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Preface

Semiconductor nanostructures are currently one of the largest and most excit-
ing areas in solid state physics. Low-dimensional electron systems (realized in
semiconductor quantum structures) are particularly appealing because they
allow one to study many-particle effects in reduced dimensions. Inelastic light
scattering gives direct access to the elementary excitations of those systems.
After an overview of the basic concepts and fabrication techniques for nanos-
tructures on an introductory level, and an introduction into the method of
inelastic light scattering, this monograph presents a collection of recent ad-
vances in the investigation of electronic elementary excitations in semicon-
ductor nanostructures. Experiments on quantum wells, quantum wires, and
quasiatomic structures, realized in quantum dots, are discussed. Theories are
presented to explain the experimental results. Special chapters are also de-
voted to recent developments concerning tunneling – coupled systems and
nanostructures embedded inside semiconductor microcavities. I have tried
to make the chapters as self-containing as possible so that readers who are
already familiar with the basics can directly read selected chapters.

With this book I have tried to fill the gap between research articles and
contributed book chapters on special topics of the field on one hand, and
more standard semiconductor textbooks (which cover a much broader range)
on the other hand. The book should therefore be interesting for experimen-
talists, theorists, and research students working in the field of semiconductor
nanostructures, as well as for graduate students with knowledge in solid state
physics and quantum mechanics.

Most of the experimental and theoretical results presented in this book
comprise a good part of the research that we have done at the Institute of
Applied Physics and Microstructure Research Center of the University of
Hamburg during the past decade. This work was only possible due to the col-
laboration with many excellent Diploma and Ph.D students. It is with plea-
sure that I thank Dr. Gernot Biese, Katharina Keller, Dr. Roman Krahne,
Dr. Edzard Ulrichs, Dr. Lucia Rolf, Dr. Tobias Kipp, Dr. Maik-Thomas
Bootsmann, Thomas Brocke, Gerwin Chilla, and Dr. Annelene Dethlefsen
for an excellent and enjoyable collaboration in the Raman laboratory. Spe-
cial thanks go to Professor Dirk Grundler and Professor Can-Ming Hu, my
fellow postdocs in the Hamburg group, for many inspiring discussions. Very
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special thanks, however, go to Professor Detlef Heitmann, my mentor dur-
ing my time in Hamburg. Among all my scientific teachers, he had by far the
greatest impact on my scientific life and career. Our work immensely benefited
from his enthusiasm and deep knowledge and I appreciate the many lively
discussions which took place in a very friendly and convenient atmosphere.

Regensburg Christian Schüller
May 2006
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1 Introduction

Charge carriers in modulation–doped semiconductor quantum systems are
a field of enormous and still growing research interest since they allow, in
specially tailored systems, the investigation of fundamental properties, such
as many–particle interactions, of electrons in reduced dimensions. Over the
past decades, the experimental investigation of interacting electrons in low
dimensions has led to many new and sometimes unexpected insights into
many–particle physics in general. Famous examples are unique electronic
transport properties as the integer and fractional quantum–Hall effects in
quasi two–dimensional (Q2D) systems. Quasi one–dimensional (Q1D) elec-
tron systems, realized in semiconductor quantum wires, have been the subject
of intense theoretical and experimental debates concerning the character –
Fermi–liquid or Luttinger–liquid – of the interacting Q1D quantum liquid.
During the past few years, tunneling–coupled electronic double–layer struc-
tures have been revisited as very interesting candidates for the realization of
new quantum phases in an interacting many–particle system. A new quality
came into the physics of semiconductor nanostructures by the development
of quantum systems, embedded in microresonators, also called microcavities.
This new inventions allowed one to investigate the light–matter interaction
from an advanced point of view.

Optical spectroscopy techniques, like far–infrared (FIR) transmission [1–
14] and resonant inelastic light scattering (or Raman) spectroscopy, are ideal
tools to study the spectrum of elementary electronic excitations of those sys-
tems. Since the 1970’s, inelastic light scattering has proven to be a very useful
and powerful tool in the investigation of electrons or holes in semiconductors.
Especially in the study of particle–particle interactions or coupling with other
elementary excitations, inelastic light scattering experiments are extremely
fruitful. In particular, also a finite quasimomentum q can be transferred to the
excitations, which is in conventional backscattering geometry maximally that
of the incoming laser light (≈105 cm−1). The power of the method also results
from the improvement of lasers and detectors in the visible and near–infrared
spectral range where nowadays very powerful tunable lasers and detectors,
such as charge–coupled–device cameras, are available. By the inelastic scat-
tering of light, electronic elementary excitations with typical energies in the
FIR spectral range can be observed in the visible range.

Christian Schüller: Inelastic Light Scattering of Semiconductor Nanostructures
STMP 219, 1–5 (2006)
DOI 10.1007/3-540-36526-5 1 c© Springer-Verlag Berlin Heidelberg 2006



2 1 Introduction

The first experiments of inelastic light scattering by free electrons were
performed by Mooradian and Wright in 1968 [15], who studied collective
plasma oscillations (plasmons), coupled to LO phonons, in n–type bulk GaAs.
Later Mooradian also observed under resonant excitation, i.e., the laser fre-
quency is in the vicinity of the optical E0 + ∆ energy gap of the semi-
conductor, excitations which – at that time – were interpreted as single–
particle excitations [16]. According to the experimental findings, Hamilton
and McWhorter deduced in their theoretical work that this single–particle
scattering, which results from so called spin–density fluctuations, can be ob-
served in Zincblende–type semiconductors in depolarized scattering geometry,
i.e., the polarization directions of incoming and scattered light are perpendic-
ular to each others. Scattering by plasmons due to charge–density fluctuations
occurs in parallel polarization configuration (polarized geometry) [17].

In contrast to light scattering by optical phonons, the electronic Raman
signals are strongly dependent on resonance enhancement effects at optical
energy gaps. In many cases only these enhancement effects, which occur if
the laser frequency is in the vicinity of such energy gaps, allow for the ob-
servation of electronic excitations. In 1978, E. Burstein proposed that, due
to these resonance enhancements, light scattering should be sensitive enough
to observe electronic excitations of Q2D electron gases with densities as low
as 1011 cm−2 [18]. Such Q2D electron systems can be realized today in a
nearly perfect way in modulation–doped GaAs–AlGaAs heterostructures or
quantum wells, grown by molecular–beam epitaxy (MBE). Soon after this
proposal, the first observations of Q2D intersubband excitations were re-
ported by A. Pinczuk [19] and G. Abstreiter [20] in their pioneering works.
In the following decade, a wealth of experiments on Q2D electron systems
followed, which demonstrated the versatility of the resonant light scattering
technique [21]. Through all the years it was commonly accepted that the elec-
tronic excitations, which can be observed by inelastic light scattering, fall into
two main categories: Spin–density excitations (SDE) which were interpreted
as single–particle excitations because exchange–correlation effects were as-
sumed to be small (observed in depolarized geometry) and charge–density
excitations (CDE, plasmons) which can be observed in polarized geometry
(see, e.g., [21]). The latter are depolarization shifted with respect to the cor-
responding SDE due to direct Coulomb interaction [22]. Very surprisingly, in
contradiction to this long lasting assumption, Pinczuk et al. demonstrated in
another pioneering work in 1989 that in high–mobility quantum–well samples,
additionally to the intersubband SDE and CDE, excitations can be observed
with energies in between those of the SDE and CDE and which occur in both
polarization configurations [23]. These excitations showed all features which
one expects from pure single–particle excitations. This completely changed
the point of view and from there on also SDE’s were regarded as collective
excitations of the electron gas, whereas the excitations which show no polar-
ization selection rules were interpreted as single–particle excitations (SPE).
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Theoretical considerations by state of the art calculations in the local–density
[24, 25] or time–dependent Hartree Fock approximation [25] confirmed the
experimentally observed collective shift of the SDE with respect to the SPE
concerning the energetic positions. Nevertheless, there was so far no expla-
nation for the existence itself of single–particle–like excitations in the Raman
spectra. The calculations of Raman spectra, which for simplicity were made
almost throughout for nonresonant conditions, exhibited no single–particle
peak because these excitations are naturally screened by the interaction (see,
e.g., [25]). In our work, we could show that under resonant scattering con-
ditions, also from a theoretical point of view, excitations at single–particle
level spacings can be expected. At the mean–field level, those excitations are
single–particle excitations. Within an exact treatment, however, also the SPE
are excitations of the interacting electron system, and hence subject to small
but finite energy renormalization. Experimental and theoretical aspects will
be discussed in Chap. 5.

The development of sophisticated structuring techniques in the 1990’s al-
lowed one to reduce the dimensionality further by the so called top–down ap-
proach and produce Q1D quantum wires and quasi–zero–dimensional (Q0D)
quantum dots, starting from Q2D systems. The quantum dots can be re-
garded as some kind of artificial atoms [26]. In 1989 the first Raman ex-
periments on electronic excitations in quantum wires were reported [27, 28].
Since then a number of papers appeared about, e.g., many–particle inter-
actions and selection rules in those systems [29, 30, 31, 32, 33, 34] and in-
vestigations with applied external magnetic field [35, 36, 37]. In the past
decade also first Raman experiments on Q0D quantum dots have been re-
ported [29, 38, 39, 40, 41]. In particular the spectroscopy of self–assembled
InGaAs quantum dots is very promising, since with these systems it is possi-
ble to study Q0D systems with only few electrons [41]. In tunneling–coupled
systems, the interplay between Coulomb interaction and tunneling coupling
can be investigated [42].

The book is divided into two main parts. In the first part, the basic con-
cepts, which are necessary to follow the second part in detail, are presented
and discussed. This comprises a brief introduction into the properties of semi-
conductors and their nanostructures (Chap. 2), the introduction into elec-
tronic elementary excitations (Chap. 3), and the principles of inelastic light
scattering (Chap. 4). The second part of the book, where the recent advances
in the field are summarized, consists of four chapters, devoted to the investiga-
tion of quantum dots (Chap. 5), quantum wires (Chap. 6), tunneling–coupled
systems (Chap. 7), and to inelastic light scattering in microcavities (Chap. 8).
Each chapter is written as self–containing as possible so that readers who are
already familiar with the basics can directly read selected chapters. By doing
so, it was not possible to completely avoid redundances but I tried to keep
them as low as possible.
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Part I

Basic Concepts



2 Fundamentals of Semiconductors
and Nanostructures

The majority of experiments of inelastic light scattering on semiconductor
nanostructures has been performed on III–V semiconductors, like GaAs, as
the most prominent example. In this chapter, an introduction into the basic
properties of these materials is given. The first section gives a summary of
the crystal and electronic band structure of the bulk material. After a short
survey into the properties of electrons in different dimensions in the second
section, growth methods for so called vertical nanostructures, i.e., layered
heterostructures consisting of two different materials, are described in the
third section. In these vertical nanostructures, quasi two–dimensional (Q2D)
electron systems can be realized. This section is finalized by the description
of commonly used concepts for theoretical calculations of the ground state of
such systems. The second last section introduces the most important methods
for the preparation of lateral micro and nanostructures. In those structures,
the dimensionality of charge carriers or of quasi particles is reduced further
by lithography and etching processes, or by self–organized growth methods,
resulting in quasi one–dimensional (Q1D) or quasi zero–dimensional (Q0D)
quantum structures. The section is finalized by an overview over methods
for the calculation of the electronic ground state of lateral nanostructures.
Readers who are already familiar with semiconductors and the fabrication
and physics of nanostructures may skip this tutorial chapter and directly
continue with Chap. 3.

2.1 III-V Semiconductors: Crystal and Band Structure

2.1.1 Phenomenology

Most III–V compound semiconductors, like GaAs, grow in Zincblende struc-
ture. The symmetry of this cubic lattice structure is described by the space
group T 2

d . The corresponding point group, Td, of the lattice sites is the sym-
metry group of the regular tetrahedron. It consists of 24 symmetry operations
[1]. The Zincblende lattice is formed by two intersecting face–centered cubic
(fcc) lattices, which are shifted by one quarter of the cubic space diagonal
against each others. In Fig. 2.1, the spatial arrangement of Ga and As atoms
in the Zincblende lattice is shown and compared to the diamond lattice (e.g.,

Christian Schüller: Inelastic Light Scattering of Semiconductor Nanostructures
STMP 219, 9–39 (2006)
DOI 10.1007/3-540-36526-5 2 c© Springer-Verlag Berlin Heidelberg 2006



10 2 Fundamentals of Semiconductors and Nanostructures

a
Si

a

Ga

As

Fig. 2.1. Crystal structure of Silicon (left) and Galliumarsenide (right)

Si). The Zincblende lattice is no Bravais lattice, since its elementary cell con-
tains two atoms, one at the origin and one at (a

4 , a
4 , a

4 ), where a is the lattice
parameter. The reciprocal lattice of the fcc lattice, which is the underlaying
lattice of the Zincblende structure, is a body–centered cubic (bcc) lattice.
The Wigner–Seitz cell of the bcc lattice, which is the first Brillouin zone
corresponding to the real space fcc lattice, is shown in Fig. 2.2. Some high–
symmetry points, like the Γ– or the X–point, are indicated. Lattices of the
point group Td have no inversion symmetry, in contrast to semiconductors
as, e.g., Si, which grow in the diamond structure (see Fig. 2.1).

The ternary alloy semiconductor AlxGa1−xAs is realized by replacing the
fraction x of Ga atoms by Al atoms in the crystal lattice. Because of the
statistical distribution of the atoms on the lattice sites of the Zincblende
structure, the lattices of such ternary alloy semiconductors have no transla-
tional invariance. In principle, this has strong impact on the theoretical de-
scription of these structures, since electronic band structures, effective masses
of electrons, etc., are no longer defined quantities. One usually circumvents
these complications by introducing the so called virtual crystal approxima-
tion, which means that the real stochastic potential is replaced by an averaged
potential which restores translational invariance. This guarantees that Bloch
states, energy band gaps, and effective masses are defined. Usually with this

�
�

�

�

K

R

L

X

Fig. 2.2. First Brillouin zone of a face–centered cubic lattice



2.1 III-V Semiconductors: Crystal and Band Structure 11

assumption, the empirical physical properties of the ternary alloys can be
described quite well.

In the following we will introduce and discuss on an introductory level
some common concepts of semiconductor physics, which are often used as
the basis for the discussion of semiconductor nanostructures. We will start
with an intuitive picture, which already gives us the most important features
of the electronic band structure of III–V compound semiconductors. In those
semiconductors, eight electrons per unit cell contribute to the chemical bonds
between neighboring atoms. In a simplified picture, one can imagine that the
s and p orbitals of neighboring atoms overlap and hybridize so that two
new orbitals evolve: A bonding and an antibonding orbital. Since the crystal
consists of a very large number of unit cells, the bonding and antibonding
orbitals form bands. The bonding s orbitals have the lowest energies and
are occupied with two electrons per unit cell. The remaining six electrons
completely occupy the three bonding p orbitals. The bands which are formed
by the antibonding orbitals are all unoccupied. The conduction band of the
material is formed by the antibonding orbitals with lowest energy, the s band.
Without spin–orbit coupling, the three p–like valence bands, which consist
of the bonding p orbitals, are energetically degenerate at the Γ point. Figure
2.3 shows the bulk band structure of GaAs, calculated without spin–orbit
interaction. At the Γ–point one can see the s–like conduction band, and
the three–fold degenerate p–like valence band. As we will see in more detail
below, the inclusion of spin–orbit coupling lifts the six–fold degeneracy of
the valence band at the Γ -point: The p orbitals have an angular momentum
quantum number of L = 1. If we add quantum mechanically the angular
and spin quantum number to the total angular–momentum quantum number
J = L+S, we get the two possible values J = |L+S| = 3/2, and J = |L−S| =

Wave Vector k

Fig. 2.3. Band structure of bulk GaAs, calculated without spin–orbit interaction
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Wave Vector k

Fig. 2.4. Electronic bulk band structure of GaAs (data after [4])

1/2. The result is a quadruplet with Γ8 symmetry (J = 3/2) and a doublet
with Γ7 symmetry (J = 1/2). This is displayed in Fig. 2.4, which shows the
calculated band structure of GaAs, including spin–orbit interaction. The Γ7

valence band is often called split–off band. The total angular momentum of the
Γ8 band is J = 3/2. Unoccupied states within this band with z–component
of Jz = ±3/2 of the angular momentum are called heavy holes, and such with
Jz = ±1/2 are called light holes. At finite wave vector k in the Brillouin zone,
heavy and light holes split due to the reduced symmetry. However, for each
of the bands – the heavy and the light holes – a two–fold spin degeneracy
remains, if the lack of inversion symmetry of the lattice is neglected. The
absence of this symmetry, e.g., in crystals of the point group Td, or of lower
symmetry, lead to a – mostly very small – lifting of the spin degeneracy,
which is known as the Dresselhaus effect [2, 3]. For most of the inelastic light
scattering experiments on free carriers in semiconductor nanostructures, and
especially for all experiments which are considered in this book, only the
Γ6 conduction band and the Γ8, and – in InGaAs material – the Γ7 valence
bands at the Γ–point are of relevance. This is so because to those points in
k space, free electrons in the conduction band, or holes in the valence band,
thermalize if they are injected either by doping or by photoexcitation. This
area of further interest in the energy band diagram is highlighted in Fig. 2.4
by a vertical yellow bar.

GaAs is a semiconductor with a direct band gap, as can be seen from
Figs. 2.3 and 2.4. Alx Ga1−xAs has a direct band gap for x values x < 0.45,
only. For larger x, the band gap becomes indirect with a minimum at the
X-point of the Brillouin zone.

We turn now to a more formal description of the electronic band structure.
For calculation of the bulk band structure, one has to solve the one–electron
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Schrödinger equation
[

p2

2m0
+ V (r) +

h̄

4m2
0c

2
(σ ×∇V )p

]
ψ(r) = Eψ(r) . (2.1)

Here, m0 is the free electron mass, V (r) the periodic lattice potential, and σ
the vector of the Pauli spin matrizes1. V (r) contains an averaged electron–
electron interaction and has the periodicity of the underlaying Bravais lattice.
The third term on the left–hand side of (2.1) is a consequence of the spin–
orbit interaction. The solutions of (2.1) are Bloch waves of the form

ψnk(r) = Nunk(r)eikr , (2.2)

where N is a normalization factor and unk are lattice–periodic functions.
A Bloch state |nk〉 is characterized by a band index n and a crystal wave
vector k of the first Brillouin zone of the reciprocal lattice. The explicit form
of the Bloch states is in most cases not known. However, employing group
theory, the behavior of the Bloch functions under the symmetry operations
of the point group of the crystal lattice at high–symmetry points in the
first Brillouin zone can be analyzed. In this way, one finds for the states,
which correspond either to the conduction–band minimum or to the valence–
band maximum at the Γ–point, the following four states: |S〉, |X〉, |Y 〉, and
|Z〉, whose wave functions transform like atomic s–, x–, y–, and z–functions.
Including spin, we have the band–edge Bloch functions |S ↑〉, |S ↓〉, |X ↑〉,
|X ↓〉, |Y ↑〉, |Y ↓〉, |Z ↑〉, and |Z ↓〉. Since in III–V semiconductors the spin–
orbit coupling can not be neglected, it is advantageous not to use the above
8 band–edge Bloch functions as a basis but rather form linear combinations
such that the spin–orbit interaction becomes diagonal. In this new basis, the
total angular momentum, J = L + S, as well as its projection along the
z direction, Jz, are diagonal. For the s band edge, the addition of L = 0
and S = 1/2 results in J = 1/2, only (Γ6 symmetry). For the p band edge,
L = 1 and S = 1/2 gives either J = 3/2 or J = 1/2. In III–V compound
semiconductors, the quadruplet J = 3/2 (Γ8 symmetry) is always higher in
energy than the doublet J = 1/2 (Γ7 symmetry). The energetic difference
between the Γ7 and the Γ8 band is the above introduced spin–orbit splitting
∆0 (see also Fig. 2.4). The basis functions for which the spin–orbit interaction
is diagonal are listed in Table 2.1 below.

2.1.2 k∗p Theory

For the interpretation of experimental results, in many cases the band struc-
ture in a small range of wave vectors k, around a high–symmetry point k0

1 The components of σ are the 3 Pauli matrizes σx = ( 0 1
1 0

), σy = ( 0 −i
i 0

), and

σz = ( 1 0
0 −1

).
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Table 2.1. Periodic parts of the band–edge Bloch functions of a Zincblende lattice

symmetry |J, Jz〉 ψJ,Jz

Γ6 | 1
2
, 1

2
〉 S ↑

Γ6 | 1
2
,− 1

2
〉 S ↓

Γ8 | 3
2
, 3

2
〉 1√

2
(X + iY ) ↑

Γ8 | 3
2
, 1

2
〉 i√

6
[(X + iY ) ↓ −2Z ↑]

Γ8 | 3
2
,− 1

2
〉 1√

6
[(X − iY ) ↑ +2Z ↓]

Γ8 | 3
2
,− 3

2
〉 i√

2
(X − iY ) ↓

Γ7 | 1
2
, 1

2
〉 1√

3
[(X + iY ) ↓ +Z ↑]

Γ7 | 1
2
,− 1

2
〉 i√

3
[−(X − iY ) ↑ +Z ↓]

in the Brillouin zone, is of interest, only. The reason is that free carriers in
semiconductors are often localized in the vicinity of such points of high sym-
metry. For such problems, the so called k∗p method provides an adequate
tool for the band structure calculation, since it enables a local description of
the band structure with quite high accuracy on the millielectronvolt energy
range. The k∗p method was developed, e.g., by J. M. Luttinger and W. Kohn
[5, 6] in order to generalize the effective mass approximation for the descrip-
tion of degenerate bands, or bands with band extrema which are not at the
center of the Brillouin zone. This generalization was necessary in order to be
able to calculate the band structures of, e.g., Si or Ge [5]. This theory can
for instance be constructed on the basis of the above introduced band–edge
Bloch functions, which is known as the so called Kane model [7, 8, 9, 10]. For
global calculations of the band structure, over the whole range of the Bril-
louin zone, mostly pseudopotential or tight–binding methods are used (e.g.,
[4]). The main ideas of the k∗p theory are the following:

Inserting the Bloch ansatz (2.2) into (2.1), yields
{

p2

2m0
+ V (r) +

h̄

4m2
0c

2
(σ ×∇V )p +

h̄2k2

2m0
+

+
h̄k

m0

(
p +

h̄

4m0c2
σ ×∇V

)}
unk = Enkunk, (2.3)

which is an equation for the unk. Equation (2.3) can be written as

[H(k = 0) + W (k)] unk = Enkunk , (2.4)
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where H(k = 0) is nothing but the Hamiltonian for k = 0 with eigenfunctions
un0

H(k = 0)un0 = En0un0 . (2.5)

Since the un0 represent a complete set, one can write

unk =
∑
m

cm(k)um0 . (2.6)

Inserting (2.6) into (2.4), multiplying from left with u∗
m0, and integrating over

a unit cell delivers

∑
m

{(
En0 − Enk +

h̄2k2

2m0

)
δnm+

+
h̄k

m0
〈n0|p +

h̄

4m0c2
(σ ×∇V )|m0〉

}
cm(k) = 0 , (2.7)

where,

〈n0|A|m0〉 = Anm =
∫

UC

u∗
n0 A um0 d3r . (2.8)

Equation (2.7) is equivalent to (2.4) and well suited for a perturbation ap-
proach in k. For small k values, in the vicinity of the Γ–point, (2.7) yields a
parabolic dispersion relation for nondegenerate bands (except spin degener-
acy) [10]:

Enk = En0 +
h̄2

2

∑
α,β

kα
1

µαβ
n

kβ ; α, β = x, y, z , (2.9)

where

1

µαβ
n

=
1

m0
δαβ +

2
m2

0

∑
m�=n

Πα
mnΠβ

nm

En0 − Em0
, (2.10)

Π = p +
h̄

4m0c2
(σ ×∇V ) . (2.11)

For the description of the conduction band in the analysis of experiments on
GaAs structures, this parabolic E(k) relation with an isotropic effective mass
µαβ

n ≡ m∗ = 0.068 m0 [11] is used very often.
Calculations of the energetic dispersion of the valence bands is more in-

volved, since here, e.g., the Γ8 band is degenerate at the Γ–point. The sim-
plest approach to calculate the dispersion of the heavy and light holes is to
employ the above defined band–edge Bloch functions and neglect coupling to
the conduction band and split–off valence band. Doing this within the k∗p
framework, one gets a 4× 4 matrix for the Hamiltonian, which describes the
kinetic energy of the heavy and light holes, in the vicinity of the center of
the Brillouin zone [5]:
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HΓ8(k) = − h̄2

2m0




A3/2 B C 0
B∗ A1/2 0 C
C∗ 0 A−1/2 −B
0 C∗ −B∗ A−3/2


 , (2.12)

where

A±3/2 = (γ1 + γ2)(k2
x + k2

y) + (γ1 − 2γ2)k2
z , (2.13)

A±1/2 = (γ1 − γ2)(k2
x + k2

y) + (γ1 + 2γ2)k2
z , (2.14)

B =
√

3γ3kz(kx − iky) , (2.15)

C =
√

3
2
[
(γ2 − γ3)(kx + iky)2 + (γ2 + γ3)(kx − iky)2

]
. (2.16)

γ1, γ2, and γ3 are so called Luttinger parameters2. With the Schrödinger
equation

HΓ8(k)ψΓ8(k) = E(k)ψΓ8(k) (2.17)

one needs to solve a system of 4 coupled differential equations to determine
the electronic bulk band structure of the Γ8 valence band in the vicinity of the
center of the Brillouin zone. The wave functions ψΓ8(k) are four–component
spinors in the basis of the 4 Γ8 band–edge Bloch functions (see Table 2.1). In
a more rigorous treatment, which shall not be described here, one can include
also coupling to the conduction band (Γ6 band) and to the spin–orbit split–off
valence band (Γ7 band). This results in an 8× 8 Matrix for the Hamiltonian
of the system in the vicinity of the Γ–point (see, e.g., the monograph [3]).

2.2 Electrons in Three, Two, One, and Zero Dimensions

An important feature of a quantum mechanical object – like the electron – is
its density of allowed states. This density of states is strikingly different for
electrons in three, two, one, or zero dimensions, as we will see below. Before
we dive into the physics and technology of semiconductor nanostructures, we
consider here the textbook example of a single electron in a box–like potential
for introducing low–dimensional electron systems.

The well–known Schrödinger equation of an electron, moving in a poten-
tial V (r), is

{
− h̄2

2m0
∇2 + V (r)

}
ψlmn(r) = Elmn ψlmn(r) . (2.18)

If we consider for V (r) a box with sides L1, L2, and L3, where the potential
is zero inside, and infinitely high outside, ψlmn(r) has to be zero at the
boundaries. The analytic solutions of (2.18) are
2 There is a variety of different sets for these parameters in literature. A commonly

used set is, e.g. [12]: γ1 = 6.85, γ2 = 2.1, and γ3 = 2.9.
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ψlmn(r) =
√

8
L1L2L3

sin
(

lπx

L1

)
sin

(
mπy

L2

)
sin

(
nπz

L3

)
, (2.19)

with energy eigenvalues

Elmn =
h̄2π2

2m0

[(
l

L1

)2

+
(

m

L2

)2

+
(

n

L3

)2
]

. (2.20)

For a macroscopic solid, the lengths L1, L2, and L3 are very large – in the
range of millimeters – and the quasi momentum, k = (lπ/L1,mπ/L2, nπ/L3),
is quasi continuous, leading to eigenenergies

Elmn = E(k) =
h̄2k2

2m0
. (2.21)

In semiconductor nanostructures, some – or even all – of the Li can be
very small, in the range of nanometers. This leads to the situation that for
small numbers of (l,m, n), the eigenenergies Elmn can already be in the range
of millielectronvolts, i.e., the far–infrared spectral range. The strict definition
for a two–, one–, or zero–dimensional system is that one, two, or three of the
Li are exactly zero, respectively. However, in a real system, the Li can not be
exactly zero, but small. Therefore, the low–dimensional structures are called
quasi–two, quasi–one, or quasi–zero dimensional, expressing their small but
finite extension in certain spatial directions. With this, we can define for our
simple electron–in–the–box system:

– Quasi zero–dimensional (Q0D) system: L1, L2, L3 small −→

Elmn =
h̄2π2

2m0

[(
l

L1

)2

+
(

m

L2

)2

+
(

n

L3

)2
]

(2.22)

A Q0D system has a completely discrete energy spectrum.
– Quasi one–dimensional (Q1D) system: L1 � L2, L3 −→

Emn(kx) =
h̄2k2

x

2m0
+

h̄2π2

2m0

[(
m

L2

)2

+
(

n

L3

)2
]

(2.23)

In a Q1D system, the electron can move freely in one direction, only (x
direction).

– Quasi two–dimensional (Q2D) system: L1, L2 � L3 −→

En(kx, ky) =
h̄2k2

x

2m0
+

h̄2k2
y

2m0
+

h̄2π2

2m0

(
n

L3

)2

(2.24)

In a Q2D system, the electron can move freely in two directions. Here, n
is the index of the Q2D subbands.



18 2 Fundamentals of Semiconductors and Nanostructures

Later in this book we will find that, when realized in semiconductor nanos-
tructures, Q2D, Q1D, and Q0D systems are called quantum wells, quantum
wires, and quantum dots, respectively. It shall be noted here that, in most
of the experimentally realized structures, the lateral confining potentials are
approximately parabolic, rather than box–like.

The density of states (DOS), N(E), of a system is defined such that the
quantity N(E)δE is the number of solutions of the Schrödinger equation in
the energy interval between E and E +δE. For three–dimensional, or strictly
two–, or one–dimensional systems, N(E) can be calculated by the expression

N(E) =
dn(k)

dk

dk

dE
, (2.25)

where dn(k)/dk is (L1)/(2π), (L1L2)/(2π)2, or (L1L2L3)/(2π)3 for a one–,
two–, or three–dimensional system, respectively. With this, one can find for
the DOS, niD(E), of an i–dimensional system, normalized per unit volume,
area, or length:

n3D(E) =
1

(2π)3

(
2πm0

h̄2

)3/2 √
E , (2.26)

n2D(E) =
m0

2πh̄2 = const , (2.27)

n1D(E) =
1
2π

√
m0

2h̄2

1√
E

. (2.28)

The DOS of a zero–dimensional system is a delta function. Each solution
of the Schrödinger equation can accommodate two electrons, one for each
spin. This leads to an additional factor of 2 for the above densities of states.
For a Q2D, Q1D, or Q0D system, we have of course separate branches of
these densities of states for each lateral discrete energy. This means, in a
Q2D or Q1D system, each 2D or 1D subband has its own 2D or 1D DOS,
and for a Q0D system, each discrete energy eigenvalue has its own delta–
like DOS. A schematic comparison of the various scenarios is collected in
Fig. 2.5, which displays the momentum dispersions [Fig. 2.5(a)] and the DOS
[Figs. 2.5(b)–(c)] of a 3D, as well as of strict and quasi 2D, 1D, and 0D
systems. The particular shape of the DOS can have a profound influence on
the transport and optical properties of low–dimensional electron systems. In
particular, the spectrum of electronic elementary excitations, which can be
probed in inelastic light scattering experiments, depends characteristically on
the dimensionality, as we will see later.

2.3 Layered Growth of Semiconductors:
Vertical Nanostructures

With sophisticated growth techniques, like molecular–beam epitaxy (MBE)
or metal–organic chemical–vapor deposition (MOCVD), it is nowadays possi-
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Fig. 2.5. Schematic pictures of (a) the energy dispersions of a 3D, Q2D, and Q1D
electron, (b) the densities of states of a 3D, and strict 2D, 1D, and 0D electron,
and, (c) the densities of states of a Q2D, Q1D, and Q0D electron

ble to prepare semiconductor multilayers, one atomic layer at a time. Thereby,
one has independent control over the doping and composition in each layer.
Such layered heterostructure samples are also called vertical nanostructures.
We will here briefly describe the MBE technique3, since with this technique
high–quality semiconductor heterostructures, as used for inelastic light scat-
tering experiments, are produced.

2.3.1 Molecular–Beam Epitaxy (MBE)

Figure 2.6 shows a schematic picture of an MBE machine. An MBE machine
consists of an ultrahigh–vacuum chamber (10−14 mbar) with a diameter of
approximately one meter. On one side of the chamber, a number of effusion
cells are bolted onto the chamber. In these Knudsen cells, a refractory ma-
terial boat contains a charge of one of the elemental species (e.g., Ga, Al, or
As) for growth of the semiconductor, Si (for n–type doping), and Be or C
(for p–type doping). Each boat is heated so that a vapor is obtained which
leaves the cell for the growth chamber through a small opening. The vapor
forms a beam that crosses the vacuum chamber to impinge on a substrate.
3 For more details about the MBE and MOCVD techniques, see, e.g., [13, 14].
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shutter

substrate

effusion cells

electron source

screen

UHV chamber

Fig. 2.6. Schematic picture of an MBE machine

For the growth of GaAs–AlGaAs structures, this substrate is usually GaAs.
The flux rate is controlled by the temperature of the Knudsen cell. Shutters
in front of the cells can be opened and closed within a time of about 0.1 s.
This method enables one to grow a crystal, layer by layer, with a growth rate
of about one monolayer per second.

Figure 2.7 displays the band gaps and lattice parameters of various III–V
semiconductors. From this figure one can see, why the GaAs–AlGaAs system
is almost perfectly suited for a heterostructure growth: Both materials have
approximately the same lattice constant so that a perfect growth of one ma-
terial on the other is guaranteed. The band gap energy, EGap, of AlxGa1−xAs
is larger than the band gap of GaAs. It depends linearly on the fraction x of
Al atoms per unit cell [15]:

EGap(x) = 1.5177 + 1.30x (in eV) . (2.29)

When grown epitaxially on each other, the band offsets between the two
materials in the conduction and valence band are related like 70:30, respec-
tively4 [15, 17]. Thus, by the sequential growth of GaAs and AlxGa1−xAs
layers, heterostructures, like quantum wells or superlattices, can be realized
with controlled doping (n– or p–type) in selected layers, and with monolayer
precision. The most commonly used structures for state–of–the–art inelastic
light scattering experiments are one–sided modulation–doped single quantum
wells. Such a quantum well can be realized by growing a thin (typically 20 nm
– 30 nm thick) GaAs layer in between AlxGa1−xAs barriers (typical x values
are around x= 0.33). The conduction– and valence–band edges in real space

4 The commonly accepted relations, which can be found in literature, vary between
about 70:30 and 60:40.
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of an idealized, infinitely–large, intrinsic5 single quantum–well structure are
shown schematically in Fig. 2.8(a). Levels of neutral Si donors in the left Al-
GaAs barrier are indicated. This technique, of doping the barrier layers of a
heterostructure, is called modulation doping [18]. Due to the potential discon-
tinuities at the interfaces between the two materials, electrons are transferred
from the donors to the GaAs quantum well and form a two–dimensional elec-
tron system (2DES) there6. The positive space charges of the ionized donors
and the negatively charged electrons in the quantum well lead to a bending of

5 GaAs bulk material has a p–type background doping due to residual carbon
impurities.

6 Because of the finite width of the quantum well, this is, of course, a Q2D electron
system.
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the potentials within the doped region and the well. This situation is shown
in Fig. 2.8(b). In order to calculate the band structure and energy levels of
such a heterostructure, one has to solve self–consistently the Schrödinger and
Poisson equations of the structure (see, e.g., [19] and Sect. 2.4). The introduc-
tion of an undoped AlGaAs barrier layer (spacer) between the doped region
and the quantum well leads to a larger separation of the ionized donors, which
can act as scatterers, and the 2DES. This results in high electron mobilities in
the range of 107 cm2/Vs. In addition, also the one–sided doping, as displayed
in Fig. 2.8, leads to higher electron mobilities than a symmetric two–sided
doping. Due to the asymmetric potential shape, the electrons are confined
more strongly to the left side of the well (see Fig. 2.8). Hence, the scattering
due to interface imperfections is reduced as compared to symmetric wells,
where the electrons feel two interfaces. GaAs–AlGaAs single quantum–well
structures, as displayed in Fig. 2.8, are widely–used standard samples for in-
elastic light scattering experiments. They are also used as starting materials
for the preparation of lower–dimensional structures, like quantum wires or
quantum dots, by lithography and etching techniques (see Sect. 2.5.2).

2.4 Electronic Ground State of Vertical Nanostructures

In this section, the standard methods for describing the electronic ground
state of vertical nanostructures – in particular of 2DES’s – embedded in
semiconductor heterostructures will be introduced. For such calculations, it
is convenient to use the so called envelope–function approximation (EFA),
which was originally developed by G. Bastard [10, 20]. Based on the EFA, the
ground state of a doped heterostructure can be calculated by a self–consistent
solution of the Schrödinger and Poisson equations of the semiconductor het-
erostructure.

