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JÜRGEN RENN

PREFACE

The transition from classical to modern physics in the �rst half of the twentieth cen-
tury by quantum and relativity theories affected some of the most fundamental
notions of physical thinking, such as matter, radiation, space, and time. This transi-
tion thus represents a challenge for any attempt to understand the structures of a sci-
enti�c revolution. The present four-volume work aims at a comprehensive account of
the way in which the work of Albert Einstein and his contemporaries changed our
understanding of space, time, and gravitation. The conceptual framework of classical
nineteenth-century physics had to be fundamentally restructured and reinterpreted in
order to arrive at a theory of gravitation compatible with the new notions of space and
time established in 1905 by Einstein’s special theory of relativity.

Whereas the classical theory of gravitation postulated an instantaneous action at a
distance, Einstein’s new relativistic kinematics rather suggested an analogy between
the gravitational �eld and the electromagnetic �eld, propagating with a �nite speed. It
is therefore not surprising that Einstein was not alone in addressing the problem of
formulating a theory of gravitation that complies with the kinematics of relativity the-
ory. The analysis of these alternative approaches, as well as of earlier alternative
approaches to gravitation within classical physics, turns out to be crucial for identify-
ing the necessities and contingencies in the actual historical development.

It is the profound conceptual transformation associated with the establishment in
1915 of a relativistic theory of gravitation that shows that the genesis of this theory,
Einstein’s general theory of relativity, was a genuine scienti�c revolution in its own
right. The restructuring and reinterpretation of the fundamental concepts of classical
physics involved in the development of the theory was a long and complicated pro-
cess with far-reaching consequences. First of all, the new concepts had to be pre-
sented and transmitted to a wider scienti�c community. The new theory also created
the need to reconsider all branches of physics in light of its new concepts and to look
for possible experimental con�rmation. It gave rise to new conceptual problems and
new research programs, such as �nding a uni�ed �eld theory and integrating general
relativity with quantum theory. Finally, the revision of the concepts of space and time
by general relativity had a considerable impact on epistemological and philosophical
discussions, attracting the attention of a non-specialized public and placing relativity
theory and its creator at the focus of public discussion.

Einstein’s path towards establishing the general theory of relativity has been an
important topic in the history of twentieth-century physics. Our reconstruction of his
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unpublished research notes and our examination of the broader intellectual context of
the relativity revolution has led to a reassessment and a deeper understanding of this
process as a transformation of a comprehensive system of knowledge. These volumes
document the results of a joint effort at an in-depth analysis of a scientific revolution
undertaken by a group of scholars over more than a decade. The aim was to reach a
systematic understanding of both the knowledge base in classical physics that formed
the point of departure for Einstein and his contemporaries and the nature of the pro-
cess through which their research eventually overcame some of the conceptual foun-
dations of classical as well as special-relativistic physics. 

For this purpose, it was necessary to cover not only Einstein’s individual pathway
towards general relativity, but also other approaches to the problem of gravitation
before and after the advent of special relativity. The aim was to reach an assessment
of the “horizon of possibilities” of reacting to the crisis provoked by the conflict
between the understanding of gravitation in classical physics and the challenge pre-
sented by the special theory of relativity. The horizon of possibilities is determined by
the shared knowledge available to the historical actors. The reconstruction of this
shared knowledge and its transformation is based on new approaches for describing
the architecture of knowledge and for explaining its developmental dynamics, includ-
ing the interaction between collective and individual processes.

We have thus attempted to provide a broader context to the reconstruction of Ein-
stein’s singular achievement. We surveyed the approaches to the problem of gravita-
tion that existed in late classical physics, to examine the intellectual resources on
which the different approaches relied, to determine the extent to which they were
adequate to the task of responding to the crisis of classical physics, to explore alterna-
tive pathways that could have been but were not realized, and finally to evaluate the
reasons why Einstein’s general relativity eventually came to be accepted as the reso-
lution of the crisis. The results of our reconstruction are documented in the form of
detailed commentaries on the historical sources and in the form of new interpreta-
tions of the early history of general relativity.

The four volumes of this work comprise two sets. The first two volumes are dedi-
cated to general relativity in the making, that is, to a detailed reconstruction of the
research that led Einstein from special to general relativity in the years between 1907
and 1915. At the center of this reconstruction is the detailed “Commentary” on a key
document written between 1912 and 1913, Einstein’s so-called “Zurich Notebook.”
In the first volume this notebook is presented in its entirety for the first time. It is
reproduced in facsimile accompanied by a new transcription. The second volume pre-
sents the comprehensive “Commentary” so that the reader may directly relate inter-
pretation and historical source. The first two volumes furthermore comprise essays on
the development leading up to the period documented in the notebook, assessments
of the work documented by the notebook itself, and an analysis of the conclusive
period of Einstein’s search for the gravitational field equation. Taken together, the
work assembled in these two volumes offers an encompassing view of Einstein’s con-
tributions to the genesis of general relativity.
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The second set of two volumes is dedicated to theories of gravitation in the twi-
light of classical physics in a more general sense. In this part of the work, alternative
approaches to the problem of gravitation around the time of Einstein’s work are
reviewed in terms of interpretative essays and English translations of key sources.
The third volume deals with the tensions between the tradition of mechanics, the
canonical place of the problem of gravitation, and the newly established tradition of
field theory that raised expectations for a novel solution to this problem. These expec-
tations were then strengthened by the advent of special relativity and led to an intense
discussion about a relativistic theory of gravitation that forms the other nucleus of
this volume. The fourth volume takes a closer look at possibilities for the establish-
ment of a theory like general relativity along pathways that differed from Einstein’s
in that they employed more sophisticated mathematical means. The volume thus cov-
ers both a reassessment of David Hilbert’s work and the suggestion of a fictive but
historically plausible scenario for such an achievement.

The work presented in these volumes was originally pursued in the context of the

 

Arbeitsstelle Albert Einstein

 

, directed by Peter Damerow and myself, funded by the
Senate of Berlin from 1991 to 1996, and hosted by the Max Planck Institute for
Human Development and Education, at the Center for Development and Socializa-
tion headed by Wolfgang Edelstein. I am deeply grateful to the Berlin Senate, in par-
ticular to the former Senator of Science, Barbara Riedmüller, as well as to the former
Senate Director, Jochen Stöhr, for the courageous and generous decision to support
this unusual initiative, which aimed at exploring Einstein’s scientific achievements in
their intellectual, cultural, and political contexts. Under the auspices of Wolfgang
Edelstein it has served in many ways as a pioneering venture for the foundation in
1994 of the Max Planck Institute for the History of Science. In addition to the collab-
orators of the 

 

Arbeitsstelle

 

, Giuseppe Castagnetti, Werner Heinrich, and Tilman
Sauer, members of its international scientific advisory board, Hubert Goenner,
Michel Janssen, Karl von Meyenn, John D. Norton, Karin Reich, Erhard Scholz, and
John Stachel, participated in one way or another in the research process – either by
providing helpful comments or by engaging directly in joint projects.

In this way, the 

 

Arbeitsstelle Albert Einstein

 

 soon developed into a meeting point
for an international group of scholars working on the history of general relativity and
the locus of an unusual cooperation involving both senior experts in the field and
young researchers, which continued later at the Max Planck Institute for the History
of Science. These meetings involved the core group of authors of the first two vol-
umes as well as the other members of the 

 

Arbeitsstelle

 

 and members of its board. In
addition to the names already mentioned, Dieter Brill, Ulrich Majer, James Ritter,
David Rowe, Matthias Schemmel, and Dirk Wintergrün also contributed at some
point to our co-operation. The innumerable meetings and workshops were unique in
their collaborative search for an interpretation of historical sources, with key ideas
emerging from lively debate. In a lengthy process, the detailed protocols of these
meetings were filtered, reworked, elaborated and reformulated to yield the “Com-
mentary” which constitutes the most distinct outcome of the collective work. In this
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way, the core group worked together to analyze the sources and reconstruct the
knowledge resources that are relevant for understanding the research documented in
Einstein’s notebooks, his publications, and correspondence. Following ground-break-
ing papers by John Stachel, John D. Norton, and a few other scholars, the continued
investigation and reconstruction of Einstein’s discovery process has led to many new
insights, among them the identification of two distinct heuristic strategies in this dis-
covery process, a physical and a mathematical strategy. This identification proved to
be a breakthrough and an important interpretative tool for understanding Einstein’s
search for the gravitational field equation, even beyond the phase documented by the
Zurich notebook. Our analysis has shed new light on the complex process of interac-
tion between mathematical representation and the construction of physical meaning,
a process of crucial importance also in other areas and periods of the history of sci-
ence. Such epistemological insights were only possible because our joint work was
not confined to a painstaking analysis of the historical sources in a traditional sense,
but also comprised unusual approaches such as reconstructing the architecture of the
shared knowledge at his disposal and actually retracing in detail Einstein’s research
process in a particular phase of his work. For the epistemological dimension of our
discussions and for wider perspectives, the intense participation of Peter Damerow in
our research endeavor turned out to be critical. He helped us wherever he could from
falling into the traps of specialization and placed our work within the larger frame-
work of a history of knowledge.

As work progressed, it quickly became clear that the clarification reached by deci-
phering Einstein’s research notes from the period 1912–1913 would have serious
consequences for our understanding the genesis of general relativity in its entirety.
The Zurich Notebook shows that in 1912–1913 Einstein had already come within a
hair’s breadth of the final general theory of relativity. He failed, however, to recognize
the physical meaning of his mathematical results, and turned to the alternative, phys-
ical strategy. Eventually he published, jointly with the mathematician Marcel Gross-
mann, the “erroneous” 

 

Entwurf

 

 (“outline”) theory of 1913. Much of our work
therefore focused on the question of how Einstein, in the period between 1913 and
1915, was able to overcome the obstacles which at first prevented him from realizing
that the correct ansatz was the one obtained in his notebook and not the theory he
published in 1913. The answer we found to this question led to the surprising insight
that, contrary to what was commonly accepted, the long interval between the publica-
tion of the erroneous field equation and the return to the correct equation at the end of
1915 was not simply a period of stagnation. It was rather a period during which Ein-
stein arrived at a number of insights that created the crucial preconditions that made
the dramatic events of November 1915 possible. This result made it evident that the
establishment and stabilization of the new physical concepts that emerged with gen-
eral relativity first required an integration of further physical knowledge and a degree
of elaboration of the mathematical formalism that went well beyond finding the cor-
rect field equation. 
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Another complementary line of research was, as mentioned above, dedicated to
the study of other theories of gravitation before and after the advent of special relativ-
ity. In order to identify knowledge traditions that contributed to the emergence of
general relativity, the scientific context of Einstein’s search for a new theory of gravi-
tation was systematically studied by analyzing a broad range of sources related to the
work on alternative approaches, including also the work of less well-known authors. 

I am particularly grateful to Michel Janssen who throughout the intricate research
and production process leading to these volumes never hesitated to take up whatever
challenges arose. He took the main responsibility for bringing the “Commentary,” the
core of the first two volumes, into the form it is presented here and also helped with
critical acumen to sharpen the focus and improve the presentation of other contribu-
tions. Matthias Schemmel, who co-edited volumes three and four, and Lindy Divarci,
assistant editor of all four volumes, played an essential role in coordinating this
extended network of scholarly cooperation. Together with the associate editors,
Christopher Smeenk and Christopher Martin, they carefully edited the various contri-
butions, unified and improved the translations of original sources, checked and com-
plemented the bibliographic references, and contributed in many other ways to
providing a comprehensive resource for studying the early history of general relativ-
ity in context. They were assisted in their editorial work by Heinz Reddner, Stefan
Hajduk, Yoonsuhn Chung, Miriam Gabriel, and Shaul Katzir.

The long-term cooperation required to produce the comprehensive analysis of the
genesis of general relativity presented in this work was only possible due to the per-
sistent institutional support provided by the Max Planck Society, first at the Max
Planck Institute for Human Development and Education and, since its foundation in
1994, at the Max Planck Institute for the History of Science; additional support came
from the Archive of the Max Planck Society and its director, Eckhart Henning. The
close and ever reliable cooperation with other institutions, in particular with the
Albert Einstein Archives at the Hebrew University of Jerusalem and its former Cura-
tor Ze’ev Rosenkranz and the Einstein Papers Project at the California Institute of
Technology and its former director Robert Schulmann as well as its current director
Diana Buchwald, were of great help in the completion of this ambitious project. The
authors and editors are particularly grateful for the generous permission to reproduce
or quote from Einstein’s original documents. Other institutions and individuals
offered their generous support as well, either in securing the documentary basis for
our enterprise or helping in other ways, among them the Albert Einstein Institute
(Max Planck Institute for Gravitational Physics), the Cohn Institute for the History
and Philosophy of Science and Ideas at Tel Aviv University, the Institut für Zeitungs-
forschung, Dortmund, the Manuscript Department of the Staatsbibliothek zu Berlin,
the Special Collections Department at the Library of the of the Swiss Federal Insti-
tute of Technology Zurich (ETH), the Niedersächsische Staats- und Universitätsbib-
liothek Göttingen (Manuscripts and Early Imprints Collection) and its director
Helmut Rohlfing, the Mathematical Institute at the University of Göttingen, the Fed-
eral Archives in Koblenz, the National Science Foundation, the Istituto e Museo di
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Storia della Scienza, Florence, and the Besso family (especially Laurent Besso, Lau-
sanne). I also want to thank Jürgen Ehlers, Yehuda Elkana, Paolo Galluzzi, Peter Gal-
ison, Gerald Holton, Enrique Junowicz, Ron Overman, and Bernhard Schutz. A
special thanks goes to the head of the library at the Max Planck Institute for the His-
tory of Science, Urs Schoepflin, who not only assured his team’s unfailing support
during the many years of work on these volumes, but who was also personally
engaged in archival work, in sustaining the scholarly network, and in securing key
documents on which these volumes are based.

The volumes appear in sequel to the International Year of Physics and the Einstein
Year 2005, celebrating the centenary of Einstein’s 

 

annus mirabilis

 

 and the overturn of
the classical concepts of space and time. They propose an in-depth historical analysis
of the consequences of this revolution for our understanding of gravity and, at the
same time, of the structures of a scientific revolution that can be documented in an
exceptionally comprehensive way. Yet the scope of the scientific revolution associ-
ated with Einstein’s name goes well beyond the intellectual work on a new theory of
gravity. Its full understanding also requires an analysis of other aspects such as Ein-
stein’s contributions to quantum theory or the role of cultural, technological, per-
sonal, and political contexts that could only be touched upon in these volumes. They
are more amply treated in other publications, among them the three-volume survey

 

Albert Einstein – Engineer of the Universe

 

 of Wiley-VCH associated with the exhibi-
tion of the same title, the 

 

Einstein Companion

 

 of Cambridge University Press, as well
as a forthcoming book on the institutional contexts of the emergence of quantum the-
ory to appear in this series, all of them emerging from the same context of collabora-
tion that has made the present work possible. As research on Einstein’s revolution of
science is still in progress, parts of these volumes are, together with additional
sources and interpretative documents and tools, accessible also via the Internet
<http://einstein-virtuell.mpiwg-berlin.mpg.de/intro>.
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MICHEL JANSSEN, JOHN D. NORTON, JÜRGEN RENN,
TILMAN SAUER, AND JOHN STACHEL

INTRODUCTION TO VOLUMES 1 AND 2: 
THE ZURICH NOTEBOOK AND THE 
GENESIS OF GENERAL RELATIVITY

When Albert Einstein died in April 1955, he left a small notebook among his many
papers at the Institute for Advanced Study in Princeton. Its faintly gridded pages are
covered with calculations. Some are tidy and unhurried. Others are hasty and incom-
plete. Some are annotated with a cryptic remark; others are unadorned. Some halt
with a fragmented formula; others proceed mechanically to their conclusion. They
come from another time and place, a silent trace of strenuous work from decades ear-
lier and a continent away.1

Most of the calculations in this notebook date from the winter of 1912–1913. In
August 1912 Einstein had left Prague, where he had taught for a year and a half, to
become a full professor at his alma mater, the Eidgenössische Technische Hochschule
(ETH) in Zurich. This is why the notebook is known among Einstein scholars as the
Zurich Notebook. The bulk of it is devoted to a new theory of gravity, in which the
ten components  of the metric tensor field encode the geometry of spacetime and
double as the potentials of the gravitational field. Many of the end results of the
investigations recorded in the notebook were published in the spring of 1913 in a
paper Einstein co-authored with Marcel Grossmann, professor of mathematics at the
ETH and one of his former classmates. The paper consists of two parts, a physical
part written by Einstein, and a mathematical part written by Grossmann. The title
modestly announces an “Outline [Entwurf] of a Generalized Theory of Relativity and
a Theory of Gravitation” (Einstein and Grossmann 1913). Einstein continued to work
on this Entwurf theory, as it is generally known in the historical literature, for the next
couple of years, initially with Grossmann (see Einstein and Grossmann 1914b) and
with Michele Besso, another friend from his college days. With Besso he investigated
whether the new theory could account for the anomalous advance of the perihelion of
Mercury, a well-known problem in Newtonian gravitational theory. They found that it

1 In 1982, the notebook, together with Einstein’s other papers, was shipped from Princeton to Jerusa-
lem, where it is now part of the Einstein Archives at Hebrew University (CPAE 1, Publisher’s Fore-
word). Its call number is 3-006. A high-quality scan of the notebook is available electronically at the
Einstein Archives Online (www.alberteinstein.info).
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could not.

 

2

 

 These collaborations ceased in the spring of 1914, when Einstein moved
to Berlin to become a salaried member of the 

 

Preußische Akademie der Wissenschaf-
ten

 

. In the fall of 1914, he published a lengthy article intended as the authoritative,
systematic exposition of the new theory. Its title, “The Formal Foundation of the Gen-
eral Theory of Relativity” (Einstein 1914), stands in marked contrast to the tentative
title of the original Einstein-Grossmann paper. A year later, however, Einstein’s confi-
dence crumbled. In a series of four communications to the Prussian Academy in
November 1915, he replaced the centerpiece of the 

 

Entwurf

 

 theory, a set of gravita-
tional field equations of severely restricted covariance, by field equations of broad
and ultimately general covariance, solving the problem of Mercury’s perihelion in the
process (Einstein 1915a, 1915b, 1915c, 1915d).

 

3

 

 Einstein had thus arrived at the gen-
eral theory of relativity, the crowning achievement of his career. He consolidated the
theory over the next few years. In March 1916, he replaced the premature review arti-
cle of 1914 by a detailed and self-contained exposition of the new theory (Einstein
1916a). He subsequently applied general relativity to new problems—such as gravi-
tational waves (Einstein 1916b, 1918a) and cosmology (Einstein 1917)—and clari-
fied its foundations (Einstein 1916c, 1917, 1918b, 1918c).

 

4

 

As our joint commentary on the notebook makes clear, the material in the Zurich
Notebook holds the key to understanding many aspects of these later developments.
To facilitate reading the commentary in conjunction with the notebook itself, we
placed the commentary at the beginning of volume two and a facsimile reproduction
and a transcription of the notebook at the end of volume one.

 

5

 

 A number of essays,
which make up the balance of the volumes, fill in the background to the research doc-
umented in the notebook and address the ramifications of our analysis of the note-
book for the reconstruction of the further development of the 

 

Entwurf

 

 theory and the
transition to the theory of 1915. These essays are written in such a way that they can
be read independently of the commentary and of each other.

The analysis of the notebook was quite a challenge. The notebook consists of
working notes and was never intended to be read by others. Its one intended reader
needed no narrative to explain the goals and presuppositions of the calculations, their
successes and failures, the puzzlements and the triumphs. These would have been all
too apparent to Einstein’s eyes. They were not to ours. Our commentary reflects our
best effort to understand Einstein’s calculations and to supply some of the connective

 

2 See CPAE 4, Doc. 14 and the editorial note, “The Einstein-Besso Manuscript on the Motion of the
Perihelion of Mercury,” on pp. 344–359. For a popular account, see (Janssen 2003). For a history of
the perihelion problem, see (Roseveare 1982).

3 The demise of the 

 

Entwurf

 

 theory and the subsequent developments are detailed in Einstein to Arnold
Sommerfeld, 28 November 1915 (CPAE 8, Doc. 153). For analysis of (Einstein 1915c) on the perihe-
lion problem, see (Earman and Janssen 1993).

4 For a concise history of Einstein’s struggles with the conceptual basis of his theory and further refer-
ences to the extensive literature on these topics, see (Janssen 2005).

5 Although the commentary only covers the notes on gravity, facsimiles and transcriptions of notes on
other topics are also included. Insights from the analysis of the non-gravitational part of the Zurich
Notebook were used in (Büttner et al. 2003).
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tissue that he left out. We have reconstructed, as best we can, the content, goals and
strategies of the calculations, usually on a line-by-line basis, sometimes even symbol
by symbol.

Such efforts cannot hope to recover in full detail what transpired as Einstein made
these entries in his notebook. Yet the relative completeness of many of the calcula-
tions and the apparent clarity of purpose repeatedly allowed us to discern simple and
coherent content in pages that initially looked baffling and disjointed. In another con-
text, Einstein often remarked on a problem not altogether different from the one we
faced. Physical theories, he remarked, cannot be deduced from sensory experience.
There remains considerable freedom of choice in the concepts and propositions one
devises to account for experience. What makes stable theorizing possible is the
restricted character of this freedom:

 

The liberty of choice, however, is of a special kind; it is not in any way similar to the lib-
erty of a writer of fiction. Rather, it is similar to that of a man engaged in solving a well-
designed [cross]word puzzle. He may, it is true, propose any word as the solution; but,
there is only 

 

one

 

 word which really solves the puzzle in all its parts (Einstein 1936, 294–
295).

 

6

 

Our experience with the Zurich Notebook has been similar. For any given page, one
can propose many interpretations. However, when the calculation is relatively com-
plete, and when it connects naturally with other pages, the majority of interpretations
fail to solve the puzzle.

 

7

 

 As readers of the commentary will find, our solution is
incomplete in places. It is, however, much more complete than any of us dared hope
at the outset. The portions that remain obscure are much smaller than those we now
read with clarity. The notebook is open to a new readership.

We should make it clear that we did not have to start from scratch. Norton (1984)
had already deciphered several key pages of the notebook before we joined forces.
More generally, we drew on research done at the 

 

Einstein Papers Project

 

8

 

 and on var-
ious studies of the history of general relativity. Many of these were presented at the

 

History of General Relativity

 

 (HGR) conference series and published in several vol-
umes of the series 

 

Einstein Studies

 

.

 

9

 

 Both series were inaugurated by the Nestor of
our group, Stachel, who is also the founding editor of the Einstein edition. The anno-

 

6 The handwritten German original has: “Mit dieser Freiheit ist es aber nicht weit her; sie ist nicht ähn-
lich der Freiheit eines Novellen-Dichters sondern vielmehr der Freiheit eines Menschen, dem ein gut
gestelltes Worträtsel aufgegeben ist. Er kann zwar jedes Wort als Lösung vorschlagen, aber es ist wohl
nur eines welches das Rätsel in allen Teilen wirklich auflöst” (Einstein Archives, 122–858).

7 In the course of our collaboration, we hit upon what we have dubbed the “chicken scratch rule”: to
inspire confidence, a proposed reconstruction should account for every last scratch on the page.

8 All five of us were involved in one way or another with the publication of the relevant Vols. 4 through
8 of

 

 The Collected Papers of Albert Einstein

 

 (CPAE), which appeared between 1993 and 2002.
9 (Howard and Stachel 1989) for HGR1 at Osgood Hill (1986) [Don Howard and Stachel are also the

series editors for 

 

Einstein Studies

 

]; (Eisenstaedt and Kox 1991) for HGR2 in Luminy (1988); (Ear-
man, Janssen, and Norton 1993) for HGR3 in Johnstown (1991); (Goenner, Renn, Ritter, and Sauer
1999) for HGR4 in Berlin (1995); and (Kox and Eisenstaedt 2005) for HGR5 at Notre Dame (1998)
and HGR6 in Amsterdam (2002). A volume for HGR7 in Tenerife (2005) is in preparation.
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tation of the gravitational part of the Zurich Notebook in CPAE 4, which appeared in
1995, incorporates elements of (Norton 1984) as well as some of the early results of
the work of our group.

 

10

 

 Our joint commentary, however, is the first comprehensive
analysis of the gravitational part of the Zurich Notebook. As such, it provides new
insights on pages that were not deciphered before and important correctives to the
interpretation of pages that were.

Our most important new results are highlighted in sec. 1 of the commentary. Here
we want to draw attention to a few that are crucial to understanding the essays com-
plementing the commentary in these volumes. Most of the material in the notebook
documents Einstein’s search for field equations for his new metric theory of gravity.
Two strategies can be discerned in this search. We have labeled them the ‘mathemati-
cal strategy’ and the ‘physical strategy’. Each of us would probably flesh out the dis-
tinction between the two somewhat differently, but the operative notion is fairly
straightforward. Pursuing the mathematical strategy, Einstein scoured the mathemati-
cal literature (with the help of Grossmann) for expressions containing derivatives of
the metric that could be used as building blocks for gravitational field equations. Pur-
suing the physical strategy, Einstein tried to find such building blocks drawing on the
analogy between the gravitational field in his new theory and the electromagnetic
field in the classical electrodynamics of Maxwell and Lorentz. Einstein vacillated
between these two approaches in the notebook. The importance of this simple obser-
vation for our reconstruction of the research recorded in the notebook can hardly be
overstated. The same is true for the reconstruction of the subsequent elaboration of
the 

 

Entwurf

 

 theory and of the transition to general relativity in November 1915. The
distinction between the two approaches plays a key role in two essays in these vol-
umes, “Pathways out of Classical Physics: Einstein’s Search for the Gravitational
Field Equations” (this volume) and “Untying the Knot: How Einstein Found His Way
Back to Field Equations Discarded in the Zurich Notebook” (volume two).

Another new result that came out of our analysis of the notebook and that needs to
be mentioned here is more subtle. One of the requirements constraining the choice of
gravitational field equations for Einstein was that they reduce to the field equation of
Newtonian theory in the case of weak static fields. Einstein was searching for field
equations of broad and, if possible, general covariance, i.e., for equations that have
the same form in a broad range of spacetime coordinate systems. Newtonian the-
ory—at least in the standard formulation, which Einstein was using—is formulated in
such a way that its equations only retain their simple form under transformations
from one inertial frame to another. To compare the equations of broad covariance of
Einstein’s theory to the equations of limited covariance of Newton’s, we nowadays
temporarily relinquish some of the covariance of the former. This is done by impos-

 

10 See CPAE 4, Doc. 10 and the editorial note, “Einstein’s Research Notes on a Generalized Theory of
Relativity,” on pp. 192–199. Preliminary results of the work of our group can be found in (Castagnetti
et al. 1993), (Janssen 1999), (Norton 2000), (Renn 2005a, 2005b), and (Renn and Sauer 1996, 1999,
2003).
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ing extra conditions on the metric field. Such extra conditions are known as coordi-
nate conditions. Once a coordinate condition is imposed, various terms in the
Einsteinian equations vanish and the resulting truncated equations can readily be
compared to the simple Newtonian equation. As this brief characterization of the role
of coordinate conditions shows, they are not essential to the theory. They have the
same status as gauge conditions in other field theories. Their purpose is simply to
facilitate comparison with Newtonian theory. For the application of the theory to
other problems it may in fact be convenient to impose a different coordinate condi-
tion. In all of this, the equations of broad covariance remain the fundamental equa-
tions of the theory, not the truncated ones obtained with the help of some coordinate
condition. 

What we found in the Zurich Notebook, however, is that Einstein used such con-
ditions in a manner that deviates sharply from modern usage. He used them to trun-
cate equations of broad covariance and looked upon the resulting truncated equations
as the fundamental equations of the theory or candidates for them. The original equa-
tions of broad covariance were important to him only in that they made the covari-
ance properties of the truncated equations more tractable. Starting from equations
covariant under a well-defined, broad group of transformations, one can, at least in
principle, find the covariance group of the truncated equations by determining the
covariance properties of the condition used to do the truncating. This is what we see
Einstein do over and over again in the notebook. We therefore introduced a special
term for such conditions. To distinguish them from modern coordinate conditions we
call them 

 

coordinate restrictions

 

. During the period covered by the notebook, Ein-
stein labored under the impression that coordinate restrictions were needed not just to
recover Newtonian theory in the appropriate limit, but also to ensure that the theory
be compatible with energy-momentum conservation. It was only in the course of
developing the 

 

Entwurf

 

 theory in 1913–1914 that he came to realize that the covari-
ance of the field equations automatically yields energy-momentum conservation,
thereby anticipating an important application of one of the famous theorems of
Emmy Noether (1918) relating symmetries and conservation laws.
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 Recognizing the
role of coordinate restrictions is crucial not only for reconstructing the calculations in
the Zurich Notebook, but also for understanding the subsequent elaboration of the

 

Entwurf

 

 theory and the obstacles that had to be overcome before general relativity as
we know it today could be formulated.

The older literature (e.g., Pais 1982, 222) routinely explained Einstein’s initial
rejection of generally-covariant gravitational field equations by supposing a lack of
understanding of the need to use coordinate conditions to compare such equations to
their Newtonian counterpart in the case of weak gravitational fields. Then Stachel
(1989b) pointed out that Einstein actually compared his 

 

Entwurf

 

 theory’s field equa-
tions with the field equation of Newtonian theory in the case of weak, 

 

static

 

 fields and
that Einstein had presumed an excessively restrictive form for the metric representing

 

11 For details, see “Untying the Knot …” (volume two).
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 Einstein expected that the metric tensor for weak static fields would
have just one variable component, which would behave like the Newtonian field. This
one component would govern the chronometry only. Since the remaining components
were assumed to be constant, the spatial geometry would just be ordinary Euclidean
geometry. This expectation contradicts the generally-covariant field equations Ein-
stein finally adopted in 1915 and could by itself preclude their adoption. The suspi-
cion that this was the real reason for Einstein’s rejection of generally-covariant field
equations was reinforced when Norton (1984, 117) drew attention to a page of the
Zurich Notebook, on which Einstein rehearsed the now standard mathematical com-
putations needed to reduce generally-covariant field equations based on the so-called
Ricci tensor to the Newtonian equation by means of what is known as the harmonic
coordinate condition. Presuming that Einstein used this condition as a modern coor-
dinate condition, Norton conjectured that Einstein had rejected generally-covariant
field equations based on the Ricci tensor because his expectations for the weak, static
field were incompatible with the harmonic coordinate condition.

Einstein’s difficulties with the static metric left unexplained, however, why he
subsequently abandoned another, apparently serviceable set of gravitational field
equations of near general covariance examined in the Zurich Notebook. Our analysis
of the notebook makes clear that these gravitational field equations were abandoned
largely because Einstein was not then using modern coordinate conditions but coordi-
nate restrictions. Over the next two years, he worked energetically to develop a better
understanding of the covariance properties of his 

 

Entwurf

 

 theory. The more sophisti-
cated mathematical methods resulting from these efforts are central in his return to
broader covariance in November 1915. That return involved his adoption of modern
coordinate conditions. He concluded that the gravitational field equations of near
general covariance rejected in the Zurich Notebook were acceptable after all and
rushed them into print (Einstein 1915a). Freed of coordinate restrictions, Einstein
now needed only weeks to discover his mischaracterization of static fields. He made
some final modifications to the field equations published in (Einstein 1915a) and thus
arrived at the familiar generally-covariant field equations of general relativity.

Not surprisingly, given this turn of events, Norton’s essay, “What was Einstein’s
“Fateful Prejudice”?,” in volume two analyzes the role of coordinate restrictions in
Einstein’s work. The essay carefully lays out the case for their presence in the note-
book. It also reviews why Einstein’s use of them is credible, even though they differ
so much from the routine modern usage. Two considerations are key here: First, Ein-
stein’s use of coordinate restrictions is not unnatural in view of the historical develop-
ment of his theory. His special theory of relativity was covariant just under Lorentz
transformations. His goal was to expand that covariance to embrace transformations
to accelerated frames of reference. General covariance goes well beyond this, includ-

 

12 In (Stachel forthcoming) it is shown that Einstein was seriously handicapped in the comparison of his
theory to Newtonian theory by the mathematical tools available to him. In particular, he lacked the
concept of an “affine connection” (see Stachel’s “The Story of Newstein …” in vol. 4 of this series).
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ing covariance under transformations not associated with a change of the state of
motion, such as transformation from Cartesian to spherical spatial coordinates. So
equations of broad covariance could plausibly be used by Einstein purely as an inter-
mediate mathematical step, from which the final equations could be recovered by
some harmless restriction of the covariance. Of course, what Einstein found again
and again in the notebook was that he needed restrictions that seriously compromised
his goal of extending the relativity principle. Second, as already indicated above, Ein-
stein found that the coordinate restrictions he applied were closely associated with
energy-momentum conservation in the weak-field limit of the theory. This naturally
suggested to him that the full theory could only be made compatible with energy-
momentum conservation at the expense of restricting its covariance.

More speculatively, Norton suggests that Einstein’s use of coordinate restrictions
may have been supported by a tacit reification of spacetime coordinates. In an adden-
dum to the reprint of the 

 

Entwurf

 

 paper in the

 

 Zeitschrift für Mathematik und Physik

 

in January 1914 (Einstein and Grossmann 1914a), Einstein advanced his notorious
“hole argument” [

 

Lochbetrachtung

 

] against the physical admissibility of generally-
covariant field equations. By his own later admission, he fell into this flawed argu-
ment because of just such a tacit reification. What if Einstein tacitly reified spacetime
coordinates in just the same way during his calculations in the notebook? If he did,
Norton argues, the reification would have forced him to restrict the covariance of the
theory, even had he known full well how to use coordinate conditions in the modern
sense. The conjecture is that Einstein did indeed reify coordinates in this way. It is
essential to the conjecture that this reification remained beneath Einstein’s conscious
awareness, just as he later admitted it did with the hole argument. Had he been able to
formulate it explicitly, he would presumably have recognized its inadmissibility right
away.

Norton suggests that Einstein had the modern understanding of coordinate condi-
tions all along, even though, for the reasons laid out above, he used coordinate
restrictions in the notebook as well as in the further development of the 

 

Entwurf

 

 the-
ory. In “Untying the Knot …” (volume two), however, Janssen and Renn suggest that
Einstein only arrived at the modern understanding of coordinate conditions when he
replaced the 

 

Entwurf

 

 field equations by equations of much broader covariance in
(Einstein 1915a). This paper contains the first unequivocal example of Einstein
applying a coordinate condition in the modern sense.

This disagreement is one of a number of disputes that have not been resolved as
these volumes go to press. We make no apologies for this. It is a sign of the vitality of
Einstein scholarship. We publish our book on the history of general relativity in the
same spirit as Hermann Weyl published his famous book on the theory itself. As Weyl
wrote in the preface to the first edition of 

 

Raum-Zeit-Materie

 

:

 

But it was definitely also not the intention of this book to turn the life, which manifests
itself so forcefully today on the field of physical knowledge, with axiomatic thorough-
ness into a dead mummy at the point it happens to have reached this moment.

 

13

 

The reader will note that only the introduction and the commentary are authored by
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all five of us. The rest of the volume consists of essays by one or two authors. In part,
this reflects division of labor and differences in expertise. But it also reflects a lack of
consensus about the interpretation of the material. Points of contention, besides the
issue of coordinate conditions versus coordinate restrictions, are the relative impor-
tance of the mathematical and the physical strategy in the genesis of general relativity
(as well as the interpretation of this distinction), the nature of Einstein’s 

 

modus oper-
andi

 

 as a creative scientist, and the extent to which the analysis of this particular epi-
sode provides insights into the practice of scientific theorizing, its conditions and
mechanisms, in general. The first two of these disagreements call for some further
comments.

The breakthrough to general relativity of November 1915 has been portrayed as a
triumph of the mathematical strategy, prematurely abandoned in the Zurich Notebook
in favor of the physical strategy that led Einstein to the problematic 

 

Entwurf

 

 theory
(see, e.g., Norton 2000). This portrayal certainly fits nicely with the way in which
Einstein presented his new results in November 1915. It is also how he came to
remember his own achievement in later years, as has been documented in great detail
in (Van Dongen 2002). In “Untying the Knot …” (volume two), Janssen and Renn
nevertheless argue that Einstein made the transition from the 

 

Entwurf

 

 field equations
to the field equations of November 1915 following the physical strategy. They recon-
struct the developments of that eventful month taking Einstein at his word that the
definition of the gravitational field in the 

 

Entwurf

 

 theory as the gradient of the metric
was “a fateful prejudice” (“ein verhängnisvolles Vorurteil,” Einstein 1915a, 782) and
that replacing this gradient by the so-called Christoffel symbols was “the key to [the]
solution” (“Den Schlüssel zu dieser Lösung,” Einstein to Sommerfeld, 28 November
1915).

 

 

 

With this substitution, the variational formalism for the 

 

Entwurf

 

 theory, devel-
oped in (Einstein and Grossmann 1914b) and (Einstein 1914) in close analogy with
classical electrodynamics, leads almost automatically to the theory of November
1915. In an appendix to “Untying the Knot …,” this insight is used to clarify the
mathematical relation between the Einstein field equations and the 

 

Entwurf

 

 field
equations.

Concerning Einstein’s 

 

modus operandi

 

, not all of us agree with Janssen’s claim in
“What Did Einstein Know and When Did He Know It? A Besso Memo Dated August
1913” (volume two) that more room needs to be made for the role of prejudice, wish-
ful thinking, and opportunism in Einstein’s work toward general relativity than was
done in the accounts we started from (Norton 1984, Stachel 1989b). 

Janssen’s claim is based primarily on Einstein’s handling of what we shall call the
problem of rotation. An important test to which Einstein subjected candidate field
equations in the notebook is whether they allow the Minkowski metric in uniformly
rotating coordinates as a vacuum solution. The point of checking whether this rota-

 

13 “Es lag aber auch durchaus nicht in der Absicht dieses Buches, das auf dem Feld der physikalischen
Erkenntnis heute so besonders kräftig sich rührende Leben an dem Punkt, den es im Augenblicke
erreicht hat, mit axiomatischer Gründlichkeit in eine tote Mumie zu verwandeln” (Weyl 1918, vi).
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tion metric, as we shall call it, is a vacuum solution was that Einstein wanted to make
sure that his theory extended the relativity of uniform motion of special relativity to
accelerated motion such as uniform rotation. When Einstein published the 

 

Entwurf

 

field equations, he had satisfied himself that they met this important requirement. It
turns out they do not. It took Einstein some time to discover this and even longer to
accept it. As part of his collaboration with Besso on the Mercury anomaly shortly
after the publication of the 

 

Entwurf

 

 paper, he made a half-hearted attempt to double-
check that the rotation metric is indeed a vacuum solution of the 

 

Entwurf

 

 field equa-
tions. He was so convinced they were that he missed some factors of 2 and a minus
sign in just the right places to bring about the outcome he expected.

 

14

 

 This error and
its eventual discovery in September 1915 are recounted in (Janssen 1999). The con-
clusion of this paper was that Einstein had simply been unlucky in not discovering his
error sooner. However, a memo in Besso’s hand bearing the date August 28, 1913,
discovered in Switzerland in 1998 by Robert Schulmann, shows that Besso had
clearly warned his friend in 1913 that the rotation metric is not a solution. Einstein
initially accepted this verdict. He changed his mind again in early 1914.

The reconstruction of this episode in “What Did Einstein Know …” depends cru-
cially on allowing a certain opportunistic streak in Einstein’s general methods. Ein-
stein’s handling of the problem with the rotation metric is the most clear-cut case, but
the Besso memo provides another example. The memo shows not only that Einstein
had the key idea for the hole argument sometime in August 1913, but also that he had
already taken important steps toward its eventual resolution in 1915. Janssen argues
that it is partly because of opportunism that Einstein did not pursue this resolution in
1913. After all, such a resolution would be a most unwelcome reversal after Einstein
had tried for months to make the lack of covariance of the 

 

Entwurf

 

 field equations
more palatable. The exposure of such opportunistic moves by Einstein should not be
seen as damning to his reputation as a scientist. What it shows rather is that creative
science is messier and more complicated than many philosophers of science and sci-
ence educators like to think.

The material discussed so far focuses on one phase in the genesis of general rela-
tivity, Einstein’s search for field equations in the period 1912–1915. This phase is
extremely well documented and has accordingly been discussed extensively in the
recent literature on the history of general relativity. Yet, the field equations were only
the capstone on the edifice of general relativity. Much of the foundation had been laid
before Einstein started looking in earnest for field equations. The cornerstone of the
theory—dubbed the equivalence principle in (Einstein 1912, 360, 366) and later sin-
gled out by Einstein as “the most fortunate thought of my life” (“der glücklichste
Gedanke meines Lebens,” CPAE 7, Doc. 31, [p. 21])—dates from 1907. Stachel’s
essay, “The First Two Acts” (this volume), examines all Einstein source material per-

 

14 This calculation can be found on [pp. 41–42] of the Einstein-Besso manuscript on the perihelion
motion of Mercury (CPAE 4, Doc. 14). For further discussion of Einstein’s struggles with rotation,
see (Janssen 2005).
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taining to the early stages of the genesis of general relativity.

 

15

 

 “Act One” concerns
his recognition of the close connection between acceleration and gravitation in New-
tonian mechanics, based on the equality of inertial and gravitational mass, and his
extension of that connection to all physical phenomena, which he called the equiva-
lence principle. He took this principle, which he believed extended the relativity prin-
ciple to accelerated frames of reference, as the key to any future relativistic theory of
gravitation. In the crucial “Act Two,” the quest for generalization of the relativity
principle, which distinguished his efforts at a theory of gravitation from those of his
special-relativistic competitors, had led him by late 1912 from a scalar to a tensor
description of the gravitational field. In the theory for which he was looking, this ten-
sor was to play a dual physical role, serving both as the metric in the line element

 

16

 

 describing the chronometry of time and the geometry of space (by then
he had adopted Minkowski’s four-dimensional viewpoint), and as the potentials for
the inertio-gravitational field. It is at this point that the Zurich Notebook begins. In
this reckoning, the search for the field equations, the focus of much of the rest of
these volumes, comprises only the third act. 

The genesis of general relativity, however, did not quite unfold in the form of a
classic three-act drama between 1907 and 1915. The story begins before 1907 and
continues well beyond 1915. In the essay that opens this volume, “Classical Physics
in Disarray,” Renn examines the state of knowledge about gravitation from which
Einstein had to start. The work on gravity undertaken on this basis eventually culmi-
nated in the publication of the Einstein field equations (Einstein 1915d). This publi-
cation, the last of the four communications to the Prussian Academy of November
1915, marks the dramatic end of “Act Three”. But the dust did not settle until 1918.
Both the status of general covariance and the status of energy-momentum conserva-
tion in the theory remain unclear as “Act Three” draws to a close. Einstein himself
tied together some of these loose ends in correspondence and further publications.
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Several contributions by others helped clarify key aspects of the theory. The seminal
paper of Emmy Noether (1918) on symmetries and conservation laws already men-
tioned above grew out of discussions among Göttingen mathematicians around David
Hilbert and Felix Klein over energy-momentum conservation in general relativity.
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The astronomer Karl Schwarzschild (1915)
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 replaced the approximate solution for

 

15 This is the only essay in these volumes that has already been published (Stachel 2002a, 261–292).
This collection of Stachel’s work on Einstein also contains a reprint of an important earlier paper on
“Act Two” (Stachel 1989a)

16 The indices  and  run from 1 through 4 (corresponding to the spacetime coordinates
 and are summed over.

17 The status of general covariance is clarified in letters to Besso and Paul Ehrenfest in late 1915 and
early 1916 (CPAE 8, Docs. 173, 178 and 180). For historical discussion, see, e.g., (Stachel 1989,
1993, 2002b), (Norton 1987), (Howard and Norton 1993), (Howard 1999), and (Janssen 2005). The
status of energy-momentum conservation was clarified in (Einstein 1916c, 1918c). For discussion, see
“Untying the Knot …” (volume two).

18 For further discussion, see (Rowe 1999), (Sauer 1999, 2005), and Renn and Stachel’s “Hilbert’s Foun-
dation of Physics …” in vol. 4 of this series.
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the metric field of a point mass that Einstein had used in his paper on Mercury’s peri-
helion by an exact solution. The mathematicians Gerhard Hessenberg (1917), Tullio
Levi-Civita (1917), and Hermann Weyl (1918) introduced the notion of parallel dis-
placement, thereby clarifying the geometrical meaning of curvature representing
gravity in the new theory.20 This in turn led to the introduction of the notion of an
affine connection, which provides a much more natural way to implement the equiva-
lence principle than the metric tensor, with which Einstein had to make do in the
development of the theory.21

The longest and most ambitious essay in these two volumes is “Pathways out of
Classical Physics …” (this volume) by Renn and Sauer. This paper elaborates on
“Classical Physics in Disarray” (this volume) and presents a comprehensive version
of “Act Three” of the genesis of general relativity within a framework of historical
epistemology that integrates historical analysis, epistemology, and cognitive science.
This framework builds on efforts to integrate cognitive science and history of science
by Peter Damerow (1996) and is based on adapting such concepts as “frames” and
“mental models” introduced by Marvin Minsky (1975, 1987) and others to the needs
of an historical analysis of knowledge. Damerow was closely involved with our
group’s efforts to decipher the gravitational part of the Zurich Notebook and to
explore the ramifications of the results for the reconstruction of the genesis of general
relativity. One of the advantages of the framework adopted by Renn and Sauer is that
it allows them to trace continuities across sharp conceptual divides that separate vari-
ous stations on Einstein’s journey from classical physics to general relativity. The
hope is that the application of the framework of historical epistemology to the genesis
of general relativity will tell us more about conceptual innovation in general and
about related issues in—to use a geological metaphor—the plate tectonics of knowl-
edge.
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JÜRGEN RENN

CLASSICAL PHYSICS IN DISARRAY

The Emergence of the Riddle of Gravitation

1. INTRODUCTION

1.1 A Creation ex nihilo?

The genesis of Einstein’s special and general theory of relativity is an odd event in
the history of science. From today’s perspective, Einstein’s theory represents the
basis for modern astronomy, astrophysics, cosmology, and cosmogony. It comprises a
broad range of observational and theoretical knowledge, covering, among others,
phenomena related to planetary astronomy, to black holes, and to the expansion of the
universe. Yet little of the knowledge that makes relativity theory a central asset of
modern physics was available at the time when Einstein completed it by publishing
his paper on general relativity in late 1915. Neither the bending of light in a gravita-
tional field nor the expansion of the universe, let alone gravitational waves or black
holes, were even suspected by contemporary astronomers. How then was it possible
for Einstein without this knowledge to formulate a theory that has since withstood not
one but several revolutions of astronomy and its instrumentation, including the devel-
opment of radio-, X-ray, and space-borne astronomy? 

A closer look at Einstein’s investigative pathway does not resolve but rather com-
plicates this puzzle, which may be called the “paradox of missing knowledge.” Ein-
stein first encountered the problem of formulating a relativistic theory of gravitation
in 1907 when he was a clerk at the Swiss Patent Office in Bern. In the following eight
years he pursued this problem with growing intensity, from 1911 to early 1914 as
professor in Zurich and Prague, and from April 1914 as a member of the Prussian
Academy and from 1917 as Director of the Kaiser Wilhelm Institute for Physics in
Berlin.1 As early as 1907 Einstein formulated several general conditions for the solu-
tion of his problem, among them the famous “principle of equivalence” and a gener-
alization of the “principle of relativity.” The first principle allowed him to arrive
immediately at a number of surprising conclusions such as that of the bending of
light in a gravitational field.2 Five years later, however, he had to acknowledge that,

1 See (CPAE 5), Calender/Chronology, pp. 617–636.
2 See (Einstein 1907, 461).
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with the mathematical means at his disposal, the problem of formulating a relativistic
theory of gravitation could not be solved. To his friend, Heinrich Zangger, Einstein
thus wrote around June 1912:

 

The further development of the theory of gravitation meets with great obstacles.

 

3

 

Consequently, in the summer of 1912, he turned to his mathematician friend, Marcel
Grossmann, who helped him to access more sophisticated mathematical tools, in par-
ticular, the absolute differential calculus of Elwin Christoffel, Gregorio Ricci-Curbas-
tro, and Tullio Levi-Civita.

 

4

 

 But after exploring these tools for about a year, an
experience that is documented in the Zurich Notebook, Einstein’s conviction grew that
the problem he posed in 1907 was actually irresolvable. He thus limited himself to a
partial solution, which he first published in 1913 together with Grossmann.

 

5

 

 Soon after
this publication Einstein even believed to have found a proof that his problem could
not be solved as originally envisaged. In the following two years, he nevertheless con-
tinued to work on a relativistic theory of gravitation largely in isolation from and even
against the resistance of the scientific community, which tended to regard his efforts as
making little sense. Then, after three dramatic weeks towards the end of 1915 in which
Einstein presented to the Prussian Academy week after week a new tentative solution,

 

3 “Die Weiterentwicklung der Theorie der Gravitation stösst auf grosse Hindern[i]sse.” Albert Einstein
to Heinrich Zangger, Prague, after 5 June 1912, (CPAE 5, Doc. 406). Unless otherwise noted, all
translations are based on those in the companion volumes to the Einstein edition.

4 See (Kollross 1955, 278) according to which Einstein exclaimed: “Grossmann, you must help me or
I’ll go crazy.” (“Grossmann, Du mußt mir helfen, sonst werd’ ich verrückt!”) See also the preface to
the Czech translation (Einstein 1923) of his popular book on relativity where he wrote: “However,
only after my return in 1912 to Zurich did I hit upon the decisive idea about the analogy between the
mathematical problem connected with my theory and the theory of surfaces by Gauss—originally
without knowledge of the research by Riemann, Ricci, and Levi-Civita. The latter research came to
my attention only through my friend Grossmann in Zurich when I posed the problem to him only to
find generally covariant tensors whose components depend only upon the derivatives of the coeffi-
cients of the quadratic fundamental invariant.” (“Den entscheidenden Gedanken von der Analogie des
mit der Theorie verbundenen mathematischen Problems mit der Gaußschen Flächentheorie hatte ich
allerdings erst 1912 nach meiner Rückkehr nach Zürich, ohne zunächst Riemanns und Riccis, sowie
Levi-Civitas Forschungen zu kennen. Auf diese würde ich erst durch meinen Freund Großmann in
Zürich aufmerksam, als ich ihm das Problem stellte, allgemein kovariante Tensoren aufzusuchen,
deren Komponenten nur von Ableitungen der Koeffizienten der quadratischen Fundamentalinvariante
abhängen.”), (CPAE 6, Doc. 42, 535, n. 4). For more extensive discussion, see “The First Two Acts”
(in this volume).

5 See (Einstein and Grossmann 1913).
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each revoking the previous one, he eventually succeeded in definitively solving his
original problem.

 

6

 

 How was it possible that Einstein could, without having an idea of
the final solution and eight years before actually attaining it, already formulate the
conditions it had to satisfy, and how could he persist in his search against the judge-
ment of contemporary experts and in spite of his numerous failures? What was his
explicit or implicit heuristics? And what accounts for its success? 

The following is an attempt to prepare the answers to these questions by analyz-
ing the roots of Einstein’s achievements in the knowledge of classical and special rel-
ativistic physics, and by following the development of his theory until, in the summer
of 1912, he recognized gravitation as the bending of space and time. As we shall see
in this and the following contributions, both the peculiar emergence and the remark-
able stability of Einstein’s theory of gravitation with regard to the further develop-
ment of physics and astronomy become plausible only if the genesis of general
relativity is understood, not as a fortunate anticipation of future observational discov-
eries, but as a transformation of pre-existing knowledge. The next section provides a
survey of this knowledge, in particular of classical physics as it became relevant to
the emergence of a relativistic theory of gravitation. The concluding third section
then attempts to explain how this knowledge became effective in laying the founda-
tions for Einstein’s successful heuristics.

 

7

 

 As a prelude, let us look briefly at the long-
term development of the knowledge on gravitation, which provided the presupposi-
tions for Einstein’s achievements.

 

1.2 A Short History of Gravitation

 

What can one possibly learn from a survey of the history of gravitation in order to
understand the genesis of general relativity? Certainly, the long-range history of
knowledge on gravitation turns out to be as peculiar as the emergence of general rela-
tivity. Above all it is characterized by the longevity of certain basic ideas on gravita-
tional effects, as well as by the radical turnover of these ideas in the course of the
historical development. For almost two millennia, the understanding of what we con-
sider to be gravitational effects was dominated by Aristotelian natural philosophy. It
divides such effects into two distinct classes; the motions of terrestrial and of celestial
bodies. The downward motion of heavy terrestrial bodies is conceived as a “natural
motion” towards the natural place of such bodies, the center of the earth. In contrast
to the “violent motion” of terrestrial bodies, which is caused by a force, natural
motion does not require any external moving cause but is the result of an intrinsic
tendency of a heavy body acting in accordance with its nature. The characteristic
motion of celestial bodies is, on the other hand, categorically separated from that of
terrestrial bodies and conceived as an eternal circular motion.

 

8

 

6 See (Einstein 1915a, 1915b, 1915c, 1915d).
7 For an attempt to provide comprehensive answers to the above questions based on the present analy-

sis, see “Pathways out of Classical Physics …” (in this volume).
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The Aristotelian account of gravitational effects was eventually supplanted by that
of classical Newtonian physics, dominating their understanding for several centuries
until the advent of relativity theory. Like Aristotle’s natural philosophy, Newtonian
physics also introduced a fundamental distinction between types of motion, in this
case between uniform inertial motions and motions that are accelerated due to the
action of a force. In Newtonian physics, gravitation is understood as a force acting like
any other external force causing acceleration, be it human or natural, terrestrial or
celestial. Accordingly, the accelerated motion of falling terrestrial bodies and the
accelerated orbital motion of the planets are explained in the same way as being due to
a universal gravitational force of attraction. This gravitational force acts without inter-
mediary and without time delay through the intervening space between two bodies. 

Since the mid-nineteenth century, yet another distinct idea was discussed and
gained increasing support: gravitation as a space-filling field, transmitting the gravita-
tional force not instantaneously but with a limited speed through an intervening
medium called the “aether.”

 

9

 

 Finally, in general relativity, gravitation is conceived as
a field that represents the curvature of the spacetime continuum itself and that is
caused by the distribution of masses and energy in the universe. Since gravitation is
not understood here as a force, motions of bodies within this field are no longer dis-
tinguished according to their inertial or gravitational character. They are rather all
“natural” motions governed in the same way by the intrinsic geometry of spacetime. 

What made these distinct conceptions convincing while they ruled the under-
standing of gravitation, and what eventually overturned them? Was the long-term
domination of Aristotelian natural philosophy merely the consequence of its adoption
as the official doctrine of the Catholic Church? And was the replacement of the Aris-
totelian concept of natural motion by the Newtonian explanation of the motion of fall
in terms of a gravitational force simply the triumph of a newly introduced scientific
method? If so, what accounts for the fact that the Newtonian conception itself was
eventually superseded by that of general relativity, which returns to the interpretation
of the motion of fall as a “natural” force-free motion, as conceived in Aristotelian nat-
ural philosophy? How can it be that, even after the establishment of the “scientific
method,” history of science was not simply dominated by gradual progress and that
even the very foundations of the understanding of gravitation could still be over-
turned? As the following sketch will attempt to make plausible, the emergence and
disappearance of such diverse core notions of gravitation—conceived as natural ten-
dency, force, field, or as curvature of spacetime—becomes understandable on the
basis of a history of knowledge that studies the extension as well as the architecture
of the knowledge sustained by these core notions. 

While the history of science has traditionally limited itself to the knowledge
embodied in scientific theories and, more recently, also to that represented by experi-

 

8 For a survey, also of the following, see (Dijksterhuis 1986).
9 For a survey, see the introduction to vols. 3 and 4 of this series “Theories of Gravitation in the Twi-

light of Classical Physics”
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mental systems, the knowledge on gravitation here at issue predates considerably any
systematic theoretical treatment in the framework of physics.

 

10

 

 The most basic
knowledge on heaviness, force, matter, and motion is based on experiences acquired
by human activities almost universally in any culture. It includes, for instance, the
perception of heavy bodies and their spontaneous tendency to fall downwards and the
fact that their motion usually requires an effort. The outcome of these experiences is
an “intuitive mechanical knowledge” embedded in a qualitative physics, which is
built up in ontogenesis and guides human activities in their relation to the physical
environment. A second kind of physical knowledge, which predates any systematic
theoretical treatment, is the knowledge gained by the use of practical tools. In con-
trast to intuitive physical knowledge, this type of knowledge is closely linked to the
production and use of technology by professional groups of practitioners and is hence
subject to historical development. For a long historical period, these two forms of
knowledge, intuitive and practitioners’ knowledge, also formed the principal experi-
ential foundation of scientific knowledge which is characteristically represented and
historically transmitted in the form of written texts. Without realizing the extent to
which the development of theoretical knowledge of gravitation depends on the reflec-
tion on these forms of “shared knowledge,” its dynamics remain inexplicable.

 

11

 

The historical persistence of Aristotelian natural philosophy, in particular, is
related to the fact that it incorporates knowledge about the natural environment com-
mon to all human beings. The knowledge of intuitive physics is structured by mental
models, that is, by specific forms of representation that allow inferences to be drawn
from prior experiences about complex objects and processes, even if only incomplete
information is available about them.

 

12

 

 One example is the motion-implies-force
model” which, when involved in the interpretation of a process of motion, yields the
conclusion that the moved object is moved by a force exerted upon it by some mover.
While this conclusion is incorrect from the perspective of classical physics, contra-
dicting as it does Newton’s principle of inertia, it represents elementary human expe-
riences. In fact, when observing a moving object, for instance a vehicle moving on
the street, one usually presumes that there is a mover at work that drives the object by
its force, even when the mover itself and its force cannot be directly observed. Mental
models possess slots that can be filled with empirically gained information but also
with default assumptions, as in the case at hand, when the mover remains invisible.

 

10 The following outlines some basic notions of historical epistemology as it is pursued at the Max
Planck Institute for the History of Science in Berlin; see the scientific reports of the institute (http://
www.mpiwg-berlin.mpg.de/en/forschung/reports.html). For contributions to an account of the devel-
opment of mechanical knowledge to which the following makes reference, see (Damerow, Renn and
Rieger 2002; Büttner, Damerow and Renn 2001; Damerow et al.; Büttner et al. 2003; Renn 2001;
Damerow and Renn 2001).

11 For the notion of shared knowledge, see (Büttner, Damerow and Renn 2001).
12 For the concept of mental model, see, e.g., (Minsky 1987; Gentner and Stevens 1983; and Davis,

1984). For a view on the potential of cognitive science and cognitive psychology for the history of sci-
ence to which the present work is much indebted, see (Damerow 1996). This approach is extensively
used in “Pathways out of Classical Physics …” (in this volume).
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Such assumptions may simply result from prior experience, or may be “inherited”
from higher-order mental models. In any case, information is assimilated to the slots
of a mental model in the form of “frames,” that is, cognitive structures with a well-
defined meaning that categorize information as being suitable for the slots of the
model or provide such information, if necessary, by their “default settings.” In the
case at hand, such frames are those which either identify a given object as a mover or
as moved or which supply—if suitable empirical information is lacking—default
examples of such objects from prior experience. A higher-order mental model may
trigger the activation of mental models to interpret the natural environment; it is, in
any case, context-dependent. While motions such as that of a vehicle tend to be inter-
preted in terms of the “motion-implies-force model,” other motions, such as the spon-
taneous downward motion of a falling body due to gravitation, are interpreted by
another mental model, the “heaviness-causes-fall model,” implying that a heavy body
will, without any intervention by a mover, fall downwards once the obstacles to such
a motion are removed. 

The embedding of a mental model in a theory such as Aristotelian natural philos-
ophy, resulting from the reflection of intuitive physics, imposes further requirements
on the explanatory potential of the model, in particular a drive towards universaliza-
tion, consistency, and precision in the use of the model. In Aristotelian physics for
instance, the motion-implies-force model became the foundation for the treatment of
the class of “violent motions,” whereas the heaviness-causes-fall model serves as the
basis for the explanation of the “natural motion” of heavy bodies. Cases that do not
clearly belong to one of these two categories, such as the motion of a projectile that is
initially propelled by an external force and eventually drops to the ground due to its
heaviness, represent a problem for this theory. Which is, in particular, the external
force driving the motion of the projectile once it is separated from its original mover?
And how does this force interact with the natural tendency downwards in the course
of the projectile’s motion? The awkward attempts at solving such problems, identify-
ing, for instance, the surrounding medium as the missing external cause of the contin-
ued motion of a projectile, illustrate the new kind of challenges encountered by a
mental model of intuitive physics when integrated into a theoretical framework.

Problems such as that of projectile motion were the subject of critical discussions
and revisions of Aristotelian natural philosophy and eventually led, in the early mod-
ern era, to the ascendancy of a new mechanics, but only after such problems had
become an important challenge for contemporary practitioners and theoreticians. In
the early modern period, scientist-engineers accumulated, in the context of the tech-
nical ventures of the time,—from artillery via intercontinental navigation to monu-
mental building projects—a rich base of experiences largely exceeding those of
intuitive physics and also of the practical knowledge of antiquity. The bodies of spe-
cialized practical knowledge that they assembled were in fact the principal source of
empirical knowledge for the new sciences of the Scientific Revolution. The preclas-
sical mechanics and astronomy of Galileo, Kepler, and their contemporaries were
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constituted by attempts to assimilate the new knowledge resources of this period to
the traditional knowledge structures inherited from antique and medieval science. 

The early modern period was characterized, however, not only by new bodies but
also by new images of knowledge.

 

13

 

 In opposition to the prevailing Aristotelian
worldview, early modern intellectuals searched for a framework in which celestial
and terrestrial phenomena would be explained by the same causes. Accordingly, they
cherished explanations with the capacity to integrate knowledge from these tradition-
ally separated spheres. Galileo, for instance, attempted to explain the genesis of the
planetary system on the basis of a mental model originating in his analysis of projec-
tile motion.

 

14

 

 This model makes it possible to imagine that projectile motion—or, in
the cosmological case, planetary motion—proceeds as if it were generated by a pre-
ceding accelerated motion of fall along the vertical which is then deflected into the
horizontal, thus producing the parabolic motion of a projectile or the circular motion
of a planet around the sun, as the case may be. In his cosmogony, Galileo speculated
that there was a fixed point in space from which all planets were originally released
so that their deflection into a circular motion after the proper distances of fall—pro-
ducing their correct distances from the sun—would generate the appropriate speeds
of their revolving motions around the sun. While Galileo’s model is still shaped by
the traditional conceptual framework, interpreting for instance the motion of fall as a
natural motion and a projectile motion as violent motion, it nevertheless integrates
areas of knowledge that were separated from each other according to the classifica-
tory distinctions of Aristotelian natural philosophy. It shows, in particular, how the
“natural motion” of fall can be converted into the “violent motion” of projection and
even the “celestial motion” of a planet. 

The vision of a unified treatment of terrestrial and celestial physics embodied in
attempts such as Galileo’s was eventually realized in Newtonian physics on the basis
of a new mental model, the “acceleration-implies-force model,” which makes it pos-
sible to explain the motion of the planets and the motion of falling bodies on earth by
the same universal force of gravitation. This model is still rooted in intuitive physics,
as is suggested by the anthropomorphic concept of force involved in it and also by its
character as a modification of the motion-implies-force model, from which it results
by the specification that it is not motion but acceleration that is caused by a force. But
clearly the acceleration-implies-force model is actually no longer part of intuitive
physics or of practitioners’ knowledge, as is made evident by its counter-intuitive
consequences such as the implication that a force-free motion will never come to rest.
The acceleration-implies-force model as the basic explanatory scheme of classical
mechanics emerged rather from a reflection on the extensive experiential basis accu-
mulated in preclassical mechanics and astronomy. The radical change in physical
explanations, which it implies when compared to explanations based on the motion-
implies-force model, was the result rather than the presupposition of a process of

 

13 See (Elkana 1981).
14 See (Büttner 2001).
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knowledge integration. When considering the origin of the acceleration-implies-force
model in the integration of knowledge achieved by preclassical science, the gravita-
tional force of Newtonian physics, with its peculiar properties such as acting at a dis-
tance without any intermediary or causing all bodies to fall with the same
acceleration, no longer appears to be just the strange but compelling idea of an indi-
vidual genius. It rather emerges as being supported by the accumulated knowledge of
preclassical and then classical science, comprising terrestrial experiences as well as
astronomical observations, a circumstance that accounts for its stability for more than
three centuries of classical physics.

The emergence of Newtonian physics out of the knowledge-integration of pre-
classical physics accounts, however, not only for its stability but also for the fact that
it could eventually be revised again. In fact, Newtonian physics does not embody, as
philosophers such as Kant believed, an 

 

a priori

 

 framework determining the funda-
mental categories for the further development of physics, but merely represents a
temporary structure of knowledge organization subject to historical change. Although
the knowledge from which it originated was rather comprehensive and grew steadily
with the elaboration of classical mechanics and also with the advancement of tech-
nology, it was, after all, only a highly specialized body of knowledge whose specific
theoretical structures were transmitted in a tradition of experts, carried on by institu-
tions of higher learning and a sophisticated technical literature. It is therefore not sur-
prising that it did not replace the intuitive physics by which we orient ourselves in our
natural environment. In fact, as psychological investigations show, the intellectual
means used to address physical problems outside such expert traditions strikingly
resemble those at the roots of Aristotelian natural philosophy, although Aristotle’s
system has long ceased to dominate the academic world.
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The fact that Newtonian physics is removed from intuitive physics not only makes

it difficult to understand for laymen but also represented, in the course of its history, a
potential challenge even for professional science. Newton’s concept of gravitational
force as “action at a distance,” for instance, was criticized by his contemporaries as
well as by later scientists because it does not provide a mechanism of interaction
compatible with what was to be expected from intuitive physics, that is, an interaction
mediated by the contact of a material agent. Numerous attempts were thus under-
taken to develop models of gravitational interaction capable of countering or circum-
venting this objection.
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 An example is provided by the suggestion of the eighteenth-
century scientist Lesage, according to which gravitation is an “umbrella effect” by
two material bodies apparently exerting a mutual force of attraction but actually only
screening each other from an omnipresent “rain” of invisible particles impinging on
them from all sides.
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 The net-result of this stream of invisible particles on a single,

 

15 See (McCloskey 1983; Bödecker 2004).
16 For a survey, see (Taylor 1876). For criticism of Newton’s theory in the eighteenth and nineteenth

centuries, see (Dundon 1972). See also the introduction to vols. 3 and 4 of this series “Theories of
Gravitation in the Twilight of Classical Physics” (in vol.3).

17 See (Le Sage 1758). For discussion see (Prévost 1805; Langley 1898; Laudan 1972; Edward 2002).
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isolated body would simply vanish, given that they pressure such a body from all
sides. But if this stream on a given body is screened from one side by another nearby
body, the impacts of the invisible particles no longer neutralize each other but actu-
ally drive the two bodies towards each other. 

The tension between classical physics and expectations rooted in intuitive physics
served, however, not only to provoke conciliatory attempts such as the one just
described but also simply to keep alive the astonishment about the Newtonian doc-
trine and some of its peculiarities, in particular with regard to the puzzling features of
inertial motion. The autonomous character of both natural and celestial motions,
showing no noticeable intervention of an external cause, was thus never lost from
sight, even long after the Aristotelian world picture had vanished. While Newtonian
physics was extremely successful in accounting for the motions of the planets and
other celestial bodies it could therefore never completely extinguish objections
against its explanations questioning, for instance, the rather artificial split of the
orbital motion of a planet into an inertial component due to an intrinsic tendency of
motion and an accelerated component due to the invisible gravitational action of the
sun. But for a long time such questions were mainly left to philosophers such as
Hegel and played no significant role in the development of classical physics.
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The situation gradually changed, however, with the steady growth of scientific

knowledge and, in particular, with the discovery and exploration of new phenomena
outside the range of mechanics, such as those of optics and electromagnetism. Para-
doxically, it was the rapid development of the disciplinary specialization in nine-
teenth-century science which showed that specialization was not just a means of
isolating problems from the larger context of knowledge. Specialization also turned
out to be a form of the production of shared knowledge that unavoidably creates
intersections between different, highly structured bodies of knowledge, making it
necessary to review their explicit and implicit foundations. It was precisely such
intersections that brought the problems of gravitation and inertia eventually back to
the fore. This first happened around the middle of the nineteenth-century—at the time
without much further consequence—in the context of philosophical discussions of
the structure and role of mechanics, which were triggered by the establishment of
other subdisciplines of classical physics. Towards the end of the nineteenth century, a
rich discussion had evolved around foundational questions concerning gravity and
inertia, which, however, were still largely neglected by mainstream classical phys-
ics.
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 The pursuit of foundational questions was then taken up with much greater
impact as a consequence of specific new problems that may be characterized as “bor-
derline problems” between the major continents of classical physics. Among those
driven by such borderline problems to revisit the foundations of physics and eventu-

 

18 See, e.g., (Hegel 1986a, 1986b). For a survey, see (Ihmig 1989, Petry 1993), and in particular (Borz-
eszkowski 1993, Damerow 1979, Damerow and Lefèvre 1980, Wahsner 1993).

19 For a survey, see vols. 3 and 4 of this series.
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ally revolutionize the classical understanding of gravitation was Albert Einstein, ini-
tially also an outsider on the periphery of established physics. 

What can one learn from such a survey of the history of knowledge on gravita-
tion? It specifies the challenge of what it means to reconstruct the genesis of general
relativity as a transformation of knowledge. As we have seen, radical breaks in the
understanding of gravitation were not due to the invention of new paradigms or the
creation of new ideas 

 

ex nihilo

 

, but rather to the long-term processes of the accumula-
tion and integration of knowledge resources preceding such breaks. It was this evolu-
tion of knowledge that also produced tensions within the existing cognitive structures
as well as the potential for resolving them: in the course of a reflective reorganization
of the accumulated shared knowledge, its architecture could be revised from bottom
up. In the following section we will show, by sketching the major building blocks of
classical physics and tracing their intersections at borderline problems, how the riddle
of gravitation reemerged at the beginning of the 20th century due to the integration of
the knowledge of classical physics, which gave rise to a disintegration of its founda-
tional concepts.

2. GRAVITATION AMONG THE BORDERLINE PROBLEMS
OF CLASSICAL PHYSICS

 

2.1 The Three-Partite Division of Classical Physics

 

The specific problems addressed by the special and general theories of relativity are
rooted in the development of classical physics in the late nineteenth century.
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 In the
following we will therefore look at classical physics at this time, surveying its
extended and gradually evolving landscape with the double aim of introducing a
world not necessarily familiar to modern readers and of locating the structural origins
of the problems addressed by Einstein. In the late nineteenth century physics had
evolved into three major branches, each treating a set of interconnected physical
problems on the basis of characteristic knowledge structures. Such knowledge struc-
tures comprise chunks of knowledge embodying basic, often only qualitative rules,
which allow the prediction of the essential properties and behavior of physical
objects. These chunks are best described in terms of the above-mentioned “mental
models.” Such knowledge structures also comprise elaborate conceptual frameworks
represented by specialized theories, representational tools such as mathematical for-
malisms, and practical knowledge concerning paradigmatic experimental systems.
These knowledge structures were transmitted in the context of the disciplinary orga-
nization of nineteenth century physics by school and university training, textbooks,
journals, as well as the participation in research projects.

 

20 For surveys, see (Jungnickel and McCormmach 1986a, 1986b; Harman 1982; D’Abro, 1951a, 1951b;
Stichweh 1984).
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Figure 1: Revolutions at the Borderline Problems of Classical Physics

 

The most oldest structure of physics is mechanics, established as a major body of
knowledge in the early modern period, following a tradition reaching back to antiq-
uity, and brought into its classical form in the eighteenth and nineteenth centuries.
Among its elementary mental models is, for example, a lever moveable around a ful-
crum that enables a large weight to be lifted by a small force. Among its basic con-
cepts are those of space, time, velocity, acceleration, force, momentum, energy, and
mass. Among its outstanding objects of study are the motion of fall, planetary
motion, motion along an inclined plane, collisions between elastic and inelastic bod-
ies, and the motion of a pendulum. Its representational tools include, apart from ordi-
nary and technical language, those of mathematics and, in particular, the language of
ordinary differential equations.

By the end of the nineteenth century electrodynamics (including optics) and ther-
modynamics had been established by scientists such as James Clerk Maxwell, Hein-
rich Hertz, and Hendrik Antoon Lorentz, on the one hand, and Joseph Thomson and
Rudolf Clausius, on the other, as specialized knowledge structures similar to that of
classical mechanics. In fact, although they share some of their most fundamental con-
cepts such as those of space and time with classical mechanics, they also comprise
characteristic mental models, concepts and theories distinct from those of mechanics
and transmitted within their own subdisciplinary traditions. 

Electrodynamics deals not only with the electric and magnetic interaction of
material bodies but also with electromagnetic radiation such as light. Among its ele-
mentary mental models is that of a charged body generating an electric field in its
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vicinity. Among its basic concepts are those of conductor, dielectric, electric charge,
electric current, voltage, electric and magnetic field. It accounts for physical pro-
cesses such as the attraction or repulsion between two charged particles, the genera-
tion of a magnetic field by a current, and the induction of voltage by a conductor
moving in a magnetic field. Partial differential equations and vector analysis repre-
sent the prevalent mathematical formalisms used in electrodynamics.

Thermodynamics was formulated as an axiomatic theory in the mid-nineteenth
century by Thomson and Clausius; its objects are all physical processes involving
heat and its transformations. Among its elementary mental models is that of a heat-
converting engine. Among its fundamental concepts are heat, temperature, energy,
entropy, pressure, and volume. Physical processes studied by thermodynamics are the
behavior of gases with changes of temperature, pressure, or volume, and the transfor-
mation of thermal into mechanical energy and vice versa. Partial differential equa-
tions are also an important mathematical tool for expressing the laws of
thermodynamics.

The three-partite division of classical physics into mechanics, electrodynamics,
and thermodynamics did not result in peaceful coexistence, let alone in a stable har-
mony of these branches and their theoretical foundations.
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 There were many open
problems, regarding both the mutual relation and the internal structure of these sub-
disciplinary bodies of knowledge. In fact, even within each field of research, a num-
ber of alternative theoretical formulations competed with each other. These
alternatives distinguished themselves, for instance, by a different deductive organiza-
tion of the knowledge, by modifying some aspects of the basic conceptual frame-
work, by focussing on different paradigmatic objects, or by asserting different
quantitative laws for some phenomena, which sometimes could be empirically tested.

 

2.2 Foundational Problems of Classical Mechanics

 

Even the conceptual foundations of classical mechanics were still being debated in
the nineteenth century. Since this debate was particularly relevant to the later devel-
opment of relativity theory, we will take a closer look at some of the foundational
problems of classical mechanics as they were seen at the time. The establishment of
physical theories other than mechanics demonstrated to students of mechanics in this
period that its foundational concepts could not simply be considered as being inti-
mately linked with the structure of human reasoning about nature, as was believed in
the eighteenth century under the impression of the enormous success of Newtonian
mechanics, by scientists and philosophers such as Jean le Rond d’Alembert and
Immanuel Kant. Also the progress of research in mechanics itself, as exemplified by
the contributions of Leonard Euler, Joseph Louis Lagrange, William Rowan Hamil-

 

21 Here the notion of classical physics is used as a historiographically descriptive term; for its contempo-
rary use, see (Staley 2005).
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ton, and others in the eighteenth and early nineteenth century, opened up new per-
spectives on its theoretical and conceptual foundations.

One elementary mental model of the Newtonian theory of motion is that of a dis-
crete material particle moving in empty space (also called “mass point”); mechanical
problems could, in general, be considered as being explicable as complex cases of this
basic model. Another basic mental model is the “acceleration-implies-force model,”
introduced above. This model implies that the motions of material bodies can be
divided into two classes, those which require a causal explanation by a “force,” and
those, called “inertial motions” or motions governed by the “principle of inertia,”
which do not require such an explanation. The latter class of inertial motions includes
the state of rest and the rectilinear and uniform motions of particles, whereas all accel-
erated motions are to be considered as being caused by a force. Since the same motion
may be accelerated or uniform depending on the point of reference, this distinction is
only well defined with respect to a given laboratory that is located at a specific place at
a specific time and that thus represents a “frame of reference.” In Newtonian mechan-
ics, the reference frame to be chosen is either the “absolute space” or any frame of ref-
erence in rectilinear uniform motion with respect to it, since such a motion makes no
difference to the causal classification introduced above. For the frames of reference
that are in rectilinear uniform motion with respect to absolute space the designation
“inertial frames” was introduced in the late nineteenth century.
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 The conclusion that
the laws of Newtonian mechanics should be equally valid in any one of these inertial
frames is usually designated as the “Galilean principle of relativity.”

If a body is accelerated with respect to an inertial frame, it must be subject to a
force exerted upon it by one or more other bodies. The magnitude of its acceleration
depends on the magnitude of the force, but also on the resistance with which it reacts
to the force. This resistance is, in classical mechanics, an intrinsic, characteristic
property of a body called its “inertial mass.” In Newton’s original conception it was
understood as being proportional to the number of elementary particles composing
the body.
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 Apart from this inertial mass, bodies also possess another kind of mass
according to Newtonian mechanics, their “gravitational mass.” In contrast to the iner-
tial mass, the gravitational mass does not measure a resistance to the action of a force
but rather represents itself the origin and source of a force, that of gravitational attrac-
tion, which, according to Newton’s law of gravitation, is proportional to the product
of two gravitational masses attracting each other and being inversely proportional to
the square of their distance. Newton claimed that a single body may also have an
inertial mass, while it possesses gravitational mass only in so far as it interacts with
other bodies.
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 But in spite of the very different conceptual function of the two kinds
of masses in Newtonian mechanics, they turn out to be exactly proportional to each
other and can thus be considered identical (in the following we will therefore simply

 

22 See (Lange 1883, 1885a, 1885b, 1886).
23 See (Newton 1999, 23–24, 626).
24 See (Newton 1999). For discussion, see (Freudenthal 1986).
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speak of an “equality” of inertial and gravitational mass).
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 For the motion of free fall
caused by gravitational attraction, this remarkable coincidence has the peculiar con-
sequence that, independent of their mass, all bodies fall with the same speed. In fact,
the strength of the gravitational force exerted upon them, which is proportional to
their gravitational mass, changes in exactly the same way as the magnitude of their
resistance against this force, which is given by their inertial mass.

Even in Newton’s time, the conceptual foundations of his theory of mechanics did
not remain undisputed. In the nineteenth century, both the further progress in physics
mentioned above and the development of a philosophy of science critical of its meta-
physical aspects renewed the interest in foundational questions of mechanics. Among
the problems discussed were the meaning of Newton’s notion of absolute space and
the difficulty of identifying the inertial reference frames in which solely the laws of
classical mechanics are valid. Since absolute space itself is not directly accessible to
experience, an inertial frame of reference can also only be indirectly identified by
studying observable physical processes. If, for instance, in a given reference frame
the bodies that are not subject to forces are those which are either at rest or in uniform
and rectilinear motions, then the given frame of reference is indeed an inertial frame.
But, according to the acceleration-implies-force model, the concept of force itself as
a cause of motion is only indirectly defined by its connection to the concept of accel-
eration, which represents its effect. Therefore the presence or absence of forces can in
general only be judged by observing and classifying the kind of motions a system of
bodies is performing. But this operation in turn depends on the prior establishment of
an inertial frame, so that one has apparently entered a vicious circle.

In practical applications of classical mechanics, however, the situation turns out to
be less dramatic since here one mostly deals with forces produced by concrete mate-
rial arrangements, such as a stretched elastic spring, under conditions in which other
forces are either known or assumed to play no significant role. The role of inertial
frames of reference for the actual functioning of mechanical knowledge may there-
fore be conceived as that of “laboratory models,” i.e. mental models of physical sys-
tems, such as a laboratory with an experimental arrangement, for which the laws of
classical mechanics turn out or are assumed to be valid. In practice, a laboratory
model might therefore also be embodied by systems that are evidently accelerated as
is in fact the case for all terrestrial laboratories. But considerations of this kind are
hardly suited to respond to the foundational problems as raised by critics of mechan-
ics, in particular in the second half of the nineteenth century. For instance, according
to Newton, absolute space should represent an inertial frame of reference even when
only a single body is present in the universe. But can it really make a physical differ-
ence, in the sense of the presence or absence of forces acting on the single body,
whether or not that body is or is not accelerated in an otherwise empty universe?

 

25 This equality was discussed in the nineteenth century by Heinrich Hertz as a “miraculous riddle,”
(“wunderbares Räthsel”), see (Hertz 1999, 122).
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Critics of mechanics such as the philosopher Ernst Mach argued that it makes no
sense at all to apply the concept of motion or even of inertial mass to a single body.
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He rather suggested that the entire theory of classical mechanics should be reformu-
lated in terms of the relative motions of bodies with respect to each other and that also
the concepts of inertial mass and inertial frame should be redefined along these lines.
He argued, in particular, that the centrifugal forces curving the surface of water in a
rotating bucket should not, as Newton suggested, be interpreted as being due to an
effect of accelerated motion with respect to absolute space, but rather as being due to
relative motion with respect to the other bodies in the universe (“Mach’s bucket”). A
few scientists close to Mach’s ideas even demanded that the concept of an inertial
frame should be given up entirely since a laboratory that is not subject to external
forces and thus capable of providing a material embodiment of an inertial frame of
reference cannot exist anywhere in the universe, in particular in view of the universal
presence of gravitational interaction.
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 They argued that any frame of reference
should be equally suitable for formulating the laws of mechanics. But their demand
required a fundamental revision of Newtonian mechanics including the prediction of
new effects for which they had little empirical evidence. Following Mach’s interpreta-
tion of the Newtonian bucket experiment, they conceived, for instance, the effects
observed in a rotating laboratory as not being due to the centrifugal forces arising
because of its acceleration with respect to absolute space or to the inertial frames of
classical mechanics. They rather interpreted such “inertial forces” as a manifestation
of an hitherto not well understood interaction between physical masses in relative
motion with respect to each other, those of the laboratory and those of the distant stars.
But attempts to find direct, terrestrial empirical evidence of such an interaction failed.

Other critics of Newtonian mechanics neither worried about the concept of iner-
tial frame nor demanded an entirely new mechanics but still found themselves dissat-
isfied with the Newtonian notion of force and the role of the interaction between
mass points as a basic model of classical mechanics. The development of continuum
mechanics and of analytical mechanics in the eighteenth and early nineteenth cen-
tury in fact offered alternatives to these fundamental assets of mechanics in its origi-
nal, Newtonian formulation.
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 Most mechanical arrangements do not resemble
collections of point-like masses interacting with each other at a distance, as is the
case for planetary astronomy. The interaction between the parts of a mechanical
arrangement, such as a machine for instance, is realized by the geometric constraints
that the arrangement imposes on the motion of its parts. A body moving along an
inclined plane is constrained by the shape of the plane to follow its slope, or, to give
another example, the motion of a bead along a curved wire is constrained by the
shape of the wire. The deviation of this motion from rectilinearity can, in principle,

 

26 See (Mach 1921, chap. 2, sec. 6) or for an English version, (Mach 1960, chap. 2, sec. 6). For further
discussion, see “The Third Way to General Relativity” (in vol. 3 of this series).

27 For extensive discussion, see “The Third Way to General Relativity” (in vol. 3 of this series).
28 For a survey see (Pulte 1989; Lützen 1993).
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be explained by reconstructing the Newtonian forces exerted by the wire on the
motion of the bead, a task that may become rather involved. But it appears much
more natural and also more practical to account for the shape of its trajectory directly
by the curvature of the wire, in particular as it turns out surprisingly that such an
analysis may yield rather simple laws of motion which, under certain conditions, can
be interpreted as a generalization of the principle of inertia.

Analytical mechanics as developed by Leonard Euler, Jean-Baptiste le Rond
d’Alembert, Lagrange, and others achieves such an explanation by incorporating the
geometric constraints of motion, such as the shape of the wire, into the coordinates
used to describe the motion, for instance of the bead along the curved wire. In a suit-
able curvilinear coordinate system, the curved wire may even be described by what
is, in these coordinates, the equivalent of a straight line, now being described in terms
of a “variational principle” as the shortest or, more generally, an extremal path in
such a coordinate system. The motion of the bead may then be considered as a “natu-
ral motion” in the sense of generalization of force-free inertial motion, at least when
no other forces, apart from those exerted by the geometric constraints, are present. In
short, the description of motion in terms of a Newtonian equation of motion on the
basis of the acceleration-implies-force model can be replaced by a description on the
basis of the “constrained-motion model” according to which the properties of a
motion are explained, at least in part, by the geometry of the constraints imposed on
the motion. The forces exerted by these constraints can be neglected as they are
accounted for by the introduction of suitable coordinates adapted to the problem at
hand. In this way, a considerable step was taken towards the elimination of the con-
cept of force as a foundational concept of classical physics. In order to ban it com-
pletely from mechanics, however, one would have to conceive of all forces as being
due to rigid constraints. An attempt in this direction was undertaken in the late nine-
teenth century by Heinrich Hertz who reformulated classical mechanics entirely in
terms of such constraints, including invisible ones that were supposed to replace the
forces known from ordinary mechanics.
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 However, because of the speculative char-
acter of the invisible constraints, this reformulation of classical mechanics did not
find many followers.

 

2.3 Invisible Mechanisms and the Expansion of Mechanics

 

Hertz’s rigid constraints may serve as an example for an “invisible mechanism.” Such
mechanisms are a characteristic tool for extending the range of applicability of a
domain of knowledge beyond the set of problems to which it is directly applicable.
Invisible mechanisms are usually conceived in terms of mental models from familiar
territories of physical knowledge, in particular also from intuitive physics, such as the
model of a rigid body or of a fluid. Under the assumption that what they actually rep-
resent is, for a good reason, only partly or indirectly accessible to sense experience,

 

29 See (Hertz, 1894, 1956).
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as is the case for atoms, for instance, they may become the fundamental constituent
of an all-encompassing theoretical framework such as atomism. This type of exten-
sion of a conceptual framework beyond its immediate range of application was a
well-established practice within the tradition of mechanics since the early modern
period. In fact, the emerging new science of mechanics had to compete with the all-
encompassing Aristotelian word view embraced by the Church, a circumstance that
proved to be a major challenge encouraging the elaboration of a mechanical world-
view.
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 Furthermore, for a considerable period of time mechanics was without seri-
ous alternatives as a theoretical foundation of physics. In any case, the construction
of invisible mechanisms involving mechanical models and knowledge remained a
common practice throughout the reign of classical science.

The explanation of heat by the motion of atoms in the nineteenth century is a
well-known example for such an extension of mechanics beyond its immediate range
of application.
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 According to the kinetic theory of heat atoms were conceived
according to the mental model of the discrete, more or less rigid bodies of our macro-
scopic experience, but were taken to be unobservable due to their smallness. Only
their bulk effects such as heat or pressure were assumed to be directly accessible to
sense experience. The kinetic theory of heat succeeded in representing the relation
between the heat, temperature, pressure, and volume of a gas, for instance, by the
relation between the motion of these atoms, their energy, momentum, number, etc.,
that is, by relations determined by mechanical and statistical laws. In this way,
mechanics could be conceived as offering a theoretical foundation for thermodynam-
ics as well. Since the early days of classical physics, invisible mechanisms were also
considered in order to explain actions at a distance such as that of gravitation, elec-
tricity, magnetism, or the transmission of light, which, from the point of view of ordi-
nary experiences with mechanical arrangements, appeared as particularly mysterious.

Invisible mechanisms for the explanation of the transmission of light, for
instance, were conceived in terms of the motion of minute particles (in particular by
Newton and his immediate followers) but also (first by Huygens and then by most
physicists in the second half of the nineteenth century) in terms of the motion of an
invisible continuous medium, the optical “aether.”
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 The latter was understood
according to the mental model of a medium such as water or air, as is familiar from
intuitive mechanics. These media demonstrated how the transmission of a physical
effect—like a water wave or sound—could be conceived without the transport of
material, just by the propagation of a local perturbation from one point to the next. An
invisible mechanism based on the model of a continuous medium was therefore, at
least in principle, a plausible candidate for explaining the transmission of those phys-
ical effects which are not associated with any noticeable transport of material, such as
the actions at a distance mentioned above. In the case of light, such an explanation

 

30 See, e.g., (Renn 2001; Montesinos and Solís 2001).
31 For a historical survey, see (Brush 1976a, 1976b).
32 For historical discussions, see (Cantor and Hodge 1981; Buchwald 1989).
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received decisive additional support in the first half of the nineteenth century by the
discovery of the wave properties of light, which follow naturally from its explanation
as a perturbation of the optical aether.

 

2.4 The Problem of the Motion of the Optical Aether

 

By its very nature, an invisible mechanism has more properties than those which are
directly involved in the physical processes to be explained by it. Even though, for
instance, the optical aether itself was assumed not to be directly accessible to ordi-
nary mechanical experience, it follows from its conceptualization as a mechanical
medium that it must be in motion or at rest with respect to the macroscopically
observable bodies immersed in it. Now it turns out that, for the optics of moving bod-
ies, the different possible answers to the question of the state of motion of this invisi-
ble medium even have distinct observable consequences. In principle, it is possible
that the aether locally shares the motion of a body (an assumption proposed by
George Gabriel Stokes), or that it remains entirely unaffected by it (an assumption
pursued by various scientists such as Thomas Young, Augustin Jean Fresnel, and
Hendrick Antoon Lorentz), or that it is partially dragged along by the motion.
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A strong argument for an immobile aether was the phenomenon of stellar aberra-
tion known since the eighteenth century. If one observes the position of a star in the
course of the year from different positions along the orbit of the earth, it is subject to
certain regular variations, which if the star is at great distance cannot be due to its
parallax, i.e., to the changing line of vision. These variations can, as James Bradley
recognized at the beginning of the eighteenth century, rather be explained by the fact
that the speed of light originating from the star is composed with the speed of the
earth’s motion in such a way that the starlight seems to originate from different direc-
tions in dependence on the direction of the earth’s motion. However, on closer
inspection, this simple explanation of aberration requires two specifications: first, if
light is assumed to be carried by the aether, the composition of velocities explaining
the aberration works in a straightforward manner only if it is further assumed that the
aether is immobile; second, if propagation of light through a medium such as the
glass of a telescope or water is taken into account, one has to deal with the fact that
the speed of light in such media differs from that in the aether so that the effect of
aberration should change if stars are observed through them. Observation shows, on
the other hand, that aberration is completely independent of whether or not light
passes through a transparent medium.

At the beginning of the nineteenth century, Fresnel explained this fact by assum-
ing that transparent media, which move along with the earth through an otherwise
immobile aether, carry it along with a certain fraction of their speed. But what exactly
does this partial drag of the aether mean? Can it perhaps be observed directly or is it

 

33 For an extensive historical discussion of the problem of the optics and electrodynamics of moving
bodies, see (Janssen 2004; Stachel 2005).



 

C

 

LASSICAL

 

 P

 

HYSICS

 

 

 

IN DISARRAY 39

merely a hypothetical compensation in order to explain the absence of deviations
from the normal aberration? This question was at the center of an experiment per-
formed by Hippolyte Fizeau in 1851. He studied the propagation of light in flowing
water in order to determine the variation of the speed of light in dependence on the
speed of the moving medium. His experiment yielded a relation between the speed of
light in water and the speed of the flowing water, which indicated a slight drag of the
aether by the water, thus roughly confirming Fresnel’s aether-drag hypothesis.
Towards the end of the nineteenth century, the assumption of an immobile aether
became generally accepted as the most plausible assumption about its state of
motion, in particular after optics was included in Maxwell’s electromagnetic theory, a
development to which we shall return. On the basis of this assumption the problem
then was to explain the apparent slight drag indicated by the peculiar way in which
the speed of light in the flowing water was composed of the ordinary speed of light in
the water at rest and the speed of the flowing water. 

But a theory based on the assumption of an immobile aether faced much more
serious problems. An immobile aether had to be conceived as providing itself a uni-
versal frame of reference for the motion of all other bodies, an embodiment of New-
ton’s absolute space as it were. In short, it turned out that electromagnetism, as was
the case for mechanics, also had unavoidable “cosmological” consequences. As the
aether is a medium with concrete physical properties, the motion of a body with
respect to this aether frame should somehow have noticeable effects. Now, if that is
indeed the case, the aether model cannot be compatible with the principle of relativity
of classical mechanics, according to which physical laws should be the same in two
laboratories representing inertial frames and which are moving with rectilinear and
uniform motion with respect to each other. Since the aether model entails that the
speed of light with respect to the aether must always be the same, independently of
the state of motion of the body emitting the light, such a violation of the relativity
principle turns out to be an unavoidable consequence of this model. If, for instance,
the speed of light is measured in two laboratories in relative motion with respect to
each other, the two measurements cannot yield the same result, as at least one of the
two laboratories must necessarily move with respect to the aether. An even simpler
arrangement would be the measurement, in a single terrestrial laboratory, of the speed
of a light ray once propagating in the direction of the earth’s motion through the
aether and then of the speed of the same ray when deflected by a mirror so that it
propagates perpendicular to the direction of the earth’s motion. An experiment along
these lines was in fact performed by Michelson and Morley with the result that the
speed of light is unaffected by the motion of the earth through the aether. Here then
the explanation of optical effects by an aether model met with a very serious para-
dox.34 On the one hand, the phenomenon of aberration and Fizeau’s experiment
required the aether to be essentially immobile, while, on the other hand, motion

34 For discussion, see (Janssen and Stachel 2004).
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through the aether did not have the physical effects it should have had according to
the aether model.

2.5 Foundational Problems of Classical Electrodynamics

In the course of the development of electrodynamics, light was recognized by Max-
well as a particular case of electromagnetic radiation, and optics henceforth became
part of electrodynamics. As the electrodynamic theory founded by Maxwell was also
based on an aether model, the electrodynamic aether now took over the role of the
optical aether. The problems of the motion of the optical aether discussed above
therefore became part of a knowledge area commonly referred to as the “electrody-
namics of moving bodies.” Although the aether represents an invisible mechanism
based on mechanical concepts, it turned out to be extremely difficult, if not impossi-
ble, to construct a concrete mechanical model of the aether reproducing all physical
properties required by the wealth of electromagnetic and optical experiences covered
by Maxwell’s theory. Even just the explanation of the properties of light required an
aether that has the mechanical properties of an incompressible, jelly-like elastic
medium and yet represents no obstacle to the motion of huge physical masses such as
the earth or the sun.35

In fact, however, the aether could serve at least some of its essential explanatory
functions, such as rendering comprehensible the transmission of electromagnetic
waves, even without being exhaustively described in terms of the laws of classical
mechanics. Certain aspects of the aether could instead be captured by the laws of
electrodynamics themselves. Thus one could imagine that in the presence of an elec-
tric charge, the aether changes its state like an ordinary non-conducting, dielectric
medium, which, according to the laws of electrodynamics, becomes “polarized.” In
this way, however, the aether model ceased to serve as a tool for linking electrody-
namics to a mechanical foundation. It rather became itself part of an independent
foundation of electrodynamics but nevertheless retained some of the properties due to
its roots in intuitive physics, for instance, of having a state of motion—this being the
state of rest.36

By the end of the nineteenth century the most developed theory of electrodynam-
ics —by Hendrik Antoon Lorentz—was in fact based on an aether model whose
dynamical behavior was entirely governed by electrodynamical laws, while it was
assumed to be absolutely stationary.37 Lorentz’s aether was not even subject to New-
tonian laws of motion. In fact, it exerts forces on bodies within it—without being
affected itself by a counter-force as required by Newton’s law of the equality of
action and reaction. In order to describe the electromagnetic behavior of ordinary

35 For studies concerning the concept of aether in classical physics, see (Whittaker 1951–53; Hirosige,
1966; Schaffner, 1972; Buchwald 1985; Darrigol 1994; Warwick 1995; Janssen 2003).

36 The observation that the assumption of the aether being immobile amounts to the assignment of a
mechanical property is due to Einstein, see (Einstein 1920).

37 For studies of Lorentz’s aether theory, see (Hirosige 1969; Janssen 1995).
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matter, which cannot escape the laws of mechanics, Lorentz’s theory employed
another invisible mechanism in addition to the aether. Matter was conceived to be
made up of elementary particles carrying electric charges. While the particles them-
selves were modelled after the discrete bodies of ordinary mechanical experience and
were hence also subject to the laws of mechanics, their charges were supposed to
interact with the aether according to a mechanism similar to the interaction between
charges and dielectric medium in macroscopic electrodynamics. The presence of
charges generates a particular state of the surrounding aether, corresponding to an
electromagnetic “field,” which then propagates through the aether and thus can affect
other charges. The introduction of the field concept had been the result of reflection
on the experiments by Hans Christian Oerstedt, André-Marie Ampère, Michael Fara-
day, and others which showed that interactions involving the environment beyond the
connecting line between two particles were characteristic of electromagnetic
effects.38 According to Lorentz’s theory, charges interact with each other only via the
aether, by generating fields and by sensing a “ponderomotive force” exerted by the
field upon the elementary particles carrying the charges. By way of its complicated
invisible mechanisms, which refer to two entirely distinct entities, the aether and the
elementary particles, Lorentz’s theory achieved an integration of the laws of electro-
dynamics with those of mechanics, albeit at the price of a fundamental dualism. 

2.6 The World Pictures of Classical Physics and the Emergence
of Borderline Problems

The enormous success of late nineteenth century electrodynamics in explaining phys-
ical properties of matter as well as of radiation stimulated some contemporary scien-
tists to search for an electromagnetic foundation of all physics.39 One could in fact
imagine invisible mechanisms, now conceived in terms of electromagnetic processes,
offering mental models to understand experiences hitherto explained in terms of
mechanics. For instance, it is well known from electrodynamics that an electrically
charged body, set in motion by some force, generates a magnetic field in its vicinity
which results in an increased resistance against the moving force. Since this resis-
tance adds to the inertial resistance, contemporary scientists wondered whether this
process might perhaps serve as a model to understand the concept of inertial mass in
purely electromagnetic terms as a kind of resistance against a moving force, thus
underpinning a central concept of mechanics with an electromechanical foundation.

Other features of classical mechanics were even more suited to speculations about
a possible electromagnetic origin. Since in the case of electricity, magnetism, and
light, electrodynamics had been so successful in accounting for actions at a distance
by an aether model, it was plausible to also attempt an explanation of the gravita-

38 For a survey, see (Darrigol 2000). See also (Steinle 2005).
39 For historical discussion of the electromagnetic foundations of physics, see (Jungnickel and McCorm-

mach 1986a, 227–245).
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tional action at a distance by means of the same intervening medium.40 Newton’s law
of gravitational attraction between two masses even has the same form as Coulomb’s
law for the force between two electrical particles at rest. In both cases the force is
inversely proportional to the square of the distance between the particles and propor-
tional to the product of the masses in the first case, and the charges in the second. On
the background of the electromagnetic aether model, in particular as developed by
Lorentz, it was therefore natural to interpret the mass as representing a “gravitational
charge” accounting for a perturbation of the surrounding aether and resulting in a
“gravitational field,” which is then transmitted through the aether and thus acts upon
another gravitational charge.

Apart from the difficulty in developing a consistent model for an aether carrying
such a gravitational field, either in addition to the electromagnetic fields or somehow
produced by them, an aether model of gravitation also implied hitherto unknown fea-
tures of the gravitational interaction. Consequences of an aether model for gravitation
such as a finite speed for the transmission of gravitational interactions and the possi-
ble existence of gravitational waves were not only new with respect to classical
mechanics but also found little support in the empirical knowledge on gravitation
available at the turn of the century. Developing an aether model for gravitation was
hence an unwieldy and speculative task comparable to constructing the entire theory
of electrodynamics when only Coulomb’s law of electrostatic interaction is known.41

Scientists in the second half of the nineteenth century not only attempted to con-
struct an electromagnetic foundation of physics but also explored the possibility of
extending the theoretical foundation of thermodynamics to the entire body of knowl-
edge of classical physics.42 The starting point for this line of research was the obser-
vation that in all branches of contemporary science the concept of energy played a
central role and that different kinds of energy may be transformed into each other,
mechanical energy into thermal energy, chemical energy into electrical energy, and so
forth. The aim of this research program was therefore to understand all physical, if
not all natural processes as transformations of energy. In this way, by overcoming the
separation of the objects of the different branches of science, such as bodies in
motion, electricity, or heat, all now conceived as different manifestations of energy,
the separation of the branches themselves should also be superseded.43

In short, the different theoretical foundations of late nineteenth-century physics
could be and were in fact conceived as being potentially alternate foundations for the
entire body of knowledge of classical physics. Contemporary scientists thus dis-
cussed a mechanical “world picture,” an electrodynamic world picture, and a thermo-
dynamic world picture. Nevertheless, the dynamics of the intellectual development of
physics in this period continued to be governed mainly by the many concrete

40 For further discussion, see the introduction to vols. 3 and 4 of this series “Theories of Gravitation in
the Twilight of Classical Physics” (in vol. 3).

41 This observation is due to Einstein, see (Einstein 1913 1250).
42 For a historical discussion, see (Jungnickel 1986a, 213–227).
43 For historical discussion, see (Kuhn 1977, chap. 4, 66–104; Elkana 1974).
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unsolved problems—both theoretical and empirical in character—on which the sci-
entists were working. By the end of the century some of these problems also emerged
as being related to more than one theoretical foundation. One such problem was the
electrodynamics of moving bodies, which required the application of both the laws of
electrodynamics and the laws of motion of mechanics. Another example of this class
of borderline problem is heat radiation, which required the application of both the
laws of radiation—covered by the laws of electrodynamics—and the laws of thermo-
dynamics. Since these problems fall under the range of application of two different
theoretical foundations, they represented not only a potential locus of conflict
between fundamentally different conceptual frameworks, but also points of departure
for their integration into more developed theoretical frameworks. Thus Planck’s law
of heat radiation was later seen as the first decisive contribution to quantum theory,44

while the electrodynamics of moving bodies became, as we shall see, the core of the
special theory of relativity. 

At first sight, however, the problems of the optics and electrodynamics of moving
bodies, as discussed previously, may merely appear to be due to the unfortunate
choice of a mechanical aether as an invisible mechanism for electrodynamic explana-
tions. But even Lorentz’s renunciation of ascribing any mechanical properties to the
aether did not help avoid the paradoxes of the propagation of light through the aether
described above. He therefore had to modify his otherwise very successful theory of
electrodynamics by additional assumptions about the effect of the aether on bodies
moving through it in order to explain the lack of any noticeable effect due to the
motion of a terrestrial laboratory through the stationary aether. If one considers, on
the other hand, the absence of any noticeable “aether wind,” not only from the per-
spective of the internal problems of electrodynamics, but from that of classical phys-
ics as a whole, it emerges in fact as a borderline problem between electrodynamics
and mechanics. The absence of any aether wind due to the translatory motion of a
laboratory through the aether is simply a confirmation of the principle of relativity of
classical mechanics, according to which such a motion should indeed be unnotice-
able, at least if acceleration is neglected. But this confirmation takes a form which
itself is not compatible with classical mechanics, since the absence of an aether wind
requires that the motion of the laboratory has no effect on the speed of light measured
in the laboratory. This conclusion is in direct conflict with all ordinary experiences
with the speeds of moving bodies, whose magnitude depends, of course, on the state
of motion of the observer performing the measurement. The resolution of this para-
dox eventually required the abolition of the aether model rooted in intuitive physics,
and with it, a complete revision of the concepts of velocity, space, and time.45

44 See (Büttner et al. 2003).
45 For discussion of the electrodynamics of moving bodies as a problem of classical physics, see also

(Renn 2004, Rynasiewicz and Renn 2006).
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2.7 The Crisis of Classical Electrodynamics

The existence of partially distinct conceptual frameworks within classical physics
provided the substratum for a multiplicity of perspectives not only on its foundational
questions but also on various specific research problems, and in particular on the bor-
derline problems mentioned above. We have characterized the electrodynamics of
moving bodies as a borderline problem, bringing to light a basic conflict between the
notion of electromagnetic aether and the relativity principle of mechanics. But from
within the conceptual framework of electrodynamics this conflict may have been per-
ceived differently by contemporary scientists, namely as an unsolved puzzle of per-
haps even minor significance. The undetectability of an aether wind could thus
appear to them not so much a confirmation of the well-known relativity principle of
classical mechanics but rather the net result of several causes conspiring to hide the
presence of effects due to the motion of the earth through the aether.

Correspondingly, it was natural for scientists in the late nineteenth century to
attack this problem by exploiting the conceptual and technical resources of electrody-
namics. Lorentz introduced, in addition to assuming a “local” time characteristic of a
physical system moving with a certain speed through the aether, the hypothesis of a
length-contraction of bodies along the direction of their motion (“Lorentz contrac-
tion”) in order to explain the “null-effect” of the aether wind on electrodynamic and
optical measurements. The exclusive aim of this hypothesis was to introduce a mech-
anism compensating the expected but unobserved effects of an aether wind; this con-
sideration also determined the quantitative specification of the length-contraction.
Lorentz’s qualitative justification for his hypothesis was the behavior of the molecu-
lar forces within bodies under motion through the aether, which he tentatively
assumed to be analogous to that of the electric and magnetic forces.46

From the perspective of the mechanical framework of classical physics the same
problem appears quite differently, as indicated above. The carefully and with much
experimental effort established null effect, which was so difficult to explain within an
electrodynamic theory based on an aether model, turned out to be simply another
confirmation of the time-proven relativity principle of classical mechanics. Conse-
quently, it was natural, within this framework, to discard the aether model as the
source of the difficulties and to construct instead an electrodynamics based on the rel-
ativity principle. While for such an approach the null effect represented no challenge
at all, it was confronted, on the other hand, with the task of explaining, in its terms,
results that had constituted the triumph of an aether-based electrodynamics and optics
since the early nineteenth century, such as the interference of light waves or the
Fizeau experiment discussed above.

Since in the beginning of the twentieth century the wave theory of light encoun-
tered difficulties, also in other fields of enquiry but in particular regarding the interac-
tion of light and matter, it seemed worthwhile to several scientists of this period, most

46 See (Lorentz 1892, 1895). For discussion see, e.g., (Janssen 1995, sec. 3.2).
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notably to Albert Einstein and Walter Ritz, to tentatively reexamine and modify New-
ton’s corpuscular theory of light as a framework within which to explain the new
empirical knowledge.47 Indeed, a corpuscular emission theory of light succeeded not
only in accounting for the role of the color of light when setting free electrons of the
irradiated matter. This effect was difficult to explain for a wave theory but was con-
cisely described by Einstein’s hypothesis of corpuscular quanta, whose energy is
related to the color of light.48 An emission theory was also a suitable basis for incor-
porating the relativity principle into the foundations of a theory of radiation and per-
haps of electrodynamics in general.

