valve on the component level;

534 C. Foltz et al.

Functional
Purpose

Generalized
Function

Physical
Function

Physical Form

Subsystem Functional UnitSystem Subassembly Component

Abstract
Function

Whole-Part

Means-Ends

process reaction separation

C2H4 + HCl → C2H3Cl + H2O

Function Controllability Operability SafetyCosts Reliability ...

What?

How?

Why?What?

How?

Why?

Fig. 5.42. Abstraction-decomposition space (ADS) for chemical process design
[117–119]

• Abstract function: chemical reaction paths, basic functions (react, sepa-
rate, etc.), physical property data;

• Generalized function: mostly unit operations like continuous stirred tank
reactor or plug flow reactor for “react” and distillation column or evapo-
rator for “separate” and also new combined operations; assumptions are
necessary due to lack of some data in advance; calculations with linear
mass- and energy balances; short-cut methods;

• Physical function: rigorous process models in different refinements; physi-
co-chemical phenomena included; complex mass, momentum, and energy
balances; assumptions about data (e.g., recycling rate, physical properties)
are replaced;

• Physical form: 2D-drawings and 3D-models of all equipment, plant layout.

Indeed, there are further important aspects such as controllability, operabil-
ity, costs, safety, reliability, etc. which impose constraints on process design.
However, they are secondary objectives always related to the functional rep-
resentation. Hence, they can be characterized as supplementary layers linked
to the proposed problem space (tabs at the top of Fig. 5.42).

Evaluation

A usability evaluation is any analysis or empirical study of the usability of
a prototype or system. The goal of the evaluation is to provide feedback in
software development, supporting an iterative development process [886, 941].

In general, two types of evaluation can be distinguished: summative and
formative. The latter takes place during the design process to identify aspects

Usability Engineering 535

of the design that can be improved and to provide guidance in how to make
changes to a design. The first type of evaluation is done to assess a design result
and is most likely to happen at the end of a design process. Consequently,
evaluation methods can be separated in two different classes, analytic and
empirical, respectively.

Analytic evaluation methods can be used early in the development pro-
cess, well before there are users or prototypes available for empirical tests.
Furthermore, it is often less expensive than making studies with users. Ex-
amples of analytic methods are heuristic evaluation, cognitive walkthroughs,
usability-expert reviews, group design reviews [864, 1025]. A hazard of ana-
lytic evaluation is that system developers or software designers may feel that
they are being evaluated [941].

Empirical evaluation methods involve actual or designated users. The
methods can be relatively informal, such as observing people while they ex-
plore a prototype, or they can be quite formal and systematic, such as a
tightly controlled laboratory study of performance times and errors or a com-
prehensive survey of many users [941, 943]. Independent of this differentiation,
in general, qualitative and quantitative methods of both data collection and
data analysis can be distinguished. While quantitative research focuses on
how to operationalize or quantify the attributes to be measured, qualitative
research interprets verbal or non-numerical data [563].

The great variety of quantitative and qualitative approaches may provoke
to neglect of one important quality factor: validity. Cook and Campbell [610,
611] suggest to use the concepts validity and invalidity to refer to the best
available approximation to the truth or falsity of propositions. The concept
validity is subdivided into four types:

• Statistical conclusion validity. Statistical conclusion validity refers to the
validity of conclusions about whether the observed covariation between
variables is due to change. In other words, it refers to the confidence with
which one can say that there is a real difference in Y scores between X
cases and X’ cases.

• Internal validity. Internal validity is concerned with whether covariation
implies cause. In other words, it deals with the logical question, how to
rule out alternative explanations such as that Y caused X or that both X
and Y stemmed from unmeasured factor Z.

• Construct validity. Construct validity refers to the validity with which
cause and effect operations are labeled in theory-relevant or generalizable
terms. In other words, a study needs to have clearly defined theoretical
concepts and conceptual relations as well as clearly specified mappings of
those concepts into empirical operations.

• External validity. External validity refers to the validity with which a
causal relationship can be generalized to various populations of persons,
settings and times.

536 C. Foltz et al.

It will probably be apparent that the methods used to increase internal validity
and statistical conclusion validity and the techniques to gain precision will
threaten the external validity of that particular set of data, but the relation
is not a symmetrical one. Things that aid external validity, e.g. large and
varied samples, may either hinder or help internal validity or have no effect
on it. Moreover, it is certainly not the case that things that decrease internal
validity will somehow increase external validity.

In summary, a multiplicity of methods exists. However, an empirical
method on its own is neither right nor wrong. All methods mentioned above
offer both opportunities not available with other methods and limitations
inherent in the use of those particular methods [563, 838]. Hence, it is not
possible to simultaneously maximize three major goals of research evidence
[838]:

(A) the generalizability of the evidence over populations of actors;
(B) the precision of measurement of the behavior and precision of control

over extraneous facets or variables that are not being studied;
(C) the realism of the situation or context in relation to the contents to which

you want your evidence refer to.

To increase one of these criteria means reducing one or both of the other
two. In brief, field studies gain realism (C) at the price of low generalizability
(A) and lack of precision (B). Laboratory experiments maximize precision of
measurement and control of variables (B), at the price of lack of realism (C)
and low generalizability (A). Surveys have high generalizability (A) but get
it by giving up much realism (C) and much precision (B). The nature of this
strategic dilemma is shown in Fig. 5.43, which shows a set of eight alternative
research strategies or settings in relation to one another. The strategies are
arranged in four sections:

I: setting in natural systems;
II: contrived and created settings;

III: behavior not setting dependent;
IV: no observation of behavior required.

In the figure, three points with different weighting of the major research goals
can be identified: A is the point of maximum concern with generality over
actors, B is the point of maximum concern with precision measurement of
behavior, and C is the point of maximum concern with system character of
context.

Despite naming and classifying the research methods slightly differently
from the terms used above, it is well suited for our purposes. Any research
strategy is both limited in what it can do and flawed, although different strate-
gies have different flaws.

Once again, there is no single best strategy because each is inherently
limited. However, they are all potentially useful. In considering any set of

Usability Engineering 537

A

C

B

field
studies

field
experiments

experimental
simulations

laboratory
experiments

judgement
studies

sample
survey

formal
theory

computer
simulations

obtrusive
research
operations

unobtrusive
research
operations

universal behavior systems particular behavior systems

II II

III

III
IV IV

I

I

Fig. 5.43. Research strategies [838]

evidence, one should take into account what strategies were used in obtaining
various parts of it, hence the strength and limitations of that evidence at
the strategic level. Any study needs a plan for what data will be gathered,
how that data will be aggregated and partitioned, and what comparisons will
be made within. As evident from the preceding section, the choice of one or
another of the various strategies will limit the kinds of design one can use [122].

Consequently, the software tools developed as part of IMPROVE were
examined both analytically and empirically. Depending on the state of devel-
opment of each software, one or more evaluation techniques were chosen, and
by means of concrete examples of designing user interfaces, suggestions for
a better configuration were acquired. In the following, we discuss the analy-
sis and evaluation of the design support system EVA, of the flowsheet editor
FBW (see also Subsect. 3.1.3), of the administration system AHEAD (see also
Subsect. 3.4.2), and finally of the communication platform KomPaKt (see also
Subsect. 3.3.2).

5.6.3 EVA – Design Support System

The design of chemical plants – in particular during the early stages – is char-
acterized by an intensive co-operation in a large project team. The project
team usually consists of members with widespread scientific backgrounds and
expert knowledge. The team members mainly execute creative and modestly
structured tasks including frequent demand-driven and spontaneous commu-

538 C. Foltz et al.

nication processes required for the co-ordination process. Due to the spe-
cific characteristics and typical shortcomings of such a co-operation, it should
be possible to improve this process by the use of tailored information- or
groupware-systems. For example, experts are often integrated into ongoing
chemical design projects at short notice and on a short-term basis in order
to solve acute problems, e.g. modeling of the reaction kinetics. The frequent
modification of the group structure leads not only to difficulties in informa-
tion storage and exchange but also to a different understanding of ideas and
goals, because internal rules are unknown or have changed. The development
of the groupware-system EVA (design support system for chemical engineer-
ing, in German: Entwicklungsunterstützung V erfahrenstechnischer Anlagen)
was intended to provide appropriate support to overcome such problems.

Requirements Engineering and System Design

As a first step of the development of a groupware-system, communication
and co-operation processes must be investigated from different points of view
to identify the requirements of potential users [612]. Therefore, it is neces-
sary to investigate characteristics of their communication and co-operation
and to identify possibilities of how to improve these processes. Furthermore,
theoretical models of communication and co-operation should be analyzed to
find innovative ways of supporting co-operation. During the development of
the groupware-system EVA a requirements analysis was conducted by (a) a
field study to analyze the characteristics of co-operation in the field of chem-
ical engineering, (b) screening of the theoretical concepts of co-operation and
workspace models to develop the basis for new functionalities [486]

The groupware system EVA consists primarily of a shared work space that
all users of a chemical design project can access (Fig. 5.44). In this workspace
all of the documents created during a project are inserted and displayed in a
structured way. As a result, the work area presents the center for the project-
internal and primarily asynchronous information exchange. It also gives a
structured overview of the relevant information and procedures throughout a
development process in chemical engineering. The structure of the work area
was derived from the abstraction-decomposition space introduced in Fig. 5.42.

Therefore, a document placed into the workspace must be enriched with
context information, so that process designers are able to comprehend the
contextual meaning of a document and immediately identify the main relations
between documents.

Context information is represented by the following four design elements:

1. Document relations: Colored lines between two documents explain whether
the following document is a decomposition (red line) or a variant (or ver-
sion) of the previous document (blue line). In case of decomposition, the
interface between these subranges can be specified within an interface

Usability Engineering 539

views

additional
document
information

state decision

variation decomposition
(incl. Interface)

document
invocation

Fig. 5.44. Screenshot of EVA [483, 486]

symbol (e.g. mass flow). Thus, propagation mechanisms inform all au-
thors of subrange documents connected to this interface about changes in
the interface specification (e.g. a recycle flow has been computed).

2. Views: Documents are categorized and displayed in six different views
(flow diagram, simulation, model, experiment, costs, information). These
views were derived from corresponding classes of a product model for
chemical plants. Due to the fact that the process flow diagrams are of
essential importance, the presentation of all documents is oriented to their
structure.

3. Additional document information: Substantial information is documented
in text boxes close to the document icons in form of a short overview with
the following attributes:
• Important information concerning the creation of the model (simula-

tion results, physical property, etc.).
• During a chemical design process, designers often make assumptions

to be able to continue their work (e.g. boiling point of an unknown
element in a simulation of a reactor). Usually, these assumptions are
verified in a later stage.

• If no assumptions can be made, this missing information causes a task
to remain unfinished. By explicitly naming this lack of information,
unfinished tasks are marked for further adaptation.

540 C. Foltz et al.

• Additional (contextual) information about the thematic and spatial
environment of developers, tools used, scheduling, etc. This context
information is intended to generate awareness about the informal group
structure in a project. Users can adjust the amount of information
displayed.

4. Decision state: The document status (green hook and red cross) displays
whether an alternative was selected or rejected and provide an indicator
for further handling of a document. In this way, all decisions in the course
of a project can be captured. Beyond that, the rational behind the decision
is documented by an application of the Issue Based Information System,
IBIS [798]. The benefit of documenting design rationale is pointed out e.g.
by Conklin and Yakemovic [607] (see also Sect. 2.5).

Inserting a document in EVA can be accomplished while working with another
engineering tool (e.g. process flow diagram tool). By retaining the option to
store a document in the engineering tool it is possible to store the document in
EVA, too. For this reason, the position in the structure provided by EVA and
the appropriate relationship with the previous document (blue or red line, see
above) must be determined. Additionally, EVA queries further information
about the inserted document.

Evaluation and Results

For the evaluation of EVA two main goals were targeted:

• The effects of the four design elements embedded in EVA were to be ana-
lyzed empirically with regard to the usage behavior of process designers.

• The evaluation should discover the chemical engineers’ method of infor-
mation reception and representation according to the use of EVA. It is
expected that the revealed mental structures will lead to more detailed
design requirements for EVA, concerning both the graphical design of the
user interface and the design of the cognitive concept of EVA.

To achieve these goals an evaluation with three subsets was conducted. The
first analysis focussed on effects in the use of the four design elements. With the
second analysis the information reception during the use of the design elements
was investigated. The third analysis targeted the mental compatibility of the
structures used in EVA [484, 485].

Basis of the laboratory examination was a prototypical realization of the
user interface, which provided the required possibilities of interaction to man-
age the different tasks. All explanations and questionnaires were provided by
documents. During the experiment, the actions of the participants were stored
in log files and recorded on videotapes. To investigate the influence of the de-
sign elements of EVA on the behavior of chemical developers, a four-group test
design was selected. Therefore, the EVA prototype was tested in a realistic
scenario, the “development of a Polyamide-6 scenario” [124]. Each group was

Usability Engineering 541

provided with a different number of design elements within its EVA prototype.
The EVA prototype was implemented on a Lotus Notes 5 Platform to ensure
flexible navigation functions and efficient navigation between the 14 different
types of views of the scenario for all four groups.

Altogether, 20 chemical design experts (average age: 30.5 years; average
professional experience: 2.9 years) and 17 students of chemical process engi-
neering (average age: 26.29 years); average professional experience (including
practical training): 0.68 years) participated in the experiment. The tests took
1 to 1.5 hours per person. Four pre-tests and six tests with the EVA proto-
type were executed. The pre-tests served the purpose of acquiring the personal
data of the participants and ascertaining possible interference variables such
as logical reasoning or the possibility of recollection. The other six tests exam-
ined the software-ergonomic criteria task adequacy, ability of self description,
conformance of expectation and transparency, as well as the influence of a dif-
ferent number of design elements. During these tests, the participants had to
name different objects and their functions, and they were asked to arrange the
structure of the objects and their relations used in EVA. This was performed
by the structure-laying technique according to Groeben and Scheele [702].

Test persons were divided into four test groups based on the personality
traits determined in the pre-tests. Each group had a different design model
from EVA at its disposal. The number of design elements was thus increased
successively so that group zero worked with a version of EVA that did not
have any design criteria and group three had three design criteria available.

The four groups had to solve a task with different versions of EVA com-
prising different numbers of design elements, as well as complete a multiple-
choice questionnaire. In addition, the subjective estimation of the functional
structure of each participant was secured to enable the development of design
requirements.

The test of the software-ergonomic criteria showed that most of the ob-
jects and functions were named correctly, which indicated an adequate use of
symbols in the user interface of EVA. An exception constituted the graphical
symbol “user interface”, which was named correctly by only 43 percent, and
whose function was named correctly by only 19 percent of the participants.

Eventually, the data of all participants were analyzed statistically using
SPSS. The results are visualized in Fig. 5.45 and Fig. 5.46 using box plots.
The median is illustrated as a horizontal, thick line. Minimum (⊥), maximum
(�), extreme values (*), and outliers (o) are also shown. The box stretches
from the lower hinge – defined as the 25th percentile – to the upper hinge –
the 75th percentile – and therefore contains the middle half of the scores in
the distribution. Figure 5.47 shows the medians, quartiles, extreme values and
outliers of the groups, with reference to the number of correct answers in the
multiple-choice test. The evaluation of the results of the four groups signified
that the number of correct answers of the multiple-choice test increased with
the number of design elements available for each participant. The average val-
ues of the four groups (for both experts and students) differed significantly

542 C. Foltz et al.

C
or

re
ct

ly
 d

en
ot

ed
 o

bj
ec

ts

Fig. 5.45. Correctly denoted number of objects (max. 28)

Outlier:
Subjects
no. 9, 2:

P
ro

ce
ss

in
g

tim
e

in
 s

ec
on

ds

Fig. 5.46. Time on task

between group 0 (without design elements) and group 3 (three design ele-
ments). Additionally, the expert group showed significant differences between
group 0 and group 1 (one design element).

After significant differences between the results of groups in general were
found by a one-way analysis of variance (α = 0.01), significant differences of
group medians were tested by the Newmann-Keuls test (α = 0.01).

The results of the simultaneous comparison of group medians is shown
in Table 5.3. The variable k indicates the distance between the compared
groups. In the second column, the difference between the medians of the two

Usability Engineering 543

Te
st

 -
Ex

pe
rt

s

Group Group

12

10

8

6

4

2

Te
st

 -
St

ud
en

ts

Fig. 5.47. Correct answers in the multiple-choice test

significant
significant
-

2,4 > 1,30
2,8 > 2,60
- -

Total
Experts
Students

Group 1 - Group 0

not significant
not significant
-

0,8 < 1,30
0,6 < 2,60
- -

Total
Experts
Students

Group 2 - Group 1

significant
not significant
-

1,6 > 1,30
2,2 < 2,60
- -

Total
Experts
Students

Group 3 - Group 2k=2

significant
significant
not significant

2,4 > 2,11
2,8 > 2,45
2,0 < 4,81

Total
Experts
Students

Group 3 - Group 1

significant
significant
not significant

3,2 > 2,11
3,4 > 2,45
3,0 < 4,81

Total
Experts
Students

Group 2 - Group 0k=3

significant
significant
significant

4,8 > 2,07
5,6 > 4,44
4,0 > 3,04

Total
Experts
Students

Group 3 - Group 0k=4

Table 5.3. Results of the Newmann-Keuls-Test

investigated groups is compared with q. The parameter q is a function of
the quartiles of the t-distribution, the degree of freedom, and the variables
α and k.

The results also indicated that the reception and comprehension of the
semantic structure of project transitions depended on relations between doc-
uments, which were indicated with colored lines and which generated a struc-
ture of decompositions and variations. A positive influence of the use of views
in EVA could not be found.

544 C. Foltz et al.

Project

Flow Diagram

Interface

Model

Simulation

Experiment

Costs

Information

Consistency

= 100 %

= 75 %

= 50 %

= 25 %

Correct denotation
of relationship:

n = 30

Objects

P
ro

je
ct

Fl
ow

D
ia

gr
am

In
te

rfa
ce

M
od

el

S
im

ul
at

io
n

E
xp

er
im

en
t

C
os

ts

In
fo

rm
at

io
n

Fig. 5.48. Consistency in the test of transparency

In the scope of the analysis of information reception, the participants had
to arrange the structure of the objects used in EVA. The outlined structure
can be interpreted as the information pattern. As a result, all correctly de-
noted relations as well as all incorrectly denoted or missing relations were
documented.

The matrix in Fig. 5.48 shows the frequency of correct denominations of
relation concerning the transparency experiment. The values obtained a range
between 43 percent and 68 percent, with one exception: the second relation
between process flow diagrams (process flow diagram - “is part of” - process
flow diagram), in the sense of a decomposition, was denoted correctly by only
13 percent of the participants.

The matrix in Fig. 5.49 shows the number of divergent denotations. Most
frequent divergent denotation information objects were assigned to the object
“project” (instead of the object “flowsheet”); simulation objects were assigned
to the object “model” (instead of the object “process flow diagram”); and test
objects were assigned to the object “simulation”or “model” (instead of the ob-
ject “process flow diagram”). Because this divergent assignment corresponds
to the usual methodology in chemical design projects, it is assumed that the
conceptual structure of EVA does not correspond to patterns of process de-
signers.

These results indicated that the underlying concept of EVA is sufficiently
suitable to fill a pattern with necessary declarative and procedural information

Usability Engineering 545

13 23

19

1
2
3
4

n = 30Legend

„consists of“ =
„is a variant of “ =
„is part of“ =
„devides“ =
„is assigned to“ =

Number
of wrong
denotations

Objects

Project

Flow Diagram

Interface

Model

Simulation

Experiment

Costs

Information

P
ro

je
ct

Fl
ow

D
ia

gr
am

In
te

rfa
ce

M
od

el

S
im

ul
at

io
n

E
xp

er
im

en
t

C
os

ts

In
fo

rm
at

io
n

Divergence

5
6...

n >10

Not denotated:

Fig. 5.49. Divergence in the test of transparency

(considering the general condition, that a participant had approximately one
hour to recognize the informative structure of EVA).

Overall, the evaluation helped to find further design suggestions for EVA.
Among other things, the presentation of the interface between parts of de-
composition had to be adapted regarding symbolism and embedding in the
concept of EVA. The graphical representation of decomposition and variation
relations between documents brought such significant advantages that an ex-
tension of the concept was needed. These hints are relevant for the extended
arrangement of the user interface for developers of the administration system
in project B4 of IMPROVE.

5.6.4 FBW – Flowsheet Editor

The process-integrated Flowsheet Editor (in German: Fließbildwerkzeug,
FBW) was developed in IMPROVE project B1 (cf. Subsect. 3.1.3). It is based
on the insight that process flow diagrams play a central role in the design pro-
cess [21, 470]. However, block flow diagram (BFD) – also called abstract flow

546 C. Foltz et al.

Fig. 5.50. Screenshot of FBW with pop-up windows to edit the chemicals and their
material data (cf. [196])

diagram (AFD) – process flow diagram (PFD) and piping and instrumentation
diagram (PID) are totally separated as far as tool usage is concerned.

But for the process engineer there is a clear cognitive connection between
the different diagrams and the information about the process to be designed,
such as textual information about constraints and requirements, reaction path
etc. as shown in Sect. 5.6.2, see Fig. 5.42, page 534. Moreover, different variants
of a flowsheet may share identical parts. So far, different variants of a flowsheet
are stored in different files, i.e. diagrams, so that these identical parts cannot
be recognized easily.

Therefore, the process-integrated flowsheet editor has been built, present-
ing different variants of a flowsheet in one file. Furthermore, a generic mech-
anism for the a-posteriori process integration of existing tools has been used
to integrate the flowsheet editor with other domain-specific (simulation) tools
(with AHEAD, cf. Subsect. 5.5.2, and with Cheops, cf. Subsect. 5.5.3), com-
plemented by generic tools for the documentation of design rationale and
visualization of traces.

To build a flowsheet the chemical process engineer can use different tem-
plates for blocks like “reaction” or “separation”, see Fig. 5.50, left side. Later
on he can concretize those blocks, e.g. defining the “separation” as “liquid
separation”. Similar to EVA (Subsect. 5.6.3), alternatives and refinements are
indicated through different colors and lines [21].

The data model of FBW is shown in Fig. 5.51. This data model and the
abstraction-decomposition space (Fig. 5.42) describing the work domain of a

Usability Engineering 547

Process

Process

Reaction Separation

Reaction Liquid
Separation

EnrichmentEnrichment

DecompositionDecomposition

SpecializationSpecialization

RealizationRealization

Fig. 5.51. Data model of FBW [470]

chemical process engineer have been developed in parallel. As a result, some
differences exist. Nevertheless, every step in the one-dimensional data model
can be mapped to a vertical or horizontal step in the two dimensional ADS.

Altogether this approach is completely different from the existing ones
in chemical process design. Thus, an engineer utilizing this tool will have to
work in a way different than usual. In terms of usability, this is the task-
related part (cf. Sect. 5.6.2). Consequently, the FBW must be tested in a
realistic scenario with experienced chemical engineers to evaluate the impact
on effectiveness and efficiency on the design process. To minimize the effects
of interaction-related problems, the software prototype must fulfill all soft-
ware ergonomic requirements, particulary the principles self-descriptive and
controllability. Otherwise, a developer will struggle against the user interface
instead of getting an insight into the new concept of the flowsheet editor.

Therefore, the first step was an expert review [864, 964] with emphasis on
the three areas:

• design and labeling of menus,
• scenario navigation and information search,
• scenario creation and modification of a flowsheet.

This analytical evaluation was performed by two experts using the Polyam-
ide6 scenario as a basis. The results and suggestions for a better design have

548 C. Foltz et al.

been documented in a technical report [115]. Some important findings are the
following:40

• A function for “Undo” is missing (error tolerance, controllability).
• Context sensitive menu entries cannot be recognized or are indicated in

different ways, e.g. grey or with {} (conformity with user expectations,
self-descriptiveness).

• The indication for context sensitive entries is missing in all dialogs acces-
sible with the right mouse button (self-descriptiveness, controllability).

• Pop-up window for “Show all streams” cannot be closed (controllability).
• Existing chemicals cannot be edited in the “components”-window, though

showing a corresponding button (self-descriptiveness, controllability).
• Navigation between two variants is only possible when moving up – on the

less concrete level – and then moving down again (controllability).

In the end, we decided that the FBW should not be tested with chemical
process engineers in a realistic scenario until an improved user interface is
available.

The second step was an analytical evaluation using the ADS and the other
concepts of Cognitive Work Analysis [924, 1023]. Therewith, some additional
design suggestions, e.g. direct representation of reaction path and material
data to relieve the developers working memory, and constraints on usage, e.g.
if the process design is done by more than one user, have been derived.

All in all, the flowsheet editor FBW is a promising new approach to
chemical process design in the early stages because it offers new, meaning-
ful functions and integrates different tools. However, without improving the
interaction-related usability issues, the task-related new concept cannot be
evaluated in a realistic scenario with experienced chemical process engineers.

5.6.5 AHEAD – Administration System

The AHEAD system – Adaptable and Human-Centered Environment for
the Administration of Development Processes – developed in IMPROVE by
project B4, supports the management of design processes in chemical engi-
neering as well as in mechanical and software engineering.

The system provides four environments supporting different kinds of users:
the work environment assists developers, the management environment sup-
ports project managers in analyzing, planning and controlling, the progress
environment assists specification experts, and the modeling environment pro-
vides support for domain experts in engineering predefined task sequences
and task types. AHEAD manages products, activities and resources in an in-
tegrated way. Furthermore, evolving design processes are supported by seam-
less interleaving of planning and execution. The process management system

40 The violated software ergonomic principles are shown in brackets.

Usability Engineering 549

6 Create new document

6.1 Start 6.2 Choose
task

6.3 Edit
name

6.4 Choose
type

6.5 Confirm 6.6 Choose
document
from list

6.7 Create
version

6.8
Choose
doc.

6.9 Confirm

6.1.1 Button
„Create a
document“

6.1.2 Menu
„Workspace“

6.1.2.1 Entry
„Create
document“

6.6.1 Button
„Create a
version“

6.6.2 Menu
„Version Graph“

6.6.2.1 Entry
„Create
version“

6.7.1 Click
document

6.7.2 Enter
doc-No

6.2.1 Click
task entry

6.2.2 Enter
task-no

Plan 6: Do 6.1 ... 6.9

legend: Operation Selection

Reduced
Operation

Reduced
Selection

Fig. 5.52. HTA diagram visualizing some mayor differences between the original
and the alternative design (according to [120])

can be adjusted to an application field such as chemical engineering by defin-
ing specific types of products, processes and resources. AHEAD is based on
graph transformations and employs the wide-spread object oriented modeling
language UML for acquiring process knowledge from domain experts.

The aim of the evaluation of the Linux-based administration system
AHEAD was the user-centered design of the developer user interface [120],
which supports both coordination and processing of design activities in pro-
cess engineering. The diagram-notation of hierarchical task analysis [633, 782]
was used to analyze the activities, operations and movements (cf. [522, 711])
a user has to execute for different work activities in the original user interface.
In addition, a heuristic evaluation [864, 964] was performed to expose further
shortcomings of the system. The analysis showed that operations could be
simplified by combining several sequences of activities (cf. [774]). Addition-
ally, the notation and arrangement of functions had to be improved to fulfill
ergonomic criteria. Based on these results, an alternative user interface (cf.
Fig. 5.52) was designed and implemented as a horizontal prototype [739, 864]
with Borland’s Delphi in MS Windows.

This interface is a mock-up with which all relevant activities can be per-
formed. However, the mock-up cannot be connected and used with the full-
functional AHEAD system. As can be seen from Fig. 5.52 some menu items
were eliminated by the software-ergonomic review and redesign. The scenario,
developed for evaluation and improvement of the user interface aimed to the
creation of a new document. Divided into subtasks for the work analysis, this
goal is achieved by successively going through nine subtasks (6.1 to 6.9), which
are represented in Fig. 5.52. The decision if the creation is started by menu
or button represents the initial activity (6.1.1 or 6.1.2). After that, one task
must be chosen by entering the task-number or clicking on the task. This step

550 C. Foltz et al.

is dispensable because of the already opened work-context and the thus prese-
lected activity. The next three steps, namely the naming of the new document
(6.3), the selection of the document format (6.4) and finally the confirmation
(6.5) are required and irreducible. That is different with the following four
tasks. The automated creation of an initial document version avoids unneces-
sary user interaction and can shorten the time consumption with concurrent
error reduction (cf. [111]).

Finally, a comparative empirical study of the original and the alternative
user interface of the AHEAD system was conducted. As there is a detailed
description of the examination in [111, 120], the following only refers to the
most important aspects.

A notebook with both operating systems, Windows 98 and SuSE Linux 7.3,
was used for the analysis of both user interfaces of AHEAD. A questionnaire
helped to acquire personal data of the participants. The overall duration of
the examination process was recorded on video and the processing time of
each participant was measured using a stopwatch.

Due to the formative character of the evaluation, only ten male participants
aged between 27 and 34 years with a mean of 28.8 years were recruited for the
empirical study. Since it was not possible to recruit experienced chemical engi-
neers, people with experience in weakly structured engineering processes such
as software development were chosen. They were programmers, system admin-
istrators, students and graduates of the branches of mechanical engineering,
civil engineering and computer science. The professional experience averaged
2.5 years, and eight of the ten men worked for the IT-sector. Ninety percent
of the participants used a computer several times a day, and all participants
were familiar with at least one version of the Windows operating system. One
half was familiar with one of the Unix operating systems including Linux.

The ten participants were split into two groups (EG1 and EG2) of five
people for the execution of the test. The participants were selected at random
for the two groups. Each participant used both interfaces whereas one half,
EG1, started with the original interface and proceeded with the alternative
one. The other group used the interfaces vice versa.

The analysis of the original and alternative user interfaces lasted between
75 and 120 minutes and was structured in a preliminary interview, an in-
troduction and the examination. During the preliminary interview and the
introduction, personal data of the participants were acquired and the inter-
viewees were told about the goal as well as the process of the analysis. The
interviewees also read a users’ guide of the administration system AHEAD.
The examination of the original and alternative user interface was executed
alternately, whereas the procedure was identical. First, the interviewee had
to name the objects and functions shown on a screenshot of the agenda.
Afterwards, two different conditions according to the screenshot had to be
produced. Again, the participant had to identify several objects, after which
he had to create another condition, namely the fetching of documents. Subse-
quently, three additional tasks had to be solved, each within three minutes. If

Usability Engineering 551

1010N =

7

6

5

4

3

2

1

0
1010N =

1200

1000

800

600

400

200

0

alternative original

tim
e

co
ns

um
ed

[s
]

alternative original

so
lv

ed
(m

ax
. 6

)

maximum
mediane
quartil
minimum

Fig. 5.53. Time consumed (solved states and tasks only) and amount of solved
states and tasks using original and alternative user interfaces of AHEAD’s developer
environment

it took longer, the task was interrupted and the superintendent explained the
procedure. Thereafter, the subjective usability estimation of each participant
was captured using the IsoMetrics-questionnaire [687, 1054].

Following the analysis of the user interface, the results were statistically
evaluated. In order to compare two sample averages, t-tests for dependent
samples were used. Figure 5.53 exemplarily displays the box plots for the
time consumed to solve states and tasks on the left side (t = -11.485; p <
0.01). On the right side the box plots for the number of solved states and
solved tasks are presented (t = 8.333; p < 0.01).

There are great differences in the values for both effectiveness and efficiency
measures. Even the best value for the original interface is far away from the
worst value for the alternative interface.

Overall, the analysis and evaluation showed that the accomplishment of
the participant using the alternative user interface differed significantly from
the accomplishment using the original user interface. Moreover, it was proved
experimentally that the results are independent from the order of presenting
the software. Consequently, the order of presenting has no influence on the
accomplishment of the participant.

Furthermore, looking at the current literature of research about team ef-
ficiency [213], the administration system AHEAD meets several requirements
that are made for software supporting Concurrent Engineering [214]. It must
be critically noted, however, that the Tayloristic form of division of work –
the project manager delegates tasks directly to the developer – is contrary to
psychological assessments of work [711, 1003] as well as to the results of re-
search mentioned above [214]. Concerning AHEAD, though, it does not mean
that the basic technical functions provided are of little use in supporting de-
velopment processes. The presented functions should be divided in a different
manner between “manager” and “developer”, to allow a higher autonomy in
choosing their work tasks.

552 C. Foltz et al.

video conferencing

audio conferencing whiteboard

audio message

e-mail

application sharing

awareness status
bar

pull down menu
to select different
awareness status

address book with
different tabs

Fig. 5.54. KomPaKt User Interface [380]

5.6.6 KomPaKt – Communication Platform

The communication platform KomPaKt (Subsect. 3.3.2) was developed by
IMPROVE project B3 and integrates both synchronous and asynchronous
communication tools under a unique user interface. The aim is to satisfy
the different cooperation and communication needs of a developer. Therefore,
it allows access to the user information saved in the administration system
AHEAD.

Synchronous communication comprises services such as audio-visual real-
time data exchange, which can be used for conferences between locally dis-
tributed design team members. Asynchronous tools such as email or audio
message allow communication if the team members are not available simulta-
neously.

The interface concept of KomPaKt is based on results of awareness research
(e.g. [483, 703, 709]), knowledge management (e.g. [309, 866]), case studies in
cooperation and communication research (e.g. [214, 715, 833]) and experience
in the field of tele-cooperatively supported automotive development [121, 282].

Figure 5.54 presents the user interface and gives some basic information
about KomPaKt’s functionalities. A detailed description of the design process
and the evaluation of the user interface is given in [380].

Usability Engineering 553

The comparative empirical evaluation of KomPaKt was executed using a
conventional desktop system with the operating system Windows 2000. The
entire experiment was recorded on video, and the processing times of the
participants were noted using a stopwatch. The 18 participants in the study
consisted of nine novices and nine computer experts using the same interface.
Comparing the performance of both of these groups should ensure that the
results of the evaluation can be generalized to many potential users.

The novices were all female students of social sciences aged 19 to 26 years.
Three of the nine novices used a computer daily, the others weekly or monthly.
The novices’ average use of the operating system Windows was 3.8 years.
Seven out of nine were not familiar with any instant messaging and presence
awareness programs such as ICQ, AOL Instant Messenger, MSN or Lotus
Sametime; only three had used ICQ or MSN before, but there was no perma-
nent lasting usage.

The experts, five men and four women, were between the ages of 23 and
34 and studied or graduated in computer science, civil engineering and me-
chanical engineering. All of them worked at the computer daily and used the
communication tools mentioned above. The experts had worked with Win-
dows and Unix operating systems for 7.5 years on average.

The laboratory study of the communication system KomPaKt was guided
by a questionnaire and divided into three parts: a preliminary interview, an
introduction and a test.

In the preliminary interview personal data such as gender, age, computer
experience etc. were gathered. Afterwards, information of the aims and func-
tionalities of KomPaKt were given. If necessary, the interviewer answered
questions from the interviewee before finishing the introduction.

The test started with the presentation of a screenshot of KomPaKt, sim-
ilar to the one in Fig. 5.54. Then, the participant was asked to name the
objects shown, such as buttons for different communication and cooperation
services, to test the self-descriptiveness. Second, three screenshots showing
different states of the software were shown. The interviewee briefly described
their perception and then tried to reproduce these states on his/her own.
Third, the participant had to solve three simple tasks, e.g. “Please connect
to the network”. Here, the time consumed was recorded, whereas in the first
and second part of the test just a right or wrong was noticed. Finally, the
IsoMetrics-questionnaire [687, 1054] was used to capture the subjective us-
ability estimation of each participant.

The difference between the objects denoted correctly by novices (17 ob-
jects) and experts (19 objects) is not statistically significant. In addition, both
novices and experts solved the same quantity of tasks (5.8). In contrast, the
time consumed to solve tasks differs significantly (p < 0.046) between novices
(326.3 s) and experts (205.7 s). This difference can be ascribed to the knowl-
edge and routine of computer experts, whereas the novices needed time to
orientate within the software.

554 C. Foltz et al.

5.6.7 Summary

The software tools developed to improve chemical design processes started
from different origins and attained a different stage of maturity. Therefore,
specific methods for both design and evaluation were required.

In this section, several suitable techniques for usability engineering have
been presented and selected according to the development status of the par-
ticular software.

With the help of scenarios, innovative prototypes of user interfaces [774,
921, 964] have been designed. Suggestions for an improved design were com-
piled using analytical and experimental methods.

The usability results show that the developed prototypes offer adequate
methods to support work processes in chemical process design. However, for an
application in an industrial context, further research and development activi-
ties are necessary.

5.7 Software Integration and Framework Development

Th. Haase, P. Klein, and M. Nagl

Abstract. The a-posteriori integration of heterogeneous engineering tools, where
tools are supplied by different vendors, constitutes a challenging task. In particular,
this applies to an integration approach where existing engineering tools are extended
by new functionality which, again, can be integrated synergistically. Responding to
these challenges, an approach to tool integration is described which puts strong
emphasis on software architecture and model-driven development.

Starting from an abstract description for an integration software architecture,
this architecture is gradually refined down to the implementation level. To integrate
heterogeneous engineering tools, wrappers are constructed, abstracting from techni-
cal details and providing homogenized data access. This approach to tool integration
is supported by a collection of tools for software architecture design and model-driven
wrapper development, all based on formal graph models and transformation rules.
This collection of tools considerably leverages the problem of composing a tightly
integrated development environment from a set of heterogeneous engineering tools.
So, we give specific architecture tools for the problem of tool integration following
an a-posteriori approach.

5.7.1 Introduction: Tool Integration

Concerning tool support for development processes in engineering disciplines
[342, 352, 353], the typical situation can be described as follows (cf. Sect. 1.1):
Various tools are available, each of which supports a certain and specific part
of the development process. In chemical engineering for example, there is
a tool to compile the design of a chemical process by means of flowsheets
and data sheets and another tool for the simulation of the chemical process.
However, the overall design process, i.e. the dependencies and consistencies
between single activities and their resulting products, use of experience or
direct communication between members in the design team, or the integration
of technical and management activities are not considered by the existing
tools.

Moreover, as tools are provided by different vendors, they are based on dif-
ferent system platforms, proprietary document formats, and conceptual mod-
els of the application domain. So, there is a heterogeneous landscape of exist-
ing tools. These tools constitute a proven solution for carrying out a certain
activity. Engineers are familiar with these tools; their use can be best prac-
tice in the application domain. Maintenance as well as further development
is guaranteed due to established vendors, wide deployment, and an actively
pursued dialogue between vendors and their clients. For there reasons, it is
economically not feasible [973] to replace these tools by newly built ones.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 555–590, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

556 Th. Haase, P. Klein, and M. Nagl

Preparation for A-posteriori Integration

To fulfill the requirements of comprehensive support but using existing tools
we favor an a-posteriori or bottom-up integration approach [135] in order to
improve the computer-based support for design processes in chemical engi-
neering [225, 343–345]. The term “a-posteriori” refers to the fact that existing
systems have to be prepared afterwards according to the needs of integration.
Here are some system-technical aspects, e.g.

• the possibility of sharing and exchanging common data or documents
among tools,

• the ability to activate tools or parts of the tools’ functionality under the
control of another tool,

• the notification about certain events and the invocation of corresponding
actions.

Furthermore, these preparations have to be realized across distributed and
heterogeneous operating system platforms. Further issues of preparing a tool
for integration deal with reengineering tasks on the level of a tool’s function-
ality [31, 210, 295]. Some parts of the given functionality of an existing tool
may contain hard-wired subprocesses affecting different design domains. This
could be a mix of engineering activities, e.g. a tool for process flowsheet de-
sign as well as for process simulation, but also an intersection of engineering
and administrative activities, e.g. a tool with a built-in version control. These
functions have to be separated in order to have a clear separation of concerns
[346]. This makes it possible to substitute functionality by a more general and
suitable tool.

Wrapping

The reorganization of a tool’s internal structure requires access to of the tool’s
source code. In the case of commercial tools this code is usually not available.
Therefore, an internal reengineering of the tool is not possible. The existing
tool can only be encapsulated by a software component called wrapper [972]
in order to adapt it with respect to the needs of integration.

Wrappers have several facets [136]: One is (a) to abstract from technical
details like the programming languages used for implementing the tools’ pro-
gramming interfaces, or the middleware used for interprocess communication.
Another task of a wrapper is (b) to offer a view on the data of a tool. Thereby,
(b1) views of one tool have to be “semantically homogeneous”. Analogously,
(b2) views of different tools should be homogeneous. This way, the propri-
etary data structures are hidden and the building of further data models on
top is facilitated. The third purpose of a wrapper is (c) to accomplish a clear
functional interface to existing tools. Depending on the tool, it can be (c1) a
coarse-grained interface to start/stop the tool or to load a document into the
tool (black-box view). Alternatively, (c2) it can be a fine-grained interface to

Software Integration and Framework Development 557

invoke tool specific commands (white-box view). Again, the functionality has
to be homogeneous with regard to the granularity of the commands. This is
achieved by composing low-level commands to a new and higher one. Finally,
(d) the wrapper has to prevent access to undesirable commands in the sense
of the above discussion about functionality reengineering.

New Integration Functionality and Synergistic Cooperation

So far, wrapping addresses the classical, well-known integration dimensions
found in literature [950, 1038], namely (1) data integration, (2) function inte-
gration, (3) control integration, (4) platform integration, and (5) user inter-
face integration (not discussed above). These dimensions only cover a limited
range of integration problems and mainly focus on the technical perspective
by linking existing tools together.

A tool integration solution that delivers a real added value for the engineer
and bridges the gaps sketched in Sect. 1.1 of this book is not achieved by simple
data exchange, batch-wise command chains, or a uniform user interface. The
tools have to be extended by additional integration functionality as described
in Sect. 1.1.

To shortly summarize the concepts for tool extension41:

• Fine-grained process-integration support engineers by process fragments,
based on the engineers’ experience, which partly automate execution of
command sequences (Sect. 3.1).

• Incremental integration tools assists in keeping interdependent documents
consistent with each other (Sect. 3.2).

• Multi-media communication tools give engineers at different locations the
opportunity to discuss and resolve design problems (Sect. 3.3).

• Reactive administration tools allow for integrated and dynamic man-
agement of products, activities, and resources of a development process
(Sect. 3.4).

The extended tools may again be integrated to cooperate synergistically [348].
Scenarios [17] for the synergistic cooperation were presented in Sects. 1.2 and
5.5, e.g. the integration tool between the process flowsheet editor Comos PT
and the management system AHEAD. This example will be picked up again
below to illustrate how architecture modeling and transformation as well as
wrappers can be used for tool integration.

Integrated Engineering Development Environment

Existing engineering tools together with their extensions and synergistic coop-
eration form an integrated engineering tool environment to significant improve
the computer-based support of design processes [295–299, 343–346].
41 In the sequel, the term “extended tool” refers to a tool with an extension which

realizes one part of the new integration functionality.

558 Th. Haase, P. Klein, and M. Nagl

Figure 5.55 again illustrates such an engineering design environment on
a coarse-grained architectural level. The bottom layer of Fig. 5.55 consists
of independent existing engineering tools: A chemical process flowsheet edi-
tor (Comos PT [745]), three chemical process simulation tools (Aspen Plus
[516], CHEOPS [409], and MOREX [147]), and a visualization tool for 3-D-
simulation results (BEMView [197]). Based on a common platform infrastruc-
ture (cf. Chap. 4) these tools are integrated with the extensions shown at the
top layer of Fig. 5.55: Fine-grained process-integration (PRIME, cf. Sect. 3.1),
integration tools (cf. Sect. 3.2), multi-media communication tools (KomPaKt,
cf. Sect. 3.3), and reactive administration tools (AHEAD, cf. Sect. 3.4).

Common
platform

infrastructure

Aspen
Plus

CHEOPS
MOREX

Fließbildwerkzeug

FB-DatenmodellFB-Datenmodell

erw
eiterte

Basisfunktionalitäten
erw

eiterte

Basisfunktionalitäten

VISIO

Prozessintegrations-
Wrapper

Prozessintegrations-
Wrapper

ProzessmaschineProzessmaschine

Prozess-
fragmente

und
-spuren

Prozess-
fragmente

und
-spuren

weitere prozess-
integrierte Werkzeuge

Situations-
analyse

PDW

Situations-
analyse

PDW

6 APIs für
Prozessintegration, z.B.
- Aktionsaktivierung
- Kommando-

einschränkung
z.B.
- Fließbildverfeinerung
- Navigation

VISIO

Administrations-
system (B4)

PRIME-externe
Komponenten

Fließbild-ASPEN Plus
Integrator (B2)

Morex (A3)

Entscheidungs-
dokumentation

ProcessGuide

ProcessTracer

AHEAD

Betriebssystem

Audio-ToolVideo-Tool Whiteboard Event-Sharing

Konferenzmanagementsystem
Multicast

KomPaKtIntegration Tool

Extended tools

Existing engineering tools

Fig. 5.55. Integrated engineering development environment

An arrow between two tools A and B denotes a «Uses» relationship indicating
that tool A uses data and/or functionality from tool B. A horizontal relation-
ship refers to a synergistic cooperation between two extended tools that can
be handled in the (accessible) code of the involved extended tools, whereas a
vertical relationship between an extended and an existing tool implies the use
of an external wrapper for an a-posteriori integration of the existing tool.42

42 In principle, a horizontal relationship can also be realized by a wrapper. In some
cases wrapping requires less effort than modifying the code of historically grown
software systems.

Software Integration and Framework Development 559

Software Development Process within IMPROVE

Building an integrated tool environment constitutes a large (software) devel-
opment process. To ensure that such a process is carried out in a coordinated
and systematic way, integration has to be regarded on the architectural level.
This is done by defining the essential components and subsystems necessary
for performing the integration.

The construction of a precise and formal architectural description facili-
tates the detection of general system parts to build up a framework of reusable
software components [43, 44], e.g. for tool wrapping (software product reuse).
Also, software process reuse is fostered in the sense that specific components
can be generated automatically from specifications.

Realizing integration on an architectural level means to describe the “glue-
ing parts” necessary for performing the integration. The architecture of the
integrated overall environment defines its modules regarding the kinds of in-
terfaces the tools to be integrated have to offer, the interfaces to be wrapped
in order to be homogeneous, the tools and wrappers to be distributed, the
interfaces to be accessed via certain middleware techniques and so on. It does
not consider the internal structure of the tools to be integrated. The archi-
tecture also describes the functionality to be realized by extending parts of
the overall environment, in particular, how tool extensions are built and how
synergistic cooperation is achieved.

Following these ideas, the tool integration process, consequently, has to put
strong emphasis on software architecture and model-driven development. This
should not only be regarded on the conceptual level. Rather, a correspond-
ing collection of supporting tools facilitating integration has to be realized.
The following subsections sketch this architecture-centered and model-driven
development approach to tool integration43 [26]:

1. Concepts for architecture modeling (Subsect. 5.7.2). Firstly, in order to
define a suitable vocabulary for architecture modeling an adequate archi-
tecture description language is required. Such a language [331] defines the
basic modeling idioms, like modules, subsystems, components, interfaces,
and relationships, from which an architecture is built.
Furthermore, various perspectives of an architecture have to be distin-
guished [224] (logical/concrete or static/dynamic perspective). They are
described by corresponding subsets of the modeling language. To avoid a
loose collection of graphical notations for modeling such views, an inter-
connection semantics of the different views has to be defined. Altogether,
these modeling elements and concepts form the conceptual frame for the
architecture design process.

43 The following tool integration approach is obviously not restricted to a certain
application domain. The discussion of this aspect will be taken up in Sect. 7.8.

560 Th. Haase, P. Klein, and M. Nagl

2. Pattern-based architecture modeling and refinement (Subsect. 5.7.3). The
software architecture of the integrated design environment is modeled ini-
tially on a high level of abstraction (see, for example, Fig. 5.55). The
initial architecture is then gradually refined by means of architectural
transformations which take care of technical details and introduce tech-
nical components such as tool wrappers required to achieve integration.
The transformation process results in a concrete architecture consisting
of all the components which have to be implemented (either manually or
automatically). The architecture refinement process is not performed in
an ad-hoc manner. Rather, it is controlled by domain-specific knowledge
about a-posteriori software integration. This knowledge is expressed by
architecture transformation patterns.

3. Model-driven wrapper development (Subsect. 5.7.4). In case of a-posteriori
integration, tools supplied by different vendors using different data man-
agement systems etc. have to be handled. To make use of these tools
wrappers have to be provided to render well-defined tool interfaces which
are suitable for integration. Wrapper development can be decomposed into
two levels. Technical wrappers are responsible for hiding technical details
of the interfaces provided by the tools. In contrast, homogenizing wrap-
pers located on top of technical wrappers realize the necessary data and
functional abstraction. To reduce the development effort for building a
wrapper, a visual model of the wrapper is specified. Based on this model,
the executable code for the wrapper is generated.

5.7.2 Conceptual Framework for Architecture Modeling

The aim of this subsection is to provide a conceptual framework for archi-
tecture modeling which establishes the basis for the following subsections.
This includes the definition of the underlying modeling elements and princi-
ples from which a system’s architecture is built, as well as the distinction of
different perspectives of an architecture [224, 331]. The latter constitute the
main focus as they serve as a guideline for the architecture modeling process.
Figure 5.56 gives an overview on the conceptual framework.

Basic Architectural Terms

The following definitions focus on the contents (not the purpose) of an archi-
tecture specification.

Interface: A collection of exported resources like operations, types, constants
etc. constitute an interface. Basically, the term is used as in programming
languages providing a module construct [336]. Frequently, some clients of a
module need more transparency on the realization of the interface than others.
This situation is covered by introducing a separation between public, protected,
and private resources.

Software Integration and Framework Development 561

C
on

cr
et

e
Le

ve
l

Lo
gi

ca
l L

ev
el

Dynamic LevelStatic Level

Modeling Elements
and Principles

Logical
Static
Model

Logical
Dynamic

Model

Concrete
Static
Model

Concrete
Dynamic

Model

D
istribution A

spects

Runtime Behavior

module

subsystem
component

interface
relationship

Consistency Constraints

functional/data
abstraction

type level
instance

level

Fig. 5.56. Conceptual framework for architecture modeling

Module: A module is a logical unit of a software system with a clearly de-
fined purpose in a given context. It consists of an export interface defining
which resources (data and/or operations) the module offers to the rest of the
system, an import interface defining which resources from other modules the
module may use to realize its export interface, and an implementation in some
programming language. The internals of the module (the implementation or
body) are encapsulated. Therefore, a module can be viewed as an abstraction:
the interface provides access to“abstract”resources; the module abstracts from
the realization of these resources. The term “interface” of a module, without
further qualification, refers to the export interface. Furthermore, a module is
the atomic architectural unit of reuse. Modules can be used in a context or
system different from the one in which they were developed.

Subsystem: A subsystem constitutes a collection of components (see below).
Subsystems have interfaces, like modules. The import interface of a subsystem
is the union of all import interfaces of its internal components, minus the

562 Th. Haase, P. Klein, and M. Nagl

resources defined by components within the subsystem. The export interface of
a subsystem is an explicitly defined subset of the union of all export interfaces
of the internal components. In all other aspects, most of the characterizations
given for modules can be applied to subsystems as well. Especially, internal
components not contributing to the export interface are hidden outside the
subsystem.

Component : A component is either a module or a subsystem.

Relationship: A relationship refers to the dependency between components in
the sense that some resource contained in the export interface of one com-
ponent (the resource provider) is usable by another component (the resource
client) where it appear in its import interface. Considering the static view of
an architecture, an «Uses» relationship indicates a potential use of some re-
source. An actual use is to be found in the source code of the client’s body. On
the dynamic level, a relationship designates a use to be executed at runtime
of the program. Besides the static/dynamic distinction of a use relationship,
certain structural relationships between modules also exist: (1) local contain-
ment and (2) specialization/generalization. Usability relationships are found
in three specific forms including local usability within local structures, gen-
eral usability offering layering, and inheritance usability within inheritance
structures.

Architecture: An Architecture refers to the structural layout for a software
system. It defines all of the system’s components and their relationships by
means of their import and export interfaces, but not by their implementations.
The term includes different facets to be explained below.

Any module provides an abstraction of how the interface resources are
implemented in a programming language. In particular, two dimensions of
(module) abstractions can be distinguished:

Functional vs. data abstraction: Functional abstraction refers to the case where
a module has some kind of transformation/coordination character. Hence, an
interface resource transforms some kind of input data into corresponding out-
put data, or the component coordinates the resources of lower components.
Functional abstraction facilitates the hiding of algorithmic details of this trans-
formation/coordination. In contrast, data abstraction is present if the module
encapsulates the access to some kind of“memory”or“state”. Then, the module
hides the realization of the data representation. The module’s interface only
shows how the data can be used, not how it is mapped onto the underlying
storage.

Type vs. instance abstraction: This distinction stems from the necessity to
distinguish those modules encapsulating a single state or a concrete control
flow as well as those offering a template/type to dynamically create a state or
control flow at runtime.

Software Integration and Framework Development 563

Architectural Views

One of the basic ideas is the distinction of two directions with respect to what
is modeled and how it is modeled (cf. Fig. 5.56). This results in different views
concerning on one hand the static/dynamic (horizontal) and on the other hand
the logical/concrete properties (vertical) dimension.

In the top-left corner of Fig. 5.56, a system’s static structure is defined with
its components, their (import and export) interfaces and their relationships.
To describe the dynamic behavior of the system one or more interaction or
collaboration diagrams (top-right corner of Fig. 5.56) may be used for example.
Both specifications are restricted to the logical level, i.e. they strictly adhere
to the concepts of modularity and encapsulation.

However, there are many reasons why an architecture cannot be imple-
mented exactly the way it is specified on the logical level. One of them is due
to the desire to specify further information in addition to the logical structure.
Some examples are

• the annotation of concurrency properties of components to distinguish
components which comprise a process for example;

• the introduction of components to handle distribution, e.g. for parameter
marshaling, finding a service provider etc.;

• the extension or adaption of the architecture in order to integrate compo-
nents with a different architectural structure in case components of exter-
nal libraries or of external tools are used;

• the specification of the implementation of usability relationships, e.g. via
(remote) procedures calls (RPC), exceptions, interrupts, event-triggering,
or other forms of callback mechanisms.

All these activities require modifications of the logical architecture of a sys-
tem if interfaces change, new components are introduced, or implementation
details are added. The resulting architecture, therefore, has a different quality
than the logical architecture: It does not aim at the best abstract structure
with respect to maintainability etc.; rather, it describes the concrete imple-
mentation of a system. Therefore, it is called a concrete architecture.

It should be noted that different concrete architectures for one logical ar-
chitecture exist in general. These may reflect a sequence of possibly different
interdependent decisions of the above list, or different realization variants.
For example, one concrete architecture may be equipped with a RPC and
another one with a CORBA (Common Object Request Broker Architecture
[877]) implementation of interprocess communication.

In the context of reverse- and reengineering, an existing system is first
analyzed [81–83, 88, 179, 286, 287]. Some concrete architecture, derived from
the source code or other documentation, describes the actual situation. Then,
the logical architecture can be distilled from this concrete architecture which,
in turn, will probably form the basis for the restructuring of the system and
the respective new concrete architecture. To some extent, such an iterative

564 Th. Haase, P. Klein, and M. Nagl

reverse- or reengineering process is presented in Subsect. 5.7.4 by constructing
a wrapper for a given tool.

Not only the different logical and concrete architectures, but also the trans-
formations leading from one architecture to another contain important design
knowledge. Both, the original design decisions as well as the how and why
of later modifications are necessary to understand a system’s structure and
to facilitate reuse. An explicit transformation step, for example, offers a con-
venient place to document differences between the logical and the concrete
levels.

Furthermore, if a specific transformation occurs frequently, it can be for-
malized and tool support can be provided for its application [45, 85–87, 89].
For example, given the knowledge on how the architecture changes if some
relationship between two modules is implemented as a remote method call
using CORBA (i.e. which components are added, how existing components
are modified [374, 375]), a tool can provide a command to apply this transfor-
mation. In this sense, the design knowledge of how to modify an architecture
to meet some purpose can be specified, communicated, reused, and supported
by tools. This is the topic of the following subsection.

5.7.3 Pattern-Based Architecture Modeling and Refinement

The term software architecture is defined as a description of “the structure of
the components of a program/system (and) their interrelationships”[331, 686].
This description serves different purposes, e.g. for analyzing certain software
qualities, such as adaptability, maintainability, or portability, or managing the
software development process [536].

This simple definition disregards, that more than one structural perspective
together with the corresponding dependencies will be necessary. Structural
perspectives, for example, include a conceptual, a development, and a process
view [603]. Therefore,“high-level”diagrams such as Fig. 5.55 are helpful to get
a first impression of the overall system’s structure, but are not an adequate
description of a software system to serve as a blueprint for building the system.

The intended architecture transformation tool – described in the follow-
ing – guides the software engineer in gradually refining an abstract (logical)
architecture to ultimately result in a corresponding concrete one. In contrast
to other architecture design tools, we aim to offer specific support for software
architecture design. “Specific” has two aspects: for one, it refers to the spe-
cific domain, here the construction of integration solutions as a special field of
systems’ programming, and two, the tool is devoted to a specific task, namely
the a-posteriori integration of given applications.

The first step of the integration process as described in the first subsection,
namely pattern-based architecture modeling and refinement, is concerned with
refining the relationships between the (extended and existing) applications, i.e.
the tools of the design environment depicted in Fig. 5.55. Refining the archi-
tecture focuses on just these integration aspects. The internal architecture of

Software Integration and Framework Development 565

the tools to be integrated will not be considered in detail. Rather, the“glueing
parts” needed for performing the integration are investigated [137].

In fact, it turns out that the refinement results in a set of fairly sophisti-
cated subsystems which are designed systematically by applying architectural
transformations. These transformations represent patterns [580, 674, 682] ex-
pressing the domain-specific knowledge about a-posteriori integration, in par-
ticular, the possible alternatives for wrapping a tool.

According to the distinction of diverse architectural views (cf. last sub-
section), the refinement process distinguishes between a logical architecture
abstracting from technical details and a concrete architecture which realizes
the logical architecture. Starting from a high-level simple architecture, wrap-
pers are introduced and decomposed to result in a refined logical architecture
(Fig. 5.57). Subsequently, this logical architecture is further refined into a
concrete architecture which eventually takes care of all the details of the un-
derlying technical infrastructure (Fig. 5.58).

Gradual Refinement of Architecture

This subsection demonstrates how the coarse-grained “architecture” of the
design environment (cf. Fig. 5.55) is gradually refined towards a detailed
architecture description, considering aspects like (i) decomposing compo-
nents, (ii) introducing wrappers, and (iii) distributing components via certain
middleware techniques.

As an example we look at the integration tool between the process flow-
sheet editor Comos PT and the management system AHEAD (cf. Sect. 5.5).
The functionality of this tool is shortly summarized as follows. It supports the
chief designer and the project manager to analyze the impact of changes in the
process flowsheet (made by the chief designer) with respect to corresponding
changes in the task net (maintained by the project manager). For this pur-
pose, the tool reads the modified parts of the process flowsheet, determines the
affected document revisions controlled by the product configuration compo-
nent of AHEAD and suggests to the project manager, which tasks that work
on these revisions have to be (re-)activated. The project manager may accept
this suggestion and the integration tool changes the task net accordingly.

Refinement of the Logical Architecture

The system description sketched in Fig. 5.55 serves as a starting point for the
architecture refinement process. The coarse logical structure for the example
mentioned above is depicted in box 1 of Fig. 5.5744.

As the first refinement step the access to the application to be integrated
by the Integrator Tool is defined. This can be done either by accessing the
44 The explanations focus on the left «Integrates» relation between the Integra-

tor Tool and COMOS PT. The right «Integrates» relation can be refined analo-
gously.

566 Th. Haase, P. Klein, and M. Nagl

«Tool»
COMOS PT

«Tool»
Integrator Tool

«Integrates»

«COMInterface»
COMOS PT API

«Contains»

«Uses» «Wrapper»
COMOS PT Wrapper

«Uses»

«Uses»

 «Refines»

«Tool»
COMOS PT

«Tool»
Integrator Tool

«COMInterface»
COMOS PT API

«Integrates»
«Uses»

«Contains»

 «Refines»

«Tool»
Integrator Tool

«Integrates»«Integrates»

«Tool»
COMOS PT

«Tool»
AHEAD

«Wrapper»
COMOS PT Wrapper

«Contains»

«Uses»
«Integrates»

«Uses»

«Uses»

«Tool»
COMOS PT

«HomogenizingWrapper»
COMOS PT HomWrapper

 «Uses»

«COMInterface»
COMOS PT API

«TechnicalWrapper»
COMOS PT TechWrapper

«Uses»«Tool»
Integrator Tool

«Uses»

«Contains»

«Contains»

 «Refines»

 «Refines»

4

3

2b2a

1

Fig. 5.57. Refinement of logical architecture

application via an API (application programming interface) (cf. box 2a of
Fig. 5.57) or, in case no API is offered by the application, via the documents
produced by the application (cf. box 2b of Fig. 5.57). The latter refinement
alternative is applicable if the application is equipped with an XML import
and export function, and if only data integration is intended. Mixtures of
alternatives 2a and 2b are possible as well (not shown in Fig. 5.57): If the
API, for example, is a read-only interface, the read access is realized via the
API, while for the write access the document solution is used.

Software Integration and Framework Development 567

Choosing alternative 2a leads to the model shown in box 2a of Fig. 5.57:
The «Tool» COMOS PT is extended with an additional «COMInterface» COMOS
PT API representing the API that is used by the Integrator Tool.

This «Uses» relation between the Integrator Tool and the COMOS PT
API is subsequently refined in following two steps: A «Wrapper» COMOS PT
Wrapper is introduced (cf. box 3 of Fig. 5.57) which is subdivided into a so-
called homogenizing wrapper (COMOS PT HomWrapper) and a technical wrapper
(COMOS PT TechWrapper) (cf. box 4 of Fig. 5.57). This is done for the follow-
ing reasons. The proprietary data model provided by the tool’s API has to be
transformed by the homogenizing wrapper into a data model expected by the
Integrator Tool. In this context, the technical wrapper offers the homog-
enizing wrapper a location- and implementation-independent access to the
tool’s API. How the homogenizing and the technical wrapper can be further
refined, will be explained in Subsect. 5.7.4.

The refinement steps shown in box 2a (or alternatively in box 2b) require
user interactions. It is the software engineer’s knowledge to decide how the
«Tool» COMOS PT is accessed by the Integrator Tool and, in case of an
API, which technique is used to realize the API. After determining this inter-
actively, the transformations shown in box 3 and box 4 can be performed by
an appropriate architecture modeling tool automatically. When, for example,
the software engineer decides later that no homogenizing wrapper is necessary,
he can delete this component manually.

Refinement of the Concrete Architecture

So far the logical architecture of the system is specified. The next step is
to define the concrete architecture. Therefore, the logical structure is trans-
formed into a concrete one (cf. box 5 of Fig. 5.58): Instances of the com-
ponents «Tool» and «Wrapper» are transformed into instances of component
«Process». They represent a process in the sense of a operating system. While
the «Contains» relations are kept, the «Uses» relations are transformed into
equivalent «MethodInvocation» or «InterprocessCall» relations.

A «MethodInvocation» represents a local communication, while an «In-
terprocessCall» represents a distributed one. Therefore, a «MethodInvoca-
tion» relation is only feasible between components that are contained within
the same «Process», whereas an «InterprocessCall» relation is only al-
lowed accordingly between components of different processes. An architecture
modeling tool can again carry out these transformations automatically.

Specifying how the «InterprocessCall» relations will be implemented
are the final steps of architecture refinement. As the COMOS PT API is imple-
mented by the tool’s vendor using COM (Component Object Model [846]),
the «InterprocessCall» relation between the COMOS PT TechWrapper and
the COMOS PT API is simply refined into a «COMCall»(cf. box 5 of Fig. 5.58).
In case of the «InterprocessCall» relation between the Integrator Tool
and the COMOS PT HomWrapper, different alternatives are possible.

568 Th. Haase, P. Klein, and M. Nagl

«HomogenizingWrapper»
COMOS PT HomWrapper

«Process»
COMOS PT Wrapper

 «Contains»

 «Contains»

«Process»
Integrator Tool

«CorbaSkel»
COMOS PT HomWrapper Skel

«CorbaStub»
COMOS PT HomWrapper Stub

«MethodInvocation»

«Corba_IIOP»

 «Contains»

6a

«HomogenizingWrapper»
COMOS PT HomWrapper

«TechnicalWrapper»
COMOS PT TechWrapper

«Process»
COMOS PT Wrapper«MethodInvocation»

 «Contains»

 «Contains»

«Process»
Integrator Tool

«Contains»

«Contains»

6b

5 «Tool»
Integrator Tool

«Wrapper»
COMOS PT Wrapper

«HomogenizingWrapper»
COMOS PT HomWrapper

«TechnicalWrapper»
COMOS PT TechWrapper

«COMInterface»
COMOS PT API

«Tool»
COMOS PT

«Uses»

«Contains»

«Contains»

«Uses»

«Uses»

 «Refines»

«Process»
COMOS PT

«COMInterface»
COMOS PT API

«HomogenizingWrapper»
COMOS PT HomWrapper

«TechnicalWrapper»
COMOS PT TechWrapper

«Process»
Integrator Tool

«Process»
COMOS PT Wrapper

«InterprocessCall»

«COMCall»

«MethodInvocation»

 «Contains»

 «Contains»

«Contains» «Contains»

 «MethodInvocation»
«Method-
Invocation»

Fig. 5.58. Refinement of concrete architecture

Realizing the COMOS PT Wrapper as an independent operating system process
is one alternative.45 The interprocess communication between the Integrator
Tool and the COMOS PT HomWrapper can then be implemented e.g. using
CORBA. This alternative offers the opportunity to distribute the Integrator
Tool and the tool to be integrated (COMOS PT) over various nodes in a
computing network. If the software engineer decides so, the architecture is
refined as shown in box 6a of Fig. 5.58: The Integrator Tool and the
COMOS PT Wrapper are extended by a corresponding stub and skeleton («Cor-
baStub» and «CorbaSkel») and a «Corba_IIOP» (Internet Inter-ORB Pro-

45 This alternative was already suggested by the initial transformation of the logical
into the concrete architecture.

Software Integration and Framework Development 569

Fig. 5.59. Sample screenshots of Fire3: logical architecture (left) and help texts
(right)

tocol) relation is established between them. Furthermore, a «MethodIn-
vocation» relation is established between the Integrator Tool and the
COMOS PT HomWrapper Stub and between the COMOS PT HomWrapper Skel
and the COMOS PT HomWrapper, respectively.

If no distributed solution is desired, the independent «Process» COMOS PT
Wrapper is resolved, i.e. the COMOS PT Wrapper is deleted, the COMOS PT Hom-
Wrapper and the COMOS PT TechWrapper are realized as local components
of the Integrator Tool, and the interprocess communication between the
Integrator Tool and the COMOS PT HomWrapper is substituted by a «Meth-
odInvocation» relation as well (cf. box 6b of Fig. 5.58).

Tool Support for Architecture Modeling and Refinement

The creation of an architecture design tool is not new. We have studied
architecture design languages [334] and accompanying tools for some years
[73, 224, 260]. Most of these tools claim to be usable for any context of soft-
ware development. The operations offered to the software engineer are thus
common to all domains and do not give specific support.

With the “Friendly Integration Refinement Environment”, abbreviated as
Fire3, an architecture design tool was developed [141, 142] which is specific to
the task of a-posteriori application integration. In particular, the tool is spe-
cific for dealing with the transformation from logical architectures to concrete
architectures. Figure 5.59 gives an impression of the tool: The left screenshot
of the user interface shows the integration scenario displayed in Fig. 5.57.

570 Th. Haase, P. Klein, and M. Nagl

Knowledge about integration architectures is captured in Fire3 in multiple
ways:

• Transformations : Changes in the architecture often affect multiple and
different parts simultaneously. When, for example, a single component of
an integrated application is addressed, a particular wrapper is needed.

• Stereotypes : The tool uses a variant of UML (Unified Modeling Language
[560, 880]) to display its architecture diagrams. As the tool further clas-
sifies types of classes, packages, and components, UML-stereotypes were
introduced. They convey this more complex model to the software engineer
immediately. All diagrams contain such stereotypes.

• Analyzes : Using particular types of components from a specific application
domain, the use and arrangement of these components is restricted. While
specific transformations prohibit erroneous conditions in the first place,
analyzes point to problems such as incomplete specifications.

• Help texts : To inform the software engineer about the options he may
choose from and to give him arguments for his decisions, help texts offer the
declarative information he needs. They help to alleviate identified problems
and facilitate direct activation of the necessary repair actions.

• Illustration: As the resulting architecture can get very complex even for
a simple integration scenario, typical uses of the architecture can be illus-
trated by means of animated collaboration diagrams to present the inter-
action of the various components.

Fire3 covers the multiple refinement steps of architecture design as discussed
in the example above. For each of the refinement steps, there exist specific
operations to support the software engineer in defining the results on that
stage or in refining them to get to the next step. Additional help texts (cf.
Fig. 5.59) explain the usage of the refinement operations. Different views allow
the software engineer to focus on the context specific to the refinement step
he is working with.

Implementation of Tool Support

We start with a summary of the implementation of the architecture tool.
The internal application logic of Fire3, i.e. the data model and the corre-
sponding operations to manipulate the data model, are formally specified by
a programmed graph rewriting system using the PROGRES language and en-
vironment [412, 414]. The code is generated from this specification and the
code is put into a framework for visual tools. Hence, a rather elaborated tool
construction process is put in place.

In the following, some basic aspects of the tool’s underlying graph schema,
exemplarily shown in Fig. 5.6046, will be discussed. This graph schema, which
46 The figure uses an UML-like notation. The stereotype «NodeClass» indicates an

abstract class, thus no instances are allowed, whereas a node tagged with the
stereotype «NodeType» refers to an instantiable one.

Software Integration and Framework Development 571

(a)

(b)

EntityContextType : «Entity» = Entity
rootContext : Entity = self.EntityContext.rootContext

«NodeClass»
Entity

EntityContextType = PackageEntity

«NodeClass»
Classifier

«NodeClass»
DataType

«NodeClass»
ClassEntity

«NodeType»
Method

«NodeClass»
PackageEntity

EntityContextType = PackageEntity

«NodeClass»
HierarchicalEntity

«NodeType»
Attribute

EntityContextType = Package or WrapperInterface

«NodeType»
Class

EntityContextType = COMInterface

«NodeType»
DispatchInterface

EntityContextType = Application
rootContext = self

«NodeClass»
Interface

EntityContextType = Tool

«NodeType»
COMInterface

«NodeType»
Tool

EntityContextType = Wrapper

«NodeClass»
WrappperInterface

EntityContextType = Package
rootContext = self

«NodeClass»
Application

«NodeType»
Wrapper

«NodeType»
HomogenizingWrapper

«NodeType»
TechnicalWrapper

EntityContextType = Package or HomogenizerWrapper

«NodeType»
Package

 FeatureType

EntityContextType = Method

«NodeType»
Parameter

EntityContextType = ClassEntity

«NodeClass»
ClassEntityFeature

1..1 0..n «NodeClass»
Feature

TargetEnd
SourceEnd

name : string

«NodeClass»
ModelElement

SourceType = ClassEntity
TargetType = ClassEntity

«NodeType»
Association

Source

 Target

SourceType = Application or WrapperInterface
TargetType = Application or Interface

«NodeType»
Uses

1..1

0..n 1..1

1..1

0..n

0..n

EntityContext

multiplicity : MultiplicityClass

«NodeClass»
RelationshipEnd

SourceType : «Entity» = Entity
TargetType : «Entity» = Entity

«NodeClass»
Relationship

EntityContextType : «Entity» = Entity
rootContext : Entity = self.EntityContext.rootContext

«NodeClass»
Entity

0..n

 _TargetEnd

_SourceEnd 1..11..1

1..11..1

1..11..1

0..n0..n

Refines

0..1

SourceType = Tool
TargetType = Tool

«NodeType»
Integrates

«Inheritance»

«EdgeType»

Fig. 5.60. Graph schema for the logical static architecture view (cutout)

572 Th. Haase, P. Klein, and M. Nagl

can be regarded as the meta model with respect to the models of Figs. 5.57
and 5.58, formally defines the relevant modeling concepts, both for general
architecture modeling, as introduced in Subsect. 5.7.2, and for the domain-
specific area of architecture modeling for a-posteriori application integration.
It is a modified and extended variant of the UML meta model [880].

The root of that graph schema is the node class ModelElement which
carries common attributes for all modeling concepts like a name. This basic
node class is specialized on the next inheritance level into the node class
Entity and the node class Relationship (cf. part (a) of Fig. 5.60).

A relation is modeled as a node in order to enable attributed links between
entities. Furthermore, relations are binary and directed. They are connected
with their source and target entity via a corresponding Source and Target
edge. Further specializations of the node class Relationship are e.g. the node
types Association, Integrates, and Uses. Supplementary, an Association
is extended with a RelationshipEnd for the source as well as for the tar-
get entity to allow the annotation of multiplicities for that relation. As a
RelationshipEnd is also derived from the node class ModelElement, its name
attribute can be used to enrich the source and the target entity with a role
identifier.

For each Relationship type, i.e. the node class Relationship and all its
subnodes (both node classes and node types), exist certain restricting con-
straints relating to the set of valid types for the source as well as for the
target entity. For example, an Integrates relation can only be established
between two instances of the node type Tool. These constraints hold for all
instances of a certain relationship and are defined through the meta attributes
SourceType and TargetType47.

Furthermore, a Relationship can be refined by zero or more instances
of a ModelElement48. The Refines edge allows to keep track of the various
refinement steps shown in Figs. 5.57 and 5.58.

Additionally, entities are linked by an implied containment relation, i.e.
this relation is not modeled by an explicit subnode of the node class Rela-
tionship but by the edge EntityContext between two entities. Each Entity,
the source entity of that edge, has to be contained by exactly one other Entity,
the target entity of the edge.

Restricting constraints also exist for containment relations. These con-
straints describe which entities are allowed to be contained by another. For ex-
ample, an Interface always belongs to an Application. The constraints are
defined by the meta attribute EntityContextType of the node class Entity
and, therefore, they are limited to the type level.

47 In Fig. 5.60 the type «Entity» for the meta attributes SourceType and
TargetType denotes the power set of the set of all node types directly or in-
directly derived from the node class Entity.

48 Instances of a node type are also considered as a instance of all direct or indirect
supernodes of that node type.

Software Integration and Framework Development 573

transformation + NewEntity

(entityName : string [1:1]; entityType : type in Entity [1:1];

context : Entity [1:1]; out newEntity : entityType [1:1])

[0:1] =

‘1 = context

valid
 ((context.rootContext.type in entityType.EntityContextType)
 and (context.type in entityType.EntityContextType))

::=

2’ : entityType

1’ = ‘1

EntityContext

transfer 2’.name := entityName;

return newEntity := 2’;

end;

Fig. 5.61. Generic graph transformation to instantiate a new entity node

In addition, constraints on the instance level have to be defined regarding the
transitive closure of the containment relation. For example, the constraints
defined by the meta attribute EntityContextType allow a Wrapper instance
to contain a HomogenizingWrapper instance, the HomogenizingWrapper in-
stance can contain a Package instance, and the Package instance can contain
a Tool instance. To avoid this undesirable situation, as a Tool refers to an
external application possibly having an Interface that is used but not con-
tained by a Wrapper, the derived attribute rootContext of the node class
Entity calculates for each Entity node n its root node r with regard to
the transitive closure of its containment within other entities. The type of r
has to be as well an element of the type set defined by the meta attribute
EntityContextType of n.

All of these constraints are ensured by the generic graph transformation
shown in Fig. 5.61 to instantiate a new node for a given subtype of the node
class Entity. Relationships between entities are instantiated analogously.

Finally, part (b) of Fig. 5.60 illustrates how the node class Entity
is further specialized to general modeling concepts, e.g. ClassEntity or

574 Th. Haase, P. Klein, and M. Nagl

PackageEntity49, and domain-specific modeling concepts such as Wrapper
or Application.

The implementation of Fire3 makes use of the model-driven development
idea. As already stated, the internal application logic of Fire3 is implemented
by a declarative specification using the PROGRES language and its environ-
ment [412, 414]. Based on this specification, C-code is generated, which is
embedded into UPGRADE [48, 49, 206], a JAVA-based framework for build-
ing user interfaces for graph-based applications. UPGRADE offers different
default user interfaces for visualizing and editing. This way, a first executable
prototype can be realized without any further manual implementation.

However, the default user interface is rudimentary and only suitable for
testing. Further development effort is needed for adapting the framework to
provide a more appropriate user interface. Besides the configuration of built-in
filter mechanisms, e.g. to exclude certain “help” edges and nodes from visual-
ization50, this includes the implementation of different node representations
for different node types, e.g. a class or a package view (cf. the screenshot in
Fig. 5.59). A corresponding layout algorithm has to be implemented for this
purpose.

5.7.4 Model-Driven Wrapper Development

A wrapper acts as an adapter “convert(ing) the interface (of a given tool)
. . . into another interface clients expect” [682]. Therefore, the application of
wrappers enables the reuse of existing software in a new context [972] as it
realizes a transparent access to existing interfaces.

Different Tasks for Wrappers

The development of a wrapper includes several tasks. Syntax and semantics
of the given interface, the source interface, to be wrapped as well as of the
interface required by the client, the target interface, have to be specified. Fur-
thermore, the transformation of the source into the target interface has to be
defined. Consequently, a wrapper is not a monolithic component, it is rather
a subsystem consisting of several subcomponents [136].

In the previous subsection, the architecture was refined such that the prob-
lem of wrapper construction is decomposed into two levels (cf. Fig. 5.57) [135]:
(a) Technical wrappers, realizing the access to the source interface, are respon-
sible for hiding technical details of interfaces provided by existing tools. For
49 With respect to the definitions given in Subsect. 5.7.2, a ClassEntity can be

compared to a module whereas a PackageEntity realizes the concept of a subsys-
tem.

50 For example, in Fig. 5.60 the node RelationshipEnd and its associated edges
are visualized by an edge-node-edge filter as two direct edges between the nodes
Entity and Association. The attributes of the node RelationshipEnd are visu-
alized by a specific edge representation as attributes of these edges.

Software Integration and Framework Development 575

example, clients of technical wrappers are shielded from the underlying com-
munication infrastructure such as COM or CORBA. Furthermore, the oper-
ations provided by the tools are mapped semantically 1:1 onto the interface
of the technical wrapper. (b) In contrast, the homogenizing wrapper located
on top of the technical wrapper realizes the required data and functional ab-
straction.

Besides location and implementation transparency, a given interface is nor-
malized by a technical wrapper as it abstracts from specific operation names.
In addition, the technical wrapper aggregates sequences of primitive operation
calls to new operations in order to normalize the granularity of operations.
The normalization on this level only covers syntactical aspects and does not
include any kind of semantical adjustment. This is the task of the homoge-
nizing wrapper, which adapts the data model of the tool to be wrapped to a
uniform semantical level.

Moreover, both the technical as well as the homogenizing wrapper’s inter-
face can be further divided into (i) a coarse-grained interface to start/stop a
wrapped tool or to load a document into a wrapped tool (black-box view) and
(ii) a fine-grained interface to invoke tool specific operations, e.g. accessing
the data maintained by the wrapped tool (white-box view).

Wrappers are used on different levels of the integrated engineering design
environment (cf. Fig. 5.55):

• Existing engineering tools are integrated a-posteriori into the environment
with the help of wrappers.

• Extended new tools on top of existing tools were developed using differ-
ent methodologies and corresponding implementation frameworks. To inte-
grate such extended tools, wrapping causes in some cases less development
effort than reengineering.

• Finally, all tools, existing as well as new ones, have to be embedded into
the common platform infrastructure, which is again achieved by wrappers
[275].

Therefore, a wide range of wrappers with distinct characteristics are neces-
sary. The second major aim of subproject I3 was to substitute manual ad-hoc
implementation of wrappers by a well-understood development process for
wrapper construction [26], which can be supported by tools and fosters reuse
on the process as well as on the product level.

Methodology for Wrapper Development

The development of a set of concrete wrappers in the domain of tool inte-
gration resulted in a better understanding of the principles of wrapper design
and implementation. This emerging knowledge facilitates the definition of a
methodology for wrapper development. Next, the methodology was refined,
so that wrappers can be described through a declarative specification from
which, finally, the executable program code for the wrapper can be generated.

576 Th. Haase, P. Klein, and M. Nagl

(4) Specifying

Transformation
Homogenized data model Internal data model

(3) Specifying

Homogenized data model

(2) Interactive Exploring

Dynamic behavior

based on

based on

Code

(5) Generating

Homogenizing wrapper

Technical wrapper

(1) Parsing

Internal data model

-new() : Document
-_id() : IComosDDocument
-_get_deviceTypes() : *Type
-_addDevice(Zoll aDevice : Device) : void
+addDevices() : void
#addDevice(Zoll index : int)

«Class»
Document

-new() : Type
-_getName() : string
#checkDevice(Zoll aDocument : Document, Zoll index : int) : void

-name : string

«Class»
Type

-new() : Device
-_id() : IComosDDevice

«Class»
Device

-_new() : Stream
-_id() : IComosDDevice

«Class»
Stream

devices streams

deviceTypes streamTypes

0..n 0..n

0..n 0..n

1..1 1..1

type type

Fig. 5.62. Model-driven wrapper development process (overview)

For each phase of the development process, the software engineer, designing
a wrapper, is guided by an appropriate suite of tools supporting its activi-
ties in specifying wrappers. In the following, the different phases of wrapper
development and corresponding tool support will be presented in detail.

The methodology for wrapper development is illustrated in Fig. 5.62. It is
subdivided into four construction phases (phase 1–4), which are followed by a
generation phase (phase 5). In each construction phase specific models are de-
fined, describing both static (phase 1 and 3) as well as dynamic aspects (phase
2 and 4) of the wrapper. The models are either generated (semi-)automatically
(phase 1 and 2) or specified manually (phase 3 and 4).

The methodology is applicable both for technical as well as for homoge-
nizing wrappers. The lower part of Fig. 5.62 deals with technical wrappers
abbreviated by TW while the upper part refers to homogenizing wrappers
abbreviated by HW.

The semantics of the models to be built in phases 1–4 are formally defined
by a meta model using, again, the PROGRES language51. The models in their
entirety constitute a complete, abstract, and formal specification of a wrapper,
which is independent from a programming language, such that executable
program code can be generated in phase 5.

51 The graph schema shown in Fig. 5.60 comprises static aspects like ClassEntity,
Attribute, Method, Parameter, or Association. Modeling of dynamic behavior
is enabled by an extension of this graph schema as depicted in Fig. 5.67

Software Integration and Framework Development 577

In detail, the following models are specified in the four different phases :

1. In the context of IMPROVE, commercial and third-party tools had to
be integrated into the engineering design environment. They were mostly
equipped with a COM interface (e.g. Aspen Plus, Comos PT, or Docu-
mentum). Hence, our approach concentrated on COM (Component Ob-
ject Model [846])52. COM follows the object-oriented paradigm, i.e. COM
components represent subsystems, consisting of a set of classes including
attribute and method definitions, relationships between classes, and a set
of interfaces to access the subsystem. For every COM interface, fixed by
standardization, a textual description is available in form of a so-called
type library or a dynamic link library, respectively.
The first step of the wrapper development process is to understand the
given COM interface of a tool to be wrapped on the syntactical level.
Therefore, its type library is parsed and transformed into a language-
independent graph model, according to the schema in Fig. 5.60. Language
independence is achieved, for example, by mapping specific COM data
types to general ones.
Furthermore, the derived model is semantically enriched by the parser, in
comparison with the type library description, as relationships are explicitly
modeled by edges between ClassEntity nodes (cf. Fig. 5.60). Additional
semantical information offers the opportunity for further analyzes, e.g. the
calculation of object metrics, like weighted methods per class (WMC) or
coupling between object classes (CBO) [594]. This can provide first hints
concerning the complexity of a tool’s interface.
So far, the model generated automatically by the parser represents the im-
port interface of the technical wrapper that is used to access the wrapped
tool. In the bottom-left quadrant of Fig. 5.62, the model is visualized as
an object-oriented class diagram.

2. Second, the export interface of the technical wrapper has to be defined. It
consists of two types of operations : (i) atomic operations of the given COM
interface (e.g. to insert, modify, or delete a primitive data element), which
can be renamed, if wanted, or (ii) composed operations, each of them
built-up from a sequence of atomic operations (e.g. to insert, modify, or
delete a complex data structure).
Composing atomic operations requires, besides syntactical knowledge
about the given interface, their semantical interpretation with respect to
the dynamic behavior of the tool to be wrapped. A simple, frequently oc-
curring example is as follows. It cannot be derived from the syntactical
description of an interface, whether indexing a collection begins with zero
or one. Normally, this information is received from additional documen-
tation offered by the tool’s vendor. As experience shows, documentations

52 Nevertheless, the approach is general enough to be also used with other middle-
ware techniques, such as CORBA (Common Object Request Broker Architecture
[877]) or EJB (Enterprise JavaBeans [504]) (cf. Sect. 7.8).

578 Th. Haase, P. Klein, and M. Nagl

are often incomplete, erroneous, and, therefore, do not include the desired
information.
For this reasons, tool support was developed to assist the software engi-
neer in specifying composed operations. It consists of a test environment
to interactively explore a COM interface and its underlying tool at run-
time. User’s interactions are traced by the supporting tool and serve as
foundation for composing operations. Based upon traces, which describe
atomic operation sequences, a composed operation is defined by selecting
a subsequence from the trace. The tool automatically infers the signature
for a subsequence, i.e. required input parameters, the output parameter,
and corresponding data types. Furthermore, the generalization for a subse-
quence is possible by substituting constants by variables, which are added
to the signature as new input parameters.
The composed operations, specified interactively by the software engineer
assisted by the tool, constitute the export interface of the technical wrap-
per53. A composed operation is represented in the bottom-right quadrant
of Fig. 5.62 as a sequence diagram.

3. After determining import and export interface of the technical wrapper,
the homogenizing wrapper, realizing an intended view on an encapsulated
tool, is specified. This happens by modeling the static data structure,
materializing the view via an object-oriented class diagram (cf. top-left
quadrant of Fig. 5.62). The set of all public methods of classes defined
in the class diagram represents the export interface of the homogenizing
wrapper.
Again, the software engineer is supported by a corresponding tool to con-
struct the model. The tool realizes, among other things, a modeling envi-
ronment for building object-oriented class diagrams. Main concepts offered
for modeling are (i) packages, (ii) classes, (iii) attributes, (iv) methods,
and (v) associations between classes (cf. Fig. 5.60). Moreover, attributes
and methods (a) can be classified with regard to belonging to the instance
or the class level and (b) their visibility can be determined (public, pro-
tected, or private). Associations are refined by accessory multiplicities.
We believe that these modeling concepts are sufficient for specifying the
homogenizing wrapper.
Models are analyzed by the tool with regard to correctness and complete-
ness, e.g. naming conflicts are detected or missing methods, attribute,
or parameter types are indicated54. Correctness and completeness of the
models are necessary to allow generation of executable code in phase 5.

53 In particular, a subsequence, selected from a trace, can consist of a single atomic
operation call. This way, also atomic operations of the given interface can be
added to the export interface of the technical wrapper.

54 The type of a method is the type of its return value. If no value is returned, the
type is set to void.

Software Integration and Framework Development 579

Furthermore, the tool automatically extends the models. In particular,
when a class or an attribute is defined, corresponding methods are added
to instantiate the class or for getting and setting the attribute. Analo-
gously, methods for navigating and iterating are appended to associations.
Enriching the model by these additional methods prepares for the follow-
ing phase 4. The methods are declared as private and their semantics is
fixed by the implementation of the code generator.