2.4.1 Envelope Function Approximation (EFA)

The bulk wave function of an electron, as defined in the Bloch ansatz [see
(2.2)], consists of two parts: A fast oscillating part, which has the periodicity
of the lattice – the Bloch function – and a slowly varying part (as compared
to the scale of the lattice parameter) – the plane wave. The plane–wave
part is what is called the envelope function. In the EFA for semiconductor
heterostructures, the envelope functions of different materials have to satisfy
boundary conditions at the interfaces. The EFA is based on the 8 band–edge
Bloch functions, which we introduced in Sect. 2.1. From this it follows that
the method is only applicable to calculate the band structure in the vicinity
of high–symmetry points in the Brillouin zones of the starting materials. The
method works best for heterostructures, whose band edges are built up by
the same band–edge Bloch functions in each material.
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The main assumptions of the EFA are the following [10]:

1. In each layer, the wave function is expanded in a series of the periodic
parts of the band–edge Bloch functions of the respective material.

ψ(r) =
∑

l

f
(A)
l (r) u

(A)
l,0 (r) (2.30)

if r is in layer A , and

ψ(r) =
∑

l

f
(B)
l (r) u

(B)
l,0 (r) (2.31)

if r is in layer B. The summation over l runs over all band edges, considered
in the calculation (e.g., Γ6, Γ7, and Γ8 in the case of an 8–band theory).

2. It is assumed that the periodic parts of the Bloch functions are the same
in each layer:

u
(A)
l,0 (r) ≡ u

(B)
l,0 (r) . (2.32)

With this assumptions, the heterostructure wave function can be written
as

ψ(r) =
∑

l

f
(A,B)
l (r) ul,0(r) . (2.33)

It follows that the heterostructure wave function is a product of fast oscillat-
ing functions – the ul,0 –, which have the same periodicity as the lattices of the
bulk crystals, and of slowly oscillating envelope functions fl. The task is now
to determine the functions f

(A,B)
l (r). Because of the translational invariance

of the point lattices in x–y–directions, the f
(A,B)
l (r) can be factorized:

f
(A,B)
l (r||, z) =

1√
S

eik||r|| χ
(A,B)
l (z) , (2.34)

where S is the sample area, and k|| = (kx, ky) a two–component vector in
the x–y–plane.

One of the most sophisticated k∗p Hamiltonians for calculation of the
band structure can be derived by employing the 8 band–edge Bloch func-
tions (see Table 2.1), which we introduced above. Then, the Schrödinger
equation for an electron (or hole) in the bulk crystal is a set of 8 coupled
differential equations, as we have already learned. If we now consider a het-
erostructure, more specifically a quantum well as shown in Fig. 2.8, we have
to replace in the Hamiltonian kz by −i∂/∂z, because of the quantization in
z direction. Furthermore, we have to add the heterostructure (quantum well)
potential Vext(z), which, both for the conduction band and the valence band,
are square–well potentials as displayed schematically in Fig. 2.8(a). Hence,
the full Schrödinger equation reads

[
H8−band(k||,−i∂/∂z) + Vext(z)

]
ψ(r) = El(k||)ψ(r) . (2.35)
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For a complete description of the quantum–well problem, the z–dependent
parts of the envelope functions7, χ̄

(A,B)
l (z), of the materials A and B have to

satisfy boundary conditions at the interfaces (z = z0):

χ̄l
(A)(z0) = χ̄

(B)
l (z0) (continuity) (2.36)

Â(A)χ̄l
(A)(z0) = Â(B)χ̄

(B)
l (z0) , (2.37)

where the Â(A,B) are 8×8 differential operators. This 8–band model is known
as the so called Pidgeon–Brown model [21].

There are a couple of useful approximations to this relatively complicated
problem. In many practical cases, if electrons in the conduction band are
considered, only, it is sufficient to use the parabolic approximation for the
conduction band dispersion in the vicinity of the Γ–point, and neglect cou-
pling to other bands. In this case, which is known as the Ben Daniel–Duke
model [22], after separation of the inplane motion, the Schrödinger equation
(2.35) simplifies drastically to two independent differential equations, one for
each spin direction of the electron

[
− h̄2

2
∂

∂z

1
µ(z)

∂

∂z
+ Vext(z) +

h̄2k2
||

2µ(z)

]
χ±1/2,n(z) = En(k||)χ±1/2,n(z) .

(2.38)
Here, µ(z) is the z–dependent effective mass, µ(z) = m∗

A (µ(z) = m∗
B), if the

electron is in material A (B). In the Ben Daniel–Duke model, the boundary
conditions (2.36) and (2.37) simplify to

χ
(A)
±1/2,n(z0) = χ

(B)
±1/2,n(z0) (continuity) (2.39)

1
m∗

A

∂

∂z
χ

(A)
±1/2,n(z0) =

1
m∗

B

∂

∂z
χ

(B)
±1/2,n(z0) , (2.40)

with scalar functions for the χ
(A,B)
±1/2,n. These boundary conditions are exactly

the same as can be found in standard quantum mechanics textbooks for the
problem of an electron in a one–dimensional square–well potential, except for
the prefactors, which take care of the different masses in materials A and B.

For many cases it is also sufficient to consider for the valence band the 4
Γ8 Bloch functions (for Jz = ± 3

2 and Jz = ± 1
2 ), only, and neglect coupling

to the conduction band and to the split–off valence band. In this case, the
boundary conditions for holes are such that the following components of the
χl(z) and of their derivatives have to satisfy continuity conditions at the
interfaces, z = z0, between materials A and B [12]

[
i(γ1 − 2γ2) ∂

∂z

√
3γ3(kx − iky)

√
3γ3(kx + iky) i(γ1 + 2γ2) ∂

∂z

](
χ3/2(z)

χ1/2(z)

)
, (2.41)

7 In an 8–band theory, the χ̄l(z) are eight–component spinors.
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[
i(γ1 + 2γ2) ∂

∂z −
√

3γ3(kx − iky)

−
√

3γ3(kx + iky) i(γ1 − 2γ2) ∂
∂z

](
χ−1/2(z)

χ−3/2(z)

)
. (2.42)

So far, we have considered only a single electron (hole) in the conduction
(valence) band and neglected the interaction of this charge carrier with all
the other electrons, or with the ionized donors in the barrier layers. We will
take care of these interaction effects on the ground state of a semiconductor
heterostructure in the following subsection.

2.4.2 Self–Consistent Band Structure Calculation

In this subsection we will outline briefly the most commonly used methods
to calculate the ground state of a doped semiconductor heterostructure, tak-
ing into account Coulomb interaction of the charge carriers. We will restrict
ourselves here to the consideration of electrons in the conduction band, with
effective mass m∗, only. In principle, similar calculations for holes are straight
forward, using the more involved boundary conditions, which were introduced
above. To solve the problem exactly, one would have to deal with the Hamil-
tonian of the many–particle system, including Coulomb interaction8

H =
∑

i

{
− h̄2

2m∗∆i + Vext(ri)
}

+
e2

4πεε0

1
2

∑
i�=j

1
|ri − rj |

, (2.43)

where i and j run over all charge carriers in the system. This problem, how-
ever, is exactly solvable for small electron numbers N , typically N < 10, only.
For such exact solutions of the full Hamiltonian, very often the technique of
numerical diagonalization is employed (see, e.g., [23, 24]).

For most of the theoretical calculations for larger systems, so called mean–
field approaches are applied. In a mean–field approach, the many–particle
problem is reduced to an effective single–particle one. The idea behind this is
that the electron moves in a potential which consists of the external (quantum
well) potential plus a potential, which is formed by all the other electrons and
the ionized impurities. This means that one has to solve an effective one–
electron Schrödinger equation and the Poisson equation of the structure self–
consistently. The simplest form, where only the direct, i.e., classical, Coulomb
interaction is taken into account, is called the Hartree approximation (HA).
The effective one–electron Schrödinger equation in the HA reads
{
− h̄2

2m∗∆ + Vext(r) +
e2

4πεε0

∑
ν

fν

∫ |ψν(r′)|2

|r − r′| d3r′

}
ψn(r) = Enψn(r) ,

(2.44)

8 For simplicity, we have omitted here the explicit inclusion of spin–orbit interac-
tion.
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with the last term on the left–hand side being the Hartree potential, VH(r).
The quantum numbers ν are combined indices (e.g., spin and subband quan-
tum numbers), and fν is the Fermi occupation number of the state |ν〉. There
are several standard methods to include quantum mechanical corrections
to the Coulomb interaction. The straight forward method is the so called
Hartree–Fock approximation (HFA), where, additionally, an exchange term
is included. However, such calculations are relatively involved, since the ex-
change – or Fock – term is nonlocal, as can be seen by comparing the following
Schrödinger equation in the HFA,{

− h̄2

2m∗∆ + Vext(r) +
e2

4πεε0

∑
ν

fν

∫ |ψν(r′)|2

|r − r′| d3r′

}
ψn(r) −

− e2

4πεε0

∑
ν

fν

∫
ψ∗

ν(r′)ψn(r′)
|r − r′| d3r′ψν(r) = Enψn(r) , (2.45)

with (2.44). In a systematic perturbation expansion with respect to Coulomb
interaction, the Fock term is representing the first quantum mechanical cor-
rection – called exchange interaction – to the classical problem of an interact-
ing many–particle system. The reason for this correction is the indistinguisha-
bility of quantum–mechanical particles. The not exactly known infinite sum
of all additional corrections is called correlations. We will not further discuss
the HFA approach in this introductory chapter.

A frequently used simpler method is to include exchange plus correlation
corrections by adding a local potential which can be derived from the local–
density approximation (LDA) of the density–functional theory of Hohenberg,
Kohn, and Sham [25, 26, 27]. This so called Kohn–Sham approximation has
the advantage that the additional potential, VXC(r), is local in r, and hence
can be treated just as an additive contribution to the Hartree potential VH(r).
Within this model, the many–particle Schödinger equation (2.43) reduces to
the so called Kohn–Sham equation, an equation for a single electron moving
in an effective potential, VLDA(r) = VH(r) + VXC(r),

{
− h̄2

2m∗∆ + VLDA(r) + Vext(r)
}

ψn(r) = En ψn(r) . (2.46)

In the LDA, the exchange–correlation energy of a homogeneous electron sys-
tem is used. VXC(r) depends on the local density n(r) and the local spin
density ζ(r). It is usually taken from quantum Monte Carlo calculations [28].

Applying the Ben Daniel–Duke boundary conditions (2.39) and (2.40) to
(2.46), and separating the free electron motion parallel to the quantum well
plane, leads to the one–dimensional Schrödinger equation{

− h̄2

2
d

dz

1
m∗(z)

d

dz
+

h̄2k2
||

2m∗(z)
+ VLDA(z) + Vext(z)

}
χn(z) = En χn(z) ,

(2.47)
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with
VLDA(z) = VH(z) + VXC(z) . (2.48)

The Hartree energy is given by the electrostatic potential φ(z), which acts
on the electron

VH(z) = −eφ(z) , (2.49)

which, on the other hand, is the solution of the Poisson equation

ε0ε
d2φ(z)

dz2
= e n(z) − ρ(z) . (2.50)

In (2.50), ρ(z) is the charge distribution of ionized donors and acceptors, and,

n(z) =
∑

i

Ni |χi(z)|2 , (2.51)

with Ni being the number of electrons in the i–th subband. From (2.49)–
(2.51) it follows that the Hartree potential VH(z), which enters the Kohn–
Sham equation (2.47) via (2.48), itself depends on the solutions, χi(z), of
(2.47). Therefore, an iterative self–consistent solution of both, the Kohn–
Sham and the Poisson equations has to be performed.

Figure 2.9 displays the results of such a calculation for a one–sided
modulation–doped GaAs–AlGaAs single quantum well, as shown in Fig. 2.8.

Fig. 2.9. Self–consistent Kohn–Sham calculation of the valence– and conduction–
band edges of a one–sided doped GaAs–AlGaAs single quantum well as typically
used for inelastic light scattering experiments (calculation after [29]). The dashed–
dotted lines indicate the densities of free electrons. In the quantum well, as well as
in the doped barrier layer, there is a finite density of free electrons in the conduction
band
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Fig. 2.10. Self–consistently calculated conduction band profile of a GaAs–AlGaAs
single quantum well. The two lowest confined levels are indicated. The dashed and
dotted lines represent the squares of the envelope wave functions |χ0|2 and |χ1|2,
respectively

Such asymmetric quantum wells are frequently used samples for inelastic light
scattering experiments. In Fig. 2.9, the valence– and conduction–band edges
of the sample are shown. The dashed–dotted lines indicate the densities of
free electrons, which result from the modulation doping. Figure 2.10 shows
the well in the conduction band in more detail. The two lowest confined sub-
band levels are indicated together with the squared envelope wave functions
|χ0|2 and |χ1|2, which give the probability densities of the electrons in the
states.

In Fig. 2.11, the subband spacing, E1 − E0, between the first two sub-
bands of the quantum well in the conduction band is plotted versus the total
density, n = N0 + N1, of electrons of the 2DES in the quantum well. The
full line shows the results of a Kohn–Sham calculation, and the dashed line
gives the results derived in Hartree approximation, i.e., neglecting exchange–
correlation corrections. One can see that with increasing total electron density
n, the subband spacing E1 − E0 becomes larger. This is due to the stronger
band bending in the quantum well with increasing n (cf. Fig. 2.10). At the
densities where the kinks in the calculated curves appear – which is in the
Hartree calculation at n ∼ 6× 1011 cm−2 and in the Kohn–Sham calculation
at n ∼ 8× 1011 cm−2 – the second subband, E1, starts to be filled with elec-
trons. This causes a redistribution of the carriers in the quantum well and
thus influences the self–consistent potential.

The dispersion of the electronic subbands with respect to the inplane
quasi momentum k‖ = (kx, ky) is to a good approximation parabolic, if the
coupling to the valence–band states is neglected. For the confined levels in the
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Fig. 2.11. Comparison of self–consistent calculations in the Hartree (dashed line)
and LDA approximation (solid line) of the subband separation, E1 − E0, of a 25
nm wide GaAs–AlGaAs single quantum well in dependence on the total density of
Q2D electrons, n = N0 + N1, in the two lowest subbands (data after [30])

Fig. 2.12. Calculated wave–vector dispersion of hole subbands in an asymmetric
valence–band single quantum well, as, e.g., displayed in Fig. 2.9. The levels are
labeled – due to their surviving character at k‖ = 0 – as hhi and lhi for heavy– and
light–hole states, respectively

valence–band well, however, the dispersion is strongly nonparabolic due to
the above described effect of heavy– and light–hole mixing at k‖ = 0. Figure
2.12 displays the inplane wave–vector dispersion of the first four confined
hole levels in a valence–band well, as shown in Fig. 2.9. The hole subbands
are calculated employing a 4 × 4 Luttinger–Kohn Hamiltonian, as described
in Sect. 2.1.2 above. For the system shown in Fig. 2.12, the self–consistent
density of Q2D electrons was 7.5× 1011 cm−2. The position where the Fermi
wave vector kF of the electrons is, is indicated in the figure by a vertical
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line. The hole levels exhibit a spin splitting for finite k‖ due to the combined
effect of spin–orbit coupling and the asymmetric confining potential (for more
details, see, e.g., [3]). The hole states are important in the resonant inelastic
light scattering process, since there they serve as intermediate states.

We will use a Q2D electron gas in a quantum well, as displayed in Figs. 2.9
to 2.11, later in Chap. 3 to introduce the electronic elementary excitations of
a 2DES.

2.5 Lateral Micro- and Nanostructures

2.5.1 General Remarks

The traditional way of producing lateral semiconductor nanostructures, like
quantum wires and quantum dots, is to pattern down MBE–grown Q2D
systems. There is a large variety of possibilities to do that9. The principal
processing steps, however, are quite similar in all the possible variations, and
are also established in industry as the key processes for the production of
devices. Figure 2.13 shows an overview of the most important steps in lateral
patterning. Starting from the MBE wafer, which, e.g., can be a modulation–
doped GaAs–AlGaAs structure, in the first step, a resist layer is deposited.
This resist can either be a photoresist, or an electron–beam sensitive re-
sist, like polymethylmethracrylate (PMMA). Subsequently, the resist–coated
sample is exposed to a beam pattern of light, or to an electron–beam. After
exposure, a resist pattern is obtained in a development process. Now, there
are several further ways to proceed with such a resist pattern. One possibility
is to use it as an etch mask to transfer the pattern into the semiconductor
surface by an etching process. An other possibility is to invert the resist mask
into a patterned metal film, by depositing a metal (e.g., Al, Ti, or NiCr), and
subsequently removing those parts of the metal film, which are deposited on
top of the resist by an etching process, which removes the resist. This pro-
cedure is called a lift–off process. The patterned metal film may then either
be used again as a mask, e.g., for ion implantation, or as a gate electrode. In
the case of patterning the semiconductor surface by etching, there are two
established procedures. One is, to etch completely through the Q2D electron
system. This processing is known as deep etching. Another possibility, which
is called shallow etching, is to stop the etching process in the layer, which
contains the dopants (e.g., Si in an AlGaAs barrier layer). In the case of
shallow etching, the lateral structure is defined by the periodic electrostatic
potential, given by the ionized donors, only. In Fig. 2.14, the processing steps,
which are involved in a patterning by etching, are schematically displayed in

9 For a larger overview over these processes, see, e.g., the more general monographs,
[31, 32].
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Q2D Sample

Resist Deposition

Exposure

Resist Development

Photo
Lithography

Electron-Beam
Lithography

Etching

Deep Etching

Shallow Etching

Metal Deposition

Lift-off

Ion Implantation

Fig. 2.13. Block diagram of the most important steps in the fabrication of lateral
micro– and nanostructures

more detail. Those are the key processes, which were used for the prepara-
tion of deep–etched quantum–wire and quantum–dot samples, which will be
considered later in this book in Chaps. 5, 6 and 7.

We will concentrate in the following on a laser–interference lithography
process, which enables one to produce large periodic arrays – in the range
of millimeters squared – of quantum wires or quantum dots. Such large ar-
rays of nearly identical quantum structures are in particular well–suited for
optical experiments, where one needs large active sample areas. In the next
subsection, we will describe this optical lithography process, as well as the
typically–used etching processes, in more detail.

2.5.2 Lithography and Etching

Laser–Interference Lithography

A very convenient way to produce large periodic arrays of nanostructures is
to apply the interference pattern of two coherent laser beams. This method is
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Q2D System

Photo Resist

Exposure

Development

Deep Etching

Resist Removal

(a)

(b)

(c) (f)

(e)

(d)

Fig. 2.14. Schematic representation of the processing steps for the preparation of
etched quantum wires or quantum dots

called holographic or interferometric lithography. Historically, it was invented
at the end of the 1960’s for the fabrication of optical gratings. Later, the
method was also applied for the definition of periodic photo–resist patterns
on semiconductor surfaces, as considered in this book, which are subsequently
used as etch masks for further processing. The etch–mask technique was ap-
plied in the 1980’s for the preparation of modulated 2D structures (e.g., [33]),
semiconductor quantum wires (e.g., [34]), and quantum dots (e.g., [35, 36]).
With shadowing techniques it is also possible to deposit a metal stripe array,
which, e.g., can be used as a grating coupler (cf. Sect. 4.10) for the excita-
tion of 2D plasmons or intersubband resonances in far–infrared absorption
experiments (e.g., [37]).

Figure 2.15 displays schematically a setup, which can be used for laser–
interference lithography. A photograph of a real setup is shown in Fig. 2.16.
The beam of a laser is expanded to a diameter of several centimeters and split
into two beams by a large–area beam splitter. Via two mirrors, the beams

Laser

Pinhole Beam Splitter

Mirror

Mirror

Sample

Lenses

�

Fig. 2.15. Schematic picture of a setup for laser–interference lithography
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Fig. 2.16. Photograph of the laser–interference–lithography setup in the cleanroom
of the Institute of Applied Physics at the University of Hamburg

are reflected onto the sample surface, which is coated with a photoresist. Due
to constructive and destructive interference of the two laser beams, there are
stripes with high and low intensity created at the photoresist. The period,
a, of the stripe pattern is given by the laser wavelength, λ, and the angle, θ,
(see Fig. 2.15) by the relation

a =
λ

2η
sin θ , (2.52)

where η is the refractive index of the surrounding medium. With, e.g., the 364
nm UV line of an Argon laser, the minimum period length would be a = 182
nm. By variation of the exposure and development times, typically structure
sizes of down to about 100 nm can be reproducibly achieved. Patterns for
the preparation of dots can be realized by two exposure processes: After the
first exposure, the sample is rotated by 90 degrees, and a second exposure is
performed. By choosing the exposure and development times, either a dot–
like or an antidot–like pattern can be produced. Here, an array of holes in
the resist is called an antidot–like pattern. Figure 2.17 shows examples of a
dot–like [Fig. 2.17(a)] and an antidot–like resist pattern [Fig. 2.17(b)] after
the development process.

Wet and Dry Etching

There is a variety of methods to transform the resist pattern into the sample
surface. GaAs is, e.g., wet–chemically etched by a solution of H2SO4, H2O2,
and H2O. With this solution, the etching rate is about 10 nm per second, if
the constituents have a ratio of 1:8:1000. For the preparation of sub–micron
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(a) (b)

Fig. 2.17. Microscope images of resist patterns for (a) a dot array, and, (b) an
antidot array, defined with laser–interference lithography. The photoresist appears
dark gray [with courtesy of T. Kipp, Hamburg]

structures, this procedure is not perfectly suited because of the isotropy of
the etching process. This isotropy results in an under etching of the mask,
as illustrated in Fig. 2.18 (a). Beside wet–chemical etching, there is also the
possibility to use gaseous radicals in a dry–etching plasma process. As etching
gases, O2, F2, or Cl2 plasmas are used.

Figure 2.18 (b) shows a schematic picture of a physical etching process,
where, e.g., positively charged Ar+ ions are accelerated onto the sample. Such
processes are highly anisotropic but also non selective. The mask is etched
with essentially the same rate as the semiconductor. Furthermore, it can
produce a large density of defects in the material.

Fig. 2.18. Schematic pictures of (a) a wet–chemical, and, (b) a physical etching
process through a resist mask

Resist mask

GaAs

GaAs
(a)

(b)
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sample
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Fig. 2.19. Schematic picture of a reactive–ion etching reactor

Reactive–Ion Etching (RIE)

To get a highly anisotropic process with a minimum damage of the crys-
tal, it is advantageous to combine chemical and physical etching processes.
This is done in the reactive–ion etching (RIE) process. Figure 2.19 shows a
schematic picture of a RIE reactor. Between top and bottom electrodes, a
high–frequency (∼MHz) ac voltage is applied. The high–frequency voltage
causes an ionization of the gas (e.g., SiCl4) inside the reactor and creates free
radicals and electrons. The light electrons can easily follow the ac voltage
and lead to a charging of the electrodes. The high voltage is, however, cou-
pled via a capacitor to the bottom electrode, i.e., the charge is kept on this
electrode. This results in the built up of a dc voltage between plasma and
bottom electrode. The heavy ions are not able to follow the high frequency
and are accelerated by the dc voltage towards the bottom electrode, where
the sample is mounted. Typically, the parameters are chosen such that most
of the etching is achieved by chemical etching via the radicals with a minimal
creation of defects. The RIE process has a quite high selectivity of about 10:1
in etching of the semiconductor as compared to the etching of the resist.

Figure 2.20 shows scanning electron micrographs of quantum–dot and of
a quantum–wire array, which were prepared by laser–interference lithography
and a RIE etching process.

2.5.3 Self–Assembled Quantum Dots

Since the end of the 1990’s, an alternative method for the creation of quantum
dots has been established and become very prominent: The self–organized or
self–assembled growth10. The most prominent examples are InAs or InGaAs
10 For an overview, see the monograph, [38].



36 2 Fundamentals of Semiconductors and Nanostructures

Fig. 2.20. Scanning electron micrographs of deep–etched GaAs–AlGaAs nanos-
tructures

self–assembled quantum dots (SAQD), grown on GaAs. InAs and GaAs have
strongly different lattice parameters (see Fig. 2.7). In the Stranski–Krastanow
growth mode, InAs grows on GaAs pseudomorphically up to a critical thick-
ness of about 1.5 monolayers. Above this critical thickness, it is energetically
more favorable for the InAs to form small islands in order to reduce the
stress. Figure 2.21 shows an atomic–force microscope image of MBE–grown
InAs SAQD on a GaAs surface. Typically, the SAQD have lateral dimensions
of about 20 nm and a height of about 7 nm. In Fig. 2.22, a transmission
electron microscope cross section of a single dot is shown. Of course, there

Fig. 2.21. Atomic–force microscope image of InAs quantum dots on GaAs
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Fig. 2.22. Transmission electron micrograph of the cross section of a single InGaAs
quantum dot [with permission of S. Mendach, Hamburg]

is a variety of possible sizes and shapes of these dots, depending on the de-
tailed growth conditions. Nowadays, the growth with relatively narrow size
distributions is standard. Over the years it was found that, depending on
the detailed growth parameters, the SAQD can have different shapes, rang-
ing from pyramidal to lens–shaped structures. InAs SAQD have become the
prototype structures for the investigation of Q0D systems by optical means.
During the past years, the photoluminescence spectroscopy of single SAQD
has been well established and has become a standard investigation tool11.
In inelastic light scattering experiments, the intensities are, however, usually
several orders of magnitude smaller than in photoluminescence. Therefore,
there are so far no single–dot inelastic light scattering experiments available.
Experiments on ensembles of SAQD shall be discussed later in this book in
Chap. 5.

2.6 Electronic Ground State of Lateral Nanostructures

The quantization energies due to the vertical confinement are for most of the
lithographically defined structures much larger than the typical 1D subband
spacings in quantum wires or level spacings in quantum dots. Therefore, in
most of the theoretical treatments, quantum wires and quantum dots are
considered to be strictly flat in z direction (growth direction of the verti-
cal structure). In this case, the methods as introduced in Sect. 2.4 for Q2D
systems for the self–consistent band structure calculation of the electronic
states in the conduction band can be straight forwardly applied to Q1D or
Q0D structures. The z direction can be separated out, and the EFA can be
applied to the lateral directions. Then, the ground state can be calculated ei-
ther employing the HA, HFA, or a Kohn–Sham–type calculation, as described
in Sect. 2.4. The effect of the finite width of the nanostructures in vertical
direction is discussed in [40]. For quantum dots with only few electrons, the

11 For a recent collection of overview articles, see [39].
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ground state can also being calculated by the so called exact numerical diago-
nalization of the few–electron Hamiltonian (see, e.g., [41, 42, 43, 44, 45, 46]).
At the moment, such calculations are feasible up to electron numbers of
about 10, only. In the chapter about inelastic light scattering experiments
on quantum dots (Chap. 5) we will come back to this method. More de-
tails about the structure of the electronic ground state in quantum wires and
quantum dots will be discussed directly in the following respective chapters
about experiments on those systems. We note here that for the more involved
calculation of the valence– and conduction–band states in not intentionally
doped SAQD’s, also 8 band k·p calculations have been applied [47].
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(1997)

24. Christoph Steinebach, Christian Schüller, and Detelf Heitmann: Phys. Rev. B
61, 15600 (2000)

25. P. Hohenberg and W. Kohn: Phys. Rev. 136, B 864 (1964)
26. W. Kohn and L. J. Sham: Phys. Rev. 140, A 1133 (1965)
27. L. J. Sham and W. Kohn: Phys. Rev. 145, 561 (1966)
28. B. Tanatar and D. M. Ceperley: Phys. Rev. B 39, 5005 (1989)
29. I.-H. Tan, G. Snider, and E. Hu: J. Appl. Phys. 68, 4071 (1990)
30. Christoph Steinebach: Selbstkonsistente Berechnung des Potentialverlaufs und

der optischen Anregungen in GaAs/AlGaAs–Heterostrukturen Diplomarbeit,
Universität Hamburg 1996, p. 13

31. M. J. Kelly: Low-Dimensional Semiconductors, Materials, Physics, technology,
Devices, (Oxford University Press, New York 1995) pp. 61–74

32. C. Weisbuch, B. Vinter: Quantum semiconductor structures, Fundamentals and
Applications, (Academic Press, San Diego 1995) pp.

33. U. Mackens, D. Heitmann, L. Prager, J. P. Kotthaus, and W. Beinvogl: Phys.
Rev. Lett. 53, 1485 (1984)

34. W. Hansen, T. P. Smith III, K. Y. Lee, J. A. Brum, C. M. Knoedler, J. M.
Hong, and D. P. Kern: Phys. Rev. Lett. 62, 2168 (1989)

35. C. Sikorski and U. Merkt: Phys. Rev. Lett. 62, 2164 (1989)
36. B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett: 68, 1371 (1992)
37. D. Heitmann, J. P. Kotthaus, and E. G. Mohr: Solid State Commun. 44, 715

(1982)
38. D. Bimberg, M. Grundmann, and L. Ledentsov: Quantum Dot Heterostructures

(Wiley, New York, 1999)
39. P. Michler (Ed.): S ingle Dot Spectroscopy (Springer Tracts in Modern Physics,

Berlin Heidelberg, 2004)
40. C. Steinebach, C. Schüller, G. Biese, D. Heitmann, and K. Eberl: Phys. Rev.

B 57, 1703 (1998)
41. P. A. Maksym and T. Chakraborty: Phys. Rev. Lett. 65, 108 (1990)
42. M. Wagner, U. Merkt, and A. V. Chaplik: Phys. Rev. B 45, 1951 (1992)
43. D. Pfannkuche, V. Gudmundsson, and P. A. Maksym: Phys. Rev. B 47, 2244

(1993)
44. S.-R. Yang, A. H. MacDonald, and M. D. Johnson: Phys. Rev. Lett. 71, 3194

(1993)
45. J. J. Palacios, L. Martin-Moreno, G. Chiappe, E. Louis, and C. Tejedor: Phys.

Rev. B 50, 5760 (1994)
46. P. A. Maksym and T. Chakraborty: Phys. Rev. B 45, 1947 (1992)
47. O. Stier, M. Grundmann, and D. Bimberg: Phys. Rev. B 59, 5688 (1999)



3 Electronic Elementary Excitations

In inelastic light scattering experiments on semiconductor nanostructures,
electronic excitations are created or annihilated in the low–dimensional elec-
tron systems under investigation. Thus, the main body of this book will deal
with the physics of those electronic elementary excitations in various systems
and under various conditions. Before we elaborate on the basic concepts of
the inelastic light scattering processes themselves in the following chapter,
the electronic elementary excitations shall be introduced and discussed here.
We will do this by the – most prominent – example of the excitations of Q2D
electron systems, realized in modulation–doped GaAs–AlxGa1−xAs quantum
wells. These excitations can be categorized into so called spin–density excita-
tions (SDE) and charge–density excitations(CDE), which both are collective
plasma oscillations of the Q2D system, and, single–particle excitations (SPE).
In particular, the observation of intersubband SPE [1] – which are thought to
be electronic excitations, which are not affected by the Coulomb interaction –
has posed a puzzle, and has been controversially discussed. We will come to
this discussion at various places later in this book, when considering the
resonant scattering in quantum wells and in quantum dots. In particular in
Chap. 5 we will see that – at least for quantum dots – the SPE’s are actually
collective excitations: SDE’s and CDE’s. However, the many–particle inter-
action effects partly cancel under specific conditions so that the energies are
close to single–particle energies of a noninteracting system. Historically, in
1979, intersubband CDE and SDE in GaAs–AlGaAs quantum wells [2] and
heterojunctions [3] were the first electronic excitations, which were observed
in semiconductor nanostructures by inelastic light scattering by A. Pinczuk
et al. and G. Abstreiter et al., respectively.

It shall be noted here that the excitation categories, which will be de-
scribed in this section for Q2D systems, can be transferred to systems with
lower dimensionality, i.e., quantum wires and quantum dots. The specialities
of those systems will be introduced and discussed in the respective following
chapters. Furthermore, we will in the current section already make use of
polarization selection rules for the electronic excitations, and of the fact that
in inelastic light scattering experiments a finite quasi momentum q can be
transferred to the excitations. These characteristic features of the inelastic
light scattering process itself will be introduced in detail later, in Chap. 4.

Christian Schüller: Inelastic Light Scattering of Semiconductor Nanostructures
STMP 219, 41–55 (2006)
DOI 10.1007/3-540-36526-5 3 c© Springer-Verlag Berlin Heidelberg 2006
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E

kx , ky0

EF

n = 0

n = 1

q

Fig. 3.1. Schematic picture of intersubband and intrasubband single–particle tran-
sitions in a Q2D electron system. The label kx, ky at the x axis shall indicate that
for a Q2D system the dispersion of a subband is not a one–dimensional parabola
but rather a paraboloid in kx and ky directions

3.1 Single–Particle Continua

We will start the discussion of elementary electronic excitations by consider-
ing a Q2D electron system with two subbands, where only the lowest subband
is occupied by electrons up to the Fermi energy EF at temperature T = 0
K, as displayed in Fig. 3.1. For the moment, the Coulomb interaction shall
be neglected, and the electrons are considered to be independent particles.
In this single–particle picture, we can think of intersubband and intrasubband
SPE, as indicated in Fig. 3.1 by thick solid and dotted arrows, respectively.
In the following – and for the rest of this book – we will always denote a qua-
simomentum or wave vector, which is connected to an electronic excitation,
by q, while the quasimomentum of an electron in the ground state will be
labeled by k (for a Q2D system k ≡ k‖ = (kx, ky)). In Fig. 3.1 we can see
that concerning intersubband excitations we can imagine transitions with fi-
nite wave–vector transfer q, and vertical transitions with q = 0. Intrasubband
SPE, on the other hand, have nonzero energies for q = 0, only. All possible
SPE, in dependence on the wave vector q, form the single–particle continua.
Figure 3.2 displays schematically the intra– and intersubband single–particle
continuum for the above introduced two subband system. The insets illus-
trate some selected situations at the edges of the continua. The upper edge
of the intrasubband continuum is given by

E(kF + q) − E(kF ) =
h̄2(kF + q)2

2m∗ − h̄2k2
F

2m∗ =
qkF

m∗ +
h̄2q2

2m∗ ∼ qkF

m∗ , (3.1)

if kF � q, i.e., the Fermi wave vector, kF , is large compared to the wave
vector, q, of the excitation. The lower bound of the continuum is given by zero
for all q < 2kF , since the 2D subband is a paraboloid, and so an intrasubband
transition can start directly at the Fermi energy and end at an infinitesimally
small energy just above the Fermi energy at a different point of the paraboloid
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Fig. 3.2. Single–particle continua for intra– and intersubband transitions

in kx and ky (provided that q < 2kF ). For a Q1D electron system, however,
which will be considered later in this book, the lowest subband is a one–
dimensional parabola. In that case, the lower bound of the intrasubband
continuum is given by the dashed line in Fig. 3.2, which is

E(kF ) − E(kF − q) =
qkF

m∗ − h̄2q2

2m∗ . (3.2)

For the upper and lower edges of the intersubband continuum, the energies
are given by

E01 + E(kF + q) − E(kF ) = E01 +
qkF

m∗ +
h̄2q2

2m∗ , (3.3)

and,

E01 − (E(kF ) − E(kF − q)) = E01 −
qkF

m∗ +
h̄2q2

2m∗ , (3.4)

respectively. E01 = E1 − E0 is the subband spacing at any given, but fixed,
inplane wave vector k‖.

Within this independent–particle model, one would thus expect for an
experiment with a fixed finite wave–vector transfer q0, the intra– and inter-
subband SPE’s to exhibit a finite width, given by the widths of the respective
continua, as , e.g., indicated in Fig. 3.2. For q = 0, we would expect a sharp
intersubband SPE with energy E01, and zero energy of the intrasubband
SPE.

3.2 Electron–Density Waves: Phenomenology
of Collective Charge– and Spin–Density Excitations

Figure 3.3 shows two inelastic light scattering spectra of intersubband excita-
tions of a 25 nm–wide GaAs-AlGaAs single quantum well for a wave–vector
transfer of q ∼ 0. With the considerations about independent particles in
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Fig. 3.3. Raman spectra of intersubband excitations in a quantum well. The 2D
carrier density was Ns = 7.5 × 1011 cm−2

the previous subsection, we would expect a sharp intersubband SPE at the
single–particle subband spacing E01. Obviously, the spectra in Fig. 3.3 are
more complex. The spectra in Fig. 3.3 differ in the polarization directions of
the incoming and the inelastically scattered light. In the polarized spectrum,
the directions were parallel to each other, and, in the depolarized one, they
are perpendicular. A broad feature is visible at approximately the same ener-
getic position (28.3 meV) in both spectra. This feature appears at an energy,
which one calculates for the mentioned bare subband spacing, E01, of the
two lowest subbands. Similar spectra of a high–mobility 2DES in a quantum
well were observed for the first time in 1989 by A. Pinczuk et al. [1]. The
broad feature is interpreted as an intersubband SPE. It is however surprising
that, though we would expect a sharp line in an experiment at q = 0, the
SPE has a considerable width. In addition, we observe in Fig. 3.3 two rela-
tively sharp lines at energies above and below the SPE in the polarized and
depolarized spectrum, respectively. Scattering geometries and selection rules
will be explained in detail in the next chapter. We will, however, here al-
ready make use of the fact that, due to polarization selection rules, collective
CDE should appear in polarized scattering geometry, and, collective SDE in
depolarized geometry, only. Hence, we conclude that the many–particle in-
tersubband excitations – the CDE and SDE – appear as narrow lines in the
spectra.