The velocity of the light particles should not differ from the way velocities of
other particles behave since its magnitude must, of course, depend on the state of
motion of the reference frame in which it is measured. The affirmation of a “con-
stancy of the speed of light” can, in this conceptual framework, only refer to the
speed measured with respect to the source of light and not to any property indepen-
dent from the frame of reference. There was, in particular, no need for any “absolute”
frame of reference such as that provided by a stationary aether in order to give mean-
ing to this constancy of the speed of light. But apart from the extraordinary difficulty
in reconstructing electrodynamics and optics on the basis of an emission theory of
light, this approach encountered additional obstacles in explaining other well-estab-
lished aspects of scientific knowledge such as the properties of reflected light.49 The
available shared scientific knowledge thus decided against an emission theory of light
although it evidently represented a promising approach to the special problem of the
electrodynamics of moving bodies.

However, also an assessment of Lorentz’s solution to this problem depended on
the extent to which shared knowledge was taken into account for its evaluation. In
fact, his proposal appears even more shaky when viewed not only from the internal
perspective of classical electrodynamics but also in the light of new knowledge gen-
erated by another borderline problem: heat radiation. In the early twentieth century,
the experimental and theoretical studies of heat radiation were recognized as being in
conflict with an aether model such as the one assumed by Lorentz. According to the
so-called “equipartition theorem” of the kinetic theory of heat, such an aether in ther-
mal equilibrium with matter, should carry electromagnetic radiation of all possible
frequencies, with each frequency being attributed an equal share of the total. In fact,
the velocity of the light particles should not differ. But since there is, in principle, no
limit to the frequencies at which the aether can vibrate, contrary to the case for ordi-
nary matter, the aether with its infinite degrees of freedom will eventually absorb all
the energy of a physical system so that a thermal equilibrium between aether and
matter becomes impossible.50

47 For historical discussion, see the editorial note “Einstein and the Theory of Relativity” in (CPAE 2,
253–274). For the wider context of the reexamination of corpuscular theories of radiation, see also
(Wheaton 1983).

48 See (Einstein 1905b).
49 For discussion, see (CPAE 4, Doc. 1, 35).
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Hence neither the conceptual framework of electrodynamics nor that of mechan-
ics offered a straightforward solution to the puzzles raised by the electrodynamics of
moving bodies. Nevertheless, within the first framework—an aether-based electrody-
namic field theory—it was at least possible to develop a somewhat roundabout solu-
tion by twisting and stretching this framework to its limits, which is what Lorentz did
with his ever new additional auxiliary hypotheses. However, due to this protraction of
the theory by auxiliary hypotheses, not only its anchoring in an aether model, but also
its relation to the conceptual foundation of classical physics, had become loose. In
particular the introduction of special variables describing lengths and time intervals
in a moving system augmented the formalism of Lorentz’s electrodynamics by ele-
ments for which a direct physical interpretation in terms of this foundation had
become difficult. And yet the formulae developed by Lorentz to describe the electro-
dynamics of moving bodies were themselves compatible with all available knowl-
edge, even with the principle of relativity from mechanics, which was otherwise at
odds with the foundations of an aether-based electrodynamic theory.

2.8 Birth and Early Development of the Special Theory of Relativity

The elaboration of a consistent electrodynamics of moving bodies on the basis of an
aether model was achieved mainly due to the work of Lorentz and Poincaré. As
pointed out, the final results of their efforts constituted a new nucleus of knowledge
whose linkages to the conceptual foundation of classical physics were problematic.
Of course, precisely how problematic these linkages actually appeared to contempo-
rary scientists depended on the range of shared knowledge they could or wished to
take into account for their judgement, as we can see from the relevance to this judge-
ment of such apparently unrelated phenomena as the thermal equilibrium of heat
radiation. In other words it was the knowledge of classical science as a whole that
provided a resource for reflection that could be used in different ways. Such reflec-
tions took on the form of different “perspectives” on this knowledge.

In the case at hand, it was precisely the decoupling from the roots of classical
physics of the new body of knowledge constituted by the electrodynamics of moving
bodies that created the possibility of a novel perspective on the conceptual founda-
tions of physics, in addition to the perspectives rooted in mechanics, electrodynam-
ics, and thermodynamics, respectively. In fact, as we have seen, Lorentz’s auxiliary
variables describing space and time intervals in a moving physical system could not
fully derive their meaning from the concepts of space and time as they were basic to
classical physics. Therefore, if the outcome of Lorentz’s efforts was itself being con-
sidered as anchoring a conceptual framework, the new space and time variables could
be conceived as gaining their meaning, not via a specification of these general classi-
cal concepts, which anyway was problematic, but primarily from their role within the
electrodynamics of moving bodies. But this limited body of specialized knowledge

50 See the discussion in (Einstein 1905b).
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was, on the other hand, in itself insufficient to equip the new space and time variables
with the meaning of general space and time concepts, at least as long as their implic-
itly defined meaning within this body of knowledge could not be related to the more
universal meaning of these concepts in physical thinking.

Lorentz’s theory thus offered a natural starting point for a process of reflection
that is repeatedly observable at decisive moments in the history of science. This pro-
cess implies that marginal elements of a complex architecture of knowledge torn
asunder by inner tensions become the starting points for a reconstruction as a result
of which a new structure emerges that is, however, essentially composed of the build-
ing blocks already available. This process may be designated as a “Copernicus Pro-
cess.” Indeed conceptual turnovers unfold in a similar way to the revolution of
Copernicus, who created a new world system by placing an initially marginal celes-
tial body—the sun—into the center, while, instead of starting with a tabula rasa,
retaining the previously elaborated complex machinery of planetary astronomy. Sim-
ilarly, the central role of the aether and peripheral role of the new variables for space
and time in Lorentz’s theory is essentially reversed in special relativity; here the con-
cept of aether no longer plays a role while Lorentz’s auxiliary quantities become the
new foundational concepts of space and time. Most mathematical details, on the other
hand, in particular the so-called Lorentz transformations between reference frames in
uniform motion with respect to each other, remain unaffected by this displacement of
the conceptual center.

The special theory of relativity, published in 1905 by Einstein,51 shows that it is
indeed possible to embed the new space and time variables of the electrodynamics of
moving bodies within such general physical concepts of space and time, with the
consequence of also restructuring these general concepts. Einstein carefully defined
space and time measurements in a given frame of reference with the help of an ele-
mentary procedure conceived in terms of measuring rods and clocks. This procedure
involves only a minimum of well-defined physical assumptions, such as the existence
of rigid measuring rods, the possibility of synchronization procedures between
clocks, etc. In fact, it is the peculiar feature of this procedure that, on the one hand, it
is compatible with and makes precise some essentials of our ordinary understanding
of space and time measurements but that, on the other hand, little else follows from it
without the addition of further assumptions. In particular, it entails nothing about the
relation between space and time measurements performed in frames of reference in
relative motion to each other. Einstein thus succeeded in demonstrating that the con-
cepts of space and time in classical physics involve at least two layers of knowledge,
one that involves elementary mental models of rods and clocks, and a second, clearly
distinguished one that introduces the additional theoretical assumptions required for
the universal time and space concepts, equal for all physical systems whether in
motion or not, which underlie classical physics. Disentangling these two levels he
could now replace the layer of additional physical requirements leading to the classi-

51 See (Einstein 1905c).
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cal concepts of space and time, such as the assumption of an infinite signal speed or
the assumption that the simultaneity of events is independent of the state of motion,
by the layer representing the physical requirements embodied by the electrodynamics
of moving bodies.

Einstein thus introduced the notion of a “relativity of simultaneity” and identified
the ordinary addition of velocities as not pertaining to the elementary level of the con-
cepts of space and time. It was just this ordinary and seemingly self-evident addition
rule, however, which led to the incompatibility between the constancy of the speed of
light, supported not only by the Fizeau experiment but essentially by the entire body
of knowledge incorporated in Lorentz’s electrodynamics, and the principle of relativ-
ity from classical mechanics. The assumption that velocities along one and the same
direction can simply be added or subtracted like numbers in fact immediately leads to
the conclusion that, if the velocity of light has a certain constant value in one refer-
ence system, it cannot have that same value in another system in relative motion to
the first one, but must be augmented or diminished in dependence on the direction of
motion. But on account of the epistemological insights associated with the introduc-
tion of the special theory of relativity, one could abandon this addition rule as part of
the classical understanding of space and time and yet retain the more elementary level
of mental models of space and time measurements, on which one could now build
differently structured concepts. It turned out to be possible to introduce the constancy
of the speed of light, along with the requirements imposed by the relativity principle,
as a basic assumption of the new conceptual framework from which then a new addi-
tion rule for velocities could be inferred. This addition rule makes it possible to avoid
the contradiction between the constancy of the speed of light and the relativity princi-
ple, which among other things requires that velocities of bodies depend on the state of
motion of the reference frame from which they are observed. Indeed, for the veloci-
ties of ordinary material bodies the new addition rule comes close to the classical one,
while the speed of light always retains its constancy; the new addition rule further-
more implies that the speed of light plays the role of a limiting velocity for physical
interactions. In this way, the special theory of relativity had achieved a synthesis
between the foundation of classical electrodynamics, from which the principle of the
constancy of the speed of light was taken, and the foundation of classical mechanics,
from which the principle of relativity was inherited.

The new concepts of space and time of the special theory of relativity of 1905 are
built from combining Einstein’s elementary procedure for measuring space and time
by rods and clocks, which determine space and time only in one reference frame,
with transformation equations relating the measurements obtained in one frame to
those in another frame. The specifics of this new, higher-level structure of the con-
cepts of space and time are entirely determined by the knowledge extracted from
classical mechanics and classical electrodynamics. From classical electrodynamics it
follows, in particular, that the speed of light should be constant at least in one frame
of reference. From classical mechanics it follows that the admissible frames should
be inertial frames of reference and that the basic physical laws, and hence also the
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constancy of the speed of light, should be the same in all such frames. From these
requirements the so-called “Lorentz transformations” can be derived, which relate the
space and time variables in one inertial frame of reference to those in another one.

While similar transformations were initially derived by Lorentz as an artifice for
solving internal problems of the electrodynamics of moving bodies, their refinement
and reinterpretation by Einstein led to new concepts of space and time whose poten-
tial range of applicability was now the entire domain of physics. These new concepts
were already so closely interwoven with electrodynamics that it turned out to be
rather unproblematic to implement them in this area of knowledge, with little need
for major restructurations. The foundational equations of electrodynamics, due to
Maxwell and Lorentz, did not have to be modified in order to be compatible with the
new prescriptions for transforming physical variables from one reference frame into
another. However, this was not the case for Newton’s dynamics which did require
such modifications. This difference is not surprising since classical electrodynamics
was already conceived as a field theory in which physical actions travel with speeds
limited by the speed of light, as required by the special theory of relativity. Newton’s
dynamics, on the other hand, allows for instantaneous actions at a distance, such as
that of gravitation, and conflicts with the requirement of special relativity that no
physical interaction can propagate with a speed greater than that of light. Neverthe-
less, in the course of a “mopping up” operation in the years following Einstein’s for-
mulation of special relativity, it turned out to be possible to adapt greater parts of
classical physics to the new concepts of space and time. The assimilation of ever
larger portions of physical knowledge to these new concepts provided them in turn
with an ever growing stability, reflected also by the quick acceptance of the special
theory of relativity among contemporary physicists.

This restructuration of physical knowledge by new concepts was greatly eased
when in 1908 Hermann Minkowski developed a mathematical formalism for repre-
senting the totality of physical events in space and time, together with the relations
between these events as implied by the special theory of relativity.52 This mathemati-
cal formalism consists of a four-dimensional manifold in which coordinate systems,
representing the physical frames of reference, can be employed to characterize each
physical event by four numbers, its three space and one time coordinate. If the time
coordinate is introduced in such a way that it is always multiplied by the constant
speed of light, it also acquires the physical dimension of a spatial variable so that
Minkowski’s four-dimensional world becomes even more similar to the three-dimen-
sional Euclidean space familiar from classical physics, being, however, extended by
one more dimension. 

The mathematical analogy becomes almost complete if in this space the notion of
a “metric” is introduced, allowing a determination of the distance between two events
in space and time. In ordinary Euclidean space a metric has the immediate physical
significance of giving the spatial distance between two points. It can be expressed in

52 See (Minkowski1908).
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terms of a “line element,” determining the distance  between two infinitesimally
close points in terms of their infinitesimal coordinate differences  In the
case of the usual orthogonal Cartesian coordinates one thus obtains according to the
Pythagorean Theorem:

In the case of more general coordinates or of a non-Euclidean three-dimensional
space, the line element is given by a more general expression:

where  are the components of the so-called “metric tensor,” which in general may
even be functions of the coordinates. In the case of the usual coordinates of the four-
dimensional Minkowski’s geometry, the line element is given by:

corresponding to the components of a metric tensor with constant components which,
represented in matrix form, are given by:

where  is the square of the speed of light. In Minkowski’s four-dimensional world,
line element and metric do not possess an immediate interpretation in terms of the
concept of length; the line element can, for instance, represent a spatial interval in
one case and a time interval in another. But line element and metric do represent in a
concise way the causal structure of physics according to special relativity. In particu-
lar, an event that can causally affect another one must have a distance that is negative
or zero as measured according to the metric of Minkowski’s world since two events
can only be causally connected by interactions that propagate with a speed less than
or equal to that of light. 

In addition to the characterization of the causal structure of physics by the metric,
the introduction of a distance in the four-dimensional world of spacetime events also
offers the possibility of giving a succinct characterization of the Lorentz transforma-
tions. In ordinary three-dimensional Euclidean space the notion of a distance enters
into the definition of rotational transformations between two coordinate systems. In
fact, they can be defined as those linear and homogeneous transformations which
leave the distances between arbitrary points invariant. It now turns out that, with the
help of the four-dimensional metric that defines distances in Minkowski’s world,
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Lorentz transformations can simply be defined in terms of four-dimensional rotations
and hence acquire geometrical significance.

The mathematical representation of events in space and time by “Minkowski
space” or “Minkowski spacetime,” as this four-dimensional manifold is also called,
and the representation of Lorentz transformations by rotations in this space has far-
going implications for the mathematical representation of other physical quantities
and relations as well. One immediate consequence is the characterization of the
motion of a point particle by a four-dimensional “world-line” in Minkowski space,
representing the sequence of events in space and time corresponding to this motion.
The usual kinematic description of the motion of a point-particle is thus replaced by a
description in terms of the geometric properties of such a line. In a sense, the dynam-
ics of physical changes in a three-dimensional world now becomes a “statics” in the
four-dimensional representation. Minkowski thus formulated the requirement that in
the mathematical description of physical processes, the time coordinate should not
play an exceptional role, but rather be treated on an equal footing with the other three
coordinates.

The motion of a particle corresponding to a specific world-line may of course,
still be given in terms of relations between its coordinates referring to a given coordi-
nate system, for instance by prescribing the spatial position of the particle with
respect to this system as a function of the local time in this system. But the geometric
properties of the particle’s world-line in the four-dimensional Minkowski space
remain independent of any specific coordinate system. All that changes, if another
coordinate system is introduced in the four-dimensional world, is the relative position
of the curve with respect to this new system, and hence the description of the curve in
terms of space and time coordinates. One such coordinate representation results from
another one by a Lorentz transformation, provided that both coordinate systems cor-
respond to inertial frames of reference. The use of Minkowski’s four-dimensional
“spacetime continuum” as a framework for physical theories naturally leads to the
requirement that physical magnitudes should be represented by geometric objects in
this framework. This requirement automatically ensures that the representation of
such a physical magnitude in terms of space and time coordinates referring to a given
reference frame is related to the coordinate representation with respect to another
frame by a Lorentz transformation. In this case the physical magnitude may be char-
acterized as being “Lorentz invariant.”

Minkowski’s formalism thus provided not only an elegant representation of the
mathematical properties of the Lorentz transformations, but also a heuristic frame-
work guiding the reformulation of physical knowledge in terms of the new concepts
of space and time. It offered, on the one hand, a mathematical criterion for immedi-
ately deciding whether or not a given physical quantity is Lorentz invariant, and thus
conforming to the principles of special relativity; on the other hand, it allowed the
creation of a multitude of mathematical objects which were candidates for represent-
ing physical magnitudes or laws within special relativistic physics. On the back-
ground of Minkowski’s formalism it was possible, for instance, to recognize
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immediately that Newton’s law of gravitation is not Lorentz invariant—Newton’s
expression for the gravitational force does not correspond to a geometric object in
Minkowski space—and thus needs to be adapted to the principles of special relativity.
The same formalism immediately suggested, on the other hand, a variety of Lorentz
invariant force laws that could all be conceived as candidates for a special relativistic
modification of Newton’s law of gravitation.53

Special relativity, in particular after its reformulation by Minkowski, was largely
perceived as founding a new kinematics, in the sense of a new spatio-temporal scaf-
folding for the description of physical processes, which replaces the “absolute” space
and time concepts of classical physics. Although the new scaffolding was initially
constructed on the basis of knowledge acquired mainly in a specific subdomain of
electrodynamics, it tended to be perceived as having or pretending to have the same
quasi a priori status for physical science as classical kinematics. While in the future
physical research would uncover new forces and hence new dynamical relations, it
was nevertheless expected that these would fit into the kinematic framework estab-
lished once and for all by special relativity; in this sense special relativity was con-
ceived as structuring new physical experience in terms of space and time rather than
as being itself potentially affected by it. But even in the first years after its formula-
tion the theory already led to far-going conceptual changes in classical physics,
beyond the domain of kinematics. Naturally, the dynamical laws of classical physics,
such as the relation between force and acceleration or the principle of energy conser-
vation, had to be adapted to the new spatio-temporal framework, as we have already
mentioned. Some of these adaptations, however, profoundly changed the understand-
ing of concepts crucial for dynamics such as those of mass and energy. The impact of
the special theory of relativity on the conceptual structure of classical physics was
therefore not limited to a revision of its spatio-temporal scaffolding.

The special theory of relativity led, in particular, to the consequence that energy
possesses inertial mass and that, more generally, energy and mass are but two aspects
of a single conserved quantity whose relation is described by the famous equation

 where  stands for the energy,  for the mass, and where  is the
square of the speed of light. In principle this “mass-energy relation” allows for the pos-
sibility that energy may be transformed into matter and matter into energy, in a well-
defined ratio, although the equation itself does not specify the processes by which such
transformations can be achieved. It follows that, whenever a body loses or gains energy,
it also loses or gains inertial mass; furthermore, if energy—in whatever form—is sub-
ject to motion it behaves like a body with an inertial mass of the amount 
Einstein arrived at these conclusions in 1905 by theoretically studying transformation
processes in which a body loses, for instance, energy in the form of radiation.54 Con-
sidering such a process from two different frames of reference in relative motion with

53 For discussion, see the introduction to vols. 3 and 4 of this series “Theories of Gravitation in the Twi-
light of Classical Physics” (in vol.3).

54 See (Einstein 1905a).
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respect to each other, he could use the Lorentz transformations to determine the effect
of the energy loss on the motion of the body—and hence on its inertial mass.

The mass-energy relation is at the root of the striking implications of special rela-
tivity for dynamics. It requires, for instance, that stresses be systematically taken into
account when considering the effect of forces on the motion of an extended body,
even when in classical physics the stresses have no effect on this motion, e.g. when
they are produced by a pair of equal and opposite forces acting along the same line.
But according to the mass-energy relation, stresses embody energy and thus may
change the inertial properties of the moving body. The elaboration of such conse-
quences of special relativity had the effect of changing the fundamental role that the
concept of inertial mass played in classical physics. Even when dealing with an
extended body, in classical physics it was always possible to describe the effect of
forces on its overall motion—leaving aside deformations—by a single quantity, its
inertial mass. It was therefore possible, for many purposes, to treat an extended body
according to the mental model of a single mass point having the same inertial mass as
the extended body. This was another reason why the elementary dynamics of mass
points had a more fundamental status in classical mechanics than the treatment of
extended bodies, in addition to the fact that theories such as hydrodynamics and elas-
ticity theory could be built on the conceptual basis of particle dynamics. In special
relativity, on the other hand, there is in general no single quantity such as mass char-
acterizing the inertial behavior of an extended physical system. The work of Max von
Laue around 1911 made it clear that for this purpose no less than ten functions are
required, which together form the components of a geometric object in Minkowski
space called the “stress-energy tensor.”55

2.9 Gravitation as a Stumbling Block of Special Relativity

How could gravitation be made to fit into the framework of the relativity theory of
1905? A modification of Newton’s law of gravitational attraction was clearly neces-
sary since it implies an instantaneous action at a distance, while the spatio-temporal
framework of special relativity requires that no physical action can propagate with a
speed faster than that of light. It quickly turned out that it was not at all difficult to
adapt Newton’s law to this spatio-temporal framework; as the work of Poincaré,
Minkowski and others between 1905 and 1910 showed, there were even several pos-
sibilities for performing the necessary adjustments.56 Furthermore, these adjustments
could be brought without much difficulty into agreement with the well-known astro-
nomical results confirming Newton’s original theory. But while from a purely kine-
matical view point no essential difficulties arose, these special relativistic
gravitational force laws were quite unsatisfactory from a broader perspective. In par-

55 See (Laue 1911a, 1911b).
56 For historical discussion, see the introduction to vols. 3 and 4 of this series “Theories of Gravitation in

the Twilight of Classical Physics” (in vol.3).
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ticular, since they took the form of an “action at a distance,” even if with a temporal
delay, they did not fulfill the ambition to create a field theory of gravitation, in anal-
ogy to the theory of the electromagnetic field.

Attempts to construct a relativistic field theory of gravitation could essentially fol-
low the model represented by Lorentz’s theory of electromagnetism. In contrast to an
interaction between particles that can be described in terms of a mutual force, the
“Lorentz model” takes into account that an interaction mediated by a field involves
not only the interacting material particles but also their vicinity, in fact, their global
environment. As discussed above, the Lorentz model describes in terms of a global
field how this environment is affected by matter, considered the “source” of the field,
and how this field in turn determines the motion of matter, now conceived as a
“probe” exposed to the field. A mathematical representation of physical processes
interpreted according to this model therefore necessarily comprises two parts: i) a
field equation describing how a localized source, such as a particle, creates the global
field or, alternatively, an analogous equation determining the “potential” from which
the field can then be derived; in classical physics the corresponding second-order par-
tial differential equation for the gravitational potential was known as the “Poisson
equation,” and ii) an equation of motion describing how the global field determines
the motion of a localized probe; in Newtonian mechanics the corresponding equation
is that between acceleration, force, and inertial mass  representing the
acceleration-implies-force model.57

In order to apply Lorentz’s model of a field theory to the case of a relativistic the-
ory of gravitation, one had to identify an appropriate mathematical representation of
the gravitational field as well as of its source, and one had to find a generalization of
the Poisson equation that was to be Lorentz-invariant. The familiar quantities from
classical physics, the gravitational field derivable from a scalar gravitational potential
and the gravitational mass, represented the default solutions to the first two problems.
In addition, it was not difficult to write down a generalization of the Poisson equation
compatible with special relativity. Nevertheless, the most obvious implementations of
Lorentz’s model of a field theory along these lines turned out to lead to serious diffi-
culties, menacing the very framework of special relativity.

The early attempts at a special relativistic treatment of gravitation were, in partic-
ular, confronted with the dynamical consequences of special relativity following from
a revised understanding of the concept of mass.58 As we have seen, in classical
mechanics the inertial mass of a body is quantitatively equal to its gravitational mass,
although the two masses are conceptually distinct. This quantitative identity leads to
the consequence that in a gravitational field all bodies fall with the same acceleration,
whatever their constitution (“Galileo’s principle”). The transformations that the con-
cept of inertial mass underwent due to the advent of special relativity could not

57 For more extensive discussion, see “Pathways out of Classical Physics …” (in this volume).
58 See “Einstein, Nordström, and the Early Demise of Scalar, Lorentz Covariant Theories of Gravita-

tion” (in vol. 3 of this series).
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remain without effect for the understanding of this relation within the new relativistic
mechanics. From the mass-energy relation it follows that the loss or gain of energy of
a body changes its inertial mass—but does this change also affect its gravitational
mass? If so, one would expect that Galileo’s principle remains valid also in the rela-
tivistic context. It turned out, however, that it was not easy to preserve this principle
in a special relativistic theory of the gravitational field since it seemed to follow from
a straightforward implementation of the classical gravitational field equation within a
special relativistic context that bodies fall with different accelerations in a gravita-
tional field if their initial velocities and hence their inertial masses are different.

This problematic consequence may be glanced from a simple thought experiment,
which might have been at the roots of Einstein’s 1907 decision to abandon the
attempt to find a special relativistic field theory of gravitation. Consider a stone fall-
ing vertically and a projectile shot horizontally at the same time the stone is dropped.
According to classical physics, both hit the ground at the same time. If this situation
is now considered from a moving reference frame, which moves with the same speed
as the projectile along the horizontal, the roles of the stone and projectile are
reversed. In the moving reference frame, the projectile falls vertically to the ground,
while the stone now follows a projectile motion with a horizontal component in the
opposite direction. According to classical physics, also within the moving reference
frame, the two bodies should hit the ground at the same time. According to special
relativity, however, the two events, which happen simultaneously in one frame of ref-
erence, cannot happen at the same time—because of the relativity of simultaneity,
i.e., its dependence on the state of motion of the reference system—simultaneously in
the other reference system moved with respect to the former. Galileo’s principle,
according to which all bodies fall with the same acceleration, can hence not be valid
in both frames of references; it hence cannot be valid at all.59

This difficulty amounted not only to a clash between the new theory and a time-
honored insight of classical mechanics, but pointed also to an internal conflict between
the kinematical and the dynamical dimensions of special relativity that was generated
by the attempt to incorporate gravitation into its framework. The dynamical conse-
quences of special relativity, as embodied in the revision of the concept of mass, made
it in fact impossible to simply transfer the elements of the classical gravitational field
equation into a relativistic kinematic framework. In the classical Poisson equation, the

59 This reconstruction fits with Einstein’s remark: “These investigations, however, led to a result which
raised my strong suspicions. According to classical mechanics, the vertical acceleration of a body in
the vertical gravitational field is independent of the horizontal component of its velocity. Hence in
such a gravitational field the vertical acceleration of a mechanical system or of its center of gravity
works out independently of its internal kinetic energy. But in the theory I advanced, the acceleration
of a falling body was not independent of its horizontal velocity or the internal energy of the system.
This did not fit with the old experimental fact that all bodies have the same acceleration in a gravita-
tional field. This law, which may also be formulated as the law of the equality of inertial and gravita-
tional mass, was now brought home to me in all its significance.” In (Einstein 1954, 286–287).
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mass density of matter acts as the source of the gravitational potential. But what
should take its place in the relativistic counterpart of this equation? From the mass-
energy relation it follows that any form of energy—even the energy of the gravita-
tional field itself—should act as the source of a gravitational field, at least if the close
relation between gravitational and inertial mass is to be upheld also in a relativistic
theory. But in which form should the energy of an extended physical system act as the
source of a gravitational field? It follows from the mass-energy relation, as we have
seen above, that the inertial behavior of such a system in special relativity can no
longer be easily characterized by a single function such as the classical inertial mass;
it was therefore to be expected that similar difficulties arise also with regard to the
gravitational effects of an extended physical system. The relativistic action-at-a-dis-
tance laws proposed by Poincaré and Minkowski, referring only to the interaction of
point masses were of course, far from coping with such demands on a relativistic the-
ory of gravitation and also for this reason had little impact on the further development
of gravitational theories.60 But also the most straightforward four-dimensional gener-
alizations of the Poisson equation suggested only a single function, such as the mass
as the source of the gravitational potential, and therefore encountered similar difficul-
ties caused by the transition from the concept of mass to the concept of mass-energy.

A further, more “kinematical” difficulty characteristic of special relativistic field
theories of gravitation is related to a simple mathematical property of Minkowski’s
four-dimensional formalism.61 From the fact that, in Minkowski space, the scalar
product of the “four-velocity” of a moving body with itself equals the square of the
velocity of light, it follows that this four-velocity has always to be perpendicular to its
“four-acceleration,” since the derivative of the constant velocity of light vanishes.
However, this condition imposes unacceptably restrictive conditions on the choice of
a gravitational potential in the most obvious four-dimensional theory. In particular,
the gravitational potential must be constant along the world-line of a particle, a very
restrictive condition indeed. In summary, the framework of special relativity revealed
itself as being too narrow for assimilating the knowledge on gravitation that was
accumulated in the context of classical physics, at least as long as this framework was
not somehow further elaborated or even stretched.

2.10 Exploring the Limits of Special Relativity

The various and partially conflicting demands on a relativistic theory of gravitation
form the background of the different approaches to the problem of such a theory pur-
sued by scientists like Albert Einstein, Max Abraham, Gunnar Nordström, and others

60 For more extensive discussion, see the introduction to vols. 3 and 4 of this series “Theories of Gravi-
tation in the Twilight of Classical Physics” (in vol.3).

61 For further discussion of this problem, see “Einstein, Nordström, and the Early Demise of Scalar,
Lorentz Covariant Theories of Gravitation” (in vol. 3 of this series).
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in the period between 1912 and 1915.62 Theories in which the gravitational potential
is represented by a single function were advanced in this period by Abraham and
Nordström, while a theory in which this potential was represented by a more complex
mathematical object was pursued by Einstein. In fact, these theories embody the dif-
ferent possibilities offered by the shared mathematical and conceptual resources
available at the time to respond to the challenges of a special relativistic field theory
of gravitation.

Using earlier hints provided by Einstein’s studies of special static gravitational
fields, Abraham proposed in 1911 the first four-dimensional field theory of gravita-
tion, obtained by a simple modification of the most straightforward special relativistic
field theory.63 In contrast to this “standard” theory, Abraham’s theory assumes the
speed of light to be variable. It thus succeeds in avoiding the difficulty related to
Minkowski’s formalism just mentioned, that is, the orthogonality between four-
velocity and four-acceleration implied by the constancy of the speed of light, but, as it
turned out, at the price of violating a fundamental principle of special relativity. It
was, in fact, soon realized that Abraham’s theory is no longer Lorentz-invariant but
rather makes the geometry of Minkowski space depend on the variable speed of light
which in turn is a function of the gravitational potential. This radical step met with
criticism because it led to an internal contradiction. But even apart from this diffi-
culty, Abraham’s theory did not offer a response to the “dynamical” problems related
to the modification of the concept of mass discussed above.

These problems quickly became the central issue in the development of
Nordström’s apparently more conservative alternative approach, which was intended
to remain within the framework of special relativity.64 But whether more conserva-
tive or not, this approach had the same starting point as Abraham’s, the problem of
bringing the most obvious four-dimensional generalization of a gravitational field
equation into harmony with the most elementary requirements of a theory of gravita-
tion. His solution for avoiding the restrictive conditions on the gravitational potential
resulting from the “standard” special relativistic gravitational field theory was to let
the mass of a body depend on the gravitational potential, instead of assuming a
dependence of the speed of light on the gravitational potential. In this way, it seemed
that he had only to introduce a minor unorthodoxy into special relativity, rather than
giving up its entire conceptual framework, as was effectively the case with Abraham.

The theory that Nordström first proposed in 1912 did not, however, succeed in
avoiding other objections against a special relativistic approach. Like Abraham’s the-
ory, Nordström’s initial approach was based on considering only the mass as the
source of the gravitational field, neglecting other forms of energy. In order to avoid

62 This is discussed more extensively in the introduction to vols. 3 and 4 of this series “Theories of Grav-
itation in the Twilight of Classical Physics”. See also “Einstein, Nordström, and the Early Demise of
Scalar, Lorentz Covariant Theories of Gravitation”; “The Summit Almost Scaled …” (all in vol. 3 of
this series).

63 See (Abraham 1912).
64 See (Nordström 1912).
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this difficulty, a further elaboration of Nordström’s theory therefore had to take into
account the recent advances in understanding the role of energy for the inertial behav-
ior of bodies. We have seen above that the mass-energy relation implies that in spe-
cial relativity the inertial behavior of extended physical systems can, in general, no
longer be described by the single function “inertial mass” but that this description
rather requires a complex, 10-component object, the “stress-energy tensor.” Given the
demand that the inertial and the gravitational behavior of such an extended system
should be governed by the same physical quantity embodying its energetic properties,
this stress-energy tensor was also a natural candidate for the source of the gravita-
tional field, thus effectively replacing the classical notion of gravitational mass.
Nordström’s theory, however, was guided by the default settings for the Lorentz
model inherited from Newtonian theory in assuming that the gravitational potential is
represented by just one single function which had to correspond to another single
function representing the source of this potential. In the classical case, this single
function characterizing the source of the gravitational field was given by the gravita-
tional mass. Now, in the light of the new insights into special relativistic dynamics
and of the constraints imposed by Nordström’s theory, it became necessary to extract
such a single function from the complex stress-energy tensor for a physical system
acting as the source of a gravitational field.

The attempts, in particular by Nordström and Einstein, to address this problem
necessitated further revisions of Nordström’s original theory. Eventually Nordström
was forced to assume that the gravitational potential influences not only the mass of a
body, but also length and time measurements performed under the influence of a
gravitational field. However, this further revision implied that Nordström’s theory of
gravitation had essentially undercut its own conceptual roots in the spatio-temporal
framework of special relativity. Indeed, as it turned out, this framework was no longer
directly accessible through measurements as these are affected by the presence of a
gravitational field.

These and other attempts between 1911 and 1915 to confront the challenge that
the inclusion of gravity posed for special relativity led to a situation similar to that of
classical aether-based electrodynamics at the turn of the century, when it was con-
fronted with the challenge of incorporating the electrodynamics of moving bodies. In
both cases it was possible to cope with these challenges by continually adjusting and
modifying the original framework which, however, created tensions between the
elaborated theories and their conceptual roots. But further development under the
spell of these challenges not only produced internal inconsistencies and a prolifera-
tion of possible modifications, it also generated the preconditions for new perspec-
tives as a consequence of the enhanced opportunities to reflect upon the accumulated
knowledge. In the case of the electrodynamics of moving bodies, these preconditions
were constituted, among other aspects, by the new space and time variables in
Lorentz’s theory. 

In the case of the relativistic field theory of gravitation we have also encountered
the emergence of such elements of a new perspective, even though we have reviewed
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only a small segment of its development. Indeed, a sober look at Abraham’s and
Nordström’s efforts could not only have suggested that a satisfactory field theory of
gravitation might transcend the limits of special relativity, but could have also
revealed hints as to how such a theory might be constructed: by letting the geometry
of Minkowski space depend on the gravitational potential (Abraham); by represent-
ing the gravitational potential not by a single function but by a 10-component object
on a pair with the stress-energy tensor and having this tensor as its source (Laue and
Nordström); and by including an effect of the gravitational potential on the measure-
ment of space and time (Nordström).

In summary, our survey of the evolution of classical physics has shown that the
accumulation of knowledge in its highly organized disciplinary structures produced
borderline problems which also challenged the classical understanding of gravitation.
The fact that the problem of a relativistic theory of gravitation was deeply rooted in a
structural crisis of classical physics makes it evident that the genesis of general rela-
tivity was not just a one-man affair and a lucky individual discovery but the result of
a profound transformation of the extended system of knowledge of classical physics
that may well have taken place, albeit under a different form and possibly with a dif-
ferent outcome, even if Einstein had never lived. This survey makes it thus clear in
which sense general relativity was not created ex nihilo. What remains open, how-
ever, is the second question posed in the introduction concerning the success of the
heuristics that guided Einstein in its creation. While this survey makes it plausible
that this success must have been due to the fact that Einstein’s heuristics exploited the
knowledge of classical and special relativistic physics, it remains to be clarified how
it did so concretely. This is the question at the center of the next section.

3. THE ROOTS OF EINSTEIN’S HEURISTICS IN THE KNOWLEDGE OF 
CLASSICAL AND SPECIAL RELATIVISTIC PHYSICS

3.1 The Drama of General Relativity

How is Einstein’s work on general relativity related to the knowledge resources
reviewed in the last section? At first glance it seems that the processes described
above merely set the stage for the truly decisive events associated with his struggle
for a relativistic theory of gravitation. In fact, this struggle resembles a heroic drama
which, according to Einstein’s own retrospective account, has three major acts:65 The
drama began in 1907 when he conceived the idea of the so-called “equivalence prin-
ciple,” which was at the origin of his unusual and lonely path towards a theory of
gravitation, and with which he was to realize a generalization of the principle of rela-
tivity. The drama reached a first culmination in 1912, when Einstein introduced a 10-
component metric tensor as a representation of the gravitational potential, substitut-
ing its representation in classical physics by a single scalar function. At that point, the

65 See “The First Two Acts” (in this volume).
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full extent of the deviation of the new theory of gravitation from classical physics
became visible. Finally, in 1915, the drama reached its climax when Einstein, after a
desperate search and numerous failed attempts, formulated the gravitational field
equation of general relativity as a differential equation for the metric tensor. 

However, describing the three steps associated with the years 1907, 1912, and
1915 as turning points of a drama or of an individual biography obviously does not
explain why each of them was so successful in advancing the solution of the problem
to create a relativistic theory of gravitation, in particular as they do not even seem to
lie along a straight path towards such a solution. Einstein’s contemporaries strongly
objected, for instance, against the introduction of the metric tensor which they con-
sidered to be an unnecessary complication with respect to the simple scalar gravita-
tional potential of the Newtonian theory.66 Even a psychological explanation of the
origin of the three breakthroughs in Einstein’s thinking can hardly account for their
effectiveness in creating general relativity as a durable solution to the problem of a
relativistic theory of gravitation, emerging at the dusk of classical physics. 

In the following, we shall therefore concentrate on the way in which Einstein’s
three crucial steps functioned in the transformation of the knowledge of classical sci-
ence. For this purpose, we will describe what happened in terms of mental models
effecting an integration of physical and mathematical knowledge. The emphasis is
not on the question of how exactly these models entered Einstein’s individual think-
ing. What matters here is that they originated either in the shared scientific knowl-
edge of the time, such as the model of a field equation taken over from Lorentz’s
electrodynamics, or resulted from a reflection on conflicts within this shared knowl-
edge of the kind described in the previous section, such as the conflict between Gali-
leo’s principle and special relativity.

3.2 Einstein’s Realization of the Conflict between Galileo’s Principle
and Special Relativity

In September 1907 Einstein agreed to the offer by Johannes Stark to write a review
article on the theory of relativity which he was expected to complete within two
months.67 At the beginning of November, when he had completed the first half of the
paper, he was yet uncertain whether gravitation should be included—at least he did
not mention this topic in a letter to the editor Stark which he wrote at that time.68

When the paper was submitted on the fourth of December, it did comprise a short
section on gravitation.69 The obvious problem confronting Einstein was the reconcil-
iation of Newton’s law of gravitation with the requirement of a finite speed of the

66 See vols. 3 and 4 of this series.
67 See Einstein to Johannes Stark, 25 September 1907 (CPAE 5, Doc. 58, 74–75).
68 See Einstein to Johannes Stark, 1 November 1907 (CPAE 5, Doc. 63, 77–78); see also the discussion

in (Fölsing 1993, 266).
69 See (Einstein 1907, sec. V, 454–462).
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propagation of physical effects following from special relativity. In a later recollec-
tion, Einstein wrote:

Like most physicists, at this period, I endeavoured to find a “field-law,” since, of course,
the introduction of action at a distance was no longer feasible in any plausible form once
the idea of simultaneity had been abolished.

The simplest way was, of course, to keep the Laplace scalar potential of gravity and to
extend the Poisson equation by adding, in such a way as to comply with the special the-
ory of relativity, a term differentiated with respect to the time. (Einstein 1933, 6)

Whatever precise form Einstein had given to his attempt at a special relativistic grav-
itation theory, he soon encountered the above-mentioned intrinsic conflict between
the kinematical and dynamical implications of special relativity for the problem of
gravitation, which shifted the central conflict from that between Newton’s law and
special relativity to that between special relativity and Galileo’s principle. The con-
flict suddenly transformed this long-familiar principle—and the equality of inertial
and gravitational mass on which it is based in classical physics—into a touchstone for
a new theory of gravitation. It was as if the elaboration of a relativistic theory of grav-
itation had directed a spotlight onto this previously rather inconspicuous asset of clas-
sical physics. This is strikingly confirmed by Einstein’s own recollection:

This principle, which can also be stated as the law of the equivalence of inertial and grav-
itational mass, impressed me as being of fundamental importance. I wondered how this
law could exist, and believed that it held the key to the real understanding of inertia and
gravitation. I never seriously doubted its exact validity, even though I did not know about
the beautiful experiments of Eötvös, which, if I remember alright, were not known to me
until a later date.

I gave up, therefore, the attempt, which I have sketched above, to treat the problem of
gravitation within the framework of the special theory of relativity; it was clearly inade-
quate, since it failed to take into account just the most fundamental property of gravita-
tion. (Einstein 1933, 7)

The ground was thus prepared for reflecting upon this property of gravitation and
rethinking the relevant knowledge of classical physics taking into account that the
framework of special relativity was evidently too narrow for capturing the problem of
gravitation.

3.3 The Synthesis of Knowledge by the Elevator Model

Even within classical mechanics Galileo’s principle appears to be an odd coinci-
dence, due to the equality of gravitational and inertial mass rather than a fundamental
property anchored in its conceptual structure. However, when Einstein reconsidered
it in the context of his attempt at a relativistic theory of gravitation, it somehow
seemed to hold the key to a deeper understanding of gravitation and inertia. But what
exactly was the question to which Galileo’s principle suggested an answer? Einstein
eventually noticed that it did fit with Mach’s peculiar view on mechanics, questioning
the privileged role of inertial frames of reference and the notion of acceleration with
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respect to absolute space. Mach had claimed that the curvature of the surface of water
in Newton’s bucket experiment might also occur if the bucket were at rest while the
cosmic masses rotated around it. Mach thus established an equivalence between a sit-
uation in which a physical effect—the curvature of the water surface—is caused by
acceleration, and a situation in which the same effect can be interpreted as being
caused by forces exerted on the water by the cosmic masses. If Galileo’s principle is
now reconsidered from the point of view of such an equivalence relation, it becomes
plausible to reduce Mach’s argument to a comparison of two much simpler situations;
one in which just the usual linear acceleration of free fall is considered instead of a
rotational motion, and one in which just the usual gravitational force of the Earth is
contemplated instead of a speculative force of moving cosmic masses. 

The problem to which Galileo’s principle provided a response was, in other
words, the generalization of the principle of relativity to accelerated motions which,
for Einstein, was associated with Mach’s view. He later recalled:

After the special theory of relativity had shown the equivalence for formulating the laws
of nature of all so-called inertial systems (1905) the question whether a more general
equivalence of coordinate systems existed was an obvious one. In other words, if one can
only attach a relative meaning to the concept of velocity, should one nevertheless main-
tain the concept of acceleration as an absolute one? From the purely kinematic point of
view the relativity of any and every sort of motion was indubitable; from the physical
point of view, however, the inertial system seemed to have a special importance which
made the use of other moving systems of coordinates appear artificial.

I was, of course, familiar with Mach’s idea that inertia might not represent a resistance to
acceleration as such, so much as a resistance to acceleration relative to the mass of all the
other bodies in the world. This idea fascinated me; but it did not provide a basis for a new
theory. I made the first step towards the solution of this problem when I endeavoured to
include the law of gravity in the framework of the special theory of relativity. (Einstein
1933, 5–6)

It was evidently the highlighting of Galileo’s principle by the problems of a spe-
cial relativistic theory of gravitation that had linked this principle, in Einstein’s mind,
with Mach’s interpretation of mechanics, and in particular with the idea to generalize
the principle of relativity also to accelerated frames of references. According to stan-
dard classical mechanics, inertial and accelerated frames of reference have a funda-
mentally different status. But when, as Galileo’s principle implies, all bodies fall in
the same way in a uniform and homogeneous gravitational field, an observer falling
with them could imagine living, at least temporarily, in an inertial frame of reference
although he is himself falling with growing speed. In fact, he would neither feel his
own weight nor observe any forces acting on the bodies falling with him. It is as if the
gravitational field had been neutralized by his own accelerated motion. His acceler-
ated frame of reference would therefore be indistinguishable from an inertial frame.
This indistinguishability between an accelerated and an inertial frame could, in turn,
be made into a criterion for the validity of Galileo’s principle. If, in particular, the new
theory of gravitation were to incorporate this principle, it would have to be also a gen-
eralized theory of relativity allowing for accelerated frames of reference. This way of
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reinterpreting Galileo’s principle as the equivalence of a freely falling reference frame
with an inertial one, and as the starting point for resolving the problems raised by
Mach, must have struck Einstein as a flash-like insight, as is made evident by his later
recollections. In his famous Kyoto lecture, for instance, Einstein reminisced:

I was sitting in my chair in the patent office at Bern when all of a sudden a thought
occurred to me: ‘If a person falls freely he will not feel his own weight.’ I was startled.
This simple thought made a deep impression on me. It impelled me towards a theory of
gravitation. (Pais 1982, 179)

Other recollections not only confirm the sudden nature of this insight but also hint at
the intellectual background that had prepared it and, in particular, at the role of
Mach’s critique as suggesting the problem to which Galileo’s principle, freshly dis-
cerned in its significance, provided the striking and unexpected resolution:

Now it came to me: the fact of the equality of inertial and gravitational mass, i.e., the fact
of the independence of the gravitational acceleration from the nature of the falling sub-
stance may be expressed as follows: In a gravitational field (of small spatial extension)
things behave as they do in a space free of gravitation, if one introduces into it, in place
of an “inertial system,” a frame of reference accelerated relative to the former. ... The
concept of “acceleration relative to space” then loses all meaning and with it the princi-
ple of inertia along with the paradox of Mach. (Einstein 1979, 61, 63)

Einstein’s rethinking of Galileo’s principle was guided not only by his familiarity
with Mach’s foundational critique of mechanics but also by other aspects of his ear-
lier intellectual experience, such as his recognition, in the context of his work on the
electrodynamics of moving bodies, that electric and magnetic fields only have a rela-
tive existence depending on the state of motion. In one of his recollections he stressed
the analogy of this crucial insight from the context of special relativity with the rela-
tive existence of the gravitational field as revealed by accelerated motion:

At this point, there occurred to me the happiest thought of my life. Just as is the case with
the electric field produced by electromagnetic induction, the gravitational field has simi-
larly only a relative existence. For if one considers an observer in free fall, e.g., from the
roof of a house, there exists for him during this fall no gravitational field—at least not in
his immediate vicinity. Indeed, if the observer drops some bodies, then these remain rela-
tive to him in a state of rest or in uniform motion, independent of their particular chemi-
cal or physical nature (in this consideration the air resistance is, of course, neglected).
The observer therefore has the right to interpret his state as “at rest.”70

70 “Da kam mir der glücklichste Gedanke meines Lebens in folgender Form: Das Gravitationsfeld hat an
einem betrachteten in ähnlicher Weise nur eine relative Existenz wie das durch magnetelektrische
Induktion erzeugte elektrische Feld. Denn für einen vom Dache eines Hauses frei herabfallenden
Beobachter existiert während seines Falles—wenigstens in seiner unmittelbaren Umgebung—kein
Gravitationsfeld. Lässt der Beobachter nämlich irgend welche Körper los, so bleiben sie relativ zu
ihm im Zustand der Ruhe bezw. gleichförmigen Bewegung, unabhängig von ihrer besonderen chemi-
schen und physikalischen Natur. Der Beobachter ist also berechtigt, seinen Zustand als “Ruhe” zu
deuten.” (CPAE 7, Doc. 31, 265). English translation in (Holton 1971). See also (Miller 1992, 325;
Pais 1982, 178).
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The way in which Einstein exploited the knowledge resources available to him
obviously depended on his specific perspective on these resources. But in whatever
prior experience this perspective was actually grounded, there can be no doubt that
his first crucial step towards a relativistic theory of gravitation—the introduction of
what he later called his equivalence principle—has its origin in a thorny process of
knowledge integration that started with the attempt to assimilate the classical knowl-
edge on gravitation to the framework of special relativity. How exactly did the equiv-
alence principle structure this process?

The equivalence principle states that all physical events in a uniform and homoge-
neous gravitational field are equivalent to those happening in a uniformly accelerated
frame of reference. It is often described, also by Einstein himself, in terms of a
“thought experiment” with a closed laboratory, which is also known as the “elevator
experiment.” However, if it is merely conceived as a thought experiment, then it must
remain a riddle why Einstein held on to it for so long and why he made it the central
element of his heuristics, even against the resistance of almost all his colleagues. On
the other hand, if one interprets it as an operation with the mental model of a labora-
tory, then it becomes clear that it could have dramatic effects on the architecture of
the knowledge of classical physics.

Einstein’s laboratory may be considered in two states that, in classical physics,
are described by different concepts. In the first case the laboratory is uniformly accel-
erated by an arbitrary external force with respect to an inertial system. It represents
the mental model of a system with inertial forces. Among its slots are the state of
motion of the system, the inertial forces in its interior, and the motion of bodies
caused by them. In the second case the laboratory is at rest in an inertial system and is
exposed to a homogeneous gravitational field. It now represents the mental model of
a system with gravitational force. Among its slots are the state of motion of the sys-
tem, the gravitational force acting on the bodies within the system, and the motions
caused by it.

Einstein noticed that the observer in the interior of the laboratory cannot distin-
guish between these two cases. A laboratory of which it is only empirically known
that bodies in its interior fall to the bottom with uniform acceleration satisfies the
conditions for the slots of both mental models, which are connected with each other
in this way. In fact, the slots for the motion of the bodies within the laboratory are, in
both cases, filled with the same empirically given data, while the slots for which no
empirical information is available, such as those for the states of motion, can be filled
by default assumptions delivered by the interpretation of the laboratory either as
being in accelerated motion or as being exposed to a gravitational field. The integra-
tion of the two mental models questions or even dissolves essential distinctions of
classical and special relativistic physics, in particular that between accelerated sys-
tems and inertial systems, and that between inertial forces and gravitational forces.

Even years before the formulation of only the first approach to a generally relativ-
istic theory of gravitation, the integrated model—in the following called the “elevator
model”—became the central asset of Einstein’s heuristics. In fact, this integrated
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model allowed him to relate two separate knowledge areas of physics to each other. In
particular, it enabled the investigation of special cases of the gravitational field by
means of the study of accelerated motion. Accelerated motion, in turn, could be ana-
lyzed by methods of special relativity, assuming that the physical effects at a certain
point in the accelerated laboratory are the same as those in a laboratory moving uni-
formly with the same instantaneous speed, that is, in a “comoving inertial frame of
reference.” On the basis of this successful, if only partial integration of the knowledge
of classical mechanics and special relativity, Einstein was able to draw conclusions
concerning the empirical consequences of a theory of gravitation still to be formu-
lated, among them the prediction of the deflection of light and of the redshift in a
gravitational field,71 as well as the explanation of the anomalous perihelion motion of
Mercury.72

The bending of light in a gravitational field, for instance, could simply be inferred
from the observation that, in an accelerated laboratory, light rays must be curved as a
consequence of the superposition of the motion of the laboratory and of the light. The
conclusion that this is also the case for a gravitational field was in accordance with
the assumption that energy has not only inertial but also gravitational mass, so that
the energy of light should be subject to gravitational attraction. Such straightforward
considerations are at the roots of the most striking observational predictions of gen-
eral relativity, made long before its completion and confirmed only years afterwards.
Among them is Einstein’s prediction that, during a solar eclipse, one should be able
to observe a variation of the apparent positions of stars whose light passes close to the
sun and is therefore deflected by its gravitational attraction, a prediction first pub-
lished in 1911 following up on Einstein’s 1907 considerations,73 and confirmed dur-
ing a solar eclipse in 1919.74 Among these striking predictions is also that of the
existence of gravitational lenses: distant massive objects which create images and
intensify the light of even more distant objects aligned with them. Einstein first deter-
mined the properties of such gravitational lenses in 1912, three years before complet-
ing general relativity.75 He later abandoned the idea because he doubted that such
objects could ever be observed; an observation that, in fact, was only achieved much
later. These examples illustrate how the knowledge resources of classical physics
made it possible to identify effects predicted by general relativity even before its for-
mulation. In fact, the deflection of light, revealed as a qualitative effect by the eleva-
tor model as early as 1907, could, without much difficulty, be combined with mental
models from ray optics involving simple constellations such as that of a solar eclipse
or a gravitational lens.

71 See (Einstein 1907, sec. V).
72 See Albert Einstein to Conrad Habicht, 24 December 1907, (CPAE 5E, 82).
73 See (Einstein 1911).
74 Apart from a factor of 2; for a historical discussion, see (Earman and Glymour 1980).
75 For a discussion of the early history of gravitational lensing, see (Renn, Sauer and Stachel 1997, Renn

and Sauer 2003).
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3.4 Conceptual Challenges Implied by the Elevator and Bucket Models

Einstein’s elevator model was not only a heuristic device capable of predicting
remarkable observational implications of the new theory of gravitation, it also high-
lighted its incompatibility with special relativity and allowed Einstein to anticipate
some of the conceptual changes associated with such a theory. The bending of light in
a gravitational field, for instance, suggested that the speed of light is no longer con-
stant, in contradiction with one of the fundamental principles of special relativity.
This qualitative conclusion could be underpinned, as Einstein did in his review paper
of 1907,76 by an analysis of time synchronization in an accelerated frame of refer-
ence that made it evident that the concept of time in a gravitational field had to be fur-
ther differentiated with respect to that of special relativity. In fact, time, in the sense
of a synchronized network of clocks, could be defined with respect to any of the
comoving inertial frames anchored at particular points of an accelerated frame of ref-
erence. But since these different “local inertial frames” are in relative motion to each
other, two such networks do not coincide since, according to special relativity, simul-
taneity means something different in each of them. It is hence no longer possible to
simply refer to “the time” of an accelerated frame of reference (or of a frame with a
gravitational field) since one can no longer expect that two standard clocks, initially
synchronized at the same location in a gravitational field, would still remain synchro-
nized when one is transported to a region with a different gravitational potential; in
this sense the “homogeneity” of time is lost in a theory of gravitation incorporating
Einstein’s principle of equivalence.

An extension of the considerations that had led to the elevator model allowed Ein-
stein to arrive at similar insights concerning the necessity of revising the concept of
space in the new theory of gravitation. Such an extension of the original model, to
include more general cases of accelerated motion and, in particular, the case of rota-
tion, was suggested both by Mach’s analysis of inertial effects in classical mechanics
and by the Lorentz model. The combination of knowledge resources from mechanics
and field theory was, in fact, characteristic of Einstein’s work on a new theory of
gravitation.77 The Lorentz model, rooted in the tradition of field theory, made it pos-
sible to conceive of gravitation and inertia as two aspects of one gravito-inertial field,
in analogy to the unification by Maxwell’s field equations of the electric and mag-
netic field to one electromagnetic field. In a letter to Paul Ehrenfest from spring 1912
Einstein wrote with reference to static gravitational fields:

My case corresponds to the electrostatic field in the theory of electricity, whereas the
more general static case would further include the analogue of the static magnetic field. I
am not yet that far.78

76 See (Einstein 1907, sec. V).
77 For further discussion, see “The Third Way to General Relativity” (in vol. 3 of this series).
78 “Mein Fall entspricht in der Elektrizitätstheorie dem elektrostatischen Felde, wogegen der allge-

meine[r]e statische Fall noch das Analogon des statischen Magnetfeldes mit einschliessen würde. So
weit bin ich noch nicht.” Einstein to Paul Ehrenfest, before 20 June 1912, in (CPAE 5, Doc. 409, 486).
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Mach’s analysis of classical mechanics, on the other hand, suggested identifying the
inertial forces in accelerated frames of reference as being due to an interaction
between bodies in motion. His interpretation of the mental model of a rotating
bucket, in particular, made it plausible to search for a theory that admits rotating
frames of reference in the sense of a generalization of the principle of relativity and to
conceive the inertial effects occurring in them as a specific case of this hitherto
unknown interaction. In this vein, Einstein wrote, also in spring 1912, to his friend
Michele Besso:

You see that I am still far from being able to conceive rotation as rest!79

While attempts to formulate a purely Machian mechanics on the basis of introducing
such inertial interactions had been hopeless, the combination of this idea with the
perspective of field theory could now provide the latter with precise information, oth-
erwise missing, concerning the properties of dynamical gravitational fields. In other
words, an integration of the Machian bucket model with the Lorentz model made it
possible to identify the inertial forces in a rotating frame as the analogon to a magne-
tostatic field, thus filling the slots of the Lorentz model with specific knowledge
about the special case of a stationary gravitational field.

When Einstein began to search for a gravitational field equation in 1912, the
bucket model became, next to the elevator model, the second crucial mental model of
his heuristics, exploiting the possibilities of analyzing properties of a generalized
gravitational field by considering the inertial effects of accelerated motion known
from classical mechanics. The bucket model pointed to the effects of Coriolis-like
forces on light rays in a stationary gravitational field, which turned out to be such that
light rays cannot go back along the same path from one point to the other.80 From this
insight it follows that the force exerted by such a stationary gravitational field is
velocity-dependent, in this case changing with the direction of the velocity of light.
However, even within the framework of special relativity, the inclusion of rotating
reference frames was connected to a conceptual difficulty that had its origin in the
length contraction of rapidly moving bodies and the problem of defining a rigid body
in special relativity. Einstein and Max Born had already encountered this difficulty in
1909.81 It had also been found independently by Ehrenfest.82 Ehrenfest argued that
the circumference of a cylinder, which is slowly set into motion around its axis
should, according to special relativity, show a contraction with respect to the state of
rest, while its radius is not affected by such a contraction since it lies orthogonally to
the motion. For the rotating cylinder, the ratio between circumference and radius

79 “Du siehst, dass ich noch weit davon entfernt bin, die Drehung als Ruhe auffassen zu können!” Ein-
stein to Michele Besso, 26 March 1912, in (CPAE 5, Doc. 377, 435).

80 See Paul Ehrenfest to Albert Einstein, St. Petersburg, before 3 April 1912, in (CPAE 5E, 439–445).
For a more detailed historical analysis, see “The First Two Acts” (in this volume).

81 See (Born 1910). 
82 See (Ehrenfest 1909).
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should therefore, from the viewpoint of an observer at rest, deviate from the number
 that, in Euclidean geometry, determines this ratio.

This difficulty was related to what became known as the “Ehrenfest paradox”
which gave rise to a controversial discussion about the definition and role of rigid
bodies in relativity theory. Einstein, however, took this paradox as a hint relevant for
a generalization of relativity theory on the basis of his equivalence principle. Immedi-
ately after the discovery of the problem he wrote to Arnold Sommerfeld:

The treatment of the uniformly rotating rigid body seems to me to be of great importance
because of an extension of the relativity principle to uniformly rotating systems that is
based on a line of reasoning analogous to that which I tried to purse for uniformly accel-
erated translation in the last § of my paper that was published in the Zeitschr. f. Radioak-
tivit.83

When Einstein interpreted the Ehrenfest paradox in terms of the bucket model, it took
on a new significance, implying conceptual consequences for the new theory of grav-
itation which sharpened its conflict with special relativity. In one of his papers pub-
lished in 1912 (Einstein 1912a), Einstein argued that the ratio between the
circumference and radius of a circle or a disk in a rotating laboratory is no longer
given by  because, as he later explained in detail,84 the Lorentz contraction affects a
ruler posed along the circumference and moving in the momentary direction of the
rotating motion, while it does not affect a ruler posed along the radius of the disk. As
a consequence, one needs more such contracted rulers to measure the circumference
of the rotating disk which thus exceeds the length of  times the radius expected
from ordinary geometry. In other words, the spatial properties of a stationary gravita-
tional field no longer satisfy Euclidean geometry.

For Einstein the equivalence principle, and with it the use of mental models such
as the elevator and bucket models, was eventually subsumed under a more general
heuristic principle, his generalized principle of relativity. According to this principle,
the new theory of gravitation should not make a distinction between inertial and grav-
itational effects, which are rather to be described as effects of an integrated gravito-
inertial field. It should, in particular, admit reference frames in arbitrary states of
motion and describe the inertial effects occurring in them as the effects of such a gen-
eralized gravito-inertial field. As will become clear in the following, this principle
played a crucial role in shaping the mathematics employed by Einstein to formulate
the gravitational field equation, imposing, in particular, its covariance with respect to
general classes of coordinate transformations. However, it follows from the preceding
discussion that Einstein’s generalized principle of relativity not only had implications

83 “Die Behandlung des gleichförmig rotierenden starren Körpers scheint mir von grosser Wichtigkeit
wegen einer Ausdehnung des Relativitätsprinzips auf gleichförmig rotierende Systeme nach analogen
Gedankengängen, wie ich sie im letzten § meiner in der Zeitschr. f. Radioaktivit. publizierten
Abhandlung für gleichförmig beschleunigte Translation durchzuführen versucht habe.” Einstein to
Arnold Sommerfeld, 29 September 1909, in (CPAE 5, 210–211).

84 For an extensive historical discussion, see (Stachel 1989). For a modern assessment, see (Vishvesh-
wara 2003).
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for the mathematical instruments used in the creation of general relativity, but that it
also incorporated knowledge resources of classical physics, in particular, the knowl-
edge on inertial effects in accelerated frames of reference which were traditionally
explained as being due to the existence of an absolute space.

3.5 The Synthesis of Knowledge by the Curved-Spacetime Model

Classical physics offered a number of tools for the further exploration of the proper-
ties of a generalized gravitational field. Exploiting these tools, Einstein was eventu-
ally led to a major breakthrough in his understanding of gravitation. As a result of this
breakthrough, gravitation was now conceived as being due to the curvature of space
and time. How did this breakthrough come about? In order to describe how gravita-
tion affects motion Einstein first made use of the classical acceleration-implies-force
model, conceiving gravitation as a force. In a second step, he then realized that the
way in which a gravitational field influences the motion of a body exposed to it could
also be accounted for by the constrained-motion model, also familiar from classical
physics, wherein the equation of motion is formulated in terms of a variational princi-
ple. Finally, in a third step, he realized that an equation of motion thus formulated
also perfectly matches the slots of another mental model, this time rooted in the
shared knowledge of contemporary mathematics, the “curved-surface model.” As a
result, these two models were joined to become an integrated model, the “curved-
spacetime model,” which opened the way for a complete and coherent mathematical
description of motion in a relativistic gravitational field by virtue of the mathematical
structures associated with the curved-surface model. It follows from this revised
description of the effect of gravitation that the gravitational field itself could now be
conceived, instead of being a force in the sense of Newtonian physics, as expressing
the geometric properties of a generalized spacetime continuum. In fact, this new
world generalizes Minkowski’s spacetime in the same sense as a curved surface rep-
resents a generalization of a plane surface, its geometric properties being governed
not by a constant but by a variable metric. This metric, in turn, emerged as the appro-
priate mathematical representation of the gravitational potential. Because of its origin
in the integration of two mental models, the metric tensor embodies both the knowl-
edge of the generalized gravito-inertial field revealed by the equivalence principle,
and the knowledge of the causal structure of spacetime following from special rela-
tivity and incorporated in Minkowski’s formalism.

A closer look at the emergence of this breakthrough reveals it as a rather straight-
forward implication of the knowledge so far accumulated. Until 1911 Einstein had
committed himself mainly to exploring, by means of the equivalence principle, the
effects and conceptual changes characterizing a new theory of gravitation, evidently
without seriously attempting its construction. Only in early 1912 was he challenged
by the publications of Max Abraham to elaborate such a theory, at least for the special
case of a static gravitational field.85 He did so by applying the Lorentz model to the
results of his use of the equivalence principle. In particular, he attempted to describe



70 JÜRGEN RENN

the inertial effects in a uniformly accelerated frame in terms of a field equation for a
static gravitational field, and the motion of particles by an equation of motion in
accordance with the acceleration-implies-force model. For this purpose he explored
how a force-free motion in an inertial frame would look if considered from the per-
spective of an accelerated frame of reference from which it could then be interpreted,
on the basis of the equivalence principle, as a motion subject to a gravitational force.

Having derived transformation equations between the inertial and the accelerated
frame of reference compatible with the available knowledge, in particular about the
propagation of light, Einstein arrived at transformation equations for space, time, and
a variable speed of light. Since in Einstein’s theory of static gravitation the speed of
light is variable, his results were obviously no longer compatible with special relativ-
ity. As discussed in the previous section, Max Abraham had followed an entirely dif-
ferent strategy. He believed to have resolved the problem of gravitation within the
framework of Minkowski’s four-dimensional representation in a simple and surpris-
ingly elegant way, but Einstein soon recognized that Abraham’s use of the Minkowski
formalism was not compatible with the assumption of a variable speed of light. In
reaction to Einstein’s criticism, Abraham became the first, in February 1912, to pro-
pose that the four-dimensional line element, defining the infinitesimal distance
between points in Minkowski space in terms of a constant metric, has to be replaced
by a variable line element whose functional dependence on the coordinates is deter-
mined by a gravitational potential associated with the variable speed of light 

While the appearance of such a generalized line element in Abraham’s work is
striking, pointing as it does at what was to become a central mathematical object of
general relativity, neither Abraham’s nor Einstein’s contemporary research offered a
context for realizing this key role. On the contrary, one of the essential properties of
the line element in Minkowski space—its invariance under Lorentz transforma-
tions—was lost by the introduction of a variable speed of light, as Einstein did not
fail to notice. As a consequence, the formalism introduced by Abraham clearly did
not represent a coherent generalization of Minkowski’s spacetime. On the other hand,
Einstein’s theory of the static gravitational field, for the time being, did not offer even
a hint at a general framework that would allow him to go beyond the special case of
static fields. In addition, it even suffered from a problem of compatibility with the
essential physical requirement of energy conservation. In fact, this problem had not
only necessitated an adjustment of its field equation but also a restriction of Einstein’s
central heuristic device, the equivalence principle, to infinitesimally small fields. In
short, the attempts at a relativistic theory of gravitation pursued by Einstein and
Abraham had met with a dilemma in which neither mathematical formalism nor
physical heuristics seemed to provide an indication as how to proceed further.

By the end of May 1912, Einstein encountered at least a partial resolution of this
dilemma in the course of revisiting the equation of motion of his theory. This turning

85 For more extensive discussion and references to Abraham’s papers, see “The Summit Almost
Scaled …” (in vol. 3 of this series).

c.
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point—referred to above as the second step in Einstein’s realization of gravitation as
being due to the curvature of spacetime—is documented in a postscript to his second
1912 paper on the static theory, in which he proposed the modification of its field
equation just mentioned.86 Einstein had also reconsidered the equation of motion of
his theory, originally shaped, as mentioned, according to the acceleration-implies-
force model. He now successfully attempted to rephrase it, without changing its
physical content, according to the constrained-motion model.

The elaborate mathematical formalisms associated with this model in analytical
mechanics, such as the variational calculus of Euler, Lagrange, and Hamilton, had
proven to be standard tools of classical physics for succinctly representing the struc-
ture of complex theories, in particular when these theories could not be interpreted in
terms of simple mechanical interactions, as was the case, for example, for optics or
electrodynamics. The essential ingredient of such reformulations in terms of a varia-
tional calculus is usually the integral of a physical quantity, depending on the trajec-
tory of a particle or of a light ray, whose extremal value is to be determined by a
variation under certain constraints. In this way, it is possible to single out among sev-
eral possible trajectories along a curved surface the one that actually represents the
“natural motion” under the given constraints. A direct interpretation of abstract varia-
tional formalisms in terms the physical meaning of the constrained-motion model is,
under certain conditions, still possible but not essential for the successful develop-
ment and implementation of these formalisms.

In his reformulation of the equation of motion in a static gravitational field Ein-
stein again followed as closely as possible the precedent of special relativity, just as
he had done in his original formulation guided by the acceleration-implies-force
model. In this case the precedent was given by Planck’s formulation of the equation
of motion of a particle in the framework of a variational calculus adapted to
Minkowski space.87 The physical quantity, whose variation Planck had considered, is
the integral over the square root of the negative line element along the trajectory of
the particle. The requirement that this integral be an extremal has a direct geometric
interpretation: the world line of a force-free particle in Minkowski space is given by a
geodesic, that is, by the straightest possible line connecting the initial and the end
point of the particle’s motion. It now turned out that the corresponding expression for
the motion in a static gravitational field takes on exactly the same form as that given
by Planck for a gravitation-free Minkowski space, the only difference being that the
speed of light is now assumed to be variable:

where  stands for the variation of the subsequent integral.

86 See (Einstein 1912b, 458).
87 See (Planck 1906a, 1907).
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Einstein was not only struck by the simple form of this equation and its complete
analogy to the special relativistic case, but also by the possibility it immediately
offered for a generalization beyond the special case of static gravitational fields:

Here too—as was proved by Planck for the usual [i.e., special] theory of relativity —it is
seen that the equations of analytical mechanics possess a significance that extends far
beyond Newtonian mechanics. Hamilton’s equation as finally written down lets us antic-
ipate [ahnen] the structure of the equations of motion of a material particle in a dynami-
cal gravitational field.88

Nevertheless, according to later recollections,89 it must have taken Einstein a while
before he took the third and final step in his understanding of gravitation as the curva-
ture of spacetime. For some time, he was indeed struck by the dilemma of what coor-
dinates could actually mean in physics given that coordinate differences could no
longer be interpreted as being the immediate result of measurements with ideal rods
and clocks, as was discussed above in connection with the loss of the “homogeneity”
of time in a gravitational field. Only after his return from Prague to Zurich at the end
of July 1912 did Einstein realize that a generalization of the equation of motion along
the lines indicated by the above quotation, yielding an expression of the form:

which now involves 10 variables  characterizing the gravitational potential, could
be assimilated to the curved-surface model as conceived in Gaussian surface theory
and its successive elaborations by Bernhard Riemann, Elwin Christoffel, Tullio Levi-
Civita, and others.90 If considered from the perspective of this model, the compo-
nents of the gravitational potential  can be conceived as those of a metric tensor
determining the geometry of a generalized curved surface. In this way, Einstein also
found an answer to his question concerning the physical meaning of coordinates. In
fact, the differentials of the general curvilinear coordinates  just serving to num-
ber spacetime points, are related to the measurable magnitude  representing the
invariant line element, with the help of the components of the metric tensor  by
means of the following expression:

88 “Auch hier zeigt sich—wie dies für die gewöhnliche Relativitätstheorie von Planck dargetan wurde—
daß den Gleichungen der analytischen Mechanik eine über die Newtonsche Mechanik weit hinausrei-
chende Bedeutung zukommt. Die zuletzt hingeschriebene Hamiltonsche Gleichung läßt ahnen, wie
die Bewegungsgleichungen des materiellen Punktes im dynamischen Gravitationsfelde gebaut sind.”
(Einstein 1912b, 458)

89 See the preface to the Czech translation of (Einstein 1923) of his popular book on relativity. See also
(Einstein 1981, 137).

90 For a historical survey of the mathematical aspects, see (Reich 1994). For the role of Einstein’s
Machian heuristics in this step, see “The Third Way to General Relativity” (in vol. 3 of this series).
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This expression corresponds to the term under the integral in Einstein’s variational
formulation of the equation of motion, as given above, and lends an immediate geo-
metric interpretation to this formulation, which was probably at the roots of Ein-
stein’s embracing of the curved-surface model. Indeed, expressed in general
curvilinear coordinates, the equation simply represents the condition for a geodesic
line on such a surface. The fact that the number of indices is 4 instead of 2, as in ordi-
nary surface theory, could hardly infringe on the plausibility of this interpretation.

Once the curved-surface model was taken into consideration and generalized to a
four-dimensional context, the analogy between the generalization of the concept of a
straight line to a curved geometry and that of the concept of an inertial motion to a
situation in which accelerated frames of reference are admitted, must have been
immediate, in particular since force-free motion and geodesics are also closely
related in classical physics. A motion along a curved surface, which is not subject to
any external forces, proceeds along a geodesic line—the most natural generalization
of a straight line for such surfaces. This description can immediately be transferred to
the case of a force-free motion that is observed from an arbitrary accelerated frame of
reference in a four-dimensional framework. Using the curvilinear coordinates, with
the help of which one can describe such an accelerated reference frame, this motion
can now simply be represented by a geodesic line in the four-dimensional spacetime.
In view of the equivalence of inertial and gravitational forces assumed by Einstein, it
was plausible to extend this insight also to arbitrary gravitational fields, including
those which cannot be generated by accelerated reference frames.91

The assimilation of the equation of motion to the generalized curved-surface
model had a number of profound consequences for Einstein’s theory. First of all, the
curved-surface model consolidated what had merely been a speculative generaliza-
tion of his equation of motion for the static case to general, dynamical gravitational
fields. In particular, it became possible to immediately conclude that force-free
motions in general gravitational fields are represented by geodesic world lines, and
also that the gravitational potential is, in general, represented by the 10 independent
(from a total of 16) components  of a metric tensor. Second, the interpretation of
Einstein’s equation of motion in terms of a mental model embedded in elaborated
mathematical theories opened up a plethora of technical resources available to the
construction of a relativistic theory of gravitation, in particular for the search of a
gravitational field equation. In mid-1912, even though Einstein himself was far from
being familiar with these resources, he eventually appropriated them with the help of
his mathematician friend Marcel Grossmann. Third, this interpretation had far-reach-

91 By August Einstein had found an expression for the general equation of motion in a gravitational
field, see Albert Einstein to Ludwig Hopf, Zurich, 16 August 1912, (CPAE 5E, 501–502).
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ing implications for the conceptual understanding of a relativistic theory of gravita-
tion. In fact, Einstein’s earlier observations concerning the implications of the
equivalence principle for the concepts of space and time could now be systematically
related to the newly available concepts of surface theory and its elaborations, such as
the concepts of coordinates, line element, metric tensor, invariants, and curvature. As
we have emphasized, these and other conceptual implications follow from the fact
that the mental model that had guided Einstein’s formulation of the equation of
motion, the constrained-motion model, could be combined with the curved-surface
model to yield the integrated curved-spacetime model. Hence motion under the influ-
ence of a gravitational field could now be conceived as a natural motion in the sense
of generalized inertial motion, governed by the curvature of spacetime. In this way, it
was possible to combine the synthesis of gravitation and inertia prepared by the
equivalence principle with the insight into the causal structure of physical interac-
tions represented by the metric structure of Minkowski’s spacetime.

3.6 The Lorentz Model as a Problem for the Integration
of Physical and Mathematical Knowledge

Einstein’s pathway from his first attempt at a theory of gravitation in 1907 to his
insight into the general laws of motion under the influence of a relativistic gravita-
tional field in mid-1912 had been an unusual one, involving steps that had led him far
from the ordinary course of the adaptation of the knowledge of classical physics to
the framework of special relativity. This unusual pathway was marked, in particular,
by the heuristics of the equivalence principle that had initiated it and by its prelimi-
nary culmination in the no-less singular recognition of the four-dimensional metric
tensor as the appropriate representation of the gravitational potential. From this point
onwards, the further course was, apparently, well laid out. Einstein had found what
was necessary to formulate an equation of motion in a gravitational field. What was
lacking was a gravitational field equation determining how this field was created by
its sources, matter and energy. In fact, the twin constellation of field equation and
equation of motion rooted in the tradition of classical physics and ideally embodied
in Lorentz’s theory of electromagnetism had directed Einstein’s search for a relativis-
tic theory of gravitation at least since he considered the unification of gravitation and
inertia in analogy to the unification of the electric and magnetic fields, and certainly
since Abraham had published his proposal for a field theory of gravitation, obviously
shaped by the same model. 

In view of the guidance provided by the Lorentz model, the completion of a rela-
tivistic theory of gravitation by an appropriate field equation might have appeared to
be a rather straightforward task once the equation of motion had been found. How-
ever, the task of finding a field equation turned out to be the most challenging one
among all Einstein had ever tackled in his struggle for a relativistic theory of gravita-
tion. First of all, he was confronted with the daunting mathematical problem that the
representation of the gravitational potential by the metric tensor requires a field equa-
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tion not for a single function but for a 10-component object. Second, an acceptable
gravitational field equation replacing the Poisson equation of classical physics had to
be compatible not only with the various insights Einstein had gathered during his ear-
lier work on the problem, such as the necessity of introducing new concepts of space
and time, but also with the immense resources of knowledge on gravitation and its
relation to other physical interactions accumulated by classical and special relativistic
physics. Einstein had already encountered the vicissitudes of these treasures while
elaborating his theory of the static gravitational field. There he had stumbled, as men-
tioned above, on the unpleasant discovery that what appeared to be a most natural and
plausible candidate for a static field equation actually turned out to be incompatible
with the inescapable requirement of the conservation of energy and momentum. This
episode thus confronted him in effect with the insight that the identification of an
acceptable gravitational field equation represented an even more challenging task of
knowledge integration than the promising hints and intermediate results obtained due
to the heuristics of the equivalence principle could have led him to believe. 

In particular, Einstein could not avoid taking into account that the action of the
gravitational field under ordinary circumstances was well known and satisfactorily
described by Newton’s law of attraction. The relativistic field equation of gravitation
therefore had to yield the same results as this law under appropriate circumstances.
We will refer to this requirement as the “correspondence principle,” representing an
important building block of the heuristics that guided Einstein’s search for a gravita-
tional field equation. The new field equation had obviously to be compatible also with
the well-established knowledge on energy and momentum conservation. This
requirement, which must have played an outstanding role for Einstein given the just
mentioned precedent offered by the theory of the static field, is referred to in the fol-
lowing as the “conservation principle,” another crucial building block of his heuris-
tics. But in addition to these well-established knowledge resources, Einstein’s earlier
research under the guidance of the equivalence principle had revealed a number of
insights that were to be covered by the new field equation, in particular, the insight
into the unified nature of gravitation and inertia. As pointed out above, this insight
was suggested not only by the elevator and the bucket models, but also more gener-
ally by the possibility of conceiving inertial effects in accelerated frames of reference
as effects of a generalized gravitational field and, accordingly, accelerated frames as
being on equal footing with inertial frames of reference. Following Einstein’s own
terminology, this heuristic building block is therefore called here the “generalized
principle of relativity.” He expected that it could be implemented by imposing the
mathematical requirement of an invariance, or rather “covariance” of the gravita-
tional field equation under as general as possible coordinate transformations.

The breakthrough of mid-1912, marked by the recognition of the key role of the
metric tensor and the formulation of a general equation of motion, was the result of a
perfect match between a mental model of physical knowledge and a mental model of
mathematical knowledge, mediated by a mathematical representation originally moti-
vated by physical considerations. However, when Einstein began to search for a gen-
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eral gravitational field equation shortly afterwards, no such match was available. In
particular, no mathematical representation lent itself to the expression of all the
requirements listed above, let alone one that could be assimilated to a well-estab-
lished mathematical framework. It was hence not even clear whether or not these
requirements were at all compatible with each other since this question could only be
settled on the basis of a mathematical representation embodying them. The integra-
tion of mathematical and physical knowledge associated with the formulation of a
general gravitational field equation was therefore evidently not just a matter of find-
ing an appropriate mental model, cutting across the borderlines of classical physics as
was the case for the mental models related to the equivalence principle, or of combin-
ing two matching mental models as in the case of the curved spacetime model. 

As it turned out, the search for a relativistic field equation of gravitation required
instead a much more complex process of research, involving the systematic examina-
tion of candidate solutions and even the elaboration of a complete theory which was
then discarded again, a process in the course of which some of the fundamental
knowledge structures governing its heuristics and fueling its progress eventually had
to be revised. It is this revolution of fundamental knowledge structures that makes
Einstein’s search for the gravitational field equation in the years between 1912 and
1915 an outstanding challenge for any attempt to understand the transition from clas-
sical to modern physics from the viewpoint of an historical epistemology. While other
contributions to these volumes detail the structures of this revolution, we have focused
here on the roots of Einstein’s heuristics in the knowledge of classical and special rel-
ativistic physics. The principle aim of this contribution was to highlight some of the
conditions under which general relativity could have emerged from a transformation
of the knowledge of classical and special relativistic physics, and also to help under-
stand the first steps of Einstein’s pathway out of the disarray of classical physics.
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JOHN STACHEL

THE FIRST TWO ACTS

PROLOGUE: THE DEVELOPMENT OF GENERAL RELATIVITY,
A DRAMA IN THREE ACTS

In 1920, Einstein wrote a short list of “my most important scientific ideas”.1 The final
three items on the list are:

1907 Basic idea for the general theory of relativity

1912 Recognition of the non-Euclidean nature of the metric and its physical deter-
mination by gravitation

1915 Field equations of gravitation. Explanation of the perihelion motion of Mer-
cury.

Einstein’s words provide the warrant for comparing the development of general
relativity to a three-act drama:

Act I (1907) The formulation of the “basic idea,” to which he soon referred as the
equivalence principle.

Act II (1912) The mathematical representation of the gravitational field by a sym-
metric second rank tensor field, which enters into the line element of a four-dimen-
sional spacetime; hence this tensor is usually referred to as the (pseudo-)metric of
spacetime.2

Act III (1915) The formulation of the now-standard Einstein field equations for the
metric field, and use of its spherically-symmetric solution to explain the anoma-
lous precession of the perihelion of Mercury.

1 Einstein Archives, Hebrew University of Jerusalem, Control Index No. 11 196. (Hereafter, only the
number of such items will be cited.) It appears from Einstein to Robert Lawson, 22 April 1920 (1–
010), that it was written for the biographical note in (Einstein 1920a). This is the English translation
of the fifth German edition of (Einstein 1920b). I thank Dr. Josef Illy of the Einstein Papers for locat-
ing Einstein’s letter to Lawson. In (CPAE 8), it is incorrectly calendared under 1917 (see pp. 1005–
1006).

2 Properly speaking, the term “metric” should be restricted to line elements with positive-definite signa-
ture; those with an indefinite signature are more properly termed “pseudo-metrics.” But Einstein, and
following him most physicists, referred to the four-dimensional tensor field with Minkowski signature
as the metric tensor, and I shall follow that usage.
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Act III certainly does not represent the end of general relativity, but a certain point
of closure in its development, signaled by Einstein in his 1916 review paper (Einstein
1916a): 

 

“According to the general theory of relativity, gravitation plays an exceptional role as
opposed to the other forces, in particular the electromagnetic...” (p. 779);

 

consequently, he concluded his exposition with a “Theory of the Gravitational Field”
(pp. 801–822).

Up to this point, the story had been essentially an account of Einstein’s struggles.

 

3

 

Now that the final form of the gravitational field equations had been achieved and one
of its predictions validated, the theory became the property of the physics and astron-
omy communities. Its further development and interpretation became a subject of dis-
cussion among many participants, among whom Einstein’s voice did not always carry
the day.

 

4

 

This book tells the story from the opening curtain of Act I in 1907 until the curtain
goes down on Act III at then end of 1915. The great bulk of it is devoted to Act III,
embracing the events between 1912 and 1915. In particular, it centers on the under-
standing of the Zurich Notebook, which opens Act III and has made a signal contribu-
tion to our understanding of subsequent events. As in most plays, the final act contains
the 

 

dénouement

 

; but the crucial events that lead up to it take place in the first two acts.
It was his formulation of the equivalence principle in Act I, and constant adherence to
it as the guiding thread in his search for a relativistic theory of gravitation that set Ein-
stein apart from other physicists who were working on the problem of fitting gravita-
tion within the framework of the (special) theory of relativity. And as usual, the high
point of the drama comes in Act II, with Einstein’s remarkable decision to represent
gravitation, not by a scalar field, but by the ten components of a tensor field that also
describes the chronogeometry of a non-flat four-dimensional spacetime.

It is at this point, with an expression for the line element in terms of the metric ten-
sor field, that the Zurich Notebook opens. Clearly, it cannot be fully understood or eval-
uated without prior knowledge of what happened during the first two acts.
Unfortunately, no equivalent of the Zurich Notebook has been found for this period
from 1907–1912. So this chapter attempts to present what can be learned—or sur-
mised—about what happened on the basis of Einstein’s published papers and corre-
spondence, as well as his later reminiscences.

 

5

 

 In keeping with the documentary
character of this book, rather than attempting to summarize them, I shall often cite Ein-
stein’s words 

 

in extenso

 

.

 

3 David Hilbert played a significant role in the final moments of Act III, although not the one that is
often attributed to him. See “Hilbert’s Foundation of Physics: From a Theory of Everything to a Con-
stituent of General Relativity” (in vol. 4 of this series).

4 For Einstein’s side of this discussion during its first years, see (CPAE 7).
5 For another account, see (Pais 1982, Part IV, 177–296). For some critical comments, see (Stachel

1982); reprinted in (Stachel 2002, 551–554).
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ACT I: THE EQUIVALENCE PRINCIPLE:
“THE MOST FORTUNATE THOUGHT OF MY LIFE”

In 1920,

 

6

 

 Einstein recalled how he first arrived at the ideas behind the equivalence
principle:

 

While I was occupied (in 1907) with a comprehensive survey of the special theory

 

7

 

 for
the “Yearbook for Radioactivity and Electronics,” I also had to attempt to modify New-
ton’s theory of gravitation in such a way that its laws fitted into the theory. Attempts
along these lines showed the feasibility of this enterprise, but did not satisfy me, because
they had to be based on physical hypotheses that were not well-founded. Then there
came to me the most fortunate thought of my life in the following form:

Like the electric field generated by electromagnetic induction, ... the gravitational field
only has a relative existence. 

 

Because, for an observer freely falling from the roof of a
house, during his fall there exists

 

—at least in his immediate neighborhood—

 

no gravita-
tion field

 

. Indeed, if the observer lets go of any objects, relative to him they remain in a
state of rest or uniform motion, independently of their particular chemical or physical
composition [note by AE: air resistance is naturally ignored in this argument]. The
observer is thus justified in interpreting his state as being at rest.

Through these considerations, the unusually extraordinary experimental law, that all bod-
ies fall with equal acceleration in the same gravitational field, immediately obtains a
deep physical significance. For if there were just one single thing that fell differently
from the others in the gravitational field, then with its help the observer could recognize
that he was falling in a gravitational field. If such a thing does not exist—which experi-
ment has shown with great precision—then there is no objective basis for the observer to
regard himself as falling in a gravitational field. Rather, he has the right to regard his state
as one of rest and, with respect to a gravitational field, his neighborhood as field free. The
experimental fact of the material-independence of the acceleration due to gravity is thus
a powerful argument for the extension of the relativity postulate to coordinate systems in
non-uniform relative motion with respect to each other .... The generalization of the rela-
tivity principle thus indicates a speculative path towards the investigation of the proper-
ties of the gravitational field (pp. 24–25).

 

Einstein alludes here to his initial attempts to set up a special-relativistic theory of
gravitation, but gives no details. In 1933 he gave the fullest account of how he
“arrived at the equivalence principle by a detour [

 

Umweg

 

]”

 

8

 

 through such attempts.

 

9

 

6 “Grundgedanken und Methoden der Relativitätstheorie, in ihrer Entwicklung dargestellt,” in (CPAE 7,
Doc. 31).

7 I shall follow the common but anachronistic practice of referring to “the special theory of relativity.”
During this period, Einstein initially called it “the principle of relativity” [

 

das Relativitätsprinzip

 

] and
then, following the practice of others, “the theory of relativity” [

 

die Relativitätstheorie

 

]. For details,
see the discussion in the Editorial Headnote, “Einstein on the Theory of Relativity,” (CPAE 2, 254);
reprinted in (Stachel 2002, 192).

8 “Erinnerungen-Souvenirs” (Einstein 1955, 145–153) was reprinted as “Autobiographische Skizze,” in
(Seelig 1955, 9–17). Citation from “Autobiographische Skizze,” p. 14.

9 “Einiges über die Entstehung der allgemeinen Relativitätstheorie,” the German text of a lecture given
at the University of Glasgow, 20 June 1933. The German text was published in (Einstein 1934, 248–
256). Cited from the paperback edition edited by Carl Seelig: (Seelig 1981, 134–138).
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After mentioning his doubts after 1905 about the privileged dynamical role of inertial
systems, and his early fascination by Mach’s idea that the acceleration of a body is
not absolute, but relative to the rest of the bodies in the universe, he turns to the
events of 1907:

 

I first came a step closer to the solution of the problem when I attempted to treat the law
of gravitation within the framework of special relativity. Like most authors at the time, I
attempted to establish a field law for gravitation, since the introduction of an unmediated
action at a distance was no longer possible, at least in any sort of natural way, on account
of the abolition of the concept of absolute simultaneity.

The simplest thing naturally was to preserve the Laplacian scalar gravitational potential
and to supplement Poisson’s equation in the obvious way by a term involving time deriv-
atives, so that the special theory of relativity was satisfactorily taken into account. The
equation of motion of a particle also had to be modified to accord with the special theory.
The way to do so was less uniquely prescribed, since the inertial mass of a body might
well depend on its gravitational potential. This was even to be expected on the basis of
the law of the inertia of energy.

However, such investigations led to a result that made me highly suspicious. For accord-
ing to classical mechanics, the vertical acceleration of a body in a vertical gravitational
field is independent of the horizontal component of its velocity. This is connected with
the fact that the vertical acceleration of a mechanical system, or rather of its center of
mass, in such a gravitational field turns out to be independent of its internal kinetic
energy. According to the theory I was pursuing, however, such an independence of the
gravitational acceleration from the horizontal velocity, or from the internal energy of a
system, did not occur.

 

10

 

This did not accord with an old fact of experience, that all bodies experience the same
acceleration in a gravitational field. This law, which can also be formulated as the law of
equality of inertial and gravitational mass, now appeared to me in its deep significance. I
was most highly amazed by it and guessed that in it must lie the key to the deeper under-
standing of inertia and gravitation (pp. 135–136).

 

Turning from later reminiscences, let us see how Einstein presented his approach
to gravitation in 1907:

 

11

Up to now we have only applied the principle of relativity, i.e., the presupposition that
the laws of nature are independent of the state of motion of the reference system, to

 

acceleration-free

 

 reference systems. Is it conceivable that the principle of relativity also
holds for systems that are accelerated relative to each other?

This is not the place for an exhaustive treatment of this question. Since, however, it is
bound to occur to anyone who has followed the previous applications of the relativity
principle, I shall not avoid taking a position on the question here.

 

10 As Einstein later realized, a special-relativistic theory of gravitation that does justice to the equiva-
lence principle is possible, and indeed one was developed a little later by Gunnar Nordström. For an
account of Nordström’s theories, and Einstein’s reaction to them, see (Norton 1992).

11 “Über das Relativitätsprinzip und die aus demselbem gezogenen Folgerungen,” (Einstein 1907);
“Berichtigungen,” in (Einstein 1908).
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Consider two systems in motion  and  Let  be accelerated in the direction of its
-axis, and let  be the magnitude (constant in time) of this acceleration. Let  be at

rest, but in a homogeneous gravitational field that imparts an acceleration  in the direc-
tion of the -axis to all objects. As far as we know, the laws of physics with respect to 
do not differ from those with respect to  this is due to the circumstance that all bodies
in a gravitational field are equally accelerated. So we have no basis in the current state of
our experience for the assumption that the systems  and  differ from each other in
any respect; and therefore in what follows shall assume the complete physical equivalence
of a gravitational field and the corresponding acceleration of a reference system.

This assumption extends the principle of relativity to the case of uniformly-accelerated
translational motion of the reference system. The heuristic value of this assumption lies
in the circumstance that it allows the replacement of a homogeneous gravitational field
by a uniformly accelerated reference system, which to a certain extent is amenable to
theoretical treatment.

 

12

 

Some further comments on this equivalence in his next paper on gravitation in 1911

 

13

 

are illuminating. He notes that in both systems, objects subject to no other forces fall
with constant acceleration:

 

For the accelerated system  [corresponding to the 1907 –JS], this follows directly
from the Galileian principle [of inertia–JS]; for the system  at rest in a homogeneous
gravitational field [corresponding to the 1907 –JS], however, it follows from the
experimental fact that in such a field all bodies are equally strongly uniformly accelerated.
This experience of the equal falling of all bodies in a gravitational field is the most univer-
sal with which the observation of nature has provided us; in spite of that, this law has not
found any place in the foundations of our physical picture of the world. ... From this
standpoint one can as little speak of the 

 

absolute acceleration 

 

of a reference system, as
one can of the 

 

absolute velocity

 

 of a system according to the usual [special–JS] theory of
relativity. [note by AE: Naturally, one cannot replace an 

 

arbitrary

 

 gravitational field by a
state of motion of the system without a gravitational field; just as little as one can trans-
form all points of an arbitrarily moving medium to rest by a relativity transformation.]
From this standpoint the equal falling of all bodies in a gravitational field is obvious.

As long as we confine ourselves to purely mechanical processes within the realm of
validity of Newtonian mechanics, we are certain of the equivalence of the systems 
and  Our point of view will only have a deeper significance, however, if the systems

 and  are equivalent with respect to all physical processes, i.e., if the laws of nature
with respect to  agree completely with those with respect to  By assuming this, we
obtain a principle that, if it really is correct, possesses a great heuristic significance. For
by means of theoretical consideration of processes that take place relative to a uniformly
accelerated reference system, we obtain conclusions about the course of processes in a
homogeneous gravitational field. (CPAE 3, 487–488)

 

With hindsight, one can see that Einstein’s attempt to find the best way to imple-
ment mathematically the physical insights about gravitation incorporated in the equiv-
alence principle was hampered significantly by the absence of the appropriate
mathematical concepts. His insight, as he put is a few years later, that gravitation and
inertia are “essentially the same” [

 

wesensgleich

 

],

 

14

 

 cries out for implementation by

 

12 See (CPAE 7, 476). Also see p. 495 for a discussion of the meaning of uniform acceleration.
13 “Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes,” (Einstein 1911b).
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their incorporation into a single inertio-gravitational field, represented mathematically
by a non-flat affine connection on a four-dimensional manifold. But the concept of
such a connection was only developed 

 

after

 

, and largely in response to, the formula-
tion of the general theory. So Einstein had to make do with what was available: Rie-
mannian geometry and the tensor calculus as developed by the turn of the century, i.e.,
based on the concept of the metric tensor, without a geometrical interpretation of the
covariant derivative. As I have suggested elsewhere, this absence is largely responsi-
ble for the almost three-year lapse between the end of Act I and the close of the play.

 

15

 

ACT II: THE METRIC TENSOR: 
“JUST WHAT ARE COORDINATES ACTUALLY SUPPOSED 

TO MEAN IN PHYSICS?”

In 1949, Einstein himself raised the question of what was responsible for this long
delay:

 

This [recognition that the relativity principle had to be extended to non-linear transfor-
mations–JS] took place in 1908. Why were a further seven years required for setting up
the general theory of relativity? The principal reason is that one does not free oneself so
easily from the conception that an immediate physical significance must be attributed to
the coordinates.

 

16

 

 

 

Both the question and answer thus concern the entire period between 1907 (or 1908)
and 1915. In 1933 Einstein made the answer more precise, and confined it to a shorter
period of time:

 

I soon saw that, according the point of view about non-linear transformations required by
the equivalence principle, the simple physical interpretation of the coordinates had to be
abandoned; i.e., one could no longer require that coordinate differences be interpreted as
signifying the immediate results of measurements with ideal measuring rods and clocks.
This recognition tormented me a great deal because for a long time I was not able to see
just what 

 

are

 

 coordinates actually supposed to mean in physics? The resolution of this
dilemma was reached around 1912. (Seelig 1981, 137)

 

17

 

Einstein reference to 1912 is a clear allusion to his introduction of the metric tensor.
But, as his reference to “a further seven years” after 1908 in the previous quotation
suggests, the problem of the meaning of coordinates in general relativity was by no

 

14 In 1912 Einstein regarded “the equivalence of inertial and gravitational mass” as being reducible to
the “essential likeness [

 

Wesensgleichheit

 

] of both of these elementary qualities of matter and energy”;
and asserted that his theory of “the static gravitational field” allows him to regard it “as physically the
same in essence [

 

wesensgleich

 

] as an acceleration of the reference system.” See (Einstein 1912c,
1063).

15 The entire complex of problems raised in this paragraph is discussed at length in “The Story of New-
stein or: Is Gravity just Another Pretty Force?” (in vol. 4 of this series).

16 From Albert Einstein’s “Autobiographical Notes,” which, although published first in 1949 (Einstein
1949, 2–94), were actually written in 1947. Cited here from (Einstein 1979, 63). 

17 See (Seelig 1981, 1).
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means completely resolved with the introduction of the metric tensor. Only with the
resolution in 1915 of the “hole argument” [

 

Lochbetrachtung

 

] against general covari-
ance that Einstein developed in 1913, did Einstein fully solve this problem; but dis-
cussion of the post-1912 aspects of the question will be found in later chapters.

 

18

 

Now let me return to the problem of coordinates as Einstein saw it in 1907–1908.
It is worth emphasizing that Einstein attributed his success in formulating the special
theory in 1905 in no small measure to his insistence on physically defining coordinate
systems that allow one to attach direct physical significance to coordinate differences:

 

The theory to be developed—like every other electrodynamics—rests upon on the kine-
matics of rigid bodies, since the assertions of each such theory concern relations between
rigid bodies (coordinate systems), clocks and electromagnetic processes. Taking this into
account insufficiently is the root of the difficulties, with which the electrodynamics of
moving bodies currently has to contend.

 

19

 

Little wonder that Einstein was “tormented” by the problem of “just what coordinates
are actually supposed to mean in physics” once they lose their direct physical signifi-
cance!

This problem arose in the course of the application of the equivalence principle to
linearly accelerated frames of reference and the attempt to apply it to uniformly rotat-
ing frames, both considered within the confines of Minkowski space.

 

20

 

 Its resolution
came out of Einstein’s work on a theory of the static gravitational field, in particular
on the equations of motion of a particle in this field; and his attempt to generalize this
static theory to non-static fields.

Both problem areas, accelerated systems of reference in Minkowski space and
static gravitational fields, ultimately led Einstein beyond the confines of Minkowski
space to the consideration of non-flat Riemannian spacetimes. For convenience of
exposition, I shall discuss these two strands of the story as if they were the subject of
two separate scenes of Act Two, culminating in a third scene that ends the act. While
it is broadly true that events in Scene One precede those in Scene Two, and certainly
true that they all precede the events in Scene Three, to the extent that this division
suggests a strict chronological separation between events in the First and Second
Scenes, it does a certain violence to the actual course of events. However, it seems
preferable to run this risk rather than attempt to jump back and forth between events
in each of the intertwined strands of the story.

 

21

 

18 For a historical discussion of Einstein’s hole argument, see my 1980 Jena paper, published as (Stachel
1989); and reprinted in (Stachel 2002, 301–337).

19 “Zur Elektrodynamik bewegter Körper,” (Einstein 1905); reprinted in (CPAE 2, 276–306), citation
from p. 277. For further discussion of this paper see the Editorial Note “Einstein on the Theory of Rel-
ativity,” in (CPAE 2, 253–274); reprinted in (Stachel 2002, 233–244)

20 For a discussion of the development of Einstein’s concept of the equivalence principle, see (Norton
1985); reprinted in (Howard and Stachel 1989, 5–47).

21 Since contemporary documents are cited with dates, the chronological sequence can easily be recon-
structed.
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SCENE I: “TO INTERPRET ROTATION AS REST”:

I shall start by again citing Einstein’s 1949 comments on coordinates:

 

The change [from the viewpoint that coordinates must have an immediate metrical sig-
nificance] came about in more-or-less the following way.

We start with an empty, field-free space as it appears with respect to an inertial system in
accord with the special theory of relativity, as the simplest of all conceivable physical sit-
uations. Now if we imagine a non-inertial system introduced in such a way that the new
system (described in three-dimensional language) is uniformly accelerated in a (suitably
defined) direction with respect to the inertial system; then, with respect to this system,
there exists a static parallel gravitational field. In this case, the reference system may be
chosen as a rigid one, in which three-dimensional Euclidean metric relations hold. But
that time [coordinate–JS], in which the field appears static, is 

 

not

 

 measured by 

 

equally
constituted

 

 clocks at rest [in that system–JS]. From this special example, one already rec-
ognizes that, when one allows non-linear transformations of any sort, the immediate met-
rical significance of the coordinates is lost. One 

 

must

 

 introduce such transformations,
however, if one wants to justify the equality of gravitational and inertial mass by the
foundations of the theory, and if one wants to overcome Mach’s paradox concerning
inertial systems.

 

22

 

Examination of Einstein’s 1907 paper

 

23

 

 shows that this account correctly reflects
its contents. Einstein first demonstrates that—at least to first order in the accelera-
tion—the spatial coordinates in a uniformly accelerating frame of reference retain
their direct physical significance in terms of measuring rods; and thus, by the princi-
ple of equivalence, they still do so in the equivalent gravitational field. He then goes
on to show that what he calls “the local time  [he uses both “

 

Ortszeit

 

” and
“

 

Lokalzeit

 

” as names], which is essentially the proper time as measured by an ideal
clock at a fixed point of the frame, differs from the “time  which he later called
the “universal” [

 

universelle

 

] time,

 

24

 

 which must be used to define simultaneity of dis-
tant events if one wants a time coordinate expressing the static nature of the gravita-
tional field that is equivalent to the uniformly-accelerated one.

Thus, by the end of 1907, Einstein knew that differences between the “universal”
time coordinates of events in a uniform gravitational field do not correspond to differ-
ences in the readings of ideal clocks in that field. It is true that he had shown that, at
least to first order in the field strength, spatial coordinate differences still correspond
to the results of measurements with rigid rods. But the fact that he felt compelled to
demonstrate this for uniform gravitational fields suggests that he anticipated the pos-

 

22 “Autobiographical Notes,” (Einstein 1979, 62 and 64); see note 16. An idea of what he meant by
“Mach’s paradox concerning inertial systems” may be gathered from the citations of Mach in Ein-
stein’s article, “Ernst Mach,” (Einstein 1916b). See also (Einstein 1916a); reprinted in (CPAE 6, 284–
339, Section 2), “Über die Gründe, welche eine Erweiterung des Relativitätspostulates naheliegen,”
pp. 286–288.

23 “Über das Relativitätsprinzip,” (CPAE 2, Section 18, 476–480); for the full references, see note 11.
24 Einstein did not actually introduce this term until 1912, in his first paper on the static gravitational field,

in which he contrasts the “local time” and the “universal time” (for the full reference, see note 36).
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sibility that similar problems might arise for the spatial coordinates in more compli-
cated gravitational fields.

Einstein did not publish anything on gravitation between 1908 and 1911, but he
continued to think about the subject:

Between 1909–1912 while I had to teach theoretical physics at the Zurich and Prague
Universities I pondered ceaselessly on the problem.25

The earliest surviving indication that Einstein contemplated an extension of the
relativity principle beyond linearly accelerated systems dates from 1909:

The treatment of the uniformly rotating rigid body seems to me to be of great importance on
account of an extension of the relativity principle to uniformly rotating systems along lines
of thought analogous to those that I attempted to carry out for uniformly accelerated trans-
lation in the last section of my paper published in the Zeitschrift für Radioaktivität.26

What he had in mind is made more explicit in 1912 in a letter to his friend
Michele Besso. After a rather full account of his new static theory (to be discussed
below), he concludes: “You see that I am still far from being able to interpret
[auffassen] rotation as rest. Every step is devilishly difficult...”27

As his reference to a “uniformly rotating rigid body” suggests, a solution to the
problem of “interpreting rotation as rest” seemed to him to depend on developing a
theory of rigid bodies in special relativity. In 1910 he wrote of this 

child of sorrow [Schmerzenskind], the rigid body. ... one should attempt to devise hypoth-
eses about the behavior of rigid bodies that would permit a uniform rotation.28

Born had provided a definition of a relativistic rigid body in 1909, but he only dis-
cussed the case of linearly accelerated motion in any detail.29 Further clarification
soon came:

The latest relativity-theoretical investigations of Born and Herglotz interest me very
much. It really seems that in the theory of relativity there does not exist a “rigid” body
with 6 degrees of freedom.30

This was disturbing, but brought new hope: If rigid bodies are incompatible with the
special theory, rigid motions are not. In 1911, Laue summarized the situation con-
cisely:

25 “Autobiographische Skizze,” (Seelig 1955, 14).
26 Einstein to Arnold Sommerfeld, 29 September 1909, (CPAE 5, 210). Einstein incorrectly names the

title of the journal in which his earlier paper was published (see Einstein 1907). Einstein had
described the main theme of the last section of this paper in an earlier letter to Sommerfeld, Einstein
to Arnold Sommerfeld, 5 January 1908, (CPAE 5, 86).

27 Einstein to Michele Besso, 26 March 1912,(CPAE 5, 435–438); citation from p. 436.
28 Einstein to Arnold Sommerfeld,19 January 1910, (CPAE 5, 228–230); citation from p. 229.
29 See (Born 1909a). It was his report on this work at the 1909 Salzburg meeting of the Versammlung

deutscher Naturforscher und Ärzte, (Born 1909b), that provoked the above-cited letter of 1909 from
Einstein to Sommerfeld. See also (Born 1910), discussed below.

30 Einstein to Jakob Laub, 16 March 1910, (CPAE 5, 231–233); citation from p. 232.
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The limiting concept of a body that is rigid under all circumstances, which is so useful
everywhere in classical mechanics, in my opinion cannot be taken over [to the special
theory–JS] on account of the impossibility of indefinitely large velocities for the propa-
gation of elastic deformations. However this does not exclude a body moving at times
like a rigid one; even according to classical mechanics, under certain circumstances a
drop of fluid can move as if it were rigid. (Laue 1911, note at bottom of p. 107)

In short, the problem had been transformed from a dynamical one (what is a relativis-
tic “rigid body” and how does it behave when accelerated?) to a kinematical one
(given Born’s relativistic definition, what types of “rigid motion” are possible?).
Progress on the kinematical problem was much easier.31 Indeed, in the paper cited by
Einstein, Herglotz showed:

that, as soon as one of the points of a [rigid–JS] body in Mr. Born’s sense is fixed, it can
only rotate uniformly about an axis passing through this point, like the usual rigid body.
(Herglotz 1910, 403)

In the course of classifying all solutions of Born’s rigidity condition, Herglotz gave
the explicit form of the solution for rigid rotation about the z-axis (Herglotz 1910,
412). So Einstein could discuss the kinematics of such an ideal rigid rotation, and the
gravitational field which is equivalent to the inertial forces in such a rotating frame,
without having to solve the dynamical problem of what types of physical system
could actually undergo such a motion.