4. Finally, a mapping between the data model of the homogenizing wrap-
per, defined in previous phase 3, and that of the tool to be wrapped has
to be specified. Invocation of the homogenizing wrapper by an external
client at runtime leads to various changes of the materialized view of the
homogenizing wrapper. For example, objects are instantiated or deleted,
associations between objects are added or removed, or attribute values
are changed. To keep the materialized view of the homogenizing wrapper
consistent with its underlying tool, corresponding modifications have to
be applied on the wrapped tool’s data structure.
For this, the internal behavior of public and protected methods55 is mod-
eled by collaboration diagrams (cf. top-right quadrant of Fig. 5.62). Such
collaboration diagrams describe on the one hand, how the homogenizing
wrapper’s data structure is modified. Therefore, the private methods (see
phase 3), e.g. for instantiating an object, are used. On the other hand,
the methods of the technical wrapper’s export interface (see phase 2) are
used to manipulate the wrapped tool accordingly.
The abstract syntax of collaboration diagrams is defined by the graph
schema shown in Fig. 5.67, which will be explained later. A formal def-
inition of the abstract syntax, again, enables the modeling environment
to guarantee (syntactical) correctness and completeness with respect to
context-free as well as context-sensitive conditions, such as type confor-
mity of actual and formal parameters to facilitate the generation of exe-
cutable code.

The models constructed in phases 1 to 4 are sufficient to generate executable
program code for the specified wrapper. Up to now, a PROGRES/UPGRADE
prototype is created that realizes a test environment for the wrapper. Like
the tool for exploring COM interfaces interactively, the generated test envi-
ronment facilitates interactive testing of the wrapper.

Wrapper Development Example

We will now demonstrate the above introduced wrapper development process
by an example, where a wrapper for the flowsheet editor Comos PT is specified
[27].
55 While public methods are accessible by external clients of the homogenizing wrap-

per, protected methods are used for internal realization of public methods, but
not visible for clients.

580 Th. Haase, P. Klein, and M. Nagl

Phase 1: Getting the Syntactical TW Interface by a Parser

A cutout of the internal data model of Comos PT, described by its type library,
is illustrated on the left side of Fig. 5.6356. It is represented as a UML-like
class diagram that has been generated by the parser in phase 1.

CDevice() : IComosDCDevice
AllConnectors() : IComosDCollection

«DispatchInterface»
IComosDDevice

ConnectedWith() : IComosDConnector
owner() : IComosDDevice

«DispatchInterface»
IComosDConnector

Name() : string

«DispatchInterface»
IComosDCDevice

ScanDevices() : IComosDCollection

«DispatchInterface»
IComosDDocument

Count() : int
Item(Zoll Val : int) : IComosDDevice

«DispatchInterface»
IComosDCollection

1..1

1..1

1..1

1..1

1..1

0..n

0..n

Fig. 5.63. Data model (cutout, left side) and screenshot (right side) of Comos PT
(phase 1)

The right side of Fig. 5.63 shows a sample screenshot of a Comos PT flowsheet
(class IComosDDocument), which includes a collection (class IComosDCollec-
tion) of devices (class IComosDDevice), i.e. a distillation column, two heat
exchangers, a vessel, a pump, and a valve. These devices are connected via
certain streams, symbolized as edges between the devices. Internally, a stream
is also represented as an instance of class IComosDDevice.

IComosDDocument offers the method ScanDevices() to access the collec-
tion of all devices within a flowsheet. For iterating through a collection, the
interface of IComosDCollection consists of two methods: (i) Count(), which
returns the size of the collection, and (ii) Item(Val:int) to access a specific
element within the collection by its index.

To distinguish different kinds of devices, each IComosDDevice is connected
with exactly one IComosDCDevice denoting its type. Accessing a device’s type
is enabled by the method CDevice(). The name of the type can be queried
by the Name() method of class IComosDCDevice.

Moreover, the connection points of devices (cf. left side of Fig. 5.63) are
explicitly modeled by connectors (class IComosDConnector). Therefore, each

56 In total, the data model of Comos PT consists of 99 classes with altogether 1131
attributes and 5758 methods.

Software Integration and Framework Development 581

IComosDDevice refers to a collection (class IComosDCollection) of its con-
nectors (method AllConnectors()).The methods of class IComosDConnector
are used to navigate (i) to the corresponding connector of the connected device
(method ConnectedWith()), and (ii) to its own device (method owner()).

Phase 2: Interactively Exploring the TW Semantics

The wrapper’s task is to transform the given data model of Comos PT into
that of the homogenizing wrapper and vice versa57. The technical wrapper’s
interface used to access Comos PT is determined in phase 2 by exploring
Comos PT interactively with the help of tool support.

After parsing the type library of the COM interface of Comos PT (phase 1),
the exploring tool starts the underlying application as an operating system
process via a generic start operation that every COM interface implements.
The return value of this operation is a reference to the initial object of the
COM interface. The exploring tool determines dynamically the object’s class
and, based upon the static information parsed out of the type library (cf.
Fig. 5.63), a GUI (graphical user interface) for the given COM object is
generated by the exploring tool. Using this GUI, the software engineer can
query the values of object attributes or can invoke the object’s methods.

An attribute value or a return value of a method can be either an atomic
value, like a string or an int, or a reference to another COM object. In this
case, another GUI, according to the referenced object, is generated allowing
to inspect the referenced object. This way, the software engineer explores the
COM interface of an application interactively.

Furthermore, the user’s interactions are traced by the exploring tool. Fig-
ure 5.64 shows a sample trace captured during exploring. Assuming that a
reference to an instance of class IComosDDocument was already explored, the
trace, visualized as an UML sequence diagram, demonstrates (1) how to ac-
cess the collection of all devices within a flowsheet, (2) how to determine
the number of included devices, (3) how to receive a specific device, (4) how
to navigate to a device’s type representation, and (5) how to gain the type
representation’s name (cf. box 1 of Fig. 5.64).

Based upon this trace, three methods, constituting the technical wrapper’s
export interface, are specified by selecting specific subsequences out of the
trace:

1. The first method NumberOfDevices (cf. box 2 of Fig. 5.64) consists of
method calls (1) and (2) and returns an int value indicating the number
of devices within a flowsheet given by the input parameter anIComosDDoc.
The method’s signature is inferred by the exploring tool automatically, i.e.
IComosDDocument is added as input parameter.

2. Analogously, method TypeName is defined (method calls (4) and (5)), re-
turning a string value denoting the type’s name for the given input pa-
rameter anIComosDDevice (cf. box 3 of Fig. 5.64).

57 For simplification, connections between devices are not considered.

582 Th. Haase, P. Klein, and M. Nagl

NumberOfDevices(anIComosDDoc : IComosDDocument): int

TypeName(anIComosDDevice : IComosDDevice): string

2

3 DeviceAt(anIComosDDoc : IComosDDocument, index : int):
IComosDDevice

DeviceAt(anIComosDDoc : IComosDDocument): IComosDDevice 4a

 4b

«DispatchInterface»
 anIComosDDoc

«DispatchInterface»
 : IComosDCollection

1: ScanDevices()

«TechnicalWrapper»«DispatchInterface»
anIComosDDoc

«DispatchInterface»
 : IComosDCollection

1: ScanDevices()

«TechnicalWrapper»

2: Count()

«DispatchInterface»
 anIComosDDevice

«DispatchInterface»
 : IComosDCDevice

«TechnicalWrapper»

4: CDevice()

5: Name()

«DispatchInterface»
anIComosDDoc

«DispatchInterface»
 : IComosDCollection

1: ScanDevices()

«TechnicalWrapper»

«DispatchInterface»
 : IComosDDocument

«DispatchInterface»
 : IComosDCollection

«DispatchInterface»
 : IComosDDevice

«DispatchInterface»
 : IComosDCDevice

1: ScanDevices()

3: Item(286)

«TechnicalWrapper»

4: CDevice()

5: Name()

2: Count()

1

3: Item(286)

3: Item(index)

Fig. 5.64. Interactive exploring (sample sequence trace) and aggregation of subse-
quences (phase 2)

3. Method DeviceAt illustrates another feature of the exploring tool: After
specifying the method (method calls (1) and (3)), which returns the spe-
cific IComosDDevice with index 286 included within the flowsheet given
by the input parameter anIComosDDoc (cf. box 4a of Fig. 5.64), it is gen-
eralized, i.e. the int constant 286 is substituted by an input parameter
index, so that any device within a flowsheet can be received (cf. box 4b
of Fig. 5.64). Therefore, the signature of method DeviceAt is updated by
the exploring tool.

Phase 3: Designing the HW Data Model

The intended homogenized data model, realized by the wrapper to be designed,
is addressed in Fig. 5.65. The class Document represents a Comos PT flowsheet,
indicated by the return value of method _id(), which returns a reference to
an instance of class IComosDDocument.

In contrast to the original data model of Comos PT, in the homogenized
data model, streams (class Stream) are separated from other flowsheet devices

Software Integration and Framework Development 583

(class Device), as they are explicitly modeled by an independent class. For
both classes, the corresponding Comos PT classes are again identified by the
return value of method _id() (class IComosDDevice in both cases). To recog-
nize different device types, types are modeled by instances of class Type. Its
attribute name designates a certain type. Instances of class Type are split into
two disjunct collections (edges deviceTypes and streamTypes, respectively,
between class Document and Type).

-new() : Document
-_id() : IComosDDocument
-_get_deviceTypes() : *Type
-_addDevice(Zoll aDevice : Device) : void
+addDevices() : void
#addDevice(Zoll index : int)

«Class»
Document

-new() : Type
-_getName() : string
#checkDevice(Zoll aDocument : Document, Zoll index : int) : void

-name : string

«Class»
Type

-new() : Device
-_id() : IComosDDevice

«Class»
Device

-_new() : Stream
-_id() : IComosDDevice

«Class»
Stream

devices streams

deviceTypes streamTypes

0..n 0..n

0..n 0..n

1..1 1..1

type type

Fig. 5.65. Homogenized data model (phase 3)

Each Device and Stream is associated with its according Type via an edge
type. In this case, a condition holds true that instances of class Device can
only be connected with an instance of class Type included in the deviceTypes
collection. The same is to be considered for instances of class Stream.

Phase 4: Defining the Mapping from HW to TW

Figure 5.66 demonstrates the final step of wrapper development, namely the
specification of the mapping between the given data model (cf. Fig. 5.63) and
that of the homogenizing wrapper (cf. Fig. 5.65)58. Therefore, the methods of
the technical wrapper’s export interface (cf. Fig. 5.64) and the private methods
of the homogenizing wrapper’s classes (cf. Fig. 5.65) are applied.

In our scenario, we require that methods are already specified to create an
initial instance of class Document and to connect it to an according instance
of class IComosDDocument. Furthermore, the deviceTypes and streamTypes
collections of the instance of class Document are defined.

58 UML-like collaboration diagrams are used in Fig. 5.66.

584 Th. Haase, P. Klein, and M. Nagl

1.1 anIComosDDoc := _id()

«Class»
aDocument : Document

«TechnicalWrapper»addDevices()
1.2 count :=
NumberOfDevices(anIComosDDoc)

1.3 [i := 1, …, count]*: addDevice(i)

«Class»
aDocument : Document

addDevice(i) «Class»
aType : Type

1.1 [_get_deviceTypes]*:
checkDevice(aDocument, i)

«Class»
aType : Type

checkDevice(aDocument, i) «TechnicalWrapper»1.3 typeName := TypeName(anIComosDDevice)

1.2 anIComosDDevice := DeviceAt(anIComosDDoc, i)

«Class»
aDocument : Document

1.1 anIComosDDoc := _id()

«Class»
 : Device

1.5 [typeName == name]: _new()

1.4 name := _getName()

1

2

3

Fig. 5.66. Modeling the transformation between the homogenizing wrapper and
the given interface (phase 4)

In the following, we will show, how a method addDevices() of class Document
is modeled. The method (i) reads all devices out of the flowsheet, (ii) deter-
mines whether it is a device according to the homogenized data model, and,
if applicable, (iii) creates a new instance of class Device. The modeling of the
method takes place in three steps :

1. Firstly, within method specification addDevices() (cf. box 1 of Fig. 5.66)
the reference to the instance of class IComosDDocument, representing the
flowsheet, is queried (1.1) and the technical wrapper is asked for the num-
ber of devices within this flowsheet (1.2). Next, a loop is defined (1.3),
bounded by the return value of (1.2), calling method addDevice() of
class IComosDDocument in each iteration. The loop variable, indicating
the index of the currently handled device, serves as input parameter for
method addDevice().

2. The specification of method addDevice() consists of a single method call
(cf. box 2 of Fig. 5.66): For each element in the deviceTypes collection of
the instance of class Document, the method checkDevice() is called with
the instance of class Document and the index i as actual parameters.

3. Finally, method checkDevice() of class Type has to be modeled (cf. box 3
of Fig. 5.66). Again the reference to the instance of class IComosDDocument
is queried (1.1) and the technical wrapper is asked for a reference to the

Software Integration and Framework Development 585

actual device (1.2) as well as for the name of the device’s type (1.3). If
the device’s type name is equal to the name of the current Type instance,
queried in (1.4), a new instance of class Device is created (1.5), as the
flowsheet device represents a Device according to the homogenized data
model.

Code Generation for the Mapping

From the detailed explanations of phases 1 to 4, it should be clear that the
models of Figs. 5.63 to 5.66 fulfill (syntactical) correctness and completeness,
guaranteed by the modeling environment. Hence, executable code can be gen-
erated. Up to now, again, an UPGRADE prototype, i.e. PROGRES and JAVA
code, is generated allowing the interactive testing of the specified wrapper.

Implementation of the Wrapper Development Tools

While the tools supporting phase 1 and 2 were implemented with conventional
object-oriented programming languages (C++ and SMALLTALK), the mod-
eling environment Fire3, supporting phase 3 and 4, was developed using the
PROGRES language. Besides the implementation, the architecture and the
technical infrastructure of the entire tool suite is sketched.

Modeling Environment

Concerning the implementation aspects of Fire3, we will concentrate on mod-
eling the dynamic behavior. The graph schema shown in Fig. 5.67 defines the
abstract syntax for the collaboration diagrams used in phase 4. It is an ex-
tension of the formerly introduced graph schema of Fig. 5.60, which serves as
meta model for defining the static data model in phase 3.

Extensions refer to the formal definition of modeling concepts for (i) mes-
sage sequences (node type MessageSequence), defining the behavior of a
method (edge type Defines) at runtime. A message sequence consists of
(ii) single method calls (node class MethodCall) with (iii) accessory actual
parameters (node class ClassifierInstance). Furthermore, a method call
can be restricted by (iv) a condition (node class Control and its subnodes,
respectively).

To ensure correct code generation, the following context-sensitive condi-
tions have to be fulfilled59:

1. ∀ mc ∈ IMethodCall :
mc.Calls.EntityContext= mc.Callee.InstanceOf

59 IN denotes the set of all instances of node class or node type N.

586 Th. Haase, P. Klein, and M. Nagl

EntityContextType : «Entity» = Entity
InstanceType : «EntityInstance» = EntityInstance

«NodeClass»
Entity «NodeClass»

EntityInstance
 InstanceOf

EntityContextType = ClassEntity

«NodeType»
Method

 Calls

«NodeClass»
ClassEntityInstance

EntityContextType = ClassEntity

«NodeType»
MessageSequence

Defines

EntityContextType = PackageEntity
InstanceType = ClassifierInstance

«NodeClass»
Classifier

«NodeClass»
Feature

EntityContextType = Method

«NodeType»
Parameter

FeatureType

«NodeClass»
ClassifierInstance

«NodeClass»
InstanceBinding

«NodeClass»
Control

«NodeType»
ResultBinding

«NodeType»
ParameterBinding

«NodeType»
IfThen

«NodeType»
Loop

1..1 0..n

1..1

0..n

1..1 0..n

 Formal Actual0..n 1..11..1 0..n

Result

EntityContextType = MessageSequence

«NodeClass»
MethodCall

ParameterValue
1..11..1

0..n1..1

Caller

Callee

1..1

0..1

1..1 1..1

0..n

0..n

ControlledBy

0..1

1..1

«Inheritance»

«EdgeType»

Fig. 5.67. Graph schema for modeling the dynamic behavior (cutout)

2. (∀ mc ∈ IMethodCall) ∧ (∀ p ∈ IParameter) :
mc.Calls = p.EntityContext

⇒∃ ib1 ∈ mc.ParameterValue :
(ib1.Formal = p) ∧
(� ∃ ib2 ∈ mc.ParameterValue : ib1 �= ib2 ∧ ib2.Formal = p)

3. ∀ mc ∈ IMethodCall :
mc.Calls = mc.Result.Formal

4. ∀ ib ∈ IInstanceBinding :
ib.Formal.FeatureType= ib.Actual.InstanceOf

The first condition guarantees that the called method belongs to the callee,
while the second and third condition assure that exactly one actual parameter

Software Integration and Framework Development 587

Interface

Reads

G
enerates

Meta Model (PROGRES)

Fire3 (UPGRADE)

Generates

PYTHON scripts

Analyzes

Registry

Explores

COM

Rational Rose

Generates

Control Flow

Reads

CORBA

COM-Explorer

Activates

A
ctivates

COM

Activates
CORBA

Parser

COM

Analyzes

Type Library

Application

/
Reads

Fig. 5.68. System architecture of tool support for wrapper development (overview)

is assigned to every formal parameter of the method’s signature. Type confor-
mity between formal and actual parameters is denoted by the fourth condition.
To meet these conditions, corresponding graph transformations exist.

Architecture and Technical Infrastructure

Just as the integrated engineering design environment introduced at the be-
ginning of this section (cf. Fig. 5.55), the tool environment for wrapper de-
velopment itself is also built on top of different operating system platforms
(LINUX and WINDOWS), middleware techniques (CORBA and COM), and
programming languages (PROGRES, JAVA, C++ and SMALLTALK). This
diversity is due to the application of established and suitable programming in-
frastructure. PROGRES/UPGRADE, for example, which is up to now bound
to a LINUX platform, has been used for implementing the modeling envi-
ronment Fire3. In contrast, the tools to be wrapped demand a WINDOWS
platform as we focus on tools with a COM interface60.

Figure 5.68 gives an overview of the system architecture. Based upon the
PROGRES specification (cf. Figs. 5.60 and 5.67) the UPGRADE prototype
Fire3 was generated. At runtime, the parser for analyzing the COM interface
of an application (phase 1) is activated via CORBA. To determine the type
library’s location, the parser analyzes the WINDOWS system registry. After

60 This was a requirement by other subprojects within IMPROVE.

588 Th. Haase, P. Klein, and M. Nagl

parsing, the results are stored as PYTHON scripts, which can be executed
by Fire3.61 This way, the knowledge about the internal data model of the
tool to be wrapped is brought to Fire3. According to phase 2, the exploring
tool (COM-Explorer) is activated, again via CORBA. It makes also use of the
PYTHON scripts to get the knowledge about the given data model. Next, the
tool to be wrapped can be explored via its COM interface. The results are
given back to Fire3 and modeling of phase 3 and 4 can begin.

5.7.5 Related Work

The discussion of related work is structured according to the preceding subsec-
tions, i.e. for each subsection there is a corresponding part addressing related
work.

Modeling and Refinement of Software Architectures

The observation that the structure of a software system can be specified as
coupled units with precise interfaces is a major contribution of software en-
gineering. It is almost as old as software engineering itself [897]. Due to the
definition of a software architecture, as given in Subsect. 5.7.3, it is not surpris-
ing that graph transformations were identified as a simple and natural way to
model software architectures. Consequently, the rules and constraints for the
dynamic evolution of the architecture, e.g. adding or removing components
and relations between them, can be defined as graph transformations [260].
Following this idea we use PROGRES [412, 414] to describe both of these
aspects in an unified way.

Several related approaches are described in literature: Le Métayer [804]
uses graph grammars to specify the static structure of a system. However,
the dynamic evolution of an architecture has to be defined independently
by a so-called coordinator. A uniform description language based on graph
rewriting covering both aspects is presented by Hirsch et al. [731]. In contrast
to PROGRES, this approach is limited to the use of context-free rules for
specifying dynamic aspects. Similar to our approach, Fahmy and Holt [663]
also apply PROGRES to specify software architecture transformations.

These and other approaches for architecture modeling [224] claim to be us-
able to specify architectures independent from the domain and do not consider
the needs for domain-specific architectures [843]. Therefore, PsiGene [934] al-
lows to combine design patterns as presented in [580] and to apply them to
class diagrams. A technique to specify patterns in the area of distributed ap-
plications and to combine them to a suitable software architecture is shown
in [374].

61 Furthermore, the parsing result can be visualized using the commercial tool Ra-
tional Rose [743].

Software Integration and Framework Development 589

While these approaches offer solutions for architectural patterns on a
technical level, e.g. distributing components and defining patterns for their
communication, they do not address the problem of semantic heterogeneity.
Numerous standardization efforts deal with that problem to define domain-
specific interfaces based on corresponding architectural frameworks, e.g. OMG
(Object Management Group) domain specifications [881], ebXML (electronic
business using eXtensible Markup Language [646]), or OAGIS (Open Appli-
cations Group [885]). However, legacy systems can only be adapted to such
standards if they are wrapped. In this section, we have shown how wrapping
can be performed systematically on the architectural level.

Interactive Modeling and Construction of Wrappers

An architecture-based approach for developing wrappers, similar to ours, is
described by Gannod et al. [683]: Interfaces to command line tools are speci-
fied as architectural components by using ACME [685], a generic architecture
description language. Subsequently, based upon the specification, the wrapper
source code for the interface is synthesized. In comparison with our methodol-
ogy, Gannod et al. only cover the construction of the technical wrapper. Any
kind of data homogenization is not considered.

To enrich the expressiveness of a given interface to be wrapped, Jacobsen
and Krämer modified CORBA IDL (interface definition language) [877] to add
specifications of semantic properties, to facilitate a wrapper’s source code to
be extended by additional semantic checks automatically [765]. For wrapping
tools in an a-priori manner, i.e. in these cases where the semantics of the tool’s
interface is well-known, such descriptions are applicable for synthesizing the
wrapper. Unfortunately, in the context of a-posteriori integration the semantic
properties to be specified for generating the wrapper are unknown. This was
one reason for developing our interface exploration tool.

Other attempts to automatically discover the structure and behavior of a
software system come from the field of software reengineering. Cimitile et al.
[600] describe an approach that involves the use of data flow analysis in order
to determine various properties of the source code to be wrapped. A necessary
prerequisite for this – and most of the other techniques in the area of software
reengineering – is the availability of the source code that is to be analyzed.
Again, a-posteriori integration, as presented in this section, is not constrained
by this requirements.

The solution we have chosen is an application of the programming by exam-
ple principle [620, 816]. Several approaches for wrapping semi-structured data
sources, such as web pages, following this principle can be found in literature.
Turquoise [849] is a prototype of an intelligent web browser creating scripts
to combine data from different web pages. The scripts are derived form the
user’s browsing and editing actions, which Turquoise traces and generalizes
into a program. Similarly, NoDoSE [495] combines automatic analysis with

590 Th. Haase, P. Klein, and M. Nagl

user input to specify grammars for unstructured text documents. An automa-
tion of the generalization step, necessary in every programming by example
approach, is presented in [800]. For a set of web pages, single wrappers are
specified manually. Then, an automatic learning algorithm generates a gener-
alized wrapper by induction.

While these programming by example approaches concentrate on data in-
tegration, we are even more interested in functional and event integration,
e.g. for offering the integration tool between the process flowsheet editor Co-
mos PT and the management system AHEAD a visual browsing functionality.

5.7.6 Summary and Open Issues

In this section, we have presented an architecture-based and model-driven
approach to the a-posteriori integration of engineering tools. This approach
has been realized within subproject I3 of IMPROVE (cf. Subsect. 5.7.1).

Based on the underlying conceptual framework for software architecture
modeling (cf. Subsect. 5.7.2), an integrated architecture development environ-
ment was elaborated using gradual refinement from a coarse-grained logical
to a fine-grained concrete architecture (cf. Subsect. 5.7.3). We illustrated, how
architecture refinement can be formalized by appropriate domain-specific pat-
terns such that the development of suitable tool support is possible.

Furthermore, we have demonstrated that tight integration can be achieved
even in the case of a-posteriori integration of heterogeneous tools (cf. Sub-
sect. 5.7.4). Wrappers are used. for this purpose. As the wrapper development
process is strongly architecture- and model-driven, the process can be per-
formed at a fairly high level of abstraction with considerably reduced effort.

To evaluate the practical relevance of the approach and its generality, the
results of subproject I3 will be applied and extended within a DFG transfer
project in the area of business applications (cf. Sect. 7.8).

Besides its evaluation in industry, current and future work will address
some extensions to the approach presented. For instance, for modeling a
wrapper, some concepts including inheritance are missing. The use of inheri-
tance would facilitate modeling and would simplify the resulting models (cf.
Fig. 5.65). Another open problem addresses bidirectional consistency between
the materialized view, realized by the homogenizing wrapper, and the data
model of the underlying tool. Up to now, changes of the materialized view are
propagated to the wrapped tool but not vice versa. For the latter, the events
thrown by a tool, if existing, have to be regarded within all four phases of
the wrapper development process. This requires extensions to the technical
infrastructure as well as of the modeling formalism on the conceptual level.
Both aspects will be also addressed in the transfer project.

6

Steps Towards a Formal

Process/Product Model

This chapter discusses results towards a formal process/product model (abbr.
PPM) we have achieved so far. The results are of a preliminary nature. Hence,
there is plenty of room for further research.

We have sketched the problem of developing a formal PPM in Sect. 1.1.
Section 2.6 has discussed, how the different submodels of the application do-
main model are interrelated to each other. We have given details in Chaps. 3
to 5 on how tools are systematically constructed in a model-driven way. We
are summarizing our findings in a dedicated chapter, since the formal PPM is
the most challenging problem we addressed within IMPROVE.

The chapter is structured as follows : Sect. 6.1 gives an overview of a PPM
in the context of model-driven tool construction. Sections 6.2 to 6.4 present
results for the PPM we have achieved during methodological tool construction
for novel cooperative support (Sects. 3.1, 3.2, and 3.4). These sections cover
case studies, where the model-driven aspect of tool construction was stud-
ied more extensively than elsewhere. The functionality of these tools has to
meet the specifications made on the application domain model layer. Finally,
Sect. 6.5 gives a summary of what we have achieved as well as a long list of
open problems.

The objective of this chapter is three-fold: Firstly, it again gives a motiva-
tion for working on the interesting problem of developing a formal PPM. Sec-
ondly, it presents preliminary findings achieved within IMPROVE. Thirdly, it
is an invitation for other groups to share our endeavor towards a formal PPM,
covering all aspects from application domain modeling down to details of tool
construction.

6.1 From Application Domain Models to Tools:
The Sketch of a Layered Process/Product Model

M. Nagl

Abstract. This section gives an introduction on the relation of the process/product
model to tool development. We concentrate on tools offering novel functionality
(experience-based, consistency, reactive, see Sect. 1.1 and Chap. 3). We motivate
again the challenging task of developing such a comprehensive model. We give a
summary how application domain models are structured (for details see Sect. 2.6),
and we present how the corresponding information fits the tool construction process.
A categorization of open problems related to our preliminary results for a coherent,
comprehensive, and uniform model is given at the end of this section. The problems,
themselves, are presented in Sect. 6.5. The section also serves as an overview for this
chapter.

6.1.1 Introduction

In Sect. 1.1, we already stated that the development of a comprehensive and
formal process/product model (abbr. PPM) is the scientific key problem of
IMPROVE. This chapter discusses what we have achieved so far w.r.t. this
problem.

PPM Characteristics

We already discussed that the PPM should be structured into different layers,
from application domain models to platform models (cf. Fig. 1.6). On every
layer, there is a complete description of the product, i.e. the result of the design
process (overall configuration). Trivially, we find hierarchies on every layer.
In top-down direction, from layer to layer, the number of details is growing.
The model is transformed from layer to layer, from an explicit model to more
implicit descriptions (code). The product is complemented by the associated
design process on every layer. Like the product, the process is hierarchically
structured. An abstract process model is transformed into tool commands and
corresponding code.

In Sect. 1.1, it was also discussed that one characteristic of IMPROVE is
that we started with application problems and models. In particular, we did
not build tools which are evaluated afterwards and are either appreciated or
rejected. Instead, we studied industrial work processes first to see what kind
of support is necessary. Thus, we first fixed application domain models and
the required functionality of tools, before building these tools.

It was also discussed in Sect. 1.1 that IMPROVE follows an a-posteriori
approach in the sense that existing tools were further used, if available and
useful. This principle makes the problem of deriving a suitable PPM even
harder, since it has to incorporate the functionality of any kind of given tools.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 593–604, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

594 M. Nagl

application domain models

platform models

Section 2.6(a)

UI funct.

mapping
models

S
ec

tio
n

6.
2

fin
e-

gr
. c

on
si

st
en

ci
es

S
ec

tio
n

6.
3

S
ec

tio
n

6.
4

re
ac

tiv
e

m
an

ag
m

en
t

(e)

ex
p.

-b
as

ed
 s

up
po

rt

concept. tool
model/code

(b
)

(c
)

(d
)

deficits
 Section

 6.5

Fig. 6.1. Layered PPM: overview of results and chapter

PPM Survey

Figure 6.1 gives a survey of the results to be discussed in this section and, later
on, in this chapter. We see the layered PPM according to Fig. 1.6, ranging
from application domain models (a) down to platform models (e). In between,
we see three columns, which are related to novel tool functionality, as intro-
duced in Sect. 1.1 and discussed in detail in Sects. 3.1, 3.2, and 3.4, namely
experience-based process support (b), consistency handling by integrators (c),
and reactive project management (d). These tree columns are only examples
for the relation of the PPM to the tool construction process. In the correspond-
ing projects this relation has been studied more carefully than in others.

Column (b) has been a cooperation of subprojects A1/B1, (c) of A2/B2
and, finally, (d) of I1/B4. For subproject names and roles, see Fig. 1.27. Hence,
the development of these columns, as well as their relation to application
domain models, was a joint effort between engineering and informatics.

For any of the three tool development case studies we will present a method-
ology how to get to the tools, beginning with the corresponding information of
the application model. We do not have a coherent and uniform methodology
for all three cases yet.

Overview

This section is structured as follows (see again Fig. 6.1): We start by sum-
marizing the application domain models in the next subsection (part (a) of
Fig. 6.1). Especially, we explain that the different parts of the application
model fit together (for details, see Sect. 2.6), each giving a specific perspec-
tive. Then, we sketch which part of the application model is relevant for which
tool functionality, i.e. we explain the relation between application model and
the three tool models (cf. column (b), (c), and (d) of Fig. 6.1). Finally, we

The Sketch of a Layered Process/Product Model 595

sketch those deficits of the PPM which are already evident from the coarse
perspective given in this section. This section ends with some concluding re-
marks.

The whole chapter is correspondingly structured as follows (see again
Fig. 6.1): There are three following sections according to the three columns
((b), (c), and (d) in Fig. 6.1). These three sections show that tools – according
to the three novel concepts – can be developed in a well-understood construc-
tion process. In the last section of this chapter, we give a long list of open
problems according to the PPM development.

6.1.2 Application Models: Domain and Organizational Knowledge

Application knowledge – also to be used for tool construction – should be
divided into two different parts (cf. Fig. 6.2): domain knowledge which is not
dependent on the organization, where chemical processes are designed, and
organizational knowledge, which depends on the organization. Both parts are
(implicitly) contained in the application models as described in Chap. 2. In this
section, we want to explicitly distinguish between domain and organizational
knowledge. We first give a discussion for the product part of the PPM and
later of the process part. This distinction between domain knowledge on one
side and organizational knowledge on the other, or products and processes, is
mainly used in Sect. 6.5 to define further and open problems.

Domain Knowledge Models

Domain knowledge consists of subdomain models to divide the overall design
process into coarse clusters of activity (see Fig. 1.1), which we also called
working areas. Examples are synthesis, analysis, economic investigations etc.
These working areas usually occur in any design process and are, therefore,
independent of the organization. Coarse-grained information laid down about
working areas and their relation have been called partial models in Chapter 2.
What might be specific for an organization is, whether corresponding activities
occur and, if, how they are structured internally.

Domain knowledge also includes product data models (cf. Chap. 2). They
describe which entity types appear in the domain (in our case chemical engi-
neering) and how they can be grouped according to inheritance, aggregation
etc. Ontologies should be organization-independent, i.e. not to go to details
which are specific for an organization.

Also, there are dependencies between entities from one or from different
subdomains, which say that these entities are semantically related to each
other. More precisely, these relations connect entity types. The relations do
not depend on in which documents the corresponding entities appear.

Summing up, domain knowledge consists of a coarse-grained division of
the work process into working areas (subdomains) in form of partial models,

596 M. Nagl

do
m

a i
n

kn
ow

le
gd

e
or

ga
ni

za
tio

n a
lk

no
w

le
dg

e

fin
e-

g r
ai

ne
d

co
ar

se
-g

ra
in

ed
m

id
dl

e-
g r

ai
ne

d

fin
e-

gr
ai

ne
d

su
bd

o m
ai

n
m

od
el

s

de
fin

in
g

w
or

ki
ng

a r
ea

s
an

d
su

b c
on

fig
ur

a t
io

ns

do
m

ai
n

on
to

lo
gy

&
de

pe
nd

en
ci

es

d e
fin

in
g

ba
si

c
en

tit
ie

s
an

d
re

la
tio

ns
of

a
do

m
ai

n

do
cu

m
en

t&
de

pe
nd

e n
cy

m
od

e l
(a

nd
re

su
lt

pr
oc

es
s

m
od

el
)

d o
cu

m
en

tc
on

te
nt

s
m

od
el

,i
nt

e r
-d

oc
um

e n
t

re
la

tio
ns

(fi
ne

-g
ra

i n
ed

ac
tiv

i ty
m

od
el

)

Defining overall configuration and development process structure

Defining underlying knowledge of subdomains and product data
for development processes

de
fin

in
g

m
an

ag
em

en
ti

nf
or

m
a t

io
n

ov
er

al
lc

on
fig

ur
at

i o
n

on
fin

e -
gr

ai
ne

d
l e

ve
l

M
at

he
m

at
ic

al
M

od
el

s

P
ro

ce
ss

C
on

tro
l

S
ys

te
m

Pr
oc

es
si

n g
M

at
er

ia
l

P
ro

ce
ss

P
la

nt

C
os

ts

P
ro

ce
s s

C
on

tro
l

C
he

m
i c

al
Pr

oc
es

s
S

ys
te

m

si
m

.m
od

e l
ov

er
a l

ls
im

.

si
m

. 1
si

m
. nsi
m

.e
va

l.

ov
er

al
lP

FD

re
s u

lti
ng

do
cu

m
en

ts
of

. .
.

..
.

Pr
oc

es
s

M
at

he
m

at
ic

al
M

o d
el

P
ro

ce
ss

S
te

p
m

od
el

ed
by

P
ha

se
S

ys
te

m

P
ro

ce
ss

P
or

t

P
ro

ce
ss

S
ta

te

M
od

el

re
pr

es
en

te
d

by

1.
.n

2 1.
.n

1.
.n

0.
.n

0.
.n

0.
. n

0.
.n

2

M
od

el
C

ou
pl

in
g

1

2

1

m
od

el
ed

by

m
o d

el
ed

by

P
FR

E
nt

ha
lp

y
C

ha
n g

e

R
P

lu
g

H
e a

te
r

C
on

ne
ct

or

Pr
oc

es
s

M
at

he
m

at
ic

al
M

o d
el

P
ro

ce
ss

S
te

p
m

od
el

ed
by

P
ha

se
S

ys
te

m

P
ro

ce
ss

P
or

t

P
ro

ce
ss

S
ta

te

M
od

el

re
pr

es
en

te
d

by

1.
.n

2 1.
.n

1.
.n

0.
.n

0.
.n

0.
. n

0.
.n

2

M
od

el
C

ou
pl

in
g

1

2

1

m
od

el
ed

by

m
o d

el
ed

by

P
FR

E
nt

ha
lp

y
C

ha
n g

e

R
P

lu
g

H
e a

te
r

C
on

ne
ct

or

P
FD

P
FD

C
o m

os
D

ev
ic

e
< <

D
ev

ic
e>

>

H
E

<<
D

ev
ic

e>
>

H
E

2
<<

D
ev

ic
e>

>

E
nt

ha
lp

yC
ha

ng
e

<<
D

ev
ic

e>
>

C
om

os
D

e v
ic

e
<<

D
ev

ic
e>

>

H
E

<<
D

ev
ic

e>
>

H
E

2
<<

D
ev

ic
e>

>

E
nt

ha
lp

yC
ha

ng
e

< <
D

ev
ic

e>
>

si
m

.m
od

el

co
ns

tit
ue

nt
s

of

in
te

rn
al

st
ru

ct
ur

e
of

Fig. 6.2. Application model containing domain and organizational knowledge (the
figure concentrates on the product perspective and mostly on type information)

The Sketch of a Layered Process/Product Model 597

of entity types referring to the products of the design process in a domain,
and dependencies between entity types in form of an ontology.

As we have seen in Chap. 2, such domain knowledge models can be layered,
transitions between layers express e.g. class-instance relations (see CLiP in
Sect. 2.2). There may also be clusters of related items, which are concatenated
in partial models (again to be found in CLiP or OntoCAPE).

Organization Knowledge Models

The activities within a working area and the corresponding design results
(documents, subconfigurations) and the contents of these results depend on
organizational know-how. This knowledge differs from organization to orga-
nization. Let us start with the design products and later discuss the design
process.

If we structure a plant it is e.g. dependent from the company how a process
flow structure is looking like. One company might prefer one single PFD cover-
ing the whole plant. Another might use a coarse PFD surveying the important
parts of the plant, and use further PFDs to detail these parts. In general, this
implies different result structures: Which documents describe a result, how
do these documents reflect hierarchies, and which dependency relations exits
between documents. We call the corresponding determination the document
and dependency model (DDM).

The reader should note that dependency here only means, one result B de-
pends on another result A, in the sense that if A is changing, B has potentially
to be changed as well. The reader should also note that the DDM is also on
type level. So, it defines document types and their relations, and not concrete
documents and links between them. The overall configuration, as introduced
in Sect. 1.1, depends on the DDM used in a company.

As the product structure on a medium-grained level depends on the or-
ganization, the internal structure of these documents is dependent as well:
Which details appear within a document, how are these arranged, how are
cross-references handled etc.? We call the corresponding part of the organi-
zational model the document contents model (DCM). This model is again on
the type level.

As already discussed, many fine-grained relations exist between increments
of different documents, usually developed by different engineers. If now the
documents have a specific internal structure, so do the mutual relations be-
tween increments of different documents. We call the model part, responsible
for these fine-grained relations, interdocument relation models. These relations
have to be consistent with the above mentioned entity type dependency rela-
tions (cf. Sect. 6.3), defined in domain knowledge. Again, the interdocument
relation models are defined as relations between different types of increments
of different documents.

The above models DDM, DCM, and the models for interdocument rela-
tions are on type level. A concrete overall configuration (cf. Sect. 1.1) is on

598 M. Nagl

object level. (Trivially, it also belongs to organizational knowledge.) It con-
tains the occurring documents and their relations (being consistent with the
DDM), the contents of these documents (being consistent with the DCM), and
the interdocument relations, being consistent with the interdocument relation
models. Theses structures on object level are not to be seen in Fig. 6.2.

We see that on the domain knowledge side, we are mostly on type level.
On the organizational side we have type and object information.

Process Models Have to Be Divided as Well

Above, we mainly argued on the product view. We are now switching to
the process view (coarsely shown in Fig. 6.2). The working area model was
domain-specific, but enterprise-independent (top of left side). One level down
in detail we get into the dynamics problem (cf. Sect. 3.4, but also 2.4 and
5.1). The corresponding activities thereby belong to complete documents. As
the documents and dependency model was depending on the organization,
so does the corresponding middle-grained process model. Let us call it result
process model (top of right side). For any resulting document, there has to be a
corresponding activity delivering the result. There, we find corresponding roles
and team members. For any dependency relation between documents there is
a corresponding change activity which changes a document B, if dependent
on A, and if A has been altered. The result process model describes the task
types and relations between them, so it is a model and not a concrete net.
The corresponding task nets on object level have to be consistent with the
result process model.

One further level down we have the process which builds up or main-
tains a document. The process determines how this is done. We call this fine-
grained activity model (cf. Sects. 3.1, 2.4, and bottom of right side of Fig. 6.2).
Of course, this level is again organization-dependent, as the structure to be
built/changed is dependent. On this level we also find processes changing the
internal structure of one document, thereby answering changes of another doc-
ument. Again, we have concrete and fine-grained process structures on object
level, being consistent to the activity model.

Domain versus Organization Knowledge

We see that going one level down of working areas, we get organization-
dependent knowledge (documents, dependencies between documents, subpro-
cesses and their relations). Even more, if we regard the contents of documents
or their fine-grained work processes, we are on the organization-dependent
side. The types of entities and of their relations, however, have to be consis-
tent to the organization-independent domain knowledge.

So, the types of possible entities in form of ontologies are independent of
the organization. The aggregation of the corresponding entities within doc-
uments and their fine-grained relations within and between documents, are

The Sketch of a Layered Process/Product Model 599

organization-dependent. Hence, the configuration of documents and their con-
tents are organized differently in each company. The same argumentation
holds for the process side. This organization, however, has to obey the de-
terminations given in the domain knowledge models or in the organizational
models.

If, however, in a domain we have an agreement in form of a standard,
which document types occur and which contents are to be found within these
documents, this organizational knowledge becomes organization-independent.
Thus, it can be counted as domain knowledge. Such a standardization often
exists in engineering disciplines, in most cases this standardization is not com-
plete. We see, that the division between domain and organizational knowledge
can vary and that it depends on the amount of agreement in form of standards.

Application Domain Models: Products, Processes, Tools

Above, we have discussed the application model layer and we have divided
it into domain knowledge and organizational knowledge. We could also have
divided this layer into products, processes, and further aspects. This is to be
shortly discussed here. Thereby, we only discuss information on type level.

The product view of the application model consists of a division into sub-
domains and of a domain terminology (ontology) together with further type
dependencies. Both form a basic level of notions for the product side. The
product view further contains the document and dependency model, the doc-
ument contents model, and the interdocument relation model.

On the process side we have the working area model, being a part of the
domain knowledge. Furthermore, we have the organization-dependent result
processes model, and the fine-grained activity model.

A further aspect is, how to make a connection to process or product models
of existing tools in the sense of a-posteriori integration. This is not an easy
question, as models of given tools have to fit the application model layer in
some way. Furthermore, we extend their functionality and, in some cases,
we have built new tools as no suitable ones were available. This corresponds
to documents and increments accessible and modifiable by tools, as well as
to the commands manipulating these units. Please note that we speak of
application models and not of detailed user interface determinations. So, if
there is a tool to structure one big PFD, this tool can be used to create a
document (document model) and offers certain commands for units and their
composition to appear in this document (contents model).

It also should be remembered that results of the development process are
on the structural side (how a plant is built up, of which part a simulation
consists of), but also on the value side (what quantity has the output, how
costly is the chemical process etc.). In the application models, both aspects
have to be regarded, together with their mutual connections.

600 M. Nagl

6.1.3 Application Models as Input for Constructing Novel Tools

In Chap. 3, we have discussed novel tools for supporting chemical engineering
design processes. The development process of these tools essentially contributes
to the PPM, because any tool construction process has to use the application
layer of the PPM model. It has to extend it on lower levels, to fulfill the needs
of tool implementation. This is the main message of this chapter which is
discussed in the following three sections.

Application Models as Input

We shortly demonstrate here that the tool construction process needs infor-
mation from the application model as input. This nicely shows the integrative
approach of IMPROVE between engineers and computer scientists. We will
explain the connection between application models (horizontal part (a) of
Fig. 6.1) and tool construction (vertical columns (b), (c), and (d) of this fig-
ure). We do this in a sketchy way, as details are given in the three following
Sects. 6.2, 6.3, and 6.4, explicitly discussing these columns.

Process-centered, fine-grained technical tool support (see Sects. 3.1 and 2.4)
needs the knowledge contained in the fine-grained activity model. Indirectly,
also, the middle-grained result process model is necessary, in order to see in
which or between which documents the fine-grained support is to take place.
As fine-grained operations also take the state of documents into account, the
document contents model is needed as well.

Fine-grained interdocument consistency handling by integrators (see Sects.
3.2 and 2.2, 2.3) is on the product side. So, it does not need process knowl-
edge. However, it needs the document and dependency model, the document
contents and interrelation model, and the underlying ontology containing cor-
responding type relations.

Finally, middle-grained reactive project management (see Sects. 3.4 and
2.4) does not need fine-grained models at all. However, process as well as
product knowledge is necessary. So, the document and dependency model is
needed as well as the result process model.

Not All Tool Information on Application Model Layer

As we shall see, a significant amount of information needed for the tool con-
struction process is not available on application model layer. This is in order
as engineers responsible for the application model need and should not care
about tool construction details. However, we also miss application-dependent
information, which is too detailed to be found in the application model.

Let us explain the difference between information on the application model
side on one hand and the necessary information for the tool construction
process by taking reactive management as an example: Further submodels are
necessary as those for variants, versions, or subconfigurations, or the relation

The Sketch of a Layered Process/Product Model 601

between processes and products. They are application-dependent but regarded
to be too detailed to appear on the application model layer. The same holds
true for technical and semantical details, so as to specify when development
tasks can start depending on the state of previous tasks. Thus, for the tool
construction process, there is missing information, belonging to the application
layer of Fig. 6.1, which is too specific and detailed to be handled there.

Next, UI behavior has to be conceptually determined, as entities to be
accessed/manipulated by the tool have to be found as well as their relation to
entities of the application model. This belongs to the upper parts of the three
columns (b)–(d) of Fig. 6.1. Please note that detailed UI considerations are
not to be handled in the PPM.

This leads to principle problems concerning the connection of application
models to lower levels :

(a) How much technical and semantical knowledge is to be found on appli-
cation layer? Who is delivering the missing and necessary application-
dependent knowledge? If this knowledge is not found on the application
layer, on which layer is it found?

(b) Clearly, the application model engineer should not become a UI specialist.
However, the connections of the conceptual UI model to the application
model have to be made clear. How and in which cooperation form is that
done?

(c) There is also knowledge on the level of conceptual internal models for
tools (middle layer of the columns) which is necessary and which has to
be determined in connection with the application engineer. Again, how is
this done?

This problem will be discussed in more detail in Sect. 6.4 exemplarily for
column (d) of Fig. 6.1, though it also appears for columns (b) and (c) as well.
Especially, these questions will be addressed in Sect. 6.5, dealing with the
status and open problems of the PPM.

6.1.4 Categories of Open Problems for the Model

This subsection aims at sketching open problems which have to be addressed
to achieve a comprehensive PPM. We only give an explanation on the level of
problem categories rather than on that of individual problems.

Problem Categories for PPM Development

The problem categories for PPM development are the following (cf. again
Fig. 6.1):

1. Horizontal model integration: The three columns define exemplary occur-
rences of PPMs beyond the application layer. They are related to three

602 M. Nagl

sample tool construction/extension processes. For each specific tool con-
struction process, the column works out the layers below the application
model. The PPM in these three columns have not been investigated w.r.t.
similarity or uniformity. So, it is not regarded in general up to now, how
the three vertical columns (b)–(d) do fit together. Horizontal integration
is considered yet only on application layer (see Sect. 2.6 and the last sub-
section). It is also regarded on platform layer, where the models are rather
technical and implicit.

2. Vertical integration and coherence: The results to be described in this
chapter are each specific for a group of IMPROVE using a specific model-
ing approach and a specific tool development machinery. So far, we have
not identified which determinations occur on which layer. For example, it
should be further elaborated how the UI model and other specific details
mediate between application models and further layers of the PPM.

3. Synergy: In Sect. 5.5, we have described that the novel support concepts
can be synergistically integrated (for example combining direct process
support with integrators). This synergy crosses the columns in Fig. 6.1,
as the novel concepts were realized by different groups. So, at the moment
synergy is just programmed and not explicitly dealt within the PPM. This
synergy model relating models of different columns is still missing.

4. General and specific models : As we have seen on application layer level,
there are general parts (domain knowledge) and specific parts (organi-
zational knowledge). Other divisions of “general” and “specific” can also
be regarded, as common structures of different documents on conceptual
tool models (see Chap. 3). In an ideal form, the PPM clearly separates
different levels of generality (e.g. general aspects of development process
structures, development processes in chemical engineering, for a specific
subdomain, within a certain company, certain habits, etc.).

5. Parameterization: When having separated general from specific aspects,
the parameterization aspect can be addressed. How to adapt a model to
a specific context (company), to a specific chemical process, to a spe-
cific subdomain of chemical engineering etc.? Parameterization is handled
within the three columns but not by a general mechanism.

6. Adaptation to emerging knowledge: We have learned (e.g. in Sect. 3.4) that
process and product knowledge is emerging. It even can emerge during
project execution. This not only requires model adaptations through all
hierarchies within one PPM layer but also between different layers. This
has been regarded only within one column. Can this adaptation, either
between projects or during a project, be formulated uniformly within the
whole PPM?

7. Deviation to allow distributed models: We have also learned that in the
case of distributed development, different companies have to share some
models but also need local deviations in order to get along with their
contextual development cultures. Again, there are first models in column
(d). However, this is a topic which has to be handled on all layers, also for

The Sketch of a Layered Process/Product Model 603

the transition between these layers, and uniformly between the different
columns.

8. Application to other domains : The question arises, how to transfer our
modeling and tool construction knowledge to other domains beyond chem-
ical engineering. The problems are essentially the same in all design and
development processes. The application model parts of above (but also
the missing details) are the parameters to be changed, when switching
the application domain, e.g. to software development.

Notations, Methodologies, and Tools for Modeling

Even more, there are open problems corresponding to the notations, methods,
tools, and use of all of them (cf. Sect. 1.1).

Notations (languages) for describing a PPM on all different layers are not
available and have to be invented. They have to cover all aspects of the model
and all the different information being contained in layers. A methodology to
use these notations building up a PPM is also not available.

Furthermore, tools to support notations or a methodology, when develop-
ing a PPM, are needed as well. Finally, notation, methodology, tool develop-
ment, and their use are intertwined with each other. So, there are not only
open problems w.r.t. modeling but also w.r.t. an infrastructure to support
modeling.

With respect to notations, methods, and tools we also have some partial
results in this book. For example, we find the C3 notation for work processes,
notations for representing application domain models, or PROGRES as type-
and instance-based notation for conceptual modeling of tools. Furthermore,
we find methodologies for using these languages. We also find tools and tool
adaptations to support product and process modeling.

However, we do not find a modeling suite for the layered PPM, where adap-
tation of modeling for different domains and experience knowledge, method-
ological use of modeling, transitions between layered models, etc. are uniformly
supported.

6.1.5 Conclusion

Summary: In the first subsection, we introduced specific instances of a PPM
resulting from three sample tool development processes. We gave a catego-
rization of application models in the second subsection. This categorization
distinguished domain-independent and -dependent models as well as the pro-
cess and product view. We need this categorization essential for the open
problem Section 6.5. In the third subsection, we have sketched which parts
of the application model are needed for the construction of tools providing
novel design process support. We also discussed that the application model
is incomplete and has to be enriched during tool construction. In the last
subsection, we have sketched problem categories to be addressed, in order to

604 M. Nagl

get a comprehensive, formal, and uniform PPM of design and development
processes.

This section mainly serves as an introduction to the chapter. Section 2.6
has demonstrated that horizontal integration has been largely achieved on the
application model layer. In contrast, such horizontal integration is still an open
question on the layers below. The next three sections describe contributions to
the PPM below the application layer gained in three specific tool construction
processes (see (b), (c), (d) of Fig. 6.1). As we will show, vertical integration
of the PPM for specific tools has been accomplished, constituting a good
starting point for horizontal integration of the PPM beyond individual tool
construction processes. The last section of this chapter will elaborate on a
long list of open problems using the categories introduced in this introductory
section.

6.2 Work Processes and Process-Centered Models and
Tools

M. Miatidis, M. Theißen, M. Jarke, and W. Marquardt

Abstract. The first vertical column of the layered process/product model (PPM)
addresses the direct, experience-based support at the technical workplaces of design-
ers. More specifically, we demonstrate the transition from application domain models
to executable tool models, focussing on the process perspective of the PPM. This
vertical column is jointly realized by the A1 subproject, providing the fine-grained
application domain models, and the B1 subproject, dealing with their conversion to
executable tool models to be used by process-integrated tools. In this contribution,
we provide an outline of the cooperation results.

6.2.1 Introduction

Direct, experience-based process support at the technical workplaces of design-
ers requires to present crystallized knowledge from previous design processes
to a designer while he is interacting with heterogeneous software tools. Thus,
on the one hand, a fine-grained formal representation of both the design activ-
ities and design products is needed. On the other hand, the various software
tools involved in the design process must be able to enact the process without
interfering with the designer’s creativity.

In this section, we describe the transition from application domain models
to executable tools. This transition forms the first vertical column (b) of the
layered process/product model (PPM) shown in Fig. 6.1. Two subprojects
of IMPROVE are involved: The A1 subproject addresses the analysis of the
design processes in the IMPROVE reference scenario (cf. Sect. 1.2.2) and the
provision of fine-grained work process and decision models (Sects. 2.4 and 2.5).
These models serve as a starting point for the development of tool support
employing the process integration mechanism developed by the B1 subproject
(Sect. 3.1).

The section is structured as follows: First, we give an overview of the appli-
cation domain models of A1 and the executable tool models of B1, respectively
(Subsect. 6.2.2). We successively describe the transition from application do-
main to tool models in Subsect. 6.2.3. Then, in Subsect. 6.2.4, we relate appli-
cation and tool models to the overall layered PPM. Finally, we conclude with
a summary and a discussion of still open issues (Subsect. 6.2.5).

6.2.2 Application Domain and Tool Models

Each of the subprojects A1 and B1 uses modeling approaches that are well-
suited for the representation of the relevant aspects addressed by the subpro-
ject. The A1 models represent the perspective of the application domain, i.e.,

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 605–611, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

606 M. Miatidis et al.

Application Domain Models
Tool Models

CLiP

Environment Model

Tool Models
Contextual

Process Models
(NATURE)

Product
Models

Guidance Models
(SLANG)

Traceability
Models

Tool Wrapper Specifications

Generalized Work
Process Models
(partial model

Process Models
of CLiP)

Document
Models

Concrete Work
Process Models (C3)

Concrete Decision
Models (IBIS)

Product Data
Models

Fig. 6.3. Integration of work process models with process-centered tool models

design processes in chemical engineering, whereas the tool builder’s perspec-
tive (B1) strives for enactable models for process-integrated tools.

We first discuss the application domain models of the vertical column (see
upper part of Fig. 6.3):

• Work processes performed during a concrete design project are represented
using the semi-formal C3 notation (see Subsect. 2.4.4). In particular, C3
provides modeling concepts for the activities in design processes, the infor-
mation items (products) created and employed during the activities, and
the complex interdependencies between different activities (such as syn-
chronous communication between several actors) and between activities
and information items (information flow).

• Notations like IBIS [798] and DRL [808] (see also Sect. 2.5) can be used for
modeling design decisions and the underlying rationale in concrete design
projects.

• For the formal representation of generalized work process models, the par-
tial model Process Models of CLiP (Subsect. 2.4.6) can be used. General-
ized work processes serve as templates for similar design projects in the
future. As Process Models inherits some concepts from IBIS, it also pro-
vides a formal representation of rationale-related aspects.

Work Processes and Process-Centered Models and Tools 607

• In addition to Process Models, CLiP contains several partial models ad-
dressing the representation of the products and documents involved in de-
sign processes (see Subsect. 2.2.3).

The lower part of Fig. 6.3 shows the five submodels employed during tool
construction:

• A contextual process model plays a central role for the modeling of method
guidance provided by process-integrated tools. Its representation is based
on the NATURE process metamodel [201] that is able to capture the con-
text of the designer while a design activity is enacted. A context is as-
sociated with a given situation made up of product states and with the
decision which can be taken in the situation. Different granularity levels
of contexts can be handled, including the direct execution of elementary
actions, systematic plans composed of sub-contexts, and choices among al-
ternative contexts (see also Fig. 3.11). The alternatives of a choice context
can be annotated with positions and arguments that catch the underlying
design rationale.

• A tool model describes the services and the GUI capabilities of a process-
integrated tool. Such a description is mandatory for the external triggering
of tool services and for adapting the tool GUI according to process defini-
tions in order to provide integrated method guidance from inside the tool.
Process and tool models are integrated in so-called environment models
that uniformly describe the automation, guidance, and enactment services
which establish the foundation for process integration.

• A product model extends the existing data models of process-integrated
tools with further domain-specific product elements and their relation-
ships.

• A guidance model enriches NATURE descriptions of method fragments
with additional semantics in order to make them interpretable by a pro-
cess engine. The PRIME framework is open and flexible enough to support
various process-modeling languages for the interpretation of method frag-
ments. For the IMPROVE case study, two basic interpretable languages
are employed: An extended version of the SLANG language (based on
Petri nets, [527]) is used for method fragments involving multiple data de-
pendencies. Method fragments that simply shift control from one context
to another are represented by UML state charts [880].

• A traceability model extends a NATURE process model in order to en-
able the almost automatic capture of extended traceability information
concerning the design history inside process-integrated tools. It is able to
represent the process steps executed, the products involved, the major
decisions taken, and their possible interrelations.

608 M. Miatidis et al.

6.2.3 From Application Domain Models to Tool Models

The first vertical column of the layered PPM addresses the refinement of ap-
plication domain models to tool models, the latter serving as a specification for
a process-integrated environment based on process-integrated software tools.
In the sequel, we describe the basic steps of this transition.

To a large extent, these steps are accomplished manually; they require a
tight cooperation between two specialized groups of experts: application do-
main experts and tool builders. The first group comprises experts from the
chemical engineering domain, who create application domain models on a
semi-formal or formal level, whereas members of the latter group are respon-
sible for their transformation to fine-grained tool models and the implemen-
tation of tool wrappers according to the tool models.

Initially, application domain experts define a domain ontology that cap-
tures the knowledge of the fine-grained cooperative work among designers.
The aim of this task is the identification and formalization of design knowl-
edge based on the recording of real design processes by means of the C3
notation. Thanks to its ease of use, C3 allows the active participation of ex-
perienced designers (i.e., chemical engineers and technicians who are typically
not familiar with more elaborate, but also more complex process modeling
techniques) in the creation of design process models. These models of con-
crete design processes must be generalized in order to make them applicable
for similar design projects in the future, and they must be formalized to elim-
inate any ambiguity. The transition from semi-formal C3 models of concrete
design processes to formal CLiP models of generalized processes is described
in detail in Subsects. 2.4.2 and 2.4.5.

From the software engineering perspective, work process models in CLiP
are evaluated by method engineers in cooperation with chemical engineers,
and they are translated into method definitions represented as NATURE con-
textual models. Thus, the interpretation is primarily based on the mapping
of CLiP activities to the three types of NATURE contexts.

The transition can be supported at the metamodel level as follows:

• Decision activities, modeling either the selection or the evaluation of sev-
eral alternatives, can be directly mapped to choice contexts. Then, each
alternative activity is also mapped to an alternative context of the corre-
sponding type. Further, IBIS decision models can be directly represented
by arguments for or against each alternative in the choice context. Support
of DRL models is an issue of future work.

• Synthesis and analysis activities, containing other subactivities, can be
represented as plan contexts that can be provided as alternatives of a
choice context. Then, each subactivity is modeled by its corresponding
context type and inserted in the control flow of the parent plan context.

• Elementary activities that are directly executed by tool actions and, thus,
cannot be further decomposed, can be represented as executable contexts.

Work Processes and Process-Centered Models and Tools 609

• Input information of a CLiP activity can be directly represented as a
collection of products.

• For the representation of output information, we can distinguish two cases:
When referring to elementary actions that cannot be further refined, out-
put information can be modeled as product modified by the applied action
of the corresponding executable context. In case of a composite activity,
output information cannot be directly modeled and attached to a plan
context. Yet, it is subsumed by the output information of the executable
contexts transitively contained in them.

Once the NATURE contextual model has been established, the tool wrapper
builder, responsible for the process integration of software tools, plays a dom-
inant role in the remainder of the transition process. In cooperation with the
method engineer, he evaluates the degree to which a relevant software tool
(or even a set of tools) conforms to the requirements for process integration
as detailed in Sect. 3.1. Based on this evaluation, it is decided whether a full
or partial process integration of the tool in consideration is possible. Sub-
sequently, executable contexts are coupled with existing tool services, plan
context definitions are represented by means of interpretable formalisms (i.e.,
SLANG or UML state charts), and, if a full process integration is possible and
desired, new command elements are introduced, which represent the intentions
of choice context alternatives.

The final step of the transition is the implementation of tool wrappers
according to the generic tool wrapper architecture of PRIME, whose role
is the dispatching of process requests to tool-specific ones, according to the
environment model definitions. Inside the tool wrapper, a product model is
implemented that must be consistent to the product and document models in
CLiP. This model is realized using a tool-specific or XML-based format.

6.2.4 Relation to the Overall Process/Product Model

In this subsection, we relate the application and tool models presented so far
to the overall layered PPM (Fig. 6.1).

The overall PPM is organized along the classification dimension of four
layers: application model layer, external model layer, internal model layer and
basic model layer. In a hierarchical top-down decomposition, each layer uses
concepts from its direct upper layer and enriches them with additional aspects.

The vertical column shown in Fig. 6.3 can be directly mapped to the
layered architecture illustrated in Fig. 6.4. In the following, we outline the
basic concepts and modeling abstractions employed at each layer.

Layer 1 consists of all high-level application models presented in this sec-
tion. Application models can be divided in two categories: the semi-formal
and the formal ones. Semi-formal models are described using the C3 nota-
tion to capture design processes at a coarse-grained level as well as DRL or
IBIS to represent the rationale of the major decisions made by the developer.

610 M. Miatidis et al.

Layer 1:
Application Domain
Models

Layer 2:
External Tool Models

Layer 3:
Internal Tool Models

Layer 4:
Platform Models Common Tool Wrapper Architecture

Tool Categories (as Black Boxes)

Tool Wrapper Specifications

Contextual Process Models
(NATURE)

Product
Models

Tool
Models

Guidance Models
(SLANG)

Traceability
Models

Semi-Formal Models (C3; IBIS or DRL)

Formal Models (CLiP)

Work Process Models Decision Models

Generalized Work
Process Models

Product Data
Models

Document
Models

Fig. 6.4. Relation of the models for experience-based support to the layers of the
overall PPM

Reusable process and decision patterns are represented as generalized tem-
plates in CLiP. CLiP also provides concepts for detailing the data model of
the products which are transformed by the design activities.

Layer 2 provides the external representation of all engaged tools. Until now,
there is no possibility to describe all details of the participating tools (e.g., the
sequences of the commands enacted inside tools are not represented). Tools
are just seen as ‘black boxes’ that support the execution of specific process
steps.

The internal tool models needed for tool construction reside at layer 3. Such
tool models comprise the contextual process, tool and product models that
are based on the disseminated application models. The first two flavors use
generic modeling formalisms for their representation (i.e., elements from the
environment metamodel), whereas the latter depends on the tool. At this layer,
tools are further refined to the services and GUI capabilities to be considered
for their process-conformed behavior. Contextual models are further extended
to formulate guidance and traceability models inside the tool wrapper.

Finally, layer 4 focuses on platform-related aspects. Its responsibility is to
hide the platform-specific details from layer 3 and ensure the unobstructed
use of process-integrated tools across many platforms. This purpose is largely

Work Processes and Process-Centered Models and Tools 611

attained through the construction of process integration wrappers according
to the common tool wrapper architecture (Sect. 3.1). These wrappers use
cross-platform protocols for communicating with tools.

6.2.5 Summary and Outlook

In this section, we have presented the first vertical column of the overall
PPM addressing aspects of experience-based support. We have presented the
corresponding application domain and tool models, described the transition
from the first to the latter, and shown how these models relate to the four
layers of the overall PPM.

In the following, we outline two open issues that still remain to be solved:

• The transition from application domain models to tool models is performed
manually. In consequence, its results are prone to inconsistencies and er-
rors. The implementation of converters for automating (at least parts of)
this transition could overcome these difficulties.

• The transition as described above relies on a representation of process
templates using the partial model Process Models of CLiP. Substituting
Process Models with its recently developed successor, the Process Ontology
described in Subsect. 2.4.6, is straightforward. Similarly, the other partial
models of CLiP can be replaced with OntoCAPE (cf. Subsect. 2.2.4). In
contrast, the integration of the Decision Ontology (see Subsect. 2.5), which
replaces the simple IBIS-based rationale model inside Process Models with
a more expressive variant of DRL, is still an open issue.

6.3 Model Dependencies, Fine-Grained Relations, and
Integrator Tools

S. Becker, W. Marquardt, J. Morbach, and M. Nagl

Abstract. The models developed within subprojects A2 and B2 together form one
of the vertical columns of the process/product model. The application domain mod-
els of A2 are refined to tool models of B2 such that integrator tools can be realized.
The process of building integrators is rather well understood in general, as is the
process of refining the application domain models of A2 to tool models of B2. Nev-
ertheless, important parts are missing for a concise and layered process/product
model.

6.3.1 Introduction

In this section, we present the transition from application domain models to
executable integrator tools (cf. Sect. 3.2). The transition represents a part of
the overall process/product model (PPM), namely the vertical column from
subproject A2, supplying the application domain models, to subproject B2,
importing these models and refining them to executable specifications for
integrator tools. The main focus is on the product perspective of the pro-
cess/product model, as integrators deal with products of the development
process.

This section is structured as follows : In the next subsection, we give a
short summary of the product perspective of the application domain models
necessary for integrators and developed within A2, and the tool models of
B2. Both are represented from the PPM perspective. Then, we discuss the
transition from application domain models to tool models in Subsect. 6.3.3.
After that, we relate these steps to the PPM layer structure presented in
Sect. 6.1. The last subsection discusses open issues of our approach.

6.3.2 Application Domain and Tool Models

In the following, the different submodels of the application domain and the
tool models, as presented in Chap. 2 and Sect. 3.2, will be summarized. Here,
we focus on the submodels being relevant for an integrator development.

Summary of Application Domain Models

In the application domain models, four submodels relevant for the realization
of integrators can be identified (see upper part of Fig. 6.5 and Sect. 6.1):

• Working areas (called partial models in CLiP) define a coarse-grained
model. Working areas represent activities as well as their results. The

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 612–620, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Dependencies, Fine-Grained Relations, and Integration Tools 613

Mathematical
Models

Process Control
System

Processing
Material

Process Plant

Costs

Process Control

Chemical Process
System

partial models and
relationships

Process Mathematical Model

ProcessStep modeled by

PhaseSystem

ProcessPort

ProcessState

Model

represented by

1..n 2

1..n

1..n 0..n

0..n

0..n

0..n

2

ModelCoupling
1

2

1

modeled by

modeled by

PFR

Enthalpy
Change

RPlug

Heater

Connector

Process Mathematical Model

ProcessStep modeled by

PhaseSystem

ProcessPort

ProcessState

Model

represented by

1..n 2

1..n

1..n 0..n

0..n

0..n

0..n

2

ModelCoupling
1

2

1

modeled by

modeled by

PFR

Enthalpy
Change

RPlug

Heater

Connector

domain ontologies and
fine-grained dependencies

document and
dependency model

document contents and
interdocument relationship

models

refined document
contents models

Class increment
type (UML class)

inheritance

edge type
(UML association)

HeatExchanger

HEATX HEATER

Reactor

REQUIL RPlug

AspenStream

MATERIAL HEAT

AspenComponent AspenPort

AspenInPort

AspenConnection

AspenDevice AspenOutPort
ComosDevice

(from Comos)
ComosPort

(from Comos)

Reaction
(from Comos)

PFR
(from Comos)

L
ReactorCascadeLink

Reactor
(from Aspen)

AspenPort
(from Aspen)

RPlug
(from Aspen)

REQUIL
(from, Aspen)

AspenConnection
(from Aspen)

MATERIAL
(from Aspen)

AspenBlock
(from Aspen)

AspenComponent
(from Aspen)

AspenStream
(from Aspen)

L
PFRLink

SL
RCPortMapping

SL
PFRPortMappingComos Aspen

link types link templates

Comos

R1:
PFR

P1:
ComosInPort

P2:
ComosOutPort

TR1:
RPlug

TP1:
AspenInPort

TP2:
AspenOutPort

L
L1: PFRLink

SL
SL1: PFRPortMapping

SL
SL2: PFRPortMapping

Aspen

Aspen

R1:
PFR

P1:
ComosInPort

P2:
ComosOutPort

TR1:
MATERIAL

TP3:
AspenInPort

TP4:
AspenOutPort

L
L1:

ReactorCascadeLink

SL
SL1: PFRPortMapping

SL
SL2: RCPortMapping

TR1:
RPlug

TP1:
AspenInPort

TP2:
AspenOutPort

TR2:
REQUIL

TP6:
AspenOutPort

TP5:
AspenInPort

TC1:
AspenConnection

TC2:
AspenConnection

Comos

code or
specification for

interpreter

TGG rules

s e c t i o n g e n e r a t e d(* @ C C_ W r i t e B a c k u p*)

3 0 1 1X C 2

2 1 8, 1 0 8 @ *)
e n d

(* d e c l a r en o d e : d o m i n a n ts o u r c e i n c r e m e n t*)

: : =
b e g i n

o b l_ n o d e 1 ' = ̀ 1 ;

(* d e c l a r e n o d e f o r m a i n l i n k *)
(* @C C _ L G 6 0 0 7(9 6 , 5 6) (9 7, 2 9) @ *)

2 ' : L i n k;

(* d e c l a r e e d g e f r o m m a i n l i n k t o d o m i n a n ts o u r c e i n c r e m e n t*)
(* @ C C_ L G 6 0 1 2 (9 6 , 1 5 4) (9 7, 2 9) @ *)

2 ' - > 1 ' : t o D o m S r c I n c r;

(* @ C C_ L G 3 0 0 4 C @ *)
e n d

t r a n s f e r 2' . s e t S t a t u s: = u n c h e c k e d;

e n d;

t r a n s f o r m a t i o n+ C o n n e c t i o n_ F o r w a r d R u l e_ p r o p o s e* =

(< O p t P r e c o n d D e c l>)
(* d e c l a r en o d e : d o m i n a n ts o u r c e i n c r e m e n t*)

b e g i n

o b l_ n o d e 1̀ : A s p e n C o n n e c t i o n;
(* d e c l a r e n o d e f o r m a i n l i n k *)

(* @C C _ L G 6 0 0 7(9 6 , 5 6) (9 7, 2 9) @ *)
o b l_ n o d e ` 2 : L i n k ;

(* d e c l a r e e d g e f r o m m a i n l i n k t o d o m i n a n ts o u r c e i n c r e m e n t*)

(* @ C C_ L G 6 0 0 7 (9 6 , 1 5 4) (9 7, 2 9) @ *)
` 2 - > 1̀ : t o D o m S r c I n c r;

(* d e c l a r e o n e n o d e f o r e a c h n o r m a l s o u r c e i n c r e m e n t*)

(* d e c l a r e o n e P r o g r e s e d g e f o r e a c h e d g e b e t w e e n n o r m a l a n d d o m i n a n ts o u r c e n o d e s*)
(* @ C C_ L G 3 0 0 4 C @ *)

e n d

(* d e c l a r en o d e : d o m i n a n ts o u r c e i n c r e m e n t*)

: : =
b e g i n

o b l_ n o d e 1 ' = ̀ 1 ;

(* d e c l a r e n o d e f o r m a i n l i n k *)
(* @C C _ L G 6 0 0 7(7 2 , 5 6) (9 7, 2 9) @ *)

o b l_ n o d e 2 ' = ̀ 2 ;
(* d e c l a r e e d g e f r o m m a i n l i n k t o d o m i n a n ts o u r c e i n c r e m e n t*)

(* @ C C_ L G 6 0 0 7 (7 2 , 3 5 0) (9 7, 2 9) @ *)

2 ' - > 1 ' : t o D o m S r c I n c r;
(* d e c l a r e o n e n o d e f o r e a c h n o r m a l s o u r c e i n c r e m e n t*)

(* d e c l a r e o n e P r o g r e s e d g e f o r e a c h e d g e b e t w e e n n o r m a l a n d d o m i n a n ts o u r c e n o d e s*)

(* d e c l a r e o n e r o l e n o d e f o r t h e d o m i n a n ts o u r c e i n c r e m e n t*)

(* @ C C _L G
3 0 0 4C 7

4 8, 3 0 8

4 8, 2 8 0
2 4, 2 5 2

2 4, 1 4 0

4 8 ,1 1 2 @*)
3 ' : r o l e;

(* d e c l a r e i s A s s i g n e d T oe d g e f r o m r o l e n o d e t o d o m i n a n ts o u r c e i n c r e m e n t*)
(* @ C C_ L G 6 0 1 2 (9 6 , 1 5 4) (9 7, 2 9) @ *)

3 ' - > 1 ' : i s A s s i g n e d T o;

tool
models

application
models

a) b) c)

d)e)

PFD
P&ID

cost
calc.

sim.
result

sim.
model

PFD
PFD

ComosDevice
<<Device>>

HE
<<Device>>

HE2
<<Device>>

EnthalpyChange
<<Device>>

ComosDevice
<<Device>>

HE
<<Device>>

HE2
<<Device>>

EnthalpyChange
<<Device>>

Comos

R1:
PFR

P1:
ComosInPort

P2:
ComosOutPort

TR1:
RPlug

TP1:
AspenInPort

TP2:
AspenOutPort

L
L1: PFRLink

SL
SL1: PFRPortMapping

SL
SL2: PFRPortMapping

Aspen

Aspen

R1:
PFR

P1:
ComosInPort

P2:
ComosOutPort

TR1:
MATERIAL

TP3:
AspenInPort

TP4:
AspenOutPort

L
L1:

ReactorCascadeLink

SL
SL1: PFRPortMapping

SL
SL2: RCPortMapping

TR1:
RPlug

TP1:
AspenInPort

TP2:
AspenOutPort

TR2:
REQUIL

TP6 :
AspenOutPort

TP5:
AspenInPort

TC1:
AspenConnection

TC2:
AspenConnection

Comos

Fig. 6.5. From application models to tools

working area model contains the definition of all relevant clusters of ac-
tivity together with their coarse-grained relations. The activities and their
results are not further structured.

• For each working area, one or more ontology modules defining its basic en-
tities are specified. Fine-grained relationships between entities of the same
working area are introduced as well. All definitions are provided as multi-
layered class hierarchies specifying inheritance, aggregation, instantiation,
and association relationships. For example, different types of reactor mod-
els are introduced in the area mathematical model and aggregation relation-
ships define that each reactor model can aggregate an arbitrary number of
external connectors. Furthermore, also fine-grained relationships between
entities of different partial models are declared. For instance, a relationship
modeled by between a reactor in the behavior partial model and a reactor
model in the process model is given.

614 S. Becker et al.

• A middle-grained model is used to declare types of documents and their
dependency relations. Just the existence of these documents is declared
and not their contents. For instance, the document types PFD (denot-
ing process flow diagrams) and SimulationSpec (specifying mathematical
models for process simulation) are introduced as well as the dependency
relationship between them (cf. Subsect. 2.3.2).

• For each document type, a document contents model determines which
entities from the partial models’ ontologies can be contained in a corre-
sponding document instance. For instance, the PFD document can contain
arbitrary process steps defined in the partial model process as well as sub-
stances defined in the partial model chemical process material. Fine-grained
interdocument relationships that are not already included in the ontologies
are added. Furthermore, the document structure can be refined, indicating
the order or the type of structural entities (such as heading, text block, or
table) that have to be contained in the document (cf. Subsect. 2.3.4).

Summary of Tool Models

Five submodels of the tool model are used, when following the approach
sketched in Sect. 3.2 (see lower part of Fig. 6.5):

• Formal and refined document contents models are needed to supply all
information which is later used for the definition of integration rules. Cur-
rently, only type hierarchies are used, defining all entities and relationships
that are to be considered during integration. Future work will deal with
adding more structural information. These models are similar to the doc-
ument content models of the application layer which, at the moment, are
not elaborated. However, they are much more detailed and have to be for-
mal. Also, further information is needed here that is of no interest on the
application domain layer.

• Link types are defined to relate certain entity types of one document to en-
tity types of another. Arbitrary many-to-many relationships are supported.
For instance, it can be expressed that a combination of ideal reactor mod-
els (CSTR, PFR) and interconnecting streams as well as the aggregated
connectors within a SimulationSpec document correspond to a single re-
actor and its ports represented in a PFD document. Link types are used
for two purposes: First, they provide a formal notation for a part of the
organizational knowledge. Second, they constrain link templates that are
defined in the next model.

• Link templates define fine-grained corresponding patterns in different doc-
uments that can be related to each other. Each link template is an instance
of a link type. For example, a SimulationSpec pattern consisting of a cas-
cade of two ideal reactors connected by a stream could be related to a
PFD pattern consisting of a single reactor. This link template would be an
instance of the link type used as example above. Link templates are not
type but instance patterns.

Model Dependencies, Fine-Grained Relations, and Integration Tools 615

• Link templates are purely declarative. That is, they do not provide any
operational semantics. Instead, they have to be further refined to opera-
tional forward, backward, or consistency checking rules using the triple
graph grammar approach (TGG) [413].

• Triple graph grammar rules cannot be executed directly. Instead, they
have to be translated into appropriate graph rewriting operations which,
in turn, are translated to executable code. Alternatively, triple rules are
translated to textual rule specifications that are executed by the integrator
framework.

The application domain models presented so far (see again the upper part
of Fig. 6.5) are not necessarily of a sufficient degree of fine-granularity and
formality to be directly translated to the according tool submodels. There are
some steps to be performed manually, delivering further and missing informa-
tion. Additionally, some modifications have to be done from one tool model
to the other. In the following subsection, we will indicate which particular
information has to be added for each type of a tool model, and where (i.e.,
tool builder, domain expert, or tool) the corresponding information needs to
be delivered from.

6.3.3 From Application Domain Models to Tools

Using the middle-grained document and dependency model, all the locations
can be identified, which can be supported by using an integrator. For the
realization of each integrator, all tool submodels have to be provided.

In the following, we give an overview from where the required information
for the different tool submodels can be obtained from. Some of the information
can be collected from application domain submodels while others have to be
provided by the tool builder.

How to Get to Tool Models?

First, document contents models for any of the documents to be integrated
have to be refined and formalized, providing enough details for the tool build-
ing process (see a) of Fig. 6.5). A basis for that are the application document
contents models (see upper part of Fig. 6.5) that specify which entities of
partial models are relevant for which document. The definition of the corre-
sponding entities and some of their relationships can be extracted from the
ontologies.

In case these application submodels are completely formal and contain all
the necessary information, no transformation needs to be done. Otherwise,
the tool builder has to translate semi-formal application models into a formal
notation, which is a UML class diagram in our approach.

The refined document contents model needs not contain all definitions
given in the application document contents models. Just those entities and

616 S. Becker et al.

relations have to be specified that are to be considered during integration. On
the other hand, some information required for tool building is not included
in the application domain models, as it is of no interest for the application
model builder. For instance, technical document entities, necessary to build
efficient tools, have to be defined additionally. Links have to be introduced to
access increments efficiently, to abbreviate access paths, and the like.

Next, for each integrator, a set of link types must be defined. These are
based on the document contents models and the additional relationships de-
fined in the document contents and the inter-document relationship model.
Inter-document relationships that are already defined in the application do-
main models (within ontologies as well as document contents and relationship
models) can be transformed into link types. This can be done automatically
if the application models are formal. Otherwise, a manual translation has to
be performed.

It is very unlikely that the interdocument relationships of the application
layer are complete in the sense that no additional ones are needed. This is due
to two reasons: Firstly, many of the languages commonly used for application
domain modeling do not support the definition of complex many-to-many
relationships. Secondly, from the application point of view, it is sufficient to
depict the most important relationships. A complete set of inter-document
relationships is only needed when actually building an integrator.

As a result, in most cases a lot of link types have to be defined manually
by the tool builder (cf. b) of Fig. 6.5). This has to be performed in close
cooperation with an application domain expert to ensure the definition of
correct link types. The reader should note that relations between entity types
on one hand come from the ontologies of the application domain, saying that
an entity type is semantically related to another one. On the other hand, link
types are related to organization knowledge, as increments of certain types
are within documents, the relations between which have to be obeyed by an
integrator. Organizational knowledge determines, which documents exist and
which structures appear within them.

Link templates are defined as instances of link types using UML object
diagrams (see c) of Fig. 6.5). As link templates use patterns to define possible
fine-grained relationships between the documents to be integrated, they are
much more precise than link types. All pattern nodes and edges have to be
instances of entities and associations defined in the refined document contents
model. Furthermore, the link that relates the patterns has to be an instance
of a link type. Thus, all link templates can be checked for consistency with
respect to link types and the underlying document content models. So, link
templates belong to organizational knowledge, as the patterns on both sides
are parts of document structures, which are part of this knowledge.

Although patterns are restricted, there are still a lot of options for the de-
sign of a certain pair of patterns. Thus, the definition of patterns is currently
carried out completely and manually by the tool builder. Some related pat-
terns can be (manually) derived from the refined document contents models,

Model Dependencies, Fine-Grained Relations, and Integration Tools 617

especially, if they belong to a generic document structure (e.g., a hierarchy).
Others can only be defined in close cooperation with an application domain
expert.

There is an inherent problem with patterns. On the one hand, the definition
of related fine-grained patterns is often not pursued during application domain
modeling, because it is a very complex modeling task, especially, if interde-
pendencies of different patterns are concerned. Furthermore, it is typically not
in the focus of the application domain expert. The tool builder, on the other
hand, lacks the necessary domain knowledge to deliver the information. One
option to solve this issue is to jointly extend the interdocument relationship
model at the beginning of the tool construction process. Then, a more precise
definition of necessary information for tool construction is at hand.

After link templates have been defined, operational forward, backward, and
correspondence analysis rules can be derived following the TGG approach (see
d) of Fig. 6.5). If the link templates are restricted to using only context and
non-context nodes connected by edges, this derivation can be performed auto-
matically. If further graph transformation language constructs (such as paths,
set-valued nodes, etc.) are used, not all operational rules are deterministic. As
non-determinism is not supported by our rule execution approach, in this case
the TGG rules have to be postprocessed manually. This is done by the tool
builder, as only few domain knowledge is required. Another manual task is
necessary, if attribute assignments have been defined that cannot be inverted
to match the derived rule’s direction.

We support two different approaches for the execution of integration rules
(cf. Subsect. 3.2.5 and e) of Fig. 6.5). Code can be generated automatically
that executes the integration rules. Alternatively, rule specifications can be
stored as XML files that are read and interpreted by the integrator framework.
Some additional coding has to be done (i) to provide a friendly, domain-specific
user interface, and (ii) to connect to the existing applications providing the
documents to be integrated. This is done by the tool builder following the
requirements of the application domain.

Application Models vs. Tool Models

In summary, the relations between application and tool models are as follows:

• Not all information of document contents models of the application domain
layer is needed for the process of integrator development. Only the parts
describing relations between documents need to be regarded.

• However, further technical details are needed for tool models, e.g. to access
increments, to navigate efficiently, etc. These details have to be added by
the tool builder.

• Link types usually have to be elaborated manually. They represent types
of increments to be connected by an integrator. Today, the interdocument
relationship models on the application domain layer are not of enough
detail.

618 S. Becker et al.

The following information is not part of application models, but needs appli-
cation knowledge:

• Link templates are on the object level. As the complete application model
layer describes type information, these templates have to be added by the
tool builder.

• Rules can be derived from link templates only in simple forms. Usually,
they are also developed by the tool builder.

• The rest, either code or rule specifications, are derived automatically from
rules.

6.3.4 Relation to the Overall Process/Product Model

In this subsection, we relate the different submodels used for the definition and
realization of integrators to the overall structure of the layered process/product
model, as sketched in Fig. 6.1.

For fine-grained integrators, mainly the product perspective of the PPM is
relevant. Nevertheless, there are dependencies between development processes
and the requirements for the integrators to be used within these processes.
This aspect is not further discussed here. Here we focus on the product per-
spective.

The PPM, as explained in Sect. 6.1, is organized top-down in five layers,
each refining the next upper layer by adding specific aspects. This is also
true for the integrator column (b) of Fig. 6.1. Figure 6.6 gives details for this
column, which comprises an overview of the layers and an assignment of each
of the integrator-relevant submodels to one of the layers, as discussed in the
previous subsections.

We will now discuss the relevance of each layer for integrator realization.
Furthermore, we will identify requirements for the PPM from the perspective
of integrator realization. It will also be shown that the way from application
models to the realization of integrators, though being well understood, still
does not comply entirely with the structure of the PPM.

On layer 1, all application domain submodels, sketched so far, are available.
Layer 3 consists of all tool models, explained so far. The latter also comprises
the source code of / specification for the integrator.

Layer 2 contains models describing the external presentation (UI) of all
relevant tools. For integrators, it comprises the user interface, the tools we
integrated, the external presentation of the links administrated by the inte-
grator, and the behavior of the integrator.

Currently, all these UI aspects are not explicitly defined. The determi-
nations of the external tool properties are partially contained in the refined
document contents model on layer 3. The link presentation is fixed for all inte-
grators. The behavior of the integrator can be adapted within a certain range.
This feature is currently realized by the tool builder during the implementa-
tion of an integrator. Hence, all these aspects are only implicitly handled by
the tool builder.

Model Dependencies, Fine-Grained Relations, and Integration Tools 619

layer 1: application
domain models

layer 2: external tool
models (UI models)

layer 3: internal con-
ceptual tool models

external dependency model

tool behaviour

integrator view on document contents model

documents and
dependencies

partial models,
relationships

domain
ontologies,
fine-grained
relationships

document
contents and

interdocument
relationships

refined
document

contents models
link types link templates

TGG rules
code or

specification for
interpreter

mostly determined
on next layer

layer 5: platform models tool invocation, data access, ... only implicitly
modeled

layer 4: mapping not explicitly modeled

Fig. 6.6. Layers of the process/product model and their contents, here for integrator
construction

On layer 3, we find internal tool models – either as abstract rewriting rule
specifications being executable by an interpreter, or as equivalent source code.
Furthermore, we find the models belonging to the methodological construction
of integrators (link types, link templates, TGG rules), which were discussed
above. The document contents models at the moment are also found on this
level, they should be a part of the application domain model.

The tools on layer 3 should be kept independent of the underlying platform.
The platform-related aspects are to be added on layer 4 (mapping) and on
layer 5 (platform models). Again, this is only done implicitly for the integrator
realization. All integrators are limited to specific platforms. Nevertheless, some
independence for the tools to be integrated is provided. As the access to
existing tools is handled by wrappers, different communication methods can be
used to connect the integrator to tools running on arbitrary platforms. These
wrappers make use of the platform functionality provided by the platform
subprojects of IMPROVE. Altogether, these aspects of mapping and platform
models are implicitly coded into the wrappers and not rigorously modeled.

620 S. Becker et al.

6.3.5 Summary and Open Issues

In this section, an overview of the different application domain and tool models
needed for the realization of integrators has been given and their mutual re-
lationships have been explained. Additionally, the integration of these models
into the PPM framework has been discussed.

There is an advanced methodology for integrator construction. This method-
ology explicitly handles abstractions on 2 of 5 layers of the PPM. There are a
lot of topics, where models are explicitly handled and refined top-down across
the layers.

Nevertheless, for a complete process/product model, there are still some
abstractions missing and, therefore, some open problems remain:

• The transitions from application models to tool models are not formalized.
Currently, the transitions are performed manually or are assisted by simple
converters that still require manual postprocessing.

• The specification of fine-grained interdocument relationships in the appli-
cation domain model is not sufficient to derive integration rules. Currently,
the tool builder has to perform the definition of related patterns manu-
ally with the help of a domain expert. Whether it is possible to extend
the application domain model without making it too complex and too
tool-related remains an open issue.

• Even, if there is a formal document contents model as part of the appli-
cation domain model, it needs to be extended to provide advanced tool
support for defining related patterns.

• The approach sketched so far is tailored to the kind of integrators being
in our research focus. It should be adaptable to other types of integrators
or other integration approaches as well.

• In the previous subsection, we pointed out that layer 2 (external pre-
sentation, UI) and layer 4 (platform mapping) of the PPM are not yet
represented in our current integrator methodology. They are only handled
implicitly up to now.