CDE and SDE are collective plasma oscillations of the 2DES. A CDE –
or plasmon – is a macroscopic oscillation of the charge density, which is in-
duced by an external perturbation, like an electromagnetic dipolar field. The
induced charge density is oscillating against the positively–charged back-
ground. In an intersubband CDE, as considered here, the sheet of Q2D
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Fig. 3.4. Comparison of macroscopic and microscopic picture for collective in-
tersubband excitations. In (a) the oscillation of the electron layer, parallel to the
growth direction, is shown schematically

electrons oscillates perpendicular to the quantum–well plane. Thus, the center
of mass of the charge is oscillating back and forth between the two interfaces
of the quantum well. Figure 3.4(a) shows, very schematically, the oscilla-
tion of the electrons in this macroscopic picture. Microscopically, the inter-
subband CDE consists of non–spinflip intersubband transitions, as shown
in Fig. 3.4(b), which are coupled by the full quantum–mechanical Coulomb
interaction. Due to the depolarization field, caused by the direct part of
the Coulomb interaction, the energy of the CDE is in most cases – so
here – blueshifted with respect to the bare single–particle subband spacing.
This will be explained in a more quantitative way in the following section.
Due to its finite dipole moment, the intersubband CDE is far–infrared ac-
tive, and can also be observed in far–infrared dipole–absorption experiments
(see, e.g., [4]).

In the intersubband SDE – on the contrary – electrons with different spins
are oscillating with a phase shift of π against each others (Fig. 3.4(a)). As
a consequence, the center of mass of the charge does not oscillate. Hence,
these excitations have a zero dipole moment, and are not subjected to
depolarization–field effects. The SDE are only affected by exchange Coulomb
interaction, which is attractive for electrons. Therefore, the energy of the SDE
is redshifted with respect to the SPE. Microscopically, the intersubband SDE
consists of intersubband spinflip and non–spinflip transitions, which are cou-

(a) Macroscopic Picture:

CDE:

SDE:

All electrons are oscillating in phase.

Electrons with opposite spin are oscillating

with phase shift of ��

(b) Microscopic Picture:

CDE consist of “nonspinflip”

particle transitions, coupled by
Coulomb interaction.

SDE consist of “nonspinflip” and

“spinflip” single-particle transitions,
coupled by Coulomb interaction.

single-
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Longitudinal (nonretarded) Coulomb interaction:

q q

q

1, k + q, S 0, k‘ - q, S‘ 1, k‘ - q, S‘ 0, k + q, S

1, k + q, S 0, k‘ - q, S‘

0, k, S 1, k‘, S‘ 0, k, S 1, k‘, S‘

0, k, S 1, k‘, S‘

(a) direct Coulomb interaction (b) exchange interaction

(c) photonic electron-electron interaction

Transversal (retarded) Coulomb interaction:

Fig. 3.5. Diagrammatic representations of Coulomb interaction for intersubband
excitations (after [5]). The states are characterized by the quantum numbers
(n, k, S), where n is the subband quantum number, k the inplane quasi momentum,
and S the spin of the particle

pled by exchange interaction, only (see Fig. 3.4(b)). At zero magnetic field,
the spinflip and non–spinflip single–particle transitions are energetically de-
generate. Since the electric dipole operator does not act on the spin of the
electrons, SDE can not be excited in direct absorption experiments. The cre-
ation of SDE is a speciality of the resonant inelastic light scattering process,
as will be explained in detail in Chap. 4 below.

Figure 3.5 shows diagrams of the particle–particle interactions, which con-
tribute to the formation of collective intersubband excitations of our two–
subband system. The states, which participate in the interaction process,
are characterized by the quantum numbers (n,k, S), where n is the sub-
band quantum number, k the inplane quasimomentum, and S the spin of
the particle. The direct Coulomb interaction (Fig. 3.5(a)), which leads to
the formation of the CDE, one can imagine in the classical sense: By the
interaction (q), a particle is scattered by another particle from a state with
subband label 0, momentum k, and spin S to a state (1,k + q, S), while
the other particle is scattered from (1,k′, S′) to a state (0,k′ − q, S′). If one
would consider this part of the Coulomb interaction, only, one would make –
quantum mechanically – an error, since, in quantum mechanics, particles are
not distinguishable. From the principle of indistinguishability of particles, the
exchange term (Fig. 3.5(b)) of the longitudinal Coulomb interaction results.
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Fig. 3.6. Schematic picture of the dispersion of collective excitations of a Q2D
system and the respective single–particle continua

Its diagram is topologically different from the diagram in (a). The transver-
sal Coulomb interaction (Fig. 3.5(c)), which stems from the exchange of a
virtual photon between the particles, is negligible, since it causes only very
small energy renormalizations [5].

Now, we will try to match the two pictures, discussed so far: The
independent–particle and the many–particle picture. Figure 3.6 displays
schematically the single–particle continua, together with the dispersions of
the collective CDE’s and SDE’s. The energies of CDE’s are indicated by thick
red (gray) lines, and those of SDE’s by thick black lines. For clarity, we have
labeled here the intersubband excitations by the subscript “01”, and the in-
traband excitations by “00”. Macroscopically, the intrasubband CDE00 and
SDE00 can, like the intersubband excitations, be viewed as electron–density
oscillations – but now parallel to the plane of the quantum well. Like the
intrasubband SPE00, the energy of the intrasubband CDE00 goes to zero as
q → 0. Collective modes – like the CDE’s and SDE’s – are defined eigenmodes
of the electronic system for regions outside the single–particle continua, only.
Inside the single–particle continua, the collective excitations are no longer
eigenmodes of the system. There, they decay into uncorrelated electron–hole
pairs, i.e., SPE’s [1, 6, 7, 8, 9, 10]. This effect is called Landau damping [11].
It was invented in 1946 by L. D. Landau for the modes of liquid superfluid
Helium. To notify this effect, in Fig. 3.6 the dispersions of the collective ex-
citations are dotted inside the continua. From this we see in Fig. 3.6 that in
particular the intrasubband SDE00 is Landau damped over the whole range of
wave vectors q. We will discuss in detail the inelastic light scattering by these
intra– and intersubband excitations of Q2D systems at the end of Chap. 4.

This section about the phenomenology of the elementary electronic ex-
citations of a Q2D electron system shall be concluded by summarizing the
explicit expressions for the energies of intersubband and intrasubband exci-
tations. In a TDLDA theory, the energies of intersubband CDE01 and SDE01

0 0

0 1

0 0

0 1

E

q

E
01

CDE01

SDE01

CDE00

SDE00
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are given by [12, 13, 14, 15]

E2
CDE01

= E2
01 (1 + α11 + β11) (3.5)

E2
SDE01

= E2
01 (1 + β11) . (3.6)

α11 and β11 are terms, which stem from the direct and exchange part of
the Coulomb interaction, respectively. In the following section we will derive
explicit expressions for these contributions. The dispersion of intrasubband
CDE00 was introduced for the first time by F. Stern [16] in 1967 for electrons
on liquid Helium. It is given by

E2
CDE00

=
Nsh̄

2e2

2 ε∞ε0m∗ q‖ , (3.7)

where Ns is the carrier density of the 2DES, and ε∞ the high–frequency
dielectric constant1. Due to Landau damping, the energy of the intrasubband
SDE00 is essentially given by the upper bound of the intrasubband single–
particle continuum (see 3.1)

E2
SDE00

=
2πNs

m∗2 q2
‖ . (3.8)

3.3 Collective Excitations: Theoretical Models

In Sect. 2.4, we have discussed models to describe the ground state of Q2D
electron systems. There, we have introduced the Hartree–, Hartree–Fock–,
and the Kohn–Sham equations, which represent different levels of approxi-
mation. In order to determine the dynamical excitations of the system, one
has to consider a time–dependent perturbation and then calculate the exci-
tation spectrum self–consistently. The most commonly used approach to do
so is the random–phase approximation (RPA). The RPA is a time–dependent
Hartree approximation, i.e., the Coulomb interaction is treated classically
and exchange–correlation effects are neglected. The energies of the collec-
tive excitations are determined by the poles of the frequency–dependent di-
electric function, ε(ω, q). Within the RPA, spin–density excitations are just
single–particle excitations, since collective effects due to exchange interac-
tion are neglected in this approximation. There are various improvements
of the RPA, where, e.g., exchange–correlation effects are taken into account
by the inclusion of a local LDA potential (see Sect. 2.4). At this level of
approximation, the method is often called time–dependent local–density ap-
proximation (TDLDA), which is a time–dependent Kohn–Sham theory. If
also the conservation of spin–current density is considered, a time–dependent
local–spin–density approximation (TDLSDA) is formulated. The energies of

1 For GaAs, ε∞ = 10.9.
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the collective excitations are then, more generally, determined by the poles
of a density–density correlation function, where, for CDE’s the density in the
correlation function is the electron density, and, for SDE’s the spin density.
If, on the other hand, the ground state is determined by a Hartree–Fock
calculation, the excitations can be calculated employing a time–dependent
Hartree–Fock theory. In later chapters we will derive various examples and
comparisons of these theories with experiments by concrete low–dimensional
semiconductor systems. In the literature, the majority of theories of elec-
tronic excitations in Q2D electron systems is performed on the basis of RPA
or TDLDA2.

3.3.1 Basic Ideas of RPA and TDLDA

In order to get a feeling how the time–dependent approximations work, we
will briefly outline here the basic ideas of RPA, and then apply it to our
two–subband system, modeling a Q2D electron system.

Let us consider an electromagnetic dipolar field

E(t) = ezEexte
−iωt (3.9)

in z direction. The single–particle Hamiltonian of the perturbed system can
be written as

H = H0 + H1(t) , (3.10)

with H0 being the Hamiltonian of the electronic ground state, as, e.g., de-
scribed in Sect. 2.4. The equation of motion for the corresponding statistical
operator

ρ = ρ0 + ρ1(t) (3.11)

is the von Neumann equation

d

dt
ρ = − i

h̄
[H, ρ] . (3.12)

Inserting (3.11) into (3.12), and neglecting the term ρ1H1 yields

ih̄
d

dt
ρ = [H1(t), ρ0] + [H0, ρ1(t)] . (3.13)

We now make the assumption that H1(t) and ρ1(t) have the same temporal
dependence as the external perturbation, i.e.,

H1(t) = H1e
−iωt , (3.14)

and,

2 For RPA calculations, see, e.g., [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], for
TDLDA [12, 13, 14, 15], for TDLSDA [27], and, for TD–HFA [28].
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ρ1(t) = ρ1e
−iωt . (3.15)

Let {|n 〉} be the known eigenstates of the ground–state Hamiltonian H0.
Then, we get with (3.13) through (3.15)

h̄ω〈m|ρ1|n〉 = 〈m| [H1, ρ0] |n〉 + 〈m| [H0, ρ1] |n〉 =
= (fn − fm) 〈m|H1|n〉 + (Em − En) 〈m|ρ1|n〉 , (3.16)

with fn being the Fermi distribution function at the energetic position En.
From (3.16) it follows that

〈m|ρ1|n〉 =
fn − fm

En − Em + h̄ω
〈m|H1|n〉 . (3.17)

The perturbation causes an induced density, δn(r), which is given by

δn(r) = Tr {δ(r − r′)ρ1} =
∑

n

〈n|δ(r − r′)ρ1|n〉 =

=
∑
m,n

〈n|δ(r − r′)|m〉〈m|ρ1|n〉 =

=
∑
m,n

〈m|ρ1|n〉ψ∗
n(r)ψm(r) . (3.18)

Inserting (3.17) into (3.18) delivers the general result for the induced density

δn(r) =
∑
m,n

fn − fm

En − Em + h̄(ω + iη)
ψ∗

n(r)ψm(r)〈m|H1|n〉 , (3.19)

where we have introduced a phenomenological damping term iη.

3.3.2 Application to Two–Subband System

Now, we will apply this result to our Q2D two–subband system, i.e., in the
following we have to consider the z direction, only. For the perturbation
operator H1 we have

H1 = Vext + ∆VCoul + ∆VXC , (3.20)

with the classical or direct term of the Coulomb interaction (Hartree term)

∆VCoul = − e2

ε∞ε0

∫ z

−∞
dz′

∫ z′

−∞
dz′′δn(z′′) , (3.21)

and the exchange–correlation term

∆VXC(z) =
∂VXC

∂n
δn(z) . (3.22)
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E

kx , ky0

EF

n = 0

n = 1

Fig. 3.7. Schematic picture of a Q2D electron system with two subbands. The
label kx, ky at the x axis shall indicate that for a Q2D system the dispersion of a
subband is not a one–dimensional parabola but rather a paraboloid in kx and ky

directions

VXC is the statical exchange–correlation potential, taken from LDA [29]. If
we now consider vertical (q = 0) intersubband excitations of the two–subband
system, as displayed in Fig. 3.7, only, we get from (3.19)

δn(z) = Ns

(
1

E0 − E1 + h̄ω
− 1

E1 − E0 + h̄ω

)
χ0(z)χ1(z)〈1|H1|0〉 =

= 2Ns
E01

(h̄ω)2 − E2
01

χ0(z)χ1(z)〈1|H1|0〉 . (3.23)

Here, the χi(z) are the envelope functions of the quantum well in z direc-
tion (cf. Subsect. 2.4.1). Finally, inserting (3.23) into (3.20) yields the self–
consistency equations for the dynamical potential

〈1|H1|0〉 = 〈1|Vext|0〉 +
E2

01

(h̄ω)2 + E2
01

(α11 + β11) 〈1|H1|0〉 . (3.24)

In (3.24), the direct and exchange–correlation terms, α11 and β11, are given
by

α11 = − 2e2Ns

ε∞ε0E01

∫ z

−∞
dz′

∫ z′

−∞
dz′′χ1(z′′)χ0(z′′) , (3.25)

β11 =
2Ns

E01

∫ ∞

−∞
dz

∂VXC

∂n
χ2

1(z)χ2
0(z) , (3.26)

respectively. Characteristic for the collective modes is that even for a van-
ishing external perturbation (Vext = 0), a nontrivial solution of (3.24) exists.
This is equivalent to the condition

ε(ω, q) = 0 . (3.27)

Hence, we arrive with (3.24) at

E2
CDE01

≡ (h̄ω)2 = E2
01 (1 + α11 + β11) (3.28)
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for the energy of the intersubband CDE01. Without proof, the energy of the
corresponding SDE01 is given by

E2
SDE01

= E2
01 (1 + β11) . (3.29)

With a treatment, as done here, we can not justify SDE’s, since they are
not dipole active, i.e., they can not be created by a dipolar electromagnetic
field. We have already discussed this in the previous subsection on a phenom-
enological basis. The excitation of SDE’s in resonant inelastic light scatter-
ing experiments is possible due to spin–orbit coupling of the valence–band
states, which serve as intermediate states in the scattering process. We will
come back to this important – but more involved – point in the next section,
when we discuss the scattering mechanisms. For the quantities α11 and β11,
which describe the effects of direct and exchange–correlation interactions,
respectively, the relations

α11 > 0 , β11 < 0 (3.30)

hold. For electron densities, Ns, in the range 1011 cm−2, also

|α11| > |β11| . (3.31)

Therefore, in most practical cases, the CDE01 is blueshifted, and, the SDE01

is redshifted with respect to the corresponding SPE01 (cf. Fig. 3.3). As an
illustration, Fig. 3.8 displays the energies of the collective intersubband ex-
citations and of the bare subband spacing E01 for a one–sided doped, 25
nm–wide GaAs-AlGaAs quantum well in dependence on the carrier density

Fig. 3.8. Calculated Energies of collective intersubband excitations, compared to
the bare subband spacing, E01, in a one–sided doped GaAs–AlGaAs quantum well
(data after [30])
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Fig. 3.9. Coupled intersubband plasmon–LO phonon modes, calculated with (3.33)
for a bare subband spacing of E01 = 26.5 meV

Ns, calculated within TDLDA. One can see that at very small Ns, exchange–
correlation effects become dominant, and |α11| < |β11| (see also [31], and
references therein).

3.3.3 Plasmon–LO Phonon Coupling

Another interesting point is that in polar semiconductors, like GaAs, the col-
lective CDE’s can couple – via their macroscopic electric field – to the polar
LO phonons. To take this coupling into account, we have to replace in the
term of the direct Coulomb interaction, (3.25), the high–frequency dielec-
tric constant, ε∞, by the frequency–dependent dielectric function of the host
lattice, εL(ω). If we use the dielectric function for polar bulk semiconductors,

εL(ω) = ε∞
E2

LO − (h̄ω)2

E2
TO − (h̄ω)2

, (3.32)

with ELO and ETO being the longitudinal and transverse optical phonon
energies3, respectively, we get two coupled LO phonon–plasmon modes from
(3.28) (see, e.g., [20, 22, 32, 33, 34]):

E± =
{

1
2
[
E2

LO + E2
01 (1 + α11)

]
±

± 1
2

√
[E2

LO + E2
01 (1 + α11)]

2 − 4E2
01 [E2

LO + E2
TOα11]

}1/2

. (3.33)

For illustration, Fig. 3.9 shows the energies of the two coupled intersubband
plasmon–LO phonon modes, calculated with (3.33), for a subband spacing of
3 For GaAs, ELO = 36.7 meV, and, ETO = 33.6 meV.
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Fig. 3.10. Polarized and depolarized spectra of intersubband excitations in a 25 nm
GaAs–AlGaAs quantum well with carrier density Ns = 6.5 × 1011 cm−2

E01 = 26.5 meV in dependence on the parameter α11 of the direct Coulomb
interaction. Indeed, for the experimental spectra in Fig. 3.3, the displayed
energy range is chosen just around the single–particle spacing, E01, and the
observed intersubband CDE is actually the lower one of the two coupled
modes. Figure 3.10 shows spectra of intersubband excitations of a similar
quantum well over a larger range of energies. One can clearly observe the
coupled intersubband plasmon–LO phonon modes CDE−

01 and CDE+
01. The

sharp line at the energy of the LO phonon is due to a signal from pure
phonon scattering in the GaAs buffer layer of the sample. The line labeled
“A” is a coupled mode corresponding to an intersubband excitation to the
next higher (the third) subband. The vertical dotted line in Fig. 3.9 indicates
the positions of the modes, observed experimentally in Fig. 3.10. There is a
reasonable agreement with experiment, within this simplified two–subband
model, where coupling to higher transitions is neglected.
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4 Basic Concepts of Inelastic Light Scattering,
Experiments on Quantum Wells

4.1 Macroscopic Approach

4.1.1 General Remarks

Inelastic light scattering – or Raman scattering – is the scattering of light
by a medium, where in the scattering process excitations are created (Stokes
process) or annihilated (Antistokes process) within the medium. In solids,
these excitations can be various types of elementary excitations, like phonons,
magnons, or – as considered in this book – electronic excitations. Historically,
the scattering by optical phonons, or by internal vibrations of molecules, is
called Raman scattering, and the scattering by acoustic phonons Brillouin
scattering. For electronic Raman scattering, often the term inelastic light
scattering is used, so in this book. Figure 4.1 shows schematically the Stokes
and Antistokes processes, where a photon with energy h̄ωI and momentum kI

is scattered by the creation or annihilation of an elementary excitation with
energy h̄ω and momentum q. The scattered photon has an energy h̄ωS and
momentum ks. This means, each scattered photon in the Stokes component
is associated with a gain in energy h̄ω by the sample. Similarly, the sample
loses energy h̄ω for each scattered photon in the Antistokes component

h̄ωS = h̄ωI ± h̄ω , (4.1)

where the minus (plus) sign is for the Stokes (Antistokes) process. Conserva-
tion of momentum requires

kS = kI ± q . (4.2)

Here, the plus (minus) sign is for the Stokes (Antistokes) process. Schemati-
cally, a Raman spectrum of a single excitation with energy h̄ω looks like the
one displayed in Fig. 4.2. There is a very strong component from elastic scat-
tering at energy h̄ωI , e.g., from the surface of the sample. For experiments
at low temperatures, as considered in this book for experiments on semicon-
ductor nanostructures, only the Stokes process has a significant probability.
Therefore, all experiments presented in this book are exclusively measure-
ments of the Stokes components. Usually, the energy axis of the experimental

Christian Schüller: Inelastic Light Scattering of Semiconductor Nanostructures
STMP 219, 57–84 (2006)
DOI 10.1007/3-540-36526-5 4 c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 4.1. Schematic picture of (a) the Stokes, and, (b) the Antistokes scattering
process
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Fig. 4.2. Schematic picture of a Raman spectrum

spectra are shifted so that the origin is at the position of the energy of the
incident photons, h̄ωI .

In semiconductors, the energies of elementary excitations are always small
compared to the energy of the incident laser photons, i.e., h̄ω � h̄ωI . A par-
ticular strength of the method therefore is that elementary excitations with
energies in the far–infrared spectral range can be measured in the visible
range (h̄ωI , h̄ωS), where powerful lasers and detectors are available. A fur-
ther strength of the method is the possibility to transfer a finite quasimomen-
tum, or wave vector, q, to the excitation during the scattering process. The
maximum wave vector can be transferred employing the exact backscattering
geometry, i.e., the directions of incoming and scattered light are antiparallel.
For this geometry, the maximum value, qmax, of the transferred momentum is
twice the momentum of the light, under the assumption that the wavelengths
of the incoming, λI , and the scattered photons, λS , are approximately equal:

qmax =
4π

λI
. (4.3)

For quantum wells, translational invariance is only valid within the plane
of the well. In the perpendicular direction, i.e., the growth direction, the
translational symmetry is not conserved. Therefore, in experiments on quan-
tum wells, a quasi–continuously tunable momentum transfer is possible in
the lateral directions, only. Figure 4.3 shows a schematic picture of the



4.1 Macroscopic Approach 59

q

ki

ks

i

Fig. 4.3. Schematic picture of the backscattering geometry for experiments on
quantum wells

backscattering geometry, which is typically used for experiments on semi-
conductor quantum wells. The wave–vector transfer q, parallel to the plane
of the well, is for this case given by

q =
4π

λI
sin Θ , (4.4)

provided that λI ≈ λS . If generally the angles ΘI and ΘS of the incident
and scattered beams with respect to the sample normal are not equal, the
wave–vector transfer q is given by

q =
2π

λI
[sin(ΘI) + sin(ΘS)] . (4.5)

For experiments on wires, a quasi–continuously tunable momentum can only
be transferred parallel to the wire direction. Perpendicular to the wires, elec-
tron motion, and hence momentum, is quantized. For quantum dots, the
latter holds for all lateral directions. We will come to the specifics of those
structures in the respective chapters about experiments on wires and dots
later in this book.

4.1.2 Macroscopic Point of View

On general grounds, in order for inelastic scattering to take place, the medium
must have fluctuations in time and space in some system coordinates, which
we in the following will call Q(r, t):

Q(r, t) =
∑

q

{Q(q, t) exp(iqr) + Q∗(q, t) exp(−iqr)} . (4.6)

In a completely homogeneous medium, there is no inelastic light scattering.
These fluctuations can, e.g., be lattice displacements, or electron–density fluc-
tuations. The former would lead to scattering by phonons and the latter to
scattering by electronic excitations.

Macroscopically, the inelastic scattering of light can be described as the
scattering by an extended medium, where the individual dipole moments
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combine to form a macroscopic polarization vector P (r, t) (see, e.g., [1], and
references therein) with

P (r, t) = ε0χ0EI(r, t) , (4.7)

where the susceptibility, χ0, is generally a tensor. EI(r, t) is the electric
field of the incident light. The scattered beam is radiated by the oscillatory
macroscopic polarization, which is subject to the usual Maxwell equations.
Quantum mechanically, the elementary excitations of the medium modulate
the wave functions and energy levels of the medium. The changes in these
quantities are linear in Q(r, t) in first order perturbation theory. Their effect
is represented macroscopically by an additional contribution to the suscepti-
bility, which we write symbolically (since χ is generally a tensor)

P (r, t) = ε0χ(ωI)EI(r, t) = ε0

(
χ0 +

∂χ

∂Q
Q + . . .

)
EI(r, t) . (4.8)

χ0 oscillates at the same frequency as the incident field and contributes to
elastic scattering, only. The second expression in (4.8), ∂χ

∂QQ, is a second–
order susceptibility, which describes the modulation. The second–order po-
larization resulting from this term oscillates at frequencies different from the
frequency ωI of the incident light. This is because Q itself is a time–dependent
function. One can show that the second–order polarization can be separated
into two parts: the Stokes– and the Antistokes part (see, e.g., [1]).

The key quantity of Raman scattering is the spectral differential cross
section d2σ

dΩdωS
. For the Stokes part of the spectrum it is, for a fixed scattering

angle, determined as the rate of removal of energy from the incident beam as a
result of its scattering into a solid–angle element dΩ with frequency between
ωS and ωS + dωS , divided by the product of dΩdωS with the incident beam
intensity. In the macroscopic theory, the spectral differential cross section is
given by

d2σ

dΩdωS
∝
∣∣∣∣eS

∂χ

∂Q
eI

∣∣∣∣
2

〈Q∗(q)Q(q)〉ω . (4.9)

The quantity ∂χ
∂Q is the so called Raman tensor. The first factor in (4.9)

describes, e.g., polarization selection rules due to the product of the Raman
tensor with the polarizations eI and eS of the incident and scattered light.
We will elaborate on this product in detail in the next sections, when we
consider the microscopic theory, to deduce the polarization selection rules
for inelastic light scattering. This term is also responsible for the strength of
the scattering, i.e., the signal intensity, since it describes resonance effects:
For resonant scattering, i.e., if the energy of the incident photons is close to
a real transition (e.g., valence band to conduction band transition) in the
crystal, this term can become very large. The second term in (4.9) is the
power spectrum of the fluctuations Q(r, t). It determines the shape of the
spectrum, i.e., where peaks occur due to scattering processes. The power
spectrum is defined via the relation
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〈Q∗(q, ω)Q(q, ω′)〉 = 〈Q∗(q)Q(q)〉ωδ(ω − ω′) . (4.10)

The brackets denote an average over the probability distribution. The two
quantities in the brackets on the left–hand side of (4.10) are independent
random variables whose phases can take all values between 0 and 2π. Their
product therefore has a zero average, except for ω = ω′. The power spectrum
plays an important role in the macroscopic theory of inelastic light scattering.
Equation (4.9) shows that the cross section for scattering by an excitation is
proportional to its power spectrum.

4.1.3 Dissipation–Fluctuation Analysis

An important further analysis in the theory of inelastic light scattering – in
the macroscopic as well as in the microscopic versions (see also below) – is
the application of the dissipation–fluctuation theorem:

〈Q∗(q, t)Q(q, 0)〉ω =
1
2π

∫ ∞

−∞
eiωt〈Q∗(q, t)Q(q, 0)〉dt (4.11)

=
h̄

π
(nω + 1)�{Π(q, ω)} , (4.12)

where the quantities Q(q, t) are the above introduced Fourier transforms,
Q(q), of the fluctuations in the time–dependent Heisenberg picture. Equation
(4.12) is the application of the dissipation–fluctuation theorem: It states that
the power spectrum of the fluctuations is proportional to the imaginary part
of the response function, Π(q, ω), of the system to the fluctuations. nω is the
well–known Bose–Einstein factor for bosons.

With (4.9) and (4.12) we see that the cross section for inelastic light
scattering is proportional to the imaginary part of the response function of
the system to the fluctuations, which cause the inelastic scattering:

d2σ

dΩdωS
∝ (nω + 1)�{Π(q, ω)} . (4.13)

In the case of scattering by electronic excitations, the response function
Π(q, ω) is the density–density correlation function, which will be discussed
in detail in the following sections. It can also be shown that

�{Π(q, ω)} ∝ � −1
ε (q, ω)

, (4.14)

with ε (q, ω) being the wave–vector and frequency–dependent dielectric func-
tion of the system. In most of the theoretical work, which can be found
in literature on electronic excitations in semiconductor nanostructures, the
expression (4.13) is employed and the density–density correlation func-
tion is calculated assuming nonresonant conditions, i.e., transitions between
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valence– and conduction–band states are neglected. In this situation, which
is of course much less complex than including the valence band, the density–
density correlation function for the electron system in the conduction band
is calculated, only. In the remainder of this book we will see that for re-
alistic experimental conditions this approximation is not appropriate, since
valence–band states play an important role in resonant inelastic light scat-
tering experiments.

4.2 Microscopic Approach, Polarization Selection Rules

In this section, the dominant microscopic scattering mechanisms, which lead
to the light scattering in low–dimensional electron systems, are discussed.
In our work we found that in particular a second–order resonant scattering
process plays a crucial role for the observation of single–particle–like exci-
tations in quantum wells, wires, and dots [2, 3]. For illustration, we will
qualitatively discuss in the first subsection the different scattering mecha-
nisms by the example of Q2D intersubband excitations in quantum wells,
which were introduced in Sect. 3.8. In the following two subsections, a more
general and profound discussion of the scattering cross section for scattering
by electron–density fluctuations will be given and polarization selection rules
will be derived.

4.2.1 Two- and Three-Step Scattering Processes

In general, the inelastic light scattering by electronic excitations in semicon-
ductor microstructures with relatively small numbers of electrons can be ob-
served under specific interband resonance conditions, only. This means that
in the scattering process valence–band states are involved as intermediate
states. Nevertheless, most of the theoretical work concerning the dynamic
Raman response in microstructures is performed for nonresonant conditions,
neglecting the valence–band structure. We summarize here the dominant res-
onant scattering processes, which are fragmentarily present in the literature,
and which we found in our experiments on quantum wells, wires, and dots to
be the dominant ones [3].

Quantum mechanically, the general microscopic problem is to describe
the transition of a photon from the state (ωI ,kI ,eI) – with frequency ωI ,
quasimomentum kI , and polarization eI – to the state (ωS ,kS ,eS) with
changed quantities, while the many–particle system undergoes a transition
from the many–particle initial state |I〉 to the final state |S〉. For such a
scattering event, the spectral differential cross section is generally given by
[4]

d2σ

dΩdωS
= h̄

ωS

ωI
<
∑
S

|MSI |2 δ(h̄ωI − h̄ωS − h̄ω) >, (4.15)
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where MSI is the matrix element, which describes the transition of the system
from state |I〉 to state |S〉 via the scattering process, and the sum runs over
all possible final states. Of course, in most cases the exact many–particle
states |I〉 and |S〉 are not known, and approximations have to be applied.

The coupling of the radiation with the electron system is taken into ac-
count by replacing the momentum p of the electron by p + eA in the Hamil-
tonian H0 of the unperturbed system. A is the sum of the vector potentials
of the incident and scattered electromagnetic fields.

H =
1

2m

∑
i

[
(pi + eA(ri))

2 + U(ri)
]

+ V̂e−e + V̂e−ph =

= H0 +
1

2m

∑
i

[
(A(ri))

2 + piA(ri) + A(ri)pi

]
(4.16)

V̂e−e is the Coulomb interaction, V̂e−ph the electron–phonon interaction, and
U includes the lattice–periodic potential as well as all types of external po-
tentials. For simplicity, the spin–orbit coupling is neglected in (4.16). In a
perturbation theory, the last three terms in the second line of (4.16) can be
treated as a perturbation. Here the A2 terms give contributions to the light
scattering cross section in first order, the pA terms in second order pertur-
bation theory. The pA terms together with, either the Coulomb interaction
V̂e−e of a photoexcited exciton with the Fermi sea, or the electron–phonon
interaction V̂e−ph of a photoexcited exciton with the phonon bath, give con-
tributions in third order perturbation theory. V̂e−ph leads to the scattering
by phonons which shall not be discussed here. The second–order (SOP) and
third–order light scattering processes (TOP) appear to be the dominant ones
in electronic Raman scattering on microstructures because they exhibit a
resonant behavior. As an example for nanostructured systems, we sketch in
Fig. 4.4 transitions which contribute to the second (Fig. 4.4 (a), (b) [6]) and

Fig. 4.4. Schematic picture of the (a) two–step and (b) three–step second–order
scattering mechanisms, and (c) the three–step third–order excitonic scattering
mechanism for inelastic light scattering by electronic excitations in quantum wells
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Fig. 4.5. Depolarized and polarized Raman spectra of Q2D intersubband excita-
tions for two different laser energies EL, and enhancement of the SPE for excitation
under extreme–resonance conditions

third–order (Fig. 4.4 (c) [7]) processes in the scattering by intersubband exci-
tations in quantum wells in backscattering geometry (q = 0). We have found
in our investigations that qualitatively these scattering processes also apply
to Q1D and Q0D systems [2, 3].

In the first step of the two–step SOP, an electron is excited from a valence–
band to a conduction–band state. In the second step, an electron, either with
the same or with opposite spin as the photo–excited electron, recombines with
the hole in the valence band. Thus, as a net effect, either a nonspinflip or spin-
flip single–particle excitation has been created in the conduction band. In the
third step of the three–step SOP, another SPE is created by Coulomb interac-
tion. This represents the screening of the SPE by other SPE’s in the system.
This screening also leads to the formation of collective CDE’s and SDE’s
by direct and exchange Coulomb coupling. For nonresonant conditions, the
SPE’s are screened by the interaction. This is formally implemented by the
cancellation of the two–step SOP contribution by the three–step SOP in the
scattering cross section. We found in our experiments that under conditions
of extreme resonance, which means that the laser frequency is in the vicinity
of the fundamental bandgap of the underlaying Q2D structure, unscreened
SPE’s occur and that they show stronger resonance enhancements than the
collective excitations [2, 3]. This is demonstrated in Fig. 4.5 by the Q2D in-
tersubband excitations. The lower spectra are recorded at a laser energy EL

well above the effective bandgap (Egap = 1503 meV). These spectra look very
similar to the spectra reported by A. Pinczuk et al. in high–mobility quantum
wells [8] (see also discussion of Fig. 3.3 in Sect. 3.8). What we found is that
if we lower the laser energy towards the effective bandgap (upper spectra in
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Fig. 4.6. Polarized Raman spectra of Q2D intersubband excitations for different
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Fig. 4.5), the SPE exhibits a stronger resonance enhancement than the collec-
tive excitations. This means that the above mentioned cancellation of terms
does not hold in the case of extreme resonance and thus single–particle–
like excitations1 can be observed. A quite similar behavior was previously
reported for intraband excitations in n–type GaAs bulk samples [9]. This
resonance effect can be seen in more detail in Fig. 4.6. There, a series of po-
larized Raman spectra for many different laser energies is plotted. One can
clearly see that the SPE dramatically rises in intensity if the laser frequency
is tuned towards the effective bandgap and is resonantly enhanced there.
On the other hand, the intersubband CDE, which are actually two modes
– CDE− and CDE+ – due to the coupling with the LO phonon (see Sect.
3.3.3), also shows additional strong and sharp resonance maxima at higher
laser energies. For laser frequencies well above the bandgap, an excitonic
third–order scattering process, as for the case of quantum wells displayed in
Fig. 4.4 (c), has appeared to be dominant. This mechanism was proposed by
Danan et al. [7], and has been worked out theoretically by A. O. Govorov
[10]. In this scattering mechanism, which is assisted by the Coulomb inter-
action, in the first step the incident photon creates an exciton with a hole
in the valence band and an electron in a higher conduction–band state. This
exciton is scattered by direct and exchange Coulomb interaction with the

1 Within the approximations applied so far in the described theory, these excita-
tions are single–particle excitations. Nevertheless, in a many–particle system all
excitations must be many–particle excitations. Thus, a more rigorous theoretical
treatment should prove that for these excitations the collective effects may be
small but that they are still present.
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Fermi sea into another state, where for example, as drawn in Fig. 4.4 (c), the
hole is scattered into another state. By this scattering process, a collective
excitation (SDE or CDE) is created in the conduction–band system. In the
third step, the scattered exciton recombines. This scattering process exhibits
very sharp and intense resonance profiles in a plot of the scattered intensity
versus laser frequency [7]. This can be seen in Fig. 4.7. Here the integrated
intensities versus laser frequency for the SPE, CDE−, and CDE+ are shown.
The SPE exhibits a strong and broad resonance profile where presumably
one of the lowest heavy–hole states of the quantum well (denoted by H1 in
Fig. 4.7) serves as an intermediate state. On the other hand, the CDE’s show
strong and relatively sharp resonance profiles due to the excitonic TOP. We
found that this TOP is the dominant scattering mechanism for excitation
of collective SDE’s and CDE’s in experiments on GaAs–AlGaAs samples, as
will be discussed at different places in this book.