But for Einstein, there remained a second, Machian type of question: What distri-
bution of matter could induce the gravitational field in a frame at rest that is equivalent
to the inertial forces in an accelerated frame? Einstein first considered this question
for linear acceleration, so we shall discuss it before returning to the problem of rota-
tion. In a 1912 paper on gravitational induction,32 Einstein showed that, as a conse-
quence of the inertia of energy and the equivalence principle, a spherical shell of
matter  accelerated linearly relative to an unaccelerated frame exerts such an induc-
tive accelerating (gravitational) effect on a particle  enclosed in the shell.33 He also
showed that:

31 Of course, a dynamical problem remained: how to create the circumstances that would lead a non-
rigid body of a particular constitution to execute a particular rigid motion. But such special dynamical
problems could be attacked after the general kinematical problem was solved.

32 “Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist?”(Ein-
stein 1912a); reprinted in (CPAE 4, 175–179). Einstein published the article in this journal because it
was part of a Festschrift for his friend, Heinrich Zangger, an expert in forensic medicine.

33 Presumably, this would be Einstein’s answer to Laue’s objection to the equivalence principle: “For the
gravitational field in the system  [at rest, with a uniform gravitational field] there must be present a
body that causes gravitation, not however for the accelerated system  So a search for it must
immediately decide whether there is a real gravitational field or only an accelerated reference system,”
Max Laue to Albert Einstein, 27 December 1911, (CPAE 5, 384). This letter is discussed further
below. Einstein evidently tried to answer Laue’s objection in a footnote to his next paper, submitted
two months later: “The masses that produce this field must be thought of as at infinity” (Einstein
1912b, 356). The paper on gravitational induction followed almost immediately.
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the presence of the massive shell  increases the inertial mass of the particle  within it.
This makes likely the assumption that the entire inertia of a massive particle is an effect of
the presence of all the other masses, based on a sort of interaction with the latter. This is
completely the same standpoint that E. Mach had upheld in his acute investigations on the
subject (E. Mach, The Development of the Principles of Dynamics. Chapter Two. New-
ton’s Views on Time, Space and Motion).34 How far this conception is justified will be
seen when we are in the happy possession of a usable dynamics of gravitation (p. 177).

Presumably, Einstein already had in mind the application of this induction idea to
rotational acceleration. In 1921, discussing the development of the general theory,
Einstein wrote:35

Can gravitation and inertia be identical [wesensgleich]? The posing of this question leads
directly to the General Theory of Relativity. Is it not possible for me to regard the earth
as free from rotation, if I conceive of the centrifugal force, which acts on all bodies at rest
relative to the earth, as being a “real” field of gravitation (or part of such a field)? If this
idea can be carried out, then we shall have proved in very truth the identity of gravitation
and inertia. For the same effect [Wirkung] that is regarded as inertia from the point of
view of the system not taking part in the rotation can be interpreted as gravitation when
considered with respect to the system that shares the rotation.

I believe that the phrase “or part of such a field” makes clear what Einstein had in
mind as his ultimate goal. The total gravitational field of the earth in a frame in which
it is at rest (i.e., a co-rotating frame) consists of two parts: a gravito-static term, which
would be present even if the earth were not in rotation (this is the Newtonian gravita-
tional field), and a gravito-stationary term. The latter is usually interpreted as an iner-
tial field, consisting of centrifugal and Coriolis terms, which would exist even if the
earth were massless, i.e., in any rotating frame of reference. But, in accord with the
principle of equivalence, these terms may be interpreted as a gravito-stationary field
in a non-rotating frame of reference.

In summary: Because of his attraction to Mach’s program from the beginning of
his search for a theory of gravitation based on the equivalence principle, the aim of
interpreting rotation as rest-plus-a-gravitational-field appears to have loomed large in
Einstein’s motivation. This motive led him to consider uniformly rotating systems of
reference soon after his 1907 treatment of uniformly linearly accelerated systems.
But only after the clarification of the question of rigid motions do we find any signs
of progress on the rotation problem.

The study of uniformly rotating reference systems then led him to the conclusion
that, in this case, the spatial coordinates cannot be given a direct physical meaning.
He announced this result in February 1912, in an uncharacteristically tentative tone,
in the course of a discussion of the spatial coordinates in a linearly accelerated frame
of reference 36

34 Exactly the same words about Mach’s book occur in “Einstein’s Scratch Notebook,” reproduced with
transcription in (CPAE 3, “Appendix A,” 564–596; see p. 592).

35 “A Brief Outline of the Development of the Theory of Relativity, (Einstein 1921, 783). A German
draft, “Kurze Skizze zur Entwicklung der Relativitätstheorie,” has been used to correct the English
text. Both appear in (CPAE 7).
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The spatial measurement of  is done with measuring rods that—when compared with
each other at rest at the same place in possess the same length; the theorems of
[Euclidean–JS] geometry are assumed to hold for lengths measured in this way, and thus
also for the relations between the coordinates  and other lengths. That this stipula-
tion is allowed is not obvious; rather it contains physical assumptions that eventually
could prove incorrect. For example, it is highly probable that they do not hold in a uni-
formly rotating system, in which, on account of the Lorentz contraction, the ratio of the
circumference to the diameter, using our definition of lengths, must be different from 

There is evidence suggesting that he had this rotating disk argument before 1912,
but it is indirect and suggestive rather than conclusive. Einstein’s letter of 1909 to
Sommerfeld, cited above,37 was written just a few days after the Salzburg meeting of
the Society of German Natural Scientists and Physicians [Deutsche Naturforscher
und Ärzte], at which Einstein had spoken. As the editors of the Einstein Papers note:38

At the Salzburg meeting Max Born had presented a paper on rigid body motion in special
relativity ..., on which Sommerfeld had commented in the discussion following the
paper. Einstein and Born had discussed the subject and had discovered that setting a rigid
disk into rotation would give rise to a paradox: the rim becomes Lorentz-contracted,
whereas the radius remains invariant (see Born 1910, p. 233).39 The existence of this par-
adox was first pointed out in print by Paul Ehrenfest (1880–1933) in a paper that was
received on the date of this letter.40

While the line of argument about setting a rigid disk into rotation (which has come to
be called “Ehrenfest’s Paradox”) is not the same as that in Einstein’s treatment of an
already rigidly-rotating disk,41 the basic idea in both arguments is the same: Relative
to an inertial frame, measuring rods at rest in a uniformly rotating frame of reference
do not contract if aligned in a radial direction, but do contract if aligned orthogonally
to a radial direction.

So it is reasonable to suppose that Einstein, already alerted to the possibility that
coordinate differences in an accelerating frame might not be directly interpretable in
terms of physical measurements and having read Herglotz’s 1910 paper, realized
that this was indeed the case for the spatial coordinates in a rigidly rotating frame of
reference.42

Indeed there is evidence that, by the end of 1911 at the latest, Einstein saw an
analogy between the gravitational field that, according to the equivalence principle
(conceiving rotation as rest), is equivalent to the inertial field in a uniformly rotating

36 “Lichtgeschwindigkeit und Statik des Gravitationsfeldes,” (Einstein 1912b); reprinted in (CPAE 4,
130–145); citation from p. 131. (This is his first paper on the static gravitational field, discussed at
greater length below.) For a translation of a longer portion of this passage and a fuller discussion of
the rotating disk problem, see (Stachel 1980); reprinted in (Howard and Stachel 1989, 48–62) and in
(Stachel 2002, 245–260).

37 See note 28.
38 See (CPAE 5, 211, n. [5]).
39 The reference reads: “Mr. P. Ehrenfest ... showed in a very simple way that a body at rest can never be

brought into uniform rotation; I had already discussed the same fact with Mr. A. Einstein in Salzburg.”
40 “Gleichförmige Rotation starrer Körper und Relativitätstheorie,” (Ehrenfest 1909).
41 For Einstein’s way of avoiding Ehrenfest’s paradox, see (Stachel 1980, 6–7 and 9).
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frame of reference and the magnetostatic (or electro-stationary) field due to a station-
ary circular current distribution.43 In the letter cited earlier,44 Max Laue alludes to:

your [i.e., Einstein’s] question whether the gravitational field strength should be repre-
sented by a four-vector or a six-vector.

We shall return to this letter at some length below, but for the moment, consider the
implications of Einstein’s question. The most natural generalization of the Newtonian
gravitational field strength would be a four-vector, since the force exerted by the
Newtonian field depends only on the position and not the velocity of a mass in that
field. On the other hand, the electric and magnetic field strengths together constitute a
six-vector, and the force exerted on a charge in an electromagnetic field depends on
the position (electric force) and velocity (magnetic force) of the charge. Around the
turn of the century, H. A. Lorentz had suggested a gravitational theory modeled on
electromagnetism, in which there were gravitational analogues of the electric and
magnetic forces (Lorentz 1899–1900a).45

Thus, Einstein’s question to Laue suggests that, by the end of 1911, he had reason
to believe that the force exerted by the most general gravitational field might also be
velocity dependent. In his 1911 paper, he had considered the gravitational analogue
of a constant electrostatic field, and he was soon to consider the analogue of the gen-
eral electrostatic field.46 By 18 February 1912, Einstein was already communicating
some of his results.47

There is also evidence that, by February 1912, Einstein was already considering
the gravitational analogue of a magnetostatic field. Paul Ehrenfest visited Einstein in
Prague during the last week of February, and Ehrenfest’s diary entry for 24 February
1912 contains the following lines:

42 Curiously, neither he nor any other contemporary ever refers to a 1910 paper by Theodor Kaluza (of
later five-dimensional Kaluza-Klein theory fame) solving the problem of the “proper geometry”
[Eigengeometrie] of a Born rigidly-rotating body (Kaluza 1910). Kaluza was prevented by illness
from presenting his work at the 1910 Königsberg meeting of the Deutsche Naturforscher und Ärzte
which may help to explain its lack of impact on the rigid body discussion.

43 However, there is also an important difference between the two: The gravitational field equivalent to
the inertial forces in an accelerated reference frame does not appear to correspond to any material
sources, while the analogous electromagnetic fields are produced by a charged ring—rotating or not.
As noted above, this was the purport of Max Laue’s criticism of Einstein’s treatment of the gravita-
tional field equivalent to the inertial forces in a uniformly accelerated frame of reference (see note 33),
to which Einstein hoped to provide a Machian answer.

44 Max Laue to Albert Einstein, 22 December 1911, (CPAE 5, 384–385); citation from p. 385.
45 English translation “Considerations on Gravitation,” in (Lorentz 1899–1900b).
46 This was probably at least in part in response to Abraham’s work on the problem of gravitation, which

appeared early in 1912. Abraham’s first two papers on the subject, dated “December 1911,” were
received 14 December and published in the issue of 1 January 1912 of Physikalische Zeitschrift
(Abraham 1912a; Abraham 1912b). There is evidence that Einstein had corresponded with Abraham
about his theory before publication (see below).

47 See Einstein to Hendrik Antoon Lorentz, (CPAE 5, 411–413); reference to gravitation on p. 413.
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Einstein told me about his gravitational work. [I omit some equations referring to the
static case] Centrifuging of radiation.48

A subsequent letter from Ehrenfest makes clear the meaning of the final, rather cryp-
tic phrase. He reports that a Russian colleague, Michael Frank, has “put me in a very
uncomfortable situation” by asking Ehrenfest to translate into German a work con-
cerning “the geometry of light rays in a uniformly rotating laboratory.” After describ-
ing Frank’s work, Ehrenfest adds:

If one wanted to transform the acceleration field of uniform rotation into a corresponding
force field at rest, as you do in your paper ‘On the Influence of Gravitation ...’ for uni-
form linear acceleration, then this substitute force-field would also have to give the
proper Coriolis deflection for light rays.—That is the content of [Frank’s] note. The thing
is embarrassing [peinlich] for me since you had already communicated this argument to
me. ... I told him that you had already told me about this (I remembered it naturally just
at the moment when “Coriolis” was recognizable.)49

So “centrifuging of radiation” refers to “the geometry of light rays in a uniformly
rotating laboratory,” a problem on which Einstein had evidently worked before
24 February 1912 when he presented his results to Ehrenfest. Einstein’s mention of
“Coriolis” indicates that he had in mind a velocity-dependent gravitational force. It
was presumably the publication of Frank’s paper50 that decided Einstein against pub-
lishing his own version of the results on light rays. He wrote Ehrenfest:

Translate that work [of Frank-JS] in tranquility. I do not arrogate to myself any relativity-
monopoly! Everything that is good is also welcome. You needn’t send the proofs.51

So by February 1912, as seems probable on the basis of his own writings; and surely
by April, on the basis of Ehrenfest’s letter, Einstein was aware that the gravitational
field equivalent to a rotating frame of reference would have to exert a force on a light
ray that depends not only on its position but on (at least the direction of) its velocity—
something that is incompatible with a scalar theory of gravitation. So, even while writ-
ing his first paper on the static gravitational field, he was aware that a scalar theory was
not possible for more general gravitational fields. I shall return to this point below.

Ehrenfest continued to work on the kinematic aspects of the gravito-stationary
problem. In a postcard, he writes that he has solved the “Problem: To determine the
most general field of world-lines that is equivalent to a stationary gravitational field.”
He mentions two “special cases”: “hyperbolic motion” (i.e., constant linear accelera-
tion) and “uniform rotation.”52 Subsequent letters outline the proof his solution.53 In

48 Rijksmuseum voor de Geschiednis der Natuurwetenschappen, Leiden: Ehrenfest Collection, Ehren-
fest Notebook 4–11, Microfilm number 12.

49 Ehrenfest to Einstein, draft letter before 3 April 1912, (CPAE 5, 439–445), citation from p. 440.
50 “Bemerkung betreffs der Lichtausbreitung in Kraftfeldern,” (Frank 1912). The paper is dated 7 March

1912. Frank does not suggest that the force field equivalent to a force-free rotating frame of reference
could be gravitational.

51 Einstein to Ehrenfest, 25 April 1912, (CPAE 5, 450–451); citation from p. 450.
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reply to one of these letters, Einstein says that he does not understand Ehrenfest’s
result,54 but adds some comments on the problem:

A rotating ring does not generate a static field in this sense [the sense of Papers I and II,
see note 70–JS], although it is a time-independent field. In such a field the reversibility of
light paths does not hold.55 My case corresponds to the electrostatic field in electromag-
netic theory, while the more general static case would also include the analogue of the
static magnetic field. I am not yet that far along. The equations I have found only relate to
the static case of masses at rest.56

I have now given reasons for believing that, at the earliest by 1909 and the latest
by the end of 1911, Einstein was aware of problems with the interpretation of both
temporal and spatial coordinates in accelerating frame of reference in Minkowski
space; and that, by February 1912 at the latest, he had every reason to expect that the
full theory of gravitation would have to pass beyond the limits of a four-dimensional
scalar theory, on the one hand; and, at least spatially, beyond the limits of Euclidean
geometry. Now I shall turn to Einstein’s investigation of static gravitational fields,
which ultimately led to the resolution of these problems.

SCENE II: “THE SPEED OF LIGHT IS NO LONGER CONSTANT”

It may well have been Max Laue who directed Einstein’s attention to the crucial
importance of the gravitational potential, and the possibility of its replacement by the
variable speed of light. The letter Laue sent Einstein at the end of 1911 was cited
above, but I must now quote from it at greater length. (Unfortunately we do not have
Einstein’s letter, if there was one, to which this is a reply.)57 Discussing Einstein’s
1911 paper,58 he writes:

52 Ehrenfest to Einstein, 14 May 1912, (CPAE 5, 460–461). In later chapters, these two “special cases”
will become very familiar to the reader since they are the two test cases that Einstein uses again and
again to evaluate candidate gravitational field equations.

53 Only Ehrenfest’s drafts of his letters have been preserved: Ehrenfest to Einstein: after 16 May 1912,
(CPAE 5, 461–464, see 462–463); 29 June 1912, (CPAE 5, 487–496). Einstein to Ehrenfest, 25 April
1912, (CPAE 5, 450–451, see 451); 27 April 1912, (CPAE 5, 455); before 20 June 1912, (CPAE 5,
484–486, see 485–486). (Only letters containing references to gravitation are cited.) Ehrenfest later
published a paper on this subject: “On Einstein’s Theory of the Stationary Gravitation Field,” (Ehren-
fest 1913a); original version, (Ehrenfest 1913b).

54 Einstein to Ehrenfest, before 20 June 1912, (CPAE 5, 484–486, see p. 485).
55 This assertion is analogous to the result discussed above that Frank had published, but with a subtle

difference. Like Einstein, Frank had discussed Minkowski spacetime as seen from a uniformly rotat-
ing frame of reference and the field (he does not specify it as gravitational) equivalent to the inertial
forces present in such a frame. Here, Einstein is discussing the gravitational field generated by a rotat-
ing material ring, which he must have realized would be non-Minkowskian since this is true even for
the field of a non-rotating material ring.

56 Einstein to Ehrenfest, before 20 June 1912, (CPAE 5, 484–486, see p. 486).
57 Since Einstein does not raise the question of whether the gravitational field strength is a four-vector or

a six vector in his 1911 paper, I assume that the phrase “Your question” in Laue’s letter refers to either
a previous letter or conversation.
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It seems extraordinarily characteristic to me that the gravitational potential thereby
acquires a physical significance, which is completely lacking for the electrostatic poten-
tial. One could, in principle, immediately determine the former by measurement of the
velocity of light.

This comment may well have been the cue that prompted Einstein’s replacement of
the gravitational potential by the variable speed of light in his gravito-static theory.

But, as indicated in the last section, the letter contains more significant clues to
the direction in which Einstein was heading. Laue continues:

Your question, whether the gravitational field strength should be represented by a four-
vector or a six-vector, is thereby settled. Not it [the field strength–JS] but rather the
potential accordingly seems to me to be the primary concept, the four-dimensional repre-
sentation of which must be investigated.59

A little background is helpful in assessing the full significance of this comment of
Laue’s. After initially slighting the significance of Minkowski’s four-dimensional
reformulation of the special theory, Einstein had started to study it in earnest around
1910,60 probably at least in part in response to Sommerfeld’s exposition of a four-
dimensional vector algebra and analysis (Sommerfeld 1910a; Sommerfeld 1910b),61

and its incorporation and further development in Laue’s textbook—the first on spe-
cial relativity.62

A further motive for this study was Einstein’s decision to include the four-dimen-
sional approach in a major review article that he agreed to write in 1911, and started
work on by 1912.63 In this review he notes that an anti-symmetric second rank tensor
“is, following Sommerfeld, usually designated as a six-vector” [Sechservektor],64

58 See (Einstein 1911b).
59 Max Laue to Albert Einstein, 27 December 1911, (CPAE 5, 384).
60 In 1908, Einstein and Laub thought it worthwhile to publish a paper rederiving Minkowski’s four-

dimensional results on electrodynamics (see Minkowski 1908) in three-dimensional form because
that “work makes rather great demands mathematically on the reader,” see (Einstein and Laub 1908).
In a review talk on special relativity given in January 1911, Einstein included a brief discussion of
“the highly interesting mathematical development that the theory has undergone, primarily due to
Minkowski who unfortunately died so young,” noting that it had led to “a very perspicacious repre-
sentation of the theory, which essentially simplifies its application” see (Einstein 1911a). For a discus-
sion of Minkowski’s work and the varying forms of its assimilation by the physics and mathematics
communities, see (Walter 1999).

61 He states that the formalism he presents “is (aside from imaginary coordinates) an immediate general-
ization of the customary three-dimensional vector methods”, and provides “a complete substitute for
the matrix calculus used by Minkowski” (Sommerfeld 1910a, 749).

62 Laue notes that he has “taken into account extensively the mathematical development of the theory
that Sommerfeld has recently given” (Laue 1911, vi). Einstein commented: “His book on relativity
theory is a little masterpiece,” Einstein to Alfred Kleiner, 3 April 1912, (CPAE 5, 445–446).

63 This article, prepared for Erich Marx’s Handbuch der Radiologie, was completed but has been pub-
lished only recently: See “Manuscript on Relativity,” (CPAE 4, 9–108). For its history, see the Edito-
rial Note, “Einstein’s Manuscript on the Special Theory of Relativity,” (CPAE 4, 3–8).

64 See (CPAE 4, 72). Sommerfeld had given the names “four-vector” and “six-vector” to what Hermann
Minkowski had called “spacetime vectors of type I and II,” respectively (Minkowski 1908, 65–68).
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and notes that the electromagnetic field strength, the components of which are the
electric (see p. 9) and magnetic (see p. 10) field strengths, is a six-vector (see p. 81).

So it is reasonable to assume that Einstein had already mastered the four-dimen-
sional formalism by the time that he raised the question of whether the gravitational
field strength is a six-vector (as in the electromagnetic case) or a four-vector (as
would be the case of it were the gradient of a scalar field). Laue’s reply assumes
knowledge of the fact that the electromagnetic six-vector is the curl of the electro-
magnetic potential four-vector;65 which breaks up into the electric potential (a three-
scalar) and the magnetic (three-)vector potential with respect to any inertial frame. If
we look only at the electrostatic field strength, it can be written as the three-gradient
of the electric potential. But, Laue points out, the electrostatic potential is of no phys-
ical significance (because of the possibility of what are now called gauge transforma-
tions of the electromagnetic potentials);66 while Einstein’s 1911 work showed that
the gravitational potential has an immediate physical significance because of its influ-
ence on the speed of light. Therefore, Laue suggests, the important question is: What
is the four-dimensional representation of the gravitational potential? The fact that, in
the static case, it reduces to a single quantity that behaves as a scalar under three-
dimensional spatial transformations is not decisive for answering this question. The
same is true of the electrostatic potential; yet the latter is known to be the fourth (i.e.,
timelike) component of a four-vector.

Thus, Laue’s comment could have served to draw Einstein’s attention away from
the representation of the gravitational field strength, and toward the question that,
within a few months, was to occupy him: What is the four-dimensional representation
of the gravitational potential in the non-static case?

Laue’s comment, like all of his and Sommerfeld’s work on the four-dimensional
formalism, is situated within the context of the special theory of relativity. But, as we
have seen, with Einstein’s interpretation of the equivalence principle as implying an
enlargement of the relativity group, Einstein had already moved beyond that context;
and he soon moved into the context of non-flat spacetimes. Indeed, there is a com-
ment by Einstein himself dating from mid-1912, on the question of the four-versus
six-vector representation of the gravitational field strength, that suggests the need for
this shift of context:

If the gravitational field can be interpreted within our present [i.e., special–JS] theory of
relativity [sich ... im Sinne unserer heutigen Relativitätstheorie deuten läßt], then this can
only happen in two ways. One can consider [auffassen] the gravitational vector either as
a four-vector or as a six-vector. [In either case] one arrives at results that contradict the ...
consequences of the law of the gravitational mass of energy, [namely] ... that gravitation
acts more strongly on a moving body than on the same body in case it is at rest. ... It must

65 See Laue’s book, Das Relativitätsprinzip, (Laue 1911, 99–100), which defines the “four-potential
vector” [Viererpotential] as the four-vector, the four-curl of which is the electromagnetic field six-vec-
tor; and notes that the four-potential vector is only determined up to the four-gradient of a scalar.

66 This was, of course, long before discussions of the physical significance of the electromagnetic poten-
tials, based on the Aharonov-Bohm effect, took place.
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be a task of the immediate future to create a relativistic-theoretical schema in which the
equivalence of gravitational and inertial mass finds expression.67

In a similar vein, he wrote to Wien that:

the [special–JS] relativity theory imperatively demands a further development since the
gravitational vector cannot be fitted into the relativity theory with constant  if one
demands the gravitational mass of energy68

As it turned out, such a theory would not only pass beyond the bounds of the special
theory; it would involve spacetimes with non-flat line elements, as we shall soon see.

To summarize: There are good reasons to suggest that, by the beginning of 1912,
Einstein already realized that he would ultimately have to go beyond a scalar theory
of gravitation. His strategy was to proceed in a step-by-step fashion towards a full
dynamical theory. The first step in the program was to consider what I have called
above the gravito-static case, the gravitational analogue of electrostatics; but he was
already thinking about the next step, the gravito-stationary case, the gravitational
analogue of magnetostatics. His ultimate goal was to develop a theory for time-
dependent gravitational fields.

Let us look at the first step, gravito-statics. By March 1912 he was able to write
Paul Ehrenfest:

The investigations of gravitational statics (point mechanics electromagnetism gravito-
statics) are complete and satisfy me very much. I really believe that I have found a part of
the truth. Now I am considering the dynamical case, again also proceeding from the
more special to the more general [case–JS].69 

Einstein was referring to his two papers on the static gravitational field (hereafter
cited as “Paper I” and “Paper II”), completed in February and March 1912 respec-
tively.70 These papers center on the gravitational potential, as Laue had suggested,
but effect a crucial transformation of the problem in line with Laue’s comment that
the gravitational potential could “in principle be determined by measurement of the
speed of light.” In his 1911 paper, Einstein had already shown that, with a certain def-
inition of the universal time:71

in a static gravitational field a relation between  [the speed of light–JS] and the gravita-
tional potential exists, or in other words, that the field is determined by  (Einstein
1912b, 360)

In Papers I and II  the spatially variable but temporally constant and
direction-independent speed of light, completely replaces the gravitational potential.

67 “Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham,” (Einstein 1912c).
The paper was received on 4 July 1912. The citations are from pp. 1062–1063.

68 Einstein to Wilhelm Wien, 17 May 1912, (CPAE 5, 465).
69 Einstein to Paul Ehrenfest, 10 March 1912, (CPAE 5, 428).
70 Paper I:“Lichtgeschwindigkeit und Statik des Gravitationsfeldes,” (Einstein 1912b); reprinted in

(CPAE 4, 130–145); Paper II: “Zur Theorie des statischen Gravitationsfeldes,” (Einstein 1912d);
reprinted in (CPAE 4, 147–164). For a discussion of these papers, see the Editorial Note “Einstein on
Gravitation and Relativity: The Static Field,” (CPAE 4, 122–128).
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Most of Paper I is concerned with establishing the gravitational field equation that 
obeys, and the equations of motion of a (test) particle in the static gravitational field
described by  Much of Paper II is concerned with a revision of the field equation of
Paper I (Section 4), and a crucial mathematical reformulation of the equations of
motion (The “Supplement” to the Proofs).72

Einstein’s introduction of a variable speed of light brought down much scorn
upon him at the time,73 but it was absolutely crucial in initiating the sequence of steps
that lead to the culmination of Act II: Einstein’s leap from a scalar to a tensorial grav-
itational potential, in which  becomes one of the ten components of the met-
ric tensor used to construct the line element of a non-flat spacetime.

Paper I also contains another step in the process. Einstein shows that, if one uses a
light clock, for example, to measure:

the local time, which Abraham denotes by  then this stands to the universal time  in
the relation  (Einstein 1912b, 366)

In retrospect (remembering that here  is non-constant), we recognize in this equa-
tion the relation between the differential element of the proper time  between two
events at the same place (i.e.,  in a static field, and the coordinate dif-
ferential  between the times of the two events, using the preferred static time coor-
dinate  This equation begins to answer the question of the relation between
coordinates and physical measurements in a gravitational field that had been puzzling
Einstein for almost five years.

But before expanding on this point, let me turn to a further step in the process,
contained in Paper II. The equations of motion of a particle in a static gravitational
field, developed in Paper I, were rewritten in Lagrangian form in a “Supplement to

71 “The time in the field [that is] defined by the stipulation that the speed of light  depends indeed upon
the position but not on direction” as Einstein explained to Michele Besso, 26 March 1912, (CPAE 5,
435). This definition of the time is given in more detail in Paper I: “We think of the time in the [uni-
formly accelerated–JS] system  as measured by clocks of such a nature and such a fixed arrange-
ment at the spatial points of  that the time intervals—measured with them—that a light ray takes to
go from a point  to a point  of the system  does not depend on the moment of emission of the
light ray at  [static condition]. Further it turns out that simultaneity can be defined without contra-
diction in such a way that, with respect to the settings of the clocks, the stipulation is satisfied that all
light rays passing a point  of  have the same speed of propagation, independent of their direction”
[isostropy condition] (Einstein 1912b, 357–358).

72 The revision of the gravitational field equation is discussed in some detail in “Pathways out of Classi-
cal Physics …” (in this volume). The remainder of Paper II is concerned with electromagnetism (Sec-
tions 1 and 2) and thermodynamics (Section 3) in a static gravitational field, topics I shall not
consider.

73 Abraham, for example, exulted: “Einstein ... had already given up his postulate of constancy of the
velocity of light at the turn of the year, which was so essential for his earlier theory; in a recent work
he abandons the requirement of the invariance of the equations of motion under Lorentz transforma-
tions, thereby delivering the coup de grace to the theory of relativity. Those who, like the author, have
repeatedly had to warn against the siren song of this theory, can only greet with satisfaction the fact
that its originator has now convinced himself of its untenability” (Abraham 1912e).
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the Proofs” of Part II. This step proved to be so significant that it soon led to the final
resolution of the problem of the correct representation of the gravitational potentials.

It is noteworthy that the equations of motion of a particle [materielle Punkt] in the gravi-
tational field take a very simple form when they are given the form of Lagrange’s equa-
tions. Namely, if one takes

then ... For a particle moving in a static gravitational field without the action of external
forces, there holds accordingly

or

Here too—as was proved by Planck for the usual [i.e., special] theory of relativity—it is
seen that the equations of analytical mechanics possess a significance that extends far
beyond Newtonian mechanics. Hamilton’s equation as finally written down lets us antic-
ipate [ahnen] the structure of the equations of motion of a particle in a dynamical gravi-
tational field. (Einstein 1912d), 458)

Einstein’s lecture notes on mechanics, which he had been teaching since 1909,74

show his familiarity with the use of variational techniques to derive the Lagrangian
equations of motion (CPAE 3, 91–95, 116–117). Even more important for present pur-
poses, he stressed the coordinate-invariant nature of the resulting equations of motion:

The Cartesian coordinates of the particle no longer enter into the [variational–JS] princi-
ple. It holds independently of whatever coordinates we use to determine the position of
the particles of the system (p. 93).

Now we have in hand all the strands, the interweaving of which finally allowed Ein-
stein to take the great leap forward to a metric theory of gravitation. But let me
emphasize that, however much they may help us in retrospect to understand the pro-
cess, there remains something almost uncanny in how Einstein made the choices that
led him so far from the path trodden by other physicists in the search for a relativistic
theory of gravitation. He was about to enter an entirely new land, in which the space-
time structure becomes a dynamical field.

74 “Lecture Notes for Introductory Course on Mechanics at the University of Zurich, Winter Semester
1909–1910,” (CPAE 3, 11–129). See also the Editorial Note, “Einstein’s Lecture Notes,” (CPAE 3, 3–
10, especially Section II, 4–6). Einstein also taught mechanics in Prague during the winter semester of
1911; see “Appendix B: Einstein’s Academic Courses,” (CPAE 3, 598–600).
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SCENE III: “TEN SPACETIME FUNCTIONS”:

Just what did the variational reformulation of the equations of motion lead Einstein to
“anticipate”? I propose to answer this question with the help of the first three sections
of his following paper on the topic, the “Entwurf” paper, published early in 1913.75

After introductory comments discussing the equivalence principle, Section 1 treats
“The equations of motion of a particle in a static gravitational field.” Except for one
small but significant detail, it is just an expanded version of the “Supplement.” The
detail is notational: he writes  as an abbreviation for  for
both the case of constant  (“the usual theory of relativity”) and the spatially variable
but static 

The significance of this notation does not emerge until Section 2, which treats
“Equations for the motion of a particle in an arbitrary gravitational field. Character-
ization of the latter”:

With the introduction of a spatial variability of the quantity  we have passed beyond the
framework of the theory that is now designated as “the theory of relativity”; for the
expression designated by  no longer behaves as an invariant under linear orthogonal
transformations of the coordinates. ...

If we introduce a new spacetime system  by means of an arbitrary sub-
stitution.

and if the gravitational field in the original system  is static, then under this substitu-
tion equation (1) goes over into an equation of the form

where

and the quantities  are functions of 

Thus we arrive at the interpretation that, in the general case, the gravitational field is
characterized by ten spacetime functions ... . (Einstein and Grossmann 1913, 6)

75 “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation I. Physikali-
scher Teil von Albert Einstein,” (Einstein and Grossmann 1913); reprinted in (CPAE 4, 303–323). For
a discussion of this paper, see the Editorial Note “Einstein on Gravitation and Relativity: The Collab-
oration with Marcel Grossmann,” (CPAE 4, 294–301). See also the Editorial Note “Einstein’s
Research Notes on a Generalized Theory of Relativity,”(CPAE 4, 192–199, especially Section II,
193–195).
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Einstein proceeds to derive the equations of motion from the generalized Hamil-
tonian function (which we would now call the Lagrangian):

[where  etc. -JS].

He writes the three Lagrange equations for the three spatial coordinates  derives
from them expressions for the momentum of the particle and the force exerted on it
by the gravitational field; and then derives the energy of the particle by performing
the usual Legendre transformation on  He closes this discussion by noting that:

In the usual relativity theory only linear orthogonal substitutions are permitted. It will be
shown that we are able to set up equations for the influence of the gravitational field on
material processes that behave covariantly under arbitrary substitutions. (Einstein and
Grossmann 1913, 7)

Up to this point, there is nothing in Einstein’s results that depends on the interpre-
tation of the  as anything more than a generalization of his 1912 results for the
static gravitational field to their form in an arbitrary reference frame. (Remember
that, for Einstein, a change of coordinates amounts to a change of spacetime refer-
ence frame.) In such a frame, the single static gravitational potential  is transformed
into ten functions 

It is only in the next section of the paper, “Significance of the Fundamental Tensor
 For the Measurement of Space and Time,” that he proceeds to the geometrical

interpretation of these functions in spacetime. After recalling that the time coordinate
had already lost its immediate physical significance in a static gravitational field, he
continued:

In this connection, we remark that  is to be understood as an invariant measure for the
interval [Abstand] between two neighboring spacetime points. (Einstein and Grossmann
1913, 8)

Presumably, this is what his results in the “Supplement” suggested to him almost
immediately: if the integrand is interpreted as the interval  between neighboring
points, then the variational principle can be interpreted as giving rise to the equation
for a geodesic in the resulting non-flat space time. In a later reminiscence (Einstein
1955),76 Einstein stated:

The equivalence principle allows us ... to introduce non-linear coordinate transforma-
tions in such a [four-dimensional] space [with (pseudo)-Euclidean metric]; that is, non-
Cartesian (“curvilinear”) coordinates. The pseudo-Euclidean metric then takes the gen-
eral form:

76  Cited from those given in (Seelig 1955).
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summed over the indices  and  (from 1–4). These  are then functions of the four
coordinates, which according to the equivalence principle describe not only the metric
but also the “gravitational field.” ... This formulation so far applies only to the case of
pseudo-Euclidean space. It indicates clearly, however, how to attain the transition to
gravitational fields of a more general type. Here too the gravitational field is to be
described by a type of metric, that is a symmetric tensor field  The problem of
gravitation was thereby reduced to a purely mathematical one. Do differential equations
exist for the  that are invariant under non-linear coordinate transformations? Such
differential equations and only such could be considered as field equations for the gravi-
tational field. The equation of motion of a particle was then given by the equation for a
geodesic line.

With this task in mind, I turned to my old student friend Marcel Großmann, who had in
the meantime become Professor of Mathematics at the ETH (pp. 14–15).

Einstein here makes a rather precise claim about what he had accomplished
before turning to Grossmann upon his move back to Zurich at the end of July 1912.
Earlier, in 1923, he had made a similar claim, but with a significant addition—a refer-
ence to Gauss:

I first had the decisive idea of the analogy between the mathematical problems connected
with the theory and the Gaussian theory of surfaces in 1912 after my return to Zurich,
initially without knowing Riemann’s and Ricci’s or Levi Civita’s investigations.77

In the 1955 reminiscence, Einstein noted that Carl Friedrich Geiser’s course on
differential geometry at the ETH played an important role in his thinking; it was in
that course that he learned about Gauss’ theory of surfaces, based on analysis of the
distance  between neighboring points on a surface, expressed in terms of an arbi-
trary coordinate system on the surface, thereafter often called Gaussian coordi-
nates.78

The spacetime interval  Einstein introduced represents a generalization of what
was often referred to in differential geometry as the “line element.” The term “ele-
ment” appears to go back to Monge, who speaks of the “elements” [élémens] of a
curve in space. Coolidge comments: “An élémen is an infinitesimally short chord.”79

Gauss80 makes the concept of what he calls a “line element” [he uses both
“Linienelement” and “Linearelement”—see (Gauss 1881, 341–347)] connecting a
pair of points on a two-dimensional surface central to his theory of surfaces, and

77 In the Preface to the Czech edition of his popular book on relativity. The German text is in (CPAE 6,
535, n. [4]).

78 In (Einstein 1955), Einstein described the lectures as “true masterpieces of pedagogical art, which
later helped me very much when wrestling with general relativity” (pp. 10–11). In a letter of 24 April
1930 to Walter Leich, Einstein wrote: “Geiser was dry only in the large lectures, otherwise I owe him
the most of all.” For an outline of the contents of Geiser’s course on “Infinitesimalgeometrie” given in
the Winter Semester of 1897/1898 and the Summer Semester of 1898, based on Grossmann’s lecture
notes, see (CPAE 1, 365–366). Grossmann’s notes are preserved in the ETH Bibliothek, Hs 421:
15 & 16.

79 See (Coolidge 1940), “Book III Differential Geometry,” Chapters I, II and III, 318–387. The citations
are from p. 322.
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shows that it may be used to define the intrinsic properties of the surface, such as its
curvature. Bianchi-Lukat (Bianchi 1910, 60–61)81 defines  as the “element of a
curve” [Bogenelement], and comments:

Since the expression for  given by  the right hand
side being the square of Gauss’ expression for the line element] holds for any arbitrary
curve on the surface, it is designated the line element of the surface. Gauss’ ideas were
generalized to dimensional manifolds by Riemann. (Riemann 1868)82

The basic ideas of Gauss’ theory of surfaces are reproduced in Grossmann’s notes
on Geiser’s course on differential geometry [Infinitesimalgeometrie].83 Reich indi-
cates some of the high points:

Geiser treats the line element and its special form in different coordinate systems espe-
cially intensively,

indicating that he used the notation  for it. 

The curvature of surfaces and especially the Gaussian measure of curvature, which Gei-
ser derives in Gauss’ fashion and with Gauss’ notation, is a particular theme of the
semester. The result reads: ‘if

then the measure of curvature depends solely on  and their derivatives.’... A fur-
ther important point are geodesic lines. After a longish introduction, Geiser goes into the
‘differential equation for geodesic lines,’ ... It appears important to me that Geiser offers
not only the geometrical aspect but also argues invariant-theoretically, as in the case of
the metric, the measure of curvature and of geodesic lines. (Reich 1994, 164–165)

Geiser included a derivation of the equation for a geodesic on a surface by variation
of the integral  where

along some curve  to find its minimum.84 Comparison of this with Ein-
stein’s variational principle for the equations of motion of a particle in a static gravi-
tational field could have suggested the analogy between Gauss’ theory of surfaces
and Einstein’s theory of the static gravitational field.

80 “Disquisitiones generales circa superficies curvas,” (Gauss 1828); reprinted in (Gauss 1881, 217–
258). A valuable notice [“Anzeige”] by Gauss appeared in (Gauss 1827); reprinted in (Gauss 1881,
341–347). The basic idea of using the line element to investigate the properties of a surface had
already been used in Gauss’ 1822 Prize Essay, (Gauss 1825); reprinted in (Gauss 1881, 189–216). For
discussions, see (Coolidge 1940, ch. III, sec. 1, 355–359) and (Stäckel 1918, Heft V, 25–142, sec. V,
“Die allgemeine Lehre von den krummen Flächen,” 104–138).

81 As we shall see below, this work was consulted by Marcel Grossmann.
82 This refers to the posthumous publication of Riemann’s Habilitationsschrift of 1854.
83 These notes are described in (Reich 1994, 163–166).
84 Grossmann notes for 10 June 1898.
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So much for the mathematical literature. In the physics literature, the equivalent
proper time element  had been introduced by Minkowski for timelike world-
lines.85 But neither the concept of, nor the notation for, the line element  or the
proper time element  occurs in the works of Sommerfeld or Laue developing spe-
cial-relativistic vector and tensor analysis (which, as we have seen Einstein studied)
until after 1912.86 Nor does it occur in Einstein’s summary of vector and tensor anal-
ysis in his unpublished review of the special theory (discussed earlier).87

However, the concept and even the term, were beginning to appear in the physics
literature in connection with the discussion of rigid bodies.88 Herglotz seems to have
introduced them (Herglotz 1910, 394). After pointing out that Minkowski had intro-
duced the idea of representing the spatial and temporal coordinates “as the four coor-
dinates of a point in a fourfold-extended manifold ” he goes on:

Similarly a measure relation [Maßbestimmung] is introduced in this  according to
which (the velocity of light being set equal to 1) the square of the distance of two infi-
nitely neighboring points is:

Line elements of real length  are called spatial, however those of purely imag-
inary length  are called timelike.

Born’s next paper on the definition of a rigid body (Born 1910, 233) speaks of “a
four-dimensional space  in which a measure relation [Maßbestimmung]
with the line element  is introduced” (p. 233).

As noted above, Einstein refers to these papers in a 1910 letter, so we may assume
that he was familiar with them.89 And, it was in response to a criticism by Einstein
that Abraham wrote:90

On lines 16, 17 of my note “On the Theory of Gravitation,” an oversight is to be cor-
rected, of which I became aware through a friendly communication of Mr. A. Einstein.
One should read “let us consider  and  as components of
a displacement  in four-dimensional space.” Thus,

85 See Section III, p. 108 of (Minkowski 1909a); it was soon reprinted as a separate booklet, (Minkowski
1909b); and then in Minkowski’s Gesammelte Abhandlungen, vol. 2, (Minkowski 1911, 431–434).

86 Laue only introduces the proper time and uses it to define the four-velocity in the second edition of
Das Relativitätsprinzip (Laue 1913, 57 and 69).

87 Einstein does define the four-velocity vector by the following equation:

but without any explanation of the expression in the denominator, which does not occur anywhere else
in the paper (CPAE 4, 84).

88 See (Maltese and Orlando 1995).
89 “The latest relativity-theoretical investigations of Born and of Herglotz interest me very much ...”

Albert Einstein to Jakob Laub, 16 March 1910, (CPAE 5, 231–233; citation from 232).
90 “Berichtigung,” (Abraham 1912c). This correction was submitted to issue no. 4, which had a closing

date of 2 February 1912, but was published on 15 February 1912.
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is the square of the four-dimensional line element, in which the velocity of light  is
determined by equation (6) [Abraham’s relation between the gravitational potential and
the speed of light–JS].91

Indeed, as noted above, in Paper I on the static field Einstein had written that, in using
a light clock:

we operate with a sort of local time, which Abraham designates with  This stands in
the relation

to the universal time.

This is the earliest indication (the end of February 1912) that Einstein realized the
need to use differentials of the two quantities in order to relate a coordinate time  to
a physically measured time  (in this case, the proper time between two events at the
same spatial point).

To summarize: on the basis of the mathematical and physical resources at his
command, at some point in mid-1912, after generalizing the single gravitational
potential  to the array of ten gravitational potentials  Einstein realized that they

formed the coefficients of a quadratic form  which could be regarded

as the square of the invariant line element  of a four-dimen-

sional spacetime manifold; and that the interval  represents a physically measur-
able quantity—the proper time if the interval between two events were time-like, the
proper length if it were space-like (of course it would vanish for null intervals).

I suggest that it was at this point that he turned to Grossman. Continuing the quo-
tation from the 1955 reminiscence:

I was made aware of these [works by Ricci and Levi-Civita—JS] by my friend Groß-
mann in Zurich, when I put to him the problem to investigate generally covariant tensors,
whose components depend only on the derivatives of the coefficients of the quadratic
fundamental invariant.

He at once caught fire, although as a mathematician he had a somewhat skeptical stance
towards physics. ... He went through the literature and soon discovered that the indicated
mathematical problem had already been solved, in particular by Riemann, Ricci and
Levi-Civita. This entire development was connected to the Gaussian theory of curved
surfaces, in which for the first time systematic use was made of generalized coordinates.
(Seelig 1955, 15, 16)

91 Abraham reiterated this point in his next paper “Die Erhaltung der Energie und der Materie im
Schwerkraftfelde,” (Abraham 1912d): “As a result of the variability of  the Lorentz group only
holds in the infinitely small, so that  and  represent the components of an infi-
nitely small displacement in a four-dimensional space” (p. 312). Note that, in contrast to Einstein,
Abraham’s  may be a function of all four spacetime coordinates.
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In short: While the analogy to Gaussian surface theory had occurred to Einstein
before he consulted Grossmann, probably including the role of the line element; the
connection between this theory and the later line of development from Riemann to
Ricci and Levi-Civita only became clear to Einstein after consulting Grossmann.

Louis Kollross, another student friend of Einstein, who was also Professor of
Mathematics at the ETH during this time, adds another name that belongs between
those of Riemann and of Ricci and Levi-Civita:

[Einstein] spoke to Großmann about his troubles and said to him one day: “Großmann,
you must help me, otherwise I’ll go crazy!” And Marcel Großmann succeeded in show-
ing him that the mathematical instrument that he needed had been created precisely in
Zurich in the year 1869 by Christoffel in the paper “On the Transformation of Homoge-
neous Differential Expressions of the Second Degree,” published in volume 70 of
“Crelle’s Journal” for pure and applied mathematics.92

A look at Grossmann’s Part II of their joint paper, confirms Kollros’s recollection:

The mathematical tool [Hilfsmittel] for the development of the vector analysis of a gravi-
tational field that is characterized by the invariance of the line element

goes back to the fundamental paper of Christoffel on the transformation of quadratic dif-
ferential forms.93

So it was Marcel Grossmann, who introduced Einstein to the work of Ricci and
Levi-Civita after Einstein’s return to Zurich in early August 1912.94 However, in his
exposition Grossmann plays down the geometrical significance of vector and tensor
analysis:

In it I have purposely left geometrical methods [Hilfsmittel] aside, since in my opinion
they contribute little to the visualization [Veranschaulichung] of the concepts constructed
in vector analysis (p. 325).

This distinction between tensor analysis and geometrical methods is based on the
distinction Ricci and Levi-Civita make between the “fundamental quadric or form”
(p. 13),which they denote by  and the line element (they never use these words),
denoted by  of an dimensional manifold, denoted by  (see, e.g., pp. 128,
153). They assert that: “The methods of the absolute differential calculus depend
essentially on consideration of” the fundamental form (p. 133); but the geometrical
interpretation of it “as the  of a surface” (p. 162) is merely one possibility.

92 “Erinnerungen-Souvenirs,” (Kollross 1955b); reprinted as “Erinnerungen eines Kommilitionen,”
(Kollross 1955a). Citation from p. 27.

93 “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation II. Mathemati-
scher Teil von Marcel Grossmann,” (Einstein and Grossmann 1913, 23–38); reprinted in (CPAE 4,
324–339; citation from p. 324). The paper cited is (Christoffel 1869).

94 “Méthodes de calcul différentiel absolu et leurs applications,” (Ricci and Levi-Civita 1901).This
paper has been translated into English in (Hermann 1975).
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Grossmann’s exposition of tensor analysis is based on Chapter I, “Algorithm of
the Absolute Differential Calculus” (pp. 128–144), which includes discussions of
covariant differentiation and of the Riemann tensor that do not depend at all upon the
geometrical interpretation of the fundamental form, but rather on the theory of alge-
braic and differential invariants of the fundamental form and other functions (see
pp. 127 of the “Preface” and Section 1 of the first chapter, “Point transformations and
systems of functions,” pp. 128–130).95 This is entirely in the spirit of Christoffel’s
exposition of the differential invariants of a quadratic differential form in  indepen-
dent variables. Only in the last paragraph of his paper does he mention “a posthu-
mous paper of Riemann” on “the square of the line element in a space of three
dimensions” (Christoffel 1869, 70). And indeed, until Levi-Civita developed the con-
cept of parallel displacement in a manifold with metric, geometrical methods did not
contribute much to the interpretation of the covariant derivative and the Riemann ten-
sor.96 Only starting with Chapter II of Ricci and Levi-Civita, on “Intrinsic geometry
as a calculational tool,” are geometrical applications to dimensional manifolds
introduced.

Bianchi-Lukat (Bianchi 1910), another source that Grossmann mentions,97 also
separates the invariant-theoretical treatment of “Binary Quadratic Forms” in Chapter
II from the geometrical treatment of “Curvilinear Coordinates on Surfaces” in Chap-
ter III, which includes the introduction of “The Line Element of Surfaces” in Section
33.

—But I have already begun to encroach on the opening scene of Act III. If, so far,
Einstein’s intuition led him almost without mis-step along the highway in the search
for dynamical field equations governing the behavior of the metric tensor field, the
last act will depict our hero’s wanderings along many a curious by-way, before
regaining the high road.

95 Only in Section 4 of this chapter, “Applications to vector analysis,” is “the  of [Euclidean three-]
space as the fundamental form” introduced (p. 135). The paper has a number of lapses: for example,
the fundamental form is introduced on p. 130 without the name, and the notation  for it is used on
p. 132, before both are defined on p. 133. Most serious, the Christoffel symbols of the second kind are
introduced and used to define the covariant derivative on p. 138, without ever being defined or related
to the symbols of the first kind, which are defined and then used to define the covariant form of the
Riemann tensor (called “the covariant system of Riemann) on p. 142.

96 For a discussion of this question, see “The Story of Newstein or: Is Gravity just Another Pretty
Force?” (in vol. 4 of this series).

97 See ““Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation II.
Mathematischer Teil von Marcel Grossmann,” (CPAE 4, 330).
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1. INTRODUCTION

 

1.1 The Incomplete Revolution

 

The relativity revolution was far from complete when Einstein published his path-
breaking paper on the electrodynamics of moving bodies in 1905. It started with his
reinterpretation of Lorentz’s theory of electromagnetism in what may be called a
“Copernicus process” in analogy to the transition from the Ptolemaic to the Coperni-
can world system or to the transition from preclassical to classical mechanics.

 

1

 

 In
such a transition the formalism of an old theory is largely preserved while its seman-
tics change.

 

2

 

 Einstein’s special theory of relativity of 1905 had altered the semantics
of such fundamental concepts like space and time, velocity, force, energy, and
momentum, but it had not touched Newton’s law of gravitation. Since, however,
according to special relativity, physical interactions cannot propagate faster than
light, Newton’s well-established theory of gravitation, based on instantaneous action
at a distance, was no longer acceptable after 1905. The relativity revolution was com-
pleted only when this conflict was resolved ten years later in November 1915 with
Einstein’s formulation of the general theory of relativity.

Neither the emergence of the special theory of relativity nor that of the general
theory of relativity were isolated achievements. The virtual simultaneity of the begin-
ning of the relativity revolution with Einstein’s other breakthrough discoveries of
1905 indicate that his non-specialist outlook and, in particular, his youthful pursuit of
atomistic ideas enabled him to activate the hidden potentials of highly specialized
nineteenth-century physics that others, such as Henri Poincaré, had also exposed.

 

3

 

 In
1907, Einstein first attempted to address the issue as to how to modify Newton’s law
of gravitation according to the new kinematic framework of special relativity, as did
others, like Hermann Minkowski and Henri Poincaré.

 

4

 

 But Einstein began to tran-
scend the very special-relativistic framework in light of Galileo’s insight that in a
vacuum all bodies fall with the same acceleration. In 1912, to the amazement of col-
leagues like Max Abraham,

 

5

 

 he abandoned the scalar gravitational potential of New-
tonian physics in favor of a ten-component object—the metric tensor—the
mathematics of which he subsequently began to explore with the help of his mathe-
matician friend Marcel Grossmann. And he was able to formulate clear-cut criteria
which a field equation for the metric tensor acting as a gravitational potential would
have to satisfy. However, in the winter of 1912–1913, Einstein and Grossmann dis-

 

1 Cf. (Damerow et al. 2004, Renn 2004).
2 Such a change of semantics may be illustrated with the example of Lorentz’s concept of local time.

Originally merely a peripheral aspect of his theory, this auxiliary variable was reinterpreted by Ein-
stein as the time actually measured by clocks in a moving reference system, thus assuming a central
role in the new kinematics of special relativity. For an extensive treatment of the first phase of the rel-
ativity revolution compatible with this view, see, e.g., (Janssen 1995).

3 See (Renn 1993, 1997). For the parallelism between Einstein and Poincaré, see also (Galison 2003).
4 See Scott Walter’s “Breaking in the 4-vectors ...” (in vol. 3 of this series) and (Katzir 2005).
5 See (Cattani and De Maria 1989a) and “The Summit Almost Scaled ...” (in vol. 3 of this series).
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carded generally-covariant field equations based on the Riemann tensor, an expres-
sion that included second-order derivatives of the metric tensor. Einstein even
believed to have a proof that such field equations had to be ruled out, although in
hindsight these were the only acceptable mathematical solution. In spite of the skepti-
cism of many of his physics colleagues but supported by the critical sympathy of
mathematicians like Tullio Levi-Civita and David Hilbert,

 

6

 

 Einstein stood by his
original agenda and in late 1915 returned to field equations based on the Riemann
tensor, finally formulating the general theory of relativity, a theory which became the
basis of all subsequent developments in physics and astronomy.

Einstein’s Zurich Notebook represents a uniquely valuable and, as it turns out,
surprisingly coherent,

 

7

 

 record of his thinking in an intermediate phase of the emer-
gence of general relativity. The entries begin in mid-1912 and end in early 1913. His
aim during this period was to create a relativistic theory of gravitation that makes
sense from a physical point of view and that, at the same time, corresponds to a con-
sistent mathematical framework based on the metric tensor. Central to his thinking
was the problem of interpreting the physical knowledge on gravitation in terms of a
generalization of the mathematical representation associated with Minkowski’s four-
dimensional spacetime. The main challenge he faced was to construct a field equa-
tion, on the one hand, that can be reduced by an appropriate specialization to the fa-
miliar Newtonian law of gravitation, and, on the other hand, that satisfies the
requirements resulting from his ambitious program to formulate a relativistic theory
of gravitation.

There is perhaps no single episode that better illustrates the conceptual turn asso-
ciated with the genesis of general relativity than the fact that, in the Zurich Notebook,
Einstein first wrote down a mathematical expression close to the correct field equa-
tion and then discarded it, only to return to it more than three years later. Why did he
discard in the winter of 1912–1913 what appears in hindsight to be essentially the
correct gravitational field equation, and what made this field equation acceptable in
late 1915?

 

8

 

 Our analysis of the Zurich Notebook has made it possible not only to
answer these questions but, more generally, to resolve what might be called the three
epistemic paradoxes raised by the genesis of general relativity:

 

The paradox of missing knowledge

 

. How was it possible to create a theory such as
general relativity that was capable of accounting for a wide range of phenomena
which were only later discovered in the context of several revolutions of observa-
tional astronomy? If neither the expansion of the universe, black holes, gravita-
tional lenses, nor gravitational radiation were known when Einstein set up the
gravitational field equation, how could he nevertheless establish such a firm foun-

 

6 See Einstein’s correspondence with Levi-Civita and Hilbert in (CPAE 8). For further discussion, see
also (Cattani and De Maria 1989b) and (Corry 2004).

7 See the “Commentary ...” (in vol. 2 of this series) and especially our reconstruction in section 6 of the
present chapter.

8 For further discussion of these two questions, see also “Commentary ...” sec. 5, and “Untying the
Knot ...” (both in vol. 2 of this series).
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dation for modern cosmology? Which knowledge granted such stability to a theory
that did not initially seem superior to its competitors, since no phenomena were
known at the time which could not also be explained with traditional physics? 

 

The paradox of deceitful heuristics.

 

 After a tortuous search in the course of which
he even temporarily abandoned hope of ever solving his problem, how was Ein-
stein able to formulate the criteria for a gravitational field equation years before he
established the solution? How could he establish a heuristic framework that would
quickly lead him to a correct mathematical expression, and then to the conclusion
that it was unacceptable, only to bring him back to essentially the same expression
three years later?

 

The paradox of discontinuous progress

 

. How could general relativity with its non-
classical consequences—such as the dependence of space and time on physical
interactions—be the outcome of classical and special-relativistic physics although
such features are incompatible with their conceptual frameworks?

Addressing the challenges which these paradoxes formulate requires taking into
account all of the following dimensions that are crucial to a historical epistemology
of scientific knowledge: the long-term character of knowledge development, the com-
plex architecture of knowledge, and the intricate mechanisms of knowledge dynam-
ics. In order to resolve these paradoxes and to adequately describe the reorganization
of knowledge occurring between 1912 and 1915, we shall, in particular, make use of
concepts from cognitive science, adapted to the description of the structures of shared
knowledge resources such as those Einstein adopted from classical and special-rela-
tivistic physics. These concepts will be used to analyze the architecture of the knowl-
edge relevant to Einstein’s search for a gravitational field equation and to explain its
restructuring as a result of the interaction with the mathematical representation of this
knowledge.

We intend to show in the following that the history of Einstein’s search for a grav-
itational field equation can, against the background of the Zurich Notebook, be writ-
ten as that of a mutual adaptation of mathematical representation and physical
meaning. The eventual success of this adaptation becomes intelligible only if it is
conceived of as part of a long-term process of integrating intellectual resources rele-
vant to Einstein’s problem that were rooted in the shared knowledge of classical and
special-relativistic physics.

Only by analyzing the complex architecture of these shared knowledge resources is
it possible to understand in which sense classical and special-relativistic knowledge
about gravitation and inertia, energy and momentum conservation, and the relation
between different reference frames, was turned into a heuristic framework for Ein-
stein’s search. In the course of his work, elements of this heuristic framework crystal-
lized into a double strategy that shaped his search in an essential way until he succeeded
in formulating the definitive field equation of general relativity in November 1915.

The identification of the two components of this double strategy has not only
allowed us to reconstruct Einstein’s notes and calculations in the Zurich Notebook as
traces of a surprisingly coherent research process, but also to analyze the dynamics of
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this process. It has become clear, in particular, how a combination of knowledge
resources rooted in classical and special-relativistic physics could give rise to the the-
ory of general relativity whose conceptual foundation is no longer compatible with
the knowledge that formed the starting point of Einstein’s search. In this way, the
genesis of general relativity can be understood as resulting from a transformation of
shared resources of knowledge, while Einstein’s search for the gravitational field
equation appears as an investigation of pathways out of classical physics.

In this introduction, we shall briefly recapitulate the essential elements of our
story.

 

9

 

 We begin with a review of the principal steps taken by Einstein towards a rela-
tivistic theory of gravitation between the years 1907 and 1912 before his research is
documented in the Zurich Notebook.
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 Here our aim is to show that each of these
steps highlighted knowledge resources that were relevant for addressing the chal-
lenge of constructing a relativistic theory of gravitation. The heuristics at work in the
Zurich Notebook were the result of this prior research experience. We shall then offer
a first description of the crucial role played by Einstein’s double strategy for his heu-
ristics and finally introduce the epistemological framework for our analysis of how
exactly this strategy worked.

In the second section, we shall discuss what we will call Lorentz model, as the
conceptual framework for Einstein’s construction of a relativistic field theory of grav-
itation. In the third section, we shall examine the essential elements of his heuristics,
showing in which sense these elements turned knowledge resources of classical and
special-relativistic physics into key components of Einstein’s search. In the fourth
section, we shall analyze how this search process was structured by the way in which
the Lorentz model functioned as a mental model in the sense of cognitive science. In
the fifth section, we shall examine how the candidates for a gravitational field equa-
tion that Einstein considered in the course of his search fared in the light of the heu-
ristic criteria he had established on the basis of his prior research experience. This
discussion will help to understand why one and the same candidate fared differently
depending on the depth to which Einstein had explored the implications of the math-
ematical representation. In the sixth section, we shall reconstruct Einstein’s pathway,
as documented in the Zurich Notebook, as a learning experience in which he passed
from one candidate field equation to the other, building up strategic devices that
would guide him until he reached his final result in 1915. In the seventh section, we

 

9 For Einstein’s own account, see (Einstein 1933). The history of general relativity has been an inten-
sive subject of research in the last decades, see, in particular, the contributions in (Stachel and Howard
1989–2006). Especially with respect to Einstein’s own path, early contributions were (Hoffmann
1972, Lanczos 1972, Mehra 1974, Earman and Glymour 1978, Vizgin and Smorodinski 1979, Pais
1982, sec. IV., Stachel 1980, 1982), a groundbreaking paper was (Norton 1984). See also (Capria
2005, Howard and Norton 1992, Janssen 1999, 2005, Maltese 1991, Maltese and Orlando 1995,
Miller 1992, Norton 1992a, 1992b, 1999, 2000, Renn 2005b, 2005c, Renn and Sauer 1996, 1999,
2003a, Sauer 2005b, Stachel 1987, 1989b, 1995, 2002, Vizgin 2001).

10 For detailed analyses of this part of the story, see “The First Two Acts” and “Classical Physics in Dis-
array …” (both in this volume).
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shall turn to Einstein’s elaboration of the so-called 

 

Entwurf

 

 theory, published in 1913
as the result of the research documented in the Zurich Notebook. It will be shown, in
particular, how the work on this problematic theory created the preconditions for the
conceptual changes of the final theory of general relativity. In the concluding eighth
section, we shall review our reconstruction with a view to pinpointing the essential
structures of this scientific revolution.

 

1.2 The Emergence of a Heuristic Framework

 

The incompatibility between Newton’s theory of gravitation and the special theory of
relativity of 1905 presented Einstein and his contemporaries with the task of con-
structing a relativistic theory of gravitation. Special relativity, for the purpose of our
account, arose from the confrontation of classical mechanics and classical electrody-
namics as two major knowledge blocks, i.e. from the confrontation of two highly
elaborated, individually consistent, and empirically well-confirmed systems of
knowledge whose simultaneous validity had nevertheless produced inconsistencies
and contradictions. The newly established mathematical and conceptual framework
of special relativity added to the physical knowledge available for dealing with the
problem of a relativistic theory of gravitation. The knowledge blocks of classical
mechanics and electrodynamics and of special relativity offered various points of
departure for the continuation of the relativity revolution in coming to terms with the
problem of gravitation.

The new spatio-temporal framework of special relativity suggested a plausible
mathematical procedure for adapting the classical theory of gravitation to the require-
ments of a relativistic field theory. In classical physics, the Poisson equation deter-
mines the Newtonian gravitational potential by a given distribution of the masses that
act as the sources of the gravitational field (which in turn can be derived from the grav-
itational potential).

 

11

 

 This equation is not invariant with respect to the Lorentz trans-
formations of special relativity. But the Poisson equation can easily be extended in a
formal way to a relativistic field equation by adding a differential operator involving
the time coordinate. The problem with this obvious generalization was that the result-
ing theory of gravitation no longer incorporates Galileo’s principle according to which
all bodies fall with the same acceleration. The most obvious way of bringing gravita-
tion within the purview of the relativity revolution therefore came at the price of hav-
ing to give up one of the fundamental insights of classical mechanics. 

At this point, classical mechanics provided knowledge resources that were turned
into an alternative heuristic starting point for the continuation of the relativity revolu-
tion. In 1907 Einstein formulated his principle of equivalence as a heuristic device

 

11 The Poisson equation, being an equation for the gravitational potential, should properly be called a
potential equation. However, since the Einstein equations are commonly referred to as “field equa-
tions” rather than “potential equations,” we will in the following loosely also refer to the Poisson
equation as a “field equation.”
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that allowed him to incorporate Galileo’s principle into a relativistic theory of gravi-
tation.
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 The equivalence principle asserts that it is not possible to distinguish
between a uniformly and rectilinearly accelerated reference frame without gravita-
tional fields and an inertial system with a static and homogeneous gravitational field.
Accordingly, the problem of a revision of the classical theory of gravitation became
associated with that of a generalization of the relativity principle to accelerated
motion, which henceforth constituted another heuristic guideline for Einstein’s fur-
ther research.

 

13

 

Between 1907 and 1911 Einstein used the equivalence principle to derive several
consequences of his yet to be formulated new gravitation theory.
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 By the spring of
1912, he made a first attempt at formulating a theory for a static but otherwise arbi-
trary gravitational field.
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 The gravitational field equation of this theory was a
straightforward modification of the Poisson equation of classical physics. Since the
Poisson equation embodies the classical knowledge of gravitation from Newtonian
theory, it formed a crucial asset for Einstein’s heuristics. The further elaboration of
Einstein’s theory of the static field met with great difficulties. He found that this the-
ory was incompatible with the conservation of energy and momentum, another pillar
of classical physics. This led to another key element of his heuristic framework, the
requirement that the conservation laws must be fulfilled.

The various heuristic requirements serving as different starting points for the
search for a relativistic theory of gravitation could lead into different directions, con-
fronting it with different obstacles and different intermediate results, as well as lead-
ing perhaps to different solutions to the original problem. After finding a more or less
satisfactory theory of the static field, Einstein further pursued the heuristics embodied
in the equivalence principle and in the knowledge about field theory available in clas-
sical physics. This approach led him to consider uniformly rotating reference
frames.

 

16

 

 As with linearly accelerated motion, he sought to interpret the inertial
forces occurring in such reference frames as generalized gravitational forces. This
interpretation was made plausible by Mach’s critical analysis of classical mechanics.
But the conceptual and technical difficulties implied by the inclusion of rotating ref-
erence frames prevented, for the time being, the formulation of a gravitation theory
that covered this more general case as well. In hindsight, it is clear that a response to
the difficulties which Einstein encountered required the introduction of more sophis-
ticated mathematical tools. The heuristics based on the equivalence principle led to

 

12 See (Einstein 1907). For historical discussion, see (Miller 1992).
13 For a discussion of the problematic relation between the equivalence principle and the generalization

of the relativity principle, see, for instance, secs. 1.1.1–1.1.2 of “Commentary” (in vol. 2 of this
series) and (Janssen 2005, 61–74).

14 See (Einstein 1911).
15 See (Einstein 1912b) and, for historical discussion, (CPAE 4, 122).
16 The crucial role of rotating reference frames in recognizing the role of non-Euclidean geometry was

first discussed in (Stachel 1980), see also (Maltese and Orlando 1995).
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substantial but isolated physical insights, and not to the kind of coherent mathemati-
cal framework necessary for formulating a relativistic field theory of gravitation.

A different path had meanwhile been followed by Max Abraham, who exploited
heuristic clues of the four-dimensional mathematical framework established by
Minkowski for special relativity.

 

17

 

 Abraham succeeded in developing a comprehen-
sive theory of gravitation through an 

 

ad-hoc

 

 modification of this framework. Einstein
soon discovered weaknesses in Abraham’s theory. After a controversy with Abraham,
he realized that a successful application of Minkowski’s formalism to the problem of
gravitation called for a mathematical generalization of this formalism. In late spring
1912 Einstein found the appropriate starting point for such a generalization of
Minkowski’s formalism. In the appendix to the last paper he published before the
considerations documented in the Zurich Notebook, he formulated the equation of
motion in a static gravitational field in a form that suggested that a generalization of
his theory of gravitation would involve non-Euclidean geometry as had been formu-
lated by Gauss for curved surfaces. As early as summer 1912 Einstein succeeded in
formulating a generally-covariant equation of motion for a test particle in an arbitrary
gravitational field. In this equation, the gravitational potential is represented by a
four-dimensional metric tensor, which became the key object for Einstein’s further
research in the following years.

The search for a relativistic gravitational field equation, which occupied Einstein
for the following three years, also involved a new role of the heuristic clues that had
so far guided the research of Einstein and his contemporaries. Initially, these heuristic
clues were more or less isolated hints. They gradually turned into elements of a more
systematic research program, characterized by what we have called Einstein’s “dou-
ble strategy.” This double strategy allowed him to attack the problem of finding a
gravitational field equation by bringing to bear on this problem the entire range of
knowledge resources embodied in the various heuristic elements sketched above.

 

1.3 The Double Strategy

 

The mathematical difficulty of finding a field equation for the ten-component metric
tensor representing the gravitational potential showed Einstein that he needed much
more sophisticated mathematical methods than those available to him at that point. A
mathematical formalism providing what Einstein’s generalized theory of relativity
required had been developed in the second half of the 19th century by Gauss, Rie-
mann, and Christoffel. In a paper published in 1901 by Ricci and Levi-Civita on the
so-called absolute differential calculus, the work of these mathematicians had been
extended to an elaborate mathematical apparatus.
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 However, among physicists, the
absolute differential calculus remained largely unknown for a considerable time. Ein-
stein was certainly not familiar with it until mid-1912.
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 Only after his move from

 

17 For a more detailed treatment, see “The Summit Almost Scaled ...” (in vol. 3 of this series).
18 See (Ricci and Levi Civita 1901). 
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Prague to Zurich did he gain access to these mathematical methods through his con-
tact with Marcel Grossmann. In October 1912, he wrote to Arnold Sommerfeld:

 

I am now working exclusively on the gravitation problem and believe that I can over-
come all difficulties with the help of a mathematician friend of mine here. But one thing
is certain: never before in my life have I troubled myself over anything so much, and I
have gained enormous respect for mathematics, whose more subtle parts I considered
until now, in my ignorance, as pure luxury! Compared with this problem, the original
theory of relativity is child’s play.

 

20

 

The mathematical difficulty of finding a satisfactory relativistic field equation also
gave a new role to the physical requirements that such an equation had to satisfy.
These physical requirements had to be translated into mathematical conditions to be
satisfied by candidate field equations. They were thus also brought into systematic
relations with each other. This translation was by no means unambiguous, since Ein-
stein was exploring an as yet largely unknown territory of knowledge. At the same
time, the theory had to preserve the physical knowledge on gravitation already avail-
able, and its relation to other parts of physics, and it had to be formulated as a mathe-
matically consistent theory built, according to Einstein’s insight of 1912, around the
four-dimensional metric tensor. This combination of relatively clear-cut conditions
and the incompleteness of the information needed to turn the situation into a fully
determined mathematical problem was characteristic of Einstein’s situation when he
began the search for a field equation as documented in the Zurich Notebook. The
search strategy that gradually emerged enabled a mutual adaptation of mathematical
representation and physical concepts, and provided a heuristic device that eventually
turned out to be the adequate response to this situation. 

What conditions to be imposed on a relativistic gravitational field equation for the
metric tensor had emerged from Einstein’s prior research experience? From the math-
ematical point of view, the task was to find a differential operator of second order for
the metric tensor covariant with respect to the largest possible class of coordinate
transformations. The requirement that the candidate differential operator has to be of
second order follows from the analogy with the classical theory of gravitation: the
Poisson equation for the Newtonian gravitational potential is a differential equation
of second order. The requirement of the covariance of this differential operator under
a broad class of coordinate transformations represented for Einstein the goal of a gen-

19 The works by Bianchi (1910) and Wright (1908) probably served as Einstein’s mathematical refer-
ence books. For historical discussion, see (Reich 1994).

20 “Ich beschäftige mich jetzt ausschliesslich mit dem Gravitationsproblem und glaube nun mit Hilfe
eines hiesigen befreundeten Mathematikers aller Schwierigkeiten Herr zu werden. Aber das eine ist
sicher, dass ich mich im Leben noch nicht annähernd so geplag[t] habe, und dass ich grosse Hochach-
tung für die Mathematik eingeflösst bekommen habe, die ich bis jetzt in ihren subtileren Teilen in
meiner Einfalt für puren Luxus ansah! Gegen dies Problem ist die ursprüngliche Relativitätstheorie
eine Kinderei.” Einstein to Arnold Sommerfeld, 29 October 1912, (CPAE 5, Doc. 421). Unless other-
wise noted, all translations are based on the English companion volumes to the Collected Papers of
Albert Einstein.
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eralized relativistic theory in which, if possible, all reference frames would be equiv-
alent.21 A further requirement was that the classical field equation emerge as a special
case of the relativistic field equations under appropriate restrictive conditions, such as
for weak and static fields. The heuristic framework furthermore included general
physical principles such as Galileo’s principle and the laws of energy and momentum
conservation applying to the energy and momentum of the gravitational field as well. 

These requirements formed the relatively stable framing conditions shaping Ein-
stein’s search for the gravitational field equation from its beginning in summer 1912
to the formulation of the eventual solution in late 1915. His main problem was to
ensure the compatibility of these different heuristic components by integrating them
into a coherent gravitation theory represented by a consistent mathematical frame-
work. It turned out that again and again, in the course of his investigations, only some
of Einstein’s heuristic goals could be fully realized while others had to be given up or
at least modified. If not all of his goals could be satisfied, the appropriate balance
between the different heuristic requirements for a gravitational field theory could not
be decided a priori. Their relative weight could only be judged by their concrete
embodiment in candidate gravitational field theories.

Physical properties or mathematical statements could each be looked upon either
as principles of construction for the building blocks of the theory or as criteria by
which the acceptability of such building blocks could be checked. It is this double
perspective that provided the basis for the double strategy that emerged in the course
of Einstein’s search for the gravitational field equation, as documented in the Zurich
Notebook. Earlier the choice between physically or mathematically motivated expres-
sions had been a choice between entirely different approaches to the problem of grav-
itation. Einstein’s 1912 theory of static gravitational field was, for instance, motivated
by physical considerations based on the equivalence principle, while Abraham’s the-
ory started from mathematical considerations related to Minkowski’s formalism. In
the course of Einstein’s work documented in the Zurich Notebook, the two
approaches gradually grew closer and turned into complementary strategies of a more
or less systematic research program. In this research program the two approaches
were distinguished mainly by the sequence in which the building blocks of the theory
come into play. Einstein’s “physical strategy” took the Newtonian limiting case as its
starting point, then turned to the problem of the conservation of energy and momen-
tum and only then examined the degree to which the principle of relativity is satisfied.
His “mathematical strategy,” took the principle of relativity as its starting point and
only then turned to the Newtonian limiting case and the conservation of energy and
momentum. The reconstruction of Einstein’s notes in the Zurich Notebook has made
it evident that his search for the gravitational field equation is to a large extent deter-
mined by the exploration of the possibilities offered by these alternatives. 

21 See (Norton 1999) for a discussion about Einstein’s ambiguity regarding the difference between
invariance and covariance during this period.
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Einstein’s oscillation between these two strategies is characteristic not only of his
approach in the notebook but of his entire struggle with the problem of gravitation
between 1912 and 1915, a struggle that brought him from his 1912 static theory, via
the Entwurf theory of 1913, to the final theory of general relativity.22

This oscillation between the physical and the mathematical strategy suggests that
his search for the gravitational field equation was not just a matter of resolving a
well-defined mathematical problem, but involved an interaction between mathemati-
cal representation and physical concepts that affects the structures of the mathemati-
cal and physical knowledge. Why else did Einstein’s first attempts along the
mathematical strategy in the winter of 1912–1913 fail, while his pursuit of the physi-
cal strategy seemed to be essentially successful, at least until the demise of the Ent-
wurf theory in late 1915?23 As we will show in detail, the completion of the general
theory of relativity required, in addition to the appropriation of the available mathe-
matical knowledge, a revision of foundational concepts of physics, the extent of
which Einstein could hardly have foreseen at the beginning of his search. He initially
believed that classical physics would provide the appropriate context for the theory to
be found and attempted to formulate a gravitational field equation by immediate gen-
eralization of familiar Newtonian concepts. It eventually turned out to be more suc-
cessful to construct a field equation corresponding to Einstein’s program of
integrating gravitation and relativity than to relate it to the conceptual foundations of
classical theory.

1.4 The Epistemological Framework of the Analysis

How was it possible for Einstein to formulate a theory involving conceptual novelties
on the basis of knowledge that was still anchored in the older conceptual foundation
of classical physics? Such a development can hardly be described in terms of formal
logic. As Einstein’s investigative pathway illustrates, scientific conclusions can result
in a reconceptualization of the premises on which these conclusions were based. Even
in cases involving major restructuring of knowledge, science never starts from
scratch. In fact, not only scientific knowledge but also the knowledge of large
domains of human experience transmitted over generations is not simply lost when
new scientific theories replace the old ones. In the case at hand, the knowledge of
classical physics had to be preserved and exploited in a conceptual revolution, the
outcome of which was a relativistic theory of gravitation whose far-reaching physical
implications were largely unknown when it was created. But they eventually changed
our understanding of the universe. An adequate description of the cognitive dynamics
of the genesis of general relativity therefore requires an account of the knowledge that

22 Very similar characteristics of a physical and mathematical double strategy have also been identified
in Einstein’s later work on unified field theory, see (van Dongen 2002, 2004) and (Sauer 2006) for fur-
ther discussion. See also the discussion in (Norton 2000).

23 And, as is argued in “Untying the Knot …” (in vol. 2 of this series), beyond the demise of this theory
as well.
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makes it understandable. We have to understand, first, how past experiences can enter
inferences about matters for which only insufficient information is available, and, sec-
ond, how conclusions can be corrected without eventually having to start from scratch
each time a premise is found to be wanting, with the possibility that the whole deduc-
tive structure changes in the process. Such an approach is offered by an historical
epistemology that integrates the methodology of historical analysis with a theoretical
framework informed by philosophical epistemology and cognitive science.

In order to adequately account for the features of Einstein’s search for the gravita-
tional field equation described above, we will in the following make use in particular
of the concept of a “mental model” and the concept of a “frame.”24 A mental model
for us is an internal knowledge representation structure serving to simulate or antici-
pate the behavior of objects or processes. It possesses “terminals” or “slots” that can
be filled with empirically gained information, but also with default assumptions
resulting from prior experience. The default assumptions can be replaced in light of
new information, so that inferences based on the model can be corrected without
abandoning the model as a whole. Information is assimilated to the slots of a mental
model in the form of “frames.” These are chunks of knowledge which themselves are
equipped with terminals and which have a well-defined meaning anchored in a given
body of shared knowledge.

Mental models can, as a rule, be externally represented by material models which
also serve as the element of continuity in their transmission from one generation to
the next. The basic features of the field-theoretical model of distant causation, which
will play a central role in our analysis, may, for instance, be represented by the mate-
rial model of a magnet setting a piece of iron into motion by affecting the state of its
environment. In addition, it may be represented by symbolic representations making
use of natural and formal language. The internal architecture of a system of knowl-
edge is constituted by a network of mental models and frames that can be linked by
operations in the sense of mental acts typically corresponding to handling external
representations, be they material arrangements or symbolic expressions. A sequence
of such operations constitutes a procedure which typically has a goal, for instance of
creating an ad hoc knowledge representation structure, which is called a “real-time
construction” in cognitive science. A real-time construction may be exemplified by
the geometrical construction typically accompanying the Euclidean proof of a geo-
metrical theorem or by a set of mathematical expressions corresponding to checking
a candidate field equation according to one of Einstein’s heuristic principles.

Two fundamentally important types of mental acts are “chunking” and “reflec-
tion.” By chunking different knowledge representation structures are combined into a
unity. This often leads to a linguistic representation of the resulting chunk by a tech-
nical term designating, for instance, a particular procedure. By reflection, the usage

24 For the concepts of frame and mental model, see (Minsky 1975, 1987; Damerow 1996; Gentner and
Stevens 1983; and Davis 1984). For a view on the potential of cognitive science and cognitive psy-
chology for the history of science to which the present work is much indebted, see (Damerow 1996).
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of knowledge representation structures becomes the object of reasoning; it typically
presupposes an external representation of these structures, for instance by a technical
term. Reflection obviously plays a crucial role in accommodating a system of knowl-
edge to new experiences by changing its architecture. An example is what we call a
“Copernicus process” in which the internal network of a system of knowledge is
essentially preserved while originally peripheral elements take on a central role in the
deductive structure. The status of such elements as being either peripheral or central
is prescribed by a “control structure.” A control structure is constituted by any knowl-
edge representation structure serving to control the operation and to order other such
structures. In this sense, Einstein’s heuristic principles as well as his double strategy
may be considered examples of such control structures. These elements of the archi-
tecture of knowledge can partially be captured by traditional epistemological termi-
nology. A concept, for instance, may be understood as the linguistic representation of
a mental model, a frame, or a particular terminal of a frame, while a theory is just one
example of many conceivable control structures. We shall also use of these traditional
terms, specifying their meaning in the context of the epistemological framework we
have introduced whenever appropriate.

We claim that the shared knowledge of classical and special-relativistic physics
can be conceived of in terms of this richer epistemological framework, and that it
then becomes understandable how this knowledge could serve as a resource for Ein-
stein’s search for the gravitational field equation. We will argue that essential rela-
tions between fundamental concepts such as that between field and source remain the
same to a great extent even though the concrete applications of these concepts differ
considerably from their applications to a classical or a relativistic field equation. This
structural stability turned the concepts and principles of classical and special-relativ-
istic physics into guiding principles when Einstein entered unknown terrain, for
instance, when he encountered a new expression generated by the elaboration of a
mathematical formalism. None of these expressions by themselves constituted a new
theory of gravitation. Only by complementing them with additional information
based on the experience accumulated in classical and special-relativistic physics, as
well as in the relevant branches of mathematics did such expressions become candi-
dates for a gravitational field equation embedded in a full-fledged theory of gravita-
tion. In the language of mental models, such past experience provided the default
assumptions necessary to fill the gaps in the emerging framework of a relativistic the-
ory of gravitation. Because of their nature as default assumptions, they could be given
up again in the light of novel information without making it necessary to abandon the
underlying mental models, which thus continue to play their heuristic role. 

In this way we hope to render understandable how a gradual process of knowl-
edge accumulation could overcome the very conceptual foundations that had formed
its starting point. The concepts of classical physics shaped Einstein’s search at its
beginning, and made the physical strategy the most natural approach to exploit his
heuristic principles for finding the gravitational field equation. In the context of the
physical strategy, the default assumptions of the relevant mental models were sup-



PATHWAYS OUT OF CLASSICAL PHYSICS  129

plied by the knowledge of classical and special-relativistic physics. The mathematical
strategy, on the other hand, drew on default assumptions based on prior mathematical
knowledge and led to candidate field equations whose compatibility with established
physical knowledge was problematic. The gradual accumulation of knowledge fos-
tered by both of these approaches enriched the network constituted by the mental
models and frames relevant to a relativistic theory of gravitation. Eventually, the reor-
ganization of this network by a Copernicus process became feasible. 

In the following, we shall discuss in detail the essential aspects and phases of this
process, Einstein’s heuristic framework, the gradual accumulation of knowledge in
the course of his research, the successive replacement of one candidate gravitational
field equation by another, the switches back and forth between the physical and the
mathematical strategy, and finally the reinterpretation of the results acquired in this
way as aspects of one and the same transformation leading from the system of knowl-
edge of classical to that of general-relativistic physics.

2. THE MENTAL MODEL OF FIELD THEORY

2.1 The Poisson Equation of Classical Mechanics and the
Field Equation of General Relativity

The revision of Newton’s theory of gravitation confronted Einstein with two funda-
mental problems. He needed to find an equation of motion for bodies in a gravita-
tional field (the analogue of Lorentz’s equation of motion of a charged body in an
electromagnetic field) and to find a field equation determining the gravitational field
itself (the generalization of the Poisson equation and the analogue of Maxwell’s
equations relating the electromagnetic field to its sources). These two problems pre-
sented themselves in terms of basic concepts and structures of classical physics and
the special theory of relativity. These concepts and structures also provided an essen-
tial part of the intellectual resources for solving these problems.

The most fundamental structures of knowledge relevant to Einstein’s search for a
new theory of gravitation were incorporated in the understanding of an equation of
motion and of a field equation in classical physics and in the special theory of relativ-
ity. This understanding involves concepts such as force, energy, momentum, poten-
tial, field, source, and mass.25 Above all, however, it involves the mental model of
field theory which had emerged, in its most mature, successful, and widely accepted
form, in Lorentz’s electron theory of electrodynamics and hence may also be referred
to as the Lorentz model.26 This model actually comprises two mental models with
more ancient roots in the history of physics; one for a field equation and one for the
equation of motion. The Lorentz model of a field equation, which will be at the center

25 For Einstein’s account of the emergence of fundamental concepts of physics, including that of field,
see (Einstein and Infeld 1938).

26 See (Lorentz 1895), and for historical discussion (Whittaker 1951, ch. XIII, 1953, ch. II, Buchwald
1985, Janssen 1995, Darrigol 2000, Janssen and Stachel 2004).



130 JÜRGEN RENN AND TILMAN SAUER

of our analysis of Einstein’s search for the gravitational field equation, has slots for
the source, the potential, and a differential operator acting on the potential. Default
settings for these slots are provided by the classical theory of gravitation which
describes the relation between gravitational source and gravitational potential in
terms of the Poisson equation. In the classical case, the source-slot and the potential-
slot of the frame are filled by scalar functions that can be subsumed under what we
might call the potential-frame and the mass-density-frame, respectively. The default
setting for the differential-operator-slot is the Laplace operator.

Before we come back to a more detailed examination of the structure of the
Lorentz model, we want to justify the introduction of this model by examining some
of the basic concepts and knowledge structures relating the Poisson equation in clas-
sical mechanics to the Einstein field equation of general relativity. We claim that
these common features played an important role in the historical development linking
the two equations so that their description by an overarching structure makes histori-
cal sense.

The Poisson equation of classical gravitation theory describes how gravitating
matter generates a gravitational potential. This potential can then be related to the
gravitational field and to the force acting on material particles exposed to it. The Pois-
son equation is

(1)

where the gravitational potential is denoted by  which is a function
of spatial coordinates  where  denotes the density of gravitat-
ing matter, and where  is a constant.  is a linear second-order differential opera-
tor, known as the Laplace operator.

The gravitational interaction between material bodies in classical physics can, of
course, also be treated directly on the basis of Newton’s law of gravitation. This law
states that an attractive force between two point particles acts instantaneously along
the direction defined by the two bodies and its strength varies inversely proportional
to the squared distance between the particles. This action-at-a-distance force can also
be calculated from a local potential function  which is then determined by the Pois-
son equation introduced above.27 While the Poisson equation thus appears only as an
alternate description of the same physical content as Newton’s law, this equation sug-
gests, at the same time, a different physical interpretation of gravitation. According to
this interpretation, gravitation—represented by the potential  and produced by
some matter distribution  which acts as its source—fills the entire space and exerts
its influence on matter locally as a force. By virtue of this interpretation, the Poisson
equation can be considered as a first hint at a gravitational field theory, in particular at
a time when the field theoretic framework established by Maxwell’s electrodynamics

27 Recall (see note 11) that we are loosely referring to the Poisson equation as a “field equation” even
though it should properly be called a “potential equation.”
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suggested a field-theoretic revision of Newtonian gravitation. Nevertheless, the New-
tonian gravitational potential lacks two essential features required by a genuine phys-
ical field theory. First, the gravitational field does not propagate with a limited speed,
a field-theoretical feature that became mandatory after the advent of the theory of
special relativity. It also does not describe some expected dynamical effects of gravi-
tation such as dragging effects due to moving masses (“gravitational induction”) or
gravitational waves.

The Einstein equation stands at the end of a historical process in which the wish
to conceive of the gravitational interaction in a truly field-theoretic manner played a
significant heuristic role. The Poisson equation and the Einstein equation share a
number of common features, in spite of the long and sometimes circuitous discovery
process separating the two. In general relativity, the gravitational interaction is also
determined by a second-order partial differential equation —the Einstein equation—
which relates the gravitational potential to its source. 

The Einstein field equation

(2)

written in terms of the Ricci tensor  and the Riemann scalar  can also be writ-
ten explicitly as (where summation over repeated indices is understood)

(3)

where the gravitational potentials are denoted by  and  which are functions of

the spacetime coordinates  and where  is a constant.

Like the left-hand side of the Poisson equation, the Einstein tensor  is a sec-
ond-order differential operator applied to the gravitational potential, even though the
operator in this case is much more complicated than the Laplace operator. 
denotes the so-called stress-energy or energy-momentum tensor and corresponds to
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another element familiar from the Poisson equation, the role of matter as gravitating
source. The mass density  which functions as the gravitating source in the Poisson
equation reappears, for instance, in the following example of an energy-momentum
tensor:

(4)

which describes a dust-like cloud of material particles acting as the source of the
gravitational field where  stands for the mass-density of the swarm and 
denotes the special-relativistic four-velocity of the dust particles.

2.2 The Lorentz Model of a Field Equation

In our introduction of the Poisson equation as the point of departure in classical phys-
ics for a development eventually leading to the Einstein equations, we have empha-
sized their common features. One such basic feature is that both equations establish a
relation between matter and gravitational potential; a second feature is that both
equations relate the action of gravitation to its source by second-order partial differ-
ential equations. Such common features are more than distant mathematical similari-
ties or analogies perceived only in hindsight. We claim that such similarities guided
the historical development linking the two equations. These similarities, we believe,
correspond to structural properties following from the basic mental model shaping
the thinking process connected with this development. This interpretation is corrobo-
rated by the historical observation that the development from the Poisson to the Ein-
stein equation went through a number of intermediate field equations of the same
fundamental structure. We will show that they can all be interpreted as instantiations
of the mental model of a field equation, which was modified, again and again, in
response to inconsistencies by replacing a minimal number of specific features, while
all other components retained their “default” settings. In spite of the inherently con-
servative structure of this development its outcome entailed fundamental changes in
the conceptual structure of classical physics including the original mental model of a
gravitational field equation itself.

We will write the basic structure of the mental model of a field equation imple-
mented in the context of gravitational theory symbolically as:

OP(POT) = SOURCE. (I)

This equation is meant to symbolize a structure of shared physical knowledge accord-
ing to which a source SOURCE generates a potential POT, related to each other by a
differential equation with a second-order differential operator OP acting on the
potential. We justify the introduction of our symbolic notation by the observation that
the same knowledge structure can be found in such different cases as the Poisson
equation, Einstein’s intermediate equations for the gravitational potential, the
Laplace equation for the electrostatic potential, and the four-dimensional potential
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formulation of Maxwell’s equations. Correspondingly, OP, POT, and SOURCE can
be instantiated in many different ways, such as the Laplace or the d’Alembert opera-
tors for OP, mass density or the energy-momentum tensor for SOURCE, Newton’s
gravitational potential or the metric tensor for POT. Notwithstanding the different
contexts for each of those instantiations, we find an overarching conceptual structure
relevant for each of them. It is the role of these overarching structures in guiding
physical reasoning in a qualitative way that we wish to describe in terms of mental
models and frames and that we wish to capture in our symbolic notation. We discuss
the relevant instantiations for the frame of the field equation in somewhat greater
detail.

Before the crucial phase of Einstein’s search for a gravitational field equation in
the years 1912 – 1915, the mental model of a field equation essentially covered two
physical structures, that shaped Einstein’s conceptual background in his search: the
Poisson equation of classical mechanics and the potential equations of electrodynam-
ics. In the latter, the structure even appears twice, once in electrostatics, in a simple
form analogous to that in classical mechanics, and once in a more complex version
extended to cover the dynamical aspects of the electromagnetic field as well. In elec-
trostatics, the electrostatic potential  is generated by an electric charge density 
according to28

(5)

The more extended version, which covers this equation as a special case under certain
conditions, is the four-dimensional potential formulation of Maxwell’s equations at
the core of classical electrodynamics. The four-dimensional, special-relativistic for-
mulation of electrodynamics was developed beginning in 1908 by Minkowski, Laue,
and Sommerfeld29 and was quickly established as a standard.30 In this framework,
the inhomogeneous Maxwell equations can also be written in a potential formula-
tion:31

(6)

28 The minus sign which does not appear in the Poisson equation of classical mechanics given in eq. (1)
reflects the fact that the gravitational interaction is attractive whereas the electrostatic interaction of
two charges of equal sign is repulsive.

29 See (Minkowski 1908, Laue 1911, and Sommerfeld 1910a; 1910b).
30 For historical studies, see (Reich 1994, Walter 1999).
31 See, e.g., (Laue 1911; 1913 § 19). The potential formulation of Maxwell’s equation given in eq. (6)

presupposes a gauge fixing of the form

(Lorentz gauge). Together with this gauge condition eq. (6) represents a fully equivalent representa-
tion of Maxwell’s equations.
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where is the d’Alembert operator,  the electromagnetic four-
potential composed of a scalar electric potential  and a vector magnetic potential

 and  is the four-current, composed of the elec-
tric charge density  and the velocity vector  acting as a source of
the potential. 

As we shall discuss in more detail below,32 the relation between electrostatics and
electrodynamics provided Einstein and his contemporaries with a basis for an under-
standing of how Newton’s theory of gravitation might be elaborated into a field the-
ory satisfying the requirements of the relativity theory of 1905. Einstein explicitly
compared the task of building a relativistic theory of gravitation to the task of devel-
oping the entire theory of electromagnetism knowing only Coulomb’s law, and found
it just as formidable.33 

Concrete instantiations of the general structure (I) make it clear that there are pro-
found differences between them that are not represented by the simple symbolic
equation. A major difference between the gravitational or electrostatic Poisson equa-
tion (1) resp. (5) and the full electrodynamic wave equation (6) concerns, for
instance, the behavior of the equations under coordinate transformations. The simple
mathematical form of those two equations is valid only if specific systems of coordi-
nates are used. The same equations rewritten for a different coordinate system would,
in general, change their appearance, unless the new system of coordinates is related
to the old one by a coordinate transformation of the appropriate covariance group.
This group of admissible coordinate transformations is a mathematical feature of the
equation, that is, of the differential operator as well as of the source-term appearing in
the equation. It also expresses the validity of a relativity principle for the relevant
physical theories, be they those of classical or special-relativistic physics. Coordinate
systems can be associated with observers in different locations and in different states
of motion, and covariance with regard to coordinate transformations can be associ-
ated with the independence of physical phenomena of the perspectives of these differ-
ent observers.34

The Laplace operator, appearing in the electrostatic as well as in the gravitational
Poisson equation, retains its form if Galilean coordinate transformations are used

32 See section on “correspondence principle,” p. 148.
33 See (Einstein 1913). For more evidence that Einstein conceived the problem of gravitation in analogy

with electrodynamics, consider e.g. the title of (Einstein 1912a): “Is there a Gravitational Effect
Which Is Analogous to Electrodynamic Induction?” (“Gibt es eine Gravitationswirkung, die der elek-
trodynamischen Induktionswirkung analog ist?”) or a number of references to the analogy with elec-
trodynamics in Einstein’s contemporary correspondence; see, e.g., Einstein to Paul Ehrenfest, before
20 June 1912: “A rotating ring does not generate a static field in this sense, even though it is a tempo-
rally invariant field. [...] My case corresponds to the electrostatic field in the theory of electricity,
whereas the more general static case would also include the analogue of the static magnetic field. I
haven’t got as far as that yet.” (“Ein sich drehender Ring erzeugt nicht ein statisches Feld in diesem
Sinne, obwohl es ein zeitlich unveränderliches Feld ist. [...] Mein Fall entspricht in der Elektrizitäts-
theorie dem elektrostatischen Felde, wogegen der allgemeinere statische Fall noch das Analogon des
statischen Magnetfeldes mit einschliessen würde. So weit bin ich noch nicht.”) (CPAE 5, Doc. 409).
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which relate the inertial reference frames of classical mechanics to each other; these
inertial transformations express a symmetry of Newtonian spacetime. The d’Alem-
bertian operator appearing in special relativistic electrodynamics, on the other hand,
is invariant under the Lorentz transformations which relate inertial reference frames
of special relativity to each other and express a symmetry of four-dimensional
Minkowski spacetime. 

This illustrates that there can still be profound differences between various instan-
tiations of the structure (I). But whatever these differences may be, insofar as the rela-
tion between OP, POT, and SOURCE is cancelled, the corresponding frames enter
the same network of relatively stable relations to other physical concepts such as field
and force. The concept of a field, in particular, is related to the concept of potential
appearing in this mental model by a structure according to which a field FIELD is
derived from a potential POT by some differential operation GRAD. This relation
can be written in symbolic notation as

FIELD = – GRAD(POT). (II)

In classical mechanics the equation relating the gravitational potential  to the grav-
itational field  is given by 

(7)

In electrostatics a similar equation holds for the electric field  derived from the
electrostatic potential  by 

(8)

In the case of electrodynamics the same structural relation reappears, albeit in a
somewhat more complex form. The components of  and  of the four-potential

 are related to the electric field  and the magnetic field  by

(9)

and
(10)

These equations can be combined in a tensor equation for the electromagnetic field
tensor 

34 We add a note of caution here. From the point of view of modern coordinate-free descriptions of phys-
ical theories, the covariance of a particular equation under a specific group of coordinate transforma-
tions can be understood as expressing a symmetry property of the underlying spacetime manifold, if
the coordinate systems related by the transformations are those associated with so-called geodesic
observers. In this case, the geodesic observer field is also a Killing vector field of the manifold, see
(O’Neill 1983, 358–362). See also the discussion in (Salmon et al. 1999, chap. 5) and (Norton 1992b).
At the time, however, the validity of a physical principle of relativity was directly associated with the
covariance of the corresponding equations under coordinate transformations, without considering the
symmetry properties of a manifold independently from its coordinate representation.
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(11)

which may be considered as another instantiation of (II).
The discussion of the foregoing examples should make it clear that any concrete

meaning of our symbolic equations is context-dependent as is only fitting for rela-
tions between frames in the sense introduced above. Entities such as OP, POT,
SOURCE, FIELD, GRAD but also operations such as multiplication can take on
entirely different mathematical meanings in different contexts. These symbolic oper-
ators may inherit different default-settings from different frameworks of reasoning.
There is no a priori guarantee that the resulting concrete expressions can still be sub-
sumed under one overarching theory. If one looks, however, at the function of these
frames as heuristic devices that guided Einstein’s pathway out of classical physics,
this obviously was precisely their strength.

In summary, the stability of the mental model of a field equation is a consequence
of its embedding in a network of physical concepts covering a broad spectrum of
physical knowledge. Specifically, the concepts of potential and mass have stable rela-
tions to such concepts as field, force, energy, momentum, and motion. Furthermore,
all instantiations of the Lorentz model we have encountered in classical and special-
relativistic physics include a second-order differential operator OP and can be char-
acterized by symbolic relations between the associated physical concepts such as (II).
For each instantiation, the mental model of a field equation acquires local stability
also through the representation in terms of mathematical concepts that in themselves
are interconnected in an elaborated network allowing for formal manipulations of the
mathematical expressions using well-known formal rules.

The various slots in our symbolic equations can be filled with objects of very dif-
ferent mathematical character, POT and SOURCE may be instantiated by scalar or
vectorial objects, which behave differently under coordinate transformations; the cor-
responding differential operator OP may be the Laplacian or the d’Alembertian oper-
ator. Physically, potential and mass enter the stable conceptual relation described
above, but are at the same time connected with quite different physical concepts and
hence quite different physical phenomena. Thus, the potential POT could be instanti-
ated to the potential of gravitational, electrostatic, or electrodynamic interaction, and
the source-term SOURCE could be gravitating mass-density, electric charge-density,
or electric current.

The Einstein equation introduced in the beginning of this section emerged, as we
shall see, in a process that started from the Poisson equation of classical mechanics
and proceeded via intermediate field equations that are all structured by what we
have called the Lorentz model of a field equation. It is therefore no accident that the
Einstein equation also displays features of this model. We shall show that the Einstein
equation came about only as the result of a complicated process of adaptations of the
original mental model demanding a number of variations (“changes of default set-
tings”) that at each step had to fulfill different, and often conflicting requirements. A
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consistent solution for meeting those requirements was reached only with the final
theory of general relativity. In this theory, however, the field equation has implica-
tions that, as we shall see, challenge the original mental model.

2.3 The Lorentz Model of an Equation of Motion

The field-theoretic model comprises not only a structure shaping the understanding
of a field equation but also a scheme determining the meaning of an equation of
motion. In classical physics a field equation must be complemented by an equation of
motion. Their complementarity derives from the way in which interactions are split
into cause and effect in the Lorentz model. In classical mechanics, the concept of
force allows one to separate the generic features of the action of some agent, to be
described in terms of a general force law, from its specific effect on a given physical
object, to be described in terms of a change of its state of motion. A similar structure
is characteristic of Maxwellian electrodynamics, especially in Lorentz’s electron the-
ory. The field equation describes how sources, represented in our symbolic equation
by the SOURCE-frame, affect the state of the surrounding space, represented by the
POT-frame or the FIELD-frame. The equation of motion describes the effect of the
thus affected space on physical objects in it. From the perspective of classical
mechanics, a field equation is therefore nothing but a specific way of prescribing a
general force law. What is required is a bridge between the concept of field and that
of force.

According to classical mechanics, the effect of a force is a deviation (to be
observed within an inertial frame of reference) from a state of rest or a state of uni-
form rectilinear motion described in terms of an ACCELERATION-frame. The
magnitude of the acceleration depends not only on the force (characterized in the fol-
lowing by a FORCE-frame) but also on the reactive properties of the physical object
exposed to it; these properties will be summarily described by the inertial mass
frame, MASSIN. In short, an equation of motion according to classical and special-
relativistic physics, complies with a mental model of causation that may be called the
“acceleration-implies-force model” and takes the form:

FORCE = MASSIN x ACCELERATION. (III)

In classical mechanics this relation corresponds to Newton’s 

(12)

where  is the inertial mass of a material particle,  its acceleration in three-space
and  a classical force. The special relativistic generalization of this relation is

(13)

where  is the rest mass,  the four-velocity and  the proper time. Here 
denotes the force as a four-vector.
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The structure of the symbolic equation (III) also complies with that of a much
more general and much older mental model of causation rooted in intuitive physics,
the “force-implies-motion model,” which thus serves as a “higher-order model” for
the Newtonian relation (III):35 According to this higher-order model of causation, the
effect of an action (here ACCELERATION), depends on the strength of the action
(here FORCE) as well as on the resistance to the action (here MASSIN).

How can the acceleration-implies-force model belonging to the core of Newto-
nian mechanics be integrated with the concept of field at the center of the field-theo-
retical model? In order to bridge the two models one needs a specification of the
relation between POT or FIELD, describing the local state of the surrounding space,
and FORCE, describing the role of this space as an agent determining the motion of
matter. In classical field theory, this bridge relation is given by the notion that the
field is tantamount to a local force. The force experienced by a particle in a field is
proportional to the strength of the field at the point of the particle in space and time. It
is also proportional to that quality of the particle that responds to the particular field,
be it its gravitational mass, its electric charge, or its magnetic moment. We capture
the relation between FORCE and FIELD by the symbolic relation

FORCE = CHARGE x FIELD (IV)

At this point, our symbolic relations allow us to describe a possible inference on the
level of qualitative physical reasoning. We may use relation (II) between FORCE
and POT, to derive a relation between FIELD and POT

FORCE = – CHARGE x GRAD(POT). (V)

From a different perspective, one may also look at the set of relations (II), (IV), and
(V) as the expression for a conceptual network on the level of qualitative physical
reasoning in which the frames FORCE, FIELD, CHARGE and POT are related to
each other.

In electrostatics the CHARGE-frame is instantiated by the charge density ,

CHARGE , (VI)

and the force density acting on  and determined by an electric field  derived
from the electrostatic potential  is given by:

(14)

In Newtonian gravitational theory the default setting of the CHARGE frame is the
so-called “passive gravitational mass”:

35 For the force-implies-motion model, see (Gentner and Stevens 1983; Renn 2000), and also “Classical
Physics in Disarray …” (in this volume).
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CHARGE  resp. . (VII)

Accordingly, the force density acting on a mass density  due to a gravitational
field  that can be derived from a gravitational potential  is given by:

(15)

In the case of electrodynamics the same structural relation holds in terms of the elec-
tromagnetic field tensor  expressed in terms of a generalized electrodynamic
potential in (11). The four-force density  is given by

. (16)

This equation again exhibits the structure FORCE = CHARGE x FIELD, even
though the multiplication of our symbolic equation is realized in this case by a four-
dimensional contraction.

The discussion of the bridge relation required to integrate the acceleration-
implies-force model with the field concept makes the intrinsic complexity of the
Lorentz model particularly evident. This complexity stands in striking contrast to cer-
tain elementary features of gravitational interactions. It is mainly due to the fact that
the Lorentz model results from the integration of mental models referring to two
kinds of physical substances, the model of an extended, space-filling physical
medium traditionally labelled as “aether” and the model of matter constituted by par-
ticles. The relation between field and force given by (IV) mediates between these
models and at the same time points to the conceptual intricacies resulting from their
integration. For instance, what at first sight merely seems to be a problem of two bod-
ies moving about their common center of gravity, say of the sun and a planet, appears,
from the perspective of the Lorentz model as the consequence of a field generated by
one body which is then felt by the other body as a force that in turn is the cause of its
motion.

As a consequence of this construction, both the concept of force and the concept
of mass take on connotations, which they did not possess independently in the more
elementary models. In classical mechanics, for instance, the concept of force com-
prises actions at a distance, typically between particles. In the context of the field-the-
oretical model, it applies exclusively to local interactions, a rather artificial limitation
from the point of view of Newtonian physics. Similarly, while the Newtonian concept
of force entails a reciprocity of the interaction it describes, expressed in Newton’s
actio = reactio, such a reciprocity is less evident for an interaction that is conceived
to relate a state of space, characterized by the FIELD-frame or the POT-frame, to
changes of the state of motion of a physical object, characterized by the ACCELER-
ATION-frame. As a matter of fact, theories such as Lorentz’s electron theory violate
this reciprocity and actio = reactio no longer holds for the interaction between ether
and charged matter.

Newtonian
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The conceptual intricacies implied by the Lorentz model for the concept of mass
are even more serious. Mass may be conceived as a “source” causing changes of the
state of space or of the “aether” according to (I). We thus have “active gravitational
mass” in the case of gravitational interaction:

SOURCE  resp. . (VIII)

Mass may also, according to (V) and (VII), be conceived as a passive property of a
physical object exposed to the resulting field, determining the degree to which the
field locally acts as a force (CHARGE or “passive gravitational mass” in the case of
gravitation); it may finally be conceived, according to (III), as “inertial mass”
MASSIN, i.e., as resistance to ACCELERATION. In classical electrostatics, these
magnitudes are represented by electrical charge and inertial mass, respectively, and
can vary independently from each other. In classical gravitation theory, gravitational
and inertial mass happen to coincide empirically. In this case we are thus entitled to
introduce a generic MASS-frame for which we have:

MASS = MASSIN, (IX)

which may hence be instantiated by inertial, or active gravitational, or passive gravi-
tational mass.

The integration of different mental models within the field-theoretical model pro-
duces conceptual distinctions that may actually not be warranted by the available
knowledge of the interactions it describes. The emergence of conceptual distinctions
as an artefact of a theoretical framework was visible, in the case of the gravitational
interaction, even from a less sophisticated perspective than that offered by the field-
theoretical model. When the gravitational action is described not in terms of a field
theory but simply using the Newtonian force law, the distinction between mass as a
property of matter that causes gravitation and mass as a reactive property of matter
that resists the acceleration caused by a gravitational force is rather artificial. Indeed,
it has long been known that all bodies fall with the same acceleration in a gravita-
tional field whatever their mass (Galileo’s principle). Within the context of the field-
theoretical model this insight suggests far-going consequences for the understanding
of an equation of motion.