• The distinction between domain- and company-specific knowledge has to
be elaborated and clarified within the integrator construction process. This
is especially important for integrators, as many of them are to be found
in a development scenario. Also, the adaptation to a specific context is a
matter.

6.4 Administration Models and Management Tools

R. Hai, T. Heer, M. Heller, M. Nagl, R. Schneider, B. Westfechtel,
and R. Wörzberger

Abstract. One of the vertical columns in the overall process/product model deals
with the cooperation of subprojects I1 and B4. Both study the support for reactive
process management in dynamic development processes. In this section we highlight
the transition from application models developed in subproject I1 to tool models
for reactive management of subproject B4. We summarize our findings w.r.t. the
development of management tool models as well as their connections to application
models. The section focuses on a process-oriented viewpoint. Products and resources
of development processes can be discussed analogously. We identify the missing parts
which need to be further investigated in order to get a comprehensive and integrated
process/product model, here for reactive management.

6.4.1 Introduction

In this section, we describe the transition from application models to executable
tools. The vertical column of the PPM from subproject I1 to subproject B4
is regarded, dealing with reactive process management, see Fig. 6.1. The ap-
plication models capture process-related aspects of work processes within de-
velopment processes in subproject I1, and subproject B4 has developed exe-
cutable tool models to derive process management tools supporting develop-
ment process managers and process engineers. So, this section is to describe
and evaluate the contribution of both subprojects to the dominating problem
of developing a PPM.

The section is structured as follows: First, we summarize the application
models of subproject I1 and the executable tool models of subproject B4
in Subsect. 6.4.2. The main part of this section deals with describing the
transition from application models to executable tool models (Subsect. 6.4.3),
and its relation to the formal process/product model (Subsect. 6.4.4). We
finish the section by giving open problems and a conclusion.

6.4.2 Application Models and Tool Models

In this subsection we describe the models developed within the subprojects I1
and B4. The integration of these models is addressed in the next subsection.

Summary of Application Models

An overview over the application models and the tool builder’s models relevant
for development process management is given in Fig. 6.7. In the upper part of
the figure, the IMPROVE application domain models in chemical engineering
are shown:

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 621–628, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

622 R. Hai et al.

application
models

tool
builder
models

partial models and relationships (CLiP)

information model
(under development)

Document model

resource model
 (under development)

Actor modelActivity model

process model
instance (C3)

type-level
process model

definitions

instance-level
process

templates

dynamic task nets
(DYNAMITE)

resources and
roles and

relationships
(ResMod)

products,
versions and
relationships

(COMA)

integrated
graph transformation specification

C-code

CLiP

process
definition
layer

process
instance
layer

Process models

Fig. 6.7. Application and tool models for management

1. The object-oriented data model CLiP (Conceptual Lifecycle Process Mo-
del) [14, 19] for product data of the design process and the corresponding
work process, as described in Sects. 2.2 and 2.4, defines partial models
structuring the engineering domain into several working areas. The rela-
tionships between the partial models are also contained in CLiP. For in-
stance, there is a partial model Process Models (details below). Within
Process Models, the model Activity and the model Actor are connected
by the relationship skill.
In this section, we mainly focus on process-related modeling and therefore
we highlight the partial model Process Models (cf. Chap. 2). This sub-
model defines several modeling concepts to express important structures
for work processes like activity class, input and output informa-
tion, tool, goal and their relationships. For example, the Simulation
reactor activity creates the information Reactor simulation result.
This information is defined in the partial model Document model, which
contains the information-related modeling concepts. The resource-related
modeling concepts can be found in the CLiP partial model Actor model.

Administration Models and Management Tools 623

Roles are only implicitly defined, as a skill-oriented approach is used in or-
der to define the work capabilities required for a certain role. For example,
an activity simulation reactor may need actors with a skill Reaction
kinetic knowledge.

2. Work processes on the instance level are modeled by the C3 process mod-
eling notation [116]. On the instance level, complete work processes can
be modeled and analyzed, e.g., to identify potentials as to shorten de-
velopment time. For example, all important aspects of the Polyamide-6
case study used in IMPROVE have been modeled using the C3 process
modeling language (cf. Sect. 1.2). For this purpose, C3 contains elements
to model process-, information-, and resource-related aspects of work pro-
cesses. The basic elements of C3 are activity, role, and information
with relationships like control flow and information flow. Currently,
the clear focus is on the process side while the information models and
role models only cover basic aspects and are currently under development.

Summary of Tool Models

The tool models are displayed in the lower part of Fig. 6.7. While the semi-
formal application models describe the application domain, the tool models
have to be formal in order to be used for building process management tools.

1. In the center the process model for dynamic task nets (DYNAMITE), the
product model (COMA), and the resource model (ResMod) are shown.
These models are tightly integrated with each other and form an inte-
grated management model allowing to describe development processes on
type level (knowledge) as well as on instance level (concrete projects or
templates).
For example, a dynamic task net resembles a running development pro-
cess with all tasks, resources, and all documents which are created during
the process. Elements of dynamic task nets are task, input parameter,
output parameter, control or feedback flow, data flow, etc.
As stated above, in order to be able to build tools, the execution semantics
have to be formally specified. The models are generic in the sense that
no application-specific information is contained. They form the core of
the process management system AHEAD which supports the interleaved
planning and execution of development processes.

2. The generic models of AHEAD can easily be adapted to an applica-
tion domain or to specific project constraints by defining standard ac-
tivity types, standard workflows, and workflow templates. We have used
the wide spread modeling language UML to model such constraints and
parametrization aspects in an object-oriented way on the class level.
Class diagrams and object diagrams are used to create process model defi-
nitions or process templates, respectively. For example, standard types for
activities can be defined by introducing new classes like Design Reactor

624 R. Hai et al.

or Simulate Reactor within in a class diagram together with relation-
ships between classes, like sequential control flow.

3. The three generic models DYNAMITE, COMA, and ResMod are formal-
ized in graph transformation specifications. Specific adaptations of these
models defined in class diagrams and object diagrams are transformed to
specific graph grammar specifications.

4. Both generic and specific graph specifications are combined and executable
C code is generated from them. This C-code is embedded into a tool
building framework. In our case, the configurable user interface and the
core application logic of AHEAD can be generated semi-automatically as
explained in detail in Sect. 3.4.

The transition between application models to executable tool models cannot
be easily realized. For example, some information which is necessary in a tool
model might not be explicitly modeled on the application layer, as different
aspects are targeted at both layers. In the following section, we describe how
all necessary information is obtained by either adding additional information
or by deriving the information from existing application models.

6.4.3 From Application Models to Tools

In order to offer a domain-specific support system for the management of de-
velopment processes, the information of all tool models is needed to build the
AHEAD system (subproject B4). Additionally, the application models devel-
oped in subproject I1 are exploited to provide the missing context information,
needed to adapt the AHEAD system to a specific context [154].

Instance Level Application Models

On the instance level, dynamic task nets, products, and resources used within
a specific development process are modeled. On the application model side,
similar process information is foremost contained in C3 nets. Application mod-
eling experts create process templates in the form of C3 nets to define best-
practice work processes. These C3 nets can be transferred structurally into
dynamic task nets. Currently, a set of structural restrictions has to apply for
the C3 nets used. Dynamic task nets can be generated on the tool side as the
surrogates of the process templates modeled as C3 nets. We have realized an
integrator for the mapping of C3 nets into dynamic task nets (see Sect. 3.2).

Product -related information can also be contained in C3 nets and be trans-
ferred into dynamic task nets or the product model of AHEAD, respectively.
Currently, we do not extract these data with the integrator. In the C3 net, it
can be captured that input or output documents of activities require a spe-
cific document type. Resource-related information like actors or actor roles
required to perform an activity are, however, carried over into a dynamic task
net.

Administration Models and Management Tools 625

Class Level Tool Modeling: Connection to Application Models

On the class level, we are dealing on the tool side with process model defi-
nitions and process templates to define structural and behavioral knowledge
about processes. This information is located at the class or type level, e.g. task
types, document types etc. and their relationships for a specific context can
be defined.

The CLiP models and domain ontologies can be searched for standard types
of work process activities or document types. The partial models usually con-
tain such elements which have been identified to be of broader relevance to the
respective application domain of the partial model. For example, the activity
type Design Reactor might be contained in a UML class diagram according
to the domain ontology of the partial model Work Processes where the ac-
tivity concept is located. Essentially, the same or similar modeling concepts
are used in CLiP and in the metamodel underlying the process model defi-
nitions and process templates of AHEAD. Currently, the information found
in CLiP models has to be integrated manually into UML class diagrams used
in the AHEAD approach. For example, for the activity type Design Reactor
in CLiP, a new class Design Reactor Task is created in the class diagrams.
In this case, the AHEAD system will allow for the instantiation of tasks with
this specific type in dynamic task nets.

Relationships defined in CLiP models can be reflected in class diagrams by
introducing new associations between classes. Currently, this is not possible
in our approach, as only a limited set of default associations has been imple-
mented to connect classes, like associations denoting control flow relationships
or data flow relationships. We use UML stereotypes to define the type of an
association link between two classes. Up to now, other relationships, e.g., those
with a more semantical character, are neglected, although their integration is
easily possible by simply using additional UML stereotypes as annotations for
associations.

Application Modeling for Tool Adaptations

We use the broadly distributed UML notation for the explicit purpose that
application modeling experts can create process model definitions and pro-
cess templates for AHEAD. Nevertheless, application domain experts and tool
building experts can work together to arrive at such models more quickly until
the application expert has gained enough experience in adopting our specific
use of the UML for process modeling purposes. Specific tasks, like introduc-
ing new unforeseen dependencies between classes or new requirements leading
to necessary technical modifications of AHEAD, can be discussed in a short-
circuit mode of cooperation. By the way, this approach of bringing experts of
different domains closer together, was often followed in the IMPROVE project.

If process model definitions or process templates have been defined to intro-
duce specific adaptations of the otherwise unrestricted generic AHEAD model,

626 R. Hai et al.

some further steps are needed. These steps are only necessary because of the
specific tool generation approach followed in the B4 project, which is based on
the semi-automatic generation of user interface prototypes from graph trans-
formation specifications: (a) First, the tool builder uses a transformation tool
to transform the UML class or object diagrams into graph transformation
specifications, which contain the specific parametrization data for AHEAD. If
no process model definitions are defined, AHEAD uses built-in default types
for tasks and documents etc. (b) Second, the tool builder combines the newly
generated specific graph specification with the generic graph transformation
part containing the AHEAD management model. From this overall specifica-
tion, executable C-Code is generated in an automatic step. (c) Finally, the tool
builder has to integrate this C-code with the pre-configured user interfaces to
form the overall AHEAD system.

6.4.4 Relation to the Overall Process/Product Model

In this subsection, we look at the application and tool models in order to
present their relations to the layered overall process/product model of Fig. 6.1.

The overall process/product model is decomposed into five layers: appli-
cation model layer, external model layer, internal model layer, mapping layer,
and basic model layer. Going from top to bottom, each layer adds specific
aspects which have not been covered at the layers above. We now discuss the
vertical column (d) regarding reactive management (cf. Fig. 6.1).

The way from application models to tools for reactive management does
not match smoothly with the idea of the overall process/product model de-
veloped so far. We are now going to identify which aspects of each layer are
relevant for reactive management and highlight some open problems.

Layer 1 of the overall process/product model deals with all application do-
main models for the process and its products mentioned in this section. Among
them, we can identify domain knowledge models to structure the application
domain and organizational knowledge models which contain knowledge how
processes are carried out in different subdomains or companies. For example,
work processes modeled by application domain experts on a medium-grained
level can be found on this layer. Similarly, medium-grained product models
and resource models also belong to layer 1.

Layer 2 contains the external models of tools for different users. The user
interface notations used for modeling different process or product aspects of
tools should be found on this layer. Likewise, the representation of complex
commands of the tools is located here, because they offer application-oriented
functionalities for the user. Currently, we do not have such explicitly modeled
external process or product models within IMPROVE. External models are
indirectly introduced on the next layer.

On layer 3, internal models of tools are located. They are best represented
by formal and executable models which are immediately usable to derive tools.
All tool models belong to this layer, such as the AHEAD management model

Administration Models and Management Tools 627

layer 1: application
domain models

layer 2: external tool
models (UI models)

layer 3: internal con-
ceptual tool models

layer 4: mapping

type-level
process
model

definitions

instance-
level

process
model

definitions

dynamic task nets
– process model -

CoMa
- product
model -

ResMod
- ressource

model -

workflow nets
(e.g. XPDL)

- process model -

graph grammar specification

C-code

partial models and relationships (CLiP)

resource models
(e.g. in C3)

resource partial model

document
models (e.g. in

C3)

document partial modelprocess partial model

process models
(C3)

tool notations complex commands ... introduced on the layer 3

layer 5: platform models tool invocation data access ...
not explicitly modeled

Fig. 6.8. Application models and tools models

(DYNAMITE, COMA, and ResMod). These models have to ensure that the
user interface and functionality described on layer 2 is fulfilled by the tools.
To be more specific: UI details are found here, in particular there are specs
for complex commands. How the UI is built is not specified but introduced in
the tool construction process.

Finally, layers 4 and 5 contain models containing all platform aspects and a
mapping from conceptual models to platforms. These models are only relevant
in order to implement the tools independently of specific execution platforms.
As previously mentioned, the realization of the complex tool components on
the basis of operating system processes is handled on this layer. Currently,
the tools for reactive management developed within IMPROVE are limited to
specific operating systems and programming languages. However, AHEAD is
coupled with other tools of IMPROVE using platform services such as access
to document repositories.

628 R. Hai et al.

6.4.5 Open Problems and Conclusions

In this section, we discussed for the vertical column (d) reactive management
how the transition from application models to tools takes place. We focused
on the process-side and explained, how application models and tool models
are related to each other. Finally, we discussed the relation of achieved results
to the process/product model.

Although we have acquired a good understanding of application models
and tool models corresponding to management support on a medium-grained
level, some open problems still remain:

1. It has to be investigated if some of the application models could be ex-
tended in order to match the tool models more closely, or vice versa.
Currently, these model gaps are bridged manually and for specific cases
only.

2. As we stated above, a tool-independent process/product model on the
external model layer is still missing.

3. We have achieved some results regarding the transformation of applica-
tion models to tool-specific models when specific tools are chosen [154]. For
that purpose, we have already described how a framework for the defini-
tion, analysis, improvement, and management of inter-organizational de-
sign processes involving different modeling formalisms and heterogeneous
workflow tools could look like. This framework combines models, method-
ologies, and tools from the IMPROVE project. Its key features are to
bridge the gap between modeling and execution of inter-organizational de-
sign processes and the seamless execution support for dynamic and static
parts of the overall process, both by appropriate process management
systems. These results need to be generalized. For example, a methodol-
ogy could be developed for the extraction of common modeling concepts
and the harmonization of the process models into a single uniform model
which could serve as a mediation model between specific process models.
The same applies for product models.

6.5 Process/Product Model: Status and Open Problems

M. Nagl

Abstract. In this section we give a summary and evaluation of what we have
achieved w.r.t. the PPM. Especially, we discuss the open problems still to be solved.
The message is that there are a lot of nice results, but there has also a lot to be
done in order to get a uniform and comprehensive PPM.

6.5.1 Introduction

Sections 6.2, 6.3, and 6.4 described some promising results about how to get
tool functionality by well-defined tool construction processes starting from
elaborate application domain models, as described in Sects. 2.6 and 6.1. Fur-
thermore, these sections also discussed how the information accumulated dur-
ing these processes should be organized in a layered PPM.

Nevertheless, there are more open problems than solutions. We have al-
ready sketched these problems in the sense of a categorization in Sect. 6.1.
We have detailed the problems identified during our work on the tool con-
struction case studies in Sects. 6.2 to 6.4.

This section will give a discussion of these open problems : They are com-
pletely enumerated, ordered, and ranked according to their degree of severity.
When discussing the problems, we are also discussing the results we have
achieved so far.

The section is structured as follows : We take up the categorization of
modeling problems of Sect. 6.1 and give a detailed explanation. Then, we
address the corresponding modeling infrastructure problem. In total, we come
up with 17 big problems to be solved yet. In the conclusion we give some
arguments that the PPM problem was too hard to be solved within one project
and/or the available time.

The evaluation discussion of this chapter is further elaborated in Chap. 8,
which gives a résumé of IMPROVE’s main results from other perspectives.

6.5.2 Status and Modeling Problems

Horizontal Integration Problems

(A) The case study represented in Fig. 6.1 by column (b) uses one and the
studies of column (c) and (d) use another specification methodology and
tool implementation machinery, namely NATURE (b), see Sects. 3.1 and
6.2, and Graph Transformation for (c) and (d), see Sects. 3.2, 6.3 and
3.4, 6.4. Hence, these conceptual realization models differ tremendously.
In the Graph Transformation approach (columns (c) and (d)), we specify
tool behavior by corresponding before/after states of a document’s in-
ternal form. Accordingly, the description is an abstract implementation.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 629–639, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

630 M. Nagl

application
model

(B)

(A)

UI

concept.
real.

models

mapping

submodel integration

platform model

conceptual
modeling

Fig. 6.9. Horizontal model integration

appl.
model

UI

concept.
real.

models

mapping

(D)

(E)

code

(C)
missing

parts

Fig. 6.10. Vertical model in-
tegration

In the NATURE approach (see column (b)), the implementation is done
manually. The metamodel description determines some frame to be fol-
lowed.
On the application domain layer (a) of Fig. 6.1, there is only one model,
however being composed of different submodels, see Sects. 2.6 and 6.1.
The same is true on the platform layer (e). Correspondingly, the mapping
layer is less critical. The UI layer is handled implicitly, as has been argued.
Summing up, the main problem is on the conceptual realization layer (see
Fig. 6.9).
So, what is missing is either a new general modeling formalism for con-
ceptual realization models which can replace NATURE and Graph Trans-
formations (or any other suitable approach) as a superset. However, this
idea is not very realistic. What is more realistic is that some “glue model”
can be given, by which it is possible to define the connections between
suitable formalisms. Here, more specifically, that means that a NATURE
spec and a Graph Transformation spec can be unified in one spec.

(B) On the application layer, also some problems remain, as it was shown in
Sect. 2.6:
The challenge in application domain modeling is to deal with the com-
plexity of the domain, here of chemical engineering. Application domain
modeling should aim at a general purpose model which can be used in
various contexts. However, since modeling has to account to some extent
for the purpose of the desired model, there is an inherent conflict. A design
of the model architecture for extensibility is the key to success. Though
various structuring means have been incorporated in the model to account

Process/Product Model: Status and Open Problems 631

for further extensions, there is room for improvement. In particular, some
experimental validation in case studies is required to justify the design
decisions.
A more specific aspect is the integration of product data, documents, work
processes, and decisions into one model. The approach taken so far seems
promising but still needs more work to refine and validate the resulting
model.
Last but not least, there is a need for specific features in the model archi-
tecture which allows the tailoring of the model to an organization in an
easy way to reflect the specific organizational details. This is particularly
true for documents and work processes which reflect to a large extent the
culture of an organization. Inter-organizational issues like the integration
of information models in different organizations need to be considered,
too.

Vertical Integration and Coherence

Each of the three case studies covers a demonstration of a coherent method-
ology for tool construction and for the corresponding modeling steps. The
following three problems regarding vertical integration and coherence remain
(cf. Fig. 6.10):

(C) Which parts of the model are required for tool construction and are
not covered by the application domain model? Examples include missing
model parts (e.g. for version/variant/configuration control) or semantic
details of models and tools (e.g. developer task synchronization). They
are typically not introduced on the application layer. If all these details
were included, this layer would not only give application domain models,
but ultimately specify tools and their behavior.

(D) Structural and behavioral UI details are also to be specified before con-
ceptual tool construction can start on layer 3. UI specification should not
be understood as, for example, layout of masks or similar details. How-
ever, the UI functionality has to be made precise in the sense of specifying
requirements for tools. There are two possibilities: Either there is a model
layer 2 for UI and tool functionality, which, realistically, has to be de-
veloped by both domain experts and computer scientists. Or, since UI
specifications contribute to the application domain model and also to the
conceptual tool realization model, we can regard the second layer as a
modeling activity, the results of which are being delivered on the models
of the first and the third layer. The results of this joint activity then are
given by the domain experts on the first, and by computer scientists on
the third layer.

(E) Another topic is how to proceed on layer 3 when transforming conceptual
realization models to code, which is also considered to be a model, but of

632 M. Nagl

an implicit form. In the three Sects. 6.2, 6.3, and 6.4 all possible transfor-
mations have been practiced: methodological but manual coding, direct
interpretation of a specification model, or generating equivalent code from
a specification model. Hence, there is only the problem left to understand
the differences between these transformations and to apply these trans-
formation approaches uniformly to get a suitable implementation.

Synergy

Synergistic integration (see Sect. 5.5) is not handled in the PPM up to now.
Hence, there is the question, where to place this part of the model. The cor-
responding specification should not to be included in the application domain
model, because the definition of synergy refers to tool functionality. Also,
synergy is not easy to be determined on a conceptual realization layer, since
different specification formalisms are used in the tool realization case studies
(i.e. column (b) on the one and columns (c) and (d) on the other hand).

(F) It is unclear at the moment, what kind of information has to be modeled
on the application layer to cover synergy between extended tools. If, for
example, we look at the case study of Sect. 6.3, we see that models of
the application layer do not determine integrators, but only prerequisites
which integrators have to obey. In the same way, synergy would have to
be specified. But what are these prerequisites? Specifications about the
UI are also needed, the question only is where and how it is provided (see
vertical integration discussion of above). Specification on the conceptual
realization layer is difficult, as different formalisms are involved (see hor-
izontal integration of above). For columns (c) and (d) it is, in principal,
possible to write one graph transformation specification to express a syn-
ergistic tool integration effect, as it has been done e.g. for the integrator
between PFD and the management configuration in Sect. 5.5. However,
the generated code has to be executed on one computer. Recently, we
have studied distributed graph transformation specifications [377], where
the generated code can be executed on different machines. This, however,
would only solve the synergistic integration of column (c) and (d), but not
the integration with (b).

General and Specific Models

There are only partial answers to the problem how to distinguish between gen-
eral and specific models. This problem has to be addressed on the application
layer, as well as on the conceptual tool models layer below.

Within the application domain models, we should distinguish between gen-
eral domain knowledge and specific organizational knowledge. This distinction
has not yet been addressed explicitly (see Chap. 2) and it is not easy to make
(see remarks in Sect. 6.1).

Process/Product Model: Status and Open Problems 633

sp.1 sp.2 . . .general

application model

Fig. 6.11. Different degrees of specific determinations to a general one on one layer
and between layers

In the case study reported in Sect. 6.2 (column (b) in Fig. 6.1), tool-specific
models are determined individually. The NATURE context model only defines
what is common to all direct process support tools.

In the case study on integrator modeling (see Sect. 6.3, column (c) in
Fig. 6.1) we find general specifications, either as a basic layer of the conceptual
realization model in the form of graph transformation rules, or in a coded
form as a part of the integrator framework. Specific models are introduced
to represent link types, link templates, and rules of TGGs. Thereby, different
forms of determinations for “specific” are introduced in one step.

Models in the case study of Sect. 6.4 (column (d) in Fig. 6.1), on the
conceptual realization layer, have an explicit basic specification, which is in-
dependent of the application domain. The characteristics of an application
domain are specified interactively by the so-called parameterization environ-
ment (types of tasks, documents etc.). A graph transformation specification
is generated from these interactive specifications, which extends the basic
and domain-independent specification. Again, using this parameterization en-
vironment, different kinds of determinations for “specific” could have been
introduced.

This parameterization environment could have been used to introduce dif-
ferent degrees of specific determinations, one after the other (see Fig. 6.11): A
determination sp.1 could introduce a specific area within chemical engineering
as, for example, Polyamide-6 development. A following one sp.2 introduces the
specifics of a company, sp.3 those of a specific methodology used in department
of a company, etc.

634 M. Nagl

(G) A general and uniform modeling solution would result in a model on
every layer to distinguish “general” from different forms of “specific” (cf.
again Fig. 6.11). The specific details have to be determined on application
model layer, e.g. by interactive determinations, for the application model
or by determinations to be defined on lower layers. A modeling approach
distinguishing uniformly between “general” models and different degrees of
“specifics” on any of the different modeling layers, from application layer
down to tool code, is still missing. A prerequisite would be a unified model
to combine specifications for different types of tools (see argumentation on
horizontal integration of above). Also, the distinction between the general
part of the model and different forms of specialization parts should be
handled uniformly, when mapping from one layer down to the next (see
again Fig. 6.11).

Parameterization

The question of parameterization is closely related to the distinction between
general and specific models of the last subsection. Again, we have partial re-
sults on the application layer as well as in the tool construction case studies.
Parametrization means not only to distinguish general and specific determi-
nations. It, even more, means to have suitable mechanisms to easily formulate
the specific determinations and to add them to the general part of a model.

On the application layer ((a) in Fig. 6.1) we should parameterize on
model construction time between domain knowledge and specific organiza-
tional knowledge.

Parameterization in the case study of Sect. 6.2 (column (b) in Fig. 6.1)
is done as follows: Process fragments can be exchanged, they are expressed
directly in a process modeling language. The underlying metamodel remains
unchanged.

In the integrator case study of Sect. 6.3 (column (c) in Fig. 6.1), on con-
ceptual realization layer, dependency relations on type level can be specified
which serve for parameterization in the sense of parameterizing the tool to
corresponding entity type situations. Object patterns can be defined to param-
eterize it to concrete aggregations of objects. Both belong to organizational
knowledge, as both demand for determining which types or which entities oc-
cur in which documents. Finally, parameterization in the sense of tool behavior
is done by transformation rules. So, altogether, there are different parameter-
ization mechanisms, all of them being applied at tool construction time.

Parameterization in the case study of reactive management (see Sect. 6.3,
column (d) of Fig. 6.1) has to account for domain and organizational knowl-
edge, but also for tool behavior. It is done interactively using the modeling
environment. These interactive specifications are translated to graph transfor-
mation specifications, extending the general graph transformation specifica-
tion, which is independent of all parameterization details. Hence, all parame-
terization mechanisms are employed at tool realization time.

Process/Product Model: Status and Open Problems 635

(H) As stated above in (G), there are results on the application layer as
well as in the tool models of the case studies, but there is no general
and uniform solution at hand for parameterization, which distinguishes
between the “general”model and “specific”parts on every layer and serves
for the transformations between layers (see Fig. 6.11). This is due to the
fact that different modeling techniques and different forms of specification
mechanisms for general and specific determinations are used at different
locations of the PPM.

Adaptation to Emerging Knowledge

The adaptation of the PPM to emerging knowledge can be discussed in brevity,
because the argumentation is essentially the same as in the case of parameter-
ization. There is no difference to parameterization, if adaptation due to evolu-
tion is only between tool development projects. Then, a new tool construction
and model adaptation process can be carried out. If, however, adaptation is
supposed to happen while tools are in use, then some round-trip engineering
has to take place [235]. In this subsection, we only discuss adaptation while
tools are in use. This kind of adaptation has been exemplarily employed in the
integrator (see Sects. 3.2 and 6.3) and in the reactive administration (Sects. 3.4
and 6.4) case studies.

(I) There are a lot of specific solutions for adapting to emerging knowledge at
tool construction or at tool use time, but there are no general ones. Hence,
the yet unsolved problem is how to organize the modeling process across
different layers and, consequently, the corresponding tool construction and
tool adaptation process such that evolution due to emerging knowledge
is handled uniformly, whatever evolution concept is applied. This has to
be true, irrespective of whether evolution is before a tool construction
process, during the implementation process of a tool, or even at the time
when a tool is used.

Models Accounting for Distributed Cooperation

The sketch of the PPM as indicated in Fig. 6.1 would have to be duplicated
for any design process carried out in different companies. To clarify, let us
consider the reactive management case study as an example (see Sects. 3.4
and 6.4). We take the simple scenario of a delegated task to be carried out by
a subcontractor company. Then, it is unrealistic to assume a single application
management model, corresponding methods, and tools to be applied across the
different companies. Indeed, there are different procedures and habits on both
sides of the cooperation, possibly also different subdomains (as chemical engi-
neering and plastics processing). Hence, in each of the companies participating
in the distributed design process, there must be the possibility to structure
the models differently, to parameterize, and to adapt them correspondingly.

636 M. Nagl

The corresponding modeling problem in the process support case study has
been regarded in Sects. 3.1 and 6.2, assuming a homogeneous process ware-
house for both companies. In Sects. 3.2 and 6.3, we considered the problem in
the integrator case study implicitly, since integrators can bridge heterogeneity
across companies in a design process. There, the integrator is realized in one
company and the adaptation to the situation in another company is done via
wrappers and corresponding modeling. In Sects. 3.4 and 6.4, we discussed the
situation that different models exist on both sides of a cooperation. So, here
we have some explicit results.

(J) In general, there are different models in the organizations of the partners
cooperating in the design process, though there may be some commonali-
ties. Hence, we must be able to explicitly formulate the commonalities in
the models but also the differences for any support concept (cf. Fig. 6.12).
This problem is not solved yet. If the differences have to be handled only
before a project starts, then this problem is similar to the parameterization
problem (H), but it is occurring multiple times. If adaptation to different
models of cooperating partners is possible at design process execution (or
tool use) time, then we have a multiple evolution problem (see (I)). In any
case, distributed cooperation makes the modeling problem harder, as fur-
ther aspects like independence, contracts, security, knowledge protection
etc. are also involved.

sp. general general sp.. . .

. . .

. . .

. . .

21
1 1

Fig. 6.12. Distributed Models: similar and different

Application to Other Domains

In Sect. 6.1, we have argued that domain knowledge is common to all tools
regarded in this volume, but organizational knowledge differs from enterprise
to enterprise. In this subsection, the question is how to change the domain.

Process/Product Model: Status and Open Problems 637

Of course, most of the results of this book – and therefore also the modeling
results – can be transferred to other domains, say mechanical engineering,
electrical engineering, or software development. This means, that the domain
knowledge has to be exchanged. In turn, also the organization knowledge has
to be exchanged.

The procedure of modeling the other domain is the same as described
above. The parameters of parameterization are already contained or should
be already contained in the application model description. In addition, further
determinations have to be added (see vertical integration of above). This serves
for the basic parameterization of being in another domain or organization.

When moving to another domain, however, also the other aspects, namely
adaptation to emerging knowledge, distributed models etc. have to be taken
into account. So, summing up, there is nothing completely new. The problems
are the same as in Chemical Engineering.

(K) Transforming the PPMquestion and its solutions to another domainmeans
to aggregate all the above modeling problems, as all appear in any other do-
main as well. So, the new problem is the collection of all above discussed
problems. There is a less and a more ambitious way of transformation.
The less ambitious ways to start again, using our knowledge and our ex-
perience about PPM modeling. Then, we have the same problems, as
extensively discussed above.
The ambitious solution would use more advanced reuse techniques for
transforming our PPM. Assuming that the above problems were solved,
then we could use generic models across different application domains
with well-defined instantiations and parameterization mechanisms in order
to get a domain-specific PPM. In this case, there would not be a new
development by just using modeling knowledge. Instead, there would be
a well-defined process by which we get a specific PPM by making use of
advanced reuse techniques.

6.5.3 Modeling and New Concepts

We have argued that the part of the PPM below the application layer was
exemplarily considered for new support concepts (see (b), (c), and (d) in
Fig. 6.1). We assumed a specific methodology for realizing any of these new
concepts. The methodology chosen was determined by the available knowledge
and infrastructure of the research group working on the case study. Therefore,
the following open problems can be posted.

(L) If the new concepts and tool functionality (experience-based support,
consistency of integration, etc.) were realized using other methodologies
and corresponding infrastructures than those described in this book,
would the above modeling problems be the same or would they change?
For example, if we would try to model and realize integrators by some
event/trigger/action approach, would that induce other problems?

638 M. Nagl

In some situations, there are also “light” solutions to realize these support
concepts – e.g. batch XML transformators for specific and simple cases of
integrators. They have been solved by manual implementation. If we would
try to incorporate them into the general modeling approach: would the
modeling layers, the problems in these layers, and the transition between
layers be the same?

(M) In Sect. 1.1 the above four new support concepts have been introduced to
support a design process in chemical engineering. They can also be used in
other design or development processes in other engineering disciplines. It
is not likely that these concepts are the only possible and reasonable ones
for supporting design/development processes. If further support concepts
are taken into account, would this change any of the modeling problems?
Are there new modeling problems to be regarded in addition?

6.5.4 Modeling Infrastructure

All of the above problems deal with modeling aspects. In this subsection, we
state further problems, dealing with the modeling infrastructure (languages,
methods, tools), which is also neither complete nor uniform (see Fig. 6.13).

(N) We have discussed the problem of different perspectives, facets, and de-
grees of detail in product/process modeling, from an application domain
model down to platforms, from explicit models down to implicit code.
There is no specification language at hand which covers all these differ-
ent aspects (broadband specification language). Furthermore, there is no
language with clear concepts for layering and hierarchies within layers,
for the transitions between layers, but also for the other aspects including
general or specific determinations, parameterizations etc. Hence, the first
open problem is that a suitable broadband specification language is miss-
ing. We have used different languages on different layers and for different
tool construction processes.

(O) The same holds true for the methodology to use such a language. Trivially,
this methodology is also missing. The methodology would have to answer
general questions, e.g. how to deal with multiple hierarchies, where to
use inheritance or other concepts, etc. This general methodology is also
missing. We have only specific methods on the application layer and below.

(P) Furthermore, there is no tool support at hand supporting the specifier
when building up a PPM using a broadband modeling language and cor-
responding methodology.

(Q) Finally, generally usable submodels, generic submodels, etc. could be de-
fined and reused, whenever a PPM is supposed to be built. These general
engineering modeling components as well as a method for their definition
and reuse are missing. Especially, common mechanisms should be given
dealing with subprocess interaction, subproduct integration, and reactiv-
ity (see Sect. 1.1).

Process/Product Model: Status and Open Problems 639

generic
submodels,
common
mechanisms

tools
supporting

layer i

layer i+1

model

language
for

methodology
for

i

i+1model

Fig. 6.13. Infrastructure problems: broadband language, methodology, tools,
generic submodels/mechanisms

6.5.5 Summary and Conclusion

The problems of developing a PPM, as introduced in Sect. 1.1, categorized in
Sect. 6.1, explained in Sects. 2.6, 6.2 to 6.4, and summarized in this section
are of such a principle character and deepness that we could not give final
answers within the IMPROVE project.

To formulate this statement positively: If we had solved all problems corre-
sponding to the PPM, then we would have deeply understood all phenomena
of design processes, we would have been able to describe them formally, we
would also have been able to formalize the construction process of integrated
environments and, even more, also distribution, parameterization, evolution,
and domain transfer. So, we would not only have completely understood de-
sign processes in chemical engineering, but development processes in general,
as well as the construction of corresponding integrated tool support.

We have got new insight into development processes by regarding the mod-
eling problems of this chapter. We have opened some doors, detected and rec-
ognized new rooms. But we have found even more doors to be opened. There
is a long list of open problems.

Nevertheless, dealing with the key question of developing a PPM is also a
success story, although we did not get final answers: the question was clearly
addressed, the importance of the question was demonstrated, it was identified
that it is a big problem, and partial answers were given.

7

Transfer to Practice

The Collaborative Research Center IMPROVE has started and is going to
transfer most of its results to industrial practice over a period from 2006 to
2009. The majority of IMPROVE subprojects has started a transfer phase.
The subprojects are reorganized into transfer projects. Most of these transfer
projects are financed by German Research Foundation (DFG) in the frame-
work of the transfer center TC 61 “New Concepts and Tools for Process En-
gineering Practice”. This transfer center can be regarded as the fourth phase
of IMPROVE.

The individual transfer projects cooperate with different industrial partners
from various industrial sectors, including chemical industry, plastics process-
ing, plant engineering, software industry, and even an insurance company. Due
to the dissimilar research interests of these partners, the transfer projects are
only loosely connected. Bilateral cooperation will take place where appropri-
ate. But other than the CRC subprojects, the transfer projects do not share
a common overall research objective.

It should be pointed out that the transfer projects are the result of a
consistent industry-oriented research strategy, which the CRC followed right
from the beginning. Thus, the transfer phase does not constitute an abrupt
transition from fundamental research to applied development, but continues
the already existing research cooperation between CRC and industry in a
different way.

This chapter is organized along the transfer projects. Each section states
the goals of the respective transfer project, the problems to be solved, and the
methods to be applied. Moreover, the industrial requirements influencing the
direction of research will be discussed.

This chapter deals with another integration aspect, extending the tech-
nical aspects given in Chaps. 2, 3, 4, and 5, namely the integration between
academia and industry. This aspect is more of a political or economical nature.

7.1 Industrial Cooperation Resulting in Transfer

R. Schneider, L. von Wedel, and W. Marquardt

Abstract. This short section is to demonstrate that one of the characteristics of
IMPROVE was a permanent exchange of ideas with industrial partners: Ideas were
taken up from industry, symposia and workshops were held, spin-offs were founded,
etc. So, the transfer center described in this chapter is essentially the result of our
long-lasting and continuing cooperation with industry.

7.1.1 Long-Lasting Industrial Collaboration

In the beginning of the CRC project, we held numerous discussion and in-
terview sessions with end-users and experts from the chemical and software
industries in order to learn about the particularities of their work processes,
to develop realistic use cases, and to specify requirements for novel software
support.

The implementation of these requirements into software was again sup-
ported by our industrial partners, which helped with practical problems, pro-
vided test cases, and evaluated the resulting prototypes in industrial settings.

As already indicated in Subsect. 1.1.3, the subproject I1 of IMPROVE
had the specific role to act as a clearinghouse, where industrial problems were
imported, where results of IMPROVE were exported to industry, and where
the management of the IMPROVE cooperations with industry was located.
According to this specific task, the main research area of subproject I1 was
the investigation of industrial work processes and their improvement.

While some of the industrial partners collaborated only temporarily, oth-
ers were involved over the entire research period of twelve years. For example,
there was a close and long-lasting cooperation on work process modeling be-
tween subprojects A1 and I1 of IMPROVE on the one and the companies Air
Products and Bayer Technology Services on the other hand. Another example
is information and project management, which included subprojects A2, I1,
and B4 from IMPROVE, and Degussa as well as Uhde on the industrial side.
Finally, there was a cooperation for a number of years between subproject B2
of IMPROVE and the software tool builder innotec.

The cooperation with industry was formalized by the CRC advisory com-
mittee with the following industrial members: Aventis, Basell, Bayer, BASF,
Degussa, innotec, Linde, Shell, Siemens, and Uhde. Regular meetings and
workshops were held for the exchange of experience between industrial part-
ners and IMPROVE.

7.1.2 Symposia and Workshops

For a broader audience, we hosted a series of workshops and symposia bringing
together participants from academia, software vendors, and end-users. The

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 643–646, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

644 R. Schneider, L. von Wedel, and W. Marquardt

objective of these events was to exchange experiences, to discuss new concepts
and ideas, and to obtain feedback from practitioners.

Six symposia were held in the years 2000 [396], 2002 [353], 2004 [399],
2005, 2006, and 2007 at Aachen and Berlin. The organization was due to
W. Marquardt (RWTH Aachen University) and G. Wozny (TU Berlin). Any
of these symposia had about 100 participants, most of them from industry.

The symposia programs consisted of oral presentations, panel discussions,
and poster sessions. These programs were interesting for both industry and
IMPROVE members. Most of the symposia had an associated software ex-
hibition of commercial software tools for engineering design. The results of
the symposia were documented in brochures which were distributed to public.
Presentation slides of the symposia since 2004 are available online [112].

7.1.3 IMPROVE’s Spin-offs

The industry related activities culminated in the formation of two start-ups
that are concerned with the development of software tools for the chemical
and polymer industries.

aiXtrusion was founded in December 2003. The objective of the company
is the development of innovative information systems to support analysis in
plastics processing plants. In particular, aiXtrusion offers a wide variety of
simulation applications that permit the study of extrusion processes. The
simulation software is easily coupled to measurements from a plant for use as
an online simulation.

Beyond process analysis, aiXtrusion offers general solutions for the integra-
tion of distributed components in heterogeneous information systems typical
for the polymer processing industries. The software distributed by aiXtru-
sion has been developed at the Institut für Kunststoffverarbeitung (IKV) at
RWTH Aachen University. Further research and development of the software
is carried out at IKV, whereas support and maintenance are provided by aiX-
trusion.

A second initiative, AixCAPE, was founded in 2002 as a consortium of
industrial end users of CAPE software. The major objective of this organiza-
tion is transfer-oriented research and development in close cooperation with
its industrial members. Transfer is organized in a variety of cooperation op-
portunities, ranging from short-term consulting services to joint medium-term
research projects or a long-term membership in the consortium. Initially, the
research results of the Lehrstuhl für Prozesstechnik form the basis of Aix-
CAPE’s activities. In the future, other academic collaborators are aimed to
be included. The idea is to achieve open technical platforms in which results
from various research organizations can be integrated for efficient assessment
and use.

Two topics important to the founding members (Atofina, BASF, Bayer,
Degussa, Dow, and Shell) have a strong connection to the work carried out

Industrial Cooperation Resulting in Transfer 645

in IMPROVE. First, further development in the area of systematic manage-
ment of mathematical process models has resulted in a successor project of the
ROME model repository (cf. Subsect. 5.3.3). The system, which is now called
MOVE [1030], has been improved according to industrial requirements. It is
better tailored to model management and integration with commercial simu-
lators such as AspenPlus. The technical basis is now the content management
system Plone [511].

Second, the integration of mathematical models for unit operations into
commercial process simulators has been carried forward with unit operation
and thermodynamic models from research at universities as well as in-house
models provided by end users. Background knowledge and experiences gained
in the various integration efforts in the IMPROVE project have helped to
effectively develop these solutions. From a technical perspective, solutions are
based on the independent CAPE-OPEN standard rather than on proprietary
interfaces of the various simulators in which the models can be employed.

7.1.4 Transfer Center as a Result of Our Industrial Links

As a consequence of the various initiatives described above, we have been
able to identify the problem areas where an intensified cooperation by means
of transfer projects seems most promising.

There are seven transfer projects which build up the transfer center TC 61
“New Concepts and Tools for Process Engineering Practice” (http://se.rwth-
aachen.de/research/tb61). This transfer center can be regarded as the fourth
phase of IMPROVE.

Table 7.1 gives organizational details of these transfer projects, i.e., their
title, their code, the subprojects of IMPROVE they originate from, but also
the affiliated industrial partners. These transfer projects are described in the
following sections of this chapter.

The cooperation with industry within the transfer center is not a one-way
activity. Industry is also contributing with a remarkable financial effort, as
already indicated in Sect. 1.3.

Further workshops are planned for 2008 and 2009 to continue the above
series. A bigger event is planned for 2009, however, to disseminate the results
and to present the achievements of the transfer center to the public.

7.1.5 Summary

This short section describes the various forms of cooperation of IMPROVE
with industrial partners from different fields of industry. Especially, we dis-
cussed the different measures we have taken in order to install and improve
cooperation.

We also shortly described the transfer center as a result of the cooperations
since the beginning of IMPROVE. The remainder of this chapter describes the
joint research between the IMPROVE groups and industry.

646 R. Schneider, L. von Wedel, and W. Marquardt

Table 7.1. Overview of the transfer projects

Title Code Originating
from
IMPROVE
subproject

Industrial partners

Ontology-based integration and
management of distributed
design data (cf. Sect. 7.2)

T1 A2 Evonik Degussa, onto-
prise

Computer-assisted work
process modeling in chemical
engineering (cf. Sect. 7.3)

T2 A1, I1 Air Products, BASF,
Bayer Technology
Services, Siemens

Simulation-supported workflow
optimization in process
engineering (cf. Sect. 7.4)

T3 I2, I4 Bayer MaterialScience,
ConSense, InfraServ

Management and reuse of
experience knowledge in
continuous production
processes (cf. Sect. 7.5)

T4 B1, C1 aiXtrusion, Fraunhofer
FIT, Freudenberg

Tools for consistency
management between design
products (cf. Sect. 7.6)

T5 B2 innotec

Dynamic process management
based upon existing systems
(cf. Sect. 7.7)

T6 B4 AMB, innotec

Service-oriented architectures
and application integration (cf.
Sect. 7.8)

T7 I3 AMB

7.2 Ontology-Based Integration and Management of
Distributed Design Data

J. Morbach and W. Marquardt

Abstract. During the design phase of a chemical plant, information is created by
various software tools and stored in different documents and databases. These dis-
tributed design data are a potential source of valuable knowledge, which could be
exploited by novel software applications. However, before further processing, the
scattered information has to be merged and consolidated. For this task, semantic
technologies are a promising alternative to conventional database technology. This
contribution gives an outline of the transfer project T1, which aims at the develop-
ment of an ontology-based software prototype for the integration and reconciliation
of design data. Both ontology and software development will be performed in close
cooperation with partners from the chemical and software industries to ensure their
compliance with the requirements of industrial practice. The advantages of semantic
technologies will be demonstrated by comparing the prototype against a conventional
integration solution.

7.2.1 Introduction

During the individual stages of a plant design project, information is created
and manipulated by application tools and stored in heterogeneous formats,
such as technical documents, CAE systems, simulation files, or asset manage-
ment tools. The lack of integration between these application tools and data
stores creates a significant overhead for the designers, since much time has
to be spent on the re-entering of data, the manual reconciliation of overlap-
ping data sets, and the search for information. NIST, the National Institute
of Standards and Technology in the U.S, has recently analyzed the efficiency
losses resulting from inadequate interoperability among computer-aided de-
sign, engineering, and software systems. According to this study, insufficient
interoperability causes costs of 15.8 billion dollars in the US capital facilities
industries, compared to a hypothetical scenario where the exchange of data
and the access to information are not restricted by technical or organizational
boundaries [681].

In principle, interoperability between application tools could be achieved if
all stakeholders agreed on a shared data model [1035, 1038]. However, none of
the standards proposed for the chemical industries has gained wide acceptance
so far (cf. discussion in Sect. 2.6). Therefore, several of the major chemical and
engineering companies are developing their own solutions to data integration
and management. One of these solutions is the PlantXML technology [506],
which has been established by the Evonik Degussa engineering department to
improve the interoperability between their application tools. Data exchange is
realized via XML files that comply with an in-house standard specified through
XML schemata. Custom-made converters handle the import and export of the

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 647–655, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

648 J. Morbach and W. Marquardt

XML files to and from the application tools by mediating between the in-house
standard and the internal data models of the application tools.

The section is organized as follows: In Subsect. 7.2.2, three application
areas are described which could benefit from a comprehensive information
base on top of PlantXML. Subsection 7.2.3 sketches the information model
required for such an information base. In Subsect. 7.2.4, the implementation
strategy of the transfer project, based on semantic technologies, is discussed.
Subsections 7.2.5 and 7.2.6 are about the project’s contribution to scientific
progress and industrial practice, respectively.

7.2.2 Application Scenario

Currently, PlantXML merely constitutes a convenient solution for data ex-
change. In a next step, however, additional value can be created by harvesting
the information contained in the XML files with appropriate software tools.
Three major application areas have been identified for investigation in the
transfer project T1:

1. Automatic detection and elimination of data inconsistencies and design
errors. Typical design errors would be interconnected flanges with different
internal diameters or process parameters exceeding the stability limits of
some plant equipment.

2. Supporting the project manager by providing an integrated view on the
relevant project data and by extracting key figures and performance indica-
tors from the XML files. Examples of such indicators are the accumulated
equipment costs or the percentage of completed sub-tasks.

3. Automatic generation of a comprehensive and consolidated technical doc-
umentation of the chemical plant for the data handover to the owner.

The transfer project does not intend to develop a fully functional software
solution for the above application areas. Instead, the goal is to understand
the fundamental issues, to develop a conceptual solution, and to provide a
software prototype that demonstrates the potential of the conceptual solution.

As stated before, the software prototype will make use of the information
available in the PlantXML format. To this end, appropriate converters will
extract selected data from the XML files and assemble them in a comprehen-
sive information base, which has the function of integrating and reconciling
the distributed information. After such consolidation, the information will be
reorganized and transferred into application-specific information bases. These
are specifically designed to serve the information requirements of novel ap-
plication tools for the three application areas described above. The entire
information transformation process is summarized in Fig. 7.1.

Note that the information processing is significantly facilitated by the
availability of the PlantXML technology. Without PlantXML, the informa-
tion required by the novel application tools would need to be extracted from

Ontology-Based Integration and Management of Distributed Design Data 649

software prototype

comprehensive information base

XMLXML
Plant
XML
files

existing
application

tool A

existing
application

tool B
XMLXML

Plant
XML
files

existing
application

tool C

integration,
reconciliation

information extraction

transformation,
customization

application-specific
information base for X

application-specific
information base for Y

novel
application tool

Y

novel
application tool

X

Fig. 7.1. Information transformation process

the proprietary formats of the existing application tools and data stores. In
the project setting, however, these information can be directly obtained from
the XML files, which can be easily accessed due to their consistent and well-
known syntax and semantics. Moreover, the XML files already aggregate and
pre-integrate the data, which would otherwise be scattered over a much larger
number of disparate sources.

7.2.3 Information Models

As explained in the previous subsection, the scattered information items from
the various PlantXML files must be assembled into a comprehensive infor-
mation base. This requires a comprehensive information model, which will be
based on the application domain models introduced in Chap. 2, particularly
on the domain ontology OntoCAPE presented in Subsect. 2.2.4 and on the
document model presented in Sect. 2.3.

As shown in Fig. 7.2, each XML file will be represented by an instance
of the class DocumentVersion. The version history of the files can be indi-
cated by the relations hasPredecessor and hasSuccessor, as explained in Sub-
sect. 2.3.3. The hasContent relation is employed to denote the contents of the
XML files through concepts from the OntoCAPE ontology (cf. Subsect. 2.3.4).
A finer-grained description can be obtained by decomposing each file into its
structural entities, represented through instances of the Product class, and

650 J. Morbach and W. Marquardt

OntoCAPE:
RootElement

DocumentVersion

hasContent

RLT-File EMR-File SiAr-FileEQP-File

Product

hasSuccessor

Fig. 7.2. Fundamental classes and relations of the comprehensive information model

by characterizing the content of each Product by an adequate concept from
OntoCAPE.

To enable an adequate description of the contents of the PlantXML files,
OntoCAPE needs to be extended in scope and detail. We expect the changes
to take place mainly on the lower, application-oriented layers of OntoCAPE.
However, some of these changes might affect the higher levels of the ontology,
as well, and could even require the modification of already existing ontology
modules. Since OntoCAPE is explicitly designed for reuse (cf. [326]), the effort
for implementing these changes is expected to be moderate.

PlantXML defines specific XML schemata for the different phases of a
design project: XML-EQP for the design of machines and apparatuses, XML-
EMR for the design of instrumentation and control systems, XML-RLT for
piping, and XML-SiAr for the design of fittings and safety valves. Four sub-
classes of DocumentVersion are introduced to denote these schemata. For each
subclass, the range of the hasContent relation is specifically restricted to the
corresponding concepts of OntoCAPE.

The four PlantXML schemata are independent of each other but overlap
to some extent. These overlaps have to be identified, and multiple occurrences
of data have to be merged to obtain a comprehensive, integrated representa-
tion of the distributed information. Moreover, interrelations and dependen-
cies between the different schemata must be explicitly represented within the
comprehensive information base. A simple but illustrative example is given in
Fig. 7.3: Here, both an EQP file and an RLT file contain a data item that
denotes a nozzle with the identification number 14. Since both data items
refer to the same real-world object, they need to be represented by a single
data item in the integrated information base (i.e., Nozzle #14). That way, the
topological relation between Vessel #11 represented in the EQP file and Pipe
#23 represented in the RLT file are made explicit. The implementation strat-
egy through which the data consolidation is to be achieved will be described
in the next subsection.

Once a comprehensive information base is available, the data can be easily
transferred into the application-specific information bases, which meet the re-
quirements of the novel application tools. The project partner Evonik Degussa
has defined several use cases to determine the information demands of these

Ontology-Based Integration and Management of Distributed Design Data 651

OntoCAPE:
RootElement

DocumentVersion

hasContent

RLT-File EMR-File SiAr-FileEQP-File

Product

hasSuccessor

RLT file #12
<Pipe id=„23“>

<Nozzle id=„14">
…
</Nozzle>

…
</Pipel_23>

EQP file #22
<Vessel id=„11“>

<Nozzle id=„14">
…

</Nozzle>
…
</Vessel“>

Vessel #11
isAttachedTo

Nozzle #14

EQP file #22

has

RLT file #12

hasContent

Pipe #23

hasContent

instantiation

relation

specializationClass

Instance

notation

Vessel Pipe
isAttachedTo

Nozzle
has

Comprehensive information base

Fig. 7.3. Illustrative example

tools. Based on the requirements specification, application-specific information
models are currently developed.

7.2.4 Implementation Strategy

We intend to use semantic technologies for the realization of both the com-
prehensive and the application-specific information bases. In this context, the
term ‘semantic technologies’ refers to software systems that use ontologies as
internal data models. Since ontologies explicitly specify the semantics of the
data, a specialized software component, the so-called inference engine, can
interpret and reason about the data.

Compared to conventional database technology, semantic systems have
several advantages. First to mention is the user-friendly approach to creat-
ing internal data models: Semantic systems typically incorporate a graphical
modeling environment for the creation of ontologies. Subsequently, these on-
tologies can be directly used as implementation models for the storage and
management of data without further modifications. The underlying program
logic and the data structures of the semantic software are completely hidden
from the user. That way, the user can intuitively create, extend, and main-
tain customized information bases even without possessing deep expertise in
database design. Ontology engineering is furthermore supported by the infer-

652 J. Morbach and W. Marquardt

ence engine, which checks the ontology for consistency, thus revealing logical
errors and ensuring a reliable, validated data model.

Another important advantage of ontology-based systems over conventional
database technology is the possibility of partially automating the information
integration process. To this aim, two different types of inference mechanisms
can be applied: subsumption (i.e., automatic classification) and deduction
(i.e., the execution of production rules). The currently available ontology lan-
guages and inference engines do not support both inference mechanism si-
multaneously. Since deduction is particularly useful for merging and consoli-
dating of distributed information [827], it was decided to employ a deductive
language (and a compatible inference engine) in the transfer project. Accord-
ingly, the application development system OntoStudio was chosen to serve
as an implementation basis. OntoStudio, a commercial software product of
the project partner OntoPrise, constitutes an design environment for ontolo-
gies and semantic applications. Unlike most of the ontology-based systems
available today, OntoStudio is scalable and thus suitable for the processing of
large ontologies. It relies on the deductive database language F-Logic [779],
which allows the representation of ontologies, the definition of mapping rules,
and the formulation of queries. F-Logic supports not only the specification of
mappings between individual classes and/or instances, but also the definition
of general integration rules. Thus, instead of establishing mappings between
individual data items, the integration policy can be specified in more general
terms. The applicability of a rule to the given data is automatically checked
by the inference engine. This approach is more intuitive and less error-prone
than conventional database integration techniques (e.g., integration via SQL
queries), especially in complex contexts with many relations between the data
objects [827].

Both the comprehensive information base and the application-specific in-
formation bases will be implemented in the design environment OntoStudio.
For the import of PlantXML data, a new interface is to be developed. Ontolo-
gies represented in the deductive database language F-Logic are to be used as
semantic data models. Information integration and reconciliation will be sup-
ported by OntoStudio’s built-in inference engine, which will execute mapping
and integration rules specified on top of the ontologies. Similarly, the transfor-
mation from the comprehensive information base into the application-specific
formats will be performed by the inference engine, controlled by conversion
rules defined within OntoStudio.

A drawback of semantic technologies is the considerable effort to be spent
on ontology engineering. This development effort can be significantly reduced
by reusing existing ontologies instead of starting from scratch. Therefore, as
already mentioned in Subsect. 7.2.3, the application domain models presented
in Chap. 2 will be reapplied in this transfer project. Since OntoStudio supports
the import of OWL ontologies, these models can be reused directly.

Ontology-Based Integration and Management of Distributed Design Data 653

7.2.5 Intended Contribution to Scientific Progress

The use of ontologies and semantic technologies for the integration of dis-
tributed data is a long-standing research issue; an overview on the more re-
cent contributions in this field can be found in [900, 1026, 1031]. Three major
approaches can be distinguished, differing in the way in which the semantics
of the heterogeneous data sources are described through ontologies:

• According to the centralized approach, all information sources are mapped
onto a single global ontology. The mappings clarify the semantics of the
source objects, thus supporting the identification of semantically corre-
sponding objects.

• In the decentralized approach, each information source is described by its
own local ontology. Mappings are defined between the local ontologies to
identify semantically corresponding terms.

• The hybrid approach combines features of the two previous approaches and
eliminates most of their drawbacks. Similar to the decentralized approach,
each source is described by its own ontology. But this time, the local on-
tologies are built upon a shared vocabulary, which is provided by a global
domain ontology. That way, the local ontologies can be compared more
easily, which facilitates their integration. The integration approach to be
taken in the transfer project is a variant of the hybrid approach.

To our knowledge, the hybrid approach has never been utilized for the inte-
gration of engineering design data. Thus, our research objectives are (1) to
evaluate if the hybrid approach is suitable for this application case and (2) to
elaborate both the methodology and the ontological models required for its
practical usage.

So far, only a few research projects have investigated the use of semantic
technologies for information integration in chemical engineering: Weiten and
Wozny developed a system to archive the diverse results of research projects
(publications, experimental data, mathematical models, etc.) in an integrated
fashion [1041–1043]. The system uses ontologies to annotate and link heteroge-
neous information sources. Similarly, the Process Data Warehouse presented
in Subsect. 4.1.5 uses ontologies to describe and interrelate the contents of
chemical engineering documents and data stores. Both the PDW and the
archival system developed by Weiten and Wozny allow to establish semantic
relations between the information sources via content-specific metadata; how-
ever, these systems do not merge and reconcile the contents of the sources on
a fine-grained level, as it is intended in this project. Moreover, the relations
between information sources have to be established manually in those systems,
whereas this project proposes to automate the integration process by using
integration rules.

Last but not least, the transfer project provides an excellent opportunity
for testing the application domain models developed in IMPROVE in an in-

654 J. Morbach and W. Marquardt

dustrial setting. Based on the use case of integrating PlantXML data, two
questions will be investigated:

1. Are the application domain models suitable for describing and managing
large amounts of real-world data?

2. Can the models be easily adapted to new applications and thus reused
without major effort?

Together with our industrial partners, we will evaluate these issues and, if
necessary, improve and adapt the models to the requirements of industrial
practice. The ultimate goal is to obtain practically validated application do-
main models, which can then be reused by third parties to build semantic
applications in the domain of process engineering.

7.2.6 Intended Contribution to Industrial Practice

In the chemical and process industries, semantic technologies are currently
not applied. Commercial software systems for the integration and manage-
ment of lifecycle data still rely on conventional database technology. Most of
these systems are based on a central data warehouse that can import and
redistribute data created by application tools. These systems support naviga-
tion and retrieval of data and provide some basic data management functions
such as version management and change management, but novel functionality
as envisioned in Subsect. 7.2.2 is not available today. Typical examples are
SmartPlant Foundation [747] from Intergraph and VNET [520] from AVEVA.
However, these off-the-shelf solutions can only process the proprietary data
formats of the respective vendors and are thus limited to the data created by
the vendors’ application tools, which normally represent only a minor subset
of all data created in the course of a development project. Extending these
tools towards the handling of non-proprietary formats is difficult, as one needs
to modify the source code and map onto the internal data models of the tools,
both of which are poorly documented in most cases.

To overcome these deficiencies, some systems allow the import and export
of XML data. But again, as there is no general agreement on a particular
XML exchange format, the tools can process only the XML formats propa-
gated by the respective vendors. Examples of such proprietary XML dialects
are XMpLant [868], AEX [667], ppdXML [635], and cfiXML [661]. A com-
mon data exchange format supported by all established vendors is unlikely
to evolve within the near future [506]. As a consequence, many chemical and
engineering companies are utilizing in-house technologies such as PlantXML.
While these technologies are capable of solving the problem of data exchange,
they are less suitable for handling complex integration issues (cf. discussion
in Subsect. 7.2.4).

The prototypical software to be developed in this project constitutes a sup-
plement to the existing in-house technologies, providing additional value be-
yond data exchange (as explained in Subsect. 7.2.2). Even though the project

Ontology-Based Integration and Management of Distributed Design Data 655

use case is based on PlantXML, we are aiming at a generic solution that can
be combined with different in-house technologies and is thus reusable across
companies and organizations.

Since semantic technologies are currently not applied in the chemical in-
dustry, it is not known if the conjectured advantages of semantic technologies
prove true in practical use. As a first benchmark, the reliability of the seman-
tic software and its ability to handle large-scale industrial data sets will be
evaluated.

7.2.7 Summary

The transfer project T1 [480] aims at the development of a prototypical soft-
ware tool for the integration and reconciliation of engineering design data.
The implementation will be based on ontologies and semantic technologies;
some of the application domain models developed in IMPROVE will be reused
for this purpose. As an industrial use case, the project considers the integra-
tion of design data available in the PlantXML format. The envisioned tool
will extract and merge data from different XML files into a comprehensive
information base. Subsequently, the consolidated information can be trans-
formed into application-specific formats for further processing. Prototypical
tools for the following application cases are to be realized in this project: de-
tection and elimination of design errors; information provision for the project
management; generation of a plant documentation.

7.3 Computer-Assisted Work Process Modeling in
Chemical Engineering

M. Theißen, R. Hai, and W. Marquardt

Abstract. The transfer project aims at the integrative modeling, analysis, and
improvement of a variety of work processes in the life cycle of a chemical product
across disciplinary and institutional boundaries. A methodology is elaborated for
the creation of conceptual, coarse grained models of work processes originating from
empirical field studies in industry and their subsequent enrichment and formalization
for computer-based interpretation and processing.

7.3.1 Introduction

As a continuation of IMPROVE subprojects A1 and I1, the transfer project
aims at the integrative modeling, analysis, and improvement of a variety of
work processes in the lifecycle of a chemical product across disciplinary and
institutional boundaries. Within the project, different types of work processes
in four very different phases of the chemical product lifecycle are considered,
namely

• the development of chemical products,
• the conceptual design of production processes,
• the specification of operating procedures for the chemical plant, and finally
• the realization of these operating procedures in the real plant.

These work processes do not only differ in the lifecycle phases they address,
but are also quite different in nature. The first three examples are design
processes, whose products are specifications of certain artifacts, whereas the
last work process is an operational process ; its product is the manufactured
chemical product itself. The actors of design processes are human beings,
typically assisted by certain software tools. In contrast, operational processes
are performed by both human beings and computers, i.e., the operational
staff and the process control system. As operational processes are largely pre-
determined and leave limited room for creative decisions on behalf of the
actors, they can be automated to a large extent. In contrast, the potential for
automating highly creative design processes is low.

Typically, the human actors of an industrial work process originate from
various disciplines, such as chemistry, chemical engineering, or electrical engi-
neering, and they perform diverse roles (e.g., technical, managerial, supervi-
sory). As a result of these different backgrounds, each stakeholder possesses a
personal view and understanding of the work process. Some actors, in particu-
lar those in managerial and supervisory roles, are acquainted with the process
as a whole, but are unfamiliar with details of the process. Such detailed knowl-
edge is distributed among the stakeholders. This lack of common understand-
ing hinders collaboration across organizational and disciplinary boundaries

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 656–665, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computer-Assisted Work Process Modeling in Chemical Engineering 657

and over the lifecycle of the product, and therefore leaves significant room for
improvement [791].

A common understanding can be achieved by means of simple representa-
tions of work processes, which can easily be edited and understood by all stake-
holders, independent from their disciplinary and educational backgrounds.
Several case studies in cooperation with industrial partners (cf. Sect. 5.1) have
proven that the C3 notation for work processes (cf. Subsect. 2.4.4) provides
an adequate representation.

C3 is a typical example of a semi-formal modeling language: Part of the
information comprised in a C3 model is represented in an unambiguous way
(e.g., the order of activities as it is defined by control flows), whereas another
part is expressed by annotations in natural language (see Subsect. 2.1.1 for a
sound definition of the terms semi-formal and formal).

A drawback of semi-formal models is their limited utility for computer-
based applications such as analysis, simulation, or enactment. For this pur-
pose, formal, machine-interpretable models are required. However, the cre-
ation of formal models is difficult, time-consuming and requires expert skills.
Consequently, a methodology is required for the creation of formal work pro-
cess models by means of an incremental approach with active participation of
all stakeholders. This transfer project envisions

• the extension of the modeling procedure and Process Ontology developed
in the IMPROVE subprojects A1 and I1 (cf. Sect. 2.4) – which are cur-
rently restricted to design processes – to cover different types of work
processes,

• the creation of prototypical tools for work process modeling and for the
export of these models in software tools used in certain lifecycle phases,
and

• the validation of the approach in several case studies performed in coop-
eration with industrial partners.

The remainder of the section is organized as follows: In Subsect. 7.3.2, the
current state of the art in work process modeling is briefly discussed. Subsec-
tion 7.3.3 describes the methods applied in the transfer project to reach the
goals sketched above as well as various case studies in cooperation with indus-
trial partners for the validation of the approach. Subsection 7.3.4 is about the
industrial relevance of the project and the expected benefits for the chemical
industries.

7.3.2 State of the Art in Research and Industrial Practice

Currently, different approaches exist for representing and processing work pro-
cess knowledge in the process industries, depending on the life cycle phase they
address. There is no integrated approach supporting the creation of semi-
formal models, their incremental formalization, and finally the use of these
models for different applications.

658 M. Theißen, R. Hai, and W. Marquardt

Modeling of Design Processes

As argued in Sect. 2.4, no semi-formal representation for design processes is
established in the process industries. Instead, notations and models like ac-
tivity diagrams of the Unified Modeling Language (UML, [560]), the Business
Process Modeling Notation (BPMN, [873]), or Event Driven Process Chains
(EPC, [842, 949]) are used, although they do not fully meet the requirements
induced by the characteristics of design processes. As noted above, the semi-
formal C3 notation has proven its potential for filling this gap in a series of
industrial case studies.

Moreover, there is no modeling approach for the formal representation of
design processes. Despite the above mentioned benefits of formal models of
design processes, they are not used yet in industry [401]. This is due to the
lack of appropriate modeling languages, but also to the high cost for their
creation. Since the knowledge about a design process is distributed among all
individuals participating in the process, the creation of a formal model from
scratch would require an immense effort. Thus, an incremental procedure is
required which starts from a simple semi-formal representation of a design
process and which results in a formal model.

Modeling of Operational Processes

The existing formal representations for operational processes such as the lan-
guages defined in IEC 61131-3 [748] (e.g., Sequential Function Chart (SFC),
Block Diagram) result in very detailed and complex descriptions. As formal
process descriptions are indispensable for the automation of chemical pro-
cesses, several methodologies have been elaborated to simplify their creation
and analysis. In [775], class diagrams and state charts of UML-PA, a domain-
specific extension of UML, are proposed as intermediate steps before the auto-
matic generation of specifications according to IEC 61131-3. A procedure for
the design and analysis of logic controllers for plants is presented in [822], com-
prising the design of an SFC, its translation into a formal modeling language,
and finally the analysis of the formal controller model.

Such methodologies offer valuable support for the specification of oper-
ational processes as long as only control and possibly process engineers are
involved. An extensive use of these approaches by other stakeholders in pre-
ceding phases is impeded by a wide variety of non-trivial documents and
formats.

Semi-formal representations can be used as an intermediate step for the
generation of a model with the intended level of detail and formalization:
First, the operations are specified by chemists or process experts on a concep-
tual, semi-formal level, and subsequently formalized and refined. Since such
semi-formal representations are currently missing, inadequate workarounds
like spreadsheets or informal documents are often used in industrial practice.

Computer-Assisted Work Process Modeling in Chemical Engineering 659

7.3.3 Objectives and Methods

Extended Modeling Procedure

The modeling procedure described in Subsect. 2.4.2 addresses the work pro-
cesses during the conceptual design of chemical processes. It covers the knowl-
edge acquisition from stakeholders by means of field studies, the creation of
conceptual semi-formal work process models, and their subsequent enrichment
and formalization. The methodology has been successfully applied in several
case studies conducted in industry (cf. Sect. 5.1). This modeling procedure is
supposed to be extended

• to cover different types of work processes and
• to enable different applications based on the models (e.g., simulation or

automation of (parts of) the work process).

Fig. 7.4 gives an overview of the extended procedure. It begins with the cre-
ation of a coarse-grained semi-formal model of the work process considered
(1). The purpose of this semi-formal model is a first common understanding
of the work process, which is agreed upon by all individuals involved. At this
stage, several aspects of the work process may be included in an informal
way, for example by means of textual annotations, or they may be neglected
completely if they are considered insignificant.

In the next step, additional aspects of the work process are added to the
model or described in a more precise way (2). Both the choice of aspects
and the degree of detail depend on the intended applications of the work
process model. For example, if a design process model is supposed to guide
an inexperienced designer, behavioral aspects of the design process (such as
the sequence of activities to be performed and conditions for their execution)
can be expressed in natural language. In contrast, if the work process model
is intended, for example, as input specification for a workflow management
system, a formal and detailed description of behavioral aspects is required.

In a subsequent analysis phase, the work process model is checked for
consistency and completeness (3). Consistency checks ensure that the model
does not contain contradictory statements about the work process. Complete-
ness refers to the aspects which are relevant to the intended applications of
the model. Completeness does not mean that all details about an aspect of a
work process must be included in the model. Rather, completeness requires
that a relevant aspect is modeled on a sufficient level of detail, which com-
plies with the target format of the software application using the work process
model.

In case a work process model is intended to be used in a tool processing
the work process model for a specific purpose, it must be transformed (4)
into the target format employed by the candidate software application. The
transformed work process model can be further enriched with application-
specific content in the target software application.

660 M. Theißen, R. Hai, and W. Marquardt

Creation of a
semiformal work
process model

Completion and
modification of model

depending on its
purpose

Formalization of
aspects depending
on model purpose

Completeness
and consistency

checks

model complete
and consistent

model incomplete
or inconsistent

Transform model

Coarse-grained
semiformal work
process model

Formal application-
independent work

process model

Application-specific
work process model

Use model for
intended purpose

Additional
knowledge about

work process

1

2

3

4

5

Fig. 7.4. Modeling procedure (in C3 notation, cf. Subsect. 2.4.4)

The use of the model in the target application (5) will reveal better insight
into the work process considered. For example, simulation studies of an oper-
ational process (e.g., emergency shut-down of a plant section) by means of a
discrete-event system simulator can reveal deficiencies in the current design of
the operating procedure. Based on such findings, the design engineer modifies
the work process model and initiates a new iteration of formalizing, checking,
transforming, and using the model in the (simulation) application. Note that
different tools tailored to different purposes or applications can be integrated
into the procedure without difficulties, as long as all application-independent
aspects of the work process are included in the model. For example, it is pos-
sible to optimize an operational process by means of simulation, and then

Computer-Assisted Work Process Modeling in Chemical Engineering 661

Work Process

Activity requires Resource Capabilityprovides

DesignActivity Designer Skill

Polymerization
ReactorDesign

Polymerization
Expert

Polymerization
Knowledge

Operational
Activity Equipment Equipment

Capability

AcidProduction Reactor AcidResistancy

Chemical Engineering Design Process Chemical Engineering Operational Process

class relation
notation

module specialization

Fig. 7.5. Sketch of the modified Process Ontology

generate sequential function charts as a basis for the specification and imple-
mentation of the control and automation system from the same model.

Extended Process Ontology

The modeling procedure described above induces a number of requirements
on the Process Ontology, which are not fulfilled by its current version as
described in Subsect. 2.4.6. In the following, the most important new features
of the Process Ontology are outlined.

The current Work Process module of the Process Ontology abstracts from
the characteristics of special types of work processes and provides a set of
basic elements for modeling a wide range of processes. The Chemical Engineer-
ing Work Processes module imports both the Work Process module and the
OntoCAPE product data model, and thus it provides the concepts required
for modeling conceptual design processes in chemical engineering and their
products (cf. Subsect. 2.6.2).

The extended Process Ontology to be created in this project will have to
cover the peculiarities of different types of work processes. This implies some
minor modifications of the type-independent Work Process module (e.g., the
replacement of the Actor class by a more general Resource), but in particular
type-specific modules are to be created which serve as meta-models for work
processes of a certain type. As shown in a simplistic way in Fig. 7.5, the con-
cepts of these modules inherit from the concepts of the general Work Process

662 M. Theißen, R. Hai, and W. Marquardt

module. For instance, the DesignActivity introduced in the Chemical Engineer-
ing Design Process module62 is a specialization of the general Activity within
Work Process. The execution of a DesignActivity requires the availability of
Designers with certain Skills. Thus, these two classes have to be introduced as
specializations of Resource and Capability on the common meta-layer. Anal-
ogous specializations are introduced in the Chemical Engineering Operational
Process module.

Process models on the instance layer are intended to be used for different
applications such as simulation or automation. Thus, the Process Ontology
must be sufficiently rich to enable process models to provide the information
relevant for the applications. For this purpose, the class definitions of the Work
Process module and the type-specific modules can be enhanced by a set of
attributes. For instance, a ControlFlow can be characterized by the percentage
by which the preceding Activity must be completed before the subsequent
Activity can start. Exemplary attributes of a Reactor are its volume or its
maximum operating pressure.

In principle, the model framework allows to include the entirety of aspects
relevant to all possible applications in a single application-independent work
process model, provided that its meta-model, i.e. the type-specific module,
features all required model elements. This approach is not feasible because it
would result in unmanageable complexity of the Process Ontology. Further-
more, a software application tailored to a certain task can offer better support
for modeling application-specific aspects of a work process than a general-
purpose work process modeling tool which aims at application-independent
models. Thus, the application-independent work process model in the work
process modeling tool should be restricted to those aspects which are relevant
for several applications.

Technical Realization

Like the current Process Ontology, also the extended version will be imple-
mented in the Web Ontology Language (OWL, [546]). Whereas the standard
OWL editor Protégé [979] can be used for the modifications and extensions of
the Process Ontology itself, a tailored tool is required for the creation of work
process models on the instance layer. An extended version of the Workflow
Modeling System WOMS (cf. Subsect. 5.1.3), called WOMS+ in the following,
will further on provide an intuitive graphical representation in the proven C3
notation. An outstanding feature of the new tool is its adaptability for different
types of work processes, realized by an import functionality for type-specific
modules of the Process Ontology.

62 Chemical Engineering Design Process corresponds to the Chemical Engineering Work
Processes module of the current version of the Process Ontology. It has been
renamed to emphasize its restriction to design processes.

Computer-Assisted Work Process Modeling in Chemical Engineering 663

The output format of WOMS+ is OWL, i.e., work process models are
represented by a set of instances of the classes defined in the Process On-
tology. Thus, the description logics reasoner RacerPro [918] can conduct the
consistency and completeness checks within the modeling procedure.

Model transformations into different applications are realized in XSLT
(Extensible Stylesheet Language Transformations, [602]), which allows to re-
duce the effort for their implementation to a minimum.

Industrial Case Studies

Cooperation with various partners from the process industries is an essential
requirement for the success of the project. The intended long-term coopera-
tion provides access to industrially relevant work processes to the academic
research team. Sufficient knowledge about real work processes is a prerequisite
for the extension of the Process Ontology as described above. Also, usability
of the modeling procedure in general and the modeling tool in particular can
only be evaluated in the context of industrial case studies. The cases to be
examined in the project address real problems of the industrial partners. They
have been carefully selected to cover a wide range of different types of work
processes, but also with regard to the anticipated enhancements that can be
reached in the project.

A first group of case studies, performed in cooperation with Air Products
and Chemicals, Inc., addresses the modeling and improvement of product and
process design processes for specialty chemicals. In a previous cooperation,
models of two concrete design projects have been created. In the transfer
project, a generalized model will be elaborated based on the existing models.
Given the highly creative character of product and process design, this is by
no means a simple combination of the two existing models, but requires a
substantial abstraction from the concrete projects. In a subsequent step, the
generalized model is transformed into a simulation model for the quantitative
analysis of the design process. As time to market is considered a crucial issue
for innovative chemical products, simulation studies will in particular address
the impact of allocated resources on the cycle time.

A second group of case studies in cooperation with BASF SE, Bayer Tech-
nology Services GmbH, and Siemens AG focuses in the first instance on mod-
eling and improving the design processes during the specification of the op-
erational processes of a chemical plant. Based on the promising results of a
previous study in cooperation with Bayer Technology Services GmbH, our fun-
damental approach for improving these design processes is the modeling of the
operational processes themselves using WOMS+: The tool will be used by the
different experts for describing those aspects of an operational process which
are relevant from their point of view (e.g., chemical engineers specify the pro-
cess steps to be performed and their order of execution). This WOMS+ model
is then passed to the subsequent experts, who will further enrich, detail, and

664 M. Theißen, R. Hai, and W. Marquardt

formalize the model. The integration of typical application tools (e.g., simu-
lation systems for batch processes or editors for sequential function charts)
in the overall design process is supported by adequate model transformations
from WOMS+ to the application formats.

7.3.4 Industrial Relevance

Work process modeling is considered to be an important methodology for
improving the efficiency and the productivity during the design processes in
the chemical product lifecycle. A competitive advantage is often only possible
if time to market is reduced and if the development cost for a low-volume
product and its associated manufacturing process can be properly controlled.
An integrative approach across the variety of work processes in the chemical
product lifecycle is indispensable to limit the cost of introducing such a new
technology in the industrial environment.

A better understanding of cross-institutional and cross-disciplinary work
processes is considered to be of key importance for the improvement of design
processes in industry. It is commonly agreed that there is still a lot of room
for improvement with respect to the quality of the resulting design as well as
to the reduction of elapsed process time. These potential benefits can only be
materialized if a suitable work process modeling methodology and a support-
ing tool in the lifecycle of a chemical product can be provided to the chemical
process industries.

The intended incremental refinement approach towards work process mod-
els of different levels of detail and different degrees of formalization captures
very well the needs of industrial users. This way, semi-formal models can be
created for achieving a common understanding in the project teams. On this
basis, formal models of work processes can be created at moderate effort, if
the benefits of formal work process models are supposed to be exploited. It is
highly desirable to assess the potential of formal methods to work processes
by computer-aided tools.

As both, modeling methodology and tool are suitable for a wide range of
different classes of work processes, only a minimal learning effort is required
from potential users to implement a modeling strategy for work processes
covering important parts of the chemical product lifecycle. This is a major
step towards our long-term objective: a methodology and a tool for inter-
disciplinary and inter-organizational work process modeling, which can be
applied across the chemical product lifecycle in an industrial environment.

7.3.5 Conclusion

The transfer project aims at the integrative modeling, analysis, and improve-
ment of different types of work processes in the lifecycle of a chemical product.
To this end, the modeling procedure and the Process Ontology developed in
the IMPROVE projects A1 and I1, originally addressing the work processes

Computer-Assisted Work Process Modeling in Chemical Engineering 665

during conceptual design of chemical processes, are extended to cover several
types of design and operational processes.

A novel work process modeling tool is developed to enable any stakeholder
in an industrial work process to routinely create and utilize work process mod-
els with moderate additional effort. The tool builds on semantic information
processing and facilitates the export of the model into other software applica-
tions such as simulation systems and process control systems.

Tight cooperation with four industrial partners ensures the practical rele-
vance of the results to be obtained in the project. The success of the transfer
project can be measured by means of the following competency questions that
check the fulfillment of the project’s goals:

• Does the project succeed in the elaboration of an integrative modeling
methodology that can be applied to different types of work processes in
chemical engineering?

• Is the methodology appropriate for routine application in industry?
• Does the application of the methodology in industry provide a measurable

benefit for the user?

An overall indicator for the success of the project will be the rate of acceptance
of the newly developed methods and tools in industry.

7.4 Simulation-Supported Workflow Optimization in
Process Engineering

B. Kausch, N. Schneider, C. Schlick, and H. Luczak

Abstract. The results of IMPROVE, which are extensively described in this book,
are generally interesting for industrial users. In this transfer project, the insights
gained in subproject I4 are expanded for the simulation-supported planning of pro-
cess design and development projects with partners from the chemical and software
industries. The planned activities are presented in this section. The goal of the
transfer project is the interactive, in parts even automated transformation of work
process models – which are created using the participatory C3 modeling method
– into workflow models suitable for simulation studies. The required formal repre-
sentation of workflows is based on Timed Stochastic Colored Petri Nets. That way,
the systematic variation of organizational and technological influencing factors and
the analysis of organizational effects becomes possible. By providing this simulation
method already in the planning phases of design and development projects, precise
prognoses for better project management can be achieved.

7.4.1 Introduction

Design and development projects in the chemical industries are character-
ized by poorly structured creative work processes and a high number of in-
terfaces between the organizational units involved. Therefore, planning la-
bor and resource utilization and the identification of potential bottlenecks is
hardly possible using conventional project planning methods. Thus, according
to current studies of savings potential in German development departments,
a substantial part of research and development investments is not used ef-
fectively [700, 724]. Presumably, there is also a significant potential to reduce
cycle times [575]. So far, existing approaches for business process reengineering
(BPR) and business process modeling (BPM) do not offer adequate support.
Given the complexity and limited transparency of these methods and the high
costs for the software tools required, they are rarely used in industrial prac-
tice. At least, some graphical modeling techniques provide basic support to
describe process interdependencies and the collective utilization of resources.
However, a profound analysis and evaluation of the complex and multi-layered
work processes during design projects in chemical engineering requires more
sophisticated approaches. In this transfer project, the usage of discrete-event
simulation techniques for workflow management is examined.

So far, the complexity of simulation techniques and the time required for
their execution prevent their routine use for the analysis of complex work
processes. The high entry costs for simulation-supported project optimization
are an additional threshold [925]. To overcome these issues, the C3 method
for the participative modeling and analysis of design processes has been de-
veloped in IMPROVE (cf. Subsect. 2.4.4). Several case studies have shown

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 666–674, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simulation-Supported Workflow Optimization in Process Engineering 667

that design and development processes in the chemical industries can be col-
lected and displayed quite well and without much effort by means of C3 (cf.
Subsect. 5.1.4).

Also, the reference scenario of IMPROVE (the conceptual design of a PA6
process, cf. Subsect. 1.2) has been represented in C3. In a first step, this sce-
nario has been simulated to get a rough approximation. In expert interviews,
further attributes influencing the simulation were collected and added to the
model. These attributes include, for example,

• additional information required for forecasting the durations of individual
activities,

• further conditions for the execution of activities, and
• the expertise (i.e., skills, experience) required for using the tools.

In a final step, a simulation model, implemented as a Petri net, was created
according to the transformation rules described Subsect. 5.2.4. This model
allows experts to assess workflow management variants in a simulation-based
way.

This chapter gives an overview of the simulation of design processes and
its current and possible future applications in industry. Therefore, the fields
of activity of the industrial partners are described in Sect. 7.4.2. Section 7.4.3
subsumes the goals and strategies which are pursued in this project. Section
7.4.4 describes the concepts for the realization of the goals.

7.4.2 Application in Industrial Process Design

A first scenario taking into account some of the relevant characteristic ele-
ments of design processes in chemical engineering was developed from the
beginning of IMPROVE in 1997 (cf. Sect. 1.2). It served as a framework for
analyzing the interdependencies between individual design activities and the
organizational units involved. Thus, tools were developed based on the anal-
ysis of the scenario’s structure. While these tools supported the cooperation
between the designers, they also facilitated an integrative development of the
product. This scenario also forms the starting point for the analysis of the
connections and influencing factors relevant for supporting the planning of
design processes.

These areas of application were not yet fully foreseeable when the scenario
was compiled. This contributed to the fact that the scenario had to be ex-
panded in the final phase of IMPROVE in order to even realize a simulation.
This extension was done in collaboration with process engineering experts.
Besides temporal information about individual activities, it also encompasses
the influence of tool usage and the competences of the developers involved.
This information can be accounted for in the simulation, though it is not
based on a valid foundation. For this reason, it is necessary to collect addi-
tional information by modeling new design processes in this transfer project to

668 B. Kausch et al.

quantify the dependencies of the design process on diverse influencing factors.
The industrial partners represent both process engineering and software engi-
neering fields. In the following, the cooperation between the involved partners
will be described.

Cooperation with the Chemical Industries

Two companies with core activities in process and facility development have
agreed to join the project as cooperation partners. The continuation of the
cooperation with Bayer is, on the one hand, a confirmation of the success-
ful work of IMPROVE. In addition, InfraServ Knapsack participates in the
project to ensure the independence of the project results from the specifics
of a single company. InfraServ Knapsack is an industrial service provider for
the development and operation of chemical processes according to customer
specifications.

Both Bayer and InfraServ Knapsack carry out similar projects in their
design departments. A project can include conceptual process design as well
as basic and detail engineering. For the modeling, simulation, and optimization
of chemical processes, several tools like CHEMCAD [592] or Aspen Plus [516]
are used. In addition, laboratory experiments may be required to determine
reaction parameters or other physicochemical data. A project can also include
the planning, construction, operation, and analysis of a pilot plant. Depending
on the customer’s demands, not all of these project phases are executed.

Specialized knowledge about the work organizational connections and
backgrounds is thus available on a fine-grained level throughout the entire
duration of a design and development project. Such projects are partially run
in networks with other departments or companies; they are based on complex
and non-standardized problem solving techniques. A work organizational cal-
culation of the individual activities is necessary in order to fulfill the customer-
or order-specific demands and to ensure the effective and efficient cooperation
of the different specialists.

The prototypical integrated simulation tools for workflow management of
IMPROVE subproject I4 have sparked interest in discussions with managers
from the process industries. The demand for constant software-supported
methods and tools for simulation-based optimization of design projects in
chemical engineering was also emphasized during the workshops organized by
IMPROVE (cf. Sect. 7.1).

Cooperation with Software Industry

A research software prototype for work process simulation has been created
in subproject I4 (cf. Sect. 5.2). However, the learning effort for potential users
is high, and the results must be interpreted in complex procedures indepen-
dent of the simulation. As a result, the involvement of a software company is
indispensable for the success of the transfer project.

Simulation-Supported Workflow Optimization in Process Engineering 669

ConSense GmbH operates as an innovative and industry-spanning software
developer in the field of business process modeling and integrated management
systems. The specific experience collected over several years focuses on per-
sonalization and on the interactive visualization of complex business processes
tailored to the demands of individual employees. A particular emphasis, how-
ever, is thereby on the employee-centered and thus often weakly structured
process presentation. Due to a tight integration of various information sources
in the scope of quality and other management systems and ergonomic design,
work organizational connections can more strongly assert themselves through
software tools developed by ConSense. ConSense can support the recording of
work organizational correlations through software technology. Thus, extending
the accepted design process models with mathematical correlations to enable
simulation-based analysis of the processes is a noteworthy advancement for
the companies as well.

State of the Art

Up to now, concepts of concurrent engineering [521] and BPM have only spo-
radically been used for planning design projects in the chemical industries.
Project planners and divisional directors continuously gain experience rele-
vant for project planning and execution. Such knowledge is the foundation
for improving the planning and calculation of future projects, but it is sel-
dom structured and prepared by modern methods of knowledge management.
In consequence, decisions during a particular project can often not be repro-
duced. Also, due to individual preferences of the planners, resources are not
used in an optimal manner. Furthermore, the documentation of completed
projects is typically restricted to milestone reports.

In consequence, the actual course of a project can thus neither be analyzed
in hindsight, nor can it be improved for future projects. Several projects often
seem to follow the same course, which is why project plans are regularly reused.
Though reusing project plans reduces the effort for project planning, it also
prevents the adaptation of the resource requirements to actual specifications
and boundary conditions in the company like the available resources or staff.
Basically, numerous organizational units, often geographically distributed, are
involved in complex design processes. Such issues are rarely considered in the
planning phase. Instead, the tasks to be completed by the organizational units
are centrally planned, and the available resources are assigned to them.