In the following we want to elucidate these scattering processes in some
more detail. With (4.15), we see that the scattering cross section

d2σ

dΩ dω
∝ ωS

ωI
S(ω) (4.17)

is proportional to the structure factor S(ω) [11], which is defined as

S(ω) =
〈∑

S

|〈S|V̂eff |I〉|2 δ(EI − ES − h̄ω)
〉

. (4.18)

V̂eff is the effective operator, which describes the transition of the system
from the many–particle initial state |I〉 with energy EI to the final state |S〉
with energy ES . Using the second–quantization technique, this effective oper-
ator of the light scattering, V̂eff , can in a many–particle system be expanded
in terms of creation (ĉ†) and annihilation (ĉ) operators of single–electron
states [10]

V̂eff =
∑
α,β

γαβ ĉ†β ĉα . (4.19)

Here, each α and β represents a set of quantum numbers which characterize
a state. If we treat for a moment the excitons as simple electron–hole pairs
without interaction, which is for a quantitative analysis certainly not correct,
the scattering amplitudes γαβ can symbolically be written as [4, 10]

γαβ ∼ 〈α|eiqr|β〉eIeS +
1
m

∑
β′

〈α|pAS |β′〉〈β′|pAI |β〉
Eβ − Eβ′ − h̄ωI

+

+
∑
νν′

〈β|pAS |ν′〉〈ν′|V̂e−e|ν〉〈ν|pAI |α〉
(Eβ − Eν′ − h̄ωS) (Eα − Eν − h̄ωI)

, (4.20)

where with the last two terms we have written the strongest resonant terms,
only. In (4.20) we have put together symbolically terms up to third–order
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Fig. 4.7. Integrated intensities of Q2D intersubband excitations versus laser energy.
The labels indicate the excitonic intermediate states. At EL = 1583 meV, the y
axis has been scaled down. The inset shows a typical polarized spectrum at a laser
energy EL where all excitations of interest can be observed clearly

perturbation theory. We will show below (see also [7]) that in particular the
third–order term is important for scattering by charge–density fluctuations.
The first term in (4.20) represents the nonresonant contributions from the A2

terms in first order perturbation theory. Here the scalar product of the po-
larization vectors of the incident (eI) and scattered (eS) photon shows that
this nonresonant term yields only scattering by plasmons (CDE’s). Spinflip
processes, which are necessary for the excitation of SDE’s, are possible in the
resonant second and third term, only2. The second term describes second–
order processes as schematically shown in Fig. 4.4 (a). This term leads, under

2 This will be discussed in detail in the following two sections.
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conditions of extreme resonance, to scattering by single–particle–like excita-
tions as displayed in the uppermost panel of Fig. 4.7. The third term rep-
resents third–order resonant scattering as shown in Fig. 4.4 (c). This term
causes sharp excitonic resonances in the scattering by collective excitations,
as displayed in the lower panels of Fig. 4.7.

4.2.2 Scattering Cross Section: General Considerations

In this section, the scattering cross section for scattering by electron–density
fluctuations – i.e., electronic excitations – via the above introduced SOP’s
will be investigated in detail, following a work by F. A. Blum [4, 5]3.

As discussed before, the coupling of the electromagnetic field to the carrier
system yields two additional terms in the Hamiltonian,

Hep = H ′′
ep + H ′

ep , (4.21)

with

H ′′
ep =

e2

2m

∑
j

[A(rj)]2 , H ′
ep =

e

2m

∑
j

[pjAj + Ajpj ] , (4.22)

which can be treated in a perturbation approach. For our considerations
here, we will use the terms up to second order, i.e., we will not consider
the three–step excitonic process. This process is more involved but leads to
similar results concerning scattering by spin– and charge–density fluctua-
tions (see [10]). Single–particle–like excitations, however, appear due to the
second–order processes under conditions of extreme resonance, only. This
will be discussed in the following. For resonant scattering we have h̄ωI ≈ EG,
where EG is the effective bandgap between the valence– and conduction–
band states, which contribute to the scattering process. This means that in
the formalism transitions across the bandgap have to be included, like it was
discussed in the previous section. Furthermore, in the resonant scattering,
the spin–orbit interaction plays a central role, since it allows the excitation
of spin–flip transitions, which enables the scattering by spin–density fluctu-
ations. As already mentioned, the inelastic light scattering takes place via
fluctuations of the carrier density (charge–density and spin–density fluctu-
ations). For nonresonant scattering – i.e., considering the conduction band,
only – the density–fluctuation operator (or density pair operator) for a free
electron gas4, N(q) = 1

V

∑
j eiqrj , can in second quantization be written as

N(q) =
1
V

∑
k

c†k+qck . (4.23)

3 see also, e.g., [11, 12, 13, 14, 15, 16].
4 The density fluctuation operator is essentially the Fourier transform of the den-

sity operator.
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c†k and ck are creation and annihilation operators of single–electron states
in the semiconductor, which are occupied by the free carriers. The spin of
the carriers is omitted here. V is the scattering volume. If we now consider
resonant scattering, an effective Hamiltonian, Heff , which includes the con-
tributions of H ′′

ep and H ′
ep (4.22) for the coupling of the radiation field to the

carrier system, can be written as [5]

Heff =
e2

2m
NA(ωI)A(ωS) . (4.24)

A(ω) are here the amplitudes of the vector potentials of incident and scattered
waves. Since in the resonant scattering process virtual transitions between
states, which are outside of the state hosting the free carriers, have to be
considered, N is now a generalized density pair operator:

N =
∑
α,β

γαβc†βcα . (4.25)

Considering contributions up to second order, the coefficients γαβ contain
contributions of the A2 terms (intraband excitations) and the pA terms
(intraband– and interband excitations). In the scattering process, an elec-
tronic excitation |α〉 → |β〉 is created, where |α〉 and |β〉 are single–particle
states, which are characterized by a set of quantum numbers (band index
iα, quasimomentum kα and spin Sα). These single–particle states include
the lattice–periodic Bloch part as well as the envelope function. We are here
interested in the resonant contributions by interband excitations, only. Con-
sidering contributions of the pA terms in second order, we get for γαβ in
dipole approximation [4, 16]:

γαβ ≈ δkakβ

1
m

∑
β′

(
〈α|eI p |β′〉〈β′|p eS |β〉

εα − εβ′ − h̄ωI
+

〈α|eS p |β′〉〈β′|p eI |β〉
εα − εβ′ + h̄ωI

)
.

(4.26)
On the basis of the effective Hamiltonian, Heff (4.24), for the interaction
of the radiation field with the carrier system, one can derive the following
expression for the scattering cross section for scattering by electron–density
fluctuations [5]:

∂2σ

∂Ω∂ω
= r2

0

(
ωs

ωI

)
V 2G(ω) (4.27)

with the dynamical structure factor

G(ω) =
1
2π

∫ ∞

−∞
eiωt < N(t)N†(0) > dt . (4.28)

N(t) is the time–dependent operator in the Heisenberg picture, which corre-
sponds to N (4.25), and r0 is the classical electron radius (r0 = e2/4πε0mc2).
The brackets in (4.28) mean an average over all initial states. The expression
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in brackets in (4.28) is the density–density correlation function of the carrier
system, which is an important quantity in the description of electronic excita-
tions. If we would consider nonresonant scattering within a one–band model,
only (i.e., solely the band which is occupied by the free carriers is considered),
we would get N from (4.23), and the density–density correlation function
would describe pure charge–density fluctuations. Scattering by spin–density
fluctuations is possible in resonant scattering, only (see Sect. 4.2.3 below). By
the inclusion of resonant processes, also bands outside of the band which is
occupied by the free carriers, and which are accessible by optical transitions,
have to be included in the calculation. This inclusion of the band structure
enters via the coefficients γαβ , which appear in the generalized density fluc-
tuation operator (4.25), the density–density correlation function in (4.28).
This means that under conditions of extreme resonance, besides charge– and
spin–density fluctuations, contributions to the cross section can appear that
stem from the energy–band dispersion of the involved bands. Within this
level of approximation, such contributions, which are called energy–density
fluctuations [17], are not subject to screening and lead to scattering by single–
particle–like excitations (SPE).

So far, the discussed formalism for the determination of the scattering
cross section is general and independent of special features of the electronic
system. Whether or not it is possible to derive an analytical expression for the
scattering cross section from (4.27) depends on the form of the generalized
density pair operator N (4.25). The characteristic features of the sample, like
dimensionality of the electronic system, band structure, etc., enter via the
scattering amplitudes γαβ the calculation. If it is possible to find an analyti-
cal expression for γαβ , it might be possible to derive via (4.27) and (4.28) an
analytical expression for the scattering cross section, too. However, in most
cases, comparison with experiment can only be made on a qualitative level
and not quantitatively. One reason is that for realistic systems it is difficult to
include the complex valence–band structure sufficiently. Furthermore, in the
formalism described so far, e.g., Coulomb interaction is neglected in the in-
terband transitions between valence and conduction band. In particular, the
third–order excitonic scattering mechanism, discussed in the previous section,
shows that Coulomb interaction can be of major importance in the interme-
diate steps. For the second–order processes, which are considered here in
detail, Coulomb interaction is considered for the transitions within the band
hosting the free carriers, via the density–density correlation function, only.
First calculations of resonant electronic Raman scattering on semiconductor
nanostructures were performed by C. Steinebach et al. [18] for quantum dots
(see Sect. 5.3.4), and S. Das Sarma et al. [19] for quantum wires.
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4.2.3 Scattering by Crystal Electrons:
Polarization Selection Rules

The polarizations, eI and eS , of incident and scattered radiation are included
in the scattering amplitudes γαβ . In this section we will analyze the impact
of the relative orientations of these polarizations. By this, we will derive the
polarization selection rules for scattering by spin–density and charge–density
fluctuations, and we will see that the coupling to spin–density fluctuations is
possible under resonant scattering conditions, only. The considerations will
be made on the basis of a simple but instructive example. As a result, we
will find the well–known cross section and selection rules for the resonant
scattering at the E0 + ∆ spin–orbit split–off band of n–GaAs bulk material
[11].

Let us consider resonant scattering by intraband excitations of electrons,
which reside in the s–type conduction band of GaAs bulk material. Let the
energy of the incident laser photons, h̄ωI , be approximately equal to the
E0 + ∆ bandgap energy, i.e., the virtual interband transitions, which pre-
dominantly contribute to the scattering process, take place between the spin
split–off Γ7 valence band and the Γ6 conduction–band states (cf. Fig. 2.4 in
Sect. 2.1). In order to determine the character and polarization selection rules
of the elementary electronic excitations, which we expect in the experiment,
the scattering amplitude γαβ (4.26) has to be calculated using the Γ6 and
Γ7 band–edge Bloch functions, listed in Table 2.1 on page 14. These Bloch
functions are:

Γ6 :
{
|S ↑〉
|S ↓〉 ,

Γ7 :

{
1√
3
|(X + iY ) ↓ + Z ↑〉 =: |V 1〉

i√
3
| − (X − iY ) ↑ + Z ↓〉 =: |V 2〉 .

(4.29)

The initial and final states, |α〉 and |β〉, in the scattering process are s–type
functions, either with the same spin (creation of a non–spinflip excitation) or
with opposite spin (creation of a spinflip excitation). The intermediate states,
|β′〉, over which we have to sum in γαβ [(4.26)], are in the here–considered case
the Γ7 valence–band states. Using the Kronecker products of dipole matrix
elements calculated in appendix A, we receive with (4.26) and (4.29) for γαβ

for the different possible spin configurations5:

5 The symbols ↑ or ↓ are used to indicate the two different spin states. For the

calculation, the vector description: | ↑〉 = ( 1
0 ), | ↓〉 = ( 0

1 ) is used. Furthermore, it

is assumed that we are far enough off resonance so that we can approximately re-
place εα−εβ′ in (4.26) by the constant E0+∆. This means that the k dependence
of γαβ is neglected.
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γ↑↑ =
1
m

∑
β′=

V 1,V 2

(
〈S ↑ | ei p |β′〉〈β′| p es |S ↑〉

E0 + ∆ − h̄ωi
+

+
〈S ↑ | es p |β′〉〈β′| p ei |S ↑〉

E0 + ∆ + h̄ωi

)
=

=
1
m

1
(E0 + ∆)2 − (h̄ωi)2

[(E0 + ∆ + h̄ωi)ei 〈S ↑ |p|V 1〉〈V 1|p|S ↑〉es +

+(E0 + ∆ − h̄ωi)es 〈S ↑ |p|V 1〉〈V 1|p|S ↑〉ei +
+(E0 + ∆ + h̄ωi)ei 〈S ↑ |p|V 2〉〈V 2|p|S ↑〉es +
+ (E0 + ∆ − h̄ωi)es 〈S ↑ |p|V 2〉〈V 2|p|S ↑〉ei ] =

=
P 2

3m

1
(E0 + ∆)2 − (h̄ωi)2


(E0 + ∆ + h̄ωi)ei


0 0 0

0 0 0
0 0 1


 es+

+(E0 + ∆ − h̄ωi)es


0 0 0

0 0 0
0 0 1


 ei + (E0 + ∆ + h̄ωi)ei


 1 i 0

−i 1 0
0 0 0


 es +

+ (E0 + ∆ − h̄ωi)es


 1 i 0

−i 1 0
0 0 0


 ei


 =

=
2P 2

3m

1
(E0 + ∆)2 − (h̄ωi)2


(E0 + ∆)ei


 1 0 0

0 1 0
0 0 1


 es+

+ h̄ωi ei


 0 i 0

−i 0 0
0 0 0


 es


 =

γ↑↑ =
2P 2

3m

1
(E0 + ∆)2 − (h̄ωi)2

[(E0 + ∆)ei es + i h̄ωi (ei × es)z] . (4.30)

Analogously, we get:

γ↓↓ = γ∗
↑↑ , (4.31)

γ↑↓ =
2P 2

3m

h̄ωi

(E0 + ∆)2 + (h̄ωi)2
[(ei × es)y + i (ei × es)x] , (4.32)

γ↓↑ = −γ∗
↑↓ . (4.33)

The interband dipole matrix element, P , is defined as P = −i〈S|px|X〉 =
−i〈S|py|Y 〉 = −i〈S|pz|Z〉. Using the Pauli–spinmatrix vector σ

σ =
((

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
= (σx, σy, σz) (4.34)
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we can collect (4.30)–(4.33) in a single equation6:

γαβ = ei A es δαβ + i B (ei × es)〈Sα|σ|Sβ〉 , (4.35)

with

A =
2P 2

3m

E0 + ∆

(E0 + ∆)2 − (h̄ωi)2
, (4.36)

B =
2P 2

3m

h̄ωi

(E0 + ∆)2 − (h̄ωi)2
. (4.37)

Sα, Sβ shall symbolize the different spin states. With (4.35) we see that the
inelastic light scattering by electron–density fluctuations consists of two parts:
One is symmetric in the polarizations of incident and scattered light, and the
other is asymmetric in the polarizations. The symmetric part stems from the
scattering by charge–density fluctuations, while the asymmetric one is from
scattering by spin–density fluctuations. This can easily be understood in the
following way: Inserting the symmetric part of (4.35) into the generalized
density pair operator (4.25), delivers for the interaction Hamiltonian (4.24):

H ′
eff =

e2

2m
(ei A es)

(
N↑(q) + N↓(q)

2

)
A(ωi)A(ωs) . (4.38)

N(q) here is the density pair operator (4.23) for a given spin direction. Equa-
tion (4.38) shows that the light wave couples via the symmetric part of (4.35)
to the charge–density fluctuations, e(N↑(q) + N↓(q)), of the system. Insert-
ing analogously the asymmetric part of (4.35) into (4.25), and using the z
component, σz, of the Pauli–spinmatrix vector (4.34) in (4.35) yields7:

H ′′
eff = i

e2

2m
(ei × es)B ez

(
N↑(q) − N↓(q)

2

)
A(ωi)A(ωs) . (4.39)

One recognizes with (4.39) that – even though σz does not flip the spin
of the electron – the light wave couples to the spin–density fluctuations,
N↑(q) − N↓(q). Only employing σy in (4.35) flips the spin of the electron.
The resulting Hamiltonian, H ′′

eff , would be equivalent to (4.39). The only
differences that would occur in (4.39) due to the choice of different σµ, are the
relative orientations of ei and es with respect to the quantization direction
of the spin. The band–edge Bloch functions (4.29) are chosen such that the
z direction is the direction of spin quantization. Without external magnetic
field, however, the quantization direction of the spin can be arbitrarily chosen.
Accepting this, one can in (4.39) no longer differentiate between spinflip and
6 This is the same equation, that appears in [11] for resonant scattering at the

E0 + ∆ bandgap.
7 This means that the spin configuration (Sα, Sβ) = (↑, ↑) was chosen, i.e., spinflip

excitations are not considered. With (4.34) it is: 〈↑ |σ| ↑〉 = (0, 0, 1) = ez.
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nonspinflip excitations. Hence it follows that without external magnetic field,
spinflip and spin–density excitations are identical.

Furthermore, it shall be noted that the asymmetric part of (4.35) – i.e., the
scattering by spin–density fluctuations – crucially depends on the spin–orbit
interaction. Equation (4.29) shows that the Γ7 band–edge Bloch functions are
no eigenfunctions of the spin, since they are a superposition of different spin
functions, which is a consequence of spin–orbit interaction. This is the origin
of the asymmetric term in (4.35). A further important precondition for the
occurrence of spin–density excitations is resonant scattering: The Γ7 states
are included via virtual interband transitions into the scattering process. One
can see with (4.35) and (4.37) that with ωI → 0 the scattering amplitude,
B, for scattering by spin–density fluctuations goes to zero, too. On the other
hand, for h̄ωI = E0 + ∆, B is going to be maximal. Finally, considering the
resonance at the E0 band gap delivers with the heavy– and light–hole states
of the Γ8 band edge (see Table 1, on page 14) as intermediate states in the
scattering process similar expressions for the scattering amplitude (4.35) (see
also [11]).

With the discussed simple example, we can deduce important general
statements about polarization selection rules in semiconductor nanostruc-
tures with Zincblende bulk–lattice structure: As long as the effective–mass
approximation is a valid approximation to describe the band structure of the
nanostructures, the polarization selection rules, namely spin–density excita-
tions occur in depolarized scattering geometry, i.e.,

ei ⊥ es , (4.40)

and, charge–density excitations are allowed in polarized configuration, i.e.,

ei ‖ es (4.41)

hold for nonresonant conditions. Nonresonant conditions means that the ex-
plicit k dependence of the involved states can be neglected, as we have done
above. In the case of extreme resonance, this k dependence has to be in-
cluded, explicitly [17]. This leads, as already mentioned, to the scattering by
so called energy–density fluctuations (single–particle–like excitations): The
k dependent band structure enters via the generalized pair operator (4.25)
the interaction Hamiltonian (4.24). For extreme resonance conditions, this k
dependence can not be neglected. This was experimentally recognized first
in experiments of A. Pinczuk et al. on n–GaAs bulk material [9], and theo-
retically explained by M. V. Klein [17]. In later chapters of this book we will
see that also in lower–dimensional structures, like quantum wires and dots,
extreme resonance leads to scattering by single–particle–like excitations.

We have seen above that the basic polarization selection rules for nonres-
onant conditions originate from the Bloch parts of the wave functions. This
means that, first of all, they are independent of the dimensionality of the
electronic system. The dimensionality enters via the envelope functions. As
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mentioned before, the single–particle states, which occur in the scattering
amplitude (4.35), consist of the Bloch part and the envelope wave functions,
χi, as introduced in Sect. 2.4. For inelastic light scattering on semiconductor
nanostructures this means that, on top of the general polarization selection
rules for scattering by spin–density and charge–density excitations, these en-
velope wave functions can give rise to parity selection rules.

4.2.4 Parity Selection Rules in Nanostructures

Investigating the scattering amplitude for second–order processes, γαβ (4.35),
we see that, besides dipole matrix elements between Bloch states, we have
to consider products of overlap integrals of the involved envelope functions8.
This is of importance for structures with dimensionality lower than 3D, since
there the envelope functions determine the quantization effects, and are gen-
erally aperiodic functions. If we, e.g., consider a resonant scattering process,
as displayed in Fig. 4.4 on page 63 for scattering on intersubband excitations,
j → j + 1, of a Q2D systems, we get for the envelope part of the scattering
amplitude

γjj+1 ∝
∫

χvb
i (z)χcb

j+1(z)dz

∫
χvb

i (z)χcb
j (z)dz . (4.42)

Here, j labels the conduction–band subbands, and, i the valence–band
states. With (4.42) we find a very general result concerning parity selection
rules in symmetric structures. For a symmetric square–well potential of infi-
nite height, e.g., the second term in (4.42) is nonzero for i = j, only. However,
then the first term is vanishing. We would get a weakly–allowed transition
for j → j + 2, and a finite potential height, only. Therefore, for a strictly
symmetric well, excitations j → j +1, as displayed in Fig. 4.5 on page 64 are
parity forbidden and should not be visible in experiment. This is a further
important reason why for inelastic light scattering experiments asymmetric
wells, like displayed in Fig. 2.9 on page 27 are commonly used, since for
an asymmetric potential the parity selection rules are softened. Our finding
here concerning parity selection rules in a symmetric potential matches the
exclusion principle of far–infrared and Raman spectroscopy on vibrations of
molecules: There, for symmetric molecules, Raman–allowed modes are sym-
metric vibrations, i.e., they have even parity, and far–infrared allowed modes
have odd parity. This can, on general grounds, be traced back to the one and
two–photon nature of the absorption and Raman process, respectively. Since
the Raman process is a two–photon process, the allowed excitations have even
parity. We will find this general rules again in the next two chapters, where
experiments on quantum dots and quantum wires will be presented. At this
point it should also be noted that, additionally to these intrinsic selection
8 Under the assumption that the dipole operator acts on the Bloch part of the

total wave function, only.
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rules, in nanostructured samples with a periodic pattern, optical near–field
effects can play a significant role. Due to sample geometries, the polarizations
can be different in the near and in the far fields. Such effects were recognized
first in experiments on quantum wires by C. Dahl et al. [20].

In conclusion, we can say that the results concerning polarization selection
rules, derived in the previous section, can be generalized to systems with
lower dimensionality. For those systems we would get similar results for the
scattering amplitude (4.35). However, the coefficients A (4.36), and B (4.37)
would get a more complex form, since overlap integrals of envelope wave
functions have to be considered, which in addition lead to parity selection
rules.

4.2.5 Intrasubband Excitations, Grating Coupler–Assisted
Scattering

After considering the scattering processes in detail, this chapter is finalized
by two subsections about experiments on Q2D intrasubband excitations. In
Sect. 4.2.1 intersubband excitations of Q2D quantum wells were presented
and discussed. We saw that a particular strength of the inelastic light scat-
tering technique is the possibility to transfer a finite quasimomentum q to
the excitation. This allows one to excite intraband excitations in Q2D sys-
tems. The energy of the intraband CDE depends on the square root of q
(cf. Sect. 3.8). Figure 4.8 displays polarized spectra of a GaAs–AlGaAs sin-
gle quantum well with a carrier density of Ns = 4 × 1011 cm−2 for different
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Fig. 4.8. Polarized spectra of a GaAs–AlGaAs quantum–well sample for different
wave–vector transfer q. The inset shows the measured excitation energies versus q
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wave–vector transfer q parallel to the quantum–well plane. The inset shows
the measured mode positions versus wave–vector transfer q. One can see that
the square–root dispersion is reasonably–well fulfilled. Deviations can be due
to the fact that in the real sample the dielectric constant is not homogeneous
over the whole space rather it is in the simplest case a step–like function
in growth direction with a step at the sample surface. In our experiments
on many different Q2D samples we found that the relative strengths of in-
tersubband CDE, SDE, and SPE do not significantly depend on the doping
levels of the samples, i.e., the 2D carrier densities. On the contrary, there
was a significantly different behavior found for the intrasubband excitations.
The spectra of the intrasubband CDE, displayed in Fig. 4.8, were recorded
on a sample with relatively low carrier concentration. In such samples, typi-
cally, the intrasubband CDE occurred as a relatively sharp line, whereas the
SDE was only very weak or even completely undetectable, so were the in-
trasubband SPE’s in both polarizations. On the other hand, in samples with
higher Ns of about Ns > 5× 1011 cm−2, intrasubband SPE’s were relatively
strong but the intrasubband CDE weak and typically very broad. A possible
explanation for the damping of the CDE in strongly–doped samples could
be a parallel conductance in the doping layer in the barrier. Due to stronger
doping, also in the AlGaAs barrier layer free carriers can exist. These carriers
have a very low mobility, since they reside in a region with strong disorder
and Coulomb scattering due to the positively–charged donors. Macroscop-
ically, in the intrasubband excitations, the carriers oscillate parallel to the
plane of the quantum well (cf. Sect. 3.8). Via Coulomb interaction, both lay-
ers can couple and then the mode width is governed by the sheet with the
lower mobility, i.e., the barrier layer. This mechanism would, on the other
hand, not be effective for intersubband excitations, since in the barrier layer
we should not expect intersubband transitions with nearly the same energy
as in the quantum well, so that no effective coupling between both layers
should be expected. This explains why – independent of the doping level –
the intersubband excitations appear undamped, as sharp lines, whereas the
damping of intrasubband excitations can depend on the doping level.

Figure 4.9a displays polarized spectra of intrasubband SPE of a sample
with a rather large density of Ns = 6.5 × 1011 cm−2, where the SPE’s are
well pronounced. In Sect. 3.8 we have seen that in Q2D systems the intra-
subband SDE lies completely within the intrasubband SPE continuum and
should therefore be strongly Landau damped. For comparison, there is one
depolarized spectrum shown in Fig. 4.9. One can see that the maximum of
the signal is slightly shifted to lower energies, compared to the polarized
spectrum. This shift can be due to the Landau–damped intrasubband SDE,
whose energy should be slightly below the border of the intrasubband SPE
continuum. Figure 4.9b displays the mode positions of both polarizations ver-
sus q. As expected for intrasubband SPE, the slope is in good approximation
linear with q (cf. Sect. 3.8). From the linear slope the carrier density Ns can
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Fig. 4.9. (a) Polarized and depolarized spectra of intrasubband excitations in a
GaAs–AlGaAs quantum–well sample with Ns = 6.5×1011 cm−2 for different wave–
vector transfer q. (b) Mode positions versus q. (c) Polarized spectra for different
laser energies EL

be deduced via E ≈ h̄2

2m∗ qkF = h̄2

2m∗ q
√

2πNs. Figure 4.9c demonstrates the
resonant enhancement of the SPE if the laser energy is tuned towards the
bandgap energy.

T. Zettler et al. used for the first time a so called grating coupler to
enlarge the wave–vector transfer into the sample in inelastic light scatter-
ing experiments [21, 22]. A grating coupler is a dielectric grating, which is
superimposed on the sample surface. Via this dielectric grating, multiples
of reciprocal grating vectors, g, where |g| = 2π/d if d is the period of the
grating, can be transferred to the system. The total quasimomentum, qtotal,
which is transferred in the experiment, depends on the relative direction of
the momentum q of the incoming light with respect to the direction of the
grids in the grating. If q is perpendicular or parallel to the direction of the
grids, the total transfer is given by

qtotal = q ± ng (4.43)

or
qtotal =

√
q2 + n2g2 , (4.44)

respectively, where n = 0, 1, 2, . . .. In Fig. 4.10 the results of experiments on
Q2D samples with two different grating couplers with periods of d = 500 nm
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and d = 600 nm are summarized. In that case the grating coupler consisted
of an array of Titanium stripes on the sample surface. In each spectrum
several peaks could be observed due to the transfer of multiples of the recip-
rocal grating vector. An exemplary spectrum is displayed in the left panel.
In experiments without grating coupler, the maximally transferred quasimo-
mentum is about 1.5 × 105 cm−1. One can see in Fig. 4.10 that the grating
coupler–assisted experiments allows one to follow the dispersion of the intra-
subband CDE to much larger momenta. It can also be seen that for the Q2D
quantum well, which was investigated in this experiment, the

√
q relation of

the intrasubband plasmon is fairly well fulfilled.

4.2.6 Multiple Cyclotron Resonance Excitations
in Quantum Wells

It is also of interest, in which way a magnetic field affects the behavior of
electronic excitations under different resonance conditions. In a Q2D system,
for instance, the application of a perpendicular magnetic field, B, induces
a zero–dimensional density of states. The single–particle–like intrasubband
excitations in this case are cyclotron–resonance excitations, i.e., transitions
between neighboring Landau levels. We want to focus here in particular on
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Fig. 4.10. Measured mode positions of the intrasubband CDE in samples of the
same wafer with two different grating couplers. The left panel shows a spectrum
where different peaks due to transfer of different multiples of the reciprocal grating
vector can be seen
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what happens under conditions of extreme resonance, i.e., where at B = 0
SPE dominate the spectra. Here, in experiments on quantum wells, unex-
pected multiple cyclotron resonance excitations, nh̄ωc, were found [23]. These
multiple excitations were explained to stem from a higher–order cascade–like
scattering process, where each step in the scattering process is very similar
to the TOP discussed in Sect. 4.2.1. In this last section of the introductory
part, this new scattering process shall be introduced.

Figure 4.11 shows polarized Raman spectra of a quantum–well sample
in dependence on magnetic field [23]. At B = 0 T, no excitation in the
displayed energy range is observed. For B > 0.3 T, several equally spaced
peaks occur, where their energetic positions differ by exactly h̄ωc. For Raman
shifts >22 meV, the cyclotron excitations are obscured by the much stronger
2D intersubband excitations and luminescence. It has been found that the
cyclotron resonance excitations occur in the depolarized as well as in the
polarized scattering configurations, where the observed spectra do not differ
significantly in both polarizations. This single–particle character is also em-
phasized by the observation that the excitations show strong resonant behav-
ior in the vicinity of the E0 gap. If the laser energy is well above the effective
bandgap of the quantum well, only one single cyclotron resonance peak at
h̄ωc is observed. The multiple resonances occur under conditions of extreme
resonance in a range of laser energies, where in the quantum–well samples
as well as in laterally structured samples, at B = 0 T, single–particle–like
excitations can be observed [2].

The magnetic–field dispersion of the cyclotron resonances is shown in
Fig. 4.12. The solid dots in the inset are the observed mode positions in the
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Fig. 4.12. Magnetic–field dispersion of the multiple cyclotron resonance excita-
tions. The numbers n label the number of excited cyclotron quanta [Reprinted with
permission from [23]. Copyright (1997) by the American Physical Society]

range B = 0 − 2 T. The dotted lines in Fig. 4.12 represent the calculated
cyclotron resonance dispersions nh̄ωc = nh̄ eB

m∗ , where the effective mass is m∗

=0.071 me, and n = 1, 2, 3, .... The deviation from the linear dispersion rela-
tion in the range of 0 to 10 T is about 9 % and is due to the nonparabolicity of
the GaAs bandstructure. It is emphasized that, for a fixed magnetic field, the
energy spacing between the multiple resonances is the same to an accuracy
of 1.5 %. For clarity, the dashed line in Fig. 4.12 connects the tenth point
at 1 T with the first point at 10 T. If the multiple excitations were higher
harmonics, i.e., inter–Landau–level transitions with change in Landau–level
quantum number ∆l > 1, the dashed line should be horizontal. This leads to
the conclusion that the multiple cyclotron resonances all arise from Landau–
level transitions with ∆l = 1. On the other hand, if higher–order Raman
scattering would be the reason for the observed peaks, the intensity of the
n = 2 excitation should be at least one order of magnitude less than the in-
tensity of the first cyclotron resonance peak. Obviously, this is not the case.
It has been suggested [23] that the multiple cyclotron resonances are not cre-
ated simultaneously, but in a cascade process. In one step of this process, the
photo–excited electron–hole pair is scattered via an interaction with the Fermi
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sea by creating a cyclotron–resonance excitation. The number of cyclotron
resonances created in one cascade seems to be arbitrary. Energy conservation
is provided by the almost continuous distribution of hole states in the valence
band and thus all the scattering processes can take place via real transitions.
One necessity for such cascades to occur is that the lifetime for creation of
a cyclotron resonance excitation is much shorter than the lifetime for radia-
tive recombination. Figures 4.13 (a), (b), and (c) show a schematic picture
of the proposed scattering process: In the first step (1) an electron–hole pair
or exciton is created by absorption of the incident photon. In the second step
(2), the hole is scattered into another state due to Coulomb interaction with
the Fermi sea, where during the scattering process a cyclotron resonance ex-
citation in the conduction band is created. We believe that these two steps
of the scattering process are very similar to the excitonic TOP discussed in
Sect. 4.2.1. In the third step (3) the electron recombines with the scattered
hole. The important point is that due to the almost continuous distribution
of real states in the valence band with finite magnetic field, the hole may be
scattered n times, where all intermediate states in the scattering or relax-
ation process may be real, before it recombines. During these n scattering
processes, n cyclotron resonance excitations can be created in the conduction
band by energy conservation (Fig. 4.13 (b) and (c)). In principle, the hole
can resonantly relax until it reaches the top of the valence band.

As mentioned above, at laser energies well above the bandgap, we ob-
serve only one cyclotron resonance peak. At these laser energies, also the
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Fig. 4.13. Sketch of the proposed cascade–like scattering process, where (a) one,
(b) two, or (c) three cyclotron–resonance excitations are created [Reprinted with
permission from [23]. Copyright (1997) by the American Physical Society]
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in a quantum–well sample. The inset shows polarized spectra in the range where
the anticrossing occurs

collective intrasubband plasmon can be observed. Figure 4.14 shows the mea-
sured magnetic–field dispersion of the intrasubband CDE and the cyclotron–
resonance excitation for a quantum–well sample with a carrier density of
Ns = 4 × 1011 cm−2 (same sample as in Fig. 4.8) and fixed wave–vector
transfer q. At 2ωc, a strong anticrossing due to the coupling with Bernstein
modes [25, 26] is observed. In Chap. 6 we will discuss in detail similar internal
interaction effects of electrons in Q1D quantum wires [27, 28].
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Part II

Recent Advances



5 Quantum Dots: Spectroscopy
of Artificial Atoms

5.1 Introduction

Semiconductor quantum dots are fascinating objects, since, in some respect,
they can be regarded as artificial atoms [1]. Figure 5.1 shows a very schematic
comparison of a real three–dimensional atom and a disc–shaped quantum
dot. The structure of real atoms is three–dimensional, while most of the
artificial quantum dots can be regarded as large Q2D atoms, since the lat-
eral dimensions are in most cases much larger than the vertical extension.
Of course, a crucial difference between the two systems is the shape of the
confining potentials, which, for real atoms is essentially the Coulomb poten-
tial of the nucleus, and, for quantum–dot atoms in some approximation a
two–dimensional parabolic potential. In Fig. 5.2, the resulting energy–level
structures for a Hydrogen atom and a quantum dot, containing a single
electron, are displayed schematically. Due to the reduced symmetry of the
disc–shaped dot, the degeneracy of the energy levels is smaller than in the

Fig. 5.1. Schematic comparison of a real atom (left) and a quantum–dot atom
(right) represented by a disc–shaped two–dimensional quantum dot
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Fig. 5.2. Schematic comparison of the energy–level structure of a Hydrogen atom
(left) with a quantum–dot Hydrogen atom, i.e., a quantum dot containing a single
electron

three–dimensional case. The most striking difference, however, is that in a
semiconductor quantum dot, both, the level structure and the order number,
i.e., the number of electrons in the quasiatom, is tunable to some extend.
Furthermore, the quantization energy is in a quantum dot of the same order
of magnitude as the electron–electron Coulomb interaction, in contrast to
real atoms, where the quantization is typically much larger. From this one
can expect in quantum dots an interesting interplay between quantization–
and Coulomb interaction–induced effects, as will be discussed later.