In fact, since in classical mechanics the CHARGE-frame and the SOURCE-
frame instantiate to the passive and active gravitational mass resp. mass density
according to (VII) and (VIII), we may identify these two frames with each other and
with the general MASS-frame:

SOURCE = CHARGE = MASS (X)

Recalling the relations that the FORCE-frame enters with the ACCELERATION-
frame and the FIELD-frame according to (III) and (IV), our symbolic equations
entail

ACCELERATION = FIELD. (XI)

gravitation
ma ρa
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This symbolic equation translates Galileo’s principle to the assertion that in a gravita-
tional field theory the local acceleration actually represents the gravitational field.
This makes it possible to interpret the effect of gravitation, namely ACCELERA-
TION, directly as a representation of the local force, i.e. as a FIELD, independently
of the properties of the object exposed to it. We emphasize that we introduced our
symbolic notation in order to be able to represent this kind of inference which can be
made largely on the level of qualitative physical reasoning independent of any con-
crete representation. It also expresses the fact that the identification of the ACCEL-
ERATION-frame and the FIELD-frame is a general relation between two frames
that is not tied to the concrete conceptualization of the gravitational interaction. It
may hence guide the physical reasoning also in situations where new ways of mathe-
matical representation or else new conceptual relations within a gravitational theory
are being explored.

Eq. (XI) no longer contains FORCE. This insight crucial for the development of
general relativity. It suggests that it should be possible to set up a theory where field
phenomena are equivalent to acceleration phenomena. This, of course, is exactly the
idea at the core of Einstein’s equivalence principle.36 In such a theory Galileo’s prin-
ciple would find the conceptual justification it lacked in classical mechanics, where it
appeared as a mere empirical coincidence.

The insight that in a gravitational field theory the acceleration is directly equiva-
lent to the field, symbolically represented by eq. (XI), also suggests the formulation
of an equation of motion in a gravitational field that does not make use of the inter-
mediate concept of force. The idea of eliminating the concept of force was familiar
from classical physics and had been elaborated in the context of the Lagrange formal-
ism of analytical mechanics. In elementary situations of classical mechanics the Lan-
grangian or Lagrange function at the center of this formalism is simply the difference
between the kinetic and the potential energy of a physical system:

(17)

The Lagrange formalism provides an alternative way of obtaining equations of
motion. In this formalism the trajectory of a material body is selected from the set of
all kinematically possible trajectories satisfying given constraints. The criterion for
the selection is that the action, defined as the same integral of the Langrangian along
a given trajectory is stationary, i.e., takes on either a maximum or a minimum value,
for the actual trajectory. This criterion is known as Hamilton’s principle. Saying that
the action is stationary is the same as saying that its variation vanishes:

36 See the discussion below. Cf. in this context Einstein’s use of the word “Beschleunigungsfeld” (accel-
eration field) in (Einstein 1912b): “the hypothesis that the “acceleration field” is a special case of the
gravitational field [...]” (“die Hypothese, daß das ‘Beschleunigungsfeld’ ein Spezialfall des Gravitati-
onsfeldes sei [...]” (p. 355).

L T V .–=
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(18)

The situation is similar to the problem of finding the shortest path connecting two
points on a curved surface. This problem can be solved by looking for an extremal
value among the lengths of all possible paths connecting these points. 

The Lagrange formalism yields the explicit equation of motion for a particle in
the form of the so-called Euler-Lagrange equations, which follow from Hamilton’s
principle:

(19)

Under appropriate circumstances, these equations may be assimilated to the relation

(20)

between a force  and the change of momentum  familiar from classical mechan-
ics. We capture the qualitative physical content of equations (19) and (20) by the
symbolic equation

DIFF(MOMENTUM) – FORCE = 0, (XII)

introducing, at the same time, a MOMENTUM-frame and a DIFF-frame, the latter
being in the present case instantiated by time-derivatives. The advantage of the
Lagrange formalism compared to the explicit specification and use of forces becomes
clear if one considers motion under geometrical constraints, such as the motion of a
point particle on the surface of a sphere. Using the acceleration-implies-force model
such geometrical constraints are realized by constraining forces which are defined
only by their effect, i.e., if a body moving under geometric constraints departs from
uniform rectilinear (inertial) motion this deviation is assumed to be caused by the
constraining forces. The precise magnitude and direction of these forces are generally
unknown and hence cannot be explicitly specified in order to obtain an equation of
motion by instantiating the acceleration-implies-force model. The Lagrangian for-
malism uses the fact that these constraining forces do not perform work. They play no
role in the interplay between kinetic and potential energy as captured by the Lagrange
function if the latter is expressed solely in terms of those generalized coordinates that
describe possible motions under the given constraints, without losing information
about the physical situation.

The significance of the Lagrange formalism for Einstein’s research on gravitation
was twofold. For one, it represented a generalizable formalism that was applicable in
cases where a force or a momentum was not easily identified. It therefore also applied
in a geometrized theory by expressing the Lagrange function in terms of a geometry
adapted to the physical situation at hand.37 Describing motion in a gravitational field
with the help of the Lagrange formalism, as we shall see, naturally suggests to con-
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ceive of gravitation as a consequence of geometry, rather than of force. And this con-
ception of gravitation in turn suggests adopting the Lagrange formalism as the natural
framework for formulating the equation of motion in a gravitational field.

3. THE ELEMENTS OF EINSTEIN’S HEURISTICS

In the course of the first period of Einstein’s research on gravitation—between 1907
and 1912—specific components of the heuristics had crystallized as relatively stable
structures which would guide his search for the gravitational field equation in the sec-
ond period—documented in the Zurich Notebook. To some of them Einstein even
attached labels, such as the “equivalence hypothesis,”38 making their outstanding role
for his heuristics evident, while other heuristic requirements were so obviously inter-
woven with canonical expectations from classical physics, such as the requirement of
energy conservation, that they did not receive a special name. For ease of reference,
we shall nevertheless introduce standard names.

Einstein’s equivalence principle, which in the first period mainly served to find
properties of special cases of gravitational fields, became in the second period a stan-
dard criterion for checking whether or not candidates for a general gravitational field
equation incorporated his earlier insights about the intimate relation between gravita-
tion and inertia. The generalized relativity principle, a closely related result of Ein-
stein’s research in the first period, was applied in the second period either as a starting
point in the context of the mathematical strategy for choosing appropriate candidates
for the gravitational field equation or as a validation criterion by which a candidate
constructed in the context of the physical strategy was examined. The conservation
principle, inherited from classical physics, played a crucial role in developing the the-
ory of the static gravitational field and was similarly used in the second period both as
a touch stone and as a building block. This was also the case for what we will call the
correspondence principle. This principle represents the demand to incorporate in a
new theory of gravitation the knowledge about Newtonian gravitation by requiring
that the basic relations of the latter be recovered from the former in some approxima-
tion or as some special case. Its implementation as a component of Einstein’s heuris-
tics took clues from the relation between electrostatics and electrodynamics. Einstein
thus expected that the generalized theory should be connected to the Newtonian the-
ory via the intermediate case of the weak and static gravitational field.

37 Its significance for expressing the equation of motion in special relativity was realized by Max Planck
(Planck 1906, 1907).

38 Although Einstein referred to the equivalence principle as a “hypothesis” in (Einstein 1907) and in
(Einstein 1911), the terms “Aequivalenzhypothese” and “Aequivalenzprinzip” were used for the first
time in (Einstein 1912b).
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3.1 The Equivalence Principle and the Generalized Relativity Principle

According to Einstein’s equivalence principle the effects of a homogeneous static
gravitational field are equivalent to those in a uniformly and linearly accelerated ref-
erence frame. The equivalence principle, which establishes a connection between the
gravitational field and inertial forces, is closely related to Galileo’s principle that all
bodies fall with the same acceleration in a gravitational field, independent of their
constitution. While neither Galileo’s principle nor the equivalence principle are part
of the foundational structure of classical physics, they are part of the knowledge con-
tained in it, as expressed by our symbolic equation (XI). Einstein established a mean-
ingful connection between acceleration and the gravitational field by integrating two
mental models of classical physics which originally belonged to different domains of
knowledge, the mental model of a system with a homogeneous static gravitational
field, familiar from everyday physics in local terrestrial laboratories, and the model of
a system in uniformly accelerated motion (Einstein’s famous elevator experiment),
which was analyzable using standard tools of classical mechanics. The indistinguish-
ability of motions in these two systems makes it possible to identify the terminals of
these models and thus to establish an equivalence between gravitational and inertial
forces as well as between an accelerated frame of reference and an inertial frame.
These identifications turned out to have far-going consequences for the organization
of physical knowledge. Such consequences can be spelled out if further elements of
the knowledge of classical and special relativistic physics are taken into account and
are combined, for instance, with simple mental models of ray optics leading to the
conclusion that light is curved in a gravitational field.39 

Einstein’s “elevator model,” admits an extension to a more general class of gravita-
tional fields and accelerated motions. Such an extension was suggested, in particular,
by the Machian idea to interpret the inertial forces occurring within a uniformly rotat-
ing system as due to the interaction with distant masses rather than due to “absolute
space.” Mach had compared an accelerated system—Newton’s famous rotating
bucket—with a system at rest in which an interaction with distant masses, the stars
revolving around the bucket, accounts for the same physical phenomena as are pro-
duced by the inertial forces in the accelerated system. This thought experiment pro-
vided a blueprint for the elevator-thought-experiment, which is at the heart of
Einstein’s “principle of equivalence.” In analogy to the “elevator model,” a “bucket
model” could thus be conceived as one in which the inertial forces occurring in a rotat-
ing reference frame are interpreted as the effects of a generalized gravitational field. 

The elevator and the bucket models may both be considered as special cases of a
general “gravito-inertial model” in which inertial forces resulting from arbitrarily
accelerated motions are interpreted as coming from a “dynamic” gravitational field.
This gravito-inertial model made it plausible to assume that inertial frames of refer-
ence play no privileged role in a theory that adequately describes such a generalized

39 See the discussion in “Classical Physics in Disarray …” (in this volume).
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gravitational field. It also suggested that the generic properties of gravitational fields
that can be thought of as resulting from accelerated motions are shared by arbitrary
gravitational fields. It suggests, for instance, that the laws governing the motion of
bodies are the same in both types of fields. More generally, the gravito-inertial model
made it plausible that physical interactions taking place in a gravitational field are
essentially equivalent to those taking place in a gravitation-free system that is
described from the point of view of an accelerated observer. In hindsight, the equiva-
lence principle—and the gravito-inertial model structuring the reasoning on which
this principle is based—thus introduced four more or less distinct requirements into
the search for a theory of general relativity:

– the theory should satisfy a “generalized principle of relativity” and eliminate as
much as possible the privileged a priori structures which in the classical theory
are associated with such notions as absolute space and inertial frames of refer-
ence;

– the theory should describe motion in a gravitational field as a “free fall” indepen-
dent of the structure of the moving body; 

– the theory should treat gravitation and inertia as aspects of one more general
interaction; and

– the theory should describe non-gravitational physical interactions essentially in
the same way as special relativity if an appropriate reference frame (local inertial
frame) is chosen for that description.

These requirements are directly related to general relativity as we know it today. His-
torically, the impact of the equivalence principle on the search for a new theory of
gravitation was much less straightforward than it may appear in hindsight. A number
of conceptual and technical problems had to be resolved or at least disentangled
before such a clear relation could emerge.40 In particular, Einstein was convinced that
the demand for a generalized relativity principle could be satisfied by requiring the
equations of his theory to be generally covariant (Norton 1994, 1999). He lacked the
modern notion of spacetime symmetries. Similarly, the description of motion in a
gravitational field as “free fall” along a geodesic trajectory is closely related today to
the understanding of the affine structure of spacetime. But Einstein did not have the
concept of affine connection at his disposal and still saw the need to interpret the
equation of motion in terms of a classical gravitational force.41 

The equivalence principle and the generalized relativity principle did not give rise
to requirements which the new theory had to satisfy as a set of fixed axioms; they
acted in a more general and diffuse way as heuristic guiding principles which, in dif-
ferent contexts, had a variety of concrete implications not necessarily covered by
their modern counterparts. The generalized principle of relativity, in particular, moti-
vated Einstein to consider the absolute differential calculus as the appropriate lan-

40 See (Norton 1985), “Classical Physics in Disarray …” and “The First Two Acts” (both in this volume).
41 See “The Story of Newstein …” (in vol. 4 of this series).
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guage for his new theory of gravitation but also to construct mathematical objects
which are covariant merely under much more limited classes of coordinate transfor-
mations. The equivalence principle led him to identify qualitative consequences of
general relativity such as light deflection even before the formulation of the definitive
theory, albeit with numerically different results. It led Einstein to adopt the geodesic
equation of motion as the law of motion appropriate for general gravitational fields
but also to systematically check whether candidate field equations are covariant at
least under transformations to linearly accelerated systems and to uniformly rotating
systems. 

In the context of Einstein’s systematic search for the gravitational field equation
documented in the Zurich Notebook the adoption of the generalized relativity princi-
ples amounted to a check of the covariance properties of a candidate field equation.
But even the way in which this check was implemented—by the introduction of a
generally-covariant differential operator along the mathematical strategy or by
explicitly checking the behavior of a candidate under coordinate transformations
along the physical strategy—depended on the specific perspective guiding the imple-
mentation. At the beginning of Einstein’s search it was not at all clear whether he
would eventually succeed in finding a generally-covariant field equation of gravita-
tion incorporating the equivalence principle. From the outset it was unclear whether
the ambitious aim of a generalized relativity principle and perhaps even the equiva-
lence principle would be realizable or whether these postulates had to be restricted or
modified in order to be able to satisfy other requirements to be imposed on such a
field equation, such as the conservation principle.

3.2 The Conservation Principle

According to the conservation principle as it functioned in Einstein’s heuristics, it
should be possible to establish a balance of energy and momentum in a gravitational
field, resulting in a conservation law if all contributions to the balance, including that
of the gravitational field itself, are taken into account. This expectation was motivated
by the experience of classical physics where such a balance of energy and momentum
could indeed be obtained for all physical processes if only appropriate concepts of
energy and momentum were identified for all relevant subdomains, such as mechan-
ics, thermodynamics, and electrodynamics. This expectation had been both amplified
and modified by the advent of special relativity, and in particular that of special rela-
tivistic continuum physics, which had shown that several distinct conservation laws
of classical physics, such as those of mass, energy, and momentum actually had to be
integrated into a single all-encompassing conservation law referring to a complex
new entity, the stress-energy or energy-momentum tensor. Against this background,
the conservation principle, understood as part of the heritage of classical and special-
relativistic physics, introduced three more or less distinct requirements into the
search for a theory of general relativity:
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– the theory should take into account the close relation between mass and energy
established by special relativity and consider not just mass but more generally
mass and energy as embodied in the energy-momentum tensor (or some entity
derived from it) as the source of the gravitational field;

– the theory should contain some generalization of the special-relativistic law for
the conservation of energy and momentum; and, in particular,

– the gravitational field equation should be compatible with this generalized
requirement of energy and momentum conservation.

From the perspective of today’s understanding of general relativity, these require-
ments considerably restrict the choice of an acceptable gravitational field equation.
But historically, just as with the generalized relativity principle, Einstein’s heuristic
expectations could not simply be turned into iron-clad axioms for the formulation of
his new theory. Precisely because the requirements listed above were rooted in the
knowledge of classical and special-relativistic physics, they were still embedded in a
conceptual framework that was eventually overturned by general relativity. Further-
more, there were, at the outset of his search, still numerous possibilities for instantiat-
ing the general relations suggested by Einstein’s classical expectations. It was, for
instance, conceivable that not the energy-momentum tensor itself but its trace acts as
the source of the gravitational field. For some time, Einstein assumed that he had to
find a generally-covariant energy-momentum tensor of the gravitational field in anal-
ogy to the one for matter, while such a tensor does not exist according to the final the-
ory. He also assumed that the conservation principle would play the role of an
additional postulate of the theory, whereas it is implied by the correct gravitational
field equations. Such conceptual novelties of general relativity could not have been
anticipated on the basis of the knowledge of classical physics informing Einstein’s
heuristics. They were the eventual outcome of his heuristic schemes in the course of
concrete and often futile attempts to identify a gravitational field equation compatible
with criteria such as the conservation principle.

The effect on Einstein’s search of the requirements here summarized under the
label “conservation principle” depended on the specific questions he pursued and on
the level of sophistication of the techniques at his disposal. At one point he errone-
ously convinced himself, for instance, that a gravitational theory based on a single
scalar potential was incompatible with the conservation principle but then had to
retract that argument in the light of a closer analysis of such a scalar theory.42 The
clear-cut function which the conservation principle eventually assumed as a compati-
bility requirement for an acceptable field equation in his search for such an equation
documented in the Zurich Notebook was the result of his learning experience with the
theory for static gravitational fields in 1912.43 This experience demonstrated to Ein-
stein the crucial significance of the conservation principle for his search. He became
aware step by step of the full scope of the network of relations it implies. In the

42 See (Norton 1992a).
43 See “The First Two Acts” (in this volume) and the discussion below.
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course of his research documented in the Zurich Notebook, involving the mathemati-
cally much more complex tensorial formalism, these relations combined to form a set
of standard expectations for a field equation that had to be systematically checked for
each candidate. Only towards the very end of this phase of his research did Einstein
recognize the possibility of turning this network into a recipe for constructing a grav-
itational field equation satisfying the conservation principle—albeit as a requirement
essentially still conceived within a classical framework.

3.3 The Correspondence Principle

The correspondence principle requires that the new relativistic theory of gravitation
incorporate the empirically well-founded knowledge about gravitation contained in
the classical Newtonian theory. Ideally, it should be possible to obtain the Newtonian
theory as a limiting or special case from the new theory under appropriate conditions,
such as low velocities and weak fields.44 In contrast to the generalized relativity prin-
ciple of which it was not clear at the outset to what extent it could be implemented in
the new theory, the correspondence principle was a much less negotiable, if not abso-
lutely necessary requirement for any acceptable theory of gravitation. It also seemed
clear from the beginning how this principle would have to be implemented in con-
crete attempts to create a relativistic theory of gravitation. The classical theory
offered a model for a gravitational field equation, the Poisson equation, even if this
model does not take into account the relativistic demand of a finite speed of propaga-
tion of the gravitational action as would a field equation based on the d’Alembertian
operator as in (6). But the Poisson equation did not only serve as a model for the
structure of the new field equation. Einstein also expected it to emerge from a limit-
ing process by which a relativistic field equation should touch base, via the interme-
diate case of a special-relativistic field equations based on the d’Alembertian
operator, with the classical Newtonian theory. Einstein’s theory of the static gravita-
tional field provided another such base-line. Since it represents an intermediate situa-
tion between the full relativistic theory and the Newtonian case, he expected that the
general theory would, under appropriate limiting conditions, first reproduce the
results of the static special case and then, under further constraints, those of the New-
tonian theory. A relativistic theory with this limiting behavior clearly would cover the
full range of physical knowledge covered by the more specialized theories. Since the
constraints imposed by the correspondence principle were embodied not just in
abstract requirements but in well-developed theories, it follows that this heuristic
principle could act not only as a compatibility condition for an acceptable gravita-
tional field equation but also as a starting point for its construction.

44 For a discussion of the Newtonian limit of general relativity from a modern point of view, see (Kuen-
zle 1976, Ehlers 1981, 1986). For a discussion of the relation between Newtonian gravitation theory
and general relativity from an axiomatic point of view as a case of reduction, see (Scheibe 1997, 1999,
esp. ch. VIII).
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As with the other criteria, there is a perspective from which the correspondence
principle, together with a few other conditions, singles out general relativity as the
only acceptable solution to Einstein’s problem. But as we saw with the other heuristic
principles, this hindsight-perspective tends to obscure rather than clarify the actual
role of the correspondence principle in the creation of general relativity. This process
involved conceptual innovations that could not have been anticipated on the basis of
classical physics. From hindsight, we would rather have to say it could not even be
anticipated that (let alone how) the definitive solution of his problem would yield the
Newtonian theory since the classical limit of the final theory—which in some sense
must exist for the reasons pointed out above—might not resemble the familiar Newto-
nian formulation of the classical knowledge about gravitation. Vice versa, the classi-
cal expectations concerning the relation between Newtonian and relativistic theory
might impose restrictions on the choice of admissible candidates that could effec-
tively rule out a satisfactory realization of Einstein’s other heuristic requirements, in
particular, of the generalized principle of relativity. The dilemma, in short, was that
the correspondence principle represented, in view of its roots in the classical knowl-
edge about gravitation, the most weighty of Einstein’s heuristic principles but also the
one most likely to be entangled with physical assumptions that would have to be given
up if the new, relativistic theory of gravitation were to challenge those classical roots. 

This dilemma could hardly be avoided. At the beginning of his search, Einstein
sought to extrapolate the classical knowledge about gravitation into the new territory
of a relativistic field theory. From his perspective, that territory, fortunately, was
mapped out nicely by the implications of the Lorentz model. As we have seen, his
model also determined the conceptualization of the relation between a generic field
theory and the special case of a static field. In Maxwell’s theory of the electromag-
netic field that relation was well understood, so it could serve as a guide for exploring
the analogous relation in the case of the relativistic gravitational field. The mental
model of a field theory and the knowledge of classical physics it incorporates had
governed Einstein’s seemingly inductive procedure all along in examining special
cases such as that of the static field.45 It was clear to him from the outset that the
static gravitational field corresponds to the electrostatic field while the field of a rotat-
ing reference frame corresponds to the magnetostatic field. The theory of electromag-
netism also suggested that and how a many-component tensorial object representing
the field in general turns into a much simpler object for the special case of a static
field, which can be derived from a scalar potential. The fact that in classical physics
both the electrostatic and the gravitational potential are represented by a scalar poten-
tial lent support to the assumption that a reduction to a scalar potential also takes
place in a relativistic theory of gravitation, at least in the limit of weak static fields.
Although this assumption eventually turned out to be wrong, it was backed by a long
tradition in classical field theory to which no alternative was known and it initially
prevented Einstein from accepting the Einstein tensor as a viable candidate for the
left-hand side of the field equation. 
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Just as Einstein’s other heuristic principles the correspondence principle did not
act as an isolated axiom which in the end turned out to be either compatible or not
with general relativity as we know it today. It was not an isolated statement at all but
part of a network of arguments, affecting his heuristics in the context of a variety of
considerations. The correspondence principle comprised, in particular, the demands
that:

– the differential operator on the left-hand side of the gravitational field equation
should, for weak fields, reduce to the d’Alembertian operator as in (6);

– the field equation, for weak static fields, should reduce to the Poisson equation for
the scalar potential of classical physics;

– the same scalar potential should determine the behavior of a particle in a gravita-
tional field, via the equation of motion.

The correspondence principle was also subject to modifications as Einstein’s
experience with attempts to implement this principle in concrete candidate field equa-
tions grew. The paradoxical fluid yet firm character of Einstein’s qualitative reasoning
on the level of his heuristic principles, which we have tried to grasp by describing it
in terms of mental models and frames, allows it to first exclude and then support the
correct field equations of general relativity. The correspondence principle thus left
room for learning experiences as when Einstein found out that it was possible to meet
the requirements of this principle with the help of additional constraints on the choice
of the coordinate system.

While the technicalities of its implementation were subject to reconsideration and
improvement, the basic structure of Einstein’s understanding of the correspondence
principle was stabilized by a wider context of arguments rooted in classical physics.

45 Compare the following equations from Einstein’s correspondence: “I finished the investigations on
the statics of gravitation (point mechanics electromagnetics gravitostatics) and am very satisfied with
them. I really believe that I discovered a piece of truth. Now I ponder the dynamic case, going again
from the more special to the more general.” (“Die Untersuchungen über die Statik der Gravitation
(Punktmechanik Elektromagnetik Gravitostatik) sind fertig und befriedigen mich sehr. Ich glaube
wirklich, ein Stück Wahrheit gefunden zu haben. Nun denke ich über den dynamischen Fall nach,
auch wieder vom spezielleren zum Allgemeineren übergehend.”) Einstein to Ehrenfest, 10. March
1912, (CPAE 5, Doc. 369); “Lately I have been working like mad on the gravitation problem. Now I
have gotten to the stage where I am finished with the statics. I do not know anything yet about the
dynamic field, that will come only now. [...] You see that I am still far from being able to conceive of
rotation as rest! Each step is devilishly difficult, and what I have derived so far is certainly still the
simplest of all.” (“In der letzten Zeit arbeitete ich rasend am Gravitationsproblem. Nun ist es soweit,
dass ich mit der Statik fertig bin. Von dem dynamischen Feld weiss ich noch gar nichts, das soll erst
jetzt folgen. [...] Du siehst, dass ich noch weit davon entfernt bin, die Drehung als Ruhe auffassen zu
können! Jeder Schritt ist verteufelt schwierig, und das bis jetzt abgeleitete gewiss noch das einfach-
ste.”) Einstein to Michele Besso, 26. March 1912, (CPAE 5, Doc. 377); “My case corresponds to the
electrostatic field in the theory of electricity, whereas the more general static case would also include
the analog of the static magnetic field.” (“Mein Fall entspricht in der Elektrizitätstheorie dem elektro-
statischen Felde, wogegen der allgemeinere statische Fall noch das Analogon des statischen Magnet-
feldes mit einschliessen würde.”) Albert Einstein to Paul Ehrenfest, Prague, before 20 June 1912,
(CPAE 5, Doc. 409).
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Precisely because of this wider context, the modifications of Einstein’s understanding
in the course of his search for the field equation had the potential of challenging not
only the technical aspects but also the conceptual framework of his heuristics. 

3.4 Einstein’s Heuristic Principles and his Double Strategy

Einstein’s heuristic principles, as we have seen, did not constitute a set of axioms
from which a theory of gravitation could be derived in a straightforward way. These
principles yielded both too much and too little knowledge to find a new theory of
gravitation—too little, because they were not sufficient to determine the new theory
uniquely, too much, because they imposed requirements on the new theory that could
not be maintained all at once. As we mentioned in the introduction, these principles
initially even acted as competing approaches toward a relativistic theory of gravita-
tion. In addition, their interpretation in concrete attempts to realize such a theory
depended on the specific formalism applied and on the form other requirements took
within that formalism. In the course of Einstein’s work documented in the Zurich
Notebook, these principles nonetheless developed together to become elements of a
heuristic double strategy. Earlier research on the problem of a relativistic theory of
gravitation, Einstein’s own as well as that of others, had not only suggested the math-
ematical tools to be employed but had also circumscribed the requirements such a
theory had to satisfy. As a consequence, the problem of identifying an acceptable
gravitational field equation had become the task of constructing, as if in a theoretical
laboratory, a more or less well-defined but never-tried device from a set of given
building blocks.

Each of Einstein’s heuristic principles against which constructions would have to
be checked could be used either as a construction principle or as a criterion for their
validity. The sequence in which the heuristic principles were used essentially deter-
mined their function. The approach we have labelled the “physical strategy” starts
from the correspondence principle, i.e., from a candidate field equation which by
inspection is seen to yield the Newtonian limit in the expected way. Such a candidate
field equation is thus firmly rooted in classical physics. Typically, only mathematical
knowledge familiar from the context of classical and special-relativistic physics was
used in its construction. The compatibility of such a “physical candidate” with other
criteria was, as a rule, less obvious and needed to be checked explicitly. If the primary
goal was to stay as close to the familiar territory of classical physics as possible, the
first thing to check was the conservation principle, which could turn out to be satis-
fied, give rise to modifications, or lead to the rejection of the candidate altogether. If
the candidate survived this test, it was to be explored to what extent it complied with
the generalized relativity principle, i.e., under how broad a class of coordinate trans-
formations it would retain its mathematical form. For candidates that were not gener-
ally covariant, it had to be determined under which class of transformations the
candidate was covariant and whether or not the restriction of this class was acceptable
on physical grounds. In particular, it made sense to check whether at least the situa-
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tions at the core of the equivalence principle, i.e., transformations to reference frames
in uniform linear and rotational accelerated motion, were included in this class. 

The approach we have labelled the “mathematical strategy” starts from the gener-
alized relativity principle, i.e. from a candidate field equation which by inspection is
seen to be covariant under a broad enough class of coordinate transformations. Since
such a general principle of relativity was not part of classical physics, it was much
less obvious than in the case of the correspondence principle what “by inspection”
meant in this case. The expert mathematical knowledge of the time, however, pro-
vided him with a certain reservoir of suitable objects. Their relation to any meaning-
ful physics was much less obvious than for a candidate of the physical strategy. It had
to be checked explicitly whether such a “mathematical candidate” could be brought
into agreement with the requirements of the correspondence principle. Failure to
comply with the correspondence principle could lead to immediate rejection of the
candidate, or generate additional conditions amounting to a restriction of the relativ-
ity principle. It could even trigger the discovery of a new way to obtain the Newto-
nian limit. It could also suggest how a given candidate was to be modified in order to
pass the test. The situation was similar for the conservation principle, which repre-
sented another necessary condition for a physically meaningful theory. Since both the
correspondence and the conservation principles could neither be circumvented nor
substantially weakened, they tended, in turn, to impose restrictions on the generalized
relativity principle or suggest modifications of the candidates. 

Figure 1: Einstein’s double strategy arose from the different roles of the heuristic requirements of 
Generalized Relativity, Conservation, and Correspondence.

The two strategies are illustrated in Fig. 1 above. The physical and the mathemat-
ical strategy work with the same heuristic principles, draw on the same knowledge
base of classical and special-relativistic physics, and essentially use the same mathe-
matical representations. Why did they nevertheless produce, as we will see, different
results in the course of Einstein’s research? An answer is suggested by noting that the
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candidate solutions he examined are not determined directly by the two strategies but
only through the concrete representations in which he attempted to embody his heu-
ristic criteria. The two strategies did not act as an algorithm for producing solutions
but rather as different channels for filling the Lorentz model with concrete mathemat-
ical and physical content. In other words, the two strategies constituted alternative
ways for bringing to bear the available physical and mathematical knowledge on the
problem of finding a gravitational field equation. 

The notions of mental models and frames are helpful, we believe, for describing
this process of knowledge assimilation. Because of its character as a mental model,
the Lorentz model does not just represent an abstract scheme, but carries with it the
experience of previous implementations. This prior experience includes the model’s
default settings enabling it to generate concrete candidate field equations even in the
absence of sufficient knowledge about the properties of a relativistic gravitational
field. The default settings make it possible to deal with the problem of insufficient
knowledge by supplementing missing information drawn from prior experience.
Moreover, since the experience of classical and special-relativistic physics entered
the Lorentz model in the form of default settings, Einstein could give up prior
assumptions in the course of his research without shattering his entire heuristic
framework.

One and the same mental model may come with different sets of default settings,
depending on prior experience, applications, knowledge resources, and higher-order
models in which it is embedded. Default-settings depend on knowledge contexts. Clas-
sical field theory, the knowledge about Newtonian gravitation, the insights opened up
by the elevator and the bucket models, the Machian interpretation of classical mechan-
ics—all constitute different knowledge contexts relevant to the default assumptions of
the Lorentz model when implemented in attempts to create a relativistic field theory of
gravitation. The same is true for the mathematical resources of Gaussian surface the-
ory, vector calculus, the theory of invariant forms, and the absolute differential calcu-
lus. Einstein’s double strategy can be understood as a way of dealing with this problem
of overabundant knowledge by consciously selecting alternate knowledge contexts
dominating the default settings of the model. In this sense, the physical strategy, in par-
ticular, starts not just from the correspondence principle but from candidates embody-
ing the classical knowledge about gravitation. The mathematical strategy likewise
starts, not just from the generalized relativity principle but from candidates embodying
the prior mathematical knowledge, in particular about generally-covariant, second-
rank tensors of second order in the derivatives of the metric. 

The selection of such different approaches dominating the default settings of the
Lorentz model occurred initially, of course, in the hope that one or the other knowl-
edge context would be more relevant or turn out to be more suitable to yield a full
solution of the problem. Effectively, however, the alternation between different
knowledge contexts led to a systematic exploration of resources that could not have
been assimilated to the model all at once. The double strategy was not an astute plan
for attacking the problem of finding field equations from two sides, the physical and
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the mathematical side. It emerged only gradually as a result of learning more about
the implications of the field-theoretical model for gravitational field equations by
varying its default settings. To understand Einstein’s search for the gravitational field
equation, it is therefore not enough to examine his heuristic principles as we have
done in this chapter. We also have to reconstruct the default settings for the Lorentz
model in different contexts of this search.

4. DEFAULT SETTINGS AND OPEN SLOTS IN THE LORENTZ MODEL
FOR A GRAVITATIONAL FIELD EQUATION IN 1912

In this section we will introduce the principal entities figuring in Einstein’s search for
the gravitational field equation in the period documented by the Zurich Notebook.
His research in this period focused on the problem of formulating a field equation for
gravito-inertial phenomena, which had to satisfy all heuristic requirements, both
those embodied in the mental model of a field equation and those that had emerged
from his work between 1907 and 1912. The experience of these years had largely
shaped the default assumptions that formed the starting point of Einstein’s explora-
tion of the mental model represented by the symbolic equation OP(POT) =
SOURCE, cf. (I). 

In particular, the metric tensor, which we will represent by the frame METRIC,
was adopted as the representation of the gravitational potential and became the
canonical instantiation of POT in the Lorentz model:

POT =DEFT METRIC, (XIII)

where “=DEFT” is meant to express that the right-hand side of the equation represents
the default-setting of the left-hand side. Similarly, we will refer to the energy-
momentum tensor of matter and of the electromagnetic field, by the frame ENEMO,
which became the new standard setting for SOURCE:

SOURCE =DEFT ENEMO. (XIV)

These two key components of the gravitational field equation were generally-covari-
ant tensors and thereby nurtured the expectation that the field equation itself would
take the form of a generally-covariant tensorial equation, thus allowing Einstein to
realize his ambition of creating a generalized relativity theory. 

For the third component of the Lorentz model, the differential operator OP, the
situation was more complicated. At the beginning of his search, Einstein was largely
ignorant of the mathematical techniques necessary for constructing suitable candi-
dates. The many requirements to be imposed on acceptable candidates prevented the
selection of an obvious default assumption for the differential operator OP compati-
ble with all these requirements.

We summarize the situation in the following figure which we will further elabo-
rate in the following sections:
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Figure 2: The Lorentz model evolved by changing the default settings for the POT- and the 
SOURCE-slots, leaving the question of an appropriate instantiation of the OP-slot.

4.1 The Metric as the Potential in the Gravitational Field Equation

In the middle of 1912 Einstein introduced the metric tensor as the new default setting
for the POT- slot of the Lorentz model. This step affected both the field equation and
the equation of motion. The grounds for this move had been prepared by his earlier
attempts to set up a theory for the static gravitational field and his awareness that such
a theory could only represent a special case within a wider framework suggested by
the model. In these attempts Einstein had also learnt that Minkowski’s spacetime
framework for special relativity could be useful but had to be generalized for use
within this larger context. This had been suggested, in particular, by Einstein’s con-
troversy with Abraham, pointing to the need for a generalization of the so-called “line
element” used in the Minkowski framework, as well as by Einstein’s insight into the
geometrical consequences of applying special relativity to an accelerated system such
as a rotating disk, pointing to the need for non-Euclidean geometry when describing
gravitation.

An appropriate generalization of Minkowski’s framework was found on the basis
of the mathematical work of Gauss, Riemann, Christoffel, Ricci, and Levi-Civita.
This led Einstein and Grossmann to the consideration of curvilinear coordinates and
the introduction of a metric tensor  for a four-dimensional generalization of
Gauss’ theory of curved surfaces. Curvilinear coordinates are given by four functions

 with  mapping a point of spacetime to four numbers representing its
coordinates similar to the use of coordinates in Gaussian surface theory. The general-
ized line element  giving the distance between two neighboring points in space-
time separated by coordinate differentials  expresses a generalization of the
Pythagorean theorem:

(21)

In the usual representation of Minkowski spacetime in Cartesian coordinates, this
expression reduces to the four-dimensional form of the Pythagorean theorem in
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which the metric tensor  is given by the four-by-four matrix (  being the speed of
light):

(22)

According to the gravito-inertial model inertial forces resulting from arbitrarily
accelerated motions can be interpreted as being equivalent to effects of a “dynamic”
gravitational field. In the generalized formalism, this model then suggests a natural
default setting for the POT slot of the frame as well as a natural candidate for the
equation of motion in a given gravitational field. The generalized principle of relativ-
ity finds a natural expression in terms of the admissibility of arbitrary (smooth) curvi-
linear coordinate systems representing accelerated reference frames. The inertial
motion of a particle in such a reference frame can, on the basis of the gravito-inertial
model, be interpreted as motion in a special kind of gravitational field. In the general-
ized Minkowski formalism such a motion can be described by a geodesic curve, in
complete analogy to Gaussian surface theory where geodesic curves represent the
natural generalization of straight lines in Euclidean geometry. Combining these two
perspectives, it becomes plausible to assume that the motion of a particle under the
influence of any gravitational field is represented by a geodesic line in a curved
spacetime.

Mathematically, a geodesic line can be described as an extremal curve in space-
time determined by a given metric tensor:

(23)

From a physical perspective, this equation can be seen as Hamilton’s principle (cf. eq.
(18)) for the Lagrangian of a free particle of mass :

(24)

The Euler-Lagrange equations (cf. eq. (19)) then suggest to consider the metric tensor
 as representing the gravitational potential, i.e. POT =DEFT METRIC, as in eq.

(XIII). The combination of the default setting (XIII) and the equation of motion (23)
was compatible with the special case of Minkowski spacetime of special relativity
where the metric tensor is given by eq. (22) and where the equation of motion of the
form of eq. (23) had been developed well before Einstein had begun to work on the
problem of gravitation. It was also supported by the special case a static gravitational
field, as developed by Einstein in 1912, which could be integrated into the general-

gμν c

gμν

1– 0 0 0

0 1– 0 0

0 0 1– 0

0 0 0 c2

.=

δ sd∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

0.=

m

L m
td

ds
.–=

gμν



PATHWAYS OUT OF CLASSICAL PHYSICS  157

ized Minkowski formalism in a special and seemingly natural way. Thus one could
say that the POT-frame specializes to a POTSTAT-frame in the context of Einstein’s
theory of static gravitation:

, (XV)

and that the default setting for the POTSTAT-frame was given by the following metric:

POTSTAT =DEFT (25)

Here  is the gravitational potential in Einstein’s static theory. In the following
we shall refer to this metric as the “canonical metric for a static field.” It represents
Einstein’s default setting for representing a static gravitational field, This default set-
ting mediated between a generic field and the Newtonian case, and was crucial to the
heuristics of the correspondence principle.

4.2 The Source-Term in the Gravitational Field Equation

In classical and special-relativistic physics, the relation between force and accelera-
tion (cf. eq. (III)) is not the only way to characterize the effect of a force on a physical
system. The effect can also be described in terms of a change in the momentum and in
the energy of the system. In classical physics, the force is equal to the rate of change
in time of the momentum, which can be symbolically expressed as (cf. eq. (XII)):

FORCE = DIFF(MOMENTUM). (XVI)

But the force is also equal to the rate of change in space of the energy, which can be
symbolically expressed as (cf. eq. (V)):

FORCE = – GRAD(ENERGY). (XVII)

These relations also express that whenever a system gains or loses momentum and
energy this must be due to the action of an external force. Note that we have here
again introduced new frames GRAD and ENERGY. As with the previous examples,
one could discuss different instantiations of these frames in the context of, say, classi-
cal point mechanics, special-relativistic point mechanics, or Maxwellian electrody-
namics. But from this point on, we will introduce and make use of our symbolic
notation in a more roundabout and indirect way, relying on an intuitive understanding
that we hope is conveyed by our choice of names for our symbolic notation
(ENERGY for energy, ENEMO for energy-momentum, etc.). At crucial junctures,
however, we will explicitly discuss the concrete instantiations of these frames in Ein-
stein’s research and thus provide a general argument for the impact of heuristic rea-
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soning on a qualitative level for Einstein’s concrete explorations of pathways out of
classical physics.

In special relativity, the concepts of energy and momentum are integrated into a
single new concept, the 10-component energy-momentum or stress-energy tensor,
which we symbolically represent by the frame ENEMO so that the relation between
force, energy, and momentum can now be written as:46

FORCE = – DIV(ENEMO). (XVIII)

In his search for a relativistic gravitational field equation Einstein quickly realized
that the source-term, i.e. the instantiation of SOURCE in the Lorentz model, had to
be the energy-momentum tensor ENEMO. In our symbolic notation (cf. eq. (XIV)):

SOURCE =DEFT ENEMO.

Two lines of arguments, a mathematical and a physical one, made this default setting
almost inescapable. From a mathematical point of view—or alternatively, from the
point of view of filling the slots of the Lorentz model—something more complex
than the scalar mass density was required for SOURCE because the gravitational
potential is represented by a tensorial object. The slots on both sides of the field equa-
tion have to be filled by analogous mathematical objects. While it was in principle
conceivable to construct a scalar object out of the metric tensor, e.g. by forming its
determinant, and hence to have a scalar field equation, it was more plausible to Ein-
stein that the 10-components of the metric tensor enter into some many-component
field equation, just as with the many-component object representing the electromag-
netic field.47

From a physical point of view—or alternatively from the point of view of the
default settings of the Lorentz model based on prior research experience—the
energy-momentum tensor had turned out to be the appropriate generalization of the
concept of mass in a four-dimensional spacetime setting, i.e.:

MASS =DEFT ENEMO. (XIX)

The elaboration of four-dimensional relativistic electrodynamics and hydrodynamics
had shown that the introduction of this tensor was necessary in order to adequately
describe the energetic and inertial behavior of an extended physical system.48 In view
of Einstein’s expectation that, in his relativistic theory of gravitation, energy and

46 For the sign compare (CPAE 4, Doc. 1, 92) and “Einstein’s Zurich Notebook” 05R (in this volume).
The significance of the sign becomes clear when considering the energy-momentum gained or lost by
a physical system, for instance in the case of a system with electromagnetic interactions. The diver-
gence of the energy-momentum tensor of the electromagnetic field at a point describes the increase of
the energy-momentum of the field at that point, which corresponds to the flow of energy-momentum
from the charges to the field. This in turn equals the negative flow of energy-momentum from the field
to the charges, which is given by the negative of the Lorentz force.

47 For attempts to build a scalar theory, see John Norton’s discussion of Nordström’s theory and Ein-
stein’s objections in “Einstein, Nordström, and the Early Demise of Scalar, Lorentz Covariant Theo-
ries of Gravitation” (in vol. 3 of this series).
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mass, as well as gravitational and inertial mass, would essentially be equivalent (cf.
eq. (IX)), the energy-momentum tensor was the natural candidate for the right-hand
side of the field equation. To sum up, the default setting for the source slot of the
Lorentz model of a field equation, eq. (XIV), was inherited from the default setting
for the mass slot, eq. (XIX), resulting from the special-relativistic generalization of
the mass concept of classical physics.

In order to make the choice of the default setting for SOURCE acceptable from
the broader point of view provided by eq. (XIX), it was necessary to check whether
ENEMO also satisfies further properties of MASS in classical and special-relativis-
tic physics. The field-theoretical model suggested using the same instantiation of
MASS both in the field equation and in the equation of motion.

The structure of an equation of motion in a gravitational field involving the
ENEMO-frame was suggested by the special-relativistic relation between force and
energy-momentum represented by eq. (XVIII). Combining this equation with the
relation between force and potential, eq. (V), and the appropriate default setting for
CHARGE, (see eqs. (VII) and (IX) one obtains:

GRAD(POT) x ENEMO = DIV(ENEMO). (XX)

Initially, this structural relation provided merely a heuristic hint of what a general
equation of motion involving the energy-momentum tensor would look like. To vali-
date this hint, Einstein used a default-setting for the energy-momentum tensor which
allowed him to establish a connection between the proper realm of the stress-energy-
momentum tensor, i.e. continuum mechanics, and the mechanics of point particles,
for which an equation of motion was well established (eq. (23)).49 In this way, he
built a bridge between the knowledge embodied in eq. (XX) and the knowledge that
the trajectory of a particle in a gravitational field is a geodesic.

The instantiation ENEMO that Einstein used to build this bridge and which, in
fact, became its default setting, was the energy-momentum tensor for a swarm of
independent particles (“dust”). In our symbolic notation:

ENEMO =DEFT DUST, (XXI)

where the energy-momentum tensor for DUST is mathematically represented by (cf.
eq. (4)):

48 See the discussion in “Einstein, Nordström, and the Early Demise of Scalar, Lorentz Covariant Theo-
ries of Gravitation” (in vol. 3 of this series). At some point in 1913 Einstein even convinced himself
that this consideration would altogether rule out a scalar theory of gravitation, which he believed to be
incompatible with the conservation laws, but then had to acknowledge that his choice of a tensorial
theory with the energy-momentum tensor as a source term was reasonable but not unavoidable. His
own subsequent exploration of a relativistic scalar theory of gravitation made it clear, however, that
such a theory was based on a priori assumptions about the geometry of spacetime, which Einstein
was not willing to accept. Hence even this apparently far-fetched consideration, based on Mach’s cri-
tique of Newton’s concept of space, contributed to stabilizing Einstein’s choice of the energy-momen-
tum tensor as the default-setting for SOURCE.

49 “Einstein’s Zurich Notebook” 05R, p. 43R (in this volume).
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(26)

In the Lagrangian formalism for a point particle in a gravitational potential given by
the metric tensor (cf. eq. (24)), Einstein obtained expressions for the momentum and
energy of a particle. He then applied these expressions to the energy-momentum ten-
sor for dust and interpreted the resulting terms. In this way he arrived at an equation
corresponding to the structural relation eq. (XX):50

(27)

Introducing mixed tensor densities  we can write this equation
more compactly:

(28)

The agreement between this concrete result for the default setting DUST with the
general relation eq. (XX) supported the underlying physical heuristics and suggested
that this equation holds for an arbitrary symmetric energy-momentum tensor.51 

Equation (27) turned out to be very important for Einstein’s further research.
First, it supported the choice of the energy-momentum tensor as the source of a grav-
itational field equation and stabilized this instantiation of both SOURCE and MASS.
Second, it provided Einstein with one of the fundamental components for the Lorentz

50 “Einstein’s Zurich Notebook” 05R, (in this volume). In this form eq. (27) is valid only for a symmet-
ric tensor . See also (CPAE 6, Doc. 9, 95).

51 The terms in eq. (27) are interpreted in (Einstein and Grossmann 1913) in the following way: “We
ascribe to equation (10) [i.e. our (27)] a validity range that goes far beyond the special case of the flow
of incoherent masses. The equation represents in general the energy balance between the gravitational
field and a arbitrary material process; one has only to substitute for [ ] the stress-energy tensor
corresponding to the material system under consideration. The first sum in the equation contains the
space derivatives of the stresses or of the density of the energy flow, and the time derivatives of the
momentum density or of the energy density; the second sum is an expression for the effects exerted by
the gravitational field on the material process.” (“Der Gleichung [(27)] schreiben wir einen Gültig-
keitsbereich zu, der über den speziellen Fall der Strömung inkohärenter Massen weit hinausgeht. Die
Gleichung stellt allgemein die Energiebilanz zwischen dem Gravitationsfelde und einem beliebigen
materiellen Vorgang dar; nur ist für [ ] der dem jeweilen betrachteten materiellen System entspre-
chende Spannungs-Energietensor einzusetzen. Die erste Summe in der Gleichung enthält die örtli-
chen Ableitungen der Impuls- bzw. Energiedichte; die zweite Summe ist ein Ausdruck für die
Wirkungen, welche vom Schwerefelde auf den materiellen Vorgang übertragen werden.” p.11).
Indeed, except for the original derivation of eq. (27) in (Einstein and Grossmann 1913), in all later
publications up to 1916, this relation appears in a form where the two conceptually distinct terms of
the left-hand side are set equal, rather than in the form of eq. (27) which asserts the vanishing of a
generally-covariant object that only happens to be represented by the algebraic difference of two
terms as in eq. (27).

T μν ρ
sd

dxμ

sd
dxν

.=

T
μν

1
2
--- g–

xσ∂

∂gμνT μν

xν∂

∂
g– gσμT μν( ).=

Tσ
ν g– gσμT μν,=

1
2
---gαμ

xσ∂

∂gμν
Tα

ν

xν∂

∂Tσ
ν

.=

T
μν

T
μν



PATHWAYS OUT OF CLASSICAL PHYSICS  161

model, a general equation of motion which describes how material processes are
affected by the gravitational field. Third, this equation became, as we shall see, the
starting point for the formulation of the requirement of energy-momentum conserva-
tion that had to be satisfied by any candidate for the left-hand side of the gravitational
field equation. Fourth, its left-hand side suggested, in connection with the relation
between FIELD and POT in eq.(II), an instantiation of FIELD:

FIELD = – GRAD(POT) =DEFT (XXII)

This choice was plausible but not without alternatives. Eq. (28) can also be written as:

(29)

with —in the following symbolically represented as CHRIST—defined as minus
the so-called Christoffel symbols (of the second kind):

(30)

As a consequence, one obtains an alternative instantiation of FIELD:

FIELD = DEFT – CHRIST = DEFT (XXIII)

The familiar form of the relation between field and potential in classical field theory
made eq. (XXII) the natural first choice, and eq. (XXIII) only came into play when
this first choice turned out to lead to difficulties.

Equation (27) had one final important implication. Written in the form:

(31)

its left-hand side could be conceived as a generic, generally-covariant differential
operator known as “covariant divergence,” here symbolically represented as DIV

COV(.), so that eq. (XX) can also be written as:52

DIVCOV(ENEMO) = DIV(ENEMO) – GRAD(POT) x ENEMO = 0. (XXIV)

Although Einstein interpreted eq. (31) primarily from a physical point of view i.e.
as a representation of the structure (XX), as we have seen, he knew, probably even
before he became acquainted with the absolute differential calculus, that this equa-

52 Note that the embodiment eq. (31) of the symbolic eq. (XXIV) holds only for symmetric tensors.
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tion involves a generic tensor operation which is generally covariant.53 He had thus
recognized the covariant divergence as a mathematical ingredient of his new theory
that was meaningful in its own right and could in principle be used for other pur-
poses. The formulation of eq. (31) is a prime example of how Einstein’s physical
strategy produced a result that turned out to be independent of the specifics of its der-
ivation, such as the choice of DUST for ENEMO. Einstein even attempted to use the
covariant divergence as a constituent of a candidate for the left-hand side of the grav-
itational field equation but failed because it vanishes when applied to the metric ten-
sor.54 The fact that the equation of motion expressed in terms of ENEMO turned out
to be generally covariant must, in any case, have been an important confirmation of
his program to establish a generally-relativistic theory of gravitation, suggesting that
the other major constituent of the Lorentz model, the field equation, should also have
this property.

4.3 The Differential Operator in the Gravitational Field Equation

For the differential operator acting as OP in eq. (I), Einstein did not have an immedi-
ately satisfactory candidate or even a heuristic shortcut for finding one. Substituting
the metric tensor for the scalar gravitational potential quickly drove him out of any
familiar mathematical terrain. He had to find a second-order differential operator act-
ing on the metric tensor by relying either on attempts to directly construct such an
operator or on the mathematical literature in order to find suitable starting points.

One of Einstein’s earliest attempts55 to construct a differential operator OP was to
mimic the way in which the classical Laplace operator was formed, that is, by com-
pounding the differential operations divergence and gradient familiar from three-
dimensional vector calculus. In this way he obtained a first, natural instantiation for
the differential operator on the left-hand side of the gravitational field equation:56 

OP =DEFT LAP = DIV (GRAD) (XXV)

Applying LAP to the default setting for POT, we obtain what we will call the core
operator:57

53 Einstein’s remark “I have now found the most general equations.” (“Ich habe nun die allgemeinsten
Gleichungen gefunden.”) in a letter to Ludwig Hopf, dated 16 August 1912 (CPAE 5, Doc. 416) in all
probability refers to this insight, cf. the editorial note “Einstein on Gravitation and Relativity: The
Collaboration with Marcel Grossmann” (CPAE 4, 294–301). The covariance of this equation was
demonstrated in terms of the absolute differential calculus of Ricci and Levi-Civita by showing that it
represents the covariant divergence of the (symmetric) contravariant stress-energy-tensor in Gross-
mann’s “mathematical part” of (Einstein and Grossmann 1913, 32).

54 See p. 05R of “Einstein’s Zurich Notebook” (in this volume).
55 The following discussion relies heavily on the analysis of Einstein’s research notes contained in the

Zurich Notebook. Since the actual historical path will be discussed in chapter 6, we will here only
refer to the relevant pages of this notebook, without any further comments.

56 Cf. pp. 07R and 08L of “Einstein’s Zurich Notebook” (in this volume).
57 Cf., e.g., p.07L of “Einstein’s Zurich Notebook” (in this volume).
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LAP(POT) =DEFT (XXVI)

It has to be noted that this equation is only one of several possible instantiations
of the frame LAP. Alternative instantiations typically involve additional factors of the
determinant of the metric which typically affect the transformation behavior of the
particular version of the core operator under consideration. 

As a symbolic equation, the resulting tentative field equation reads:

LAP(POT) = ENEMO. (XXVII)

This instantiation of OP was supported by several arguments based, in particular, on
the correspondence principle. The straightforward generalization of the Laplace oper-
ator was also plausible against the background of the field equation Einstein had
developed for static gravitational fields. This field equation resulted from a simple
instantiation of the Lorentz model obtained essentially by replacing the Newtonian
potential in the classical Poisson equation by the variable speed of light, a move sug-
gested by the equivalence principle:58

(32)

The constant  is related to the gravitational constant  of the Poisson equation
through 59 

In the following, we discuss the implications of Einstein’s heuristic framework for
choosing and modifying the instantiations for the gravitational differential operator in
his field equation: We examine the implications coming from the correspondence
principle, the conservation principle, the generalized principle of relativity, and
examine the Lagrangian formalism, respectively. This discussion is not meant as a
substitute for a detailed account of Einstein’s pathway, but as preparation for such an
account by identifying the constraints under which it was pursued. These constraints

58 The explicit justification for this equation was follows. After noting that the variable velocity of light
fulfills the Laplace equation for the matter-free case, Einstein continues: “It is easy to establish the
presumably valid equation that corresponds to Poisson’s equation. For it follows immediately from
the meaning of  that  is determined only up to a constant factor that depends on the constitution of
the clock with which one measures [the time]  at the origin of [the accelerated coordinate system]

 Hence the equation corresponding to Poisson’s equation must be homogeneous in  The sim-
plest equation of this kind is the linear equation [eq. (32)] where  denotes the (universal) gravita-
tional constant, and  the matter density.” (“Es ist leicht diejenige vermutliche Gleichung
aufzustellen, welche derjenigen von Poisson entspricht. Es folgt nämlich aus der Bedeutung von 
unmittelbar, daß  nur bis auf einen konstanten Faktor bestimmt ist, der davon abhängt, mit einer wie
beschaffenen Uhr man  im Anfangspunkte von  mißt. Die der Poissonschen Gleichung entspre-
chende muß also in  homogen sein. Die einfachste Gleichung dieser Art ist die lineare Gleichung
[eq. (32)], wenn unter  die (universelle) Gravitationskonstante, unter  die Dichte der Materie ver-
standen wird.”) (Einstein 1912b, 360)

59 The relation is obtained by identifying  with the Newtonian potential  and neglecting terms of
order  cf. (Einstein 1912a, 362).

xα∂

∂
gαβ

xβ∂

∂gμν

⎝ ⎠
⎜ ⎟
⎛ ⎞

.
αβ
∑

c c
t

K . c .
k

ρ
c

c
t K

c
k ρ

Δc kcρ.=

k κ
k 4πκ c2⁄( ).=

c
2

2⁄ ϕ
∂ic( )2

,



164 JÜRGEN RENN AND TILMAN SAUER

were rooted in the knowledge of classical physics, which provided the default set-
tings for the frames with which Einstein operated. That these default settings often
led to conflicting results necessitating their modification or replacement lies in the
nature of Einstein’s search, whose outcome could not be anticipated.

4.4 Implications of the Correspondence Principle

A gravitational field equation based on the core operator as given by eq. (XXVI) is in
accordance with the correspondence principle, thus strengthening the role of this
operator as an instantiation for the left-hand side of the field equation. For weak fields
this differential operator reduces to the d’Alembertian operator, the default-setting
for OP in the weak-field limit. The transition to this limiting case can be represented
symbolically as:60

LIM(OP(.)) =DEFT LIM(LAP(.)) =DEFT 

(XXVIII)

The weak-field equation thus takes on the canonical form:

(33)

This equation can also be written as: 

(34)

where  is defined by
(35)

with  denoting small deviations from the Minkowski metric:

(36)

If the source is taken to first order as a pressureless, static cloud of dust of density 
(compare eq. (4)), one can neglect all terms of the energy-momentum tensor on the
right-hand side of eq. (33) except for the - term, which can be identified with the

60 Cf. (Einstein and Grossmann 1913, 13). Note that in contrast to the Entwurf operator, the core opera-
tor reduces to the Laplacian for a static metric of the form (25) for strong static fields as well. Einstein
never seems to have considered this case.

( )
x2

2

∂

∂

y2

2

∂

∂

z2

2

∂

∂ 1

c2
----

t2

2

∂

∂
–+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

gμν κT μν.=

hμν κT μν,=

hμν

gμν ημν hμν ,+=

hμν 1«

ημν

1– 0 0 0

0 1– 0 0

0 0 1– 0

0 0 0 c2

.=

ρ

T 44



PATHWAYS OUT OF CLASSICAL PHYSICS  165

gravitating mass density appearing in the classical Poisson equation. The neglected
terms in the energy-momentum tensor involve the velocity of the gravitating matter
which, in the Newtonian case, will be small compared to the velocity of light. If one
now considers the case of a static weak field, introducing LIMSTAT and using the
static metric of the canonical form (25) on the left-hand side of the weak-field equa-
tion, one has:

LIMSTAT(OP(POT)) =DEFT LIM(LAP(POTSTAT)). (XXIX)

This expression reduces to the Laplace operator acting on a single component of the
metric. Eq. (33) thus reduces to the familiar Poisson equation:

 or equivalently (37)

The equation of motion in the Newtonian limit can be obtained from eq. (31) under
similar assumptions, i.e., small velocities and a weak static field. The result is:

(38)

This equation shows that  resp.  plays the role of the Newtonian gravita-
tional potential.

The assumption that the left-hand side of the field equation has the form of
eq. (XXVIII) is not independent from the assumption that the metric tensor for weak
static fields has the form (25). Under appropriate circumstances, a weak-field equa-
tion of this form gives rise to solutions precisely of this canonical form.61 In other
words, the most natural assumption for the form of a weak-field equation and the
most natural assumption for the metric of a static field supported each other. A further
argument supporting Einstein’s understanding of the correspondence principle as
implying a canonical metric of the form (25) was independent from the field equation
but also related to the roots of this principle in the framework of classical physics.62

This argument is based on Galileo’s principle, that is, the requirement that all bodies
fall with the same acceleration in a given gravitational field, and makes use of the
basic relations between force, momentum, energy, and acceleration as understood in
classical physics, with some additional ingredients from special relativity such as the
equivalence of mass and energy. Einstein argued that particles with different energy,
and hence different inertial mass, fall with different accelerations in a static gravita-
tional field, unless such a field is represented by a metric tensor of the canonical form
(25). As a criterion for the validity of Galileo’s principle he used the requirement that
the ratio of the force acting on a particle and its energy depend neither on the parti-
cle’s mass nor on its velocity.

61 See (Norton 1984, 120–121).
62 The following argument is based on a reconstruction of p. 21R of “Einstein’s Zurich Notebook” (in

this volume).
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4.5 Implications of the Conservation Principle

The fact that the core operator was firmly anchored in knowledge about the familiar
cases of static and Newtonian gravitation made it the natural starting point for Ein-
stein’s “physical strategy.” The core operator, however, had to pass a number of fur-
ther checks, which could result in modifications. In particular, it remained to be seen
how the operator could be brought into agreement with the conservation principle
and the generalized relativity principle. 

An acceptable field equation (I) had to be compatible with the equation of motion
and the related structural insight into energy-momentum conservation represented by
eq. (XX). This compatibility could be checked by replacing ENEMO in eq. (XX) by
the left-hand side of the field equation, i.e. by OP:

GRAD(POT) x OP(POT) = DIV(OP(POT)), (XXX)

or, in the notation of eq. (XXIV):

DIVCOV(OP(POT)) = 0. (XXXI)

It was necessary to check whether this “conservation compatibility check” could be
satisfied for a given candidate field equation if need be by imposing extra conditions,
in addition to the field equation.

In the course of Einstein’s research documented in the Zurich Notebook it became
clear that the conservation compatibility check fails for a field equation based on the
core operator:

GRAD(POT) x LAP(POT) ≠≠≠≠ DIV(LAP(POT)). (XXXII)

This problem may not have surprised Einstein as it was already familiar to him
from his theory of static gravitational fields. There he had also encountered the diffi-
culty that the first choice of a field equation for the static field (eq. (32)) turned out to
be incompatible with momentum conservation.63 To demonstrate this conflict, Ein-

63 Cf. Einstein’s second thoughts about the paper expressed in a letter to the editor of the Annalen der
Physik, Wilhelm Wien: “I asked you this morning to return my manuscript, and now I am asking you
to keep it after all. To be sure, not everything in the paper is tenable. But I think I should let the thing
stand as it is, so that those interested in the problem can see how I arrived at the formulas.” (“Heute
Morgen bat ich Sie, mir mein Manuskript zurückzusenden und nun bitte ich Sie es doch zu behalten.
Es ist zwar nicht alles haltbar, was in der Arbeit steht. Aber ich glaube die Sache doch so lassen zu
sollen, damit diejenigen, welche sich für das Problem interessieren, sehen, wie ich zu den Formeln
gekommen bin.”) Einstein to Wien, 11 March 1912, (CPAE 5, Doc. 371). Since (Einstein 1912b),
which contains eq. (32) was received by the Annalen on February 26, and (Einstein 1912c) where the
problem with this equation is discussed, was received four weeks later, on March 23, the problem Ein-
stein refers to in the letter to Wien is most probably the incompatibility with the conservation princi-
ple discussed in the following. To the published discussion of the potential equation for  in (Einstein
1912b) Einstein added a footnote reading: “A soon to be published paper will show that equation (5a)
and (5b) cannot yet be exactly right. However, they will be provisionally used in the present paper.”
(“In einer in kurzem nachfolgender Arbeit wird gezeigt werden, daß die Gleichungen [ ] und
[eq. (32)] noch nicht exakt richtig sein können. In dieser Arbeit sollen sie vorläufig benutzt werden.”)

c

Δc 0=
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stein considered an assembly of masses fixed to a rigid, massless frame and showed
that this assembly of masses would set itself in motion if the field equation were
assumed to be (32). Following the logic underlying eq. (XXX), he substituted the
left-hand side of the field equation for the mass density  in the expression for the
force-density (compare eq. (V)):

(39)

The integral of this expression over space (under the assumption that  is constant at
infinity) should vanish on account of momentum conservation. However, the expression

(40)

resulting from this substitution cannot be transformed into a divergence expression,
and momentum conservation is violated. The rigid massless frame would start to
move, in contradiction with Newton’s principle actio = reactio.

It is easily seen that the Poisson equation of classical mechanics and electrostatics
does not present this problem. In a later paper Einstein himself explained how this
can be shown in a way that suggests a generalization of the argument to the case of a
relativistic gravitational field theory.64 In electrostatics the th component of the
momentum conferred to matter per unit volume and time (or the force density, com-
pare (V)) is:

where  represents the potential and  the density of the electrical charge. It can
then be demonstrated that a field equation of the form (cf. eq. (5)):

satisfies the requirement of momentum conservation. This is done by showing that
the rate of change of momentum:

can be transformed into a divergence expression, i.e., an expression with the property
that the integral over a closed system vanishes so that the total momentum is con-
served.

The challenge resulting from the problem with Einstein’s first static theory was to
find an expression for the force, the momentum transferred from the gravitational

64 See (Einstein and Grossmann 1913, part 1, §5).
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field to material processes that can be written as a divergence. Let us try to capture
the heuristic behind his reasoning in our symbolic notation. We conceive of the
FORCE-frame as a divergence of some FIELDMASS-frame in an equation of the
form:

FORCE = DIV(FIELDMASS), (XXXIII)

where FIELDMASS represents, in the three-dimensional case, the momentum (or,
alternatively, the energy) and, in the four-dimensional case, the energy-momentum of
the gravitational field. Such a force expression had to be extracted from a revised
field equation in which the default setting LAP is replaced by a modified frame, let us
call it GRAV for OP:

OP(POT) =DEFT GRAV(POT) = LAP(POT) + CORR(POT). (XXXIV)

The correction term CORR introduced in the new choice for OP in eq. (XXXIV) had
to be compatible, of course, with the correspondence principle and in particular with
the default setting eq. (XXVIII) so that the condition

LIM(CORR(POT)) = 0 (XXXV)

follows. The correction term has to make sure that both eq. (XXX), the conservation
compatibility check, and eq. (XXXIII), the equivalent divergence condition for the
gravitational force, are satisfied:

FORCE =

– GRAD(POT) X GRAV = – DIV(GRAV) = DIV(FIELDMASS). (XXXVI)

In view of the definition of GRAV as a sum of LAP and CORR (see eq. (XXXIV))
one thus obtains the following symbolic equation:

LAP(POT) x GRAD(POT) =

– DIV(FIELDMASS) – CORR(POT)) x GRAD(POT). (XXXVII)

The crucial result is that this relation suggests a generic operational procedure for
identifying the desired correction term, regardless of specific instantiations of the
frames involved. From the force expression for Einstein’s first field equation for static
fields, eq. (40), it follows that the term which serves as the starting point for such a
procedure, corresponding to LAP(POT) x GRAD(POT), is:65

(41)

By repeated application of the Leibniz rule for the differentiation of products, one
obtains an equation of the form (XXXVII):

65 In the following we assume summation over repeated (spatial) indices.
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(42)

with

(43)

so that

(44)

is a divergence term and corresponds to – DIV(FIELDMASS), while

(45)

corresponds to – CORR(POT)) x GRAD(POT). Eq. (45) therefore gives the correc-
tion term necessary to satisfy the conservation principle. In other words, this princi-
ple not only served to refute the first static field equation (32), it also provided
Einstein with a procedure for constructing a modified field equation complying with
this principle.

Einstein thus arrived at a new field equation (Einstein 1912b), the core of his so-
called “second theory:”66

(46)

Since this revised equation no longer represents a direct analogue of the Poisson
equation, Einstein faced the challenge to find a plausible physical interpretation of it.
He had to reexamine both the equivalence principle and the role of energy and
momentum conservation. A remarkable feature of eq. (46) is that the first derivative
of the gravitational potential enters in a non-linear way so that the left-hand side of
eq. (46) may be symbolically expressed with the help of eqs. (II) and (XXXIV) as:

GRAV =DEFT DIV(FIELD) + FIELD2 (XXXVIII)

The second term had not been encountered before in working with the mental model
of a gravitational field theory. It also threatened one of Einstein’s key heuristic
assumptions, the principle of equivalence, which could only be upheld for infinitesi-
mally small fields.67 This restriction made it all the more pressing to provide a plausi-
ble physical justification for the correction term. Einstein found such a justification in
implications of both field theory and special relativity, i.e. in the fact that a field may

66 The theory advanced in this paper is commonly referred to as Einstein’s second theory of static gravi-
tation. Its main difference pertains to the amended field equation.
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carry energy and that any kind of energy, being equivalent to mass, should act as a
source of the gravitational field.68

The physical interpretation of the modified field equation (46) is brought out more
clearly by rewriting it as:

(47)

This form of the equation suggests that the term

 

which appears on the right-hand side on the same footing as the material source, be
interpreted as the energy density of the gravitational field acting as its own source.

This physical interpretation also supported the conclusion that the general field
equation would be non-linear, a conclusion which, after this experience with the spe-
cial case of the static field, became a standard expectation in Einstein’s further search.
In terms of our symbolic equations, the revised form of the generic field equation
could either be expressed with the help of the GRAV and CORR-frames (see eq.
(XXXIV)) or with the help of the FIELDMASS-frame, representing in the general,
four-dimensional case the energy-momentum of the gravitational field, as:69

NORM(POT) = ENEMO + FIELDMASS. (XXXIX)

NORM(POT) thus represents a new setting of the differential operator slot OP
allowing the field equation (I) to be written in the “normal” form of eq. (XXXIX); we
thus define

OP =DEFT NORM, (XL)

with a corresponding new setting for SOURCE:

67 “Thus, it seems that the only way to avoid a contradiction with the reaction principle is to replace
equations (3) and (3a) with other equations homogeneous in c for which the reaction principle is satis-
fied when the force postulate (4) is applied. I hesitate to take this step because by doing so I am leav-
ing the territory of the unconditional equivalence principle. It seems that the latter can be maintained
for infinitely small fields only.” (“Eine Beseitigung des genannten Widerspruches gegen das Reakti-
onsprinzip scheint also nur dadurch möglich zu sein, daß man die Gleichungen [ ] und
[eq. (32)] durch andere in  homogene Gleichungen ersetzt, für welche das Reaktionsprinzip bei
Anwendung des Kraftansatzes [39] erfüllt ist. Zu diesem Schritt entschließe ich mich deshalb schwer,
weil ich mit ihm den Boden des unbedingten Äquivalenzprinzips verlasse. Es scheint, daß sich letzte-
res nur für unendlich kleine Felder aufrechterhalten läßt.”) (Einstein 1912c, 455–456)

68 The discussion referred to in the following is introduced in (Einstein 1912c) by the phrase: “The term
added in equation (3b) [ ] in order to satisfy the reaction principle wins
our confidence thanks to the following argument.” (“Das in Gleichung (3b) zur Befriedigung des
Reaktionsprinzipes hinzugesetzte Glied gewinnt unser Vertrauen durch die folgenden Überlegun-
gen.”), p. 456–7.

69 For the following, see “Untying the Knot ...” (in vol. 2 of this series), sec. 3.
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SOURCE =DEFT ENEMO + FIELDMASS. (XLI)

This form of the field equation clearly brings out the parallelism between the energy-
momentum of matter and the energy-momentum of the gravitational field.
Eq. (XXXIX) is the symbolic expression of what eventually became Einstein’s stan-
dard or normal expectation for the form of a field equation with the property that it is
compatible with the conservation principle and with the requirement that gravita-
tional energy and momentum enter the field equation on the same footing as the
energy and momentum of matter. With this normal form the conservation principle
takes on a particularly simple form. From the last equality in eq. (XXXVI) and the
field equation it follows that:

DIV(ENEMO) + DIV(FIELDMASS) = 

DIV(ENEMO + FIELDMASS) = 0. (XLII)

This symbolic equation expresses the expectation that the conservation laws should
hold for gravitation and matter taken together. Accordingly, the conservation compat-
ibility check for NORM(POT) becomes

DIV(NORM) = 0, (XLIII)

(cf. eq. (XXXI)) 
It was natural to expect that NORM would take on the classical form of a diver-

gence of the field, generated both by material processes and the energy-momentum of
the gravitational field itself. The field operator might be brought into such a simple
form, resembling the familiar structure from electromagnetic field theory by some
appropriate mathematical manipulation, involving the source-term of the field equa-
tion as well. In other words, one would have the revised settings: 

OP(POT)=DEFTNORM(POT)CLASS = DIV(FIELD), (XLIV)

with a corresponding setting for SOURCE:

SOURCE =DEFT ENEMO + FIELDMASS. (XLV)

Note, however, that the requirement expressed by eq. (XLII) may not be compatible
with the requirement expressed by eq. (XXXIX) if the particular form eq. (XLIV) for
the left-hand side of the field equation is imposed.70

In summary, Einstein’s experiences with implementing the conservation principle
in his theory for static gravitational fields turned out to be of crucial significance for
his further research, shaping the expectation for the differential operator in the
generic gravitational field equation. Reflecting on these experiences, he could con-
clude, in particular, that

– the field equation would probably be non-linear and contain a term representing
the gravitational field acting as its own source;

70 See the discussion in “Untying the Knot ...” (in vol. 2 of this series), secs. 3, §3.
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– just as with the static field equation, the field equation might have to be found in
two steps with a first step involving a linear second-order differential operator and
a second step involving the non-linear, first-order correction terms;

– the correction term might be identified by trying to establish an energy-momen-
tum balance, beginning with a linear, second-order differential operator as a first
step.

4.6 Implications of the Generalized Relativity Principle

When starting from an instantiation of the left-hand side of the mental model of a
gravitational field equation rooted in physical knowledge such as the core operator,
the most challenging problem was to identify its transformation properties and to find
out whether or not they allow the implementation of a generalized principle of rela-
tivity. Alternatively, one could start from an instantiation rooted in mathematical
knowledge. While the physical strategy automatically takes care of the correspon-
dence principle, the mathematical strategy automatically takes care of the generalized
relativity principle. In the latter case the main challenge was the implementation of
the correspondence and conservation principles, including a check of their mutual
compatibility. In the course of his research, Einstein developed a strategy for address-
ing this challenge. This strategy involved replacing one immediately given default
setting for OP by a more sophisticated one, better adapted to the purpose at hand. In
this respect, the strategy resembles the strategy discussed above for adapting a setting
suggested by the correspondence principle to the necessities implied by the conserva-
tion principle, i.e., for the transition from LAP(POT) to GRAV(POT).

Instantiations for OP suggested by the mathematical strategy typically have well-
defined transformation properties (e.g. are generally covariant). As his research pro-
ceeded Einstein familiarized himself with the relevant mathematical literature, in col-
laboration with his mathematician friend Marcel Grossmann.71 While the
mathematical horizon enlarged it came to include more and more sophisticated math-
ematical objects. At the beginning, the mathematical instrumentarium was limited to
that of linear vector and tensor analysis in four dimensions as developed by
Minkowski, Sommerfeld, and Laue.72 After a number of unsuccessful attempts to
employ these techniques in the construction of a suitable differential operator,73 the
core operator emerged as the most satisfactory candidate which could be obtained at
this level of mathematical sophistication. The core operator, however, was covariant
only under linear transformations and did thus not lead to a substantial generalization
of the relativity principle.

71 For a discussion of Grossmann’s role in the search for and reception of pertinent mathematical litera-
ture, see (Pais 1982, chap.12c; Norton 1992b, appendix; Reich 1994, chap. 5.3; CPAE 4, 294).

72 Cf. note 30.
73 Cf. pp. 39L–40L of “Einstein’s Zurich Notebook” (in this volume).
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Einstein subsequently became familiar with the so-called Beltrami invariants.74

These mathematical objects, in particular the second Beltrami invariant, could be
seen as a generalization of the ordinary Laplace operator and must have looked prom-
ising. They are generally covariant and thus provide a good starting point for pursu-
ing the mathematical strategy. It was difficult, however, to see how the second
Beltrami invariant, defined only for scalar functions, could be applied to a gravita-
tional potential represented by the metric tensor. Einstein thus had two plausible but
mutually incompatible default settings, the second Beltrami invariant for the differen-
tial operator, and the metric tensor for the gravitational potential. Einstein’s dilemma
at this point is illustrated in Fig. 3.

Figure 3: The incompatibility of instantiating the operator slot of Einstein’s mental model of a 
gravitational field equation with the Beltrami invariant, and the potential slot with the metric pro-

duced posed a dilemma for Einstein.

The breakthrough for the mathematical strategy came when Einstein got
acquainted with the Riemann tensor and its potential to produce suitable candidates
for the differential operator in the gravitational field equation. The Riemann tensor
represents a second-order differential operator on the metric and is generally covari-
ant. Moreover, by a general theorem any generally-covariant differential operator,
which consists of the metric components and its derivatives, and contains no higher
than second-order derivatives and is linear in those, can be constructed from the Rie-
mann tensor by tensor-algebraic operations.75 It must have been clear to Einstein
from the outset that the Riemann tensor itself could not play the role of an instantia-
tion for OP. First, since the energy-momentum tensor appearing on the right-hand
side of the field equation is a second-rank tensor with two indices, the differential
operator on the left-hand side was required to have the same property. The Riemann
tensor, however, is a fourth-rank tensor, with four indices. Second, a field equation
with the Riemann tensor on the left-hand side would be much too restrictive. It would
require that, outside the sources, the metric would be strictly Minkowskian so no

74 Cf. pp. 06L–07L of “Einstein’s Zurich Notebook” (in this volume).
75 See (Einstein and Grossmann 1913, part II, §4). See also (Bianchi 1910).
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non-trivial gravitational potential could exist, a conclusion, for instance, manifestly
wrong for the field of a point mass.

A second-rank tensor serving as a natural candidate for OP, however, could be
extracted from the Riemann tensor in various ways. Let us designate the frame of
such a candidate by RIEM:

OP(POT) =DEFT RIEM(POT). (XLVI)

As was pointed out above, such candidates come with assurances about their behav-
ior under coordinate transformations (here designated as TRAFO). They inherit
these transformation properties from their progenitor, the fourth-rank Riemann ten-
sor. The default setting for this property is general covariance (here designated as
GCOVARIANT):

TRAFO(RIEM) =DEFT GCOVARIANT. (XLVII)

When relating the frame RIEM to the default settings GRAV or NORM for OP
suggested by the correspondence and conservation principles (cf. eq. (XXXIV) and
eq. (XL)), one typically finds a relation of the form: 

RIEM(POT) = GRAV(POT) + DIST(POT), (XLVIII)

where DIST(POT) represents “disturbing” terms incompatible with the requirements
of the correspondence and conservation principles. To obtain from RIEM(POT) a
“reduced” candidate satisfying these principles one has to impose the revised default
setting for the left-hand side of the gravitational field equation:

OP(POT) =DEFT RIEMRED(POT) = RIEM(POT) – DIST(POT), (XLIX)

which can be obtained from RIEM either by requiring that

DIST(POT) = 0. (L)

or by requiring that DIST(POT) behaves as a tensor under some group of coordinate
transformations, in which case it can be subtracted leaving a reduced candidate
invariant under this now restricted group of transformations:

TRAFO(RIEMRED) => TRAFO(DIST), (LI)

Conditions such as (XLVII) can typically be derived from first-order conditions on
the metric tensor, corresponding to a restriction of the admissible coordinate systems
(here designated as COORD(POT)):

COORD(POT) = 0 => DIST(POT) = 0. (LII)

Such a coordinate restriction comes in turn with its own transformation behavior, but
typically is at least covariant at least under linear transformations:

TRAFO(COORD) =DEFT LINEAR. (LIII)

Coordinate systems selected in this way assumed for Einstein the role of privileged
reference frames, similar to the distinguished role of inertial reference systems in
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classical physics. It is in these preferred coordinate systems that the physical laws are
supposedly valid in their usual form. The condition COORD(POT) = 0 represented
for him a true limitation of the generalized relativity principle and is therefore
referred to here as a “coordinate restriction.”

From a modern perspective, the relation between a generally-covariant candidate
for the left-hand side of the field equation and the condition expressed by eq. (LII)
can be interpreted in an entirely different way: Since the Newtonian theory clearly
does not hold in arbitrary coordinate systems, while generally-covariant field equa-
tions do, special coordinates have to be introduced to obtain the Newtonian limit. A
coordinate condition in the modern sense, however, does not have the meaning of an
overall restriction on the choice of admissible coordinates; it is only a tool adapted
for this specific purpose. This tool in no way imposes a restriction on the covariance
of the field equation, but is available precisely because of it. For the Einstein of the
Zurich Notebook, however, it was more natural to think of eq. (LII) as a coordinate
restriction, valid not only in the context of a special situation such as that of the New-
tonian limit but necessary in general to ensure that the candidate gravitation tensor
takes on the canonical form of eq. (XXXIV). The transformation properties of
RIEMRED(POT) are thus constrained by those of the coordinate restriction, a rela-
tion we can express as:

TRAFO(RIEMRED) => TRAFO(COORD). (LIV)

An additional restriction of the generalized relativity principle typically follows from
the conservation principle, given that its mathematical implementation (e.g., by eq.
(XLIII)) does, in general, not lead to a generally-covariant equation:

TRAFO(DIV(NORM))≠≠≠≠ GCOVARIANT. (LV)

Just as with the correspondence principle (cf. eq. (LII)), the condition DIV(NORM)
= 0 may be inferred from a simpler, possibly first-order condition representing the
restriction to coordinate systems in which the conservation principle holds:

ENERG(POT) = 0 => DIV(NORM) = 0. (LVI)

For the transformation properties of the gravitational field equation we thus have sim-
ilarly:

TRAFO(NORM) => TRAFO(ENERG), (LVII)

or, taken together with relation (LIV), replacing RIEMRED and NORM by GRAV:

TRAFO(GRAV) => TRAFO(COORD) + TRAFO(ENERG). (LVIII)

This relation expresses that the transformation properties of the left-hand side of the
gravitational field equation are restricted by the needs of the correspondence and the
conservation principles taken together. In summary:

TRAFO(GRAV) <=> 

TRAFO(RIEM) + TRAFO(COORD) + TRAFO(ENERG). (LIX)
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What this symbolic equation says is that the transformation properties of the field
equation are known if those of the original default setting rooted in mathematical
knowledge are given together with those of the coordinate restrictions imposed to sat-
isfy the correspondence and the conservation principles. 

The above considerations raise the more general problem of the compatibility
between the mathematical implementations of the correspondence and conservation
principles (the corresponding compatibility condition is designated here as CC-
COMP(GRAV)). While this question could typically be dealt with at the level of the
compatibility of the respective coordinate restrictions eq. (LII) and eq. (LVI), it was
conceivable that the compatibility requirement gave rise to new conditions with
implications not only for the transformation properties of the field equation but for
other questions as well, including the question of whether the given default setting for
GRAV was acceptable at all:

CC–COMP(GRAV) => (COORD = 0) + (ENERG = 0). (LX)

It was also conceivable that a conflict between a candidate for GRAV and the corre-
spondence and conservation principles arose because the default setting for the met-
ric of static gravitational fields eq. (25) was incompatible with one of the coordinate
restrictions following from these principles:

COORD(POTSTAT) ≠≠≠≠ 0, (LXI)

ENERG(POTSTAT) ≠≠≠≠ 0. (LXII)

4.7 Implications of the Lagrange Formalism

At some point in his research, Einstein realized the significance of the Lagrange for-
malism not only for formulating the equation of motion but also for deriving the field
equation.76 Because of its earlier application in the context of classical electromag-
netic field theory this formalism came with its own default-settings, which played an
important role in Einstein’s search for the gravitational field equation. Classical field
theory suggested, in particular, to choose a Lagrangian quadratic in the field:

LAGRANGE =DEFT FIELD2. (LXIII)

The Lagrangian for the free Maxwell field for instance is of this form (cf. eq. (11)):

(48)

The use of the Lagrange formalism had two immediate advantages for Einstein. First,
when following the physical strategy, he could focus on a scalar object, the
Lagrangian, to explore the transformation properties of his theory rather than on the

76 The first paper in which he made use of the Lagrangian formalism for this purpose is (Einstein and
Grossmann 1914). This approach was fully developed in (Einstein 1914a).
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more complex tensorial objects representing candidates for the left-hand side of the
field equation:77

TRAFO(GRAV) <=> TRAFO(LAGRANGE). (LXIV)

Second, when following the mathematical strategy, he could rely on an expression for
FIELDMASS directly delivered by this formalism in terms of the Lagrangian to
explore the validity of the conservation principle. The formalism produces a field
equation which can easily be brought into a form corresponding to the default set-
tings eq. (XLIV) and eq. (XLV):

DIV(FIELD) = ENEMO + FIELDMASS. (LXV)

It remains, of course, to be checked in each concrete case whether the resulting
expression for FIELDMASS is compatible with the expectation for such an expres-
sion following from the conservation principle and, in particular, with eq. (XLII).78

The introduction of the Lagrange formalism had one further consequence for Ein-
stein’s search, which eventually turned out to be decisive for identifying the gravita-
tional field equation of general relativity. Due to the default setting eq. (LXIII), the
Lagrange formalism helped to highlight the importance of the FIELD-frame, point-
ing to the alternative between eq. (XXII) and eq. (XXIII), one leading to the non-
covariant Entwurf theory, the other to an essentially generally-covariant theory which
quickly opened up the pathway toward the field equation of general relativity.

5. TESTING THE CANDIDATES: EINSTEIN’S CHECK LIST FOR 
GRAVITATION TENSORS

The reservoir of candidates for the left-hand side of the field equation OP available to
Einstein was determined by the mathematical knowledge available to him. Roughly
three levels of knowledge can be distinguished, each coming with its own set of can-
didates as shown in Fig. 4 below. Not all candidates played the same prominent role
in Einstein’s research. The four most important ones were the Entwurf operator, the
Ricci tensor, the Einstein tensor, and the November tensor (Einstein 1915a).

Einstein examined these four differential operators twice in the course of two
exploratory phases of his work. He first confronted them with his heuristic require-
ments in the period documented by the Zurich Notebook dating from the winter
1912–1913, and then once more in the fall of 1915, as documented by publications
and correspondence. He came to different conclusions in these two stages of his
work. Before we discuss in detail in which way his research experience led him to

77 Einstein’s point of view was, however, criticized by the mathematician Tullio Levi-Civita, who con-
tested that the Euler-Lagrange equations have the same covariance group as the Lagrangian in the
case of the Entwurf theory. See, e.g., Tullio Levi-Civita to Einstein, 28 March 1915 (CPAE 8,
Doc. 67).

78 For the detailed mathematical considerations, see “Untying the Knot ...” (in vol. 2 of this series), secs.
3.1 and 3.2.
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these different views, we shall systematically examine how the various candidates
fare when confronted with his heuristic requirements and give an overview of the
results of his checks. In this way, we shall be able to establish the potential of these
candidates independently of their actual role in the dramatic history of Einstein’s
search for the field equation. As a consequence, the twists and turns of this search
will become understandable as reactions to the epistemic constraints and potentials
inherent in the knowledge resources available to Einstein. These constraints are
largely embodied in the mental models and frames guiding his research, as well as
in their default settings and the instantiations of their open slots. But the conflicting
implications of these default settings and instantiations were only revealed in the
course of Einstein’s elaboration of his theory on the level of concrete mathematical

Figure 4: A list of Einstein’s most important candidates for differential operators to fill
the operator slot of his mental model of a gravitational field equation.
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representation. As a matter of fact, the fate of a candidate not only depended on the
structural constraints of his heuristics but also on the order in which these structures
were implemented, on the exploration depth with which they were treated, and on the
perspective under which Einstein examined the answers to his questions. As we shall
show in more detail in the next section, in all three of these performative dimensions
of his evaluation of candidates, the situation of the winter of 1912–1913 was very dif-
ferent from that of October and November 1915 when he once more examined these
candidates.

5.1 The Entwurf Operator and the Correspondence Principle
in the Winter of 1912–1913

The Entwurf operator, first written down in the Zurich Notebook and then published
by Einstein and Grossmann in the spring of 1913, gives rise to the field equations:

ENTWURF =DEFT  (49)

with the following expression for the gravitational energy-momentum:

FIELDMASS =DEFT (50)

The Entwurf field equations satisfy the correspondence principle just as the core
operator does since the correction terms which distinguish the two vanish in the lim-
iting procedure for obtaining the Newtonian theory. One has, in particular, (cf. eq.
(XXIX)):

LIMSTAT(ENTWURF) = LIM(LAP(POTSTAT)). (LXVI)

5.2 The Entwurf Operator and the Conservation Principle
in the Winter of 1912–1913

By their very construction, the Entwurf field equations satisfy the conservation prin-
ciple since the correction terms distinguishing them from the core operator are gener-
ated in such a way that an identity of type (XXXVII) holds. Evidently, the field
equations (49) are of the form (XXXIX), while an equation of the form (XLII)
expresses the conservation principle:

(51)
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5.3 The Entwurf Operator and the Generalized Relativity Principle
in the Winter of 1912–1913

The principal challenge for the Entwurf theory was the question of the transformation
properties of the Entwurf field equations and hence of the extent to which the theory
satisfies the generalized relativity principle. The Entwurf operator had not been
obtained from a generally-covariant object along the mathematical strategy, (cf. eq.
(XLIX)). By construction, the Entwurf operator is covariant only under linear trans-
formations (cf. eq. (LIII)):

TRAFO(ENTWURF) =DEFT LINEAR. (LXVII)

In different stages of Einstein’s work during the reign of the Entwurf theory, i.e.,
between the winter of 1912–1913 and the fall of 1915, he took different positions on
the question of whether or not the theory admits a wider class of coordinate transfor-
mations. These positions ranged from the acceptance that the Entwurf theory is cova-
riant only under linear transformations to the belief that it fully complies with the
demands of a generalized relativity principle. Einstein at first believed that the issue
of the transformation properties of the Entwurf equations was wide open and could be
settled only by an extensive mathematical investigation. In the summer of 1913, how-
ever, he came to the conclusion that a mere inspection of the form of eq. (51) was suf-
ficient to resolve the problem in favor of the claim that the Entwurf theory could only
be covariant under linear transformations.79 He thus accepted that the conservation
principle requires a severe limitation of the generalized relativity principle.

5.4 The Entwurf Operator and the Correspondence Principle in the Fall of 1915

In the course of his elaboration of the Entwurf theory, Einstein succeeded in deriving
the field equations from a Lagrange formalism with the default setting for the field
given by eq. (XXII). The field then enters the Lagrangian in the form of eq. (LXIII).
After an initial attempt to select this default setting for the field with the help of a
consistency argument involving the conservation principle (see below), he returned to
the correspondence principle as the main argument for choosing, among several
options to specify the field variable, the default setting eq. (XXII), giving rise to the
familiar Entwurf field equation.

5.5 The Entwurf Operator and the Conservation Principle in the Fall of 1915

In the course of his elaboration of the Entwurf theory, Einstein succeeded in bringing
its field equation into the canonical form described by eqs. (XLIV), (XLV) with the
condition (XLIII), a form that was expected on the basis of classical field theory:

79 Cf. Einstein to H.A. Lorentz, 16 August 1913, (CPAE 5, Doc. 470, Norton 1984, 126).
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ENTWURF =DEFT (52)

with

FIELDMASS =DEFT (53)

Here  represents the default setting for the field as given by eq. (XXII). In 1914
Einstein erroneously believed that a compatibility requirement resulting from the
conservation principle and the generalized relativity principle (cf. eq. (87) below)
would uniquely fix the Entwurf Lagrangian. However, this requirement merely corre-
sponds to demanding the compatibility between FIELDMASS in the sense of
eq. (XLV) and FIELDMASS in the sense of eq. (XLII) and does not substantially
restrict the choice of possible gravitation tensors.80

5.6 The Entwurf Operator and the Generalized Relativity Principle
in the Fall of 1915

Einstein quickly discovered that his argument based on the form of eq. (51) was falla-
cious since the energy-momentum expression of the gravitational field does not rep-
resent a generally-covariant tensor.81 But he soon found another, seemingly powerful
argument in order to justify the Entwurf theory’s lack of general covariance, the so-
called hole argument.82 To identify the covariance group of the Entwurf field equa-
tions compatible with this argument, Einstein again made use of eq. (51) but now in a
different way which corresponds to the conservation compatibility check as repre-
sented by eq. (XLIII), i.e. he combined energy-momentum conservation with the
gravitational field equation in order to derive a condition for the class of admissible
coordinate systems. By exploring the transformation properties of the Lagrangian (cf.
eq. (LXIV), Einstein and Grossmann (1914) claimed to have shown that this condi-
tion is both necessary and sufficient (cf. eqs. (LV) and (XLIV)):

TRAFO(NORMCLASS) <=> TRAFO(DIV(NORMCLASS)) (LXVIII)
with

DIV(NORMCLASS) =DEFT (54)

These four third-order differential equations for the metric tensor complement the ten
gravitational field equations and embody the conditions enforcing the restriction of
general covariance characteristic of the theory. They were understood by Einstein and

80 See “Untying the Knot ...” (in vol. 2 of this series), sec. 3.
81 Cf. the footnote in (Einstein and Grossmann 1914, 218).
82 For historical discussion, see (Earman and Norton 1987, Stachel 1989b) and “What Did Einstein

Know ...” (in vol.2 of this series) as well as further references cited therein.
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Grossmann as determining the coordinate systems “adapted” to the Entwurf theory.83

It was difficult to see exactly which transformations to accelerated coordinate sys-
tems are admitted by these conditions.

5.7 The Ricci Tensor and the Correspondence Principle
in the Winter of 1912–1913

The generally-covariant Ricci tensor, first taken into consideration by Einstein in the
Zurich Notebook (see p. 22R), can be expressed in terms of the Christoffel symbols
(cf. eqs. (30) and (XLVI)) as:

RIEM =DEFT RICCI =DEFT (55)

The validity of the correspondence principle could be examined by bringing RICCI
into the form (cf. eqs. (XXXIV) and (XLIX))

RIEM =DEFT RICCIRED = LAP(POT) + CORR(POT), (LXIX)

and by checking whether (cf. eq. (L))

DIST(POT) = 0.

In the Zurich Notebook Einstein identified the relevant terms as: 

DIST(POT) =DEFT (56)

The vanishing of these disturbing terms can be achieved by imposing a set of four
first-order partial differential equations for the metric tensor which is given by (cf.
eq. (LII)):

COORD(POT) =DEFT COORDHARM(POT) =DEFT (57)

83 This expression is chosen to resolve the ambiguity of German expressions which may be translated by
“condition” as well as by “restriction.” Cf. the formulations in (Einstein and Grossmann 1914):
“understood [...], that an acceptable theory of gravitation implies necessarily a specialization of the
coordinate system.” (“eingesehen [...], daß eine brauchbare Gravitationstheorie notwendig einer Spe-
zialisierung des Koordinatensystems bedarf [...]”, p. 218); “restriction” (“Einschränkung”, p. 218,
note); “true condition” (“wirkliche Bedingung”, p. 219); “conditions [...], by which we restricted the
coordinate systems” (“Bedingungen [...], durch die wir die Koordinatensysteme eingeschränkt
haben.”, p. 225). In a letter to Michele Besso, ca. 10 March 1914, (CPAE 5, Doc. 514), Einstein com-
ments on eq. (54): “These are 4 third-order equations for the [...] or [...], which can be conceived as
the conditions for the special choice of the reference system.” (“Dies sind vier Gleichungen dritter
Ordnung für die  [...], welche man als die Bedingungen für die spezielle Wahl des Bezugssystems
auffassen kann.”)
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These equations, representing the “harmonic” coordinate restriction, were interpreted
by Einstein as singling out a particular class of coordinate systems that were then
called “isothermal” and are now referred to as “harmonic” coordinates.

The reduced Ricci tensor RICCIRED suffered from yet another problem related
to Einstein’s understanding of the correspondence principle. It consists in a conflict
between the harmonic coordinate restriction and the canonical metric for a static
gravitational field POTSTAT (cf. eq. (25)):

COORDHARM(POTSTAT) ≠≠≠≠ 0. (LXX)

However, as far as the available evidence from the Zurich Notebook and other con-
temporary sources show, this argument played no role in evaluating the reduced Ricci
tensor.84

5.8 The Ricci Tensor and the Conservation Principle in the Winter of 1912–1913

As far as the conservation principle is concerned, the exploration depth reached in the
Zurich Notebook was characterized by the fact that Einstein examined only the weak-
field equation following from a gravitational field equation based on the Ricci tensor.
He considered, in other words, an equation of the type of eq. (33). For such a weak-
field equation in which the source is given by pressureless dust (cf. eq. (4)), Einstein
succeeded in representing the force exerted by the gravitational field as a divergence
expression in the sense of eq. (XXXVI)):

– GRAD(POT) X LIM(RICCI) = DIV(LIM(FIELDMASS)), (LXXI)

which in his notation reads:85

(58)

The conservation compatibility check similarly takes on a simpler form if consid-
ered for the weak field case. In first-order approximation the covariant derivative in
eq. (XXXI) can be replaced by an ordinary derivative and OP(POT) by LAP(POT)
with its default setting according to eq. (XXVIII) so that this condition can be writ-
ten, in Einstein’s notation, as:

LIM(DIVCOV(OP)) = DIV(LIM(LAP)= 0. (LXXII)

Interchanging the two differential operations, 

84 See “Untying the Knot ...” (in vol. 2 of this series), fn. 12 for further discussion.
85 See p. 19R of “Einstein’s Zurich Notebook” and sec. 5.4.2 of the “Commentary” (in vol. 2 of this

series), fn. 10 for further discussion. Einstein’s notation, which is somewhat sloppy, is explained in
detail in the commentary; note that he used an imaginary time coordinate and that the terms  here
stand for the small deviations  from the covariant Minkowski metric. 
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DIV(LIM(LAP(POT)) = LIM(LAP(DIV(POT))), (LXXIII)

which, in Einstein’s notation amounts to:

(59)

it becomes clear that the conservation compatibility check is satisfied at the weak-
field level if an appropriate set of first-order conditions hold in the sense of eq. (LVI):

LIM(ENERG) =DEFT DIV(POT) = 0 => DIV(LIM(LAP)) = 0. (LXXIV)

More specifically, the conservation compatibility check works out in the weak field
limit if the condition:

LIM(ENERG) =DEFT COORDHERTZ = DIV(POT) =DEFT (60)

is fulfilled. This condition was mentioned by Einstein in a letter to Paul Hertz from
22 August 191586 and will therefore be called the “Hertz condition” or the “Hertz
restriction” depending on the context. In the case at hand, it is appropriately referred
to as the “Hertz restriction” since it represents a restriction of the admissible coordi-
nates required by the conservation principle.

As it turned out, the combination of the two coordinate restrictions eq. (57) and
eq. (60), resulting from the correspondence and the conservation principle, and the
weak-field field equation imposed a restriction which Einstein considered to be unac-
ceptable. According to this condition, the trace of the source term has to vanish,
which can be expressed in terms of eq. (LX) as:

TRACE(SOURCE) = 0 => CC-COMP(LIM(LAP)). (LXXV)

This condition was indeed incompatible with the default setting for the source term of
the gravitational field equation, pressureless dust (cf. eq. (XXI)). Combining restric-
tions eq. (57) and eq. (60) furthermore implies that the trace of the potential must be
constant which is obviously in conflict with the default setting for the metric of a
static field eq. (25).87

5.9 The Ricci Tensor and the Generalized Relativity Principle
in the Winter of 1912–1913

Given the compatibility problem just described, the transformation properties of the
reduced Ricci tensor remained unexplored.

86 For a detailed discussion of this letter, see (Howard and Norton 1993).
87 See “Commentary ...” (in vol. 2 of this series), sec. 5.4.3 for detailed discussion.
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5.10 The Ricci Tensor and the Correspondence Principle in the Fall of 1915

When Einstein returned to the Ricci tensor in November 1915 both the perspective
and the exploration depth of his investigation had changed. He then considered the
Ricci tensor in coordinate systems with:

(61)

in which it takes on the simpler form:

RICCI =DEFT (62)

Within this framework, the Ricci tensor could be brought into the appropriate weak-
field form eq. (XXXIV) by assuming the Hertz condition:

COORDHERTZ = DIV(POT) =DEFT (63)

In November 1915, Einstein was aware of the fact that it was sufficient for satisfy-
ing the correspondence principle to use such an equation (cf. eq. (LII)) in the modern
sense of a coordinate condition that simply makes use of the freedom within a gener-
ally-covariant framework to pick appropriate coordinate frames—without imposing
an overall restriction. In this sense, Einstein’s understanding of the correspondence
principle had been substantially enhanced by a greater exploration depth of his for-
malism.88

In contrast to eq. (LXX) we now have:

COORDHERTZ(POTSTAT) = 0, (LXXVI)

so that the conflict between the coordinate condition and the canonical metric for a
static field is apparently removed. This is, in any case, what Einstein at first must have
believed when he published, in November 1915, a gravitational field equation based
on the Ricci tensor. What he seems to have overlooked, however, was the fact that his
canonical metric given by eq. (25) was incompatible with the condition eq. (61) on
which his entire framework, including the coordinate condition eq. (63), crucially
depended. In other words, the available evidence suggests that Einstein had first pub-
lished his theory based on the Ricci tensor although it actually violates the correspon-
dence principle as he then conceived it.

He only realized the challenge represented by the choice of the Ricci tensor for
his understanding of the correspondence principle when he examined the implication
of this choice for the explanation of Mercury’s perihelion motion, an examination
that gave him a nearly perfect match with the observational data.89 Einstein at first

88 See “Untying the Knot ...” (in vol. 2 of this series), secs. 1.5 and 6 for detailed discussion.
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interpreted this agreement as evidence in favor of his hypothesis of an electromag-
netic theory of matter which had made the proposal of a field equation with the Ricci
tensor as its left-hand side acceptable to him (see below).

5.11 The Ricci Tensor and the Conservation Principle in the Fall of 1915

By the fall of 1915, the exploration depth of Einstein’s investigation had been
increased, in particular, by the development of a technique allowing him to derive a
gravitational energy-momentum expression FIELDMASS for the full field equation
from the Lagrange formalism, if the coordinate condition eq. (61) is assumed and the
default setting for the field is given by eq. (XXIII). He was thus able to bring a field
equation based on the Ricci tensor into a form corresponding to eq. (XXXIX) with
the conservation equation (XLII):

NORM(POT) =DEFT (64)

with

FIELDMASS =DEFT (65)

and

DIV(ENEMO + FIELDMASS) =DEFT (66)

Einstein, however, did not manage to comply with the requirement expressed by the
default setting eq. (XLIV). Bringing the left-hand side of the field equation into the
form of eq. (XLIV) would result in a formulation in which the right-hand side no
longer satisfies the default setting eq. (XLI) for SOURCE:

NORM(POT)CLASS = DIV(FIELD)=DEFT  (67)

with

SOURCE =DEFT ENEMO + FIELDMASS ≠≠≠≠DEFT (68)

Equation (66) could be used to perform the conservation compatibility check in a
straightforward manner. Einstein succeeded in showing that this check turned out
successful if the trace of the energy-momentum tensor vanishes (cf. eq. (LXXV))—
without imposing any further conditions on the admissible coordinate systems:

TRACE(SOURCE) = 0 => DIV(ENEMO + FIELDMASS) = 0. (LXXVII)

The odd assumption of a vanishing trace, violating the default assumption eq.
(XXI), was now acceptable to Einstein since both the exploration depth of his investi-

89 See (Einstein 1915b) and for historical discussion, (Earman and Janssen 1993).
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gation and his perspective had changed. He now reexamined the Ricci tensor from
the perspective of an electromagnetic theory of matter in which this condition was
fulfilled from the outset, given that the trace of the electromagnetic energy-momen-
tum tensor vanishes.90

5.12 The Ricci Tensor and the Generalized Relativity Principle in the Fall of 1915

The field equations based on the Ricci tensor as formulated by Einstein in the fall of
1915 represents, according to his heuristic criteria, a complete implementation of the
generalized principle of relativity. The conservation compatibility check for these
field equations had given Einstein, as we have seen, merely a condition on the trace of
the energy-momentum tensor which does not imply any restriction on the choice of
coordinate systems. As a consequence, there no longer was any conflict between the
conservation and the correspondence principles as he had encountered it in the winter
of 1912–1913. It was thus possible to impose either the harmonic coordinate condi-
tion eq. (57) or the combination of eqs. (61) and (63) in order to reduce the Ricci ten-
sor to the canonical weak field form eq. (LXIX) from which the Newtonian limit
could be obtained—at least if the objection resulting from eq. (LXX) could be solved
or circumvented.

5.13 The Einstein Tensor and the Correspondence Principle
in the Winter of 1912–1913

The generally-covariant Einstein tensor, first taken into consideration, albeit only in
the weak-field approximation, in the Zurich Notebook, can be expressed in terms of
the Ricci tensor  and its trace  (cf. eq. (55)) as:

RIEM =DEFT Einstein =DEFT (69)

A field equation based on the Einstein tensor may also be written by shifting the trace
term to the right-hand side by a simple mathematical argument. The equation then
reads

(70)

where  is the trace of the energy-momentum tensor . Here the Ricci tensor
again appears on the left-hand side as the differential operator acting on the metric
tensor.

90 See (Einstein 1915d) where the consequence is called “introducing an admittedly bold additional
hypothesis on the structure of matter.” (“Einführung einer allerdings kühnen zusätzlichen Hypothese
über die Struktur der Materie”, p. 799).
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The exploration level of the first examination of the Einstein tensor in the winter
of 1912–1913 was, just as that of Einstein’s analysis of the Ricci tensor, characterized
by a focus on the weak-field equations and the assumption that the correspondence
principle could only be satisfied by a coordinate restriction. Given that the Einstein
tensor results from a modification of the Ricci tensor according to eq. (69), it was nat-
ural to presuppose the harmonic coordinate restriction COORDHARM(POT) = 0 (cf.
eq. (57)). As a matter of fact, in the winter of 1912–1913 the Einstein tensor was
obtained directly by an ad hoc modification of the weak-field form of the gravita-
tional field equation eq. (33), resulting in:91

(71)

with the trace term:

(72)

or alternatively as:

(73)

It surely would have been possible for Einstein to carry out the corresponding modifi-
cation on the level of the original Ricci tensor, turning it into what we now call the
Einstein tensor, by the subtraction of a trace term.

On closer inspection, however, the harmonic coordinate restriction does not
achieve the desired reduction of the field equation to the required standard form in the
sense of eq. (LII). Indeed, if the left-hand side is brought into the canonical form eq.
(XXVIII) so that eq. (73) is obtained, the right-hand side does obviously not repre-
sent the default setting for SOURCE as given by eq. (XIV):

SOURCE≠≠≠≠DEFT (LXXVIII)

Instead an additional trace term appears which in general is not constant. If one
examines, in particular, a static mass distribution as the default setting for SOURCE
so that the 44 component is the only non-vanishing term of the energy-momentum
tensor, it follows from the weak-field equation (73) that all diagonal components of
the metric tensor will be variable so that one has in general:

 ≠ const for (74)

As a consequence, the weak-field equation (73) no longer admits the canonical metric
POTSTAT defined by eq. (25) as a solution. At that point in time, Einstein saw no way
to avoid this default setting for the potential, and he rejected the Einstein tensor—lin-

91 See “Commentary” (in vol. 2 of this series), sec. 5.4.3.
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earized and reduced by the harmonic coordinate restriction—as a candidate for the
left-hand side of the gravitational field equation.92

5.14 The Einstein Tensor and the Conservation Principle
in the Winter of 1912–1913

At the weak-field level, the results of Einstein’s check of the conservation principle
turned out to be promising. In spite of the additional trace term it was possible to
write the gravitational force density in the required form of a divergence of the gravi-
tational energy-momentum density, which in Einstein’s notation reads (cf. eqs.
(XXXVI) and (LXXI)):

(75)

At the level of the weak-field equation it was also immediately clear that the conser-
vation compatibility check is no longer in conflict with the correspondence principle,
in contrast to what he had found before for the Ricci tensor. In analogy with eq. (59)
one now obtains:

(76)

which, in symbolic notation, corresponds to (cf. eqs. (LXXII), (LXXIV)):

DIV(LIM(EINSTEIN)) = LIM(LAP(COORDHARM)) = 0. (LXXIX)

In other words, the conservation compatibility check is, in the weak-field limit, satis-
fied because of the harmonic coordinate restriction eq. (57) required by the corre-
spondence principle—without imposing any restriction on the trace of the energy-
momentum tensor.