7.4.3 Goals and Strategies for Efficient Planning of Design
Projects

Goals

In order to analyze the existing deficits in the work organizational planning
of design processes and to develop measures for their reduction, managers

670 B. Kausch et al.

of chemical engineering design projects should be given the opportunity to
model the project structure with little effort and to evaluate possible variants
of the project progression in simulation experiments. Simulation studies must
be performed in the early project phases to have any effect already in the
planning phase. It should be possible to discover bottlenecks and weak points
in project planning (such as invalid overlaps or parallelizations of tasks or the
absence of qualified personnel at specific times) by analyzing project models
and simulation results. In this case, the empirical measures of managers and
analogies to other projects can be used better than today. The required tech-
nical (necessary technical aids for project development) and organizational
resources (budget frames, organizational structure, joint sectors) as well as
human resource allocation (number of people, qualifications, labor time), all
necessary for the project, can be better forecasted. After all, the use of dif-
ferent project resources along with the employment of the available personnel
can be arranged in an improved way. The superior purpose of the existing ap-
proach in this project is to decrease the cycle time of design and development
projects with simultaneous consideration of resources.

Strategies for Improving Design Processes

Based on the results of IMPROVE, further endeavors must be made to accom-
plish some of the following demands in particular: The participative software-
supported modeling of design projects as well as the conduction of experiments
based on already constructed project models should be possible with little ef-
fort. The trans-departmental integration of process knowledge and experience
should be ensured; also an increased planning reliability is desirable. It should
be possible to adapt the simulation model to changed constraints (e.g., or-
der situation, resource availability, etc.). The targeted variation of parameters
should be possible to change the project organization (e.g., context of tasks,
available personnel, available resources, etc.). Using this tool, a project man-
ager should be able to give optimal criteria for the efficient project constella-
tion, and in this sense also determine optimal variants for the management of
the project (e.g., the optimal combination of personnel and resources). The
simulation results should be available in a task-appropriate and expectation-
compliant form such that the managers of design projects can easily use them.
A simulation of a running project, and thereby a detailed depiction of the ac-
tual influencing variables, should help the managers to choose an improved
strategy at certain milestones.

To carry those strategies into effect, some research gaps should be closed
which still exist in the area of design process simulation in chemical engineer-
ing. First, the relevant influencing factors in project management and devel-
opment controlling should be identified and weighted empirically. It should be
verified if these influencing factors can be modeled as key data and if they can
be integrated in the simulation model in the form of output variables. Those
parameters of design processes that have a significant influence on the output

Simulation-Supported Workflow Optimization in Process Engineering 671

Formalization and Transformation

A
pp

lic
at

io
n

of
 M

od
el

s

Synthesis of logic arrays of example projects

Workflow-
control

Logical
Analysis

M
od

el
lin

g

Pressure of
time

Tool
availability

Employee
qualifikation

Milestone
planning

Employee amount
Human
errors

Organisational optimization

Basic
Engineering

Detailed
Engineering

Coordinational
losses

Dispersion of
process timeEtc.

Employee-
motivation

Job
spezification

Tool
aptitude

Verification

System-
control

Parameterization and temporal extension

Validation

Organisational simulation

Acquisition of logic arrays of design processes

Automation

Amount of
interfaces

Organizational
Structure

Scope of Transfer

Process
design

Plant
construction

W
or

k
or

ga
ni

sa
tio

na
l

in
flu

en
ce

 fa
ct

or
s

(A
ttr

ib
ut

es
)

Fig. 7.6. Procedure of application in industry

variables must be gathered empirically. Beyond this, the type and the direc-
tion of effect of these influences should be determined. The connections should
ultimately be operationalized in a conceptual simulation model. Subsequently,
this model must be transformed into a computer model. The computer model
must subsequently be verified with respect to the conceptual model. In order
to transfer well-founded conclusions about the forecasting quality of the ex-
panded executable simulation model, it must be extensively validated through
empirical project data. Figure 7.6 roughly illustrates the described work plan.

7.4.4 Extensions to the Existing Approach and Consortium

The simulation method developed in IMPROVE (cf. Sect. 5.2) is based on cor-
relations between selected influencing factors which have been determined by
literature survey and expert discussions in a theoretical rather than empirical
way. However, these are just a small excerpt of the success factors relevant for
actual design processes. If additional influencing factors are integrated in the
simulation for their practical relevance, the models must be validated again.

In cooperation with the industrial partners of the transfer project, the
simulation model must be extended to overcome its current restrictions. The
most important factor is the extension of staff characteristics, such as the
impact of the designers’ experience with tools on cycle times. Furthermore, the

672 B. Kausch et al.

probability of error must be accounted for depending on the level of practice in
different activities; it has a direct influence on the productivity of a particular
person due to the probability of iterations during incorrect operations. The
individual tasks in the task net – the task net is the part of the simulation
model responsible for the integration of different tasks – are still processed
by single individual persons. This approach does not, however, match with
reality, and must be further developed to reflect the influence of several persons
simultaneously working on a task.

Similarly, and in contrast to the currently used normal distribution, the
right-skewed β-distribution that shows the trend of the usually underestimated
actual processing time is to be used. This is to make allowance for the fact
that activities tend to take more time and resources than expected. In the
current simulation model, the effectiveness of tools does not depend on the
qualifications of the persons who use the tool nor does it depend on the tasks a
certain tool is used for. This should be adapted according to actual conditions
so that the further development should take these coherences into account.

Furthermore, the characteristics of the information element in C3 must
be extended; for instance, it must be possible to decompose an information
element in several partial information elements. This way, it will be possible
to account for the impact of the status of an information on the upcoming
activities. For example, during the conceptual design of a chemical process,
simulation studies are performed to evaluate different reactor types. Later on,
more detailed simulation studies will provide information about the optimal
dimensions of the reactor. However, the first partial information concerning
the reactor type is sufficient for a first product inquiry for the reactor; thus,
a product inquiry can be started even before the complete information about
the reactor is available.

The current simulation model does not account for the information carriers
used. In the transfer project, their effect on transfer time and information
quality will be accounted for.

In the following, we describe the consortium of industrial partners and
the work plan to achieve the required modifications of the existing simulation
approach.

Consortium

The involvement of several industrial partners is essential in order to extend,
parameterize, and validate the modeling and simulation tool with actual de-
sign processes. The following companies will take part in this plan:

• Bayer MaterialScience AG is one of the world’s largest producers of poly-
mer and highly valued synthetic materials, and is thereby also an ideal
cooperation partner for this project.

• As a service provider in chemical process design, InfraServ GmbH & Co
Knapsack KG is a very well-suited cooperation partner. The company has

Simulation-Supported Workflow Optimization in Process Engineering 673

extensive experience with complex development processes and disposes of
a large pool of relevant example processes.

• As a medium-size software company, ConSense GmbH possesses substan-
tial experience in person-based modeling of operating and business pro-
cesses. The company develops and distributes complete systems for busi-
ness process modeling, and is thereby an important cooperation partner
for the implementation of planned support tools.

Work Plan

At the beginning, representative example processes from the application part-
ners (Bayer and InfraServ) are to be identified and modeled by means of
C3. Special consideration is given to the determination of workflow manage-
ment influencing variables and process parameters in regard to the work topic,
work equipment, and also the employee. They are identified and categorized
in expert workshops and interviews according to their relevance for workflow
management project planning.

Afterward, the structure of the design projects is analyzed to identify recur-
ring routine activities; they are made available in the form of reference process
components. Initially, this is done separately for both application partners. In
a second step, similarities between the two application partners are identified.
The validity and integrity of the collected parameters is increased through this
process. In order to represent the design projects created in the first step, in-
cluding influencing variables and process parameters, an appropriate software
environment is identified.

To reduce the degrees of freedom for the succeeding simulation, the relevant
influencing variables and process parameters are weighted and finally selected
in cooperation with experts of the application partners.

The example projects are modeled in a way similar to workflow models;
the identified reference elements are stored in a reference library. Therefore,
the existing partial model of the simulation model must be extended with
additional process parameters.

In addition, many of the variables that were up to now modeled as input
variables should instead be modeled as dependent output variables. To do so,
the interdependencies between the parameters must be quantified based on
further literature analysis and on surveys of experts. An assistance program
for the creation of simulation models will be conceptualized and implemented
to support project managers in modeling new concepts of design processes.
This contains both the conversion of the C3 model in an executable simulation
model as well as the partial automation of test runs for the optimization of
workflow management.

To ensure the usability of the entire system for improving the planning pe-
riods of design processes, a user interface is developed with regard to software
ergonomics. The verification of the extended computer model with respect to
the conceptual model is an important step to identify discrepancies between

674 B. Kausch et al.

the model and the progression of real projects. Therefore, the model is vali-
dated in regard to an actual chemical engineering design process. For this, a
design project is generated, modeled, and simulated a posteriori. The results
will be statistically tested and analyzed. Possible differences to the conceptual
model will be quantified and documented depending on the required modifi-
cations. Finally, the results of the individual work packages and the software
components will be combined in a modular manner to form the complete
system.

7.4.5 Conclusion

Based on the results of IMPROVE, this transfer project aims at closing the gap
between work process analysis, the modeling of work organizational interde-
pendencies, and discrete-event simulation by improving workflow management
methods. To reach this goal, new methods will be investigated and developed.
These methods, created by means of C3, should enable project managers in
the chemical industries to create detailed graphical models of design processes
interactively. The (semi-)automatic transformation of such models into formal
simulation models, represented as timed Petri nets, will be supported. On the
basis of these simulation models, variants of the design process can be created,
evaluated, and optimized with respect to specific target values given by the
project managers.

In order to do so, C3 will be extended with simulation-specific attributes.
Furthermore, exemplary design projects will be modeled in cooperation with
the industrial partners. By analyzing these processes, frequently occurring
routine activities shall be identified and described in form of reference pro-
cess components. Also, the simulation model for work processes developed in
IMPROVE must be conceptually expanded. Therefore, the existing partial
models, among other things, should be extended with influence variables and
process parameters relevant for workflow management. This conceptual sim-
ulation model will be formalized as a Petri net and then transferred into a
computer model. The computer model should first be verified in regard to
the conceptual model and afterwards be validated on the basis of an actual
design process. Furthermore, an assistance system for the creation of simu-
lation models will be conceptualized and developed. This concerns both the
implementation of the transformation rules in a computer tool as well as the
partial automation of test runs for the evaluation and optimization of design
processes. To ensure the usability of the entire system for project managers
in the chemical industries, a user interface will be developed with special con-
sideration of software ergonomics.

7.5 Management and Reuse of Experience Knowledge in
Extrusion Processes

S.C. Brandt, M. Jarke, M. Miatidis, M. Raddatz, and M. Schlüter

Abstract. Extrusion of rubber profiles, e.g., for the automotive industry, is a highly
complex continuous production process which is nevertheless influenced strongly by
variability in input materials and other external conditions. As analytical models
exist only for small parts of such processes, experience continues to play an important
role here, very similar to the situation in the early phases of process engineering
studied in CRC IMPROVE. This section therefore describes a transfer research
project called MErKoFer conducted jointly with an industrial application partner
and a software house founded by former CRC members.

In MErKoFer, results from the CRC projects on direct process support (B1, see
Sect. 3.1), process data warehousing (C1, Sect. 4.1), and plastics engineering (A3, see
Sect. 5.4) were applied and extended. Specifically, knowledge about extrusion pro-
cesses is captured by ontology-based traceability mechanisms for both direct process
support of extrusion operators, and for process analysis and improvement based on
an integration of data mining techniques. The accumulated knowledge assists in en-
suring defined quality standards and in handling production faults efficiently and
effectively. The approach was experimentally implemented and evaluated in the in-
dustrial partner’s site, and some generalizable parts of the environment were taken
up by the software house partner in their aiXPerience software environment for
process automation and process information systems.

7.5.1 Introduction

In the area of plastics processing, the analysis of process data from production
plants is continually gaining ground to achieve an improved understanding of
the overall process. This is due to the widespread adoption of sensor technol-
ogy, and the increasing production costs and plant sizes. The data collected
during production is, though, usually not systematically evaluated because
the context in which it was recorded often gets lost. A great potential for
improvement can be found here, by including the contextual information and
systematically generating knowledge from such operational data. Thus, the
technology transfer project described in this section focuses on supporting
the analysis of rubber extrusion by employing knowledge-based methods and
on the direct experience-based support of machine operators controlling such
production lines.

In the project “MErKoFer – Management of Experience Knowledge in
Continuous Production Processes” [373], funded by the German Federal Min-
istry of Research (BMBF), two major approaches for process support and
improvement were combined. The mechanisms of direct process support as
developed in the sub project B1 (see Sect. 3.1) were extended for the expe-
rience-based support of production line operators. Specifically, the scenario
treats the analysis and advancement of production processes for specialized

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 675–695, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

676 S.C. Brandt et al.

rubber profiles. Additionally, ontological modeling from the sub projects B1
and A3 (see Sects. 4.1 and 5.4, respectively) was used in combination with ex-
perience management to generate and improve explicit process understanding.
Further research results from projects conducted at the Chair of Informatics
5 were also integrated. The project was realized in cooperation with an indus-
trial partner from the domain of rubber profile extrusion, with applications
mostly in the automotive industry. The aiXtrusion GmbH [497], a CRC spin-
off from the area of process automation and information systems, contributed
solutions to the problems of data integration and pattern identification in
process data.

To drive and validate the scenario, the so-called aiXPerience environment
was established at the industrial partner’s site, to record all important in-
fluence factors of the production processes. This includes the operators’ in-
teractions, process set values, measured and derived process values, product
quality and production fault information, and additional information such as
environmental conditions. These traces were then analyzed and searched, to
allow their direct and situation-based reuse for operator support, and thus to
improve the production process itself. Methods of data mining were employed
for clustering and detecting characteristic process situations, to find out where
and how support functionality can be provided.

The experiences gained from developing and applying the situation-based
operator support were also used to gain explicit understanding of and knowl-
edge about the production process itself. As described later in more detail,
the processes treated here cannot be effectively described by analytical mod-
els or simulations based on physical correlations [942]. Instead, a coherent
framework for the analysis of the production processes can be established by
combining recorded process traces, available explicit knowledge about the pro-
cess, and using additional ontological modeling of the process aspects. Data
mining, statistics and other mathematical approaches are used to analyze and
partially predict the process behavior, and to use this knowledge in process
design and improvement by the engineers.

Complementary to the detailed and deep situation-based analysis of the
process traces, aggregated analyses based on the concepts of OLAP (Online
Analytical Processing) were realized to achieve a broader view of the produc-
tion processes. Based on the integrated data sources, multi-dimensional cubes
were created to aggregate the available information, allowing the well-known
operations of slice, dice, and drill down.

To achieve the formalization of the production processes, the Process Data
Warehouse (PDW) developed in sub project C1 was integrated into the in-
frastructure, forming an important part of the aiXPerience environment for
the integrated analysis and reuse of process and product artifacts. The Core
Ontology of the PDW (see Subsect. 4.1.5) facilitated the definition of prod-
ucts, processes and their characterizations (e.g., category schemata), as well as
their linkage to various persistent sources of information. This basic modeling
formalism was filled with the explicit knowledge described through a domain

Management and Reuse of Experience Knowledge in Extrusion Processes 677

Internal mixer Extruder TrimmingMicrowave curing

section

Hot air curing

section

Cooling section

Mixing Extrusion Vulcanization FinishingQuality Control

Optical surface and

dimension inspection

Fig. 7.7. Schematic view of a typical extrusion line for rubber profiles

ontology with relationships and dependencies gained during the analysis of
the application domain. Driven by this comprehensive information model, the
analysis tools used by the application partner were integrated and extended,
and complemented with specialized tools for the classification and visual ex-
ploration of large data sets, based on self-organizing feature maps.

The next subsection gives an overview on the issues of using computer
science methods for supporting complex production processes in the domain
of rubber profile extrusion. Subsection 7.5.3 describes the initial steps followed
in the project, i.e., the integrated recording and analysis of the production
processes. The following subsection shows how the production situations were
created, clustered, and analyzed further, to allow extended situation-based
operator support. Subsection 7.5.5 describes how the results of the project
are used for gaining and applying explicit process understanding. The section
closes with a short summary and conclusions.

7.5.2 Supporting and Improving Extrusion Processes

Rubber Profile Extrusion

Figure 7.7 shows a typical rubber profile extrusion line. Several days prior to
the extrusion itself, the raw rubber is prepared in an internal mixer, where
certain materials such as sulfur or carbon black are added to achieve the
required properties. One or more extruders form the head of the production
line. There, the rubber is kneaded, heated, intermixed, and then extruded
through specially formed dies (final delivery elements) which are responsible
for attaining the required profile geometry. A major part of the line is taken by
the vulcanization process, usually achieved by near infra red and microwave
heating. After optical quality control, the profile is cooled down and cut into
pieces of a certain length.

Nowadays, operators for all kinds of production lines have to interact with
a large number of different systems for automatic control, process recording,
and quality management. On the other hand, documentation tasks within
these processes are often partly paper based, e.g., human process manipula-
tions or the administration of raw materials. This especially applies to the

678 S.C. Brandt et al.

domain of rubber profile extrusion, as treated in this section, and partially
described in reference to Fig. 7.7. The heterogeneity of these systems and
methods does currently not allow integrated processing of the respective data
in a reliable and coherent manner [942]. This is also the current state at the
site of the project’s industrial partner.

In the concrete case of rubber profile extrusion, several additional com-
plications arise that result in very complex production processes. Common
approaches for automatic control, e.g., from chemical engineering, do not suf-
fice in this setting due to the complex and non-deterministic properties of
these processes, which are mainly caused by the following issues.

• No usable physico-analytical models exist yet for the vulcanization be-
havior of rubber, especially in the extrusion context. This inhibits the
prediction of process behavior.

• It is hardly possible to accurately determine the quality of a profile sec-
tion before it reaches the end of the production line, as it needs to be
examined in its fully vulcanized state. This is usually done by cutting of a
small section and examining it manually for surface defects or deviations
in the cross-section geometry, or – more recently – by automated visual
inspection.

• Due to the length of the production lines (up to 250 m), the time needed for
vulcanization and thus, the slow speed of extrusion, the produced profile
takes a long time to reach the inspection zone (up to 30 minutes). Thus,
the results of operating parameter changes can only be accurately detected
after this time.

• The processes react very sensitively to many influence factors, not all of
them explicitly known (e.g., the duration and environmental conditions
of raw material storage). When changing or correcting the process, this
sensitivity has to be taken into account.

Because of these issues, these processes can only be successfully started and
controlled by operators with a lot of operational experience. Much variation
can be found in the time necessary to achieve a stable production state. At
the same time, production costs are mainly determined by the consumption of
raw materials. Unfortunately, vulcanized rubber cannot be reused if the final
profile does not conform to specification. Therefore, the primary goals of the
research described here were to improve the work situation of the machine op-
erators, especially their autonomy, and to reduce the time spent in producing
off-spec products, thus saving money and reducing environmental impact.

Operator Support

The approaches used in many other domains for operator support were mostly
inapplicable in the project context, as described above. Due to the missing
explicit analytical models, no prediction of process behavior and thus expected

Management and Reuse of Experience Knowledge in Extrusion Processes 679

product quality based on currently measured process values was possible. This
also precluded the use of technologies such as soft sensors to alleviate the issue
of missing early quality measurements. Thus, many of the characteristics these
processes exhibit, resemble those of creative design processes, which form the
central topic of the CRC’s research:

• personal experience is the primary driving factor for successful process
completion;

• it is impossible to “plan” or “predict” the process in detail;
• instead, it is necessary to react on unexpected changes;
• there is an obvious need for fine-grained direct process support.

Therefore, the project appeared a good place for transferring some of the
results of the CRC IMPROVE into industrial practice. In contrast to devel-
opment processes, these production processes are executed often, and can be
measured quantitatively. This allowed the direct application and validation of
the approach in real-world processes, instead of scenario-based evaluation as
usually utilized when validating design process support. Thus, the aspects of
direct experience-based process support as researched by the sub projects B1
and C1, were to be adjusted and applied in the production context.

Case-Based Reasoning

To enable the direct reuse of experience traces, methods like case-based rea-
soning (CBR [493]) can be applied. This method is based on using concrete,
previously recorded cases related to possible solution approaches, instead of
using the relations between generalized problem descriptions and conclusions.
This way, CBR tries to mimic human problem solving behavior. A new prob-
lem is solved by retrieving a similar case from historical data or an explicit
case base and reusing the case and its related solution proposal. Usually, it
is necessary to revise the solution according to the current problem situation.
As a last step, the new solution can be retained as a new case. Thus, CBR also
enables incremental learning, i.e., starting from a small case base and filling
it with manually or automatically recorded solution cases.

Data Mining

For discovering knowledge from large data sets, many different methods and
technologies exist for automatically mining previously unknown correlations
from those data sets. After finding such correlations, the results have to be
interpreted to identify concrete knowledge. One common approach for Data
Mining is based on discovering clusters with common characteristics in the
data, and distributing the data items or objects among those clusters. Objects
inside one cluster should be as similar as possible, while objects from different
clusters need to be dissimilar.

680 S.C. Brandt et al.

A specialized method for similarity-based visualization of high-dimensional
data is formed by self-organizing feature maps (SOM). The data items are ar-
ranged on a two-dimensional plane with the aid of neural networks, especially
Kohonen nets. Similarity between data items is represented by spacial close-
ness, while large distances indicate major dissimilarities [968]. At the authors’
department, a system called MIDAS had already been developed which com-
bines strategies for the creation of feature maps with the supervised generation
of fuzzy-terms from the maps [967].

Process Analysis

It was planned, and accomplished, to use the results of the situation-based
process analysis for the creation of some kind of process models for rubber
profile extrusion, to replace the not-yet-existing explicit mathematical models.
A combined view on the explicit process understanding, the ontology-based
domain modeling, and the experiences from situation analysis and operator
support was used to support the design and analysis of both existing and
newly designed production processes, and thus to improve these processes.
Additionally, the experiences from the CRC in design process support were
applied here, e.g., using the Process Data Warehouse and the PRIME process-
integrated environment. This allowed the same extended application environ-
ment to be used both for supporting the production processes, and the design
processes that create and change the process specifications.

7.5.3 Recording and Analyzing Production Processes

Considering the problems described above, the approach of experience-based
support for creative processes was extended to the support of operation per-
sonnel in profile extrusion. In the context of the process analysis of plastics
engineering production, a knowledge management system was developed to
achieve the aforementioned goals. Ontology-based methods for the explicit
management of experience knowledge were combined with innovative meth-
ods of data mining and neural networks. The expert knowledge captured in
the ontologies was enriched with fine-grained relationships and rules from the
analysis activities (data mining, visual data exploration and correlation anal-
ysis).

From Operator Support to Process Development

A Stepwise Approach

A prominent goal of the MErKoFer project was the prototypical development
of an information system for the support of process data analysis, and experi-
ence and knowledge management in rubber profile extrusion. This system was

Management and Reuse of Experience Knowledge in Extrusion Processes 681

Signal and Pattern
Analysis

Preprocessing

Situation Definition

Data Mining

Signal Analysis (e.g., FFT) and
Pattern Recognition

D
at

a
R

ed
uc

tio
n

an
d

Kn
ow

le
dg

e
D

ef
in

iti
on

Integration and Synchronization of
Process, Quality and User Data

Knowledge
Management

Enrichment of the
Domain Ontology

Classification of Situations by means
of Clustering and Self-organizing

Feature Maps

Definition of Situations using the PRIME
Contextual Situation-Based Model

Fig. 7.8. From process and business data to knowledge definition

validated on example scenarios from the project’s application partner, and es-
tablished at the partner’s site to provide the process operator with integrated
support for his or her tasks. Figure 7.8 gives an overview on some of the nec-
essary steps followed during the design and evolution of the system, starting
from the recording and processing of the operational data to the generation
and management of explicit process knowledge. As it will be described in the
following, the steps cannot be seen as simple and linear as in the figure, but
results of the upper steps had to be fed back into the lower ones.

In the following, the various interrelated steps followed during the MErKo-
Fer project are described in more detail, based on the blocks visible in Fig. 7.8.
Through increased data reduction, e.g., by the generation of characteristic
values and their contextualization, more detailed knowledge is extracted from
automatically recorded information.

Preprocessing

The lowest level of the figure is formed by the recording of the process traces,
consisting of process values, quality and user data, and other information. To
achieve this, it was necessary to integrate the various automatic control data
sources, together with additional sources such as environmental conditions.
As described in the previous subsection, many of these sources had not been
integrated in any way, so that the issue of their heterogeneity had to be ad-
dressed first. Also, many important steps had not yet been recorded at all, or

682 S.C. Brandt et al.

only on paper, e.g., material changes, fault situations, countermeasures, and
most importantly, quality control data.

In tight relation with the recording, the data had to be analyzed on a
technical level, to determine important characteristics, e.g., the importance
of various signals, their noise levels, and other factors. Additionally, as some
of the sources were – and are – only integrable by offline import, all the data
had to be synchronized on common recording times. Thus, about 50 different
signals were recorded and stored in a joint database.

Signal and Pattern Analysis

The next level in Fig. 7.8 is formed by signal analysis, where various methods
were tried and used for recognizing significant positions in the signals. Based
on the detection of those positions by, e.g., threshold detection, fourier analy-
sis, or mean value analysis, deviation patterns were defined for their classifica-
tion. By recognizing these patterns on the signals, situations were constructed
as sets of temporally related deviations. Some important help could already
be given to the production line operators here, e.g., by raising alarms in case
of obvious deviations.

Situation Definition

Using the PRIME meta model, situations were then defined, based on the
detected signal deviations. In an initial step, generic definitions were used
to detect a large number of temporarily grouped deviations, called situation
instances. To form abstract situations out of the instances, methods of data
mining had to be employed.

Data Mining

These situation instances, formed by detected deviations on semantically re-
lated signals within a short time range, were then mined for correlations,
mainly based on two methods. Clustering was used to detect groups of situa-
tion instances with common characteristics, while self-organizing feature maps
were used to visualize these situation spaces. Based on the visualization, re-
curring and thus important combinations of signal and deviations were deter-
mined. This allowed both the construction of a case base for direct application
of recorded situations and their related counter measures in the production
process, and for creating explicit knowledge about the process.

Operator Support

Not visible in Fig. 7.8 is the application of the trace and case repository
onto the direct support of the production line operators. The aiXPerience
system was extended to detect process deviations, to find reference situations
matching the current process situation, and thus, to find appropriate counter-
measures. These situation-based information and counter-measures are then

Management and Reuse of Experience Knowledge in Extrusion Processes 683

presented to the operators, who – according to the case based reasoning con-
cept of a recommender system [550] – can then decide on how to apply the
presented information.

Knowledge Management

During the whole of the project, the MErKoFer domain ontology was devel-
oped, extended, and adjusted to experiences gained, and to changing require-
ments. Based on the Core Ontology of the Process Data Warehouse (PDW)
(cf. Subsect. 4.1.5), it was used to integrate the different aspects of produc-
tion and development processes, production lines, raw materials, products,
and process situations. The ontology was both created by, and used for, the
determination of important relationships between various domain concepts
and objects. For example, production faults and counter measures are both
categorized according to appropriate ontological schemata. The content of this
ontology, and the knowledge contained therein, forms the highest level in the
knowledge definition and discovery structure of Fig. 7.8. Additionally, the ex-
plicit knowledge created both during the project, and by running the support
system, can be used for analysis and modification of process specifications, or
for the creation of new processes, e.g., for new products.

Recording and Preprocessing

Recording Process Values

At the production lines for rubber profile extrusion as installed at the in-
dustrial partners site, most process values were already available from auto-
matic control. Yet, these values were only available for direct display, but not
recorded in any way. This is partially due to the fact that production lines in
this domain usually run without major changes for several decades. Some im-
portant process values, e.g., the power consumption of the extruder engines,
were not measured at all. Thus, a first important step of the project was the
integration and recording of these values. Appropriate hard- and software had
to be installed. Additionally, environmental conditions with possible influence
on the properties of the raw materials and thus the process behavior had to
be recorded, e.g., temperature, humidity and pressure.

At the production line in question, the profiles’ surface quality and cross-
section geometry deviation was already analyzed and recorded by online op-
tical quality inspection systems. These camera based systems usually mark
defective profile sections visibly, to separate them out for the operating per-
sonnel [910]. In some cases, this data was analyzed to quantify the amount
and kind of failures statistically to control the rate of production faults. For
an integrated management of process, user interaction, and fault information,
and quantitative quality data, the records of these inspection systems also had
to be integrated.

684 S.C. Brandt et al.

Intervention
Surface

Hungry Horse

Incremented belt speed

Incremented speed extruder 1

Situation RepresentationNew Entry Entry Hints View ELB View Process

Fig. 7.9. Electronic logbook showing task, cause, error detail, and counter measure

The Electronic Logbook

The machine operators themselves are faced with a bundle of heterogeneous
systems which are partially redundant for historical and technical reasons.
Many important operator observations and actions, e.g., process faults, inter-
ventions, rubber changes, etc., were only recorded manually in a paper-based
logbook, and thus unusable for automated trace management. Therefore, the
requirements for building a new human machine interface were elaborated
in a participatory procedure together with the operators and the engineers.
The most important issue was that the “electronic logbook” (ELB) had to be
comfortably operated using a touch screen, while wearing gloves. That led to
the installation of two pressure sensitive touch panels which are placed at the
extruders (the production line’s starting point) and the quality control area
(the end of the line) as required by the plant’s dimension.

The user-interface for the operators was based on the formalized ontology
for the production process, as developed so far. The various tasks, interven-
tions, error categories and error details and the available counter measures
were all retrieved from this ontology. This allowed to record the user activ-
ities during production, and to store this data with its appropriate context
to enable context-sensitive data-mining across all available data sources. To-

Management and Reuse of Experience Knowledge in Extrusion Processes 685

gether with the logging of current process values this also provided a way to
continuously update new situations into the knowledgebase.

In Fig. 7.9, a screenshot of the logbook is shown where a set of counter-
measures to remedy a production fault is inserted into the database. On the
left of the screen, the list of tasks can be seen. In addition to entering in-
terventions necessary because of detected problems (“Intervention”, currently
selected), it offers important process phase changes (mounting, starting the
run-in, starting production, ending production), and raw material changes.
The second column from the left allows to select the cause for the current
intervention, “Surface” in the current case because a surface error of the type
“Hungry Horse” was detected (i.e., metal inlay bared; third column). The
fourth column allows to select one or more counter measures as carried out by
the machine operator (Incremented belt speed and Incremented speed extruder
1, here). The time of the intervention may also be selected in an additional
dialog, e.g., if an entry needs to be postdated.

Signal Analysis and Pattern Recognition

Analyzing Process Values

It was necessary to establish a set of different steps for signal analysis, pat-
tern analysis and recognition, situation recognition and analysis, and finally,
situation-based reuse of the gained experience traces. This was mainly due to
the high complexity of the signals and their unknown relationships, and the
impossibility of detecting significant changes directly on the complete signal
data. In contrast to the fully automated approach initially projected, this al-
lowed to reach high quality for the reference patterns, especially during the
final evaluation phase of the project.

The identification of typical patterns and correlations between character-
istic process parameters was accomplished in close collaboration with the do-
main experts using the visual data exploration tool InfoZoom [976] on existing
process data. Unfortunately, it was not possible to gain detailed and deter-
ministic information about the quantitative relationships between the various
signals and their deviations. Knowledge about the qualitative behavior of the
process was available, and independent process specifications for certain nom-
inal values were in use. Yet, knowledge about the quantitative interrelation
between process values, fault patterns and production quality was only im-
plicitly known, i.e., in the experience of the operators. For example, when
the quality control systems notes a deviation in cross-section geometry, this
information is not directly used. Instead, a cut is taken from the finished pro-
file, enlarged, and visually compared with the geometry specification. Thus,
it was nearly impossible to find appropriate parameters for deriving product
quality and corresponding information about process stability and production
quality, from the raw quality inspection data.

686 S.C. Brandt et al.

Detecting Signal Deviations

The aim of the signal analysis in the MErKoFer project was to determine
significant deviations of the various signals (i.e., process and other recorded
values) from their stable state. Of course, care had to be taken of noise, os-
cillations, and similar issues. Several methods where therefore applied and
evaluated. Partially, Gauss or median filters were used for preprocessing.

• A simple edge detection filter was used successfully, especially on set values.
Also, some signals such as the infrared reflection in the hot air canals
showed a clear “toppling” behavior.

• For some signals, such as the error rate calculated from the surface quality
inspection, a simple threshold detection was enough to distinguish between
“good” and “bad” production states.

• With the help of polynomial approximation, especially linear and cubic
interpolation, the signal were described in a simplified form.

• The most important and successful analyses were done in the frequency
domain, i.e., interesting signal positions were detected after Fourier-
transforming the signal.

Fig. 7.10. Detection of characteristic signal events (FFT)

Fig. 7.10 shows the application of the Fast Fourier Transformation (FFT) on a
sample signal, an extruder temperature curve. On top, the signal can be seen,
while the bottom shows its FFT. Three deviations can be seen. Skipping
the first deviation, the second one is caused by a change in the oscillation
frequency and amplitude, while the third one is caused by a major raise in
the temperature value, probably due to some user interaction.

Pattern Recognition

After the detection of significant positions in the signals, i.e., deviations from
stationary behavior, it was necessary to determine the type or class of devi-
ation. For the more complex signals, signal patterns were therefore defined,

Management and Reuse of Experience Knowledge in Extrusion Processes 687

Fig. 7.11. Detection of a signal deviation, and its classification by pattern matching

based on deviation patterns that occurred regularly. These patterns were par-
tially defined explicitly, and partially derived from existing signals, using su-
pervised learning methods. Figure 7.11 shows the detection of a significant
deviation on the left, and – on the right – its match against a pattern and
thus, its classification. This matching was done using euclidian distance, par-
tially corrected by dynamic time warping, and by using the frequency spectra.
Using a large list of reference patterns, grouped into a lower number of signal
pattern classes, it was possible to determine and classify the detected signal
deviations [468].

Each of these detections and classifications was applied to single signals,
only. Therefore, the next step of the project required finding and analyzing
situations, i.e., sets of temporally and, hopefully, also causally related signal
deviations on different signals.

7.5.4 Situation-Based Analysis and Support

The key point about assessing and defining process and product state simi-
lar to the machine operators’ way, is having objective information about the
product quality. In the presented approach, the information from the optical
inspection system was used to define characteristic situations based on the
profile quality (the kind, distribution and quantity of defects) and the process
parameters measured and stored by the automation system. A situation or
case is thus characterized, among other things, by the aforementioned profile
quality, the kind of profile that is produced, the used rubber-mixture, envi-
ronmental data like air pressure or humidity, the values and latest progression
of physical process parameters like extruder-temperature, power of microwave
heating or speed of conveyor-belts and the countermeasures that are taken by
the machine operators.

Situations and Situation Instances

A situation instance is defined as a set of temporally related events, usually
signal deviations or other detected changes, such as interventions or detected

688 S.C. Brandt et al.

product faults, together with the context in which they occurred. They are
created to allow the systematic analysis and reuse of these situations, i.e., to
draw conclusions about the expected process behavior in the case of a similar
situation occurring in the process.

Three different kinds of situations need to be distinguished in the following.
They combine both the results of explicit analysis done by process experts,
and the multi-step analysis of the process data done within in the project.

• Situation definitions explicitly define various events and their properties
as a kind of pattern, e.g.:
– rotational speed extruder 1: constant
– engine power consumption extruder 1: falling
– mass pressure extruder 1: falling
– Expected behavior:

power consumption and pressure continue to fall, insufficient mass at
extruder die, “hungry horse”

– Possible counter-measures:
check rubber feed for extruder 1 (run out of rubber, or wrenched off);
raise rotational speed extruder 1; turn off infra-read (IR).

• Situation instances are automatically determined sets of temporarily re-
lated signal deviations, as introduced in the beginning of this subsection;

• Reference situations are specially selected from the large number of situa-
tion instances to represent certain cases, and to allow to find and charac-
terize these cases, including appropriate counter-measures.

In MErKoFer, the concept of situation was derived from the identically named
PRIME concept (see Subsect. 3.1.3 and [371]). The steps described up to now
allowed the systematic acquisition of the situation instances, their automated
analysis as described in the next subsubsection, and the specific selection of
reference situations and appropriate counter-measures. By defining the cases
as situations with appropriate counter-measures, it was possible to apply case-
based reasoning (CBR) for the direct support of the production line operators,
as described in Subsect. 7.5.2.

Situation Mining

A large number of situation instances was generated by automatically ap-
plying the MErKoFer algorithms for signal analysis, deviation detection and
pattern recognition onto the available process and quality information. On
these situations, two methods of data mining were mainly applied. The first
method was used for density-based clustering of the situations, creating groups
or clusters of situations to be interpreted by the project participants. The
second method used neural networks to create self-organizing feature maps.
Thus, it achieved the visualization of the situation instance base, allowing
to interactively explore and analyze the situations to determine common vs.
distinguishing features.

Management and Reuse of Experience Knowledge in Extrusion Processes 689

Fig. 7.12. MIDAS feature map with about 1500 situations, colored according to
clusters and noise

Clustering

For clustering the situation instances, the density-based method of DBSCAN
(“Density-Based Spatial Clustering of Applications with Noise”, [662]) was
used [466]. Unfortunately, the results where not applicable directly for de-
termining characteristic reference situations. Firstly, due to the many pre-
processing steps and the used situation model (vectors with a fixed number
of components, and distance penalties for comparing against empty compo-
nents), the data quality had been massively reduced. Later on in the project,
better approaches were therefore researched and applied successfully [468].
Secondly, it was nearly impossible to determine the real correlations of the
process parameters from the clustered situations. The main problem was that
a situation instance can only be visually represented as a multi-signal time
series, e.g., in the process view of the electronic logbook. Thus, comparison
of more than two different situations and their composing process values was
very difficult. The clustering results were therefore mainly used in combination
with the feature maps as described in the following.

690 S.C. Brandt et al.

Current Process Situation

Identified Situations

Similar Situations from Process History

Situation RepresentationNew Entry Entry Hints View ELB View Process

Fig. 7.13. Visualization of situations in the GUI.Dance module

Self-Organizing Feature Maps

Figure 7.12 shows one of the self-organizing feature maps (SOM) created
with the multi-strategy tool “MIDAS” (Multi-Purpose Interactive Data Anal-
ysis System, see [967]). About 1500 situation instances are placed on a two-
dimensional map so that the similarity of the data points is represented by
their spatial closeness. Additionally, greyscales are used for achieving an intu-
itive display, where light “plateaus of similarity”are separated by dark“valleys
of differences”. This allows to explore the “situation space” in a visual way; by
clicking on a situation instance, the respective situation, i.e., its signals, are
displayed in the process view of the electronic logbook.

To apply this method onto the situation instances, it was necessary to
convert the data items into a vector space. For each situation, the distance
to all others could be calculated, based on the signal-wise distance between
the recognized patterns. This allowed to apply the FastMap method [664], to
create a lower dimensional space that approximately represented the situa-
tions’ distance matrix. Unfortunately, this preprocessing disallowed to apply
the fuzzy-ID3-based rule generation mechanism of MIDAS [969], as no con-
clusions about the process parameters could be drawn from rules about the
generated vector space.

Management and Reuse of Experience Knowledge in Extrusion Processes 691

Extended Situation-Based Operator Support

For the direct situation-based support of the production line operators, the
electronic logbook (ELB) was extended by a module called GUI.Dance. This
module enabled a special visualization to display the currently identified sit-
uation to the operators, together with appropriate counter-measures which
might help to regain a stable and good production state. In the top half of the
situation representation display of the ELB in Fig. 7.13, two process signals
are shown, on which significant deviations have been detected (rotational speed
extruder 1 and mass pressure extruder 1). As dotted lines, the signal patterns
that best matched on these deviations are also plotted. Below, a list of refer-
ence situations is shown that fit the current process situation well. Based on
these reference situations, a number of counter-measures, and their frequency,
is displayed on the bottom.

The operators are immediately able to compare the different situations
and assess which of the proposed solutions, or a completely different one,
to choose best. While the search for, and the presentation of the situation
alternatives can be seen as the retrieve step of case-based reasoning (CBR,
see Subsect. 7.5.2), the selection and application of an appropriate solution
corresponds to the reuse aspect. By adapting the recommended course of
action and carrying it out, the operator then provides the revision step. An
important aspect of the system is that the possible actions are neither directly
applied onto the process, nor are there any restrictions of the operators about
the possible interventions. Instead, the operators’ experience is supported, but
not replaced, by the recommender functionality of the support system.

Currently, research is still going on with respect to the best visual repre-
sentation of the reference situations and the counter-measures. Additionally,
aspects such as the Bayes factor (see FIST algorithm in Subsect. 3.1.5 and
[80]) are to be integrated, to improve the recommendation quality based on
the operators’ previous decisions.

7.5.5 Using Recorded Experience for Process Analysis and
Development

The MErKoFer Ontology

Originally, it was not planned to develop a full domain ontology for the MEr-
KoFer project. Instead, only coarse-grained extended categorization schemata
of various aspects were to be used, e.g., for interventions, error causes, and
counter-measures.

As the elaborated domain knowledge gathered from discussions and inter-
views with the industrial partner grew, it was step by step transformed into
comprehensive and fine-grained explicit information model, extending and en-
riching the Core Ontology from Subsect. 4.1.5. The domain-specific ontology
of the industry partner is thus based on the generic Process Data Warehouse

692 S.C. Brandt et al.

Production

State

Category

Category

Quality

Profile

Quality

Error

Category

Intervention

Category

Production

Error

PhaseChange

PhysicalValues

EquipmentFailure

Diameter

Surface

Production

Start

Mount

RunIn

Production

End

Storage

Object

Storage

Place

Store

Storage

Query

SAP

SAPQueryObject

ProductObject

Plant

Produced

Product

Extruder

Description

Object

State

Process

State

ProcessObject

ProcessTrace

TransportOrderProduction

TypeDef

MaterialBatch

ProfileBatch

MaterialDef

ProfileDef

Producing

Product

Descriptions Processes Storage

Products

Core

Fig. 7.14. Excerpt of the domain ontology

(PDW) model. It represents a model of the objects and concepts identified in
the rubber extrusion domain as well as the relations between them. As a result
of that, inside this MErKoFer ontology, the process structure, products and
description artifacts are stored as well as instances of the executed production
processes themselves, together with all related information. This includes the
characteristic situations identified by the described mechanisms.

This MErKoFer ontology is partially shown in Fig. 7.14. In the area of
descriptions, the most important aspects can be found: profile and material
definitions, and the aforementioned categories for phase changes and other
tasks, process states, and errors. In the product area, the plant and its elements
are modeled as producing products, in addition to profile and material batches
as produced products. The process area contains the production process itself
as primary center for state and material changes, and the transport orders of
the material batches which are read from the company’s ERP system (SAP
R/3) that is part of the storage area.

One of the project’s main issues, the contextualization of information in
form of situations, was achieved much more precisely by considering these
explicit correlations and knowledge. Using the domain ontology, the explicitly
stored knowledge was thus combined with detailed correlations from the data
mining tasks described. For the future, the extension of the model elements
will be done by the domain and modeling experts using the generic PDW front-
end, while the instances are stored by the automated situation analyzer and
the electronic logbook. This allows the easy configuration and parametrization
of the operator support system via the modeling front-end of the PDW, and

Management and Reuse of Experience Knowledge in Extrusion Processes 693

Process Data

Warehouse

PI Wrapper PI Wrapper PI Wrapper

XSLT XSLT

Process Engine

MIDASInfoZoom

External

Tools

XML XML XML

(PI: Process Integration)

Fig. 7.15. Loose integration of domain-specific tools and the PDW through the
PRIME framework

also the transfer of the system onto other, similar application domains, and
to different industrial partners.

The PDW has been developed for the support of creative development pro-
cesses by recording and reusing process and product traces. For the MErKoFer
case, it was also used for modeling and supporting production processes. This
allows to transfer the knowledge gained by production support into the field of
process design and improvement, e.g., for the design of new processes for new
products, or for changing the specifications of existing production processes
according to recorded experiences. Additionally, it is possible to integrate the
tools of process design with the PDW, thus achieving an integrated repository
which supports the complete process lifecycle. This enables a unified view for
process designers onto the process from design to execution in a way that is
not yet possible. For the support of these design processes, a tight integration
of the PRIME environment is required, transferring additional results of sub
project B1 (see Subsect. 3.1.5).

Process Integration Using the PRIME Approach

Complementary to the PDW, the Process-Integrated Modelling Environment
PRIME can play the role of the middleware infrastructure for the loose cou-
pling of the various participating tools in a coherent process-integrated envi-
ronment. This environment can serve two important purposes. First, the loose
process integration of the interactive tools promotes their effective interoper-
ability and thus, methodically support the users during their tasks. Second,
PRIME closely interweaves with the PDW and acts as the mediator for the
interpretation of the PDW Core Ontology to tool-specific formats and vice
versa. Figure 7.15 gives an overview of the planned environment.

The main goal of this platform is the extraction of knowledge from cap-
tured experiences in the domain of profile extrusion, and its storage in the

694 S.C. Brandt et al.

PDW knowledge repository for long-term use. The processing of the captured
experiences requires the use of computer-based tools that provide services to
the users to accomplish their tasks. For reasons of efficiency, these tools are
process-integrated using the PRIME approach (see Fig. 7.15,“external tools”).
From the user’s perspective, the tools should be seamlessly integrated with
the various process chains and cooperating tools. From a builder’s perspec-
tive, the integration should be easy, and tight coupling should be avoided in
order to remain sufficiently flexible. Because of the large heterogeneity of the
tools, the process integration approach has to be tailored according to the
needs and limitations of the individual cases. Initially, each tool needs to be
evaluated with respect to its provided programming interfaces, in order to find
out to which extent it can be process-integrated. Next, appropriate wrappers
for each tool have to be built, according to the PRIME generic tool wrapper
architecture.

7.5.6 Conclusions

The described transfer project integrates, transfers, and extends results of
three sub projects of the CRC 476 IMPROVE (A3, B1, C1) with a focus
on experience-based operator support in a plastics engineering application
scenario. In this context, the work has been directly validated in industrial
practice for improving experience and knowledge management in rubber pro-
file extrusion. Moreover, the coupling of explicit ontology-based knowledge
formalizations with innovative and established tools employing data mining
and visualization methods has provided further scientific results.

Based on the structured and highly integrated information display, one of
the major goals for the industrial partner was achieved, namely, improving the
autonomy of the production line operators by offering direct situation-based
support derived from the analyzed process traces. Simple and explicit rules
are used to notify the production line operators about occurring or imminent
process changes in a way not possible previously. Even though the offering
of specialized information about the type of deviation and possible counter-
measures has not been realized for the day-to-day operations, the available
information already indicates the need for interventions to the operators. In-
tegrating and extending the display of the electronic logbook (ELB) with both
current and short-term historical process values, provides enhanced support
there. By recording and displaying the position of the produced profile visu-
ally as well as providing a numeric stability value, additional hints are given.
Qualitative information about the process and its quality, derived from the
surface and geometry inspection, can directly be used to determine the need
for major process corrections or even a full process restart. At the same time,
the old paper-based recordings of faults, counter-measures, mixture changes
and other interventions, have been replaced by the ELB, allowing simplified
execution of, e.g., fault occurrence evaluations, and other analyses necessary
from the points of view of both engineering and business.

Management and Reuse of Experience Knowledge in Extrusion Processes 695

For the long-term evolution of the research, several aspects have been de-
tected for follow-up. Most importantly, the system is being kept in production,
and still extended by ongoing research and implementation work. Especially
the aspects of validating and improving the situation detection, of quantifying
the long-term waste reduction, and of better integrating the aiXPerience sys-
tem into the industrial partner’s environment, are being worked on. Currently,
it is also discussed to extended the system onto further production lines, at
least one of them being newly installed. There, the results of explicitly record-
ing and modeling the domain processes and concepts will also be applied for
designing both the technical aspects of the new line, and the new processes
to be used on it.

7.6 Tools for Consistency Management between Design
Products

S. Becker, A. Körtgen, and M. Nagl

Abstract. The results of the IMPROVE subproject B2 (cf. Sect. 3.2) are to be
transferred to industry. The corresponding transfer subproject T5 is described in
this section. The main goal is to provide a universal integrator platform for the
engineering solution Comos PT of our industrial partner innotec. The core results
to be transferred are the integration rule definition formalism and the integrator
framework including the execution algorithm.

Besides evaluation in practice, the transfer subproject will also deal with major
extensions. For instance, the integration rule definition formalism will be extended
and repair actions to restore consistency of damaged links will be incorporated into
the framework. The transfer is intended to be bidirectional, i.e. our partner’s knowl-
edge will influence our research as well.

7.6.1 Introduction

The transfer subproject T5 is a joint research initiative of RWTH Aachen
University, Computer Science 3 and the German software company innotec.
It is the transfer activity of the IMPROVE subproject B2.

Innotec is the developer and vendor of Comos PT, which is an engineering
solution covering the whole engineering life cycle of plants. We are focusing on
its use in chemical engineering development processes, though it can be applied
to other engineering disciplines as well. The main principle underlying Comos
PT is to provide an object-oriented data storage for all engineering data.
This is complemented by different tools having domain-specific graphical user
interfaces for specific documents.

As Comos PT deals with a lot of different project phases and engineering
documents, there is the need to keep the corresponding data consistent. Thus,
the methods and tools gained in subproject B2 will be extended and applied
to provide a prototype of a universal integrator platform for consistency man-
agement in Comos PT. This prototype will be used to perform the integration
of logical documents contained in the Comos PT data model as well as the
integration of external data.

While being tailored to support Comos PT and development processes in
chemical engineering, a mandatory requirement for the integrator platform is
its adaptability to different tools and other application domains.

An important goal of the transfer subproject T5 is to make the results of
the CRC subproject B2 (cf. Sect. 3.2) available in an industrial context. The
main results to be transferred are the integration rule definition formalism
and the integrator framework, including the rule execution algorithm.

Besides transfer, additional research is to be conducted by subproject T5
as well. For instance, the integration rule definition formalism will be extended

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 696–710, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tools for Consistency Management between Design Products 697

and support for repair actions dealing with inconsistent relationships will be
added to the framework. We expect the application experience of our partner
innotec to be a valuable input for our research activities.

The rest of this section is structured as follows : In Subsect. 7.6.2, some
of our past and current cooperations with different industrial partners are
described. Subsect. 7.6.3 gives an overview of the system to be realized in the
transfer subproject. In Subsect. 7.6.4, selected research activities needed for
the realization of the Comos PT integrator platform are described in more
detail. Subsect. 7.6.5 concludes this section.

7.6.2 Past Cooperations with Industrial Partners

Cooperation with innotec

The IMPROVE subproject B2 is cooperating with innotec since 2001. To-
gether with the IMPROVE subproject A2, the scenario for the integration of
Comos PT and Aspen Plus, as sketched in Subsect. 3.2.1, has been elaborated.
This scenario was used to discuss the requirements for an integrator solution
with innotec.

Based on these requirements, an early version of the integrator framework
(cf. Subsect. 3.2.2) has been implemented [27, 251]. It was used to realize
a first integrator tool between simulation models in Aspen Plus and process
flow diagrams in Comos PT (cf. Subsect. 3.2.5). Innotec contributed the wrap-
per, connecting the framework to Comos PT, and evaluated early prototypes.
The final prototypes of the framework and the integrator were limited in
functionality and could not easily be adapted to integrate other documents.
Nevertheless, they served as proof of concept for our integration approach.

In parallel to the implementation of the framework and the integrator,
the rule definition language (cf. Subsect. 3.2.3, [39]) was defined. Thus, the
integration rules, executed by the integrator, have been defined using a pre-
liminary version of the integration rule editor. During discussions about the
scenario with innotec, the visual and UML-based approach for defining rules
proved to be very useful.

The prototypes as well as the general approach and the underlying con-
cepts have not only been discussed with our partners at innotec. Addition-
ally, they have successfully been presented to selected customers of innotec
from the German chemical industry. In multiple workshops, presentations and
prototype tool demonstrations were given, followed by discussions about fur-
ther ideas and requirements. We also presented our integration approach at
practice-oriented conferences and in corresponding journals [36, 38, 41].

Currently, there are two ongoing projects together with innotec: In the
first activity, we are defining a set of integration rules to import arbitrary
columns processing crude oil from Aspen Plus and Pro/II simulation models
into process flow diagrams (PFDs) of Comos PT. Here, the current version
of the integration rule editor is used for rule definition and consistency check.

698 S. Becker, A. Körtgen, and M. Nagl

The rules are evaluated by generating PROGRES code and executing it using
the integration rule evaluation environment IREEN (cf. Subsect. 3.2.5).

Comos PT can be customized using so-called base projects, for instance
by defining user-specific types of equipment that can later be used in PFDs.
To adapt Comos PT to the needs of a company or a certain project, usually
a lot of such definitions are made. Thus, in the second activity, a tool is being
developed that provides UML views on base projects to give an overview to the
customizers. This tool will also help defining integration rules in the future, as
UML definitions of the equipment types are needed for the document models
(cf. Subsect. 3.2.3).

Cooperation with Schwermetall

In another industrial cooperation with the German company Schwermetall
[956], we realized an integrator that collects data from automation systems of
production processes in a centralized repository. The data are grouped in a way
that for each product leaving the factory its production history is clearly visi-
ble. As central repository, Aspen Batch.21 [514] is used. Data sources include
different databases, such as those of the process information management
system (PIMS) Aspen InfoPlus.21 [515] and some proprietary automation so-
lutions.

The two main problems to be solved were (a) to handle the heterogeneity
of the large number of data sources and (b) to implement a solution, that is
flexible enough to be adapted to new process steps, and simple enough to be
performed by the system administrator at Schwermetall.

Problem (a) was addressed by writing light-weight wrappers (cf. Sect. 5.7)
for the data sources. To solve the second problem, the data structure definition
file for the Aspen Batch.21 system was extended by additional specifications
that define the source of data for each piece of information stored in the
Aspen Batch.21 system. The data source definition specifies which wrapper
to contact for the data, which function to call, which parameters to pass, etc.

The additional specifications are ignored by the Aspen Batch.21 system
but they are interpreted by the integrator at runtime. Each time a data source
signals the availability of new data, all related specifications are executed by
the integrator and the collected data is inserted into the Aspen Batch.21
System.

This integrator differs from the other integrators that have been built.
Nevertheless, some valuable further experiences have been gained, especially
concerning the integration of row-oriented data of different databases.

7.6.3 The Concept: An Industrial Integrator Platform

In this subsection, the functionality and the overall architecture of the integra-
tor platform will be described. As the platform will be evaluated as integration
solution for Comos PT, a short overview of the Comos PT system is given
first.

Tools for Consistency Management between Design Products 699

Short Introduction to Comos PT

Comos PT is a universal solution for organizing design and maintenance data
for different engineering disciplines. Besides providing a centralized data stor-
age within an underlying database, Comos PT offers specific user interfaces
for the manipulation of selected engineering documents, such as process flow
diagrams or reactor data sheets for chemical engineering.

API

1:
1

im
po

rt/
ex

po
rt

(X
M

L,
 C

O
M

)

database

comos GUI

- hierarchical data view
- device view
- document view (e.g. PFD)
- plug ins

blobblobblob

Fig. 7.16. System architecture of Comos PT

We now give a short overview of the internal structure of Comos PT. The
coarse-grained overall system architecture is depicted in Fig. 7.16. It is based
on a central database, which serves as data storage for all Comos PT related
data. Most commercial relational databases can be used. The Comos PT ap-
plication programming interface (API) provides an interface to the central
database similar to most object-oriented database interfaces. Objects in the
database can have attributes, which can be structured hierarchically and may
include references to other objects. Objects are used in a way that their granu-
larity meets that of real-world objects, e.g. a chemical reactor is represented by
a Comos PT object. Objects can be decomposed hierarchically. For instance,
a reactor can be further refined by aggregated objects, such as agitators or
nozzles. Objects are called devices in Comos PT terminology.

The Comos PT API is used by the Comos PT graphical user inter-
face (GUI) to access the engineering data. The GUI provides a hierarchical
overview (tree view) of the devices contained in the database for navigation,
as well as detail views on devices. Different types of graphical and textual
documents are provided that can contain references to devices. For instance,
process flow diagrams contain references to the devices that are placed on the
sheet.

When displaying the sheet, these references are evaluated and the right
geometrical form is drawn for each device. Thus, there are no“real”documents

700 S. Becker, A. Körtgen, and M. Nagl

stored inside the Comos PT database. Instead, logical documents are defined
by combining data from different places inside the database.

External data can be imported as large binary objects (BLOB) into the
database. To display these data, external applications can be started as plugins
inside the Comos PT GUI. The plugin mechanism can also be used to extend
the GUI with specific functionality. To communicate with Comos PT, the
extensions can make use of the Comos PT API.

For some tools, Comos PT contains simple import and export function-
ality that translates their data contained in BLOBs inside the database into
corresponding Comos PT device structures. The translation works batch-wise
without user interaction and performs simple one-to-one mappings only. So
far, only BLOBs containing XML files or data of certain applications with
COM interfaces (e.g. Aspen Plus) are supported.

Functionality and Realization Overview

The integrator platform is intended to be used for Comos PT related data
integration, e.g. for keeping simulation models and process flow diagrams con-
sistent. This comprises internal data as well as external data sources. The
integrator platform has to fulfill all requirements on integration tools as pro-
posed in Subsect. 3.2.1. The key requirements are:

• The behavior of the integrator can be defined by rules. Rule definition has
to be feasible for the personnel customizing Comos PT.

• Operating the integrator has to be feasible for the engineers performing
design processes.

• The integration has to be incremental. No manual modifications are to be
overwritten without asking the user.

• The integration has to be performed interactively. The user can select
among concurring rules and perform parts of the integration completely
manually.

• The integrator platform has to be tightly integrated with the Comos PT
environment from the users’ perspective. Nevertheless, it must be easily
adaptable to other tools and other domains of applications.

Figure 7.17 illustrates the system architecture we have chosen to incorporate
our integration framework into Comos PT.

In contrast to the original system architecture of our integrators (cf.
Fig. 3.22), Comos PT is connected to the integrator as one single applica-
tion. Thus, only one wrapper instance is needed. The wrapper accesses the
Comos PT database via the Comos PT API. It is the wrapper’s task to pro-
vide logical documents to the integrator and to map them to collections of
database objects. The wrapper will be described in more detail in the next
subsection.

For the integration of external data, they have to be imported into the Co-
mos PT database. First, a BLOB containing the external document is created.

Tools for Consistency Management between Design Products 701

comos wrapper

API

Comos PT

1:
1

im
po

rt
/e

xp
or

t
(X

M
L,

 C
O

M
)

database

comos GUIrule editor

consistency
check

transformation

rule interpreter coded rulesin
te

g
ra

to
r

co
re

browsing

Integrations-
regeln

Integrations-
regeln

integration
rulesintegration

documents PFD datasimulation

Pro/II

Aspen
Plus

models

integrator GUI

a)

a)
a) a)b) c)

a)

Fig. 7.17. System architecture of the integrator platform for Comos PT

Second, the one-to-one import is used to translate the proprietary document
into a corresponding Comos PT data structure. Only then, the integrator per-
forms the complex integration part. The resulting data flow during integration
is shown as arrows labeled with a) in the figure. To allow the incremental in-
tegration of arbitrary data, the current im-/export tool has to be extended to
work incrementally and to support additional external applications. Further-
more, the definition of the im-/export behavior has to be facilitated. These
extensions will be realized in the transfer subproject as well.

Unlike the original approach, the wrapper does not only provide an inter-
face to the logical documents being integrated. Additionally, it is used to store
the integration documents in the Comos PT database (cf. arrows labeled with
b) in Fig. 7.17). As a result, the user does not need to explicitly manage data
by himself in the file system. As a further benefit, other parts of the Comos PT
system can make use of the links contained in the integration documents. For
instance, they can be used for navigation purposes or to propagate attribute
values between related devices using already existing Comos PT functionality
(e.g. the so called mapping tables).

The integration rules controlling the integrator are stored inside the Comos
PT database as well. They are modified by the rule editor and read by the
integrator using corresponding wrapper functionality (cf. arrows labeled c) in
the Figure).

702 S. Becker, A. Körtgen, and M. Nagl

The integrator core of the current integrator framework (cf. Subsect. 3.2.2)
is used to perform the integration by executing the integration algorithm (cf.
Subsect. 3.2.4). It is controlled by the integration rules (cf. Subsect. 3.2.3)
contained in the Comos PT database. The basic functionality is already im-
plemented in the integrator core but nevertheless it has to be extended sig-
nificantly. The most important extensions are the support of repair actions to
restore the consistency of damaged links in the integration document, and of
new elements in the integration rule formalism. Both will be addressed in the
next subsection.

The rule editor as well as the integrator user interface will be executed as
plugins in Comos PT. Both have to be adapted to the domain concerning their
presentation. The main challenge, thereby, is to provide a user-friendly view
on the underlying complex integrator concepts. The tight integration of the
rule editor with Comos PT will allow the realization of additional function-
ality, such as drag and drop between Comos PT flowsheets and integration
rules. The rule editor has to support the current formalism for the defini-
tion of integration rules as well as the extensions being added in the transfer
subproject (see next subsection).

One requirement for the integrator platform is its tight integration with
Comos PT to facilitate operating integrators by users. Nevertheless, it is in-
tended to keep the overall framework adaptable to other tools and other do-
mains as well. To use the framework with another tool, just the wrapper has
to be exchanged. Additionally, the presentation layer of the integrator user
interface and the rule editor have to be adapted. To ensure the adaptability,
the transfer subproject cooperates with another project at our department
performing research concerning data integration in automotive development
processes.

7.6.4 Important Extensions to the Original Approach

In this subsection, we describe selected aspects of the transfer subproject,
namely those having an impact on further research.

Comos PT Wrapper

The new Comos PT wrapper we developed deals with three new aspects :

1. It is responsible not only for accessing the data that have to be integrated
but also for storing all integration documents as well as all integration
rules inside the Comos PT system. To allow other parts of Comos PT to
use these data, they cannot be simply stored as BLOB inside the Comos
PT database. Instead, they are saved as Comos PT objects, exploiting the
possibilities of the Comos PT data model, like attributes and references.

2. Unlike the old wrappers for integrators, the new one does not wrap exactly
one specific kind of documents. Instead, it provides a logical document

Tools for Consistency Management between Design Products 703

interface to arbitrary data that reside in the Comos PT database. As a
result, the wrapper is able to interpret document definitions at runtime
and map accesses to the logical documents’ contents at its interface to
specific Comos PT objects. Specifying logical documents and interpreting
the specification at runtime leads to interesting problems.
For instance, intersections between logical documents have to be avoided,
at least if they are used for the same run of the integrator. It is not suffi-
cient to simply define logical documents by selecting entire branches of the
hierarchical database view of Comos PT, because a logical document can
contain information from multiple branches in the tree and a tree branch
can contain information that is relevant for multiple logical documents.
Even for a specific document type, there are different storing policies. For
instance, this is the case for the specialized flowsheet documents PFD and
P&ID.
The new wrapper solves this problem with the help of so-called folder
mappings. When the wrapper is instantiated for a specific flowsheet, it
retrieves a folder mapping which maps object types to folders in the tree.
Thus, the wrapper determines where to store or to find objects by their
type.
Additionally, it has to be figured out how fine-grained the specification has
to be. While in some cases it could be useful to explicitly include a single
attribute into a logical document, this could cause unnecessary overhead
in other situations.

3. To facilitate the definition of integration rules, additional graph constructs,
e.g. paths and derived attributes, are to be supported by the wrapper.
Comparable to the definition of logical documents, these constructs have
to be defined and interpreted at runtime. This is due to the fact that the
Comos PT data model can be customized to the needs of specific users
and, thus, it cannot be foreseen e.g. which paths will be needed in the
future.
Paths are very useful, e.g. when importing simulation data. The current
one-to-one import from Aspen Plus creates Comos PT objects represent-
ing simulation streams that reference the connected devices by an at-
tribute containing a string. The string consists of the name of the device
and the name of the port the stream is connected to. Thus, in an integra-
tion rule containing a stream that is connected to a device, there would be
no visual manifestation of the connection. Instead, an attribute constraint
would have to be included that checks the contents of the string attribute.
Using paths, a global path definition for such connections could be inter-
preted by the wrapper and the connection could be visually modeled in
the integration rule. Paths are one of the extensions of the rule formalism,
which are explained in the following.

704 S. Becker, A. Körtgen, and M. Nagl

Fig. 7.18. Rule editor to specify rules

Extending the Formalism for Integration Rules

The integration rule modeling formalism introduced in Subsect. 3.2.3 provides
the possibility to specify the behavior of integrators in a clean and consistent
way. Nevertheless, it has to be extended for two reasons: First, it has to be
made more user-friendly by offering specific views. Second, it has to be en-
riched by additional constructs to support more complex rules.

To facilitate the definition of integration rules for Comos PT customers,
new views on the rule model have to be provided. For instance, the link type
definitions can be hidden from the average user and just be included into
an expert user interface. Additionally, a domain-specific visualization using
graphical symbols for specific node types is needed. Most important, filters
(e.g. supporting edge-node-edge constructs by edges, as in the UPGRADE
framework [49]) should be incorporated.

Figure 7.18 shows a screen shot of a new rule editor we developed, which
is based on the tool Visio from Microsoft. We chose Visio because it brings
along basic functionality for designing graphics, it is easy to use, and has a
well documented API. Simplification of rule modeling is achieved by hiding
link type definitions. Thus, a rule modeler starts directly with drawing an
integration rule.

For this purpose, a collection of predefined shapes is available, which can
be dragged and dropped onto the drawing (see shapes window in Figure 7.18).
The shapes represent nodes and edges of a rule, each of them has properties,
such as document role, type, or action. Shapes representing nodes have in

Tools for Consistency Management between Design Products 705

addition a name and description property (see table in Figure 7.18). The type
of a node shape can be selected via tree views, which list either link, PFD, or
P&ID types. The latter two are retrieved directly from the Comos PT system.

The shapes look differently according to their affiliation to a document,
which makes their distinction easier and, therefore, more user-friendly. At
least two collections of predefined shapes have to be loaded for rule modeling:
one for shapes which shall be part of the integration document and the other
for shapes of the application documents. This separation of shape collections
makes it easy to use the rule editor for different documents and domains. For
example, the provided domain-specific shapes for flowsheet objects, namely
devices, streams, and connectors, are represented as boxes, block arrows, and
circles, respectively. Further customization to the Comos PT system is realized
by loading an image from the Comos PT database when the type of a device
shape is set. In the rule depicted in the figure, the devices (boxes) show the
representation of heat exchangers in PFD and P&ID of Comos PT.

Additionally, the creation process of rules is simplified enormously. Drag
and drop of devices from the Comos PT tree view as well as copy and paste
of devices from a Comos PT flowsheet into the rule editor results in the cre-
ation of shapes. If multiple devices inter-connected among each other are se-
lected and copied, the created shapes in the rule editor get inter-connected
as well. This tight integration allows to reuse already existing templates for
transforming certain devices from a PFD into a P&ID from the Comos PT
system. These templates are expressed by simple flowsheets containing respec-
tive devices. There are functions to support automatic property setting and
connection of shapes. A rule checker is implemented to validate rules.

Furthermore, real extensions to the rule model will be made. The main
idea is to incorporate additional constructs already available in current graph
rewriting implementations (such as PROGRES [126]) into the rule model. We
currently plan to include or have included the following constructs:

• Arbitrary path definitions are to be supported, as motivated above. Similar
to regular expressions, we plan to support basic operations like alternation
and quantification of graph patterns in order to restrict the set of possible
paths. Quantification is already realized by the concept of set-valued graph
patterns (see below).

• Negative application conditions (abbreviated NAC) will be supported.
They provide a possibility to decrease the amount of unnecessary user
interaction by defining “guards” for the application of certain rules. Incor-
porating NACs into the integration algorithm (cf. Subsect. 3.2.4) is not
straightforward.
Each rule execution potentially produces new nodes in the documents.
Thus, it is hard to determine when to check a NAC. Especially, it has to
be decided whether a rule containing a NAC, that is to be checked at later
stages of the algorithm, is to be included into the conflict detection phase

706 S. Becker, A. Körtgen, and M. Nagl

Fig. 7.19. Integration rule with parameter

of the algorithm. As a result, the use of NACs has to be restricted in a
way that the rule execution can still be defined in a deterministic way.

• Set-valued nodes are already supported by PROGRES. They are needed
for integration rules as well. Especially, the generalized set-valued patterns
are needed in integration rules. A new construct for modeling repetitive
subgraphs is realized, which even allows the modeling of successively con-
nected subgraphs [250].

• Additionally, a new construct for modeling alternative subgraphs [180] is
realized. This is a powerful construct to specify multiple alternative corre-
spondence structures in one rule. For example, there are different options
to map a process stream to a pipe which contains different types of valves in
different order. All these alternatives can be now specified within one rule.

• Concepts for the parametrization of integration rules will be defined.: Pa-
rameters can be set at runtime as well as at rule definition time. Figure 7.19
shows an example of a rule with a runtime parameter in combination with
a set-valued pattern: A column in the simulation model is mapped to a
column in the flowsheet, which has a number of column trays each having
a port. The parameter #n controls the number of trays, that are added
to the column; it is provided by the user at runtime. Up to now, the
parametrization works with attributes occurring in a rule whose values
can be retrieved at runtime without user interaction.
To facilitate rule definition, parameters can be set at definition time as
well. This can be compared to the concept of genericity as contained in
some modern programming languages. We plan to allow different kinds of
parameters, ranging from integer values, or node types, to complex graph
patterns.

• Additional improvements will be made to the handling of attributes during
integration.

All extensions affect the integration algorithm as well as the derivation of
forward, backward, and correspondence analysis rules. For instance, the ex-
istence of paths can be checked, but not all paths can be created in a deter-
ministic way. Thus, the constructs either have to be restricted, or generated
forward, backward, and correspondence analysis rules have to be manually
post-processed.

Tools for Consistency Management between Design Products 707

To realize the above extensions, first IREEN will be used to define and
evaluate their semantics. Only then, the integration rule editor and the inte-
grator core of the framework will be adapted to support the new functionality.

Concerning all extensions, it is very important to get feedback from prac-
tice. It has to be made sure that the resulting rule definition formalism is
still usable for the average Comos PT customer and that these extensions are
really needed.

Repair Actions

After modifications of the integrated documents, already existing links in the
integration document – that have been created by the execution of rules or
manually – can become invalid. There are different reasons for this:

• Increments in source or target documents have been deleted, resulting in
dangling references from the link.

• Attribute values of increments within source or target documents have been
changed in a way that attribute conditions contained in the integration rule
no longer hold.

• Edges in source or target documents have been deleted or have been as-
signed a new type. As a result, the pattern matched by the integration
rule that created a link does not exist any more.

• A link the current link is depending on has been damaged.

The simplest way to deal with a damaged link is to delete it and thereby
make the remaining increments available again for the execution of other rules.
Though possible in general, deleting the link is not a good option. The modifi-
cation resulting in the damaged link was most probably done on purpose. The
link – even if it is damaged – contains valuable information on which parts of
the other document may be affected by the modifications. So in most cases
just asking the user to resolve the inconsistency manually is a better option
than deleting the link.

If the inconsistency has been caused by the deletion of increments, it is
possible to propagate the deletion by first deleting all remaining increments
in both documents and then deleting the link. This behavior is restricted to
situations, where all increments of a link have been deleted in one of the
documents or where one of the dominant increments has been deleted.

Another option is to restore consistency by removing the cause for the
inconsistency. For instance, missing increments or edges may be created. This
option is desirable only in those cases where the operation causing the damage
was carried out accidentally, because it would be undone.

If only some parts of the patterns in source and target documents are
missing, it is possible to perform a pattern matching for the whole pattern of
the rule that created the link using still existing nodes to initialize some of the
patterns’ nodes. This can be helpful, e.g. if the user first deletes an increment
and then recreates it.

708 S. Becker, A. Körtgen, and M. Nagl

Another option is to perform pattern matching of alternative rules to the
current situation. This means that the altered pattern is to be mapped to
different patterns in the corresponding document. If an alternative rule is ap-
plied to the new situation, then the corresponding document will be adapted,
i.e. the former pattern will be deleted and a new pattern according to the
alternative rule will be created.

In general, it cannot be determined automatically which alternative for
repairing damaged links is appropriate. So, user interaction is necessary here
as well. The integration tool determines all possibilities for dealing with the
inconsistency and let the user decide. As repair actions are performed during
an integration run, normal integration rules to transform newly created in-
crements are simultaneously proposed to the user. Thus, repair actions and
integration rules are to be presented to the user likewise. This is important,
as it is possible that repair actions conflict with integration rules.

We are currently implementing different repair actions listed above. If a
repair action is a reasonable option to solve a damaged link, the cause of the
damage is determined. As discussed with our industrial partner innotec, in the
first place provided repair actions should re-organize the references contained
in the integration document and let the application documents untouched
(conservative strategy). Only if this is not possible, other repair actions should
be offered, where the direction of the integration run (forward, backward, or
correspondence) is considered.

Document Reuse

In engineering processes, it is common practice to reuse documents of preced-
ing projects. This is usually done by searching for mappings between high-
level descriptions of the currently designed system and existing documents,
e.g. PFD and P&ID documents which describe chemical processes similar to
the one to be designed and they contain precise, refined design decisions. A
mapping between these documents is usually found by detecting name and
type equalities of their objects.

To find such mappings between two documents, the documents have to be
created for this purpose, e.g. objects’ names have to be chosen according to a
specific convention. Because this is not always the case and one cannot assume
in general that such conventions are met, it is more appropriate to search
the documents for specific patterns. For this purpose, our integration rule
formalism is well suited. Potential mappings can be specified more precisely,
comprising structural aspects as well. Not only one-to-one mappings, even
complex patterns in one document, e.g. an arbitrary number of parallel pumps
with several fittings, can be specified to be mapped to similar but different
patterns in the other document.

We developed extensions to our integration algorithm to support document
reuse. In [230], new document traversal strategies are presented to tackle the
problem of combinatorial explosion of possible mappings. Additionally, further

Tools for Consistency Management between Design Products 709

extensions were made to the integration rule formalism facilitating its appli-
cation in practice. For example, we started developing concepts for generic
rules which express fuzzy correspondences. For this purpose, alternation and
quantification of graph patterns described above are supported.

It is possible to match these patterns in the documents and derive con-
crete rules from these matchings. As we discussed with our industrial partner
innotec, it is necessary to keep the reused document and delete unneeded
increments from it. There is additional information contained in a flowsheet
from a preceding project which cannot be mapped by integration rules, e.g.
layout information or additional graphical annotation. If a new flowsheet was
generated using the derived rules, the additional information would be lost.

Multiple Document Integration

Currently, the integrator supports pair-wise integration only (cf. Fig. 7.20 a)).
If dependencies among multiple documents are to be handled, a master doc-
ument has to be identified and pair-wise integrations of the other documents
with the master document have to be performed (cf. Fig. 7.20 b)). This is
feasible in most cases because there are certain obvious master documents in
design processes, e.g. the flowsheet in chemical engineering.

a) b) c)

1 2 3Inte-
grator

Inte-
grator

Inte-
grator

Inte-
grator

Inte-
grator

Fig. 7.20. Integration of multiple documents

Up to now, no research has been done on how the single integrations have
to be coordinated with each other in case b). On the one hand, it could be
necessary to perform the integrations in an appropriate order. For instance,
in the figure integration 2 can have to be performed after integration 1 and 3.
On the other hand, an even more fine-grained synchronization mechanism on
the basis of single rules can be used. For instance, a certain rule in integration
2 can have to be executed before another rule is executed in integration 1 and
so on. For the former case, a simple order of integrations has to be defined. For
the latter case, the rule specification has to be enriched by specific constructs
for handling inter-integration dependencies.

Another possibility is sketched in Fig. 7.20 c): A single integration tool
executes rules dealing with all documents simultaneously. For this possibility,

710 S. Becker, A. Körtgen, and M. Nagl

as well as for the one sketched before, the triple graph grammar approach
underlying our integration algorithm has to be extended substantially.

7.6.5 Conclusion

In this section, we gave an overview of the integrator tool transfer activities.
We plan to use our existing experience in industrial cooperations to transfer
the results of the IMPROVE subproject B2 to industrial applications. In the
last two subsections we discussed still existing challenging research problems.
Only their solution will make the transfer project a success.

Current practice in industry either relies on simple hand-coded batch
transformators for data integration or on manual consistency management.
Thus, from the industrial perspective, the main result of this transfer project
will be the possibility to realize integrator tools at lower costs and with im-
proved quality and to increase their use in design processes. This is mostly
achieved by separating common implementation parts in the framework from
rule specifications that define the behavior of integrators.

However, it is not intended in this transfer subproject to provide com-
plete solutions that are ready for use. Instead, the focus is still on providing
prototypes that serve as proof of concept and as foundation for market-ready
implementations.

From the research perspective, the intended impact of the transfer subpro-
ject is twofold. First, we expect valuable contributions by solving the scientific
issues, some of which have been presented in this section. Second, the experi-
ence of our industrial partner and the close contact with their customers will
provide a benefit for our research activities that could not be achieved without
this cooperation.

7.7 Dynamic Process Management Based upon Existing
Systems

M. Heller, M. Nagl, R. Wörzberger, and T. Heer

Abstract. In the past funding periods of the CRC 476 the process management
system AHEAD has been developed as a research prototype (cf. 3.4). The project
T6 aims at transferring the corresponding research results into two different indus-
trial environments. Together with innotec GmbH, we realize a process management
system on top of the chemical engineering tool Comos PT. This system will allow
for the holistic management of the overall administration configuration (activities,
products and resources). Furthermore, we extend our application experience by also
considering dynamic business processes. In cooperation with AMB-Informatik, we
build a workflow management system that allows dynamic changes of workflows at
runtime. This new workflow management system is also built on top of an existing
one, which strictly separates build-time from runtime.

7.7.1 Introduction

In IMPROVE the process management system AHEAD has been developed,
as described in detail in Sect. 3.4. AHEAD’s main characteristics are (a) the
medium-grained representation of the task structure, (b) the coverage and
integration of processes, products, and resources at the managerial level, (c)
the integration between managerial and technical level, (d) the support for
dynamics of design processes, (e) the process management support across
companies, and (f) the adaptability of the system to different domains.

Due to these features, AHEAD is ahead of state of the art systems for
project, workflow, or document management. In particular, these systems
cover only parts of the managerial configuration and do not integrate the
managerial with the technical level. Common workflow management systems
lack the support of dynamic changes within the task structure, which occur
frequently in development processes.

Because of these shortcomings, the overall managerial configuration of a
process is usually maintained manually. This induces inconsistencies in the
administrative configuration, which may lead to, e.g., forgotten tasks or to
the use of outdated documents. The risk of inconsistencies emphasizes the
need for holistic management support which can be provided by AHEAD.

The AHEAD system is currently built using the tools PROGRES [414],
UPGRADE [49], and GRAS [220], which allow for rapid prototyping based on
graph transformations. Due to these technical dependencies, AHEAD cannot
easily be transferred to arbitrary software platforms.

In the following section, we describe recent and future efforts concerning
the transfer of concepts elaborated within IMPROVE into industrial envi-
ronments. At first, we discuss two general approaches to transfer a system
like AHEAD such that they integrate with existing systems for document,

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 711–726, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

712 M. Heller et al.

Workflow
Management

System

Product
Management

System

Project
Management

System

Wrapper

Integration

Tool-specific
Configuration

Complete
Management
Configuration

Resources
Activities

Products

Fig. 7.21. Integration Approach 1 (IA1): AHEAD maintains full management con-
figuration

workflow, or resource management. Thereafter, we depict preliminary work
within the AHEAD project to facilitate technology transfer. Next, the imple-
mentation of an AHEAD-like system on top of an existing tool for chemical
engineering is outlined. This is performed in cooperation with innotec, which
develops and sells a tool named Comos PT. In an additional transfer activity
together with AMB-Informatik, we show how AHEAD concepts can be ap-
plied to the domain of business processes and can be realized on top of an
existing system for workflow management.

7.7.2 Strategies for A-posteriori Integration of Management
Systems

The transfer into industry aims at the realization of an integrated, industrial
management support system built up from existing tools. An AHEAD-like
system is positioned on top of commercial tools as sketched in Figs. 7.21 and
7.22.

A-posteriori Integration

AHEAD offers advanced functionality for the management of dynamic design
processes which is currently not available in commercial tools. As discussed
in-depth in Sect. 3.4, process management covers several aspects including ac-
tivity or workflow management, product management, resource management,
and additionally time- and cost-based project management. For example, the
storage of documents or the support for project planning is done with various

Dynamic Process Management Based upon Existing Systems 713

commercial tools. They constitute mature solutions for carrying out certain
management tasks. Furthermore, users are familiar with these tools. There-
fore, it is not feasible to replace these tools by a completely new and monolithic
system.

Instead, AHEAD and the commercial tools are synergistically combined
into a coherent overall system in a bottom-up fashion resulting in two ad-
vantages : (1) The commercial tools are embedded in a dynamic process en-
vironment. Thus, their functionality can be used in a coordinated manner
to achieve new and advanced objectives. (2) AHEAD is extended with new
functionality assembled from the commercial tools’ functions. This avoids the
need to re-implement already existing functionality offered by these tools. By
the integration of commercial tools, the AHEAD system can be successfully
“embedded” into the industrial technical and managerial overall environment.

The existing and coupled management systems are accessed by wrappers
which provide an abstract interface to these systems. The wrappers comprise a
functional interface to call functions and a data interface providing data views.
The technical integration, including problems like data format conversion for
example, can be encapsulated within the wrappers (cf. [136] and Sects. 5.7
and 7.8).

The functionality offered by commercial tools is often stripped in order to
concentrate on the main functionality. For example, a product management
system may also offer some functionality for managing activities in a design
process. We decided not to use this functionality because a more versatile
workflow management system is also to be integrated. Consequently, only one
dedicated system is used for each management aspect (separation of concerns).
In particular, activity, product and resource management are handled on the
level of existing systems and on the integration level above.

Two Possible Solutions

The storage of the management configuration of the overall design process
can be performed in two possible ways : The AHEAD system maintains the
full management configuration with all details of the design process as shown
in Fig. 7.21 (IA1). Alternatively, AHEAD stores only a part of the overall
configuration together with additional integration data, while other parts are
maintained in the existing systems and are accessible for AHEAD through
views (IA2) as shown in Fig. 7.22. In the latter case, the AHEAD instance
has to maintain all data relevant for the coordination of all systems on a more
coarse-grained level, while other detailed data are left to be stored within the
existing systems on a fine-grained level.

While the AHEAD system is used itself as integration instance in the first
approach, the second approach implements AHEAD-like functionality on top
of industrial management systems. For both alternatives, it is advantageous
to locate AHEAD’s semantical models of design processes at a central place,
to guarantee that the semantical submodels fit together. These submodels

714 M. Heller et al.

Workflow
Management

System

Product
Management

System

Project
Management

System

Wrapper

Tool-specific
Configuration

Partial
Management
Configuration

Data for Integration + New Functionality

View 1 View 2 View 3

Resources
Activities

Products

Fig. 7.22. Integration Approach 2 (IA2): AHEAD-like system merely coordinates
existing systems

often differ from the models coming with existing systems. So, it cannot be
guaranteed in general that all parts of the semantic models in AHEAD can be
mapped onto that of existing systems. In some cases, data within the existing
systems are not directly available in AHEAD, while in other cases all data are
duplicated in AHEAD.

7.7.3 Preliminary Work

In the following subsection, we describe preliminary work for the transfer. We
show how a commercial workflow management system can be used to execute
task nets that are defined in the AHEAD system. After that, we describe the
integration of the AHEAD system with various existing systems for project
planning, email communication, and document management.

Workflow-Based Execution of Dynamic Task Nets

To further investigate the above mentioned integration alternative IA1, where
AHEAD maintains the full management configuration for the integrated sys-
tem, we have studied the integration of AHEAD with the commercial work-
flow management system COSA from Ley [208]. In this experiment, AHEAD
was used for planning and editing of the overall task net structure, while the
execution was delegated to the workflow management system. AHEAD uses
dynamic task nets for process modeling, while COSA uses a Petri net variant
for the same purpose. Thus, the main problem for the integration is the map-
ping of the dynamic task nets into Petri nets and respecting the semantics of

Dynamic Process Management Based upon Existing Systems 715

dynamic task nets during workflow execution within COSA. For the mapping,
the structure and the dynamic behavior of dynamic task nets is mapped into
a Petri net by mapping each modeling element of task nets into a small Petri
net fragment consisting of places and transitions.

The integration of AHEAD and COSA is achieved in two steps. (1) The
overall task net instance is stored in a task net description file. A transforma-
tion module implements this mapping and converts the task net into a COSA
net which is stored in a COSA workflow description file. This file is imported
into COSA where a corresponding workflow instance is created. (2) AHEAD
and COSA are coupled at run-time using a communication server in between,
similar to the coupling of two AHEAD systems for delegation-based cooper-
ation as described in Subsect. 3.4.5. Both systems exchange events to keep
each other informed about relevant process changes.

Changes of the process structure cannot be performed in COSA but only
in AHEAD. The propagation of structural task net changes from AHEAD to
COSA at run-time follows a stop-change-restart-strategy: the currently exe-
cuting workflow instance is stopped in COSA after the current state has been
stored; the obsolete workflow definition is changed and replaced with a new
workflow definition containing the changed process structure; a new workflow
instance is created according to the new workflow definition and is restarted
after populating it with the stored process state.

The integration of AHEAD and COSA is limited with respect to the fol-
lowing aspects. First, the full dynamic behavior of task nets is not mapped
to COSA; thus, the mapping is only implemented for a restricted part of the
AHEAD model. Second, in order for the change propagation strategy to work,
the old and new workflow definition of a changed workflow cannot differ much;
only very limited structural changes can be accommodated to assure that the
process state can be restored in the new workflow instance.

An Integrated Management Suite for Development Processes

We now describe preliminary work following integration approach IA2, which
has been done during a half-year student project. In this project we have
combined the AHEAD system with various commercial tools in order to form
an integrated management suite. In this case, AHEAD does not maintain the
complete management configuration. Parts of the management configuration
are distributed across the commercial tools. For example, some details about
documents are not contained in the product submodel of AHEAD but are
rather stored in commercial product management systems.

The integrated management system provides the following synergistic func-
tionality for its users reaching beyond the functionalities of the systems in-
volved: (Fig. 7.23):

• The AHEAD system offers a management and a work environment to
project managers and designers, respectively. Additionally, AHEAD pro-

716 M. Heller et al.

Complete
management
configuration

manager

MS Project web-client

designer

management
environment

CVS-
repository

AHEAD
core

e-mail-client

e-mail
module

MS Outlook
Server

work
environment

CVSDocumentum
wrappers

document management
module

Documentum-
repository

Fig. 7.23. Integrated management solution with AHEAD and commercial manage-
ment systems

vides a web-based client for designers to communicate with AHEAD us-
ing a conventional web browser. All user interfaces access the AHEAD
core which in turn stores the whole management configuration in its own
database.

• On the project management level, the project manager can additionally use
the commercial tool MS Project for the management of the design process
from a project management perspective. For example, the overall task net
can be imported within MS Project as a GANTT- or PERT-chart. The
project manager can then use the project management functionality to cal-
culate optimal start dates or end dates for the tasks using the critical path
method, assigning resources to tasks etc. Finally, the results are exported
back to the AHEAD system where the current state is updated.

• An e-mail based work environment is offered to project participants who
prefer just to receive and to reply to work assignments via a common e-
mail-client. An e-mail module of AHEAD realizes the e-mail communica-
tion, which is tailored to the commercial e-mail-client MS Outlook. Thus,
work assignments are displayed as Outlook activities ; necessary documents
can also be received from and sent to AHEAD using e-mails. The state of
the assigned tasks can be modified, too. An advanced voting procedure is
also offered for the distribution of work within groups of participants.