In this chapter we will see that in these well–defined quantum–mechanical
structures, e.g., parity selection rules for inelastic light scattering and the ex-
clusion principle between far–infrared (FIR) and inelastic light scattering
spectroscopy, as generally discussed in the first part of this book, can be
nicely studied. Historically, electronic excitations in lithographically–defined
quantum dots were studied first by FIR transmission spectroscopy, starting in
1988 [2, 3, 4, 5, 6, 7, 8]. In the following years, also resonant Raman scattering,
i.e., inelastic light scattering, was successfully applied to study the spectrum
of elementary excitations of these systems [9, 10, 11, 12, 13]. As introduced in
the first part, for quantum wells it is well known that besides collective spin–
density (SDE) and charge–density excitations (CDE) one can observe nearly
unrenormalized excitations – so called single–particle excitations (SPE) – in
inelastic light scattering experiments. Both, SDE and CDE are collective ex-
citations, where SDE are affected by exchange interaction and CDE by the
full Coulomb interaction of the electrons. However, the origin of the SPE’s,
which seem to be unaffected by the particle–particle interaction, has posed
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a puzzle. In an experimental work, it was shown that the SPE’s can also be
observed in quantum wires and quantum dots under conditions of extreme
resonance, when the laser energy is close to the fundamental bandgap of the
structures [11]. Then, the SPE’s are created in a resonant density–fluctuation
scattering process [14, 15], whereas the collective SDE and CDE are due
to an excitonic third–order scattering process [11, 16, 17] (see discussion in
Chap. 4 and Sect. 5.3). In this chapter we will see that – at least for quantum
dots – the SPE’s are actually collective excitations: SDE’s and CDE’s. How-
ever, the many–particle interaction effects partly cancel under specific condi-
tions so that the energies are close to single–particle energies of a noninter-
acting system.

Most of the available theories of nonresonant Raman scattering on quan-
tum dots accurately describe the energetic positions of the collective excita-
tions as well as the wave–vector and magnetic–field dependence of the CDE
and SDE [18, 19, 20, 21]. However, they fail in predicting the experimentally
observed relative strengths of the different modes. Furthermore, the occur-
rence of SPE cannot be explained within these theories. It has been known
for a long time that for a correct treatment of the resonant scattering cross
section, valence–band states play a crucial role [22, 23]. More recent theoret-
ical papers on quantum wires [15, 24, 25] and quantum dots [26] showed that
the inclusion of the valence–band states indeed changes the intensities of the
excitations significantly. This is one of the topics, which will be addressed in
detail in Sect. 5.3.

The lithographically–defined quantum dots – mostly prepared on GaAs–
AlGaAs heterostructures or quantum wells – have lateral dimensions on the
order of 100 nm and relatively large electron numbers. Thus, they can be
regarded as mesoscopic dots – kind of in between a two–dimensional and a
zero–dimensional system. During the late 1990’s, self–assembled InAs quan-
tum dots (SAQD) came up and have proven to be highly interesting quantum
structures both from a technological as well as from a fundamental physics
point of view (see Sect. 2.5.3). They exhibit relatively large quantization en-
ergies in the range of about 50 meV, in contrast to the quantization energies
in lithographically–defined structures, which are typically about one order of
magnitude smaller. In most experiments reported so far, SAQD have been
investigated by optical spectroscopy, in particular photoluminescence (PL).
Nowadays, PL experiments on single dots are well established, which over-
come the inhomogeneously broadened linewidths in typical ensemble mea-
surements [27]. It has also been demonstrated that it is possible to charge
SAQD with single electrons [28] by application of external gate structures.
So far, there are only two reports in literature about inelastic light scatter-
ing experiments on electronic excitations in InGaAs SAQD [29, 30]. Later
in this chapter, inelastic light scattering experiments on collective CDE’s in
InAs SAQD with tunable electron numbers, N , will be described. In these
experiments, N could be controlled between N = 1 . . . 6 [30].
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Fig. 5.3. (a) Scanning electron micrograph of deep-etched GaAs-AlGaAs quantum
dots. The white dashed lines mark one of the dots. The long dashes indicate the
active electron layer. (b) Transmission electron micrograph of an InAs quantum
dot. The white dashed lines mark the borders of the InAs island [with permission
of S. Mendach]. (c) Schematic band structure of an InAs SAQD sample with a
two-dimensional electron system (2DES) as a back contact

5.2 Semiconductor Quantum Dots

5.2.1 Preparation of Quantum Dots

The vast majority of inelastic light scattering experiments on electronic
excitations in quantum dots have been performed on modulation–doped
GaAs–AlGaAs structures. Figure 1a shows a scanning electron micrograph
of lithographically–defined, deep–etched quantum dots (see also Sect. 2.5).
Typical lateral sizes of these structures are on the order of several hundred
nanometers. In many cases, Q2D electron systems, realized in modulation–
doped single quantum wells (cf. Sects. 2.3 and 2.4), are used as a starting
material. In Fig. 5.3a, the location of such a 25–nm–wide quantum well is in-
dicated by thick dashed lines. By a reactive–ion etching process (Sect. 2.5.2),
the pillar–shaped quantum dots were defined. Typically, such deep–etched
structures contain electron numbers on the order of several hundreds. An
alternative and very effective way to produce quasi zero–dimensional semi-
conductor structures is the so-called self–assembled growth of InAs quantum
dots (see Sect. 2.5.3). Here, the lattice mismatch between GaAs, which is used
as the starting material, and InAs is exploited. The minimization of strain en-
ergy leads to the formation of small InAs islands, if InAs is grown on a GaAs
surface. In contrast to the etched structures, the typical lateral sizes of these
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islands are on the order of only a few tens of nanometers. Therefore, they
exhibit much larger quantization energies. Figure 5.3b displays a transmis-
sion electron micrograph of an InAs quantum dot, embedded in GaAs. The
interfaces between the InAs dot and the surrounding GaAs are indicated by
a white dashed line. It has been shown that electrons can be filled into these
quantum boxes either by modulation doping [29] or by application of external
gates [28]. With the application of gates, it is even possible to fill in single
electrons in a very controlled way. Figure 5.3c shows a schematic picture of
the band structure of an InAs SAQD sample, as used in [30]. There, an in-
verted modulation–doped AlGaAs–GaAs structure serves as a back contact.
By application of a voltage between the back contact and a metallic front
gate, the dots can be charged with single electrons, which then tunnel from
the 2DES to the dots.

5.2.2 Electronic Ground State and Excitations

Macroscopic Picture

In this section, the ground state and the phenomenology of electronic elemen-
tary excitations in quantum dots will be discussed qualitatively. In the etched
GaAs dots as well as in the InAs SAQD [31], the lateral external confining
potential, which acts on a test electron inside the dot, is to a good approxi-
mation a two–dimensional harmonic–oscillator potential. In the deep–etched
samples, the potential is determined by the homogeneously distributed ion-
ized remote donors in the AlGaAs barrier, and negatively–charged surface
states (see Fig. 5.4). By analytical calculations one can show that this lateral
potential is in x and y direction (lateral directions) in good approximation
parabolic [32]. We will therefore start our investigations by assuming that the
corresponding single–particle energies of an electron in the conduction band

Fig. 5.4. Schematic cross section of a deep–etched GaAs–AlGaAs quantum dot.
Negatively–charged surface states and ionized donors are indicated. Both charge
distributions act on the test electron inside the GaAs layer
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Fig. 5.5. (a) Schematic picture of the lateral potential of a quantum dot. (b)
Energy levels of a quantum dot with parabolic potential. The dashed arrows indicate
two possible excitations of single electrons

are given by the eigenvalues of a two–dimensional harmonic oscillator

Enm = h̄Ω0 (2n + |m| + 1) = Nh̄Ω0 . (5.1)

Here, the two relevant quantum numbers are the radial quantum number
n = 0, 1, 2, ... and the azimuthal or angular–momentum quantum number
m = 0,±1,±2, . . .. We define a lateral quantum number N = (2n + |m|+ 1),
which characterizes the 2N -fold degenerate discrete levels, as sketched in
Fig. 5.5a. Of course, the presence of many other electrons in the sample leads
to a screening of the potential, which acts on the test electron. Theoretically,
this is described, e.g., in a self–consistent Hartree calculation of the ground
state (see Sect. 2.6). Thus, the effective lateral potential is flattened in the
center of the dot, i.e., it gets more and more square–well–like. This results,
in a mean field approach, in a decrease of the single–particle level spacings
and to a lifting of degeneracies1 For simplicity, we stay for the moment in
the simple picture, where we assume that also the effective, or Hartree, po-
tential is parabolic, which is a good approximation for the ground state of
dots with very small electron numbers, only. In such a single–particle picture,
the electronic excitations, which can be created in the inelastic light scatter-
ing process, are transitions of electrons from occupied to unoccupied levels,
as, e.g., sketched in Fig. 5.5b. In Fig. 5.5b the energy levels for a parabolic
quantum dot, which contains six electrons, is shown more detailed. The cor-
responding radial and angular–momentum quantum numbers are indicated.
The vertical dashed arrow symbolizes an excitation, where the radial quan-
tum number, n, is increased by 1, while the angular–momentum quantum
number, m, is unchanged. The curved arrow, on the other hand, indicates
a transition, where ∆m = 1, and ∆n = 0. Of course, in a real interacting
system, the electronic excitations will be collective excitations, CDE’s and

1 This effect will be considered on a quantum–mechanical level in detail for quan-
tum dots in Sect. 5.3.4.
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SDE’s, which are affected by Coulomb interaction. We will discuss the cor-
rect quantum–mechanical modelling of these collective excitations in quan-
tum dots later, in Sects. 5.3.3, 5.3.4, and 5.4.3. Here, the aim is to introduce
the important features in a qualitative model.

For large electron numbers, on the order of one hundred or more, it is
instructive to leave the quasiatomistic picture described above for a while,
and discuss the electronic excitations in terms of plasma oscillations of the
electrons, to take account of the Coulomb interaction. For CDE’s, in that
case, some of the excitations are also called confined plasmons. For all follow-
ing considerations, we assume that the external potential is parabolic. How
can we imagine in such a system CDE’s and SDE’s? In Fig. 5.6 we make the
attempt to visualize the lowest–energy CDE’s and SDE’s in a mesoscopic dot.
The discs should indicate the lateral dot. Let us start with CDE’s (plasmons).
The lowest–energy CDE is a plasma oscillation where all electrons oscillate in
phase in the quantum dot back and forth, independent of their spin directions.
This situation is, for a fixed time, schematically shown in Fig. 5.6a, where a
dark color should indicate a large induced electron density (due to an external
time–dependent perturbation, as discussed in Sect. 3.3.1). White indicates an
induced positive charge distribution. Hence, the induced electron density has
in this case one node. Obviously, this excitation has a large dipole moment.
It is also called the first confined plasmon or Kohn’s mode, since for the case

Fig. 5.6. Schematic drawings of the electron-density distributions for low–energy
CDE’s [(a)–(c)] and SDE’s [(d)–(f)] in a disc–shaped two–dimensional quantum
dot
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of a parabolic external potential its energy equals exactly the quantization
energy of the external potential and the energy of the lowest–energy dipole
excitation is independent of the number of electrons, N , in the dot. This fact
is known as the so called generalized Kohn’s theorem [1]. The dipole excita-
tion is characterized by a change of ∆M = 1 of the total angular–momentum
quantum number M , i.e., the angular momentum of the N–electron system.
This will become more clear when we discuss the microscopic picture below.
The CDE’s with next higher energies are the quadrupole excitation corre-
sponding to ∆M = 2 (see Fig. 5.6b), and the monopole excitation with a
change in total angular momentum of ∆M = 0 (see Fig. 5.6c). This mode is
also called a breathing mode due to the laterally symmetric oscillation of the
induced charge density. The next higher excitation would again be a dipole
excitation (not shown here), which is in addition accompanied by a change in
the radial quantum number n. In all CDE’s, the electrons with spin up and
spin down oscillate in phase against the positively–charged background. This
is schematically indicated in Fig. 5.6 by the white arrows. This means that
the CDE’s are strongly affected by the direct part of the Coulomb interaction,
which results in a blueshift of the excitations. In contrast, in the correspond-
ing SDE’s, the electrons with spin up and spin down oscillate with a pase shift
of π. For the spin–dipole excitation (see Fig. 5.7d), for example, this means
that the center of mass of the charge does not oscillate. Thus, the energies
of the SDE’s are renormalized by exchange–correlation interaction, only, and
are therefore redshifted. Figures 5.6e and 5.6f show the spin quadrupole and
spin monopole SDE’s, respectively. As introduced in Sect. 4.2.3, in experi-
ments on Zincblende semiconductors, SDE’s and CDE’s can be distinguished
by polarization selection rules [33]: CDE’s are observed if the polarizations of
the incoming and scattered light are parallel to each other (polarized geome-
try), and, for SDE’s the polarizations have to be perpendicular (depolarized
geometry).

Microscopic Picture

In the following we want to discuss how this macroscopic picture translates
into the quasiatomistic one, which we introduced at the beginning. This
makes sense for small electron numbers, only, otherwise it would be too com-
plicated. The simplest interacting system one can think of, is a quantum dot
with two electrons. In Figs. 5.7d, 5.7e, and 5.7f, the dipole, quadrupole, and
monopole CDE’s, respectively, are schematically shown for a two–electron
quantum dot. More precisely, Figs. 5.7d–5.7f display pictorially the occu-
pation of the Slater determinants, which predominantly contribute to the
two–particle wavefunctions of the corresponding excited states. The exact
many–particle wavefunction can always be written as an infinite series of
single–particle Slater determinants. The ground state of a two–electron dot
has a total angular momentum of M = 0, since both electrons occupy the
s level with single–particle quantum number m = 0. From Fig. 5.7 one can
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M = 2:




Fig. 5.7. Schematic drawings of the electron–density distributions for different con-
fined plasmon modes [(a)–(c)]. Microscopic picture for the excitations of a parabolic
quantum dot with two electrons [(d)–(f)]

see that for the dipole excitation the angular momentum of the excited state
is M = 1, for the quadrupole excitation, M = 2, and, for the monopole
excitation, M = 0. For the CDE’s, as displayed in Fig. 5.7, the spin is pre-
served during the excitation (S = Sz = 0). For the excitation of SDE’s, which
are triplet excitations, S = 1, and Sz can take on values 1, -1, and 0. This
means that spinflip transitions of electrons are involved in the SDE’s. For zero
magnetic field, B = 0, the three triplet excitations with Sz = 0,±1, corre-
sponding to the same excitation type (e.g., spin dipole, spin monopole, etc.),
are energetically degenerate. As already mentioned, we expect the SDE’s to
have lower energies than the corresponding CDE’s, since they feel no direct
Coulomb interaction. As introduced in the first part in Sect. 4.2.3, the possi-
bility to excite SDE’s is a speciality of resonant inelastic light scattering. The
observation of SDE’s depends crucially on resonant scattering conditions.

5.3 GaAs–AlGaAs Deep-Etched Quantum Dots

In this chapter we are going to discuss inelastic light scattering experiments
on modulation–doped GaAs–AlGaAs dots. In particular, in the first section
we will investigate parity selection rules of collective excitations and the im-
portance of resonant excitation for a correct theoretical description of the
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scattering process. In the second section, fine–structure effects in the spec-
trum of SDE’s will be presented. The important role of resonant scattering
conditions for the excitation of single–particle–like excitations will be em-
phasized in the third section by experimental examples and a theoretical
modeling.

5.3.1 Parity Selection Rules in Quantum Dots

Figure 5.8 shows experimental inelastic light scattering spectra of quantum
dots with approximately 200 electrons per dot [36]. In these experiments in
backscattering geometry, the wave–vector transfer q, parallel to the plane of
the dots, was close to zero. In each scattering configuration, depolarized and
polarized, there is one mode visible. First of all, it is surprising that for an
electron number as large as 200, the spectrum consists of only two active
modes. On general grounds one can say that in a symmetric system the al-
lowed modes have even parity since the inelastic light scattering process is a
two–photon process (see Sect. 4.2.4). This is in contrast to direct absorption
which is a one–photon process. Consequently, we can infer that the observed
SDE and CDE are even–parity modes. Referring to the previous section, we
conclude that the lowest–energy modes with even parity are the monopole
modes with ∆M = 0. The modes in Fig. 5.8 are labeled (∆n,∆m) corre-
sponding, respectively, to the changes in radial (n) and angular–momentum
(m) quantum numbers of the involved single–particle transitions. The assign-
ment of the modes is confirmed by experiments in a magnetic field, which will
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Fig. 5.8. Polarized and depolarized inelastic light scattering spectra of 240 nm
GaAs–AlGaAs quantum dots with approximately 200 electrons per dot. The spectra
were taken at T = 12 K [Reprinted from [36]. Copyright (2001), with permission
from Elsevier]
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be discussed in the following section. We want to note here that the polar-
ized spectrum demonstrates the exclusion principle between FIR and Raman
spectroscopy: the FIR–allowed mode CDE(0,1), the Kohn’s mode, has odd
parity and hence a large dipole moment (see previous section). It has for the
sample displayed in Fig. 5.8 an energy of about 6 meV and is not visible at
all in the Raman spectrum (see Fig. 5.8). On the other hand, the Raman–
allowed monopole mode, CDE(1,0), has no dipole moment at all. Since the
induced density of this mode has only nodes in radial direction [see Fig. 5.7c],
it can also be regarded as a so called breathing mode, as already noted. So,
the experiments demonstrate that for resonant inelastic light scattering on
circularly–symmetric dots at approximately zero wave–vector transfer, the
general parity selection rules hold.

In the following we want to elucidate these parity selection rules from
a theoretical point of view in some more detail. Most of the calculations of
inelastic light scattering spectra for low–dimensional electron systems have
been carried out for nonresonant conditions, because in that case one does not
have to deal with the complex valence–band states. Of course, this is a dras-
tic simplification. Figure 5.9 shows a series of calculated resonant inelastic
light scattering spectra for off–resonance and for different resonance condi-
tions [36]. The RPA calculations were performed for a 30–electron quantum
dot with h̄Ω0 = 8 meV for the external parabolic potential2. In Fig. 5.9a,
the laser energy was chosen to be far away from resonance, i.e., off–resonance
conditions. Under experimental conditions, in this regime the scattered inten-
sities are far too low to be observable. Note that the calculated spectrum in
Fig. 5.9a is multiplied by a factor of 4000 in order to be of comparable strength
with the resonant spectrum in Fig. 5.9c. One can see from Fig. 5.9a that in
the off–resonance case the parity selection rules have completely changed: For
curiosity, the FIR–allowed Kohn’s mode, CDE(0,1), is the dominant mode! As
the laser energy approaches resonance, the situation changes, and, under res-
onance conditions (Fig. 5.9c), the experimentally observed parity selection
rules are confirmed, i.e., the monopole mode CDE(1,0) is the dominant mode
in the polarized spectrum. This clearly demonstrates that for a correct de-
scription of the relative intensities of the excitations, the resonant scattering
process is crucial.

An at least partial breakdown of the parity selection rules can be achieved
by the transfer of a finite wave vector q parallel to the plane of the dot.
Figure 5.10 shows a series of depolarized and polarized spectra for the
same dots as in Fig. 5.8 for different wave–vector transfer q. As q increases,
symmetry–forbidden modes [the spin dipole mode, SDE(0,1), and a higher
dipole mode, CDE(1,1)] gain relative intensity. Furthermore, the spin quadru-
pole mode, SDE(0,2), which for a parabolic effective potential would be en-
ergetically degenerate with the spin monopole mode, SDE(1,0), if interaction
effects are neglected, becomes visible [12]. A so far unsolved puzzle is, why

2 For more details about the calculation, see Sect. 5.3.3 and [26].
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the violation of parity selection rules with wave–vector transfer q is much
stronger for the SDE’s than for the CDE’s.

5.3.2 Fine Structure in Quantum Dots

In Chap. 5.2.2 we have introduced the collective excitations of quantum dots
with large electron numbers in a qualitative macroscopic picture, and after-
wards traced the resulting confined electron–density waves back to an atom-
istic picture, considering a 2–electron dot. However, even for large electron
numbers, the mesoscopic artificial atom should in analogy to real 3D atoms be
characterized by electronic shells and distinct quasiatomic orbitals. We have
already used this assumption to label the excitations in Fig. 5.10. In order to
justify this assignment and to highlight the internal structure, we have done
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Fig. 5.10. (a) Depolarized, and (b) polarized inelastic light scattering spectra of
GaAs quantum dots for different wave–vector transfer q, at a temperature of T = 12
K. The depolarized spectra in (a) were recorded at a laser energy EL = 1600.7 meV,
the spectrum marked with (∗) at EL = 1601.3 meV [Reprinted with permission from
[12]. Copyright (1998) the American Physical Society]

careful further analysis of the wave–vector and especially also magnetic–field
dependence of the observed excitations [12, 14].

As discussed above, Fig. 5.10 shows depolarized (Fig. 5.10a) and polar-
ized (Fig. 5.10b) spectra for different wave–vector transfer q, which were
recorded at a laser energy where dominantly collective excitations are ex-
cited due to the TOP. Without proof, we have in the previous section labeled
these excitations by the change in lateral quantum numbers of single–particle
transitions, which dominantly contribute to the collective excitations. In this
section we will now try to justify these assignments. Let us start by collect-
ing some relevant experimental facts, which we can extract from Fig. 5.10.
We see that the SDE(0,2) occurs as an additional peak at the low–energy
side of the SDE(1,0) for large q. This additional peak can be resonantly en-
hanced by slightly changing the laser frequency (spectrum with an asterisk
in Fig. 5.10a). We emphasize that the SDE(0,1), SDE(1,0) and SDE(0,2) have
essentially the same linewidths (≈ 0.5 meV) whereas the highest–energy peak
in Fig. 5.10a has more than twice the linewidth, which means that it probably
represents a superposition of two or more excitations, which are not individu-
ally resolved. Furthermore, we can see in Fig. 5.10a that the additional peak,
SDE(0,2), has almost exactly twice the energy of the SDE(0,1).



100 5 Quantum Dots: Spectroscopy of Artificial Atoms

0

2

4

6

8

10

p p

d

d

d d
p p

s

s

42 electr.
B = 0.5 T

42 electr.
B = 0 T

Ω
 /

 Ω
0

m
-8 -4 0 4 8

f f

(a)

-12 -8 -4 0 4 8
0

2

4

6

8

10

(b)

Ω
 /

 Ω
0

m

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d)

(1,-1)

(1,1)

B (T)

(1,0)

(0,-1)

(0,1)
Ω

 /
 Ω

0

-8 -4 0 4 8

0

5

10

15

20

f f
d d

p p

p p
s
sB = 0 T (c)

Ω
 /

 ω
0

m

Fig. 5.11. Calculated energies for (a) a quantum dot with parabolic effective po-
tential without and (b) with external magnetic field. (c) calculated energies in a
dot with cylindrical symmetry and hard walls. (d) single–particle transition ener-
gies for a parabolic quantum dot with external magnetic field. The solid lines mark
the experimentally observed transitions, the dashed lines give the forbidden next
higher transitions. For the two dashed lines starting at Ω/Ω0 = 1 the correspond-
ing transitions are (−1,±3) and (2,±3), for the dashed lines starting at Ω/Ω0 = 2,
(0,±2) and (2,±2). In a hard–wall potential, the (0,±2) and (2,±2) are shifted
to lower energies, which results in a fine structure. Ω0 is the quantization energy
of the parabolic potential. ω0 = h̄/(2m∗)(π/a)2 characterizes the hard–wall poten-
tial, where a is the dot diameter in that case [Reprinted with permission from [12].
Copyright (1998) by the American Physical Society]

In order to learn something about the internal structure of these exci-
tations in the quasiatomic system, we analyze our observations in a simple
model: As we have learned from the investigations in Sect. 3.3, exchange–
correlation effects are expected to be small in our structures so that we
can neglect for a moment many–particle interactions and treat the SDE’s
as simple single–particle transitions. As a first approach, we also start with a
two–dimensional parabolic potential for the effective lateral potential of our
quantum dot. The eigenenergies of this two–dimensional harmonic oscilla-
tor were given in (5.1). The corresponding energy spectrum is displayed in
Fig. 5.11a. Each filled square in Fig. 5.11 represents an allowed energy state,
which can be occupied by two electrons due to spin degeneracy. Here we have
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Fig. 5.12. Sketch of the classical electron orbits in a quantum dot with parabolic
lateral potential

considered, for simplicity, 42 electrons per dot, which makes no qualitative
difference in the interpretation. The solid lines connect points which belong
to the same radial quantum number n, where n = 0, 1, 2, . . . rises from the
bottom to the top. All points which can be connected by a horizontal line in
Fig. 5.11a belong to the same lateral quantum number N = (2n + |m| + 1)
and represent the 2N–fold degenerate discrete levels of the dot. Some states
are marked with ′s′, ′p′, etc., to indicate the character of the quasiatomic
orbitals as, e.g., quasi–s or quasi–p orbitals. Actually, these orbitals have not
the same symmetry as orbitals of real atoms, therefore we call them quasi.
In a classical picture, the electrons with finite angular–momentum quantum
number m move on circular orbits within the dot, where the radius R is
proportional to the square root of |m| as shown in the left part of Fig. 5.12.
With increasing radial quantum number n, the set of orbits increases in en-
ergy as can be seen in the right part of Fig. 5.12. The circular movement of
the electrons represents a current which produces a magnetic moment M ,
perpendicular to the plane in which the current flows. This magnetic moment
can have different directions depending on the sign of the quantum number
m. If we now apply a magnetic field, B, perpendicular to the x–y–plane, B
can be oriented either parallel or antiparallel to M . This has as a consequence
that states with M parallel to B decrease in energy, while states with M
antiparallel to B increase in energy. This is shown in Fig. 5.11b, where a
finite magnetic field has been considered. In general, the energy spectrum in
a parabolic quantum dot in dependence on a perpendicular magnetic field is
given by [37]

Emn(B) = (2n + |m| + 1) h̄

√
Ω2

0 +
(ωc

2

)2

+ mh̄
ωc

2
, (5.2)

where ωc = eB/m∗ is the cyclotron resonance frequency. Within the model
described so far, the lowest–energy SDE – SDE(0,1) – consists of transi-
tions from the highest occupied to the first unoccupied level of the dot, i.e.,
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Fig. 5.13. Magnetic field dispersions of the observed modes in a quantum dot
sample. In the left panel spectra of SDE’s and CDE’s for B = 0 are displayed. The
spectrum of SPE’s was recorded at a laser energy EL = 1561 meV under conditions
of extreme resonance. The spectra of SDE’s and CDE’s were taken at EL = 1587
meV. The numbers in the brackets, (∆n, ∆m), give the changes in radial (∆n) and
azimuthal (∆m) quantum numbers for the observed transitions [Reprinted with
permission from [12]. Copyright (1998) by the American Physical Society]

∆N = 1. In principle, several of such transitions are possible with different
changes in radial and azimuthal quantum numbers. In Fig. 5.11a only some
transitions with (∆n = 0,∆m = ±1) and (∆n = 1,∆m = ±1) are indicated
by solid arrows. We claim that only these transitions predominantly con-
tribute to the observed SDE(0,1). This can be deduced from magnetic–field
dependent measurements: Fig. 5.13 displays the magnetic–field dependence
of the SDE’s (solid symbols) and the CDE’s (open symbols). In the left panel
of Fig. 5.13, characteristic spectra of SDE’s and CDE’s, at B = 0 and large
wave–vector transfer q, are displayed for illustration. For comparison, we have
also included a spectrum, which is dominated by SPE’s under conditions of
extreme resonance (see following Sect. 5.3.3), where in this spectrum we have
substracted a hot–luminescence background. We find that in a magnetic field
the usual polarization selection rules for plasmons are weakened. Excitations
which are most prominent in polarized geometry are marked by squares, and
excitations which are dominant in depolarized configuration are marked by
triangles. We want to concentrate here on the SDE’s because the behav-
ior of the CDE’s is well known from FIR transmission experiments [38]. In
Fig. 5.13 we can see that the SDE(0,1) mode splits with finite magnetic field.
If we compare this splitting with the expected splitting of the transitions
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(∆n = 0,∆m = ±1) and (∆n = 1,∆m = ±1), calculated with (5.2) (see
Fig. 5.11d), this gives the correct result. Also the dotted lines starting at
E = 2 meV and B = 0 in Fig. 5.13 are calculated with (5.2) for the above
given (∆n,∆m). Transitions with ∆m ≥ 2 would result in larger splittings
(see, e.g., dashed lines in Fig. 5.11d), which are experimentally not observed.
Therefore, this confirms the spin–monopole character of this lowest–energy
mode. Within this parabolic model, the splitting between the two branches
with ∆n, |∆m| ≤ 1 is exactly ωc. The slight deviation of the upper branch
from the theoretical curve can be due to a nonparabolicity of the effective
potential or to the remaining collective character of the SDE’s. The collective
nature of the SDE’s furthermore manifests itself in the vanishing of the exci-
tations at relatively small B. This is an effect of Landau damping: At finite
B, all degeneracies are lifted and a wealth of single–particle lines cross the
energies of the SDE’s so that they get Landau damped. For illustration, the
forbidden next higher transitions are displayed in Fig. 5.11d (dashed lines).

Also for the SDE(1,0), in principle several energetically degenerate tran-
sitions with different (∆n,∆m) are possible as can be seen in Fig. 5.11a.
The experiments show neither a splitting nor a shift with magnetic field
(Fig. 5.13). Among all possible transitions, only transitions with (∆n =
1,∆m = 0), as indicated by dotted arrows in Fig. 5.11a, show such char-
acteristics (see also Fig. 5.11d). Transitions with |∆m| ≥ 2 would exhibit
splittings ≥ 2ωc (see also dotted lines in Fig. 5.11d). This verifies that this
mode is a spin monopole mode. In these experiments, the wave–vector trans-
fer was restricted to q ≈ 0.8×105 cm−1 [12]. At this relatively small q, we can
not follow all peaks, especially the SPE’s and the additional peak, SDE(0,2),
in the spectrum of SDE’s, in a magnetic field. Nevertheless, from the energetic
position of the additional peak, which lies below the position of the SDE(1,0),
we can deduce that it consists of transitions with ∆n = 0, 2 and ∆m = ±2, al-
though these transitions are in a parabolic potential energetically degenerate
with the transitions with ∆n = 1 and ∆m = 0 (dashed arrows in Fig. 5.11a):
From geometrical considerations we can estimate about 200 electrons per
dot in our structures. At this relatively large number of electrons screening
is important and the real effective potential would certainly deviate from a
parabolic shape (cf. Sect. 5.3.4). As an extreme limit we have calculated the
eigenenergies for a square–well potential with cylindrical symmetry. The real
dot potential should be in between these limits. The corresponding energy
spectrum is shown in Fig. 5.11c. Indeed, from Fig. 5.11c we can see that tran-
sitions with |∆m| = 2 (solid arrows) have lower energies than transitions with
(∆n = 1,∆m = 0) (dotted arrows). Furthermore, transitions with |∆m| = 2
have almost exactly twice the energy of transitions with |∆m| = 1, if we move
along lines with constant n in Fig. 5.11d. This is observed in the experiment
as can be seen in Fig. 5.10a, and verifies that the additional mode below the
spin monopole mode is a spin quadrupole excitation.
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Concluding this section, investigations with applied magnetic field and
varying wave–vector transfer q allowed us to identify transitions between
different electronic shells of the quasiatomic systems, which predominantly
contribute to the observed low–energy SDE’s. We find that these excitations
are formed by transitions with ∆n, |∆m| ≤ 1 (spin–dipole and spin–monopole
excitations), whereas transitions with |∆m| = 2 (spin–quadrupole excitation)
can only be observed at relatively large q and form a fine structure [12, 14].

5.3.3 The Important Role of Extreme Resonance

Experimental Evidence for Single–Particle Excitations

The collective excitations described so far obey the well–known polarization
selection rules, i.e., CDE’s appear in polarized, and SDE appear in depolar-
ized spectra. In our experiments on low–dimensional electron systems [11] we
found that under conditions of extreme resonance, when the laser energy is
close to the fundamental band gap, excitations appear which show stronger
resonance enhancements than the collective excitations and which appear in
both polarization configurations (cf. Sect. 4.2.1 for experiments on quantum
wells). In quantum wells, such excitations, which were interpreted as SPE’s,
were first observed by Pinczuk et al. [39]. In the next section we will try to
highlight the character of such excitations, which seem to have very small
energy renormalizations due to Coulomb interaction, in quasiatomic systems
from a theoretical point of view in more detail. Here, we want to elucidate
first the experimentally observed behavior.

In Fig. 6.5, experimental spectra are shown for different laser energies EL.
For EL well above the fundamental bandgap (EL = 1587 meV), the collec-
tive SDE’s and CDE’s can be observed. As mentioned before, these spectra
obey the well–known polarization selection rules. As the laser energy is tuned
towards the fundamental bandgap, excitations labeled SPE’s appear, which
are visible in both scattering geometries. From the energy shifts between the
excitations, the relative strengths of the many-particle interactions can be
derived [11]. In the following we want to compare this experimental finding
qualitatively to resonant TDLDA calculations.

Theoretical Modeling

For the calculations [26] we assume an external parabolic potential, as written
in (5.1) on page 92. A very important point is that due to the circular sym-
metry of the dot, contributions to excitations with different ∆m completely
separate [26] and an excitation is determined by a distinct ∆m. Vice versa, ex-
citations with different ∆m can be calculated separately. Since there is more
than one electron inside a dot, the external potential is partially screened
and hence the effective potential is not parabolic. We start our calculations
by determining the ground state of the many–electron dot by solving the
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Fig. 5.14. Experimental polarized and depolarized Raman spectra for different
laser energies EL in a quantum-dot sample with about 200 electrons per dot. The
temperature was T = 12 K

Kohn–Sham Hamiltonian (see Sects. 2.4.2 and 2.6) self–consistently. The ra-
dial part reads

H = − h̄2

2m∗

(
1
r

d

dr
+

d

dr2
− m2

r2
+ Vext(r) + VH(r) + VXC(r)

)
, (5.3)

where m∗ = 0.07 m0 is the effective mass of GaAs, Vext(r) is the external
parabolic potential, VH(r) is the self–consistent Hartree potential, and VXC(r)
is the LDA exchange–correlation potential. Details of the calculations can be
found elsewhere [26]. The nonparabolic effective potential, Vext(r) + VH(r) +
VXC(r), results in a lifting of degeneracies of the energy eigenvalues compared
to the 2D harmonic oscillator. As an example, the allowed energy eigenvalues
for a dot with 12 electrons, i.e., three completely filled quasiatomic shells,
and h̄Ω0 = 6 meV for the external potential are shown in Figs. 5.15b and c.
Due to spin degeneracy, two electrons can occupy an allowed energy state.
In Fig. 5.15b, transitions between single–particle levels with (∆n,∆m) =
(0, 1) are indicated, and, in Fig. 5.15c, transitions with (1, 0) are shown.
From the previous section we remember that the transitions (0, 1) form the
collective dipole modes, and the transitions (1, 0) the monopole modes. Due to
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Fig. 5.15. (a) Schematic drawing of the conduction–band and valence band po-
tentials and energy levels in a quantum dot. (b), (c): Self–consistently calculated
energy states in a quantum dot with 12 electrons. (b) shows FIR–allowed ∆m = 1
transitions (Kohn mode), (c) Raman–allowed ∆m = 0 transitions

the mentioned lifting of degeneracies, all displayed single–particle transition
energies are nondegenerate.

As demonstrated before, the experimental experience shows that in most
cases electronic excitations in low–dimensional semiconductor structures can
be observed only under specific interband resonance conditions. This means
that the valence–band states play a crucial role in the scattering process.
We have modeled resonant Raman spectra by including the valence band
[26]. To do so, we have calculated, as a first step, the quantized states of
the heavy–hole band. Heavy–hole–light–hole mixing is neglected, for simplic-
ity. The energy states and self–consistent potentials are shown schematically
in Fig. 5.15a. According to [23], the Raman cross section is given by the
imaginary part of a generalized correlation function (see also Sect. 4.2.2)

d2σ

dΩdω
∝ −� i

h̄

∫ ∞

−∞
dtθ(t) exp(iωt)〈

[
N†(t), N(0)

]
〉 . (5.4)

h̄ω is the energy of the elementary excitation, and N is the generalized pair
operator (cf. (4.25) on page 69)

N =
∑
α,β

γαβc†βcα . (5.5)

c†β and cα are, respectively, creation and annihilation operators of single–
particle states in the conduction band. When the laser energy is close to the
resonance, the scattering amplitudes are given by (cf. (4.26) on page 69)
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Fig. 5.16. Calculated resonant inelastic light scattering spectra for a 12–electron
quantum dot. The solid and dashed lines are the depolarized and polarized spec-
tra, respectively. The gray–shaded area marks the region of (1, 0) single–particle
transitions

γαβ =
1

m0

∑
β′

〈α|eI p eikIr |β′〉〈β′|p eS eikSr |β〉
Eα − Eβ′ − h̄ωI − iη

, (5.6)

where Eα and Eβ′ are single–particle energies of states in the conduction band
and the valence band, respectively. eI (eS) and kI (kS) are the polarization
vectors and wave vectors of the incoming (scattered) light, p is the momentum
operator, and |β′〉 denotes a state in the valence band. With this formalism
we have calculated resonant Raman spectra for quantum dots with up to 30
electrons [26]. The electron numbers in the experimental structures, which
were discussed in the previous section, are on the order of 100, so we certainly
can not quantitatively compare the results.