5.15 The Einstein Tensor and the Generalized Relativity Principle
in the Winter of 1912–1913

Whether or not the generalized relativity principle was satisfied would, according to
Einstein’s understanding in the winter of 1912–1913, depend on whether the coordi-
nate restrictions necessary to fulfill his other heuristic criteria would leave him
enough covariance. In view of the clash between the Einstein tensor and the corre-

92 See “Commentary” (in vol. 2 of this series), sec. 5.4.6.
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spondence principle (see eq. (LXXVIII)), this issue remained unexplored at this point
in time.

5.16 The Einstein Tensor and the Correspondence Principle in the Fall of 1915

When Einstein returned to the Einstein tensor in November 1915 he focused on coor-
dinate systems with:

(77)

The field equations based on the Einstein tensor then take on the form (cf. eqs (70)
and (62)):

(78)

In view of eqs. (69) and (70), one could use, just as in the case of the Ricci tensor, the
harmonic condition eq. (57)93 to bring the left-hand side of the field equation into the
required form. This condition was now understood as a coordinate condition in the
modern sense. Proceeding in this way, one reduces the Einstein field equation for weak
fields to an equation of the form (73). The usual transition to the Newtonian theory
could now proceed by taking the energy-momentum tensor of dustlike matter as the
source and neglecting all terms except the -term, which can be identified with the
gravitating mass density  appearing in the classical Poisson equation (cf. eq. (37)).

What remained to be shown was that the canonical metric for a static field was
compatible with the non-standard form of the right-hand side of the weak-field equa-
tions (73). Even in 1915 this conflict remained, in a sense, unresolved. The additional
trace term on the right-hand side made it impossible to accept the canonical metric
for static fields as a solution of the weak field equations since the 11 ... 33 compo-
nents of the source term had to be retained in the transition to the Newtonian case (cf.
eq. (74)). Therefore the correction term in the Einstein tensor made the transition to
the Newtonian case a fortiori impossible following the procedure suggested by the
correspondence principle. All this had been known to Einstein in 191294 and
remained, of course, true also in 1915, when he took up the Einstein tensor a second
time (Einstein 1915d).

But now Einstein was able to circumvent this problem. Even though the field
equation failed to satisfy the correspondence principle as hitherto understood, this did
not affect the equation of motion. In the weak-field limit of the equation of motion,
the non-standard character of the weak-field Einstein equation plays no role. For
weak static gravitational fields and for velocities negligible in comparison with that
of light, the general equation of motion (31) reduces, as we have seen, to eq. (38).

93 For a comment on the role of the Hertz condition in this context, see Albert Einstein to Karl
Schwarzschild, Berlin, 19 February 1916, (CPAE 8, Doc. 194).

94 Cf. pp. 20L–21R of “Einstein’s Zurich Notebook” (in this volume).

g– 1.=

Γμν α,
α Γβμ

α Γαν
β+ κ T μν

1
2
---gμνT–⎝ ⎠

⎛ ⎞ .–=

T 44
ρ



PATHWAYS OUT OF CLASSICAL PHYSICS  191

This equation now implies that, under the conditions assumed, a gravitational field
equation based on the Einstein tensor is actually compatible with the experimental
data on gravitation that are adequately described by Newton’s theory if  is, as
usual, identified with the Newtonian potential, while the other components of the
metric tensor play no role at this level of the weak-field limit of the Einstein equation.

5.17 The Einstein Tensor and the Conservation Principle in the Fall of 1915

When Einstein returned to the Einstein tensor in late 1915, the greater exploration
depth of his investigation made it possible to establish an energy-momentum expres-
sion for the gravitational field of the required form. Also the question of the conserva-
tion compatibility check could now be addressed in a straightforward manner. He
succeeded in bringing the field equation into a form corresponding to eq. (XXXIX)
with a conservation equation of the form of eq. (XLII):

NORM(POT) =DEFT (79)

The satisfaction of the conservation compatibility check (cf. eq. (XLIII)) now no
longer imposes any additional conditions interfering with the field equation as was
the case for the tensor where this check implied that the trace of both sides of the field
equation has to vanish.

In the field equation based on the Einstein tensor, the trace terms of the energy-
momentum of matter and of the gravitational field enter, in contrast to what happens
for the Ricci tensor (cf. eq. (67)), in complete parallel to each other. As a matter of
fact, the introduction of these trace terms corresponds to changing the default setting
eq. (XLI) for SOURCE into:

SOURCE =DEFT 

(ENEMO – 1/2 TRACE(ENEMO)) +

(FIELDMASS – 1/2 TRACE(FIELDMASS)). (LXXX)

With this new instantiation for the source term, Einstein now also managed to comply
with the expectation for the left-hand side of the field equation expressed by the
default setting eq. (XLIV):

NORM(POT)CLASS = DIV(FIELD)=DEFT (80)

with

SOURCE =DEFT (81)

Note, however, that with this redefinition of the source-term the field equation no
longer corresponds with the canonical expectation for its right-hand side expressed
by the default setting eq. (XLII) suggested by the conservation principle. Even for a
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field equation based on the Einstein tensor it is simply impossible to satisfy all expec-
tations raised by the experience of classical field theory!

5.18 The Einstein Tensor and the Generalized Relativity Principle
in the Fall of 1915

Since neither the correspondence nor the conservation principle imposed any further
restrictions, field equations based on the Einstein tensor fully implement the general-
ized relativity principle.

5.19 The November Tensor and the Correspondence Principle
in the Winter of 1912–1913

The November tensor, first considered in the Zurich Notebook, can be obtained from
the Ricci tensor (cf. eqs. (55) and (62)) by restricting the covariance group to unimo-
dular transformations and then splitting off a term:

RIEM =DEFT NOVEMBER =DEFT (82)

The exploration level of the November tensor in the winter of 1912–1913 was, in
general, characterized by a limitation to the weak-field equation and the expectation
that the implementation of the correspondence and conservation principles requires a
coordinate restriction. The correspondence principle, in particular, can be satisfied if
the Hertz restriction eq. (60) is imposed, bringing NOVEMBER into the form (cf.
eqs. (XXXIV) and (XLIX)):

RIEM =DEFT NOVEMBERRED = LAP(POT) + CORR(POT), (LXXXI)

so that also the weak-field equation takes on the canonical form of eq. (33) which can
be solved by the canonical metric for a static field given by eq. (25). One now also
has (cf. eqs. (LXX) and (LXXVI)):

COORDHERTZ(POTSTAT) = 0. (LXXXII)

5.20 The November Tensor and the Conservation Principle
in the Winter of 1912–1913

The weak-field equation for the November tensor has the same form as that obtained
from a field equation based on the Ricci tensor since (cf. eq. (XXVIII)):

LIM(RICCI) = LIM(NOVEMBER) = LIM(LAP). (LXXXIII)

It is clear therefore that the conservation principle holds, at least in the weak-field
limit. It is possible to form a divergence expression such as that given by eq. (LXXI)
and to satisfy the conservation compatibility check as represented by eq. (LXXII) if
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the Hertz restriction eq. (60) is imposed. But contrary to the case of the Ricci tensor,
the coordinate restrictions required by the correspondence and the conservation prin-
ciples, respectively, now coincide (cf. eq. (LX)):

LIM(ENERG) = COORDHERTZ = 0. (LXXXIV)

5.21 The November Tensor and the Generalized Relativity Principle
in the Winter of 1912–1913

The check of the generalized relativity principle was eased by the fact that the trans-
formation behavior of the reduced November tensor (cf. eq. (XXXIV)) could be
inferred from the transformation properties of the restriction distinguishing it from
the original November tensor, the Hertz restriction. Indeed, if the Hertz restriction
remains covariant under a given unimodular coordinate transformation so must the
reduced November tensor (cf. eq. (LIX)). In the winter of 1912–1913, Einstein exam-
ined this transformation behavior for the two cases central to the heuristics governed
by the equivalence principle, the case of uniform acceleration (“the elevator”) and the
case of rotation (“the bucket”). To simplify matters, he considered the case of infini-
tesimal transformations and found that, while the Hertz restriction is satisfied by
infinitesimal rotations, it is not by infinitesimal transformations to a uniformly accel-
erated system.95 At least as far as the exploration level of his calculations (limited to
the weak-field case) allowed, Einstein could conclude that the reduced November
tensor clashes with the equivalence principle, even in the case of infinitesimal trans-
formations. He may well have found that transformations to finite rotations are
incompatible with the Hertz restriction as well.

5.22 The November Tensor and the Correspondence Principle in the Fall of 1915

When Einstein returned to the November tensor in 1915, he could make use of the
results he had established earlier, in particular with regard to the correspondence
principle and how to satisfy that principle by imposing the Hertz restriction (cf. eq.
(LXXXI)). His reexamination was, on the other hand, characterized by an increased
exploration depth, which allowed him to treat this restriction as a coordinate condi-
tion in the modern sense. As we shall see, the conservation principle again leads to a
coordinate restriction following from DIV(NORM) = 0 (cf. eq. (XLIII)) which made
it necessary to recheck the compatibility of this condition with the correspondence
principle. As it turned out, the conservation compatibility check only gives rise to a
weak scalar condition in this case, which in the weak-field limit, can easily be satis-
fied if the Hertz condition is fulfilled (cf. eq. (LVI)):

95 See “Commentary” (in vol. 2 of this series), sec. 5.5.3 and secs. 4.5.2–4.5.3.
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LIM(ENERG(POT)) =DEFT COORDHERTZ = 0 => 

LIM(DIV(NORM)) = 0. (LXXXV)

Under these circumstances, the Hertz condition can thus be considered as a strength-
ening of the restriction DIV(NORM) = 0 following from the conservation principle.
But as this sharpening turned out to be necessary only for the purpose of implement-
ing the correspondence principle by choosing a class of coordinate systems suitable
for this purpose, the Hertz condition could now indeed be interpreted, for the first
time, as a coordinate condition in the modern sense. 

5.23 The November Tensor and the Conservation Principle in the Fall of 1915

In the fall of 1915, Einstein succeeded in deriving a gravitational energy-momentum
expression FIELDMASS for the full field equation based on the November tensor
from a Lagrange formalism in which the default setting for the field is given by eq.
(XXIII). He brought the field equation into a form corresponding to eq. (XXXIX), thus
obtaining eqs. (64), (65), and (66), familiar from our discussion of the Ricci tensor.

What remained was the check of compatibility with the conservation principle
and the question of which coordinate transformations it allowed. This question could
now be addressed not just on the weak-field level—where the transformation proper-
ties of the Hertz restriction had led to a disappointing answer—but on the level of the
full field equation. Einstein succeeded in expressing the conservation compatibility
check in terms of an equation of the form of eq. (XLIII) which now, however, has the
remarkable property that it represents not four equations but rather follows from a
single scalar condition (cf. eq. (LVI)):96

ENERG(POT) =DEFT DIV(SCALAR(POT)) = 0 => DIV(NORM) = 0,(LXXXVI)

where:

SCALAR(POT) =DEFT (83)

This condition clearly is much less restrictive than the Hertz restriction. As men-
tioned above, the Hertz restriction could therefore be reinterpreted as a coordinate
condition, obtained by strengthening the weak-field version of this scalar condition.

5.24 The November Tensor and the Generalized Relativity Principle
in the Fall of 1915

The November tensor was obtained from the generally-covariant Ricci tensor by
imposing a restriction to unimodular coordinate transformations. The conservation
compatibility check (cf. eq. (83)) gave rise to a further restriction of the choice of

96 See “Untying the Knot ...” (in vol. 2 of this series), sec. 6, eqs. (75)–(78), for detailed discussion.
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admissible coordinate systems, the “November restriction,” as it might be called.
Combining the trace of the full field equation with eq. (83), the following scalar equa-
tion results:97

(84)

This additional coordinate restriction requires, in particular, that the coordinate sys-
tem cannot be chosen in such a way that  since this would imply the physi-
cally implausible consequence that the trace of the energy-momentum tensor
vanish.98

Since the November restriction was much weaker than the Hertz restriction, it
offered a way to overcome the latter’s fatal implications for the equivalence principle.
In particular, transformations of a given coordinate system to a rotating system or a
system whose origin moves in any given way were now allowed so that the general-
ized principle of relativity is amply, but not fully satisfied. Indeed if a given coordi-
nate system, for instance the usual representation of Minkowski space in Cartesian
coordinates, satisfies this coordinate restriction, any other system resulting from the
given one by a unimodular transformation must also fulfill this restriction, which is
covariant under unimodular transformations.

6. CHANGING HORSES: EINSTEIN’S CHOICE OF
GRAVITATION TENSORS FROM 1912–1913

The checklist for candidates for the left-hand side of the field equations that we used
in the preceding section was based on the heuristic criteria that Einstein had essen-
tially established by the end of 1912. The decision as to which candidate fares best
given these heuristic criteria depends on the state of elaboration of the various mathe-
matical and physical consequences associated with that candidate. The relative arbi-
trariness of elaborating the consequences of a physical theory along various
conceivable pathways, which from the outset can never be overlooked in their total-
ity, therefore entails an element of historical contingency. As the comparison between
the Entwurf theory, maintained by Einstein essentially for three years, and his final
theory of general relativity shows, this contingency may take the form of different
physical theories with different empirical consequences, which, at the time, were
open to debate.

97 See (Einstein 1915a, p.785). Cf. “Untying the Knot ...” (in vol. 2 of this series), sec. 6, eqs. (79)–(82).

98 “In writing the previous paper, I was not yet aware that the hypothesis  is, in principle,

admissible.” (“Bei Niederschrift der früheren Mitteilung [Einstein 1915a] war mir die prinzipielle

Zulässigkeit der Hypothese  noch nicht zu Bewußtsein gekommen.”) (Einstein 1915b,

800).
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Furthermore, even if the more developed state of elaboration reached by Einstein
by the fall of 1915 is taken into account, it is as we have seen in the previous section
the November tensor rather than the Einstein tensor which fits Einstein’s original
heuristic criteria best. The November tensor had passed all tests of Einstein’s check-
list with only a minor adjustment of the generalized relativity principle while the Ein-
stein tensor had failed the test of the correspondence principle as originally conceived
by Einstein. This was all the worse for the Einstein tensor since the generalized rela-
tivity principle was an ambitious and idiosyncratic goal which was not shared by
many of Einstein’s contemporaries, while the correspondence principle had all the
support of classical physics and special relativity. That it was the Einstein tensor that
in the end won the race can only be understood by taking into account another aspect
of the historical process, which we have so far neglected, changes in the heuristic cri-
teria themselves as well as in their relative importance. We therefore need to take a
closer look at the actual development of Einstein’s thinking.

Why exactly did he turn from one candidate to the other? How did his judgement
of candidates evolve? What made him come back eventually to previously discarded
candidates after spending almost three years working out a more or less satisfactory
relativistic theory of gravitation based on one of them? These questions are the focus
of this and the next chapter dealing with what one might describe as Einstein’s dis-
covery process or better, as his “investigative pathway.”99 As we have argued, the
eventual success of Einstein’s research was based on applying shared knowledge
resources to the problem of gravitation. The actual mechanism of these applications
has so far been considered only from a single perspective, that of assimilating physi-
cal and mathematical resources to the basic model of a field equation. In the follow-
ing, we shall argue that focusing on the exploitation of these resources not only
allows us to understand the basic pattern of Einstein’s search, the alternation between
physical and mathematical strategy. It also allows us to reconstruct, to a surprising
extent, the actual course of his search, if we take into account an additional cognitive
process as well. While the assimilation of physical and mathematical knowledge to
the Lorentz model of a gravitational field equation is basically a top-down process
that is guided by the relatively stable high-level cognitive structures at the core of
Einstein’s heuristic criteria, a reflection on the experiences resulting from such an
assimilation, including its failures, could trigger a corresponding bottom-up process
of accommodating these high-level structures, including the very mental model itself,
to the outcome of these experiences. These two complementary processes were medi-
ated by the external representation of the mental model in terms of mathematical lan-
guage. The combination of these processes produced conclusions that evolved with
the elaboration of the formalism and with the accumulation of Einstein’s experience.
In order to substantiate this schematic account, we shall, in the following, review his
pathways, first in the period documented by the Zurich Notebook and then—in the
next chapter—in the period between 1913 and 1915. Relying heavily on the joint

99 See (Renn, Damerow and Rieger 2001; Holmes, Renn and Rheinberger 2003).



PATHWAYS OUT OF CLASSICAL PHYSICS  197

work presented in this volume,100 we shall interpret these pathways as being gov-
erned by an interplay between assimilation and accommodation, mediated by the
mathematical formalism.

6.1 The Tinkering Phase in the Zurich Notebook 

The earliest notes on gravitation in the Zurich Notebook represent a stage of Ein-
stein’s search for the field equation in which he had few sophisticated mathematical
tools at hand that would allow him to construct candidates fitting the framework pro-
vided by the Lorentz model. Even his knowledge of the metric tensor and its proper-
ties was still rudimentary. Only gradually did he find ways of exploiting his
knowledge of vector analysis for his search. Eventually he familiarized himself with
the scalar Beltrami invariants as another instrument that allowed him to investigate the
few building blocks at his disposal, that is, the metric as a representation of the gravi-
tational potential, the four-dimensional Minkowski formalism, and his theory of the
static gravitational field. In spite of the lack of mathematical sophistication character-
izing this early tinkering phase, not to mention the failure to produce promising candi-
date field equations, it is in this period that Einstein acquired essential insights
shaping his research in subsequent phases of work.

These insights consisted, first of all, in a number of concrete results that later
turned out to be useful, such as the identification of the core operator (cf. eq.
(XXVI)), the establishment of a repertoire of techniques for dealing with coordinate
transformations, results on the transformation properties of the Hertz restriction, and,
most importantly, the successful implementation of the Lorentz model of an equation
of motion in a generally relativistic framework (cf. eq. (XX)). The most far-reaching
insights of this period were, however, of a different nature. They consisted in more
general ideas resulting from a reflection on the experiences in the tinkering phase,
ideas that were largely independent from the concrete mathematical material to
which they were applied. Here we encounter a second function of reflection in this
context, beyond that of modifying one or the other of Einstein’s heuristic principles:
reflection could also result in higher-level structures operating on a strategic level,
that is, guiding the implementation of these heuristic principles. The most important
example is certainly the idea to first impose a coordinate restriction on an object of
broad covariance in order to satisfy the correspondence principle and then to explore
the transformation properties of this coordinate restriction in order to check the extent
to which the generalized principle of relativity is satisfied as well (cf. eq. (LIV)).
Even the alternation between more physically and more mathematically motivated
approaches emerged as a distinct pattern in this period, again with far-reaching impli-
cations for Einstein’s subsequent research. The reflection on the experiences of this
tinkering phase thus led to what one might describe as a “chunking” of Einstein’s

100 See, in particular, “Commentary” for this section and “Untying the Knot ...” for the next section (both
in vol. 2 of this series).
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heuristic principles in terms of procedures that interconnected them in such a way as
to ease their implementation as a whole.101 Such procedures could involve the subse-
quent translation of these principles into well-defined mathematical requirements on
a gravitational field theory (e.g., the choice of a generally-covariant candidate, fol-
lowed by the stipulation of a coordinate restriction) or they could consist in alternat-
ing between physical and mathematical default settings.

6.2 Assimilating Knowledge about the Static Gravitational Field
to a Metric Formalism (39L–39R)

When Einstein began systematically to explore a metric theory of gravitation, he was
confronted with the problem that the knowledge resources available to him for con-
structing such a theory presented themselves as more or less isolated building blocks
that could not easily be fitted together. On the page of the Zurich Notebook which
documents the point of departure of his exploration (p. 39L), he therefore started his
investigation simply by listing three such building blocks, the line element in terms of
the metric tensor representing the gravitational potential, the four-dimensional
Minkowski formalism, and his theory of the static gravitational field. How could they
be brought into relation to each other? 

The principal challenge was to assimilate the knowledge about the special case of
a scalar, static gravitational potential to a tensorial formalism. If such an assimilation
were successful, the mental model of a field equation for a tensorial gravitational
potential would acquire a physically meaningful instantiation. Einstein’s first consid-
eration of the problem of gravitation that is recorded in the Zurich Notebook is pre-
cisely such an attempt to assimilate the static case to a metric formalism,
concentrating on two of the slots of the Lorentz model for a field equation, that for the
differential operator and that for the gravitational potential. For reasons that we have
discussed earlier, the default setting for the latter slot was given by the canonical met-
ric for a static field (cf. eq. (25)). Brought into proper mathematical form, Einstein’s
scalar field equation for the static gravitational field could therefore be conceived as a
second-order partial differential equation for the one variable component of this spe-
cial metric tensor, expressed in a special coordinate frame in which the metric takes on
its canonical form. Exploiting mathematical knowledge about the behavior of a tenso-
rial field equation under coordinate transformations, one should then be able to gener-
alize this equation for one component to a field equation for the full metric tensor.

By transforming the equation for the static field into a more general coordinate
system, Einstein made an observation that suggested a new pathway to him. He found
that, under linear coordinate transformations, the metric tensor behaves exactly the
same way as the second-order partial derivatives of a scalar function. This observa-
tion opened up a new possibility for drawing on hitherto unexploited mathematical

101 For the concept of “chunking” in cognitive science, see (Minski 1987).
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resources and thus for identifying a suitable differential operator acting on the metric
tensor.

6.3 Assimilating Knowledge about Scalar Differential Invariants
to a Metric Formalism (40L–41L)

Einstein’s key problem was that the default settings for two of the slots of the mental
model for a gravitational field equation, suggested by his earlier experiences with
implementations of this model, could not be matched to each other (see Fig. 3,
p. 173). While the default setting for the gravitational potential was represented by
the canonical metric, the default setting for the differential operator was, at this point,
an object like the Laplace operator, applicable only to scalar functions and covariant
only under linear transformations. Was there a way of bridging this gap between a
scalar differential operator and a tensorial potential? Einstein’s insight into the anal-
ogy between the transformational properties of the metric tensor and those of the sec-
ond-order partial derivatives of a scalar function offered such a bridge, allowing him
to bring to bear on this problem mathematical knowledge about scalar differential
operators. It suggested the possibility of building some higher-order differential oper-
ator acting on a scalar function, which could then be translated into a differential
operator acting on the metric tensor. All that was needed for such a translation was
the replacement of a second-order partial derivative term by the corresponding com-
ponents of the metric tensor; the remaining partial derivatives could then be consid-
ered as a differential operator acting on the metric. 

What could be gained by such a roundabout procedure? If the scalar differential
operators involved are just linearly covariant, like the Laplace operator, relatively lit-
tle. If, however, scalar differential invariants are taken as the building blocks of such a
construction, it could lead to the formulation of a generally-covariant differential
operator for the metric tensor. There is some indication in the Zurich Notebook that
this may have been Einstein’s hope. In any case, he systematically checked whether
various higher-order scalar differential operators would yield, after translation, a suit-
able candidate for the left-hand side of the gravitational field equations. But appar-
ently he was unable to single out a candidate promising to fulfill his other heuristic
criteria as well, and did not pursue this investigation for the time being. As is clear
from later pages of the notebook, however, Einstein did not consider the potential of
scalar differential invariants for his project to be exhausted. The purpose of a some-
what obscure calculation on the immediately following pages (pp. 40R-41L), dealing
with linear transformations of an algebraic quadratic form, might well have been to
learn more about such invariants and their properties.

6.4 Implementing the Lorentz Model of the Equation of Motion (05R)

At some later point, Einstein made a new beginning in his research on a theory of
gravitation. He now turned to the other element of the field-theoretical model, the
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equation of motion. He probably had realized by this time that the equation of motion
for a point particle in a gravitational field corresponds to the equation for a geodesic
curve in a four-dimensional curved spacetime (cf. eq. (23)).102 But he probably also
had realized that an equation of motion in this sense was not quite the match of the
gravitational field equation for which he was looking. The default-setting for the
source-slot of the Lorentz model for the field equation was not a point particle but the
energy-momentum tensor (cf. eq. (XIV)). The mental model of a field equation
together with special relativistic continuum theory now suggested what such an equa-
tion should look like in terms of the energy-momentum tensor (cf. eq. (XX)).103 Such
an equation would provide, at the same time, an expression for energy-momentum
balance in the presence of a gravitational field.

When Einstein studied the equation of motion problem, he was confronted with
the challenge of how to link his general expectations concerning the structure of such
an equation with his concrete knowledge about the motion of point particles in a
gravitational field. To bridge this gap he made use, as we have discussed before, of a
particular model of matter, which allowed him to link point mechanics and contin-
uum mechanics, i.e. the model of “dust” (cf. eq. (XXI)). At a mathematical level, the
bridge was built with the help of the Lagrangian formalism (cf. eq. (19)). The dust
model allowed Einstein to generalize the equation of motion derived within the
Lagrange formalism into a relation between components of the energy-momentum
tensor. This relation suggested, in turn, what the full tensorial equation of motion in
gravitational field should look like, if it was supplemented by both mathematical and
physical default-assumptions provided by the corresponding special relativistic equa-
tion.104 As discussed above, eq. (XX) expresses the energy-momentum balance in a
gravitational field, i.e. the generalization of the special relativistic relation between
force, energy, and momentum (cf. eq. (XVIII)). Einstein also realized that, from a
mathematical point of view, it corresponds to the covariant divergence of the energy-
momentum tensor (cf. eq. (XXIV)). This remarkable convergence of physical and
mathematical perspectives must have confirmed the expectation that his result also
applies to other kinds of sources and turned Einstein’s equation into the default-set-
ting for the equation of motion in the Lorentz model and for the energy-momentum
balance in a gravitational field.

102 He reproduced the proof that the trajectory of a force-free motion constrained to a two-dimensional
surface is a geodesic on a page of the notebook immediately following the consideration of quadratic
invariants mentioned in the previous subsection (see p. 41R).

103 Einstein emphasized the central role of the energy-momentum tensors and the importance of special-
relativistic continuum mechanics in an article he wrote in 1912 but never published, see (CPAE 4,
Doc. 1, 63).

104 See the discussion in (Norton 2000, Appendix C).
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6.5 A Mathematical Toy Model as a New Starting Point (6L–7L)

The mismatch between the instantiations for two of the slots of the mental model of a
field equation, that for the differential operator and that for the gravitational potential,
left Einstein with two principal options as to how to proceed. He could continue try-
ing to build an appropriate differential operator applicable to the metric tensor or he
could tentatively explore substitutions of the default-setting for the gravitational
potential, thus creating “toy-models” in the sense of obviously unrealistic instantia-
tions of the model. Even if that meant temporarily suspending the insight that the
gravitational potential is represented by the metric tensor, it might still be possible to
gain knowledge from exploring such toy-models that could be helpful in constructing
a more realistic candidate field equation.

When Einstein became familiar with the generally-covariant Beltrami invariants
as a generalization of scalar differential operators, they must have appealed to him as
a promising starting point for his search for a relativistic gravitational field equation.
A field equation based on those invariants would automatically satisfy the heuristic
requirement of the generalized principle of relativity. A first attempt to construct a
differential operator for the metric out of operators acting on a scalar function had, as
we have seen, turned out to be too speculative. It was hence worth trying to explore a
generalization of the scalar Poisson equation in a generally-covariant setting by
using—instead of the Laplace operator—the second Beltrami invariant applied to a
scalar function. While such a generally-covariant scalar field equation was only a toy
model, it confronted Einstein with a serious problem, viz. that of reconciling a math-
ematically satisfactory candidate with the physical knowledge of his theory of static
gravitational fields, (see Fig. 3, p. 173). In a sense, a scalar field equation formulated
in terms of the second Beltrami invariant represents the counterpart of the scalar field
equation of Einstein’s static theory: while the latter constitutes an initial, physically
plausible instantiation for the field-theoretical model, the former represents an
equally plausible initial instantiation rooted in mathematical knowledge. In both
cases, the resulting field equations were merely starting points for further investiga-
tions that had to make contact with knowledge not yet embodied in these first default-
settings.

It therefore comes as no surprise that Einstein tried to find out under which condi-
tions a generally-covariant scalar field equation formulated in terms of the second
Beltrami invariant reduces to the ordinary Poisson equation. Such a reduction must
be possible if the candidate (or rather toy) field equation is to comply with the corre-
spondence principle. It turned out that the implementation of this heuristic principle
in this concrete case requires an additional constraint on the choice of the coordi-
nates, supplementing the field equation. Essentially by inspection, Einstein could
identify the harmonic coordinate restriction (cf. eq. (57)) as a condition that would
make sure that the Beltrami field equation reduces to the ordinary Poisson equation
for weak gravitational fields. In other words, the exploration of a toy field equation
taught Einstein that a candidate field equation obtained from a mathematical default-
setting may require an additional coordinate restriction to be viable from a physical
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point of view as well; it also familiarized him with a specific example of such restric-
tion, which later turned out to be useful when studying the Ricci tensor.

How could the toy field equation be turned into a real candidate field equation? If
the Beltrami field equation is considered as a mathematically reasonable structure to
which physical knowledge should now be assimilated, such as the insight that the
gravitational potential is actually represented by the metric tensor, it made sense to
try to bring this knowledge into an appropriate mathematical form. If unimodular
coordinate transformations are assumed, the determinant of the metric transforms as
a scalar and can be used to fill the potential-slot of a scalar field equation. The next
question was whether the resulting field equation, for the special case of a static field,
could be related to the familiar static field equation. Einstein tried to extend this
approach by taking into account different versions of a Beltrami-type field equation
but failed to integrate the mathematical and the physical knowledge in this way. 

6.6 A Physical Toy Model as a New Starting Point (7L–8R)

Einstein’s first exploration of the Beltrami invariant had not answered the question as
to how to get from a mathematically plausible scalar differential equation to a tenso-
rial field equation that is both mathematically and physically plausible. Reflecting on
this gap, Einstein may well have considered the possibility of dividing this transition
into two steps. The first would be to construct a tensorial field equation that, even if
its mathematical properties were unclear at the outset, made good sense physically.
The second step would take him, relying on mathematical tools, from such a physi-
cally-plausible toy field equation to the final equation.

In any case, instead of taking a simplified instantiation for the potential-slot of
Lorentz model for a field equation to explore a mathematical toy model, Einstein now
chose a simplified instantiation for the differential operator slot, while keeping the
realistic setting for the potential slot, i.e. the metric tensor. His experience with vector
calculus and its use in physics allowed him to write down a straightforward transla-
tion of the ordinary Laplacian operator into a differential operator acting on the met-
ric tensor, the core operator. Einstein’s experience with the Beltrami invariants must
have made it clear that the core operator could hardly represent a generally-covariant
object. From the way in which it was constructed, however, it was equally clear that a
field equation based on the core operator satisfies the correspondence principle. For
this reason, the core operator (cf. eq. (XXVI)) became the default-setting for all of
Einstein’s subsequent attempts to implement this principle.

This candidate now had to be checked against the other heuristic requirements
and, in particular, its behavior under coordinate transformations needed to be
explored. This could be done in two distinct ways: either by directly checking the
transformational behavior of the core operator, or by considering it—in the sense
indicated above—an intermediate step towards the final field equation. Einstein
began with the first option. To get beyond linear transformations, however, he used a
special kind of coordinate transformations, which explicitly depend on the metric
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tensor, and which he later called “non-autonomous transformations”.105 The behav-
ior of the core operator under such transformations is determined by differential
equations for the transformation matrices involving the metric tensor and its deriva-
tives. Einstein succeeded in writing down, at least for infinitesimal transformations,
the essential term in such a differential equation. But probably in view of the com-
plexity that this condition would take on for finite transformations and, more gener-
ally, in view of the unfamiliar character of these non-autonomous transformations, he
abandoned this approach and turned instead to the more familiar territory of ordinary
coordinate transformations.

In that case the only way to go beyond linear transformations was to generalize
the core operator. Einstein developed an ingenious method for doing so. First of all,
he considered the two differential operators constituting the core operator separately,
the divergence and the gradient (or exterior derivative, cf. eq. (XXV)). He then took
the familiar form of these operators applied to some second-rank tensor in
Minkowski spacetime with (pseudo-)Cartesian coordinates as his starting point. Ein-
stein now made the assumption that these operators actually transform as tensors
under arbitrary coordinate transformations. Under this assumption, a coordinate
transformation carrying these operators from their special form in Cartesian coordi-
nates to arbitrary coordinates should reveal their generic form. The idea was similar
to that of obtaining a generalization of the line element of Minkowski spacetime to
that of a generic curved spacetime by passing from pseudo-Cartesian to arbitrary
coordinates in Minkowski spacetime. In both cases one simply had to assume that an
equation obtained for the Minkowski metric in arbitrary coordinates is actually valid
for the metric of a generic spacetime. Although Einstein did not see his calculations
through to the end, he essentially succeeded in finding covariant generalizations of
the constituents of the core operator. Eventually he must have realized, however, that
this success amounted to no more than a Pyrrhic victory since these generally-covari-
ant differential operators give zero when applied to the metric tensor. In other words,
a generalized core operator built from these covariant differential operators is not
suitable as a candidate for the left-hand side of the gravitational field equation. Even-
tually, this failure forced Einstein to take the peculiar non-autonomous coordinate
transformations of his first approach much more seriously than he had probably
intended when he first encountered them.

6.7 Identifying the Core Operator as the Target of the
Mathematical Strategy (8R–9R)

In his next attempt Einstein, reflecting on his earlier failures and insights, combined
his prior experiences to develop a procedure for constructing candidate field equa-
tions that he would repeatedly use in the notebook (cf. eq. (XLVIII)). The genesis of

105 See Einstein to H. A. Lorentz, 14 August 1913, (CPAE 5, Doc. 467). For discussion, see
“Commentary ...” (in vol. 2 of this series), sec. 4.3.
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this procedure as the result of an oscillation between a more mathematically and a
more physically motivated attempt illustrates Einstein’s learning experience in the
course of his search, which therefore cannot be seen simply as the successive elimi-
nation of unsatisfactory alternative candidates.

The attempt to conceive of the physically plausible core operator as the represen-
tation of a more general covariant object in specific coordinates had failed because of
the degeneracy of the corresponding differential operations when applied to the met-
ric. It made therefore sense to return to the earlier direct exploration of the transfor-
mation properties of the core operator. This pathway had not definitively failed yet
but turned out to be too rough. Considered from a higher level of reflection, the core
operator could not just serve as a physically plausible starting point but also as the
possible target of a strategy starting from a mathematically well-defined object. At
this point, the only such mathematically well-defined objects that Einstein had at his
disposal were the Beltrami invariants. It therefore was natural to deal with them once
again, but now not with the theory of the static gravitational field but with the core
operator as the more promising physically meaningful target. This approach came
with a new challenge, the task to extract a tensorial object, the core operator, from a
scalar invariant. This challenge turned out to be manageable.

In short, the idea was to once more start from a mathematically motivated instan-
tiation, the second Beltrami invariant, trying to exploit its familiar mathematical
properties in order to determine the transformational behavior of the physically plau-
sible core operator. The necessary bridges between tensorial and scalar objects were
readily at hand. From his earlier experience, Einstein knew that he could use the
determinant of the metric tensor in the second Beltrami invariant if he considered
only unimodular transformations. Now he realized that he could, in turn, try to extract
a tensor from a scalar by conceiving the latter as a contraction between two tensors,
in this case of the metric tensor and the core operator.

The concrete implementation of this approach confronted Einstein with a number
of problems, minor and major. There was, first of all, the need for a restriction to uni-
modular coordinate transformations. More importantly, when trying to extract the
core operator from the second Beltrami invariant applied to the determinant of the
metric tensor, he encountered an additional first-order term that required further con-
sideration. Einstein’s understanding of the conservation principle, and in particular
his experience with his second theory of the static gravitational field, must have
immediately suggested to him that this first-order term might be related to an expres-
sion for gravitational energy-momentum (cf. eq. (XXXIV)).

In the end, however, Einstein did not succeed in establishing a convincing bridge
between core operator and Beltrami invariants. As a consequence, he failed to clarify
the transformational properties of the core operator or of a suitably amended candi-
date gravitation tensor constructed from it. At this point, he took up once more the
direct exploration of the transformational properties of the core operator earlier aban-
doned because of the intricacy of the non-autonomous transformations involved in it.
This resort to an earlier approach was, however, no return to square one. Einstein
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could benefit from the insights he had made in the meantime, in particular from the
breaking down of the original problem into simpler ones that the introduction of the
Beltrami invariants had made possible. The new first-order term posed a problem
analogous to the one Einstein had first encountered when comparing a mathematical
toy model based on the second Beltrami invariant with the ordinary Laplace operator
and thus suggested the remedy of introducing a coordinate restriction as an additional
hypothesis under which a mathematically acceptable expression reduces to a physi-
cally plausible one. One could limit then the direct exploration of transformational
properties to the remainder term distinguishing the second Beltrami invariant from
the contraction of the core operator with the metric tensor. This task was simpler than
the original one given the structure of the remainder term. If the class of non-autono-
mous transformations leaving this term invariant could be determined, one would
thereby have found the class of transformations leaving the principal term, i.e., the
contraction of the core operator with the metric, invariant as well (cf. eq. (LI)). In this
way, a bridge would have been built between the transformational behavior of the
mathematically well-defined second Beltrami invariant and that of the physically
plausible core operator. In spite of this simplification with respect to Einstein’s origi-
nal attempt to determine the transformational behavior of the core operator, even this
reduced task still turned out to be too cumbersome to carry out.

Although this entire episode was fraught with frustrations of reasonable hope, it
gave Einstein strategic insights well beyond the concrete mathematical material at
hand. There was, first of all, the recognition of the canonical form for the left-hand
side of a gravitational field equation, which would have to consist of a core operator
plus first-order correction terms somehow related to gravitational energy-momentum
(cf. eq. (XXXIV)). Second, the experiences of this episode brought the mathematical
strategy into a form that was to dominate much of the subsequent work documented
in the notebook. The general idea now was to start from an object with well-defined
mathematical properties, in particular with a broad enough covariance group to meet
the demands of the generalized principle of relativity (cf. eq. (XLVI)). The next step
was to extract from it a candidate gravitation tensor with well-defined physical
behavior, more specifically the core operator possibly with correction terms not inval-
idating the correspondence principle (cf. eq. (XLVIII)). The extent to which the gen-
eralized principle of relativity was actually fulfilled could be determined by checking
the transformational behavior of the term distinguishing the candidate gravitation
tensor from the mathematical starting point (cf. eq. (LI)). This term could be elimi-
nated by imposing the appropriate coordinate restriction (cf. eqs. (L), (LII)). It is
remarkable that this strategy, crucial to Einstein’s exploration of the Riemann tensor,
was in place before he had even seen a single realistic candidate gravitation tensor.

6.8 Subjecting the Core Operator to a Piecemeal Approach (10L–12R, 41L–R)

While in the last episode Einstein had developed an overall strategy for solving his
problem and failed, he now took a more piecemeal approach. He focused on a mathe-
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matically much simpler object to avoid the complexity of the non-autonomous trans-
formations he had considered so far. On the whole, this phase of his work was
characterized by the attempt to break down his main problem, the identification of
appropriate field equations, into smaller, more manageable pieces in the hope of iden-
tifying reliable building blocks that could then be used to put the puzzle together.

This line of pursuit was largely shaped by the options and constraints that had
emerged in the course of Einstein’s preceding experience. In particular, while he had
just established a paradigm for what was to become his mathematical strategy, for the
time being this strategy was powerless for want of mathematical objects other than
the Beltrami invariants that could serve as input. The core operator, on the other hand,
inspired confidence as a solid achievement that would be a physically meaningful
starting point were it not for the difficulties of determining its transformation proper-
ties. Yet in view of the absence of other mathematical resources, the use of non-
autonomous transformations may have seemed unavoidable. And if hope was to
remain of connecting possible results to the Beltrami invariants, the only advanced
mathematical objects at Einstein’s disposal, the transformations should be unimodu-
lar as well.

It is against this backdrop that the emergence of the main idea guiding Einstein’s
work in this episode becomes understandable. This work may have sprung from the
idea to consider simpler mathematical objects that would make a direct approach to
the examination of their transformation properties feasible. In any case, at some point
it must have become clear to Einstein that the full problem, the determination of the
transformation properties of the core operator, could actually be broken down into the
study of such simpler objects, if possible vectors or even scalars (cf. eq. (XXV)). The
preceding experience with the attempt to extract the core operator from the scalar
Beltrami invariant may have triggered this idea. It therefore made sense to carefully
check the covariance of these simpler objects in particular under the transformations
relevant to the implementation of the elevator and the bucket models, i.e. transforma-
tions in Minkowski spacetime to uniformly accelerated or to rotating systems.

The realization of the idea just described brought Einstein to study the transfor-
mation properties of the Hertz restriction (cf. eq. (60)). If this restriction was
imposed, the core operator reduces to a simpler object whose transformation proper-
ties can then be determined separately. But in spite of the greater simplicity of these
objects, it turned out to be necessary to introduce a further simplification and to limit
the analysis to infinitesimal transformations. With these presuppositions in place,
Einstein was able to obtain some specific results even if these were not all that
encouraging. In particular, when attempting to implement the elevator model and sat-
isfy the equivalence principle, he found that compatibility with the covariance prop-
erties of the Hertz restriction required a modification of the transformation to a
uniformly accelerated system, which turned out to be unacceptable for physical rea-
sons. In short, Einstein found it difficult to establish a match between the transforma-
tional properties of the objects under study and his physical expectations. How much
of the room opened up by his main idea, that of splitting the core operator into two
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simpler pieces, did he actually investigate in the course of his calculations? It is clear
from his notes that he was aware of variants of this operator and hence of alternative
splits (involving e.g. the harmonic restriction instead of the Hertz restriction), but he
left this option unexplored.

In the end, Einstein once again assembled a number of isolated results that later
became useful. In addition, he gained strategic insights governing the subsequent
course of his research. As far as his specific results are concerned, he established, for
instance, that the Hertz restriction is covariant under infinitesimal non-autonomous
transformations to a rotating system in Minkowski spacetime but, as mentioned
above, not under a transformation to a uniformly accelerated system. He also found
that the core operator is covariant under antisymmetric non-autonomous transforma-
tions in Minkowski spacetime, without however being able to associate physical
meaning with this result. In the course of his work, he gradually shifted the emphasis
of his quest from the transformation properties of the constituents of the core opera-
tor to a careful reexamination of the physically relevant transformations themselves.
He thereby again accumulated some useful findings such as the derivation of the met-
ric for Minkowski spacetime in rotating coordinates from the Lagrangian formalism.
Eventually he made a fresh start, taking unimodular transformations as a starting
point for implementing the generalized principle of relativity. He once more tried to
match them with transformations to a uniformly accelerating system, again without
success. He then abandoned this attempt to incorporate the equivalence principle,
alongside with his entire endeavor to deal with the covariance properties of the core
operator on the basis of his piecemeal strategy. What remained, apart from specific
achievements, was the experience that non-autonomous transformations could be
handled after all, at least when applied to sufficiently simple objects. But this was an
insight that Einstein would be able to put to good use only much later, when he
explored the transformation properties of the finished Entwurf theory, in particular in
its Lagrangian formulation (cf. eqs. (LXIII), (LXIV)). Of more immediate impact
was his realization, fostered by the disappointments produced even by his piecemeal
strategy, that it might be prudent to put the pursuit of an audacious interpretation of
the generalized principle of relativity on hold, turning instead to the physical require-
ments embodied in the conservation principle. 

6.9 Using the Core Operator as the Starting Point for the Physical Strategy
(13L–13R)

Einstein’s next move was to look at his problem from a different angle, bracketing the
intricate problems raised by the generalized principle of relativity and making sure
that what he had achieved so far was at least sound in other respects. And even after
the disappointing yield of his piecemeal approach, the identification of the core oper-
ator as a candidate compatible with the correspondence principle remained such a
sound result. Einstein now tried to address the seemingly intractable aspects of the
exploration of the core operator by reducing the ambitious goals imposed by the gen-
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eralized principle of relativity. For this purpose, he set up a more manageable frame-
work for dealing with the other central, but as yet unexamined aspect of the validity
of the core operator as a candidate gravitation tensor, its compatibility with the con-
servation principle.

His previous research had already suggested that perhaps the core operator needed
to be supplemented by additional first-order terms representing the energy-momen-
tum of the gravitational field in the gravitational field equation. But at that point the
problem of energy-momentum conservation had occurred only as a marginal aspect of
the relativity problem at the center of Einstein’s attention. The impasse of his work on
this problem provided a natural occasion to return to the issue.

Einstein created a manageable framework by restricting all considerations to uni-
modular, linear transformations. The requirement of linearity would secure the tenso-
rial character of the core operator, while the requirement of unimodularity kept the
door open for establishing contact with the Beltrami invariants later. By setting up a
systematic framework for generating vectors and tensors involving the metric Ein-
stein could hope, first of all, to reduce the ambiguities of his approach and second, to
gain solid ground for examining the relation between core operator and conservation
principle without the interference of the relativity problem. Such an examination
might, in particular, help to find the correction terms that he had earlier tried to obtain
from the first Beltrami invariant.

Einstein constructed a framework for generating tensorial objects involving the
metric with well-defined transformation properties, beginning with the Hertz expres-
sion (cf. eq. (60)). He set up a survey of the first-order objects and then stopped,
either because these were the objects in which he was mainly interested with a view
to the correction terms needed for the core operator or because even this limited over-
view dashed any hopes he might have had for a reduction of the space of possible
candidates. Whatever the case may be, it was at this point that he once more took up
the core operator directly, checking its compatibility with energy-momentum conser-
vation. As it turned out, his network of results had become dense enough to allow for
such a check which, even if it failed, would probably still provide hints about what
was still needed to enforce compatibility. Einstein combined the left-hand side of a
field equation based on the core operator with the expression for the energy-momen-
tum balance he had established earlier (cf. eq. (XXX)). He thus produced an expres-
sion corresponding to (cf. eq. (XXXII)):

GRAD(POT) X LAP – DIV(LAP) (LXXXVII)

which a priori could be expected to be of third differential order. But if one now
assumes that a field equation of the form (cf. eq. (XXXIX)):

LAP = ENEMO + FIELDMASS (LXXXVIII)

holds, then compatibility with the conservation principle requires that the above
expression reduces to the second-order expression (cf. eqs. (XXXI), (XXIV)):

GRAD(POT) x FIELDMASS – DIV(FIELDMASS) (LXXXIX)
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with an appropriate explicit form of FIELDMASS. Einstein found indeed that
imposing the Hertz condition implies that no third-order terms appear. But, unfortu-
nately, he failed to arrange the terms in the resulting expression in a way that would
have allowed him the extraction of an explicit form of FIELDMASS.

In summary, Einstein succeeded neither in identifying the conditions under which
the core operator is compatible with the conservation principle nor in finding the cor-
rection terms that could possibly help establishing such compatibility. Even for such
a simple object as the core operator the differential equation resulting from his com-
patibility check appeared to be too complicated. His calculations and the reflections
stimulated by them had nonetheless laid the groundwork for the global approach we
have called his “physical strategy,” all elements of which were now assembled. The
core operator provided him with the starting point for this approach and the calcula-
tions just considered constituted the conservation compatibility check for this candi-
date (cf. eq. (XXXI)). The restriction to linear transformations made it possible to
postpone a check of the extent to which the generalized relativity principle was satis-
fied. What was still lacking was a procedure for guessing or generating suitable cor-
rection terms to be added to the core operator to turn it into a viable candidate.
Einstein had arrived at a dead end, but not with empty hands. Not only had he accu-
mulated a reservoir of insights and tools that would be useful for his further search,
but he had developed two overall strategies, each capable of guiding this search. For
the time being, however, both strategies were doomed to be abeyant as long as certain
elements that could trigger their application were missing. But as soon as an appro-
priate incentive was provided, either of them could be activated. For the physical
strategy to become productive, all that was needed was a way to generate plausible
correction terms to the core operator. For the mathematical strategy to become pro-
ductive, all that was required were tensors with second-order derivatives of the metric
and a well-defined transformational behavior. As it turned out, the latter option was
realized first.

6.10 The Systematic Search Phase in the Zurich Notebook

The raw material needed to set the mathematical strategy in motion was evidently
delivered by Marcel Grossmann whose name appears next to the first occurrence of
the Riemann tensor in the notebook. With this entry, the first phase of Einstein’s
research was over and a phase of systematic searching for suitable gravitational field
equations began. The Riemann tensor represented something like a raw diamond for
Einstein to which he could now apply the various extraction schemes that he had
elaborated earlier as well additional stratagems he developed in the course of his
search. Among these schemes was the contraction of the fourth-rank Riemann tensor
to yield a second-rank candidate gravitation tensor, the extraction of such a candidate
from a scalar object, the stipulation of coordinate restrictions, and the possibility of
modifying candidate field equations by adding or subtracting terms. The products to
which these extraction processes gave rise had an impact on Einstein’s search proce-
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dure going well beyond their immediate evaluation as being either refinements or
debris, as is particularly evident from the identification and subsequent rejection of
the Einstein tensor. 

Einstein’s procedure was guided throughout by the Lorentz model, which sug-
gested that candidates for the left-hand side of the field equations have the form of a
core operator plus correction terms (cf. eq. (XXXIV)). His prior experience with
extracting such candidates from the second Beltrami invariant furthermore gave him
guidance on how to handle those terms not fitting his expectations, i.e., how to elimi-
nate them with the help of a coordinate restriction. Since he started from objects with
well-defined transformation properties, the main heuristic criteria to be checked were
the correspondence and conservation principles. From the point of view of the math-
ematical strategy, both criteria posed similar challenges and thus seemed to call for
similar responses, viz. coordinate restrictions to be imposed in addition to the field
equations. This parallel strengthened Einstein’s expectation that the stipulation of
these heuristic principles required a restriction of the covariance of the object used as
the starting point of the mathematical strategy. On the weak-field level, the two
restrictions, one resulting from the correspondence, the other from the conservation
principle could easily be compared with each other; their compatibility or rather the
lack thereof was an important driving force in the search for field equations (cf.
eq. (LX)). 

The severe restriction on the generalized relativity principle that seemed to be the
almost unavoidable consequence of Einstein’s procedure made it all the more urgent
to check whether or not at least the most essential requirements associated with this
principle were satisfied and, in particular, whether the important special case of rota-
tion was included. Not surprisingly, Einstein more than once reexamined this special
case during his search.

The difficulties Einstein encountered in the course of his attempts to enforce his
heuristic criteria within the formalism he was weaving around the Riemann tensor
naturally provoked a reflection on the validity, the physical meaning, and the mathe-
matical implementation of these criteria. After all, they may just have been preju-
diced. Does the conservation principle really require the covariant divergence of the
stress-energy tensor to vanish (cf. eq. (XXIV))? Does the correspondence principle
really demand a static gravitational field to be represented by a spatially flat metric
(cf. eq. (25))? Can the generalized relativity principle perhaps be satisfied for rotation
by metric tensors other than the one obtained from a coordinate transformation of the
standard Minkowski metric? Such questioning of his original heuristic criteria and
the default settings suggested by them would eventually pave the way for the break-
through of 1915. But in the winter of 1912–1913, the answers that Einstein found to
these questions confirmed his original conceptions and solidified them by extending
the network of inferences in which they were embedded. Ironically, it was precisely
the lack of a candidate field equation complying with his heuristic criteria and worthy
of further elaboration that also prevented, for the time being, the construction of an
even wider network of inferences that would allow these criteria to be overcome.
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While Einstein’s search would eventually turn up just such a candidate, the Entwurf
field equation, this candidate was no longer the result of an extraction from the Rie-
mann tensor.

What was overturned in the course of the research documented by the notebook
was not Einstein’s reliance on his heuristic criteria but the way in which he tried to
meet them following his mathematical strategy. Even when he managed to find a can-
didate for which the coordinate restrictions implied by the correspondence and con-
servation principles, respectively, could be matched, at least on the weak-field level,
the ensuing restriction of the generalized relativity principle and the question of how
to satisfy the conservation principle for the full equation made the entire attempt look
futile. The appeal of the generalized principle of relativity thus gradually faded away,
and the conservation principle gradually emerged as the major stumbling block of the
mathematical strategy and, at the same time, as the key stone for a new approach cor-
responding to a successful implementation of the physical strategy.

Einstein’s checks of the conservation principle in the context of the mathematical
strategy were limited to weak-field equations. Accordingly, all of his results concern-
ing candidate gravitation tensors—positive as well as negative—were provisional
only. For the time being, the limited exploration level of the conservation principle
could not be overcome in the context of the mathematical strategy. First, Einstein had
no systematic mathematical technique at his disposal for implementing this principle
beyond the weak-field level. He would acquire such a technique only much later
when developing a variational formalism for the Entwurf theory in 1914. Second, the
ad-hoc strategies he used to implement the conservation principle beyond the weak-
field level necessitated substantial modifications of the candidate field equations serv-
ing as the starting point of the mathematical strategy, modifications that made the
transformation properties of the proposed field equations intractable despite their ori-
gin in the generally-covariant Riemann tensor.

Einstein’s experiences with extracting candidate gravitation tensors from the Rie-
mann tensor thus displayed a remarkable parallelism to his prior experiences with the
Beltrami invariants. In both cases, the advantages gained by starting from an invariant
or generally-covariant object had to be gradually given up in favor of satisfying the
other heuristic requirements rooted in the knowledge of classical physics until finally
nothing was left of the covariance properties that recommended these objects in the
first place. But it was not only this twofold experience of failure that ultimately trig-
gered a switch from the mathematical to the physical strategy. It was precisely the
main weakness of Einstein’s attempts to come to terms with the conservation princi-
ple, i.e., the limitation to the weak-field level, that indicated a way out of the impasse.
If the implementation of the conservation principle at the weak-field level could not
be the final word, it made sense to take energy-momentum conservation for the weak-
field equations as a starting point for identifying those additional terms that were
needed to turn the core operator into a viable candidate complying with this heuristic
requirement, irrespective of the generalized principle of relativity. Einstein thus
found a way of solving the problem that had blocked the pursuit of the physical strat-
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egy before, viz. the lack of a procedure for generating plausible correction terms to
the core operator. His difficulties with the mathematical strategy suggested a proce-
dure, whose first elements were found before they turned into a systematic mecha-
nism. Once more the essential pattern governing the next step of Einstein’s research,
the derivation of the Entwurf field equations, had been prepared by reflecting on the
blocked pathways encountered in the previous episode. 

The failure of Einstein’s pursuit of the mathematical strategy in the Zurich Note-
book resulted in the derivation of the Entwurf field equations along the physical strat-
egy. The establishment of these field equations, compatible with both the
correspondence and the conservation principles, ended, for the time being, his sys-
tematic search for gravitational field equations. What remained from his efforts in the
winter of 1912–1913, however, was more than yet another and, as it eventually turned
out, unsatisfactory candidate that would eventually be discarded. There was the
November tensor, which did not immediately fall victim to any knock-out argument
derived from Einstein’s heuristic checklist, and which was dropped, not in favor of a
better candidate, but in favor of a seemingly better strategy. There were the Ricci ten-
sor and the linearized Einstein tensor, which had been explored only at the weak-field
level. From this perspective, their later revival is not surprising. But apart from candi-
dates that he would consider again in late 1915, Einstein’s search for field equations
in the winter of 1912–1913 also left its mark at the strategic level, both in his subse-
quent attempts to consolidate the Entwurf theory and in his renewed search for field
equations at the end of 1915. In fact, even when he focused exclusively on the Ent-
wurf theory, he never abandoned the expectation, grounded in the experience docu-
mented by the Zurich Notebook, that it should be possible to arrive at the same field
equations using either the physical or the mathematical strategy. It was this persis-
tence, perhaps more than the potential of any not yet fully explored candidate, that
prevented Einstein from ceasing his quest before he had reached his goal of a gener-
ally-relativistic theory of gravitation in late 1915.

6.11 Fitting the Riemann Tensor to the Lorentz Model (14L–18R)

When Marcel Grossmann introduced Einstein to the Riemann tensor, this new mathe-
matical resource fell on ground that was well-prepared by Einstein’s previous investi-
gations. The expectations with which he approached the new object, however, sent
him in a direction very different to where our modern expectations would take us, viz.
the derivation of the Einstein field equation from the Riemann tensor. For Einstein,
the Lorentz model essentially prescribed the steps to take to evaluate the new candi-
date. His prior attempts to implement this model had led him, in particular, to expect
a field equation with a left-hand side of the form (XXXIV), i.e., a left-hand side of
the form ‘core operator plus correction terms,’ which is incompatible with what we
now take to be the correct field equations.

The central role of the Riemann tensor within the absolute differential calculus as
the wellspring of all other “differential tensors” and “differential invariants”—a role
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of which Grossmann was certainly aware (Einstein and Grossmann 1913, 35)—and
its unexplored status in Einstein’s investigations must initially have nourished high
hopes for the project of extracting from it a suitable left-hand side of the field equa-
tions. Einstein may even have expected that the direct pathway from the Riemann
tensor to an object fitting the Lorentz model would produce the desired result, with-
out any of the moves and tricks that had been necessary in the earlier attempts based
on more pedestrian mathematics. If needed, however, by now such auxiliary schemes
were available to Einstein should difficulties arise. In any case, the fourth-rank Rie-
mann tensor had to be turned into a second-rank tensor that could serve as the left-
hand side of gravitational field equations whose right-hand side was the second-rank
stress-energy tensor (cf. eq. (XIV)). This was a straightforward mathematical opera-
tion, which Einstein carried out as soon as he had been handed the Riemann tensor.
Unfortunately, the result of this operation, the second-rank Ricci tensor (cf. eq. (55))
did not fit to instantiate the open operator slot of the Lorentz model for the field equa-
tion but contained additional, unwanted second-order terms invalidating the corre-
spondence principle (cf. eq. (56)). Einstein’s first attempt to assimilate the Riemann
tensor to his mental model thus resulted in the condition that these disturbing terms
would have to vanish. The appearance of such an additional condition is reminiscent
of similar hindrances he had encountered exploring the Beltrami invariants.

Now that the direct approach had failed, Einstein was forced to exploit the tricks
and tools he had assembled before. The most obvious way to connect his new predic-
ament with his earlier experiences was the construction of a scalar object from the
Riemann tensor, the Ricci curvature scalar. This scalar object could be subjected to
exactly the same procedure as the scalar Beltrami invariant. Einstein thus attempted
to extract a tensorial object from it in analogy to his earlier treatment of the second
Beltrami invariant, i.e., by conceiving the scalar as the contraction of this new, con-
travariant tensorial object and the covariant metric tensor. Also in analogy with his
earlier work on the Beltrami invariants, he set the determinant of the metric equal to
unity to simplify his calculations, thereby imposing a restriction to unimodular coor-
dinate transformations.

The hope was that the new second-rank tensor extracted in this way from the cur-
vature scalar would represent a suitable candidate for the left-hand side of the field
equations, meeting the requirements of the Lorentz model. Unfortunately, the consid-
erable calculational effort required to pursue this option failed to produce more
acceptable results than the direct approach. Einstein even briefly considered introduc-
ing an additional condition on the metric tensor—a weaker form of the Hertz restric-
tion—but apparently gave up this idea because it did not seem to promise an easy
way out either. He then tried to make some progress by comparing the two unsatisfac-
tory candidates he had extracted from the Riemann tensor in both their contravariant
and covariant forms. This procedure also followed the example set by his experi-
ments with the Beltrami invariants and may similarly have been driven by a concern
for uniqueness and the hope to learn from combining different pathways. While the
procedure was given up without reaching a definite conclusion, it gave an insight that
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quickly proved to be important. Using techniques familiar from his Beltrami experi-
ments, Einstein found that the constancy of the determinant of the metric could be
used to replace one of three disturbing second-order terms occurring in the Ricci ten-
sor by a first-order expression.

At the same time, it must have been clear to him that disturbing second-order
terms of some sort were there to stay, and, consequently, that at least some aspects of
what might initially have appeared to be mere stop gaps were there to remain as well.
Precisely because of the original promise of the Riemann tensor, it was clear that the
problem could no longer be the lack of mathematical resources and that no amount of
calculational sophistication would suffice to turn the Riemann tensor into an accept-
able candidate gravitation tensor without introducing further hypotheses, in all likeli-
hood with serious physical repercussions. The need for further hypotheses was also
suggested by the fact that the conservation principle had not played any role in the
analysis of the Riemann tensor so far. It was to be expected that this heuristic require-
ment would exact its price as soon as the physical consequences of a gravitation the-
ory based on the Riemann tensor were pursued any further.

6.12 Establishing a Contradiction between the Correspondence
and the Conservation Principles (19L–19R)

When Einstein had tried to match the second Beltrami invariant to the correspon-
dence principle, he had hit upon the harmonic coordinate restriction as a suitable aux-
iliary hypothesis. Trying to match the Ricci tensor to the correspondence principle,
he found that the same hypothesis could be used to eliminate all disturbing second-
order terms. This first-order condition on the metric tensor was suggested by the con-
dition following from the restriction to unimodular coordinates. This immediately
gave it a similar status, i.e., that of a global coordinate restriction. Against the back-
ground of his earlier experience with the Beltrami invariants, the introduction of such
an auxiliary hypothesis was clearly an application of what we have called the mathe-
matical strategy. The natural next step would thus have been to explore the transfor-
mational properties of this additional restriction (cf. eq. (LIV)).

However, Einstein’s earlier experience had also involved wrestling with the con-
servation principle. He had come to realize that this principle might entail further
restrictions, affecting the covariance properties of the theory. Knowing that exploring
the transformational properties of such extra conditions could become quite involved,
he first tackled the issue of conservation. It made sense to collect all necessary
restrictions first, and establish the transformational properties of overall restriction
later (cf. eq. (LIX)). To explore the emerging network of conditions, Einstein simpli-
fied his framework, focusing on a first-order, weak-field approximation. He thereby
effectively introduced another toy model, now with the goal to explore the entangle-
ment of correspondence and conservation principles.

In weak-field approximation, the harmonic coordinate restriction coming from the
correspondence principle could easily be related to the restriction coming from the
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requirement of compatibility between field equation and energy-momentum conser-
vation. It was immediately clear that the field equations in first-order approximation
satisfy the divergence condition (LXXI). The conservation compatibility check
(LXXIV) gave rise to an additional restriction which could also be brought into a
first-order form, for comparison with the harmonic restriction. The combination of
the resulting Hertz restriction with the harmonic restriction implies that the trace of
the metric tensor must be constant. This implication was inacceptable to Einstein on
physical grounds. It was incompatible not only with the default-setting for the metric
tensor of a weak static gravitational field (25) but also, via the field equations (cf. eq.
(LXXV)) with the default-setting for the stress-energy of matter as given by eq.
(XXI). In view of this discrepancy between the mathematical consequences of his
heuristic principles and his physical expectations, it is not surprising that Einstein at
this point reexamined the legitimacy of the conservation compatibility check which
had evidently triggered this conflict. A crucial implication with physical significance
was the vanishing of the covariant divergence of the energy-momentum tensor (cf.
eq. (XXIV)). Within his weak-field approximation, Einstein therefore rederived this
relation from first principles, i.e., from the continuity equation and the equation of
motion. In this way, he not only extended his network of arguments to include the lat-
ter results but, more importantly, he firmly established the existence of a contradic-
tion within this network, with no simple escape by adjusting his heuristic principles.

In summary, Einstein’s exploration of the Ricci tensor as a candidate for the left-
hand side of the gravitational field equations had ended in an impasse. At the same
time, this exploration had helped him to further extend his strategic resources. They
now included, in particular, the consideration of a weak-field equation. Furthermore,
the mathematical strategy was amplified by adding as a routine a compatibility check
of the restrictions resulting from the correspondence and the conservation principles,
respectively. As a result, the notion of coordinate restrictions as a virtually unavoid-
able consequence of combining a generalized relativity principle with other physical
requirements was solidified. Perhaps the most important result of Einstein’s explora-
tion of the Ricci tensor was, however, the establishment of a sharp contradiction in
the argumentative framework. The identification of this contradiction offered a range
of fairly clear options of how to avoid it. Among the alternative pathways to explore
was the option of changing the physical default settings entering his argument, in par-
ticular those for the metric tensor of a static field and for the stress-energy or energy-
momentum tensor. Another option was to reconsider the implementation of the corre-
spondence principle with the help of the harmonic coordinate restriction, e.g., by
extracting a new candidate from the Riemann tensor with the help of a different coor-
dinate restriction. Probing a different implementation of the correspondence principle
probably looked like the more sensible option given that Einstein’s reconsideration of
the conservation principle had strongly confirmed its implications. In the course of
his research, Einstein eventually pursued all of these options. The option he chose to
explore first came courtesy of the new toy model he had introduced, the weak-field
equation. Why should it not be possible to tinker with the field equations themselves,
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within the weak-field framework, in order to find out whether there really was no way
to satisfy all requirements on the table, including the harmonic coordinate restriction?

6.13 Matching the Riemann Tensor and the Correspondence Principle:
the Failure of the Linearized Einstein Tensor (20L–21R)

The preceding considerations had shown Einstein that the contradiction between the
coordinate restrictions implied by the correspondence and conservation principles,
respectively, had to be taken seriously enough to entertain even a modification of the
form of the field equations. His starting point had been a weak-field equation obtained
from the Ricci tensor by imposing the harmonic coordinate restriction to satisfy the
correspondence principle. The most obvious conflict was that between the implication
of the conservation principle that the trace of the stress-energy tensor of matter must
vanish, on the one hand, and the default-setting for this tensor (XXI), on the other
hand. Einstein’s earlier experience with the adjustment of his original theory of the
static gravitational field to the requirements of the conservation principle helped to
make a modification of the field equation acceptable as a possible way out of this
dilemma. In addition, the weak-field equations made the exploration of possible mod-
ifications easier by making it possible to study the interplay between the various con-
straints in a mathematically simplified form. While the overall logic of this exploration
was dominated by the mathematical strategy, the challenges it produced for the vari-
ous physical default-settings of Einstein’s search for the gravitational field made it
necessary to reflect on his heuristic presuppositions as well and to go back once more
to the physical principles guiding his search such as the equivalence principle and
even to the more secure part of his theory in the making, the equation of motion.

Since neither the conservation principle nor the default-setting for the stress-
energy tensor of matter could be given up easily, the conflict between them first
turned Einstein’s attention to the source slot of the field equation, or rather on its
default-setting, the energy-momentum tensor of matter according to eq. (XIV). If this
default setting could be changed, the default setting DUST (XXI) for the stress-
energy might well be retained without leading to a conflict with the conservation
principle. By replacing the default-setting eq. (XIV) with a traceless quantity, Ein-
stein was indeed able to avoid the conclusion that the trace of the stress-energy tensor
has to vanish if the trace of the field equation vanishes, as it would have to as a result
of combining harmonic and Hertz restrictions, as we have seen.

This remarkable achievement did not provide an entirely satisfactory solution to
the compatibility problem of the correspondence and conservation principles. Ein-
stein had resolved the conflict between the combined coordinate restrictions follow-
ing from these principles and the default-setting for the energy-momentum tensor
(XXI), the discrepancy between the combined coordinate restrictions and the default-
setting for the metric tensor of a weak static gravitational field (25) still existed. The
preceding experience had taught Einstein how modifying the field equation could
help in dealing with disturbing coordinate restrictions. If that method had worked to
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get rid of the unwanted trace condition, why not try to use it again to get rid of the
Hertz restriction altogether rather than to make it compatible with the harmonic coor-
dinate restriction?

Once again, an unsuccessful line of thought had thus paved the way for an impor-
tant strategic insight, which, in this case, gave Einstein the harmonically reduced and
linearized Einstein tensor as a candidate for the left-hand side of the field equations.
Instead of giving up and replacing the default-setting for the right-hand side of the
field equations, changing the way in which the source-term enters the equation, he
modified the way in which the gravitational potential enters the left-hand side of the
equations, i.e. the default-setting for the weak-field version of LAP (XXVIII), the
d’Alembert operator. In a sense, this may have appeared to Einstein as the more con-
servative approach because it interfered less with the canonical form of the field
equation. More specifically, Einstein changed the left-hand side of the field equations
by adding a trace term in such a way that the object on which LAP operates becomes
equal to the left-hand side of the harmonic coordinate restriction if the divergence of
this left-hand side is taken (cf. eq. (LXXIX)). In this way, the vanishing divergence of
the energy-momentum tensor, which is required by the conservation principle and
which originally resulted in the Herz restriction, is now implied by the harmonic
coordinate restriction alone—without imposing an additional constraint (cf. eq. (76)).

Now that the correspondence principle and the conservation compatibility check
in its weak-field form had been taken care of, the next step was to make sure that the
conservation principle was satisfied in all of its facets. For the modified field equa-
tions, Einstein needed to check, in particular, whether the gravitational force could be
represented as the divergence of a gravitational stress-energy expression. The weak-
field equations passed this test without any problem, in spite of the additional trace
term they involve (cf. eq. (75)). It was less obvious how this success could be
extended to the full version of the equations. A half-hearted attempt to solve this
problem was, apparently, enough for Einstein to see that this extension represented a
major challenge and that it might even bring back additional coordinate restrictions.

After this preliminary exploration of the conservation issue beyond the weak-field
case, Einstein returned to the correspondence principle and discovered that another
conflict between the modified field equations and the default-settings of his search
was still unresolved. The canonical metric for a static field (25) is no longer a solution
of the modified field equations. Since the weak-field equation with the added trace
term had otherwise fared fairly well in comparison to earlier candidates, it made
sense to carefully reexamine the legitimacy of the one obstacle that remained, the
default-setting for the weak static gravitational field. He tested its justification by
physical knowledge in the same way in which he had earlier checked the legitimacy
of the Hertz restriction when it proved to be an obstacle. He turned to the more solid
ground provided by the equation of motion. Since the entire theory of the static field
had, in a sense, originated from the equation of motion with the help of the equiva-
lence principle, a check of the default assumption about the static gravitational field
with the help of this principle was the most natural option to pursue. From this per-
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spective, the crucial question was whether the default-setting for the weak static grav-
itational field was actually inescapable given the equivalence principle. What does
Galileo’s principle of equal acceleration in a gravitation field, on which the equiva-
lence principle hinges, imply about the form of a metric tensor for a weak static grav-
itational field?

All Einstein had to do to address this question was to formulate Galileo’s princi-
ple in terms of his metric formalism. The conceptual framework within which his
question was formulated suggested to do so by trying to identify the elements of
Newton’s equation (cf. eq. (III)) within this formalism, in particular the force term
and the mass (or energy) term. His earlier work on the equation of motion and his
experience with the Lagrange formalism gave him the tools for writing down the
required quantities. Since their interpretation was governed by the conceptual frame-
work of Newtonian physics, Einstein could draw the conclusion that, if the force was
to vary as the energy, so as to ensure the validity of Galileo’s principle, the metric for
a static field must take on its canonical form. As a consequence of this inference,
based on combining physical with mathematical elements, in a way that in hindsight
can be recognized as problematic, the default-setting for the weak static gravitational
field became even more firmly rooted in Einstein’s heuristic framework, making its
clash with the linearized Einstein tensor so much the worse for the latter.

In summary, Einstein’s attempt to match the Riemann tensor first with the corre-
spondence principle and then with the conservation principle by setting up a field
equation for which only the harmonic coordinate restriction was needed as a supple-
mentary condition had left him in the end without a viable candidate to pursue. The
promising candidate he had found in the process had to be rejected because it seemed
to be irreconcilable with the equivalence principle. Thus, in this dramatic episode of
the search for gravitational field equations, the Einstein tensor of general relativity
was, albeit only in a weak-field approximation and for harmonic coordinates, identi-
fied and discarded. Clearly, the criteria that led to its rejection had to be changed
before it could be accepted. In particular, the default-setting for the metric of a weak
static field had to be given up, in spite of its support by the canonical form of the
weak-field equation and the—in hindsight—spurious argument based on the equiva-
lence principle. The rejection of the equations in the winter of 1912–1913 was a mat-
ter of heuristic criteria that were still rooted in classical physics and that were
incompatible with general relativity as we know it today. It was also a matter of a net-
work of arguments that were still too loosely woven to produce a contradiction
between any candidate field equation and these classical criteria, that could seriously
challenge the latter rather than leading only to the rejection of the former. 

Again, the failure to establish an acceptable candidate field equation in this pre-
ceding episode strengthened Einstein’s vision and generated new strategic insights.
The mathematical strategy was now fully operative, from the extraction of a candi-
date from the Riemann tensor, via the introduction of a weak-field approximation, to
the matching of the coordinate restrictions following from the correspondence and
the conservation principle, respectively. Among the new insights may have been an
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appreciation of the difficulty in passing from a weak-field to a full-fledged implemen-
tation of the conservation principle. But before this problem could even be addressed
another candidate equation was needed. The options for avoiding the original conflict
between the coordinate restrictions resulting from the correspondence and the conser-
vation principle, respectively, suggested a different implementation of the correspon-
dence principle. The pathway toward such a different implementation and thus to a
new candidate was, in a sense, suggested by the original conflict itself. So far, Ein-
stein had tried to get rid of the Hertz restriction in order to follow the path indicated
by the harmonic restriction. Since this path looked like a dead end, it made sense to
abandon the harmonic restriction, retaining the Hertz restriction instead.

6.14 Matching the Riemann Tensor and the Conservation Principle:
the Failure of the November Tensor (22L–25R)

The Ricci tensor and the Einstein tensor do not exhaust the potential represented by
the Riemann tensor and the mathematical strategy for producing candidates for the
gravitational field equations. As mentioned above, the direction in which to proceed
was indicated by the as yet unresolved conflict between the correspondence and the
conservation principles, which was embodied in the clash between two coordinate
restrictions, the harmonic restriction and the Hertz restriction, respectively. Since the
constraints imposed by the conservation principle appeared to be unavoidable, and
since Einstein’s earlier attempt to suppress the need for the Hertz condition had
failed, he now explored the possibility of realizing the correspondence principle in a
new way, without the help of the harmonic restriction.

It was once again Marcel Grossmann who prepared the ground for pursuing this
other possibility. At the price of a restriction to unimodular transformations, the Ricci
tensor could be split into two parts, each part individually transforming as a tensor
under unimodular transformations. One of those two parts was a promising new candi-
date for the left-hand side of the field equations, the “November tensor” (cf. eq. (82)). 

The November tensor has a surprisingly elegant form: the divergence of a Christ-
offel symbol plus a quadratic expression in the Christoffel symbols. If the Christoffel
symbols were taken to represent the gravitational field (cf. eq. (XXIII)), the candidate
would have the canonical form of eq. (XXXVIII). Such an interpretation, however,
was in conflict with Einstein’s heuristics at this stage, which demanded the imple-
mentation of the correspondence principle first by imposing an appropriate coordi-
nate restriction; furthermore the default setting for the gravitational fields was given
by eq. (XXII). At this point, Einstein only looked for an interpretation of a candidate
in terms of field components once he had found the reduced field equations, i.e., once
he had imposed a coordinate restriction to meet the demands of the correspondence
principle (cf. eq. (LXXXI)).

As he had done before, Einstein expanded the Christoffel symbols in terms of
derivatives of the metric to identify the disturbing second-order terms preventing the
implementation of the correspondence principle. These disturbing second-order
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terms, it turned out, could be eliminated with the help of the Hertz restriction so that
the harmonic restriction was no longer needed. Since the Hertz restriction also guar-
antees the vanishing of the divergence of the linearized stress-energy tensor, the con-
flict between correspondence and conservation principle was thus resolved, at least at
the weak-field level.

Now that this major conflict was settled, new problems arose, among them the
question of the transformations allowed by the reduced field equations and the ques-
tion of the implementation of the conservation principle for the full field equations.
Einstein first addressed the issue of covariance which, given the known transforma-
tional behavior of the November tensor and following a strategy first established in
the context of the Beltrami invariants (cf. eq. (LIX)), could be addressed by exploring
the transformation properties of the Hertz restriction. Einstein could also build on an
earlier analysis of the Hertz restriction which seemed to indicate that transformations
in Minkowski space to a linearly accelerated frame presented a problem, but that
transformations to rotating frames did not.

A complete clarification of the transformation properties of the Hertz restriction
could be obtained by a larger effort dealing with non-autonomous transformations.
Before undertaking such an effort, Einstein preferred, it seems, to turn once more to
the conservation issue. How could he extend his results concerning the conservation
principle from the weak-field level to the full field equations? He must have been
aware of the crucial role of the first-order correction terms to the core operator. Con-
sidering the reduced November tensor, i.e. the terms left of the November tensor after
imposing the Hertz restriction, Einstein was confronted with a number of such first-
order terms, destroying the simple structure which the new candidate displayed when
written in terms of the Christoffel symbols. Einstein tried to reintroduce the Christoffel
symbols. While this allowed him to group certain terms more effectively, the resulting
expression became even more opaque, mixing as it did first-order derivatives of the
metric and Christoffel symbols. It was difficult to see, on the basis of this expression,
how the conservation principle for the full field equation could be satisfied.

At this point Einstein had an idea that may seem ingenious but whose grounds
were prepared by the contrast between the simple and elegant original structure of the
November tensor expressed in terms of the Christoffel symbols and its confusing
complexity when written in terms of derivatives of the metric. What was needed was
a preservation of the original structure in terms of what, in Einstein’s understanding,
would be the true representation of the gravitational field, viz. the first-order deriva-
tives of the metric (cf. eq. (XXII)). The resulting candidate gravitation tensor would
then be of the canonical form (XXXVIII) and, in all likelihood, comply with both the
correspondence and the conservation principle. The idea was to impose a new coordi-
nate restriction that would effectively allow Einstein to replace the Christoffel sym-
bols by first-order derivatives of the metric. This was somewhat more difficult than
the above sketch would suggest, as it required in particular the introduction of an
indirectly defined coordinate restriction amounting to the stipulation that an object
we have designated as the “theta expression” behaves as a tensor. It nevertheless
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proved to be fairly successful. Not only did Einstein manage to obtain a “theta-
reduced November tensor” of the desired canonical form but, along the way he also
found out that he no longer needed the Hertz restriction as an additional condition to
recover the Newtonian theory.

The next challenge was to determine the covariance properties of this theta-
reduced November tensor implied by the somewhat strange new coordinate restric-
tion. Einstein first derived a general condition for the infinitesimal non-autonomous
transformations leaving the theta expression invariant, which, however, was just as
formidable as the conditions of this kind that he had encountered earlier. He then
turned to a special case and tried to identify the class of transformations in
Minkowski space that preserve the theta condition. In doing so, he found a puzzling
result: among the metric tensors satisfying the theta coordinate restriction was a met-
ric corresponding to Minkowski space in rotating coordinates but with interchanged
covariant and contravariant components, an object we shall call the “theta rotation
metric,” or simply the “theta metric.” This curious result continued to concern Ein-
stein almost until the end of the research period covered by the Zurich Notebook.

What did this strange finding actually mean? Was rotation covered by the theta
restriction or was it not? To answer this question, Einstein had to find a physical inter-
pretation of the curious theta rotation metric, exploring whether or not it was possible
to connect it to the dynamics of rotation. He did so in various ways. First he rederived
the equations of motion with the help of the Lagrange formalism in order to identify
Coriolis and centrifugal forces. He abandoned this approach because it became too
involved. Then he switched covariant and contravariant components in the theta con-
dition, since this reformulated condition would obviously admit the ordinary rotation
metric as a solution. Finally, in yet another attempt to come to terms with the physical
interpretation of the theta condition, Einstein took recourse to the law of energy-
momentum conservation, reformulating it in terms of the covariant rather than the
contravariant stress-energy tensor and trying to extract from the reformulated law and
from the theta metric the correct expression for the centrifugal force. Due to an error,
Einstein at first convinced himself that this was actually possible but then appears to
have developed doubts. 

While the physical meaning of the theta rotation metric remained obscure, its
exploration, nonetheless, had two consequences for Einstein’s subsequent work:
First, it proved increasingly difficult to reach a comprehensive implementation of the
generalized relativity principle, and rotation increasingly became something of a lit-
mus test, the one case of accelerated motion that Einstein expected his theory to cover
to comply with his original heuristic mission. Second, checking the theta metric with
respect to the dynamics of rotation may well have directed Einstein’s attention once
again to the significance of the force expression as a clue to viable field equations.

Let us try to reconstruct such a clue by means of our symbolic expressions. It was
indeed possible to derive a force expression from the linearized field equation,
expressing it as the divergence of the gravitational stress-energy density (cf. eqs.
(XXXIII), (XXVIII)):
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LIM(FORCE) = DIV(FIELDMASS). (XC)

If such an expression offers a physically meaningful starting point, for instance
because it vanishes for rotation, it might serve as a criterion for picking a suitable
gravitation tensor instead of just serving as an indirect consistency check by way of a
particular solution such as the theta metric. In that case, the force expression could
perhaps be reinterpreted as representing an exact quantity even though it was
obtained in linear approximation. The force expression could thus become, in a way
similar to the transition from Einstein’s first to his second theory of the static gravita-
tional field, the starting point for extracting a suitably corrected full gravitation tensor
from it (cf. eq. (XXXVI)): 

FORCE = GRAV x FIELD (XCI)

A gravitation tensor GRAV constructed in this way would automatically satisfy the
conservation principle and looked promising with respect to the generalized relativity
principle, at least as far as rotation was concerned. After all, it fulfilled a necessary
condition for being compatible with the relativity of rotation, the vanishing of the
corresponding force expression in the case of rotation. 

If Einstein were in fact trying to implement such ideas, he ran into a number of
difficulties, caused in part by calculational errors. First of all, Einstein did at first not
systematically construct a candidate gravitation tensor GRAV but seems to have
merely guessed it. Second, the gravitation tensor he extracted from the force equation
does not vanish for rotation as he had hoped, but then he found that this extraction
itself involved errors whose elimination might well yield the desired result after all.
Third, he must have realized that by postulating a physically meaningful force
expression as his new starting point he effectively abandoned the link with the
November tensor with its well-defined transformation properties. It therefore made
sense to interpret the candidate field equation extracted from the force expression not
as the definitive result of a physical strategy but rather as the new preliminary target,
itself subject to further corrections, of the mathematical strategy starting from the
November tensor. In this way, the advantage of well-defined transformational proper-
ties might be combined with that of a physically meaningful force expression ensur-
ing the satisfaction of the conservation principle and perhaps even covering the
generalized relativity principle for the case of rotation.

In a sense, Einstein may have reached once again reached the constellation he had
reached earlier when establishing the core operator as the physically meaningful tar-
get (modulo correction terms) of a mathematical strategy taking the second Beltrami
invariant as its starting point. Now the place of the Beltrami invariant was taken by
the November tensor and that of the core operator by a candidate gravitational field
equation that received its physical meaning not just from the correspondence princi-
ple but from the conservation principle as well. In the end, however, Einstein once
again was unable to build a convincing bridge between his mathematical starting
point and his physically meaningful target.
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Unable to build a bridge between the two, Einstein put the November tensor to
one side for the time being and explored the field equation suggested by his force
expression. However, at this bifurcation point of his research, he does not seem to
have had, perhaps for the first time, any promising idea about how to proceed. Nei-
ther his overall heuristics nor his remarkable ability to draw strategic lessons from
failure suggested a plausible next step. The entries in the notebook at this point do not
seem to follow any coherent and well-defined strategy. As noted above, the field
equation suggested by the force expression vanishing for rotation does itself not van-
ish for the rotation metric. Does it perhaps vanish for the curious theta rotation metric
obtained by interchanging covariant and contravariant components? This question
may sound absurd but was nevertheless pursued by Einstein. He even convinced him-
self—arbitrarily adjusting a coefficient—that his candidate field equation does indeed
vanish for the theta metric, a conclusion that is in fact erroneous. This specious result
encouraged him to resort to an earlier trick: if the candidate field equation vanishes
for the theta metric, a new candidate field equation could be constructed by inter-
changing contravariant and covariant components that would vanish for the ordinary
rotation metric. The new candidate resulting from this crude operation was mathe-
matically ill-defined. Nevertheless, Einstein explored it. It covered, or so he may have
believed, the case of rotation, was compatible with the correspondence principle, and
looked promising as far as the conservation principle was concerned.

This last issue called for a closer examination and brought Einstein back to the
starting point of this phase of his search, the expression for the force density. The new
candidate would be compatible with the conservation principle if it gave rise to a
force density that can be represented as the divergence of a stress-energy expression
for the gravitational field. Now that he had found an apparently viable candidate com-
plying with the rotation criterion by merely formal manipulations, it made sense to
repeat the procedure that originally brought him to the expression for the force den-
sity and that had been the point of departure of this whole line of reasoning. Follow-
ing this procedure, Einstein began to write down the force density for the linearized
version of the new candidate field equation, which he then tried to make exact. If
everything worked out as expected, his procedure should correspond to the transition
from eq. (XC) to eq. (XCI) so that he should be able to reconstruct his full candidate
in this way, that is, essentially from inserting the right candidate for LAP into the
expression for the force expression LIM(FORCE) and then generating the correc-
tion terms yielding GRAV.

Unfortunately, things did not work out in the end. Einstein managed to extract
terms from LIM(FORCE) that had the required form of a divergence or that could
be put on the left-hand side of the field equation as correction terms, but he also
encountered a term that could not be treated in either of these two ways. But he got
close as only one disturbing term remained. Remarkably, the terms that were put on
the left-hand side of the field equation not only induced correction terms of the form
CORR(POT) x FIELD but also a term of the form LAP(POT) x FIELD. This sug-
gested that Einstein’s expansion of LIM(FORCE) might actually produce an identity
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if only the right expression for LAP(POT) was taken as the starting point. Eventu-
ally, Einstein nonetheless abandoned the entire calculation, probably not only
because he failed to establish the compatibility of his candidate with the conservation
principle but also because he may have realized at some point that this candidate did
not make good sense mathematically in the first place.

In summary, Einstein had extracted yet another candidate from the Riemann ten-
sor in addition to the Ricci, the harmonically reduced Ricci, and the harmonically
reduced Einstein tensors: the November tensor. In the end, this candidate was judged
to be just as unsatisfactory as its predecessors. Its original appeal gradually waned
because of the problems Einstein ran into when he tried to turn the November tensor
into a viable candidate by adding appropriate coordinate restrictions. The discourag-
ing result was that it hardly made any difference whether a candidate resulted from
reducing a covariant object by additional coordinate restrictions or whether it was
merely constructed ad hoc. Either way, the main challenges, the compatibility with
rotation and the satisfaction of the conservation principle, had to be addressed
directly, by explicit construction. As a consequence, Einstein’s mathematical strategy
lost its appeal and gave way to another tinkering phase.

In this tinkering phase Einstein focused on the expression for the gravitational
force which had the advantage of having a clear physical interpretation. Such an
expression had already played a key role in the transition from his first to his second
theory of the static gravitational field. If the force can be written as a divergence, the
conservation principle is satisfied automatically. And if the expression for the force
happened to vanish for rotation, there was at least a chance of meeting some of the
demands of the generalized relativity principle as well. Einstein’s problem was that
he had yet to find a way of systematically extracting a candidate gravitation tensor
from such a force expression. His attempts to construct or guess candidate gravitation
tensors along this line tended to destroy the promise of his initial ansatz. Given a can-
didate consisting of some version of the core operator plus correction terms sug-
gested by a force expression, it still had to be checked against the conservation
principle. This in turn meant forming a force expression from the linearized field
equation which then was to be rewritten as a divergence, possibly with the help of
introducing new correction terms to the original ansatz. Having tried this procedure
once if not twice without being able to reproduce his original ansatz, Einstein noticed
that he could actually begin simply with the core operator and use the conservation
principle as a means for producing correction terms to it. The realization of this pos-
sibility was the birth of the Entwurf strategy and, as far as the research documented in
the Zurich Notebook is concerned, the end of the mathematical strategy.

6.15 Matching Correspondence and Conservation Principles: 
The Emergence of the Entwurf Equations (25R–26R)

As the November tensor gradually dropped out of sight, the mathematical strategy
launched with the introduction of the Riemann tensor into Einstein’s research fell
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victim to the attrition associated with the efforts to realize Einstein’s physically moti-
vated heuristics when starting from a generally-covariant object. His principal instru-
ment for implementing the correspondence and the conservation principles was to
impose coordinate restrictions, which, first of all, had to be brought into agreement
with one another and then tended to consume the original benefit provided by a gen-
erally-covariant starting point. Meanwhile, he had developed more concise ideas
about what a viable candidate satisfying both the correspondence and the conserva-
tion principles should look like. In the course of his research he had even encountered
candidates that seemed close to satisfying these heuristic criteria. Einstein, however,
never succeeded in building a bridge between a mathematically viable starting point
such as the November tensor and a candidate that looked promising from a physical
point of view. While the November tensor, in particular, was never quite refuted, it
just became more and more uninteresting.

On a heuristic level, Einstein’s difficulties in implementing simultaneously the
correspondence and the conservation principles counteracted the potential advantage
of starting from a candidate satisfying the generalized relativity principle. Even when
the battle was won at the weak-field level, the mathematical strategy failed to provide
any hint for winning it at the level of the full equations. Instead, such a hint came
from mere formal manipulations of the force expression that had already guided Ein-
stein’s pathway from his first to his second theory of the static field. Against the back-
ground of his prior experience with a physical strategy and the inadequacy of the
mathematical strategy to cope with the conservation principle, this hint prepared the
ground for the derivation of the Entwurf field equation.

The gist of this derivation consists in starting from the force expression for the
core operator which is then transformed into a divergence expression plus terms
which are identified as correction terms (cf. eq. (XXXVII)). The resulting identity
then yields both the correction terms and the gravitational stress-energy expression
whose divergence corresponds to the force expression for the definitive gravitation
tensor. The gravitation tensor produced in this fashion even happened to involve the
gravitational stress-energy expression in such a way that the field equation could be
written in the canonical form of eq. (XXXIX), with the energy-momentum of the
gravitational field entering the field equations on the same footing as the energy-
momentum tensor of matter (cf. eqs. (49) and (50)). This strategy was the result of
Einstein’s reflection on his earlier attempts to generalize the representation of the
force as a divergence expression from the weak-field to the general case. Rather than
guessing the right correction terms, he had now found a systematic construction pro-
cedure, which seemed to uniquely identify a candidate gravitation tensor compatible
with both the correspondence and the conservation principle.

The match between these two heuristic principles was achieved at the expense of
the generalized principle of relativity. All that could be known in that respect about a
candidate gravitation tensor produced in this way was its covariance under linear
transformations (cf. eq. (LXVII)). Einstein was ready to accept this consequence. He
had already turned his attention to a simplified approach encompassing only linear



226 JÜRGEN RENN AND TILMAN SAUER

transformations once before so that he could get a better handle on the conservation
principle. This was when his earlier attempts to determine the covariance properties
of the core operator with or without the help of the Beltrami invariants had run into
similar difficulties as his efforts involving to the Riemann tensor. While, at that point,
the restriction to linear transformations was merely a presupposition for formulating
the conservation problem, Einstein may now have felt that this was the price to pay
for its solution.

In the course of Einstein’s pursuit of the mathematical strategy, the conservation
principle had emerged as the major challenge for his search for the gravitational field
equation. This challenge triggered the switch to a physical strategy, judiciously incor-
porating results found while pursuing the mathematical strategy, from the form of the
field equation to the role of coordinate restrictions. With the establishment of the Ent-
wurf field equations with the help of this physical strategy Einstein had succeeded,
for the first time in the course of his research documented by the notebook, to satisfy
the conservation principle without restriction to the weak-field level. The major chal-
lenge for Einstein’s research now was the generalized principle of relativity. How far
could the covariance properties of the Entwurf field equation be extended or was their
covariance really restricted to linear transformations only? Why were the physically
satisfying Entwurf field equations not generally-covariant to begin with? These were
the questions delineating Einstein’s research program for the further exploration of
the Entwurf equation. Its compliance with the heuristic principles rooted in classical
physics, the correspondence and the conservation principle, made it possible to con-
sider these questions not as incentives for continuing the search for gravitational field
equations but as remaining puzzles within an established conceptual framework, that
of the Entwurf theory. For the time being, Einstein’s search for the gravitational field
equations was over—even if this meant turning his back on a reservoir of possible
further candidates.

7. PROGRESS IN A LOOP: EINSTEIN’S GENERAL RELATIVITY
AS A TRIUMPH OF THE “ENTWURF” THEORY

IN THE PERIOD FROM 1913 TO 1915

7.1 Consolidation, Elaboration, and Reflection

This chapter focuses on what has traditionally been seen as the most uneventful
period of Einstein’s search for a generalized theory of relativity, the time between
spring of 1913 and fall of 1915, in which he clung to the erroneous Entwurf theory,
which he published together with Marcel Grossmann before the end of June 1913.
According to the dramatic narratives of the emergence of general relativity, this
period was one of stagnation, it was the calm interval between two major thunder-
storms, Einstein’s tragic struggle with and eventual rejection of generally-covariant
field equations in the winter of 1912–1913 in favor of a theory with only limited
covariance properties and the sudden revelation of errors in the Entwurf theory, which
led immediately to its demise and then to a triumphant, if gradual, return to gener-
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ally-covariant field equations in the fall of 1915. The assumption of a “pitfall” in
1912–1913 and of a “breakthrough” in late 1915 constitutes the traditional explana-
tion for the most peculiar feature of the genesis of general relativity, Einstein’s double
discovery of generally-covariant gravitational field equations, first formulated in
1912 and then rediscovered in 1915. How else, if not by the introduction and later
elimination of errors, can this closed loop be explained?106

From the perspective of an historical epistemology, the supposed period of stag-
nation between 1913 and 1915 can be considered a period in which new knowledge
was assimilated to a conceptual structure still rooted in classical physics. As a result
of this assimilation of knowledge, this conceptual structure became richer, both in
terms of an ever more extended network of conclusions that it made possible, and in
terms of new opportunities for ambiguities and internal conflicts within this network.
It was this gradual process of enrichment that eventually created the preconditions for
a reflection on the accumulated knowledge which, in turn, induced a reorganization
of the original knowledge structure. The enrichment of a given conceptual structure
by the assimilation of new knowledge and the subsequent reflective reorganization of
the enriched structure are the two fundamental cognitive processes which explain the
apparent paradox that the preconditions for the formulation of general relativity
matured under the guidance of a theory that is actually incompatible with it.

As we will argue in the following, the results achieved on the basis of the Entwurf
theory should not be understood as so many steps in the wrong direction, whereupon
it appears that their only function was to make the deviation from the truth evident,
but rather as instruments, first for accumulating knowledge and then for rearranging it
in a new order. Both these processes are essential to the development of scientific
knowledge. The second half of this chapter covers Einstein’s papers of November
1915, with the intention to demonstrate the role in these papers of insights and tech-
niques developed in the period before.

When elaborating the Entwurf Theory, Einstein still pursued the same heuristics
that had shaped his search for a gravitational field equation in the winter of 1912–
1913 as documented by the Zurich Notebook, although the heuristics were now gov-
erned by the perspective of consolidation rather than by that of exploration of alterna-
tives. In particular, the unresolved tensions between Einstein’s heuristic principles
guided his attempts to consolidate the Entwurf theory. These attempts were character-
ized by two complementary approaches. Following a defensive approach, he
attempted to justify the restricted covariance of the Entwurf field equations by argu-
ments based on the knowledge of classical physics. Following a bold approach, he
attempted to look for a generalization of the relativity principle even in the frame-
work of the Entwurf theory. The outcome of these efforts was, as we shall see, that he
eventually succeeded in both, the defensive and the bold approach.

In the first phase of the consolidation period of the Entwurf theory, lasting
roughly from spring to summer 1913, Einstein formulated two problematic argu-

106 This section relies heavily on (Renn 2005c) and “Untying the Knot ...” (in vol. 2 of this series).
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ments, an argument based on the consideration of energy-momentum conservation
and the notorious hole argument, both justifying the restricted covariance properties
of the theory. Although these arguments later turned out to be erroneous, they were
nevertheless significant in bringing out decisive conceptual peculiarities of general
relativity that distinguished it from classical theories, including the Entwurf theory.
The further development, refutation or clarification of these arguments revealed the
non-locality of energy-momentum conservation, as expressed by the nonexistence of
a local energy-momentum tensor for the gravitational field, the impossibility of
ascribing physical significance to single spacetime points independent of the metric,
and the fundamental connection between conservation laws and symmetries of space-
time structure later explicated in the Noether theorems.

In the second phase of the consolidation of the Entwurf theory, roughly lasting
from fall 1913 to the end of 1914, Einstein elaborated this theory, which he originally
found along the physical strategy, from the point of view of the complementary math-
ematical strategy. Guided by this heuristic strategy, Einstein found a new derivation
of the Entwurf field equations, which he completed by the fall of 1914. The second
phase of the consolidation period of the Entwurf theory had, like the first phase, a
paradoxical character. On the one hand, Einstein’s findings stabilized the Entwurf
theory, on the other hand they provided instruments for overcoming the objections
that had earlier prevented him from accepting candidate gravitational field equations
found along the lines of the mathematical strategy. In particular, the variational tech-
niques explored in the context of the new derivation of the Entwurf theory made it
possible for Einstein to solve one of the crucial problems associated with the candi-
dates for a gravitational field equation that he had discarded in the winter of 1912–
1913, the establishment of energy-momentum conservation. That he did not immedi-
ately draw this consequence was partly a matter of perspective since, from the point
of view governing the consolidation period, there was no reason for reexamining the
earlier candidates. 

Having discovered flaws in the Entwurf theory and its derivation along a modified
mathematical strategy, Einstein eventually abandoned the consolidation phase and
subsequently returned to a new exploratory phase, searching once more for the cor-
rect gravitational field equation. In hindsight, he gave three reasons for his rejection
of the Entwurf theory: It could not explain the perihelion shift of Mercury; it did not
allow the interpretation of a rotating system as being equivalent to the state of rest,
and hence did not satisfy his Machian expectations, and finally, the derivation of its
field equations along a mathematical strategy involved an unjustified assumption. For
a short time, the theory survived all of these problems. Even the last problem, the dis-
covery of a flaw in the derivation of the field equations, did not lead to a refutation of
the Entwurf theory but only to a successful attempt of repairing it on a technical level.
But the discovery of this problem had nevertheless fargoing consequences on the
level of Einstein’s reflection on the results he had achieved. By its very nature this
discovery had a double effect:
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– It showed that the adaptation of the mathematical strategy to the Entwurf theory
failed and forced Einstein to return to the arguments at the core of the physical
strategy as the only possible justification of the Entwurf theory.

– It showed that the mathematical strategy adapted to the Entwurf theory did not
single out this theory but rather opened up the possibility of examining other can-
didate field equations. And he needed new equations because of the problem of
rotation.

Together with the other short-comings found earlier, the discovery of the error in the
derivation of the field equations, after a period of reflection, caused Einstein to drop
his attempts to consolidate the Entwurf theory and eventually brought him back to an
exploratory phase.

The second part of this chapter deals with the short period of three weeks before
Einstein presented the definitive field equations of general relativity to the Prussian
Academy on 25 November 1915. This period began when Einstein started to check
whether the Entwurf field equations are necessarily the only solution to his problem
and thus returned to his 1912–1913 attempts to search for a solution by examining
candidate field equations familiar from his pursuit of the mathematical strategy, the
November tensor, the Ricci tensor, and the Einstein tensor. By focusing on the impact
of Einstein’s achievements under the reign of the Entwurf theory, it is possible to
answer the question of why in 1915 he could accept field equations that he had
rejected in 1912–1913. In a note Einstein submitted to the Prussian Academy on
4 November 1915, he proposed a new gravitation theory based on the November ten-
sor, considered earlier in the Zurich Notebook. In contrast to the situation in 1912–
1913, he was now able to demonstrate that the new theory complies with the conser-
vation principle. Just as he had done in the Entwurf theory, Einstein continued to
interpret the conservation principle as implying a restriction of the admissible coordi-
nate systems which now, however, turned out to be much less restrictive than the con-
dition he had earlier found on the basis of his examination of the weak field equation
(cf. eq. (LXXXVI)). He thus reached a decoupling of the coordinate restrictions
implied by the conservation and the correspondence principles, respectively. Reflect-
ing on this decoupling, Einstein was now able, for the first time, to conceive the
choice of coordinates required for implementing the correspondence principle as a
coordinate condition in the modern sense.

In an addendum to the note published on 4 November, Einstein reinterpreted
another already familiar candidate in a new context, the Ricci tensor. This new context
was provided by a speculative electromagnetic theory of matter, probably stimulated
by the contemporary work of David Hilbert on such a theory. Due to this new context,
Einstein shifted the restriction on the choice of coordinates, which he had found for
the theory based on the November tensor, to a restriction of the choice of a particular
kind of matter acting as the source of gravitational fields. Einstein thus arrived at a
generally-covariant theory based on the Ricci tensor, which he considered as being
merely a reinterpretation of the theory based on the November tensor so that he could
take over essential results such as those concerning energy-momentum conservation.
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He thus partly resolved—on the basis of the Entwurf theory—and partly circum-
vented—on the basis of an electromagnetic theory of matter—the objections he had
earlier encountered against such a theory when he first considered it in 1912–1913.

In a paper submitted on 18 November 1915 Einstein calculated the perihelion
shift of Mercury, claiming to provide support for the hypothesis of an electromag-
netic nature of matter on which his new theory of gravitation was based. In a sense,
the Mercury problem now offered a theoretical laboratory for the Ricci Tensor. Ein-
stein’s paper is largely based on techniques he had developed jointly with Besso in
1913 in the context of the Entwurf theory. It also includes the crucial insight that the
determination of the Newtonian limit for a gravitational field equation involves, in
general, more complex considerations than originally envisioned along the physical
strategy, and that were used earlier to object to the harmonically reduced Ricci tensor
in the Zurich Notebook. This insight into the complex nature of the correspondence
principle had already been attained in 1913 as well, in the context of the Entwurf the-
ory (at least by Besso) but was then of no relevance as Einstein and Besso did their
original calculations in the consolidation phase of this theory.

Einstein’s more sophisticated understanding of the Newtonian limit had, in the
context of the renewed exploratory phase at the end of 1915, decisive consequences:
It made it possible for him, in his final paper of that period, to base a theory of gravi-
tation on the Einstein tensor, whose harmonically reduced and linearized form had
been rejected in 1912 because of its apparent incompatibility with the correspon-
dence principle. Also the status of energy-momentum conservation changed in the
new theory. The insight into its different status was a consequence and not a presup-
position of the establishment of the definitive version of general relativity, which on
Einstein’s part was established entirely in the conceptual framework of the Entwurf
theory. The Entwurf theory and general relativity were initially not separated by a
conceptual gulf, but merely by technical insights on the one hand, and a change of
perspective on the other. Remarkably, these were both the result of the same process,
the elaboration of the Entwurf theory during the supposed period of stagnation. Since
the technical achievements attained in this period could still have been, in principle,
assimilated to the theory that had given rise to them, taken by themselves they would
have induced only a linear progress, thus yielding an increasingly sophisticated and
increasingly complex Entwurf theory. It thus becomes clear that in light of the new
technical achievements of the consolidation phase of the Entwurf theory, Einstein’s
reflection on his earlier knowledge, including previously discarded candidate gravita-
tion tensors, was the crucial process that made the establishment of general relativity
the result of progress in a loop.

7.2 The First Phase of the Consolidation Period of the Entwurf Theory:
The Defensive and the Bold Approach

With the formulation of the Entwurf field theory and its publication by Einstein and
Grossmann in the spring of 1913, the search for the field equations, as documented
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by the Zurich Notebook, had manifestly come to an end. Einstein no longer examined
different candidates by comparing them with his heuristic expectations. Instead, he
used his growing mastery of the mathematical representation to develop the one most
promising candidate he had found. He thus entered the consolidation period of the
Entwurf theory. A consolidation of the Entwurf theory was necessary in view of the
main problem left open by the Entwurf paper of 1913, the determination of the cova-
riance properties of the field equations and thus of the extent to which the new theory
realized the generalized principle of relativity. The covariance was more restricted
than that of the candidate gravitation tensors derived from the generally-covariant
Riemann tensor that had formed the points of departure of Einstein’s mathematical
strategy. It therefore made sense to address this problem by trying to explain and jus-
tify the restricted covariance of the Entwurf equations and to explore these covariance
properties in the hope of generalizing the relativity principle as much as possible.

Einstein’s probing of these two approaches came to a first conclusion in August
1913. All his bold efforts up to that point to identify by explicit calculations non-lin-
ear transformations under which the Entwurf field equations might be covariant had
failed, including an attempt to show that the metric for Minkowski spacetime in rotat-
ing coordinates is a solution of these equations. At the same time, his defensive
efforts had led to a first result. Not surprisingly, this result was based on the conserva-
tion principle which had earlier motivated a restriction of the generalized principle of
relativity on several occasions in the Zurich Notebook. An interpretation of the
expression for energy-momentum conservation in the Entwurf theory, following the
model of classical and special-relativistic physics, was now taken by Einstein to indi-
cate that the Entwurf theory is covariant only under linear transformations. Both
results, the failure of his attempts to identify non-linear transformations and the con-
servation argument, as we shall call it, thus pointed in the same direction and encour-
aged Einstein to look for further arguments along the defensive.

By the end of August 1913, he found, quite possibly in discussion with Michele
Besso,107 another argument against general covariance, the so-called “hole argu-
ment,” which is based on the assumption, again motivated by classical and special-
relativistic physics, that points in spacetime can be identified by means of coordinate
systems, independently from any physical processes. In a formulation by Besso, the
argument merely seeks to express the non-uniqueness of the metric tensor in terms of
two distinct sets of functions which solve the same set of differential equations with
given boundary values. Einstein elaborated this argument to a construction of two
distinct solutions for the metric tensor considered within one and the same coordinate
system. This more sophisticated version of the hole argument makes use of the idea,
in modern parlance, to drag values of the metric tensor from one spacetime point to
the other and later raised the important question of which aspects of a generally-cova-
riant theory are physically meaningful.

107 See “What Did Einstein Know ...” (in vol. 2 of this series).
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By means of the hole argument, Einstein convinced himself that generally-covari-
ant gravitational field equations, together with boundary values, do not determine
uniquely the metric tensor representing the gravitational field. Having thus identified
an apparently fundamental reason for rejecting general covariance, he interpreted his
earlier argument from the conservation principle as providing the necessary special-
ization of the reference frames to be used within the theory. With these results, the
Entwurf theory had come to a certain closure, ending the first phase of its consolida-
tion period.