• On the product management level, a central product management module
is available in AHEAD which uses wrappers to different product manage-
ment systems to maintain all documents employed throughout the whole

Dynamic Process Management Based upon Existing Systems 717

Comos wrapper

Comos
system

Comos database

management
core

consistency
control

engineering user
interface

adaptation user
interface

external project
management

system
management user

interface
Aufgabennetz

Reaction

Rückgriff

Fliessbild
erarbeiten

Laborver-
such

Start:
28.10.05

Start:
12.11.05

Start:
17.12.05

Reaktor-
simulation

,

Agenda
Aufgabe Pla ntermineNr Sta tus

1 B egonnenR eakt i ons - D esi gn 13 . 01 . - 01 . 08 .

2 B egonnenS i m ul at i on C S TR (# 44)

Look -ahead -Agenda
5 M ögl i chS i m ul at i on C S TR (# 44)

6 M ögl i chS i m ul at i on C S TR (# 44)

Is tte rmine
13 . 01 . - ?

13 .01 . – 15 .01 . 13 . 01 . – 15 . 01 .

13 . 03 . - 01 . 07 .

20 .03 . – 01 . 07 .

- - -

- - -

Fortsc hritt
30 %

10 %

0 %

0 %

AGENDA

Agenda
Aufgabe Pla ntermineNr Sta tus

1 B egonnenR eakt i ons - D esi gn 13 . 01 . - 01 . 08 .

2 B egonnenS i m ul at i on C S TR (# 44)

Look -ahead -Agenda
5 M ögl i chS i m ul at i on C S TR (# 44)

6 M ögl i chS i m ul at i on C S TR (# 44)

Is tte rmine
13 . 01 . - ?

13 .01 . – 15 .01 . 13 . 01 . – 15 . 01 .

13 . 03 . - 01 . 07 .

20 .03 . – 01 . 07 .

- - -

- - -

Fortsc hritt
30 %

10 %

0 %

0 %

Aufgabenagenda

Comos programming interface

process
engine

Typdefinitionen

Typ
„Fliessbild-
erarbeitung“

Typ
„Laborver-

such“

Typ
„Simulation“

activitiesproducts resources
objects

technical data management data

workflow
engine

progress
measurement

Fig. 7.24. Architecture of the planned management system for Comos PT

design process. This module is responsible for the mapping of logical doc-
uments used in the submodel for products in AHEAD to physical docu-
ments stored and maintained in the repositories of the coupled product
management systems.

7.7.4 Management Tools for Chemical Design Processes

The following subsection gives a description of an integrated process man-
agement system which is based on an existing product management system
according to approach IA2 (cf. Fig. 7.22). Its realization will be performed in
cooperation with innotec, a partner in the transfer project T6.

Overview

Starting from the case study of the previous subsection, a process management
system will be built to extend Comos PT, one of the tools for Computer Aided
Engineering (CAE) and Process Lifecycle Management (PLM) supplied by

718 M. Heller et al.

innotec to customers in the process industries (cf. subsection 7.6.3 for a short
introduction).

For the time being, Comos PT strongly focuses on the product part of a
design process. The tool is based on an object-oriented database, which al-
lows to store all relevant parts of a chemical plant. All stored objects can be
enriched with attributes and relationships between each other. Furthermore,
Comos PT provides dedicated views on these objects (e.g. flow sheets) which
show the two-dimensional layout of a (part of a) chemical plant. The support
for the coordination of engineers is currently restricted to administrative at-
tributes of objects, which represent the progress of a certain product according
to a certain phase in the design process.

The planned process management system extends Comos PT by func-
tionality for holistic management of chemical engineering design processes. It
facilitates the coordination of engineers on a medium-grained level by intro-
ducing integrated submodels which cover not only the product structure but
also the task and resource structure of the design process. Figure 7.24 depicts
the architecture of this process management system.

The existing Comos PT system is located on the lowest layer. The Co-
mos database stores all technical data within objects. Furthermore, it serves
as the central storage for management data representing products, task, and
resources as well as their (overlapping) relationships. Managerial data are
strongly related to the technical data but abstract from technical details ac-
cording to approach IA2 (cf. Fig. 7.22). Access to the Comos PT database
can only be realized via the available Comos programming interface.

On the middle layer, the management core, an additional Comos wrap-
per provides an appropriate abstraction for accessing integrated management
data within the Comos PT database. Changes in the integrated management
data, due to normal progress or occurrence of dynamics, are handled by the
process engine. Before being committed, changes have to pass a consistency
control, which comprises checks for inconsistencies regarding the structure of
the task net, the execution states of the tasks, as well as for the violation
of time constraints. The progress63 measurement component is used to mea-
sure the progress of individual tasks and ultimately the progress of the overall
design process. Besides the management data, the progress measurement com-
ponent also has to access the technical data stored in the Comos database,
as the internal structure of certain flow diagrams can be used to estimate the
effort of related tasks in the design process. Together with innotec GmbH, a
workflow engine has been developed based on Microsoft’s Windows Workflow
Foundation technology. The workflow engine will be used to automatically
execute parts of the overall design process. Hence, the workflow engine will
constitute a part of the management core and will have to be seamlessly in-
tegrated with the process engine. Workflows will be started by the process
engine, their progress will be measured by the progress measurement com-

63 Note, that this is not related to the PROGRES system mentioned before.

Dynamic Process Management Based upon Existing Systems 719

ponent, and their compliance to defined time constraints will be checked by
means of the consistency control.

On the topmost layer people can access the integrated management data
via distinct graphical user interfaces. Engineers are notified of assigned tasks
by a dedicated engineering user interface. Chief Engineers use the manage-
ment user interface to fulfill managerial operations. This interface offers a
complete view of the overall management data and provides functions for
changing these data in case of dynamics.

Comos PT is mainly used in chemical engineering but can also be used
in other engineering domains. So the planned process management system is
especially designed to be adaptable to different domains and to be integrated
with other tools of innotec. Domain experts adapt the process management
system to a certain domain by using the adaptation user interface. This in-
terface allows to declare new types of products, resources, activities, and to
predefine best-practices as activity patterns. All user interfaces are integrated
into the Comos user interface, so that the users do not have to switch between
separate applications during their work.

Furthermore, external project management systems will be coupled with
the process management system. For example, MS Project offers additional
views of the design process like Gantt-charts with marked critical paths.

Problems and Solutions

A-posteriori Integration

The process management system AHEAD has been implemented as a re-
search prototype in an a-priori manner. The effort for AHEAD’s implemen-
tation was reduced by leveraging the high-level graph-based language and
compiler PROGRES, the runtime environment UPGRADE, and the graph-
oriented database GRAS. PROGRES, UPGRADE and GRAS are themselves
research prototypes. Hence, this implementation is not suitable for being used
in an industrial environment.

Instead of porting the current AHEAD implementation directly into the
Comos PT environment, AHEAD is reimplemented as an extension of Comos
PT with restriction to those programming languages and tools that are used
within Comos PT. Transferring AHEAD in this way poses two interesting
challenges :

1. AHEAD’s core is specified by a PROGRES specification. This specifica-
tion comprises integrated submodels for managing products, resources,
activities, and definitions of valid operations on the integrated manage-
ment data as graph transformations. This graph-oriented specification has
to be mapped to a common programming language such as C++, C# or
Visual Basic. The resulting code must fulfill two requirements : (a) It has to
provide an efficient implementation of the specified tests and transforma-
tions, which are necessary to check the management data for consistency

720 M. Heller et al.

and to perform complex modifications to this data, respectively. (b) The
code must be readable and extensible for developers at innotec. This re-
quirement does not apply for the compiled PROGRES specification that
constitutes the AHEAD system.

2. At runtime, AHEAD reads and stores the current managerial configu-
ration via the database system GRAS, which provides a graph-oriented
access to the stored data. The process management system has to read
and store management data to the object-oriented database of Comos PT
by means of the Comos programming interface. The Comos programming
interface is restricted, because it just provides a technical view of the
stored objects. Therefore, a newly implemented Comos wrapper has to
comply with two requirements : (a) It has to bridge between an object-
and a graph-oriented view onto the management data. (b) The Comos
wrapper has to provide an extended view onto the stored data, which ad-
ditionally covers management data (resources, activities, and overlapping
relationships).

Time Constraints, Expenses, and Staffing

Time constraints, expenses, and staffing do not play a predominant role in
the current state of the AHEAD system. Nevertheless, they have to be con-
sidered in process management. Widespread project management systems like
Microsoft Project offer functions like the computation of a critical path in
an activity network, workload balancing for the staff or calculation of the ag-
gregated expenses for (parts of) a project. Besides these available functions,
project management systems offer additional views on the current project
state, like the activity oriented Gantt-chart or diverse resource-oriented views.

In order to utilize this existing functionality, the process management sys-
tem for Comos PT can be coupled with such existing systems. This can be
done similar to the coupling of the AHEAD system with MS Project described
in Subsect. 7.7.3.

Although common project management systems provide some useful func-
tions for process management, they cannot replace the planned process man-
agement system of Comos PT since they lack the handling of dynamics and
integrated management data. In particular, project management systems are
unable to appropriately cope with unexpected iterations in the current projects
or with evolving activity structures. Hence, these systems serve only for ex-
ecuting the described computations or rendering the views mentioned above
but are not used as the main environment for process management.

Project management tools offer possibilities to define time constraints like
deadlines for tasks. But most of these tools do not provide any means to de-
tect violations of constraints and they do not enforce actions to bring the
project back on schedule. Such issues will have to be addressed by our de-
velopments. The planned management system will permanently calculate the
current execution state of the design process and will compare it with the

Dynamic Process Management Based upon Existing Systems 721

planned schedule of the process. In this way, violations of time constraints can
be detected. Such violations can be compensated by dynamic changes of the
project schedule at process runtime.

Progress Measurement

As mentioned before, monitoring the current execution state of a design pro-
cess is an important feature of the planned management system. This includes
the measurement of the progress of tasks and workflows. The integration of
the management data with the technical data stored in the Comos database
offers the opportunity to estimate the required effort and the progress of tasks
based on the internal structure of the created documents.

The flow diagrams created during the design process determine to a cer-
tain degree the future tasks. In Comos PT, the internal structure of these
documents is represented by objects. This data can be used for the calcula-
tion of the progress of certain tasks. Consequently, the progress is not solely
calculated based on estimates of the engineers assigned to the tasks.

The calculated progress measures of elementary tasks have to be aggregated
and propagated upwards in the task hierarchy. In this way, the progress of
complex tasks, of project phases and ultimately of the whole project can be
estimated. The progress measures help the project manager to decide whether
the project is on schedule or whether deadlines will be missed.

Integration with the Workflow Engine

The workflow engine, developed in cooperation with innotec, is already used
to run and monitor workflows, like the revision of documents or the handover
of the final documentation of a chemical plant to the client. The provided
workflow management functionality should be used by the process manage-
ment system, so that parts of the design process can be executed automatically
by the workflow engine.

The integration of the workflow engine into the management system core
has to account for several issues such as the mapping of execution states of
workflows and other subprocesses, the enforcement of time constraints for a
workflow, and the measurement of its progress. Workflows can be started au-
tomatically, when the user performs certain actions in Comos. These workflow
instances have to be integrated into the overall design process, i.e. their posi-
tion in the task hierarchy has to be defined, and their relations to other tasks
of the process have to be established.

Like all tasks of the design process, workflows have to be executed accord-
ing to the project time schedule. When workflows are executed according to
an overall schedule, it is possible to detect work-overload of resources, who
participate in multiple workflow instances. The concepts for progress measure-
ment of the design process have to be adapted and applied to the management
of workflows. The resolution of the aforementioned issues leads to a seamless
integration of the given workflow engine with the new process management
system.

722 M. Heller et al.

Impact

The implementation of the process management system for Comos PT is inter-
esting from both, the economic and the academic point of view. The leading
position of Comos PT is further improved by a process management system,
which allows for the holistic management of the overall design process of a
chemical plant.

From the research perspective the transfer of the AHEAD system into an
industrial environment is challenging w.r.t. several aspects: The process man-
agement system has to be realized on top of an existing software-system that
has not been designed for process management. In contrast to the AHEAD
system, graph-based prototyping tools PROGRES, UPGRADE and GRAS
cannot be used for its implementation. Instead, the given specification of
AHEAD has to be mapped methodically to common programming languages
and the graph-based storage of management data must be implemented using
an object-oriented database.

Dynamics in design processes have to be addressed with particular em-
phasis on evolution and iterations of activities, but also on deadlines and
expenses.

7.7.5 Dynamic Workflow Management for Business Processes

The following subsubsection describes the realization of a workflow manage-
ment system which provides support for dynamic business processes. Following
again approach IA2 (cf. Fig. 7.22), this system is based on top of an existing
workflow management system, which only supports static business processes.
This objective constitutes the second part of the transfer project T6 and is
performed in collaboration with the IT service provider AMB Generali Infor-
matik Services GmbH.

Overview

Although AHEAD has been designed within the subproject B4 to capture a
multitude of processes, it has always been focusing the management of de-
sign processes, while business processes have not been considered in the past.
In cooperation with AMB-Informatik, research results of the B4 subproject
are transferred into the domain of business processes. AMB-Informatik is a
full-service information technology provider for the insurance group AMB-
Generali.

Figure 7.25 shows the coarse grained architecture of the planned system.
The architecture is divided into three parts, which are described in the fol-
lowing.

Dynamic Process Management Based upon Existing Systems 723

additional
support
tools

existing
system

s
W
ebSphere

B
PM

S

dynam
ics

layer

w
orkflow

definition
editor

W
ebS

phere
Integration

D
eveloper(W

ID
)

W
S-B

PEL
transform

er

w
orkflow

runtim
e
environm

ent
W
ebS

phere
P
rocess

S
erver(W

P
S
)

participant
user
interface

build-tim
e

runtim
e

dynam
ics

com
ponent

instance
1
ofdefinition
A

instance
1
ofdefinition
A

augm
ented

instance
instance

1
ofdefinition

A

instance
1

ofdefinition
A

augm
ented

instance

view
s
on
dynam

ic
w
orkflow

s
change
operations

callfrom
additional
activity

dynam
ic

creation
of

w
orkflow
instances

conform
ance

checker

conform
ance

rules

uses

conform
ance

rules
editor

lookup
of

deployed
w
orkflow

definitions

com
pleted

w
orkflow

s
(history)

im
proved

w
orkflow

definition
X
(v2)

w
orkflow

history
analyzer

controlflow

data
flow

w
fm
s
w
rapper

check
plausi
bility

eval.
result

w
orkflow

definition
brow

ser
currentw

orkflow
instance

expert
report

x1
noop

|x2
Y
a.1

|x3
noop

y1
noop

|y2
noop

original
w
orkflow

definition
X

capture
notificat.

grantor
denial

x1
x2

x3

capture
notificat.

grantor
denial

expert
report

expert
report

y1
y2 Y
a.1

X
a.1

X
a.1

Y
a.1

capture
notificat.

grantor
denial

augm
ented

w
orkflow

definition
X
a

capture
notificat.

grantor
denial

x1
x2

x3

Fig. 7.25. Architecture of the AMB-Informatik workflow management system

724 M. Heller et al.

Existing Systems

Currently, AMB-Informatik uses IBM’s product family WebSphere BPMS in
order to support their business processes. WebSphere BPMS [1034] strictly
separates build-time from runtime of a workflow. Hence, dynamic business
processes with undeterminable activity sequences cannot be supported appro-
priately. In general, these processes are likely to become dynamic if different
people are involved, especially outside of the insurance company.

IBM WebSphere Integration Developer (WID) and IBM WebSphere Pro-
cess Server (WPS) are the existing systems which are relevant for the transfer
project. WID can be used at build-time to define workflows consisting of activ-
ities that are executed automatically or by human interaction. The workflow
definitions are written in the de facto standard “Web Services Business Pro-
cess Execution Language” (WS-BPEL) [887]. At runtime these workflows can
be executed within WPS, but can neither be altered within their predefined
sequences of activities nor extended by additional activities.

Dynamics Layer

The existing systems are extended by a dynamics layer to facilitate dynamic
changes to workflows in the first place [487]. Roughly speaking, the compo-
nents of this layer simulate dynamic workflows while the underlying Web-
Sphere BPMS still supports only static workflows.

The distinction between build-time and runtime can also be found in the
dynamics layer. At build-time, there is a WS-BPEL transformer which adds
additional WS-BPEL activities, to an original workflow definition X resulting
in an augmented workflow definition Xa. In Fig. 7.25 activities x1, x2, and x3
represent such additional activities.

At runtime, execution of an additional activity triggers a call to the dy-
namics component. This component stores workflow instances’ specific infor-
mation about how to handle a call from an additional activity. An additional
activity can invoke a newly instantiated workflow instance depending on the
respective information stored in the dynamics component. For example, in
Fig. 7.25 additional activity x2 invokes workflow instance Ya.1

Since the participant user interface of WPS displays only small parts of
the overall workflow in table form, it is inappropriate for supporting dynamic
workflow changes. Thus, a new participant user interface has to be imple-
mented from scratch which displays the overall structure of a workflow in-
stances in a graphical manner. Additionally, workflow instances are displayed
in a condensed manner, i.e., the additional activities remain hidden and dy-
namically called workflow instances are displayed inline within the calling
workflow instances. Furthermore, predefined workflow definition fragments can
be selected and inserted by a participant via a workflow definition browser. Al-
together, the workflow participant experiences a dynamic workflow although
the technical basis WPS remains static.

Dynamic Process Management Based upon Existing Systems 725

Additional Support Tools

Before a dynamic change of a running workflow instance takes effect, the
modification is checked against certain conformance rules by the conformance
checker tool. If a check fails, an error message is displayed in the partici-
pant user interface, where the change request originated from. Otherwise,
the change of the workflow instance takes effect. The conformance rules that
are used by the conformance checker originate from a build-time tool named
conformance rules editor. A workflow modeler can use this editor to define
rules concerning dynamic workflow changes like the non-deletability of cer-
tain (mandatory) workflow activities.

In order to benefit from the implicit knowledge expressed by dynamic work-
flow changes, completed workflow instances can be analyzed by a workflow his-
tory analyzer with regard to dynamic changes. A finished workflow instance
can be imported into the workflow history analyzer and compared with its
original workflow definition. Then, it is up to a workflow modeler to decide
whether a deviation of the instance from its workflow definition is generic, and
should be part of a improved workflow definition, or special to the respective
instance, and should therefore be kept out of the definition.

Problems and Solutions

Support for Dynamic Changes at Runtime

In contrast to design processes, business processes are more repetitive and con-
tain more static parts in their overall activity structure. Therefore, major parts
of business processes can be predefined. Hence, typical dynamic situations are
not only evolution of activity structures in a running workflow instance but
also deviations from prescribed activity structures.

Business processes are likely to be constrained by laws or company-specific
rules. These rules may demand the execution of certain activities, which there-
fore must not be removed from a workflow instance.

The planned workflow management system for AMB-Informatik meets
both issues. First, it provides support for the definition at build-time of work-
flows and conformance rules via the conformance rules editor. Second, laws
or domain specific regulations are enforced at runtime by checking dynamic
changes of a workflow instance by a conformance checker before these changes
actually take effect in the workflow instance.

Process Improvement

As described above, the workflow management system for AMB-Informatik
offers functionality for predefining workflows at build-time and for changing
workflow instances at runtime. There are dynamic changes of two types : (1)
A dynamic change in a workflow instance might occur as a deviation from
the workflow definition due to a special situation in a business case that is

726 M. Heller et al.

associated to the workflow instance. (2) A dynamic change in a workflow
instance might take place because of an insufficient workflow definition.

In the latter case, its is probable that the dynamic change has to be done
over and over again for each workflow instance of the corresponding workflow
definition. Since completed workflows can be imported into the workflow his-
tory analyzer and compared to the original workflow definition, a workflow
modeler is able to recognize recurring deviations from the workflow definition
and can adopt these deviations by adding them to the definition. In this way,
business processes can be significantly improved.

A-posteriori Integration

Like the process management system for Comos PT, the workflow manage-
ment system for AMB-Informatik resides on top of an existing system. Hence,
it has to be realized in an a-posteriori manner. In contrast to Comos PT, which
focuses on product-related aspects of design processes, WebSphere BPMS
mainly covers activity-related parts of a business process. WebSphere BPMS
is therefore used as a building block for the new workflow management system
for AMB-Informatik. It should be possible to substitute this block.

Impact

The realization of the workflow management system is beneficial both in eco-
nomic and research respect. The workflow management system empowers
AMB-Informatik to support dynamic business processes, which WebSphere
BPMS does not provide itself. The workflow management system does not
replace WebSphere BPMS but extends it such that subsequent integration
problems can be avoided.

From the research perspective, new interesting question emerge by trans-
ferring existing concepts for design processes to the domain of business pro-
cesses. The consideration of dynamics in processes will shift from continuously
evolving design processes to more repetitive but nonetheless dynamic business
processes.

7.8 Service-Oriented Architectures and Application
Integration

Th. Haase and M. Nagl

Abstract. Service-oriented architectures define an architectural style for the con-
struction of a heterogeneous application landscape. By abstracting services, business
processes are decoupled from the underlying applications. This section describes how
the results of the IMPROVE subproject I3, related to the model-driven develop-
ment process for wrapper construction, are transferred and extended to the area of
business process applications. We present an approach which yields a prototype to
formally specify service descriptions and service compositions. This prototype makes
it possible to evaluate and explore service-oriented architecture concepts.

7.8.1 Introduction

The role of the subproject I3 of IMPROVE, as described in Sect. 5.7, was
to coordinate the software development process of the integrated engineering
design environment (cf. Fig. 5.55 on p. 558). Especially, it dealt with the
development of a general framework for a-posteriori integration of existing
tools.

Integration was realized on the architectural level. An architecture for
the integrated environment was developed on the level of subsystems, where
general components were identified. Thereby, a coordinated development and
reuse on the product level were enforced. Additionally, the subproject took
care that project-specific components were embedded correctly into the overall
environment.

The architecture of the overall environment describes the “glue” necessary
for performing integration. It defines, for example, what kinds of interfaces the
tools to be integrated offer, how interfaces are wrapped in order to homogenize
them, how tools and wrappers are distributed, how interfaces are accessed via
certain middleware techniques, and so on.

Furthermore, to reduce the development effort for building required wrap-
pers, the subproject aimed at specifying wrappers using visual models. A cor-
responding modeling formalism was defined. Based on such models, executable
code for the wrappers is generated and embedded into the general framework.

This section describes how these results are transferred to the area of
business application integration in order to apply the approach in an industrial
environment. Based on the idea of service-oriented architectures, the modeling
formalism to specify wrappers is extended to model an integrated business
application as a loosely coupled set of interacting services.

This extension is not only investigated on the conceptual level but also cov-
ers a prototype implementation for the corresponding modeling environment
and its code generator. In this way, a test environment for the evaluation and
exploration of service-oriented concepts in the context of integrated business
applications is built.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 727–740, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

728 Th. Haase and M. Nagl

7.8.2 Basic Notions

In this subsection, the problem of a-posteriori application integration in the
area of business process support is investigated. Current solutions, represent-
ing the state-of-the-art in industry, and their deficits are discussed first. Then,
key concepts of the service-oriented paradigm are introduced and related to
the problem of a-posteriori integration. Expected advantages of the service-
oriented approach are finally discussed.

Application Integration

In Sect. 5.7 we argued that current tool support in chemical engineering does
not consider the overall design process. This situation is due to the fact that
tools are provided by different vendors, that they are based on heterogeneous
system platforms, proprietary document formats, and different conceptual
models of the application domain. The same holds true for the area of busi-
ness process support [31, 45, 210] as IT landscapes of companies are typically
characterized by a portfolio of heterogeneous business application systems.64

One approach for the seamless support of the entire supply chain of a
company are so-called ERP systems (enterprise resource planning) [811]. The
basic idea of an ERP system is that of a centralized database, which stores
company-wide all relevant data concerning the business processes. This ap-
proach fails, because a monolithic ERP system cannot fulfill all conceivable
requirements in general [817]. Nowadays, a typical company uses on average 50
different, mission-critical applications for the support of its business processes,
as empirical studies have shown [830]. Furthermore, for economic reasons it is
not feasible to replace these legacy systems by new applications [973].

As the need for integration emerges in the business domain, so-called EAI
systems (enterprise application integration)65 [618] were introduced. An EAI
system realizes an abstract communication layer for the mediation of data be-
tween heterogeneous applications. Typically, this communication layer aggre-
gates several middleware technologies, e.g. COM/DCOM [846, 847], CORBA
[877], Enterprise JavaBeans (EJB) [504], JavaRMI, or Web Services [500], and
enables the automatic conversion of the different data formats between them.
For EAI systems the same problems as already mentioned in Sect. 5.7 hold:
An EAI solution mainly focuses on technical issues, e.g. on a homogenous
communication layer above existing middlewares. In contrast to IMPROVE
(cf. Sects. 5.7 and 3.2) semantical issues, like data homogenization or data
consistency, are not addressed.
64 In contrast to the notion of a-posteriori integration realized externally by the

means of wrappers, as presented in this section, former projects of our department
[81–83, 85–87, 89] deal with internal reengineering of business applications in
order to prepare them for integration.

65 Another term in this context are B2B systems (business to business application
integration) [820]. While EAI focuses on application integration within a company,
B2B emphasizes the inter-organizational integration between different companies.

Service-Oriented Architectures and Application Integration 729

The Service-Oriented Paradigm

The vision of the service-oriented paradigm is to decouple the domain-specific
aspects of a business process from its underlying technical realization done
by a set of business applications.66 Decoupling is achieved by a service layer
consisting of a set of interacting services.

service compositionsservices
(reusable functional components)

legacy systems
reengineering or wrapping service composing

(2
) f

in
d

service
requestor

service
provider

(3) interact

(1
) p

ub
lis

h

service repository

Service
description
Service

description
service

description

service development

service deployment

Fig. 7.26. Service deployment and development

Business Perspective

The service layer separates different views on an IT landscape [904]: the busi-
ness perspective, i.e. the outside view on a service is that of an atomic unit,
well-defined in the terms of a business area, realizing some kind of function-
ality, and usable within a business process.

In a typical service-based scenario [896] (top of Fig. 7.26) the service
provider, offering some kind of service, defines a service description of the
service and (1) publishes it to a service repository. The service requestor,
searching for a service, uses the service repository (2) to retrieve the service
description. This enables the service requestor (3) to bind and invoke the
service.67

66 Strictly speaking, the concept of a service-oriented architecture is nothing else
but the application of well-known and established software engineering principles
like separation of concerns or information hiding in the area of IT landscape
architectures.

67 Please note that the terms “service requestor” and “service provider” designate
roles, which can represent the same company or different departments within the
same company.

730 Th. Haase and M. Nagl

Thus, from the business point of view, a service represents a functional
module [331] offering an abstract, technically independent interface to ac-
cess the underlying application systems of the service provider. Services are
reusable within different business processes and constitute the building blocks
for defining business processes. According to modified requirements, business
processes can be adapted by integrating new services into the business work-
flow or by substituting services. Therefore, services have to meet certain prop-
erties [933]: they have to be (i) self-contained, (ii) coarse-grained, (iii) stateless,
(iv) transactional, and (v) potentially asynchronous.

Technical Perspective

The technical perspective or inside view on a service refers to its realization
and development by the service provider. This level (bottom of Fig. 7.26)
deals with the preparation of existing system functionality in order to embed
legacy systems into a service-oriented landscape.

Integrating legacy systems can either be done by reengineering or by wrap-
ping. The latter facilitates a transparent integration of legacy systems into a
service-oriented environment. Nevertheless, both alternatives aim to realize a
functional interface for given systems in the sense of services, which fulfills the
required properties stated above.

Furthermore, services can be composed by the service developer to im-
plement a new value-added service. The composed service aggregates several
basic or composed services, possibly realized by different application systems.
From the outside view, i.e. for the service requestor, there is no difference
between a basic or a composed service.

Another important issue in this context is the aspect of data homogeniza-
tion. When, for example, several services, realized by different systems, are
composed, a common data model is needed. Furthermore, enriching a ser-
vice description with semantic issues from the business perspective,68 enables
a service requestor to retrieve and to bind services dynamically at business
process runtime. Such a semantical service description always demands for
a common ontology of the specific business domain. Following this idea, the
data structures of the legacy systems have to be transformed according to this
ontology. Therefore, reengineering or wrapping of legacy systems to prepare
them for service-orientation also involves the task of data homogenization.

Finally, the service-oriented paradigm is often associated with Web Ser-
vices as the realizing technical infrastructure. This is not necessary [582], since
other component technologies [991] like COM/DCOM [846, 847], CORBA
[877], or Enterprise JavaBeans [504] are also applicable, as they implement the
necessary concepts like (i) implementation transparency, (ii) location trans-
parency, (iii) self-containment, and (iv) an explicit interface independent from
its implementation.
68 A semantical service description covers functional as well as non-functional as-

pects.

Service-Oriented Architectures and Application Integration 731

7.8.3 A Service-Oriented Integrated Business Application
Architecture

This subsection sketches an approach for an integrated business application
architecture. The architecture is built from a set of existing legacy systems
and follows a service-oriented architectural style. We show how the model-
driven wrapper development approach (cf. Subsect. 5.7.4) can be applied to
the problem of designing such an architecture.

The ideas presented in the following are the results of an ongoing coopera-
tion with an industrial partner, namely the AMB Generali Informatik Services
GmbH (abbr. AMB-Informatik). AMB-Informatik is the IT service provider
for a major affiliated group of insurance companies in Germany.

The need for restructuring and integrating its IT landscape emerges for
AMB-Informatik for two reasons: (1) AMB-Informatik aims to substitute
client terminal software for accessing legacy mainframe applications by a web-
based solution. This requires on the one hand to link existing systems with a
new technical infrastructure and on the other hand to reengineer the available
user interfaces in order to unify them. (2) The IT landscape of AMB-Informa-
tik grew historically. The incorporation of companies into the affiliated group
and the corresponding takeover of their IT systems led to redundancies be-
tween the systems, both functional as well as with respect to the databases of
the systems.

Architectural Sketch

The target architecture aimed at is illustrated in Fig. 7.27. Each layer depends
on the one below and realizes the prerequisites for the layer above:

• Layer 1 : Operational (legacy) systems layer. The basic layer consists of ex-
isting custom built business applications. These applications, mainly main-
frame systems implemented in COBOL, realize the business functionality.
To enable distributed and parallel access to applications, a transaction
monitor ensures fault-tolerance, consistency, recovery, and performance
balancing.

• Layer 2 : Technical adapters layer. This layer is responsible to embed legacy
systems into the new technical infrastructure. This is done by technical
adapters. These components serve as proxies adapting the existing COBOL
interfaces to the required new syntax. No kind of semantical homogeniza-
tion is done on this level. A typical task of an adapter is, for example,
the conversion of data types. Furthermore, adapters encapsulate physical
distribution and the corresponding communication protocols.

• Layer 3 : Homogenized components layer. In general, data structures and
functionality of different existing applications are not interoperable. Fur-
thermore, not all systems can be restructured internally, or internal reengi-
neering is not feasible for economic reasons. Therefore, layer 3 represents

732 Th. Haase and M. Nagl

(4) Services (Business Logic)

(2) Technical Adapters (Proxy Objects)

(1) Legacy Systems

 Transaction Monitor

(3) Homogenized Components (Business Objects)

(5) Business Processes

re
vr

e S
 n

oit
ac

il
pp

A
(6) Presentation

HTML-Pages JAVA-Servlets

Fig. 7.27. Levels of a service-oriented architecture in the context of a-posteriori
business application integration

a homogenization layer. It consists of business objects representing the
concepts of the business domain. Their data structures and functions are
mapped onto those of the existing applications via technical adapters. With
respect to these aspects, a business object is nothing else but a wrapper.

• Layer 4 : Services layer. The central part of the target architecture is the
services layer. Services are built up from (i) an elementary function of a
business object, (ii) a composition of elementary functions of one or more
business objects, or (iii) a composition of elementary functions and/or
other services. Therefore, the service defines the control structure for exe-
cution of the composition.

Service-Oriented Architectures and Application Integration 733

The remaining two layers are out of scope for this section. For completeness,
they are shortly mentioned:

• Layer 5 : Business processes layer. This layer is responsible for the choreog-
raphy of business processes (see also Sect. 7.7). Within a business process,
services are usable as atomic units.

• Layer 6 : Presentation and access layer. Finally, user interfaces and the
web-based access are realized by this layer.

Application of Available Results

Figure 7.28 relates the layers of the architecture in Fig. 7.27 to the differ-
ent phases of the extended model-driven wrapper development process [138].
While phases (1)–(5) (see Fig. 7.28 left) are already supported by correspond-
ing tools we have developed (cf. Subsect. 5.7.4), phases (6) to (8) are new
due to specifying service descriptions and service compositions and generat-
ing code for services.

In the following, the relation between the different phases and the layers
of the intended architecture will shortly be explained.

We expect technical adapters equipped with a COM interface to exist.
This enables to parse the interfaces of legacy systems by the existing parser.
Furthermore, a model of the COM component according to our modeling
formalism can be generated (cf. technical wrapper in Subsect. 5.7.4). In this
way, layer 2 is covered by phase 1 of the development process.

Furthermore, the model derived from parsing is enriched with information
received either from exploring (cf. Subsect. 5.7.4) COM components interac-
tively or, alternatively, from extensions specified manually (phase 2). Exam-
ples for further specifications in this phase are the renaming of parameter
identifiers or the definition of simple function call sequences without any con-
trol structures.

Afterwards, the homogenized business objects (layer 3) are specified based
upon our modeling formalism. Specification of business objects consists of two
modeling phases: (i) Definition of the desired static data structures (phase 3).
This is done by an object-oriented class diagram. (ii) Definition of mappings
(phase 4) to the data models realized by the adapters (cf. homogenizing wrap-
per in Subsect. 5.7.4). Based on both specifications, the executable program
code for business objects can be generated (phase 5).

Finally, the service layer is modeled (phase 6 and 7 related to layer 4)
and, again, the program code is generated (phase 8). Specifications for service
descriptions and service compositions and their transformation into a pro-
gramming language are not yet covered by our modeling formalism. They are
one of the main scientific extensions of the approach, which will be introduced
in the next subsection.

734 Th. Haase and M. Nagl

seific eps

seificeps

edo
C

ecivreS
be

W

)8(
gnitarene

G

edo
C

A
V

AJ

)5(
gnitarene

G

gnitsix
E

-retni
secaf

ci
many

D
roivaheb

desab no
desab
no

no
sdneped

no
sdneped

roivahe
B

e
mitnu

R

leveL
ci

many
D

leveL
citatS

)1(
gnisra

P

margaid
ssal

C
margaid

ecneuqe
S

)2(
gnirolpx

E
evitcaretnI

-ego
mo

H
dezin
atad

ledo
m

margaid
ssal

C

)3(
gniyficep

S

gnippa
M

-retni
ot

secaf

margaid
noitaroballo

C

)4(
gniyficep

S

de sab no
desab
no

no
sdn eped

ecivre
S

-p ir csed
noit

margaid
ssal

C

)6(
g niyficep

S

ecivre
S

-is op
mo c

n oit

margaid
noi taro bal lo

C

)7(
gniyf icep

S

(
secivre

S)4(
cigoL

ssenisu
B

)

(
sretpadAlacinhceT)2(

stcejb
O

yxor
P

)

(
stnenop

mo
C

dezinego
mo

H)3(
stcejb

O
ssenisu

B
)

sessecor
P

ssenisu
B)5(

Application Server

noitatneser
P)6(

sega
P-L

MT
H

stelvreS-
A

VAJ

seificeps

Fig. 7.28. Model-driven wrapper development process related to the layers of a
service-oriented architecture

Service-Oriented Architectures and Application Integration 735

7.8.4 Extensions of Available Results

As stated in the previous subsection, the main goal of our activities is to extend
our modeling formalism and its associated tools for the model-based specifica-
tion of a service-oriented architecture concerning legacy systems. This includes
generation of executable program code based upon such specifications. After-
wards, the program code is embedded into a test environment for evaluation
and exploration of service-oriented concepts.

The result of these activities is not a “ready-to-use” industrial tool, but
a suitable prototype allowing an evaluation and exploration of an integrated
business administration system. Nevertheless, the resulting prototype has to
meet certain requirements, mainly technical ones that enable its usage by our
industrial partner.

In the following, several necessary extensions of the original approach and,
therefore, some challenging problems are presented.

Modifications Regarding Technical Infrastructure

Until now, our approach to model-driven wrapper development deals with
tools and applications offering COM interfaces. Conceptually, COM is a com-
ponent technology following the object-oriented paradigm. COM components
represent subsystems, i.e. a set of classes including attribute and method def-
initions, relationships between classes, and a set of interfaces to access the
subsystem. COM offers an external description of application interfaces by
means of a type library. Such interface descriptions of components included
in a type library serve as input for the analyzer to comprehend a component
and its various parts syntactically.

As already demanded in the previous subsection, the existence of a COM
interface for accessing legacy systems is necessary in order to apply our wrap-
per construction methodology as well as the corresponding tools. Therefore,
the existing application systems, implemented in COBOL, have to be adapted
towards this middleware. As the following explanations will show, this ap-
proach causes less effort than the alternative adaptation of our tools support-
ing the wrapper construction methodology.

In a COBOL program, data structures are usually defined by so-called
COBOL copybooks, which are conceptually comparable to abstract data types
and are physically organized as separate files. Existing commercial tools of-
fer the possibility to automatically transform COBOL copybooks in so-called
JAVA record classes, i.e. JAVA classes are generated to represent COBOL
data structures one-to-one. Furthermore, the corresponding code to map a
COBOL data structure to its associated JAVA record class and vice versa is
generated. This code instantiates a JAVA record class from a given instance of
a COBOL data structure and propagates changes of the JAVA record class in-
stance to the corresponding COBOL data structure instance. The generated

736 Th. Haase and M. Nagl

JAVA classes are then embedded into a corresponding JAVA-based frame-
work for accessing COBOL-based mainframe applications via a transaction
monitor.

The next step is to equip the JAVA classes with a COM interface. Tools
like [629] are able to automatically generate a COM interface for a given set
of JAVA classes. The required infrastructure code is generated, compiled, and
linked to the given code, a type library is generated, and both are embedded
into the COM runtime environment.

Using this tool chain, the required COM interfaces to existing COBOL
applications are realized without any manual implementation effort. However,
only data aspects are covered, as a COBOL copybook only describes a data
structure. Functional aspects, such as a calculation based on some given data
can not be handled this way yet.

Formalizing Service Descriptions and Service Compositions

Specifying service descriptions and service compositions causes the main ex-
tensions of our approach.

The modeling formalism is enriched with concepts to model a service as a
functional module, i.e. on the one hand to define the export and the import
interface of the service (service description), whereas imports are either other
services or functions of business objects. On the other hand, the body of
the service has to be specified. The body defines the control flow between the
imports, i.e. sequences, alternatives, and loops of service or function calls with
according execution conditions (service composition).

Furthermore, non-functional properties of a service can be specified, in-
cluding (i) the type of communication between services (synchronous vs. asyn-
chronous), (ii) who is allowed to communicate with a service (authentication),
or (iii) the predefinition of service alternatives with regard to non-availability
of a certain service.

In the case of an asynchronous service call, for example, the specifications
of both caller and callee have to be completed for event handling. Concerning
the callee, the export interface has to contain the signatures of the thrown
events and the body definition has to include further specifications regarding
under which conditions an event is raised. Analogously, for the import interface
of the caller it has to be specified in which events it is interested in. In the
body it has to be defined how the caller reacts when a certain imported event
is raised.69

In addition, the modeling formalism is extended by analyses validating on
the one hand syntactical correct concatenation of services and business object

69 Event handling also affects the business objects layer or the adapters layer, respec-
tively. The business objects layer homogenizes the events thrown by the underly-
ing application systems. However, this is only possible if the interface descriptions
of the adapter components include event definitions.

Service-Oriented Architectures and Application Integration 737

functions such as type conformity of input and output parameters. On the
other hand, structural properties of service compositions related to runtime
behavior are analyzed to detect, for example, unbounded loops or deadlocks70.

A precise conceptualization and a compact notation for modeling the as-
pects mentioned above is challenging. Furthermore, to determine suitable
analyses for completeness and correctness of the models, so that program
code generation is possible, is also not trivial. Both are interesting aspects of
the extensions of the modeling formalism to specify service descriptions and
service compositions.

As already stated in Sect. 5.7, the modeling formalism for model-driven
wrapper development is formulated as a graph rewriting system using the
PROGRES language [412, 414]. Consequently, the necessary concepts to
model service descriptions and service compositions will be implemented as
an extension of the PROGRES specification shown in Fig. 5.60 on p. 571 and
Fig. 5.67 on p. 586.

Transformation to Programming Languages

Further extensions deal with code generation. The generated code allows the
execution of specified services. It is embedded into a test framework to in-
teractively evaluate and explore the specified services. This test framework
is comparable with the tool support to explore existing component interfaces
interactively (cf. Subsect. 5.7.4).

We are not aiming to generate code that can be used in the productive
environment of our industrial partner. Rather, we are investigating from a sci-
entific point of view how the concepts defined by the modeling formalism can
be transformed to programming languages. The difference to the yet available
code generator is the generation of JAVA or C++ code instead of PROGRES
code. This change has certain consequences for code generation.

For example, let us regard associations between classes in an object-
oriented programming language like JAVA or C++ in comparison to edges
between nodes within the PROGRES language. Whereas PROGRES has a
well-defined semantics concerning edges, realized by the PROGRES runtime
environment to limit the possible transformation alternatives, for JAVA or
C++ several aspects have to be considered:

• In general, an association a of object o1 with object o2 can be either
realized as (i) o2 is a value of a variable v of o1 (variable semantics) or,
alternatively, (ii) v holds a pointer referencing o2 (reference semantics).
As o2 can as well be associated with other objects, variable semantics is
in most cases not a feasible solution.71

70 Deadlocks can appear in the case of asynchronous, cyclic service calls.
71 While PROGRES and JAVA make use of reference semantics, C++ offers both

alternatives.

738 Th. Haase and M. Nagl

• While PROGRES allows bidirectional navigation along edges, this is not
possible for pointers in JAVA or C++. Therefore, a bidirectional asso-
ciation a is mapped to an explicit forward pointer af and an implicit
backward pointer ab. For that, the generation of additional program code
for administrating ab is necessary.

• An association can be refined by multiplicities. For example, a fixed max-
imum of associated objects greater than one requires again the generation
of additional program code to ensure this constraint during runtime. Anal-
ogously, the same has to be done for a fixed minimum greater than zero.

Using reference semantics has further consequences : When deleting a node in
PROGRES, the runtime environment of PROGRES ensures, that all associ-
ated edges of that node are deleted as well (outgoing edges as well as incoming
edges). In contrast, JAVA uses garbage collection, i.e. all pointers to an object
o have to be deleted before deleting o. Thus, the implementation of a deletion
operation in JAVA is completely different from PROGRES. Especially, as ref-
erences to an object o are not known by o, when establishing an association
to o, some kind of reference counting has to be generated, so that o can be
deleted by deleting the pointers to o.

Transformation to Web Services

Regarding the requirements of our industrial partner (see Subsect. 7.8.3),
another topic concerning code generation is to realize the specified services
as a Web Service.72

Realizing a specified service as a Web Service includes several generation
steps :

1. Generation of code for serializing a JAVA object, such that it can be
encoded as XML and streamed over a network using the SOAP proto-
col (Simple Object Access Protocol). Especially, it has to be taken into
account that the identities of objects are preserved. This is achieved by
generating an individual identifier for each object. Using these identifiers,
associations between objects can be serialized.

2. Generation of an interface description, i.e. a WSDL file (Web Services
Description Language), for the service usable by a client to access the
service.

3. Generation of a deployment descriptor, i.e. a configuration file in order to
install the service into the Web Server runtime environment.

While the two latter steps can be realized with the help of existing trans-
formation tools [508], the first step requires further extensions of our code
generator.
72 Please note, that the term “service” refers to a concept, which is independent of

a specific technique, while the term “Web Service” denotes a concrete realization
technique.

Service-Oriented Architectures and Application Integration 739

Graphical User Interface Extensions

Extensions of the modeling formalism are not limited to the conceptual level.
Rather, corresponding tool support has to be implemented to realize a model-
ing environment for specifying service descriptions and service compositions.
This is done by using UPGRADE [48, 49], a JAVA-based framework for build-
ing user interfaces for graph-based applications. Based on the PROGRES spec-
ification, code is generated and embedded into the UPGRADE framework.

In this way, a first prototype of the tool is developed without any manual
implementation. However, the user interface of the prototype is rudimentary
and does not meet usual look&feel standards of current interactive application
systems. Therefore, parts of the user interface have to be reworked.

We are not aiming at the development of a tool comparable to a commercial
one with respect to properties like robustness, performance etc. Rather, the
prototype serves for evaluating the applicability of the developed concepts by
our industrial partner. Nevertheless, the prototype has to be stable enough,
such that it can be used for evaluation. This also covers the appropriateness
of the user interface.

Extensions of user interfaces mainly concern the implementation of differ-
ent representations to visualize and to edit the static (service description) and
the dynamic (service composition) aspects of the specifications. For example,
to model service compositions several alternatives are possible: (i) sequence
diagrams, (ii) collaboration diagrams, or (iii) a textual notation in some kind
of pseudo code. Which of them is the most appropriate alternative can only
be determined through experiences using the prototype. The alternative views
have to be implemented manually in JAVA and embedded into the UPGRADE
framework as well.

Furthermore, the test environment for exploring the specified services is
extended with a client user interface, e.g. web pages, to invoke services and to
visualize the results returned. Therefore, corresponding HTML code is gener-
ated.

7.8.5 Conclusions

In this section, we gave a brief overview over the transfer of the results of
the IMPROVE subproject I3 to industrial application. We show, how the
model-driven wrapper development process and its associated tool support
(cf. Subsect. 5.7.4) can be applied to business application systems. A sketch
of an integrated business application architecture following a service-oriented
architectural style was drawn. Furthermore, we discussed the adaptation and
necessary extensions of the existing approach, namely the technical infrastruc-
ture, the modeling formalism, the code generation, and the user interface.

The scientific impact of this transfer project can be characterized by an-
swers to the following questions: (i) Which elements form a service-oriented ar-
chitecture? (ii) How are they structured on the level of subsystems? (iii) Which

740 Th. Haase and M. Nagl

aspects have to be considered to define service descriptions and service com-
positions? (iv) How can the latter be formalized? (v) How can they be repre-
sented and edited by visual models? (vi) How can a test driver be generated
for service description or service composition, respectively? These basic ques-
tions have to be solved in order to allow efficient application of service-oriented
concepts in practice.

However, to ensure the applicability of the results in practice, close coop-
eration with an industrial partner is mandatory. The planned prototype offers
an easy-to-use opportunity to evaluate and to explore service-oriented con-
cepts in an industrial environment. In this way, first ideas for restructuring
and integrating legacy systems can be identified. Further development is facil-
itated as the specified models can be regarded as an initial, but nevertheless
formal requirements’ definition.

8

Evaluation

This chapter gives a summary of the results contained in this volume by
presenting these results under four different perspectives.

The chapter is structured as follows : In the first section we (a) discuss what
IMPROVE has contributed to a better understanding of design or develop-
ment processes. Then, in the following section, we (b) explain our achieve-
ments for new tool functionality/integration. Both sections for (a) and (b)
give a review from the academic perspective. The third section describes (c)
how we have influenced the industrial state-of-the-art in the process industries
on the one, and in the tool vendor industry on the other hand. Finally, in the
last section (d) we sketch IMPROVE’s success story in academia. These four
views are the most characteristic ones for the IMPROVE project.

The summary of our findings (what we have achieved, what is still open) on
the formal process/product model is not repeated here. This topic was regarded
to be so important that its summary was given in an own chapter (cf. Chap. 6).

The summary perspectives, given in the following chapter, do not coincide
with the project structure of Fig. 1.27 and, also, with the chapter structure
of this book: For example, our findings on tools come from Chaps. 2, 3, 4,
5, and 7. Our results for process understanding stem from Chaps. 2 and 7,
but implicitly also from all other chapters. The same is true for the question,
which impact we had on industry. Trivially, the success story in academia
relates to the whole book.

8.1 Review from a Design Process Perspective

W. Marquardt

Abstract. This section briefly summarizes and evaluates the results of IMPROVE
from an application-oriented perspective. The application domain model, its use for
the improvement of design processes, and its implications for the development of de-
sign support tools constitute the main focus. We conclude that the model framework
has reached a high standard and constitutes a good basis for further refinement and
extension. However, the model needs even more validation in industrial case studies.
The discussion of this section is given from an academic viewpoint. The industrial
relevance of design process results is given in Sect. 8.3.

8.1.1 Introduction

A major working hypothesis of the IMPROVE project has been related to
information modeling. More precisely, the improvement of design processes
and their support by a suite of integrated software tools require a profound
understanding and formalization of the design process together with the re-
sults produced during the various design tasks. This working hypothesis has
been largely different from previous work because it explicitly focused on the
design process rather than on its results, e.g. the design data and documents.
This point of view should naturally lead to software functionality which facil-
itates work process integration rather than the traditional data and control
integration of tools to truly improve the productivity of the design team.

A first objective of the modeling exercise is the conceptual clarification
of the application domain, e.g. of design processes in chemical and plastics
engineering. The resulting process-centered information model will not only
elucidate the intricate interplay between design tasks, resources used, and data
produced. It should, furthermore, serve as the starting point for model exten-
sion and refinement to finally result in the set of models required to develop
and construct new support tools and tool extensions in a model-based soft-
ware engineering process. The continuity and consistency of the suite of models
spanning from the application (and hence presentation) layer to the tool layer
is expected to result in both, more efficient software development processes
as well as user-oriented support functionality. Since information modeling is a
time-consuming task requiring both expert domain knowledge as well as sys-
tems engineering and information science skills, the resulting models should be
reusable in different yet unknown contexts. This quest for reusability should
not alleviate the expressiveness of the model.

This evaluation section will briefly reflect on the achievements of inte-
grated product and process modeling from the perspective of the application
domain. The first subsection will reflect on the achievements in design process
modeling. The following subsection will take the perspective of model valida-
tion and will consequently discuss our experiences during the application of

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 743–752, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

744 W. Marquardt

the information model for the re-engineering of existing design processes as
well as for the construction of design support tools.

8.1.2 Modeling Design Processes

A design process is a complex and multi-faceted entity. Its modeling has to
capture the work processes including the actors and their roles as well as the
resources used and the results of the individual work process activities such
as the engineering documents produced. The decision processes link design
process activities with design data and documents in an intricate manner.

A divide-and-conquer approach has been followed during the IMPROVE
project to deal with the inherently large complexity of the modeling problem.
Consequently, product data and work process modeling have been pursued
largely independently in the first part of the project. Later, document mod-
eling has been added not only to complement product data modeling but to
also link product data with the activities during the design process and their
models. The explicit treatment of the decision making process as part of the
design process model has not been envisaged in the early phases of the project.
However, we had to realize that work process modeling will be at least incom-
plete or even invalid if decision processes are not considered as an integral
part of the modeling. Therefore, decision process modeling has been added in
a later project phase.

Some emphasis has been on the integration of the various model parts to an
integrated information model of the application domain. We will next discuss
briefly what we have achieved and which open problems we still see. The
following paragraphs are referring to Chap. 2 and in particular to Sects. 2.2
to 2.6.

Product Data Modeling

While product data modeling in an application domain has focused tradition-
ally on a detailed and complete representation of all domain concepts together
with their relations and defining attributes, the IMPROVE approach has been
radically different. The major focus has been on the design of an extensible
architectural framework for product data modeling rather than on a detailed
and comprehensive model itself.

This choice of focus has been originating from previous experience in data
modeling; it is explicitly addressing the objective of extensibility and reusabil-
ity. In contrast to a model framework, any comprehensive product data model
comprising all details has to be limited to a particular use case and will in-
evitably lack reusability. Extensibility of the model framework also includes
means to support the refinement and detailing of the model to tailor it to a
certain application context. Obviously, such a model framework can only be
developed if various parts of the model are worked out with considerable level
of detail in order to validate the architectural design.

Review from a Design Process Perspective 745

The concepts of general systems theory originating from the philosophy of
science [578] have proved to provide a powerful set of guiding principles dur-
ing model framework structuring and development. In addition, the different
means to appropriately structure the model, including modularization into
partial models as well as abstraction across a number of well-defined layers,
have proven to be generic and useful for large-scale product data modeling
in chemical process engineering and beyond. OntoCAPE, the architectural
framework for product data modeling developed during the IMPROVE project
is probably the most comprehensive available to date.

Though targeted at the chemical engineering domain, we believe that the
modeling framework can also be used in other engineering domains because of
its systems theory foundation and appropriate structuring. Future work will
mainly target at the extension of OntoCAPE to cover additional facets of the
chemical engineering domain. For example, process control engineering is not
adequately covered at this point in time because this sub-domain of chemical
engineering has not been in the focus of the IMPROVE project.

Our continuing research efforts on domain information modeling have built
on a number of modeling languages and modeling tools in the past 15 years.
Though any model should reflect the understanding of the domain and the
intent of the modeler independent of the capabilities of the modeling language,
the expressiveness, transparency and even the content covered by the resulting
model is determined by the modeling formalism to a very large extent.

Ontology languages have been used in the latest phase of the IMPROVE
project. They provide adequate expressiveness and a sound logic basis to be
unambiguously processed by some computer program in whatever software ap-
plication. Besides, their anchoring in semantic web research and development
has resulted in a wide distribution and consequently in the continuing devel-
opment of powerful software tools to simplify model development and use.
This technological progress facilitates software development and prototyping.

Document Modeling

Typically, product data models are largely independent of the context of a
given design process carried out in a specific institutional environment. In
contrast, design documents are used in an organization as carriers of product
data, for example, to communicate results of certain design tasks between de-
signers or between designers, project managers and clients, or between humans
and software tools. Furthermore, documents are used to archive the result of
design processes for later use either during plant operation, e.g. to support
maintenance or revamping, or during another design project, e.g. to serve as
a blueprint for a similar plant design. Consequently, documents constitute a
certain view on the product data and reflect the nature of the design process
as well as organizational aspects.

Our document model covers a static description of all the relevant docu-
ments in process and plant design in chemical engineering including the type

746 W. Marquardt

of the document and its relation to other documents. This static description
is complemented by a dynamic description which covers the evolution of the
document over time.

Last but not least, the content of the document is represented by its in-
ternal structure in the sense of a template. In contrast to previous document
modeling approaches, the document model is not limited to a description of
the document structure but relates its content to the product data. This way,
the semantics of the document content can be captured.

The present document model can easily be adapted and refined to reflect
the peculiarities of a certain organization. We expect that such an adaptation
can be largely restricted to a refinement of the details of the document struc-
ture and the content description. We do not expect that the overall structure
of the document model will have to be changed. Additional document types
can easily be added to the existing document model structure.

Work Process Modeling

The process-oriented approach of IMPROVE calls for a concise model of the
design process. There is an obvious relation to workflow and business process
modeling on the one and to the representation of sequential control schemes
on the other hand. Many modeling formalisms stemming from different scien-
tific disciplines have been suggested in the recent past. These languages offer
a variety of (largely similar) elements to fulfill the requirements of process
modeling.

The engineering design process is, however, different from most other work
processes: Engineering design is a creative and ill-defined process and can
therefore hardly be captured by formal languages or even be prescribed prior
to its execution. Any formalism should therefore be able to cope with the
non-determinism and the dynamics inherent to engineering design.

Since design is a social process, which largely lacks any domain theory,
empirical studies have been carried out in industry first to explore the re-
quirements on the elements of a representation formalism for engineering de-
sign processes. These empirical studies led to an extension and adaptation
of the C3 work process modeling language to engineering design processes.
C3 has been designed to support participative modeling of actual (industrial)
work processes without stressing a sound formal basis. Though, some of the
extensions have been motivated by and specifically address the requirements
of engineering design processes, we do not want to strongly argue for a ded-
icated modeling formalism for engineering design. Rather, these extensions
have contributed to evolve C3 into a versatile formalism to be widely used for
modeling and analyzing work processes to either streamline the design process
or to devise support software functionalities.

The level of detail and semantic formalization of C3 is not sufficient to al-
low the interpretation and processing by means of computer software. There-
fore, the Process Ontology has been developed to complement the product data

Review from a Design Process Perspective 747

model of OntoCAPE. The Process Ontology follows the same architectural de-
sign principles and is based on the same ontology language as OntoCAPE.

The conceptualization of this work process ontology is fully consistent
with the one underlying C3. In particular, the elements and connectors of
C3 map to classes and relations in the Process Ontology. This conceptual
integration of both formalisms allows a seamless transition from a semi-formal
to a formal representation. While the former is ideally suited to empirically
elucidate an actual work process, the latter targets a tool-based interpretation
and processing.

Decision Modeling

Decision making is an inherent part of any work process. In particular, design
decisions determine and even control the engineering design process. Further-
more, decision making refers to alternative positions and collects arguments
for and against each of them. Hence, any integrated product and process
data model of an application domain excluding decision making would be in-
complete and even qualitatively incorrect. Hence, decision modeling has been
added to the modeling project in IMPROVE.

Decision modeling aims at two different use cases : (a) the documentation
of the decisions made during a design process constitute the design rationale
to be archived for later use, for example, in design revisions or extensions of
a built plant; (b) the provision of decision templates to guide the designers
during decision making in a certain context of the design process. These two
use cases call for modeling capabilities on the instance as well as on the class
or template level.

The Decision Ontology has been developed in IMPROVE to complement
the product data, document and design process models. Its architectural prin-
ciples are fully compliant with those of OntoCAPE and the Process Ontology.
The Decision Ontology is an extension of DRL, an existing decision model, to
cover the requirements identified in engineering design processes.

In particular, the Decision Ontology not only facilitates modeling on the
instance level but also on the template or class level. Modeling on the instance
level is involved; its inherent complexity is hardly acceptable to industrial
practitioners. Further language constructs for abstraction and aggregation of
the complex network of concepts and relations linking decisions with data,
documents and work processes are therefore necessary to enhance perceivabil-
ity and to reduce the effort for the formulation of these models during the
design process. Decision templates are an attractive means to offer the de-
signer not only guidance in decision making but also assistance for decision
documentation.

Application Domain Model Integration

The integration of the four parts of the application domain model has been
a major objective of our modeling efforts. All model parts have been imple-

748 W. Marquardt

mented in OWL to prepare such an integration on the implementation level.
Despite the inherent conceptual complexity and the parallel development of
the four model parts by different modelers, a first attempt toward the inte-
gration of OntoCAPE, the Document Model, the Process and the Decision
Ontology into C2EDM, the so-called Comprehensive Chemical Engineering
Domain Model has been successfully completed. Though there is still room
for improvement and extension to be pursued in on-going and future research,
this integrated model seems to be the most comprehensive information model
framework for the chemical engineering application domain to date.

OntoCAPE is the core of the integrated model which describes the con-
cepts of chemical engineering, the specific application domain of interest in
the IMPROVE project. The product data in OntoCAPE are well integrated
with the Document Model by direct references from the document content
description to product data elements in OntoCAPE. Likewise, the elements
of the document content description link the product model in OntoCAPE
to the decision and work process documentation in the Process and Decision
Ontologies.

In contrast to the integration on the instance level, integration on the
template (or class level) needs further attention. Work process and decision
templates which are connected via document models seem to be an interesting
means to effectively support and guide designers during a design project.
These template structures are suited to encode best practice knowledge to
be reused for improved design process performance and quality assurance.
The design of such template hierarchies and their presentation to the designer
are largely open issues. This design also has to account for an appropriate
representation of the mix of routine and creative tasks in the design process.

Our modeling efforts have been largely targeting at the technical perspec-
tive of the design process. More precisely, we have always tried to largely
abstract the engineering design process from the organizational structure in
the company. It is an open issue whether these dimensions can easily be added
by just extending the work process, decision and document models or whether
a specific model has to be created to reflect the organizational constraints of
the design process. Likewise, our model does not reflect the social dimension
of design as identified during a number of field studies [574].

Model Migration to Other Engineering Domains

The architecture of C2EDM and its design principles are not limited to chem-
ical engineering. We expect a straightforward extension to other engineer-
ing domains to be easily achievable. The migration of the model to another
engineering domain can be easily accomplished by replacing OntoCAPE by
a product data model of the respective domain. The remainder of C2EDM
should be reusable as it stands.

Review from a Design Process Perspective 749

8.1.3 Model Validation

The most crucial issue in any kind of modeling project is the validation of the
resulting model. In contrast to a specific information model, a model frame-
work like C2EDM can not be validated by, for example, assessing the func-
tionality of the software built on the basis of the model. Because of a lacking
theory of design the model framework could be validated against, validation
has to rely on a (very large) number of use cases which should span all possible
yet unknown contexts the model will be used in.

Obviously, any validation based on use cases is always incomplete and
not fully satisfactory because only a relatively small number of real-world
problems can be practically addressed. Furthermore, it is not sufficient to work
out complete software solutions but their evaluation in field studies with real
industrial design processes would be required in any serious validation effort.
Such a validation should be even assisted by an evaluation of the usability
of the resulting software as discussed and exemplified on several IMPROVE
software prototypes in Sect. 5.6.

It is very difficult to meet these validation requirements, even by a large
research project like IMPROVE with close links to industrial practice. This
inherent limitation – though rarely mentioned in the literature – is a major
obstacle for scientific progress in application domain information modeling.

The following paragraphs summarize our efforts to use the information
model to improve design processes in industry and hence to contribute to a
validation of the modeling framework.

Model-Based Re-engineering of Design Processes

The work process modeling procedure (cf. Subsect. 2.4.2) and the work process
model (cf. Sect. 2.4) have been applied in a number of industrial case stud-
ies which were quite different in nature. Participative work process modeling
with active participation of all stakeholders in the design process has been con-
firmed to be decisive for getting a realistic and largely complete representation
of the actual work process.

The software tool WOMS has proven to be appropriate and effective to
support the modeling process in an industrial environment. WOMS has dif-
ferent capabilities to present the work process model to the engineer. These
views have shown to be helpful to develop, better understand and analyze the
work process. However, the complexity of the work process model often hin-
ders transparency. Hence, additional structuring and abstraction mechanisms
have to be developed and integrated in WOMS in on-going research work to
solve this problem.

WOMS only provides limited means to analyze the work process. Often
a qualitative analysis resulting from a careful inspection of the model by the
stakeholders involved is not sufficient. Rather, quantitative performance mea-
sures are of interest. Such measures can be deduced from Monte-Carlo sim-
ulation of the work process models, which can be cast into a discrete-event

750 W. Marquardt

simulation model using one of the established formalisms (i.e. Petri nets, se-
quential function charts, etc.).

Simulation requires an enrichment of the work process model by quanti-
tative information of different kind. Examples include the duration of certain
activities or the number and type of tools allocated to a certain design task.
Such information allows to investigate the time required to accomplish a part
of the design process or to study the benefit of employing such tools. Such
quantitative data are often hard to get with the desired accuracy in industrial
practice.

To reduce the impact of such uncertainty, different case studies have to
be carried out for different scenarios. Such simulation studies have not only
been successfully carried out during IMPROVE but are still in progress during
one of the on-going transfer projects. The simulations have been very useful
to analyze the status quo and to identify concrete measures to improve the
design process.

All the case studies have revealed that coarse work process models like the
ones obtained in participative work process modeling by very limited effort
already reveal the most important characteristics and uncover the improve-
ment potential. Hence, design process modeling is a useful and rewarding
investment and largely independent from a later use during the construction
of design support software.

The design process knowledge in a tool like WOMS is an asset in itself
which should be reused in subsequent activities during the design process.
Consequently, the modeling tool should provide functionality to export the
work process model to other tools such as discrete-event simulators, workflow
engines or even control system design software. This export cannot be confined
to providing the model in a standard data format (like XML). Rather, the
model has to be refined and extended to fulfill the information requirements
of the target application. Furthermore, it has to be mapped to the data format
of the target tool which uses the work process model.

First steps toward this objective have been carried out in the context of
work process simulation during IMPROVE and an on-going transfer project
(cf. Sects. 5.2 and 7.4). A more general approach to the export and reuse of de-
sign process knowledge is pursued in another transfer project (cf. Sect. 7.3).
There, the work process modeling tool WOMS is redesigned and reimple-
mented using semantic technologies to support a gradual extension and re-
finement of work process models and to map them to the format of a target
tool. The modeling tool will be evaluated in three industrial case studies re-
lating to work process simulation, to recipe design for batch processes and to
the design of operating procedures and control strategies.

Design Process Models and Tool Implementation

The application domain model forms the upper layer of the integrated prod-
uct and process model which has been one of the major scientific targets of

Review from a Design Process Perspective 751

IMPROVE. Model-based software engineering is supposed to start from such
a model and to refine it to ultimately cover all the information required for
tool construction. Such a refinement and extension should not be done from
scratch for every tool construction project, but should rely on a generic and
reusable model which is consistent from application to platform layer.

As argued elsewhere (cf. Chap. 6), this ambitious objective has not been
fully achieved by the IMPROVE project. However, a number of case studies
have been carried out to show in concrete projects how model refinement and
extension of the application domain model can be successfully carried out to
assist the tool construction process. In particular, the product data and the
document models have been successfully employed and thus at least exem-
plarily practically validated in two software projects during the IMPROVE
project targeting at information integration and document management. Fur-
ther testing of the product data and document models is currently under way
in one of the transfer projects (cf. Sect. 7.2). The objective of this project is
to demonstrate the use of semantic web technologies and application domain
ontologies to integrate and consolidate information across the project lifecycle
of process and plant design.

The application domain model has also been employed to guide the devel-
opment of design support in a less ambitious manner. Rather than aiming at a
consistent model-based software development process, parts of the model have
been directly used, for example, to design interfaces for data exchange between
different simulation and visualization tools in chemical process and extrusion
process simulation (cf. Sects. 5.3 and 5.4). The data model has helped the
definition of standard data formats to facilitate both the extension and the
replacement of tools in an integrated simulation and visualization environ-
ment. These applications demonstrate the value of information modeling even
in relatively simple data integration projects which are routinely carried out
in industrial practice today.

8.1.4 Conclusions

Application domain modeling clarifies understanding and meaning of concepts
and their relations in an engineering domain. Such a common understanding
is an important prerequisite for success in process and any other engineering
design activity. Hence, an application domain model is an asset in itself.

Application domain modeling is a time-consuming and expensive effort
which requires an appropriate conceptual foundation to be carried out effec-
tively. The research in IMPROVE has lead to a general architectural frame-
work for application domain modeling which can serve that purpose. C2EDM
can be directly used, modified, refined and extended in chemical engineering
and other engineering domains. There are various levels of sophistication in
using the model.

The most ambitious objective pursued in IMPROVE is to use it as part
of a comprehensive model-based software engineering and tool construction

752 W. Marquardt

process. C2EDM provides all the necessary information to serve this purpose.
However, as briefly summarized in this section and detailed in other parts
of this book, parts of the application domain model can be used in a less
ambitious manner to successfully support various aspects of design process
improvement and design software construction.

8.2 Review from a Tools’ Perspective

M. Nagl

Abstract. IMPROVE can also be regarded as a tool integration project with a
broad understanding of “integration” (cf. part I of this book). This section is to
summarize our findings on tools by regarding four different views on these tools:
(a) contributions of IMPROVE to a better support of development processes by
using tools, (b) lessons learned from tool construction/integration, (c) how tool con-
struction and modeling of development processes interact, and (d) how application-
specific or general our results on tools are. The review is restricted to the academic
viewpoint. The industrial review for tools – but also for other perspectives – is given
in Sect. 8.3.

8.2.1 Introduction

IMPROVE has a broad understanding of integration (cf. Subsects. 1.1.2 and
1.1.3): Not only system integration based on advanced platforms is regarded.
Our understanding of integration is clearly extending the classical integration
dimensions [1038]. Especially, we regard enhanced functionality on top of given
or even of new tools. The corresponding extensions have been introduced in
order to support collaborative development processes or even processes being
distributed over different departments or companies. In the preface of Chap. 5
we have summarized all integration aspects regarded in this book.

The main problems of integration, regarding tool support, have been
sketched in Fig. 1.6. There, we find all current gaps of tool support we should
bridge by extended tools. The corresponding integration solutions are to be
found in the main Chaps. 2 to 7 of this book.

This section describes the results of IMPROVE on tools from four differ-
ent perspectives: (a) What contributions has IMPROVE delivered for a better
support of design processes in chemical engineering? (b) What have we learned
about tool construction/integration in chemical engineering? (c) The whole
tool construction/integration approach has to be in close relation with mod-
eling processes on different layers. What benefit did we gain from looking on
tool behavior or tool construction from such a modeling perspective? (d) Fi-
nally, we regard the question, how specific the tools are, which were presented
in this book: Are they only applicable to chemical engineering/plastics pro-
cessing? Or are the tools or their underlying concepts also applicable to other
engineering disciplines? These four questions are addressed in the following
subsections.

This review is given from the academic viewpoint. The industrial review –
also for tools – follows in Sect. 8.3. Moreover, in the preface of this chapter
we stated that we are not going to repeat the PPM summary of Chap. 6.
However, the interaction of modeling and tool construction is discussed in
this section. Hence, the plan of this section is to summarize all results on

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 753–763, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

754 M. Nagl

tools which are to be found in Chaps. 2, 3, 4, 5, and 7 of this book from an
academic perspective.

8.2.2 A Better Support for Design Processes

Design Tools Do Fit Better

A better support for design processes by results of IMPROVE comes from the
fact that new tools or new tool functionality on top of given tools are both
“derived” from investigating the application domain and existing development
processes. Especially, the deficits and needs in these processes and how to
better support the corresponding situations were studied.

As an example, this is to be seen from Sect. 2.4 where a schema for work
process modeling is given. All the methodological hints “how to do” or the
shortcomings “what to avoid” are beforehand identified from the application
side.

Even more, if tools are available, their usefulness from the ergonomy point
of view is also regarded. This was carried out for existing tools, for tools ex-
tended within IMPROVE, or new tools built within IMPROVE (see Sect. 5.6).

Both, regarding the needs of a domain and evaluating the ergonomy of
tools is related to overcome gaps (a) and (b) of Fig. 1.6. Tools according to
both perspectives are more useful, as they are more specific for the regarded
domain or the processes within that domain. They are more semantical in the
sense of giving deeper support for one developer in the design process (gap
(a)). They are also better suited for the cooperation of different developers in
that process (b). All these topics are addressed in Chap. 2. But tools also do
better fit the ergonomic needs of human developers and their cooperation (see
again Sect. 5.6).

New Tool Functionality on Application or Informatics Side

Four new informatics concepts were introduced in Sect. 1.1 and discussed in
detail in Chap. 3: Direct process support based on developers’ experience,
consistency control between different developers’ results based on underlying
structures, direct communication between developers that is related to orga-
nized cooperation, and reactive management being able to cover the dynamic
situations within design processes. These concepts are new and give valuable
support within development processes, as to be seen from the demo description
of Sect. 1.2.

Firstly, these concepts are valuable for single developers : A developer can
use his experience, regard the consistency of his results with those having been
elaborated earlier, he can find the right discussion partner in case of problems,
he can evaluate/manage a change of the process as a manager.

The concepts are also valuable for team activities : Process chunks of direct
process support can also give help for the activities of different developers

Review from a Tools’ Perspective 755

collaborating on a certain topic. Consistency between the results of different
developers is a question for all developers, especially important if they have
different roles. Moreover, in some cases the result of a developer may depend
on the result of different developers. Direct communication may take place in
the form of a conference of several developers, where they discuss a situation
to be changed. Changes due to dynamics may come from results of one single
person, but usually influences a group.

As explained in detail in Sect. 5.5 these new tool functionalities can again
be synergistically integrated. There is no other literature available where the
integration of novel collaboration concepts is studied (two-level integration).
Hence, synergy is definitely a topic of success to be mentioned in this section
reviewing our achievements on tools.

Another topic is also remarkable: We studied the aspect of development
processes across different departments of a company or even different compa-
nies and we developed corresponding tool support. This aspect was addressed
on one side in application projects of IMPROVE as, for example, denoting
processes by the WOMS tool and discussing them (see Sect. 5.1). This is
especially helpful for distributed processes, which are less understood and,
therefore, cause many problems in industrial practice. It was also addressed
in a more general way, e.g. when studying how the management of dynamic
processes looks like, if they include different companies (see Sect. 3.4). Of
course, a lot of questions of cross-company support still remain to be studied.

There are further application-dependent tools, either invented or developed
within or outside of IMPROVE and used therein. In any case, they have been
refined due to this use. One such example is the heterogeneous simulation of
the chemical overall process (see Sect. 5.3) which unites different single simula-
tions to one aggregated simulation for a whole chemical process. Another topic
is a specific simulation approach for plastics processing (see Sect. 5.4) which
especially helps to bridge the gap between chemical engineering and plastics
processing. Both have been used and extended but not invented within IM-
PROVE. Other tools are specific for IMPROVE (see e.g. Sects. 5.1 and 5.2).

Again, all the new application-dependent tools, but also all the new infor-
matics concepts and corresponding functionalities of above give better support
and help to overcome the gaps of Fig. 1.6: The activities of single developers
are better supported: There are new tools available which have not existed
before, or given tools have been extended. These tools now better fit the ac-
tivities of a single human (gap (a), e.g. by using the personal experience of
a developer, see Sect. 3.1). The same arguments hold for the cooperation be-
tween different developers which is now better supported (see gap (b), e.g. if
they are discussing a new chemical process model in a conference, see Chap. 2
and Sect. 3.3). Furthermore, the gap between a group of developers on one
hand and the management of the development process on the other hand is
better supported (c), for example by using reactive management to solve a
problem from the interface of chemical and plastics engineering, see 3.4 and
5. Finally, our investigations specifically addressing the question how cross-

756 M. Nagl

company support can be offered, see again gap (c) of Fig. 1.6, have given new
results (Sects. 3.4 and 6.4).

8.2.3 Lessons Learned from the Construction/Integration of Tools

There are different kinds of tools described in this book and, also, different
kinds of knowledge how to construct tools. There are (a) end user tools, either
developed from the application side or the informatics side, both for bridging
the gaps of insufficient current support. There are (b) tools for platforms
or wrapping, both facilitating the process of integrating new or given tools.
Finally, there are (c) tools supporting the construction process of new tools
or tool extensions. Of course, most activities have gone to category (a).

We are going to shortly summarize the results of all three categories. The
reuse aspect of tool construction is summarized later in this section after
we have discussed how modeling has influenced tool construction and how
general/specific the investigated tools are. It should be remarked again that
the tool construction activities are not finished, the ongoing transfer projects
are expected to produce further results.

Knowledge How to Construct End User Tools

We can give a short summary, as the functionality of these tools has already
been summarized above. Again, tool construction and extension knowledge on
one hand comes from realizing the new informatics concepts (direct process
support, . . . , reactive management). For either of these functionalities and cor-
responding tools there is methodological knowledge how to realize these tools
in a mechanical tool construction process. This was explained in Sects. 3.1
to 3.4.

The synergistical integration of these new concepts was also addressed.
The solution at the moment is a handcrafted one without reuse aspects. Fur-
thermore, cross-company support was addressed, mostly in Sect. 3.4, also by
giving first and not final solutions. So, the reuse aspects of synergistical in-
tegration need further investigations as well as the support of cross-company
processes.

The tool experience of the application side is on one hand from tools
specifically realized within IMPROVE (as, e.g., WOMS, see Sect. 5.1; or the
simulation tool of labor research, see 5.2). On the other hand it is from tools
which have been used and refined (ROME, see 5.3; simulation for plastics
processing, see 5.4).

Knowledge on Platforms, A-posteriori Integration

The underlying platforms for tools have been introduced in Chap. 4. Sec-
tions 4.1 and 4.2 answer the question, which basic services should be provided

Review from a Tools’ Perspective 757

by a more general platform. There are the general service and homogeneity
aspects of platforms: How do data services and computation services look
like, if they are designed to abstract from the diversity of different types of
data stores or the heterogeneous computation facilities in a distributed and
networked environment?

The second aspect of platforms studied in this Chap. 4 is how to give
specific support for the tools one layer up of platforms: As an example, we take
Sect. 4.1, where specific features are explained in order to extract product or
process traces, needed in Sect. 3.1 to bookkeep a developer’s activities but
also to find out new chunks to be incorporated into direct process support
tools in the next step.

Both aspects facilitate the construction of new tools : On one hand gen-
eral and uniform service functionality is available, such that the tool builder
need not use specific services and platforms. On the other hand, specific basic
functionality (as trace bookkeeping) for specific tools is given.

Know-how for a-posteriori integration is found in Sect. 5.7. There, we find
(a) tools helping to solve the integration problems on top of given tools even
in a distributed context. The corresponding architecture modeling tools espe-
cially help to find the concrete and distributed architecture for an integrated
environment of tools. They help to start from a rather abstract integration
situation and to get down to a detailed technical description.

In the same section we also find (b) support for integrating given tools by
wrappers. Wrappers are constructed in some mechanical way: Exploration of
the interface of given tools, using the found sequences of actions of explorations
in order to build new wrapper actions, after specifying their export interface
and generating the corresponding realizations.

Knowledge on Tools for Tool Construction

Within Sects. 3.1, 3.2, and 3.4 we also find descriptions of tools having been
used for the tool construction process.

In Sect. 3.1 we apply modeling tools being based on a common meta model
in order to describe the situation to be supported by tools and how this
support should happen.

In Sect. 3.2 we find tool support for integrator tool construction on two
levels: Firstly, we find tools in order to parameterize integrator tools, i.e.
to adapt them to a specific application situation, as e.g. the correspondence
editor. Secondly, we find generator tools, for generating code for a specific
integrator specification.

A rather analogous situation is found in Sect. 3.4: Again, there is a mod-
eling environment in order to define and adapt design process knowledge for
a specific context. So, parameterization is done using this tool. Furthermore,
there is another evolution tool to extract process knowledge from instance
level. As above, generator tools are used to easily get the implementation from
high-level specification describing changes of development process situations.

758 M. Nagl

8.2.4 Lessons Learned from Concurrently Modeling and Realizing
Tools

This subsection deals with two aspects : (1) How application domain modeling
influences tool functionality and tool construction and, furthermore, (2) how
conceptual modeling drives reuse in the tool construction process. There are
limits in our results in direction of a well-understood realization process with
reuse, which are also described here.

This subsection is not to repeat the results and open problems of Chap. 6
on modeling. Instead, the implications of modeling on tool construction are
to be sketched.

Application Modeling and Tool Functionality

It is new that application domain models are introduced within the tool con-
struction process. The standard practice is that the tool developer realizes
tools, he believes to be useful. Usually, there is only some imagination in form
of an implicit and informal application model. In this book we started by
explicitly defining models on the application side, consisting of a document
model, product data model, work process model, and decision model (see
Chap. 2).

The transition from these models to the necessary input for tool construc-
tion, namely an UI-model, is not provided. Such an UI-model would consist of
a description of tool commands, entities handled by these commands, changes
due to commands, as well as UI layout details. Such an extensive UI-model
is not completely determined, as already stated in Chap. 6. So, the transition
from application models to tools can only be done manually by adding the
information not to be found on the application level.

An example for this transition can be found in Sect. 6.3 for integrators,
where the current steps but also the formal future steps of the transition
are described. There, one finds a sketch, how the application domain models
could be used and extended in order to end up with an elaborated UI-model
describing the behavior of an integrator.

As already stated, the above description is as things should be, not nec-
essarily as things are. The ideal state mainly applies to the three columns
of modeling and tool realization sketched in 6.2, 6.3, and 6.4, respectively.
For other tools this coherent modeling, of the application domain and the
conceptual models of tools, does not apply. It does also not apply to syn-
ergy (Sect. 5.5), or tool integration for a distributed development process, see
Sect. 5.7. In the latter cases, tool realization is more done by careful but nev-
ertheless handcrafted programming, or using modeling, however not starting
at the application level.

Review from a Tools’ Perspective 759

Tool Modeling on Conceptual Level

A formal and abstract description of the internal structure and behavior of
tools, in Fig. 6.1 called layer 3 and elsewhere conceptual modeling for tools,
has two big advantages: (1) It allows the interpretation of this description
in order to quickly get to prototyping tools. (2) It is also the basis for more
efficient realizations of tools, where the code is generated being based on the
formal specification.

If we take the platform level into account or the mapping onto that level
(see layers 4 and 5 in Fig. 6.1), then we have a higher level for data and compu-
tational processes. This makes the specification of tool behavior simpler and
it also facilitates the generation process, as more powerful target functionality
is at hand.

The state of conceptual realization modeling is described in Sect. 6.5, with
a long list of open problems to be solved. Nevertheless, it is a big step forward
what was achieved in IMPROVE, compared to just programming the tools.
Especially, it is remarkable that such techniques were applied in a project,
where industry was and is involved. Up to now, specification and generation
of tools was/is mostly applied in mere academic tool projects.

Trivially, for all the above cases of minor understanding – single tools
not developed according to the above methodology, synergy of new concepts,
integration of tools for distributed development processes – we just program
and do not specify, interpret, or generate.

Résumé: Modeling and Tool Realization

What we have achieved by introducing different formal modeling levels is
currently called model-driven architectures, here in this book being applied to
tool construction. However, our examples show that the transition between
levels cannot be accomplished automatically.

We have integrated model development and tool construction. There are
islands of understanding of tool construction (the three columns of Chap. 6)
and other areas where we just use conventional programming in order to get
solutions.

The insight we have got corresponds to the transition from application
domain models to precise tool descriptions, and from there to a complete
conceptual model describing the details for an executable tool. As mentioned,
there are many places, where we just handcraft.

The deep transition knowledge we have developed for the intertwined tool
modeling and construction process not only applies to end user tools in chem-
ical engineering. It can also be used for tools being applied in the tool con-
struction process itself, namely for tools adapting tools to a specific context.
Deep knowledge on conceptual modeling can also be used for specification,
interpretation, and generator tools (see e.g. [334]).

760 M. Nagl

8.2.5 Tools Independent of or Specific to a Domain

The gaps of support we have found and discussed around Fig. 1.6 and the
solutions to overcome these gaps are not specific to chemical engineering.
There is a proof for this statement, as different groups involved in this book
also worked for supporting design or development processes in other areas,
as mechanical engineering, communication engineering, software engineering,
and alike.

For the transfer of the results of this book to other domains, there are
two possibilities: (a) We can apply the knowledge to get tools in the other
domain. Knowledge is here to be understood in a brought sense, including
know how, specification techniques, generators, etc. (b) Transfer might also
mean that we can eventually use the same tool, after some kind of adaptation
or parameterization.

Transferability of Results to Other Engineering Disciplines

There are results directly transferable to other engineering disciplines. For
example, the novel informatics support concepts of Sects. 3.1 to 3.4 can also
be used for development processes outside of chemical engineering. New or
extended tools (on top of existing ones) can be realized using these support
concepts.

In the same way, the methodological knowledge how to implement these
tools by using platforms, by using modeling on different levels, by using ap-
plication knowledge, if available, can be used. This applies to the “islands of
understanding” of tool construction as well as to direct programming.

Transferability applies to tools of the informatics side, as just described. It
also applies to the tool results of the engineering partners within IMPROVE.
Although the tool support is more specific – as mathematical modeling for
bridging chemical and plastics engineering, see 5.4, or heterogeneous simula-
tion by aggregating local simulations, see 5.3 – the basic ideas are transferable
as well.

Therefore, many of the tool results of this book can be transferred to
other engineering domains. Others are even directly applicable, as to be seen.
So, the book is also addressing readers outside of chemical engineering. This
statement is partially verified by looking on the cooperation partners of our
technology transfer activities described in Chap. 7.

Generic Tools and Parameterization

There are general tools which are not specific for an application domain and,
therefore, applicable to any domain. An example is EXCEL, a broadly used
general tool. We find such general tools also as results of IMPROVE. The
WOMS tool to denote and discuss work processes is of that type (see Sect. 5.1)
as well as the tool for labor capacity simulation (see 5.2).

Review from a Tools’ Perspective 761

If some adaptation of a tool to be used in some context is necessary, we dis-
tinguish two different forms. On one side, realization adaptation is necessary,
as to connect to a specific platform, a specific component for data manage-
ment or storage etc. These topics have to do with porting a tool to another
context. Thus, these topics are not dependent on an application domain, but
on the infrastructure context in which a tool is used.

On the other hand, tools have to be parameterized to fit to a specific appli-
cation domain, but also due to other reasons, as user behavior, specific rules
of a company, etc. This is, for example, the case for the reactive management
tool of Sect. 3.4. Parameterization there means to introduce types of docu-
ments, of subprocesses, but also cooperation forms. So, parameterization here
means to make the tool suitable in its outside behavior.

Parameterization can be done as a preparation step before any use. For
the management tool of Sect. 3.4 this was shown by using the modeling en-
vironment. The determinations made with this environment are then used to
generate a suitable management system. The second possibility is to param-
eterize a tool during execution time by the end user. We find this runtime
parameterization as one possibility in Sect. 3.2 on integrators.

Parameterization can have different granularities : A tool is “locally” pa-
rameterized for a specific user, specific habits in a department, or specific
knowledge of a subdomain. Moreover, a tool can also be parameterized for
the cooperation of different people from different subdomains. An even more
comprehensive form is, if a complete development process is parameterized,
implying local parameterizations of used specific tools. The latter might hap-
pen also for distributed development processes where subprocesses are carried
out in different companies, which needs adaptation to the habits of these
different companies.

Any solution for adaptation/parameterization needs clear interfaces : When
porting a tool, a specific component has to be bound below of a general inter-
face. When parameterizing to a specific context, specific determinations have
to be inserted on top of a generic interface.

8.2.6 Summary and Conclusion

There are a lot of tool results to be found in this book and the tool construction
knowledge, presented here, is rather comprehensive. Tool construction is the
second global goal of IMPROVE, besides modeling development processes. As
we have seen, these two global aspects even do interact.

Summary on Tools

The elaborated state of the art is due to the comprehensive view on tools and
their construction, we have taken in IMPROVE:

• We derive tools which fit to explicit application domain models.

762 M. Nagl

• Tool support addresses all granularities of processes and products: fine-
grained work processes of single developers and their corresponding de-
tailed results, fine-grained dependencies between different personal pro-
cesses and products, medium- and coarse-grained management processes,
and the interaction of fine-grained technical and coarse-grained manage-
ment processes.

• Tool support addresses the different aspects of design processes and prod-
ucts. Let us take the processes as example: WOMS supports denoting
work processes and discussions about them on different levels of granu-
larity (see Sect. 5.1). Direct process support allows to use the experience
of a developer on a fine-grained technical level (Sect. 3.1), whereas reac-
tive management regards medium-grained processes for the whole project
(see Sect. 3.4). The topic of simulation according to resources on the same
granularity level is studied in 5.2. Finally, working areas on domain level
regard processes of a coarse-grained form (see Chap. 2).

• Even more, support is also given for the parameterization/adaptation of
tools (e.g. parameterization before or during execution), not only for using
them.

• Tool construction is using reuse techniques. Very elaborated forms of such
techniques have been presented.

• The idea of building tools on elaborated platforms was strictly followed.
• Support of distributed development processes was also intensively studied.
• Tool construction was regarded to be integrated with modeling on different

levels.
• Transferability of tool results and parameterization of generic tools was in

our mind from the very beginning.

Selection of Open Problems

Of course, there are many open problems on tools, which IMPROVE delegates
to other researchers or research groups. Here is a small selection:

• Sects. 3.1 to 3.4 describe new support concepts for cooperation from the
informatics perspective. Are there other forms, not addressed here? Also,
we find heterogeneous simulation or specific mathematical modeling tech-
niques for evaluating the complete plant, or for regarding specific aspects
of plastics processing etc. Are there more application specific tools of that
kind? Are there even some more tools which have a general character?

• IMPROVE concentrates on conceptual design and basic engineering. Are
all the problems of development processes found in this part of the over-
all process, or do we find new problems/demands for tool support when
regarding later phases of the chemical design process?

• Sect. 6.5 lists a lot of modeling problems still to be solved. These problems
are also tool construction problems, as any progress in modeling allows to
introduce elaborated reuse techniques for tool construction.

Review from a Tools’ Perspective 763

• Of course, the problems of distributed development across different com-
panies are only touched in this book and not completely investigated. So,
the essential question of cooperation on one hand and knowledge hiding
on the other hand was only partially answered.