In Fig. 5.16, calculated spectra for a 12–electron quantum dot with
h̄Ω0 = 6 meV, and EI −EG = 12 meV, i.e., a laser energy very close to the
fundamental bandgap EG, are shown. We want to note again that these are
just model calculations, since we have considered only one heavy–hole band
and neglected heavy–light–hole mixing. In Fig. 5.16 we have calculated the
Raman–allowed (1, 0) modes. There are three CDE and three SDE collec-
tive modes for these strong–resonance conditions. All excitations consist of
coupled (1, 0) transitions. As can be seen from Fig. 5.15c, for a 12–electron
dot with three completely filled shells, there are three energetically differ-
ent (1, 0) transitions (the vertical arrows drawn in Fig. 5.15c). This results in
three charge–density and three spin–density modes for polarized and depolar-
ized configurations, respectively. Surprisingly, two modes of each type, charge
density and spin density, are inside or very close to the energetic region of the
single–particle transitions between Kohn–Sham states (gray–shaded region in
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(b) polarized

(a) depolarized

Fig. 5.17. Calculated resonant Raman spectra for a 12–electron quantum dot for
different detunings, EL − EG, between laser energy and fundamental bandgap

Fig. 5.16). In a macroscopic picture, these modes are “out–of–phase” modes of
the oscillations of the induced densities. This means that depolarization–field
effects are small for these modes and hence the collective shifts are small. On
the other hand, the strongly shifted principal modes are “in–phase” modes
with strong depolarization–field effect.

In Fig. 5.17, series of resonant depolarized (Fig. 5.17a) and polarized
(Fig. 5.17b) spectra are displayed for different detunings, EL −EG, between
the energy of incoming photons and the fundamental bandgap EG. Maxima
due to resonance with different confined hole levels can be seen.

We will see in the next section that for a 6–electron quantum dot, i.e., two
completely filled quasiatomic shells, two of such single–particle–like excita-
tions exist. We assume that for many–electron dots, as studied by us exper-
imentally, the broad SPE’s evolve from these “out–of–phase” modes which
are, strictly speaking, also collective charge–density and spin–density modes.
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Fig. 5.18. Comparison of electronic levels in a quantum dot with 6 electrons
(symbolized by gray–shaded circles), as derived in a Kohn–Sham calculation (up-
per panel) and an exact numerical diagonalization (lower panel). m and n are the
single–particle angular–momentum and radial quantum numbers, respectively. M
and S denote, respectively, the total angular momentum and total spin

This might also be the reason that the experimentally observed excitations
are visible in both polarization configurations.

5.3.4 Calculations for Few-Electron Quantum Dots

We will complete in this section the investigation of single–particle–like ex-
citations in quantum dots by presenting an intriguing comparison [40] of
Kohn–Sham calculations with results of an exact many–body treatment by
numerical diagonalization. With the latter technique, the electron–electron
interaction is treated exactly. Furthermore, we give a microscopic picture for
the electronic excitations by a superposition of Hartree–Fock states. Figure
5.18 shows theoretical results for a quantum dot with 6 electrons, i.e., two
filled quasiatomic shells and h̄Ω0 = 6 meV. The upper panel of Fig. 5.18

shows the resulting self–consistent potential and the first three electronic
levels derived from a Kohn–Sham calculation. The arrows indicate the two
low–energy SPE’s which are possible in this single–particle picture. To derive
the collective excitations starting from this basis, one has to perform, e.g.,
a TDLDA calculation as discussed before. On the lower panel of Fig. 5.18,
the lowest many–particle states, resulting from an exact numerical diagonal-
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Fig. 5.19. Comparison of exact calculations with TDLDA calculations of a 6–
electron quantum dot

ization, are shown. Here, the many–body interaction is treated exactly and
therefore this calculation directly yields the correct excitation energies of the
interacting six–electron system. One can identify the collective SDE’s and
CDE’s as singlet–triplet (∆S = 1) and singlet–singlet (∆S = 0) transitions,
respectively. Very similar to the results presented in the previous section,
there are two excitations, which are very close together in energy. One with
spin–density (labeled SPES) and one with charge-density character (labeled
SPEC). These transitions have almost exactly the same energies as the spac-
ing between the Kohn–Sham single–particle levels, shown in the upper panel
(see vertical arrows in Fig. 5.18). From this we can draw the conclusion that
even for only six electrons per quantum dot, electronic excitations with ener-
gies close to unrenormalized single–particle transitions can be expected. As
shown above, for 12 electrons per quantum dot, we found four corresponding
transitions with energies close to single–particle transitions.

Figure 5.19 shows a comparison of spectra calculated by exact diagonal-
ization (upper panel) with TDLDA calculations (lower panel). This unam-
biguously shows that the single–particle–like transitions obtained above are
not an artefact of the TDLDA, since they appear in both theories. One con-
clusion from the calculations displayed in Fig. 5.19 is that in the TDLDA
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correlation effects are underestimated since the SDE’s are at lower energies
than in the exact treatment.

In the following we want to give a more microscopic picture, again by
expanding the exact many–body states in a Hartree–Fock basis. The ex-
act states can be described by an infinite series of Hartree–Fock states, i.e.,
Slater determinants. In Fig. 5.20, the dominant Hartree–Fock determinants
for the ground state (Fig. 5.20a) and the excited states (Fig. 5.20b) are
shown schematically, by displaying the occupancy of single–particle states
in each determinant. The triplet states (S = 1) are three–fold degenerate
(Sz = 1, 0,−1) in energy for B = 0. Therefore, we have considered only
Sz = 0 in our calculation. As a consequence, in Fig. 5.20b no spinflip transi-
tions are present. For the triplet states with Sz = 1,−1, in each determinant
a spinflip transition would occur.

Concluding this section about experiments and theory on GaAs–AlGaAs
quantum dots with rather large electron numbers, the main results shall be
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emphasized. These are: (i) in mesoscopic dots, the parity selection rules for
inelastic light scattering on symmetric systems are confirmed, and for a cor-
rect theoretical treatment of these selection rules, the inclusion of the valence
band is crucial. (ii) Under conditions of extreme resonance, excitations are
observed, whose energies are close to unrenormalized single–particle tran-
sitions. (iii) Resonant TDLDA calculations show that these excitations are
indeed collective CDE and SDE, where collective effects partly cancel due to
out–of–phase oscillations of the induced charge and spin densities.

5.4 InAs Self-Assembled Quantum Dots

5.4.1 Few–Electron Quantum–Dot Atoms

The fascination of InAs SAQD comes from the fact that these objects have
very small size – laterally a few tens of nanometers and a few nanometers in
hight. This causes relatively large quantization energies of several 10 meV,
which make even room temperature devices feasible. Furthermore, it has
been demonstrated that by the application of metallic gates, InAs SAQD can
be charged with single electrons [28]. Hence, they can serve as few–electron
quantum–dot atoms. In contrast to the mesoscopic dots, which were discussed
in the previous section, in the SAQD the quantization energy is larger than
the typical Coulomb interaction energies. Therefore, the quantization should
dominate, and the Coulomb interaction is expected to cause corrections to
this.

In this section, some of the first inelastic light scattering experiments
on InAs SAQD, which contain small numbers of electrons, will be discussed
[30, 41]. For the experiments which will be described below, a special sample
design, where a Q2D electron system was used as a back contact, was applied
(see Fig. 5.3 on page 90). The charging of the dots can be monitored in situ
by capacitance measurements. The capacitance trace, displayed in Fig. 5.21,
shows that by varying VGate the s and the p shells of the quantum dots can be
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Fig. 5.21. Differential capacitance of InAs SAQD versus applied gate voltage
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charged with electrons. The doublet structure around VGate = −0.05 V arises
from the charging of the s shell with the first and the second electron, and,
at the broad plateau at positive VGate, the p shell is loaded with 4 electrons.
The strong increase of the signal for VGate > 0.6 V is due to the charging of
the wetting layer. At this point it is not clear whether or not a bound d shell,
very close to the wetting layer continuum, exists in the dots.

5.4.2 Electronic Excitations in InAs SAQD

For the inelastic light scattering experiments, resonant excitation was achieved
by tuning the laser to the E0 + ∆ gap of the InAs SAQD (∼ 1.65 eV),
which is far above the fundamental PL transition energies of the structure
(∼ 1.1−1.2 eV). Figure 5.22 displays polarized inelastic light scattering spec-
tra for two selected situations: For the upper spectrum, the dots are charged,
on the average, with two electrons, and, for the lower spectrum the s and
the p shells are completely occupied. The spectra show two dominant bands,
labeled as A and B. The two sharp lines at E = 33.4 meV and E = 36.6
meV are due to the TO- and LO-phonon excitations of the GaAs bulk ma-
terial in the structure. In a simplified single–particle picture, the band A in
Fig. 5.22 was interpreted [30] as a CDE due to transitions of electrons from
the s to the p shell (s–p transitions) of the quasiatoms, and the band B as
p–d transitions: It was assumed that 2 to 3 confined single–particle energy
levels exist in the quantum dots, which is schematically shown for N = 2 and

Fig. 5.22. Polarized inelastic light scattering spectra for two different gate voltages
VGate, at a temperature of T = 5 K. The right panel sketches the charging state of
the dots. Because it is not clear whether a bound d shell exists, the state has been
drawn with dashed lines. The black (gray) vertical arrows indicate possible allowed
(forbidden) transitions of electrons [Reprinted with permission from [30]. Copyright
(2003) by the American Physical Society]
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N = 6 to 8 electrons per quantum dot in the drawings on the right–hand
side of Fig. 5.22. The black vertical arrows indicate possible transitions of
single electrons. The self–assembled quantum dots stick out of an InAs wet-
ting layer. Therefore, the dot potentials are flattened at the edges due to the
wetting–layer continuum. This leads to the situation that the single–particle
transition, sketched as B in the inset of Fig. 5.22, has a smaller energy than
the transition A. At that point it can not definitely be excluded that the
transition B is an excitation of electrons from the p shell into the wetting
layer. This would be the case if there would be no bound d shell. It is obvious
from Fig. 5.22 that the band A dominates, if the p shell is empty, and the
band B is most pronounced if the p shell is completely filled. In this situation,
the band A is strongly suppressed because of the Pauli exclusion principle.

5.4.3 Comparison with Exact Calculations

To analyze the dependence of the observed excitations on the electron number
N in the dots in more detail, Fig. 5.23a displays a series of experimental
spectra for N = 2 . . . 6 electrons in the dots. Interestingly, with increasing
number of electrons in the p shell, in Fig. 5.23a, (i), a shift of A to lower
energies, and, (ii), a broadening of the transition can be observed. This is
somehow intriguing, since naively one would expect for a CDE a shift to
higher energies if the number of electrons, i.e., the electron density, in the

Fig. 5.23. (a) Polarized inelastic light scattering spectra for gate voltages VGate =
0.2 V, 0.25 V, 0.35 V, 0.45 V, 0.55 V (from top to bottom). The inset shows the
charging states of the dots. (b) Calculated energies of low–energy collective exci-
tations of a two–dimensional parabolic quantum dot for different electron numbers
in the dot
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quantum system is increased, if one would argue in terms of a depolarization
shift. Obviously, in order to explain the experimentally–observed effect, we
have to study the Coulomb interaction in the quantum dot in more detail.
For this end we consider the following model Hamiltonian

H =
N∑

i=1

[
p2

i

2m∗ +
m∗

2
Ω2

0r
2
i

]
+

e2

4πεε0

N∑
i�=j

1
|ri − rj |

(5.7)

of a two–dimensional quantum dot with a parabolic confining potential in
lateral direction [r = (rx, ry)] with quantization energy h̄Ω0 = 50 meV.
This potential certainly deviates from the more realistic shape as sketched in
Fig. 5.22. Thus, the model will not be able to include the effect of the lower
energy of band B, as compared to that of band A. However, our aim is to
get qualitative results, which show the correct tendencies of the dependence
of energies on electron number. For the effective mass m∗, the InAs bulk
value m∗ = 0.024 m0, and for the dielectric constant ε = 15.15 were used.
Qualitatively, the results do, of course, not depend on the particular choice
of these parameters. By exact numerical diagonalization we have determined
the low–energy excitations of the N -electron quantum dot, where during the
excitation the total spin is preserved [30, 41]. This selects the excitations
which we expect in polarized inelastic light scattering spectra (CDE’s). Fig-
ure 5.23b exhibits the calculated excitation energies for electron numbers
N = 2 . . . 6 in the quantum dot. First, one can see that, independent of N ,
there is always an excitation at the energy h̄Ω0 = 50 meV of the external
confining potential. This is a direct consequence of the so called generalized
Kohn’s theorem [1], which says that in a parabolic potential, the energy of
the center–of–mass oscillation of all electrons – i.e., the charge–dipole ex-
citation – is independent of the number of electrons. For N > 2, however,
in our calculations additional mode energies appear below the energy of the
Kohn’s mode. In the previous section we saw that for the case of 6 electrons,
these additional excitations are close to single–particle transition energies.
We will come back to this interesting point below. The most important re-
sult of Fig. 5.23b, concerning our experiments, is that with increasing N , the
spectral weight of the low–energy excitations shifts to lower energies. This
might explain the shift and broadening of the band A as observed in the
experiments (Fig. 5.23a) to be due to additional excitations at lower energies
which can not be individually resolved in the ensemble experiment. Further-
more, as discussed in Sect. 5.2.2, the Kohn’s mode should from the point of
view of parity selection rules not be observable in inelastic light scattering
experiments, since it is a dipole excitation with odd parity. Therefore, it is
possible that the excitations observed in the experimental spectra in Fig. 5.23
are solely due to the additional excitations at lower energies.

In the remainder we want to highlight the microscopic origin of the addi-
tional modes at lower energies in more detail. In order to make the situation
not too complicated, we discuss the low–energy excitations for 3 electrons
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Fig. 5.24. Schematic picture of occupation in the most important Slater determi-
nants, which contribute to the exact many–body wave function of (a) the ground
state with M = 1 and S = Sz = 1

2
, and, (b)–(e) its low–energy excited states A

similar picture with the same eigenenergies could be drawn for M = −1, and/or
Sz = − 1

2
for the ground state. The numbers give the occupation probabilities of

the respective determinants. M is the total angular–momentum quantum number,
and m is the single–particle angular momentum [Reprinted with permission from
[30]. Copyright (2003) by the American Physical Society]

inside a dot. In Fig. 5.23b we can see that for 3 electrons there are two addi-
tional modes below the Kohn mode, with energies of 43.5 meV and 47.4 meV.
The exact many–particle wavefunction can be expanded in a series of Slater
determinants. Figure 5.24 displays pictorially the occupation of the domi-
nant Slater determinants, which contribute to the ground state (Fig. 5.24a)
and the lowest excited states (Figs. 5.24b–e) of a quantum dot which con-
tains 3 interacting electrons. For 3 electrons, the ground state has already a
finite total angular momentum of M = 1 (Fig. 5.24a), which separates into
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M = MCM + Mrel, with MCM = 0 for the center–of–mass motion, and
Mrel = 1 for the relative motion of the electrons. For the ground state, the
complete angular momentum is in the relative motion of the electrons. This
is because in the ground state the electrons try to avoid each others as much
as possible in order to minimize the Coulomb energy. We find that the Kohn
mode is twofold degenerate (Figs. 5.24b and 5.24c), with either M = 2, or
M = 0, corresponding to a change of ∆MCM = ±1 in the center–of–mass
motion, while Mrel = 1 stays constant. This verifies that, macroscopically, as
discussed in Sect. 5.2.2, the Kohn mode is an in–phase oscillation (center–
of–mass oscillation) of all electrons in the dot. Microscopically, the dominant
contributions here are excitations where either the electron in the p shell is
excited into the d shell (Fig. 5.24b), or a superposition of three equivalent
configurations (Fig. 5.24c). On the other hand, a change of angular momen-
tum only in the relative motion, ∆Mrel = ±1, leads to a lowering of the
excitation energies (total M = 0, Fig. 5.24d, and, M = 2, Fig. 5.24e). Micro-
scopically, an excitation where the two electrons in the p shell have a paired
spin leads to the strongest energy reduction (Fig. 5.24e). In any case, the
difference in total angular–momentum, ∆M , between excited states and the
ground state is ∆M = ±1. This also concludes our considerations of single–
particle–like excitations of the previous sections: excitations, which appear at
lower energies than the Kohn’s mode are due to relative motion of electrons.

A qualitative understanding of the excitation–energy reduction with in-
creasing N can also be gained by first order perturbation theory in the
Coulomb operator. Such calculations qualitatively reproduce our exact re-
sults. The perturbation approach shows that the Coulomb interaction is
strongest if both electrons occupy the s state and decreases if one or both
electrons occupy a p orbital. This is due to the larger spatial extension of
the p orbitals compared to the s orbital [42]. An excitation is obtained, e.g.,
by transferring an s electron to a p orbital, which leads to a reduction of
the Coulomb interaction between this electron and all others. Clearly this
reduction will increase with increasing number of electrons. It shall be also
noted that the important qualitative result of this model, i.e., the appearance
of additional collective modes at lower energies seem to be quite general for
quantum dots: Similar calculations for a three–dimensional spherical quan-
tum dot with a step–like potential yield also a reduction of the lowest–energy
excitations with increasing N .

So, one of the key findings in the presented experiments [30, 41] is that,
obviously, in inelastic light scattering experiments on few–electron quantum
dots one is able to observe more complex excitations than only the center–
of–mass oscillation of all electrons, which is usually observed in far–infrared
absorption [43, 44, 45, 46]. This is quite general for inelastic light scattering,
and the reasons are mainly (i) the two–photon nature of the process, and,
(ii) the possibility to overcome parity selection rules by a finite wave–vector
transfer into the system [14]. Even though, in the present experiments, the
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additional low–energy excitations are not individually resolved but lead to a
broadening of the observed band.
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J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, and S. Huant: Phys. Rev.
B 58, 16221 (1998)

43. M. Fricke et al., Europhys. Lett. 36, 197 (1996)
44. A. Wojs and P. Hawrylak, Phys. Rev. B 53, 10841 (1996)
45. S. Sauvage, P. Boucaud, R. P. S. M. Lobo, F. Bras, G. Fishman, R. Prazeres,

F. Glotin, J. M. Ortega, and J.-M. Gérard: Phys. Rev. Lett. 88, 177402 (2002)
46. S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira,

G. Bastard, J. Zeman, and J. M. Gérard: Phys. Rev. B 65, 085316 (2002)



6 Quantum Wires: Interacting
Quantum Liquids

6.1 Introduction

In 1989, the first inelastic light scattering experiments on electronic excita-
tions in quantum wires were reported [1, 2]. Since then, a number of experi-
mental papers appeared about, e.g., many–particle interactions and selection
rules in those systems [3, 4, 5, 6, 7, 8, 9] and investigations with applied
external magnetic field [10, 11, 12]. All these experiments were performed
on lithographically–defined GaAs–AlGaAs structures. Consequently, the lat-
eral sizes of these structures were on the order of 100 nm, or at least not
much below [8, 9]. Unlike for the case of quantum dots, there is no well–
established method of self–organized growth of modulation–doped quantum
wires. During the past few years, Carbon nanotubes have evolved as new and
alternative quantum–wire structures. So far, the main focus in the investiga-
tion of those very promising quantum structures by optical experiments has
been on phonon excitations [13]. Phonon Raman spectroscopy has greatly
helped in unveiling the topological structure of Carbon nanotubes [13]. An
interesting further method to produce very narrow wires with atomic–layer
precision is the so called cleaved–etched overgrowth (CEO) [14]. However,
with CEO it is difficult to grow very large arrays of wires, which would be nec-
essary to get enough signal strength in inelastic light scattering experiments.
Hence, there are so far no reports of inelastic light scattering experiments on
CEO wires, though these might be promising structures for high–sensitivity
experiments. As mentioned, most of the existing experimental reports are
on lithographically–defined GaAs–AlGaAs quantum wires with rather meso-
scopic widths. Hence, in those experimental structures, typically several Q1D
subbands are occupied with electrons. In this chapter we will discuss both,
experiments and calculations on such samples. The main focus will be on
the microscopic origin of confined plasmons and interesting internal interac-
tion effects in a magnetic field. These experimental results are described well
within the RPA, i.e., a Fermi–liquid theory, as we will see later.

Much theoretical research on Q1D electron systems has been triggered by
the fact that in the so called Tomonaga–Luttinger model [15] one is able to
treat the Coulomb interaction in a strictly one–dimensional system exactly.
This model relies on the approximations that the one–dimensional subband
dispersion is linearized in the vicinity of the Fermi wave vector, and backscat-
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tering events are neglected. For this case, the so called bosonization technique
allows one to treat the Coulomb interaction exactly. An important result of
this theory is that in a Luttinger liquid, all elementary electronic excitations
are intrinsically collective [16], i.e., electrons are no defined quasiparticles.
This is a very important difference to the Fermi–liquid theory. Hence, in a
Luttinger liquid, there are no SPE’s, and one should expect collective SDE’s
and CDE’s as the only electronic excitations. There has, however, been some
debate, whether or not a Luttinger liquid can be realized in a real quantum
wire sample [17, 18]. One would assume that a Q1D quantum wire has to be
at least in the quantum limit, i.e., only one subband is occupied by electrons,
in order to be close to a Luttinger liquid. There is only one report in literature
– of F. Perez et al. [8, 9] – where the authors report about the realization
of very narrow GaAs–AlGaAs quantum wires, which are supposed to be in
the quantum limit. However, experimentally it seems to be difficult to de-
cide if either the Fermi liquid, or the Luttinger liquid theory is better suited
to describe the experimental observations [9]. The dilemma here is that the
Q1D plasmon wave–vector dispersion, which can be measured by inelastic
light scattering, is in both theories exactly the same [17]. In Sect. 6.4 we
will discuss experiments on very narrow, lithographically–defined structures,
which are close to the quantum limit. However, the experimental proof of a
Luttinger liquid still remains a challenge.

6.2 Electronic Elementary Excitations
in Quantum Wires

6.2.1 Ground State and Excitations

Similar to quantum dots, in deep–etched quantum wires, the lateral con-
fining potential is determined by the homogeneously distributed ionized re-
mote donors in the AlGaAs barrier, and negatively–charged surface states,
as sketched in Fig. 6.1. By analytical calculations one can show that this
lateral potential, which acts on a test electron within the structure (bare
potential), is for the case of dots [19] in x and y direction, and, in wires,
for the direction perpendicular to the wires (in the following y direction) in
good approximation parabolic. Of course, the presence of other electrons in
the one–dimensional channel screens the interaction of the test electron with
the remotely localized charges, and the effective potential will deviate from a
parabolic shape. A positive effect of the negative surface charges, however, is
that due to Coulomb repulsion the electronic width, a, of the Q1D electron
system is smaller than the geometrical width w (see Fig. 6.1). The length
(w−a)/2 is called depletion length. Its value depends on the structure of the
sample and may also depend on experimental conditions, as the illumination
strength. For optical experiments, the depletion length is typically a few tens
of nanometers [8].
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Fig. 6.1. Schematic cross section of a deep–etched quantum wire perpendicular to
the wire direction

Without loss of generality, we assume in the following for qualitative con-
siderations that the electron motion in the wires is in y direction quantized by
a parabolic potential and in x direction quasifree. The two quantum numbers,
which then characterize this problem, are a discrete 1D subband quantum
number i = 0, 1, 2, . . . for the quantized movement, and a quasicontinuous
quantum number kx. The corresponding energy eigenvalues are given by

Ei,kx
= h̄Ω0

(
i +

1
2

)
+

h̄2k2
x

2m∗ . (6.1)

Ω0 is the quantization energy and m∗ the effective mass. This situation is
sketched in Fig. 6.2a for the case of 2 occupied Q1D subbands. In a single–
particle picture, the electronic excitations, which can be created in the in-
elastic light scattering process, are transitions of electrons from occupied to
unoccupied states. Such SPE’s are sketched in Fig. 6.2a for different wave–
vector transfers, qx, in wire direction. The striking difference of Q1D systems,
as compared to Q2D electrons (cf. Sect. 3.1), is that the dispersion relations
of the Q1D subbands are one–dimensional parabolas in kx direction. We re-
member that for Q2D systems the dispersion relations are paraboloids in kx

and ky. Therefore, the corresponding single–particle continua for Q1D elec-
tron systems differ from those of Q2D systems (cf. Fig. 3.2 on page 43). In
Fig. 6.2b, the lowest single–particle continua (grey–shaded regions) for a Q1D
electron system with two occupied subbands are schematically shown. Since
there are two occupied Q1D subbands, there are two intrasubband continua
(∆i = 0). The difference to the case of a Q2D system is that for finite qx the
continua start at finite energy. This is a consequence of the one–dimensional
subband dispersion (cf. Sect. 3.1). There is also a forbidden region in the con-
tinuum of the ∆i = 1 intersubband continuum, which is due to the blocking
of transitions from i = 0 to i = 1, since there are occupied states in the i = 1
subband. For n occupied Q1D subbands, we would have 2n − 3 such regions
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Fig. 6.2. (a) Q1D subband dispersion of one-dimensional subbands in a quantum
wire. (b) Single-particle continua

in the ∆i = 1 intersubband continuum, if n > 1. In experiments on quantum
wires with two occupied subbands, this forbidden region was detected in the
spectrum of ∆i = 1 intersubband transitions by A. R. Goñi et al. [5].

In Sect. 5.2.2 we have introduced the collective elementary excitations
of quantum dots in a simple macroscopic model, where we discussed the
oscillations of the induced densities. This can also be done for the case of
quantum wires: In a Q2D electron system, the energy of the charge–density
wave, which propagates freely parallel to the layer plane is proportional to
the square root of the wave vector q‖ (intraband plasmon, cf. Sect. 3.8). This
is sketched in Fig. 6.3a. In a semiclassical picture, one can assume that due
to the lateral confinement in y direction, the inplane Q2D charge wave is
quantized. The characteristic of the first confined mode, which we will in
the following call CDE1, is one node in the induced density (see Fig. 6.4).
This would be the Kohn’s mode of the wire, i.e., the dipole–active mode (for a
parabolic bare potential). Consequently, with increasing index of the confined
mode, the number of nodes in the induced density increases, too (cf. Fig. 6.4).
However, in the wire, the charge wave can still propagate freely along the
x direction. Therefore, the confined plasmon modes exhibit a wave–vector
dispersion, if a finite wave vector is transferred parallel to the wire direction.
This wave–vector dependence is sketched in Fig. 6.3b, and was calculated,
e.g., in a semiclassical hydrodynamical model by Eliasson et al. [20]. The
microscopic quantum–mechanical origin of the localized CDE’s in quantum
wires will be discussed in detail below in Sect. 6.3.1.
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Fig. 6.3. (a) Schematic picture of a GaAs–AlGaAs quantum–well structure, host-
ing a Q2D electron system, and inplane wave–vector dispersion of the 2D plasmon.
(b) Schematic picture of a deep–etched quantum wire, and confined plasmon dis-
persion. In a quantum wire, the wave vector q‖ is quantized by the given relation
in y direction and quasi–continuous in x direction
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Fig. 6.4. Schematic snapshot picture of the induced charge densities for the first
three confined plasmons, CDEn with n = 1, 2, 3, in a quantum wire, perpendicular
to the wire direction. A dark color should mean a large induced electron density

6.2.2 Experimental Spectra and Wave–Vector Dependence

Before discussing the microscopic origin of the confined modes, in this section
experimental observations shall be presented to introduce the electronic ex-
citations in quantum wires. In particular, in different resonance experiments
it was possible to observe all types of electronic elementary excitations –
SPE’s, SDE’s, and CDE’s – in quantum wires (as well as in quantum dots)
[3, 21, 22]. This allowed one, e.g., to do a detailed analysis of many–particle
interactions in these low–dimensional electron systems [3, 21].

In Fig. 6.5, polarized and depolarized spectra of electronic excitations in
a quantum–wire sample are shown. Several peaks can be observed, which can
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Fig. 6.5. Depolarized and polarized Raman spectra of electronic excitations in a
quantum–wire sample at T = 12 K. The insets shows a schematic picture of the
single–particle transitions, which predominantly contribute to the observed excita-
tions. The wave–vector transfer qy perpendicular to the wires was qy ≈ 1.3 × 105

cm−1

be identified as either SDE’s or CDE’s due to polarization selection rules.
These spectra were recorded at a laser frequency well above the effective
band gap of the underlaying 2D structure. From investigations at different
laser frequencies [3] it is known that here the collective excitations are created
by a third–order excitonic scattering mechanism as discussed in Sect. 4.2.1 for
2D intersubband excitations. At the end of this section we will see that also in
the sample discussed here, at conditions of extreme resonance SPE’s show up.
The index i of the labels SDEi or CDEi in Fig. 6.5 gives the change in lateral
quantum number for single–particle transitions, which dominantly contribute
to the observed collective excitations1. We will discuss this in detail below in
Sect. 6.3. The rather large differences in the energetic positions of the SDEi

and CDEi are due to many–particle interactions [3]. As discussed above, in
a macroscopic view, the CDE’s in wires can be regarded as electron–density
oscillations perpendicular to the wire direction with, e.g., one node in the
induced density for the CDE1, and two nodes for the CDE2 (cf. Fig. 6.4).
The peculiarity in wire and dot structures with parabolic bare potential is

1 We note that in those samples there are about 9 occupied 1D subbands. For
simplicity, in the insets smaller electron numbers are considered.
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Fig. 6.6. Depolarized and polarized inelastic light scattering spectra of electronic
excitations in a quantum–wire sample with 170 nm wire width at a temperature of
T = 12 K. A wave vector q was transferred either parallel (upper part) or perpen-
dicular (lower part) to the wire direction

that the energy of the CDE1, the so called Kohn’s mode, is exactly equal to
the single–particle spacing of the bare potential. The reason is the so called
generalized Kohn theorem [23, 24]: The CDE1 is in the long–wavelength
limit a rigid center–of–mass oscillation of all electrons. Therefore, this mode
has a large dipole moment and can be observed in far–infrared transmission
experiments [25]. It shall be emphasized here that the general parity selection
rules for inelastic light scattering experiments, which we found in chapter
5 for experiments on quantum dots, can be found here again in quantum
wires: The even parity plasmon mode, CDE2, is the dominant mode in the
polarized spectrum, and the dipole mode CDE1 is not observable at all in
Fig. 6.5. Again, as in the case of dots, these parity selection rules are much
better fulfilled for CDE’s than for SDE’s.

By applying a finite q = (qx, 0) parallel to the wires, also travelling charge–
density waves along the wires are induced. Corresponding spectra are dis-
played in the upper part of Fig. 6.6. In the lower part, for comparison, the
same spectra as in Fig. 6.5a, for a wave–vector transfer q = (0, qy) perpen-
dicular to the wires, are shown. The SDE0 and CDE0 are, respectively, the
intraband spin-density and charge-density excitations, which can only be ob-
served at finite qx along the wires. The qx dispersions of these modes are
shown in Fig. 6.8, below. The SDE1, SDE2, and SDE3 are in this situation
(qx = 0) subject to strong Landau damping. Therefore, in the spectra at
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Fig. 6.7. Depolarized and polarized inelastic light scattering spectra of electronic
excitations in a quantum–wire sample with 170 nm wire width for different wave–
vector transfer qx parallel to the wire direction [Reprinted with permission from
[3]. Copyright (1996) by the American Physical Society]

qx = 1.33× 105 cm−1 in Fig. 6.6, only the SDE2, which is the strongest peak
at qx = 0, remains as a very broad feature. The evolution of the spectra
with wave–vector transfer qx, parallel to the wire direction, is shown in more
detail in Fig. 6.7a for SDE’s and in Fig. 6.7b for CDE’s. In Fig. 6.7a it can
be seen that the SDE’s are subject to Landau damping, when they enter the
single–particle continua. This behavior is discussed in more detail in [3].

In Fig. 6.8, the results discussed so far are summarized: The observed
positions of SDE’s, SPE’s (see below), and CDE’s are marked by open circles,
full circles and full squares, respectively. Thin grey lines indicate the borders
of the intersubband single–particle continua. In this sample, the number of
occupied Q1D subbands was estimated to be about 9. The above discussed
forbidden regions in the continua have been omitted in Fig. 6.8. One can
see that the SDE’s are only slightly shifted to lower energies, compared to
the corresponding SPE’s. Hence, already for a small wave–vector transfer qx

they enter the corresponding single–particle continua, which is manifested
by Landau damping, i.e., a broadening of the excitations (Fig. 6.7a). On the
other hand, there is a large depolarization shift of the CDE’s with respect to
the corresponding SPE’s. Therefore, in the displayed wave–vector range, the
CDE’s do not enter the continua of single–particle transitions, from which
they originate. As a result, they show no effect of Landau damping.
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Fig. 6.8. Wave–vector dispersions of the observed excitations in a quantum–wire
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The resonances of collective and single–particle–like excitations occur at
different laser energies. In the introductory Chap. 4 it is discussed that in
quantum wells the intersubband SPE becomes very strong under conditions
of extreme resonance, when the laser energy comes close to the fundamental
bandgap. The collective excitations, on the other hand, show sharp resonance
profiles at higher laser energies, due to a third order excitonic scattering
process. We found a similar behavior in experiments on deep–etched dots
(see Chap. 5) and on quantum wires. This can be deduced from Fig. 6.9. Fig-
ure 6.9 shows polarized spectra for different laser energies, EL. It can be seen
that, in the displayed experiment, the CDE2 exhibits a very sharp (FWHM
≈ 3.5 meV) resonance profile with respect to the variation of the laser energy
in a certain range of laser frequencies, which shows that this scattering by col-
lective excitations is caused by the third–order TOP as discussed in Sect. 4.2.
If the laser frequency is lowered, additional broad features appear, which then
slowly evolve into intense peaks, by further lowering EL towards the bandgap.
These peaks then dominate the spectra and are present in both polarization
configurations. Therefore, they have been interpreted within the framework
described in Sect. 4.2 as SPE’s, which are caused by a SOP under conditions
of extreme resonance [3]. From the experimental spectra in Figs. 6.6 and 6.9
we can deduce for the corresponding collective SDE’s and CDE’s directly the
energy renormalizations due to many–particle interactions. In a theoretical
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Fig. 6.9. Polarized inelastic light scattering spectra of electronic excitations in a
quantum–wire sample for different laser energies. The background is due to hot
luminescence

work in the framework of the time–dependent Hartree–Fock approximation
and also the local–density approach, it was demonstrated that the finite width
of the underlaying 2D structure has to be taken into account for a correct
description of the energies of the SDE’s in quantum wires [26].

6.3 Confined and Propagating 1D Plasmons
in a Magnetic Field

In order to gain more insight into the microscopic structure of the observed
excitations in quantum wires, we have also performed experiments in an
external magnetic field B, which was oriented perpendicular to the plane of
the wire array. Furthermore, we have compared our experimental results with
self–consistent calculations of the dynamic Raman response. In the first part
of this section we give a microscopic picture for confined plasmon modes in
quantum wires [11]. As examples, in which complex way the internal structure
of the excitations is influenced by a magnetic field, we discuss in the second
part (i) the anticrossing of the CDE’s in quantum wires due to the coupling
with Bernstein modes [11, 12], which can in a similar manner also be observed
in quantum dots, and (ii) 1D plasmons which represent skipping–orbit modes
[12].

6.3.1 Microscopic Picture for Confined Plasmons

From our investigations in Sects. 6.2.2 and 5.3.3, we know that the energies
of the SDE’s in quantum wires and dots are very close to single–particle
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transitions. We have also emphasized there that the excitations can be char-
acterized by specific changes in lateral quantum number. To proof this, self–
consistent Hartree calculations of the 1D single–particle subband structure
and RPA calculations of Raman scattering cross sections were performed.
This enables a microscopic understanding of the internal structure of CDE’s
in quantum wires, which exhibit rather large collective shifts.

To demonstrate the complexity of the behavior of magnetoplasmons2 in
quantum wires, we start by displaying in Fig. 6.10 the experimental mode
dispersions in a perpendicular magnetic field (full symbols). Rather differ-
ent anticrossings occur, depending on the directions of wave–vector transfer
(Figs. 6.10b and 6.10c). In the following we want to highlight the internal
structure of these complicated hybrid excitations. We start our discussion by
investigating the internal structure of the confined plasmon modes at B = 0
(points at B = 0 in Fig. 6.10c) and will later elucidate the behavior at finite
magnetic fields.