7.3 The Failure of the Generalized Principle of Relativity:
A Conflict Between Formalism and Physical Intuition 

Einstein’s decision to settle for the non-generally-covariant field equations of the
1913 Entwurf paper was the consequence of his failure to find generally-covariant
equations and not of a conviction or an insight that such equations could not exist. In
the spring of 1913, he could not be sure that he had just failed to find generally-cova-
riant equations that would fulfill his hopes for fully implementing the generalized
principle of relativity. In the notebook, he had considered several candidates for gen-
erally or at least unimodularly covariant field equations and found them defective.
But the fact that these candidates failed for different reasons must have made it diffi-
cult for Einstein to accept that generally-covariant field equations did not exist since
these different reasons did not include a clear hint as to why a full implementation of
the generalized relativity principle could not exist. Either the conflict with the realiza-
tion of the Newtonian limit as required by the correspondence principle, or with the
demonstration of energy-momentum conservation as required by the conservation
principle, or both, led to the rejection of a promising candidate, but these conflicts by
themselves did not provide any counter-argument against the possibility of the gener-
alized principle of relativity. The failure to find generally-covariant field equations
was, after all, merely a technical result, incompatible with the physical intuition
incorporated in the generalized principle of relativity.108 The conflict between for-
malism and physical understanding motivated Einstein’s further elaboration of the
Entwurf theory.

If Einstein, at the time of the notebook or of the publication of the Entwurf paper,
had seen any reason to modify or restrict this principle, he might have done so explic-
itly in order to justify his failure to achieve its full implementation. In a letter to
Ehrenfest from May 1913, in which he announced the forthcoming publication of the
Entwurf paper, he asserts his firm belief in a generalized principle of relativity, but
points out that he had been unable to realize this principle on the level of the theory’s
formalism:

108 For discussion of the problematic relation between the physical intuition incorporated in the general-
ized principle of relativity and general covariance, see (Janssen 2005).
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I slowly convinced myself that privileged coordinate systems do not exist at all. How-
ever, I succeeded only partly in arriving at this position also from a formal point of
view.109

In the Entwurf paper itself, Einstein refers to the conflicts between the generalized
relativity principle and his other heuristic principles in order to justify the new the-
ory’s lack of general covariance (Einstein and Grossmann 1913, 11). He emphasized,
in particular, the difficulties he had found in realizing the correspondence principle,
suggesting a second-order field equation, as a justification for his failure to achieve a
generally-covariant field equation. He also admitted that his introduction of the Ent-
wurf field equations was merely based on plausible assumptions and not on a strict
derivation from postulates such as a generalized principle of relativity.

The failure to find generally-covariant field equations was most evident from an
intrinsic asymmetry of the Entwurf theory, between the non-generally-covariant field
equation and the generally-covariant equation for material processes in a gravita-
tional field, i.e., the equation for energy-momentum conservation. This asymmetry is
also emphasized in the Entwurf paper itself. Einstein attempted to interpret it as a
clue for justifying the failure to establish a generally-covariant field equation, point-
ing at the different ways in which the metric tensor enters into the equation for
energy-momentum conservation, on the one hand, and the field equation, on the
other: 

This exceptional position of the gravitational equations in this respect, as compared with
all of the other systems, has to do, in my opinion, with the fact that only the former can
contain second derivatives of the components of the fundamental tensor.110

In a sense, he simply turned the description of the problem into its solution at this
point. Einstein’s problem remained that this assertion was merely speculative and, in
the final account, based on nothing but his failure to find appropriate, generally-cova-
riant, second-order gravitational field equations.

7.4 The Failure of Einstein’s Search for Non-Linear Transformations

While in the spring of 1913 Einstein made his first attempts at justifying the lack of
general covariance of the Entwurf field equation, he tried, at the same time, to over-
come this problem. In fact, it could not be excluded that, even though all derivations
in the Entwurf theory merely involve the assumption of linear covariance, the field
equations would turn out to be covariant under a wider class of transformations. In
the Entwurf paper, this question is singled out as the most important one left to be
resolved (Einstein and Grossmann 1913, 18).

109 “Die Überzeugung, zu der ich mich langsam durchgerungen habe, ist die, dass es bevorzugte Koordi-
natensysteme überhaupt nicht gibt. Doch ist es mir nur te[i]lweise gelungen, auch formal bis zu die-
sem Standpunkt vorzudringen.” Einstein to Paul Ehrenfest, 28 May 1913, (CPAE 5, Doc. 441).

110 “Die diesbezügliche Ausnahmestellung der Gravitationsgleichungen gegenüber allen anderen Syste-
men hängt nach meiner Meinung damit zusammen, daß nur erstere zweite Ableitungen der Kompo-
nenten des Fundamentaltensors enthalten dürften.” (Einstein and Grossmann 1913, 18)
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There are indications that Einstein attempted to find out by calculation whether
the Entwurf field equation transforms also under a wider class of transformations.
From his Zurich Notebook, he was familiar with techniques for exploring the trans-
formational behavior of field equations. But the Entwurf field operator confronted
him with a case that was far more complex than any other candidate in the notebook
for which he had attempted to determine the transformational behavior by directly
subjecting it to coordinate transformations.

One indication for Einstein’s explorative attempts and their failure comes from a
couple of pages of the so-called Einstein-Besso manuscript, pages that were probably
written around June 1913 and that deal specifically with the problem of rotation.111

Another indication comes from a letter Einstein wrote on 14 August 1913 to Hendrik
A. Lorentz. This letter marks the preliminary end of Einstein’s search for non-linear
transformations of the Entwurf field equation and provides a succinct resume of the
situation of the Entwurf theory just on the verge of the renouncement of the bold
approach. The letter begins with the confession that the lack of general covariance
represents a profound dilemma for the new theory of gravitation:

And now to gravitation. I am delighted that you so warmly espouse our investigation.
But, unfortunately, there are still such major snags in the thing that my confidence in the
admissibility of the theory is still shaky. So far the “Entwurf” is satisfactory insofar as it
concerns the effect of the gravitational field on other physical processes. For the absolute
differential calculus permits the setting up of equations here that are covariant with
respect to arbitrary substitutions. The gravitational field ( ) seems to be the skeleton,
so to speak, on which everything hangs. But, unfortunately, the gravitation equations
themselves do not possess the property of general covariance. Only their covariance with
respect to linear transformations is certain. But all of our confidence in the theory rests
on the conviction that an acceleration of the reference system is equivalent to a gravita-
tional field. Hence, if not all of the equation systems of the theory, and thus also equa-
tions (18), permit other than linear transformations, then the theory refutes its own
starting point; then it has no foundation whatsoever.112

The letter to Lorentz continues with a description of Einstein’s unsuccessful attempts
to find non-linear transformations under which the Entwurf field equation remains
covariant, discussing two types of transformations, autonomous and non-autonomous
ones.113 In the Zurich Notebook, he had attempted on several occasions to find the
transformational properties of a physically plausible candidate by deriving differen-
tial equations for the transformation coefficients involving the metric tensor. But he
had never found a simple solution to the problem posed in this way. In view of the
many reasons in favor of the Entwurf theory, he must have applied this technique to it
with even greater persistence. Einstein’s letter to Lorentz shows, however, that these
efforts remained as unsuccessful as they had been in the Zurich Notebook. He was, in
fact, ready to give up the bold approach to solve the most fundamental problem of the
Entwurf theory and turn to the defensive approach, searching for more substantial

111 See (CPAE 4, Doc 14 [pp. 41–42]) and the discussion in (Janssen 1999).
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arguments to justify the lack of covariance of the field equations than those adduced
in the Entwurf paper.

7.5 Einstein’s Reinterpretation of the Conservation Principle

For the candidates which Einstein had encountered pursuing the mathematical strat-
egy, the conservation principle typically implied a restriction of the generalized prin-
ciple of relativity. Given this experience, it must have been plausible for him to
examine whether an explanation for the restricted covariance of the Entwurf field the-
ory could perhaps also be found in the context of energy-momentum conservation.
Only a day after Einstein sent the letter to Lorentz quoted above, on 15 August 1913,
he indeed found a way to justify the limited covariance of the Entwurf theory on the
basis of the conservation principle. A crucial heuristic ingredient of his argument was
the parallelism between gravitational energy and other forms of energy, represented
in the Entwurf theory by eq. (51). In another letter to Lorentz, written on 16 August
1913, Einstein wrote:

Furthermore, yesterday I found out to my greatest delight that the doubts regarding the
gravitation theory, which I expressed in my last letter as well as in the paper, are not
appropriate. The solution of the matter seems to me to be as follows: The expression for
the energy principle for matter & gravitational field taken together is an equation of the

form (19), i.e., of the form  starting out from this assumption, I set up

112 “Nun zur Gravitation. Ich bin beglückt darüber, dass Sie mit solcher Wärme sich unserer Untersu-
chung annehmen. Aber leider hat die Sache doch noch so grosse Haken, dass mein Vertrauen in die
Zulässigkeit der Theorie noch ein schwankendes ist. Befriedigend ist der Entwurf bis jetzt, soweit es
sich um die Einwirkung des Gravitationsfeldes auf andere physikalisch[e] Vorgänge handelt. Denn
der absolute Differenzialkalkül erlaubt hier die Aufstellung von Gleichungen, die beliebigen Substitu-
tionen gegenüber kovariant sind. Das Gravitationsfeld ( ) erscheint sozusagen als das Gerippe an
dem alles hängt. Aber die Gravitationsgleichungen selbst haben die Eigenschaft der allgemeinen
Kovarianz leider nicht. Nur deren Kovarianz linearen Transformationen gegenüber ist gesichert. Nun
beruht aber das ganze Vertrauen auf die Theorie auf der Überzeugung, dass Beschleunigung des
Bezugssystems einem Schwerefeld äquivalent sei. Wenn also nicht alle Gleichungssysteme der Theo-
rie, also auch Gleichungen (18) [i.e. the gravitational field equations] ausser den linearen noch andere
Transformationen zulassen, so widerlegt die Theorie ihren eigenen Ausgangspunkt; sie steht dann in
der Luft.” Einstein to Hendrik A. Lorentz, 14 August 1913, (CPAE 5, Doc. 467). In view of the later
development, in which the question of whether the manifold with its coordinate systems or the metric
tensor is the “skeleton” on which all physical processes depend acquired a certain significance, it is
remarkable that in the above formulation Einstein singled out the metric tensor as the crucial object.
As we will see below when discussing the hole argument, in defending the lack of general covariance
of his field equations Einstein for a while assumed that the points of the manifold identified by certain
sets of coordinates actually have a reality and physical significance by themselves, that is, also inde-
pendently from the metric tensor.

113 This fact also suggests that Einstein at this point did not assume that the Entwurf field equations
remain covariant under rotations.
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equations (18). But a consideration of the general differential operators of the absolute
differential calculus shows that an equation so constructed is never absolutely covariant.
Thus, by postulating the existence of such an equation, we tacitly specialized the choice
of the reference system. We restricted ourselves to the use of such reference systems with
respect to which the law of momentum and energy conservation holds in this form. It
turns out that if one privileges such reference systems, then only more general linear
transformations remain as the only ones that are justified.114

With this insight, the conservation principle was no longer merely a technical imped-
iment to the full implication of the generalized relativity principle but provided the
concrete physical reason for the restriction to specific, well-defined transformations.
Accordingly Einstein continued in his letter to Lorentz:

Thus, in a word; By postulating the conservation law, one arrives at a highly determined
choice of the reference system and the admissible substitutions. Only now, after this ugly
dark spot seems to have been eliminated, does the theory give me pleasure.115

Einstein’s argument presupposes, however, that the objects appearing in his equation
for energy-momentum conservation eq. (51) behave themselves as tensors. This is
true for the stress-energy tensor of matter, but not for the stress-energy expression for
the gravitational field, as Einstein came to realize a few months later.116 But if this
quantity fails to behave as a tensor, the transformational properties of eq. (51) cannot
be read off by inspection as Einstein claimed to be able to do in his letter to Lorentz.

Einstein immediately incorporated the argument for linear covariance found on
15 August 1913 and exposed to Lorentz a day later into his manuscript for a lecture
he was invited to hold on 23 September 1913 in Vienna.117 In § 6 of this lecture, enti-

114 “Ferner fand ich gestern zu meiner grossen Freude, dass die gegenüber der Gravitationstheorie in mei-
nem letzten Briefe, sowie in der Arbeit geäusserten Bedenken nicht angezeigt sind. Die Sache scheint
sich mir folgendermassen zu lösen. Ausdruck des Energieprinzips für Materie & Gravitationsfeld

zusammen ist eine Gleichung von der Form (19) d.h. von der Form  von dieser Voraus-

setzung ausgehend stellte ich die Gleichungen (18) [i.e. the field equations] auf. Nun zeigt aber eine
Betrachtung der allgemeinen Differenzialoperatoren des absoluten Differenzialkalküls, dass eine so
gebaute Gleichung niemals absolut kovariant ist. Indem wir also die Existenz einer solchen Gleichung
postulierten, spezialisierten wir stillschweigend die Wahl des Bezugssystems. Wir beschränkten uns
auf den Gebrauch solcher Bezugssysteme, inbezug auf welche der Erhaltungssatz des Impulses und
der Energie in dieser Form gilt. Es zeigt si[ch], dass bei der Bevorzugung solcher Bezugssysteme nur
mehr allgemeine lineare Transformationen als allein berechtigt übrig bleiben.” Einstein to Hendrik A.
Lorentz, 16 August 1913, (CPAE 5, Doc. 470).

115 “Also kurz gesagt: Durch die Postulierung des Erhaltungssatzes gelangt man zu einer in hohem
Masse bestimmten Wahl des Bezugssystems und der zuzulassenden Substitutionen. Erst jetzt macht
mir die Theorie Vergnügen, nachdem dieser hässliche dunkle Fleck beseitigt zu sein scheint.”

116 Einstein found the fallacy of this argument in the period between ca. 20 January 1914 and ca. 10
March 1914, see Einstein to Heinrich Zangger, ca. 20 January 1914, (CPAE 5, Doc. 507) and Einstein
to Paul Ehrenfest, before 10 March 1914, (CPAE 5, Doc. 512), as well as Einstein to Heinrich Zang-
ger, ca. 10 March 1914, (CPAE 5, Doc. 513). The last two letters mention, for the first time after a
long period of intermission (to which the first letter to Zangger evidently still belongs), progress in the
work on the gravitation problem related to the covariance properties of the Entwurf equation.
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tled “Bemerkungen über die mathematische Methode,” Einstein summarized some of
the mathematical properties of the Entwurf theory. In the previous paragraph he had
dealt with equations describing the effect of the gravitational field on other physical
processes, and in particular with energy-momentum conservation, in the next he was
going to develop the gravitational field equation. Towards the end of § 6, he took the
occasion to comment on the remarkable asymmetry between the transformational
behavior of these two types of equations (Einstein 1913, 1257). He explained that the
arguments in favor of a generalized principle of relativity, on the one hand, and his
argument in favor of its restriction, on the other, are located on different levels, one
on the general level of the spacetime structure, the other on the level of concrete
physical requirements. Whereas the first level remains the relevant one for all equa-
tions dealing with the effects of the gravitational field on other physical processes, the
second level becomes relevant only for the gravitational field equation itself. The
introduction of a specialization of the reference system only “after the fact” may well
have motivated him to continue his search for an explanation that makes the restric-
tion of the generalized relativity principle understandable also on the level of the
spacetime structure. Furthermore, the asymmetry between the transformational
behavior of the gravitational field equations and that of all other equations of physics
hinted at an explanation that is related to the mathematical nature of the field equa-
tions. As we shall now see, Einstein eventually found such an explanation in the hole
argument.

7.6 The Construction of the Hole Argument118

The use of the conservation principle to justify the limited covariance of the Entwurf
field equation was a relief but contributed, in effect, little to understanding the restric-
tion of the generalized principle of relativity. In a first attempt to come to terms with
this unsatisfactory situation, Einstein reformulated the Machian heuristics that had
originally suggested the introduction of this principle. This attempt is visible already
in his earliest statements concerning the conservation argument described above, but
is most clearly expressed in a letter Einstein wrote to Ernst Mach in the second half of
December 1913:

It seems to me absurd to ascribe physical properties to “space.” The totality of masses
produces the  field (gravitational field), which in turn governs the course of all pro-
cesses, including the propagation of light rays and the behavior of measuring rods and
clocks. First of all, everything that happens is referred to four completely arbitrary space-
time variables. If the principles of momentum and energy conservation are to be satis-
fied, these variables must then be specialized in such a way that only (completely) linear
substitutions shall lead from one justified reference system to another. The reference sys-

117 Einstein completed the manuscript for this lecture about a month earlier, see (CPAE 4, note 17) and
“What Did Einstein Know ...” note 19 (in vol. 2 of this series).

118 See also “What Did Einstein Know ...” (in vol. 2 of this series) and further references cited there.
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tem is, so to speak, tailored to the existing world with the help of the energy principle,
and loses its nebulous aprioristic existence.119

In this reformulated argument against absolute space, the role of the cosmic masses
and their relations in constituting space is now taken over by the conservation princi-
ple which is claimed to provide the physical justification of preferred reference
frames. But Einstein’s revised Machian heuristics nevertheless failed to completely
ban the plausibility of a generalization of the relativity principle. This is evident from
the efforts by Einstein and his friend Michele Besso to find a deeper connection
between the limited transformation properties of the Entwurf field equation and the
structure of spacetime.

These efforts are documented, in particular, by a manuscript in the hand of
Michele Besso.120 In a group of pages, the first of which carries the dateline
28 August 1913, Besso listed a number of problems which he had probably encoun-
tered while working jointly with Einstein on the problem of Mercury’s perihelion
shift in the context of the Entwurf theory.121 These problems were evidently not
intended as a program for the further development of the Entwurf theory but rather
constituted the results of reflections on what had been achieved so far. In a note found
in the part of the manuscript belonging to a later period, Besso modestly character-
ized himself as being merely an “orrechiante,” that is, as an amateur who had the
privilege of listening to a great master. But some of Besso’s observations turned out
to be most consequential, introducing a possibly naive but fresh perspective. It seems
in fact that he went together with Einstein through his list of problems, some of them
directly formulated as questions, and that they discussed them one by one; at some
later point Besso then entered Einstein’s responses.122 Three of Besso’s problems are
relevant for the present discussion, the first concerning the issue of rotation, the sec-
ond regarding the logical status of the restriction implied by the conservation princi-
ple, and the third concerning what later was to become the hole argument, Einstein’s
central argument to defend the restricted covariance of the Entwurf theory.

119 “Für mich ist es absurd, dem “Raum” physikalische Eigenschaften zuzuschreiben. Die Gesamtheit
der Massen erzeugt ein -Feld (Gravitationsfeld), das seinerseits den Ablauf aller Vorgänge, auch
die Ausbreitung der Lichtstrahlen und das Verhalten der Massstäbe und Uhren regiert. Das Geschehen
wird zunächst auf vier ganz willkürliche raum-zeitliche Variable bezogen. Diese müssen dann, wenn
den Erhaltungssätzen des Impulses und der Energie Genüge geleistet werden soll, derart spezialisiert
werden, dass nur (ganz) lineare Substitutionen von einem berechtigten Bezugssystem zu einem ande-
ren führen. Das Bezugssystem ist der bestehenden Welt mit Hilfe des Energiesatzes sozusagen ange-
messen und verliert seine nebulose apriorische Existenz.” Einstein to Ernst Mach, second half of
December 1913, (CPAE 5, Doc. 495).

120 For more detailed discussion of both the contents and the dating of this document, see “What Did Ein-
stein Know ...” (in vol. 2 of this series).

121 For a facsimile reproduction of these pages, see (Renn 2005a, 126–130).
122 This pattern is made evident also by the arrangement of problems and answers on these pages, the

answers being often written in a slightly different hand than the questions and squeezed in between
the lines or at the margin.
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In his notes on the first problem, Besso summarized the failure of Einstein’s
hopes to fully implement his Machian heuristics within the Entwurf theory. Besso
noted that it was impossible to conceive of rotation as equivalent to a state of rest in a
gravitational field that is a solution of the Entwurf field equations.123 This repre-
sented a challenge either for the Entwurf theory or the generalized principle of rela-
tivity. In the consolidation period of the Entwurf theory the decision was made in
favor of the theory. That was bound to change only in the context of Einstein’s
renewed exploratory phase in the fall of 1915. In his notes Besso studied the question
of whether the failure of the Entwurf theory to interpret rotation as a state of rest can
possibly be explained by a failure of the conservation principle in a rotating system.
If that were so, he would have succeeded in establishing the desired physical connec-
tion between the problem of implementing the generalized relativity principle and the
restriction of the admissible coordinate systems required by the conservation princi-
ple. The remainder of the text, probably going back to Einstein’s intervention, shows
that this attempt of explaining the problem with rotation in terms of the conservation
principle does not work.

In a second passage, Besso posed a more general question concerning the role of
energy-momentum conservation for the selection of admissible coordinate systems:

Is every system that satisfies the conservation laws a justified system?124

If the conservation principle is really the explanation for the restriction on the choice
of coordinate systems, it should not only be a necessary but also a sufficient condition
for this choice. Besso therefore wondered whether any coordinate system satisfying
the constraints imposed by the conservation laws is compatible also with the covari-
ance of the field equations. Since there is no note which may be traced back to a reac-
tion by Einstein on this issue, it seems that he did, at first, not seriously consider
Besso’s suggestion. In fact, given Einstein’s belief at that point that the conservation
equation (51) is covariant under linear transformations only, the question may have
held little interest for him since it offered no promise of generalizing the covariance
properties of the Entwurf field equations beyond linearity. Eventually, however, when
Einstein turned to the exploration of a mathematical strategy for the Entwurf theory,
he did realize, as we shall see, the significance of Besso’s question.

After writing down his second question, Besso sketched an idea of how the failure
of realizing general covariance on the level of the gravitational field equation might
be explained, namely as a problem of the uniqueness of its solutions. The text of his
third problem reads:

The requirement of [general] covariance of the gravitational equations under arbitrary
transformations cannot be imposed: if all matter [is given] were contained in one part of
space and for this part of space a coordinate system [is given], then outside of it the coor-
dinate system could still [essentially] except for boundary conditions be chosen arbi-

123 See “What Did Einstein Know ...” sec. 3 (in vol. 2 of this series).
124 “Ist jedes System, welches den Erhaltungssätzen genügt, ein berechtigtes System?”
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trarily, [through which the  arbitrarily] so that a unique determinability of the ’s
cannot be obtained.

It is, however, not necessary that the  themselves are determined uniquely, only the
observable phenomena in the gravitation space, e.g., the motion of a material point,
must be.125

In this passage Besso imagines a central mass to be surrounded by empty space and
wonders whether the solution for the metric tensor is, in this case, determined
uniquely for the empty region. His mental model appears to be the inverse of Ein-
stein’s famous hole argument where matter may be anywhere outside an empty hole
for which the problem of the ambiguity of solutions then supposedly arises. In
Besso’s argument the ambiguity of solutions is conceived as being due to the arbi-
trary choice of the coordinate system in the empty region, giving rise to arbitrary
coordinate expressions for the metric tensor (which have to satisfy, however, the
boundary conditions). Apart from the inversion of hole and matter, Besso’s “proto-
hole argument” thus corresponds to the primitive version of the hole argument that
was traditionally ascribed to Einstein, charging him with the naivety of being
unaware that different coordinate representations of the metric tensor do not corre-
spond to different solutions of the field equations. It is therefore remarkable that even
Besso immediately realized the flaw of this naive version since he added, in the sec-
ond paragraph of the above text, that only observable phenomena, such as the motion
of a particle, should be determined uniquely.

How did Besso’s idea emerge and how was it transformed into the hole-argument
familiar from Einstein’s later publications? As to the first question, it seems plausible
that Besso related, in the context of his reflections on the Entwurf theory, the problem
of the restriction of general covariance to other problems that had arisen for this the-
ory, in particular in the course of his joint research with Einstein. One such problem
was rotation, as we have just seen. Another problem was the perihelion shift of Mer-
cury, the central subject of a paper Besso planned to write. 

In 1913 Besso had in fact encountered the problem of uniqueness when he
worked on the perihelion problem in the context of the Entwurf theory. In fact, a note
in the Einstein-Besso manuscript explicitly refers to the question of uniqueness in
connection with the ansatz used for solving the Entwurf field equation by an approxi-
mation procedure. For the first step of that iterative procedure Einstein and Besso had
used a metric with only one variable component, the same spatially flat metric (25)

125 “Die Anforderung der [allgemeinen] Covarianz der Gravitationsgleichungen für beliebige Transfor-
mationen kann nicht aufgestellt werden: wenn in einem Teile des Raumes alle Materie [gegeben ist]
enthalten wäre und für diesen Teil ein Coordinatensystem, so könnte doch ausserhalb desselben das
Coordinatensystem noch, [im wesentlichen] abgesehen von den Grenzbedingungen, beliebig gewählt
werden, [wodurch die  beliebig eine] so dass eine eindeutige Bestimmbarkeit der s nicht eintreten
könne.
Es ist nun allerdings nicht nötig, dass die  selbst eindeutig bestimmt sind, sondern nur die im Gravi-
tationsraum beobachtbaren Erscheinungen, z.B. die Bewegung des materiellen Punktes, müssen es
sein.”
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that is also crucial for obtaining the Newtonian limit of the Entwurf theory. Besso
then wondered whether that choice of a metric was sufficiently general for recovering
all possible solutions of the field equation:

Is the static gravitational field in § 1  1 to 3  a particular solu-
tion? Or is it the general solution expressed in particular coordinates?126

It may have been this question arising in the context of the perihelion calculation that
suggested to Besso that covariant field equations suffer, in general, from a problem of
uniqueness. In fact, the physical model of Besso’s proto-hole argument is strikingly
similar to that of the perihelion problem, a central mass surrounded by empty space.
And when Besso reminded himself that it was not the expression for the metric tensor
that mattered but physically observable phenomena, he chose the motion of a mate-
rial particle, such as that of Mercury around the sun, as an example.

How did Einstein react to Besso’s consideration of the proto-hole argument and
how did the definitive version of the hole argument emerge? Einstein’s reaction is, it
seems, preserved in a text written below Besso’s note quoted earlier. It starts, just as
Einstein’s earlier remark concerning rotation and energy conservation, with a charac-
teristic “Of no use” (“Nützt nichts”):

Of no use, since with [the] a solution a motion is also fully given. If in coordinate system
1, there is a solution , then this same construct is also a solution in 2,   how-
ever, also a solution in 1.127

Remarkably, Einstein did not simply agree with Besso’s conclusion that the ambi-
guity of the coordinate representation of the metric tensor was of no physical conse-
quence. He apparently found Besso’s idea to justify the lack of general covariance of
the Entwurf field equations on the basis of a uniqueness argument intriguing and
effectively reinterpreted it as an argument about the nature of space and time, and, in
particular, about the role of coordinate systems in identifying points in space and
time. In fact, a solution of the field equation in a particular coordinate system,
expressed in terms of functions representing the components of the metric tensor, can
be transformed to another coordinate system, producing a different set of functions
representing the same solution. But if, as Einstein’s argument suggests, this set of
functions “this same construct” (“dieses selbe Gebilde”) can somehow be related to
the original coordinate system, it there represents a different metric which, however,
solves the same field equation, provided that the right-hand side of these equations
remains unchanged by the coordinate transformation, which is the case for an empty
region where the stress-energy tensor of matter vanishes. To avoid the issue of addi-
tional boundary conditions, it turned out to be convenient for Einstein to reverse the

126 “Ist das stat Schwerefeld des § 1  1 bis 3,  ein spezielles? oder ist es das
allgemeine, auf spec. Coordinaten zurückgeführtes” (CPAE 4, Doc. 14, [p. 16]).

127 “Nützt nichts, denn durch eine Lösung ist auch eine Bewegung voll gegeben. Ist im Koordinatensy-
stem 1 eine Lösung  so ist dieses selbe Gebilde auch eine Lösung in 2,   aber eine Lösung
in 1.” For a facsimile of this passage, see Fig. 2 on p. 300 of “What Did Einstein Know ...” (in vol. 2 of
this series) and (Renn 2005a, 128).

gμν 1,= g44 f x y z, ,( )=

gμν 1,= g44 f x y z, ,( )=

K1 K2; K2,

K1, K2; K2
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physical model proposed by Besso and consider, instead of a void with a lump of
mass, matter with a hole in it—the well-known configuration of the hole argu-
ment.128

Einstein’s interpretation of a solution initially given in one coordinate system as
referring to another coordinate system implicitly presupposes that coordinate systems
have their own physical reality and allow to identify points in spacetime. The crucial
but hidden point of this reinterpretation of Besso’s proto-hole argument is therefore a
reification of coordinate systems, which are conceived as part of the physical set-up
constituting a solution and not only as a mathematical device for describing it. Only
the later refutation of the hole argument made it eventually clear that it is not
“motions” in the sense used here which constitute physically real events but rather
spacetime coincidences for which a coordinate-independent description can be
given.129

Our reconstruction suggests that the hole argument was, in spite of its philosophi-
cal appeal, not rooted in a metaphysical prejudice concerning the nature of space and
time or the role of coordinate systems, preventing Einstein from accepting generally-
covariant field equations. On the contrary, it was the necessity of justifying a non-
generally-covariant field equation that led to the construction of this argument, trig-
gering a peculiar interpretation of the physical significance of coordinate systems, an
interpretation moreover that largely remained implicit in the initial formulation of the
argument. The hole argument was just the kind of argument Einstein had been after in
his earlier attempts to justify the failure of general covariance: a mathematical argu-
ment related to the structure of space and time. It was this peculiar perspective,
shaped by the context of the consolidation period of the Entwurf theory, that probably
led him to take Besso’s naive point seriously and search for a physically significant
interpretation of a mathematically trivial property, the coordinate dependence of
expressions for the metric tensor. It is hardly surprising that to formulate such an
interpretation, Einstein relied on the conceptual resources of classical physics,
implicitly defining what a motion is in terms of the relation between a particle and a
coordinate system. As a result, he found a way of relating the formalism of absolute
differential calculus to a physical interpretation of coordinate systems that allowed
him to justify the restricted covariance of the Entwurf field equations. In short, the
necessity of interpreting a complex mathematical formalism under a peculiar per-
spective was crucial for the emergence of the hole argument. Only when Einstein
eventually succeeded in formulating physically acceptable, generally-covariant field
equations did he abandon this argument and revise the physical interpretation of
coordinate systems as well as of space and time associated with it.130 The deep con-
ceptual insight into the crucial role of spacetime coincidences was thus no presuppo-

128 For detailed discussion, see sec. 4 of “What Did Einstein Know ...” (in vol. 2 of this series).
129 For selected references to the extensive literature on the hole argument, see “What Did Einstein

Know ...” note 95 (in vol. 2 of this series).
130 For discussion of Einstein’s later retraction of the hole argument, see “What Did Einstein Know ...”

sec. 4 (in vol. 2 of this series) and (Janssen 2005, 73–74)
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sition of general relativity but merely a consequence of its establishment—effectively
implying a refutation of the hole argument.

With the advent of the hole argument, the conservation principle lost its role as
the primary physical reason for the restriction of general covariance of the Entwurf
field equations; the restriction to linear transformations now merely appeared as a
concrete result in harmony with a more general insight. Einstein reinterpreted his first
argument defending the restricted covariance of the Entwurf field equation accord-
ingly as a specific physical complement to what he saw as a general “logical” princi-
ple.131 That he considered the hole argument not merely as an addition but as the
solution of a puzzle left unresolved by the earlier physical argument is confirmed by a
letter he wrote in the beginning of November 1913 to Ehrenfest:

The gravitation affair has been clarified to my complete satisfaction (namely the circum-
stance that the equations of the gr. field are covariant only with respect to linear transfor-
mations. For it can be proved that generally covariant equations that determine the field
completely from the matter tensor cannot exist at all. Can there be anything more beauti-
ful than this, that the necessary specialization follows from the conservation laws?132

7.7 The Second Phase of the Consolidation Period of the Entwurf Theory:
A Mathematical Strategy for the Entwurf Theory

The insights Einstein had acquired pursuing the mathematical strategy in the Zurich
Notebook continued to set standards for his further elaboration of the Entwurf theory
developed along the lines of the physical strategy. In particular, the procedure at the
core of the mathematical strategy by which non-generally-covariant field equations
could be extracted from a generally-covariant object remained plausible. Even if gen-
erally-covariant field equations were excluded for a satisfactory relativistic theory of
gravitation, the physical and the mathematical strategies should converge because
only in this way was it possible to fully clarify and stabilize the relation between the
physical and the mathematical knowledge expressed in the theory. Even if Einstein
had good reasons for restricting the generalized principle of relativity, it still made
sense for him to search for a derivation of the field equations of the Entwurf theory
along the mathematical strategy, albeit now with the aim of confirming what had

131 In a later paper he formulated with regard to these two arguments: “But there are two weighty argu-
ments that justify this step [i.e. the restriction of general covariance], one of them of logical, the other
one of empirical provenance” (“Es gibt aber zwei gewichtige Argumente, welche diesen Schritt recht-
fertigen, von denen das eine logischen, das andere empirischen Ursprungs ist”, CPAE 4, Doc. 25,
[178]).

132 “Die Gravitationsaffäre hat sich zu meiner vollen Befriedigung aufgeklärt (der Umstand nämlich, dass
die Gleichungen des Gr. Feldes nur linearen Transformationen gegenüber kovariant sind. Es lässt sich
nämlich beweisen, dass allgemein kovariante Gleichungen, die das Feld aus dem materiellen Tensor
vollständig bestimmen, überhaupt nicht existieren können. Was kann es schöneres geben, als dies,
dass jene nötige Spezialisierung aus den Erhaltungssätzen fliesst?” Einstein to Paul Ehrenfest, before
7 November 1913, (CPAE 5, Doc. 481).
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already been found through the physical strategy. This approach is characteristic for
what we call the “second phase” of the consolidation of the Entwurf theory.

It was probably in pursuing a mathematical strategy for the Entwurf theory that, in
early 1914, Einstein discovered a flaw in his conservation argument for linear covari-
ance. It turned out that the quantity representing the stress-energy of the gravitational
field is not a tensor. Einstein thus realized that, while the conservation principle still
requires a restriction on the admissible coordinate systems, this restriction was not as
stringent as it had seemed before. The issue of the covariance properties of the Ent-
wurf theory was therefore reopened since the hole argument only excluded general
covariance but did not by itself prescribe a specific covariance group. It remained to
be clarified, in particular, in which sense the transformational properties of the Ent-
wurf field equation were restricted by the conservation principle, which now
appeared as implying a “weak” restriction only taking full advantage perhaps of the
leeway left by the hole argument.

A suggestion by the Zurich mathematician Paul Bernays made it possible for Ein-
stein and Grossmann to return in early 1914 to the “bold” approach, once again
exploring the transformational properties of the Entwurf field equation by direct cal-
culation. Bernays suggested to derive the Entwurf field equation from a variational
principle in order to be able to focus attention on a single scalar quantity, the
Lagrangian, rather than on the complex tensorial objects constituting the field equa-
tion itself. Einstein and Grossmann succeeded indeed in finding a Lagrangian from
which the Entwurf field equations could be derived. They found that this Lagrangian
is invariant under transformations between coordinate systems specified solely by the
requirement of energy-momentum conservation. The necessary restriction of covari-
ance following from the conservation principle thus turned out to be also a sufficient
one, just as Michele Besso had envisaged. This result seemed to be in perfect agree-
ment also with the hole argument since the four additional equations resulting from
the conservation principle were apparently just enough to remove the ambiguity in
the metric field on which this argument turns.

With these results, attained by March 1914, the “defensive” and the “bold”
approaches had converged and, once again, a sense of closure in the development of
the Entwurf theory was reached, this time on a higher level than half a year earlier and
more durable: it would last until October 1915. Einstein was convinced that he had
obtained an optimal realization of the generalized relativity principle and that he had
understood the profound reasons for the impossibility of general covariance. He even
came to believe that the restriction of covariance imposed by the conservation princi-
ple in fact does not imply a restriction of the possible solutions to the field equation
but merely a restriction of the possible coordinate systems in which these solutions
can be expressed. Consequently, Einstein also became convinced that the Entwurf the-
ory fully realized the equivalence principle and other heuristic ideas, such as a descrip-
tion of Minkowski spacetime in a rotating frame of reference as a special case of the
gravitational field, in spite of the difficulties at the level of explicit calculations.133



PATHWAYS OUT OF CLASSICAL PHYSICS  245

The success of this exploration of the Entwurf theory along the lines of the math-
ematical strategy encouraged Einstein to undertake a new derivation of its field equa-
tions; he completed this derivation by the fall of 1914. By February 1914, he had
abandoned his earlier conviction that the Entwurf field equation had no relation to the
absolute differential calculus essential to the mathematical strategy. When Einstein
took up the project of deriving the Entwurf field equation along the mathematical
strategy, however, he did not start from the generally-covariant objects suggested by
the original mathematical strategy as he had done in the Zurich Notebook. He rather
generalized the variational derivation, developed together with Grossmann, into a
mathematical formalism applicable not only to the Entwurf field equations but to
other candidate field equations. He then searched for a mathematical reason to justify
choosing the Lagrangian corresponding to the Entwurf equation and erroneously con-
vinced himself that he had actually found such reasons.

7.8 A Prelude: The First Reawakening of the Mathematical Strategy

Einstein’s failure to reach general covariance had been a target of criticism by his col-
leagues.134 In January 1914 he wrote a paper in reply to such criticism (Einstein
1914b). Apart from presenting his arguments in favor of a restricted covariance of the
Entwurf field equations such as the hole argument, he had to admit that the relation of
this field equations to the generally-covariant objects of the absolute differential cal-
culus was still an open problem. As a consequence, the relation between physical and
mathematical strategies, which should have been just two different pathways to the
same result, also remained unclear.

Defending the restricted covariance of the Entwurf theory, Einstein had to
acknowledge that there are profound reasons why generally-covariant equations
should exist which correspond to the Entwurf field equation (Einstein 1914b, 177–
178). He argued that there must be, in modern terms, a coordinate-free representation
of any meaningful mathematical relation between physical magnitudes. Ideally, the
Entwurf equation should be derived from such a representation by a suitable special-
ization of the coordinate system. This would correspond to its derivation along the
lines of the mathematical strategy. But as if to excuse himself for the failure to realize
such a derivation, Einstein claimed that the hole argument and the argument from
energy momentum conservation suggested that it would not be worthwhile to search
for the generally-covariant counterpart of the Entwurf equation.135

In spite of this excuse Einstein embarked, at about the same time, on precisely
such a search, albeit for another gravitation theory with restricted covariance proper-
ties serving as a toy model. On 19 February 1914 he submitted a joint paper with

133 See “What Did Einstein Know ...” sec. 3 (in vol. 2 of this series).
134 See, e.g., (Abraham 1914, 25).
135 (CPAE 4, Doc. 25, [179]). See “Untying the Knot ...,” (in vol. 2 of this series) note 57, for the relevant

passage. See (Norton 1992a) for a historical discussion.
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Adriaan Fokker on a generally-covariant reformulation of Nordström’s special rela-
tivistic theory of gravitation (Einstein and Fokker 1914). They demonstrated that the
field equation of this theory, in its original version only Lorentz covariant, can in fact
be obtained from a generally-covariant equation. Just as in the mathematical strategy
employed in the Zurich Notebook, a generally-covariant expression derived from the
Riemann tensor served as the starting point of their approach, from which a suitable
left-hand side of the gravitational field equation was then obtained by imposing addi-
tional conditions on the metric tensor. In the case of the Nordström theory, the addi-
tional condition amounted to the requirement of the constancy of the speed of light.
This additional condition in turn led to a restriction on the admissible coordinate sys-
tems, in this case to those systems which are adapted to the principle of the constancy
of the velocity of light (Einstein and Fokker 1914, 326).

As a consequence of the successful reformulation of Nordström’s theory in gener-
ally-covariant terms, it was only natural to search for an analogous reformulation also
of the Entwurf theory, in spite of the skepticism which Einstein had expressed in his
earlier paper. That such a search made sense was precisely the conclusion which Ein-
stein and Fokker drew at the end of their joint paper:

Finally, the role that the Riemann-Christoffel differential tensor plays in the present
investigation suggests that this tensor may also open the way for a derivation of the Ein-
stein-Grossmann gravitation equations that is independent of physical assumptions. The
proof of the existence or nonexistence of such a connection would represent an important
theoretical advance.136

In a footnote to the above passage, they added:

The argument in support of the nonexistence of such a connection, presented in §4, p. 36
of “Entwurfs einer verallgemeinerten Relativitätstheorie” [“Outline of a Generalized
Theory of Relativity”], did not withstand closer scrutiny.137

On the cited page of the Entwurf paper, Einstein and Grossmann had simply claimed
that, in the case of field equations with restricted covariance, it was understandable
that no relation to generally-covariant tensors could be established (Einstein and
Grossmann 1913, 36). But in view of Einstein’s realization that a connection with a
generally-covariant formulation must exist for any physically meaningful theory, the
failure to discover such a connection could no longer be defended in this simple way.

In their paper, Einstein and Fokker used a terminology for the relation between
generally-covariant equations and field equations with restricted covariance that

136 “Endlich legt die Rolle, welche bei der vorliegenden Untersuchung der Riemann-Christoffelsche Dif-
ferentialtensor spielt, den Gedanken nahe, daß er auch für eine von physikalischen Annahmen unab-
hängige Ableitung der Einstein-Großmannschen Gravitationsgleichungen einen Weg öffnen würde.
Der Beweis der Existenz oder Nichtexistenz eines derartigen Zusammenhanges würde einen wichti-
gen theoretischen Fortschritt bedeuten.” (Einstein and Fokker 1914, 328).

137 “Die in §4, p. 36, des “Entwurfs einer verallgemeinerten Relativitätstheorie” angegebene Begründung
für die Nichtexistenz eines derartigen Zusammenhanges hält einer genaueren Überlegung nicht
stand.”
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would soon become standard in the further analysis of the covariance properties of
the Entwurf theory. They spoke, in particular, of “preferred” (“bevorzugt”) coordinate
systems, “adapted” (“angepasste”) to a certain physical situation.138 Nordström’s
theory and the terminology developed for its treatment helped to further pursue the
questions which had to be answered for a derivation of the Entwurf theory along the
lines of the mathematical strategy to succeed: What were the “preferred” coordinate
systems of the Entwurf theory? And what was the physical condition to which these
coordinate systems are “adapted”? Although Einstein must have believed that he had
answers to these questions, given his argument in favor of a restriction to linear trans-
formations from energy-momentum conservation, it remained open how these
answers could assist him in relating the Entwurf theory to its unknown generally-
covariant counterpart. It was the experience gathered with Nordström’s theory that
eventually helped him to make progress in this regard—by challenging the answers
that had seemingly settled the fate of the generalized relativity principle in the Ent-
wurf theory.

7.9 A First Consequence of the Return to the Mathematical Strategy

In early March Einstein wrote to his friends about a breakthrough in his work on the
Entwurf theory.139 By this time he had not only recognized the fallacy of his argu-
ment for restricted covariance from energy-momentum conservation but had also
investigated, jointly with Marcel Grossmann, the covariance properties of the theory
in a new way. This new analysis, contained in a joint paper published on 29 May
1914 (Einstein and Grossmann 1914), was based on the use of variational techniques
which allowed them to pursue the bold approach of exploring covariance properties
by direct calculation.

Einstein’s breakthrough was prepared by his reflection on the relation between
non-covariant and covariant formulations of a theory, substantiated by his analysis of
Nordström’s theory. In light of these considerations, the Entwurf theory appears as a
specialization of a generally-covariant theory to coordinate systems which are
adapted to a certain physical condition. In the case of the Entwurf theory, this physi-
cal condition was the validity of energy-momentum conservation in the sense of eq.
(51).

If generally-covariant field equations are expressed in coordinates adapted to this
condition, they should take on the form of the Entwurf field equation eq. (52).

In analogy to the treatment of the Nordström theory, eq. (51) should be consid-
ered as a condition on the metric tensor  providing the necessary coordinate
restriction. But in Einstein’s original version of the argument for restricted covariance
from energy-momentum conservation, this equation does not so much provide a con-

138 See (Einstein and Fokker 1914, 326).
139 See Einstein to Paul Ehrenfest, before 10 March 1914, (CPAE 5, Doc. 512) and Einstein to Heinrich

Zangger, ca. 10 March 1914, (CPAE 5, Doc. 513).

gμν,
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dition on the metric tensor, but actually presupposes one. In fact, the argument that
eq. (51) is only covariant under linear transformations only works, as Einstein was
aware, if it is assumed that  has the same transformational behavior as  i.e. if
it is a generally-covariant object. However,  is a coordinate-dependent expres-
sion.140 While the assumption that it is generally covariant may have at first appeared
plausible to Einstein in the light of his conviction that gravitational and other forms
of energy should behave in the same way as sources of the gravitational field, this
assumption becomes much less plausible once eq. (51) is seen as imposing a coordi-
nate restriction on generally-covariant equations. That perspective requires in fact a
much closer examination of its ingredients, since it is now the content rather than the
form of the equation that matters. Apart from checking more closely the character of

 Einstein’s earlier experience with what we have called the conservation compat-
ibility check in the sense of eq. (XLIII) suggested expressing  in this equa-
tion by means of the field equations so that eq. (51) becomes a condition merely in
terms of the metric tensor and its derivatives. One thus obtains eq. (54) as a condition
for the class of admissible coordinate systems.

This equation played a central role in Einstein’s new approach to the problem of
the covariance properties of the Entwurf field equation. It first appeared in Einstein’s
and Grossmann’s 1914 paper141 and expresses in fact a physically motivated coordi-
nate restriction in a sense that was quite familiar to him from his experiences along
the mathematical strategy in the Zurich Notebook. In distinction from the original
mathematical strategy, however, the generally-covariant equation from which the
Entwurf field equation should be derivable by means of this coordinate restriction
was unknown. But finding this generally-covariant equation may have been precisely
Einstein’s point in formulating eq. (54). In summary, a reconsideration from the per-
spective of the mathematical strategy of the argument for restricted covariance based
on energy-momentum conservation could have led Einstein both to see the fallacy of
his original argument and to cast it into a new form.

This reconstruction is supported by the timing of the transformation of the origi-
nal argument for a linear covariance of the Entwurf equations into an argument about
a coordinate restriction in the sense of the Zurich Notebook. In the manuscript of a
popular exposition on his theory,142 which Einstein completed by the end of January
1914,143 he still included the argument in its original form. When he submitted the
paper for publication by March, 21, 1914, that is, before he left Zurich, the passage
arguing for the linear covariance of the Entwurf field equation was cancelled. By the
beginning of March, Einstein had already achieved a breakthrough along the varia-

140 There are a number of arguments by which Einstein could have seen his fallacy: 1) There are no gen-
erally-covariant tensors involving only the metric and its first order derivatives. 2) In a suitably chosen
coordinate system, the stress-energy complex of the gravitational field  can be made to vanish.

141 See (Einstein and Grossmann 1914, 218).
142 The published version is (Einstein 1914c). For references to and transcriptions of the manuscript ver-

sion, see the annotations in (CPAE 4, 621–622).
143 See Einstein to Heinrich Zangger, ca. 20 January 1914, (CPAE 5, Doc. 507).

tμν Tμν,
tμν

tμν

tμν,
Tμν tμν+



PATHWAYS OUT OF CLASSICAL PHYSICS  249

tional approach, as we know from his correspondence. The paper by Einstein and
Fokker on Nordström’s theory, on the other hand, in which, as we have also seen, the
application of the mathematically strategy to the Entwurf theory is formulated as a
program, was submitted on 19 February 1914. In other words, Einstein must have
reformulated his argument based on the conservation principle at some point between
the end of January and the beginning of March 1914, at the time or shortly after he
was working on the application of the mathematical strategy to Nordström’s theory.

With the discovery of the fallacy in the original argument, the question of the
covariance properties of the Entwurf field equation was open again. While it was
obvious that eq. (54) imposes a necessary condition on the coordinates systems
“adapted” to this theory, it remained to be clarified whether this condition is also a
sufficient one and how it related the Entwurf field equation to its generally-covariant
counterpart. Einstein had thus arrived at a point where it made sense for him to take
up the second point raised in Besso’s notes:

Is every system that satisfies the conservation laws a justified system?144

In the context of Einstein’s reconsideration of the Entwurf field equation from the
perspective of the mathematical strategy, the relation between conservation laws and
“justified” coordinate systems must have assumed a new significance. Exploring
whether or not this field equation actually retained its form under transformations
between the “preferred” coordinate systems characterized by eq. (54) now became a
pressing task. Unfortunately, the absolute differential calculus offered little help in
addressing this task.

7.10 A New Turn for the Mathematical Strategy: Variational Calculus

When Einstein took up the mathematical strategy once again and adapted it to the
Entwurf theory, he faced difficulties achieving concrete results along this strategy,
and must have searched out mathematical advice. It is unclear at exactly which point
Grossmann re-entered the story. Perhaps he was already instrumental in recognizing
the fallacy of Einstein’s original argument for restricted covariance from energy-
momentum conservation. Perhaps he entered the picture only when Einstein needed
help in exploring the consequences of the new coordinate restriction eq. (54). But
Grossmann was, it seems, as little successful as Einstein in establishing relations
between the Entwurf theory and absolute differential calculus. At some point they
both turned to another Zurich mathematician colleague, Paul Bernays, for help.145

Bernays advised Einstein and Grossmann to bring the field equation of the Entwurf
theory into the form of a variational principle.146

The reformulation of the Entwurf theory in terms of a variational principle did
not, however, provide any clue concerning the relation of this theory to absolute dif-

144 “Ist jedes System, welches den Erhaltungssätzen genügt, ein berechtigtes System?” For a facsimile of
this passage, see Fig. 2 on p. 300 of “What Did Einstein Know ...” (vol. 2 of this series).
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ferential calculus. The latter would have suggested, as it later did to Hilbert, to take
the Ricci scalar as a starting point for such a reformulation. But, by analyzing the
relation of this scalar to the  of their coordinate restriction, Einstein and Gross-
mann convinced themselves that the  do not form a generally-covariant vector and
that the Entwurf field equation has nothing to do with the invariant Ricci scalar.147

Nevertheless, a variational reformulation of the Entwurf had, for Einstein and Gross-
mann, one chief advantage: instead of having to study the covariance properties of a
complex tensorial field equation, they could instead explore the invariance group of a
single scalar object, the action integral (cf. eq. (LXIV)). Much later Einstein still con-
sidered the simplification due to the introduction of the more familiar scalar quanti-
ties the main advantage of the variational calculus.148

In early 1914, the suggestion to make use of the variational calculus brought Ein-
stein and Grossmann back to the initial bold approach of exploring by direct calcula-
tion the covariance properties of the Entwurf field equation. In pursuing this approach
they could rely on their experience from the Zurich Notebook where they had
attempted to study the covariance properties of objects found along the physical strat-
egy or of coordinate restrictions by means of infinitesimal transformations.

However, one crucial presupposition of the new approach had to be established
first, the expression for the action integral from which the Entwurf field equation
could be derived by means of the variational formalism. In their 1914 paper Einstein
and Grossmann only give the end result, without mentioning what had motivated
them to introduce a particular Langrangian, other than its successful employment in
deriving the field equations.149 Probably they found the Lagrangian of the Entwurf
theory by starting from an expression quadratic in the fields in analogy to classical
and special-relativistic physics according to the default setting eq. (LXIII). With Ein-
stein’s default setting for the components of the gravitational field, the Lagrangian
required for deriving the Entwurf field equation was found to be:

(85)

145 Bernays later became known for his work in mathematical logic and set theory, was in Zurich from
1912 to 1919 after completing a mathematical doctoral thesis on the analytic theory of binary qua-
dratic forms under the supervision of the mathematician E. Landau. Before coming to Zurich, Ber-
nays had spent two years in Göttingen studying mathematics and physics chiefly with Hilbert,
Landau, Weyl, Klein, Voigt and Born. Bernays was at the time concerned with an extension of the
special theory of relativity.

146 In their paper, Einstein and Grossmann acknowledge the stimulation received from Bernays in a foot-
note (Einstein and Grossmann 1914, 218).

147 See (Einstein and Grossmann 1914, 225).
148 Einstein to Lorentz, 19 January 1916 and Einstein to T. De Donder, 23 July 1916 (CPAE 8, Docs. 184

and 240).
149 See (Einstein and Grossmann 1914, 219).
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The Entwurf theory was thus solidified by connecting its field equation in yet another
way with the established knowledge of classical and relativistic physics, in this case
about the canonical form of a Lagrangian. 

The identification of both the Langrangian for the Entwurf field equation and of a
physically motivated coordinate restriction now gave Einstein and Grossmann a clear
definition of their next goal, the establishment of a relation between the coordinate
restriction and the transformational properties of this Lagrangian. Does the coordi-
nate restriction eq. (54) resulting from the conservation principle indeed constitute
not only a necessary but also a sufficient condition for the covariance of the Entwurf
Lagrangian? In that case, by establishing a connection between conservation and
covariance, Einstein would have achieved a result effectively preparing the later
Noether theorem.150 The close connection between conservation and covariance, first
suggested by the ill-fated argument for a restriction of the Entwurf theory to linear
transformations, became a heuristic guiding principle for Einstein’s further explora-
tion and a criterion that he expected a satisfactory theory to fulfill.

The means to answer his question concerning the covariance properties of the
Entwurf Lagrangian was provided by the infinitesimal coordinate transformations
explored earlier in the Zurich Notebook. With their help, Einstein and Grossmann
succeeded in establishing a connection between the transformational properties of the
action integral for the Entwurf Lagrangian and the physically motivated coordinate
restriction eq. (54). Their bold approach had finally given them what they had failed
to achieve with the help of the absolute differential calculus—a link between the
physical and the mathematical strategies. 

7.11 Looking Back on a Breakthrough: The General Relativity
of the Entwurf Theory

With their proof of the covariance properties of the Entwurf field equations, Einstein
and Grossmann had finally closed the crucial gap in their 1913 publication. But in
Einstein’s view, they had achieved much more. In the time between the completion of
this proof by early March 1914 and the discovery of a problem with transformations
to rotating frames of reference in September 1915, he was convinced that he had
finally reached not only a generalization of the relativity principle but a truly general
theory of relativity. In early March he wrote to Paul Ehrenfest that the proof of the
existence of “most general transformations” leaving the field equations covariant
demonstrated the validity of the principle of equivalence as well:

The work on gravitation progresses, but at the cost of extraordinary efforts; gravitation is
coy and unyielding! The equivalence principle is valid after all in the sense that there
exist highly general transformations that transform the gravitational equations into them-
selves. What has been found is simple, but the search is hell!151

In a similar vein he expressed himself in a contemporary letter to Heinrich Zangger:

150 See “Untying the Knot ...” (in this volume).
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I was toiling again on the gravitation theory to the point of exhaustion, but this time with
unheard-of success. That is to say that I succeeded in proving that the gravit. equations
hold for arbitrarily moving reference systems, and thus that the hypothesis of the equiva-
lence of acceleration and the gravitational field is absolutely correct, in the widest sense.
Now the harmony of the mutual relationships in the theory is such that I no longer have
the slightest doubt about its correctness.152

In these passages Einstein left it somewhat open what he meant by qualifying the
covariance he had reached as “most general” or “in the widest sense.” In another con-
temporary passage he showed himself convinced that the transformation to a rotating
coordinate system was comprised by this covariance:

By means of a simple calculation I have been able to prove that the gravitation equations
hold for every reference system that is adapted to this condition. From this it follows that
there exist acceleration transformations of the most varied kind that transform the equa-
tions to themselves (e.g., also rotation), so that the equivalence hypothesis is preserved in
its original form, even to an unexpectedly large extent.153

The “simple calculation” to which Einstein refers must be the demonstration of the
covariance properties of the Entwurf equation published jointly with Grossmann,
since he emphasizes the crucial element of this demonstration, the condition for
adapted coordinate systems. He obviously perceived the more specific properties of
the field equation, such as its covariance under rotation, as being merely a trivial con-
sequence of this proof. Einstein thus believed he had achieved a full implementation
of the generalized principle of relativity. 

Yet, the exact relation of the Entwurf field equation to the absolute differential
calculus had not been clarified. It seems, however, that Einstein did not bother too
much about this problem. When he learned that Grossmann had finally succeeded in
establishing such a relation, Einstein viewed this result as a nice complement to what
they had already achieved earlier but not more. In late March or early April 1914 he
wrote to Ehrenfest:

151 “Die Gravitation macht Fortschritte, aber unter ausserordentlichen Anstrengungen; sie ist spröde! Das
Aequivalenzprinzip gilt nun doch in dem Sinne, dass es höchst allgemeine Transformationen gibt, die
die Gravitationsgleichungen in sich überführen. Das Gefundene ist einf[a]ch, aber das Suchen ganz
verflucht.” Einstein to Paul Ehrenfest, before 10 March 1914, (CPAE 5, Doc. 512).

152 “Ich habe mich wieder bis zur Erschöpfung geplagt mit der Gravitationstheorie, aber diesmal mit
unerhörtem Erfolge. Es ist nämlich der Beweis gelungen, dass die Gravit. Gleichungen für beliebig
bewegte Bezugssysteme gelten, dass also die Hypothese von der Aequivalenz der Beschleunigung
und des Gravitationsfeldes durchaus richtig ist, im weitesten Sinne. Nun ist die Harmonie der gegen-
seitigen Beziehungen in der Theorie eine derartige, dass ich an der Richtigkeit nicht mehr im Gering-
sten zweifle.” Einstein to Heinrich Zangger, 10 March 1914, (CPAE 5, Doc. 513).

153 “Ich habe beweisen können durch eine einfache Rechnung, dass die Gleichungen der Gravitation für
jedes Bezugssystem gelten, welches dieser Bedingung angepasst ist. Hieraus geht hervor, dass es
Beschleunigungstransformationen mannigfaltigster Art gibt, welche die Gleichungen in sich selbst
transformieren (z.B. auch Rotation), sodass die Aequivalenzhypothese in ihrer ursprünglichen Form
gewahrt ist. sogar in ungeahnt weitgehendem Masse.” Einstein to Michele Besso, ca. 10 March 1914,
(CPAE 5, Doc. 514), Einstein’s emphasis. The “einfache Rechnung” probably refers to the covariance
proof. For an alternative interpretation, see (Janssen 1999, n. 125).
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Grossmann wrote me that now he also is succeeding in deriving the gravitation equations
from the general theory of covariants. This would be a nice addition to our examina-
tion.154

The more Einstein thought about the proof of the covariance properties of the Ent-
wurf field equation he had jointly developed with Grossmann, the more he became
convinced that what he had reached was general covariance. This is apparent from his
ever more optimistic assessments of their result. In June 1914 Einstein wrote to
Wien:

In Zurich I had found the proof for covariance in the gravitation equations. Now the the-
ory of relat[ivity] really is extended to arbitrarily moving systems.155

In July Einstein wrote to Planck, also claiming that he had now his theory covered
every possible manifold and that the restriction was only one of the coordinate sys-
tem:

Then also a brief reply to a comment you made recently at the Academy in the welcom-
ing speech. There is an essential difference between the reference system restriction
introduced by classical mechanics for the theory of relativity and that which I apply in
the theory of gravitation. For the latter can always be adopted no matter how the ’s
may be selected. To the contrary, the specialization introduced by the principle of the
constancy of the velocity of light presupposes differential correlations between the

’s, that is, correlations that ought to be very difficult to interpret physically. Satisfac-
tion of these correlations cannot be forced by the appropriate choice of a reference sys-
tem for any given manifold.156

According to the explanation given to Planck, Einstein considered the principal dis-
tinction between the specialization of the reference system in classical mechanics and
in the special theory of relativity, on the one hand, and that which he had introduced
in his new gravitation theory, on the other hand, to be the fact that in the latter case
the specialization of the reference system refers only to the choice of the coordinate
system in an otherwise arbitrarily given manifold. Einstein made this point particu-

154 “Grossmann schreibt mir, dass es ihm nun auch gelingt, die Gravitationsgleichungen aus der allge-
meinen Kovariantentheorie abzuleiten. Es wäre dies eine hübsche Ergänzung zu unserer Untersu-
chung.” Einstein to Paul Ehrenfest, 10 April 1914, (CPAE 8, Doc. 2).

155 “In Zürich fand ich noch den Nachweis der Kovarianz der Gravitationsgleichungen. Nun ist die
Relat[ivitäts]theorie wirklich auf beliebig bewegte Systeme ausgedehnt.” Einstein to Wilhelm Wien,
15 June 1914, (CPAE  8, Doc. 14).

156 “Sodann noch eine kurze Beantwortung einer Bemerkung, die Sie neulich in der Akademie in der
Begrüssungsrede geäussert haben. Es gibt einen prinzipiellen Unterschied zwischen derjenigen Spe-
zialisierung des Bezugssystems, welche die klassische Mechanik bezw. die Relativitätstheorie ein-
führt und zwischen derjenigen, welche ich in der Gravitationstheorie anwende. Die letztere kann man
nämlich stets einführen, wie auch die  gewählt werden mögen. Diese durch das Prinzip der Kon-
stanz der Lichtgeschwindigkeit eingeführte Spezialisierung dagegen setzt Differenzialbeziehungen
zwischen den  voraus, und zwar Beziehungen, deren physikalische Interpretation sehr schwierig
sein dürfte. Das Erfülltsein dieser Beziehungen kann nicht für jede gegebene Mannigfaltigkeit durch
passende Wahl des Bezugssystems erzwungen werden.” Einstein to Max Planck, 7 July 1914,
(CPAE 8, Doc. 18).

gμν

gμν

gμν

gμν



254 JÜRGEN RENN AND TILMAN SAUER

larly clear in a letter he wrote to Lorentz a few months later. In this letter Einstein
explained in what sense the restriction to adapted coordinate systems in his under-
standing was compatible with the claim that the theory would be a “general” theory
of relativity. He referred to an analogous situation in the Gaussian theory of surfaces:

Although I prefer certain reference systems, the fundamental difference to the Galilean
preference is, however, that my coordinate selection makes no physical assumptions
about the world; let this be illustrated by a geometric comparison. I have a plane of
unknown description which I want to subject to geometric analysis. If I require that a
coordinate system ( ) on the plane be selected in such a way that

I therefore assume that then the surface can be unfolded on to a [Euclidean] plane. Were
I only to demand, however, that the coordinates be chosen in such a way that

i.e., that the coordinates be orthogonal, then I am assuming nothing about the nature of
the surface; this can be obtained on any surface.157

The analogy with Gaussian surface theory suggests a geometrical interpretation of
the coordinate restriction introduced in Einstein’s theory of gravitation. A letter Ein-
stein wrote in 1915 to Paul Hertz shows that he had searched in vain for such an inter-
pretation and that for elucidating the meaning of this coordinate restriction, he had
little more to offer than the comparisons he mentioned in the letter to Lorentz.

He who has wandered aimlessly for so long in the chaos of possibilities understands your
trials very well. You do not have the faintest idea what I had to go through as a mathemat-
ical ignoramus before coming into this harbor. Incidentally, your idea is very natural and
would by all means be worth following up, if it could be carried through at all, which,
based upon my experiences gathered during my wayward wanderings, I doubt very
much.
Given an arbitrary manifold of 4 dimensions (given ). How can one distinguish
a coordinate system or a group of such? This appears not to be possible in any way sim-
pler than the one chosen by me. I have groped around and tried all sorts of possibilities,
e.g., required: The system must be chosen such that the equations

157 “Ich bevorzuge zwar auch gewisse Bezugssysteme, aber der fundamentale Unterschied gegenüber der
Galileischen Bevorzugung besteht darin, dass meine Koordinatenwahl nichts über die Welt voraus-
setzt; dies sei durch einen geometrischen Vergleich erläutert. Es liegt mir eine Fläche unbekannter Art
vor, auf der ich geometrische Untersuchungen machen will. Verlange ich, es solle auf der Fläche ein
Koordinatensystem ( ) so gewählt werden, dass  [s]o setze ich damit voraus,
dass die Fläche auf eine Ebene abwickelbar sei. Verlange ich aber nur, dass die Koordinaten so
gewählt seien, dass  ist, d.h. dass die Koordinaten orthogonal seien,
so setze ich damit über die Natur der Fläche nichts voraus; man kann dies auf jeder Fläche erzielen.”
Einstein to H.A. Lorentz, 23 January 1915, (CPAE 8, Doc. 47).
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are satisfied throughout.
At least it seemed definite to me a priori that a transformation group exceeding the
Lorentz group must exist, because those observations summed up in the words “relativity
principle” and “equivalency principle” point to it.
The coordinate limitation that was finally introduced deserves particular trust because it
establishes a link between it and the postulate of the event’s complete determination.
A theoretical differential geometric interpretation of preferred systems would be of great
value. The weakest point of the theory as it stands today consists precisely in this, that
the group of justified transformations are by no means closely assessable. There is not
even any exact proof that arbitrary motions can be transformed to motionlessness.158

The letter shows that Einstein saw all coordinate restrictions he had examined to
function essentially on the same level, that is, to be generally imposed as conditions
supplementary to the field equations; this is made clear by his formulation that he
assumed what we have called the “Hertz restriction” eq. (60) to be satisfied “every-
where.” He evidently treated the Hertz restriction on the same level as the condition
eq. (54) for adapted coordinate systems, despite their different form. Both conditions
were motivated, as we have seen, by the conservation principle. But, as Einstein
points out in his letter, the condition for adapted systems could also be justified on a
deeper level; the causality considerations were related to the hole argument, and
therefore inspired more confidence. The letter to Hertz furthermore confirms that
Einstein was convinced that this condition just implies a particular choice of the coor-
dinate system without restricting the range of possible manifolds. He implicitly
claimed that, in the Entwurf theory, all motions can be transferred to rest, although he
admitted that he had been unable to demonstrate this “exactly.” 

158 “Wer selber im Chaos der Möglichkeiten sich so viel herumgetrieben hat, begreift Ihre Schicksale
sehr gut. Sie haben ja keine blasse Ahnung, was ich als mathematischer Ignorant habe durchmachen
müssen, bis ich in diesen Hafen eingelaufen bin. Übrigens ist Ihre Idee sehr natürlich und wäre auf
jeden Fall ernster Verfolgung wert, wenn sie sich überhaupt durchführen liesse, was ich auf Grund
meiner im Herumirren allmählich angesammelten Erfahrung sehr bezweifle.
Gegeben eine beliebige Mannigfaltigkeit von 4 Dimensionen (  gegeben). Wie kann man ein
Koordinatensystem bezw. eine Gruppe von solchen auszeichnen? Es scheint dies auf einfacher als die
von mir gewählte Art nicht möglich zu sein. Ich habe herum getastet und alles Mögliche versucht,
z.B. verlangt: Das System soll so gewählt werden, dass überall die Gleichungen [eq.] erfüllt seien.
Immerhin schien es mir a priori sicher, dass eine über die Lorentz-gruppe hinausgehende Transforma-
tionsgruppe vorhanden sein müsse, da jene Erfahrungen, die mit den Worten Relativitätsprinzip,
Aequivalenzprinzip zusammengefasst werden, darauf hinweisen.
Die schliesslich eingeführte Koordinatenbeschränkung verdient deshalb besonderes Vertrauen, weil
sie sich mit dem Postulat der vollständigen Bedingtheit des Geschehens in Zusammenhang bringen
lässt.
Eine flächentheoretische Interpretation der bevorzugten Systeme wäre von sehr grossem Werte. Der
schwächste Punkt der Theorie bei ihrem heutigen Stande besteht nämlich gerade darin, dass man die
Gruppe der berechtigten Transformationen durchaus nicht scharf übersieht. Exakt ist nicht einmal der
Beweis geliefert, dass beliebige Bewegungen auf Ruhe transformiert werden können.” Einstein to
Paul Hertz, 22 August 1915, (CPAE 8, Doc. 111). For an extensive discussion of this letter, see
(Howard and Norton, 1993).
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In spite of such reservations, Einstein was nevertheless convinced that he had
reached all his major original heuristic goals within the Entwurf theory. What
remained were only some minor problems, such as the establishment of the connec-
tion of the methods used by Einstein and Grossmann to the absolute differential cal-
culus, and a clarification of some other mathematical aspects of the theory. Einstein
also had the impression that the crucial proof of the covariance properties of the Ent-
wurf field equation still required improvement. This was the task he set himself in
mid-1914 in the context of composing a major review article, finished by the end of
October and providing a full exposition of the finally complete theory which now was
called, for the first time, the “general theory of relativity” (Einstein 1914a).

7.12 The Revised Covariance Proof and the Definitive Formulation
of the Hole Argument159

When at the end of 1914 Einstein looked back on his first review article on general
relativity, entitled “The Formal Foundations of General Relativity” and submitted on
29 October 1914, the revision of the covariance proof appeared to him as the central
achievement, as is suggested in a letter he wrote in December to Paul Ehrenfest:

In recent months I reworked extremely carefully the basis of the general theory of rel.
The covariance proof of last spring was not yet completely right. Otherwise, I have also
been able to penetrate a few things more clearly. Now I am entirely satisfied with that
matter. You will soon receive the paper; read it, you will find it very enjoyable.160

The proof of the covariance properties of the Entwurf field equation as originally con-
ceived by Einstein and Grossmann was based on the idea that an infinitesimal,
adapted coordinate transformation leaves the variation of the action integral invariant.
The variation of the manifold giving rise to the variation of this integral had to be per-
formed in two steps, an “adapted” variation, making it possible to vary the coordinate
system along with the manifold so that it remains adapted to it, and a variation of the
manifold that merely corresponds to the introduction of a new coordinate system, a
“coordinate variation.” The problem with the original proof was that the first of these
two variations was not clearly defined. In fact, Einstein and Grossmann had obvious
difficulties in arguing for the possibility of an appropriate variation of the adapted
coordinate system “following” that of the manifold. This variation of the coordinate
system was introduced rather as an afterthought to the variation of the manifold, an
afterthought which left open exactly how the variation of the manifold is restricted by
the condition that it must be possible to vary the adapted coordinate system along

159 See (Cattani and De Maria 1989b).
160 “In den letzten Monaten habe ich die Grundlage der allgemeinen Rel Theorie nochmals höchst sorg-

fältig bearbeitet. Der Kovarianzbeweis vom letzten Frühjahr war noch nicht ganz in Ordnung. Auch
sonst habe ich manches klarer durchdringen können. Nun bin ich aber völlig zufrieden mit der Ange-
legenheit. Du erhälst bald die Arbeit, lies sie, Du wirst grosse Freude daran finden.” Einstein to Paul
Ehrenfest, December 1914 (CPAE 8, Doc. 39).
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with it. The origin of Einstein’s difficulties was his concept of a manifold being
closely tied to its representation by the metric tensor and hence lacked the clear-cut
distinction from the representation of a manifold in terms of coordinates.161

At the outset of his new approach, Einstein distinguished more clearly a variation
of the manifold and a variation of the coordinate system. It was probably for the pur-
poses of such a cleaner separation of the different kinds of variations that he treated
coordinate systems—as suggested by the hole argument and in contrast to the modern
understanding—as being essentially given independently from the manifold for
whose description they serve. Einstein believed that in this way he could refer to two
different manifolds, or rather one manifold before and, after the variation, to one and
the same coordinate system.162 The ensuing challenge to refer changes of the values
of the metric tensor due to a coordinate transformation to one and the same coordi-
nate system, given independently from the manifold, may well have induced him to
formulate more clearly than he had done before the artifice of transposing values of
the metric tensor characteristic of the hole argument.

Einstein’s treatment of the hole argument in his 1914 review paper is in fact the
first published version of this argument that makes plain how values of the metric ten-
sor given at one point of the manifold are to be referred to another point, a notion
implicit in its original formulation in late August 1913 but obscured in the subsequent
published presentations. It is also the first version that introduces a distinct notation
for the metric tensor and its representation in a particular coordinate system.163 The
mature and more elaborate formulation of the hole argument was hence closely asso-
ciated with the reworking of the covariance proof. Revisiting, together with Marcel
Grossmann, the covariance properties of the Entwurf field equation, Einstein arrived
at a formulation of this argument that now pointed to philosophical questions con-
cerning the mathematical representation of the physical properties of space and time.

7.13 A Shaky Mathematical Derivation and a Spin-off with Consequences

In the introduction to his 1914 review paper Einstein mentioned the peculiar combi-
nation of physical and mathematical arguments that led him to the Entwurf theory
and announced a purely mathematical derivation:

In recent years I have worked, in part together with my friend Grossmann, on a generali-
zation of the theory of relativity. During these investigations, a kaleidoscopic mixture of
postulates from physics and mathematics has been introduced and used as heuristical
tools; as a consequence it is not easy to see through and characterize the theory from a
formal mathematical point of view, that is, only based upon these papers. The primary

161 See (Norton 1992b). 
162 See (Einstein 1914a, 1071–1073). Einstein conceived a variation of the metric tensor generated by a

coordinate transformation, referring its result to the same original coordinate system. His transforma-
tion can thus not be an ordinary coordinate transformation, but must be the kind of transport of values
of the metric tensor from one coordinate system to the other as it is essential to the hole argument.

163 See (Einstein 1914a, 1067).
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objective of the present paper is to close this gap. In particular, it has been possible to
obtain the equations of the gravitational field in a purely covariance-theoretical
manner ... .164

The basis for this derivation was provided by the variational formalism. In their
paper of early 1914, Einstein and Grossmann had, as we have seen, solved the prob-
lem of identifying an appropriate Lagrangian from which the Entwurf equations were
derived. Since their Lagrangian now represented the natural starting point for build-
ing up the entire edifice of Einstein’s theory, the question arose whether this
Lagrangian could be justified by reasons other than that of generating the desired
field equation. In order to answer this question, Einstein generalized the formalism
jointly developed with Grossmann to apply to an arbitrary Lagrangian. While this
generalization was rather straightforward, it was a more challenging task to pinpoint
the assumptions by which the resulting formalism could be specialized again so as to
determine the Lagrangian appropriate for the Entwurf field equation. Einstein’s
approach was effectively guided by the mathematical strategy presupposing a generic
mathematical object, which is then specialized in light of concrete physical require-
ments. In the generalized formalism of his 1914 review paper, such physical require-
ments had to be formulated as mathematical criteria serving to select the Entwurf
Lagrangian.

It was a combination of two criteria that helped Einstein to achieve this goal, one
derived from the conservation principle, the other from the generalized principle of
relativity. He formulated both criteria in terms of differential conditions for the
Lagrangian and concluded, erroneously as it later turned out, that the requirement of
their compatibility singles out a particular candidate. In the Entwurf theory, the
implementation of the conservation principle imposed, as we have seen, a coordinate
restriction  (cf. eq. (54)). This condition played, as we have also seen, the
double role of ensuring the satisfaction of the conservation principle and of determin-
ing the covariance properties of the field equation. The exact same equation 
also played a role in Einstein’s interpretation of the generalized theory, but here only
in the context of analyzing its covariance properties. The formulation of the conserva-
tion principle within the generalized framework yielded a slightly different equation,
now comprising two terms instead of one:

(86)

164 “In den letzten Jahren habe ich, zum Teil zusammen mit meinem Freunde Grossmann, eine Verallge-
meinerung der Relativitätstheorie ausgearbeitet. Als heuristische Hilfsmittel sind bei jenen Untersu-
chungen in bunter Mischung physikalische und mathematische Forderungen verwendet, so daß es
nicht leicht ist, an Hand jener Arbeiten die Theorie vom formal mathematischen Standpunkte aus zu
übersehen und zu charakterisieren. Diese Lücke habe ich durch die vorliegende Arbeit in erster Linie
ausfüllen wollen. Es gelang insbesondere, die Gleichungen des Gravitationsfeldes auf einem rein
kovarianten-theoretischem Wege zu gewinnen ... .” (Einstein 1914a, 1030)
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The existence of two similar but not identical conditions could be turned into a com-
patibility argument identifying the Entwurf theory as a special case of the generalized
formalism. He thus demanded:

(87)

and claimed that this condition, together with the additional requirement that the
Lagrangian be a homogeneous function of second degree in the gravitational fields,
determines uniquely the Entwurf Lagrangian. Einstein’s additional “mathematical”
requirement has, as is the case for his other constraints, also physical aspects, here the
analogy with the Lagrangian for a free electromagnetic field (cf. the default setting
eq. (LXIII)). In his paper Einstein did not explicitly prove his claim. It may well have
been his long-held conviction that the conservation principle determines uniquely the
Entwurf field equation, that simply correlated with his belief that the Entwurf theory
can be uniquely characterized with the help of eq. (87).

It turned out later that Einstein’s reasoning was flawed. A more careful analysis of
his formalism later showed him that eq. (87) did not actually impose a strong addi-
tional selective criterion, but could be easily fulfilled by simply requiring that the
Lagrangian be an invariant under linear transformations, a criterion that does not help
to single out the Entwurf theory. Einstein had imposed this requirement implicitly in
the context of his analysis of the covariance properties and had effectively suppressed
the condition involving  in this context, thus coming up with what appeared to be
two different sets of conditions, one derived from the generalized principle of relativ-
ity, the other from the conservation principle. A deeper exploration of his formalism,
first achieved about a year later, eventually offered him the insight that the analysis of
the covariance and the conservation aspects actually implied the same set of condi-
tions, an important step towards what later became Noether’s theorem. This step was
prepared by Einstein’s seemingly successful attempt to derive the Entwurf theory
along a mathematical strategy in which, alongside the conservation principle, covari-
ance considerations had assumed the role of the correspondence principle in restrict-
ing the admissible candidate Lagrangians. More than anything else, it was the
supposed achievement of being able to renounce the correspondence principle as part
of Einstein’s derivation that gave it the appearance of being largely independent of
specific physical knowledge about gravitation (Einstein 1914a, 1076).

Nevertheless, what Einstein had achieved was satisfactory also from a physical
point of view. In the course of his mathematical elaboration of the Entwurf theory, he
had brought its field equation into a form satisfying all structural requirements fol-
lowing from the conservation principle. In particular, he succeeded in identifying,
even for a generic Lagrangian, an expression for the stress-energy tensor of the grav-
itational field, i.e. for FIELDMASS. Furthermore, he was able to write the field
equation in a form corresponding to eqs. (XLIV) and (XLV), thus demonstrating the
structural analogy with classical field theory as well as the parallelism between the
stress-energy tensor of matter and of the gravitational field as sources of the field. In
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this way, Einstein had built up a mathematical framework lending itself to direct
physical interpretation:

The system of equations (81) allows for a simple physical interpretation in spite of its
complicated form. The left-hand side represents a kind of divergence of the gravitational
field. As the right-hand side shows, this is caused by the components of the total energy
tensor. A very important aspect of this is the result that the energy tensor of the gravita-
tional field itself acts field-generatingly, just as does the energy tensor of matter.165

7.14 From Consolidation to Exploration

7.14.1 Living with the Less than Perfect

If considered in hindsight of general relativity, the Entwurf theory has considerable
flaws: it does not comply with the only astronomical test available before 1919166 for
a relativistic gravitation theory, the anomalous perihelion advance of Mercury by ca.
43” per century, which is inexplicable in terms of Kepler’s laws; it does not include
the Minkowski metric in rotating coordinates as a solution and hence disappointed
Einstein’s Machian expectations; and the mathematical derivation from general prin-
ciples was based on an error. Einstein’s discovery of these flaws in the Entwurf theory
may appear to constitute a step-by-step refutation, clearing the way for a new
approach. However, uncovering these flaws did not immediately shatter the Entwurf
theory. As was shown above, the Entwurf theory had emerged as a theory firmly
grounded in the knowledge of classical physics, incorporating, in particular, both the
correspondence and the conservation principles. At the same time, the theory allowed
for a limited extension of the generalized relativity principle to at least general linear
transformations, this limitation being, however, justified by both physical and mathe-
matical arguments. Whatever Einstein achieved in the second phase beyond this
state—in terms of an astronomical confirmation of the theory, of a further generaliza-
tion of the relativity principle, or in terms of its mathematical elaboration—was not
necessary to support the theory. The successes and failures beyond the core estab-
lished in the consolidation period concerned the more ambitious part of Einstein’s
heuristics, in particular the extension of the generalized principle of relativity, which
from the beginning was a less stringent criterion for the validity of his new gravita-
tion theory than its relation to the knowledge of classical physics.

In this section, we shall briefly assess the impact of the discovery of flaws in the
Entwurf theory on Einstein’s attitude with respect to his theory. It demonstrates his

165 “Das Gleichungssystem (81) [cf. eq. (52)] läßt trotz seiner Kompliziertheit eine einfache physikali-
sche Interpretation zu. Die linke Seite drückt eine Art Divergenz des Gravitationsfeldes aus. Diese
wird—wie die rechte Seite zeigt—bedingt durch die Komponenten des totalen Energietensors. Sehr
wichtig ist dabei das Ergebnis, daß der Energietensor des Gravitationsfeldes selbst in gleicher Weise
felderregend wirksam ist wie der Energietensor der Materie.” (Einstein 1914b, 1077)

166 For a discussion of the status of the other two classical tests, gravitational light bending and gravita-
tional redshift, by 1919, see the introduction to (CPAE 9).
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ability to live with the less than perfect or, more specifically, his resistance to aban-
doning an elaborate edifice because of damage it suffered on one of its floors.

7.14.2 The Mercury Problem

In temporal order, Einstein’s discovery of the failure of the Entwurf theory to yield
the correct perihelion shift of Mercury came first; it was made as early as the summer
of 1913. The extensive research notes by Einstein and Besso, which document their
joint effort to calculate Mercury’s perihelion motion, show that this endeavor was
actually part of a broader program that included not only the Entwurf theory, but also
Nordström’s gravitation theory, and not only the perihelion shift of Mercury, but also
other possible checks of a non-Newtonian gravitation theory, such as its compatibility
with the effects anticipated on the basis of Einstein’s Machian heuristics. This
broader perspective may have shaped Einstein’s reaction to finding that the Entwurf
theory could not account for the astronomically observed value of the perihelion
shift. First of all, this anomaly could not be explained by other contemporary gravita-
tion theories; second, there might have been a purely astronomical explanation for it;
and third, there was a range of other possible checks of the Entwurf theory, such as
the deflection of light in a gravitational field and gravitational redshift. In view of this
situation, the negative finding on Mercury’s perihelion shift was not a result of imme-
diate significance for the validity of the Entwurf theory. It had required some effort to
perform the perihelion calculation, but from the beginning it must have been at best a
hope that a relativistic gravitation theory could actually account for this effect. Ein-
stein himself did not publish his negative result. He encouraged Besso to complete a
paper offering a comparative evaluation of contemporary gravitation theories both on
empirical and epistemological grounds.167 In his contemporary letters, he appeared
more convinced of or worried by, as the case might be, the theory’s internal consis-
tency or lack thereof.

The failure of the perihelion calculation was not mentioned in Einstein’s publica-
tions and hardly ever in his contemporary correspondence. It only played a role in
Einstein’s later justifications of his abandonment of the Entwurf theory. If his and
Besso’s extensive manuscript notes had not survived, one would not have known how
much effort they had invested into this calculation. And yet, this calculation had a
profound impact on the genesis of general relativity, which is discussed more exten-
sively below, by affecting the speed with which Einstein could calculate the perihe-
lion shift on the basis of his later generally-covariant theory.168 This was possible
because the formalism he had developed for the Entwurf theory turned out to be more
generally applicable and hardly required any modification when used in the context
of another gravitation theory. But the perihelion calculation also had more subtle
effects which, as we shall see, later turned out to be beneficial to Einstein’s renewed

167 Einstein to Michele Besso, after 1 January 1914 (CPAE 5, Doc. 499).
168 For detailed historical discussion, see (Earman and Janssen 1993).
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exploration of generally-covariant candidate field theories. It led, in particular, to an
improved understanding of the Newtonian limit.

7.14.3 The Rotation Problem

The method developed by Einstein and Besso for calculating the perihelion advance
was based on an iterative procedure for finding approximate solutions of the field
equation. It also turned out to be applicable to the investigation of another question of
great heuristic significance for Einstein’s attempt to generalize the relativity princi-
ple.169 As we have discussed earlier, this attempt was guided, from the beginning, by
the idea of conceiving rotation as being equivalent to a state of rest, interpreting the
inertial forces arising in a rotating frame of reference as a special gravitational field.
If the Entwurf theory were actually compatible with this heuristics, the Minkowski
metric in rotating coordinates should be a solution of its field equations.

The inertial forces arising in a rotating frame, centrifugal and Coriolis forces, are
of a different order in the angular velocity, the centrifugal force depending on its
square, the Coriolis forces depending linearly on this velocity. Einstein and Besso’s
approximation scheme could thus be used to check whether one can obtain from a
first-order approximation of a Minkowski metric in rotating coordinates, containing
only the components relevant for the Coriolis forces, the correct second order term
relevant for the centrifugal forces. The result of this calculation could then be com-
pared with that of the direct transformation of the Minkowski metric in rotating coor-
dinates.

In a scratch notebook Einstein first wrote down the one component relevant for
the centrifugal force and then two components relevant for the Coriolis force. Under-
neath he wrote:

Is the first equation [concerning the centrifugal force] a consequence of the other two
[concerning the Coriolis force] on the basis of the theory?170

In a page of the bundle of manuscripts used jointly by Einstein and Besso for their
calculations on the perihelion shift, Einstein actually performed this check (CPAE 4,
Doc. 14, [41–42]). Although the approximation scheme applied to the Entwurf theory
does not yield the correct value for the 4–4 component of a Minkowski metric in
rotating coordinates, he at first came to the erroneous conclusion that it actually does,
and ended his calculation with the remark “stimmt” (CPAE 4, Doc. 14, [41]).

There is, however, as early as 1913 evidence that this was not Einstein’s last word.
In the draft for his paper on contemporary gravitation theories, Besso listed the fail-
ure of the Entwurf theory to yield the correct combination of centrifugal and Coriolis
forces, in other words, its failure to include the Minkowski metric in rotating coordi-

169 For a discussion of this procedure, see the editorial note on the Einstein-Besso manuscript in
(CPAE 4, 346–349), as well as (Earman and Janssen 1993, 142–143).

170 “Ist die erste Gleichung Folge der beiden letzten auf Grund der Theorie?” (CPAE 3, Appendix A,
[66]).
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nates as a solution, as problems to be thought about and to be discussed with Ein-
stein. From these notes it seems that at some point by the end of August 1913, Besso
was aware of this problem. Einstein’s contemporary correspondence suggests that he
as well had realized by mid-August that the positive result mentioned above was
actually based on an error.171

The problem resurfaced only when Einstein had convinced himself, after the dis-
covery of a flaw in his original conservation argument (cf. subsection “Einstein’s
Reinterpretation of the Conservation Principle,” p. 235, that there actually exists a
large variety of transformation to accelerated reference systems under which the Ent-
wurf theory was covariant. On 20 March 1914, Michele Besso wrote to Einstein, after
the latter had reported his progress in analyzing the covariance properties of the
Entwurf field equations:

Does the result obtained also give a clue, perhaps, for a more complete treatment of the
rotation problem, so that one can get the correct value of the centrifugal force? Unfortu-
nately, my brain, at least the way it has been trained, is much too feeble for me to answer
this question myself, or even to guess from what side it could be attacked. For reasons
already discussed, it seems to me that it (?) is of importance for the astronomical prob-
lem as well (for until now it at least seemed that a system in which no Coriolis forces flit
about could still be a seat of centrifugal forces, or the reverse).172

The passage clearly confirms that Besso was aware by spring 1914—and also
assumed Einstein to be aware—that the “incomplete treatment” of the problem of
rotation (probably referring to the use of an approximation procedure) did not yield
the correct result for the Coriolis force. Besso also claimed that the solution to this
problem might be relevant for the calculation of the perihelion shift of Mercury (pos-
sibly the “astronomical problem” to which he alluded). Einstein did not, however, at
this point check the compatibility of his general insights into the covariance proper-
ties of the Entwurf field equations with concrete calculations on the level of his
approximation scheme.

It was only in September 1915 that Einstein rediscovered, to his surprise, the
result that the iterative solution of the Entwurf field equations does not yield the cor-
rect Minkowski metric in rotating coordinates. This is known from a letter he wrote

171 See, e.g., Einstein to H. A. Lorentz, 14 August 1913, (CPAE 5, Doc. 467). Einstein did not allude to
anything like having established the Minkowski metric in rotating coordinates as a solution of the Ent-
wurf equations (at least in second-order approximation) in his letters to Lorentz nor in those he wrote
to other colleagues and friends, who would have been interested in the issue, such as Ernst Mach,
Erwin Freundlich, Heinrich Zangger, Paul Ehrenfest, and Michele Besso. See also the extended dis-
cussion in “What Did Einstein Know ...” (in vol. 2 of this series).

172 “Gibt das erreichte Resultat vielleicht auch einen Wink für eine vollständigere Behandlung des Dre-
hungsproblems, so dass man den richtigen Wert der Centrifugalkraft bekommen kann? Leider ist
mein Kopf, wenigstens so wie er einmal erzogen ist, viel zu schwach, um mir die Frage selbst zu
beantworten, oder auch nur zu ahnen, wo man sie angreifen könnte. Aus schon besprochenen Grün-
den scheint sie (?) mir auch für das astronomische Problem von Bedeutung (weil es früher wenigstens
so aussah, ein System in welchem keine Corioliskräfte huschen, doch Sitz von Centrifugalkräften sein
könnte, oder umgekehrt).” Michele Besso to Einstein, 20 March 1914, (CPAE 5, Doc. 516, 606).



264 JÜRGEN RENN AND TILMAN SAUER

on 30 September 1915 to Erwin Freundlich, in which he now also connected this
finding with the perihelion problem, just as Besso had done in the letter quoted
above. Evidently Einstein was quite concerned by his finding:

I am writing you now about a scientific matter that electrifies me enormously. For I have
come upon a logical contradiction of a quantitative nature in the theory of gravitation,
which proves to me that there must be a calculational error somewhere within my frame-
work. [...]

Either the equations are already numerically incorrect (numerical coefficients), or I am
applying the equations in a principally incorrect way. I do not believe that I myself am in
the position to find the error, because my mind follows the same old rut too much in this
matter. Rather, I must depend on a fellow human being with unspoiled brain matter to
find the error. If you have time, do not fail to study the topic.173

The letter leaves open in which context Einstein redid the earlier calculation. It is
plausible to assume that it was once more Besso who stimulated the reconsideration
of this problem. In fact, Besso and Einstein probably discussed the Mercury as well
as the rotation problem during the latter’s stay in Switzerland in September 1915.174

The letter to Freundlich was sent only a week after Einstein’s return to Berlin.175 It
was probably written as a reaction to a request for political support and represented
one of the first occasions for Einstein to present the revived rotation problem to a col-
league who must have been interested in it because of its implication for the under-
standing of the Mercury problem.176

Evidently, this time Einstein found the rotation problem much more alarming than
he did in the summer of 1913. In his letter to Freundlich he still did not substantially
question the Entwurf field equation but merely took into consideration that he applied

173 “Ich schreibe Ihnen jetzt in einer wissenschaftlichen Angelegenheit, die mich ungeheuer elektrisiert.
Ich bin nämlich in der Gravitationstheorie auf einen logischen Widerspruch quantitativer Art gestos-
sen, der mir beweist, dass in meinem Gebäude irgendwo eine rechnerische Unrichtigkeit stecken
muss. [...] Entweder sind die Gleichungen schon numerisch unrichtig (Zahlenkoeffizienten) oder ich
wende die Gleichungen prinzipiell falsch an. Ich glaube nicht, dass ich selbst imstande bin, den Fehler
zu finden, da mein Geist in dieser Sache zu ausgefahrene Gleise hat. Ich muss mich vielmehr darauf
verlassen, dass ein Nebenmensch mit unverdorbener Gehirnmasse den Fehler findet. Versäumen Sie
nicht, wenn Sie Zeit haben, sich mit dem Gegenstande zu beschäftigen.” Einstein to Erwin Freun-
dlich, 30 September 1915 (CPAE 8, Doc. 123), extensively discussed in (Janssen 1999), here just a
summary,

174 He wrote to Elsa Einstein from Lucerne: “In Zurich I was together with Besso very often; my stay in
Zurich was very much improved by it, but thus I neglected my duties to others.” (“In Zürich war ich
sehr viel mit Besso zusammen, mein Aufenthalt wurde dadurch sehr verschönert, doch vernachläs-
sigte ich so meine Pflicht gegen andere.”) Einstein to Elsa Einstein, 11 September 1915, (CPAE 8,
Doc. 116).

175 See Calender (CPAE 8, 998).
176 Einstein had written to Freundlich in March of the same year on the perihelion problem, see Einstein

to Erwin Freundlich, 19 March 1915 (CPAE 8, Doc. 63). He had written a letter to Lorentz a day after
his return from Switzerland, Einstein to H. A. Lorentz, 23 September 1915, (ibid., Doc. 122), in which
he did not mention this problem, probably because he was ashamed.
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it incorrectly—probably a reference to the unclear status of the approximation proce-
dure—or that some numerical coefficients were wrong.

That the discovery of this flaw, taken by itself, did not amount to a refutation of
the Entwurf theory is made evident also by Einstein’s immediate reaction to the rota-
tion problem. Apparently encouraged by his general results on the covariance proper-
ties of the Entwurf theory, which, as we have seen, amounted for him to the claim that
there was no physical restriction of the generalized relativity principle but only on the
choice of admissible coordinates, he attempted to show that the Entwurf field equa-
tion could be solved by a rotating system in a different set of coordinates; but this
attempt failed as well.177 Shortly afterwards, he developed a new derivation of the
Entwurf field equation, to which we will turn below, effectively confirming its immu-
nity with regard to the rotation problem. It was only after his return to the November
tensor, that he listed the problem of rotation as one of the three flaws which under-
mined his trust in the Entwurf theory.

Einstein’s diverse reactions over the course of time to the same problem of the
Entwurf theory are correlated with his changing perspectives during the elaboration
of this theory. When he first believed that his rotation calculation worked, it seemed
like progress on the bold approach, without providing him with a general insight into
the covariance properties of the Entwurf theory. When it turned out that it does not
actually work, this negative result became irrelevant because Einstein successfully
developed his defensive approach with the supposed consequence that the Entwurf
field equation is covariant only under linear transformations. When Einstein then, in
the second phase of the consolidation period of the Entwurf theory, achieved more
general insights into its covariance properties, these insights seemed to make a check
on the level of concrete calculations superfluous. Eventually, Einstein took it for
granted that rotation did not present a problem for the Entwurf theory. Only when he
reviewed the problem in September 1915, possibly at Besso’s prompting, he finally
connected his general considerations with his concrete calculations—and rediscov-
ered the problem. This result now questioned not only his earlier conviction concern-
ing rotation, but also more generally the significance of his insights into the theory’s
covariance properties. Still, the discovery of this failure implied little more than a
return to the status of the Entwurf theory at the end of the first phase of the consolida-
tion period, its covariance being guaranteed only for general linear transformations.

7.14.4 The Failure of the Covariance Proof

We now turn to the last flaw that Einstein discovered, probably in early October,
some weeks before he gave up the Entwurf theory. This flaw concerns Einstein’s
attempt to derive the Entwurf field equation along the mathematical strategy. As our
earlier discussion of this endeavor has made clear, one of its problems was the neces-

177 See the calculations on the back of the draft of letter Einstein wrote to Otto Naumann after 1 October
1915, (CPAE 8, Doc. 124).
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sity to adapt general tools, such as variational calculus, to the requirement of
restricted covariance. This aspect had been at the center of Einstein’s discussion in
early 1915 with the Italian mathematician Tullio Levi-Civita, which apparently was
triggered by a letter from Max Abraham.

Abraham may well have been one of the first to discover a problem with Ein-
stein’s derivation of the Entwurf field equation from a Lagrangian function. On 23
February 1915 he wrote to Levi-Civita:

Really I did not understand on which hypotheses his new demonstration is based. Among
all possible invariants that could be used to construct the [Lagrangian] function H he
chooses very arbitrarily the one that yields his field equations.178

Abraham thus succinctly summarized the crucial weakness of Einstein’s proof.
But Levi-Civita’s exchange with Einstein did not touch upon this crucial problem.

Levi-Civita focused instead on a specific technical problem in Einstein’s derivation;
his proof of the claim that the candidate for the left-hand side of the field equations is
a tensor.179 He produced a counter-example which Einstein, however, declared irrele-
vant by pointing to the fact that Levi-Civita’s example does not satisfy the condition
of being covariant under the linear transformations that he had explicitly stipu-
lated.180 As we shall see, he only later would realize the questionable role of this con-
dition in his proof. Levi-Civita, in any case, did not insist on this aspect. Einstein had
more difficulties in responding to other problems in his proof to which Levi-Civita
drew his attention. In spite of his attempts to rebut the latter’s criticism, Einstein
eventually had to admit that his derivation was incomplete, without, however, losing
faith in it actually fulfilling its purpose in yielding the Entwurf field equations.181 On
the contrary, as Einstein wrote to Levi-Civita during their controversy:

I must even admit that, through the in-depth considerations to which your interesting let-
ters have led me, I have become only more firmly convinced that the proof of the tensor
character of  is correct in principle.182

Further objections by Levi-Civita did not shatter this conviction. Nevertheless Ein-
stein and Levi-Civita agreed upon a shortcoming of Einstein’s proof; eventually when
Levi-Civita proposed an alternative gravitation theory involving a scalar gravitational
potential, Einstein lost interest in the exchange and broke it off.183

Einstein’s discovery of the crucial flaw in his proof was not stimulated by Levi-
Civita’s criticism but by a reconsideration of this proof in light of a paper by Lorentz
about six months later. When Einstein returned from Switzerland on 22 September

178 Quoted after (Cattani and De Maria 1989b, 184–185).
179 For an extensive discussion, see (Cattani and De Maria 1989b).
180 See Einstein to Tullio Levi-Civita, 5 March 1915 (CPAE 8, Doc. 60).
181 See Einstein to Tullio Levi-Civita, 5 May 1915, (CPAE 8, Doc. 80).
182 “Ich muss sogar gestehen, dass ich durch die tieferen Überlegungen, zu denen mich Ihre interessanten

Briefe brachte, noch fester in der Überzeugung wurde, dass der Beweis vom Tensorcharakter von
 im Prinzip richtig ist.” Einstein to Tullio Levi-Civita, 8 April 1915 (CPAE 8, Doc. 71)

183 See Einstein to Tullio Levi-Civita, 5 May 1915, (CPAE 8, Doc. 80).
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1915, he found Lorentz’s recently published paper on Hamilton’s principle in the the-
ory of gravitation, including a treatment of electromagnetic fields. In a letter to
Lorentz dated the following day Einstein wrote:

Your article delighted me. I have also found a proof for the validity of the [relativistic]
energy-momentum conservation principle for the electromagnet. field taking gravitation
into consideration, as well as a simplified covariant theoretical representation of the vac-
uum equations, in which the “dual” six tensor [Sechservektor] concept proves unessen-
tial. At the moment I am occupied with studying your paper.184

Lorentz’s paper on generally-covariant Maxwell theory introduced a generic Hamil-
tonian principle without deriving Einstein’s specific choice from it.185 In a first reac-
tion to this paper, Einstein attempted to convince Lorentz that the theory of invariants
actually leads to such a specific choice. Although the letter in which Einstein
expressed this conviction is not preserved, this much can be concluded from a subse-
quent letter in which Einstein revoked his claim:

Subsequent reflections on the last letter I sent you have revealed that I made erroneous
assertions in that letter. In actual fact the invariant theory method does not yield more
than Hamilton’s principle when determining your function 186

Evidently, it was the thorough comparison with Lorentz’s approach that directed Ein-
stein’s attention to a flaw in his derivation of the Entwurf field equations.

On reexamining his 1914 derivation, Einstein found that the condition of linearity,
which had apparently entered his argument as an unproblematic default setting, was
less innocent than it first appeared to him:

The reason why I did not notice this last year is that on p. 1069 of my article I had frivo-
lously introduced the condition that  was invariant against linear transformation.187

As we discussed earlier, it was by introducing this condition that Einstein had found
the condition  for the choice of an adapted coordinate system, while he had

derived the condition  as a consequence of energy-momentum

conservation—without taking into account the linear covariance of the Lagrangian.

184 “Über Ihre Abhandlung habe ich mich sehr gefreut. Ich habe auch einen Beweis für die Gültigkeit des
Impuls Energ[ie]satzes des elektromagnet. Feldes mit Berücksichtigung der Gravitation gefunden
sowie eine kovariantentheoretisch vereinfachte Darstellung der Vakuumgleichungen, indem sich der
Begriff des “dualen” Sechservektors als entbehrlich erweist. Ich bin gerade mit dem Studium Ihrer
Arbeit beschäftigt.” Einstein to H. A. Lorentz, 23 September 1915, (CPAE 8, Doc. 122).

185 See (Lorentz 1915).
186 “Nachträgliche Überlegungen zu dem letzten Briefe, den ich an Sie richtete, haben gezeigt, dass ich in

diesem Briefe Unrichtiges behauptete. Thatsächlich liefert die invariantentheoretische Methode nicht
mehr als das Hamilton’sche Prinzip wenn es sich um die Bestimmung der Ihrer Funktion

 handelt.” Einstein to H. A. Lorentz, 12 October 1915, (CPAE 8, Doc. 129).
187 “Dass ich dies letztes Jahr nicht merkte liegt daran, dass ich auf Seite 1069 meiner Abhandlung leicht-

sinnig die Voraussetzung einführte,  sei eine Invariante bezüglich linearer Transformationen.”
(CPAE 8, Doc. 129)
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The basic error which Einstein discovered thus consisted in requiring the compatibil-
ity of two conditions derived under different assumptions, once with linearity and
once without. An acceptable derivation of the Entwurf field equation from the
Lagrangian formalism had therefore to be based on additional assumptions. In his let-
ter to Lorentz, Einstein reintroduced the correspondence principle in order to justify
the selection of the Entwurf Lagrangian among the lengthy list of candidates given in
his 1914 paper: 

That  had been set by me as equal to the fourth expression given there can be
justified by the fact that only with this choice does the theory contain Newton’s in
approximation. That I believed it possible to support this selection on the equation 
was based on error.188

Einstein’s derivation along a mathematical strategy was thus reduced, in its sub-
stance, to that of the original 1913 Entwurf paper. He had come back to his starting
point—but with one important difference: In spite of the failure of his hope to achieve
a derivation essentially from covariant theory only, he had effectively found a deriva-
tion in which mathematical principles came first and were supplemented by the phys-
ical requirements of energy-momentum conservation and Newtonian limit embodied
in the default settings of his field equation. In other words, Einstein had established a
derivation which follows precisely the pattern of his attempted derivations along the
mathematical strategy in the Zurich Notebook. But instead of taking a generally-
covariant object suggested by absolute differential calculus as a starting point, Ein-
stein’s point of departure was now the variational calculus he had developed himself.

From Einstein’s correspondence it becomes clear that he did not yet consider the
state of affairs just described as a reason for abandoning the Entwurf theory. There is
no trace of this in his letter to Lorentz. Also in a letter written to Zangger a few days
later,189 Einstein treated gravitation as one among several topics, clearly considering
his current work on it as business as usual:

It has unfortunately become clear to me now that the “new stars” have nothing to do with
the “lens effect,” moreover that, taking into account the stellar densities existing in the
sky, the latter must be such an incredibly rare phenomenon that it would probably be
futile to expect one of the like.190

188 “Dass  von mir gleich dem vierten der dort angegebenen Ausdrücke gesetzt werde, lässt sich
dadurch rechtfertigen, dass die Theorie nur bei dieser Wahl die Newton’sche als Näherung enthält.
Dass ich glaube, diese Auswahl auf die Gleichung  stützen zu können, beruhte auf einem Irrtum.”
(CPAE 8, Doc. 129)

189 The letter was dated by the editors of (CPAE 8) as 15 October 1915, but since it is explicitly dated
only as “Friday” and other indications leave a window between 30 September and 21 October, it may
well have been written on 8 October, i.e. before the letter to Lorentz.

190 “Seit ich hier bin, habe ich sehr fest auf meiner Bude gearbeitet. Es ist mir nun leider klar geworden,
dass die “neuen Sterne” nichts mit der “Linsenwirkung” zu thun haben, das ferner letztere mit Rück-
sicht auf die am Himmel vorhandenen Sterndichten ein so ungeheuer seltenes Phänomen sein muss,
dass man wohl vergeblich ein solches erwarten würde. Ich schrieb eine ergänzende Arbeit zu meiner
letztjährigen Untersuchung über die allgemeine Relativität. Gegenwärtig arbeite ich etwas in Wärme-
theorie.” Einstein to Heinrich Zangger, 15 October 1915, (CPAE 8, Doc. 130).
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Einstein evidently considered what he believed to be the impossibility of relating the
observation of nova stars to the gravitational lensing effect he had predicted in
1912191 to be more important than the problem he had discovered in the mathemati-
cal proof of the Entwurf theory. Even the paper that he mentions as being supplemen-
tary to his 1914 review is probably not a reference to a planned revocation of his
proof192 but to a paper mentioned in his earlier letter to Lorentz on generally-covari-
ant electrodynamics, which was eventually published in 1916 (Einstein 1916b). Thus,
also the third flaw which Einstein discovered in the Entwurf theory did not immedi-
ately lead to its refutation.193 It nevertheless must have had a subversive effect on his
belief in this theory as will be discussed in the next section.

In summary, we have seen that the endeavor to develop a mathematical strategy
for deriving the Entwurf field equation had to face tensions between the non-covari-
ance of the theory and the properties of a mathematical apparatus naturally tuned to
generally-covariant objects. These tensions implied the necessity to repeatedly rework
the mathematical analysis of the covariance properties of the theory and the derivation
of the field equation based on it; they became particularly evident in the criticism by
Abraham and Levi Civita. The latter’s critique, however, never questioned the goal of
Einstein’s derivation, to show the supposed uniqueness of the Entwurf field equation.
Einstein’s exposition of his theory to the Göttingen mathematicians and physicists in a
series of six Wolfskehl lectures, delivered in late June and early July 1915 at the invi-
tation of David Hilbert,194 may also have induced a renewed reflection on the justifi-
cation of the Entwurf theory along the mathematical strategy.