• The question of building general tools, which can be parameterized for a
specific context, was addressed by different groups within IMPROVE. Can
this be made to a uniform approach for tool construction, i.e. not to develop
domain- or context-specific tools, but instead general and parameterizable
ones?

• IMPROVE can be regarded as a big software tool/integration project. For
this project, all support mechanisms studied in this book can be applied as
well. So, for example, we could have used the experience of tool developers,
integrators for modeling layer transitions, reactive management for the
tool projects etc. What would have been our profit on those modified
construction processes?

8.3 Review from an Industrial Perspective

W. Marquardt and M. Nagl

Abstract. This short section presents some thoughts on the relevance and the im-
pact of the research work in IMPROVE on industrial practice. Though, the research
program has been linked to industrial requirements and has seen a continuous review
from industrial colleagues to refocus the research objectives and to assure practical
relevance of the IMPROVE research approach, only few concrete results have made
it yet into industrial practice. However, the problems addressed in IMPROVE have
been receiving significant attention in industry, in particular in the recent past. In
this sense, IMPROVE has been addressing a timely and forward-looking fundamen-
tal research program, which has come too early to be readily absorbed by industry.
However, it will be of significant impact on industrial practice in the future in both,
the software as well as the chemical and process industries.

8.3.1 Introduction

This section addresses the question how the research work in IMPROVE has
had an impact on industrial practice in process and plant design from the
chemical and process engineering as well as from the software vendors’ per-
spectives. We will start this section with a brief discussion on business ob-
jectives and the relations between these industries, which obviously act as
“constraints” in the process of transferring results from the research in IM-
PROVE to industrial practice.

The interface between the IMPROVE research project and industry has
been complicated because IMPROVE addressed two different but interdepen-
dent branches of industry with different business objectives. The business ob-
jective of software tool vendors is to provide functional IT tools and services
to their customers, the process engineering companies, and to support and
improve the quality of engineering design processes. The business objective
of the process engineering companies is to design processes and to construct
plants for plant owners and operators with given functional specifications, at
target cost and in a given time period. Process engineering software is in the
first place considered a cost factor, which has to be justified to management.
Though design software environments constitute an indispensable part of the
engineering design platform, it is rarely seen as a competitive advantage be-
cause it is likewise available to any competitor at similar cost.

Software tool vendors will only further develop and improve their software
products if there is either demand for new and improved functionality from
their customers or if they can cut down development, maintenance, and de-
ployment costs of their software products. The latter driving force is largely
independent of customer requirements but determined by the advances in
computer science and software technologies.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 764–773, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Review from an Industrial Perspective 765

Process engineering software is complex in nature and targets a relatively
small market. As a consequence, there are only few major product lines avail-
able in the market which are widely used in the process industries. The re-
sulting oligopoly hinders advances in process engineering software. Given their
market power, the software vendors typically try to offer integrated solutions
satisfying all the needs of their customers. As a consequence, their software is
deliberately not sufficiently open and often only provides low level interfaces
for data exchange.

A single customer does typically not have a sufficiently strong market
position to enforce software modifications or to even influence the software
road map of a vendor. Consequently, interest groups have been formed by
the customers of most major process engineering software packages to use the
increased market power to jointly put the screws on the vendors. These interest
groups gather and reconcile the sometimes conflicting requests regarding the
improvement and further development of the software.

Obviously, this alignment process results in compromises and prevents the
development of design support solutions which match the design process of
an individual organization and hence contribute to a competitive advantage.
Typically, these requests are not addressing software functionalities from the
perspective of the business process in the engineering design organizations but
rather focus on improvements of single tools from a user’s perspective and on
their external software interfaces. As a consequence, it is largely accepted that
the commercially available design support software determines the way design
processes are carried out to a significant extent.

There has been only little reflection on fundamental issues of how to man-
age and organize design processes across institutional and geographical or-
ganizational boundaries in the process industries in the last two decades. In
contrast to the automotive, aerospace, and parts manufacturing industries,
simultaneous and concurrent engineering have not been raising a significant
level of awareness in the process industries.

Still, incremental changes have been continuously applied to the design
process to react to the globalization of engineering services, the significant
difference in the cost of engineering labor around the globe, and the growing
competence level in process design and engineering in the developing coun-
tries. This continuing process of globalizing engineering skills will result in
increasing cost pressure and hardening of competition, which is expected to
initiate business process re-engineering projects in the engineering organiza-
tions in the future to improve the design processes in the highly industrialized
countries.

In conclusion, the industrial structure has always been posing a substantial
challenge to transfer results from the IMPROVE project to industrial practice
and to impact the current status of process engineering design software on the
one and the process design process on the other hand. In the following two
subsections, we will assess the impact of the IMPROVE project on the software

766 W. Marquardt and M. Nagl

industry and the end-users industries in chemical and process engineering in
two separate subsections.

8.3.2 Software Industry

The IMPROVE project has had a lot of interaction with software vendors
all along during dedicated workshops, project meetings, and scientific confer-
ences. Furthermore, nearly all tool subprojects of IMPROVE had a – more or
less long-lasting – connection to industry. Despite these significant efforts, the
IMPROVE project has not been able to broadly influence the developments
of the major vendors of process engineering software.

The major scientific objectives of IMPROVE in the area of software en-
gineering, though timely and relevant from a technological point of view,
were, however, not always in line with the current business objectives and
the technological road maps of the software industries. Furthermore, research
in IMPROVE resulted in software prototypes to illustrate the advanced func-
tionality and to demonstrate the proof-of-concept. This software has not been
designed to be directly integrated in the software product portfolio of any
vendor.

Such a direct transfer of the research results cannot and has not been the
research objective of IMPROVE. Rather, such a transfer requires dedicated re-
search activities involving a software vendor during all phases of the software
development cycle, which aims at extending and modifying existing commer-
cial software. Such research activities have been initiated and are described in
Chap. 7.

In the following subsection, we will give a few concrete examples of how
the results have impacted the developments in the process engineering software
industries.

Integrated Process/Product Model

The objective of IMPROVE to develop an integrated process and product
model, spanning the application domain, tool functionalities and software plat-
forms with both a product data as well as an engineering workflow perspective,
has been by far too visionary and forward-looking to get the chance of being
picked up in the short-term by the software industries.

According to our knowledge, any kind of formal information model cov-
ering at least relevant parts of interest for model-based software construction
has been completely lacking in the process engineering software industry when
the IMPROVE project has been started and is most likely still not yet em-
ployed. Nevertheless, we know of a few process engineering software vendors
who have adopted the IMPROVE strategy at least to some extent to improve
their software engineering processes. For example, AspenTech has started a
major modeling effort to guide the software development and the integration
of third party products. This model has been the basis for a complete redesign

Review from an Industrial Perspective 767

of the Aspen Engineering Suite. Though the IMPROVE modeling results have
not directly been used in AspenTech’s project, there have been intensive con-
tacts between IMPROVE researchers and AspenTech’s software engineers on
information modeling issues.

Information modeling is also a necessary pre-requisite for data integration
either by means of some central data store or by some data exchange mecha-
nism. Despite an early acknowledgment of the need for a standardized format
for process engineering data and various attempts to develop according stan-
dardized data models (see Chap. 2), largely independent but often knowing
of the IMPROVE activities, these data models have not yet found adequate
attention in the process industries. The reasons for this lack of adoption is
not completely clear. They seem rather related to company culture than to
the maturity of the models or of the software technology employed. It is in-
teresting to note that XML-based data models such as CAEX of ABB or
PlantXML of Evonik Degussa have been adopted in industrial applications at
least to some extent despite the restriction to product data and the limited
applicability due to the lacking semantic foundation.

In conclusion, the software industry does not yet seem to be ready to
absorb the more involved modeling concepts and software technologies like
those brought forward in the IMPROVE project.

Tool Realization and Integration

The major process engineering software vendors have integrated their prod-
uct portfolio into engineering design environments. Tool integration has been
achieved largely manually in time-consuming and expensive software projects.
The concepts of IMPROVE have been observed with great interest but have
not been applied yet in practice.

The transfer into industrial practice can again only be achieved by concrete
joint projects with direct involvement of industry as they are currently car-
ried out. There are three active transfer projects dealing with transferring the
new and elaborated support concepts of Sects. 3.1, 3.2, and 3.4 to make them
available for process tools in industry: One is introducing experience-based
processes at aiXtrusion, a process automation company for plastics process-
ing (see Sect. 7.5). Two others are carried out with innotec, a tool vending
company. On the one hand the idea of integrators is realized in an industrial
setting (see Sect. 7.6). On the other hand reactive design process management
is introduced as an additional functionality of a suite of tools (see Sect. 7.7).

This is regarded to be a success for IMPROVE. However, these projects
are not taking up the long-term philosophy of IMPROVE’s tool construction
process : (a) Starting from application models to derive UI-models, (b) regard-
ing tool construction as a model-driven process across different layers, (c)
using the functionality of a distributed data and process platform within tool
construction to improve portability, and (d) that tool construction could and
should use elaborated reuse techniques as shown in Chap. 3.

768 W. Marquardt and M. Nagl

However, these transfer projects took up the idea of IMPROVE that tool
integration is more than just having different tools running in the same con-
text. The three transfer projects adopted the idea that tool integration needs
new functionality invented to improve the quality and the effort of design
processes.

Whenever nowadays listening to a talk at a tools’ conference the buzzwords
“integration” and “model-driven application development” appear. The differ-
ent facets of the integration problem and of model-driven development (see
Chaps. 3, 4, 5, and 6) have not reached industry. So, the long-term message of
IMPROVE was not acknowledged by industry yet. We are optimistic that it
will finally be recognized. Both above problems, if a comprehensive solution
is aimed at in industry, will show the value of IMPROVE’s solutions.

A-posteriori Integration

Only the smaller companies are interested in a-posteriori integration of third
party products into an integrated process engineering design environment. In
contrast, the major software vendors have always tried to offer their own
solutions to their clients to strengthen their market position. Only in a few
cases, dedicated interfaces to software of a few selected partners have been im-
plemented. Transparent or even standardized open interfaces between process
engineering software components cannot be achieved by a research project like
IMPROVE. Rather, a large consortium incorporating not only research insti-
tutions but the major industrial players is necessary to achieve the definition
of such standardized interfaces and their enforcement in the longer run.

The CAPE-OPEN project may serve for illustration [566]. This project
has been funded by the EU in parallel to the IMPROVE project with par-
ticipation of two IMPROVE research teams. The project successfully defined
open interfaces for the major modules of process simulation software. Despite
the fairly narrow scope, the financial effort has been substantial. The project
could only be successful because of an active participation of the relevant
software vendors and their clients who had to sort out not only the technical
but also the commercial issues. The academic partners’ role has been of an
advisory and quality assurance type. Today, a few years after completion of
the project, significant efforts are spent by a Co-LaN, a non-for-profit interest
group which maintains and extends the standard [997]. Only due to continued
efforts of Co-LaN, the CAPE-OPEN standard is implemented readily by the
smaller software companies and only reluctantly by the major vendors.

The concepts and methodologies for a-posteriori integration developed and
benchmarked by IMPROVE are of significant importance to those software
vendors who offer niche products and hence do not yet have a strong mar-
ket position. They can benefit significantly from the IMPROVE technologies
which had to explicitly address the lack of open interfaces or incomplete knowl-
edge on the data structure and control flows in the available interfaces of the

Review from an Industrial Perspective 769

commercially available tools provided by vendors with a strong market posi-
tion.

The problem of a-posteriori integration does not only appear for tools. It is
even more important in the context of reengineering of business administration
software in the framework of a service-oriented architecture. Therefore, it is
not surprising that the corresponding transfer project is carried out together
with the software development branch of an insurance company (see Sect. 7.8).

8.3.3 Chemical and Process Industries

The understanding and reengineering of existing process design processes have
been one of the ambitious objectives of the IMPROVE project. Obviously, ac-
tual business processes can hardly be influenced by the results of a research
project, which aims at advancing fundamental concepts, methods, and ex-
ploratory tools. A change of actual business processes is typically triggered
either by economical opportunities or threats. Such changes are often facili-
tated or even enabled by novel methodologies and tools.

Our industrial contacts considered research on design process modeling
and improvement as well as process-oriented support tools as an interesting
academic exercise of little industrial relevance, when the IMPROVE project
started. At that time, workflow modeling and support have been introduced in
management and business administration in the process industries. Workflow
management or process-oriented support functionality has not been consid-
ered relevant for engineering design processes beyond the very simple workflow
components of document management systems of that time. In the contrary,
any monitoring, guidance, or even control functionality had the notion of su-
perintending the well-trained and knowledgeable designers and of constraining
their creativity.

Changing Mindset: New Look on Design Processes

The situation has significantly changed in the recent past. The process design
and engineering process is considered to take way too much time to be com-
petitive in the global market, the chemical and process industries are facing.
A group of industrial and academic experts are currently preparing a con-
ference to take place in summer of 2009 in Tutzing, Germany, to identify all
suitable technological and organizational means to shorten the design and
engineering process from a product idea to plant start-up by 50 %. This am-
bitious objective can obviously only be reached if various lines of actions are
followed.

One of them is definitely the reengineering of the design process and its
support by (work process-oriented) software tools. Established concepts of
simultaneous or concurrent engineering are not considered to be sufficient to
solve the problem. Rather, a complete reorganization of the design process
emphasizing a sufficiently fine level of granularity is required.

770 W. Marquardt and M. Nagl

A complete prescription of the design process is not appropriate, rather,
some degree of indeterminism and reactivity has to be accepted to cope with
the predictably unforeseeable during the design process. The decision-making
power of the individual engineer has to be constrained in those cases where
best practice solutions can be reused and where more than one equally good
solution is possible. Hence, de-individualization and standardization have to
be carefully enforced where appropriate.

Various measures have to be regarded : Design automation as well as auto-
matic design checks have to be put in place to address routine tasks. Super-
vision and control of the design process as well as proactive risk management
requires integrated and consolidated views on the design data. The level of
abstraction reflected in these views have to comply with the roles of the vari-
ous stakeholders in the design process such as the project manager, the task
managers as well as the design engineers. The interfaces between the various
organizational units participating in the design process need particular atten-
tion to avoid time-consuming consolidation of the product data as well as of
the design process itself.

The fact that this conference project is industrially driven clearly demon-
strates a new mindset in the chemical and process engineering. This new
mindset is very much in line with the initial objectives of the research carried
out in IMPROVE. Many of the concepts, methods, and prototypical tools re-
sulting from the research in IMPROVE form a very good starting point to
address and implement a significant reduction of the time needed to build a
chemical plant.

In addition to this changing mindset, some concrete developments in better
supporting and improving the design process have been or are currently carried
out. Two exemplary areas are discussed in the following paragraphs.

Integration and Consolidation of Product Data

The integration and consolidation of the design data during a project has al-
ways been an issue in the process industries. Standardized data models have
been advocated as one building block for product data integration and con-
solidation. Despite the various substantial efforts reviewed in Chap. 2 of this
book, there has been very little progress for a long time for several reasons. In
particular, some industrialists believed that the work processes and the docu-
ment styles are significantly different to prevent standardization at reasonable
effort. The value of a common data model has been initially underestimated
because of the limited exchange of detailed design data across organizational
boundaries. In addition to this users’ perspective, the early efforts in develop-
ing common and standardized product data models have not been successful.
The apparent complexity could not be appropriately handled. The scope of
standardizing all product data in complete detail was not reasonable, regard-
ing the still immature data modeling methodologies and software technologies
available at that time.

Review from an Industrial Perspective 771

Today, there is a great demand for standardized data models not only
for integration and consolidation but also for the exchange of data across in-
stitutional boundaries during the design process, for electronic procurement
of equipment during plant construction and for the handover of the design
package from the engineering company to the operator/owner of the plant.
Today, it is common sense that the standardization of product data is techni-
cally feasible and economically viable if appropriate industry-driven consortia
were formed. IMPROVE has obviously made only a modest contribution of
this change in mindset.

The IMPROVE project has neither been in the position to deliver an
industrial strength solution to product data standardization but came up
with a modeling framework which not only comprises a sound starting point
for a standardization project but also provides a methodology for compiling
reusable data models for data integration and consolidation as well as for tool
integration. The first industrial evaluation of the modeling approach is cur-
rently undertaken in a transfer project with Evonik Degussa and ontoprise as
described in Sect. 7.2.

Design Process Modeling and Its Applications

The design process modeling problem has not been as prominent as the data
integration and consolidation problem in the past. Design process modeling
and support have no track record. Emphasis has always been only on manage-
ment and administrative work processes which are different from engineering
design processes. However, awareness for design process modeling and support
has been steadily growing in the recent past, in particular in those companies
who were in contact with the IMPROVE project for a long time.

The IMPROVE project has been able to convince a number of industrial
partners that they should put more emphasis on systematically capturing, im-
proving, and supporting their design processes. Various modeling case studies
have demonstrated that a better understanding of the actual design processes
can be of an enormous value for performance improvements, which often can
be implemented at very little cost.

Consequently, design process modeling and analysis – either qualitative by
simple inspection or quantitative by discrete-event simulation – is considered
a simple and convenient means towards design process improvement. Once
models describing the actual design process are available, they should be used
in various contexts for different tasks during the project. The transfer projects
described in Sects. 7.3 and 7.7 address exactly these issues. These projects may
be considered a very good starting point to introduce the more sophisticated
process support functionalities described in Sects. 3.1 and 3.4 into industrial
practice.

772 W. Marquardt and M. Nagl

8.3.4 Concluding Summary

The following concluding remarks hold true for industrial recognition of IM-
PROVE’s results on tools by tool vendors as well as of its results on a better
understanding of design processes and their products by the process industries.

The relevance of the research agenda of IMPROVE has not fully been ac-
knowledged by industry when IMPROVE got started. One reason for this lack
of attention has been the business climate of the time. There has not been
sufficiently strong economical pressure to reevaluate the design practice and
to question the way design support tools have been used. Another reason for
the limited attention of industrial practitioners is the focus of IMPROVE on
fundamental and long-term research objectives which should result in novel
concepts and methodologies rather than in prototypical tools to be demon-
strated and evaluated by industry.

The prototypical tools developed during IMPROVE have been perfectly
serving the needs to demonstrate the power of the novel concepts and method-
ologies in IMPROVE. However, there has not been sufficient functionality
built into these prototypes to facilitate application and evaluation during some
part of an industrial design process. Last but not least, the IMPROVE soft-
ware prototypes did not perfectly fit the software infrastructure in industry.
Therefore, major coding effort would have been necessary to overcome this
mismatch and to integrate the IMPROVE prototypes with existing industrial
tools. An industrial evaluation of the IMPROVE research results would have
called for functional prototypes integrated into a specific given industrial soft-
ware infrastructure. This coding task would have been of a complexity which
cannot be dealt with in any university research project even if substantial
resources are available.

As a consequence, industrial practitioners could not be fully convinced that
the IMPROVE approach delivers the concepts and tool functionality which is
necessary to substantially improve actual industrial design processes. The lack
of concrete tools industrial partners could “play with” also impeded commu-
nication between researchers and practitioners on requirements and possible
solutions. The transfer projects have been setup in a manner to address these
deficiencies and to effectively bridge the gap between fundamental research
and industrial practice. In all cases, tool functionality is defined and devel-
oped in a joint research effort involving academic researchers and industrial
practitioners. This tool functionality is put on top of existing process design
software to guarantee a seamless integration and use in real design processes.

The changing mindset described in the previous section clearly shows that
the research objectives of IMPROVE have been timely and forward looking. As
often in the history of science, though to the point, the research results have
not been absorbed by industrial practice because the time has not been ripe.
The more recent discussions with industrial colleagues, for example during the
preparation of the transfer projects or during the preparation of the Tutzing
conference, clearly show that the IMPROVE project has been coming too

Review from an Industrial Perspective 773

early to result in a revolution in the way industrial process design processes
are carried out and supported by information technologies.

Nevertheless, the research results documented in this volume will find their
way into industrial application in due time because they have addressed the
right problems and delivered the right concepts and methodologies. The cor-
responding ideas and concepts have been proved by prototypes, but not in an
industrial setting. We are optimistic that this will be done in the next future.

8.4 Review from Academic Success Perspective

M. Nagl

Abstract. This short section aims at evaluating the academic outcome of the CRC
IMPROVE from 1997 up to now and also sketches its further outcome as TC 61. We
do this by regarding different perspectives: (a) The number and value of publications,
(b) the contribution to international conference activities, and (c) how we laid the
basis for or accelerated the career of young scientists. Joint activities together with
industry and their consequences are discussed in sections 5.1 and 8.3.

8.4.1 Publications Output

Up to now, the members of the CRC IMPROVE or its successor Transfer
Center have produced about 485 publications, most of them reviewed, which
are related to the topic of this book.

Articles

The following table classifies the article publications of IMPROVE.

Table 8.1. Publications: classifying IMPROVE articles

Scientific Journal Workshop/Conference Book Contributions
Publications Proceedings’ Publications

88 217 84

Most of these publications are specific to a subtopic of IMPROVE, e.g. an
article on “Conceptual Information Models for Chemical Process Design”. So,
they are the results of subprojects or of one group. However, in IMPROVE
a big number of articles was also written in cooperation of two or even more
groups. There is hardly another international project with such a big number
of joint publications.

Also remarkable is the number of 23 survey articles on the IMPROVE
approach or its results, produced within this joint project.

Books

Especially, the number of 89 books is worth mentioning, many of them Ph.D.
theses. Please note, that in the Table 8.2 of this subsection most of the dis-
sertations are not included. Books are only mentioned here, if they appeared
as books of an internationally known publishing company. The most compre-
hensive collective result of IMPROVE in the form of a book is, of course, this
volume. The following table gives the list of major book publications.

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 774–779, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Review from Academic Success Perspective 775

Table 8.2. Major book publications of IMPROVE

Bayer, B.: Conceptual Information Modeling for Computer-Aided Support of Chem-
ical Process Design, VDI Verlag (2003)

Eggersmann, M.: Analysis and Support of Work Processes within Chemical Engi-
neering Design Processes, VDI Verlag (2004)

Hackenberg, J.: Computer Support of Theory-Based Modeling of Process Systems,
VDI Verlag (2006)

Jarke, M./ Lenzerini, M./ Vassiliou, Y./ Vassiliadis, P.: Fundamentals of Data Ware-
houses, 218 pp., Springer-Verlag (1999), 2nd Ed. (2003)

Jeusfeld, M./ Jarke, M./ Mylopoulos, J.: The Method Engineering Textbook, MIT
Press, to appear 2008

Linnhoff-Popien, C.: CORBA – Communication and Management (in German), 370
pp., Springer-Verlag (1998)

Luczak, H./ Eversheim, W.: Telecooperation: Industrial Applications in Product
Development (in German), Springer-Verlag (1999)

Luczak, H./ Bullinger, H.-J./ Schlick, C./ Ziegler, J.: Support of Flexible Production
by Software-Methods, Systems, Examples (in German), Springer-Verlag (2001)

Nagl, M./ Westfechtel, B. (Eds.): Integration of Development Systems in Engineer-
ing Applications – Substantial Improvement of Development Processes (in German),
440 pp., Springer-Verlag (1999)

Nagl, M./ Westfechtel, B.: (Eds.): Models, Tools, and Infrastructures for Supporting
Development Processes (in German), 392 pp., Wiley-VHC (2003)

Nagl, M./ Marquardt, W. (Eds.): Collaborative and Distributed Chemical Engineer-
ing: From Understanding to Substantial Design Process Support, 871 pp., Springer-
Verlag (2008), this volume

Pohl, K.: Process-Centered Requirements Engineering, 342 pp., Research Studies
Press, distributed by Wiley & Sons (1996)

Pohl, K.: Continuous Documentation of Information Systems Requirements, Habil-
itation, RWTH Aachen, Teubner-Verlag (1999)

Schopfer, G.: A Framework for Tool Integration in Chemical Process Modeling, VDI
Verlag (2006)

Westfechtel, B.: Models and Tools for Managing Development Processes, Volume
1646 of LNCS, 418 pp., Springer-Verlag (1999)

In addition, there are some further books on projects either being a predecessor
project, as [201, 334, 352], or being parallel projects [51, 277] with a more or
less close connection to IMPROVE.

776 M. Nagl

8.4.2 Conferences Output

IMPROVE’s CRC 476 and TC 61 have contributed to many international con-
ferences or workshops by giving presentations. Here, we only list those interna-
tional conferences/workshops which have been heavily influenced by the pre-
sentation of IMPROVE results as, for example, there was a complete section of
IMPROVE contributions. Moreover, researchers, active in IMPROVE, have
organized a lot of further international or national workshops/conferences,
having a close connection to IMPROVE.

The following list only contains the important events. The industry work-
shops of IMPROVE in Germany have already been mentioned in Sect. 7.1
and, therefore, are not repeated here.

Table 8.3. Conferences/workshops influenced or organized by IMPROVE

5th Intl. Conf. on Foundations of Computer-Aided Process Design, Breckenridge,
CO, USA, 1999 [828]

Symp. on Models, Tools, and Infrastructures for the Support of Development Pro-
cesses (in German), Aachen, 2002 [353]

8th Intl. Symp. on Process Systems Engineering, Kunming, China [593], 2003

Intl. Workshop on “The Role of Empirical Studies in Understanding and Supporting
Engineering Design”, Gaithersburg, MD, USA, 2003 [430]

16th European Symp. on Computer-Aided Process Engineering (Escape-16) and 9th

Intl. Symp. on Process Systems Engineering, Garmisch-Partenkirchen, 2006 [302]

Intl. Workshop AGTIVE’99 on “Applications on Graph Transformation with Indus-
trial Relevance”, Kerkrade, The Netherlands, 1999 [350]

Intl. Workshop AGITVE’03 on “Applications on Graph Transformation with Indus-
trial Relevance”, Charlottesville, VA, USA, 2003 [363]

Intl. Workshop AGTIVE’07 on “Applications of Graph Transformation with Indus-
trial Relevance”, Kassel, 2007 [416]

GI Conf. INFORMATIK (in German), Aachen, 1997

Seminar on “Scenario Management”, Informatics Center Dagstuhl, 1998

Intl. Conf. on Advanced Information Engineering (CaiSE 99), Heidelberg, 1999

Intl. Conf. on Conceptual Modeling (ER 99), Paris, France, 1999

Intl. Conf. on Very Large Data Basses (VDB 2000), Cairo, Egypt, 2000

European Conf. on CSCW (ECSCW 01), Bonn, 2001

Systems Engineering (CaiSE 02), Toronto, Canada, 2002

There are many other conferences/workshops influenced or organized by IM-
PROVE members without having a close relation to IMPROVE. Therefore,
they are not given here. The annual reports of IMPROVE groups report on
this activities.

Review from Academic Success Perspective 777

8.4.3 Supporting Young Scientists’ Career

The most honorable task of university research projects is to promote the ca-
reer of young scientists. In the following we concentrate on two measurements
of career promotions, namely the number of dissertations which have been
finished and the number of professorships which have been taken by young
researchers of IMPROVE. There are numerous young scientists who have gone
to industry and have reached highly-respected positions there. They are not
further mentioned in this section, which only deals with academic success.

Doctoral Dissertations

The following table contains the names of young scientists who have finished
their Doctoral Dissertation in connection with IMPROVE. The list also con-
tains the names of some scientists who have successfully finished their “Habil-
itation”, a specific procedure in Germany and some other countries, by which
the home university certifies the ability of a young researcher to fulfill the
duties of a university professor. The corresponding names are marked by an
“H”. The list is in chronological order and, within one year, ordered according
to the groups of IMPROVE.

Table 8.4. Dissertations/Habilitations of young scientists of/or being related to
IMPROVE, by years and groups

Hoff, S., Inf. 4, 1997
Gallersdörfer, R., Inf. 5, 1997
Nissen, H.W., Inf. 5, 1997
Szcurko, P., Inf. 5, 1997
Lohmann, B., LPT 1998
Sattler, U., Inf. 1/LPT, 1998
Reimann, S., IKV, 1998
Stahl, J. IAW, 1998
Krapp, C.-A., Inf. 3, 1998
Westfechtel, B., Inf. 3, 1998, H
Fasbender, A., Inf. 4, 1998
Karabek, R., Inf. 4, 1998
Linnhoff-Popien, C., Inf. 4, 1998, H
Herbst, D., IAW, 1999
Schlick, C., IAW, 1999
Baumann, R., Inf. 3, 1999
Behle, A., Inf. 3, 1999
Cremer, K., Inf. 3, 1999
Gruner, S., Inf. 3, 1999
Winter, A., Inf. 3, 1999

Kesdogan, D., Inf. 4, 1999
Reichl, P., Inf. 4, 1999
Schuba, M., Inf. 4, 1999
v. Buol, B., Inf. 5, 1999
Dömges, R., Inf. 5, 1999
Nicola, M., Inf. 5, 1999
Pohl, K., Inf. 5, 1999, H
Baumeister, M. LPT, 2000
Molitor, R., Inf. 1/LPT, 2000
Depolt, J., IAW 2000
Radermacher, A., Inf. 3, 2000
Meggers, J., Inf. 4, 2000
Trossen, D., Inf. 4, 2000
Haumer, P., Inf. 5, 2000
Kethers, S., Inf. 5, 2000
Klamma, R., Inf. 5, 2000
Bogusch, R., LPT, 2001
Springer, J., IAW, 2001, H
Klein, P., Inf. 3, 2001
Büschkes, R., Inf. 4, 2001

778 M. Nagl

Cseh, C., Inf. 4, 2001
Küpper, A., Inf. 4, 2001
Becks, A., Inf. 5, 2001
Weidenhaupt, K., Inf. 5, 2001
Wolf, M., IAW, 2002
Münch, M., Inf. 3, 2002
Schleicher, A., Inf. 3, 2002
Lipperts, S., Inf. 4, 2002
Stenzel, R., Inf. 4, 2002
Klemke, R., Inf. 5, 2002
Nick, A., Inf. 5, 2002
Bayer, B., LPT, 2003
Foltz, Chr., IAW, 2003
Jäger, D., Inf. 3, 2003
Fidler, M., Inf. 4, 2003
Schoop, M., Inf. 5, 2003, H
Schlüter, M., IKV, 2003
von Wedel, L., LPT, 2004
Bouazizi, I., Inf. 4, 2004
Park, A., Inf. 4, 2004

Thißen, D., Inf. 4, 2004
List, Th., Inf. 5, 2004
Eggersmann, M., LPT, 2005
Gatzemeier, F., Inf. 3, 2005
Marburger, A., Inf. 3, 2005
Imhoff, F., Inf. 4, 2005
Pils, C., Inf. 4, 2005
Hackenberg, J., LPT, 2006
Schopfer, G., LPT, 2006
Böhlen, B., Inf. 3, 2006
Kirchhof, M., Inf. 3, 2006
Meyer, O. Inf. 3, 2006
Becker, S., Inf. 3, 2007
Kraft, B., Inf. 3, 2007
Miatidis, M., Inf. 5, 2007
Haase, Th., Inf. 3, 2008
Heller, M., Inf. 3, 2008
Ranger, U., Inf. 3, 2008

Young Professors

There is also a remarkable number of persons who, after doing research within
IMPROVE, got an appointment as a university professor. Table 8.5 contains
the list in alphabetic and not chronological order.

Table 8.5. IMPROVE has “produced” a number of professors

Stefan Gruner, Senior Lecturer, University of Pretoria, South Africa

Manfred Jeusfeld, Assoc. Professor, University of Tilburg, NL

Claudia Linnhoff-Popien, Full Professor, University of Munich, D

Hans W. Nissen, Professor, University of Applied Sciences Cologne, D

Klaus Pohl, Full Professor, University of Essen, D

Christopher Schlick, Full Professor, RWTH Aachen University, D

Ralf Schneider, Professor, University of Applied Sciences Regensburg, D

Mareike Schoop, Full Professor, University of Hohenheim, D

Andy Schürr, Full Professor, Technical University of Darmstadt, D

Klaus Weidenhaupt, Professor, University of Applied Sciences Niederrhein, Krefeld, D

Bernhard Westfechtel, Full Professor, University of Bayreuth, D

Review from Academic Success Perspective 779

8.4.4 Summary and Conclusion

This short section described the scientific outcome of the IMPROVE project.
It was mainly done by means of figures : counting and classifying publications,
conferences, and scientific success by Doctoral Dissertations, Habilitations,
and academic positions.

In order to evaluate the impact of IMPROVE one would have to regard,
how the results have influenced the scientific discussion on development pro-
cesses in chemical engineering, or engineering in general, and on corresponding
tool support and tool construction. This is much harder to evaluate. A rather
superficial evaluation would be to regard the number of citations of IMPROVE
publications.

Appendices

A.1 Addresses of Involved Research Institutions

Aachener Verfahrenstechnik, Process Systems Engineering
Prof. Dr.-Ing. Wolfgang Marquardt (Speaker substitute of IMPROVE)
Turmstr. 46, D-52064 Aachen

phone: +49 / 241 / 80-94668
fax: +49 / 241 / 80-92326
e-Mail: wolfgang.marquardt@avt.rwth-aachen.de

Chair and Institute of Plastics Processing
Prof. Dr.-Ing. Edmund Haberstroh
Pontstraße 49, D-52062 Aachen

phone: +49 / 241 / 80-93806
fax: +49 / 241 / 80-92262
e-Mail: zentrale@ikv.rwth-aachen.de

Chair and Institute of Industrial Engineering and Ergonomics
Prof. Dr.-Ing. Christopher Schlick
Prof. em. Dr.-Ing. Dipl.-Wirt.Ing. Holger Luczak
Bergdriesch 27, D-52062 Aachen

phone: +49 / 241 / 80-99440
fax: +49 / 241 / 80-92131
e-Mail: info@iaw.rwth-aachen.de

782 Appendices

Chair Computer Science 3 (Software Engineering)
Prof. Dr.-Ing. Manfred Nagl (Speaker of IMPROVE)
Ahornstr. 55, D-52074 Aachen

phone: +49 / 241 / 80-21300
fax: +49 / 241 / 80-22218
e-Mail: nagl@informatik.rwth-aachen.de

Chair Computer Science 4 (Communication and Distributed Systems)
Prof. Dr.rer.nat. Otto Spaniol
Ahornstr. 55, D-52074 Aachen

phone: +49 / 241 / 80-21400
fax: +49 / 241 / 80-22220
e-Mail: spaniol@informatik.rwth-aachen.de

Chair Computer Science 5 (Information Systems and Database Technology)
Prof. Dr.rer.pol. Matthias Jarke
Ahornstr. 55, D-52074 Aachen

phone: +49 / 241 / 80-21501
fax: +49 / 241 / 80-22321
e-Mail: jarke@informatik.rwth-aachen.de

Center for Computing and Communication
Dr. rer.nat. Torsten Kuhlen
Seffenter Weg 23, D-52074 Aachen

phone: +49 / 241 / 80-24783
fax: +49 / 241 / 80-22241
e-Mail: kuhlen@rz.rwth-aachen.de

A.2 Members of the CRC 476 and TC 61 783

A.2 Members of the CRC 476 and TC 61

In the following, we list the main actors of the CRC IMPROVE. Some of them
also appear as authors of the articles of this book. Approximately further 150
students – who either wrote their Master’s Thesis on a topic of the IMPROVE
project or who where affiliated as student’s researchers – contributed to the
success of IMPROVE. They do not appear in the following list.

Assenmacher, Ingo, Dipl.-Inform.
Babich, Yuri, Dipl.-Inform.
Baumeister, Markus, Dr.-Ing.
Bayer, Birgit, Dr.-Ing.
Bauer, Lutz, Dipl.-Inform.
Becker, Simon, Dipl.-Inform.
Becks, Andreas, Dr.
Böhlen, Boris, Dr.rer.nat.
Bogusch, Ralf, Dr.-Ing.
Bolke-Hermanns, Helen,

techn. Angest.
Brandt, Sebastian C., Dipl.-Inform.
Breuer, Marita, Math.-Techn. Ass.
Broll, Wolfgang, Dr.rer.nat.
Bürschgens, Guido,

Math.-Techn. Ass.
Büschkes, Roland, Dr.
Conrad, Christoph,

Math.-Techn. Ass.
Cremer, Katja, Dr.rer.nat.
Cseh, C., Dr.
Depolt, Jürgen, Dipl.-Wirt.-Ing.
Docquier, H., Dr.
Dömges, Ralf, Dr.
Eggersmann, Markus, Dr.-Ing.
Fasbender, A., Dr.
Fuß, Christian, Dipl.-Inform.
Foltz, Christian, Dipl.-Ing.
Friedrich, Jutta, Math.-Techn. Ass.
Fritzen, Oliver, Dr.rer.nat.
Geffers, Willi, Dipl.-Inform.
Gerhards, Sascha, Math.-Techn. Ass.
Gruner, Stefan, Dr.rer.nat.
Haase, Thomas, Dipl.-Inform.
Haberstroh, Edmund, Prof. Dr.-Ing.

Hackenberg, Jörg, Dipl.-Ing.
Hai, Ri, Dipl.-Ing.
Haumer, Peter, Dr.
Heer, Thomas, Dipl.-Inform.
Heimann, Peter, Dipl.-Inform.
Heller, Markus, Dipl.-Inform.
Herbst, Detlev,

Dr.-Ing., Dipl.-Wirt.-Ing.
Hermanns, Oliver, Dr.
Heyn, M., Dr.
Hormes, Jochen, Math.-Techn. Ass.
Hoofe, Markus, Dipl.-Inform.
Jäger, Dirk, Dr.rer.nat.
Jarke, Matthias, Prof. Dr.rer.pol.
Jertila, Aida, Dipl.-Inform.
Jeusfeld, Manfred, Dr., Hauptdozent
Kausch, Bernhard, Dipl.-Ing.
Kesdogan, Dogan, Dr.
Kethers, Stefanie, Dr.
Kirchhof, Michael, Dr.rer.nat.
Klamma, Ralf, Dr.rer.nat.
Klein, Peter, Dr.rer.nat.
Klemke, Roland, Dr.
Kluck, Markus, Math.-Techn. Ass.
Köller, Jörg, Dipl.-Inform.
Körtgen, Anne-Thérèse,

Dipl.-Inform.
Kraft, Bodo, Dipl.-Inform.
Krapp, Carl-Arndt, Dr.rer.nat.
Krogull, Rainer, techn. Angest.
Krobb, Claudia, Dipl.-Inform.
Krumrück, Elke, Math.-Techn. Ass.
Kuckelberg, Alexander, Dipl.-Inform.
Künzer, Alexander, Dr.-Ing.
Kuhlen, Torsten, Dr.rer.nat.

784 Appendices

Kulikov, Viatcheslav, Dipl.-Ing.
Linnhoff-Popien, Claudia,

Prof. Dr.rer.nat.
Lipperts, Steffen, Dr.rer.nat.
List, Thomas, Dr.rer.nat.
Lohmann, Bernd, Dr.-Ing.
Luczak, Holger,

Prof.em. Dr.-Ing., Dipl.-Wirt.-Ing.
Lübbers, Dominik, Dipl.-Inform.
Mackau, Dirk, Dipl.-Ing.
Marquardt, Wolfgang, Prof. Dr.-Ing.
Meggers, Jens, Dr.rer.nat.
Meyer, Bernd, Dipl.-Inform.
Meyer, Oliver, Dr.rer.nat.
Meyers, Andrea, Math.-Techn. Ass.
Miatidis, Michalis, Dr.-Ing.
Molitor, R., Dr.
Morbach, Jan, Dipl.-Ing.
Moron, O., Dr.
Münch, Manfred, Dr.rer.nat.
Munz, M., Dr.
Nagl, Manfred, Prof. Dr.-Ing.
Nick, A., Dr.
Niewerth, Christoph,

Math.-Techn. Ass.
Nissen, Hans W.,

Prof. Dr.rer.nat.
Oehme, Olaf, Dipl.-Ing.
Oldenburg, Jan, Dr.-Ing.
Peterjohann, Horst, Dipl.-Inform.
Pohl, Klaus, Prof. Dr.rer.nat.
Quix, Christoph, Dr.rer.nat.
Radermacher, Ansgar, Dr.rer.nat.
Ranger, Ulrike, Dipl.-Inf.
Retkowitz, Daniel, Dipl.-Inf.
Sattler, Ulrike, Dr.
Schares, L., Dr.
Scharwächter, Hanno, Dipl.-Ing.
Schleicher, Ansgar, Dr.rer.nat.

Schlick, Christopher, Prof. Dr.-Ing.
Schlüter, Marcus, Dr.-Ing.
Schmidt, Ludger, Dr.-Ing.
Schneider, Nicole, Dipl.-Inform.
Schneider, Ralph, Prof. Dr.-Ing.
Schoop, Mareike, Prof., Ph.D.
Schopfer, Georg, Dr.-Ing.
Schuba, Marko, Dr.
Schüppen, André, Dipl.-Inform.
Schürr, Andy, Prof. Dr.rer.nat.
Sklorz, Stefan, Dipl.-Inform.
Souza, D., Dr.
Spaniol, Otto, Prof. Dr.rer.nat.
Springer, Johannes, Dr.-Ing.
Stenzel, Roland, Dr.
Stepprath, F.-J., Dr.
Stewering, Jörn, Dipl.-Phys.
Theißen, Manfred, Dipl.-Ing.
Thißen, Dirk, Dr.rer.nat.
Töbermann, J.-Christian, Dr.-Ing.
Trossen, Dirk, Dr.rer.nat.
Volkova, Galina, Math.-Techn. Ass.
von den Brinken, Peter, Dr.-Ing.
von Wedel, Lars, Dr.-Ing.
Weidenhaupt, Klaus,

Prof. Dr.rer.nat.
Weinberg, Tatjana,

Math.-Techn. Ass.
Weinell, Erhard, Dipl.-Inform.
Westfechtel, Bernhard,

Prof. Dr.rer.nat.
Wiedau, Michael, Dipl.-Inf.
Wiesner, Andreas, Dipl.-Ing.
Winter, Andreas, Dr.rer.nat.
Wörzberger, René, Dipl.-Inform.
Wolf, Martin, Dipl.-Inform.
Wyes, Jutta, Dr.rer.nat.
Yang, Aidong, Ph.D.

References

R.1 Publications of the IMPROVE Groups73

1. Abel, O., Helbig, A., Marquardt, W.: Optimization approaches to control
integrated design of industrial batch reactors. In: Berber, R., Kravaris, C.
(eds.) Nonlinear model based process control. NATO-ASI Series, pp. 513–551.
Kluwer Academic Publishers, Dordrecht (1998)

2. Amin, M.A., Morbach, J.: DAML+OIL to OWL converter (2005),
http://www.lpt.rwth-aachen.de/Research/OntoCAPE/daml2owl.php

3. Amin, M.A., Morbach, J.: XML to OWL converter (2006),
http://www.lpt.rwth-aachen.de/Research/OntoCAPE/xml2owl.php

4. Armac, I., Retkowitz, D.: Simulation of Smart Environments. In: Proc. of the
IEEE Intl. Conf. on Pervasive Services 2007 (ICPS’07), Istanbul, Turkey, pp.
257–266. IEEE Computer Society Press, Los Alamitos (2007)

5. Assenmacher, I., Haberstroh, E., Stewering, J.: Einsatz der Virtuellen Realität
in der Kunststofftechnik. WAK Zeitschrift (2007)

6. Babich, Y.: Integration of web services into a QoS aware environment.
In: Proceedings of the 3rd International Conference on Computer Science,
Software Engineering, Information Technology, e-Business and Applications
(CSITeA’04), Cairo, Egypt (2004)

7. Babich, Y., Spaniol, O., Thißen, D.: Service Management for Development
Tools. This volume (2008)

8. Baumann, R.: Ein Datenbankmanagementsystem für verteilte, integrierte
Softwareentwicklungsumgebungen. PhD thesis, RWTH Aachen University
(1999)

9. Baumeister, M.: Ein Objektmodell zur Modellierung und Wiederverwendung
verfahrenstechnischer Prozessmodelle. PhD thesis, RWTH Aachen University
(2001)

73 For the reason of completeness the publications of this book are also contained in
the following bibliography of IMPROVE. So, this bibliography gives a complete
view of the publications of the CRC 476 and the TC 61 by the date of appearance
of this volume.

http://www.lpt.rwth-aachen.de/Research/OntoCAPE/daml2owl.php
http://www.lpt.rwth-aachen.de/Research/OntoCAPE/xml2owl.php

786 References

10. Baumeister, M., Bogusch, R., Krobb, C., Lohmann, B., Souza, D., von Wedel,
L., Marquardt, W.: A chemical engineering data model – website (1998),
http://www.lpt.rwth-aachen.de/Research/Completed/veda.php

11. Baumeister, M., Jarke, M.: Compaction of large class hierarchies in databases
for chemical engineering. In: Proceedings of BTW’99, Freiburg, Germany, pp.
343–361. Springer, Heidelberg (1999)

12. Baumeister, M., Marquardt, W.: The chemical engineering data model VeDa.
Part 1: VDDL – the language definition. Technical Report LPT-1998-01,
RWTH Aachen University, Process Systems Engineering (1998)

13. Bausa, J., von Watzdorf, R., Marquardt, W.: Shortcut methods for nonideal
multicomponent distillation: 1. simple columns. AIChE Journal 44, 2181–2198
(1998)

14. Bayer, B.: Conceptual Information Modeling for Computer Aided Support of
Chemical Process Design. PhD thesis, RWTH Aachen University. Published
in: Fortschritt-Berichte VDI: Reihe 3, Nr. 787. VDI-Verlag, Düsseldorf (2003)

15. Bayer, B., Becker, S., Nagl, M.: Model- and rule-based integration tools for
supporting incremental change processes in chemical engineering. In: Chen,
B., Westerberg, A.W. (eds.) Proceedings of the 8th International Symposium
on Process Systems Engineering (PSE 2003), Kunming, China, pp. 1256–1261.
Elsevier, Amsterdam (2003)

16. Bayer, B., Bogusch, R., Lohmann, B., Marquardt, W.: Szenariobasierte Anal-
yse von Entwicklungsprozessen. In: Nagl, M., Westfechtel, B. (eds.) Inte-
gration von Entwicklungssystemen in Ingenieuranwendungen – Substantielle
Verbesserung der Entwicklungsprozesse, pp. 389–401. Springer, Heidelberg
(1999)

17. Bayer, B., Eggersmann, M., Gani, R., Schneider, R.: Case studies in design
and analysis. In: Braunschweig, B., Gani, R. (eds.) Software Architecture
and Tools for Computer-Aided Chemical Engineering, pp. 591–634. Elsevier,
Amsterdam (2002)

18. Bayer, B., Marquardt, W.: A comparison of data models in chemical engi-
neering. Concurrent Engineering: Research and Applications 11(2), 129–138
(2003)

19. Bayer, B., Marquardt, W.: Towards integrated information models for data
and documents. Computers & Chemical Engineering 28, 1249–1266 (2004)

20. Bayer, B., Marquardt, W.: A conceptual information model for the chemical
process design lifecycle. In: Jeusfeld, M., Jarke, M., Mylopoulos, J. (eds.) The
Method Engineering Textbook, MIT Press, Cambridge (2007)

21. Bayer, B., Marquardt, W., Weidenhaupt, K., Jarke, M.: A flowsheet cen-
tered architecture for conceptual design. In: Gani, R., Jørgensen, S.B. (eds.)
Proceedings of the European Symposium on Computer Aided Process Engi-
neering – ESCAPE 11, pp. 345–350. Elsevier, Amsterdam (2001)

22. Bayer, B., Schneider, R.: Third deliverable of T6.1.1 “Support to Lifecycle
Models”. Technical Report GCO-WP611-InterfaceDescription.DOC, Global
CAPE-OPEN (2001)

23. Bayer, B., Schneider, R., Marquardt, W.: Integration of data models for pro-
cess design – first steps and experiences. Computers & Chemical Engineer-
ing 24, 599–605 (2000)

http://www.lpt.rwth-aachen.de/Research/Completed/veda.php

R.1 Publications of the IMPROVE Groups 787

24. Bayer, B., von Wedel, L., Marquardt, W.: An integration of design data and
mathematical models in chemical process design. In: Kraslawski, A., Turunen,
I. (eds.) Proceedings of the European Symposium on Computer Aided Process
Engineering – ESCAPE 13, pp. 29–34. Elsevier, Amsterdam (2003)

25. Becker, S.: Integratoren zur Konsistenzsicherung von Dokumenten in Entwick-
lungsprozessen. PhD thesis, RWTH Aachen University (2007)

26. Becker, S., Haase, T., Westfechtel, B.: Model-based a-posteriori integration of
engineering tools for incremental development processes. Software and Sys-
tems Modeling 4(2), 123–140 (2005)

27. Becker, S., Haase, T., Westfechtel, B., Wilhelms, J.: Integration tools support-
ing cooperative development processes in chemical engineering. In: Proceed-
ings of the 6th World Conference on Integrated Design & Process Technology
(IDPT 2002), Pasadena, California, USA, SDPS (2002)

28. Becker, S., Heller, M., Jarke, M., Marquardt, W., Nagl, M., Spaniol, O.,
Thißen, D.: Synergy by Integrating New Functionality. This volume (2008)

29. Becker, S., Herold, S., Lohmann, S., Westfechtel, B.: A Graph-Based Algo-
rithm for Consistency Maintenance in Incremental and Interactive Integration
Tools. Journal of Software and Systems Modeling (2007)

30. Becker, S., Jäger, D., Schleicher, A., Westfechtel, B.: A delegation based model
for distributed software process management. In: Ambriola, V. (ed.) EWSPT
2001. LNCS, vol. 2077, pp. 130–144. Springer, Heidelberg (2001)

31. Becker, S., Kirchhof, M., Nagl, M., Schleicher, A.: EAI, Web und eBusi-
ness: Echte Anwendungsintegration macht Aufwand? In: Jähnichen, S. (ed.)
Neue Webtechnologien & eBusiness Integration – Proceedings of ONLINE,
Congress VI, C630.01–C630.27. ONLINE GmbH (2002)

32. Becker, S., Körtgen, A., Nagl, M.: Tools for Consistency Management between
Design Products. This volume (2008)

33. Becker, S.M., Lohmann, S., Westfechtel, B.: Rule execution in graph-based
incremental interactive integration tools. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 22–38.
Springer, Heidelberg (2004)

34. Becker, S., Marquardt, W., Morbach, J., Nagl, M.: Model Dependencies, Fine-
Grained Relations, and Integrator Tools. This volume (2008)

35. Becker, S., Nagl, M., Westfechtel, B.: Incremental and Interactive Integrator
Tools for Design Product Consistency. This volume (2008)

36. Becker, S., Westfechtel, B.: Integrationswerkzeuge für verfahrenstechnis-
che Entwicklungsprozesse. In: Engineering in der Prozessindustrie. VDI
Fortschritt-Berichte, vol. 1684, pp. 103–112. VDI-Verlag, Düsseldorf (2002)

37. Becker, S., Westfechtel, B.: Incremental integration tools for chemical engi-
neering: An industrial application of triple graph grammars. In: Bodlaender,
H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 46–57. Springer, Heidelberg (2003)

38. Becker, S., Westfechtel, B.: Integrationswerkzeuge für verfahrenstechnische
Entwicklungsprozesse. atp – Automatisierungstechnische Praxis 45(4), 59–65
(2003)

39. Becker, S., Westfechtel, B.: Uml-based definition of integration models for
incremental development processes in chemical engineering. In: Proceedings of
the 7th International Conference on Integrated Design and Process Technology
(IDPT 2003), Austin, Texas, USA, SDPS (2003)

788 References

40. Becker, S., Westfechtel, B.: UML-based definition of integration models for
incremental development processes in chemical engineering. Journal of Inte-
grated Design and Process Science: Transactions of the SDPS 8(1), 49–63
(2004)

41. Becker, S., Wilhelms, J.: Integrationswerkzeuge in verfahrenstechnischen En-
twicklungsprozessen. Verfahrenstechnik 36(6), 44–45 (2002)

42. Becks, A.: Visual Document Management with Adaptable Document Maps.
PhD thesis, RWTH Aachen University (2001)

43. Behle, A.: Wiederverwendung von Softwarekomponenten im Internet. PhD
thesis, RWTH Aachen University (1999)

44. Behle, A., Kirchhof, M., Nagl, M., Welter, R.: Retrieval of software com-
ponents using a distributed web system. Journal of Network and Computer
Applications 25(3), 197–222 (2002)

45. Behle, A., Nagl, M., Pritsch, E.: Hilfsmittel für verteilte Anwendungssysteme:
Erfahrungen aus einigen Projekten. In: Wahlster, W. (ed.) Software-Offensive
mit Java, Agenten & XML – Proceedings of ONLINE 2000, Congress VI,
C630.01–C630.19. ONLINE GmbH (2000)

46. Böhlen, B.: Specific graph models and their mappings to a common model.
In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062,
pp. 45–60. Springer, Heidelberg (2004)

47. Böhlen, B.: A Parameterizable Graph Data Base for Development Tools (in
German). PhD thesis, RWTH Aachen University, Aachen (2006)

48. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: A frame-
work for building graph-based interactive tools. Electronic Notes in Theoreti-
cal Computer Science (Proceedings of the International Workshop on Graph-
Based Tools (GraBaTs’02), Barcelona, Spain, October 7–8, 2002) 72(2), 113–
123 (2002)

49. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: Building
interactive tools for visual languages. In: Proceedings of the 6th World Multi-
Conference On Systemics, Cybernetics and Informatics (SCI 2002), Orlando,
Florida, USA, pp. 17–22 (2002)

50. Böhlen, B., Ranger, U.: Concepts for specifying complex graph transformation
systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 96–111. Springer, Heidelberg (2004)

51. Bogusch, R.: A Software Environment for Computer-aided Modeling of
Chemical Processes. PhD thesis, RWTH Aachen University. Published in:
Fortschritt-Berichte VDI: Reihe 3, Nr. 705, VDI-Verlag, Düsseldorf (2001)

52. Bogusch, R., Lohmann, B., Marquardt, W.: Computer-aided process modeling
with ModKit. In: Proceedings of the CHEMPUTERS Europe III Conference,
pp. 1–15 (1996)

53. Bogusch, R., Lohmann, B., Marquardt, W.: Ein System zur rechnergestützten
Modellierung in der Verfahrenstechnik. In: Jahrbuch der VDI-Gesellschaft
Verfahrenstechnik und Chemieingenieurwesen, pp. 22–53. VDI-Verlag, Düs-
seldorf (1997)

54. Bogusch, R., Lohmann, B., Marquardt, W.: Computer-aided process modeling
with ModKit. Computers & Chemical Engineering 25, 963–995 (2001)

55. Bogusch, R., Marquardt, W.: A formal representation of process model equa-
tions. Computers & Chemical Engineering 21(10), 1105–1115 (1997)

R.1 Publications of the IMPROVE Groups 789

56. Bogusch, R., Marquardt, W.: The chemical engineering data model VeDa.
Part 4: Behavioral modeling objects. Technical Report LPT-1998-04, RWTH
Aachen University, Process Systems Engineering (1998)

57. Borning, M.: The anonymity service architecture. In: Proceedings of the 10th

International Conference on Computer Communications and Networks (IC-
CCN’01), Scottsdale, USA, IEEE Computer Society Press, Los Alamitos
(2001)

58. Borning, M., Kesdogan, D., Spaniol, O.: Anonymity and untraceability in the
internet. IT+TI Informationstechnik und Technische Informatik 43(5), 246–
253 (2001)

59. Bouazizi, I.: Proxy Caching for Robust Video Delivery over Lossy Networks.
PhD thesis, RWTH Aachen University (2004)

60. Bouazizi, I., Günes, M.: A framework for transmitting video over wireless
networks. In: Proceedings of the 6th World Multi-Conference On Systemics,
Cybernetics and Informatics (SCI 2002), Orlando, Florida, USA (2002)

61. Brandt, S., Turhan, A.-Y.: Using non-standard inferences in description log-
ics — what does it buy me? In: Proceedings of the KI-2001 Workshop on
Applications of Description Logics (KIDLWS’01), Vienna, Austria. CEUR
Workshop Proceedings, vol. 44 (2001), http://CEUR-WS.org/Vol-44/

62. Brandt, S.C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., Marquardt,
W.: Ontology-Based Information Management in Design Processes. In: Mar-
quardt, W., Pantelides, C. (eds.) 16th European Symposium on Computer
Aided Process Engineering and 9th International Symposium on Process
Systems Engineering, Garmisch-Partenkirchen, Germany, July 9–13, 2006.
Computer-Aided Chemical Engineering, vol. 21, pp. 2021–2026. Elsevier, Am-
sterdam (2006)

63. Brandt, S.C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., Marquardt,
W.: Ontology-Based Information Management in Design Processes. Comput-
ers & Chemical Engineering 32(1-2), 230–342 (2008)

64. Brandt, S.C., Schlüter, M., Jarke, M.: A Process Data Warehouse for Trac-
ing and Reuse of Engineering Design Processes. In: Proceedings of the 2nd

International Conference on Innovations in Information Technology (IIT’05),
Dubai, United Arab Emirates (2005)

65. Brandt, S.C., Schlüter, M., Jarke, M.: A Process Data Warehouse for Tracing
and Reuse of Engineering Design Processes. International Journal of Intelli-
gent Information Systems 2(4) (2006)

66. Brandt, S.C., Schlüter, M., Jarke, M.: Process Data Warehouse Models for
Cooperative Engineering Processes. In: Proceedings of the 9th IFAC Sympo-
sium on Automated Systems Based on Human Skill And Knowledge, Nancy,
France (2006)

67. Brandt, S., Fritzen, O., Jarke, M., List, T.: Goal-Oriented Information Flow
Management in Development Processes. This volume (2008)

68. Brandt, S., Jarke, M., Miatidis, M., Raddatz, M., Schlüter, M.: Management
and Reuse of Experience Knowledge in Continuous Production Processes.
This volume (2008)

69. Brandt, S.C., Schlüter, M., Jarke, M.: Using Semantic Technologies for the
Support of Engineering Design Processes. In: Sugumaran, V. (ed.) Intelligent
Information Technologies and Applications, IGI Publishing, Hershey (2008)

http://CEUR-WS.org/Vol-44/

790 References

70. Braunschweig, B., Fraga, E.S., Guessoum, Z., Paen, D., Piñoll, D., Yang, A.:
COGents: Cognitive middleware agents to support e-CAPE. In: Stanford-
Smith, B., Chiozza, E., Edin, M. (eds.) Proceedings of Challenges and
Achievements in e-business and e-work, pp. 1182–1189 (2002)

71. Braunschweig, B., Irons, K., Köller, J., Kuckelberg, A., Pons, M.: CAPE-
OPEN (CO) standards: Implementation and maintenance. In: Proceedings of
the 2nd IEEE Conference on Standardization and Innovation in Information
Technology, pp. 335–338 (2001)

72. Braunschweig, B., Jarke, M., Köller, J., Marquardt, W., von Wedel, L.: CAPE-
OPEN – experiences from a standardization effort in chemical industries. In:
Proceedings of the International Conference on Standardization and Integra-
tion in Information Technology (SIIT’99), Aachen, Germany (1999)

73. Börstler, J.: Programmieren-Im-Großen: Sprachen, Werkzeuge, Wiederver-
wendung. PhD thesis, RWTH Aachen University (1993)

74. Börstler, J., Janning, T.: Traceability between requirements engineering and
design: A transformational approach. In: Proceedings COMPSAC, pp. 362–
368. IEEE Computer Society Press, Los Alamitos (1992)

75. Büschkes, R.: Angriffserkennung in Kommunikationsnetzen. PhD thesis,
RWTH Aachen University (2001)

76. Büschkes, R., Noll, T., Borning, M.: Transaction-based anomaly detection in
communication networks. In: Proceedings of the 9th International Conference
on Telecommunication Systems, Modelling and Analysis, Dallas, Texas, USA,
pp. 33–47 (2001)

77. Büschkes, R., Seipold, T., Wienzek, R.: Performance evaluation of trans-
action-based anomaly detection. In: Proceedings of the 1st International
NATO Symposium on Real Time Intrusion Detection, Lisbon, Portugal (2002)

78. Büschkes, R., Thißen, D., Yu, H.: Monitoring and control of critical infrastruc-
tures (short paper). In: Proceedings of the 2001 International Conference on
Dependable Systems and Networks (DSN 2001), Göteborg, Sweden, pp. B68–
B69. IEEE Computer Society Press, Los Alamitos (2001)

79. von Buol, B.: Qualitätsgestützte kooperative Terminologiearbeit. PhD thesis,
RWTH Aachen University (2000)

80. Comanns, M.: Werkzeugunterstützung für erfahrensbasierte Wiederverwen-
dung von Prozessspuren. Master’s thesis, RWTH Aachen University (2006)

81. Cremer, K.: Using graph technology for reverse and re-engineering. In: Pro-
ceedings of the 5th International Conference on Re-Technologies for Informa-
tion Systems, Klagenfurt, Austria (1997)

82. Cremer, K.: A tool supporting re-design of legacy applications. In: Nesi, P.,
Lehner, F. (eds.) Proceedings of the 2nd Euromicro Conference on Software
Maintenance and Reengineering, pp. 142–148. IEEE Computer Society Press,
Los Alamitos (1998)

83. Cremer, K.: Graphbasierte Werkzeuge zum Reverse Engineering und Reengi-
neering. PhD thesis, RWTH Aachen University (1999)

84. Cremer, K., Gruner, S., Nagl, M.: Graph transformation based integration
tools: Application to chemical process engineering. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) Handbook on Graph Grammars and
Computing by Graph Transformation – Volume 2: Applications, Languages,
and Tools, pp. 369–394. World Scientific, Singapore (1999)

R.1 Publications of the IMPROVE Groups 791

85. Cremer, K., Klein, P., Nagl, M., Radermacher, A.: Verteilung von Arbeitsum-
gebungen und Integration zu einem Verbund: Hilfe durch objektorientierte
Strukturen und Dienste. In: Wahlster, W. (ed.) Fortschritte der objektori-
entierten Softwaretechnologien – Proceedings of ONLINE’96, Congress VI,
C.610.01–C.610.23. ONLINE GmbH (1996)

86. Cremer, K., Klein, P., Nagl, M., Radermacher, A.: Restrukturierung zu verteil-
ten Anwendungen: Unterstützung von Methodik durch Werkzeuge. In: Nagl,
M. (ed.): Verteilte, integrierte Anwendungsarchitekturen: Die Software-Welt
im Umbruch – Proceedings of ONLINE’97, Congress VI, C620.01–C620.25.
ONLINE GmbH (1997)

87. Cremer, K., Klein, P., Nagl, M., Radermacher, A.: Prototypische Werkzeuge
zur Restrukturierung und Verteilung von Anwendungssystemen. In: Informa-
tionstechnik im Zeitalter des Internets – Proceedings of ONLINE’98, Congress
VI, C630.01–C630.26. ONLINE GmbH (1998)

88. Cremer, K., Marburger, A., Westfechtel, B.: Graph-based tools for re-
engineering. Journal of Software Maintenance and Evolution: Research and
Practice 14(4), 257–292 (2002)

89. Cremer, K., Radermacher, A.: Einsatz von Workstations bei der Restruk-
turierung von zentralistischen Informationssystemen. In: Proceedings Fach-
tagung Workstations und ihre Anwendung (SIWORK’96), pp. 63–66. Hoch-
schulverlag ETH Zürich, Zürich (1996)

90. Cseh, C.: Flow Control for the Available Bit Rate Service in Asynchronous
Transfer Mode Networks. PhD thesis, RWTH Aachen University (2001)

91. Depolt, J.: Kennzahlenbasierte Wirtschaftlichkeitsanalyse von Telekoopera-
tion in der Produktentwicklung der Automobilindustrie. PhD thesis, RWTH
Aachen University (2000)

92. Dömges, R.: Projektspezifische Methoden zur Nachvollziehbarkeit von An-
forderungsspezifikationen. PhD thesis, RWTH Aachen University (1999)

93. Dömges, R., Pohl, K.: Adapting traceability environments to project-specific
needs. Communications of the ACM 41(12), 54–62 (1998)

94. Dömges, R., Pohl, K., Jarke, M., Lohmann, B., Marquardt, W.: PRO-
ART/CE – an environment for managing chemical process simulation models.
In: Proceedings of the 10th European Simulation Multiconference (1996)

95. Eggersmann, M.: Analysis and Support of Work Processes Within Chemical
Engineering Design Processes. PhD thesis, RWTH Aachen University. Pub-
lished in: Fortschritt-Berichte VDI, Reihe 3, Nr. 840, VDI-Verlag, Düsseldorf
(2004)

96. Eggersmann, M., Bayer, B., Jarke, M., Marquardt, W., Schneider, R.: Prozess-
und Produktmodelle für die Verfahrenstechnik. In: Nagl, M., Westfechtel, B.
(eds.) Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von En-
twicklungsprozessen, Wiley-VCH, Weinheim (2003)

97. Eggersmann, M., Gonnet, S., Henning, G., Krobb, C., Leone, H., Marquardt,
W.: Modeling and understanding different types of process design activities.
In: Proceedings of ENPROMER – 3rd Mercosur Congress on Process Systems
Engineering – 1st Mercosur Congress on Chemical Engineering, vol. 1, pp.
151–156 (2001)

98. Eggersmann, M., Gonnet, S., Henning, G., Krobb, C., Leone, H., Marquardt,
W.: Modeling and understanding different types of process design activities.
Latin American Applied Research 33, 167–175 (2003)

792 References

99. Eggersmann, M., Hackenberg, J., Marquardt, W., Cameron, I.: Applications
of modelling – a case study from process design. In: Braunschweig, B., Gani,
R. (eds.) Software Architecture and Tools for Computer-Aided Chemical En-
gineering, pp. 335–372. Elsevier, Amsterdam (2002)

100. Eggersmann, M., Henning, G., Krobb, C., Leone, H.: Modeling of actors within
a chemical engineering work process model. In: Proceedings of CIRP Design
Seminar, Stockholm, Sweden, pp. 203–208 (2001)

101. Eggersmann, M., Kausch, B., Luczak, H., Marquardt, W., Schlick, C., Schnei-
der, N., Schneider, R., Theißen, M.: Work Process Models. This volume (2008)

102. Eggersmann, M., Krobb, C., Marquardt, W.: A language for modeling work
processes in chemical engineering. Technical Report LPT-2000-02, RWTH
Aachen University, Process Systems Engineering (2000)

103. Eggersmann, M., Krobb, C., Marquardt, W.: A modeling language for design
processes in chemical engineering. In: Laender, A.H.F., Liddle, S.W., Storey,
V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 369–382. Springer, Heidelberg
(2000)

104. Eggersmann, M., Schneider, R., Marquardt, W.: Modeling work processes in
chemical engineering – from recording to supporting. In: Grievink, J., van Schi-
jndel, J. (eds.) Proceedings of the European Symposium on Computer Aided
Process Engineering – ESCAPE 12, pp. 871–876. Elsevier, Amsterdam (2002)

105. Eggersmann, M., Schneider, R., Marquardt, W.: Understanding the interre-
lations between synthesis and analysis during model based design. In: Chen,
B., Westerberg, A.W. (eds.) Proceedings of the 8th International Symposium
on Process Systems Engineering (PSE 2003), Kunming, China, pp. 802–807.
Elsevier, Amsterdam (2003)

106. Eggersmann, M., von Wedel, L., Marquardt, W.: Verwaltung und wiederver-
wendung von modellen im industriellen entwicklungsprozess. Chem.-Ing.-
Tech. 74, 1068–1078 (2002)

107. Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.): ICGT 2004.
LNCS, vol. 3256. Springer, Heidelberg (2004)

108. Engels, G.: Graphen als zentrale Datenstrukturen in einer Softwareent-
wicklungs-Umgebung. PhD thesis, University of Osnabrück (1986)

109. Engels, G., Lewerentz, C., Nagl, M., Schäfer, W., Schürr, A.: Experiences in
building integrating tools, Part 1: Tool specification. Transactions on Software
Engineering and Methodology 1(2), 135–167 (1992)

110. Eversheim, W., Michaeli, W., Nagl, M., Spaniol, O., Weck, M.: The SUKITS
project: An approach to a posteriori integration of CIM components. In: Go-
erke, W., Rininsland, H., Syrbe, M. (eds.) Information als Produktionsmotor.
Informatik Aktuell, pp. 494–504. Springer, Heidelberg (1992)

111. Evertz, M.: Gestaltung und Evaluation der Benutzungsschnittstelle eines
Administrationssystems für verfahrenstechnische Entwickler. Master’s thesis,
RWTH Aachen University (2002)

112. Fachgebiet Dynamik und Betrieb technischer Anlagen (TU Berlin), AVT-PT
(RWTH Aachen University): Informationstechnologien für Entwicklung und
Produktion in der Verfahrenstechnik – Symposiumsreihe – website (2008),
http://www.inprotech.de/

113. Fasbender, A.: Messung und Modellierung der Dienstgüte paketvermittelter
Netze. PhD thesis, RWTH Aachen University (1998)

114. Fidler, M.: Providing Internet Quality of Service based on Differentiated Ser-
vices Traffic Engineering. PhD thesis, RWTH Aachen University (2003)

http://www.inprotech.de/

R.1 Publications of the IMPROVE Groups 793

115. Foltz, C.: Softwareergonomische Evaluation des Fließbildwerkzeugs (FBW).
Technical report, RWTH Aachen University (2001)

116. Foltz, C., Killich, S., Wolf, M., Schmidt, L., Luczak, H.: Task and information
modeling for cooperative work. In: Systems, Social and Internationalization
Design Aspects of Human-Computer Interaction, Proceedings of HCI Inter-
national, Volume 2, New Orleans, USA, pp. 172–176. Lawrence Erlbaum,
Mahwah (2001)

117. Foltz, C., Luczak, H.: Analyse und Gestaltung verfahrenstechnischer Entwick-
lungsprozesse. atp – Automatisierungstechnische Praxis 45(9), 39–44 (2003)

118. Foltz, C., Luczak, H.: Analyzing chemical process design using an abstraction-
decomposition space. In: Chen, B., Westerberg, A.W. (eds.) Proceedings of
the 8th International Symposium on Process Systems Engineering (PSE 2003),
Kunming, China, Elsevier, Amsterdam (2003)

119. Foltz, C., Luczak, H., Schmidt, L.: Representing knowledge for chemical pro-
cess design using an abstraction-decomposition space. In: Luczak, H., Cakir,
A.E., Cakir, G. (eds.) WWDU 2002 – Work With Display Units – World Wide
Work. Proceedings of the 6th International Scientific Conference, Berchtes-
gaden, May 22–25, 2002, pp. 457–462. ERGONOMIC Institut für Arbeits-
und Sozialforschung (2002)

120. Foltz, C., Luczak, H., Westfechtel, B.: Use-centered interface design for an
adaptable administration system for chemical process design. In: Proceed-
ings of the International Conference on Human-Computer Interaction (HCI
International 2003), Crete, Greece, pp. 365–369 (2003)

121. Foltz, C., Reuth, R., Miehling, H.: Telekooperation in der Automobilindus-
trie – Ergebnisse einer Längsschnittstudie. In: Reichwald, R., Schlichter, J.
(eds.) Verteiltes Arbeiten – Arbeiten in der Zukunft, Tagungsband der D-
CSCW 2000, pp. 231–242. Teubner, Wiesbaden (2000)

122. Foltz, C., Schmidt, L., Luczak, H.: Not seeing the woods for the trees – empir-
ical studies in engineering design. In: Subrahmanian, E., Sriram, R., Herder,
P., Schneider, R. (eds.) The role of empirical studies in understanding and
supporting engineering design – Workshop Proceedings, National Institute of
Standards and Technology, Gaithersburg, Maryland, USA, April 4 – April 5,
2002, pp. 40–46. DUP Science, Delft (2004)

123. Foltz, C., Schneider, N., Kausch, B., Wolf, M., Schlick, C., Luczak, H.: Us-
ability Engineering. This volume (2008)

124. Foltz, C., Wolf, M., Luczak, H., Eggersmann, M., Schneider, R., Marquardt,
W.: Entwurf eines Referenzszenarios zur Analyse und Gestaltung von Ent-
wicklungsprozessen in der verfahrenstechnischen Industrie. In: Gesellschaft für
Arbeitswissenschaft e.V (ed.) Komplexe Arbeitssysteme – Herausforderung
für Analyse und Gestaltung. Bericht zum 46. Arbeitswissenschaftlichen
Kongress der Gesellschaft für Arbeitswissenschaft, Berlin, 15-18 März 2000,
pp. 545–548. GfA Press, Dortmund (2000)

125. Foss, B.A., Lohmann, B., Marquardt, W.: A field study of the industrial
modeling process. Journal of Process Control 8, 325–337 (1998)

126. Fuss, C., Mosler, C., Ranger, U., Schultchen, E.: The jury is still out: A
comparison of AGG, Fujaba, and PROGRES. In: Ehrig, K., Giese, H. (eds.)
6th International Workshop on Graph Transformation and Visual Modeling
Techniques, GT-VMT’07. EASST, vol. 6, Electronic Communications of the
European Association of Software Science and Technology, Berlin (2007)

794 References

127. Gallersdörfer, R.: Replikationsmanagement in verteilten Informationssyste-
men. PhD thesis, RWTH Aachen University (1997)

128. Gatzemeier, F.H.: CHASID: A semantics-oriented authoring environment.
PhD thesis, RWTH Aachen University (2004)

129. Geilmann, K.: Sichtenbasierte Kooperation in einem Prozessmanagementsys-
tem für dynamische Entwicklungsprozesse. Master’s thesis, RWTH Aachen
University (2005)

130. Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T., Bischof, C.: Viracocha: An
efficient parallelization framework for large-scale CFD post-processing in VE.
In: Proceedings of Supercomputing, Pittsburgh, USA (2004)

131. Gruner, S.: Eine schematische und grammatische Korrespondenzmethode zur
Spezifikation konsistent verteilter Datenmodelle. PhD thesis, RWTH Aachen
University (1999)

132. Gruner, S.: A combined graph schema and graph grammar approach to con-
sistency in distributed modeling. In: Münch, M., Nagl, M. (eds.) AGTIVE
1999. LNCS, vol. 1779, pp. 247–254. Springer, Heidelberg (2000)

133. Gruner, S., Nagl, M., Sauer, F., Schürr, A.: Inkrementelle Integrationswerk-
zeuge für arbeitsteilige Entwicklungsprozesse. In: Nagl, M., Westfechtel, B.
(eds.) Integration von Entwicklungssystemen in Ingenieuranwendungen – Sub-
stantielle Verbesserung der Entwicklungsprozesse, pp. 311–330. Springer, Hei-
delberg (1999)

134. Gruner, S., Nagl, M., Schürr, A.: Integration tools supporting development
processes. In: Broy, M., Rumpe, B. (eds.) RTSE 1997. LNCS, vol. 1526, pp.
235–256. Springer, Heidelberg (1998)

135. Haase, T.: A-posteriori Integration verfahrenstechnischer Entwicklungswerk-
zeuge. Softwaretechnik-Trends (Proceedings of the 5th Workshop on Software
Reengineering (WSR 2003), Bad Honnef, Germany, May 7-9, 2003) 23(2),
28–30 (2003)

136. Haase, T.: Semi-automatic wrapper generation for a-posteriori integration.
In: Proceedings of the Workshop on Tool Integration in System Development
(TIS 2003), Helsinki, Finland, September 1–2, 2003, pp. 84–88 (2003)

137. Haase, T.: Die Rolle der Architektur im Kontext der a-posteriori Integra-
tion. Softwaretechnik-Trends (Proceedings of the 6th Workshop on Software
Reengineering (WSR 2004), Bad Honnef, Germany, May 3-5, 2004) 24(2),
61–62 (2004)

138. Haase, T.: Model-driven service development for a-posteriori application in-
tegration. In: Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering (SOSE’07), Hong Kong, China, October 24–26,
2007, pp. 649–656. IEEE Computer Society Press, Los Alamitos (2007)

139. Haase, T.: A-posteriori Integrated Software Systems: Architectures, Method-
ology, and Tools (in German). PhD thesis, RWTH Aachen University, Aachen
(2008)

140. Haase, T., Klein, P., Nagl, M.: Software Integration and Framework Develop-
ment. This volume (2008)

141. Haase, T., Meyer, O., Böhlen, B., Gatzemeier, F.H.: A domain specific archi-
tecture tool: Rapid prototyping with graph grammars. In: Pfaltz, J.L., Nagl,
M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 236–242. Springer,
Heidelberg (2004)

R.1 Publications of the IMPROVE Groups 795

142. Haase, T., Meyer, O., Böhlen, B., Gatzemeier, F.H.: Fire3: Architecture re-
finement for A-posteriori integration. In: Pfaltz, J.L., Nagl, M., Böhlen, B.
(eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 461–467. Springer, Heidelberg
(2004)

143. Haase, T., Nagl, M.: Service-oriented Architectures and Application Integra-
tion. This volume (2008)

144. Haberstroh, E., Schlüter, M.: Integrierte 1D- und 3D-Simulation von Dop-
pelschneckenextrudern. Plastverarbeiter (2000)

145. Haberstroh, E., Schlüter, M.: Simulating and designing twin screw extrud-
ers by using the boundary element method (BEM) in chemical engineering
processes. In: Proceedings PPS 17, Montreal, Canada, Polymers Processing
Society (2001)

146. Haberstroh, E., Schlüter, M.: The use of modern technologies in the develop-
ment of simulation software. Journal of Polymer Engineering 21(2-3), 209–224
(2001)

147. Haberstroh, E., Schlüter, M.: Design of twin screw extruders with the MOREX
simulation software. In: Proceedings PPS 18, Guimaraes, Portugal, Polymers
Processing Society (2002)

148. Haberstroh, E., Schlüter, M.: Integrierte Simulation von Aufbereitungspro-
zessen. In: Proc. 21st IKV-Kolloquium, Aachen (2002)

149. Haberstroh, E., Stewering, J.: New aspects for the visualisation of compound-
ing processes. In: Proceedings of the 21st Annual Meeting of the Polymer
Processing Society, PPS (2005)

150. Haberstroh, E., Stewering, J., Assenmacher, I., Kuhlen, T.: Development As-
sistance for the Design of Reaction and Compounding Extruders. This volume
(2008)

151. Hackenberg, J.: Computer support for theory-based modeling of process
systems. PhD thesis, RWTH Aachen University. Published in: Fortschritt-
Berichte VDI, Reihe 3, Nr. 860, VDI-Verlag, Düsseldorf (2006)

152. Hackenberg, J., Krobb, C., Marquardt, W.: An object-oriented data model
to capture lumped and distributed parameter models of physical systems. In:
Troch, I., Breitenecker, F. (eds.) Proceedings of the 3rd MATHMOD, IMACS
Symposium on Mathematical Modelling, Vienna, Austria, pp. 339–342 (2000)

153. Hai, R., Heer, T., Heller, M., Nagl, M., Schneider, R., Westfechtel, B.,
Wörzberger, R.: Administration Models and Management Tools. This volume
(2008)

154. Hai, R., Heller, M., Marquardt, W., Nagl, M., Wörzberger, R.: Workflow sup-
port for inter-organizational design processes. In: Marquardt, W., Pantelides,
C. (eds.) 16th European Symposium on Computer Aided Process Engineering
and 9th International Symposium on Process Systems Engineering, Garmisch-
Partenkirchen, Germany, July 9–13, 2006. Computer-Aided Chemical Engi-
neering, vol. 21, pp. 2027–2032. Elsevier, Amsterdam (2006)

155. Haumer, P.: Requirements Engineering with Interrelated Conceptual Models
and Real-World Scenes. PhD thesis, RWTH Aachen University (2000)

156. Haumer, P., Jarke, M., Pohl, K., Weidenhaupt, K.: Improving reviews of con-
ceptual models by extended traceability to captured system usage. Interacting
with Computers 13(2), 77–95 (2000)

796 References

157. Heer, T., Retkowitz, D., Kraft, B.: Algorithm and Tool for Ontology Inte-
gration based on Graph Rewriting. In: Schürr, A., Nagl, M., Zündorf, A.
(eds.) Applications of Graph Transformations with Industrial Relevance. Pro-
ceedings of the Third International AGTIVE 2007, Kassel, Germany. LNCS,
vol. 5088, pp. 484–490. Springer, Heidelberg (2008)

158. Heer, T., Retkowitz, D., Kraft, B.: Incremental Ontology Integration. In: Proc.
of the 10th Intl. Conf. on Enterprise Information Systems (ICEIS 2008), ac-
cepted for publication (2008)

159. Heimann, P., Joeris, G., Krapp, C.-A., Westfechtel, B.: A programmed graph
rewriting system for software process management. In: Proceedings Joint
COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Com-
putation (SEGRAGRA 1995), Volterra, Italy. Electronic Notes in Theoretical
Computer Science, pp. 123–132 (1995)

160. Heimann, P., Joeris, G., Krapp, C.-A., Westfechtel, B.: DYNAMITE: Dy-
namic task nets for software process management. In: Proceedings of the 18th

International Conference on Software Engineering, Berlin, Germany, pp. 331–
341. IEEE Computer Society Press, Los Alamitos (1996)

161. Heimann, P., Krapp, C.-A., Nagl, M., Westfechtel, B.: An adaptable and reac-
tive project management environment. In: Nagl, M. (ed.) IPSEN 1996. LNCS,
vol. 1170, pp. 504–534. Springer, Heidelberg (1996)

162. Heimann, P., Krapp, C.-A., Westfechtel, B.: An environment for managing
software development processes. In: Proceedings of the 8th Conference on
Software Engineering Environments, Cottbus, Germany, pp. 101–109. IEEE
Computer Society Press, Los Alamitos (1997)

163. Heimann, P., Krapp, C.-A., Westfechtel, B., Joeris, G.: Graph-based soft-
ware process management. International Journal of Software Engineering &
Knowledge Engineering 7(4), 431–455 (1997)

164. Heimann, P., Westfechtel, B.: Integrated product and process management for
engineering design in manufacturing systems. In: Leondes, C. (ed.) Computer-
Aided Design, Engineering, and Manufacturing – Systems, Techniques and
Applications, Volume 4: Optimization Methods for Manufacturing, 2-1–2-47
(2001)

165. Heller, M.: Decentralized and View-based Management of Cross-company De-
velopment Processes (in German). PhD thesis, RWTH Aachen University,
Aachen (2008)

166. Heller, M., Jäger, D.: Graph-based tools for distributed cooperation in dy-
namic development processes. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.)
AGTIVE 2003. LNCS, vol. 3062, pp. 352–368. Springer, Heidelberg (2004)

167. Heller, M., Jäger, D.: Interorganizational management of development pro-
cesses. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 427–433. Springer, Heidelberg (2004)

168. Heller, M., Jäger, D., Krapp, C.A., Nagl, M., Schleicher, A., Westfechtel, B.,
Wörzberger, R.: An Adaptive and Reactive Management System for Project
Coordination. This volume (2008)

169. Heller, M., Jäger, D., Schlüter, M., Schneider, R., Westfechtel, B.: A manage-
ment system for dynamic and interorganizational design processes in chemical
engineering. Computers & Chemical Engineering 29(1), 93–111 (2004)

170. Heller, M., Nagl, M., Wörzberger, R., Heer, T.: Dynamic Process Management
Based Upon Existing Systems. This volume (2008)

R.1 Publications of the IMPROVE Groups 797

171. Heller, M., Schleicher, A., Westfechtel, B.: A management system for evolving
development processes. In: Proceedings of the 7th International Conference on
Integrated Design and Process Technology (IDPT 2003), Austin, Texas, USA,
SDPS (2003)

172. Heller, M., Schleicher, A., Westfechtel, B.: Graph-based specification of a man-
agement system for evolving development processes. In: Pfaltz, J.L., Nagl, M.,
Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 334–351. Springer, Hei-
delberg (2004)

173. Heller, M., Schleicher, A., Westfechtel, B.: Process evolution support in the
AHEAD system. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 454–460. Springer, Heidelberg (2004)

174. Heller, M., Westfechtel, B.: Dynamic project and workflow management for
design processes in chemical engineering. In: Chen, B., Westerberg, A.W.
(eds.) Proceedings of the 8th International Symposium on Process Systems
Engineering (PSE 2003), Kunming, China, pp. 208–213. Elsevier, Amsterdam
(2003)

175. Heller, M., Wörzberger, R.: Management support of interorganizational coop-
erative software development processes based on dynamic process views. In:
15th International Conference on Software Engineering and Data Engineering
(SEDE 2006), Los Angeles, California, July 6–8, 2006, pp. 15–28 (2006)

176. Heller, M., Wörzberger, R.: A management system supporting interorgani-
zational cooperative development processes in chemical engineering. In: 9th

World Conference on Integrated Design & Process Technology (IDPT 2006),
San Diego, California, USA, 25-30 June 2006, pp. 639–650. SDPS (2006)

177. Heller, M., Wörzberger, R.: A management system supporting interorgani-
zational cooperative development processes in chemical engineering. Journal
of Integrated Design and Process Science: Transactions of the SDPS 10(2),
57–78 (2007)

178. Herbst, D.: Entwicklung eines Modells zur Einführung von Telekooperation
in der verteilten Produktentwicklung. PhD thesis, RWTH Aachen University
(2000)

179. Herzberg, D., Marburger, A.: E-CARES research project: Understanding com-
plex legacy telecommunication systems. In: Proceedings of the 5th European
Conference on Software Maintenance and Reengineering (CSMR 2001), pp.
139–147. IEEE Computer Society Press, Los Alamitos (2001)

180. Heukamp, S.: Regelbasierte Werkzeuge zur Unterstützung der Korresponden-
zanalyse zwischen Dokumenten. Diploma Thesis, RWTH Aachen University,
to appear (2008)

181. Hoff, S.: Mobilitätsmanagement in Offenen Systemen - Leistungsbewertung
von Verzeichnisdiensten. PhD thesis, RWTH Aachen University (1997)

182. Imhoff, F.: Objektorientierte Dienste in konvergierenden Kommunikationsnet-
zen. PhD thesis, RWTH Aachen University (2005)

183. Imhoff, F., Spaniol, O., Linnhoff-Popien, C., Garschhammer, M.: Aachen-
Münchener Teleteaching unter Best-Effort-Bedingungen. Praxis der Informa-
tionsverarbeitung und Kommunikation (PIK) 3, 156–163 (2000)

184. Janning, T.: Requirements Engineering und Programmieren im Großen. PhD
thesis, RWTH Aachen University (1992)

798 References

185. Janning, T., Lefering, M.: A transformation from requirements engineering
into design – the method and the tool. In: Proceedings of the 3rd International
Workshop on Software Engineering and its Applications, pp. 223–237 (1990)

186. Jarke, M.: Experience-based knowledge management: A cooperative informa-
tion systems perspective. Control Engineering Practice 10(4), 561–569 (2002)

187. Jarke, M., Bubenko, J.A., Rolland, C., Sutcliffe, A., Vassiliou, Y.: Theories
underlying requirements engineering: An overview of NATURE at genesis. In:
Proceedings of the IEEE Symposium on Requirements Engineering, RE’93,
San Diego, California, USA, IEEE Computer Society Press, Los Alamitos
(1993)

188. Jarke, M., Fritzen, O., Miatidis, M., Schlüter, M.: Media-Assisted Product and
Process Requirements Traceability in Supply Chains. In: Proceedings of the
11th International Requirements Engineering Conference (RE’03), Monterey,
USA (2003)

189. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: Con-
ceptBase – a deductive object base for meta data management. Journal of
Intelligent Information Systems 4(2), 167–192 (1995)

190. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and quality
of data ware-houses: an extended repository approach. Information Systems
(Special Issue on Advanced Information Systems Engineering) 24(3), 229–253
(1999)

191. Jarke, M., Klamma, R.: Metadata and cooperative knowledge management.
In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 4–20. Springer, Heidelberg (2002)

192. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data
Warehouses, 2nd edn. Springer, Heidelberg (2003)

193. Jarke, M., List, T., Köller, J.: The Challenge of Process Data Warehousing.
In: Proceedings of the 26th International Conference on Very Large Databases
(VLDB), Cairo, Egypt, pp. 473–483 (2000)

194. Jarke, M., List, T., Weidenhaupt, K.: A process-integrated conceptual de-
sign environment for chemical engineering. In: Akoka, J., Bouzeghoub, M.,
Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 520–537.
Springer, Heidelberg (1999)