The Raman spectra I(q, ω) were calculated from the imaginary part of
the density–density correlation function D(q, ω) in RPA for nonresonant con-
ditions [11]

I(q, ω) ∼ Im {D(q, ω)} . (6.2)

As pointed out before, this will deliver us the correct mode positions but
will not allow to draw conclusions about mode intensities. Figure 6.11 shows
calculated and measured Raman spectra of confined plasmons in a quantum–
wire sample with 170 nm geometrical wire width. In these experiments, a
wave vector q was transferred perpendicular to the wire direction to effec-
tively induce electron motion in the direction of the lateral confinement, i.e.,
perpendicular to the wires. In contrast to the polarized spectra, displayed in
Figs. 6.5 and 6.6 in Sect. 6.2.2, three lines can be observed in Fig. 6.11. This
is because the experimental spectrum in Fig. 6.11 was recorded at a differ-
ent laser energy, where also the excitations with odd parity are resonantly
enhanced. The three confined plasmons are the CDE1, CDE2, and CDE3.
Let us for a moment neglect Coulomb interaction and consider the 1D single–
particle subbands, only. Then, we can expect single–particle transitions where
the 1D subband quantum number i changes for example by 1, 2 or 3 (insets
of Fig. 6.11) as we have already considered in Sect. 6.2.2. By comparison to
our calculations of the subband structure, we find that the subband spacing
at the Fermi level in the wire sample is about 3.5 meV. This is in agreement
with magnetic depopulation measurements. Also inelastic light scattering ex-
periments at lower excitation energy, which directly show SPE’s, yield the
same energy [3, 27] (see Fig. 6.9). In contrast, the energy of the first observed
mode in Fig. 6.11 is about 8 meV. This large difference between the single–
particle energy and the energy of the observed excitation is due to Coulomb
interaction, which for 2D electron systems is called depolarization shift and
which was investigated in Sect. 3.3.1. The single–particle transitions couple
2 In an external magnetic field, CDE’s are typically called magnetoplasmons.
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Fig. 6.10. Experimental (full symbols) and theoretical (open symbols) magnetic–
field dispersions of magnetoplasmons in quantum–wire samples for different direc-
tions of wave–vector transfer q with respect to the wire direction

due to Coulomb interaction. The theoretical curve in Fig. 6.11 indicates that
this many–body effect can be very well reproduced in the RPA calculations.
Conceptional, within RPA, single–particle transitions with arbitrary ∆i con-
tribute to each excitation. However, the calculations show that, at B = 0 T,
the first confined plasmon mode predominantly consists of single–particle
transitions where the 1D subband quantum number i changes by 1 (see
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Fig. 6.11. Experimental and theoretical polarized Raman spectra of a quantum–
wire sample with 170 nm wire width at T = 12 K. The wave vector has been trans-
ferred perpendicular to the wires. The insets show the single–particle transitions
that predominantly contribute to the observed confined plasmon modes [Reprinted
with permission from [11]. Copyright (1996) by the American Physical Society]

inset of Fig. 6.11). Correspondingly, for the second confined plasmon we have
∆i = 2 and for the third ∆i = 3. To demonstrate this on a microscopic level,
we show in Fig. 6.12 calculations of the density distribution δN(y), which
is induced during the inelastic light scattering process for the first (a) and
second (b) confined plasmon modes. Here, again y is the lateral direction
perpendicular to the wires. The solid curves in Fig. 6.12a and 6.12b show the
results if single–particle transitions with ∆i = 1, 2, 3, 4, and 5 are included,
whereas the dashed lines have been calculated for, respectively, ∆i = 1 or
∆i = 2 transitions, only. The dashed and solid curves do not differ signifi-
cantly so that we can draw the conclusion that, e.g., the first confined plasmon
mode predominantly consists of single–particle transitions with ∆i = 1. Fur-
thermore, Fig. 6.12a shows that for the first confined plasmon the density
distribution is asymmetric with respect to the center of the wire at y = 0.
This mode is in the long–wavelength limit the Kohn’s mode, which has a large
dipole moment and is therefore FIR active. For a parabolic confinement, this
mode is the only one which is observed in direct FIR absorption. In contrast,
the induced density of the second confined plasmon is symmetric (Fig. 6.12b)
and it contains no dipole moment at all. This mode with even parity is most
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Fig. 6.12. Calculated density distributions in the inelastic light scattering experi-
ments for the first (a) (∆i = 1) and second (b) (∆i = 2) confined plasmon modes in
a wire sample with 170 nm geometrical width for B = 0 T. y is the lateral direction
perpendicular to the wire direction. In (c) and (d), the corresponding distributions
for the two lowest modes at B = 10 T are shown. Here both modes have ∆i = 1
character [Reprinted with permission from [11]. Copyright (1996) by the American
Physical Society]

prominent in the Raman spectra as can be seen in Fig. 6.11, and also, more
clearly, in Fig. 6.5 in Sect. 6.2.2.

6.3.2 Coupling with Bernstein Modes

We will now turn to the behavior at finite magnetic field. Figure 6.10c shows
the magnetic–field dispersions (solid symbols) of the confined plasmons for a
wave–vector transfer perpendicular to the wires. The CDE1, which is in the
long–wavelength limit the Kohn’s mode, shows only a very small splitting in
the measured B range. This shows that the external lateral potential is to
a good approximation parabolic because in this case the generalized Kohn’s
theorem holds. Interestingly, the second confined plasmon, the CDE2, ex-
hibits a strong anticrossing at 2ωc due to the coupling with Bernstein modes.
The CDE2 is a Raman–active mode with even parity and has no dipole
moment at all (see also discussion in the previous section) [11]. This im-
plies that it purely consists of relative motions of the interacting electrons,
so that it is clear that here the generalized Kohn’s theorem [24] can not
be applied. The small open circles in Fig. 6.10 are results of a calculation.
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Fig. 6.13. Calculated inelastic light scattering spectra of confined magnetoplas-
mons in quantum wires. NL is the linear density, Ω0 the quantization energy of
the external parabolic potential, qx the wave–vector transfer parallel, and qy the
wave–vector transfer perpendicular to the wire direction

Figure 6.13 shows the corresponding theoretically determined inelastic light
scattering spectra. Here, only a slight nonparabolicity a = 0.0055, according
to V (y) = 1/2h̄Ω0[(y/l0)2+a(y/l0)4], of the external potential V (y) has been
assumed. l0 is the characteristic length. The theoretical curves displayed in
Fig. 6.10 show the dispersions of the strongest modes. The calculations also
demonstrate that in the anticrossing regime the modes can no longer be char-
acterized, as for other magnetic fields, by specific single–particle transitions,
but rather a strong intermixing of different single–particle contributions oc-
cur [11]. This conclusion can be drawn from Fig. 6.14. Here the calculated
induced density is shown for the range where the small splitting of the CDE1

occurs, i.e., at B = 2.8 T and ω ≈ 9 meV. Figures 6.14a and 6.14b display
the induced densities for the lower branch ω−, and Figs. 6.14c and 6.14d for
the higher energy branch ω+. It clearly demonstrates that in this anticrossing
regime the modes can no longer be characterized by either ∆i = 1 or ∆i = 2
transitions but rather both types must be included in the calculations to
reproduce the correct density distribution. On the other hand, at very high
magnetic fields, far outside the anticrossing regime, the modes again have well
defined character, as in the case B = 0. This can be seen from Figs. 6.12c
and 6.12d in the previous section, where the calculated density distributions
of the two lowest modes at B = 10 T are displayed.

In Fig. 6.10b, the results for a wave–vector transfer q in wire direction are
displayed [12]. Here, the macroscopic density oscillations, which are charac-
teristic for the excitations, consist of a traveling wave along the wires and, at
the same time, an oscillation perpendicular to the wires. As we can see from
Fig. 6.10b, in this case also the Kohn’s mode exhibits a strong splitting in the
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Fig. 6.14. Calculated density distributions at B = 2.8 T. (a) and (b) show the
contributions to the lowest (ω−), (c) and (d) to the higher (ω+) of the split Kohn
modes [Reprinted with permission from [11]. Copyright (1996) by the American
Physical Society]

vicinity of 2ωc, which demonstrates that Kohn’s theorem does not hold, be-
cause we are no longer in the long–wavelength limit q ≈ 0. Figure 6.15 shows
the calculated spectra for this situation. The theoretical curves in Figs. 6.10b

Fig. 6.15. Same as in Fig. 23, but a finite wave–vector qx is transferred parallel to
the wire direction



6.3 Confined and Propagating 1D Plasmons in a Magnetic Field 137

and 6.15 also show one mode, starting at about 4 meV at B = 0, which shows
a negative B dispersion. This mode is in a microscopic picture an 1D intra-
band plasmon (CDE0), i.e., a plasma wave which propagates along the wires
[28]. The negative B dispersion results from a skipping–orbit motion of the
individual electrons at the edges of the wires. This mode could be detected in
samples with relatively small periods and wire widths [12, 29]. For illustra-
tion, polarized spectra are displayed in the inset of Fig. 6.10a. We have also
calculated the dispersion of this skipping–orbit mode (see, e.g., Fig. 6.15).
The calculations, which are performed for isolated wires, reproduce the nega-
tive dispersion, however, they do not give the correct energy. The calculated
energy is typically only half of the experimentally observed one. We attribute
this experimentally observed energy increase to the coupling between wires
in these small period arrays. Such an increase due to coupling is suggested
by the calculation of Li and DasSarma [30]. Also the q dependence of the
observed 1D plasmon at B = 0, which is plotted in Fig. 6.16, supports this
interpretation. We note that these spectra were recorded under conditions of
extreme resonance at a laser energy close to the effective bandgap where also
SPE’s can be observed. The experimental dispersion of the 1D plasmon has
clearly a

√
q dependence. For isolated wires, even in the case of up to about
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Fig. 6.16. Polarized inelastic light scattering spectra of the low–frequency 1D
plasmon and SPE in a quantum–wire sample with 180 nm wire width and 360 nm
period. The inset shows the q dispersions of the observed modes of a 180 nm (solid
symbols) and a 150 nm (open symbols) wire sample [Reprinted with permission from
[12]. Copyright (1997) by the American Physical Society]
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four occupied subbands, which is the case for these narrow samples, our cal-
culations, and also the experiment of Goñi et al. [5], yield a nearly linear
q dispersion. Coupling between wires, however, leads to the experimentally
observed

√
q dependence, as calculated by Que [31].

In summary, in this section, a microscopic picture for the confined plas-
mon modes in quantum wires was given [11]. Furthermore, we have inves-
tigated the q and B dependence of magnetoplasmons in quantum wires. In
quantum wires with nearly parabolic external potential, we find that for a
wave–vector transfer perpendicular to the wires, higher index magnetoplas-
mons show strong coupling to Bernstein modes, whereas the Kohn’s mode
only weakly interacts [11, 12, 21]. On the other hand, if q is transferred par-
allel to the wires, also the Kohn’s mode strongly splits in the vicinity of
2ωc. Our experimental results are confirmed by self–consistent Hartree–RPA
calculations. In short–period wire samples, an 1D plasmon, which shows a
negative B dispersion due to a skipping–orbit motion of the individual elec-
trons, could be observed. In these samples, evidence for a coupling between
adjacent wires was found [12].

6.4 Towards the Tomonaga–Luttinger Liquid?

Much theoretical effort has been put into the description of one–dimensional
electron systems in terms of a Luttinger liquid [15, 16]. To come experimen-
tally as close as possible to a situation, which can prove the existence of
such a correlated state, it is at least necessary to create Q1D systems in
the quantum limit. However, the intrasubband CDE wave–vector dispersion,
which is a typical quantity that can be extracted from inelastic light scat-
tering experiments, is within some limit identical in the Luttinger liquid and
the Fermi liquid theory [9, 17]. In Sect. 3.3 we have seen that in the RPA –
which is a Fermi liquid theory – the energies of the collective excitations, i.e.
plasmons, are determined by the poles of the wave–vector and frequency–
dependent dielectric function, ε(q, ω). The dielectric function is given by the
exact relationship [17]

ε(q, ω) = 1 − V (q)Π(q, ω) , (6.3)

where V (q) is the Fourier transform of the Coulomb interaction, and Π(q, ω)
the exact irreducible polarizability function. The RPA is constructed on the
approximation of replacing the exact Π(q, ω) by the irreducible polarizability,
Π0(q, ω), of a noninteracting electron gas, i.e.,

εRPA(q, ω) = 1 − V (q)Π0(q, ω) . (6.4)

In a 1D electron gas, Π0(q, ω) is given by [32]

Π0(q, ω) =
m∗

πq
ln

(
ω2 − ω2

−
ω2 − ω2

+

)
, (6.5)
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with

ω± = qvF ± h̄q2

2m∗ , (6.6)

where vF is the 1D Fermi velocity. It can be shown [17] that from this one
can get the long–wavelength plasmon dispersion

ωp = |q|
(

v2
F +

2
π

vF V (q)
)1/2

. (6.7)

It is unique to the Q1D intrasubband plasmon dispersion (6.7) that it has
the form of a depolarization–shifted SPE, since ω = qvF is the dispersion of
the intrasubband SPE (cf. Sect. 6.2.1 above). In all higher dimensions – Q2D
and 3D – this is not the case. The important point, however, is that (6.7)
is exactly the same as the eigenenergy of the elementary excitation in the
Tomonaga–Luttinger model [33]. On the contrary, the Tomonaga–Luttinger
model and the RPA strongly differ in the interpretation of the low–energy
excitations: In the RPA one has intrasubband SPE’s with a linear wave–
vector dispersion and the above introduced intrasubband plasmon (CDE), as
the collective excitation. The Tomonaga–Luttinger model predicts a perfect
spin–charge separation, where SPE’s do not exist. All elementary excitations
are exclusively collective in nature: CDE’s and SDE’s. In the Tomonaga–
Luttinger model, the interaction, V , is purely a parameter, while within RPA
(or TDLDA) V (q) is the matrix element of the 1/r Coulomb interaction in the
lowest quantized subband. Therefore, it is exactly known, if the confinement
potential is known. For Q1D systems it is well–known [32] that for q <<
1/a, where a is the typical confinement (or electronic) width, the Fourier
transform of the interaction potential, V (q) ∝ |ln(qa)|. This leads in the
long–wavelength limit to

ωp ∝ |q||ln(qa)|1/2 , (6.8)

which is for very small q values valid, only. This relation was experimentally
verified for the first time in experiments of Goñi et al. [5] on GaAs–AlGaAs
quantum wires with two occupied Q1D subbands. In 2000, Perez et al. [9]
confirmed again this relation in experiments on deep–etched quantum wires,
which were in the 1D quantum limit. Nevertheless, as already mentioned,
these experiments do not allow one to distinguish between a Luttinger–liquid
versus a Fermi–liquid behavior.

The wave–vector dependence of the Q1D intraband plasmon for very nar-
row quantum wires is obvious from Fig. 6.17. For these experiments, quantum
wire samples with different geometrical widths between about w = 250 nm
and w = 50 nm were prepared on 25 nm wide GaAs–AlGaAs single quantum
wells by laser–interference lithography and RIE etching [34]. The observed
mode positions are plotted in Fig. 6.18 versus the transferred wave vector, qx,
in wire direction. The solid lines were calculated following a model of Gold
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and Ghazali [35], which allows one to calculate the plasmon dispersion ana-
lytically. The model assumes a cylindrical shape of the Q1D electron system.
With this assumption one is able to calculate the plasmon frequency to be

ωp = qR0Ω0

√∣∣∣∣ln
(

qR0

2

)∣∣∣∣ , (6.9)
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with

Ω2
0 =

N1De2

2πεε0m∗R2
0

. (6.10)

For the theoretical curves in Fig. 6.18, the electronic radius, R0, and the
electron density, N1D, were used as fitting parameters. The numbers for R0,
displayed in Fig. 6.18, show that the estimates of the electronic widths, 2R0,
from this model are much smaller than the geometrical wire widths w. This
is however reasonable because of the depletion of the electronic system close
to the surfaces. Clearly, the model of Gold and Ghazali, which assumes a
wire in the quantum limit, is adequate for very narrow wires, only. For the
wire with 50 nm geometrical width, the fit delivers an electronic diameter of
a = 2R0 ≈ 20 nm and a 1D electron density of N1D = 6.5× 105 cm−1. With
the relations kF = π

2 N1D and EF = h̄2

2m∗
π2

4 N2
1D for a 1D system, this density

would yield a Fermi energy of EF ≈ 48 meV, which would clearly mean that
the system is not in the Q1D quantum limit, since the 1D subband spacing
is much below this value. How delicate such estimates are, can be seen by
the fact that with the model of Eliasson et al. [20] (see Sect. 6.2) applied
to the data of the narrowest wires in Fig. 6.18, almost the same electronic
width of a ≈ 24 nm can be estimated. However, the density in this case is
about N1D = 1.7 × 105 cm−1. For such a density, the wires with w = 50 nm
geometrical width (narrowest wires in Fig. 6.18) would clearly be in the Q1D
quantum limit, since a Fermi energy of EF ≈ 3 meV would result in this
case. Apparently, the 1D electron density N1D is a very critical parameter.
Figure 6.19 displays the experimentally observed mode positions of the 1D
intraband plasmon CDE0 together with the intersubband plasmons, which
were detectable in the experiments. The solid lines are the just mentioned
fits by the model of Eliasson et al. [20]. This model delivers an electronic
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width a for each sample from which N1D can be estimated via the relation
N1D = N2Da using the known density N2D of the quantum–well wafer, which
was used as a starting material.

In any case, the data available so far on electronic excitations in quantum
wires does not allow one to prove or disprove the Luttinger–liquid nature of
the Q1D electron system. M. Sassetti and B. Kramer pointed out [16] that,
employing the Tomonaga–Luttinger model, the intraband SPE0, which can
be observed in some experiments in the polarized spectra (cf., e.g., Sect. 6.3.2)
are actually collective SDE0. The authors predict that both, the resonance
behavior and the temperature dependence of this mode should be strikingly
different from those of the SDE0 mode, which should occur in the depolarized
configuration. It is understood that this different behavior in both polariza-
tions is a consequence of the Luttinger–liquid nature of the Q1D electron
system. Unfortunately, this can not be proven experimentally by the data
presented above, since there, in the very narrow quantum–wire samples, the
low–energy SDE’s can not clearly be detected. So, concluding, the proof of the
Luttinger–liquid nature of Q1D electron systems in narrow quantum wires
still remains to be an experimental challenge.
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5. A. R. Goñi, A. Pinczuk, J. S. Weiner, J. S. Calleja, B. S. Dennis, L. N. Pfeiffer,
and K. W. West: Phys. Rev. Lett. 67, 3298 (1991)
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7 Tunneling–Coupled Systems

7.1 Introduction

The plasmon spectrum of spatially separated two–component plasmas with-
out tunneling has been studied for quite some time (see, e.g., [1]). For finite
Coulomb coupling between the layers, the intrasubband charge–density ex-
citation spectrum consists of two modes: The optical plasmon (OP) where
both layers oscillate in phase parallel to the layers (see Fig. 7.1a), and, the
acoustic plasmon (AP) where the carriers in both layers oscillate out of phase
(see Fig. 7.1b). At long wavelengths, the energy of the OP is proportional
to

√
q and the energy of the AP goes linear in q, where q is the wave vector

parallel to the layers. It was shown [1] that at large spatial separation of the
two layers, the AP can move outside of the continua of possible intraband
single–particle transitions. The first experimental observation of coupled–
layer plasmons by inelastic light scattering was reported by Fasol et al. [2] on
GaAs-AlGaAs samples containing five layers in parallel. In Coulomb–coupled
double quantum wells, the observation of AP and OP was reported by Kainth
et al. [3].

During the past decade there has been a growing interest in tunneling-
coupled bilayer systems. In those systems, the interplay between many–
particle Coulomb interaction and tunneling coupling – which, in the first
place, is a single–particle effect – can be nicely studied. The additional de-
gree of freedom, which comes into play in these systems due to the tunnel-
ing coupling, is commonly known as the so called pseudo spin. For bilayers
with a perfectly symmetric potential in growth direction, the ground state
is determined by the tunneling–split symmetric and antisymmetric single–
particle states. New phenomena are expected due to intra– and interlayer
Coulomb interactions. In the past decade, quite a number of experimental
[4, 5, 6, 7, 8, 9, 10, 11] and theoretical [12, 13, 14, 15, 16, 17, 18, 19, 20]
papers appeared, concerned with tunneling–coupled systems. Most inelas-
tic light scattering experiments so far have been performed in symmetric
tunneling–coupled bilayer systems [6, 7]. For this specific case, theory pre-
dicts two excitations, an optical intraband plasmon, which evolves from the
OP of a purely Coulomb–coupled system, and an intersubband plasmon (ISP)
[17, 18], which is qualitatively new, when compared to the situation without
tunneling. As in the case of a single layer, the intraband plasmon is an ex-

Christian Schüller: Inelastic Light Scattering of Semiconductor Nanostructures
STMP 219, 145–159 (2006)
DOI 10.1007/3-540-36526-5 7 c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

Fig. 7.1. Schematic snapshot picture of the electron–density distributions for (a)
the optical plasmon (OP), and, (b) the acoustic plasmon (AP) of a Coulomb–
coupled double–layer system. High electron density is indicated by a dark color

citation where, macroscopically, the total electron density in both layers is
oscillating within the plane. The ISP, on the other hand, consists of transi-
tions of electrons between the tunneling–split subbands, i.e., it is a density
oscillation between the two layers. These excitations have been studied, e.g.,
in [6, 7], where in [6] it was reported that for occupation of both tunneling–
split subbands, the exchange–interaction contributions from both subbands
approximately cancel, and the intersubband SDE therefore has the same en-
ergy as the intersubband SPE. In this chapter we will concentrate on the spec-
trum of CDE’s in tunneling–coupled systems to study the interplay between
direct Coulomb and tunneling coupling. It can be shown that the energy of
the AP is close to zero in the case of strong tunneling [20]. As soon as the
potential deviates from perfect symmetry, however, the excitation spectrum
becomes more subtle. In particular, the excitation energy of the AP increases
again so that it should be observable in experiment.

In this chapter recent experiments on strongly coupled double quantum
wells will be discussed. In those experiments, the theoretically predicted [20]
plasmon spectrum could be observed, employing samples with external gates,
which allow one to tune the symmetry of the double quantum–well potential
in growth direction [11]. The chapter is finalized by a section, where first
experiments on strongly tunneling–coupled quantum wires will be presented.

7.2 Charge–Density Excitation Spectrum
in Tunneling–Coupled Double Quantum Wells

Figure 7.2 shows schematic pictures of the potentials and wavefunctions of
double quantum wells in growth direction. In Fig. 7.2a, a symmetric potential
is shown. The wavefunction in this case is perfectly symmetric or antisym-
metric for the tunneling–split state with lower or higher energy, respectively.
For a symmetric potential, the tunneling gap, ∆SAS, is minimal. If the poten-
tial becomes nonsymmetric (Fig. 7.2b), the tunneling gap is larger than for
the symmetric case, i.e., ∆ > ∆SAS, and the wavefunctions have no longer a
defined symmetry. With increasing tilt of the potential, the wavefunctions of
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Fig. 7.2. (a) Schematic picture of a modulation–doped double quantum well with a
thin tunneling barrier. The two lowest–energy tunneling–split states are indicated.
The lowest–energy subband has a symmetric wavefunction (S, dotted line), while
the wavefunction of the higher state is antisymmetric (AS, dashed line). (b) Same
as (a) for a nonsymmetric double quantum–well potential

the two states become more and more localized in opposite wells. In [20], the
symmetry of the potential is defined by a parameter sin(Φ), with

sin(Φ) =
∆SAS

∆
. (7.1)

It was shown [20] that in a tunneling–coupled bilayer system the low–energy
CDE’s can in a distinct way be influenced by the symmetry of the bilayer
structure: In the general case of two–subband occupation, three low–energy
CDE’s exist, two intrasubband plasmons (AP and OP) and an intersubband
plasmon (ISP), which originates from intersubband transitions between the
tunneling–split ground–state subbands. In the following section, experimental
investigations of the low–energy CDE’s in modulation–doped GaAs–AlGaAs
double quantum wells will be discussed [11]. In those experiments, semi-
transparent gates allowed one to tune both, the carrier density and spatial
symmetry of the double quantum well. By tuning the double–quantum–well
potential from a symmetric to an asymmetric shape, it was possible to de-
tect the AP of the tunneling–coupled system. Furthermore, an intriguing
behavior of the ISP was found. It exhibits a crossover from a direct to an
indirect excitation of the double quantum well. This crossover is expected to
take place when the asymmetry of the potential is strong enough that, es-
sentially, the wavefunction of the lower subband is localized in one well, and,
the wavefunction of the upper subband is localized in the other well [11].

Before discussing the experiments, we will start in this section by investi-
gating the spectrum of CDE’s theoretically [21], following the considerations
in [20]. There, the spectrum of CDE’s is calculated in the framework of RPA,
considering two delta layers, and incorporating the tunneling coupling by a
coupling parameter sin(Φ), as introduced above.
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Fig. 7.3. Inplane wave–vector dispersions of electronic excitations in a tunneling–
coupled double quantum well with symmetric potential. The thick solid lines indi-
cate the dispersions of the ISP and OP. The hatched areas mark the single–particle
continua of intraband excitations of the two tunneling–split subbands, and the grey–
shaded areas those of intersubband transitions. Parameters are: separation of two
layers, d = 16 nm, total carrier density, n = 1.8 × 1011 cm−2, ∆SAS = 1.5 meV

Figure 7.3 displays the calculated wave–vector dispersions of the low–
energy CDE’s (thick solid lines) of a perfectly symmetric double well together
with the relevant intersubband and intrasubband single–particle continua.
The tunneling gap was chosen to be ∆ = ∆0 = 1.5 meV, i.e., sinΦ = 1.
As already discussed, for the symmetric case, the energy of the AP is close
to zero and there are the ISP and the OP as the relevant collective modes.
The density oscillations in the planes and perpendicular to the planes of the
quantum wells, i.e., between the wells, are independent of each others and
there is no coupling of the modes. This changes for nonsymmetric poten-
tials, as shown in Fig. 7.4. Here, the coupling of ISP and OP manifests by
an anticrossing of the two modes. Furthermore, for a nonsymmetric poten-
tial, the AP appears at finite energy within the intrasubband single–particle
continua. The systematic behavior of the collective modes with symmetry of
the double–quantum–well potential is displayed in Fig. 7.5. There, a fixed
wave–vector transfer of q = 0.84 × 105 cm−1 was chosen. The energy of the
OP is nearly insensitive to the potential shape. It essentially depends on the
total carrier density, n, which is kept fixed for the calculations displayed in
Figs. 7.3 through 7.5. Of course, the quantized energy levels of the tunneling–
split lowest–energy subband depend strongly on the symmetry of the poten-
tial. Hence, both, the energy of the ISP and the intersubband single–particle
transitions depend strongly on sinΦ. With increasing asymmetry, the energy
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Fig. 7.4. Inplane dispersions of electronic excitations as in Fig. 7.3 but for sin Φ =
0.25, i.e., an asymmetric double–quantum–well potential
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Fig. 7.5. Energies of electronic excitations of a double quantum well in dependence
on the symmetry of the potential. The wave–vector transfer was kept fixed at q =
0.84 × 105 cm−1

of the AP moves towards the upper edge of the intrasubband single–particle
continua.

In the following section, experiments on a modulation–doped GaAs–
AlGaAs double quantum well, where n and sinΦ could be controlled by
external metallic gates, will be discussed.
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7.3 Experiments on Tunable GaAs–AlGaAs Double
Quantum Wells

The experiments, which will be discussed in this section, were performed
on modulation–doped GaAs–Al0.33Ga0.67As double quantum wells [11]. The
samples consist of two 15 nm–wide GaAs quantum wells, separated by a 1
nm AlGaAs tunnel barrier. The AlGaAs barriers on both sides of the double
quantum well are modulation doped, using Si delta layers. In the top barrier
layer, two delta–doping layers were grown, separated by 28 nm AlGaAs and
a 20 nm spacer layer to the upper GaAs well. In the lower barrier, one delta
layer, separated by a 41 nm spacer from the lower GaAs well, was grown.
Semitransparent Titanium gates were deposited on top of the samples. By
applying a bias between the double quantum well and the gate, the carrier
density and the self–consistent potential of the double quantum well in growth
direction can be tuned.

In Fig. 7.6, polarized spectra for different inplane wave–vector transfer, q,
are shown. Two lines, labelled as AP and OP, can be identified, which depend
strongly on q. The broader mode, ISP, is nearly independent of q. Figure 7.7
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Fig. 7.6. Polarized spectra of a double quantum well for different inplane wave–
vector transfer q
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Fig. 7.7. (a) Polarized (light gray) and depolarized (gray) spectra of electronic exci-
tations in an asymmetric tunneling-coupled GaAs-AlGaAs DQW. The inset shows
a sketch of the DQW potential and wavefunctions. (b) Experimentally determined
mode positions of the low-energy CDE’s in dependence on the wave-vector transfer
q parallel to the DQW for the same sample as shown in Fig. 1. The hatched regions
mark the continua of intra- and intersubband single-particle transitions

displays a comparison of polarized and depolarized spectra of the low–energy
excitations for large wave–vector transfer q = 1.35 × 105 cm−1. Since the
three peaks, indicated in Fig. 7.7, appear dominantly only in the polarized
spectrum, we can identify them as CDE’s and rule out single–particle ex-
citations. Remarkably, the excitation at 19 meV is much broader than the
excitations at 2 meV and 9 meV, which have very similar linewidths. From
considerations which will be discussed below, we find that the potential of
the double–quantum–well structure in this experiment was strongly asym-
metric with respect to the tunneling barrier (see inset of Fig. 7.7a). The
interpretation of the CDE’s displayed in Figs. 7.6 and 7.7a follows from the
measured wave–vector dispersion, which is plotted in Fig. 7.7b (symbols).
The lowest energy excitation (full squares in Fig. 7.7b) shows a linear q de-
pendence and is therefore interpreted as the AP. The OP exhibits a square
root–like behavior (full circles in Fig. 7.7b), and the highest energy excita-
tion, the ISP between the tunneling–split subbands, depends only weakly on
q (open symbols in Fig. 7.7b). The thick solid lines in Fig. 7.7b are calculated
within RPA (for details of the calculation see [20]). For the sample displayed
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Fig. 7.8. Polarized Raman spectra for different gate voltages V (in steps of 0.25 V),
applied between the DQW and a front gate. The wave-vector transfer is fixed at
q = 1.35 × 105 cm−1. On the right-hand side, the shape of the DQW potential is
sketched [Reprinted with permission from [11]. Copyright (2003) by the American
Physical Society]

in Fig. 7.7b, the parameters are ntot = 8.6 × 1011 cm−2 for the total car-
rier density, ∆SAS = 3.65 meV, and sin(Φ) = 0.205, which means that the
double–quantum–well potential is significantly asymmetric. The theoretical
considerations of the previous section showed that, in a tunneling–coupled
bilayer, the AP can have a finite energy, and hence should be observable in
experiment, for an asymmetric double–quantum–well potential, only. For the
symmetric case, its energy tends to zero (is exactly zero for delta layers).

Figure 7.8 shows a series of polarized Raman spectra for different gate
voltages V between −1.25 V and +3.25 V. At V = −1.25 V, the energy of
the ISP is minimal (≈ 7.5 meV) and there is no AP (lowest–energy excitations
in Fig. 7.8) visible at that gate voltage. From both it can be concluded that
the potential is symmetric in this gate–voltage range. By tuning V towards
positive values, the carrier density in the double quantum well increases, and,
at the same time, the potential becomes more and more asymmetric (see
schematic pictures on the right–hand side of Fig. 7.8). The energy of the OP
is determined dominantly by the total carrier density of the double quantum
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well. Since in the experiment displayed in Fig. 7.8 the wave vector q is fixed,
the energy of the OP is essentially proportional to

√
ntot. In that sense, the

OP serves as a direct monitor of the electron density in the experiment. With
increasing carrier density and potential asymmetry (between V = −1.25 V
and V = 0.75 V in Fig. 7.8), the energy and the linewidth of the ISP increases
rapidly. At about V = 0.5 V, its intensity drops down within a relatively small
voltage range. This was interpreted [11] as a crossover of the ISP from a direct
excitation of the double–quantum–well structure to an indirect excitation: For
a strongly asymmetric potential, the wave function of the lowest subband is
located dominantly in one well (e.g., the left one, as sketched in the inset of
Fig. 7.7a), and the wave function of the second subband is located in the other
well. In this special situation, for an intersubband excitation, the electrons
have to tunnel between the two layers. The strongly reduced overlap of the
wave functions leads to the reduced intensity of the ISP.

In conclusion, in this section low–energy CDE’s in tunneling–coupled dou-
ble quantum wells were investigated in dependence of the carrier density and
symmetry of the double quantum well. For asymmetric potentials, the AP of
the tunneling–coupled system at low energies was observed and a crossover of
the ISP from a direct to an indirect excitation of the coupled bilayer system
was found.

7.4 Vertically–Coupled Quantum Wires

Now, the interesting question arises how the energies of the modes, which
propagate as electron–density waves in the tunnelling–coupled 2DES, are
altered if the double–quantum–well structure is patterned to quasi one–
dimensional quantum wires. In the lateral direction perpendicular to the
wires, we should expect a quantization of the intraband OP as well as of the
AP modes. In this section we discuss the experimental observation of such
confined modes in quantum wires, which are tunnelling–coupled in the verti-
cal direction, i.e., the growth direction of the double–quantum–well structure.

Up to now there are no measurements reported on double–layered 1DES
with strong coupling. Demel et al. [22] observed plasmon modes in weakly cou-
pled double–layered 1DES by far–infrared spectroscopy. Theories describing
1DES with weak coupling can be found, e.g., in [23, 24, 25]. Until now there
are also no theoretical publications concerning strong coupling in double–
layered 1DES.

The investigated samples are modulation–doped GaAs–AlxGa1−xAs dou-
ble quantum wells. They consist of two 15 nm–wide GaAs quantum wells,
separated by a 1 nm AlGaAs tunnelling barrier. The AlGaAs barriers on
both sides of the double quantum well are modulation doped using Si delta
layers. For further reduction of the dimensionality, quantum–wire structures
were prepared by holographic lithography and deep–reactive–ion etching (see
Sect. 2.5), i.e., etching all the way through the double quantum well structure.
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Fig. 7.9. Schematic picture of the investigated sample

Figure 7.9 shows a schematic picture of the prepared sample. It consists of
two different lateral areas: a 1DES and a 2DES which allows one the measure-
ment of both systems at one sample by just moving the spot of the exciting
laser. Wave–vector transfers can be realized by tilting the sample normal
with respect to the directions of incoming and scattered light. In the case of
wires, the wave-vector q can be transferred, e.g., in y direction, perpendicular
to the wires, or in x direction, parallel to the wires (cf. Chap. 6). A semi-
transparent Titanium gate covers the sample surface in the wire area as well
as in the double–quantum–well area. By applying an electrical field between
the alloyed contacts of the 2DES and the gate, the electron density and the
symmetry of the double–layered systems in z direction can be controlled at
the same time. Due to the asymmetry of the double quantum well potential
(see Fig. 7.2b), the wave function of the lower level is located dominantly
in the left and the wave function of the upper level in the right well. The
electron density of the 2DES can be varied between 5 and 9 × 1011 cm−2.
In the high density range, the two lowest tunnelling-split subbands of the
double–layered potential are occupied. By decreasing the density, the occu-
pation changes, which can be deduced from the energy variation of the 2D
ISP, which originates from intersubband transitions.

The period and geometrical wire width of the investigated sample are
700 nm and 250 nm, respectively. Due to lateral depletion, the electronic
wire width is smaller. Comparing the wave–vector dependent measurements
of confined OP modes (not shown here) with the hydrodynamical model of
Eliasson et al. [27], the effective electronic wire width, a, can be deduced. For
an applied gate voltage of −400 mV (+700 mV) we get a = 130 nm (a =
150 nm) and the one-dimensional density N1D = 2.8 × 106 cm−1 (N1D =
5.8 × 106 cm−1) with N1D � a · N2D.