The problematic character of Einstein’s derivation of the Entwurf field equation
from a Lagrangian formalism may have emerged, as we have also seen, in the context
of applying the formalism to a different context, that of a generally-covariant Max-
well theory. It was here that the formalism developed specifically for the Entwurf the-
ory first proved its greater generality. Against this background Einstein’s discovery of
a flaw in his derivation could have had a double effect: It pointed out the familiar
physical arguments for deriving the Entwurf theory, and it suggested taking up once
more the mathematical strategy of trying out the newly empowered techniques on dif-
ferent candidates. Initially Einstein chose the first option, but his rederivation of the
Entwurf theory from a variational formalism plus one extra physical condition may

191 See (Renn and Sauer 2003b).
192 As conjectured in (Janssen 1999, note 51).
193 We leave aside here the question of a possible, direct or indirect, influence by David Hilbert, who had

also found a flaw in Einstein’s reasoning around this time. It is, however, unclear whether and if so
when and what Einstein may have learned about Hilbert’s work prior to 7 November 1915 when their
extant correspondence on this issue begins. See (Corry 2004, ch. 7) and further references cited
therein for a discussion of the interaction between Einstein and Hilbert in this period. See also the dis-
cussion below in sec. 7.18.1

194 Fragments of an auditor’s notes taken during one of the lectures are published in (CPAE 6, Appendix
B). For further historical discussion of Einstein’s Göttingen visit in June and July 1915, see (Corry
2004, pp. 320–329).
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have made it clear to him how much more general this formalism was, particularly
since the conservation principle no longer presented a major obstacle.

7.15 Einstein’s November Revolution: the Restoration of an Old Candidate

7.15.1 Looking Back in Anger and Hope

With his publication of 11 November 1915, submitted on the 4th of November, Ein-
stein made his definite rejection of the Entwurf theory public:

My efforts in recent years were directed toward basing a general theory of relativity, also
for nonuniform motion, upon the supposition of relativity. I believed indeed to have
found the only law of gravitation that complies with a reasonably formulated solution in
a paper that appeared last year in the Sitzungsberichte.
Renewed criticism showed to me that this truth is absolutely impossible to show in the
manner suggested. That this seemed to be the case was based upon a misjudgment.195

Among the three major flaws he had meanwhile found in the Entwurf theory, the
Mercury failure, the rotation failure, and the breakdown of its mathematical deriva-
tion, the latter was publicly the most visible, documented as it was by Einstein’s
lengthy 1914 review paper. It was, in any case, the only failure explicitly mentioned
in his first 1915 article:

The postulate of relativity—as far as I demanded it there—is always satisfied if the
Hamiltonian principle is chosen as a basis. But in reality, it provides no tool to establish
the Hamiltonian function H of the gravitational field.196

As we have seen, none of the problems of the Entwurf theory, taken by themselves or
together, resulted in an immediate rejection of this theory. Therefore it is not self-evi-
dent that Einstein, in view of these problems, finally decided to give up the Entwurf
theory, as he pointed out in the 1915 paper:

For these reasons I lost trust in the field equations I had derived, and instead looked for a
way to limit the possibilities in a natural manner.197

195 “In den letzten Jahren war ich bemüht, auf die Voraussetzung der Relativität auch nicht gleichförmi-
ger Bewegungen eine allgemeine Relativitätstheorie zu gründen. Ich glaubte in der Tat, das einzige
Gravitationsgesetz gefunden zu haben, das dem sinngemäß gefaßten, allgemeinen Relativitätspostu-
late entspricht, und suchte die Notwendigkeit gerade dieser Lösung in einer im vorigen Jahre in die-
sen Sitzungsberichten erschienenen Arbeit darzutun.
Eine erneute Kritik zeigte mir, daß sich jene Notwendigkeit auf dem dort eingeschlagenen Wege abso-
lut nicht erweisen läßt; daß dies doch der Fall zu sein schien, beruhte auf Irrtum.” (Einstein 1915c,
778)

196 “Das Postulat der Relativität, soweit ich es dort gefordert habe, ist stets erfüllt, wenn man das Hamil-
tonsche Prinzip zugrunde legt; es liefert aber in Wahrheit keine Handhabe für eine Ermittelung der
Hamiltonschen Funktion H des Gravitationsfeldes.” (Einstein 1915c, 778)

197 “Aus diesen Gründen verlor ich das Vertrauen zu den von mir aufgestellten Feldgleichungen vollstän-
dig und suchte nach einem Wege, der die Möglichkeiten in einer natürlichen Weise einschränkte.”
(Einstein 1915c, 778)
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This step cannot be exclusively accounted for, we believe, on the basis of the failures
of that theory but only becomes plausible in view of the unexploited resources that he
still had at his disposal from his earlier work in the Zurich Notebook. This is also
suggested by the sentences following immediately in the paper:

In this pursuit I arrived at the demand of general covariance, a demand from which I
parted, though with a heavy heart, three years ago when I worked together with my
friend Grossmann. As a matter of fact, we were then quite close to that solution of the
problem, which will be given in the following.198

In fact, after abandoning the Entwurf theory Einstein returned to one of the mathe-
matical objects he had encountered along the mathematical strategy three years ago
in the Zurich Notebook, the November tensor (cf. eq. (82)). As the above passage
suggests, he did not insist on the specific requirement of general covariance, but
merely required a “more general covariance of the field equations.” It was thus, above
all, a return to the mathematical strategy applied to the absolute differential calculus
that marked the turning point of 11 November 1915, rather than a radical break with
his earlier experiences concerning the restriction of covariance if it turned out to be
necessary. Indeed, Einstein now emphatically embraced the absolute differential cal-
culus:

Nobody who really grasped it can escape from its charm, because it signifies a real tri-
umph of the general differential calculus as founded by Gauss, Riemann, Christoffel,
Ricci, and Levi-Civita.199

In the context of our account, the crucial questions for understanding Einstein’s shift
in late 1915 are:

1. What eventually convinced him to give up the Entwurf theory and return to the
mathematical strategy applied to the absolute differential calculus?

2. How could any of the tensors explored and discarded in the course of Einstein’s
work on the Zurich Notebook now again represent a resource for a renewed
exploration?

3. What made the November tensor particularly suitable for such a renewed explora-
tion? And, finally:

4. How exactly did Einstein find his way back to the November tensor?

The answer to the first question follows from our analysis of the third flaw Einstein
discovered in the Entwurf theory, the erroneous derivation. His last derivation of the
Entwurf field equation had effectively reinstalled the mathematical strategy in its

198 “So gelangte ich zu der Forderung einer allgemeineren Kovarianz der Feldgleichungen zurück, von
der ich vor drei Jahren, als ich zusammen mit meinem Freunde Grossmann arbeitete, nur mit schwe-
rem Herzen abgegangen war. In der Tat waren wir damals der im nachfolgenden gegebenen Lösung
des Problems bereits ganz nahe gekommen.” (Einstein 1915c, 778)

199 “Dem Zauber dieser Theorie wird sich kaum jemand entziehen können, der sie wirklich erfaßt hat; sie
bedeutet einen wahren Triumph der durch Gauss, Riemann, Christoffel, Ricci und Levi-Civiter
begründeten Methode des allgemeinen Differentialkalküls.” (Einstein 1915c, 779)
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original sense, starting from a generally-covariant object which is then checked and,
if necessary, modified according to physical criteria. However, both the starting point
and the check list of criteria now looked somewhat different from how they did in
1912–1913. If Einstein’s starting point had then been a second-rank tensor represent-
ing a candidate for the left-hand side of the field equation, it was now a scalar repre-
senting the Lagrangian of the theory. And if the conservation principle was then a
criterion that had to be laboriously checked for each single candidate, it was now
automatically fulfilled for any candidate fitting into the general framework. The cor-
respondence principle therefore remained the crucial criterion for choosing the right
candidate. If Einstein at any point after his letter to Lorentz of 12 October 1915
decided to actually check his claim that the Entwurf theory was determined uniquely
by this criterion, his search would have been governed by the renewed mathematical
strategy. In a word, checking the Entwurf theory and pursuing the mathematical strat-
egy simply coincided in the end.

To answer the second question of why, in general, tensors earlier discarded could
now be considered worthy of further examination, we must turn once again to the Zur-
ich Notebook. Einstein’s examination in the notebook of candidate gravitation tensors
extracted from the Riemann tensor was restricted to the weak-field form of the field
equation. In the notebook, Einstein mastered energy-momentum conservation only for
weak fields—with the exception of the Entwurf operator at the end of the notebook.
Therefore, all candidates extracted from the Riemann tensor were left only partially
explored in the notebook when Einstein decided to move on to the next candidate.
This unexplored potential of the candidates encountered along the mathematical strat-
egy was one of the essential reasons why he considered it worthwhile to reexamine
them in 1915. Another crucial reason for such progress in a loop—or by reflection—
was the fact that Einstein’s renewed mathematical strategy now drew on more
resources, in particular, the variational calculus as applied for the Entwurf theory.

In answering the third question of what made the November tensor particularly
suitable for a renewed exploration, we again must look at the Zurich Notebook. There
Einstein, with Grossmann’s help, had derived the November tensor from the Ricci
tensor under the stipulation of unimodular coordinate transformations. Contrary to
the Ricci tensor, the November tensor satisfies Einstein’s physically motivated crite-
ria because it could be reduced to a form suitable for obtaining the Newtonian limit
by assuming a coordinate restriction (the Hertz restriction) that was the same as the
restriction required by energy-momentum conservation in the weak field limit (cf. eq.
(LXXXIV)). Contrary to the Einstein tensor, the harmonization of these two restric-
tions for the November tensor did not require a change in the view of how the Newto-
nian limit was to be achieved. Clearly, the November tensor offered a natural starting
point for a renewal of the mathematical strategy, since in its case the check of the
weak field equation with regard to the conservation and correspondence principles
produced a positive outcome—shadowed only by the restricted covariance properties
of the candidate that resulted from the November tensor by imposing the required
coordinate restriction. The questions that remained were whether or not this result
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could be extended to the full field equation as well, and which restrictions of covari-
ance were implied for the full equation by the conservation principle. These questions
could now be addressed with the help of an improved mathematical apparatus.

The answer to the fourth question, concerning the actual path that Einstein took in
rediscovering the November tensor in the fall of 1915 is suggested by several com-
ments pointing to the crucial role of the default setting for the gravitational field eq.
(XXII) which, in hindsight, played the role of a “fateful prejudice” with its substitu-
tion by the default setting eq. (XXIII) being the “key to the solution.”200 The path
leading from the Entwurf field equation to a field equation based on the November
tensor can be reconstructed with fair confidence in view of the default setting for the
Lagrangian in terms of the field eq. (LXIII). It was, as we have discussed, this default
setting, rooted in classical field theory, which had also made the Entwurf Lagrangian
look particularly promising.

It must have been tempting for Einstein to look for other Lagrangians that could
be interpreted in this way as involving a “square” of the gravitational fields, experi-
menting with the definition of the gravitational field. In fact, the internal logic of the
mathematical representation exerted a pressure on Einstein’s interpretation, since in
that representation the connection coefficients, i.e. the Christoffel symbols, have a
central importance in, e.g. the concept of a covariant derivative, the geodesic equa-
tions, or the definition of the Riemann and Ricci tensors. This role of the connection
coefficients was at odds with the significance that Einstein attached to the coordinate
derivatives of the metric. Thus, when Einstein took the mathematical tradition more
seriously again, the mathematical knowledge that was accumulated in the representa-
tion, forced him to reconsider his physical prejudices. And it was indeed not far
fetched to reinterpret the Christoffel symbol as representing the field, a choice that
almost immediately leads to the Lagrangian of the November theory. Einstein’s ear-
lier experience, documented in the Zurich Notebook, might have helped find this path
from the Entwurf to the November theory because at that time he had already
explored the relation between gravitation tensors expressed by Christoffel symbols
and their expression in terms of the derivatives of the metric, e.g. in the context of
studying the so-called “theta-restriction.”201

In summary, in the fall of 1915 Einstein succeeded in combining insights from his
earlier mathematical strategy and canonical mathematical knowledge with the
achievements of the physically motivated Entwurf theory. He had probably omitted
the November tensor from the Zurich Notebook because he lacked the mathematical
means to build a full-scale theory around it, in particular, with regard to the imple-
mentation of the conservation principle. His unsuccessful attempt at deriving the Ent-
wurf theory from a mathematical strategy had laid just those means in his hands. The
failure of the mathematical derivation of the Entwurf theory left Einstein with a for-
malism that initially seemed tailor-made for this very purpose, but then turned out to

200 See “Untying the Knot ...” (in vol. 2 of this series).
201 See the “Commentary …” (in vol. 2 of this series).



274 JÜRGEN RENN AND TILMAN SAUER

be much more generally applicable. An attempt to rederive the Entwurf field equation
within this formalism turned almost automatically into a renewal of his search along
the mathematical strategy. Einstein’s physical expectations, not only of the corre-
spondence and the conservation principles, but also of the role of the gravitational
field in the Lagrangian and in the equation of motion, must have quickly led him to
identify the November tensor as the most appropriate candidate, which not only was
probably the easiest to handle given Einstein’s propensity for unimodular coordinates
but for which the implications of the mathematical and the physical strategies seemed
to coincide.

7.15.2 Removing an Old Stumbling Block and Encountering a New One:
The Conservation Principle in 1915

The demonstration of energy-momentum conservation for a theory based on the
November tensor and the representation of the gravitational field by the Christoffel
symbols were, for Einstein, the hallmark of the turnaround in November 1915. His
contemporary comments and later recollections not only confirm that his earlier
rejection of candidates derived from the Riemann tensor was just as much associated
with the difficulty in demonstrating the validity of the conservation principle as with
difficulties related to the correspondence principle.202 They also confirm that it was
his revision of the understanding of the components of the gravitational field that was
a crucial turning point associated with his return to the mathematical strategy in
November 1915.203

The decisive progress from Einstein’s earlier exploration of a theory based on the
November tensor was made possible by the Lagrangian formalism that allowed him
to demonstrate that the theory complies with the conservation principle. He thus suc-
ceeded in removing an old stumbling block that had earlier forced him to abandon the
November tensor, as well as expressions based on it, in the Zurich Notebook. How-
ever, the problem of establishing the compatibility between conservation and relativ-
ity principles, which had also been a problem with the November tensor in 1912–
1913, continued to challenge him even in 1915 when it presented new insights as well
as a new obstacle.

The most consequential new insight was related to the fact that the coordinate
restriction resulting from the conservation principle turned out to have a remarkably
simple structure, being reduced to the requirement that a certain scalar function is
constant (cf. eq. (83)). Instead of the usual four equations, Einstein merely obtained a
single condition from the requirement of energy-momentum conservation. In spite of
this simplification, his physical interpretation of this condition did not change; he still
saw it as defining adapted coordinates and admissible transformations (Einstein
1915c, 785).

202 Einstein to Michele Besso, 10 December 1915, (CPAE 8, Doc. 162) quoted in the introduction.
203 For extensive discussion, see “Untying the Knot …” (in vol. 2 of this series).
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Due to the technical novelties of the November theory, Einstein’s perspective on
the role of coordinate restrictions changed. Now the requirements arising from the
conservation principle and those related to the correspondence principle began to
play different roles. The first kind of requirements only led to a minimal but still glo-
bal constraint on the choice of coordinate systems, the second kind of requirements
essentially fixes the coordinate system—but now only in the context of a specific
physical situation without global implications. In his paper, Einstein for the first time
introduced coordinate conditions in this modern sense albeit without any further
explanation. He simply made use of the opportunity that the formalism of the
November theory had opened up for him.

Considering his earlier failures, the November theory implemented Einstein’s
heuristic requirements without requiring much of an adjustment of these require-
ments. What had changed was, as we have seen, the default setting for the representa-
tion of the gravitational field. Furthermore, the way in which the conservation
principle had earlier fully determined adapted coordinate systems was, as we have
also seen, now changed into a weak constraint that could be harmonized with the
requirements of the correspondence principle, thus giving rise to the idea of coordi-
nate conditions in the modern sense. On the other hand, what had not changed was
the view of the conservation principle as imposing additional conditions on the
choice of coordinates. Finally, the way in which the Newtonian limit is attained in the
November theory, that is, via a weak field equation of the form of eq. (33), also
remained, by default, the same. That Einstein, at the time, did not regard the Novem-
ber theory as a first step towards a more complete theory—as it must appear to a
modern reader. This is evident by a letter he wrote to his son on the day he submitted
his first November paper, the 4th of November 1915:

In the last few days I completed one of the finest papers of my life; when you are older
I’ll tell you about it.204

The formalism of the November theory generated one, apparently minor novelty that
could not easily be assimilated to Einstein’s expectations and that therefore called for
a physical interpretation. This new stumbling block was the scalar condition for the
choice of adapted coordinates eq. (84). In view of its derivation from the conservation
principle, it could not have been surprising to Einstein that this condition determines
the choice of adapted coordinates by the properties of the stress-energy tensor of mat-
ter.205 But this general argument does little to make the precise way of this determi-
nation plausible, let alone make it understandable that coordinate systems for which

 are to be excluded, as is implied by Einstein’s condition. This was a point
where the new formalism of the November theory confronted him with the challenge

204 “Dieser Tage habe ich eine der schönsten Arbeiten meines Lebens fertig gestellt; wenn Du einmal
grösser bist, erzähle ich Dir davon.” Einstein to Hans Albert Einstein, 4 November 1915, (CPAE 8,
Doc. 134).

205 The very existence of an additional coordinate restriction must have been a puzzle in view of Ein-
stein’s earlier insights into the relation between covariance and conservation.

g– 1=
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to find an adequate physical interpretation. Einstein did not hesitate to take up this
challenge and, less than a week after the submission of his first November paper, sub-
mitted a short addendum dedicated to the physical interpretation of this condition.

7.16 A Familiar Candidate in a New Context: 
Einstein’s Return to the Ricci Tensor

Einstein’s addendum to his first November paper was submitted on 11 November and
published on 18 November 1915 (Einstein 1915d). It does not contain a single novel
formula with respect to the earlier paper but merely constitutes a reinterpretation of
what had been achieved. Yet, it introduced a new, now generally-covariant field equa-
tion, replacing that of the November theory, which was covariant only for unimodular
transformations. The new field equation is instead based on the Ricci tensor, a candi-
date that Einstein had also considered earlier while working on the Zurich Notebook
(cf. eq. (55)). How did he reinterpret his earlier results?

The point of departure for this reinterpretation was the scalar condition for the
choice of adapted coordinates eq. (84). This equation, together with the requirement
of unimodularity, were the only obstacles, it appeared, that separated Einstein from
the realization of general covariance. Furthermore, there was no general physical
interpretation for these two requirements: Why should coordinate transformations be
unimodular and why should it nevertheless be impossible to select a coordinate sys-
tem so that  These must have been questions motivating Einstein’s further
search, beyond what he had achieved in his first November paper. In the new
approach presented in the addendum, these two questions were answered in the con-
text of an issue that at first glance appears to be unrelated to gravitation theory; the
question of the fundamental constitution of matter.

In the introductory part of his addendum, Einstein discussed a contradiction aris-
ing in an electromagnetic theory of matter. He argued that the inclusion of gravitation
in the energy-momentum balance could resolve, at least in principle, the following
contradiction: The hypothesis that all matter is of electromagnetic origin, and Max-
well’s equations imply that the trace of the energy-momentum tensor vanishes:206

(88)

It is also clear that for the default setting of the source-term, i.e. pressureless dust (cf.
eq. (4)), the trace of the energy-momentum tensor does not vanish. The conflict
between this implication and eq. (88) seems to indicate that matter if conceived of as
pressureless dust cannot be constructed on an electromagnetic basis.

However, it is possible to conceive the energy-momentum tensor as being com-
posed of two parts, as is suggested by the parallelism of the energy-momentum of

206 Cf. (Laue 1911, § 13).
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matter and of the gravitational field on right-hand side of the field equation (cf. eq.
(XLI)):

(89)

where  is due to the electromagnetic origin of matter and  to gravitational
fields, which are now assumed to play a role in the constitution of matter as well. It
follows that the non-vanishing trace of the energy-momentum tensor for matter no
longer necessarily contradicts with eq. (88) since it seems possible that the vanishing
of  is compensated by  In other words, the additional assumption that
gravitational fields play a role in the constitution of matter might be considered as
hinting at the solution of a puzzle in a purely electromagnetic theory of matter (Ein-
stein 1915d, 800).207

The discussion of an electromagnetic theory of matter in the introductory part of
Einstein’s addendum raises the obvious question of its function in his theory of grav-
itation. In his introductory paragraph he stakes the following claim:

In a recent investigation I have shown how Riemann’s theory of covariants in multidi-
mensional manifolds can be utilized as a basis for a theory of the gravitational field. I
now want to show here that an even more concise and logical structure of the theory can
be achieved by introducing an admittedly bold additional hypothesis on the structure of
matter.208

The hypothesis of an electromagnetic constitution of matter on the basis of “a theory
more complete than Maxwell’s theory” allowed Einstein to invalidate an important
implication regarding the source term of the gravitational field equation—its non-
vanishing trace. In his first November paper, this default assumption had forced him
to introduce the coordinate condition that excluded coordinate systems with

 Even earlier, in the Zurich Notebook, he had discarded the Ricci tensor as
a candidate for the left-hand side of a gravitational field equation (if only on the level
of linear approximation) because this candidate implies the vanishing of the trace of
the stress-energy tensor in contrast to the default properties of Einstein’s standard
model of matter (cf. eq. (LXXV)). The hypothesis of an electromagnetic origin of

207 Apart from the fact that Einstein does not elaborate on the question as to how matter might be con-
ceived of on the basis of “einer gegenueber Maxwells Theorie vervollstaendigten Elektrodynamik”
(p.  800), Einstein’s suggestion suffers, however, from a rather conspicuous difficulty: Since  is no
tensor but a coordinate-dependent expression, it can in fact not replace the stress-energy tensor of
matter. In particular, the claim that the coordinate-dependent expression  is positive remains
unproven in Einstein’s paper and can be refuted in a rather simple way by considering a coordinate
system in which this quantity vanishes as well. See (Earman and Glymour 1978, 298).

208 “In einer neulich erschienenen Untersuchung habe ich gezeigt, wie auf Riemanns Kovariantentheorie
mehrdimensionaler Mannigfaltigkeiten eine Theorie des Gravitationsfeldes gegründet werden kann.
Hier soll nun dargetan werden, daß durch Einführung einer allerdings kühnen zusätzlichen Hypothese
über die Struktur der Materie ein noch strafferer logischer Aufbau der Theorie erzielt werden kann.”
(Einstein 1915d, 799)
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matter made it possible to resolve both these problems at the same time. In fact, under
the condition  admissible under this hypothesis, the November tensor
coincides with the generally-covariant Ricci tensor. Together with the generalized
principle of relativity, this mathematical feature led Einstein to choose the Ricci ten-
sor rather than the November tensor as the more appropriate candidate for the left-
hand side of a gravitational field equation. With the introduction of the generally-
covariant Ricci tensor, the other problem of the November theory—its restriction to
unimodular coordinate systems—disappeared.

All aspects of the new Ricci theory are simply straightforward consequences of
the November field equation plus the condition  which can now be con-
ceived of as a coordinate condition in the sense that its stipulation does not affect the
physical validity of the equations. In particular, Einstein did not present a new deriva-
tion of the new field equation from a Hamiltonian variation principle, now to be for-
mulated for the Ricci tensor. He did not write down the free field Lagrangian that
would produce the Ricci tensor in the field equation. Instead, Einstein still used the
technique of reducing his gravitational field equation, using the condition 
to the November field equation in his conclusive 1915 paper, and even in the 1916
review paper on general relativity. Similarly, in his addendum, he neither provided an
independent discussion of energy-momentum conservation nor of the Newtonian
limit, but just assumed that everything would carry over unchanged from the Novem-
ber theory. In his paper, he explicitly claimed that the physically relevant relations
remain unchanged by the transition from the November to the Ricci theory:

Based upon this system one can—by retroactive choice of coordinates—return to those
laws which I established in my recent paper, and without any actual change in these
laws, ...209

He emphasized that the only difference was the increased freedom in choosing a
coordinate system:

The only difference in content between the field equations derived from general covari-
ance and those of the recent paper is that the value of  could not be prescribed
in the latter.210

Even more radically, Einstein claimed in his letter to Hilbert of 12 November that his
latest modification implied that Riemann’s tensor would now directly produce the
gravitational equations but would not change the equations of the theory.211 In short,
his new generally-covariant field equation based on the Ricci tensor represented for

209 “Von diesem System aus kann man durch nachträgliche Koordinatenwahl leicht zu dem System von
Gesetzmäßigkeiten zurückgelangen, welches ich in meiner letzten Mitteilung aufgestellt habe, und
zwar ohne an den Gesetzen tatsächlich etwas zu ändern.” (Einstein 1915d, 801)

210 “Der Unterschied zwischen dem Inhalte unserer aus den allgemein kovarianten gewonnenen Feldglei-
chungen und dem Inhalte der Feldgleichungen unserer letzten Mitteilung liegt nur darin, daß in der
letzten Mitteilung der Wert für  nicht vorgeschrieben werden konnte.” (Einstein 1915d,
801)

211 Einstein to David Hilbert, 12 November 1915, (CPAE 8, Doc. 139).
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Einstein largely a reinterpretation of his earlier results from the November theory.212

Only the condition  had changed its status from being an excluded special
case to a key relation for translating results from the older theory into the new one.
What had also changed was the physical interpretation of the theory, in particular
with regard to its implications for physics outside of gravitation theory.

Concerning Einstein’s new gravitation theory, the only significant property of his
new model of matter that replaces his standard instantiation of the slot for the source
term of pressureless dust is the vanishing of the trace of the stress-energy tensor. All
other aspects of such a theory of matter were irrelevant. As we have seen, he had
merely two tenuous arguments to support his audacious new approach. According to
the first argument, the inclusion of gravitation in an electromagnetic theory of matter
could help to avoid the conflict between the vanishing of the trace of the stress-energy
tensor for electromagnetic fields and its non-vanishing for matter. This argument was,
however, only an unelaborated idea and quite problematic. According to the second
argument, an electromagnetic theory of matter was rendered plausible by the greater
consistency of the theory of gravitation that it made possible.

Since all essential equations, according to Einstein’s assertion, remain the same in
the Ricci and November theories, the question of which theory was to be given pref-
erence was thus a matter of choice between the following two options:

1. to rely on a standard model of matter and to accept the physically unmotivated
restriction of the theory to unimodular transformations and an inexplicable exclu-
sion of certain coordinate systems (November theory);

2. to achieve a generally-covariant theory without special requirements on coordi-
nate systems and with a logically simple structure, but to accept the introduction
of non-trivial consequences for a highly problematic fundamental theory of mat-
ter (Ricci theory).

Einstein’s preference for the second option was affected by the context in which he for-
mulated his new approach, in particular, by the contemporary discussion about an elec-
trodynamic worldview and the parallel work of David Hilbert, which constituted
serious competition for Einstein.213 The context of this discussion lent some credibility
to the introduction of speculative assumptions about a fundamental theory of matter.

212  In his paper, Einstein did not address the conflict between the Ricci tensor and the correspondence
principle, cf. (Stachel 1989; Norton 1984). This conflict was somewhat hidden by the fact that the
physical consequences of the Ricci theory were elaborated in terms of the November theory in which
the Newtonian limit can be attained via the Hertz condition which is not in conflict with Einstein’s
default assumption about the static metric. The conflict here arises from to the condition 
mediating between the two theories and implying, together with the Hertz condition, the harmonic
condition. It seems that Einstein was, either at that time or when working on the Zurich Notebook, not
aware of this conflict.

213 See (Corry, Renn and Stachel 1997; Sauer 1999).
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7.17 The Mercury Problem as a Theoretical Laboratory for the Ricci Tensor

7.17.1 Einstein’s Motivation

Only seven days after his last note, on 18 November 1915, Einstein presented an
application of his newly found field equation, his “Explanation of the Perihelion
Motion of Mercury from the General Theory of Relativity” (Erklärung der Perihelbe-
wegung des Merkur aus der allgemeinen Relativitätstheorie) to the Academy. It was
the only one of his November papers which he submitted as a manuscript to the
assembly of the Academy accompanied by oral comment, as is documented by the
protocols.214 He saw the excellent agreement between his calculated value of the
perihelion shift of Mercury (43”) and astronomical observations (45’’ +/– 5”) as a
breakthrough for his new theory. Einstein may also have commented publicly on his
note because he hoped that his achievement would attract the attention of the astrono-
mers attending his presentation to the Academy, such as Karl Schwarzschild.215

Einstein achieved his result in only seven days, a very short time for an involved
calculation. David Hilbert showed himself impressed by Einstein’s rapid success:

Many thanks for your postcard and cordial congratulations on conquering perihelion
motion. If I could calculate as rapidly as you, in my equations the electron would corre-
spondingly have to capitulate, and simultaneously the hydrogen atom would have to pro-
duce its note of apology about why it does not radiate.216

Einstein must have been eager to quickly find convincing physical consequences for
his new theory for three main reasons:217 

1. he had produced several candidate theories among which no definite decision had
yet been possible; the Entwurf theory, the November theory, and the Ricci theory, 

2. he was in close competition with Hilbert who had just sent him a manuscript
about his own gravitational field theory and had to make an effort in order to
secure his priority, and

3. he may have been looking for further confirmation for his bold hypothesis of a
combined electromagnetic and gravitational origin of matter, a hypothesis which
so far had been based mainly on reasons of internal consistency or on general
philosophical arguments.

All three motivations for Einstein’s concern with the perihelion problem are well
documented by his contemporary correspondence with Hilbert.218 Einstein consid-

214 See (Archiv der Berlin-Brandenburgischen Akademie der Wissenschaften, II–V, vol. 91, sheet 64).
215 See previous note, and for historical discussion, see (Renn, Castagnetti and Damerow 1999).
216 “Vielen Dank fuer Ihre Karte und herzliche Gratulation zu der Ueberwältigung der Perihelbewegung.

Wenn ich so rasch rechnen könnte wie Sie, muesste bei meinen Gleichg entsprechend das Elektron
kapituliren und zugleich das Wasserstoffatom seinen Entschuldigungszettel aufzeigen, warum es nicht
strahlt.” David Hilbert to Einstein, 19 November 1915, (CPAE 8, 149).

217 See also the discussion in (Earman and Janssen 1993), on which the following relies.
218 See Einstein to David Hilbert, 12 November 1915, Einstein to David Hilbert, 18 November 1915, and

David Hilbert to Einstein, 19 November 1915, (CPAE 8, Docs. 139, 148, 149).
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ered the Mercury calculation as a piece of evidence in favor of an electromagnetic
theory of matter is also confirmed by the abstract of his paper in the Academy pro-
ceedings:

It is shown that the general theory of relativity explains qualitatively and quantitatively
the perihelion motion of Mercury, which was discovered by Leverrier. The hypothesis of
the vanishing of the stress-energy tensor of matter is thus confirmed. Furthermore, it is
shown that the examination of the bending of light rays in the gravitational field makes it
also possible to verify this important hypothesis.219

7.17.2 The Advantages of a Second Attempt

What enabled Einstein to check this physical consequence of the anomalous perihe-
lion advance of Mercury on the basis of the new field equation so rapidly was his ear-
lier attempt in 1913, undertaken jointly with Michele Besso, to calculate the
perihelion shift for the Entwurf theory.220 This earlier attempt had given him a quan-
titative result that is too small (18”) if compared to the empirical value. But this
attempt had given Einstein the tools that could now be applied without any essential
modification to the new field equation based on the Ricci tensor. The additional
resource which the earlier work had laid in Einstein’s hands not only allowed him to
achieve quick success by applying his new theory to a challenging problem. Even
more remarkably, this application also had a profound repercussion on the applied
theory itself. The employment of the Mercury calculation scheme in the context of
the Ricci theory effectively changed the heuristic criteria of Einstein’s search for the
field equation and resulted in a more sophisticated understanding of the correspon-
dence principle.

This far-reaching consequence emerged only after Einstein’s theory was explored
in greater depth with his new calculation of the Mercury problem. His first two
November papers were short and contain hardly any discussion of the physical conse-
quences of the postulated field equations. The addendum of November 11 refers
entirely to the considerations, including the Newtonian limit, that are presented in the
main paper of November 4. The study of the Mercury problem hence constitutes the
first elaboration of the Ricci theory, giving it a justification beyond the field equation
and its immediate consequences. This holds even if one takes into account Einstein’s
earlier consideration of this theory in the Zurich Notebook. But now, in mid-Novem-
ber 1915, a fully fledged calculation scheme permitted the determination of approxi-
mate solutions to the gravitational field equation. This calculation scheme was
inherited form the earlier calculation of the Mercury problem in the context of the

219 “Es wird gezeigt, daß die allgemeine Relativitätstheorie die von Leverrier entdeckte Perihelbewegung
des Merkurs qualitativ und quantitativ erklärt. Dadurch wird die Hypothese vom Verschwinden des
Skalars des Energietensors der “Materie” bestätigt. Ferner wird gezeigt, daß die Untersuchung der
Lichtstrahlenkrümmung durch das Gravitationsfeld ebenfalls eine Möglichkeit der Prüfung dieser
wichtigen Hypothese bietet.” (Einstein 1915e)

220 See (CPAE 4, Doc. 14; Earman and Janssen 1993).
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Entwurf theory; it had been developed after Einstein’s struggle with various candidate
field equations in the Zurich Notebook at a time when he believed in the validity of
the Entwurf theory. This scheme had therefore not yet been applied to different candi-
date field equations and had thus not have had effect on the balance between Ein-
stein’s heuristic criteria. The lasting impact of the Mercury problem on the
development of the field equations of general relativity in 1915 was to provide the
judgement about candidate field equations with knowledge about the formalism of a
gravitational field theory that was essentially independent of the field equations and
that had been acquired as early as 1913. The accumulation of this knowledge trig-
gered a process of reflection which guided Einstein to the definite field equation of
general relativity.

Einstein’s calculation of Mercury’s perihelion shift was based on finding an
approximate solution to the gravitational field equation by an iterative procedure. To
find the solution of first order, Einstein and Besso, in 1913, turned directly to the first-
order field equation with which Einstein was familiar from his consideration of the
Newtonian limit (cf. eq. (33)), (CPAE 4, 360). The solution to this equation was hence
given in terms of the canonical metric for a static field (25) which Einstein used to
obtain the Newtonian limit. To obtain the second approximation, Einstein and Besso
wrote down the general form of a spherically symmetric metric in Cartesian coordi-
nates in terms of three unknown functions so as to immediately satisfy one of the con-
straints of the problem with an appropriate ansatz (CPAE 4, 364). These functions
were then determined by the iterative procedure, starting from the first approximation.

In his 1915 paper, Einstein no longer proceeded in two separate steps but immedi-
ately started from the generic ansatz for a spherically symmetric metric (Einstein
1915b, 833). In 1915, this approach was not only natural but also necessary. It was
natural because the procedure Einstein and Besso had constructed in 1913 worked
just as well for the first as for the second approximation so that there was really no
reason for proceeding in two steps as they had done when first developing their
method for calculating the Mercury problem. In 1915 it was necessary to begin right
away with the second step since the first step of 1913 no longer worked for the field
equation of the Ricci theory. While Einstein’s default assumption about the metric for
a static field presented no manifest problem in the November theory, as it was com-
patible with the Hertz condition that served to obtain its Newtonian limit, this default
assumption was no longer acceptable in the Ricci theory due to the additional condi-
tion . The conflict between this condition and Einstein’s earlier understand-
ing of the Newtonian limit is also addressed in a letter Einstein wrote to
Schwarzschild in early 1916, probably referring to a problem analogous to the con-
flict represented by eq. (LXXV):

My comment in this regard in the paper of November 4 no longer applies according to

the new determination of  as I was already aware. [At this point he added in

footnote: The choice of coordinate system according to the condition 

is not consistent with  Since then, I have handled Newton’s case differently,

of course, according to the final theory.221

g– 1=

g– 1,=

g
μν∂ xν∂⁄∑ 0=

g– 1.]=



PATHWAYS OUT OF CLASSICAL PHYSICS  283

In the context of the Ricci theory, Einstein’s generic ansatz for a spherically symmet-
ric metric pointed almost without any further calculation to the existence of non-triv-
ial values for  in contrast to his default assumption about the metric for
static gravitational fields. Einstein considered the difference to his earlier assumption
about such a metric a remarkable consequence of the application of his methods for
solving the perihelion problem to the new field equation. This is evident from his
contemporary correspondence. After the completion of the final version of general
relativity, he repeatedly mentioned this fact in letters to Michele Besso. In a letter
from 10 December, he remarked:

You will be surprised by the appearance of the 222

A little more than a week later, Einstein returned to this point, again emphasizing the
remarkable nature of the deviation from what he expected to be the metric for weak
static fields. He was now able to point out how the conflict between this deviation and
the Newtonian limit could be avoided:

Most gratifying is the agreement with perihelion motion and the general covariance;
strangest, however, is the circumstance that Newton’s theory of the field is incorrect
already in the 1st order eq. (appearance of the  It is just the circumstance that
the  do not appear in first-order approximations of the motion eqs. which
determines the simplicity of Newton’s theory.223

The scheme for calculating a spherically symmetric static metric did not in itself lead
to a way in which the deviation from Einstein’s standard metric could be reconciled
with the correspondence principle. However, it was clear that gravitational fields can-
not be observed directly but only via the motion of bodies within these fields—a
point stressed in Besso’s 1913 memo224—so that the equation of motion, at second
glance, suggested a natural way out of this dilemma. This second glance showed that
in first-order approximation only the -component of the metric tensor determines
the motion of a material point and that, accordingly, non-trivial values for 

221 “Meine diesbezügliche Bemerkung in der Arbeit von 4. November gilt gemäss der neuen Festsetzung
 nicht mehr, wie mir schon bekannt war. [At this point he added in footnote: Die Wahl des

Koordinatensystems gemäß der Bedingung  ist nicht vereinbar mit 
Seitdem habe ich ja den Newton’schen Fall nach der endgültigen Theorie ja anders behandelt.” Ein-
stein to Karl Schwarzschild, 19 February 1916 (CPAE 8, Doc. 194). For a discussion of the role of
coordinate conditions in general relativity, see also Einstein’s paper on gravitational waves (Einstein
1916c).

222 “Du wirst über das Auftreten der  überrascht sein.” Einstein to Michele Besso, 10 December
1915, (CPAE 8, Doc. 162). 

223 “Das Erfreulichste ist das Stimmen der Perihelbewegung und die allgemeine Kovarianz, das Merk-
würdigste aber der Umstand, dass Newtons Theorie des Feldes schon in Gl. 1. Ordnung unrichtig ist
(auftreten der  Nur der Umstand, dass die  nicht in den ersten Näherungen der
Bewegungsgleichungen des Punktes auftreten, bedingt die Einfachheit von Newtons Theorie.” Ein-
stein to Michele Besso, 21 December 1915, (CPAE 8, Doc. 168).

224 For a facsimile of the relevant passage, see Fig. 2 on p. 300 of “What Did Einstein Know...” (in vol. 2
of this series) and (Renn 2005a, 128).
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do not affect the first-order equation of motion and hence the Newtonian limit of Ein-
stein’s theory.

In a third letter to his friend Besso, Einstein once more returned to this point, now
in order to explain that the new way of obtaining the Newtonian limit is closely
related to the perihelion shift of Mercury and hence to the excellent agreement
between theory and experiment.

The great magnification of the effect against our calculation stems from that, according
to the new theory, the ’s also appear in the first order and hence contribute to
the perihelion motion.225

This close connection between the empirical success of the theory and the deviation
from the correspondence principle, as originally conceived by Einstein, stabilized the
modified understanding of this principle and freed it from the aura of a dubious tech-
nical trick.

7.17.3 A New Problem Meets an Old Solution

Einstein repeatedly stressed the fact that only  matters for the equation of motion,
a circumstance that must have seemed a strange but lucky coincidence to him. This
solution to the dilemma created by the occurrence of non-trivial diagonal components
in the first-order static metric was in itself as little new in 1915 as the dilemma itself.
We have seen that in 1912–1913 the harmonically reduced and linearized Einstein
tensor had been discarded because it led to a metric for weak static fields with non-
trivial diagonal components (cf. eq. (74)). Furthermore, the very ansatz for a spheri-
cally symmetric static metric used to treat the Mercury problem pointed to the possi-
bility of such non-trivial components. When Einstein first developed this ansatz in
1913, he did not give this possibility serious consideration because he was convinced
of the validity of the Entwurf equation which does not give rise to such components.

It is remarkable is that, even though the dilemma of a non-spatially flat static met-
ric was in mid-1913 no longer (and not yet) a real one for Einstein, it was neverthe-
less at that time already considered and resolved by Besso, and probably also by
Einstein. This is documented by a page in the Einstein-Besso manuscript, written by
Michele Besso on the back of a letter to Einstein. The page can be dated to June 1913
when both worked together in Zurich (CPAE 4, 392). It is one of a couple of pages on
which Besso recapitulated the procedure he and Einstein had applied in order to
determine the perihelion shift of Mercury. The purpose of this recapitulation was evi-
dently not only Besso’s wish to understand more thoroughly a method that in essence
had probably been developed by Einstein, but also his intention to apply this method
to more complex cases such as the field of a rotating sun or the inclusion of the sun’s
pressure in the calculation. Given the reflective character of Besso’s notes, we also

225 “Die starke Vergrösserung des Effektes gegenüber unserer Rechnung führt daher, dass gemäss der
neuen Theorie auch die  in Grössen erster Ordnung auftreten und so zur Perihelbewegung
beitragen.” Einstein to Michele Besso, 3 January 1916, (CPAE 8, Doc. 178).
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find, along with the recapitulation of essentials, general remarks concerning the
nature and plausibility of assumptions which Einstein and Besso had made in the
course of their application of the method. It is among such remarks that one finds the
brief reflection on the assumption of the spatially flat static metric quoted above,
which shows that the assumption of this form of the metric was not an unquestioned
prejudice.226 Besso also considered the more general possibility of a weak-field met-
ric in which components other than the 4–4 one deviated from the Minkowski metric.
He came to the same conclusion as Einstein in his perihelion paper of November
1915, namely that, to first order, only the -component is relevant for the equation
of motion:

The values so derived and inserted in the equations for the motion of the material point
lead to the result that in the latter, [as far as] deviations of the magnitudes  from the rel-
ativity scheme [i.e. the Minkowski metric] [are concerned], only the elements  have
any influence.227

This observation from June 1913 shows that the possibility of attaining the Newto-
nian limit also for spatially non-flat static metrics was not new. What was new was
the necessity to bring this knowledge to bear on a field equation which seemed to
forclude any other way of satisfying the correspondence principle. The novelty on 18
November 1915 was thus the combination of two chunks of knowledge that had been
available independently for years, i.e., to base field equations on the Ricci tensor and
to attain the Newtonian limit also for spatially non-flat static metrics.228 In the fol-
lowing, we shall see that this combination triggered a new development that would
very soon lead Einstein beyond the Ricci tensor. 

7.18 Completing the Circle: Einstein’s Return to the Einstein Tensor

7.18.1 Finding the Capstone of General Relativity by Double-Checking
a New Theory of Matter

Einstein’s completion of general relativity in November 1915 was essentially a soli-
tary phase during which he had little correspondence and no collaboration on this
subject, except for the mathematician David Hilbert, with whom Einstein’s corre-
sponded on the progress of their respective efforts. Hilbert had a long-standing inter-
est in physics and was especially interested in foundational issues within his program
of an axiomatization of the natural sciences.229 When Gustav Mie published a special

226 See (CPAE 4, Doc. 14 [p. 16]). The mention of § 1 is probably a reference to (Einstein and Gross-
mann 1913).

227 “Die so ermittelten Werte in die Gleichg[ung]en für die Beweg[ung] des Materiellen Punktes einge-
setzt, ergeben dass in denselben Abweichngen der Grössen  vom Relativitätsschema nur die Glieder

 von Einfluss sind.” (CPAE 4, Doc. 14 [p. 16])
228 For Einstein’s continued concern with the problem of the appearance of other components of the met-

ric tensor than  see Albert Einstein to Erwin Freundlich, 19 March 1915, (CPAE 8, Doc. 63).
229 See (Corry 2004).
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relativistic, electromagnetic theory of matter in 1912, he was particularly intrigued by
it, and after Einstein’s visit to Göttingen, at Hilbert’s invitation, in the summer of
1915, Hilbert engaged in an attempt to find a synthesis between Mie’s theory and
Einstein’s approach to gravitation. In November 1915, he was close to finishing his
work and became Einstein’s competitor for priority of the field equation of general
relativity. The two scientists exchanged criticism and preliminary results, directly and
possibly also indirectly via others, so that the question arises of the extent to which
their results can be considered independent achievements. A set of proofs of Hilbert’s
“First Communication on the Foundations of Physics” (Hilbert 1915) rules out the
possibility that Einstein took the last and crucial step in completing general relativity
from the work of David Hilbert. Since this issue is discussed elsewhere in detail,230

we limit ourselves here to the analysis of how Einstein completed this last step along
the pathways of his own prior research.

Einstein considered the calculation of the perihelion shift of Mercury as the suc-
cess of a generally-covariant theory of gravitation based on the Ricci tensor, but also
as confirming the possibility of a new theory of matter. This is clear from the abstract
of his paper quoted above and also from a letter he wrote to his friend Besso:

In these last months I had great success in my work. Generally covariant gravitation
equations. Perihelion motions explained quantitatively. The role of gravitation in the
structure of matter. You will be astonished. I worked horrendously intensely; it is strange
that it is sustainable.231

But the agreement between theoretical and empirical values for the perihelion shift of
Mercury supported the new theory of matter only through the condition 
The precarious role of this condition for further considerations by Einstein is made
evident by a footnote appended to the perihelion paper:

In a forthcoming communication it will be shown that this hypothesis is unnecessary. It
is because such a choice of reference frame is possible that the determinant  takes
on the value –1. The following investigation is independent of this choice.232

Einstein reexamined the connection between this determinant condition and his new
theory of matter, which found its essential expression in the vanishing of the trace of
the stress-energy tensor of matter. The requirement of the vanishing trace resulted

230 See (Corry, Renn, and Stachel 1997; Sauer 1999, 2002, 2005; Corry 2004) and further references
cited therein. For a facsimile reproduction of both the proofs and the published version of (Hilbert
1915), see (Renn 2005, 146–173). In this series, the relation between Einstein’s and Hilbert’s work is
further discussed in the section “Including Gravitation in a Unified Theory of Physics” (vol. 4 of this
series).

231 “Ich habe mit grossem Erfolg gearbeitet in diesen Monaten. Allgemein kovariante Gravitationsglei-
chungen. Perihelbewegungen quantitativ erklärt. Rolle der Gravitation im Bau der Materie. Du wirst
staunen. Gearbeitet habe ich schauderhaft angestrengt; sonderbar, dass man es aushält.” Einstein to
Michele Besso, 17 November 1915, (CPAE 8, Doc. 147).

232 “In einer bald folgenden Mitteilung wird gezeigt werden, daß jene Hypothese entbehrlich ist. Wesent-
lich ist nur, daß eine solche Wahl des Bezugssystems möglich ist, daß die Determinante  den
Wert –1 annimmt. Die nachfolgende Untersuchung ist hiervon unabhängig.” (Einstein 1915b, 831)
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from the comparison of two equations Einstein had derived in his paper of 4 Novem-
ber 1915, one with the help of the energy-momentum balance, the other directly from
the field equation. With the help of the trace  of the energy-momentum expression
of the gravitational field, these equations can be rewritten as:233 

 and (90)

(91)

Comparing these two requirements Einstein had derived the scalar coordinate restric-
tion of his first November paper, eq. (84). Both the empirical success of his perihelion
calculation and the support for his new theory of matter were hinging on this condi-
tion. But there was another way of bringing the trace of the full field equation into
agreement with eq. (83). Possibly feeling uneasy about the far-reaching conse-
quences that this delicate compatibility argument had to support, Einstein reexamined
his earlier reasoning.

From this perspective, the system of equations (90) and (91) provided a represen-
tation in which to explore the optimal way of putting together the pieces of his puz-
zle. This exploration led to yet another modification of the field equation. A reflection
on how conditions (90) and (91) had been derived from the November field equation
may have sufficed for the identification of an appropriate modification of this field
equation by adding a multiple of the trace of the stress-energy tensor of matter to its
right-hand side so as to yield instead:234

 and (92)

(93)

This set of equations no longer gives rise to problematic additional conditions.
The compatibility of Einstein’s two conditions could thus be achieved without

requiring  to imply that the trace of the stress-energy tensor must vanish, i.e.
without eq. (61). This was the final step by which Einstein arrived at the definitive
field equations of general relativity, which were presented in his paper of 25 Novem-
ber 1915 (cf. eqs. (69), (70)).

The modified source term in the new field equation violated the default assump-
tion eq. (XLI) about the right-hand side of Einstein’s mental model of a gravitational
field equation. But Einstein could accept this violation since the energy-momentum

233 Cf. (Einstein 1915a, eqs. 9 and 10).
234 See “Untying the Knot …” (in vol. 2 of this series), sec. 7, eqs. 85–91.
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tensor of matter and the energy-momentum expression of the gravitational field now
entered the right-hand side of the field equation in a completely analogous way, (cf.
eq. (68) to eq. (81)). It may also have played a role that the step from the Ricci to the
Einstein tensor was, after all, not unfamiliar given his earlier experience in the Zurich
Notebook. In his paper, Einstein lapidarily noted:

 

I now quite recently found that one can get away without this hypothesis about the
energy tensor of matter merely by inserting it into the field equations in a slightly differ-
ent way than is done in my earlier papers.

 

235

 

What had earlier prevented Einstein from accepting the (harmonically reduced and
linearized) Ricci and Einstein tensors—his understanding of the correspondence
principle—had meanwhile been transformed in the context of the perihelion calcula-
tion. The success of his solution to the Mercury problem included a solution to the
problem of the Newtonian limit, and this solution now effectively replaced the corre-
spondence principle as a criterion for an acceptable field equation.

In summary, the final phase of Einstein’s work in November 1915 was not so
much a phase in which new results challenged old prejudices, but rather one of reflec-
tion on the knowledge that was already available to him and in which different
options were weighed against each other. One of the results of this process of reflec-
tion was that there was no support for a new theory of matter as Einstein had
believed, possibly following Hilbert, in his addendum of 11 November. In the conclu-
sion of his last November paper Einstein explicitly revoked his earlier claim:

 

With this, we have finally completed the general theory of relativity as a logical structure.
The postulate of relativity in its most general formulation (which makes spacetime coor-
dinates into physically meaningless parameters) leads with compelling necessity to a
very specific theory of gravitation that also explains the movement of the perihelion of
Mercury. However, the postulate of general relativity cannot reveal to us anything new
and different about the essence of the various processes in nature than what the special
theory of relativity taught us already. The opinions I recently voiced here in this regard
have been in error. Every physical theory that complies with the special theory of relativ-
ity can, by means of the absolute differential calculus, be integrated into the system of
general relativity theory—without the latter providing any criteria about the admissibility
of such physical theory.

 

236

 

235 “Neuerdings finde ich nun, daß man ohne Hypothese über den Energietensor der Materie auskommen
kann, wenn man den Energietensor der Materie in etwas anderer Weise in die Feldgleichungen ein-
setzt, als dies in meinen beiden früheren Mitteilungen geschehen ist.” (Einstein 1915a, 844)

236 “Damit, ist endlich die allgemeine Relativitätstheorie als logisches Gebäude abgeschlossen. Das Rela-
tivitätspostulat in seiner allgemeinsten Fassung, welches die Raumzeitkoordinaten zu physikalisch
bedeutungslosen Parametern macht, führt mit zwingender Notwendigkeit zu einer ganz bestimmten
Theorie der Gravitation, welche die Perihelbewegung des Merkur erklärt. Dagegen vermag das allge-
meine Relativitätspostulat uns nichts über das Wesen der übrigen Naturvorgänge zu offenbaren, was
nicht schon die spezielle Relativitätstheorie gelehrt hätte. Meine in dieser Hinsicht neulich an dieser
Stelle geäußerte Meinung war irrtümlich. Jede der speziellen Relativitätstheorie gemäße physikali-
sche Theorie kann vermittels des absoluten Differentialkalküls in das System der allgemeinen Relati-
vitätstheorie eingereiht werden, ohne daß letztere irgendein Kriterium für die Zulässigkeit jener
Theorie lieferte.” (Einstein 1915a, 847)



 

P

 

ATHWAYS

 

 O

 

UT

 

 

 

OF

 

 C

 

LASSICAL

 

 P

 

HYSICS

 

 289

 

7.18.2 Reorganizing the Structure of General Relativity

 

The further history of general relativity shows that this theory could not yet be con-
sidered “logically complete,” as Einstein formulated in the last paragraph of his con-
clusive paper. Even if one disregards later developments such as his modification of
the field equations with a cosmological term, fundamental issues such as the status of
energy-momentum conservation as an independent postulate of the theory still
remained to be clarified. Without this clarification, the theory was initially unconvinc-
ing even to those physicists, such as Ehrenfest and Lorentz, who supported Einstein
and closely followed his work.

Ehrenfest argued that one can eliminate the stress-energy tensor of matter from
the two postulates of the theory, the conservation equation and the field equation, and
thus arrive at a new differential equation, which the metric tensor has to satisfy in
addition to the field equations. He therefore doubted, apparently following Einstein’s
earlier line of argumentation, that the new field equation was actually generally cova-
riant. On 1 January 1916 Einstein wrote to Lorentz:

 

I am conducting a discussion with Ehrenfest at present essentially on whether the theory
really does fulfill the general covariance requirement. He also indicated to me that you
had encountered problems or objections to it as well; you would do me a great favor if
you were to inform me of them briefly. I have broken in my hobbyhorse so thoroughly
that with a short hint I certainly also would notice where the crux of the problem lies.

 

237

 

It was in the exchange with Ehrenfest that Einstein arrived at the conclusion that
energy-momentum conservation was not an independent postulate but a consequence
of the field equation.

 

238

 

 The substantial clarification of the conservation principle that
Einstein achieved in this debate became a starting point for a rearrangement of the
foundational elements of his theory. The first step was taken in a lengthy letter that
Einstein wrote to Ehrenfest.

 

239

 

 In this letter he presented a derivation of the field
equation from scratch and showed how energy-momentum conservation can be
derived from it. Einstein proceeded in four steps:

1. He first derived the Lagrangian form of the field equation.

2. He next turned to the conservation principle. However, he did not yet derive the
conservation of energy and momentum from the field equation. Rather, he
assumed an equation that includes an unspecified function that has the form of
energy-momentum conservation of matter, as he had postulated it in the earlier

 

237 “Mit Ehrenfest stehe ich in einer Diskussion im Wesentlichen darüber, ob die Theorie die Forderung
der allgemeinen Kovarianz wirklich erfülle. Er deutete mir auch an, dass Sie Schwierigkeiten bezw.
Einwendungen gefunden hätten; Sie würden mir große Freude machen, wenn Sie mir dieselben kurz
mitteilten. Mein Steckenpferd habe ich so gründlich eingeritten, dass ich gewiss auch nach kurzer
Andeutung merke, wo das Wesen der Schwierigkeit liegt.” Einstein to H. A. Lorentz, 1 January 1916
(CPAE 8, Doc. 177).

238 Einstein to Paul Ehrenfest, 29 December 1915, Einstein to Paul Ehrenfest, 3 January 1916, Einstein to
Paul Ehrenfest, 24 January 1916 (CPAE 8, Docs. 174, 179,185).

239 Einstein to Paul Ehrenfest, 24 January 1916 or later (CPAE 8, Doc. 185).
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versions of his theory, and then derived from this equation another equation that
has the form of energy-momentum conservation for matter 

 

and

 

 gravitation.

3. In the next step, Einstein wrote the gravitational field equation in terms of mixed
tensor densities. He had apparently two reasons for doing so, the first being the
possibility of an immediate physical interpretation of the equation in this form.
The second reason was the preparation of the fourth and final step of his argument
in which the conservation principle is demonstrated.

4. In his last step, Einstein derived energy-momentum conservation with the help of
an indirect proof. He showed that one obtains a contradiction with the field equa-
tion in the mixed form if one does not assume that the unspecified function in the
hypothetical equation for energy-momentum conservation (step 2) vanishes.

Einstein considered this line of argument as a new achievement clarifying the founda-
tions of the theory, as becomes evident from the final passage of his letter:

 

You will certainly not encounter any more problems now. Show this thing to Lorentz as
well, who also does not yet perceive the need for the structure on the right-hand side of
the field equations. I would appreciate it if you would then give these pages back to me,
because nowhere else do I have these things so nicely in one place.

 

240

 

Einstein made this new derivation the basis for his exposition in the 1916 review
paper (Einstein 1916a), submitted on 20 March 1916.

 

241

 

In the 1916 review, however, Einstein introduced a further rearrangement of the
foundational elements of his theory. His main new results were a transformation of
the indirect proof of the letter to Ehrenfest into a direct proof of energy-momentum
conservation and the establishment of a connection between this derivation and a
mathematical theorem by Hilbert, which was later generalized by Emmy Noether.
The latter result is particularly important as it amounted, in effect, to a recognition of
the contracted Bianchi identities and their role as integrability conditions for the
sources of the field equation of general relativity.

In his review Einstein proceeded in six steps. We will briefly review these steps
and show how a new deductive structure of general relativity emerged from Ein-
stein’s reflection on his discovery process and from the insights obtained in the con-
troversy with Ehrenfest:

1. Einstein first introduced the field equations for the source-free case. In this step he
transformed his own pathway from the Ricci to the Einstein tensor into a strategy
for justifying the foundations of his theory. He introduced the Ricci equation as
the appropriate gravitational field equation for empty space conceiving it as a
weakening of an equation based on the Riemann tensor (Einstein 1916a, 803).

 

240 “Du wirst nun wohl keine Schwierigkeit mehr finden. Zeige die Sache auch Lorentz, der die Notwen-
digkeit der Struktur der rechten Seite der Feldgleichungen auch noch nicht empfindet. Es wäre mir
lieb, wenn Du mir diese Blätter dann wieder zurückgäbest, weil ich die Sachen sonst nirgends so
hübsch beisammen habe.” (CPAE 8, Doc. 185)

241 For historical discussions of this paper, see (Janssen 2005, Sauer 2005).
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2. He then developed the Lagrangian formalism and derived an equation for energy-
momentum conservation of the gravitational field alone using the pseudo-tensor
for the stress-energy of the gravitational field.

3. Einstein next reformulated the field equation in “mixed” form, including the trace
term of the pseudo-tensor that suggested the new default setting eq. (81). The
peculiar way in which the matter tensor has to be introduced as the source term of
the Einstein field equation was thus prepared.

4. Einstein then supplemented the source-free field equation with this matter term,
which was introduced in analogy to the pseudo-tensor for the stress-energy of the
gravitational field, and thus arrived at the complete Einstein field equation. With
respect to the paper of 25 November 1915, the context for Einstein’s justification
of his new field equations had changed: Equations corresponding to eq. (92) and
eq. (93) no longer appear in the 1916 review paper since energy-momentum con-
servation is not introduced as an independent postulate. As a consequence, these
equations were no longer available as a justification for the new field equation.
Instead, Einstein introduced the requirement that the energy of matter and the
energy of gravitation enter the field equation on the same footing as the primary
motivation for postulating the particular form of the Einstein field equation (Ein-
stein 1916a, 808). He made it additionally clear that the main justification for his
postulated field equation were the deductive consequences following from it.

5. Again in analogy to the source-free case, Einstein next showed that an energy-
momentum equation holds for matter and the gravitational field. Previously, the
equivalents of this equation in the earlier versions of the theory, going back to and
including the 

 

Entwurf

 

 theory, were derived from the field equation, together with
the independent postulate of energy-momentum conservation. Einstein had now
succeeded in deriving this equation from the field equation alone.

6. In his final step, Einstein shows how his usual equation for the energy-momentum
conservation of matter in the presence of a gravitational field, which was repre-
sented by the vanishing covariant divergence of the stress-energy tensor of matter,
actually follows from his field equation. In other words, what had been a heuristic
principle useful for selecting appropriate field equations now became a conse-
quence of the field equation that was useful for selecting an appropriate stress-
energy tensor of matter suitable to act as a source of the field equation (Einstein
1916a, 809–810).

In the last step of his deductive construction, Einstein also established a bridge to Hil-
bert’s contemporary work integrating one of its mathematical corner stones into his
own newly established framework of general relativity. As we have just seen, within
this framework the stress-energy tensor of matter is no longer conceived as an inde-
pendent ingredient of the theory with properties that affect its physical interpretation
(such as the selection of preferred coordinates) but this tensor has itself to satisfy cer-
tain constraints imposed by the theory. In a short remark, Einstein characterized this
partly dependent and partly independent status of the material process in his theory of
gravitation:
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Thus the field equations of gravitation contain four conditions which govern the course
of material phenomena. They give the equations of material phenomena completely, if
the latter is capable of being characterized by four differential equations independent of
one another.

 

242

 

At this point Einstein appended a footnote in which he referred to Hilbert.243 Ein-
stein provides here a reinterpretation of the mathematical claim central to Hilbert’s
theory, which constitutes the core of what later became Noether’s theorem.244 In fact
on the page referred to by Einstein we find the following passage:

... then in this invariant system of n differential equations for the n quantities there are
always four that are a consequence of the remaining n—4 in this sense, that among the n
differential equations and their total derivatives there are always four linear and linearly
independent combinations that are satisfied identically.245

By referring this general theorem to the relation between his gravitational field equa-
tion and the four differential equations corresponding to the vanishing of the covari-
ant divergence of the stress-energy tensor, Einstein gave a physical interpretation of
this theorem that was quite different from Hilbert’s. Combining his own results with
those of Hilbert, he was able to understand that energy-momentum conservation fol-
lows from the field equations. He had thus finally realized the structural role which
the four differential equations, expressing energy-momentum conservation and math-
ematically corresponding to the contracted Bianchi identities, play for the conserva-
tion principle in the general theory of relativity as we understand it today.

8. THE TRANSITION FROM CLASSICAL PHYSICS TO GENERAL 
RELATIVITY AS A SCIENTIFIC REVOLUTION

In the preceding sections, we have reconstructed the complex process by which Ein-
stein’s heuristics led to the formulation of the general theory of relativity. We have
shown that a key role was played by the interaction between the heuristics guiding
the search for the new theory and the concrete representations of intermediate results
in terms of physically interpreted mathematical formalisms. These representations
opened up new possibilities for further development and often required adjustments

242 “Die Feldgleichungen der Gravitation enthalten also gleichzeitig vier Bedingungen, welchen der
materielle Vorgang zu genügen hat. Sie liefern die Gleichungen des materiellen Vorganges vollstän-
dig, wenn letzterer durch vier voneinander unabhängige Differentialgleichungen charakterisierbar
ist.” (Einstein 1916a, 810)

243 Cf. (Hilbert 1915, 3). Einstein’s page number actually refers to an offprint of Hilbert’s paper, not to
the published version. Offprints were available to Hilbert already by mid-February 1916, the pub-
lished paper itself appeared on 31 March 1916, see (Sauer 1999, note 74).

244 See (Sauer 1999). For the roots of this theorem in Einstein’s own work, see sec. 3 of “Untying the
Knot ...” (in vol. 2 of this series).

245 “... so sind in diesem invarianten System von n Differentialgleichungen für die n Größen stets vier
eine Folge der n – 4 übrigen – in dem Sinne, daß zwischen den n Differentialgleichungen und ihren
totalen Ableitungen stets vier lineare, von einander unabhängige Kombinationen identisch erfüllt
sind.” (Hilbert 1915, 3). See vol. 4 of this series.)
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of physical concepts and heuristic principles. Einstein’s heuristics, together with such
concrete intermediate results, was evidently capable of generating enough of those
arguments on which the justification of general relativity as an essential part of mod-
ern physics, is still based today.

This heuristics itself and some of Einstein’s conceptual starting points in classical
physics underwent changes that justify the designation of this process as a scientific
revolution. In this final section, we shall first review the beginning and the end of the
development of Einstein’s heuristics in order to highlight the conceptual innovations
brought about by this development with respect to classical physics. We shall then
summarize our answers to the three epistemic paradoxes raised by this scientific rev-
olution. These answers make use of the key elements for an understanding of a scien-
tific revolution that is suggested by historical epistemology: the long-term character
of knowledge development, the architecture of knowledge, and the mechanisms of
knowledge dynamics.

8.1 The Lorentz Model Remodelled

Our analysis has shown that for Einstein’s search, the Lorentz model was structurally
the most significant heuristic element inherited from classical physics. At each stage
of its development, the structure of this mental model and its default settings deter-
mined the way in which the specific problems of finding the field equations could be
addressed. As long as it remained unquestioned, the model thus opened (or closed)
the viable paths of further exploration and determined the possibilities of conceptual
unfolding. In classical physics, the two basic structures of the Lorentz model, the
field equation and equation of motion, are related to each other as independent com-
ponents of which the first determines the creation of a global field by a local source,
while the second determines the effect of the global field on a local probe. Within the
classical framework, source and probe are essentially independent entities entering
into this model.

In general relativity, this basic structure has changed. First, the source can no
longer be independently prescribed from the field. The distribution of matter and
energy acting as a source of the gravitational field can only be described in a given
geometry of spacetime, which in turn is only another aspect of the gravitational field
determined by the field equation. Second, the equation of motion is no longer an
independent aspect of the problem, linked to the description of the gravitational field
by an overarching force concept, but is constrained and in special cases even com-
pletely determined by the field equation.246 These features of general relativity,
which mark its conceptual distinction from classical physics were not yet evident in
1915 when Einstein formulated his field equations. In other words, the corresponding
conceptual innovation was not the presupposition but the result of his research. Thus
Einstein’s heuristics, which was structured by the Lorentz model, led to the develop-

246 For historical discussion of this point, see (Havas 1989, Kennefick 2005).
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ment of a theory whose cognitive content can no longer be adequately captured by
this mental model.

The discovery of general relativity would, however, have been impossible if the
Lorentz model had not at least been adequate for capturing just those partial aspects
of the final theory that made its discovery possible. As we have seen in the previous
sections, it was even possible to construct and interpret the definitive field equation of
general relativity according to this model. Furthermore, the kind of solutions that
Einstein had in mind when he searched for the field equation obscured the new rela-
tion between matter distribution and geometry mentioned above. The solutions that
he seriously considered were given either by Minkowski spacetime (a vacuum solu-
tion) described in various coordinate systems, or weak field solutions that could be
obtained from it by an iterative procedure. The problem of having to first specify the
geometry and then the distribution of matter and energy in order to solve the field
equation turns into an approximation procedure. The further elaboration of the conse-
quences of Einstein’s field equation revealed the changes with respect to the Lorentz
model. That a revision of this mental model was implied by the field equation of gen-
eral relativity was clear to Einstein as soon as he noticed that the field equation of the
new theory would have to be non-linear. As early as 1912, he interpreted this techni-
cal feature as representing the conceptual conclusion that the gravitational field pos-
sessing energy must also act as its own source. However, at that time, this
modification of the model did not appear to be a radical break, since a modification of
only a default setting of the mental model (“linearity of the field equation”) was suffi-
cient to account for the insight that gravitation can act as its own source.

8.2 The Ill-Conserved Conservation Principle

In classical physics, the conservation of energy and momentum is a consequence of
the fundamental laws governing gravitational and electrodynamic interaction. In spe-
cial relativity, the conservation principle has found an elegant formulation as a tenso-
rial equation that unifies the conservation of momentum and energy. In both classical
and special-relativistic physics, momentum and energy are conceived as localizable
physical quantities whose conservation can be described by a partial differential
equation which describes a local balance between the various contributions to the
energy and momentum of a physical system. Einstein’s consideration of a particular
example (the behavior of a pressureless dust of particles in a gravitational field)
formed the basis, as we have seen, for a tentative generalization of the equation
expressing the conservation principle in special relativity, which now also included
the effect of gravitation, interpreted as the effect of an external force. Two distinct
perspectives on this equation exist, one from classical physics and special relativity,
the other from general relativity. The possibility of having these two perspectives on
the same mathematical expression turned out to be crucial for the emergence of gen-
eral relativity. 



PATHWAYS OUT OF CLASSICAL PHYSICS  295

From the point of view of classical physics and of special relativity, Einstein’s
postulated equation represented a twofold constraint for the gravitational field equa-
tion to be found: the resulting field theory of gravitation had to be compatible with
this equation, even at the price of restricting its range of applicability, and, further-
more, the field equation should allow this equation to be rewritten as a local, frame-
independent balance between the energy-momentum of matter and that of gravitation.

Further elaboration of the consequences of this equation, however, made this lat-
ter request questionable. In the course of his search, Einstein was forced to realize
that the expression for energy-momentum conservation which he had postulated
turned out to be incompatible with the assumption of a frame-independent stress-
energy tensor of gravitation. If this postulate is accepted, then energy and momentum
of a gravitational field cannot, in contrast to classical physics, be localizable physical
quantities. In this way, a feature of general relativity that is incompatible with classi-
cal physics was suggested by a framework still anchored in its fundamental concepts.
Einstein’s insight into the character of the expression representing the stress-energy
of the gravitational field might have given him good reason to abandon this entire
approach since its results conflicted with his well-founded expectation that the gravi-
tational field has localizable energetic properties just like all the other known physi-
cal fields. Why did he hold on to this equation in spite of its, from the point of view of
classical physics, problematic implications? His reasons were in any case not an
anticipation of those of the later theory of general relativity.

The equation expressing the energy-momentum balance in a gravitational field
that Einstein had postulated at the beginning of his search, and from which the prob-
lematic conceptual consequences summarized above can be inferred is obtained in
general relativity as an integrability condition of the field equation. Technically
speaking, it is a condition to be imposed on an admissible energy momentum tensor,
representing the right-hand side of the field equation, required in order to be compat-
ible with a mathematical identity—the contracted Bianchi identity—valid for the left-
hand side of the field equation. The Bianchi identity ensures that the gravitational
field equation determines the dynamics of the geometry of spacetime without deter-
mining also the coordinate system. It reduces the 10 components of the field equation
for the 10 components of the metric tensor to only 6 component-equations, thus leav-
ing open the choice of four arbitrary functions corresponding to the choice of a coor-
dinate system. The Bianchi identity together with the gravitational field equation then
also determines the evolution of energy and momentum in space and time by way of
the equation which Einstein interpreted as the expression for the conservation of
energy and momentum in the presence of a gravitational field.

Clearly this argument could not have played a role for Einstein when he was still
searching for the correct field equation. He was not even familiar with the Bianchi
identity at the time when he concluded his search with the publication of the field
equation of general relativity in 1915. Instead he only had two comparatively weak
arguments to hold on to this equation even when he recognized that it did not lead
him to an invariant local expression for the energy-momentum of the gravitational
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field. The first argument was that, for the special case of a dust-like cloud of particles,
it was possible to obtain this equation from the equation of motion of a single point-
particle in a gravitational field described by the metric tensor. The second argument
was related to the mathematical form of energy-momentum conservation. The corre-
sponding equation has the form of a generally-covariant divergence equation which is
not only the precise analogon for the corresponding special relativistic equation but
which also reduces to the latter in the absence of a gravitational field. These two argu-
ments reinforced each other and are in turn supported by other aspects of Einstein’s
heuristics, in particular by the generalized relativity principle and all those aspects
which underlay his understanding of motion in a gravitational field and the require-
ment of a close correspondence between special relativistic insights and their gener-
alizations in the new theory to be constructed.

But in whatever way Einstein could support his understanding of energy-momen-
tum conservation by drawing on special cases and analogies, it was, from the point of
view of the deductive structure of the later theory, support for the wrong side of his
argumentative construction, in so far as it stabilized the role of energy-momentum
conservation as an independent first principle rooted in the conviction of the funda-
mental status of energy and momentum conservation for any physical theory. This
understanding motivated its use both as a compatibility requirement and as an addi-
tional constraint on trial field equations. From the perspective of general relativity,
Einstein had thus developed an improper argumentative structure around a proper
equation, whereas from his own perspective at the time, he had attained a partial
insight into the deductive structure of the theory which he attempted to construct.
Only after his achievement of 1915 he was able to reverse this deductive structure and
obtain the vanishing of the covariant divergence of the energy-momentum tensor as a
consequence of the gravitational field equation in the sense explained above. As was
the case for the development of the mental model in Einstein’s research, the structural
and conceptual insights associated with understanding the role of energy-momentum
conservation in general relativity were thus the result and not the presupposition of
finding the correct equations.

8.3 The Lack of Correspondence between the Correspondence Principle
as seen from Classical Physics and from General Relativity

The way in which the classical theory of gravitation is contained in the theory of gen-
eral relativity could, of course, not be anticipated on the basis of classical physics
before that theory was actually formulated. Nevertheless, the same heuristics which
led to the introduction of the principal building block of the new theory, the metric
tensor, also determined, to a large extent, Einstein’s understanding of the relation
between the theory of gravitation which he was looking for and Newton’s theory. All
in all, he developed, as we have seen, in the course of his research three different
arguments in favor of the representation of static gravitational fields by a spatially flat
metric tensor in which, for an appropriate coordinate representation, only one compo-
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nent is variable and a function of the three space coordinates; this function then, so
Einstein’s conclusion, corresponded, under certain limiting conditions, to the Newto-
nian gravitational potential in his new theory, whatever the precise field equation
would be.

The first argument was directly related to the introduction of the metric tensor as
representing a gravito-inertial field, a step that was, as we have seen, motivated by the
equivalence principle. Einstein conceived Newtonian gravitation and inertia as special
cases of a more general interaction. For the case of uniform acceleration he was able
to directly identify inertial effects with a scalar Newtonian gravitational field and he
expected that he would be able to do the same for more general cases by generalizing
the notion of the gravitational field. A model for that generalization was delivered by
electrodynamics. In spite of the obvious differences between gravitation theory and
electrodynamics, the analogy between them was in fact the only available one and
hence determined Einstein’s view of the general pattern according to which a theory
of the static field should be contained as a special case in a general field theory.
According to this pattern, the general potential was represented by a many-component
object such as a vector or a tensor which, in the special case of a static field, reduces to
a single-component object. In the case of gravitation it should naturally be possible to
identify this single-component object with Newton’s gravitational potential. This
expectation was reinforced by the fact that Einstein had developed, even before intro-
ducing a metric formalism, a theory of static gravitational fields in which these are
represented by a single function. When he began to employ a metric formalism, it was
hence natural to describe static fields by a metric with one variable component and to
identify this component with the gravitational potential of his theory of static fields. 

Einstein’s “classical” understanding of the transition from his general theory to
Newton’s theory was stabilized by further arguments developed in the course of his
research. The second argument was based on the role of special relativity as an inter-
mediate step in this transition. In order to describe the gravitational effects known
from classical physics as aspects of a more general gravitational field it is necessary
to specify also the conditions under which such an identification is possible. These
physical circumstances require, in particular, the general field to be weak and static.
These conditions are, however, not sufficient for restricting the realm of gravitational
effects to that covered by Newton’s theory. The case in which the masses involved
perform motions of high velocities requires a treatment by the special theory of rela-
tivity. According to this line of reasoning, weak fields, and in particular weak static
fields, should hence play the role of an intermediate case in the transition to Newto-
nian gravitation, an intermediate case to which the special theory of relativity should
be applicable. It should hence be possible to formulate a special relativistic gravita-
tional field equation which holds under these circumstances. As it turned out, the
solutions of such a weak-field equation, as suggested by the appropriate default-set-
tings of the Lorentz model for this case, exactly correspond to Einstein’s classical
expectations.
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Nevertheless, these expectations were, as we have seen, challenged in the course
of Einstein’s research which pointed on several occasions towards a representation of
static fields by a metric tensor whose form does not correspond to the one which he
expected. He therefore felt, at some point, the necessity of developing yet another
argument in favor of this expectation. His third argument, which we have also dis-
cussed above, was completely independent of a particular gravitational field equation.
In essence it consisted in a problematic attempt to deriving the form of the metric ten-
sor for static gravitational fields from the postulate underlying the equivalence princi-
ple that all bodies—no matter what their energy content—fall with the same
acceleration in a gravitational field.

The assertion that the metric for static fields is of the canonical form expected by
Einstein does not belong to the realm of classical physics. It rather appears to be a
specific technical assumption which entered his preliminary gravitational theories as
an inconspicuous and perhaps precisely for this reason fateful prejudice delaying his
progress towards the correct field equation. However, the preceding synopsis of the
reasoning by which this assumption was actually anchored in Einstein’s thinking
shows that, once the metric tensor was introduced as a representation of gravitational
fields, the association of static fields with a metric tensor of the canonical form was a
necessary consequence of Einstein’s understanding of classical physics applied to
this representation.

This entire network of reasoning, and in particular, the procedure for attaining the
Newtonian limit which forms its core, is not compatible with the final theory of gen-
eral relativity. According to this theory, static fields are, in general, not represented by
a metric tensor of the canonical form. A consistent treatment of the problem of the
Newtonian limit in general relativity is an intricate problem247 and indeed requires a
mathematical formalism which did not even exist when Einstein first formulated the
theory in 1915; it was only introduced much later by Cartan and others (Cartan 1923,
1924). It is only in this formalism, by using the concept of an affine connection, that
it is possible to formulate both general relativity and Newton’s theory of gravitation
in a way that makes them mathematically comparable.248 In fact, whereas in general
relativity, the geometry of spacetime is described by a metric structure, in Newtonian
theory of gravitation, the four-dimensional metric structure is degenerate and only an
affine structure can be introduced for spacetime. But since a metric determines also
an affine structure, both theories can, with the help of this mathematical concept,
actually be expressed in the same mathematical terms. Vice versa, the fact that the
spacetime of general relativity carries not only an affine but also a metric structure
represents a conceptual leap with respect to Newtonian physics that cannot be
bridged by considering the special theory of relativity, which also comprises a metric
structure of spacetime, as an intermediate case. It is simply impossible to describe
Newtonian gravitational fields by a non-degenerate four-dimensional metric tensor.

247 See note 44 above.
248 See “The Story of Newstein …” (in vol. 4 of this series).
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This conceptual leap between general relativity and Newtonian physics, together
with the strong arguments which Einstein had in favor of his classical conception of
the correspondence principle, raise the question as to how he could have ever over-
come the crucial hurdle of dealing with the Newtonian limit of his new theory. The
surprising solution is that it was in fact not the removal of this major stumbling block
which freed his way, but rather its circumvention for the specific problems in the
focus of his attention at the time, in particular for the treatment of the motion of a
point mass in a gravitational field. By showing that, although the spatial curvature is
present even under Newtonian conditions, it remains unobservable if only slowly
moving particles are considered, Einstein found a technical loop-hole through which
he could escape from his dense network of reasons supporting the canonical form of
the metric.

8.4 The Ambiguity of the Equivalence Principle

We have identified the beginning and end points of the development of those aspects
of Einstein’s heuristics which were obviously rooted in classical physics. We have
concluded that this classical heuristics was just sufficient to allow for the formulation
of the key equations of general relativity, whose exploration then, however, led to
conceptual insights with which the original expectations were no longer compatible.
We now turn to those elements of Einstein’s heuristics which were peculiar to his
specific research strategy, the equivalence principle and the generalized relativity
principle. No such principles belonged to the accepted core of classical physics at the
time when he took up his research. 

If one separates, however, the mathematical development from that of the physi-
cal theories, then Einstein’s introduction of the principle of equivalence appears to be
much less of an idiosyncrasy than it may seem at first sight. To make this clear, con-
sider the reformulation of the classical Newtonian theory of gravitation as a space-
time theory with a non-trivial geometry. This geometry can be described in terms of
an affine connection determining the notion of parallel transport of vectors and hence
also the geodesic lines in that spacetime. It is a fundamental statement of this refor-
mulation of Newton’s theory that the geodesic lines represent the motions of freely
falling particles according to the law of gravitation. Remarkably, the equality of grav-
itational and inertial mass has become, in this modern formulation, an in-built feature
rather than a contingent fact as in the traditional formulation. In the formulation of
the law of motion as being given by the geodesic lines, the notion of mass appears not
at all, while only the notion of gravitational mass enters the field equation of the the-
ory which determines the geometry of spacetime.

From the point of view of this mathematically advanced formulation, Einstein’s
adoption of the principle of equivalence can hence be recognized as expressing a fun-
damental feature of Newton’s theory of gravitation, shaped, however, by the particu-
lar mathematical formulation of the classical theory which formed his starting point
and which suggested a sharp conceptual and technical distinction between gravita-
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tional and inertial forces. This conclusion indeed frees Einstein’s adherence to the
principle of equivalence from its idiosyncratic appearance. One might even conjec-
ture that, had the development of the appropriate mathematical tools come a little ear-
lier, others as well might have found it attractive to employ them for a new
formalization of the classical knowledge on gravitation, thus arriving at the consider-
ations outlined above even before the advent of general relativity. But it now
emerges, on the other hand, even more as a riddle how a principle expressing the
knowledge of classical mechanics could have served as a crucial heuristic guidance
for overcoming this theory in favor of a theory incompatible with it.

The key to resolving this riddle comes from considering the fact that Einstein
used the principle of equivalence not in order to reorganize the knowledge of classi-
cal mechanics but the knowledge embodied in both, classical mechanics and the spe-
cial theory of relativity. His theory of the static gravitational field as well as his early
attempts to generalize that theory were nothing but a reinterpretation of the special
theory of relativity with the help of the introduction of accelerated frames of refer-
ence. His systematic consideration of such accelerated frames induced him to make
use of generalized Gaussian coordinates in order to describe the coordinate systems
adapted to these frames. It was then a short step for him to consider the metric tensor,
coming with the introduction of such coordinates, also as the representation of gravi-
tational effects when these could not be generated by acceleration. In other words,
with the introduction of the metric tensor Einstein had found an object that was capa-
ble of representing gravitational and inertial effects on the same footing, just as is the
affine connection within the modern reformulation of Newton’s theory.

It was, however, not a mere coincidence governed by the availability of mathe-
matical methods that Einstein directly attempted to implement the principle of equiv-
alence in a theory that was to generalize special relativity rather than concentrating
on a reformulation of classical mechanics. He was aiming from the beginning at a
new theory of gravitation which was to comprise both the knowledge on gravitation
and inertia represented by classical mechanics and the knowledge on the structure of
space and time embodied by special relativity. Effectively, the principle of equiva-
lence acted, according to this reconstruction, as a demand for integrating the knowl-
edge on gravitation and inertia from classical mechanics, which in a modern
formulation can be expressed by means of an affine connection, with the knowledge
on the metric structure of spacetime from special relativity. It thus acted as a particu-
lar instance of Einstein’s general strategy to exploit the entire range of classical and
special-relativistic physics for constructing his new theory of gravitation. The analy-
sis given here does, however, not square with Einstein’s own interpretation of the
principle of equivalence as guiding the development of classical and special-relativis-
tic physics with its privileged systems of reference towards a theory of gravitation
which would have to encompass also a generalized principle of relativity.
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8.5 The Relativity Principle Relativized

Einstein’s view that it made sense to search for a generalization of the relativity prin-
ciple of classical mechanics and special relativity was, as we have seen, based on his
acceptance of a philosophical critique of classical mechanics raised by Mach and oth-
ers. According to this critique, the justification of the privileged role of inertial frames
of reference by the notion of absolute space was problematic, while the inertial forces
experienced in accelerated frames of reference require an explanation in terms of the
interaction between physical masses. Such an explanation would then eliminate any
need for absolute space as a causal agent in the analysis of motion. The generalized
relativity principle would go, so at least was Einstein’s expectation, a long way, and
might actually go all the way, towards an implementation of Mach’s critique of clas-
sical mechanics in the new theory of gravitation.

The implementation of Mach’s critique of classical mechanics by way of the gener-
alized relativity principle in Einstein’s new theory of gravitation was, however, rather
indirect. Rather than explaining inertial properties directly by a physical interaction of
masses, they were described by a gravito-inertial field represented by the metric tensor
in a way that in fact depends on the frame of reference. But the gravito-inertial field
itself would be determined only by the distribution of masses in the universe via a gen-
erally-covariant field equation. It follows that the question of whether or not this
approach would lead to an exhaustive explanation of inertial properties by the relative
distribution of masses depends on the precise nature of the field equation and its solu-
tions. While Einstein was initially convinced that his theory would fully do justice to
the Machian roots of the generalized relativity principle, he felt eventually forced to
introduce what he called Mach’s principle as a separate and additional criterion to be
satisfied by the field equation and its solutions. With the establishment of the General
Theory of Relativity in 1915, Einstein succeeded in formulating a theory which imple-
mented the generalized relativity principle in its utmost form, the theory being gener-
ally covariant; whether it also satisfied Mach’s principle, demanding a complete
determination of the gravito-inertial field by the distribution of matter in the universe,
remained, on the other hand, a much debated issue for a long time to come.249

On closer inspection, however, even Einstein’s realization of the generalized rela-
tivity principle by his formulation of a generally-covariant theory of gravitation rep-
resented a questionable success of this heuristic principle. In fact, not only the
general theory of relativity of 1915, but also several other theories of gravitation and
in particular also the classical Newtonian theory can be given a generally-covariant
formulation. The demand for general covariance has to be considered as nothing but a
minimal requirement to be imposed on any sensible physical theory, namely to make
assertions about physical processes which do not depend on the specific coordinates
used for describing them. But Einstein’s generalized relativity principle—together
with its broader Machian understanding—effectively corresponded, as we have seen,

249 For extensive discussion, see “The Third Way to General Relativity …” (in vol. 3 of this series).
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to further requirements beyond the demand for a generally-covariant formulation of
the theory of gravitation. It also comprised the demand for treating inertia and gravi-
tation as aspects of a more general interaction as well as the demand for the absence
of any prior geometry of spacetime. The latter requirement excludes, for instance,
Nordström’s theory as being not compatible with Einstein’s heuristics since it
assumes the geometry of spacetime a priori to be Minkowskian, up to a conformal
factor representing the gravitational potential.

Nevertheless, Einstein’s own interpretation of this heuristics can hardly be vindi-
cated by the modern understanding of general relativity. First, the demand for treating
inertia and gravitation as aspects of a more general interaction can, as we have seen in
our discussion of the equivalence principle, already be fulfilled by classical mechan-
ics in an appropriate reformulation. Second, the general covariance of Einstein’s the-
ory does not embody a generalization of the relativity principle from classical
mechanics and the special theory of relativity, since, in the modern understanding,
relativity principles are represented by the symmetry properties of a theory and not
by their behavior under coordinate transformations. Third, “Mach’s principle” in the
sense of Einstein’s demand that the metric structure of space be completely deter-
mined by the material masses makes little sense according to the modern understand-
ing of general relativity, since the very notion of material bodies acting as a “source”
of the gravitational field that can be prescribed independently from the field has
turned out to be problematic.

8.6 The Long-Term Development of Knowledge

In the preceding discussion we have emphasized the differences between Einstein’s
heuristics and the conceptual consequences of the theory whose development was
guided by this heuristics. These differences were the result of a process covering two
eras stretching from the beginning of the relativity revolution in 1905 to the present:
The first era comprised the elaboration of the foundational equations of the new the-
ory guided by the original heuristics, a process that was essentially complete with
Einstein’s formulation of general relativity in 1915 and that also included, as we have
seen, adjustments of the original heuristics. The second era consists in the exploration
of the conceptual consequences of the new theory on the basis of an interpretation of
the results achieved in the first era as well as in the course of its further elaboration, a
process that has still not come to a hold today. In view of the often striking differ-
ences between the modern interpretation of general relativity and Einstein’s original
motivations for searching for such a theory, it represents a remarkable challenge for
the historical reconstruction to explain how these original motivations could have led
him to such a definitive formulation of the new theory of gravitation. In the beginning
we have formulated this challenge in terms of the three epistemic paradoxes of the
emergence of general relativity, the paradox of missing knowledge, the paradox of
deceitful heuristics, and the paradox of discontinuous progress.
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As our reconstruction has shown, an adequate response to the missing-knowledge
paradox can only be found when the long-term development of scientific knowledge
is taken into account. This development led, after all, to the emergence of a theory
whose understanding of how gravity affects motion in terms of spacetime structure is
closer to Aristotle’s concept of natural motion than to Newton’s explanation in terms
of an anthropomorphic force. The knowledge on which the astonishing stability of
general relativity is founded was, as we have seen, accumulated long before its cre-
ation by centuries of physics, astronomy, and mathematics. Our modern acceptance of
general relativity is not only based on experiments or observations related to some of
its special predictions but also on the fact that it incorporates the entire Newtonian
knowledge on gravitation, including its relation to other physical interactions, that has
been accumulated over a long period of time in classical physics and in the special
theory of relativity. This knowledge embraces, among other aspects, Newton’s law of
gravitation including its implications for the conservation of energy and momentum,
the relation between gravitation and inertia, the understanding that no physical action
can propagate with a speed greater than that of light, which was first achieved by the
field theoretic tradition of classical physics and then finally established with the for-
mulation of special relativity, and, more generally, the local properties of space and
time, also formulated in special relativity.

After special relativity had elevated the causality requirements implicit in field
theory to a universal status, gravitation, traditionally a subject at the core of mechan-
ics, had effectively turned into a borderline problem between mechanics and field
theory. As was the case for other borderline problems, its successful solution
depended on the shared knowledge resources taken into account. In the case of the
creation of special relativity, Einstein’s success depended on his combining the heri-
tage of mechanics, embodied in the relativity principle, with the heritage of electro-
dynamics, embodied in the principle of the constancy of the speed of light. In the case
of a relativistic theory of the gravitational field, the combination of the heritage of
mechanics represented by the Newtonian theory of the static gravitational field with
what was known about dynamic fields from electrodynamics was, however, insuffi-
cient to create a new and satisfactory theory—as Einstein’s competitors experienced
to their chagrin. There was, in particular, no clue to the properties of dynamical grav-
itational fields so that the challenge to build a relativistic field theory of gravitation
was comparable to the development of the entire theory of electromagnetism know-
ing only Coulomb’s law.

It was at this point that Einstein’s broad perspective, including the philosophical
critique of classical mechanics by Mach, allowed him to muster additional resources
from classical physics. Einstein exploited the Machian interpretation of the inertial
forces in an accelerated reference frame as being due to the interaction of moving
masses in order to fill the above-described gap in a field theory of gravitation. By
conceiving the inertial forces in accelerated reference frames, such as Newton’s rotat-
ing bucket, as embodying dynamical gravitational fields he managed in fact to antici-
pate essential properties of the relativistic theory of gravitation he was about to
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construct, in particular the necessity to generalize the spatio-temporal framework of
special relativity, which led to the notion of a curved spacetime.

8.7 The Architecture of Knowledge

The answer to the second paradox of how Einstein could have formulated the criteria
for a gravitational field equation years before finding the solution comes, as we have
seen, from considering the architecture of the shared knowledge resources available
to him. These resources were in fact part of a system of knowledge with active com-
ponents capable of providing heuristic guidance to his research.

The characteristics of Einstein’s search have become comprehensible by realizing
that it was guided by a qualitative knowledge representation structure inherited from
classical physics: the mental model of a field theory as embodied in an exemplary
way by Lorentz’s electron theory. Einstein’s preliminary research on a relativistic the-
ory of gravitation in the years between 1907 and 1912 had established default-set-
tings for two of its terminals; the field-slot (filled by assuming that the gravitational
potential is represented by the metric tensor), and the source-slot (filled by the stress-
energy tensor of matter as suggested by relativistic continuum mechanics). In the
context of his research the differential operator describing how the source generates
the field represented an open slot for which Einstein was unable to identify a satisfac-
tory instantiation.

As we have discussed, Einstein’s difficulty did not result from the fact that too lit-
tle was known but rather from the fact that too much knowledge had to be taken into
account to formulate a field equation that responded to the understanding of gravita-
tion as a borderline problem of mechanics and field theory. On the one hand, a physi-
cally plausible instantiation for the differential operator was suggested by knowledge
of the Newtonian static gravitational field as well as of the relation between static and
dynamic fields in electrodynamic field theory. Constructed in this way, the new the-
ory would automatically be compatible with Newton’s theory, thus fulfilling the cor-
respondence principle. On the other hand, a mathematically plausible way to obtain
an instantiation of the differential operator was offered by the knowledge about
dynamic fields incorporated in Einstein’s equivalence principle, which suggested tak-
ing generally-covariant objects such as the Riemann tensor as the starting point. Con-
structed in this way, the new theory would automatically fulfill the generalized
relativity principle. The equivalence principle and the generalized relativity principle
had helped, in addition, to reveal just those elements of the traditional knowledge on
whose integration the new theory could be based. In the modern formulation, they
posed the problem of the compatibility between chronogeometry and gravito-inertial
structure. Within the knowledge system of classical physics, the Lorentz model was,
furthermore, embedded in a network of relations to other frames and mental models;
this network served as a control structure for any acceptable implementation of the
model. In particular, the new theory had to satisfy the conservation principle, general-
izing similar principles from classical and special-relativistic physics.
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In short, Einstein’s heuristics was overdetermined by the knowledge available to
him, explaining why it was so powerful and yet so fortuitous at the same time. The
compatibility of the various requirements it imposed could not be established a priori
but had to be checked by elaborating a mathematical representation of the Lorentz
model, starting from one or the other default setting and shaping it according to the
remaining heuristic criteria. Einstein’s oscillation between a physical strategy starting
from an implementation of the correspondence principle, and a mathematical strategy
starting from an implementation of the generalized relativity principle could thus be
interpreted as realizing alternative and ultimately converging pathways with which to
integrate the knowledge of classical physics.

8.8 Knowledge Dynamics

The third paradox, of discontinuous progress, could only be resolved by taking into
account that the development of knowledge does not only consist of enriching a given
architecture but also comprises processes of reflection by which this architecture is
being transformed. Einstein’s learning experience was, in fact, characterized by a bot-
tom-up process that accommodated the higher-order structures at the core of his heu-
ristic principles to the outcome of the experiences he made implementing these
principles. The interplay between assimilation and accommodation mediated by the
mathematical representation has turned out to be the crucial process determining the
knowledge dynamics leading to the creation of general relativity as a non-classical
theory. Against this background four stages of Einstein’s search for the gravitational
field equation could be distinguished.

The tinkering phase of fall 1912 is documented in the early pages of Einstein’s
Zurich Notebook. It is characterized by his unfamiliarity with the mathematical oper-
ations suitable for constructing a field equation for the metric tensor. Nevertheless,
reflecting on his first attempts to formulate a field equation that satisfied his heuristic
principles, Einstein built up higher-order structures operating on a strategic level that
would later guide his systematic implementation of these principles, in particular, the
physical and the mathematical strategy.

The systematic searching phase from late 1912 to early 1913 is also extensively
documented by the Zurich Notebook. In this phase Einstein systematically examined
candidates according to his heuristic principles alternating between physical and
mathematical strategies. Meanwhile, the relative weight of the heuristic principles
kept changing with the conservation principle emerging as the principal challenge.
Paradoxically, the main result of the pursuit of the mathematical strategy was the der-
ivation of an erroneous theory—the Entwurf theory—along the physical strategy.

The consolidation phase is documented by Einstein’s publications and correspon-
dence between 1913 and mid-1915. During this phase he elaborated the Entwurf the-
ory, essentially following his earlier heuristics but now under the perspective of
consolidation rather than exploration. Paradoxically, however, the main result of the
consolidation period was the creation of the presuppositions for a renewed exploration
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of candidate field equations. Adapting the mathematical strategy to legitimize the Ent-
wurf theory, Einstein found that the resulting mathematical formalism did not single
out this theory but reopened the perspective of examining other candidates, removing,
in particular, the difficulty of implementing the conservation principle. Because of the
extended network of results meanwhile assembled, this reexamination could now take
the form of a reflective reorganization of Einstein’s earlier achievements.

The reflection phase, decisive in resolving the paradox of discontinuous progress,
is documented by the dramatic series of four communications Einstein submitted to
the Prussian Academy in November 1915. The essence of Einstein’s return in the first
of these communications to a field equation related to the Riemann tensor consists in
reinterpreting results achieved in the context of the Entwurf theory. As a conse-
quence, also Einstein’s original heuristic principles received a revised physical inter-
pretation. The crucial step of the transition from the Entwurf theory, still rooted in
classical physics, to the non-classical theory of general relativity was, however, the
shift in the physical interpretation of the representation he had unfolded in the pre-
ceding years.250 This transition was a Copernicus process resembling Einstein’s rein-
terpretation of Lorentz’s auxiliary variable for local time as the time measured in a
moving reference frame. But in passing from the Entwurf theory to general relativity,
however, Einstein was, in a sense, his “own Lorentz”—hence the more isolated char-
acter of the second phase of the relativity revolution. In the case of the transition to
general relativity, it was, in particular, the Christoffel symbol, initially only an auxil-
iary quantity, that assumed a new physical meaning, now representing the gravita-
tional field.

The synthesis represented by general relativity was not without alternatives at the
time of its establishment—nor is it today. Some of these alternatives were even dis-
tinguished by consequences which could be tested empirically. The observational
consequences which distinguish general relativity from its main competitor at the
time, Newton’s and Nordström’s theory of gravitation, were, however, by no means
momentous and could have easily gone unnoticed for a long time, or might have
remained irrelevant for a decision between alternative theories of gravitation had Ein-
stein’s research not drawn attention to them. The contemporary discussion about
these alternatives and their elaboration document a process of equilibration between
individual perspectives and shared knowledge resources.251 Even the most ingenious
phase of the relativity revolution—the phase of reflection—was, from the point of
view of historical epistemology, not the privilege of an outstanding individual, but
just one aspect of the transformation of a system of knowledge.

250 See “Untying the Knot ...” (in vol. 2 of this series).
251 See vols. 3 and 4 of this series.
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Descriptive Note

The document known as the Zurich Notebook is a blue bound notebook, 17.5 x 21.5 cm,
containing 45 sheets of squared white paper (not counting two sheets that were torn out,
probably by Einstein). Three sheets were left blank. The document thus consists of 84
pages. Two typed notes are taped to the front cover (reproduced on p. 316), probably by
Einstein’s secretary, Helen Dukas. One says: “Notes for lecture on Relativity probably
Zurich.” The other describes the back cover (reproduced on p. 317): “s. back of this
notebook “Relativitaet” in aE’s hand.” The first and the last page are glued to the insides
of the covers.

The number assigned to the Zurich Notebook in the Einstein Archive is “3–006.” This
numbering is also reflected in the numbering of the images of the online facsimile repro-
duction of the document (Einstein Archives Online at http://www.alberteinstein.info). In
copies of the Einstein Archive, pairs of facing pages have been numbered “1” through
“43.” The labels “L” and “R” are used to distinguish pages on the left in such pairs from
pages on the right. Einstein used the notebook from both ends. This is reflected in the
numbering of the pages. Pages 1L through 31L are numbered from the back of the note-
book, pages 32L through 43L are numbered from the front. Between the two parts (i.e.,
between 31L and 43L) three sheets were left blank. Both between pages 29L and 29R
and between pages 38L and 38R a sheet was torn out. Since the part starting from the
front contains the earliest notes on gravity in the notebook, we present that part (32L–
43L) before the part starting from the back (1L–31L). Although we are concerned only
with the material on gravity in these volumes, we present a facsimile reproduction and a
transcription of all entries in the notebook. The notebook touches on the following topics:

• Electrodynamics (32L–38L)
• Quantum theory (38L–38R)
• Gravity (39L–43L)

· First exploration of a metric theory (39L–41R)
· Auxiliary calculations (41L–43L)

• Quantum theory (1L–5L)
• Gravity (5R–29L)

· Energy-momentum conservation (5R)
· Beltrami invariants and core operator (6L–13R)
· Riemann tensor, Ricci tensor, and November tensor (14L–25R)
· Entwurf theory (26L–29L)

• Thermodynamics

The 57 pages of the notebook dealing with gravity (39L–43L, 5R–29L) were present-
ed in transcription as Doc. 10 in Vol. 4 of The Collected Papers of Albert Einstein
(CPAE 4). The editors numbered these pages 1 through 58. Page 43L contains material
written from the top and material written from the bottom. The former is presented as
p. 9 of Doc. 10 in CPAE 4, the latter as p. 58. We likewise present 43L twice, as 43La,
with the facsimile the way it appears in the notebook and with a transcription only of the
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material written from the top, and as 43Lb, with the facsimile upside down and a tran-
scription only of the material written from the bottom. 

The authors and editors thank the Albert Einstein Archives at the Hebrew University
of Jerusalem and the Einstein Papers Project at the California Institute of Technology
for generous permission to reproduce Einstein’s Zurich Notebook.

The conversion table below should make it easy to compare our presentation and dis-
cussion of the notes on gravity in the notebook to the annotated transcription of this ma-
terial in CPAE 4.

CPAE 4,
Doc. 10

Einstein
Archive
(3–006)

CPAE 4,
Doc. 10

Einstein
Archive
(3–006)

CPAE 4,
Doc. 10

Einstein
Archive
(3–006)

1 39L 21 11L 41 21L

2 39R 22 11R 42 21R

3 40L 23 12L 43 22L

4 40R 24 12R 44 22R

5 41L 25 13L 45 23L

6 41R 26 13R 46 23R

7 42L 27 14L 47 24L

8 42R 28 14R 48 24R

9 43La 29 15L 49 25L

10 5R 30 15R 50 25R

11 6L 31 16L 51 26L

12 6R 32 16R 52 26R

13 7L 33 17L 53 27L

14 7R 34 17R 54 27R

15 8L 35 18L 55 28L

16 8R 36 18R 56 28R

17 9L 37 19L 57 29L

18 9R 38 19R 58 43Lb

19 10L 39 20L

20 10R 40 20R
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[p. 32 R]
x   y   z   ict

x1   x2   x3   x4

Invarianter Skalar idτ dt 1 v2

c2
-----–⎝ ⎠

⎛ ⎞= dτ  invarianter Skalar, sodass

dτ2 d( x1
2 dx2

2+  +  .+–=

Dividiert man durch diesen Skalar, so erhält man wieder Vierervektor

β
dx
dt
------   ·   ·   ·   icβ (Vierervektor der Geschwindigkeit eines

materiellen Punktes)

Skalares Produkt zweier Vierervektoren

x1y1 x2y2 x3y3 x4y4+ + + xy( )       i( i⋅ 1       i k⋅ 0 ).= = =

Vektorprodukt zweier Vierervektoren.

i    j    k     l

x1    x2    x3    x4

y1    y2    y3    y4

i( ) i( )⋅ 0= i( ) j( ) kl( )    ik( ) jl( )···= =

j( ) i( ) kl( )–   il( ) kj( )= =

xy( ) x1y2 y2y1–( )k , l      +  ·  +  ·  +  ·  +  ·  +  ·=

Man erhält so Sechservektor   . F11 F12 F13 F14

F21 F22 F23 F24

F31   F34

F41   F44

F12F23F31F14 F34⋅

Vollständig geschrieben als Tenso[r] mit Symmetrie zu 0-Diagonale.

Beispiel

· · · · · ·

· · · · · ·

F

i
∂

∂x1
--------    j

∂
∂x2
--------    k

∂
∂x3
--------    l

∂
∂x4
--------    

Γx    Γy    Γz     icϕ–     ––– ϕ1  ϕ2  ϕ3  ϕ4( )

Man erhält F12
∂ icϕ

∂z
-------------

∂ Γz–

∂ict
------------– i

∂ϕ
∂z
------–

∂Γz

∂t
--------–⎝ ⎠

⎛ ⎞ iEz= = =

F14 F23–
∂Γz

∂y
--------

∂Γy

∂z
---------– Hx= = =

F12 F23 F31 F14 F24 F34

+iEz +iEx iEy Hx Hy Hz

G34 G14 G24 G23 G31 G12

Hx Hy Hz iEx iEy iEz

zugeordneter Vektor   
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[p. 33 L]
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[p. 33R]
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Zu jedem Sechservektor gibt es einen zugeordneten.

in dem gesetzt wird                        etc.Fij Gkl=

Produkte des Sechservektors.

1)  mit Vierervektor                    a) inneres

F( 12 F23 F31 F14 F24 F34 ) x1x2x3x4( )⋅

Inneres Produkt Vierervektor

 F12x2 F31x3 F14x4+ + +

  F12– x1 F31x3              F14x4+ +

 F14– x1   ·    ·+ +

i

j

k
l

Maxwells Gleichungen sind solche innere Produkte
des Feldvektors u seines zugeordeneten mit Differentiations-
symbol.

F23x4   F24x3   F34x2   

b) äusseres

jkl

So kann man al<l>s inneres u äusseres Produkt des Differentiations-

vektors mit Feldvektor Systeme der Maxwell’schen Gl. erhalten. 
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2)  mit Sechservektor

F12F12   ·    ·+ +

F12F34   ·    ·+ +

a) äusseres

H2 E2–

b) inneres

2iEH .

Tensor System von 16 Grössen von der Art

A11 A13 A13 A14

A11 A22  A24

A31   A34

A41   A44

Deren Transformationseigenschaften mögen sein w x1y1 x1y2 · · · x1y4

x2y1 x2y2 · · · x2y4

    

x4y1   x4y4· · · · · · · ·

Eine solche Grösse haben wir im Sechservektor kennen gelernt.

0 iEz iEy– Hx

iEz– 0 iEx Hy

iEy iEx– 0 Hz

Hx– Hy– Hz– 0

Kann auf (im Allgemeinen auf zweierlei Arten) mit Vierervektor komponiert

werden, sodass ein Vierervektor eintsteht.
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Aus Tensoren neue gebildet nach Additionstheorem der Determinaten.

Angewendet auf obigen Sechservektor

0 iEz iEy– Hx

iEz– 0 iEx Hy

+iEy iEx– 0 Hz

Hx– Hy– Hz– 0

und zugeordneter

0 Hz Hy– iEx

Hz– 0 Hx iEy

Hy Hx– 0 iEz

iEx– iEy– iEz– 0

Daraus die neuen Ez
2– Ey

2– Hx
2    ExEy HxHy    ExEz HxHz    i EyHz EzHy–( )+ + +

+

Ex
2– Hy

2 Hz
2     E– xEy HxHy                            ⋅ ⋅+ + +

 –

Diese geben ponderomotorsche Kräfte, durch Behandlung mit Differentiations-

Vierervektor.

 Tensoren.
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In Elektrodynamik ponderabler Körper zwei Sechservektoren, die mit den
zugeordneten folgende vier Tensoren liefern: 

0 iDz– + iDy Hx

+ iDz 0 iDx– Hy

iDy– + iDx 0 Hz

Hx– H– y H– z 0

0 iEz– + iEy Bx

+ iEz 0 iEx– By

iEy– + iEx 0 Bz

Bx– B– y B– z 0

nebst dem

i
∂Ez

∂y
---------

∂Ey

∂z
---------–

1
c
--- 1

i
---

∂Bx

∂t
---------⋅+

falsches Zeichen!

Hie[r]zu kommen die zugeordneten.