195. Jarke, M., Marquardt, W.: Design and evaluation of computer aided modeling
tools. In: AIChE Symposium 92, pp. 97–109 (1996)

196. Jarke, M., Mayr, H.C.: Mediengestütztes Anforderungsmanagement. Informa-
tik-Spektrum 25(6), 452–464 (2002)

197. Jarke, M., Miatidis, M., Schlüter, M., Brandt, S.: Media-Assisted Product
and Process Traceability in Supply Chain Engineering. In: Proceedings of the
37th Hawaii International Conference on System Sciences (HICSS), Big Island,
Hawaii, USA, IEEE Computer Society Press, Los Alamitos (2004)

198. Jarke, M., Miatidis, M., Schlüter, M., Brandt, S.C.: Process-Integrated and
Media-Assisted Traceability in Cross-Organizational Engineering. Interna-
tional Journal of Business Process Integration and Management 1(2), 65–75
(2006)

199. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: DAIDA: An envi-
ronment for evolving information systems. ACM Transactions on Information
Systems 10(1), 1–50 (1992)

R.1 Publications of the IMPROVE Groups 799

200. Jarke, M., Pohl, K., Jacobs, S., Bubenko, J., Assenova, P., Holm, P., Wangler,
B., Rolland, C., Plihon, V., Schmitt, J.R., Sutcliffe, A.G., Jones, S., Maiden,
N.A.M., Till, D., Vassiliou, Y., Constantopoulos, P., Spanoudakis, G.: Re-
quirements engineering: An integrated view of representation, process, and
domain. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp.
100–114. Springer, Heidelberg (1993)

201. Jarke, M., Rolland, C., Sutcliffe, A., Dömges, R. (eds.): The NATURE of
Requirements Engineering. Shaker, Aachen (1999)

202. Jarke, M., Rose, T.: Managing knowledge about information systems. In: Pro-
ceedings of the ACM SIGMOD International Conference of the Management
of Data, Chicago, USA, pp. 303–311. ACM Press, New York (1998)

203. Jeusfeld, M.A.: Update Control in Deductive Object Bases. PhD thesis, Uni-
versity of Passau (1992)

204. Jeusfeld, M.A., Jarke, M., Nissen, H.W., Staudt, M.: ConceptBase. In: Bernus,
P., Mertins, K., Schmidt, G. (eds.) Handbook on Architectures of Information
Systems, Springer, Heidelberg (1998)

205. Jeusfeld, M.A., Jarke, M., Nissen, H.W., Staudt, M.: ConceptBase. In: Bernus,
P., Mertins, K., Schmidt, G. (eds.) Handbook on Architectures of Information
Systems, 2nd edn., Springer, Heidelberg (2006)

206. Jäger, D.: Generating tools from graph-based specifications. Information Soft-
ware and Technology (Special Issue on Construction of Software Engineering
Tools) 42(2), 129–139 (2000)

207. Jäger, D.: Modeling management and coordination in development processes.
In: Conradi, R. (ed.) EWSPT 2000. LNCS, vol. 1780, pp. 109–114. Springer,
Heidelberg (2000)

208. Jäger, D.: Unterstützung übergreifender Kooperation in komplexen Entwick-
lungsprozessen. PhD thesis, RWTH Aachen University (2002)

209. Jäger, D., Krapp, C.A., Nagl, M., Schleicher, A., Westfechtel, B.: Anpassbares
Administrationssystem für die Projektkoordination. In: Nagl, M., Westfechtel,
B. (eds.) Integration von Entwicklungssystemen in Ingenieuranwendungen –
Substantielle Verbesserung der Entwicklungsprozesse, pp. 311–348. Springer,
Heidelberg (1999)

210. Jäger, D., Marburger, A., Nagl, M., Schleicher, A.: EAI heiß nicht Zusammen-
schalten: Architekturüberlegungen für das verteilte Gesamtsystem. In: Nagl,
M. (ed.) B2B mit EAI: Strategien mit XML, Java & Agenten – Proceedings
of ONLINE’01, Congress VI, C610.01–C610.33. ONLINE GmbH (2001)

211. Jäger, D., Schleicher, A., Westfechtel, B.: Using UML for software process
modeling. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE
1999. LNCS, vol. 1687, pp. 91–108. Springer, Heidelberg (1999)

212. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system
for modeling and managing development processes. In: Münch, M., Nagl, M.
(eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 325–339. Springer, Heidelberg
(2000)

213. Kabel, D.: Entwicklung eines prozeßbasierten Effizienzmodells für Concurrent
Engineering Teams. PhD thesis, RWTH Aachen University (2001)

214. Kabel, D., Nölle, T., Luczak, H.: Requirements for software-support in concur-
rent engineering teams. In: Luczak, H., Cakir, A.E., Cakir, G. (eds.) World
Wide Work, Proceedings of the 6th International Scientific Conference on
Work With Display Units, Berchtesgaden, Germany, pp. 202–204 (2002)

800 References

215. Karabek, R.: Data Communications in ATM Networks. PhD thesis, RWTH
Aachen University (1998)

216. Kausch, B., Schneider, N., Schlick, C., Luczak, H.: Integrative Simulation of
Work Processes. This volume (2008)

217. Kausch, B., Schneider, N., Schlick, C., Luczak, H.: Simulation-supported
Workflow Optimization in Process Engineering. This volume (2008)

218. Kesdogan, D.: Vertrauenswürdige Kommunikation in offenen Umgebungen.
PhD thesis, RWTH Aachen University (1999)

219. Kethers, S.: Multi-Perspective Modeling and Analysis of Cooperation Pro-
cesses. PhD thesis, RWTH Aachen University (2000)

220. Kiesel, N., Schürr, A., Westfechtel, B.: GRAS: a graph-oriented software en-
gineering database system. Information Systems 20(1), 21–51 (1995)

221. Killich, S., Luczak, H., Schlick, C., Weißenbach, M., Wiedenmaier, S., Ziegler,
J.: Task modelling for cooperative work. Behaviour & Information Technol-
ogy 18(5), 325–338 (1999)

222. Kirchhof, M.: Integrated Low-Cost eHome Systems (in German). PhD thesis,
RWTH Aachen University, Aachen (2005)

223. Klamma, R.: Vernetztes Verbesserungsmanagement mit einem Unterneh-
mensgedächtnis-Repository. PhD thesis, RWTH Aachen University (2000)

224. Klein, P.: Architecture Modeling of Distributed and Concurrent Software Sys-
tems. PhD thesis, RWTH Aachen University (2000)

225. Klein, P., Nagl, M.: Softwareintegration und Rahmenwerksentwicklung. In:
Nagl, M., Westfechtel, B. (eds.) Integration von Entwicklungssystemen in In-
genieuranwendungen – Substantielle Verbesserung der Entwicklungsprozesse,
pp. 423–440. Springer, Heidelberg (1999)

226. Klein, P., Nagl, M., Schürr, A.: IPSEN tools. In: Ehrig, H., Engels, G., Kre-
owski, H.J., Rozenberg, G. (eds.) Handbook on Graph Grammars and Com-
puting by Graph Transformation – Volume 2: Applications, Languages, and
Tools, pp. 215–265. World Scientific, Singapore (1999)

227. Klemke, R.: Modelling Context in Information Brokering Processes. PhD the-
sis, RWTH Aachen University (2002)

228. Knoop, S.: Modellierung von Entscheidungsabläufen in der verfahrenstechnis-
chen Prozessentwicklung. Master’s thesis, RWTH Aachen University (2005)

229. Kohring, C., Lefering, M., Nagl, M.: A requirements engineering environment
within a tightly integrated SDE. Requirements Engineering 1(3), 137–156
(1996)

230. Körtgen, A., Heukamp, S.: Correspondence Analysis for Supporting Docu-
ment Re-Use in Development Processes. In: Proceedings of the 12th World
Conference on Integrated Design & Process Technology (IDPT ’08), Taichung,
Taiwan, SDPS, to appear (2008)

231. Kossack, S., Krämer, K., Marquardt, W.: Efficient optimization based design
of distillation columns for homogenous azeotropic mixtures. Ind. Eng. Chem.
Res. 45(24), 8492–8502 (2006)

232. Küpper, A.: Nomadic Communication in Converging Networks. PhD thesis,
RWTH Aachen University (2001)

233. Kraft, B.: Semantical Support of the Conceptual Design in Civil Engineering
(in German). PhD thesis, RWTH Aachen University, Aachen (2007)

R.1 Publications of the IMPROVE Groups 801

234. Kraft, B., Meyer, O., Nagl, M.: Graph technology support for conceptual
design in civil engineering. In: Proceedings of the 9th International EG-ICE
Workshop. VDI Fortschritt-Berichte 4, vol. 180, pp. 1–35. VDI-Verlag, Düs-
seldorf (2002)

235. Kraft, B., Nagl, M.: Parameterized specification of conceptual design tools in
civil engineering. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 90–105. Springer, Heidelberg (2004)

236. Kraft, B., Nagl, M.: Graphbasierte Werkzeuge zur Unterstützung des kon-
zeptuellen Gebäudeentwurfs. In: Rüppel, U. (ed.) Vernetzt-kooperative Pla-
nungsprozesse im Konstruktiven Ingenieurbau - Grundlagen, Methoden, An-
wendungen und Perspektiven zur vernetzten Ingenieurkooperation, Number 3,
pp. 155–176. Springer, Heidelberg (2007)

237. Kraft, B., Nagl, M.: Visual knowledge specification for conceptual design:
Definition and tool support. Advanced Engineering Informatics 21(1), 67–83
(2007), http://dx.doi.org/10.1016/j.aei.2006.10.001

238. Kraft, B., Retkowitz, D.: Operationale Semantikdefinition für Konzeptuelles
Regelwissen. In: Weber, L., Schley, F. (eds.) Proc. Forum Bauinformatik 2005,
pp. 173–182. Lehrstuhl für Bauinformatik, Cottbus (2005)

239. Kraft, B., Retkowitz, D.: Graph Transformations for Dynamic Knowledge
Processing. In: Robichaud, E. (ed.) Proc. of the 39th Hawaii Intl. Conf. on
System Sciences (HICSS’06), Kauai, Hawaii, IEEE Computer Society Press,
Los Alamitos (2006)

240. Kraft, B., Retkowitz, D.: Rule-Dependencies for Visual Knowledge Specifica-
tion in Conceptual Design. In: Rivard, H. (ed.) Proc. of the 11th Intl. Conf.
on Computing in Civil and Building Engineering (ICCCBE-XI), Montreal,
Canada, ACSE (2006)

241. Kraft, B., Wilhelms, N.: Visual knowledge specification for conceptual de-
sign. In: Soibelman, L., Pena-Mora, F. (eds.) Proceedings of the 2005 ASCE
International Conference on Computing in Civil Engineering (ICCC 2005),
Cancun, Mexiko, pp. 1–14 (2005)

242. Krapp, C.-A.: Parametrisierung dynamischer Aufgabennetze zum Manage-
ment von Softwareprozessen. Softwaretechnik-Trends 16(3), 33–40 (1996)

243. Krapp, C.A.: An Adaptable Environment for the Management of Development
Processes. PhD thesis, RWTH Aachen University (1998)

244. Krapp, C.A., Krüppel, S., Schleicher, A., Westfechtel, B.: Graph-based mod-
els for managing development processes, resources, and products. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS,
vol. 1764, pp. 455–474. Springer, Heidelberg (2000)

245. Krapp, C.A., Schleicher, A., Westfechtel, B.: Feedback handling in software
processes. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) The-
ory and Application of Graph Transformations: 6th International Workshop,
TAGT’98, Paderborn, Germany, 1998, November 16–20, 1998, pp. 417–424.
Springer, Heidelberg (2000)

246. Krapp, C.-A., Westfechtel, B.: Feedback handling in dynamic task nets. In:
Proceedings of the 12th International Conference on Automated Software En-
gineering, Incline Village, Nevada, USA, pp. 301–302. IEEE Computer Society
Press, Los Alamitos (1997)

http://dx.doi.org/10.1016/j.aei.2006.10.001

802 References

247. Krobb, C., Hackenberg, J.: Modellierung und Unterstützung verfahrenstech-
nischer Modellierungsprozesse. In: Informatik 2000, 30. Jahrestagung der
Gesellschaft für Informatik (2000)

248. Krobb, C., Lohmann, B., Marquardt, W.: The chemical engineering data
model VeDa. Part 6: The process of model development. Technical Report
LPT-1998-06, RWTH Aachen University, Process Systems Engineering (1998)

249. Krüppel, S., Westfechtel, B.: RESMOD: A resource management model for
development processes. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg,
G. (eds.) Theory and Application of Graph Transformations: 6th International
Workshop, TAGT’98, Paderborn, Germany, 1998, November 16–20, 1998, Se-
lected Papers, pp. 390–397. Springer, Heidelberg (2000)

250. Körtgen, A.: Modeling Successively Connected Repetitive Subgraphs. In:
Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of Graph Transfor-
mations with Industrial Relevance. Proceedings of the Third International
AGTIVE 2007, Kassel, Germany. LNCS, vol. 5088, pp. 428–443. Springer,
Heidelberg (2008)

251. Körtgen, A., Becker, S., Herold, S.: A Graph-Based Framework for Rapid Con-
struction of Document Integration Tools. In: Proceedings of the 11th World
Conference on Integrated Design & Process Technology (IDPT 2007), An-
talya, Turkey, SDPS (2007)

252. Kulikov, V., Briesen, H., Grosch, R., Yang, A., von Wedel, L., Marquardt,
W.: Modular dynamic simulation of integrated process flowsheets by means
of tool integration. Chemical Engineering Science 60(7), 2069–2083 (2005)

253. Kulikov, V., Briesen, H., Marquardt, W.: A framework for the simulation of
mass crystallization considering the effect of fluid dynamics. Chemical Engi-
neering and Processing 45, 886–899 (2006)

254. Lefering, M.: Software document integration using graph grammar specifi-
cations. Journal of Computing and Information (CD-ROM Journal, Special
Issue: Proceedings of the 6th International Conference on Computing and
Information, ICCI’94) 1(1), 1222–1243 (1994)

255. Lefering, M.: Integrationswerkzeuge in einer Softwareentwicklungsumgebung.
PhD thesis, RWTH Aachen University (1995)

256. Lefering, M.: Realization of incremental integration tools. In: Nagl, M. (ed.)
IPSEN 1996. LNCS, vol. 1170, pp. 469–481. Springer, Heidelberg (1996)

257. Lefering, M., Janning, T.: Transition between different working areas: Vertical
integration tools. In: Nagl, M. (ed.) IPSEN 1996. LNCS, vol. 1170, pp. 195–
207. Springer, Heidelberg (1996)

258. Lefering, M., Kohring, C., Janning, T.: Integration of different perspectives:
The requirements engineering environment. In: Nagl, M. (ed.) IPSEN 1996.
LNCS, vol. 1170, pp. 178–194. Springer, Heidelberg (1996)

259. Lefering, M., Schürr, A.: Specification of integration tools. In: Nagl, M. (ed.)
IPSEN 1996. LNCS, vol. 1170, pp. 324–334. Springer, Heidelberg (1996)

260. Lewerentz, C.: Interaktives Entwerfen großer Programmsysteme: Konzepte
und Werkzeuge. PhD thesis, RWTH Aachen University (1988)

261. Licht, T., Dohmen, L., Schmitz, P., Schmidt, L., Luczak, H.: Person-centered
simulation of product development processes using timed stochastic coloured
petri nets. In: Proceedings of the European Simulation and Modelling Con-
ference, EUROSIS-ETI, Ghent, Belgium, pp. 188–195 (2004)

R.1 Publications of the IMPROVE Groups 803

262. Linnhoff-Popien, C.: CORBA: Kommunikation und Management. Springer,
Heidelberg (1998)

263. Linnhoff-Popien, C., Haustein, T.: Das Plug-In-Modell zur Realisierung mo-
biler CORBA-Objekte. In: Proceedings of the 11th ITG/GI-Fachtagung
Kommunikation in Verteilten Systemen, Darmstadt, Germany, pp. 196–209.
Springer, Heidelberg (1999)

264. Linnhoff-Popien, C., Lipperts, S., Thißen, D.: Management verfahrenstech-
nischer Entwicklungswerkzeuge. Praxis der Informationsverarbeitung und
Kommunikation (PIK) 1, 22–31 (1999)

265. Linnhoff-Popien, C., Thißen, D.: Assessing service properties with regard to
a requested QoS: The service metric. In: Proceedings of the 3rd International
Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 99), Florence, Italy, pp. 273–280. Kluwer Academic Publishers,
Dordrecht (1999)

266. Lipperts, S.: COMANGA – an architecture for corba management using mo-
bile agents. In: Proceedings of the 14th International Conference on Advanced
Science and Technology, Chicago, USA, pp. 327–336 (1998)

267. Lipperts, S.: CORBA for inter-agent communication of management infor-
mation. In: Proceedings of the 5th IEEE International Workshop on Mobile
Multimedia Communication, Berlin, Germany, IEEE Computer Society Press,
Los Alamitos (1998)

268. Lipperts, S.: Enabling alarm correlation for a mobile agent based system and
network management – a wrapper concept. In: Proceedings of the IEEE In-
ternational Conference On Networks, Brisbane, Australia, pp. 125–132. IEEE
Computer Society Press, Los Alamitos (1999)

269. Lipperts, S.: Mobile Agenten zur Unterstützung kooperativer Management-
prozesse. In: Beiersdörfer, K., Engels, G., Schäfer, W. (eds.) Proceedings of
Informatik’99, Paderborn, Germany, pp. 231–238. Springer, Heidelberg (1999)

270. Lipperts, S.: How to efficiently deploy mobile agents for an integrated man-
agement. In: Linnhoff-Popien, C., Hegering, H.-G. (eds.) USM 2000. LNCS,
vol. 1890, pp. 290–295. Springer, Heidelberg (2000)

271. Lipperts, S.: On the efficient deployment of mobility in distributed system
management. In: Proceedings of the 3rd International Workshop on Mobility
in Databases & Distributed Systems (MDDS’2000), Greenwich, UK (2000)

272. Lipperts, S.: Mobile Agent Support Services. PhD thesis, RWTH Aachen Uni-
versity (2002)

273. Lipperts, S., Park, A.S.B.: Managing corba with agents. In: Proceedings of
the 4th International Symposium on Interworking, Ottawa, Canada (1998)

274. Lipperts, S., Stenzel, R.: Agents that do the right thing – how to deal with de-
cisions under uncertainty. In: Proceedings of the 6th World Multi-Conference
on Systemics, Cybernetics and Informatics (SCI 2000), Orlando, Florida,
USA, pp. 77–82 (2000)

275. Lipperts, S., Thißen, D.: CORBA wrappers for a-posteriori management: An
approach to integrating management with existing heterogeneous systems.
In: Proceedings of the 2nd IFIP International Working Conference on Dis-
tributed Applications and Interoperable Systems, Helsinki, Finland, pp. 169–
174. Kluwer Academic Publishers, Dordrecht (1999)

276. List, T.: Nachvollziehbarkeit und Überwachung als Vertrauensdienste auf elek-
tronischen Marktplätzen. PhD thesis, RWTH Aachen University (2004)

804 References

277. Lohmann, B.: Ansätze zur Unterstützung des Arbeitsablaufes bei der rechner-
basierten Modellierung verfahrenstechnischer Prozesse. PhD thesis, RWTH
Aachen University. Published in: Fortschritt-Berichte VDI: Reihe 3, Nr. 531.
VDI-Verlag, Düsseldorf (1998)

278. L.P.T.: Process systems engineering at RWTH Aachen University (2006),
http://www.lpt.rwth-aachen.de/

279. Luczak, H.: Modelle flexibler Arbeitsformen und Arbeitszeiten. In: Spur, G.
(ed.) CIM – Die informationstechnische Herausforderung, Produktionstech-
nisches Kolloquium, pp. 227–245 (1986)

280. Luczak, H.: Task analysis. In: Handbook of Human Factors and Ergonomics,
pp. 340–416. John Wiley & Sons, Chichester (1997)

281. Luczak, H., Cakir, A.E., Cakir, G.: World Wide Work, Proceedings of the
6th International Scientific Conference on Work With Display Units, Bercht-
esgaden, Germany (2002)

282. Luczak, H., Foltz, C., Mühlfelder, M.: Telekooperation. Zeitschrift für Ar-
beitswissenschaft 56(4), 295–299 (2002)

283. Luczak, H., Mühlfelder, M., Schmidt, L.: Group task analysis and design of
computer supported cooperative work. In: Hollnagel, E. (ed.) Handbook of
Cognitive Task Design, pp. 99–127. Lawrence Erlbaum, Mahwah (2003)

284. Luczak, H., Stahl, J.: Task analysis in industry. In: Karwowski, W. (ed.)
International Encyclopedia for Industrial Ergonomics, vol. 3, pp. 1911–1914.
Taylor & Francis, Abington (2001)

285. Luczak, H., Wolf, M., Schlick, C., Springer, J., Foltz, C.: Personenorientierte
Arbeitsprozesse und Kommunikationsformen. In: Nagl, M., Westfechtel, B.
(eds.) Integration von Entwicklungssystemen in Ingenieuranwendungen – Sub-
stantielle Verbesserung der Entwicklungsprozesse, pp. 403–422. Springer, Hei-
delberg (1999)

286. Marburger, A.: Reverse Engineering of Complex Legacy Telecommunication
Systems. PhD thesis, RWTH Aachen University (2004)

287. Marburger, A., Westfechtel, B.: Tools for understanding the behavior of
telecommunication systems. In: Proceedings of the 25th International Con-
ference on Software Engineering (ICSE 2003), pp. 430–441. IEEE Computer
Society Press, Los Alamitos (2003)

288. Marquardt, W.: Dynamic process simulation – recent progress and future
challenges. In: Arkun, Y., Ray, W.H. (eds.) Proceedings of the Fourth In-
ternational Conference on Chemical Process Control, Padre Island, Texas,
February 17–22, 1991, pp. 131–180 (1991)

289. Marquardt, W.: An object-oriented representation of structured process mod-
els. Computers & Chemical Engineering Suppl. 16, S329–S336 (1992)

290. Marquardt, W.: Rechnergestützte Erstellung verfahrenstechnischer Prozeß-
modelle. Chem.-Ing.-Tech. 64, 25–40 (1992)

291. Marquardt, W.: Computer-aided generation of chemical engineering process
models. International Chemical Engineering 34, 28–46 (1994)

292. Marquardt, W.: Towards a process modeling methodology. In: Berber, R. (ed.)
Model-Based Process Control. NATO-ASI Series, vol. 291, pp. 3–40. Kluwer
Academic Publishers, Dordrecht (1995)

293. Marquardt, W.: Trends in computer-aided process modeling. Computers &
Chemical Engineering 20(6/7), 591–609 (1996)

http://www.lpt.rwth-aachen.de/

R.1 Publications of the IMPROVE Groups 805

294. Marquardt, W.: Review from a Design Process Perspective. This volume
(2008)

295. Marquardt, W., Nagl, M.: Tool integration via interface standardization? In:
Computer Application in Process and Plant Engineering – Papers of the 36th

Tutzing Symposium, pp. 95–126. Wiley-VCH, Weinheim (1999)
296. Marquardt, W., Nagl, M.: Arbeitsprozess-orientierte Integration von Soft-

ware-Werkzeugen zur Unterstützung verfahrenstechnischer Entwicklungspro-
zesse. In: Engineering in der Prozessindustrie. VDI Fortschritt-Berichte,
vol. 1684, pp. 91–101. VDI-Verlag, Düsseldorf (2002)

297. Marquardt, W., Nagl, M.: Arbeitsprozessorientierte Unterstützung verfah-
renstechnischer Entwicklungsprozesse. atp – Automatisierungstechnische Pra-
xis 45(4), 52–58 (2003)

298. Marquardt, W., Nagl, M.: Workflow and information centered support of de-
sign processes. In: Chen, B., Westerberg, A.W. (eds.) Proceedings of the 8th

International Symposium on Process Systems Engineering (PSE 2003), Kun-
ming, China, pp. 101–124. Elsevier, Amsterdam (2003)

299. Marquardt, W., Nagl, M.: Workflow and information centered support of de-
sign processes – the IMPROVE perspective. Computers & Chemical Engi-
neering 29(1), 65–82 (2004)

300. Marquardt, W., Nagl, M.: A Model-driven Approach for A-posteriori Tool
Integration. This volume (2008)

301. Marquardt, W., Nagl, M.: Review from an Industrial Perspective. This volume
(2008)

302. Marquardt, W., Pantelides, C.: 16th European Symposium on Computer
Aided Process Engineering and 9th International Symposium on Process
Systems Engineering, Garmisch-Partenkirchen, Germany, July 9–13, 2006.
Computer-Aided Chemical Engineering, vol. 21. Elsevier, Amsterdam (2006)

303. Marquardt, W., von Wedel, L., Bayer, B.: Perspectives on lifecycle process
modeling. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.) Foundations
of Computer-Aided Process Design. AIChE Symposium Series, vol. 96(323),
pp. 192–214 (2000)

304. Meggers, J.: Adaptive admission control and scheduling for wireless packet
communication. In: Proceedings of the IEEE International Conference on
Networks (ICON’99), Brisbane, Australia, IEEE Computer Society Press, Los
Alamitos (1999)

305. Meggers, J.: Adaptiver Videotransport in Mobilfunknetzen. PhD thesis,
RWTH Aachen University (2000)

306. Meggers, J., Schuba, M.: Analysis of feedback error control schemes for block
based video communication. In: Proceedings of the International Packet Video
Workshop (PV’99), New York, USA, IEEE Computer Society Press, Los
Alamitos (1999)

307. Meggers, J., Subramaniam, R.: A new feedback error control schemes for block
based video communication in packet switched wireless networks. In: Proceed-
ings of the 4th IEEE International Symposium on Computer Communications
(ISCC’99), Sharm El Sheik, Red Sea, Egypt, IEEE Computer Society Press,
Los Alamitos (1999)

308. Meyer, O.: aTool: Typography as source for structuring texts (in German).
PhD thesis, RWTH Aachen University (2006)

806 References

309. Mühlfelder, M., Kabel, D., Hensel, T., Schlick, C.: Werkzeuge für kooperatives
Wissensmanagement in Forschung und Entwicklung. Wissensmanagement 4,
10–15 (2001)

310. Miatidis, M.: Integrated Experience-Based Support of Cooperative Engineer-
ing Design Processes. PhD thesis, RWTH Aachen University (2007)

311. Miatidis, M., Jarke, M., Weidenhaupt, K.: Using Developers’ Experience in
Cooperative Design Processes. This volume (2008)

312. Miatidis, M., Theißen, M., Jarke, M., Marquardt, W.: Work Processes and
Process-Centered Models and Tools. This volume (2008)

313. Michaeli, W., Grefenstein, A.: Engineering analysis and design of twin-screw
extruders for reactive extrusion. Advances in Polymer Technology 14(4), 263–
276 (1995)

314. Michaeli, W., Grefenstein, A., Frings, W.: Synthesis of polystyrene and styrene
copolymers by reactive extrusion. Advances in Polymer Technology 12(1), 25–
33 (1993)

315. Michaeli, W., Haberstroh, E., Seidel, H., Schmitz, T., Stewering, J., van
Hoorn, R.: Visualisierung von Strömungsdaten aus CFD-Simulationen mit
Virtual Reality Techniken. In: Proceedings of the 23rd Internationales Kunst-
stofftechnisches Kolloquium (2006)

316. Münch, M.: Generic Modeling with Graph Rewriting Systems. PhD thesis,
RWTH Aachen University (2003)

317. Molenaar, E., Trossen, D.: The multipoint event sharing service (MESS). In:
Proceedings of the 13th Information Resources Management Association In-
ternational Conference (IRMA 2000), Seattle, USA, IRMA, Strasbourg (2002)

318. Molitor, R.: Unterstützung der Modellierung verfahrenstechnischer Prozesse
durch Nicht-Standardinferenzen in Beschreibungslogiken. PhD thesis, RWTH
Aachen University (2000)

319. Morbach, J., Bayer, B., Yang, A., Marquardt, W.: Product Data Models. This
volume (2008)

320. Morbach, J., Hai, R., Bayer, B., Marquardt, W.: Document Models. This
volume (2008)

321. Morbach, J., Marquardt, W.: Ontology-Based Integration and Management
of Distributed Design Data. This volume (2008)

322. Morbach, J., Theißen, M., Marquardt, W.: An Introduction to Application
Domain Modeling. This volume (2008)

323. Morbach, J., Theißen, M., Marquardt, W.: Integrated Application Domain
Models for Chemical Engineering. This volume (2008)

324. Morbach, J., Wiesner, A., Marquardt, W.: OntoCAPE 2.0 – a (re-)usable
ontology for computer-aided process engineering. In: Proceedings of the Eu-
ropean Symposium on Computer Aided Process Engineering – ESCAPE 18,
accepted (2008)

325. Morbach, J., Yang, A.: Ontology OntoCAPE (2006),
http://www.lpt.rwth-aachen.de/Research/ontocape.php

326. Morbach, J., Yang, A., Marquardt, W.: OntoCAPE – a large-scale ontology
for chemical process engineering. Engineering Applications of Artificial Intel-
ligence 20(2), 147–161 (2007)

327. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Represent-
ing knowledge about information systems. ACM Transactions on Information
Systems 8(4), 325–362 (1990)

http://www.lpt.rwth-aachen.de/Research/ontocape.php

R.1 Publications of the IMPROVE Groups 807

328. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierung.
Vieweg, Wiesbaden (1979)

329. Nagl, M.: Characterization of the IPSEN project. In: Madhavji, N., Schäfer,
W., Weber, H. (eds.) Proceedings of the 1st International Conference on Sys-
tem Development Environments & Factories, pp. 141–150 (1990)

330. Nagl, M.: Das Forschungsprojekt IPSEN. Informatik Forschung und Entwick-
lung 5, 103–105 (1990)

331. Nagl, M.: Softwaretechnik: Methodisches Programmieren im Großen. Sprin-
ger, Heidelberg (1990), 2nd edn. under the title “Modellierung von Software-
Architekturen” (to appear, 2009)

332. Nagl, M.: Eng integrierte Softwareentwicklungs-Umgebungen: Ein Erfah-
rungsbericht über das IPSEN-Projekt. Informatik Forschung und Entwick-
lung 8(3), 105–119 (1993)

333. Nagl, M.: Software-Entwicklungsumgebungen: Einordnung und zukünftige
Entwicklungslinien. Informatik-Spektrum 16(5), 273–280 (1993)

334. Nagl, M. (ed.): IPSEN 1996. LNCS, vol. 1170. Springer, Heidelberg (1996)
335. Nagl, M. (ed.): Verteilte, integrierte Anwendungsarchitekturen: Die Software-

Welt im Umbruch – Proceedings of ONLINE’97, Congress VI. ONLINE
GmbH (1997)

336. Nagl, M.: Softwaretechnik mit Ada 95: Entwicklung großer Systeme, 6th edn.
Vieweg, Wiesbaden (2003)

337. Nagl, M.: From Application Domain Models to Tools: The Sketch of a Layered
Process/Product Model. This volume (2008)

338. Nagl, M.: Process/Product Model: Status and Open Problems. This volume
(2008)

339. Nagl, M.: Review from Academic Success Perspective. This volume (2008)
340. Nagl, M.: Review from Tools’ Side. This volume (2008)
341. Nagl, M.: The Interdisciplinary IMPROVE Project. This volume (2008)
342. Nagl, M., Faneye, O.B.: Gemeinsamkeiten und Unterschiede von Entwick-

lungsprozessen in verschiedenen Ingenieurdisziplinen. In: Nagl, M., Westfech-
tel, B. (eds.) Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von
Entwicklungsprozessen, pp. 311–324. Wiley-VCH, Weinheim (2003)

343. Nagl, M., Marquardt, W.: SFB 476 IMPROVE: Informatische Unterstützung
übergreifender Entwicklungsprozesse in der Verfahrenstechnik. In: Jarke, M.,
Pohl, K., Pasedach, K. (eds.) Informatik als Innovationsmotor (GI Jahresta-
gung ’97). Informatik Aktuell, pp. 143–154. Springer, Heidelberg (1997)

344. Nagl, M., Marquardt, W.: Übersicht über den SFB IMPROVE: Probleme, An-
satz, Lösungsskizze. In: Nagl, M., Westfechtel, B. (eds.) Integration von En-
twicklungssystemen in Ingenieuranwendungen – Substantielle Verbesserung
der Entwicklungsprozesse, pp. 217–250. Springer, Heidelberg (1999)

345. Nagl, M., Marquardt, W.: Informatische Konzepte für verfahrenstechnische
Entwicklungsprozesse. In: Walter, R., Rauhut, B. (eds.) Horizonte – Die
RWTH auf dem Weg ins 21. Jahrhundert, pp. 292–300. Springer, Heidelberg
(1999)

346. Nagl, M., Marquardt, W.: Tool integration via cooperation functionality. In:
Proceedings of the 3rd European Congress on Chemical Engineering, CD-
ROM (2001), Abstract: Chem.-Ing.-Tech. 6, 622 (2001)

808 References

347. Nagl, M., Marquardt, W. (eds.): Collaborative and Distributed Chemical En-
gineering: From Understanding to Substantial Design Process Support. This
volume (2008)

348. Nagl, M., Schneider, R., Westfechtel, B.: Synergetische Verschränkung bei
der A-posteriori-Integration von Werkzeugen. In: Nagl, M., Westfechtel, B.
(eds.) Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von En-
twicklungsprozessen, pp. 137–154. Wiley-VCH, Weinheim (2003)

349. Nagl, M., Schürr, A.: Software integration problems and coupling of graph
grammar specifications. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G.
(eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 155–169. Springer, Hei-
delberg (1996)

350. Münch, M., Nagl, M. (eds.): AGTIVE 1999. LNCS, vol. 1779. Springer, Hei-
delberg (2000)

351. Nagl, M., Westfechtel, B.: Das Forschungsprojekt SUKITS. Informatik For-
schung und Entwicklung 8(4), 212–214 (1993)

352. Nagl, M., Westfechtel, B. (eds.): Integration von Entwicklungssystemen in In-
genieuranwendungen – Substantielle Verbesserung der Entwicklungsprozesse.
Springer, Heidelberg (1999)

353. Nagl, M., Westfechtel, B. (eds.): Modelle, Werkzeuge und Infrastrukturen zur
Unterstützung von Entwicklungsprozessen. Wiley-VCH, Weinheim (2003)

354. Nagl, M., Westfechtel, B.: Some notes on the empirical evaluation of innova-
tive tools for engineering design processes. In: Subrahmanian, E., Sriram, R.,
Herder, P., Schneider, R. (eds.) The role of empirical studies in understanding
and supporting engineering design – Workshop Proceedings, National Insti-
tute of Standards and Technology, Gaithersburg, Maryland, USA, 4–5 April
2002, pp. 53–64. DUP Science, Delft (2004)

355. Nagl, M., Westfechtel, B., Schneider, R.: Tool support for the management of
design processes in chemical engineering. Computers & Chemical Engineer-
ing 27(2), 175–197 (2003)

356. Nick, A.: Personalisiertes Information Brokering. PhD thesis, RWTH Aachen
University (2002)

357. Nicola, M.: Performance evaluation of distributed, replicated, and wireless
information systems. PhD thesis, RWTH Aachen University (1999)

358. Nissen, H.W., Jarke, M.: Repository support for multi-perspective require-
ments engineering. Information Systems (Special Issue on Meta Modeling and
Method Engineering) 24(2), 131–158 (1999)

359. Nissen, H.: Separierung und Resolution multipler Perspektiven in der konzep-
tuellen Modellierung. PhD thesis, RWTH Aachen University (1997)

360. Norbisrath, U., Armac, I., Retkowitz, D., Salumaa, P.: Modeling eHome Sys-
tems. In: Terzis, S. (ed.) Proc. of the 4th Intl. Workshop on Middleware for
Pervasive and Ad-Hoc Computing (MPAC 2006), Melbourne, Australia, ACM
Press, New York (2006)

361. Park, A.: A Service-Based Agent System Supporting Mobile Computing. PhD
thesis, RWTH Aachen University (2004)

362. Park, A.S.B., Lipperts, S.: Prototype approaches to a mobile agent service
trader. In: Proceedings of the 4th International Symposium on Interworking,
Ottawa, Canada (1998)

363. Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.): AGTIVE 2003. LNCS, vol. 3062.
Springer, Heidelberg (2004)

R.1 Publications of the IMPROVE Groups 809

364. Pils, C.: Leistungsorientierte Dienstselektion für mobile Agenten im Internet –
Elektronische Staumelder auf der Datenautobahn. PhD thesis, RWTH Aachen
University (2005)

365. Pohl, K.: The three dimensions of requirements engineering: A framework and
its applications. Information Systems 19(3), 243–258 (1994)

366. Pohl, K.: Process-Centered Requirements Engineering. Research Studies
Press, Taunton (1996)

367. Pohl, K.: Continuous Documentation of Information Systems Requirements.
Habilitationsschrift, RWTH Aachen (1999)

368. Pohl, K., Dömges, R., Jarke, M.: Towards method-driven trace capture. In:
Olivé, À., Pastor, J.A. (eds.) CAiSE 1997. LNCS, vol. 1250, pp. 103–116.
Springer, Heidelberg (1997)

369. Pohl, K., Weidenhaupt, K.: A contextual approach for process-integrated
tools. In: Jazayeri, M. (ed.) ESEC 1997 and ESEC-FSE 1997. LNCS, vol. 1301,
pp. 176–192. Springer, Heidelberg (1997)

370. Pohl, K., Weidenhaupt, K., Dömges, R., Haumer, P., Jarke, M.: Prozeßinte-
gration in PRIME: Modelle, Architektur, Vorgehensweise. In: Proceedings of
Softwaretechnik ’98, Paderborn, Germany, pp. 42–52 (1998)

371. Pohl, K., Weidenhaupt, K., Dömges, R., Haumer, P., Jarke, M., Klamma,
R.: PRIME: Towards process-integrated environments. ACM Transactions on
Software Engineering and Methodology 8(4), 343–410 (1999)

372. Pohl, K.R., Dömges, R., Jarke, M.: Decision oriented process modelling. In:
Proceedings of the 9th International Software Process Workshop, pp. 203–208
(2001)

373. Raddatz, M., Schlüter, M., Brandt, S.C.: Identification and reuse of experience
knowledge in continuous production processes. In: Proceedings of the 9th IFAC
Symposium on Automated Systems Based on Human Skill And Knowledge,
Nancy, France (2006)

374. Radermacher, A.: Support for design patterns through graph transformation
tools. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp.
111–126. Springer, Heidelberg (2000)

375. Radermacher, A.: Tool Support for the Distribution of Object-Based Systems.
PhD thesis, RWTH Aachen University (2000)

376. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Trace-
ability. IEEE Transactions on Software Engineering 27(1), 58–93 (2001)

377. Ranger, U.: Model-driven Development of Distributed Systems using Graph
Rewriting Languages (in German). PhD thesis, RWTH Aachen University,
Aachen (2008)

378. Ranger, U., Gruber, K., Holze, M.: Defining abstract graph views as mod-
ule interfaces. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of
Graph Transformations with Industrial Relevance. Proceedings of the Third
International AGTIVE 2007, Kassel, Germany. LNCS, vol. 5088, pp. 123–138.
Springer, Heidelberg (2008)

379. Ranger, U., Hermes, T.: Ensuring consistency within distributed graph trans-
formation systems. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 368–382. Springer, Heidelberg (2007)

380. Raschka, R.: Entwurf und Gestaltung der Benutzungsschnittstelle einer inte-
grierten Kommunikationsumgebung. Master’s thesis, RWTH Aachen Univer-
sity (2003)

810 References

381. Reichl, P.: Dynamische Verkehrs- und Preismodellierung für den Einsatz in
Kommunikationssystemen. PhD thesis, RWTH Aachen University (1999)

382. Reimann, S.: Entgasung von Polymeren auf gleichlaufenden, dichtkämmenden
Doppelschneckenextrudern am Beispiel von Polystyrol. PhD thesis, RWTH
Aachen University (1998)

383. Retkowitz, D., Stegelmann, M.: Dynamic Adaptability for Smart Environ-
ments. In: Distributed Applications and Interoperable Systems (DAIS 2008),
Oslo, Norway. LNCS, vol. 5053, pp. 154–167. Springer, Heidelberg (2008)

384. Sattler, U.: Terminological Knowledge Representation Systems in a Process
Engineering Application. PhD thesis, RWTH Aachen University (1998)

385. Schäfer, W.: Eine integrierte Softwareentwicklungs-Umgebung: Konzepte, En-
twurf und Implementierung. PhD thesis, University of Osnabrück (1986)

386. Schirski, M., Gerndt, A., van Reimersdahl, T., Kuhlen, T., Adomeit, P., Lang,
O., Pischinger, S., Bischof, C.: ViSTA FlowLib – a framework for interactive
visualization and exploration of unsteady flows in virtual environments. In:
Proceedings of the 7th International Immersive Projection Technologies Work-
shop and the 9th Eurographics Workshop on Virtual Environments, pp. 77–85.
ACM Press, New York (2003)

387. Schleicher, A.: High-level modeling of development processes. In: Scholz-
Reiter, B., Stahlmann, H.-D., Nethe, A. (eds.) First International Conference
on Process Modelling, pp. 57–73 (1999)

388. Schleicher, A.: Objektorientierte Modellierung von Entwicklungsprozessen mit
der UML. In: Desel, J., Pohl, K., Schürr, A. (eds.) Modellierung ’99, pp. 171–
186. Teubner, Wiesbaden (1999)

389. Schleicher, A.: Formalizing UML-Based Process Models Using Graph Trans-
formations. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779,
pp. 341–357. Springer, Heidelberg (2000)

390. Schleicher, A.: Management of Development Processes: An Evolutionary Ap-
proach. PhD thesis, RWTH Aachen University (2002)

391. Schleicher, A., Westfechtel, B.: Beyond stereotyping: Metamodeling for the
UML. In: Proceedings of the 34th Hawaii International Conference on Sys-
tem Sciences (HICSS), Minitrack: Unified Modeling – A Critical Review and
Suggested Future, IEEE Computer Society Press, Los Alamitos (2001)

392. Schleicher, A., Westfechtel, B.: Unterstützung von Entwicklungsprozessen
durch Werkzeuge. In: Nagl, M., Westfechtel, B. (eds.) Modelle, Werkzeuge
und Infrastrukturen zur Unterstützung von Entwicklungsprozessen, pp. 329–
332. Wiley-VCH, Weinheim (2003)

393. Schlick, C.: Modellbasierte Gestaltung der Benutzungsschnittstelle autonomer
Produktionszellen. PhD thesis, RWTH Aachen University (2000)

394. Schlüter, M.: Konzepte und Werkzeuge zur rechnerunterstützten Auslegung
von Aufbereitungsextrudern in übergreifenden Entwicklungsprozessen. PhD
thesis, RWTH Aachen University (2004)

395. Schmidt, L., Luczak, H.: A cognitive engineering approach to computer sup-
ported cooperative work. In: Luczak, H., Cakir, A.E., Cakir, G. (eds.) World
Wide Work, Proceedings of the 6th International Scientific Conference on
Work With Display Units, Berchtesgaden, Germany, pp. 208–210 (2002)

396. Schneider, R.: Workshop des Sonderforschungsbereichs 476 IMPROVE: Rech-
nerunterstützung bei der Prozessentwicklung. Chemie Ingenieur Technik 73,
275–276 (2001)

R.1 Publications of the IMPROVE Groups 811

397. Schneider, R.: Einsatzmöglichkeiten der Arbeitsprozessmodellierung am Bei-
spiel NA 35. In: Engineering in der Prozessindustrie. VDI Fortschritt-Berichte,
vol. 1684, pp. 33–38. VDI-Verlag, Düsseldorf (2002)

398. Schneider, R.: Erfassung und Analyse von Arbeitsabläufen bei Entwick-
lungsprozessen. Chem.-Ing.-Tech. 74(5), 612 (2002)

399. Schneider, R.: Informationstechnologien für Entwicklung und Produktion in
der Verfahrenstechnik. atp – Automatisierungstechnische Praxis 46, 35–37
(2004)

400. Schneider, R., Gerhards, S.: WOMS – a work process modeling tool. In: Nagl,
M., Westfechtel, B. (eds.) Modelle, Werkzeuge und Infrastrukturen zur Un-
terstützung von Entwicklungsprozessen, pp. 375–376. Wiley-VCH, Weinheim
(2003)

401. Schneider, R., Marquardt, W.: Information technology support in the chemical
process design life cycle. Chemical Engineering Science 57(10), 1763–1792
(2002)

402. Schneider, R., von Wedel, L., Marquardt, W.: Industrial Cooperation Result-
ing in Transfer. This volume (2008)

403. Schneider, R., Westfechtel, B.: A Scenario Demonstrating Design Support in
Chemical Engineering. This volume (2008)

404. Schoop, M.: Business Communication in Electronic Commerce. Habilitation
Thesis, RWTH Aachen University (2003)

405. Schoop, M., Jertila, A., List, T.: Negoisst: A negotiation support system for
electronic business-to-business negotiation in e-commerce. Data & Knowledge
Engineering 47(3), 371–401 (2003)

406. Schoop, M., Köller, J., List, T., Quix, C.: A three-phase model of electronic
marketplaces for software components in chemical engineering. In: Schmid,
B., Stanoevska-Slabeva, K., Tschammer, V. (eds.) Towards the E-Society,
Proceedings of the First IFIP Conference on E-Commerce E-Government,
E-Business, Zurich, Switzerland, pp. 507–522. Kluwer Academic Publishers,
Dordrecht (2001)

407. Schopfer, G.: A Framework for Tool Integration in Chemical Process Model-
ing. PhD thesis, RWTH Aachen University. Published in: Fortschritt-Berichte
VDI, Nr. 868, VDI-Verlag, Düsseldorf (2006)

408. Schopfer, G., Wyes, J., Marquardt, W., von Wedel, L.: A library for equation
system processing based on the CAPE-OPEN, ESO interface. In: Proceed-
ings of the European Symposium on Computer Aided Process Engineering –
ESCAPE 15, Elsevier, Amsterdam (2005)

409. Schopfer, G., Yang, A., von Wedel, L., Marquardt, W.: CHEOPS: A tool-
integration platform for chemical process modelling and simulation. Interna-
tional Journal on Software Tools for Technology Transfer 6(3), 186–202 (2004)

410. Schüppen, A.: Multimediale Kommunikationsunterstützung. In: Nagl, M.,
Westfechtel, B. (eds.) Modelle, Werkzeuge und Infrastrukturen zur Unter-
stützung von Entwicklungsprozessen, p. 373. Wiley, Chichester (2003)

411. Schüppen, A., Spaniol, O., Thißen, D., Assenmacher, I., Haberstroh, E.,
Kuhlen, T.: Multimedia and VR Support for Direct Communication of De-
signers. This volume (2008)

412. Schürr, A.: Operationales Spezifizieren mit programmierten Grapherset-
zungssystemen. PhD thesis, RWTH Aachen University (1991)

812 References

413. Schürr, A.: Specification of graph translators with triple graph grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp.
151–163. Springer, Heidelberg (1995)

414. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and
environment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.)
Handbook on Graph Grammars and Computing by Graph Transformation –
Volume 2: Applications, Languages, and Tools, pp. 478–550. World Scientific,
Singapore (1999)

415. Schuba, M.: Skalierbare und zuverlässige Multicast-Kommunikation im Inter-
net. PhD thesis, RWTH Aachen University (1999)

416. Schürr, A., Nagl, M., Zündorf, A. (eds.): Applications of Graph Transforma-
tions with Industrial Relevance. Proceedings of the Third International AG-
TIVE 2007, Kassel, Germany. LNCS, vol. 5088. Springer, Heidelberg (2008)

417. Souza, D., Marquardt, W.: The chemical engineering data model VeDa.
Part 2: Structural modeling objects. Technical Report LPT-1998-02, RWTH
Aachen University, Process Systems Engineering (1998)

418. Souza, D., Marquardt, W.: The chemical engineering data model VeDa.
Part 3: Geometrical modeling objects. Technical Report LPT-1998-03, RWTH
Aachen University, Process Systems Engineering (1998)

419. Spaniol, M., Klamma, R., Jarke, M.: Data integration for multimedia E-
learning environments with XML and MPEG-7. In: Karagiannis, D., Reimer,
U. (eds.) PAKM 2002. LNCS (LNAI), vol. 2569, pp. 244–255. Springer, Hei-
delberg (2002)

420. Spaniol, O., Meggers, J.: Active network nodes for adaptive multimedia com-
munication. In: Yongchareon, T. (ed.) Intelligence in Networks, Proc. 5th IFIP
International Conference on Intelligence in Networks, SmartNet’99 (1999)

421. Spaniol, O., Meyer, B., Thißen, D.: Industrieller Einsatz von CORBA: aktuelle
Situation und zukünftige Entwicklungen. Industrie Management 6 (1997)

422. Spaniol, O., Thißen, D., Meyer, B., Linnhoff-Popien, C.: Dienstmanagement
und -vermittlung für Entwicklungswerkzeuge. In: Nagl, M., Westfechtel, B.
(eds.) Integration von Entwicklungssystemen in Ingenieuranwendungen – Sub-
stantielle Verbesserung der Entwicklungsprozesse, pp. 371–386. Springer, Hei-
delberg (1999)

423. Stahl, J.: Entwicklung einer Methode zur Integrierten Arbeitsgestaltung und
Personalplanung im Rahmen von Concurrent Engineering. PhD thesis, RWTH
Aachen University (1998)

424. Stahl, J., Luczak, H.: A method for job design in concurrent engineering.
In: Seppálá, P. (ed.) From Experience to Innovation, IEA’97 – Proceedings
of the 13th Triennial Congress of the International Ergonomics Association,
Helsinki, pp. 265–267 (1997)

425. Staudt, M., Jarke, M.: View management support in advanced knowledge base
servers. Journal of Intelligent Information Systems 15(4), 253–285 (2000)

426. Steidel, F.: Modellierung arbeitsteilig ausgeführter, rechnerunterstützter Kon-
struktionsarbeit – Möglichkeiten und Grenzen personenzentrierter Simulation.
PhD thesis, TU Berlin (1994)

427. Stenzel, R.: Steuerungsarchitekturen für autonome mobile Roboter. PhD the-
sis, RWTH Aachen University (2002)

428. Stewering, J.: Auslegung mit Virtual Reality. Plastverarbeiter (2004)

R.1 Publications of the IMPROVE Groups 813

429. Stewering, J.: Erfolgreich Entwickeln und Kunden überzeugen mit Virtual
Reality. Plastverarbeiter (2006)

430. Subrahmanian, E., Sriram, R., Herder, P., Schneider, R. (eds.): The role of
empirical studies in understanding and supporting engineering design – Work-
shop Proceedings, April 4–5, 2002. DUP Science, Delft (2004)

431. Szcurko, P.: Steuerung von Informations- und Arbeitsflüssen auf Basis
konzeptueller Unternehmensmodelle, dargestellt am Beispiel des Qualitäts-
managements. PhD thesis, RWTH Aachen University (1997)

432. Theißen, M., Hai, R., Marquardt, W.: Computer-Assisted Work Process Mod-
eling in Chemical Engineering. This volume (2008)

433. Theißen, M., Hai, R., Morbach, J., Schneider, R., Marquardt, W.: Scenario-
Based Analysis of Industrial Work Processes. This volume (2008)

434. Theißen, M., Marquardt, W.: Decision process modeling in chemical engi-
neering design. In: Proceedings of the European Symposium on Computer
Aided Process Engineering – ESCAPE 17, Bucharest, Romania, pp. 383–388.
Elsevier, Amsterdam (2007)

435. Theißen, M., Marquardt, W.: Decision Models. This volume (2008)
436. Theißen, M., Schneider, R., Marquardt, W.: Arbeitsprozessmodellierung in

der Verfahrenstechnik: Grundlagen, Werkzeuge, Einsatzgebiete. In: Tagungs-
band 3. Symposium Informationstechnologien für Entwicklung und Produk-
tion in der Verfahrenstechnik, Berlin, Germany (2005)

437. Theißen, M., Hai, R., Marquardt, W.: Design process modeling in chemical
engineering. Journal of Computing and Information Science in Engineering
8(1), 011007 (2008)

438. Thißen, D.: Managing distributed environments for cooperative development
processes. In: Proceedings of the 6th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI 2000), Orlando, Florida, USA, pp. 340–345
(2000)

439. Thißen, D.: Management of efficient service provision in distributed systems.
In: Proceedings of the WSES International Conference on Multimedia, Inter-
net, Video Technologies (MIV 2001), Malta, pp. 140–145. WSES Press (2001)

440. Thißen, D.: Trader-based management of service quality in distributed envi-
ronments. In: Proceedings of the 5th International Conference on Communi-
cation Systems, Africom’01 (2001)

441. Thißen, D.: Flexible service provision considering specific customer resource
needs. In: Proceedings of the 10th Euromicro Workshop on Parallel, Dis-
tributed and Network-based Processing (Euromicro-PDP 2002), Canary Is-
lands, Spain, pp. 253–260. IEEE Computer Society Press, Los Alamitos (2002)

442. Thißen, D.: Load balancing for the management of service performance in
open service markets: a customer-oriented approach. In: Proceedings of the
2002 ACM Symposium on Applied Computing (SAC 2002), Madrid, Spain,
pp. 902–906. ACM Press, New York (2002)

443. Thißen, D.: Dienstmanagement für Entwicklungswerkzeuge. In: Nagl, M.,
Westfechtel, B. (eds.) Modelle, Werkzeuge und Infrastrukturen zur Unter-
stützung von Entwicklungsprozessen, pp. 363–364. Wiley-VCH, Weinheim
(2003)

444. Thißen, D.: A middleware platform supporting electronic service markets. In:
Proceedings of the IADIS International Conference on WWW/Internet (ICWI
2004), Madrid, Spain, pp. 1183–1186 (2004)

814 References

445. Thißen, D.: Trader-basiertes Dienstmanagement in offenen Dienstmárkten.
PhD thesis, RWTH Aachen University (2004)

446. Thißen, D.: Considering qos aspects in web service composition. In: Proceed-
ings of the 11th IEEE Symposium on Computers and Communications (ISCC
2006), Cagliari, Sardinia, Italy, pp. 371–376 (2006)

447. Thißen, D., Linnhoff-Popien, C., Lipperts, S.: Can CORBA fulfill data transfer
requirements of industrial enterprises? In: Proceedings of the 1st International
Enterprise Distributed Object Computing Workshop, Gold Coast, Australia,
pp. 129–137. IEEE Computer Society Press, Los Alamitos (1997)

448. Thißen, D., Neukirchen, H.: Integrating trading and load balancing for ef-
ficient management of services in distributed systems. In: Linnhoff-Popien,
C., Hegering, H.-G. (eds.) USM 2000. LNCS, vol. 1890, pp. 42–53. Springer,
Heidelberg (2000)

449. Thißen, D., Neukirchen, H.: Managing services in distributed systems by inte-
grating trading and load balancing. In: Proceedings of the 5th IEEE Interna-
tional Symposium on Computers and Communications, Antibes, France, pp.
641–646. IEEE Computer Society Press, Los Alamitos (2000)

450. Trossen, D.: Scalable conferencing control service (sccs) - service specification.
Technical Report 001-98, RWTH Aachen University, Department of Computer
Science 4 (1998)

451. Trossen, D.: Scalable conferencing control service (sccs) - protocol specifi-
cation. Technical Report 001-99, RWTH Aachen University, Department of
Computer Science 4 (1999)

452. Trossen, D.: GCDL: Group communication description language for modeling
groupware applications and scenarios. In: Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation Conference, San
Diego, San Diego, California, USA (2000)

453. Trossen, D.: Scalable conferencing support for tightly-coupled environments:
Services, mechanisms and implementation design. In: Proceedings of the IEEE
International Conference on Communication (ICC 2000), New Orleans, USA,
IEEE Computer Society Press, Los Alamitos (2000)

454. Trossen, D.: Scalable Group Communication in Tightly Coupled Environ-
ments. PhD thesis, RWTH Aachen University (2000)

455. Trossen, D., Kliem, P.: Dynamic reconfiguration in tightly-coupled environ-
ments. In: Proceedings of SPIE (International Society for Optical Engineer-
ing): Multimedia Systems and Applications II, Boston, USA (1999)

456. Trossen, D., Schüppen, A., Wallbaum, M.: Shared workspace for collaborative
engineering. Annals of Cases on Information Technology 4, 119–130 (2002)

457. Trossen, D., Eickhoff, W.C.: Reconfiguration in tightly-coupled conferencing
environments. In: Proceedings of the 11th Information Resources Management
Association International Conference (IRMA 2000), Anchorage, Alaska, USA,
IRMA (2000)

458. Vassiliadis, P., Quix, C., Vassiliou, Y., Jarke, M.: Data warehouse process
management. Information Systems (Special Issue on Advanced Information
Systems Engineering) 26(3), 205–236 (2001)

459. von Wedel, L.: An Environment for Heterogeneous Model Management in
Chemical Process Engineering. PhD thesis, RWTH Aachen University (2004)

460. von Wedel, L., Kulikov, V., Marquardt, W.: An Integrated Environment for
Heterogeneous Process Modeling and Simulation. This volume (2008)

R.1 Publications of the IMPROVE Groups 815

461. von Wedel, L., Marquardt, W.: The chemical engineering data model VeDa.
Part 5: Material modeling objects. Technical Report LPT-1998-05, RWTH
Aachen University, Process Systems Engineering (1999)

462. von Wedel, L., Marquardt, W.: CHEOPS: A case study in component-based
process simulation. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.)
Foundations of Computer-Aided Process Design. AIChE Symposium Series,
vol. 96(323), pp. 494–497 (2000)

463. von Wedel, L., Marquardt, W.: ROME: A repository to support the integra-
tion of models over the lifecycle of model-based engineering. In: Pierucci, S.
(ed.) Proceedings of the European Symposium on Computer Aided Process
Engineering – ESCAPE 10, pp. 535–540. Elsevier, Amsterdam (2000)

464. Wallbaum, M., Carrega, D., Krautgärtner, M., Decker, H.: A mobile middle-
ware component providing voice over ip services to mobile users. In: Leopold,
H., Garćıa, N. (eds.) ECMAST 1999. LNCS, vol. 1629, pp. 552–563. Springer,
Heidelberg (1999)

465. Wallbaum, M., Meggers, J.: Voice/data integration in wireless communication
networks. In: Proceedings of the 50th IEEE Vehicular Technology Conference
(VTC’99), Amsterdam, The Netherlands, IEEE Computer Society Press, Los
Alamitos (1999)

466. Wang, B.: Identifikation von charakteristischen Situationen in Betriebsdaten
von kontinuierlichen Produktionsprozessen. Master’s thesis, RWTH Aachen
University (2007)

467. Watzdorf, R., Bausa, J., Marquardt, W.: General shortcut methods for non-
ideal multicomponent distillation: 2. complex columns. AIChE Journal 45,
1615–1628 (1998)

468. Weck, M.: Fehlermustererkennung durch Signalanalyse in der Kautschukpro-
filextrusion. Master’s thesis, RWTH Aachen University (2008)

469. Weidenhaupt, K.: Anpassbarkeit von Softwarewerkzeugen in prozessinte-
grierten Entwicklungsumgebungen. PhD thesis, RWTH Aachen University
(2001)

470. Weidenhaupt, K., Bayer, B.: Prozeßintegrierte Designwerkzeuge für die Ver-
fahrenstechnik. In: Beiersdörfer, K., Engels, G., Schäfer, W. (eds.) Proceed-
ings of Informatik’99, Paderborn, Germany, pp. 305–313. Springer, Heidelberg
(1999)

471. Weisemöller, I.: Verteilte Ausführung dynamischer Entwicklungsprozesse in
heterogenen Prozessmanagementsystemen. Master’s thesis, RWTH Aachen
University (2006)

472. Westfechtel, B.: A graph-based model for dynamic process nets. In: Proceed-
ings of the 7th International Conference on Software Engineering and Knowl-
edge Engineering SEKE’95, Skokie, Ilinois, USA, pp. 126–130 (1995)

473. Westfechtel, B.: A graph-based system for managing configurations of engi-
neering design documents. International Journal of Software Engineering &
Knowledge Engineering 6(4), 549–583 (1996)

474. Westfechtel, B.: Graph-based product and process management in mechanical
engineering. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
Handbook on Graph Grammars and Computing by Graph Transformation –
Volume 2: Applications, Languages, and Tools, pp. 321–368. World Scientific,
Singapore (1999)

816 References

475. Westfechtel, B.: Models and Tools for Managing Development Processes.
LNCS, vol. 1646. Springer, Heidelberg (1999)

476. Westfechtel, B.: Ein graphbasiertes Managementsystem für dynamische Ent-
wicklungsprozesse. Informatik Forschung und Entwicklung 16(3), 125–144
(2001)

477. Westfechtel, B., Munch, B., Conradi, R.: A layered architecture for uniform
version management. IEEE Transactions on Software Engineering 27(12),
1111–1133 (2001)

478. Westfechtel, B., Schleicher, A., Jäger, D., Heller, M.: Ein Managementsystem
für Entwicklungsprozesse. In: Nagl, M., Westfechtel, B. (eds.) Modelle, Werk-
zeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen, pp.
369–370. Wiley-VCH, Weinheim (2003)

479. Wiesner, A., Morbach, J., Marquardt, W.: An overview on OntoCAPE and
its latest applications. In: AIChE Annual Meeting, Salt Lake City, USA, Nov.
4-9 (2007)

480. Wiesner, A., Morbach, J., Marquardt, W.: Semantic data integration for pro-
cess engineering design data. In: Proceedings of the 10th International Confer-
ence on Enterprise Information Systems (ICEIS), Barcelona, Spain, accepted
(2008)

481. Winter, A.: Visuelles Programmieren mit Graphtransformationen. PhD thesis,
RWTH Aachen University (1999)

482. Wolf, M.: Groupware zur Unterstützung verfahrenstechnischer Entwicklungs-
prozesse, Statusbericht des SFB-Teilprojektes I2. Technical report, RWTH
Aachen University, Institute of Industrial Engineering and Ergonomics (1998)

483. Wolf, M.: Entwicklung und Evaluation eines Groupware-Systems zur Un-
terstützung verfahrenstechnischer Entwicklungsprozesse. PhD thesis, RWTH
Aachen University (2002)

484. Wolf, M., Foltz, C., Schlick, C., Luczak, H.: Empirical investigation of a
workspace model for chemical engineers. In: Proceedings of the 14th Triennial
Congress of the International Ergonomics Association and the 44th Annual
Meeting of the Human Factors and Ergonomics Society, San Diego, California,
USA, 1/612–1/615 (2000)

485. Wolf, M., Foltz, C., Schlick, C., Luczak, H.: Empirische Untersuchung eines
Groupware-basierten Unterstützungs-Systems für verfahrenstechnische En-
twickler. Zeitschrift für Arbeitswissenschaft 54(3), 258–266 (2000)

486. Wolf, M., Foltz, C., Schlick, C., Luczak, H.: Development and evaluation of a
groupware system to support chemical design processes. International Journal
of Human-Computer Interaction 14(2), 181–198 (2002)

487. Wörzberger, R., Ehses, N., Heer, T.: Adding support for dynamics patterns to
static business process management systems. In: Proceedings of the Workshop
on Software Composition 2008. LNCS, vol. 4954, Springer, Heidelberg (2008)

488. Wörzberger, R., Heller, M., Hässler, F.: Evaluating workflow definition lan-
guage revisions with graph-based tools. In: Electronic Communications of the
EASST 6th International Workshop on Graph Transformations and Visual
Modeling Techniques (GT-VMT’2007), Braga, Portugal, March 24 – April 1
(2007)

R.2 External Literature 817

489. Yang, A., Marquardt, W.: An ontology-based approach to conceptual process
modeling. In: Barbarosa-Póvoa, A., Matos, H. (eds.) Proceedings of the Eu-
ropean Symposium on Computer Aided Process Engineering – ESCAPE 14,
pp. 1159–1164. Elsevier, Amsterdam (2004)

490. Yang, A., Morbach, J., Marquardt, W.: From conceptualization to model gen-
eration: the roles of ontologies in process modeling. In: Floudas, C.A., Agrar-
wal, R. (eds.) Proceedings of FOCAPD 2004, pp. 591–594 (2004)

491. Yang, A., Schlüter, M., Bayer, B., Krüger, J., Haberstroh, E., Marquardt, W.:
A concise conceptual model for material data and its applications in process
engineering. Computers & Chemical Engineering 27, 595–609 (2003)

492. Zündorf, A.: Eine Entwicklungsumgebung für PROgrammierte GRaph Erset-
zungsSysteme. PhD thesis, RWTH Aachen University (1995)

R.2 External Literature74

493. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. AI Communications 7(1), 39–59
(1994)

494. Abdalla, H.: Concurrent engineering for global manufacturing. International
Journal of Production Economics 60–61, 251–260 (1999)

495. Adelberg, B.: NoDoSE – a tool for semi-automatically extracting structured
and semistructured data from text documents. In: Proceedings of the 1998
ACM SIGMOD International Conference on Management of Data, Seattle,
Washington, USA, pp. 283–294. ACM Press, New York (1998)

496. AixCAPE: Welcome to AixCAPE (2005), http://www.aixcape.org
497. aiXtrusion GmbH: Website (2006), http://www.aixtrusion.de/
498. Akehurst, D., Kent, S., Patrascoiu, O.: A relational approach to defining and

implementing transformations between metamodels. Software and Systems
Modeling 2(4), 215–239 (2003)

499. Alberts, L.K.: A sharable ontology for the formal representation of engineering
design knowledge. In: Gero, J.S., Tyugu, E. (eds.) Formal Design Methods for
CAD, pp. 3–32. Elsevier, Amsterdam (1994)

500. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts,
Architectures and Applications. Springer, Heidelberg (2004)

501. Ambriola, V., Conradi, R., Fuggetta, A.: Assessing process-centered software
engineering environments. ACM Transactions on Software Engineering and
Methodology 6(3), 283–328 (1997)

502. Amtsblatt der Europäischen Gemeinschaften Nr. L 156/14-18: EWG 90/270:
Richtlinie des Rates vom 29. Mai 1990 über die Mindestvorschriften bezüglich
der Sicherheit und des Gesundheitsschutzes bei der Arbeit an Bildschir-
mgeräten. Amt für Veröffentlichungen der Europäischen Gemeinschaften,
Luxemburg (1990)

74 External literature means on one hand literature of other groups and scientist, not
being involved in IMPROVE. Furthermore, there are also publications of former
IMPROVE members, which appeared after their membership in IMPROVE.
Finally, there are also publication of members of IMPROVE which, either from
their contents or from their date of appearance, have only a loose or no connection
to IMPROVE.

http://www.aixcape.org
http://www.aixtrusion.de/

818 References

503. Anderl, R., Trippner, D.: STEP – Standard for the Exchange of Product
Model Data. Teubner, Wiesbaden (2001)

504. Anderson, G., Anderson, P.: Enterprise JavaBeans Components Architecture.
Prentice-Hall, Englewood Cliffs (2002)

505. Andrews, R., Ponton, J.W.: A process engineering information management
system using world wide web technology. In: Proceedings of the 3rd Interna-
tional Conference on Foundations of Computer-Aided Operations (1998)

506. Anhäuser, F., Richert, H., Temmen, H.: PlantXML – integrierter Planungs-
prozess mit flexiblen Bausteinen. atp – Automatisierungstechnische Pra-
xis 46(10), 61–71 (2004)

507. ANSYS, Inc.: CFD flow modeling software & solutions from fluent – website
(2007), http://www.fluent.com

508. Apache Software Foundation: Apache Axis Website (2007),
http://ws.apache.org/axis

509. Appukuttan, B.K., Clark, T., Reddy, S., Tratt, L., Venkatesh, R.: A model
driven approach to model transformations. In: Proceedings of the 2003 Model
Driven Architecture: Foundations and Applications (MDAFA 2003), CTIT
Technical Report TR-CTIT-03-27, University of Twente, The Netherlands
(2003)

510. Arango, G.: Domain Analysis Methods. In: Schaefer, W., Prieto-Diaz, R.,
Matsumoto, M. (eds.) Software Reusability, pp. 17–49. Ellis Horwood, New
York (1994)

511. Aspeli, M.: Professional Plone Development. Packt Publishing, Birmingham
(2007)

512. Aspen Technology, Inc.: SPEEDUP, user manual (1995)
513. AspenTech: Polymers Plus User Guide. Release 10.2 (2000)
514. AspenTech: Aspen Batch.21TM – website (2005),

http://www.aspentech.com/product.cfm?ProductID=92

515. AspenTech: Aspen InfoPlus.21 R© – website (2005),
http://www.aspentech.com/product.cfm?ProductID=104

516. AspenTech: Aspen Plus R© – website (2005),
http://www.aspentech.com/product.cfm?ProductID=69

517. AspenTech: Aspen ZyqadTM – website (2005), http://www.aspentech.com/
includes/product.cfm?IndustryID=0&ProductID=89

518. AspenTech: AspenTech – website (2005),
http://www.aspentech.com

519. AspenTech: Aspen HYSYS – website (2006),
http://www.aspentech.com/products/aspen-hysys.cfm

520. AVEVA: VANTAGE Enterprise Net – website (2006),
http://www.aveva.com/products/plant/vnet.html

521. Badham, R., Couchman, P., Zanko, M.: Implementing concurrent engineering.
Human Factors and Ergonomics in Manufacturing 10, 237–249 (2000)

522. Baggen, R., Hemmerling, S.: Evaluation von Benutzbarkeit in Mensch-Ma-
schine-Systemen. In: Timpe, K.P., Jürgensohn, T., Kolrep, H. (eds.) Mensch-
Maschine-Systemtechnik – Konzepte, Modellierung, Gestaltung, Evaluation,
pp. 233–284. Symposium Publishing (2000)

523. Balke, W.T., Badii, A.: Assessing web services quality for call-by-call out-
sourcing. In: Proceedings of the 1st Web Services Quality Workshop, Rome,
Italy, pp. 173–181. IEEE Computer Society Press, Los Alamitos (2003)

http://www.fluent.com
http://ws.apache.org/axis
http://www.aspentech.com/product.cfm?ProductID=92
http://www.aspentech.com/product.cfm?ProductID=104
http://www.aspentech.com/product.cfm?ProductID=69
http://www.aspentech.com/includes/product.cfm?IndustryID=0&ProductID=89
http://www.aspentech.com/includes/product.cfm?IndustryID=0&ProductID=89
http://www.aspentech.com
http://www.aspentech.com/products/aspen-hysys.cfm
http://www.aveva.com/products/plant/vnet.html

R.2 External Literature 819

524. Bañares-Alcántara, R., Lababidi, H.M.S.: Design support systems for process
engineering – II. KBDS: An experimental prototype. Computers & Chemical
Engineering 19(3), 279–301 (1995)

525. Bañares-Alcántara, R., King, J.M.P.: Design support systems for process en-
gineering – III. design rationale as a requirement for effective support. Com-
puters & Chemical Engineering 21, 263–276 (1996)

526. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Software process model evolution in
the SPADE environment. IEEE Transactions on Software Engineering 19(12),
1128–1144 (1993)

527. Bandinelli, S., Fuggetta, A., Grigoli, S.: Process modeling in-the-large with
SLANG. In: Proceedings of the 2nd International Conference on the Software
Process (ICSP’93), IEEE Computer Society Press, Los Alamitos (1993)

528. Baresi, L., Mauri, M., Pezzè, M.: PLCTools: Graph transformation meets PLC
design. Electronic Notes in Theoretical Computer Science 72(2) (2002)

529. Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves,
M.P., Wallace, E.K.: Concepts for automating systems integration. Technical
Report NISTIR 6928, National Institute of Standards and Technology, NIST
(2003)

530. Barnicki, S.D., Fair, J.R.: Separation system synthesis: A knowledge-based
approach. 1. liquid mixture separations. Industrial & Engineering Chemistry
Research 29, 421–432 (1990)

531. Barnicki, S.D., Fair, J.R.: Separation system synthesis: A knowledge-based
approach. 2. gas-vapor mixtures. Industrial & Engineering Chemistry Re-
search 31, 1679–1694 (1992)

532. Barton, P.I., Pantelides, C.C.: Modeling of combined discrete/continous pro-
cesses. AIChE Journal 40, 966–979 (1994)

533. Basili, V.R.: The experience factory and its relationship to other quality ap-
proaches. Advances in Computers 41, 65–82 (1995)

534. Basili, V.R., Caldiera, G., Rombach, H.D.: The experience factory. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1, pp. 469–
476. John Wiley & Sons, Chichester (1994)

535. Basili, V.R., Rombach, H.D.: The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineer-
ing 146, 758–773 (1988)

536. Bass, L., Kazman, R.: Architecture-based development. Technical Report
CMU/SEI-99-TR-007, Carnegie Mellon University, Software Engineering In-
stitute, SEI (1999)

537. Basu, P.K., Mack, R.A., Vinson, J.M.: Consider a new approach to pharma-
ceutical process development. Chemical Engineering Progress 95, 82–90 (1999)

538. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodolo-
gies for database schema integration. ACM Computing Surveys 18(4), 323–364
(1986)

539. Batres, R., Asprey, S., Fuchino, T., Naka, Y.: A multi-agent environment
for concurrent process engineering. Computers & Chemical Engineering 10,
653–656 (1999)

540. Batres, R., Naka, Y.: Process plant ontologies based on a multi-dimensional
framework. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.) Fifth In-
ternational Conference on Foundations of Computer-Aided Process Design.
AIChE Symposium Series, vol. 96(323), pp. 433–437 (2000)

820 References

541. Batres, R., Naka, Y., Lu, M.L.: A multidimensional design framework and its
implementation in an engineering design environment. Concurrent Engineer-
ing: Research and Applications 7(1), 43–54 (1999)

542. Batres, R., West, M., Leal, D., Price, D., Masaki, K., Shimada, Y., Fuchino,
T., Naka, Y.: An upper ontology based on ISO 15926. Computers & Chemical
Engineering 31, 519–534 (2007)

543. Batres, R., West, M., Leal, D., Price, D., Naka, Y.: An upper ontology based
on ISO 15926. In: Puigjaner, L., Espuña, A. (eds.) European Symposium on
Computer-Aided Process Engineering – ESCAPE 15. Computer-Aided Chem-
ical Engineering, vol. 20, pp. 1543–1548. Elsevier, Amsterdam (2005)

544. Bayer, J., Widen, T.: Introducing traceability to product lines. In: Proceedings
of the 4th International Workshop on Software Product-Family Engineering
(2001)

545. Bechhofer, S., Horrocks, I., Goble, C.A., Stevens, R.: OilEd: A reason-able
ontology editor for the semantic web. In: Baader, F., Brewka, G., Eiter, T.
(eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 396–408. Springer, Heidelberg
(2001)

546. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuiness, D.L.,
Patel-Schneider, P.F., Stein, L.A.: OWL web ontology language reference
(2004), http://www.w3.org/TR/owl-ref/

547. Begole, J., Rosson, M.B., Shaffer, C.A.: Flexible collaboration transparency:
Supporting worker independence in replicated application-sharing systems.
ACM Transactions on Computer-Human-Interaction 6(2), 95–132 (1999)

548. Beßling, B., Lohe, B., Schoenmakers, H., Scholl, S., Staatz, H.: CAPE in
process design – potential and limitations. Computers & Chemical Engineer-
ing 21, S17–S21 (1997)

549. Benz, M., Hess, R., Hutschenreuther, T., Kümmel, T., Schill, S.: A framework
for high quality/low cost conferencing systems. In: Dı́az, M., Sénac, P. (eds.)
IDMS 1999. LNCS, vol. 1718, pp. 305–320. Springer, Heidelberg (1999)

550. Bergmann, R.: Experience Management – Foundations, Development Meth-
odology, and Internet-Based Applications. Springer, Heidelberg (2002)

551. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. North-
Holland, Amsterdam (2001)

552. Bernstein, P.A., Dayal, U.: An overview of repository technology. In: Proceed-
ings of the 20th VLDB Conference, Santiago, Chile, pp. 705–713 (1994)

553. Bertino, E., Catania, B.: Integrating XML and databases. IEEE Internet Com-
puting 5(4), 84–88 (2001)

554. Bevan, N., Macleod, M.: Usability measurement in context. Behaviour & In-
formation Technology 13(1-2), 132–145 (1994)

555. Beyer, L.T., Holtzblatt, K.: Contextual Design. Morgan Kaufmann, San Fran-
cisco (1998)

556. Biegler, L.T., Grossmann, I.E., Westerberg, A.W.: Systematic Methods of
Chemical Process Design. Prentice-Hall, Englewood Cliffs (1997)

557. Bieszczad, A., Pagurek, B., White, T.: Mobile agents for network manage-
ment. In: IEEE Communications Surveys (1998)

558. Bieszczad, J., Koulouris, A., Stephanopoulos, G.: Model.la: A phenomena-
based modeling environment for computer-aided process design. In: Malone,
M., Trainham, J., Carnahan, B. (eds.) 5th International Conference on Foun-
dations of Computer-aided Process Design, pp. 438–441 (2000)

http://www.w3.org/TR/owl-ref/

R.2 External Literature 821

559. Blass, E.: Entwicklung verfahrenstechnischer Prozesse, 2nd edn. Springer, Hei-
delberg (1997)

560. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1999)

561. Borghoff, U., Schlicher, J.: Rechnergestützte Gruppenarbeit. Springer, Hei-
delberg (1998)

562. Borst, W.N.: Construction of Engineering Ontologies for Knowledge Sharing
and Reuse. PhD thesis, University of Twente (1997)

563. Botz, J., Döring, N.: Forschungsmethoden und Evaluation. Springer, Heidel-
berg (1995)

564. Boyle, J.M.: Interactive engineering systems design: A study for artificial intel-
ligence applications. Artificial Intelligence in Engineering 4(2), 58–69 (1989)

565. Braun, P., Marschall, F.: Transforming object oriented models with BOTL.
Electronic Notes in Theoretical Computer Science 72(3) (2003)

566. Braunschweig, B.L., Pantelides, C.C., Britt, H.I., Sama, S.: Process mod-
eling: The promise of open software architectures. Chemical Engineering
Progress 96(9), 65–76 (2000)

567. Bray, T., Paoli, J., Sperberg-McQueen, C.M. (eds.): Extensible Markup Lan-
guage (XML) 1.0. W3C (1998)

568. Brücher, H.: Erweiterung von UML zur geschäftsorientierten Prozessmodellie-
rung. In: Referenzmodellierung 2001, 5. Fachtagung, Dresden, Germany (2001)

569. Brown, D.C., Chandrasekaran, B.: Design problem solving: knowledge struc-
tures and control strategies. Morgan Kaufmann, San Francisco (1989)

570. Browning, T., Eppinger, S.D.: Modeling impacts of process architecture on
cost and schedule risk in product development. IEEE Transactions on Engi-
neering Management 49(4), 428–442 (2002)

571. Browning, T.R., Eppinger, S.T.: Modelling the impact of process architecture
on cost and schedule risk in product development. Technical Report 4050,
Massachusetts Institute of Technology, Sloan School of Management (2000)

572. Broy, M.: Software technology – formal models and scientific foundations.
Information and Software Technology 41, 947–950 (1999)

573. Broy, M., Slotosch, O.: Enriching the software engineering process by formal
methods. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641,
pp. 1–43. Springer, Heidelberg (1999)

574. Bucciarelli, L.L.: Designing Engineers. MIT Press, Cambridge (1994)
575. Bullinger, H.J., Kiss-Preussinger, E., Spath, D. (eds.): Automobilentwicklung

in Deutschland - wie sicher in die Zukunft? Chancen, Potenziale und Hand-
lungsempfehlungen für 30 Prozent mehr Effizienz. Fraunhofer-IRB-Verlag,
Stuttgart (2003)

576. Bullinger, H.-J., Warschat, J. (eds.): Concurrent Simultaneous Engineering
Systems. Springer, Heidelberg (1996)

577. Bundesgesetzblatt I, 1996, 1246: Arbeitsschutzgesetz, Gesetz zur Umset-
zung der EG-Rahmenrichtlinie Arbeitsschutz und weiterer Arbeitsschutz-
Richtlinien vom 7. August 1996 (1996)

578. Bunge, M.: Ontology II: A World of Systems. Treatise on Basic Philosophy,
vol. 4. D. Reidel Publishing Company, Dordrecht (1979)

579. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R.,
Wendehals, L., Zündorf, A.: Tool integration at the meta-model level: the Fu-
jaba approach. International Journal on Software Tools for Technology Trans-
fer 6(3), 203–218 (2004)

822 References

580. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture – A System of Patterns. Wiley, Chichester
(1996)

581. Carlowitz, B.: Tabellarische Übersicht über die Prüfung von Kunststoffen.
Giesel Verlag, Isernhagen (1992)

582. Carney, D., Fisher, D., Morris, E., Place, P.: Some current approaches to
interoperability. Technical Report CMU/SEI-2005-TN-033, Carnegie Mellon
University, Software Engineering Institute, SEI (2005)

583. Carroll, J.M., Kellog, W.A., Rosson, M.B.: The task-artifact cycle. In: Car-
roll, J.M. (ed.) Designing Interaction: Psychology at the Human-Computer
Interface, pp. 74–102. Cambridge University Press, Cambridge (1999)

584. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. In: Thalheim,
B. (ed.) ER 1996. LNCS, vol. 1157, pp. 438–455. Springer, Heidelberg (1996)

585. Casati, F., Discenza, A.: Modeling and managing interactions among business
processes. Journal of Systems Integration 10(2), 145–168 (2001)

586. Casati, F., Fugini, M., Mirbel, I.: An environment for designing exceptions in
workflows. Information Systems 24(3), 255–273 (1999)

587. Castillo, E.: Extreme Value Theory in Engineering. Academic Press, London
(1988)

588. Champin, P.-A.: ARDECO: An assistant for experience reuse in computer
aided design. In: Proceedings of the Workshop “From Structured Cases to
Unstructured Problem Solving Episodes” (2003)

589. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies,
and why do we need them? IEEE Intelligent Systems 14(1), 20–26 (1999)

590. Chebbi, I., Tata, S., Dustdar, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Technical Report TUV-1841-2004-23,
Technical University of Vienna, Information Systems Institute, Distributed
Systems Group (2004)

591. Chemie Wirtschaftsförderungs-GmbH: Campus the plastics database (2008),
http://www.campusplastics.com/

592. Chemstations, Inc.: Chemcad Version 6 – website (2006),
http://www.chemstations.net

593. Chen, B., Westerberg, A.W. (eds.): Proceedings of the 8th International Sym-
posium on Process Systems Engineering (PSE 2003), Kunming, China. Else-
vier, Amsterdam (2003)

594. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design.
IEEE Transactions on Software Engineering 20(6), 476–493 (1994)

595. Chiu, D.K.W., Karlapalem, K., Li, Q.: Views for inter-organizational workflow
in an e-commerce environment. In: Proceedings of the IFIP TC2/WG2.6 9th

Working Conference on Database Semantics, Deventer, The Netherlands, pp.
137–151. Kluwer Academic Publishers, Dordrecht (2003)

596. Cho, S.-H., Eppinger, D.: Product development process modeling using ad-
vanced simulation. In: Proceedings of DETC’01, ASME 2001: Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference, Pittsburgh, USA, pp. 9–12 (2001)

597. Cho, S.-H., Eppinger, D.: A simulation-based process model for manag-
ing complex design projects. IEEE Transactions on Engineering Manage-
ment 52(3), 316–328 (2005)

http://www.campusplastics.com/
http://www.chemstations.net

R.2 External Literature 823

598. Chou, S.-C., Chen, J.-Y.: Process evolution support in a concurrent software
process language environment. Information and Software Technology 41, 507–
524 (1999)

599. Christiansen, T.R.: Modeling Efficiency and Effectiveness of Coordination in
Engineering Design Teams. PhD thesis, Stanford University (1993)

600. Cimitile, A., de Lucia, A., de Carlini, U.: Incremental migration strategies:
Data flow analysis for wrapping. In: Proceedings of the 5th Working Con-
ference on Reverse Engineering (WCRE’98), Hawaii, USA, pp. 59–68. IEEE
Computer Society Press, Los Alamitos (1998)

601. CiT – Computing in Technology GmbH: PARSIVAL – website (2007),
http://www.cit-wulkow.de/tbcpars.htm

602. Clark, J. (ed.): XSL Transformations (XSLT) 1.00. W3C (1999)
603. Clements, P.C., Northrop, L.: Software architecture: An executive overview.