Figure 7.10 shows a series of measured Raman spectra of electronic exci-
tations. The left (right) figure shows spectra in polarized (depolarized) con-
figuration, i.e., the polarization of the incoming and scattered light are par-
allel (perpendicular) to each other. The external electric field is varied from
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Fig. 7.10. Polarized (left) and depolarized (right) spectra of electronic excitations
in a tunnelling–coupled GaAs–AlGaAs quantum wire array. The spectra are shifted
against each other for clarity

950 mV down to −200 mV in steps of 50 mV. In the experiments presented
here, a wave vector q = 0.81 × 105 cm−1 was transferred perpendicular to
the wire direction (y direction) to effectively induce electron motion in the
direction of the lateral confinement. The energy of the incoming laser light
was 1606 meV. It clearly can be seen that there are two different types of
excitations. On the one hand there are excitations which are shifting to lower
energies with decreasing gate voltage (labelled COP); on the other hand
there are excitations which are shifting first to lower and then to higher en-
ergies when the gate voltage is decreased (labelled CAP). We infer that the
CAP are confined acoustic, and the COP are confined optical plasmons of
the tunnelling–coupled quantum wires (see discussion further below). Macro-
scopically, for our experimental geometry, the carriers are oscillating in both
layers perpendicular to the wire direction. In the case of COP in phase in
both layers, and out of phase in the case of CAP. Measurements on the wire
sample, which were performed in plane wave geometry, i.e., transferring the
wave vector parallel to the wires (x direction) support this interpretation:
We observe modes, which can be identified as acoustic intrasubband plas-
mons and optical intrasubband plasmons by their wave vector dispersions,
which are linear in q and proportional to

√
q, respectively.
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Up to this point it is not clear, why the observed excitations in Fig. 7.10
do not show distinct polarization selection rules, as, e.g., reported for single–
layered quantum wires [28]. There, charge–density excitations should only
be observable in polarized configuration if the wave vector was transferred
perpendicular to the wire direction. We think that in our case, both, resonant
scattering, and near–field effects within the wire array play an important role
and need to be further investigated theoretically.

In Fig. 7.11, the measured excitation energies vs. gate voltage are de-
picted. Black squares represent excitations which are detected in polarized,
grey circles in depolarized configuration. The indices give the change, ∆j, in
the one–dimensional subband quantum number, j, for the transitions, which
contribute predominantly to the observed excitations. The insets show a sim-
ple scheme of the macroscopic density distributions for the first localized
optical (COP1, upper scheme) and acoustic (CAP1, lower scheme) Q1D in-
tersubband plasmons in a double–layered quantum wire. The arrows indicate
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Fig. 7.11. Measured peak positions of the confined optical (COP∆j) and acoustic
(CAP∆j) intersubband plasmons in a double–layered 1DES vs. gate voltage. The
insets show a scheme of the macroscopic density distribution for the first localized
optical (upper) and acoustic (lower) intersubband plasmons
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the two extreme situations, between which the system oscillates macroscopi-
cally. Calculations of density distributions in weakly–coupled, double–layered
1DES had been performed by Steinebach et al. [29].

The striking feature observed here is the different behavior of optical
modes in comparison to the acoustic modes. We will first concentrate on
the characteristics of the excitation energies for both excitation types. Those
can be explained in a simple macroscopic picture as follows: In the case of
COP∆j , the carriers in both 1D layers oscillate in phase perpendicular to
the wire direction. The spatial separation of the electrons in both layers
is essentially given by the tunnelling barrier with a width of 1 nm. The
higher the charge density of the wires, the larger is the Coulomb interaction.
Therefore, the energies of the COP∆j increase with increasing charge density,
i.e., with increasing gate voltage. The excitation energies are dominated by
the total carrier density and are nearly insensitive to the variation of the
double–well potential from symmetric to asymmetric and vice versa. The
energies of the CAP∆j are lower in comparison to the optical excitations for
the whole voltage range. In the extreme situations, sketched in the inset of
Fig. 7.11, due to the out of phase oscillation, one part of the carrier density
is located in one well on one side of the wire, while the other is located in
the other well just on the opposite side of the wire. Therefore, generally, the
Coulomb interaction is weaker for the acoustic modes than for the optical
modes and hence the excitation energies are smaller. This effect approaches
a maximum when the double quantum well potential is symmetric. Then,
the effective charge displacement is just zero, since half of the density is
moving to one side while the other half is moving in the opposite direction.
In this case, we expect a minimum in the excitation energy, since the effect of
the Coulomb interaction is minimal. This is observed experimentally in the
excitation energies of the acoustic modes in Fig. 7.11. In this simple picture,
however, one can not explain why the minima for the CAP1 and CAP2 do
not occur at exactly the same voltage.

In the case of the COP∆j , furthermore, discontinuities are clearly observed
in both polarization configurations at gate voltages between 450 and 650 mV.
It seems that the strengths of these discontinuities increase with increasing
excitation energies, and they might be also present for the CAP∆j but are
not clearly resolvable, since their excitation energies are smaller. So far, there
is no definitive explanation of this effect. It might be due to a self–consistent
carrier–density redistribution when the second 2D subband, i.e., the subband
with asymmetric wave function, starts to be filled with electrons. There is,
however, no convincing proof of this situation.

In conclusion, in this section first experimental observations of confined
optical and acoustic intersubband plasmons in double–layered quantum wires
in the regime of strong tunnelling coupling were reported. By applying an ex-
ternal electric field, which influences on the one hand the 1D electron density
and on the other hand the symmetry of the double–quantum–well structure,
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we could differentiate between the two excitation types by the variation of
their energies with gate voltage.
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8 Inelastic Light Scattering in Microcavities

8.1 Introduction

A semiconductor microcavity is an optical resonator, where the mirrors con-
sist of alternating layers of two different semiconductors with different re-
fractive indices, e.g., GaAs and AlAs, which have thicknesses of a quarter
wavelength each. The resonator itself is called spacer, and has a thickness of
a few half wavelengths. The electric fields of the light waves, and hence the
light–matter interaction can be modified significantly inside a microcavity. In
the past decades, a number of sophisticated experiments have been reported
that took advantage of the strongly enhanced electric field inside the spacer
of a planar semiconductor microcavity. A prominent example is the enhanced
exciton–photon coupling, resulting in an enlarged Rabi splitting, in planar
microcavities containing undoped quantum wells [1]. Subsequently, a wealth
of theoretical and experimental work on exciton polaritons in semiconductor
microcavities, e.g., about the influence of a magnetic field [2], or coupling
between different microcavities [3], followed.

Fainstein et al. [4] impressively demonstrated for the first time that the
enhanced electric field inside a microcavity can also enhance optical–phonon
Raman scattering by over 4 orders of magnitude. Even stronger enhancements
could be reached by using the cavity polariton mode as a resonant interme-
diate state in the scattering process [5]. In all these investigations, excitonic
or polaritonic effects caused by the interaction of photo–excited carriers in
undoped structures with the photonic cavity mode were studied.

In this chapter, we will discuss the investigation of electronic excitations
of a 2DES, embedded inside a planar semiconductor microcavity [6, 7]. It
will be shown that the inelastic light scattering by electronic intersubband
excitations can be enhanced by about three orders of magnitude under condi-
tions of an optical double resonance [4], where the incoming photons as well
as the inelastically scattered photons are in resonance with the cavity mode,
compared to the single–resonance case, where only the laser photons are in
resonance with the cavity mode. Moreover, since a high–quality cavity with
a cavity–mode width smaller than the widths of the electronic excitations
was used, it is possible to selectively enhance distinct parts of the excita-
tions. These investigations may offer the opportunity to use the presented
method in the future as some kind of a selective spectrometer to enhance

Christian Schüller: Inelastic Light Scattering of Semiconductor Nanostructures
STMP 219, 161–168 (2006)
DOI 10.1007/3-540-36526-5 8 c© Springer-Verlag Berlin Heidelberg 2006
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electronic elementary excitations. This would enable one to study, e.g., ex-
citations in quantum–wire or quantum–dot structures containing only few
electrons, which might be too weak for a direct observation.

8.2 2DES Inside a Semiconductor Microcavity

We will start by introducing the sample structure used by T. Kipp et al.
[6, 7]. The MBE grown microcavity samples consist of a Al0.2Ga0.8As λ cavity
(spacer) with AlAs-Al0.4Ga0.6As quarter–wave layers on both sides (24 on the
top, and 33 on the bottom side), which act as distributed Bragg reflectors
(DBR’s). The finesse of the microcavities is between about 1200 and 2400.
In the center of the spacer, there is a one–sided modulation–doped GaAs
quantum well with 30 nm well width grown. A Si–doped layer is separated
from the well by a 20 nm spacer. The sample structure is schematically shown
in Fig. 8.1a. Figure 8.1b shows the calculated distribution of the electric field
amplitudes inside the cavity. To allow for simultaneous transmission and
Raman experiments, the GaAs substrate was completely removed from the
back side of the sample. After the removal of the substrate, the only GaAs
which was left in the sample was the 30 nm quantum well and an undoped 2
nm cap layer. By magneto–luminescence measurements, the carrier density
inside the well could be determined to be 5.3 × 1011 cm−2. The Raman
experiments were performed using a tunable Ti:sapphire laser and a triple
Raman spectrometer with liquid–nitrogen cooled CCD camera. The sample
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Fig. 8.1. (a) Layer sequence of a sample containing a modulation–doped sin-
gle quantum well embedded inside a semiconductor microcavity. (b) Calculated
electric–field amplitudes inside the microcavity sample. The inset shows a magnifi-
cation of the field distribution inside the spacer. The position of the quantum well
is marked by the vertical bar
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was immersed in superfluid liquid helium at a temperature of about 1.6 K.
The scattering geometry is shown in Fig 8.3a. ki and ks label the wave vectors
of the incident and scattered beams, respectively. In the quasi–backscattering
geometry there was generally a finite angle between the sample normal and
the direction of incident (θi) and scattered light (θs), as well as between both
beams (θi−θs = 0). To most accurately fix the direction of the scattered light,
which was collected by a lens, a 2 mm aperture at a distance of about 0.5 m
from the sample was used (see Fig. 8.3a). The thickness of the MBE layers
and thus the cavity–mode wavelength decreases from the center of the wafer
towards the edges. So, by laterally moving the laser spot across the sample,
the cavity mode could be tuned. For the Raman experiments, a cavity–mode
energy below the GaAs bandgap was choosen to separate the cavity-related
resonance from electronic resonances of the quantum well.

8.3 Optical Double–Resonance Experiments

First, we want to elucidate the so–called single–resonance case. Figure 8.2a
shows spectra of intersubband excitations of the 2DES for exact backscatter-
ing geometry, i.e., the directions of incident and scattered light were parallel
and antiparallel to the sample normal, respectively. We note that these spec-
tra were taken without the aperture to get higher intensities. For parallel
polarizations of incident and scattered light (polarized configuration) the in-
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Fig. 8.2. (a) Polarized (upper spectrum) and depolarized (lower spectrum) spectra
of intersubband excitations in a 30 nm quantum well for single–resonance condi-
tions. (b) Transmitted intensity, and, (c) intensities of the observed excitations
versus laser energy
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tersubband charge-density excitation (CDE) is observed [8]. This mode is af-
fected by direct and exchange Coulomb interactions and is therefore shifted
to higher energies compared to the single–particle subband spacing of the
system in its ground state. The intersubband CDE is split into two modes,
CDE− and CDE+, due to the coupling with the LO phonon of the polar lat-
tice (cf. Sect. 3.3.3). The uncoupled LO phonon which is also observed in the
polarized spectrum, originates from the undoped GaAs buffer layer before
complete removal. In the depolarized configuration, i.e., crossed polarization
directions, the spin–density excitation (SDE) is observed, which is shifted to
lower energies since it is only affected by exchange interaction. These spectra
were taken with the laser energy in resonance with the cavity mode at about
1499 meV. In Fig. 8.2c, the intensities of the observed excitations – SDE
and CDE− – for this single–resonance case are shown versus laser energy.
Simultaneously to the Raman experiments, the intensity of the light which
was transmitted through the sample was measured (Fig. 8.2b). This clearly
shows that the resonance maxima of the excitations are directly related to
the cavity–mode energy. An intrinsic electronic resonance of the quantum
well can be excluded. The first electronic resonance via a quantum–well exci-
ton as an intermediate state in the scattering process occurs at the transition
energy from the highest hole subband to the first excited electron subband,
at much higher energies, which was measured at about 1525 meV.

In the double–resonance experiment, both the laser energy and the en-
ergy of the scattered light are in resonance with the cavity mode. We will
describe further below how this situation can be accomplished. Figure 8.3b
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Fig. 8.3. (a) Schematic picture of the scattering geometry for double–resonance ex-
periments. (b) Polarized Raman spectra for single–resonance and double–resonance
configurations. The spectra were taken for incident angles θi = 30.3◦ and θi = 37.3◦

for the single–resonance and double–resonance case, respectively. The scattering
angles were θs = θi − 26.8◦. For the single-resonance spectrum a background was
substracted before multiplication
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shows the striking result of this experiment. In Fig. 8.3b, polarized spectra
of the intersubband CDE− are compared for the single-resonance and the
double-resonance configuration. Now, the scattered light is collected through
a 2 mm aperture, as shown in Fig. 8.3a, to accurately fix the direction with
respect to the direction of the incoming laser beam. There are two remark-
able observations which we will discuss in the following. First, the intensity
in double resonance is about 3 orders of magnitude larger than in single
resonance. Note that the base line is the same for both spectra. The single–
resonance spectrum is multiplied by a factor of 1500 so that the maximum
intensities in both spectra, single–resonance and double–resonance, are the
same. We will come back to the electronic background, which is visible in
the single–resonant spectrum, below when we describe the double–resonance
case. In the following we will discuss some electrodynamic arguments con-
sidering this drastic effect. To estimate the enhancement of the electric field
inside the cavity, we have performed calculations of the field distribution in-
side the cavity by solving Maxwell’s equations for the multi-layer system.
Figure 8.1b shows the results of this calculation. It can be seen that the field
amplitude is maximal in the center of the λ cavity and decays exponentially
inside the DBR’s. The calculations were performed assuming s–polarized in-
cident light and a tilt angle of 37.3◦. These are the conditions where double
resonance is achieved in the experiments (see below). From these calculations
we find that the electric field is amplified by a factor of about 16 in the cen-
ter of the cavity, where the quantum well containing the 2DES is located. In
a simple approach, we want to consider first these electric field amplitudes
inside the cavity. The scattering amplitude, γαβ , for inelastic light scattering
by electronic excitations is given by [9] (cf. Sect. 4.2.2)

γαβ ∼
∑
β′

〈β|esEs|β′〉〈β′|eiEi|α〉
h̄ωi − εβ + εβ′

, (8.1)

where ei (es) and Ei (Es) mean the polarization and electric–field amplitude
of the incident (scattered) light, respectively. |α〉, |β〉, and |β′〉 are single–
particle states of the quantum well, and εi are the corresponding energies.
h̄ωi is the energy of the incident laser photons. The resonance denominator
in (8.1) plays a relevant role for electronic resonances via real transitions
between valence– and conduction–band states of the quantum well, which
shall not be discussed here. For the purely optical resonances considered here,
mediated by the electro–dynamic enhancement of the field amplitude inside
the optical resonator, the numerator is important since here the electric–field
amplitudes Ei and Es of the incident and inelastically scattered radiations
enter. From this formula we can in this simple approach estimate that if in the
double–resonance case, besides Ei, also Es is enhanced by about one order
of magnitude, then the scattered intensity, which is proportional to |γαβ |2, is
enhanced by about 2 orders of magnitude, compared to the single–resonance
case. However, this consideration would describe only the effects inside the
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Fig. 8.4. Calculated cavity-mode energy versus incident angle (solid line). The
symbols are the experimentally determined mode positions for p-polarized (solid
symbols) and s-polarized (open symbols) light

cavity sufficiently and not the intensity of the signal which is measured outside
the cavity . For a comparison of the double–resonance to a non–resonance
case without cavity, this approach might be useful [4] since in that case both
the incoming and scattered radiation are in resonance with a cavity mode.
For the comparison of the single–resonance and the double–resonance case in
backscattering geometry, however, one has to take into account that in single
resonance the scattered light is out of resonance with the vertical cavity and
therefore should exhibit strong extinction. For a more appropriate description
one has to consider for that case an emitting dipole at the location of the
quantum well inside the cavity. With this, one has to compute the radiation
pattern of the dipole inside the cavity in order to determine the intensity
emitted out of the cavity in the direction where the scattered light is collected
[10, 11]. We assume that in our case, because of the extinction of the scattered
light in single resonance, the experimentally detected enhancement is about
one order of magnitude larger than the one we got from the simple approach
used above.

The second remarkable observation in Fig. 8.3b is that the width of the
excitation in double resonance is about a factor of 2 smaller than in the
single–resonance case. To elaborate on this in more detail, we will describe
now how we accomplish double resonance in modification of the experiment
of Fainstein et al. on optical phonons [4]. Figure 8.4 displays calculated (solid
line) and experimental (symbols) cavity–mode energies versus incident angle,
where the angle is measured between the sample normal and the direction of
the light. The experimental mode positions do not exactly match the calcu-
lated curve. We assume that in the experiment the laser spot was not located
exactly on the rotation axis of the sample so that by tilting the sample also
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Fig. 8.5. (a) Depolarized and (b) Polarized double–resonant Raman spectra in
the range of the electronic intersubband excitations. For clarity, only the spectral
ranges around the maxima are shown. The incident angles were varied as displayed
in the figures. The laser energies varied between 1489.84 meV and 1505.91 meV
for the depolarized spectra, and between 1489.16 meV and 1504.95 meV for the
polarized spectra. The maxima have been connected by an envelope curve

the position of the laser spot changed slightly. We estimate that a variation
of the position on the sample surface of about 0.6 mm could account for
the difference. Note that also the difference between p– (solid symbols in
Fig. 8.4) and s–polarized light (open squares in Fig. 8.4) in the experimen-
tal cavity–mode energies is much larger (about 1 meV) than the calculated
difference (much less than 1 meV), which is not resolvable in Fig. 8.4. We
assume that also this difference between experiment and theory is due to a
slight displacement of the laser spot on the sample by switching between the
two polarizations. We started the double–resonance experiment by having
the scattered light parallel to the sample normal and the incident light at an
angle of 26.8◦. After that, the sample was tilted as shown in Fig. 8.3a in small
steps of 0.7◦, while the angle between incident and scattered light was kept
constant at 26.8◦. For each tilt angle, the laser energy was tuned in resonance
with the cavity mode. This was monitored by determining the maximum of
the intensity which was transmitted through the sample. Double resonance
is reached when the difference in the cavity–mode energies of incident and
scattered light just matches the energy of an excitation. This situation is
indicated by the two vertical dotted lines in Fig. 8.4, which correspond to
a tilt angle of 10.7◦. Figure 8.5 displays the experimental results of such a
measurement. It shows series of depolarized (Fig. 8.5a) and polarized (Fig.
8.5b) inelastic light scattering spectra in the range of tilt angles θs where
double resonance is achieved. For clarity, only the spectral ranges around
the maxima in the Raman spectra are shown as thin solid lines. The spectra
were recorded for tilt angles between 1.4◦ and 14.5◦ in steps of about 0.7◦.
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Note that each spectrum belongs to a different laser energy. The solid sym-
bols mark the maxima of the Raman spectra and the thick solid lines which
connect the symbols serve as a guide to the eye to represent the ’envelopes’
of the measured spectra. By comparing these envelope curves to the spectra
in Fig. 8.2a, measured in single resonance, one can see that they nearly re-
produce the line shapes. It can be seen that also the electronic background,
which we mentioned before in the single–resonance spectrum in Fig. 8.2a,
is enhanced in the double–resonance experiment. Thus, by a distinct choice
of the angle arrangement of incident and scattered beams, we are able to
selectively enhance parts of the, in this case, inhomogeneously broadened
excitations. The spectral width of the enhanced part is determined by the
spectral width of the cavity mode.

In conclusion, in this chapter, an optical resonance of electronic excita-
tions of a modulation–doped quantum well embedded inside a microcavity
was presented. By a variation of incidence and scattering angles, double–
resonance conditions could be achieved in a spectral range, which is deter-
mined by the width of the cavity mode. This enables one to selectively en-
hance parts of electronic excitations by about 3 orders of magnitude compared
to a single resonance.

References

1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa: Phys. Rev. Lett. 69,
3314 (1992)

2. J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdre, U. Oesterle, and
R. P. Stanley: Phys. Rev. Lett. 74, 3967 (1995)

3. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems: Appl.
Phys. Lett. 65, 2093 (1994)

4. A. Fainstein. B. Jusserand, and V. Thierry-Mieg: Phys. Rev. Lett. 75, 3764
(1995)

5. A. Fainstein. B. Jusserand, and V. Thierry-Mieg: Phys. Rev. Lett. 78, 1576
(1997)

6. T. Kipp, L. Rolf, C. Schüller, D. Endler, Ch. Heyn, and D. Heitmann: Phys.
Rev. B 63, 195304 (2001)

7. T. Kipp, L. Rolf, C. Schüller, D. Endler, Ch. Heyn, and D. Heitmann: Physica
E 13, 408 (2002)

8. For an overview see: A. Pinczuk and G. Abstreiter in: Light Scattering in Solids
V, Topics in Applied Physics Vol. 66, eds. M. Cardona and G. Güntherodt
(Springer, Berlin, 1988) p. 153

9. F. A. Blum: Phys. Rev. B 1, 1125 (1970)
10. A. Fainstein, B. Jusserand, and V. Thierry-Mieg: Phys. Rev. B 53, R13287

(1996)
11. A. Fainstein and B. Jusserand: Phys. Rev. B 57, 2402 (1998)



Part III

Appendix



A Kronecker Products of Dipole Matrix
Elements I

In this chapter, Kronecker products corresponding to dipole matrix elements
of Bloch functions of the Γ6 conduction–band edge and the Γ7 split–off
valence–band edge are calculated. The corresponding band–edge Bloch func-
tions are listed in Table 4.29 on page 71. The calculation shall be explained
by the following example:

〈S ↑ |p|V 2〉〈V 2|p|S ↑〉 . (A.1)

The momentum matrix element 〈S ↑ |p|V 2〉 is given by

〈S ↑ |p|V 2〉 =
i√
3
〈S ↑ |p| − (X − iY ) ↑ +Z ↓〉 =

=
1√
3


−i〈S|px|X〉

−〈S|py|Y 〉
0


 =

1√
3


 P

−iP
0


 , (A.2)

where P is defined as

P := −i〈S|px|X〉 = −i〈S|py|Y 〉 = −i〈S|pz|Z〉 . (A.3)

Furthermore, we have
〈ui|p|uk〉 = 〈uk|p|ui〉∗ . (A.4)

With (A.2) and (A.4) we get for the product (A.1):

〈S ↑ |p|V 2〉〈V 2|p|S ↑〉 =
P 2

3


 1

−i
0


 (1, i, 0) =

P 2

3


 1 i 0

−i 1 0
0 0 0


 . (A.5)

Analogously, we receive at the remaining Kronecker products, which are listed
in Table B1.
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Table B1. Kronecker products of dipole matrix elements between the Γ6 and Γ7

band–edge Bloch functions

⊗ 〈V 1|p|S ↑〉 〈V 1|p|S ↓〉

〈S ↑ |p|V 1〉 P2

3

(
0 0 0
0 0 0
0 0 1

)
P2

3

(
0 0 0
0 0 0
1 −i 0

)

〈S ↓ |p|V 1〉 P2

3

(
0 0 1
0 0 i
0 0 0

)
P2

3

(
1 −i 0
i 1 0
0 0 0

)

⊗ 〈V 2|p|S ↑〉 〈V 2|p|S ↓〉

〈S ↑ |p|V 2〉 P2

3

(
1 i 0

−i 1 0
0 0 0

)
P2

3

(
0 0 −1
0 0 i
0 0 0

)

〈S ↓ |p|V 2〉 P2

3

(
0 0 0
0 0 0

−1 −i 0

)
P2

3

(
0 0 0
0 0 0
0 0 1

)



B Kronecker Products of Dipole Matrix
Elements II

At the fundamental bandgap E0 we have for Q2D systems generally a mixing
of heavy and light–hole states. In this case, the dipole matrix elements be-
tween a valence–band state ψhi,k||(r) and a conduction–band state ψcj ,k||(r)
is given by

〈hi,k|||p|cj ,k||〉 =
∫

χ∗
3/2,hi,k||

(z) χ1/2,cj
(z) dz

〈
3
2
,

3
2
|p|1

2
,

1
2

〉
+

+
∫

χ∗
1/2,hi,k||

(z) χ1/2,cj
(z) dz

〈
3
2
,

1
2
|p|1

2
,

1
2

〉
+

+
∫

χ∗
−1/2,hi,k||

(z) χ1/2,cj
(z) dz

〈
3
2
,−1

2
|p|1

2
,

1
2

〉
+

+
∫

χ∗
−3/2,hi,k||

(z) χ1/2,cj
(z) dz

〈
3
2
,−3

2
|p|1

2
,

1
2

〉
, (B.1)

where a Bloch state |J, Jz〉 is characterized by its total angular momentum
quantum number J and the corresponding z component Jz. The χ3/2,hi,k||(z)
and χ1/2,cj

(z) are the envelope functions of the corresponding hole and elec-
tron wave functions, respectively. Following the envelope–function approx-
imation, we assume that the dipole operator p operates on the lattice–
periodic Bloch functions |J, Jz〉, only. The relevant dipole matrix elements
〈J, Jz|p|J ′, J ′

z〉 between Γ8 and Γ6 band–edge Bloch functions (see Table 1
on page 14) and their Kronecker products can be calculated as shown in
appendix A. The resulting Kronecker products are listed in Tables C1 and
C2.
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Table C1. Kronecker products of dipole matrix elements between Γ8 and Γ6 band–
edge Bloch functions

⊗ 〈 1
2
,− 1

2
|p| 3

2
,− 3

2
〉 〈 1

2
,− 1

2
|p| 3

2
,− 1

2
〉 〈 1

2
,− 1

2
|p| 3

2
, 1

2
〉 〈 1

2
,− 1

2
|p| 3

2
, 3

2
〉

〈 3
2
,− 3

2
|p| 1

2
,− 1

2
〉 P2

2

(
1 −i 0
i 1 0
0 0 0

)
P2
√

3

(
0 0 −i
0 0 1
0 0 0

)
P2

2
√

3

(
1 i 0
i −1 0
0 0 0

)
0

〈 3
2
,− 1

2
|p| 1

2
,− 1

2
〉 P2

√
3

(
0 0 0
0 0 0
i 1 0

)
2P2

3

(
0 0 0
0 0 0
0 0 1

)
P2

3

(
0 0 0
0 0 0
i −1 0

)
0

〈 3
2
, 1

2
|p| 1

2
,− 1

2
〉 P2

2
√

3

(
1 −i 0
−i −1 0
0 0 0

)
P2

3

(
0 0 −i
0 0 −1
0 0 0

)
P2

6

(
1 i 0
−i 1 0
0 0 0

)
0

〈 3
2
, 3

2
|p| 1

2
,− 1

2
〉 0 0 0 0

Table C2. Kronecker products of dipole matrix elements between Γ8 and Γ6 band–
edge Bloch functions

⊗ 〈 1
2
, 1

2
|p| 3

2
,− 3

2
〉 〈 1

2
, 1

2
|p| 3

2
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2
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2
, 1

2
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2
, 1

2
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2
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2
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2
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2
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2
, 1

2
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6
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P2

3
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P2
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√
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2
, 1

2
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2
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〉 0 P2

3
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i 1 0

)
2P2

3

(
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0 0 1

)
P2
√

3

(
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)
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2
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2
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2
, 1
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2
√

3
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P2
√
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1 i 0
−i 1 0
0 0 0

)



Index

acoustic intrasubband plasmons 155
acoustic plasmon 145
anticrossing 148
antistokes process 57

back contact 91, 112
band offsets 20
band structure 13
band structure calculation 14
band–edge Bloch functions 13–16, 22,

23, 71, 73, 74
bare potential 126
Ben Daniel–Duke boundary conditions

26
Ben Daniel–Duke model 24
Bernstein modes 130, 134, 138
Bloch ansatz 22
Bloch functions 22, 24, 71
Bloch states 10, 13, 75
Bloch waves 13
bonding p orbitals 11
bonding s orbitals 11
Bose–Einstein factor 61
boundary conditions 24, 25
Bravais lattice 10, 13
breathing mode 94, 97
Brillouin scattering 57
Brillouin zone 10, 12–15
bulk band structure 11, 12

cascade–like scattering process 80
charge–density excitations 41, 74, 127
charge–density fluctuations 70, 71, 73
charge–density waves 124, 127
chemical etching 35
confined acoustic plasmons 155
confined optical plasmons 155
confined plasmons 93, 124, 130–134

confinement potential 139
continuity conditions 24
correlations 26
Coulomb interaction 25, 26, 131, 138,

139
coupled bilayer system 153
coupled–layer plasmons 145
cyclotron resonance 80
cyclotron resonance frequency 101

deep etching 30
delta–doping layer 150
density of states 18
density pair operator 68, 70, 73
density–density correlation function

49, 61, 70, 131
density–fluctuation scattering process

89
density–functional theory 26
depletion length 122
depolarization field 45
depolarization shift 128, 131
depolarization–field effects 108
depolarized scattering geometry 74
diamond structure 10
dielectric function 138
dipole excitation 94, 95, 115
dipole matrix elements 71, 72, 75
dipole mode 97, 127
dipole moment 97
direct band gap 12
dissipation–fluctuation theorem 61
double quantum well 145, 146, 150,

152
double–layered 1DES 153
double–layered quantum wire 156
Dresselhaus effect 12
dry–etching plasma process 34



176 Index

dynamical potential 51
dynamical structure factor 69

effective mass 10, 15, 24, 25
effective–mass approximation 14, 74
effusion cells 19
electromagnetic dipolar field 49
electron mobilities 22
electron–density fluctuations 68, 69,

73
electron–density oscillations 126
electron–phonon interaction 63
electronic band structure 9, 12
elementary electronic excitations 42
energy–density fluctuations 70, 74
envelope functions 22–24, 51, 75
envelope wave functions 28, 75, 76
envelope–function approximation 22
etch mask 30
etch–mask technique 32
etching processes 9
etching rate 33
exchange–correlation corrections 28
exchange–correlation effects 100
exchange–correlation energy 26
exchange–correlation potential 51
exclusion principle 88, 97
external potential 135

F. Stern 48
Fermi distribution function 50
Fermi liquid 138
Fermi wave vector 29, 42
fine–structure effects 96
frequency–dependent dielectric function

48, 53, 61, 138

G. Bastard 22
gate electrode 30
generalized correlation function 106
generalized Kohn’s theorem 94, 115,

127, 134
generalized pair operator 74, 106
grating coupler 32, 78

Hartree approximation 25, 28
Hartree calculation 28, 131
Hartree energy 27
Hartree potential 26, 27

Hartree–Fock approximation 26, 130
heavy holes 12
heavy– and light–hole mixing 29
heterostructure growth 20
high–frequency dielectric constant 48,

53
Hohenberg 26
hydrodynamical model 124

III–V compound semiconductors 9,
11, 13

III–V semiconductors 9, 13, 20
independent–particle model 43
interference pattern 31
interferometric lithography 32
intersubband CDE 45
intersubband continuum 43
intersubband excitations 43
intersubband SDE 45
intraband plasmon 124, 139, 141
intrasubband continuum 42
intrasubband plasmon 138, 139
inversion symmetry 12
ion implantation 30
irreducible polarizability 138

J. M. Luttinger 14

k∗p method 14
k∗p theory 14
Kane model 14
Knudsen cells 19
Kohn 26
Kohn’s mode 93, 97, 115, 124, 127,

133–135, 138
Kohn–Sham approximation 26
Kohn–Sham calculation 27, 28, 109
Kohn–Sham equation 26, 27
Kohn–Sham Hamiltonian 105
Kronecker products 71

L. D. Landau 47
Landau damping 47, 48, 127, 128
laser–interference lithography 31, 32,

34, 35, 139
lateral confinement 124, 131
lateral micro– and nanostructures 31
lateral nanostructures 9
lateral patterning 30



Index 177

lateral quantum number 126, 131
lateral semiconductor nanostructures

30
lattice–periodic potential 63
layered heterostructures 9
lift–off process 30
light holes 12
lithography 9
LO phonon 54
local–density approximation 26
Luttinger liquid 138
Luttinger parameters 16
Luttinger–Kohn Hamiltonian 29

magnetoplasmons 131, 138
many–particle Schödinger equation

26
mean–field approaches 25
mesoscopic dots 89
metal–organic chemical–vapor deposi-

tion 18
modulation doping 21, 28
molecular–beam epitaxy 18
monopole excitation 94, 95
monopole mode 97

n–type doping 19
near–field effects 76
non–spinflip intersubband transitions

45
numerical diagonalization 25, 109, 115

one–electron Schrödinger equation 13
one–photon process 96
one–sided doping 22
optical intrasubband plasmons 155
optical phonon energies 53
optical plasmon 145
orbitals 11

p–type doping 19
parabolic approximation 24
parity selection rules 75, 76, 88, 95, 97,

112, 127
Pauli spin matrizes 13
Pauli spinmatrix 73
phonon–plasmon modes 53
photo–resist patterns 32
physical etching process 34

Pidgeon–Brown model 24
point group 9, 13
Poisson equation 22, 27
polar bulk semiconductors 53
polarizability function 138
polarization selection rules 44, 60, 71,

74, 76, 94, 102, 104, 126
polarized configuration 74
power spectrum 60
pseudo spin 145
pseudopotential calculation 14

Q0D system 17
Q1D system 17
Q2D system 17
quadrupole excitation 94, 95
quantum dots 18
quantum limit 138
quantum Monte Carlo calculations 26
quantum wells 18
quantum wires 18
quasi two–dimensional (Q2D) electron

systems 9
quasiatomic orbitals 98, 101

radial quantum number 92
Raman scattering 57
Raman tensor 60
random–phase approximation 48
reactive–ion etching 35, 90
resist layer 30
resist mask 30
resist pattern 30, 33
RPA 48, 49, 131, 132, 138, 139, 147,

151

scattering amplitude 70, 71, 75, 76,
106

scattering cross section 66, 68–70, 89,
131

scattering mechanisms 62
Schrödinger equation 16
self–assembled growth 90
self–assembled quantum dots 36
self–consistent potential 28, 150
self–organized growth 9
semiconductor heterostructure 22, 25
semiconductor microcavity 161
semitransparent gate 147, 150



178 Index

shadowing techniques 32
shallow etching 30
Sham 26
single–particle continua 42, 47, 123,

128
single–particle excitations 41
skipping–orbit mode 130, 137
skipping–orbit motion 137
Slater determinants 94, 111, 116
space group 9
spacer 22, 161
spacer layer 150
spectral differential cross section 60,

62
spin degeneracy 12, 15
spin dipole mode 97
spin monopole 94
spin monopole mode 97, 103
spin quadrupole 94
spin quadrupole mode 97
spin–charge separation 139
spin–density excitations 41, 74, 127
spin–density fluctuations 70, 71, 73,

74
spin–dipole excitation 94
spin–orbit coupling 11, 13, 30, 63
spin–orbit interaction 11, 13, 25, 74
spin–orbit splitting 13
split–off band 12
split–off valence band 15, 16, 24
Stokes process 57
Stranski–Krastanow growth 36
stripe pattern 33
structure factor 66
subband spacing 28
symmetry operations 13

TDLDA 48, 53, 139
TDLSDA 48
ternary alloy semiconductor 10
tight–binding methods 14
time–dependent local–density approxi-

mation 48
time–dependent local–spin–density

approximation 48
Tomonaga–Luttinger model 139, 142
translational invariance 10, 23
tunneling barrier 150, 151
tunneling gap 146, 148
tunneling–coupled bilayer 145, 152
tunnelling-split subbands 154
two–component plasma 145
two–dimensional harmonic oscillator

92, 100
two–electron quantum dot 94
two–particle wavefunction 94
two–photon process 96
two–sided doping 22
two–subband occupation 147

under etching 34

vertical nanostructures 9, 22
virtual crystal approximation 10
von Neumann equation 49

W. Kohn 14
wave–vector dispersion 29
wet–chemical etching 34

Zincblende lattice 9
Zincblende structure 9



Springer Tracts in Modern Physics

177 Applied Asymptotic Expansions in Momenta and Masses
By Vladimir A. Smirnov 2002. 52 figs. IX, 263 pages

178 Capillary Surfaces
Shape – Stability – Dynamics, in Particular Under Weightlessness
By Dieter Langbein 2002. 182 figs. XVIII, 364 pages

179 Anomalous X-ray Scattering
for Materials Characterization
Atomic-Scale Structure Determination
By Yoshio Waseda 2002. 132 figs. XIV, 214 pages

180 Coverings of Discrete Quasiperiodic Sets
Theory and Applications to Quasicrystals
Edited by P. Kramer and Z. Papadopolos 2002. 128 figs., XIV, 274 pages

181 Emulsion Science
Basic Principles. An Overview
By J. Bibette, F. Leal-Calderon, V. Schmitt, and P. Poulin 2002. 50 figs., IX, 140 pages

182 Transmission Electron Microscopy of Semiconductor Nanostructures
An Analysis of Composition and Strain State
By A. Rosenauer 2003. 136 figs., XII, 238 pages

183 Transverse Patterns in Nonlinear Optical Resonators
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