Technical Report CMU/SEI-96-TR-003, Carnegie Mellon University, Software
Engineering Institute, SEI (1996)

604. Cohen, G.: The Virtual Design Team: An Object-Oriented Model of Informa-
tion Sharing in Project Teams. PhD thesis, Stanford University (1992)

605. Cohn, D.: SmartPlant 3D: Changing the future of engineering. Engineering
Automation Report 12(10) (2003)

606. Conklin, E.J.: Capturing organisational memory. In: Readings in groupware
and computer-supported cooperative work: assisting human-human collabo-
ration, pp. 561–565. Morgan Kaufmann, San Francisco (1993)

607. Conklin, E.J., Yakemovic, K.C.B.: A process-oriented approach to design ra-
tionale. Human-Computer Interaction 6(3-4), 357–391 (1991)

608. Conklin, J., Begeman, M.L.: gIBIS: A hypertext tool for exploratory pol-
icy discussion. ACM Transactions on Office Information Systems 6, 303–331
(1988)

609. Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: DAML+OIL reference description (2001),
http://www.w3.org/TR/daml+oil-reference

610. Cook, T.D., Campbell, D.T.: Quasi-experimentation: design & analysis issues
for field settings. Houghton Mifflin, Boston (1979)

611. Cook, T.D., Campbell, D.T., Peracchio, L.: Quasi-experimentation. In: Dun-
nette, M.D., Hough, L.M. (eds.) Handbook of Industrial and Organizational
Psychology, vol. 1, 2nd edn., pp. 491–575. Consulting Psychologists Press,
Mountain View (1990)

612. Cool, C., Fish, R.S., Kraut, R.E., Lowery, C.M.: Iterative design of video
communication systems. In: CSCW’92: Proceedings of the 1992 ACM con-
ference on Computer-supported cooperative work, Toronto, Ontario, Canada,
pp. 25–32. ACM Press, New York (1992)

613. Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.): ICGT 2002.
LNCS, vol. 2505. Springer, Heidelberg (2002)

614. Corradini, F., Mariani, L., Merelli, E.: An agent-based approach to tool inte-
gration. International Journal on Software Tools for Technology Transfer 6(3),
231–244 (2004)

615. COSA: COSA BPM – website (2006), http://www.cosa-bpm.com/COSA_

BPM_-_More.html

http://www.cit-wulkow.de/tbcpars.htm
http://www.w3.org/TR/daml+oil-reference
http://www.cosa-bpm.com/COSA_BPM_-_More.html
http://www.cosa-bpm.com/COSA_BPM_-_More.html

824 References

616. Cugola, G.: Tolerating deviations in process support systems via flexible
enactment of process models. IEEE Transactions on Software Engineer-
ing 24(11), 982–1001 (1998)

617. Cui, Z., Tamma, V., Bellifemine, F.: Ontology management in enterprises. BT
Technology Journal 17, 98–107 (1999)

618. Cummins, F.A.: Enterprise Integration: An Architecture for Enterprise Ap-
plication and Systems Integration. Wiley, Chichester (2002)

619. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Communications of the
ACM 35(9), 75–90 (1992)

620. Cypher, A. (ed.): Watch what I do: Programming by Demonstration. MIT
Press, Cambridge (1993)

621. Cziner, K., Hurme, M.: Process evaluation and synthesis by analytic hierarchy
process combined with genetic optimization. In: Chen, B., Westerberg, A.W.
(eds.) Proceedings of the 8th International Symposium on Process Systems
Engineering (PSE 2003), Kunming, China, pp. 778–783. Elsevier, Amsterdam
(2003)

622. Daichendt, M.M., Grossmann, I.E.: Integration of hierarchical decomposition
and mathematical programming for the sythesis of process flowsheets. Com-
puters & Chemical Engineering 22, 147–175 (1998)

623. Dalton, C.M., Goldfarb, S.: PDXI, a progress report. In: Proceedings of the
CHEMPUTERS Europe II Conference (1995)

624. Damm, C., Hansen, K., Thomsen, M., Tyrsted, M.: Tool integration: Experi-
ences and issues in using XMI and component technology. In: Proceedings of
TOOLS Europe (2000)

625. Dan, A., Ludwig, H., Pacifici, G.: Web services differentiation with ser-
vice level agreements (2003), http://www-106.ibm.com/developerworks/

webservices/library/ws-slafram

626. Davenport, T.H.: Process Innovation. Harvard Business School Press, Boston
(1993)

627. de Lara, J., Vangheluwe, H.: Computer aided multi-paradigm modelling to
process petri-nets and statecharts. In: Corradini, A., Ehrig, H., Kreowski, H.-
J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 239–253. Springer,
Heidelberg (2002)

628. Derniame, J.-C., Kaba, B.A., Wastell, D. (eds.): Promoter-2 1998. LNCS,
vol. 1500. Springer, Heidelberg (1999)

629. Desiderata Software: EZ JCom – website (2007), http://www.ezjcom.com
630. Desrochers, A.A., Al-Jaar, R.Y.: Applications of Petri Nets in Manufacturing

Systems. IEEE Computer Society Press, Los Alamitos (1995)
631. Deutsches Institut für Normung eV, Berlin: Benutzer-orientierte Gestaltung

interaktiver Systeme (2000)
632. Deutsches Institut für Normung eV, Berlin: Ergonomische Anforderungen für

Bürotätigkeiten mit Bildschirmgeräten (2002)
633. Diaper, D. (ed.): Task Analysis for Human-Computer Interaction. Ellis Hor-

wood, New York (1989)
634. DIN Deutsches Institut für Normung e.V. (ed.): Planung einer verfahrenstech-

nischen Anlage – Vorgehensmodell und Terminologie. Beuth-Verlag, Berlin
(2006)

635. DIPPR: ppdXML – Physical Properties Data XML – website (2004),
http://www.ppdxml.org/

http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/webservices/library/ws-slafram
http://www.ezjcom.com
http://www.ppdxml.org/

R.2 External Literature 825

636. Distributed Management Task Force, Inc. (DMTF): Common information
model, CIM (2006), http://www.dmtf.org/standards/cim/

637. Donohoe, P. (ed.): Software Architecture (TC2 1st Working IFIP Conference
on Software Architecture, WICSA1), San Antonio, Texas, USA. Kluwer Aca-
demic Publishers, Dordrecht (1999)

638. Douglas, J.M., Timmerhaus, K.D.: Conceptual Design of Chemical Processes.
McGraw-Hill, New York (1988)

639. Dourish, P., Bly, S.: Portholes: Supporting awareness in a distributed work
group. In: Proceedings of the ACM Conference on Human Factors in Com-
puting Systems, New York, USA, pp. 541–547 (1992)

640. Dourish, P., Bly, S.: Culture and control in a media space. In: Proceedings
of the 3rd European Conference on Computer-Supported Cooperative Work
(ECSCW’93), Dordrecht, The Netherlands, pp. 125–137 (1993)

641. Dowson, M.: Integrated project support with Istar. IEEE Software 4, 6–15
(1987)

642. Dowson, M., Fernström, C.: Towards requirements for enactment mechanisms.
In: Warboys, B.C. (ed.) EWSPT 1994. LNCS, vol. 772, Springer, Heidelberg
(1994)

643. Dutoit, A.H., McCall, R., Mistŕık, I., Paech, B.: Rationale management in
software engineering: Concepts and techniques. In: Dutoit, A.H., McCall, R.,
Mistŕık, I., Paech, B. (eds.) Rationale management in software engineering,
pp. 1–48. Springer, Heidelberg (2006)

644. Dutoit, A.H., McCall, R., Mistŕık, I., Paech, B.: Rationale Management in
Software Engineering. Springer, Heidelberg (2006)

645. Eberleh, E., Oberquelle, H., Oppermann, H.: Einführung in die Software-
Ergonomie. Gruyter, Berlin (1994)

646. ebXML: Technical architecture specification (2006),
http://www.ebxml.org/specs/index.htm

647. Echterhoff, W.: Lernzuwachs und Effizienz. Technical report, Forschungs-
gruppe für Programmiertes Lernen e. V. (1973)

648. Eckert, C., Pizka, M.: Improving resource managements in distributed systems
using language-level structuring concepts. Journal of Supercomputing 13, 33–
55 (1999)

649. Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Pro-
cesses. Chemical Engineering Series. McGraw-Hill, New York (2001)

650. Ehrenstein, G.W.: Kunststoff-Schadensanalyse – Methoden und Verfahren.
University of Erlangen-Nürnberg, Germany (1999)

651. Ehrenstein, G.W., Drummer, D.: Mechanical behaviour of magnetizable poly-
mers under dynamical load. In: SPE Proceedings ANTEC (2002)

652. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook on Graph
Grammars and Computing by Graph Transformation – Volume 2: Applica-
tions, Languages, and Tools. World Scientific, Singapore (1999)

653. Eimer, E.: Varianzanalyse. W. Kohlhammer, Stuttgart (1978)
654. Ellis, C., Gibbs, S., Rein, G.: Groupware – some issues and experiences. Com-

munications of the ACM 34, 39–58 (1991)
655. Elmqvist, H., Mattson, S.E.: Modelica – the next generation modeling lan-

guage. an international design effort. In: Proceedings of the 1st World Congress
on System Simulation, WCSS’97 (1997)

http://www.dmtf.org/standards/cim/
http://www.ebxml.org/specs/index.htm

826 References

656. Eloranta, E., Hameri, A.-P., Lahti, M.: Improved project management through
improved document management. Computers in Industry 43(3), 231–243
(2001)

657. EMC2: EMC Documentum (2006), http://software.emc.com/products/

product_family/documentum_family.htm

658. Enders, B.E., Heverhagen, T., Goedicke, M., Tröpfner, P., Tracht, R.: To-
wards an integration of different specification methods by using the viewpoint
framework. Transactions of the SDPS 6(2), 1–23 (2002)

659. Endrei, M., Ang, J., et al.: Patterns: Service-oriented architecture and
web services (2004), http://www.redbooks.ibm.com/redbooks/SG246303/

wwhelp/wwhimpl/java/html/wwhelp.htm

660. Enhydra.org Community: Enhydra Shark – Java Open Source XPDL work-
flow, version 1.1-2 (2005), http://www.enhydra.org/workflow/shark/index
.html

661. ePlantData: Capital facilities industry XML – website (2004),
http://www.cfixml.org

662. Ester, M., Krieger, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. of
the 2nd Internat. Conf. on Knowledge Discovery and Data Mining (KDD’96),
August 1996, pp. 226–231. AAAI Press, Menlo Park (1996)

663. Fahmy, H., Holt, R.C.: Using graph rewriting to specify software architectural
transformations. In: Proceedings of the 15th International Conference on Au-
tomated Software Engineering (ASE 2000), Grenoble, France, pp. 187–196.
IEEE Computer Society Press, Los Alamitos (2000)

664. Faloutsos, C., Lin, K.-I.: Fastmap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In: Proc. of the 1995
ACM SIGMOD Conf., pp. 163–174 (1995)

665. Feldmann, L.P., Svjatnyj, V.A., Gilles, E.D., Zeitz, M., Reuter, A., Rothermel,
K.: Simulationssoftware für eine verteilte parallele Simulationsumgebung für
dynamische Systeme. In: Proceedings of the 14th ASIM Symposium, pp. 235–
240 (2000)

666. Feng, W.C., Rexford, J.: Performance evaluation of smoothing algorithms
for transmitting prerecorded variable-bit-rate video. IEEE Transactions on
Multimedia 1(3), 302–313 (1999)

667. FIATECH: Automating equipment information exchange – website (2006),
http://www.fiatech.org/projects/idim/aex.htm

668. FIATECH ADI: 15926.org – website (2007), http://15926.org/
669. Finkelstein, A., Kramer, J., Goedicke, M.: ViewPoint oriented software de-

velopment. In: Proceedings of 3td International Workshop on Software Engi-
neering and its Applications, pp. 337–351. Springer, Heidelberg (1990)

670. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language and java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS,
vol. 1764, pp. 296–309. Springer, Heidelberg (2000)

671. Fisher, L.: Workflow Handbook 2001. Lighthouse Point (2000)
672. Flores, X., Bonmat́ı, A., Poch, M., Rodŕıguez-Roda, I.: Selection of the acti-

vated sludge configuration during the conceptual design of activated sludge
plants using multicriteria analysis. Ind. Eng. Chem. Res. 44, 3556–3566 (2005)

http://software.emc.com/products/product_family/documentum_family.htm
http://software.emc.com/products/product_family/documentum_family.htm
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/java/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/java/html/wwhelp.htm
http://www.enhydra.org/workflow/shark/index.html
http://www.enhydra.org/workflow/shark/index.html
http://www.cfixml.org
http://www.fiatech.org/projects/idim/aex.htm
http://15926.org/

R.2 External Literature 827

673. Fowler, M.: UML Distilled – Applying the Standard Object Modeling Lan-
guage. Addison-Wesley, Reading (1997)

674. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley,
Reading (2003)

675. Frey, W., Lohe, B.: Verfahrenstechnik im Wandel. Chem.-Ing.-Tech. 70, 51–63
(1998)

676. Frühauf, T.: Graphisch-interaktive Strömungsvisualisierung. Springer, Heidel-
berg (1997)

677. Friesen, J.A., Tarman, T.D.: Remote high-performance visualization and col-
laboration. IEEE Computer Graphics and Applications, 45–49 (2000)

678. Fritz, H.-G.: Neue Thermoplastische Elastomere. Rezeptierung, Aufbereitung
und Werkstoffeigenschaften. Chem.-Ing.-Tech. 67(5), 563–569 (1995)

679. Fuchino, T., Takamura, T., Batres, R.: Development of engineering ontology
on the basis of IDEF0 activity model. In: Khosla, R., Howlett, R.J., Jain, L.C.
(eds.) KES 2005. LNCS (LNAI), vol. 3681, pp. 162–168. Springer, Heidelberg
(2005)

680. Gächter, R., Müller, H.: Taschenbuch der Kunststoff-Additive. Carl Hanser-
Verlag, München (1989)

681. Gallaher, M.P., O’Connor, A.C.: Dettbarn Jr., J.L., Gilday, L.T.: Cost analy-
sis of inadequate interoperability in the U.S. capital facilities industry. Tech-
nical Report NIST GCR 04-867, National Institute of Standards and Tech-
nology, NIST (2004)

682. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

683. Gannod, G.C., Mudiam, S.V., Lindquist, T.E.: An architectural based ap-
proach for synthesizing and integrating adapters for legacy software. In: Pro-
ceedings of the 7th Working Conference on Reverse Engineering (WCRE’00),
Brisbane, Australia (2000)

684. Gao, J.X., Aziz, H., Maropoulos, P.G., Cheung, W.M.: Application of prod-
uct data management technologies for enterprise integration. International
Journal of Computer Integrated Manufacturing 16(7-8), 491–500 (2003)

685. Garlan, D., Monroe, R., Wile, D.: ACME: An architecture description inter-
change language. In: Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON’97), Toronto, On-
tario, Canada, pp. 169–183 (1997)

686. Garlan, D., Perry, D.E.: Introduction to the special issue on software archi-
tecture. IEEE Transactions on Software Engineering 21(4), 269–274 (1995)

687. Gediga, G., Hamborg, K.C., Düntsch, I.: The IsoMetrics usability inventory:
an operationalization of ISO 9241-10 supporting summative and formative
evaluation of software systems. Behaviour & Information Technology 18(3),
154–164 (1999)

688. Georgakopoulos, D., Prinz, W., Wolf, A.L. (eds.): Proceedings of the Interna-
tional Joint Conference on Work Activities Coordination and Collaboration
(WACC’99), San Francisco, CA, USA. ACM SIGSOFT Software Engineering
Notes 24(2). ACM Press, New York (1999)

689. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation:
The missing link of MDA. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozen-
berg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg
(2002)

828 References

690. Geyer, W., Richter, H., Fuchs, L., Frauenhofer, T., Daijavad, S., Poltrock, S.:
A team collaboration space supporting capture and access of virtual meetings.
In: Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Work, Boulder, USA, pp. 188–196 (2001)

691. Gil, N., Tommelein, I.D., Kirkendall, R.: Modeling design development pro-
cesses in unpredictable environments. In: Proceedings 2001 Winter Simulation
Conference (2001)

692. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic
Press, London (1981)

693. Gilles, E.D.: Network theory for chemical processes. Chem. Eng. Tech-
nol. 21(2), 121–132 (1998)

694. Goebel, D.: Modellbasierte Optimierung von Produktionsentwicklungspro-
zessen. PhD thesis, University of Hannover (1996)

695. Goldsman, D., Nelson, B.L.: Comparing systems via simulation. In: Banks, J.
(ed.) Handbook of Simulation, pp. 273–306. John Wiley & Sons, Chichester
(1998)

696. Grabowski, H., Lossack, R., Leutsch, M.: A design process model. In: Proceed-
ings of the 3rd International Workshop on Strategic Knowledge and Concept
Formation, Sydney, Australia (2001)

697. Greenbaum, J., Kyng, M.: Design at Work. Cooperative Design of Computer
Systems. Lawrence Erlbaum, Mahwah (1991)

698. Greenberg, S.: Peepholes: Low cost awareness of ones community. Technical
report, University of Calgary, Department of Computer Science (1993)

699. Grefenstein, A.: Rechnergestützte Auslegung von Schneckenreaktoren am
Beispiel des dichtkämmenden Gleichdralldoppelschneckenextruders. PhD the-
sis, RWTH Aachen University (1994)

700. Gröger, M.: Wertschöpfungspotenzial Projektmanagement. REFA-Nachrich-
ten 1, 4–7 (2006)

701. Grisby, D.: OmniORBpy user’s guide version 2 (2004),
http://omniorb.sourceforge.net/omnipy2/omniORBpy.pdf

702. Groeben, N., Scheele, B.: Heidelberger Struktur-Legetechnik. Beltz, Weinheim
(1984)

703. Gross, T.: CSCW3: Transparenz- und Kooperationsunterstützng für das
WWW. In: Reichwald, R., Schlichter, J. (eds.) Verteiltes Arbeiten – Arbeiten
in der Zukunft, Tagungsband der D-CSCW 2000, pp. 37–50. Teubner, Wies-
baden (2000)

704. Grossmann, I., Westerberg, A.: Research challenges in process systems engi-
neering. AIChE Journal 46, 1700–1703 (2000)

705. Gruber, T.R.: A translation approach to portable ontology specifications.
Knowledge Acquisition 5(3), 199–200 (1993)

706. Grudin, J.: Evaluating opportunities for design capture. In: Moran, T.P., Car-
roll, J.M. (eds.) Design Rationale. Concepts, Techniques, and Use, pp. 453–470
(1996)

707. Gulbins, J., Seyfried, M., Strack-Zimmermann, H.: Dokumenten-Manage-
ment. Springer, Heidelberg (1999)

708. Gunasekaran, A.: Concurrent engineering: A competitive study for process
industries. Journal of the Operations Research Society 49, 758–765 (1998)

http://omniorb.sourceforge.net/omnipy2/omniORBpy.pdf

R.2 External Literature 829

709. Gutwin, C., Greenberg, S.: The effects of workspace awareness support on the
usability of real-time distributed groupware. ACM Transactions on Computer-
Human Interaction 6(3), 243–281 (1999)

710. Hacker, W.: Computerization versus computer aided mental work. In: Frese,
M., Ulich, E., Dzida, W. (eds.) Psychological Issues of Human-Computer In-
teraction in the Work Place, pp. 115–130. Elsevier, Amsterdam (1987)

711. Hacker, W.: Allgemeine Arbeitspsychologie. Huber, Bern (1998)
712. Hagen, C., Alonso, G.: Exception handling in workflow management systems.

IEEE Transactions on Software Engineering 26(10), 943–958 (2000)
713. Hales, C.: Analysis of the Engineering Design Process in an Industrial Con-

text, 2nd edn. Gants Hill (1991)
714. Hammer, M., Champy, J.A.: Reengineering the Corporation: A Manifesto for

Business Revolution. H. Collins (1993)
715. Hammond, J., Koubek, R.J., Harvey, C.M.: Distributed collaboration for en-

gineering design: A review and reprisal. Human Factors and Ergonomics in
Manufacturing 11(1), 35–53 (2001)

716. Hao, M.C., Lee, D., Sventek, J.S.: Collaborative design using your favourite
3d applications. In: Proceedings of the 3rd International Conference on Con-
current Engineering Research: Research and Applications, Lancaster, USA,
pp. 8–15 (1996)

717. Hao, M.C., Lee, D., Sventek, J.S.: A light-weight application sharing infra-
structure for graphic intensive applications. In: Proceedings of the 5th IEEE
International Symposium on High Performance Distribution (HPDC-5), Syra-
cuse, New York, USA, pp. 127–131 (1996)

718. Harel, D.: Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8(3), 231–274 (1987)

719. Harel, D.: On visual formalisms. Communications of the ACM 31(5), 514–530
(1988)

720. Harmon, P.: G2: Gensym’s real-time expert system. Intelligent Software
Strategies 9(3), 1–16 (1993)

721. Harold, M., Ogunnaike, B.: Process engineering in the evolving chemical in-
dustry. AIChE Journal 46, 2123–2127 (2000)

722. Harris, S.B.: Business strategy and the role of engineering product data man-
agement: A literature review and summary of the emerging research questions.
Proceedings of the Institution of Mechanical Engineers, Part B (Journal of
Engineering Manufacture) 210:B3, 207–220 (1996)

723. Haumer, P., Heymans, P., Jarke, M., Pohl, K.: Bridging the gap between
past and future in RE: a scenario-based approach. In: Proceedings of the 4th

International Symposium on Requirements Engineering (RE’99), Limerick,
Ireland, pp. 66–73 (1999)

724. Hauser, A., Harter, G.: R&D Productivity. Example: Automotive and Health
Care/Pharma Industries. Booz, Allen & Hamilton (2003)

725. Hawley, K.: Temporal parts. In: Zalta, E.N. (ed.) The Stanford Encyclope-
dia of Philosophy (2004), http://plato.stanford.edu/archives/win2004/
entries/temporal-parts/

726. Heeg, M.: Ein Beitrag zur Modellierung von Merkmalen im Umfeld der
Prozessleittechnik. PhD thesis, RWTH Aachen University (2005)

http://plato.stanford.edu/archives/win2004/entries/temporal-parts/
http://plato.stanford.edu/archives/win2004/entries/temporal-parts/

830 References

727. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A com-
prehensive approach to flexibility in workflow management systems. ACM
SIGSOFT Software Engineering Notes 24(2), 79–88 (1999)

728. Hensel, T.L.: Die künftige Rolle der Kunststofferzeuger. KU Kunststoffe 90(1),
34–38 (2000)

729. Herder, P., Weijnen, M.: A concurrent engineering approach to chemical pro-
cess design. International Journal of Production Economics 64, 311–318 (2000)

730. Hermann, H., Burkhardt, U.: Vergleichende Analyse dichtkämmender Gleich-
und Gegendrall-Doppelschnecken. Österreichische Kunststoff-Zeitschrift, Son-
derheft Kunststoffkolloquium Leoben, 973–984 (1978)

731. Hirsch, D., Inverardi, P., Montanari, U.: Modeling software architectures and
styles with graph grammars and constraint solving. In: Donohoe, P. (ed.)
Software Architecture (TC2 1st Working IFIP Conference on Software Archi-
tecture, WICSA1), San Antonio, Texas, USA, pp. 127–143. Kluwer Academic
Publishers, Dordrecht (1999)

732. Holt, R., Winter, A., Schürr, A.: GXL: Towards a standard exchange for-
mat. In: Proceedings of the 7th Working Conference on Reverse Engineering
(WCRE’00), Brisbane, Queensland, Australia, pp. 162–171 (2000)

733. Hordijk, W., Wieringa, R.: Reusable rationale blocks: Improving quality and
efficiency of design choices. In: Dutoit, A.H., McCall, R., Mistŕık, I., Paech,
B. (eds.) Rationale Management in Software Engineering, pp. 1–48. Springer,
Heidelberg (2006)

734. Hornsby, P.R., Tung, J.F., Tarverdi, K.: Characterization of polyamide 6 made
by reactive extrusion. i. synthesis and characterization of properties. Journal
of Applied Polymer Science 53, 891–897 (1994)

735. Horrocks, I.: Using an expressive description logic: Fact or fiction? In: Pro-
ceedings of KR’98, pp. 636–647 (1998)

736. Horrocks, I., Patel-Schneider, P.: Reducing OWL entailment to description
logic satisfiability. Journal of Web Semantics 1(5), 345–357 (2004)

737. Hostrup, M., Harper, P., Gani, R.: Design of environmentally benign pro-
cesses: Integration of solvent design and separation process synthesis. Com-
puters & Chemical Engineering 23, 1395–1414 (1999)

738. Huber, F., Schätz, B., Schmidt, A., Spies, K.: AutoFocus – a tool for dis-
tributed system specification. In: Jonsson, B., Parrow, J. (eds.) FTRTFT
1996. LNCS, vol. 1135, pp. 467–470. Springer, Heidelberg (1996)

739. Huber, W., Elting, A.: Abstrakte Muster – Vom Prototypen zum fertigen Sys-
tem. iX –Magazin für professionelle Informationstechnik 10, 106–109 (2002)

740. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and
principles. IEEE Internet Computing 9(1), 75–81 (2005)

741. Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading
(1990)

742. Huth, C., Erdmann, I., Nastansky, L.: GroupProcess: Using process knowledge
from the participative design and practical operation of ad hoc processes
for the design of structured workflows. In: Proceedings of the 34th Hawaii
International Conference on System Sciences (HICSS), Maui, Hawaii, USA,
IEEE Computer Society Press, Los Alamitos (2001)

743. IBM: Rational Rose – website (2006),
http://www.ibm.com/developerworks/rational/products/rose

http://www.ibm.com/developerworks/rational/products/rose

R.2 External Literature 831

744. IEEE, Institute for Electrical and Electronics Engineering: IEEE recom-
mended practice for architectural description for software-intensive systems.
IEEE Standard 1471–2000 (2000)

745. innotec GmbH: Website (2006), http://www.innotec.de/de/cae/index.php
746. Intergraph: The engineering framework: Integrating the plant information

asset throughout the plant life cycle (2004), http://ppm.intergraph.com/

library/the-engineering-framework-a4.pdf

747. Intergraph: SmartPlant foundation (2006),
http://ppm.intergraph.com/smartplant/foundation/

748. International standard IEC 61131-3: IEC 61131-3, Programmable Con-
trollers – Part 3: Programming Languages (2001)

749. Invensys Process Systems: SimSci-Esscor – simulation software for plant de-
sign and optimization (2007), http://www.simsci-esscor.com

750. IONA: Iona Orbix: CORBA for the Enterprise (2006)
751. ISO: ISO 10303 part 231: Process engineering data: Process design and process

specifications of major equipment. International Standard (1998)
752. ISO: ISO 10303 Part 231: Process Engineering Data: Process Design and

Process Specifications of Major Equipment. Withdrawn Standard (1998)
753. ISO 10303-11: Industrial automation systems and integration – Product data

representation and exchange – Part 11: Description methods: The EXPRESS
language reference manual. International Standard (2004)

754. ISO 10303-221: Industrial Automation Systems and Integration – Product
Data Representation and Exchange – Part 221: Application Protocol: Func-
tional Data and Their Schematic Representation for Process Plants. Standard
under Development (2005)

755. ISO 10303-227: Industrial Automation Systems and Integration – Product
Data Representation and Exchange – Part 227: Application Protocol: Plant
Spatial Configuration. International Standard (2005)

756. ISO 15926-1: Industrial Automation Systems and Integration – Integration of
Life-Cycle Data for Process Plants Including Oil and Gas Production Facili-
ties – Part 1: Overview and Fundamental Principles. International Standard
(2004)

757. ISO 15926-2: Industrial Automation Systems and Integration – Integration
of Life-Cycle Data for Process Plants Including Oil and Gas Production Fa-
cilities – Part 2: Data Model. International Standard (2003)

758. ISO 15926-3: Industrial automation systems and integration – Integration
of life-cycle data for process plants including oil and gas production facili-
ties – Part 3: Ontology for geometry and topology. Standard under develop-
ment.(2006)

759. ISO 15926-4: Industrial automation systems and integration – Integration of
life-cycle data for process plants including oil and gas production facilities –
Part 4: Initial reference data. Standard under development (2005)

760. ISO 15926-7: Industrial automation systems and integration – Integration of
life-cycle data for process plants including oil and gas production facilities –
Part 7: Implementation methods for data exchange and integration. Standard
under development (2005)

761. Isoce, N., Williams, G.B., Arango, G.: Domain modelling for software en-
gineering. In: Proceedings of the 13th International Conference on Software
Engineering, pp. 23–29 (1991)

http://www.innotec.de/de/cae/index.php
http://ppm.intergraph.com/library/the-engineering-framework-a4.pdf
http://ppm.intergraph.com/library/the-engineering-framework-a4.pdf
http://ppm.intergraph.com/smartplant/foundation/
http://www.simsci-esscor.com

832 References

762. Jablonski, S.: Workflow-Management: Entwicklung von Anwendungen und
Systemen. dpunkt, Heidelberg (1999)

763. Jablonski, S.: Workflow Management – Modeling Concepts and Architecture.
International Thomson Publishing, Albany (1996)

764. Jaccheri, M.L., Conradi, R.: Techniques for Process Model Evolution in EPOS.
IEEE Transactions on Software Engineering 19(12), 1145–1156 (1993)

765. Jacobsen, H.A., Krämer, B.J.: A design pattern based approach to gener-
ating synchronization adaptors from annotated IDL. In: Proceedings of the
13th International Conference on Automated Software Engineering (ASE’98),
Hawaii, USA, pp. 63–72. IEEE Computer Society Press, Los Alamitos (1998)

766. Jahnke, J., Zündorf, A.: Applying graph transformations to database re-
engineering. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
Handbook on Graph Grammars and Computing by Graph Transformation –
Volume 2: Applications, Languages, and Tools, pp. 267–286. World Scientific,
Singapore (1999)

767. Jarke, M., List, T., Nissen, H.W., Lohmann, B., Hubbuch, K.: Bericht zum
Workshop verfahrenstechnische Datenbanken. Technical report, Bayer AG
(1998)

768. Jarke, M., Nissen, H.W., Pohl, K.: Tool integration in evolving information
systems environments. In: Proceedings of the 3rd GI Workshop Information
Systems and Artificial Intelligence: Administration and Processing of Complex
Structures (1994)

769. Jarke, M., Vassiliou, M.: Foundations of data warehouse quality: An overview
of the DWQ project. In: Proceedings of the 16th ACM Symposium on Prin-
ciples of Database Systems (PODS), Tucson, AZ, USA, pp. 51–61 (1997)

770. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1: Basic Concepts. Springer, Heidelberg (1997)

771. Jin, Y., Levitt, R.E.: The virtual design team: A computational model of
project organizations. Computational and Mathematical Organization The-
ory 2(3), 171–195 (1996)

772. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Halper,
M. (ed.) Proceedings of the International Conference on Cooperative Informa-
tion Systems (CoopIS‘98), pp. 310–321. IEEE Computer Society Press, Los
Alamitos (1998)

773. Joeris, G., Herzog, O.: Towards flexible and high-level modeling and enacting
of processes. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626,
pp. 88–102. Springer, Heidelberg (1999)

774. Johnson, J.: GUI Bloopers. Morgan Kaufmann, San Francisco (2000)
775. Katzke, U., Vogel-Heuser, B.: Design and application of an engineering model

for distributed process automation. In: Proceedings of the 2005 American
Control Conference, Portland, USA (2005)

776. Kent, S., Smith, R.: The bidirectional mapping problem. Electronic Notes in
Theoretical Computer Science 82(7) (2003)

777. Kerzner, H.: Project Management: A Systems Approach to Planning, Schedul-
ing, and Controlling. John Wiley & Sons, Chichester (1998)

778. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured work-
flow modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS,
vol. 1789, pp. 431–445. Springer, Heidelberg (2000)

R.2 External Literature 833

779. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and
frame-based languages. Journal of the ACM 42(4), 741–843 (1995)

780. Kim, Y., Kang, S., Lee, S., Yoo, S.: A distributed, open, intelligent prod-
uct data management system. International Journal of Computer Integrated
Manufacturing 14, 224–235 (2001)

781. Kirschner, E.: Running on information. Chemical & Engineering News 75,
15–19 (1997)

782. Kirwan, B., Ainsworth, L.K.: A guide to task analysis. Taylor & Francis,
Abington (1992)

783. Klein, R., Anhäuser, F., Burmeister, M., Lamers, J.: Planungswerkzeuge aus
Sicht eines Inhouse-Planers. atp – Automatisierungstechnische Praxis 44(1),
46–50 (2002)

784. Klir, G.J.: Architecture of Systems Problem Solving. Plenum Press, New York
(1985)

785. Kämpfer, J., Lohmann, B.: Rationalisierung von Planungsprozessen durch die
Integration von Informationssystemen. VDI-Berichte 1684 (2002)

786. Königs, A., Schürr, A.: MDI: a rule-based multi-document and tool integration
approach. Software and System Modeling 5(4) (2006)

787. Königs, A., Schürr, A.: Tool integration with triple graph grammars – a sur-
vey. In: Heckel, R. (ed.) Proceedings of the SegraVis School on Foundations
of Visual Modelling Techniques. Electronic Notes in Theoretical Computer
Science, vol. 148, pp. 113–150. Elsevier, Amsterdam (2006)

788. Knowledge Based Systems: IDEF∅ Function Modeling Method (2006),
http://www.idef.com/idef0.html

789. Ko, C.C.W.: Execution Monitoring of Security-Critical Programs in a Dis-
tributed System: A Specification-Based Approach. PhD thesis, University of
California (1996)

790. Kohlgrüber, K.: Co-rotating Twin-Screw Extruder. Carl Hanser Verlag,
München (2007)

791. Konda, S., Monarch, I., Sargent, P., Subrahmanian, E.: Shared memory in
design: A unifying theme for research and practice. Research in Engineering
Design 4, 23–42 (1992)

792. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on
workflow type versioning and workflow migration. In: Proceedings of the In-
ternational Conference on Cooperative Information Systems (CoopIS’99), Ed-
inburgh, pp. 104–114. IEEE Computer Society Press, Los Alamitos (1999)

793. Krause, F.L., Golm, F., Loske, B., Raupach, C.: Simulation von Produkten-
twicklungsprozessen. Zeitschrift für wirtschaftlichen Fabrikbetrieb 90(3), 113–
115 (1995)

794. Krause, F.-L., Kind, C., Voigtsberger, J.: Adaptive modelling and simulation
of product development processes. ANNALS–CIRP 53(1), 135–138 (2004)

795. Krönlof, K. (ed.): Method Integration. Wiley, Chichester (1993)
796. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M.,

Moldt, D., Rölke, H., Valk, R.: An extensible editor and simulation engine
for petri nets: Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 484–493. Springer, Heidelberg (2004)

797. Kummer, O., Wienberg, M., Duvigneau, M.: Renew-user guide, release 2.0
edition. Technical report, University of Hamburg, Faculty of Informatics, The-
oretical Foundations Group (2004)

http://www.idef.com/idef0.html

834 References

798. Kunz, W., Rittel, H.: Issues as elements of information systems – working
paper no. 131. Technical report, University of California, Berkley, Institute of
Urban and Regional Development (1970)

799. Kuraoka, K., Batres, R.: An ontological approach to represent HAZOP infor-
mation. Technical Report TR-2003-01, Process Systems Engineering Labora-
tory, Tokyo Institute of Technology (2003)

800. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence 118(1-2), 15–68 (2000)

801. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

802. Laoutaris, N., Stavrakakis, I.: Intrastream synchronization for continuous me-
dia streams: a survey of playout schedulers. IEEE Network Magazine 16(3)
(2002)

803. Lawrence, P. (ed.): Workflow Handbook. John Wiley & Sons, Chichester
(1997)

804. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering 27(7), 521–533 (1998)

805. Leake, D., Hammond, K., Birnbaum, L., Marlow, C., Yang, H.: An integrated
interface for proactive, experience-based design support. In: Proceedings of
the 6th International Conference on Intelligent User Interfaces (2001)

806. Leal, D.: ISO 15926 “life cycle data for process plant”: An overview. Oil Gas
Sci. Technol. 60(4), 629–637 (2005)

807. Lee, J.: SIBYL: A qualitative decision management system. In: Winston, P.H.,
Shellard, S.A. (eds.) Artificial intelligence at MIT expanding frontiers, pp.
104–133. MIT Press, Cambridge (1991)

808. Lee, J., Lai, K.-Y.: What’s in design rationale? Human-Computer Interac-
tion 6, 251–280 (1991)

809. Lee, J.: SIBYL: A qualitative decision management system. In: Winston, P.H.,
Shellard, S. (eds.) Artificial Intelligence at MIT: Expanding Frontiers, pp.
105–133. MIT Press, Cambridge (1990)

810. Lee, J.: Design rationale systems: Understanding the issues. IEEE Ex-
pert 12(3), 78–85 (1997)

811. Lee, J., Siau, K., Hong, S.: Enterprise Integration with ERP and EAI. Com-
munications of the ACM 46(2), 54–60 (2003)

812. Levitt, R.E., Cohen, G.P., Kuntz, J.C., Nass, C.I., Christiansen, T., Jin, Y.:
The virtual design team: Simulating how organizational structure and infor-
mation processing tools affect team performance. In: Carley, K.M., Prietula,
M.J. (eds.) Computational Organization Theory, Lawrence Erlbaum, Mahwah
(1994)

813. Levitt, R.E., Thomsen, J., Christiansen, T.R., Kunz, J., Jin, Y., Nass, C.: Sim-
ulating project work processes and organizations: Toward a micro-contingency
theory of organizational design. Management Science, Informs 45(11), 1479–
1495 (1999)

814. Leymann, F.: Web services: Distributed applications without limits. In: Pro-
ceedings of Datenbanksysteme für Business, Technologie und Web (2003)

815. Löffelmann, G., Zgorzelski, P., Ahrens, W.: Produktdatenaustausch auf
der Basis standardisierter PROLIST-Merkmalleisten für PLT-Geräte und -
Systeme. atp – Automatisierungstechnische Praxis 47, 25–31 (2005)

R.2 External Literature 835

816. Lieberman, H.: Your wish is my command: Programming by example. Aca-
demic Press, London (2001)

817. Light, B., Holland, C.P., Kelly, S., Wills, K.: Best Of Breed IT Strategy:
An Alternative To Enterprise Resource Planning Systems. In: Hansen, H.R.,
Bichler, M., Mahrer, H. (eds.) Proceedings of the 8th European Conference
on Information Systems (ECIS 2000), July 03-05, 2000, Vienna, Austria, pp.
652–659 (2000)

818. Lim, W.C.: Effects of reuse on quality, productivity, and economics. IEEE
Software 11(3), 23–30 (1994)

819. Linthicum, D.: Enterprise Application Integration. Addison-Wesley, Reading
(2000)

820. Linthicum, D.S.: B2B Application Integration: e-Business-Enable your Enter-
prise. Addison-Wesley, Reading (2001)

821. Liu, D.-R., Shen, M.: Business-to-business workflow interoperation based on
process-views. Decision Support Systems 38(3), 399–419 (2004)

822. Lohmann, S., Stursberg, O., Engell, S.: Systematic design of logic controllers
for processing plants starting from informal specifications. In: Marquardt,
W., Pantelides, C. (eds.) 16th European Symposium on Computer Aided
Process Engineering and 9th International Symposium on Process Systems
Engineering, Garmisch-Partenkirchen, Germany, July 9–13, 2006. Computer-
Aided Chemical Engineering, vol. 21, pp. 1317–1322. Elsevier, Amsterdam
(2006)

823. Lunt, T.F.: A survey of intrusion detection techniques. Computers and Secu-
rity 12(4), 405–418 (1993)

824. Lutz, M.: Programming Python, 2nd edn. O’Reilly, Sebastopol (2001)
825. Maaß, S.: Software-Ergonomie – Benutzer und aufgabenorientierte Sys-

temgestaltung. Informatik-Spektrum 16, 191–205 (1993)
826. MacLean, A., Young, R.M., Bellotti, V.M.E., Moran, T.P.: Questions, options,

and criteria: Elements of design space analysis. In: Moran, T.P., Carroll, J.M.
(eds.) Design Rationale. Concepts, Techniques, and Use, pp. 53–105. Lawrence
Erlbaum, Mahwah (1996)

827. Maier, A., Aguado, J., Bernaras, A., Laresgoiti, I., Pedinaci, C., Pena, N.,
Smithers, T.: Integration with ontologies. In: Reimer, U., Abecker, A., Staab,
S., Stumme, G. (eds.) Professionelles Wissensmanagement – Erfahrungen
und Visionen, Beiträge der 2. Konferenz Professionelles Wissensmanagement
(2003)

828. Malone, M.F., Trainham, J.A., Carnahan, B. (eds.): Fifth International Con-
ference on Foundations of Computer-Aided Process Design. AIChE Sympo-
sium Series, vol. 96(323) (2000)

829. Mark, J.E., Eisenberg, A., Graessley, W.W.: Physical Properties of Polymers.
ACS Professional Reference Book. American Chemical Society, Washington,
DC (1993)

830. Martin, W.: Strategic Bulletin EAI 2003: Von der Anwendungsintegration
zum Prozeßmanagement (2003), http://www.wolfgang-martin-team.net/

content/htm/download.htm

831. Martin, D. (ed.) and The OWL Services Coalition: OWL-S: Semantic markup
for web services, version 1.1 (2004), http://www.daml.org/services/owl-s/

http://www.wolfgang-martin-team.net/content/htm/download.htm
http://www.wolfgang-martin-team.net/content/htm/download.htm
http://www.daml.org/services/owl-s/

836 References

832. Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz, H., Kötting, B.,
Schaaf, M.: Merging project planning and web-enabled dynamic workflow
technologies. IEEE Internet Computing 4(3), 65–74 (2000)

833. May, A., Carter, C., Joyner, S.: Virtual team working in the european automo-
tive industry: User requirements and a case study approach. Human Factors
and Ergonomics in Manufacturing 10(3), 273–289 (2000)

834. Mayer, H.H., Schoenmakers, H.: Integrated use of CAPE tools – an indus-
trial example. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.) Fifth
International Conference on Foundations of Computer-Aided Process Design.
AIChE Symposium Series, vol. 96(323), pp. 466–469 (2000)

835. McCall, R.J.: PHI: a conceptual foundation for design hypermedia. Design
Studies 12, 30–41 (1991)

836. McCarthy, J., Bluestein, W.: The Computing Strategy Report: Workflow’s
Progress. Forrester Research (1991)

837. McCormack, K.: Business process orientation: Do you have it? Quality
Progress, 51–58 (2001)

838. McGrath, J.E.: Groups: Interaction and Performance. Prentice-Hall, Engle-
wood Cliffs (1984)

839. McKay, A., Bloor, M.S., de Pennington, A.: A framework for product data.
IEEE Transactions on Knowledge and Data Engineering 8(5), 825–838 (1996)

840. McKenaa, T.: Design model of a wiped film evaporator. applications to the
devolatilisation of polymer melts. Chemical Engineering Science 50(3), 453–
467 (1995)

841. Meeting by Wire: NetMeeting (2006),
http://www.meetingbywire.com/NetMeeting101.htm

842. Mendling, J., Nüttgens, M.: EPC modelling based on implicit arc types. In:
Godlevsky, M., Liddle, S.W., Mayr, H.C. (eds.) Information Systems Technol-
ogy and its Applications, International Conference ISTA 2003, Ukraine (2003)

843. Mettala, E., Graham, M.H.: The domain-specific software architecture pro-
gram. Technical Report CMU/SEI-92-SR-009, Carnegie Mellon University,
Software Engineering Institute, SEI (1992)

844. Microsoft: Excel – website (2005), http://office.microsoft.com/excel
845. Microsoft: Visio – website (2005), http://office.microsoft.com/visio
846. Microsoft: Component Object Model (2006), http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/dnanchor/html/component

objectmodelanchor.asp

847. Microsoft: DCOM: distributed component object model (2006),
http://msdn.microsoft.com/library/en-us/dnanchor/html/dcom.asp

848. Mille, A.: From case-based reasoning to traces based reasoning. In: 9th IFAC
Symposium on Automated Systems Based on Human Skill And Knowledge,
Nancy, France (2006)

849. Miller, R.C., Myers, B.A.: Creating dynamic world wide web pages by
demonstration. Technical Report CMU-CS-97-131, Carnegie Mellon Univer-
sity, School of Computer Science (1999)

850. Minenko, W.: The application sharing technology. The X Advisor 1(1) (1995)
851. Misander, P.K.: A document-oriented model of the workflow in an engineering

project (2006), http://CAPE-Alliance.ucl.org.uk/CAPE_Applications_
etc/Initiatives_and_Networks/About_CAPENET/CAPENET_Section_

Frameset.html

http://www.meetingbywire.com/NetMeeting101.htm
http://office.microsoft.com/excel
http://office.microsoft.com/visio
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/componentobjectmodelanchor.asp
http://msdn.microsoft.com/library/en-us/dnanchor/html/dcom.asp
http://CAPE-Alliance.ucl.org.uk/CAPE_Applications_etc/Initiatives_and_Networks/About_CAPENET/CAPENET_Section_Frameset.html
http://CAPE-Alliance.ucl.org.uk/CAPE_Applications_etc/Initiatives_and_Networks/About_CAPENET/CAPENET_Section_Frameset.html
http://CAPE-Alliance.ucl.org.uk/CAPE_Applications_etc/Initiatives_and_Networks/About_CAPENET/CAPENET_Section_Frameset.html

R.2 External Literature 837

852. Mittal, S., Araya, A.: A knowledge-based framework for design. In: Proceed-
ings of the 5th National Conference on Artificial Intelligence, pp. 856–865
(1986)

853. Mizrahi, J.: Developing an industrial chemical process: an integrated ap-
proach. CRC Press, Boca Raton (2002)

854. Münch, J., Rombach, D.: Eine Prozessplattform zur erfahrungsbasierten Soft-
wareentwicklung. In: Nagl, M., Westfechtel, B. (eds.) Modelle, Werkzeuge und
Infrastrukturen zur Unterstützung von Entwicklungsprozessen, pp. 93–106.
Wiley-VCH, Weinheim (2003)

855. Moeschlin, O., Grycko, E., Pohl, C., Steinert, F. (eds.): Experimental Stochas-
tics. Springer, Heidelberg (1998)

856. Moran, T.P., Carroll, J.M.: Overview of design rationale. In: Moran, T.P.,
Carroll, J.M. (eds.) Design Rationale: Concepts, Techniques, and Use, pp.
1–19. Lawrence Erlbaum, Mahwah (1996)

857. Moran, T.P., Carroll, J.M. (eds.): Design Rationale: Concepts, Techniques,
and Use. Lawrence Erlbaum, Mahwah (1996)

858. Mostow, J.: Toward better models of the design process. AI Magazine 6(1),
44–57 (1985)

859. Motard, R.L., Blaha, M.R., Book, N.L., Fielding, J.J.: Process engineering
databases – from the pdxi perspective. In: Proceedings of the 4th International
Conference on Foundations of Computer-Aided Process Design, pp. 142–153
(1995)

860. Mours, M., Flecke, J., Kohlgrüber, K.: Simulation von Zweiwellenextrud-
ern – Einsatz und Grenzen. In: Polymeraufbereitung 2002, pp. 153–174. VDI-
Verlag, Düsseldorf (2002)

861. Murata, T., Borgida, A.: Handling of irregularities in human centered systems:
A unified framework for data and processes. IEEE Transactions on Software
Engineering 26(10), 959–977 (2000)

862. Mylopoulos, J.: Information modeling in the time of revolution. Information
Systems 23(3/4), 127–155 (1998)

863. NAMUR – Interessengemeinschaft Prozessleittechnik der chemischen und
pharmazeutischen Industrie: NA 35: Abwicklung von PLT-Projekten (2003)

864. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1993)
865. Niles, I., Pease, A.: Towards a standard upper ontology. In: Welty, C., Smith,

B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology
in Information Systems (FOIS-2001) (2001)

866. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. Oxford Univer-
sity Press, Oxford (1995)

867. Noonan, H.: Identity. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-
losophy (2006), http://plato.stanford.edu/archives/win2006/entries/

identity/

868. Noumenon Consulting Limited: Open access to intelligent process plant mod-
els (2006), http://www.noumenon.co.uk

869. Noy, N., Rector, A.: Defining n-ary relations on the semantic web (2006),
http://www.w3.org/TR/swbp-n-aryRelations/

870. Nuseibeh, B., Finkelstein, A.: Viewpoints: A vehicle for method and tool in-
tegration. In: Proceedings of the 5th International Workshop on Computer-
Aided Software Engineering (1992)

http://plato.stanford.edu/archives/win2006/entries/identity/
http://plato.stanford.edu/archives/win2006/entries/identity/
http://www.noumenon.co.uk
http://www.w3.org/TR/swbp-n-aryRelations/

838 References

871. Oberle, D., Volz, R., Motik, B., Staab, S.: An extensible ontology software
environment. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp.
311–333. Springer, Heidelberg (2004)

872. Oberquelle, H.: Sprachkonzepte für benutzergerechte Systeme. Informatik-
Fachberichte, vol. 144. Springer, Heidelberg (1987)

873. Object Management Group (OMG): Business process modeling nota-
tion (BPMN) final adopted specification (2002), http://www.bpmn.org/

Documents/OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf

874. Object Management Group (OMG): Meta-object facility (MOF) speci-
fication, version 1.4 (2002), http://www.omg.org/technology/documents/

formal/mof.htm

875. Object Management Group (OMG): MOF 2.0 query / view / transformations,
request for proposal (2002), http://www.omg.org/docs/ad/02-04-10.pdf

876. Object Management Group (OMG): MDA guide, version 1.0.1 (2003),
http://www.omg.org/docs/omg/03-06-01.pdf

877. Object Management Group (OMG): Common Object Request Broker Archi-
tecture (CORBA): Core Specification, Version 3.0.3 (2004),
http://www.omg.org/technology/documents/formal/corba_iiop.htm

878. Object Management Group (OMG): CAD services specification, v1.2 (2005),
http://www.omg.org/cgi-bin/doc?formal/2005-01-07

879. Object Management Group (OMG): OCL 2.0 specification (2005),
http://www.omg.org/docs/ptc/05-06-06.pdf

880. Object Management Group (OMG): Unified modeling language (UML), ver-
sion 2.0 (2005), http://www.omg.org/technology/documents/formal/uml.htm

881. Object Management Group (OMG): Domain specifications (2006),
http://www.omg.org/technology/documents/domain_spec_catalog.htm

882. Object Management Group (OMG): UML infrastructure specification, version
2.1.1 (2007), http://www.omg.org/cgi-bin/doc?formal/07-02-04

883. Oertel Jr., H. (ed.): Prandtl-Führer durch die Strömungslehre, 10th edn.
Vieweg, Wiesbaden (2001)

884. Oestereich, B., Weiss, C., Schröder, C., Weilkiens, T., Lenhard, A.: Objek-
torientierte Geschäftsprozessmodellierung mit der UML. dpunkt, Heidelberg
(2003)

885. Open Applications Group: OAGIS – website (2006),
http://www.openapplications.org

886. Oppermann, R., Murcher, B., Reiterer, H., Koch, M.: Software-ergonomische
Evaluation. Gruyter, Berlin (1992)

887. Organization for the Advancement of Structured Information Standards (OA-
SIS): Web Services Business Process Execution Language, WSBPEL (2007),
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

888. Orzack, S.H., Sober, E.: A critical assessment of Levins’s The strategy of
model building in population biology (1966). The Quarterly Review of Biol-
ogy 68(4), 533–546 (1993)

889. Osswald, A.T.: BEM in der Kunststoffverarbeitung. KU Kunststoffe 89(2),
65–68 (1999)

890. Osswald, T.A., Gramann, P.J.: Polymer processing simulation trends. In:
SAMPE, Erlangen, Germany (2001)

http://www.bpmn.org/Documents/OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf
http://www.bpmn.org/Documents/OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/docs/ad/02-04-10.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://www.omg.org/cgi-bin/doc?formal/2005-01-07
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/domain_spec_catalog.htm
http://www.omg.org/cgi-bin/doc?formal/07-02-04
http://www.openapplications.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

R.2 External Literature 839

891. Ostermann, P.: Security Prosperity; The American Labor Market: How is
it changed and what is to do about. Princeton University Press, Princeton
(1999)

892. Osterweil, L.: Software processes are software, too. In: Proceedings of the 9th

International Conference on Software Engineering, pp. 2–13 (1987)
893. Ouzounis, V., Tschammer, V.: A framework for virtual enterprise support ser-

vices. In: Proceedings of the 32th Hawaii International Conference on System
Sciences (HICSS), IEEE Computer Society Press, Los Alamitos (1999)

894. Pantelides, C., Keeping, B., Bernier, J., Gautreau, C.: Open interface specifi-
cation: Numerical solvers. Technical Report CO-NUMR-EL-03, The CAPE-
OPEN Laboratories Network, CO-LaN (1999), http://www.colan.org/

index-33.html

895. Pantelides, C.C., Barton, P.I.: Equation-oriented dynamic simulation: Current
status und future perspectives. Computers & Chemical Engineering 17, 263–
285 (1993)

896. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and
directions. In: Proceedings of the 4th International Conference on Web In-
formation Systems Engineering (WISE 2003), Rome, Italy, 10–12 December
2003, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2003)

897. Parnas, D.L.: A technique for software module specification with examples.
Communications of the ACM 15(5), 330–336 (1972)

898. Patil, L., Dutta, D., Sriram, R.: Ontology-based exchange of product data
semantics. IEEE Transactions on Automation Science and Engineering 3(3),
213–225 (2005)

899. Paton, N.W., Diaz, O.: Introduction. In: Active Rules in Database Systems,
pp. 3–27. Springer, Heidelberg (1998)

900. Paton, N.W., Goble, C.A., Bechhofer, S.: Knowledge based information inte-
gration systems. Information and Software Technology 42, 299–312 (2000)

901. Patzak, G.: Systemtechnik – Planung komplexer innovativer Systeme. Sprin-
ger, Heidelberg (1982)

902. Perkins, C.: RTP – Audio and Video for the Internet. Addison-Wesley, Read-
ing (2003)

903. Perkins, C., Hodson, O., Hardman, V.: A survey of packet loss recovery tech-
niques for streaming audio. IEEE Network Magazine 12(5), 40–47 (1998)

904. Perrey, R., Lycett, M.: Service-oriented architecture. In: Proceedings of the
2003 Symposium on Applications and the Internet Workshops (SAINT 2003),
Orlando, Florida, USA, 27–31 January 2003, pp. 116–119. IEEE Computer
Society Press, Los Alamitos (2003)

905. Perrin, O., Wynen, F., Bitcheva, J., Godart, C.: A model to support collab-
orative work in virtual enterprises. In: van der Aalst, W.M.P., ter Hofstede,
A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 104–119. Springer,
Heidelberg (2003)

906. Peters, M.S., Timmerhaus, K.D.: Plant Design and Economics for Chemical
Engineers. McGraw-Hill, New York (1991)

907. Philpotts, M.: An introduction to the concepts, benects and terminology of
product data management. Industrial Management & Data Systems 4, 11–17
(1996)

http://www.colan.org/index-33.html
http://www.colan.org/index-33.html

840 References

908. PIEBASE – Process Industries Executive for Achieving Business Advan-
tage Using Standards for Data Exchange: PIEBASE Activity Model (1998),
http://www.posc.org/piebase/ppam20.pdf

909. PIEBASE – Process Industries Executive for Achieving Business Advan-
tage Using Standards for Data Exchange: PIEBASE – website (2005),
http://www.posc.org/piebase

910. PIXARGUS: PIXARGUS GmbH – Automation by Vision (2006),
http://www.pixargus.com/

911. Plone Foundation: plone.org – website (2006), http://plone.org/
912. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering –

Foundations, Principles, and Techniques. Springer, Heidelberg (2005)
913. Potts, C., Bruns, G.: Recording the reasons for design decisions. In: Proceed-

ings of the 10th International Conference on Software Engineering (ICSE’88),
pp. 418–427. IEEE Computer Society Press, Los Alamitos (1988)

914. Preece, P., Ingersoll, T., Tong, J.: Specification (data) sheets – picture a
database. In: Proceedings of the European Symposium on Computer Aided
Process Engineering – ESCAPE 4, pp. 467–474 (1994)

915. Proudlove, N., Vadera, S., Kobbacy, K.: Intelligent management systems in
operations: A review. Journal of the Operations Research Society 49, 682–699
(1998)

916. PSE: gPROMS – website (2006), http://www.psenterprise.com/gproms/
917. Qiu, J., Knightly, E.: Measurement-based admission control using aggre-

gate traffic envelopes. IEEE/ACM Transactions on Networking 9(2), 199–210
(2001)

918. Racer Systems GmbH & Co. KG: RacerPro – website (2006),
http://www.racer-systems.com/products/racerpro/index.phtml

919. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In:
Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068,
p. 267. Springer, Heidelberg (2001)

920. Ramesh, B.: Factors influencing requirements traceability practice. Commu-
nications of the ACM 41(12), 37–44 (1998)

921. Raskin, J.: The Humane Interface – New Directions for Designing Interactive
Systems. Addison-Wesley, Reading (2000)

922. Rasmussen, J.: Human Information Processing & Human-Machine Interac-
tion. North-Holland, Amsterdam (1986)

923. Rasmussen, J.: Merging paradigms: Decision making, management, and cog-
nitive control. In: Flin, R., Salas, E., Martin, L. (eds.) Decision making under
stress: Emerging paradigms and applications, Ashgate, Aldershot (1997)

924. Rasmussen, J., Pejtersen, A.M., Goodstein, L.P.: Cognitive Systems Engineer-
ing. John Wiley & Sons, Chichester (1994)

925. Raupach, H.C.: Simulation von Produktentwicklungsprozessen. PhD thesis,
TU Berlin (1999)

926. Rödiger, K.H.: Arbeitsinformatik. In: Luczak, H., Volpert, W. (eds.) Hand-
buch Arbeitswissenschaft, pp. 176–182. Schäffer-Poeschel, Stuttgart (1997)

927. Regli, W.C., Hu, X., Atwood, M., Sun, W.: A survey of design rationale
systems: Approaches, representation, capture and retrieval. Engineering with
Computers 16, 209–235 (2000)

http://www.posc.org/piebase/ppam20.pdf
http://www.posc.org/piebase
http://www.pixargus.com/
http://plone.org/
http://www.psenterprise.com/gproms/
http://www.racer-systems.com/products/racerpro/index.phtml

R.2 External Literature 841

928. Reich, Y., Konda, S., Subrahmanian, E., Cunningham, D., Dutoit, A., Patrick,
R., Thomas, M., Westerberg, A.W.: Building agility for developing agile de-
sign information systems. Research in Engineering Design 11, 67–83 (1999)

929. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes with-
out loosing control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

930. Reimschüssel, H.K.: Nylon 6 chemistry and mechanisms. Journal of Polymer
Science: Macromolecular Reviews (1977)

931. Remberg, C., Wozny, G., Fieg, G., Fett, F.N., Blaich, L.: Entwicklung eines
Expertensystems für den Entwurf eines Automatiersungskonzepts für Rekti-
fikationskolonnen. Chem.-Ing.-Tech. 67 (1995)

932. Richter, H., Abowd, G.D., Geyer, W., Fuchs, L., Daijavad, S., Poltrock, S.:
Integrating meeting capture within a collaborative team environment. In:
Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201,
pp. 123–138. Springer, Heidelberg (2001)

933. Richter, J.-P.: Wann liefert eine Serviceorientierte Architektur echten Nut-
zen?. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering
2005, Fachtagung des GI-Fachbereichs Softwaretechnik, Essen, 8.–11.3, 2005.
LNI, vol. 64, pp. 231–242. GI (2005)

934. Riegel, J.P., Kaesling, C., Schütze, M.: Modeling software architecture using
domain-specific patterns. In: Donohoe, P. (ed.) Software Architecture (TC2
1st Working IFIP Conference on Software Architecture, WICSA1), San Anto-
nio, Texas, USA, pp. 273–301. Kluwer Academic Publishers, Dordrecht (1999)

935. Riggert, K., Terrier, F.: Die Entfernung niedermolekularer Anteile in Poly-
amid-6-Schmelzen mittels Vakuum. CZ-Chemie-Technik 2(3), 95–99 (1973)

936. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning.
Policy Sciences 4, 155–169 (1973)

937. Rolland, C.: A comprehensive view of process engineering. In: Pernici, B.,
Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, p. 1. Springer, Heidelberg
(1998)

938. Rose, T.: Visual assessment of engineering processes in virtual enterprises.
Communications of the ACM 41(12), 45–52 (1998)

939. Rosemann, M.: Komplexitätsmanagement in Prozeßmodellen – Methoden-
spezifische Gestaltungsempfehlungen für die Informationsmodellierung. PhD
thesis, University of Münster (1996)

940. Rosman, G., van der Meer, K., Sol, H.G.: The design of document information
systems. Journal of Information Science 22(4), 287–297 (1996)

941. Rosson, M.B., Carroll, J.M.: Usability Engineering. Academic Press, London
(2002)

942. Röthemeyer, F., Sommer, F.: Kautschuk Technologie, 2nd edn. Carl Hanser
Verlag, München (2006)

943. Rubin, J. (ed.): Handbook of Usability Testing. Wiley, Chichester (1994)
944. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-

Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs (1991)
945. Sahai, H., Agell, M.I.: The Analysis of Variance. Birkhäuser, Basel (2000)
946. Salminen, A., Lyytikäinen, V., Tiitinen, P.: Putting documents into their work

context in document analysis. Information Processing and Management 36(4),
623–641 (2000)

947. SAP: SAP R/3 R© – website (2006), http://www.sap.com/

http://www.sap.com/

842 References

948. Sattler, K.-U.: A framework for component-oriented tool integration. In: Pro-
ceedings of the International Conference on Object Oriented Information Sys-
tems (1997)

949. Scheer, A.-W.: Aris – Business Process Modeling. Springer, Heidelberg (2006)
950. Schefstroem, D., van den Broek, G. (eds.): Tool Integration – Environments

and Frameworks. Wiley, Chichester (1993)
951. Schembecker, G., Simmrock, K.: Heuristic-numeric process synthesis with

PROSYN. In: Conference on Intelligent Systems in Process Engineering, pp.
275–278 (1996)

952. Schembecker, G., Simmrock, K.H., Wolff, A.: Synthesis of chemical process
flowsheets by means of cooperating knowledge integrating systems. In: Pro-
ceedings of the European Symposium on Computer Aided Process Engineer-
ing – ESCAPE 4 (1994)

953. Schiemann, B., Borrmann, L.: A new approach for load balancing in high per-
formance decision support systems. In: Liddell, H., Colbrook, A., Hertzberger,
B., Sloot, P.M.A. (eds.) HPCN-Europe 1996. LNCS, vol. 1067, pp. 571–579.
Springer, Heidelberg (1996)

954. Schäl, T.: Workflow Management Systems for Process Organisations. Sprin-
ger, Heidelberg (1996)

955. Schmidt-Traub, H., Koester, M., Holtkoetter, T., Nipper, N.: Conceptual
plant layout. Computers & Chemical Engineering 22, 499–504 (1998)

956. Schwermetall: Schwermetall Halbzeugwerk – website (2006),
http://www.schwermetall.info/

957. Seider, W.D., Seader, J.D., Lewin, D.R.: Process Design Principles – Synthe-
sis, Analysis, and Evaluation. John Wiley & Sons, Chichester (1999)

958. Seidlmeier, H.: Process Modeling with ARIS – A Practical Introduction.
Vieweg, Wiesbaden (2004)

959. Sennrath, F., Hermanns, O.: Performance Investigation of the MTP Multicast
Transport Protocol. In: Proceedings of the 2nd Workshop on Protocols for
Multimedia Systems, Salzburg, Austria, pp. 73–81 (1995)

960. Seppälä, J., Basson, L., Norris, G.A.: Decision analysis frameworks for life-
cycle impact assessment. Journal of Industrial Ecology 5, 45–68 (2001)

961. Shanks, G., Seddon, P.: Enterprise resource planning (ERP) systems. Journal
of Information Technology 15, 243–244 (2000)

962. Sharp, A., McDermott, P.: Workflow Modeling. Tools for Process Improve-
ment and Application Development. Artech House, Boston (2001)

963. Sheth, A., et al.: NSF workshop on workflow and process automation. ACM
Software Engineering Notes 22(1), 28–38 (1997)

964. Shneiderman, B.: Designing the User Interface, 3rd edn. Addison-Wesley,
Reading (1998)

965. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. John
Wiley & Sons, Chichester (2001)

966. Singhal, S.K., Zyda, M.J.: Networked Virtual Environments: Design and Im-
plementation. ACM Press, New York (1999)

967. Sklorz, S.: A Method for Data Analysis Based on Self Organizing Feature
Maps. In: Proceedings of the Internat. Symposium on Soft Computing for
Industry (ISSCI’96), Montpellier, France (May 1996)

http://www.schwermetall.info/

R.2 External Literature 843

968. Sklorz, S., Becks, A., Jarke, M.: MIDAS – Ein Multistrategiesystem zum ex-
plorativen Data Mining. In: Proceedings of the 2nd Workshop on Data Mining
und Data Warehousing als Grundlage moderner entscheidungsunterstützen-
der Systeme (DMDW 1999), pp. 129–143 (1999)

969. Sklorz, S., Jarke, M.: MIDAS: Explorative data mining in business applica-
tions. a project description. In: Herzog, O. (ed.) KI 1998. LNCS, vol. 1504,
Springer, Heidelberg (1998)

970. Smith, B.: Against idiosyncrasy in ontology development. In: Bennett, B.,
Fellbaum, C. (eds.) Formal Ontology in Information Systems. Frontiers in
Artificial Intelligence and Applications, vol. 150, pp. 15–26. IOS Press, Ams-
terdam (2006)

971. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide
(2004), http://www.w3.org/TR/owl-guide/

972. Sneed, H.M.: Encapsulation of legacy software: A technique for reusing legacy
software components. Annals of Software Engineering 9(1) (2000)

973. Sneed, H.M.: Aufwandsschätzung von Software-Reengineering-Projekten.
Wirtschaftsinformatik 45(6), 599–610 (2003)

974. Snell, J., Tidwell, D., Kulchenko, P.: Programming Web Services with SOAP.
O’Reilly, Sebastopol (2001)

975. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineer-
ing: Survey and open research issues. In: Handbook of Software Engineering
and Knowledge Engineering, vol. 1, pp. 329–380. World Scientific, Singapore
(2001)

976. Spenke, M., Beilken, C.: Visualization of trees as highly compressed tables
with infozoom. In: Paton, N.W., Diaz, O. (eds.) Proceedings of the IEEE
Symposium on Information Visualization (2003)

977. Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Karsai, G.: Domain model
translation using graph transformations. In: Proceedings of the 10th IEEE
International Conference on Engineering of Computer-Based Systems (ECBS
2003), Huntsville, AL, USA, April 7– 10, 2003, pp. 159–167. IEEE Computer
Society Press, Los Alamitos (2003)

978. Staadt, O.G., Walker, J., Nuber, C., Hamann, B.: A survey and performance
analysis of software platforms for interactive cluster-based multi-screen ren-
dering. In: Deisinger, J., Kunz, A. (eds.) Proceedings of IPT 2003, Interna-
tional Immersive Projection Technologies Workshop, ACM Press, New York
(2003)

979. Stanford Medical Informatics: The Protégé ontology editor and knowledge
acquisition system (2005), http://protege.stanford.edu/

980. Steffen, B., Margaria, T.: METAFrame in practice: Design of intelligent net-
work services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design.
LNCS, vol. 1710, pp. 390–415. Springer, Heidelberg (1999)

981. Stein, B.: Model construction in analysis and synthesis tasks. PhD thesis,
University of Paderborn (2001)

982. Steinmetz, A., Kienzle, M.: e-seminar lecture recording and distribution sys-
tem. In: Multimedia computing and Networking, San Jose, USA. Proceedings
of SPIE (International Society for Optical Engineering), vol. 4312, pp. 25–36
(2001)

http://www.w3.org/TR/owl-guide/
http://protege.stanford.edu/

844 References

983. Stell, J.G., West, M.: A 4-dimensionalist mereotopology. In: Varzi, A.C., Vieu,
L. (eds.) Formal Ontology in Information Systems, pp. 261–272. IOS Press,
Amsterdam (2004)

984. Strong, D.M., Moller, S.M.: Exceptions and exception handling in computer-
ized information processes. ACM Transactions on Information Systems 13(2),
206–233 (1995)

985. Stroustrup, B.: The C++ Programming Language, 2nd edn. Addison-Wesley,
Reading (1991)

986. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities.
Electronic Notes in Theoretical Computer Science 127(4), 35–52 (2005)

987. Stuckenschmidt, H., Klein, M.: Integrity and change in modular ontologies.
In: Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI’03), Acapulco, Mexico, pp. 900–905. Morgan Kaufmann, San
Francisco (2003)

988. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: Principles
and methods. Data & Knowledge Engineering 25(1-2), 161–197 (1998)

989. Subrahmanian, E., Konda, S.L., Dutoit, A., Reich, Y., Cunningham, D.,
Patrick, R., Thomas, M., Westerberg, A.W.: The n-dim approach to creative
design support systems. In: Proceedings of the ASME Design Engineering
Technical Conference (1997)

990. Suzuki, M., Batres, R., Fuchino, T., Shimada, Y., Chung, P.W.: A knowledge-
based approach for accident information retrieval. In: Marquardt, W., Pan-
telides, C. (eds.) 16th European Symposium on Computer Aided Process En-
gineering and 9th International Symposium on Process Systems Engineering,
Garmisch-Partenkirchen, Germany, July 9–13, 2006. Computer-Aided Chem-
ical Engineering, vol. 21, pp. 1057–1062. Elsevier, Amsterdam (2006)

991. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1997)

992. Taentzer, G., Koch, M., Fischer, I., Volle, V.: Distributed graph transforma-
tion with application to visual design of distributed systems. In: Handbook
on Graph Grammars and Computing by Graph Transformation – Volume 3:
Concurrency, Parallelism, and Distribution, pp. 269–340. World Scientific,
Singapore (1999)

993. Tata, S., Chebbi, I.: A bottom-up approach to inter-enterprise business pro-
cesses. In: Proceedings of the 13th IEEE International Workshops on Enabling
Technologies (WETICE 2004), Infrastructure for Collaborative Enterprises,
Modena, Italy, June 14–16, 2004, pp. 129–134. IEEE Computer Society Press,
Los Alamitos (2004)

994. Teijgeler, H.: InfowebML – OWL-based Information Exchange and Integration
based on ISO 15926 (2007), http://www.infowebml.ws/

995. TGL 25000: Chemical engineering unit operations – classification (1974)
996. Thayer, R.H.: Software engineering project management: A top-down view.

In: Thayer, R.H. (ed.) Tutorial: Software Engineering Project Management,
pp. 15–54. IEEE Computer Society Press, Los Alamitos (1988)

997. The CAPE-OPEN Laboratories Network: CAPE-OPEN standards and sup-
porting documents (2008), http://www.colan.org/

998. Thomas, I., Nejmeh, B.A.: Definitions of tool integration for environments.
IEEE Software 9(2), 29–35 (1992)

http://www.infowebml.ws/
http://www.colan.org/

R.2 External Literature 845

999. Thomas, M.E.: Tool and Information Management in Engineering Design.
PhD thesis, Carnegie Mellon University (1996)

1000. Tichy, W.F. (ed.): Configuration Management. Trends in Software, vol. 2.
John Wiley & Sons, Chichester (1994)

1001. To, H.H., Krishnaswamy, S., Srinivasan, B.: Mobile agents for network man-
agement: when and when not? In: SAC’05: Proceedings of the 2005 ACM
Symposium on Applied Computing, Santa Fe, New Mexico, USA, pp. 47–53.
ACM Press, New York (2005)

1002. Traenkle, F., Zeitz, M., Ginkel, M., Gilles, E.D.: PROMOT: A modeling tool
for chemical processes. Mathematical and Computer Modelling of Dynamical
Systems 6, 283–307 (2000)

1003. Ulich, E.: Arbeitspsychologie. Schäffer-Poeschel, Stuttgart (1991)
1004. Ullrich, H.: Wirtschaftliche Planung und Abwicklung verfahrentechnischer

Anlagen. Vulkan-Verlag, Essen (1996)
1005. Underwriters Laboratory: UL 94 flammability testing (2008),

http://www.ul.com/plastics/flame.html

1006. Uschold, M., Grüninger, M.: Ontologies: Principles, methods and applications.
The Knowledge Engineering Review 11(2), 93–136 (1996)

1007. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The
Knowledge Engineering Review 13, 31–89 (1998)

1008. Valette, R., Vergnes, B., Coupez, T.: Multiscale simulation of mixing processes
using 3d-parallel, fluid-structure interaction techniques. International Journal
of Material Forming (Proc. Symposium MS16: ESAFORM-ECCOMAS Work-
shop, Paris, France) (2008)

1009. van Daalen, C.E., Thissen, W.A.H., Verbraeck, A.: Methods for the modeling
and analysis of alternatives. In: Sage, A.P., Rouse, W.B. (eds.) Handbook of
Systems Engineering and Management, pp. 1037–1076. John Wiley & Sons,
Chichester (1999)

1010. van Dam, A., Forsberg, A.S., Laidlaw, D.H., LaViola, J.J., Simpson, R.M.:
Immersive VR for scientific visualization: A progress report. IEEE Computer
Graphics and Applications 20(6), 26–52 (2000)

1011. van der Aalst, W.: Interorganizational workflows: An approach based on mes-
sage sequence charts and petri nets. Systems Analysis – Modelling – Simula-
tion 34(3), 335–367 (1999)

1012. van der Aalst, W.: Process-oriented architectures for electronic commerce and
inter-organizational workflow. Information Systems 24(8), 639–671 (1999)

1013. van der Aalst, W.: Loosely coupled interorganizational workflows: Modeling
and analyzing workflows crossing organizational boundaries. Information and
Management 37(2), 67–75 (2000)

1014. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press, Cam-
bridge (2002)

1015. van Gigch, J.P.: System Design Modeling and Metamodeling. Plenum Press,
New York (1991)

1016. van Schijndel, J., Pistikipoulos, E.N.: Towards the integration of process
design, process control, and process operability: Current status and future
trends. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.) Foundations
of Computer-Aided Process Design (FOCAPD’99). AIChE Symposium Series,
vol. 323, pp. 99–112. CACHE Publications (2000)

http://www.ul.com/plastics/flame.html

846 References

1017. Vandalore, B., Feng, W., Jain, R., Fahmy, S.: A survey of application layer
techniques for adaptive streaming of multimedia. Real-Time Imaging 7(5),
221–235 (2001)

1018. VDI: VDI-Richtlinie 5003, Bürokommunikation; Methoden zur Analyse und
Gestaltung von Arbeitssystemen im Büro (1987)

1019. VDI: VDI-Richtlinie 2221: Methodik zum Entwickeln und Konstruieren tech-
nischer Systeme und Produkte (1993)

1020. VDI: VDI-Richtlinie 3633, Blatt 1, Simulation von Logistik-, Materialfluß-
und Produktionssystemen – Grundlagen (1993)

1021. Venkatasubramanian, V., Zhao, C., Joglekar, G., Jain, A., Hailemariam, L.,
Suresh, P., Akkisetty, P., Morris, K., Reklaitis, G.: Ontological informatics
infrastructure for pharmaceutical product development and manufacturing.
Computers & Chemical Engineering 30(10-12), 1482–1496 (2006)

1022. Versant Corporation: Versant – website (2007), http://www.versant.com
1023. Vicente, K.J.: Cognitive Work Analysis. Lawrence Erlbaum, Mahwah (1999)
1024. Vinoski, S.: CORBA: Integrating diverse applications within distributed het-

erogeneous environments. IEEE Communications Magazine, 46–55 (1997)
1025. Virzi, R.A.: Usability inspection methods. In: Helander, M.G., Landauer,

T.K., Prabhu, P.V. (eds.) Handbook of Human-Computer Interaction, 2nd
edn., pp. 705–715. Elsevier, Amsterdam (1997)

1026. Visser, U., Stuckenschmidt, H., Wache, H., Vögele, T.: Enabling technologies
for interoperability. In: Visser, U., Pundt, H. (eds.) Workshop on the 14th

International Symposium of Computer Science for Environmental Protection,
vol. 20, pp. 35–46 (2000)

1027. Vogel, G.H.: Verfahrensentwicklung: von der ersten Idee zur chemischen Pro-
duktionsanlage. Wiley-VCH, Weinheim (2002)

1028. Volkholz, V.: Arbeiten und Lernen. In: Nachhaltige Arbeitsgestaltung, pp.
431–488. Rainer Hampp, Mering (2002)

1029. von Wedel, L.: Model management with MOVE (2005),
http://www.aixcape.org/move

1030. von Wedel, L.: Management and reuse of mathematical models in chemical
industries with MOVE. In: Braunschweig, B., Joulia, X. (eds.) 18th Euro-
pean Symposium on Computer Aided Process Engineering – ESCAPE 18.
Computer-Aided Chemical Engineering, Elsevier, Amsterdam (2008)

1031. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neu-
mann, H., Hübner, S.: Ontology-based integration of information – a survey
of existing approaches. In: Stuckenschmidt, H. (ed.) Proceedings of the IJCAI-
01 Workshop on Ontologies and Information Sharing, pp. 108–117 (2001)

1032. Wagner, K., Aslanidis, S.: Prozessorientierte Nutzung von Erfahrungswissen
in den frühen Phasen der Produktentstehung. In: Proceedings of the 4th Con-
ference on Application of Knowledge Management in Industry and Public
Administrations – Knowtech, München, Germany (2002)

1033. Wagner, R., Giese, H., Nickel, U.A.: A plug-in for flexible and incremental
consistency management. In: Proceedings of the International Conference on
the Unified Modeling Language 2003 (Workshop 7: Consistency Problems in
UML-Based Software Development), San Francisco, California, USA (2003)

1034. Wahli, U., Avula, V., Macleod, H., Saeed, M., Vinther, A.: Business Process
Management: Modeling through Monitoring Using WebSphere V6.0.2 Prod-
ucts. IBM Corp. (2007)

http://www.versant.com
http://www.aixcape.org/move

R.2 External Literature 847

1035. Waligura, C.L., Motard, R.L.: Data management in engineering and construc-
tion projects. Chemical Engineering Progress, 62–70 (1977)

1036. Walker, M.B.: Smooth transitions in conversational turn-taking: Implications
for theory. Journal of Psychology 110(1), 31–37 (1982)

1037. Wang, W., Haake, J.M., Rubart, J.: A cooperative visual hypermedia ap-
proach to planning and conducting virtual meetings. In: Haake, J.M., Pino,
J.A. (eds.) CRIWG 2002. LNCS, vol. 2440, pp. 70–89. Springer, Heidelberg
(2002)

1038. Wasserman, A.I.: Tool integration in software engineering environments. In:
Long, F. (ed.) Software Engineering Environments. LNCS, vol. 467, pp. 137–
149. Springer, Heidelberg (1990)

1039. Wasylkiewicz, S., Castillo, F.: Automatic synthesis for complex separation
sequences with recycles. In: Gani, R., Jørgensen, S.B. (eds.) Proceedings of the
European Symposium on Computer Aided Process Engineering – ESCAPE
11, pp. 591–596. Elsevier, Amsterdam (2001)

1040. Weigand, H., De Moor, A.: A framework for the normative analysis of work-
flow loops. CAiSE 2001 22(2), 38–40 (2001)

1041. Weiten, M., Wozny, G.: A knowledge based system for the documentation
of research concerning physical and chemical processes – system design and
case studies for applications. In: Kraslawski, A., Turunen, I. (eds.) European
Symposium on Computer Aided Process Engineering – ESCAPE 13, pp. 329–
334. Elsevier, Amsterdam (2003)

1042. Weiten, M., Wozny, G.: Advanced information management for process sci-
ences: knowledge-based documentation of mathematical models. International
Journal of Internet and Enterprise Management 2(2), 178–190 (2004)

1043. Weiten, M., Wozny, G., Goers, B.: Wege zum Informationsmanagement für in-
terdisziplinäre Forschungsprojekte und die Entwicklung eines prototypischen
Systems. Chem.-Ing.-Tech. 74(11), 1545–1553 (2002)

1044. Weske, M.: Formal foundations and conceptual design of dynamic adaptations
in a workflow management system. In: Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS), Maui, Hawaii, USA,
IEEE Computer Society Press, Los Alamitos (2001)

1045. West, M.: Replaceable parts: A four dimensional analysis. In: Proceedings
of the COSIT’03 workshop on fundamental issues in spatial and geographic
ontologies (2003)

1046. Westerberg, A.W., Hutchison, W., Motard, R., Winter, P.: Process Flowsheet-
ing. Cambridge University Press, Cambridge (1979)

1047. Westerberg, A.W., Subrahmanian, E., Reich, Y., Konda, S.: Designing the
process design process. Computers & Chemical Engineering 21, 1–19 (1997)

1048. Westhaus, U., Droege, T., Sass, R.: DETHERM – a thermophysical property
database. Fluid Phase Equilibria (1999)

1049. Whitgift, D.: Methods and Tools for Software Configuration Management.
John Wiley & Sons, Chichester (1991)

1050. Whittaker, S., Hyland, P., Wiley, M.: Filochat: Handwritten notes provide
access to recorded conversations. In: Proceedings of the Conference on Human
Factors in Computing Systems (CHI’94), Boston, USA, pp. 271–277 (1994)

1051. Wikipedia: Need to know (2008),
http://en.wikipedia.org/wiki/Need_to_know

http://en.wikipedia.org/wiki/Need_to_know

848 References

1052. Wilcox, A., Weiss, D., Russell, C., Smith, M.J., Smith, A.D., Pooley, R.J.,
MacKinnon, L.M., Dewar, R.G.: A CORBA-oriented approach to heteroge-
neous tool integration; OPHELIA. In: Proceedings of the Workshop on Tool
Integration in System Development (TIS 2003), Helsinki, Finland, September
1–2 (2003)

1053. Wilding, W., Rowley, R., Oscarson, J.: DIPPR project 801 evaluated process
design data. Fluid Phase Equilibria (1998)

1054. Willumeit, H., Gediga, G., Hamborg, K.-C.: IsoMetricsL: Ein Verfahren zur
formativen Evaluation von Software nach ISO 9241/10. Ergonomie & Infor-
matik 27, 5–12 (1996)

1055. Wodtke, D., Weissenfels, J., Weikum, G., Kotz-Dittrich, A., Muth, P.: The
MENTOR workbench for enterprise-wide workflow management. In: Proceed-
ings of the ACM SIGMOD International Conference on the Management of
Data, Tucson, Arizona, USA, pp. 576–579. ACM Press, New York (1997)

1056. Wolisz, A., Tschammer, V.: Performance aspects of trading in open dis-
tributed systems. Computer Communications 16(5), 277–287 (1993)

1057. Workflow Management Coalition: Workflow management application pro-
gramming interface (interface 2&3) specification (1998)

1058. Workflow Management Coalition: Terminology & glossary. Technical Report
WFMC-TC-1011, Workflow Management Coalition (1999)

1059. Workflow Management Coalition: Workflow process definition interface –
XML process definition language (XPDL), version 1.0 (2002),
http://www.wfmc.org/standards/XPDL.htm

1060. World Wide Web Consortium (W3C): Extensible markup language, XML
(2006), http://www.w3.org/XML/

1061. World Wide Web Consortium (W3C): Web services activity (2006),
http://www.w3.org/2002/ws

1062. Wozny, G., Gutermuth, W., Kothe, W.: CAPE in der Verfahrenstechnik
aus industrieller Sicht – Status, Bedarf, Prognose oder Vision?. Chem.-Ing.-
Tech. 64(8), 693–699 (1992)

1063. YAWL Foundation: YAWL yet another workflow language (2006),
http://yawlfoundation.org

1064. Zantout, H., Marir, F.: Document management systems from current capa-
bilities towards intelligent information retrieval: An overview. International
Journal of Information Management 19(6), 471–484 (1999)

1065. Zhao, C., Hailemariam, L., Jain, A., Joglekar, G., Venkatasubramanian, V.,
Morris, K., Reklaitis, G.: Information modeling for pharmaceutical product
development. In: Marquardt, W., Pantelides, C. (eds.) 16th European Sym-
posium on Computer Aided Process Engineering and 9th International Sym-
posium on Process Systems Engineering, Garmisch-Partenkirchen, Germany,
July 9–13, 2006. Computer-Aided Chemical Engineering, vol. 21, pp. 2147–
2152. Elsevier, Amsterdam (2006)

1066. Zhao, C., Jain, A., Hailemariam, L., Joglekar, G., Venkatasubramanian, V.,
Morris, K., Reklaitis, G.: A unified approach for knowledge modeling in phar-
maceutical product development. In: Marquardt, W., Pantelides, C. (eds.)
16th European Symposium on Computer Aided Process Engineering and
9th International Symposium on Process Systems Engineering, Garmisch-
Partenkirchen, Germany, July 9–13, 2006. Computer-Aided Chemical Engi-
neering, vol. 21, pp. 1929–1935. Elsevier, Amsterdam (2006)

http://www.wfmc.org/standards/XPDL.htm
http://www.w3.org/XML/
http://www.w3.org/2002/ws
http://yawlfoundation.org

R.2 External Literature 849

1067. Zhao, C., Joglekar, G., Jain, A., Venkatasubramanian, V., Reklaitis, G.V.:
Pharmaceutical informatics: A novel paradigm for pharmaceutical product
development and manufacture. In: Puigjaner, L., Espuña, A. (eds.) Euro-
pean Symposium on Computer-Aided Process Engineering – ESCAPE 15.
Computer-Aided Chemical Engineering, vol. 20, pp. 1561–1566. Elsevier, Am-
sterdam (2005)

1068. Zhao, W., Olshefski, D., Schulzrinne, H.: Internet quality of service: an
overview. Technical Report CUCS-003-00, Columbia University (2000)

1069. Ziegler, J.: Eine Vorgehensweise zum objektorientierten Entwurf graphisch-
interaktiver Informationssysteme. Springer, Heidelberg (1996)

1070. Ziegler, J.: Modeling cooperative work processes – a multiple perspectives
framework. International Journal of Human-Computer Interaction 15(2), 139–
157 (2002)

1071. Zülch, G.: Zeitwirtschaftliche Voraussetzungen für die simulationsunterstützte
Planung von Produktionssystemen. REFA-Nachrichten 2, 4–11 (2004)

1072. Zülch, G., Jagdev, H.S., Stock, P. (eds.): Integrating Human Aspects in Pro-
duction Management. Springer, Heidelberg (2004)

1073. Zope Corporation: Zope.org – website (2006), http://www.zope.org/

http://www.zope.org/

Author Index

Assenmacher, Ingo, 268, 493

Babich, Yuri, 401
Bayer, Birgit, 93, 111
Becker, Simon, 224, 519, 612, 696
Brandt, Sebastian C., 369, 675

Eggersmann, Markus, 126

Foltz, Christian, 527
Fritzen, Oliver, 369

Haase, Thomas, 555, 727
Haberstroh, Edmund, 268, 493, 519
Hai, Ri, 111, 433, 621, 656
Heer, Thomas, 621, 711
Heller, Markus, 300, 519, 621, 711

Jarke, Matthias, 185, 369, 519, 605, 675
Jäger, Dirk, 300

Körtgen, Anne-Thérèse, 696
Kausch, Bernhard, 126, 451, 527, 666
Klein, Peter, 555
Krapp, Carl-Arndt, 300
Kuhlen, Torsten, 268, 493
Kulikov, Viatcheslav, 477

List, Thomas, 369
Luczak, Holger, 126, 451, 527, 666

Marquardt, Wolfgang, 3, 83, 93, 111,
126, 153, 169, 433, 477, 519, 605, 612,
643, 647, 656, 743, 764

Miatidis, Michalis, 185, 605, 675
Morbach, Jan, 83, 93, 111, 169, 433,

612, 647

Nagl, Manfred, 3, 61, 224, 300, 519, 555,
593, 612, 621, 629, 696, 711, 727, 753,
764, 774

Raddatz, Marcus, 675

Schleicher, Ansgar, 300
Schlick, Christopher, 126, 451, 527, 666
Schlüter, Marcus, 493, 675
Schneider, Nicole, 126, 451, 527, 666
Schneider, Ralph, 39, 126, 433, 621, 643
Schüppen, Andre, 268
Spaniol, Otto, 268, 401, 519
Stewering, Jörn, 493

Tackenberg, Sven, 451
Theißen, Manfred, 83, 126, 153, 169,

433, 605, 656
Thißen, Dirk, 268, 401, 519

von Wedel, Lars, 477, 643

Weidenhaupt, Klaus, 185
Westfechtel, Bernhard, 39, 224, 300, 621
Wolf, Martin, 527
Wörzberger, René, 300, 621, 711

Yang, Aidong, 93

	Preface
	Contents
	Part I Overview
	1 Goals, Approach, Functionality of Resulting Tools, and Project Structure
	1.1 A Model-Driven Approach for A-posteriori Tool Integration
	1.2 A Scenario Demonstrating Design Support in Chemical Engineering
	1.3 The Interdisciplinary IMPROVE Project

	Part II Technical Results
	2 Application Domain Modeling
	2.1 An Introduction to Application Domain Modeling
	2.2 Product Data Models
	2.3 Document Models
	2.4 Work Process Models
	2.5 Decision Models
	2.6 Integrated Application Domain Models for Chemical Engineering

	3 New Tool Functionality and Underlying Concepts
	3.1 Using Developers' Experience in Cooperative Design Processes
	3.2 Incremental and Interactive Integrator Tools for Design Product Consistency
	3.3 Multimedia and VR Support for Direct Communication of Designers
	3.4 An Adaptive and Reactive Management System for Project Coordination

	4 Platform Functionality
	4.1 Goal-Oriented Information Flow Management in Development Processes
	4.2 Service Management for Development Tools

	5 Integration Aspects
	5.1 Scenario-Based Analysis of Industrial Work Processes
	5.2 Integrative Simulation of Work Processes
	5.3 An Integrated Environment for Heterogeneous Process Modeling and Simulation
	5.4 Design Support of Reaction and Compounding Extruders
	5.5 Synergy by Integrating New Functionality
	5.6 Usability Engineering
	5.7 Software Integration and Framework Development

	6 Steps Towards a Formal Process/Product Model
	6.1 From Application Domain Models to Tools: The Sketch of a Layered Process/Product Model
	6.2 Work Processes and Process-Centered Models and Tools
	6.3 Model Dependencies, Fine-Grained Relations, and Integrator Tools
	6.4 Administration Models and Management Tools
	6.5 Process/Product Model: Status and Open Problems

	Part III Transfer and Evaluation
	7 Transfer to Practice
	7.1 Industrial Cooperation Resulting in Transfer
	7.2 Ontology-Based Integration and Management of Distributed Design Data
	7.3 Computer-Assisted Work Process Modeling in Chemical Engineering
	7.4 Simulation-Supported Workflow Optimization in Process Engineering
	7.5 Management and Reuse of Experience Knowledge in Extrusion Processes
	7.6 Tools for Consistency Management between Design Products
	7.7 Dynamic Process Management Based upon Existing Systems
	7.8 Service-Oriented Architectures and Application Integration

	8 Evaluation
	8.1 Review from a Design Process Perspective
	8.2 Review from a Tools' Perspective
	8.3 Review from an Industrial Perspective
	8.4 Review from Academic Success Perspective

	Part IV Appendices, References
	Appendices
	A.1 Addresses of Involved Research Institutions
	A.2 A.2 Members of the CRC 476 and TC 61

	References
	R.1 Publications of the IMPROVE Groups
	R.2 External Literature

	Author Index