Durch Multiplikation erhält man

 x y z t  

X HxBx EyDy– EzDz–
EyDxEy

+BxHy

DxEz

+BxHz

i– EyHz EzHy–( ) x

Y
ExDy

+HxBy

 
DyEz

+ByHz

i– EzHx ExHz–( ) y

Z
ExDz

+HxBz

EyDz

+HyBz

  z

T
ByDzBy

+ D– yBz

DzBx–

+DxBz

DyBx

DxBy–
     Hx Bx HyBy HzBz+ + t

 X Y Z T  

Zwei Möglichkeiten, eine ist die von Ishiwara, die andere aber ist die
zutreffende:

K x
1
2
--- ∂

∂x
------ HxBx HyBy– HzBz– ExDx EyDy– EzDz–+( )=

 
∂

∂y
----- DxEy BxHy+( )

∂
∂z
----- DxEz BxHz+( ) +〈 〉 1

c
---–

∂
∂t
----- EyHz EzHy–( )+ +

1
c
---– Ey

∂Qz

∂t
--------- Ez

∂Qy

∂t
---------–⎝ ⎠

⎛ ⎞

1
c
--- ∂

∂t
----- Ey

∂Bz

∂t
--------- Ez

∂By

∂t
---------–⎝ ⎠

⎛ ⎞

1
c
---– Hy

∂Dz

∂t
--------- Hz

∂Dy

∂t
----------–⎝ ⎠

⎛ ⎞

+
1
c
--- Hy

∂Pz

∂t
-------- Hz

∂Py

∂t
---------–⎝ ⎠

⎛ ⎞

zweiten
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1
c
--- E

∂B
∂t
------      +

1
c
--- H

∂D
∂t
-------–

 E  curl E[ ] H  curl H[ ] 1
c
---– Hi[ ]+ +

 + Ey

∂Ey

∂x
---------

∂Ex

∂y
---------–⎝ ⎠

⎛ ⎞ Ez

∂Ex

∂z
---------

∂Ez

∂x
---------–⎝ ⎠

⎛ ⎞–
⎩ ⎭
⎨ ⎬
⎧ ⎫

+

1
2
--- ∂

∂x
------ ExDx EyDy– EzDz–( )

 
∂

∂y
----- DxEy( )

∂
∂z
----- DxEz( )+ +

+ Ex

∂Ex

∂x
--------- Ey

∂Ey

∂x
---------+ Ez

∂Ez

∂x
---------+⎝ ⎠

⎛ ⎞

 Ex

∂Ex

∂x
---------    Ey

∂Ex

∂y
--------- Ez

∂Ex

∂z
---------+⎝ ⎠

⎛ ⎞–

 
∂

∂x
------ ExDx( )

∂
∂y
----- DxEy( )

∂
∂z
----- EzDx( )+ + +

1
2
--- ∂

∂x
------ DxEx DyEy DzEz+ +( )–  –

1
2
--- Ex

∂Dx

∂x
---------- Ey

∂Dy

∂x
---------- Ez

∂Dz

∂x
---------+ +⎝ ⎠

⎛ ⎞     
1
2
--- Ex

∂Dx

∂x
---------- Ey

∂Dy

∂y
---------- Ez

∂Dz

∂z
---------+ +⎝ ⎠

⎛ ⎞––

 
1
2
--- Ex

∂Ex

∂x
--------- Ey

∂Ey

∂x
--------- Ez

∂Ez

∂x
---------+ +⎝ ⎠

⎛ ⎞    
1
2
---

 
E⎝

⎛
x

∂Ex

∂x
--------- Ey

∂Ex

 
+++

Die beiden mittlern Zeilen geben

Dx  div  E   Ex

∂Px

∂x
--------- Ey

∂Px

∂y
---------   · + +⎝ ⎠

⎛ ⎞+ ExdivE  
∂

∂x
------ ExPx( )+

  
∂
∂z
----- EzPx( )+

  
∂

∂y
----- EyPx( )+Die beiden andern

1
2
---–

∂
∂x
------ ExPx EyPy EzPz+ +( )

Statt der 1. Zeile lässt sich auch setzen

 Ex

∂Px

∂x
--------- Ey

∂Px

∂y
---------+ + ExdivD

 Ex

∂Pz

∂z
-------- Px

∂Ex

∂z
---------+–

 Ex

∂Py

∂y
--------- Px

∂Ey

∂y
---------+–

 Ex

∂Px

∂x
--------- Px

∂Ex

∂x
---------+–
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1
2
---Px

∂Ex

∂x
---------    

1
2
---Py

∂Ex

∂y
---------    

1
2
---Pz

∂Ex

∂z
---------––

Statischer Fall

System sicher unrichtig, weil Energiestrom schon für den Zustand der Ruhe
falsch herauskommt.

    - Im Sinne der Lorentz’schen Theorie: Feldstärken e und h und aus diesen

Spannungen u  damit Gesamtheit der auf Elektron wirkenden Kräfte. Diese sollen

Kräfte auf Volumeneinheit im Sinne von Lorentz.

EdivE HdivH s
1
c
---∂P

∂t  
------ H,+   

1
c
--- ∂Q

∂t  
------- B,–++

Führt zu den Spannungen des Vakuums.
Spannungen Differenz zweier quadratischer Tensoren des Feldvektors.

∂Px

∂t
---------

∂Py

∂t
---------

∂
∂x
------ ∂

∂y
----- ∂

∂z
----- ∂

∂t
-----

0   iPx–

 0  iPy–

  0 iPz–

iPx iPy iPz 0

∂Px

∂x
---------

∂Py

∂y
--------

∂Pz

∂z
--------

.
+ +

Nach Minkowski sind Sechservektoren:

f 23 f 31 f 12 f 14 f 24 f 34

Hx Hy Hz iDx– iDy– iDz–

Bx By Bz iEx– iEy– iEz–

g23 g31 g12 g14 g24 g34

Duale Sechservektoren

iDx– iDy– iDz– Hx Hy Hz

iEx–      

also auch Px   Py   Pz   iQx   iQy   iQz   
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Inneres u äusseres Produkt des Polarisationsvektors und des
Geschwindigkeitsvektors.

inneres äusseres

Px Py Pz iQx iQy iQz

g23 g31 g12 g14 g24 g34

βvx βvy βvz +iβ   

ϕ1 ϕ2 ϕ3 ϕ4   

Px Py Pz iQx iQy iQz

g23 g31 g12 g14 g24 g34

βvx βvy βvz iβ   

ϕ1 ϕ2 ϕ3 ϕ4   

i j k l

g12ϕ2 g31ϕ1–                            g14ϕ1 g24ϕ2––

+g14ϕ4   g34ϕ3–

i j k l

                                                  

                     

In oder

β vyPz vzPy–( )                         βi vxQx+·+·( )–

βQx–    

iQx iQy iQz Px Py Pz

q23 q31 q12 q14 q24 q34

ϕ1 ϕ2 ϕ3 ϕ4   

q12ϕ2 q31ϕ1–                          q14ϕ1+·+·–

i vyQz vzQy–( )    

+q14ϕ4    

i vyQz vyQz–( )                         β vxPx+·+·( )–

+βPx    

Wir können setzen

g g23· · · · · ·( ) Px · ·  iQx · · ( )= =

q
1
i
--- q23· · · · · ·( ) Qx · · iPx · · –( )= =

v p( ) β vP[ ] βQ–( ),  β– i vQ( )=

vq( ) β vQ[ ] P+( ),  βi vP( )=

Wir erhalten also zwei Vierervektoren

β P v,Q[ ]+( ),  iβ vP( )           π1  2  3  4  ( )

β G v,P[ ]–( ),  iβ v( Q           χ1  2  3  4  ( )und
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Wir bilden das äussere Produkt dieser Vierervektoren mit    und erhalten: zwei

Sechservektoren      und

v
Π χ

Π23 Π31 Π12 Π14 Π24 Π34

π2ϕ3 π3ϕ2–( )–                                       π1ϕ4 π4ϕ1–( )–                                       

      

β2 v, P vQ[ ]+[ ]x  ·                 · 

oder

β2i vP( )vx β2i P vQ[ ]+( )x–       ·        ·  

und

χ23         χ33     χ12    χ14       χ24      χ34

                                                                                                                      

β2 v, Q vP[ ]–[ ]x
β2i vQ( )vx β2i Q vP[ ]–( )x–

Betrachtung prinzipiell unrichtig, weil sich PQ nur dann als Sechservektor verhält, 

wenn  HE, sondern HD sich als Sechservektor verhält. 

Neuer Versuch.

HE Sechservektor                                Vierervektor von der Art, dasPx  Py  Pz  Pl  

Px 2   ·    ·  +Pt
2+ + 0.=

∂Px

∂x
---------   ·    ·  

∂Pl

∂l
-------- ρp=+ +

Eintreten der Polarisation in das erste Gleichungssystem:

ϕ1

∂Px

∂x
--------- ϕ2

∂Px

∂y
--------- ϕ3

∂Px

∂z
--------- ϕ4

∂Px

∂l
---------

.
+ + +

ϕ1

∂Pl

∂x
-------- ϕ2

∂Pl

∂y
--------      ·     ϕ4

∂Pl

∂l
--------+ + +

nicht
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langsame Bewegung.

curl H
1
c
---∂E

∂t
------- itot.+=

Berechnung von  ip

itot il ip+=

ip ρpvp ρn · vn+=

vn v=

vp vn v D–( ) DD
Dt
---------+ vpv D( )v– DD

Dt
---------+= =

vpx vx Dx

∂vx

∂x
--------– Dy

∂vx

∂y
--------– Dz–

∂vx

∂z
--------

∂Dx

∂t
---------- vx

∂Dx

∂x
---------- vy

∂Dx

∂y
---------- vz

∂Dx

∂z
----------+ + + +=

ρp– ρn

∂ρnDx

∂x
----------------

∂ρnDy

∂y
----------------   ·+ +⎝ ⎠

⎛ ⎞–=

ρp vpx⋅ ρnvx– vx

∂Px

∂x
---------

∂Py

∂y
---------   ·+ +⎝ ⎠

⎛ ⎞ Px

∂vx

∂x
-------- Py

∂vx

∂y
--------   ·+ + + +=

 ρn

∂Dx

∂t
----------   ρn– vx

∂Dx

∂x
---------- vy

∂Dx

∂y
---------- vz

∂Dx

∂z
----------+ +⎝ ⎠

⎛ ⎞–

∂ρn

∂t
---------

∂ρnvx

∂x
--------------

∂ρnvy

∂y
--------------   ·+ +⎝ ⎠

⎛ ⎞–= Dx

∂ρn

∂t
---------–  Dx

∂ρn

∂t
---------+

 Dx

∂ρnvx

∂x
--------------   ·   ·+ +⎝

⎛–

 ∂P
∂t
------+

ip
∂P
∂t
------

∂gz

∂y
--------

∂gy

∂z
--------–+=

 –
∂vxPx

∂x
--------------

∂vyPx

∂y
--------------–

∂vzPx

∂z
--------------–

 ρnvx–=

vP[ ] g=+ 
∂vxPx

∂x
--------------

∂vxPy

∂y
--------------

∂vxPz

∂z
--------------+ +

∂ vxPx(

∂x
-----------------

∂vyPx

∂y
--------------  + +⎝ ⎠

⎛ ⎞–
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TdS dU pdV+=

Impuls aus Strahlungstheorie.

Isoth.T
∂S
∂v
------ ∂U

∂v
------- p+=

p Ts u–=

p pon3=

Bezeichnet man die Impulsstr. durs Flächeninhalt pro Zeiteinh. mit I,
so ist also auch

TS uV    
u
3
---V

4
3
---uV= =

sV

Tds sdT+    Ts
4
3
---u=

ds
du
T
------=s u u prop n3

I Ion3    ·   ·   ·   ·   ·   1( )=

Andererseits liefert Strahlungstheorie

K Kon2=

Also dieselbe Beziehung zwischen Energistr. pr. Fl. u Zeiteinheit.

E Eon2=

I
E
---

I
Eo
------n=

Pi

E
-----

Pio

Eio
------- 1

c2
-----= = rat. Einheiten.

E

Imp.d. Pi Pio

1
n
---⋅=

Pi Pio
n2=

ex e 4π=

ex2

4xr2
----------- e2

r2
-----=

div Ex ρx ρ 4π 4πdivE== =

Ex E 4π.=

4π  jx
1
c
---

∂Px

∂t
--------- 1

c
---

∂Ex

∂t
---------+ +

∂Hz

∂y
---------

∂Hy

∂z
----------–=

4π  jy
1
c
---

∂Py

∂t
--------- 1

c
---

∂Ey

∂t
--------- =[ ]

∂Hx

∂z
----------

∂Hz

∂x
---------       Hz–+ +

4π  jz
1
c
---

∂Pz

∂t
-------- 1

c
---

∂Ez

∂t
--------- =[ ]

∂Hy

∂x
----------

∂Hx

∂y
----------    -Hy–+ +

1
c
---

∂Qx

∂t
---------- 1

c
---

∂Hx

∂t
----------––

∂Ez

∂y
---------

∂Ey

∂z
---------–=

1
c
---

∂Qy

∂t
--------- 1

c
---

∂Hy

∂t
----------––

∂Ex

∂z
---------

∂Ez

∂x
---------       Ez–=

1
c
---

∂Qz

∂t
--------- 1

c
---

∂Hz

∂t
---------––

∂Ey

∂x
---------

∂Ex

∂y
---------      -Ey–=

1
2
--- ∂

∂x
------ Ex

2 Ey
2 Ez

2+ +( )–

jH[ ]x
1
c
--- ∂P

∂t
------H

x

1
c
--- ∂Q

∂t
-------E

x
– Ex div E–+ Ex div E–

∂Ex
2

∂x
---------  

∂ExEy

∂y
----------------

∂ExEz

∂z
---------------+ + +

1
2
--- ∂

∂x
------ E2+( ).–

∂Ex
2

∂x
---------

∂ExEy

∂y
----------------

∂ExEz

∂z  - 
---------------+ + +

ExdivE +  Ex

∂Ex

∂x
--------- Ey

∂Ex

∂y
--------- Ez

∂Ex

∂z
---------+ +⎝ ⎠

⎛ ⎞

Exdivρ ExdivP+
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Relativitätstheoretische Invariante Ax Ay Az  iAx
x  iAy

x  iAz
x

∂Az
x

∂y
---------

∂Ay
x

∂z
---------–

1
c
---

∂Ax

∂t
---------–

jx
1
c
---

Px

∂t
------

∂Pz
x

∂y
---------

∂Py
x

∂z
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
1
c
---

∂Ex

∂t
---------

∂Hz

∂y
---------

∂Hy

∂z
----------–⎝ ⎠

⎛ ⎞–+ + 0=

Invariantes System, das nur formal von Minkowski abweicht. Andere
Bedeutung der Feldstärke. u

u

dU
dt
------- 0=103 4 102⋅ ⋅

9 1020⋅
----------------------------- 1

2
--- 10 10– .⋅ ⋅

A T
dA
dt
-------– U=

T
d2 A
dt2
---------- dU

dt
------- 0= =

ανdt
αν

εν 2Kν vd Ω αν⋅d∫ absorb. Energie.
Kugel

Ao
8πAνdv αν

t

ενdν

E0

Kν
8π
q

------⋅ ρν=

E0 ε+
ενdv t E0=

τ2
RT 0

2

2Nc
----------=

cT 0 T 0

A0 α+

c
----------------

E0 ε+

c
---------------–+⎝ ⎠

⎛ ⎞
2

T 0
2

=

T 0
α ε–

c
------------+⎝ ⎠

⎛ ⎞ 2
T 0

2=

2        τ

A
∂A
∂T
-------τ+

E
∂E0

∂T
---------τ+

qρvdv t αν

dαν

dT
---------τ+⎝ ⎠

⎛ ⎞⋅qρνανdv t A0=
Ao α+

dv t εν

dεν

dT
--------τ+⎝ ⎠

⎛ ⎞⋅
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Unabh〈 〉   Wenn  ρ  α  u  ε  als temp. abh. betr.

qρναν εν– 0=

q
dρν

dT
---------αν ρν

dαν

dT
---------+⎝ ⎠

⎛ ⎞ < >
dεν

dT
--------–+ 0=

Im Mittel mehr emittierte als abs. En.

dvtτ
dεν

dT
-------- qρν

dαν

dT
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

dvtτq
dρν

dT
---------αν=

Στ

τ
Σ
c
---τ– α ε+ +⎝ ⎠

⎛ ⎞
2

τ2=

2
Σ
c
---τ2 α2

c2
------ ε2

c2
-----+ +– 0=

α2 ε2+ 2
Σ
c
---τ2=

α2 ε2 2R
Nc
-------ανqAdv=+

A
ρν
-----

T 0
2dρν

dT
---------

α2 ε2+
A

-----------------
2R
N
------- AT 0

2 d lg ρν

dT
---------------- 2hv= =

N
R
----hv

α2

A
------ hv= α2 hv

A
hv
------⋅=
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ds2 Gλμdxλdxμ∑=  x ′1 x ′2 x ′3 x ′4
x1 α11 α21 α31 α41

x2 α12    

x3 α13    

x4 α14    

 x1 x2 x3 x4

x′1 β11    

x′2 β12    

x′3 β13    

x′4 β14    

Gλμdxλdxμ∑∑ Gρσ
′ dxρ

′dxσ
′∑∑=

 Gρσ
′ αρηασζdxηdxζ

ζ
∑

η
∑

σ
∑

ρ
∑=

Gλμ Gρσ
′ αρλασμ

σ
∑

ρ
∑= x′r αrsxs

s
∑=

∂
∂xs
-------- αrs

∂
∂x′r
---------

r
∑=analog

Gλμ
′ Gρσβρλβσμ

σ
∑

ρ
∑=

Spezialfall für dieGλμ
G11 G12 G13 G14

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 c2

cΔc
1
2
---grad2c–

c2         2c
∂c
∂x
------           2c

∂c
∂x
------⎝ ⎠

⎛ ⎞
2
    2cΔc

∂2c
∂x2
--------+

Δ c2( ) 2grad2c 2cΔc+=

grad c2( ) 2c grad c=

c2

2
----- γ=

Δγ grad2c cΔc+=

grad γ c grad c=

grad2γ
2γ

----------------  grad 2c=

Δγ
3
4
---grad2γ

γ
----------------–
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γΔγ
3
4
---grad2γ– 0= <Umfo>  Transformieren.

∂G44

∂x4
------------ 0=

∂
∂x4
-------- α14

∂
∂x ′1
---------- α24

∂
∂x ′2
----------  ·   ·+ + +=

G44 G ′ρσαρ4ασ4
σ
∑

ρ
∑=

G ′λμ
k Gρσβρλβσμ∑∑+=

 k G44 β4λβ4μ∑∑+=

Bλμ

G44  
σ
∑

ρ
∑=

Γ   Tensor der   G

Wahrscheinln

Div  Γ 0.=

Ist dies invariant?

∂Gλμ

∂xμ
-------------

μ
∑ 0   λ 1 2 3 4      = =

ατu
∂

∂x ′τ
---------- Gρσ

′ αρλασμ
σ
∑

ρ
∑

⎩ ⎭
⎨ ⎬
⎧ ⎫

τ
∑ 0=

 ∑

Alles nur von  x1  und   x2  (Zeit) abhängig  x ′1 x ′2

x1 α11 α21

x2 α21 α22

G11 G ′11 α11
2 +G ′12 α11α12 2α11+ α21( ) G ′22 α21

2+= G11 G ′ρσ αρ1ασ1
ρσ
∑ G ′11 α1

2+G ′12 α( 11α21= =

 α11α12 ) G22α21
2+ +

G12 Gρσ∑=

G22  =

G12 G ′11 α11α12+G ′12 α11α22 α21+ α12( ) G ′22 α21α22+=

G22 G ′11 α12
2 +G ′12 α12α22 α22+ α12( ) G ′22 α22

2+=

α11
2

2α11α21

α21
2

x ′1 α11x1 α12+ x2=

x ′1
2 α11x1 α12+ x2( )2 +α13x3 α14+ x4 )2〈 〉 α11

2 x1
2 2x1x2α11α12 x2

2α12
2+ += =

α11
2 α21

2+( )2x1
2

–               –              –             –              –                  α21
2                  –                    –                 –

x ′1 x ′2 α11x1 α12+ x2( ) α21x1 α22+ x2( )        x1
2 α( 11α21 x1x2 α11α22 α12α21 ) x+ +

2
2( α12α22+= =

x ′2 α21x1 α22+ x2= ∂
∂x2
-------- α12

∂
∂x ′1
---------- α22

∂
∂x ′2
----------+=

∂
∂x1
-------- α11

∂
∂x ′1
---------- α21

∂
∂x ′2
----------+= ∂2

∂x1
2

---------⎝ ⎠
⎛ ⎞ 2〈 〉

α11
2 ∂2

∂x′1
2

---------- 2α11α21
∂2

∂x ′1 ∂y ′1
---------------------   ·+ +=

γ  =
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ϕΔΔΔϕ〈 〉

grad2ϕ  grad2  grad2ϕ〈 〉

Δϕ       ϕΔϕ           grad2ϕ                    2. Ordnung

ΔΔϕ          Δ ϕΔϕ( )      Δ grad2ϕ( )    ϕ ΔΔϕ( )        grad2Δϕ       4. Ordnung

∂2

∂x2
-------- ∂2

∂x2
--------

∂2

∂y2
-------- +

∂2

∂z2
--------〈 〉+⎝ ⎠

⎛ ⎞ ∂2

∂y2
-------- ∂2

∂x2
-------- ∂2

∂y2
--------+⎝ ⎠

⎛ ⎞+

∂4

∂x4
-------- 2

∂4

∂x2∂y2
-----------------+

∂4

∂y4
--------+ ΔΔϕ=

Δϕ  ·Δϕ  +   ϕΔΔϕ  +   
∂ϕ
∂x
------ 

∂Δϕ
∂x

----------  +  ·  +  ·⎝ ⎠
⎛ ⎞

gradϕ  gradΔϕ

Die ersten 2 Schritte

2 Dimensionen

System der  G  äquivalent dem System   
∂2ϕ

∂xμ∂xν
------------------

Gleichung soll so sein, dass in jedem Glied nach allen  x  gleich oft diff. wird.

Linear unmöglich von 8. Ordnung in  ϕ

Quadratisch

dritten Grades in  ϕ   wird 2. Ordnung, wie es sein muss.

∂2ϕ
∂x1

2
--------- 

∂6ϕ
∂x2

2∂x3
2∂x4

2
--------------------------- etc. wird notwendig 4. Ordnung.

∂2ϕ
∂x1

2
--------- 

∂2ϕ
∂x2

2
--------- 

∂4ϕ
∂x3

2∂x4
2

------------------
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g12 g34

g23 g41

g34 g12

g12 g34

g13 g24

g14 g23

∂2ϕ
∂x1∂x2
----------------- 

∂2ϕ
∂x3∂x4
----------------- + 

∂2ϕ
∂x1∂x3
----------------- 

∂2ϕ
∂x2∂x4
----------------- + 

∂2ϕ
∂x1∂x4
----------------- 

∂2ϕ
∂x2∂x3
-----------------

α11x2 2α12xy   ·  · ·  · ·  α33z2+ + 1=

x′2

A2
------- y′2

B2
------- z′2

C2
------+ + 1=  x′  y′  z′ 

x  α1  α2  α3

y β1 β2 β3

z γ 1 γ 2 γ 3
u1x v1y w1z+ +( )2 u2x v2y w2z+ +( )2   ·  + + 1=

u1
2 u2

2 u3
2+ + α11= v1w1 v2w2 v3w3+ + α12=

v1
2 v2

2 v3
2+ + α22= —  —  —  — —  — —  — 

—  —  —  — —  —         —  —  — —  — —  —  —  

1
A
---  

1
B
---  

1
C
----  

u1 u2 u3

v1 v2 v3

w1 w2 w3

u1u2 v1v2 w1w2+ + 0=

—  —  —  — —  —  —  —

—  —  —  — —  —  —  —

u1
2 v1

2 w1
2+ + 1

A2
------=

—  —  —  — —  —  

—  —  —  — —  —
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Die  uvw bestimmen Lage und Grösse des Ellipsoids. 

Beliebige Transformation der  xyz  in  x′y′z′

bei invarianter Ellipsoidfunktion

u1x v1y w1z+ +( )2    = u ′1 x′ v ′1 y′ w ′1 z′+ +( )2       .       .++∑∑

u′1
2 v′1

2 w′1
2+ + u1(∑=〈 〉

u′1
2 u′2

2 u′3
2+ + u1β11 v1β21 w1β31 )2+ +(∑=

v′1
2 v′2

2 v′3
2+ + u1β12 v1β22 w1β32 )2+ +(∑=

—  —  —  —  —  —  —  —  —  —  —  —  —

 x′  y′  z′  
x  β11 β21 β31

y  β12 β22 β32

z  β13 β23 β33

 x   y   z   

x′  α11 α21 α31

y′  α12 α22 α32

z′  α13 α23 α33

Einfachste Substitutionen, deren Determinate = 1.

dx ′ν dxν pνσ
x dxσ∑+=

Xν  sind homogen u zweiten Grades in den Koordinaten.

Es werden nur zwei Koordinaten transformiert

∂X
∂x
------- ∂Y

∂y
-------+ 0=

X
∂ψ
∂y
-------= ρ11

x ∂2ψ
∂x∂y
------------= ρ12

x ∂2ψ
∂y2
----------=

1     y  

       

 ·     1 

Y
∂ψ
∂x
-------–= ρ21

x ∂2ψ
∂x2
----------–= ρ22

x ∂2ψ
∂x∂y
------------–=

ψ r3=

∂ψ
∂x
------- rx=

∂ψ
∂y
------- ry=

∂2ψ
∂x2
---------- r

x2

r
-----+=

∂2ψ
∂x∂y
------------ xy

r
-----=

∂2ψ
∂y2
---------- r

y2

r
-----+=

ψ r2x=

∂ψ
∂x
------- r2 2x2+=

∂2ψ
∂x2
---------- 6x=

∂ψ
∂y
------- 2xy=

∂2ψ
∂x∂y
------------ 2y=

∂2ψ
∂y2
---------- 2x=

lineare

y     x  

       

x–〈 〉     y–  
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dx′ dx α ydx xdy+( )+=

dy′ dy αydy–=

dx′ x αxt+=

t′ t α
t2

2
----–=

x′ x
1
2
---c

∂c
∂x
------t2+=

t′ ct=

m
d2x
dt2
-------- λ

m
----∂f

∂x
------ λ′

∂f
∂x
------= = d2x

ds2
-------- λ″

∂f
∂x
------=

—  —  —  —  —       
ds
dt
-----        —  —  —  —  —   

—  —  —  —  —                   —  —  —  —  —   

f 0=

s

ds

ξηζ

x ξ+

y η+
z ζ+

x ξ
dx
ds
------dx dξ+ + +

ds′2 dx dξ+( )2   ·    ·+ +=

 ds2 2 dxdξ   ·    · ++( )+=

ds′ ds 1
dx
ds
------dξ

ds
------   ·    ·  + +⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞=

 ds2 1 2
dx
ds
------⎝

⎛ dξ
ds
------   ·    ·  + ++⎝ ⎠

⎛ ⎞=

ds′ ds– ẋξ̇   ·    · ++( )ds=

δ  ∫〈 〉 ẋξ̇   ·    · + +( ) sd∫{ } 0=

ẋξ̇
d
ds
----- ẋξ( ) ξ ẋ̇–

ẋ̇ξ   ·    · ++( ) sd∫=∫ 0=

wenn  
∂f
∂x
------ξ

∂f
∂y
-----η

∂f
∂z
-----ζ+ + 0=

woraus die Behauptung.
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g11 

g12

  g22           g14       
g44g24

g11 g12 g14          g14 g12g24 g22g14–( )

g21  g22  g24       + g24 g14g12 g24g12–( )

g41  g42  g44  

  0  ∂g11

∂x1
----------- 0=

∂g22

∂x2
----------- 0=

111   112   114   122   124   144   

222   224   <233    234>   244       

444        

∂g44

∂x1
----------- 2

∂g14

∂x4
-----------+ 0=

∂g44

∂x2
----------- 2

∂g24

∂x4
-----------+ 0=

∂g11

∂x4
----------- 2

∂g14

∂x1
-----------+ 0=

∂g22

∂x4
----------- 2

∂g24

∂x2
-----------+ 0=

∂g14

∂x2
-----------

∂g24

∂x1
-----------+ 0=

2
∂g12

∂x1
-----------

∂g11

∂x2
-----------+ 0=

2
∂g12

∂x2
-----------

∂g22

∂x1
-----------+ 0=

g11 ϕ x2( )=

g22 ψ x1( )=

2
∂g12

∂x1
----------- ϕ′ x2( )–=

2
∂g12

∂x2
----------- ψ′ x1( )–=

g12 c0 c1x1 c2x2  +

αx1x2

+ +=

ϕ′ x2( ) 2 c1 αx2+( )–=

ψ′ x1( ) 2 c2 αx1+( )–=

ϕ x2( ) g11 2 c1( x2–
α
2
---x2

2 κ″ )+ += =

ψ x1( ) g22 2 c( 2x1–
α
2
---x1

2 κ″′ )+ += =

g14 βx2 κ+=

g24 β– x1 κ′+=
g14 ϕ x2( )=

g24 ψ x1( )=

ϕ′ x2( ) ψ′ x1( )+ 0=

ϕ′ x2( ) α=

ψ′ x1( ) α–=

ϕ αx2 κ+=

ψ α– x1 κ′+=

z
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g  Schema

1 αx2
2+( )  – ax1x2  βx2

ax1x2  1 αx1
2+( )  – βx1–

βx2  βx1  – 1

 γ    

1  – 0  βx2

0 1  – βx1–

βx2  βx1  – 1 α x1
2x2

2( )+

Schema der     für
rotierenden Körper
mit nebenstehendem
   -Schema identisch!

4

γ

g

G 1 αx1
2+( ) 1 αx2

2+( ) αβ2x1
2x2

2– αβ2x1
2x2

2–=

 1 αx2
2+( )β2x1

2 α2x1
2x2

2– 1 αx1
2+( )β2x2

2+ +

 1=

 α β2+( )x1
2 α β2+( )x2

2+ +

 α( 2 2αβ2– αβ2 αβ2 α2 )x– 1
2x2

2+ + +

α β2+ 0=

1– 2c1x2           c1x1–  c2x2+

  c1x1  c2x2         1– 2c2x1–+
Determinante ist nicht 1.

ẋ ωy+( )2 ẏ ω– x( )2+

ẋ2 ẏ2 2ωyẋ 2ωxẏ– ω2r2+ + +

1 0 2ωy

0 1 2ωx–

2ωy 2ωx– ω2r2

+ωy ωx–

H ẋ– 2 ẏ2– 2βyẋ 2βxẏ– αy2 ẋ2 αx2 ẏ2– 2αxyẋ ẏ+– 1+ +=

α xẏ yẋ–( )2–

Wenn in erster Annäherung〈 〉 δ H td∫ 0=

∂H
∂ ẋ
-------δ ẋ

∂H
∂x
-------δx+⎝ ⎠

⎛ ⎞∫ 0=

d
dt
----- ∂H

∂ ẋ
-------⎝ ⎠

⎛ ⎞– ∂H
∂x
-------+ 0=

∂H
∂ ẋ
------- 2〈 〉 ẋ– 2〈 〉βy 2〈 〉α xẏ yẋ–( )y+ +

                           
-----------------------------------------------------------------------------------=

d
dt
----- ∂H

∂ ẋ
-------⎝ ⎠

⎛ ⎞ 2 ẋ̇– β ẏ 2αy xẏ̇ y ẋ̇–( ) 2α xẏ yẋ–( ) ẏ+ + +=

∂H
∂x
------- =
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giκ

∂γ iκ

∂xl
----------

∂γ κl

∂xi
----------

∂γ li

∂xκ
---------+ +⎝ ⎠

⎛ ⎞ Tensor.

γ κl

∂giκ

∂xi
----------∑ Vektor.

giαgκβ

∂γ iκ

∂xl
----------

∂γ κl

∂xi
----------

∂γ li

∂xκ
---------+ +⎝ ⎠

⎛ ⎞ Ebenentensor.

∂gαβ

∂xl
------------– γ κlgiα

∂gκβ

∂xi
----------- γ ligκβ

∂giα

∂xκ
----------––

∂
∂xl
------- γ lα

i κ
α⎝ ⎠

⎜ ⎟
⎛ ⎞

∂γ λα

∂xα
------------    

 

1
2
---γ lα

∂2giα

∂xl∂xκ
----------------

∂2gκα

∂xl∂xi
---------------

∂2giκ

∂xl∂xα
-----------------–+⎝ ⎠

⎛ ⎞+

1
2
---γ λα

∂giα

∂xκ
----------

∂gκα

∂xi
------------

∂giκ

∂xα
----------–+⎝ ⎠

⎛ ⎞

1
2
---∂giα     

1
2
--- giα

∂γ λα

∂xκ
------------ gκα

∂γ λα

∂xi
------------+⎝ ⎠

⎛ ⎞––

tλακ
c

∂γ κα

∂xλ
------------–

∂γ λκ

∂xα
-----------–

Dynamik im symmetrischen statischen Rotationsfeld

H 1 ẋ2– ẏ2– 2β xẏ yẋ–( )– β2 xẏ yẋ–( )2+=

 1 β xẏ yẋ–( )–[ ]2 ẋ2– ẏ2                      –=

∂H
∂x
-------

1
H
----  ·  β xẏ yẋ–( ) ẏ–=

]

[
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∂
∂xn
-------- gmνT νn( )

1
2
---

∂gμν

∂xm
-----------T μν– 0   xd  yd  zd∫=

Gdx dy dz dt

 dξdηdζds=
∂

∂xt
------- g∫ μνT νt xd  yd  zd( )

1
2
---

∂gμν

∂xm
-----------∫ T μν xd  yd  zd–

gμνρ
dxν

ds
-------- dt

ds
----- · 

ds
dt
----- V

G
-------- 1

2
---

∂gμν

∂m
-----------∫ ρ

xμd

ds
--------

xνd

ds
-------- V

G
--------ds

dt
-----⋅–

d
dt
----- 1

G
--------gmν

dxν

ds
--------⎝ ⎠

⎛ ⎞ 1
2
--- 1

G
--------

∂gμν

∂xm
-----------

xμd

dt
--------

xνd

dt
--------ds

dt
----- dt

ds
-----–

d
dt
----- 1

G
--------

gmν ẋν

w
--------------⎝ ⎠

⎛ ⎞ 1
2
--- 1

G
--------

∂gμν
∂xm
------------- ẋμ ẋν

w
---------------------–

d
dt
----- 1

G
-------- ∂w

∂ ẋm
---------⎝ ⎠

⎛ ⎞ 1

G
-------- ∂w

∂xm
---------–
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ρ
8π
c3
------hν3  

   1

e
hν
κT
-------

1–

-----------------=

∂ρ
∂T
-------

8π
c3
------hν3  

   1
       

  ⎝ ⎠
⎛ ⎞

2
------------------   = T 2 ∂ρ

∂T
-------    

8πh2ν4

c3κT
------------------ 

1
ė˙ 1–
-----------

⎩
⎨
⎧  1

ė˙ 1–( )2
-------------------+

  
8πh

2
v2

c3κ
------------------  ρc3

8πhν3
---------------- ρ2c6

8πh v3( )2
-------------------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

κT 2 ∂ρ
∂T
------- hνρ c3ρ2

8πν2
------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

x' x
γ
2
---t2+=

y' y=

z' z=

t' t .=

x

10 12– υ2⋅
3 8.3 107⋅ ⋅
6.8 1023⋅

----------------------------  ⋅=

υ2 3.6   10 4–=

e
hν
κT
------- hν

κT 2
----------⋅
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f An∑ 2πν
t
T
--- ϑn+⎝ ⎠

⎛ ⎞cos= f 0

2πν0

T
------------ 

t
cos

x An∑ 2πn
t
T
--- ϑn+⎝ ⎠

⎛ ⎞cos=

E S– ε+( )2 E2=

In Übereinstimmung mit der Formel 195 des Planck’schen Buches.

ε2 2ES= E
ε2

2S
------=

mυ2 E=

e2 dξ
dt
------⎝ ⎠

⎛ ⎞
2

f˙2=

 
ε2

μ
-----E=

 
1
2
--- An∑ f 0 2π n

T
--- ν0–⎝ ⎠

⎛ ⎞ t ϑn+cos td

0

τ

∫=

ε An∑ 2πn
t
T
--- ϑn+⎝ ⎠

⎛ ⎞ f 0 2πν0t( )coscos td

0

τ

∫=

1
2
--- 2πν0( )2 f 0

˙ 2 k1

S
2

3c3
-------- ḟ˙2 τ  

2πν0( )4

3c3
-------------------- f 0

2τ = k1E
e2

3c3μ
------------ 2πν( )2E= =

a bcoscos
1
2
--- a b+( ) a b–( )cos+cos{ }=

α β         α β–+

asin bsin– 2
a b+

2
------------ a b–

2
------------sincos=

2π n
T
--- ν0–⎝ ⎠

⎛ ⎞ t ϑν+⎝ ⎠
⎛ ⎞sin

2π n
T
--- ν0–⎝ ⎠

⎛ ⎞
--------------------------------------------------------

0

τ
π n

T
--- ν0–⎝ ⎠

⎛ ⎞ τ ϑν+⎝ ⎠
⎛ ⎞cos

π n
T
--- ν0–⎝ ⎠

⎛ ⎞
-------------------------------------------------------

π n
T
--- ν0–⎝ ⎠

⎛ ⎞ τsin

=

 
1
2
--- An∑ f 0

π n
T
--- ν0–⎝ ⎠

⎛ ⎞ τsin

π n
T
--- ν0–⎝ ⎠

⎛ ⎞
----------------------------------- γ ncos=

E
ε2

2S
------

1
8
--- An

2T f 0
2τ

1
2
--- 3c3

2πν0( )2
-------------------- 1

f 0
2τ

---------⋅ ⋅ ⋅
3c3

16
--------

An
2T

2πν0( )2
--------------------= = =

ε2 1
8
--- An

2 f 0
2 x

2
sin

x2
-------------τ2 Δx

T
πτ
------⋅∑

1
8
--- An

2 T f 0
2 τ k2ρE= = =

πτ
T
------ Δx=
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FS
1
2
---ε2∂F

∂E
-------+ 0=

F e
E

κT
-------–

= S k1E=

ε2 k2ρE=∂F
∂E
-------

1
κT
-------e

E
κT
-------–

–=

1
κT
------- 1

2
---= k1

1
2
---

k2ρ

κT
--------= ρ

2k1

k2
--------κT=

E ξ2=

ε ξ Δ+( )2 ξ2– 2Δξ Δ2+= =

ε2 4ξ2Δ2=

FdE FxdEx=

Statistische Gleichung

Also Formel von Jeans.

S
Sx
-----

dE
dEx
--------- ε2

εx2
------ dE

dEx
---------⎝ ⎠

⎛ ⎞ 2
= =

FxSx 1
2
---εx2 dE

dEx
---------⎝ ⎠

⎛ ⎞ 2 d
dE
------- FxdEx

dE
---------⎝ ⎠

⎛ ⎞⋅ ⋅+ 0=

dE
dEx
--------- d

dEx
--------- Fx 1

dE
dEx
---------
----------⋅

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

∂Fx

∂Ex
--------- Fx

d2E
dEx2
-----------

dE
dEx
---------⎝ ⎠

⎛ ⎞ 2
------------------ dE

dEx
---------⋅–

Fx

d2E
dEx2
-----------

dE
dEx
---------
-----------

n1

ϕ Δ( )dΔ

Δ δ+ Δ( )ϕ Δ( )dΔ

=

Gleichung von derselben Form mit anderem S.

n2 n3 n4
Δ1 Δ3Δ2
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xϕ l s,( )
x ξ1 dξ1

F x ξ1+( )dξ1 ϕ x ξ1, ξ2 ξ1–+( )dξ2⋅

F ξ1F′+( ) ϕ x, ξ2 ξ1–( ) ξ1ϕ' x, ξ2 ξ1–( )+[ ]

Spezialfall  ξ2 0=

F ξ1F′+( ) ϕ x, ξ1–( ) ξ1ϕ′ x, ξ1–( )+[ ] F   ϕ x, ξ1( )=

F ϕ x, ξ–( ) ϕ x,ξ( )–{ }    ξ1 F′ϕ x, ξ–( ) Fϕ′ x, ξ–( )+{ }+ 0=

∂
∂x
------ F ϕ x(( , ξ ϕ x, ξ–( )–{ } 0=

ψ x, ξ( )

F ψ x, ξ( )⋅ konst. χ ξ( )=

ϕ x, ξ–( ) ξd

0

∞

∫ ϕ x,ξ( ) ξd

0

∞–

∫– ϕ x,ξ( ) ξd

∞–

0

∫= =

ξϕ x, ξ–( ) ξd

∞–

+∞

∫

2Fξ–
∂

∂x
------ F ξ2ϕ x, ξ–( ) ξd

∞–

∞

∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

+ 0=

ξ2 dξ2

=   F x ξ2+( )dξ2 ϕ x ξ2, ξ1 ξ2–+( )dξ1

=  F ξ2F′+( ) ϕ x, ξ1 ξ2–( ) ξ2ϕ' x, ξ1 ξ2–( )+[ ]

F ϕ x,ξ( ) ϕ x, ξ–( )–{ }   ξ F′ϕ x,   ξ( ) Fϕ′ x,    ξ( )+{ }– 0=

2Fξ–
1
2
--- ∂

∂x
------ Fξ2{ }+ 0=

  

∞–

+∞

∫–=
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2e
E

κT
-------–

k1E–
d

dE
------- k2ρEe

E
κT
-------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

+ 0=

k2ρ E
κT
-------– 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

e
E

κT
-------–

S
k2

2
-----ρ 1 E

κT
-------–⎝ ⎠

⎛ ⎞= unmöglich.

 2Fk1E k2ρF k+ 2ρE
dF
∂E
-------+ + 0=

k2ρ 2k1E+

E
---------------------------- k2ρ

d  lgF
dE

-------------–=

d  lgF
dE

-------------– 1
E
---

2k1

k2ρ
--------  ⋅+=

 lgF–  lgE
2k1

k2ρ
--------E+=

F  = konst  E
1
E
---e

2k1

k2ρ
--------E–

e αE– Ed∫
1
E
---e αE– Ed∫

------------------------- 0=

dE

E
--------  mit  n.

unmöglich.

S

Hναγ

Hνt2αβ H
ν
----=

A   α

F A( )    f α( )    α′   Komponente in  A Richtung–

F r′( ) σ′ f ρ( )⋅d
dσ′
∫ dσ Fx ρ( )dσ=

r′ r ρ ψcos+=

F r′( ) F r( ) F′ r( )ρ ψ
1
2
---F′′ r( )ρ2  2ψcos+cos+=

ρdψ dσ'=2πρ ψdψdρsin

f ρ( ) F r( ) F′ r( )ρ ψ
1
2
---F′′ r( )ρ2  2cos+cos+

⎩
⎨
⎧

∫

σx

σ′
ρψ

Wahrsch. bl. gl.

wenn ρ d. n2ρ

A  durch  nA

dA  durch  ndA

vert. wird

nA( )λ ndA = Aλdt

=nλ 1+ 1=
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U A=

dU
dt
------- dA

dT
-------=

T
d2 A
dT 2
----------             

dA
dT
-------–

d2x
dt2
-------- ax– a0– a1t–( )x= =

x A0 A1t+( )e jωt=

 ω2 A0 jωA1–( )e      ω2 A1te––=

a0 ω2 jω
A1

A0
------–=

ω2 A1– a1 A0 a0 A1+( )–=

adA  =

ẋ ẋ̇ axẋ– a0xẋ– ta1xẋ+= = a0xẋ
dE
2

-------=

d   lg a 2
dω
ω

-------=

d2x
dt2
-------- jω<A>A1e       -[ ] ω2 A0 A1t+( )e–=

U A T
dA
dT
-------–= 1 2

A

U

1 2

 variabel.

                 a0                -a1t–( ) A0 A1t+( )e=

Zunahme an kinetischer Energie

a1xẋ
a1

2a0
--------dE=

2  lg 
dt
t

----- d lg a( )=

a ω2=dE
t
2
---d  lg a

dt
--------------dE=

da 2ωdω=

ω
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E
3c3

16
--------

An
2T

2πν( )2
-----------------=

 
3

8π
------ πc3

2 2πν( )2
-------------------- An

2T⋅=

E uν
c3

8πν2
------------⋅=

uν
8πν2

c3
------------E=

X An 2πn
τ
T
--- ϑn+⎝ ⎠

⎛ ⎞cos∑=
n
T
--- ν=

Xν ν dν+cos  
2 1

2
--- An

2∑=

 
1
2
--- An

2Tdν=

Δn Tdν=

X2 ·······N 2+ 3 ·······⋅=

uνE
3

8π
------ An

2Tdν=

E
RT
N

-------=

uν
R
N
---- 3π

c3
------ν2T⋅=

dW konst e
N

RT
-------E–

dE=

Für Resonator mit einer Schwingungsrichtung nach kinetischer Theorie der Wärme

Daraus (Jeans’sches Gesetz)

Zu Planck’schem Gesetz gelangt man durch Quantenhypothese.

E
0 hve

N
RT
-------– hν

2hνe
2

N
RT
-------hν–

 ·········+ + +

1 e
N

RT
-------– hν

e
2

N
RT
-------– hν

 ··········+ +

-----------------------------------------------------------------------------------------=

S

hν

1
1 u–
------------ S=

∂u
∂x
------

1 u–( )2
------------------- ∂S

∂x
------=

∂S
∂x
------–

S
---------

∂u
∂x
------–

1 u–
------------ hνu

1 u–
------------= =

 hν

1 1
u
---–

------------=

N
RT
-------– x=

 
RT
N

------- hν

e
N

RT
-------hν

1–

-----------------------⋅=

uν
8πhν3

c3
---------------- 1

e
hν
RT
-------

1–

------------------  =

E
RT
N

------- 

∂S
∂x
------–

S
---------  ⋅=

Formel von Planck.
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Statist. Betr. z. Strahlungsresonator

E S– ε+( )2 E2=

ε2 2ES=

S
e2

3c3μ
------------ 2πν( )2Eτ=

a b+
2

------------ a b–
2

------------sinsin

 
1
2
---  b  acos–cos( )=

ε x f˙ td

0

τ

∫ f 0 2πν0( ) 2πν0t An 2πn
t
T
--- ϑn+⎝ ⎠

⎛ ⎞cos∑⋅sin td

0

τ

∫–= =

 + f 0 2πν0( ) An
1
2
--- 2π n

T
--- ν0–⎝ ⎠

⎛ ⎞ t ϑn+⎝ ⎠
⎛ ⎞sin td

0

τ

∫⋅∑=

 
1
2
--- f 0 2πν0( ) An

π n
T
--- ν0–⎝ ⎠

⎛ ⎞ t ϑn+⎝ ⎠
⎛ ⎞cos

π n
T
--- ν0–⎝ ⎠

⎛ ⎞
------------------------------------------------------ Δcos∑=

ε2 1
4
--- f 0

2 2πν0( )2 An
2  2 ξt ϑν+( )cos

ξ2
------------------------------------  2Δcos∑=

 
1
8
--- f 0

2 2πν0( )2 An
2

 2 ϑ2〈 〉 xsin

x2
---------------------------τ2 T

πτ
------Δx  ⋅∑= πτ

T
------ Δx=

τT
π

------π

ε2 1
4
--- 2πν( )2 f 2̇ An

2T c.⋅
1
4
--- An

2T
e2

μ
-----E= =

8π
3

------ρ

ε2 2π
3

------ρE
e2

μ
-----τ=

2ES
2e2

3c3μ
------------ 2πν( )2τE2 4e2

3c3μ
------------ 2πν( )2τE2 2π

3
------ρE

e2

μ
-----τ= = =

 ε2 1
8
--- f 0

2 2πν0( )2 An
2Tτ=

4
3c3
-------- 2πν( )2E

2π
3

------ρ=

E
3c3

4
-------- 1

4π2ν2
--------------- 2π

3
------ρ⋅ ⋅

c3

8πν2
------------ρ= =

2π n
T
--- ν0–⎝ ⎠

⎛ ⎞ t ϑn+cos

2π
n
T
--- ν0–

---------------------------------------------------------

0

τ

–

ϑν An Θ ϑν+( )cos–cos

 
1

8π
------ 6x2⋅ ρdν

3
8π
------ An

2Tdν= =

 
1
2
--- An

2Tδν=

x2 1
2
--- An

2Δn=

1
2
--- 2πν( )2 f 0

2
f 2̇=

2πν( ) f 0  sin f˙=

1
2
---2

Θ
2
----sin

Δsin

ϑv–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Θ
2
----sin⎝ ⎠

⎛ ⎞⋅
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Gravitation

g11dx2   ·  ·  ·  g44dt2+ ds2= immer positiv für Punkt.

ds
dt
----- H= gesetzt.

Bewegungsgleichungen

d
dt
----- ∂H

∂ ẋ
-------⎝ ⎠

⎛ ⎞ + 〈 〉 ∂H
∂x
-------– 0=

d
dt
----- ∂L

∂ ẋ
------⎝ ⎠

⎛ ⎞ ∂Φ
∂x
-------–=

∂H
∂ ẋ
-------

g11 ẋ g12 ẏ   ·  g14+ + +

ds
dt
-----

--------------------------------------------------------=

Gg11 ẋ g12 ẏ   ·  +  ·+ +
ρ0 G g( 11

dx
ds
------ dt

ds
----- g12

dy
ds
------ dt

ds
-----   ·   · )+ + +

ist Bewegungsgrösse pro Volumeinheit

Tensor der Bewegung von Massen

Tensor der Bewegungsgrösse u Energie

T ik
b ρ0

dxi

ds
-------

dxκ

ds
---------=

T mn GgmνT νn
b∑=

Ponderomotorische Kraft pro Volumeinheit 1
2
--- G

∂gμν

∂xm
-----------T μν

b∑

∂
∂xn
-------- GgmνT νn( ) + 〈 〉

1
2
--- 1

2
---〈 〉 G

∂gμν

∂xm
-----------T μν

μν
∑–

νn
∑ 0=

Setzen wir GT μν Θμν=

∂
∂xμ
-------- gmνΘμν( ) + 〈 〉

1
2
--- 1

2
---〈 〉

∂gμν

∂xm
-----------Θμν

μν
∑–

μν
∑ 0= Im Allgemeinen

zugeordneter Vektor.

Gilt für jeden Tensor z. B. Gγ μν

∂
∂xμ
-------- Ggmνγ μν( ) + 〈 〉

1
2
--- G

∂gμν

∂xm
-----------γ μν⎝ ⎠

⎛ ⎞

μν
∑–

μν
∑ 0= oder Vierervektor

Γμν

G
---------

∂ G
∂xm
-----------

1

G
-------- ∂G

∂xm
---------

Stimmt.

Negative

symm.
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γ μν
∂ϕ
∂xν
--------∑ zugeordneter Vekt〈 〉    Vektor.

1

G
-------- ∂

∂xμ
-------- γ μν G

∂ϕ
∂xν
--------⎝ ⎠

⎛ ⎞ Skalar.        

[connects p. 06 R]

Naheliegende Hypothese

∂
∂xμ
-------- Gγ μν( )∑ 0=

G
∂γ μν

∂xμ
----------- γ μν

1

2 G
----------- ∂G

∂xμ
--------+ 0=

∂γ μν

∂xμ
-----------

1
2
---γ μν

1
G
---- ∂G

∂xμ
--------+⎝ ⎠

⎛ ⎞∑ 0=

∂gρσ

∂xμ
------------

Γρσ

G
---------

ρσ
∑

∂gρσ

∂xμ
------------γ ρσ

ρσ
∑
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αν
∂ϕ
∂xν
--------= zugeordneter Vektor

1

G
-------- ∂

∂xν
-------- Gaνγ μν )( )∑  

1

Γ
------- ∂

∂ξν
-------- Γανgμν( )∑  )

ξμ gμνxν∑=

xν γ μνξν∑=

∂
∂ξν
-------- γ νσ

∂
∂xσ
---------∑=

Gγ νσ
∂

∂xσ
--------- 1

G
-------- ∂ϕ

∂xν
--------⎝ ⎠

⎛ ⎞∑ Skalar

γ νσ
∂2ϕ

∂xν∂xσ
------------------ γ νσ

∂ϕ
∂xν
--------  · 

1
2G
------- ∂G

∂xσ
---------+

νσ
∑ Skalar

γ νσ
∂2ϕ
∂x∂z
------------ γ νσ

∂ϕ
∂xν
-------- 1

2G
------- ∂G

∂xσ
--------- ∂ϕ

∂xν
--------

∂γ σν

∂xσ
-----------+ +∑

Soll es nur einen derartigen Skalar geben so muss
∂γ σν

∂xσ
-----------

σ
∑ 0=

G′ P2G=

Γ′
1

P2
------Γ=

[connects p. 06 L]

γ μν
∂

∂xμ
-------- γ ρσ

∂gρσ

∂xν
------------⎝ ⎠

⎛ ⎞

μνρσ
∑ 0=

γ μν
∂

∂xμ
-------- gρσ

∂γ ρσ

∂xν
-----------⎝ ⎠

⎛ ⎞

μνρσ
∑ 0.=oder

1– 0 0 0

0 1– 0 0

0 0 1– 0

0 0 0 c2

G c2–=
Spezialf<ä>all<e> g11 g22 g33 1     g44– c2= = = =

γ 11 γ 22 γ 33  1+   γ 44
1
c2
-----–= = = =

ρ σ 4      μ ν 1  2  3    = = = =

∂
∂xν
-------- +

1
c2
-----⎝

⎛   ·  
∂c2

∂xν
--------⎠

⎞

ν
∑ 0= ∂

∂xν
-------- c2

∂ 1

c2
-----

∂xν
--------

⎠
⎟
⎞

⎝
⎜
⎛

∑ 0=bezw

∂2lgc
∂xν

2
-------------

c
∂c
∂xν
--------

So nicht unterscheidbar.

μ ν     ρ σ= =
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γ μν

G
-------- ∂

∂xμ
-------- G

∂ϕ
∂xν
--------⎝ ⎠

⎛ ⎞ Skalar.=

Bildet man  Δ2ϕ  auf zwei Arten, so folgt

1
G
---- ∂

∂xν
-------- γ μνG( )

ν
∑ ein Vektor.

∂
∂xμ
-------- γ μν

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞∑

γ( )αβ π∑ iαπκβ
∂

∂xρ
-------- γ ρσ

∂
∂xσ
--------- pil pκmγ lm( )⎝ ⎠

⎛ ⎞=

∂
∂ρ
------ γ ρσ

∂
∂σ
------ pil pκmγ lm( )⎝ ⎠

⎛ ⎞∑

pil pκm

∂γ lm

∂xσ
----------- γ lm

∂
∂xσ
--------- pil pκm( )+

∂γ ρσ

∂xρ
----------- p( il pκm

∂γ lm

∂xσ
----------- γ lm

∂
∂xσ
---------+ pil pκm( )

 γ ρσ pil pκm

∂2γ lm

∂xρ · xσ
------------------- γ ρσ

∂γ lm

∂xσ
----------- ∂

∂xρ
-------- pil pκm( ) γ ρσ

∂γ lm

∂xρ
----------- ∂

∂xσ
--------- pil pκm( )+ + +

 γ ρσγ lm
∂2

∂xρxσ
--------------- pil pκm( )+

πμα xα∂
∂

pμρ pνσγ ρσπνβ xβ∂
∂

pil pkmγ lm( )⎝ ⎠
⎛ ⎞

αβμνρσ
∑

= =
ρσ
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Mindestens eines der p  abgeleitet. i α    κ β= =

∂
∂xσ
--------- pαl pβm( )∑

giκ
∂

∂xμ
--------

iκμν
∑ γ μν

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞ Skalar

∂
∂xρ
-------- γ( ρσ

∂
∂xσ
--------- pαlγ lβ[ ]   ,∑

wobei p mindestens
einmal abgeleitet wird.

Divergenz des Tensors.

Ursprüngliches System (    )  habe konstante

g,  γ .

a′μ
∂T ′μν

∂x ′ν
--------------          μ - Vektor.∑=

Im ungestrichenen System

aσ πμσa ′μ∑ πμσπντ
∂

∂xτ
-------- pμi pνκT iκ( )∑= =

 πμσ
∂

∂xκ
-------- pμiT iκ( )∑=

 
∂T σκ

∂xκ
------------ T iκπμσ

∂ pμi

∂xκ
-----------

μiκ
∑+∑=

Diese Summe ist durch die g bezw.      auszudrücken. Dabei istγ
zu benutzen, dass die gestrichenen g bezw.      konstant sind. γ

T iκ

∂gσκ

∂xi
------------

1
2
---

∂giκ

∂xσ
----------–⎝ ⎠

⎛ ⎞∑

1
2
---

∂ pμi

∂xσ
----------- pνκg ′μν

∂
∂xi
------- pμσ pνκg ′μν( )

1
2
--- ∂

∂xσ
--------- pμi pνκg ′μν( )–∑

′
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Haben symmetrische Transformationen Gruppeneigenschaft?

xν′ pνσxσ
σ
∑=

x λ′′ pλν′ xν′
ν
∑ pλν′ pνσxσ

νσ
∑= =

Koeffizient der kombinierten Transformation

pλσ′′ pλν′ pνσ∑=

pσλ′′ pσν′
ν
∑ pνλ=

x′ x α y αsin+cos=

y′ x α y αcos+sin–=

x x′ α y′– αsincos=

y x′ α y′ αcos+sin=

Erweiterung des Tensors.

Im gew. Raum ist

Δ ′μνρ

∂T ′μν

∂xρ′
--------------= Ein Tensor von 3 Mannigfaltigkeiten.

Subst von konst. Koeffizienten eingeführt

Δ ′μνρ πρσ
∂

∂xσ
--------- pμα pνβT αβ( )∑

Für solche Transformationen ist             auch Tensor.
∂T αβ

∂xσ
------------

Wie heisst dieser Tensor, wenn bel. Subst. zugelassen werden?

Δμνρ πmμπnν prρ Δ ′mnr
mnr
∑ πmμπnν prρπrα 

∂
∂xα
--------- pmδ pnεT δε( )∑= =

πnν

∂ pnε

∂xα
-----------πρα prρ
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∂gρσ

∂xτ
------------ gρβπαβ

∂ pασ

∂xτ
------------ gασπβα

∂ pβρ

∂xτ
------------

αβ
∑+

βα
∑=

∂γ μν

∂xσ
----------- γ μα pβα

∂πβν

∂xσ
----------- γ αν pβα

∂πβμ

∂xσ
------------

αβ
∑+

αβ
∑=

∂γ μν

G.

∂G
∂xν
--------

∂giκ

∂xν
----------Giκ

iκ
∑ G

∂giκ

∂xν
----------γ iκ∑ G giκ

∂γ iκ

∂xν
----------∑–= = = nullter                 Potenz

ϕ1 γ μν

∂giκ

∂xμ
----------

∂glm

∂xν
-----------GiκGlm.

iκlmμν
∑= oder γ μν

∂giκ

∂xμ
----------

∂glm

∂xν
-----------γ iκγ lm∑

ϕ2
∂

∂xμ
-------- Gγ μν

∂Gα

∂xν
----------⎝ ⎠

⎛ ⎞∑=
∂

∂xμ
-------- Gγ μν

∂ψ
∂xν
--------⎝ ⎠

⎛ ⎞

 α
∂

∂xμ
-------- Gγ μνGα 1–

∂giκ

∂xν
----------Giκ⎝ ⎠

⎛ ⎞ ∂
∂xμ
-------- G

α 1
2
---+
γ μνγ iκ

∂giκ

∂xν
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑≈∑=

γ iκG

 
∂

∂xμ
-------- γ μνγ iκ

∂giκ

∂xν
----------⎝ ⎠

⎛ ⎞∑
∂

∂xμ
-------- γ μνgiκ

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞∑–= =

Anderer Ausdruck für obigen Skalar ϕ1

gμμ′γ μν
∂G
∂xν
-------- γ μ′ν′

∂G
∂xν′
----------∑

∂
∂xμ
-------- G

α 1
2
---+
γ μνγ iκ

∂giκ

∂xν
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑

∂G
∂xν
-------- giκ

∂Giκ

∂xν
-----------∑–=

Anderer Ausdruck für ϕ1

<Ortnun>
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ϕ1 giκglmγ μν

∂γ iκ

∂xμ
----------

∂γ lm

∂xν
-----------∑= nullter Ordnung.

ϕ2
∂

∂xμ
-------- G

α 1
2
---+⎝ ⎠

⎛ ⎞

giκγ μν

∂γ iκ

∂xν
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=
[connects p. 09 R]

 giκ
∂

∂xμ
-------- γ μν

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞ γ μν

∂giκ

∂xμ
----------

∂γ iκ

∂xν
----------∑+∑=

0
∂giκ

∂xμ
----------γ iκ giκ

∂γ iκ

∂xμ
----------+⎝ ⎠

⎛ ⎞∑=

0
∂2giκ

∂xμ∂xν
------------------γ iκ

∂giκ

∂xμ
----------

∂γ iκ

∂xν
----------   ·  giκ

∂2γ iκ

∂xμ∂xν
------------------+ + +⎝ ⎠

⎛ ⎞∑=

1
G2
------ γ μν

∂G
∂xν
--------γ μ′ν′

∂G
∂xν′
----------

νν′
∑ vermutlicher Gravitationstensor

lgG ψ=

γ μνγ μ′ν′
∂ψ
∂xν
-------- ∂ψ

∂xν′
----------∑

Ist der einzige Tensor, in dem nur einmal diff. wird.

Divergenz gebildet.

 = γ μν

∂giκ

∂xν
----------γ iκγ μ′ν′

∂gi′κ′

∂xν′
-------------γ i′κ′

νν′ii′κκ′
∑

∂
∂xμ′
---------- Ggmμγ μνγ μ′ν′

∂ψ
∂xν
-------- ∂ψ

∂xν′
----------⎝ ⎠

⎛ ⎞      ∑
1
2
--- G

∂gμμ′

∂xm
-------------γ μνγ μ′ν′

∂ψ
∂xν
-------- ∂ψ

∂xν′
----------=

ν m=

∂
∂xμ′
---------- Gγ μ′ν′

∂ψ
∂xm
--------- ∂ψ

∂xν′
---------- ⎝ ⎠

⎛ ⎞∑  =
gμμ′

∂γ μν

∂xm
-----------γ μ′ν′–

ϕ2  ∑=  
1
2
--- G

∂γ νν′

∂xm
------------ ∂ψ

∂xν
-------- ∂ψ

∂xν′
----------∑–=

a′ν pνσaσ∑=

α′ν πντατ∑=
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ϕ2–
∂

∂xμ
-------- G

α 1
2
---+
giκγ μν

∂γ iκ

∂xν
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=
.

α 1
2
---+⎝ ⎠

⎛ ⎞ G
α 1

2
---+ ∂gρσ

∂xμ
------------γ ρσ∑

[connects p. 09 L]

 giκγ μν

∂γ iκ

∂xν
----------γ ρσ

∂gρσ

∂xμ
------------ G

α 1
2
---+ ∂

∂x
------ giκγ μν

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞∑+∑=
.

Selbstverst., weil        Vektor zweiter Art.

Subst. müssen mehr eingeschränkt werden

∂G
∂xν
--------

pμα pνβγ αβπμlπνm
∂

∂xl
------- πiδπκεgδε( )

∂
∂xm
--------- piδ′ pκε′γ δ′ε′( )∑

γ lm

 γ lm

∂gδε

∂xl
-----------

∂γ δε

∂xm
----------    +    Transformation unendlich klein∑=

1    κ ε    i δ′    κ ε′= = =

γ lm

∂πiδ
x

∂xl
----------

∂γ iκ

∂xm
----------gδκ∑

γ lm

∂πκε
x

∂xl
-----------

∂γ iκ

∂xm
----------giε∑

γ lm

∂ piδ
x

∂xm
-----------

∂giκ

∂xl
---------- γ δκ⋅∑

γ lm

∂ pκε
x

∂xm
------------

∂giκ

∂xl
---------- γ iε∑

 γ lm

∂ pδi

∂xl
----------

∂gδκ

∂xm
-----------γ iκ∑+

γ lm

∂ piδ

∂xm
----------

∂giκ

∂xl
----------γ δκ∑

γ lm

∂ pδi

∂xl
----------

∂gδκ

∂xm
-----------γ iκ∑

1 p11+      p12      p13

p
21      1 p+ 22      p23

 p31      p32      1 p+ 33

1 p+ 11      p12      p13

1 p11+ p
12 p13 p14 1 p

11+

p
21 1 p+ 22 p23 p24 p21

p31 p32 1 p+ 33 p34 p31

p41 p42 p43 1 p
44+ p41

1 p+ 11 p12 p13 p14  

α 1
2
---+⎝ ⎠

⎛ ⎞ G
α 1

2
---+
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dx′
∂X′
∂x
--------dx  +

∂X
∂y
-------dy=

dy′
∂Y
∂x
-------dx  +

∂Y
∂y
-------dy=

pαα
x 0.=∑

1 ε1+ 1 ε1 ε2+( )+ 1=

1 ε2+
∂X x

∂x
--------- ∂Y x

∂y
---------+ 2=

∂2X x

∂x2
------------ 0=

∂2Y
∂y2
--------- 0=

γ 11 1–= γ 22 1=

γ 12 0=

∂X
∂x
------- ψ y( )=

y∂
∂Y χ x( )=

ψ y( ) χ x( )+ 2=

∂X
∂x
------- ∂Y

∂y
------- ∂Z

∂z
------+ + 3=

x2

2

∂
∂ X 0=

y2

2

∂
∂ Y 0=

z2

2

∂
∂ Z 0=

∂X
∂x
------- ψ1 yz( )=

∂Y
∂y
------- ψ2 zx( )=

∂Z
∂z
------ ψ3 xy( )=

ψ1
x yz( ) ψ2

x zx( ) ψ3
x xy( )+ + 0=

∂ψ1

∂z
----------

∂ψ2

∂z
----------+ 0=

beide konstant.

drei Dimensionen

Ist für die        ein System von 4 Bedingungen, wenn dies stets verschwinden

soll. Ferner soll Determinante stets gleich 1 sein.

px

Ist beides möglich?

Zum Vergleich mit dieser Bedingung
∂γ μν

′

∂xν
′

-----------∑ πνσ
∂

∂xσ
--------- pμα pνβγ αβ( )∑=

= pμα

∂γ ασ

∂xσ
------------ γ ασ

∂ pμα

∂xσ
------------∑+∑

ακ πμκ pμα

∂γ ασ

∂xσ
------------ πμκ

∂ pμα

∂xσ
------------γ ασ∑+∑=

für infinitesimale Transformation
∂ pκα

x

∂xσ
------------γ ασ∑ 0=

∂πνσ

∂xσ
------------∑

πνσ pμα

∂ pνβ

∂xσ
------------γ αβ∑
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∂ p11

∂x1
-----------

∂ p12

∂x2
-----------

∂ p13

∂x3
-----------+ + 0=

ψ1 ψ2 χ3 x y,( )=+

ψ2 ψ3 χ1 y z,( )=+

∂ pxx
x

∂x
-----------∑

∂ pyx
x

∂y
----------- .+ +

∂
∂x
------∂X

∂x
------- ∂

∂y
-----∂Y

∂x
------- ∂

∂z
-----∂Z

∂x
------+ + 0= =

T iκ
∂

∂xμ
-------- γ μν

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞∑ Skalar.=

X αxz=

ΔX 0
∂2ω1

∂y2
------------

∂2ω1

∂z2
------------+ ·= = =

ψ1 ψ1 y( ) ζ   + δx〈 〉
∂X
∂x
-------= =

ψ2 ψ2 x( ) ζ   – δy〈 〉
∂Y
∂y
-------= =

ψ3 ψ– 1 y( ) ψ2 x( )– ∂Z
∂z
------= =

X x ψ1 y( ) ζ+( ) x -η ζ+( ) ω1 yz( )+= =

Y y ψ2 x( ) ζ–( ) y ζ– ξ+( ) ω2 zx( )+= =

Z z– ψ1 y( ) ψ2 z( )–( ) z ξ– η+( ) ω3 xy( )+= =

Y αyz–=

Z 0=

ω1 α βy γz δ〈 〉α1yz ε y2 z2–( )+ + + +=

δx konst. α1z δy〈 〉 α2y δz〈 〉+ +=

∂X
∂x
------- ∂Y

∂y
-------+ 2=

∂ p11

∂x1
-----------

∂ p12

∂x2
-----------+ 0=

p11
∂X
∂x
-------  p12

∂X
∂y
-------=

p11 α1y 2+=

∂2X
∂x2
--------- ∂2X

∂y2
---------+ 0=

∂2Y
∂x2
--------- ∂2Y

∂y2
---------+ 0=

X α1xy α2 x2 y2–( ) x+ +=

Y β1xy β2 x2 y2–( ) y+ +=

α1y 2α2x β1x 2β2y–+ + 0=

β1 2α2–=

α1 2β2=

Integrabilitätsbedingungen

Torsion ganz spezieller Fall.

Ist Torsion

u im Falle z = t  gleichformige

Spezialisiert

Drehung.

 ∑

  +
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x′ x ωt y ωtsin+cos=

y′ x ωt y ωtcos+sin–=

dt′ dt=

dx′ ωt  dx ωt  dy x ωt y ωtcos+sin–( )ωdt+sin+cos=

dy′ ωsin t  dx ωcos t  dy x ωt y– ωtsincos–( ) ω dt++–=

dt′       0     dx    0      dy                                       dt++=

Tabelle der p

dt′ y– ωdx xωdy dz+ +=

t′=〈 〉        
 ∂ϕ
∂x
--------        

 ∂ϕ
∂y
--------    

∂ϕ
∂z
------ Tafel der p

ωt          ωt     x ωt y ωtcos+sin–sincos

ωsin t          ωt     x ωt y ωtsin+cos–cos–

0                  0                        1

Tafel der π

ωt           ωt                      0sincos

ωsin– t           ωt                      0cos

x  0 + y     y 0 x               1⋅+⋅ ⋅ ⋅

x ωt ωtxcossin .+〈 〉

∂πμν

∂xν
------------∑ 0=

c c0〈 〉eax=

x x′
a
2
---e2ax′t ′2+=

t eax′t′=

x′ x
a
2
---t2–=

t′ t 1 2〈 〉ax–( )=

dx′ dx atdt–=

dt′ 2〈 〉atdx– 1 2〈 〉ax–( )dt+=

Drehung

stimmt.

Beschleunigung

unmöglich.

immer erfüllt.

stimmt auch,

bei geeigneter Massstabverschie-

1 ωt xωt   +yω–

ωt– 1 xω  yωt–

0 0 1

1 2〈 〉ax+( )

yω  – xω+

bung.
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T iκ
x ∂

∂xμ
-------- ∂

∂xν
-------- γ iκ( )∑ Ist dies ein Skalar?

S πiα1
πκα2

T α1α2

x pμβ1
pνβ2

γ β1β2
πμσ

∂
∂xσ
--------- πντ

∂
∂xτ
-------- piε1

pκε2
γ ε1ε2

( )⋅∑=

pνβ2

 

β1 σ=

∑
∂πντ

∂xσ
-----------γ β1β2

πντ

∂ pνβ2

∂xσ
-------------γ β1β2∑– 0= =β2 τ=

σ

β1 σ=

also           heraus setzbarπντ

S′ πiα1
πκα2

T α1α2

x γ στ
∂

∂xσ
--------- ∂

∂xτ
-------- piε1

pκε2
γ ε1ε2

( )∑=

Beschränken uns auf infinitesimale Substitution

Dann muss, falls überhaupt eines der p diff wird, z. B. piε1

κ ε2=

i α1=
κ α2=

gesetzt werden.

S′ T iκ
x ∂

∂xσ
--------- ∂

∂xτ
--------γ στ piε1

γ
ε1κ

( )∑=
+ S
,     wobei p mindestens einmal

pκε2
γ ε2i(

zu differenzieren ist.

T iκ
∂

∂xσ
--------- γ στ

∂ piε1

∂xτ
------------γ ε1κ⎝ ⎠

⎛ ⎞        T iκγ στ
∂

∂xσ
--------- ∂

∂xε1

---------- piτγ ε1κ( )∑=

T iκ
∂

∂xσ
---------γ στ

∂2

∂xε1
∂σ

----------------- piτγ( ε1κ

T∑ iκγ στ

∂ piε1

∂xσ
------------

∂γ ε1κ

∂xτ
------------  +  

∂ piε1

∂xτ
------------

∂γ ε1κ

∂xσ
------------

∂2 piε1

∂xσ∂xτ
-----------------γ ε1κ+

⎝ ⎠
⎜ ⎟
⎛ ⎞

+ dasselbe mit vert. i u             Schon Summe über κ. ε1
Führt auf Schwierigkeiten.

γ μν
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versuch infinitesimale transformation ist schief symmetrisch. drehung

modifiziert.

dxν′ d∑ x p∑ νκ
x dxκ+=

pνκ
x pκν

x–= pνκ

∂Xν

∂xκ
----------=

∂Xν

∂xκ
----------

∂Xκ

∂xν
----------–=

1

G
-------- ∂

∂xμ
--------   Gγ μν

∂γ iκ

∂xν
----------

⎩ ⎭
⎨ ⎬
⎧ ⎫

∑

drehungsfeld in erster annäherung

g11dx2 . . . . . + g44dt2 ds2=

lagrange’sche funktion Φ L– H
ds
dt
-----= =

2L ẋ ωr ωt〈 〉ϕsin–( )2 ẏ ωr ωt〈 〉ϕcos+( )2 ż2+ +=

y

x

ωr

2L ẋ2 ẏ2 ż2+ +=

 2ωr ωt ẋ           + 2ωr ωt ẏcossin–

+ ω2r2

ds
dt
-----        Φ L– A

ω2r2

2
------------– ẋ2 ẏ2 ż2+ +

2
----------------------------– 2〈 〉ωr ωt〈 〉ϕ ẋ 2〈 〉ωr ωt〈 〉ϕ ẏcos–sin+=

ωyẋ       ω– xẏ

ds2

dt
-------- A2 ω2r2 2 ωtsin〈 〉 ω2y2 ẋ2 ω2x2 ẏ2 2Aω2–

r2

2
-----+ + +=

A
ω2r2

2
------------–⎝ ⎠

⎛ ⎞– ẋ2 ẏ2 ż2+ +( ) 2Aωyẋ 2Aωxẏ–+

ds2

dt
--------   berechnet bis und mit    ω2 u ẋ2

∂
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g11 A
ω2r2

2
------------–⎝ ⎠

⎛ ⎞– ω2y2+=

g21 0=

g31 0=

g41 2Aωy=

g12 0=

g22 A
ω2r2

2
------------–⎝ ⎠

⎛ ⎞– ω2x2+=

g32 0=

g42 2– Aωx=

g13 0=

g23 0=

g33 A
ω2r2

2
------------–⎝ ⎠

⎛ ⎞–=

g43 0=

g14 2Aωy=

g24 2– Aωx=

g34 0=

g44 A2 A– ω2r2=

∂X
∂x
------- ∂Y

∂y
-------+ 0=

p11
x p22

x+ 0=

dx′ 1 ∂2ψ
∂x∂y
------------+⎝ ⎠

⎛ ⎞ dx
∂2ψ
∂y2
----------dy+=

dy′ dy p21
x dx p22

x dy+( )+=

dx′ dx p11
x dx p12

x dy+( )+=

= 1– 2 5ω2r2 ω2r2〈 〉– 3ω2x2– 5ω2y2+,+

= 1– ω2r2

2
------------ ω2y2 ω2r2

2
------------ ω2x2 ω2r2

2
------------ ω2r2 4ω2x2– 4ω2y2+ + + + + + +

+  2〈 〉4ω2y2

G +  1– ω2r2

2
------------+ ω2y2+⎝ ⎠

⎛ ⎞ 1 ω2r2

2
------------– ω2x2– ω2r2

2
------------– ω2r2–⎝ ⎠

⎛ ⎞ 4ω2x2+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

A 1.=

Substitutionen mit Determinante 1.

Infinitesimal in 2 Variabeln

Y
∂ψ
∂x
-------–=X

∂ψ
∂y
-------=

p22  
∂2ψ
∂x∂y
------------–=

p12
∂2ψ
∂y2
----------=

p21  
∂2ψ
∂x2
----------–=

p11
∂2ψ
∂x∂y
------------=

δy  
∂ψ
∂x
-------–=

δx
∂ψ
∂y
-------=

y′ x
∂ψ
∂x
-------–=

x′ x
∂ψ
∂y
-------+=
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Differentialkovarianten für lineare Substitutionen, falls G = 1 gesetzt
wird.

Erster Ordnung

Innere Punktvektor

∂γ μν

∂xi
-----------∑

∂γ μν

∂xν
-----------∑

Aussere
· ·     Tensor–

∂gμν

∂xi
-----------∑

zweiten Grades gμσ

∂γ μν

∂xν
-----------∑ Ebenenvektor

gμν

∂γ μν

∂xi
-----------∑

γ μν

∂gμν

∂xi
-----------∑

Ebenenvektor

Ebenenvektor

γ μi

∂gμν

∂xi
----------- Ebenenvektor

Dazu die Tensoren dritter Mannigfaltigkeit

γ κi∑
∂γ μν

∂xi
-----------

·–  –gκμ∑
∂γ μν

∂xi
-----------

·  ·  ·
  ·–– 

γ iκ

giκ∑ ∂γ μν

∂xν
-----------

·  ·  ·

γ κi∑
∂gμν

∂xi
----------- ·  ––

·  ––γ κμ∑
∂gμν

∂xi
-----------

  ·    Tensor––

1)
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∂
∂xμ
-------- gmνγ αβ

∂2γ μν

∂xα∂xβ
------------------⎝ ⎠

⎛ ⎞ 1
2
---

∂gμν

∂xm
-----------γ αβ

∂2γ μν

∂xα∂xβ
------------------∑–

αβμν
∑  =

∂γ μν

∂xμ
-----------

μ
∑ 0=Dritte Ableitungen treten nicht auf, wenn                            ist.

∂gmν

∂xμ
------------

1
2
---

∂gμν

∂xm
-----------–⎝ ⎠

⎛ ⎞ γ αβ

∂2γ μν

∂xα∂xβ
------------------ gmν

∂γ αβ

∂xμ
------------

∂2γ μν

∂xα∂xβ
------------------

μναβ
∑+∑

γ μν

∂gλν

∂xμ
-----------∑ 0=

∂
∂xα
--------- gmν

∂γ αβ

∂xμ
------------ 

∂γ μν

∂xβ
-----------⎝ ⎠

⎛ ⎞   
∂

∂xα
---------

∂gμν

∂xβ
-----------γ μν

∂γ αβ

∂xμ
------------⎝ ⎠

⎛ ⎞–

∂
∂xμ
-------- gλνγ μν

ν
∑⎝ ⎠

⎛ ⎞ 0=

∂gμν

∂xα
----------- 

∂γ αβ

∂xμ
------------ 

∂γ μν

∂xβ
-----------–
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μν
l

1
2
--- 

∂gμl

∂xν
----------

∂gνl

∂xμ
----------

∂gμν

∂xl
-----------–+⎝ ⎠

⎛ ⎞= ∂
∂xκ
--------

i    l

m
     

∂
∂xi
-------–

κ   l

m

iκ, lm( )
1
2
--- 

∂2gim

∂xκ∂κl
-----------------

∂2gκl

∂xi∂xm
-----------------

∂2gil

∂xκ∂xm
------------------–

∂2gκm

∂xi∂xl
---------------–+⎝ ⎠

⎛ ⎞=

+ γ ρσ
i   m

σ

κ   l

ρ
  

i    l

σ
–

κ m

ρ
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

ρσ
∑

Grossmann
Tensor vierter
Mannigfaltigkeit

γ κl iκ lm,( )    ?∑

γ κl
κ   l

ρ∑ γ κl

∂gκρ

∂xl
-----------

∂glρ

∂xκ
----------

∂gκl

∂xρ
----------–+∑=

= 2〈 〉 ∂lgG
∂xρ

------------– 2 γ κl

∂gκρ

∂xl
-----------

κl
∑+

1
4
--- γ ρσ

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+⎝ ⎠

⎛ ⎞ ∂lgG
∂xρ

------------– 2 γ κl

∂gκρ

∂xl
-----------

κl
∑+∑

γ κlγ ρσ
i   m

σ

κ   l

ρ
  

i    l

σ
–

κ m

ρ
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

∑

= 
i   m

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

  ·  
∂lgG
∂xρ

------------– 2
i   m

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

  ·  γ κl

∂gκρ

∂xl
-----------

i   l

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

 
∂gκρ

∂xm
-----------⎝ ⎠

⎛ ⎞ γ κl
ρlκ
∑–

κlρ
∑+

ρ
∑

 
i   l

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

  ·  
ρ  m

l⎩ ⎭
⎨ ⎬
⎧ ⎫

ρl
∑+

∂2gκκ

∂xi∂xm
-----------------

∂2giκ

∂xκ∂xm
------------------–

∂2gmκ

∂xκ∂xi
----------------–⎝ ⎠

⎛ ⎞

κ
∑ 0=

Sollte verschwinden.
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ϕ γ imγ κl

∂2gim

∂xκ∂xl
----------------

∂2gil

∂xκ∂xm
------------------–⎝ ⎠

⎛ ⎞

imκl
∑=

+ γ ρσγ imγ κl
i   m

σ

κ   l

ρ
  

i    l

σ
–

κ m

ρ
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

ρσimκl
∑

γ ρσγ
im

γ κl

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xl
-----------

∂glρ

∂xκ
----------

∂gκl

∂xρ
----------–+⎝ ⎠

⎛ ⎞

ρσimκl
∑

 giσ

∂γ im

∂xm
-----------–    gmσ–

∂γ im

∂xi
-----------   γ im–

∂gim

∂xσ
-----------   g– κρ

∂γ κl

∂xl
----------   g– lρ

∂gκl

∂xκ
----------    γκl–

∂gκl

∂xρ
---------- 

γ ρσ
∂lgG
∂σ

------------ 
∂lgG

∂ρ
------------  γ ρσ

∂lgG
∂xσ

------------ gκρ

∂γ κl

∂xl
---------- glρ

∂γ κl

∂xκ
----------+⎝ ⎠

⎛ ⎞ ∂lgG
∂xρ

------------  ·  2
∂γ ρα

∂xα
------------+ +

∂lgG
∂xσ

------------  ( 
∂γ ρα

∂xα
------------

∂γ σα

∂xα
------------ )+

+ 2
∂γ ρα

∂xα
------------ gκρ

∂γ κl

∂xl
---------- glρ

∂γ κl

∂xκ
----------+⎝ ⎠

⎛ ⎞
3

∂lgG
∂xσ

------------ 
∂γσα

∂xα
------------ ∂lgG

∂xσ
------------ 

∂γρα

∂xα
------------+

l  ρ  κ  α

κ   ρ  α  β
4gκρ

∂γ κα

∂xα
------------ 

∂γ ρβ

∂xβ
-----------

4 2〈 〉gκρ

∂γ κα

∂xα
------------ 

∂γ ρβ

∂xβ
----------- 2gκρ

∂γ κα

∂xα
------------    · 

 1 
4
------+

war richtig.

4
∂γ ρα

 
------------

γρσ giσ

∂γ im

∂xm
----------- gmσ

∂γ im

∂xi
----------- γ im

∂gim

∂xσ
-----------+ +⎝ ⎠

⎛ ⎞ gκρ

∂γ κl

∂xl
---------- glρ

∂γ κl

∂xκ
---------- γκl

∂gκl

∂xρ
----------+ +⎝ ⎠

⎛ ⎞∑

∂γ ρm

∂xm
------------

∂γ iρ

∂xi
----------+

2
∂γ ρα

∂xα
------------

γρσ
∂lgG
∂xσ

------------
∂lgG
∂xρ

------------
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γ ρσγ imγ κl
i   l
σ

 κ m
ρ

γ ρσ– γ imγ κl 

∂giσ

∂xl
----------

∂glσ

∂xi
----------

∂gil

∂σ
---------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xm
-----------

∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–+⎝ ⎠

⎛ ⎞

∂γ i
giσ–

γ ρσγ imγ κl

∂giσ

∂xl
---------- γ κl

∂γ ρm

∂xl
------------–=

giσ

∂γ im

∂xl
-----------–

γ ρσγ imγ κl

∂glσ

∂xi
---------- γ im

∂γ κρ

∂xi
-----------–=

glσ

∂γ κl

∂xi
----------–

γ ρσ– γ imγ κl

∂gil

∂xσ
--------- + γ ρσ

∂γ κm

∂xσ
------------=

gil–
∂γ κl

∂xσ
----------

γ κl

∂γ ρm

∂xl
------------ γ im

∂γ κρ

∂xi
----------- γ ρσ

∂γ κm

∂xσ
------------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xm
-----------

∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–+⎝ ⎠

⎛ ⎞

= γ κl

∂γ mρ

∂xl
------------ 

∂gmρ

∂xκ
------------ + γ im

∂γ κρ

∂xi
----------- 

∂gκρ

∂xm
----------- γ ρσ

∂γ κm

∂xσ
------------ 

∂gκm

∂xρ
------------+

γ κl

∂γ ρm

∂xl
------------ 

∂gκρ

∂xm
-----------  

∂gκm

∂xρ
------------–⎝ ⎠

⎛ ⎞ =  gκρ 
∂γ κl

∂xm
----------–  

∂γ ρm

∂xl
------------ gκm

∂γ κl

∂xρ
---------- 

∂γ mρ

∂xl
------------+ 0=

in Summe

 gκρ 
∂γ κl

∂xm
----------       + gκm

∂γ κl

∂xρ
----------–

γ im

∂γ κρ

∂xi
----------- 

∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–⎝ ⎠

⎛ ⎞ <  =  0>  =  0

γ ρσ

∂γ κm

∂xσ
------------ 

∂gκρ

∂xm
-----------

∂gmρ

∂xκ
------------+⎝ ⎠

⎛ ⎞–  gκρ

∂γ κm

∂xσ
------------ 

∂γ ρσ

∂xm
----------- gmρ

∂γ mκ

∂xσ
------------ 

∂γ ρσ

∂xκ
-----------+=

2

 gκρ

∂γ ρσ

∂xm
----------- gmρ

∂γ ρσ

∂xκ
-----------
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1
4
---    4gκρ

∂γ κα

∂xα
------------ 

∂γ ρβ

∂xβ
----------- 3γ κl

∂γ mρ

∂xκ
------------ 

∂gmρ

∂xl
------------ 2gκρ

∂γ κm

∂xσ
------------ 

∂γ ρσ

∂xm
-----------+ +

Die zweite Summe reduziert sich also in dem Falle, dass G = 1

Wenn Determinante G = 1, so ist ferner

γ imγ κl

∂2gim

∂xκ∂xl
----------------∑ gimγ κl

∂2γ im

∂xκ∂xl
----------------∑=

γ imγ κl

∂2gil

∂xκ∂xm
------------------∑– 2γ im

∂gil

∂xκ
--------- 

∂γ κl

∂xm
---------- gilγ im

∂2γ κl

∂xk∂xm
------------------∑+∑=

 < 2 > gil

∂γ im

∂xκ
----------- 

∂γ κl

∂xm
---------- gil

∂γ lα

∂xα
---------- 

∂γ iβ

∂xβ
----------∑–∑–

3 gκρ∑
∂γ κα

∂xα
------------ 

∂γ ρβ

∂xβ
----------- gimγ κl

∂2γ im

∂xκ∂xl
---------------- gilγ im

∂2γ κl

∂xκ∂xl
----------------∑+∑+

+ 3 γ κl

∂γ mρ

∂xκ
------------ 

∂gmρ

∂xl
------------∑

∂2γ κl

∂xκ∂xl
----------------∑ 0    ?=⎝ ⎠

⎛ ⎞

3– gmpγ κl

∂2γ mρ

∂xκ∂xl
----------------∑

< 4 > gκρ∑ 4
∂γ κα

∂xα
------------ 

∂γ ρβ

∂xβ
----------- 2– γ αβ

∂2γ κρ

∂xα∂xβ
------------------ γ κm

∂2γ αρ

∂xα∂xm
-------------------+

gκρ γ αβ

∂2γ κρ

∂xα∂xβ
------------------ 2

∂γ κα

∂xβ
------------

∂γ ρβ

∂xα
-----------– 4

∂2γ αβ

∂xα∂xβ
------------------∑+∑

gκρ γ αβ

∂2γ κρ

∂xα∂xβ
------------------ 2

∂γ κα

∂xβ
------------

∂γ ρβ

∂xα
-----------– γ κρ

∂2γ αβ

∂xα∂xβ
------------------+∑

gesetzt werden darf, auf
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gκρ

∂γ κα

∂xα
------------ 

∂γ ρβ

∂xβ
----------- 3

4
---γ κl

∂γ mρ

∂xκ
------------ 

∂gmρ

∂xl
------------ 1

2
---gκρ

∂γ κm

∂xσ
------------ 

∂γ ρσ

∂xm
-----------+ +

3
4
---gmργ κl

∂2γ mρ

∂xκ∂xl
----------------–

1
4
---

1
2
---–

γ imγ κl

∂2gim

∂xκ∂xl
----------------    = gimγ κl

∂2γ im

∂xκ∂xl
----------------+

γ– imγ κl

∂2gil

∂xκ∂xm
------------------  =     gilγ im

∂2γ κl

∂xκ∂xm
------------------   gil

∂γ im

∂xm
----------- 

∂γ κl

∂xκ
---------- gil

∂γ im

∂xκ
-----------  

∂γ κl

∂xm
---------- ––

∂2γ αβ

∂xα∂xβ
------------------

i      l    m      κ
κ     ρ    α     β

gκργ κα

∂2γ ρβ

∂xα∂xβ
------------------

1
4
---gκργ αβ

∂2γ κρ

∂xα∂xβ
------------------ 1

2
---gκρ

∂γ κα

∂xβ
------------ 

∂γ ρβ

∂xα
----------- 

∂2γ αβ

∂xα∂xβ
------------------+–

T iκ
1
4
---γ αβ

∂2γ iκ

∂xα∂xβ
------------------ 1

2
---

∂γ iα

∂xβ
---------- 

∂γ κβ

∂xα
----------- 

1
2
---γ κβ

∂2γ iα

∂xα∂xβ
------------------ 1

2
---γ iα

∂2γ κβ

∂xα∂xβ
------------------+ +–=

∂
∂xα
--------- 

∂
∂xβ
-------- γ iαγ κβ( ) γ iα

∂2γ κβ

∂xα∂xβ
------------------ γ κβ

∂2γ iα

∂xα∂xβ
------------------

∂γ iα

∂xα
---------- 

∂γ κβ

∂xβ
-----------

∂γ iα

∂xβ
---------- 

∂γ κβ

∂xα
-----------+ + +=
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∂gim

∂xκ
-----------γ im 0=

∂2gim

∂xl∂xκ
----------------γ im

∂gim

∂xκ
----------- 

∂γ im

∂xl
-----------+ 0=

∂2γ im

∂xκ∂xl
----------------gim

∂gim

∂xl
----------- 

∂γ im

∂xκ
-----------+ 0= γ κl

γ κl

γ κlgil

gil

∂γ κl

∂xκ
---------- γ κl

∂gil

∂xκ
---------+ 0=

gil

∂2γ κl

∂xκ∂xm
------------------

∂gil

∂xm
--------- 

∂γ κl

∂xκ
----------

∂γ κl

∂xm
---------- 

∂gil

∂xκ
---------+⎝ ⎠

⎛ ⎞ γ κl

∂2gil

∂xκ∂xm
------------------+ + 0= γ im

gil

∂γ im

∂xm
----------- 

∂γ κl

∂xκ
---------- gil

∂γ im

∂xκ
----------- 

∂γ κl

∂xm
----------––
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Punkttensor der Gravitation.

iκ lm,( ) Ebenentensor vierter Mannigfaltigkeit=

γ κlγ ipγ mq iκ lm,( )
iκlm
∑ Punkttensor.=

i κ  lm,( )
∂2gim

∂xκ∂xl
----------------

∂2gil

∂xκ∂xm
------------------– γ ρσ

i   m

σ

κ   l

ρ
  

i    l

σ
–

κ m

ρ
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

ρσ
∑+=

1
4
---γ κlγ ip

γ mqγ ρσ

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+

⎝ ⎠
⎜ ⎟
⎛ ⎞ ∂gκρ

∂xl
-----------

∂glρ

∂xκ
----------

∂gκl

∂xρ
----------–+⎝ ⎠

⎛ ⎞

1
4
---γ ρσ γ mqgiσ

∂γ ip

∂xm
----------– γ ipgmσ

∂γ mq

∂xi
------------–

∂γ pq

∂xσ
-----------+⎝ ⎠

⎛ ⎞ gκργ ρσ

∂γ κl

∂xl
----------– glργ ρσ

∂γ κl

∂xκ
----------– gκlγ ρσ

∂lgG
∂xρ

-------------+⎝
⎛

lgG 0  gesetzt.=

1
4
--- γ mq

∂γ ρp

∂xm
----------- γ ip

∂γ ρq

∂xi
----------- γ ρσ

∂γ pq

∂xσ
-----------–+⎝ ⎠

⎛ ⎞ gκρ

∂γ κl

∂xl
---------- glρ

∂γ κl

∂xκ
----------⎠

⎞+⎝
⎛

1
4
---– γ κlγ ip

γ mqγ ρσ

∂giσ

∂xl
----------

∂glσ

∂xi
----------

∂gil

∂xσ
---------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xm
-----------

∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–+⎝ ⎠

⎛ ⎞

ρ i= l p= κ q=

∂γ ρp

∂xl
----------- gκρ

∂γ κl

∂xm
----------γ mq gmργ κl

∂γ mq

∂xκ
------------

∂γ ql

∂xρ
----------–+⎝ ⎠

⎛ ⎞

∂γ ρσ

∂xσ
-----------– gκρ

∂γ κp

∂xm
-----------γ mq gmργ κp

∂γ mq

∂xκ
------------

∂γ κl

∂xρ
----------–+⎝ ⎠

⎛ ⎞

+

 zu umständlich.

 1
4
---

∂γ ip

∂xl
----------γ ρσgiσ

∂γ ρσ

∂xi
-----------glσγ ip gil

∂γ ρσ

∂xσ
-----------γ ip–+⎝ ⎠

⎛ ⎞ gκρ

∂γ κl

∂xm
----------γ mq gmρ

∂γ mq

∂xκ
------------γ κl gκmγ mq

∂γ κl

∂xρ
---------- –+⎝ ⎠

⎛ ⎞–
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Auf zwei Arten Ebenentensor gebildet.

1. Art

gκσgρτ γ αβ

∂2γ κρ

∂xα∂xβ
------------------ 2

∂γ κα

∂xβ
------------

∂γ ρβ

∂xα
-----------– γ κρ

∂2γ αβ

∂xα∂xβ
------------------+∑

γ αβ

∂2gτσ

∂xα∂xβ
------------------– 2γ αβγ κρ

∂gρτ

∂xβ
-----------

∂gκσ

∂xα
------------+ gστ

∂2γ αβ

∂xα∂xβ
------------------

2γ καγ ρβ

∂gκσ

∂xβ
------------

∂gρτ

∂xα
-----------–

2. Art

1
2
--- γ g〈 〉κl

∂2gim

∂xκ∂xl
----------------

∂2gκl

∂xi∂xm
-----------------

∂2gil

∂xκ∂xm
------------------–

∂2gκm

∂xi∂xl
---------------–+⎝ ⎠

⎛ ⎞∑

+ 
1

4 2〈 〉
----------- γ κlγ ρσ

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xl
-----------

∂glρ

∂xκ
----------

∂gκl

∂xρ
----------–+⎝ ⎠

⎛ ⎞

κlρσ
∑

vereinigt sich          fällt weg

 
1

4 2〈 〉
-----------– γ κlγ ρσ

∂giσ

∂xl
----------

∂glσ

∂xi
----------

∂gil

∂xσ
---------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xm
-----------

∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–+⎝ ⎠

⎛ ⎞∑

 
1
2
--- 〈 〉 γ κlγ ρσ

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+⎝ ⎠

⎛ ⎞ ∂gκρ

∂xl
-----------

κlρσ
∑ 1

2
---–

∂γ ρσ

∂xρ
-----------

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+⎝ ⎠

⎛ ⎞∑=

ρ l=
gκρ

∂γ ρσ

∂xl
------------–

 
1
4
---– γ κlγ ρσ

∂glσ

∂xi
---------- 

∂gκρ

∂xm
----------- 1

4
---– γ κlγ ρσ

∂giσ

∂xl
----------

∂gil

∂xσ
---------–⎝ ⎠

⎛ ⎞ ∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–⎝ ⎠

⎛ ⎞∑∑

∂γ lσ

∂xm
----------+–

gκm

∂γ κl

∂xρ
----------gκρ

∂γ ρσ

∂xm
-----------–

γ κlγ ρσ

∂gκρ

∂xm
-----------

∂gmρ

∂xκ
------------

∂gκm

∂xρ
------------–+⎝ ⎠

⎛ ⎞

+
1
4
---

∂γ ρσ

∂xi
-----------

∂gσρ

∂xm
------------

∂γ ρσ

∂xi
-----------– glσ

giσ

∂γ ρσ

∂xl
-----------γ κl
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1
2
---γ κl

∂2gim

∂xκ∂xl
----------------

∂2gκl

∂xi∂xm
-----------------

∂2gil

∂xκ∂xm
------------------–

∂2gmκ

∂xi∂xl
---------------–+⎝ ⎠

⎛ ⎞

1
2
---

∂γ σρ

∂xρ
-----------

∂giσ

∂xm
----------

∂gmσ

∂xi
------------

∂gim

∂xσ
-----------–+⎝ ⎠

⎛ ⎞–
1
4
---

∂γ ρσ

∂xi
-----------

∂gρσ

∂xm
------------+

                                               

1
4
---γ ρσ

∂2γ ρσ

∂xi∂xm
-----------------–

1
4
---γ κlγ ρσ

∂giσ

∂xl
----------

∂glσ

∂xi
----------–⎝ ⎠

⎛ ⎞ ∂gmρ

∂xκ
------------

∂gκρ

∂xm
-----------–⎝ ⎠

⎛ ⎞–

1
4
---–

∂γ lσ

∂xm
----------

∂giσ

∂xl
----------

∂γ ρσ

∂xi
-----------

∂gmρ

∂xσ
------------

∂γ lσ

∂xm
----------

∂glσ

∂xi
----------–+⎝ ⎠

⎛ ⎞ 1
4
---γ κlγ ρσ

∂giσ

∂xl
----------

∂gmρ

∂xκ
------------  [eq. 132]–

1
2
---

∂γ κρ

∂xi
-----------

∂gκρ

∂xm
-----------

i  m        
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Nebenrechnungen.

γ ρσ

∂gρσ

∂xm
------------∑ 0=

∂γ ρσ

∂xm
-----------gρσ∑ 0=

γ ρσ

∂2gρσ

∂xi∂xm
-----------------

∂γ ρσ

∂xi
-----------

∂gρσ

∂xm
------------∑+∑ 0=

γ κlγ ρσ

∂gκρ

∂xm
----------- γ κlγ ρσ

∂gmρ

∂xκ
------------–

gκρ

∂γ ρσ

∂xm
-----------–

∂γ lσ

∂xm
----------–

 + 
∂γ lσ

∂xm
---------- γ κlγ ρσ

∂gmρ

∂xκ
------------+⎝ ⎠

⎛ ⎞ ∂giσ

∂xl
----------

∂glσ

∂xi
----------–⎝ ⎠

⎛ ⎞–

∂γ ρσ

∂xi
-----------glσγ κl

∂gmρ

∂xκ
------------

∂γ ρσ

∂xi
----------- 

∂gmρ

∂xσ
------------

∂γ lσ

∂xm
----------

∂giσ

∂xl
---------- +〈 〉

∂γ lσ

∂xm
----------

∂glσ

∂xi
----------–

∂γ ρσ

∂xi
-----------

∂gmρ

∂xσ
------------ γ κlγ ρσ

∂giσ

∂xl
----------

∂gmρ

∂xκ
------------+ +

γ κl

∂2gil

∂xκ∂xm
------------------

0
∂

∂xκ
--------

 

 ⎝
⎛=
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Nochmalige Berechnung des Ebenentensors

1
2
---

∂2gim

∂xκ∂xl
----------------

∂2gκl

∂xi∂xm
-----------------

∂2gil

∂xκ∂xm
------------------–

∂2gκm

∂xi∂xl
---------------–+⎝ ⎠

⎛ ⎞

1
4
---– γ ρσ

∂giρ

∂xl
----------

∂glρ

∂xi
----------

∂gil

∂xρ
---------–+⎝ ⎠

⎛ ⎞ ∂gκσ

∂xm
------------

∂gmσ

∂xκ
------------

∂gmκ

∂xσ
------------–+⎝ ⎠

⎛ ⎞

1
2
---γ κl

∂2gim

∂xκ∂xl
---------------- bleibt stehen.

γ κl

γ κl
κ   l

i
γ κl 2

∂gil

∂xκ
---------

∂gκl

∂xi
----------–⎝ ⎠

⎛ ⎞ 0= =

γ κl
κ   l

m
    γ κl 2

∂gmκ

∂xl
------------

∂gκl

∂xm
----------–⎝ ⎠

⎛ ⎞ 0=

∂
∂xm
---------

∂
∂xi
-------

2γ κl

∂2gil

∂xκ∂xm
------------------

∂2gmκ

∂xi∂xl
---------------

∂2gκl

∂xi∂xm
-----------------–+⎝ ⎠

⎛ ⎞ ∂γ κl

∂xm
---------- 2

∂gil

∂xκ
---------

∂gκl

∂xi
----------–⎝ ⎠

⎛ ⎞ ∂γ κl

∂xi
---------- 2

∂gmκ

∂xl
------------

∂gκl

∂xi
----------–⎝ ⎠

⎛ ⎞+ + 0=

1
2
---γ κl        ( )–

1
4
---

∂γ κl

∂xm
---------- 2

∂gil

∂xκ
---------

∂gκl

∂xi
----------–⎝ ⎠

⎛ ⎞ ∂γ κl

∂xi
---------- 2

∂gmκ

∂xl
------------

∂gκl

∂xi
----------–⎝ ⎠

⎛ ⎞+=

zweites Glied:

1
4
---– γ ρσ

∂glρ

∂xi
---------- 

∂gκσ

∂xm
------------γ κl

+
1
4
---

∂γ ρσ

∂xi
----------- 

∂gκσ

∂xm
------------glργ lκ

1
4
---

∂γ ρσ

∂xi
----------- 

∂gκσ

∂xm
------------

1
4
---– γ ρσ

∂giρ

∂xl
----------

∂gil

∂xρ
---------–⎝ ⎠

⎛ ⎞ ∂gmσ

∂xκ
------------

∂gmκ

∂xσ
------------–⎝ ⎠

⎛ ⎞ γ κl

=
1
2
---γ ρσγ κl

∂giρ

∂xl
----------

∂gmσ

∂xκ
------------–

1
2
---γ ρσγ κl

∂gil

∂xρ
---------

∂gmσ

∂xκ
------------+

Der mit 2 multiplizierte Ebenentensor erhält also die Form

1
2
---〈 〉 γ κl

∂2gim

∂xκ∂xl
---------------- 1

2
---

∂γ κl

∂xm
----------

∂gκl

∂xi
----------–

∂γ κl

∂xm
----------

∂gil

∂xκ
---------

∂γ κl

∂xi
----------

∂gm
l

κ
∂x l

κ

-------------+ +

γ– ρσγ κl

∂giρ

∂xl
----------

∂gmσ

∂xκ
------------ γ+ ρσγ κl

∂gil

∂xρ
---------

∂gmσ

∂xκ
------------

Resultat sicher. Gilt für Koordinaten, die der Gl.                 genügen. Δϕ 0=
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Für die erste Annäherung lautet unsere Nebenbedingung.

γ κκ 2
∂giκ

∂xκ
----------

∂gκκ

∂xi
-----------–⎝ ⎠

⎛ ⎞

κ
∑ 0=

γ κκ

∂giκ

∂xκ
----------∑ 0       u       gκκ∑ konst.= =

Zerfällt vielleicht in

Gleichungen

γ κκ

∂2gim

∂xκ
2

-------------∑ Kρ0

dxi

ds
-------

dxm

ds
---------giigmm=

γ κκ

∂2gim

∂xκ
2

-------------
∂gim

∂xσ
-----------

κim
∑ γ κκ

∂
∂xκ
--------

∂gim

∂xκ
-----------

∂gim

∂xσ
-----------⎝ ⎠

⎛ ⎞ 1
2
--- ∂

∂xσ
---------

∂2gim
2

∂xκ
--------------⎝ ⎠

⎛ ⎞
2

–
κim
∑=

Energie- u Impulssatz gilt mit der in Betr. kommenden Annäherung.
Eindeutigkeit u Nebenbedingungen

gim Kρ0

dxi

dxτ
--------

dxm

dxτ
---------=

wi   wm   

icdt du=

Kontinuitätsbedingung                Dichte materieller Punkte
ρ0

1 q2

c2
------–

-------------------

 
ic

∂
∂t
-----

ρ0ic

1 q2

c2
-----–

-------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–
∂

∂x
------

ρ0qx

        

 

----------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

  ·     ·  + += dt 1 q2

c2
-----– dτ=

∂
∂x
------ ρ0wx( )

∂
∂y
----- ρ0wy( )   ·   

∂
∂u
------ ρ0wu( )+ + + 0=

ẋ

 
-----  

ẏ

 
-----  ·  

ic

 
-----

wx         wu
Beide obige Bedingungen sind
aufrecht zu erhalten.

∂
∂x
------ ρ0wxwx( )

∂
∂y
----- ρ0wxwy( )   ·       · + + +

ρ0wx

∂wx

∂x
--------- ρ0wy

∂wx

∂y
---------–   ·       ·  ––– 0=

ρ
Dwx

Dτ
-----------–

2< 
∂

∂xm
--------- >

∂
∂xm
--------- ρ0wiwm( )∑

∂
∂xi
-------

∂ρ0wmwm

∂xi
------------------------⎝ ⎠

⎛ ⎞∑–

2 ρ0wm

∂wi

∂xm
---------  ∑–

m
∑

γ κκ
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∂giκ

∂xκ
----------∑ 0= gκκ

x∑ 0=

∂2giκ

∂xσ
2

-------------
σ
∑ ρ0

dxi

dτ
-------

dxκ

dτ
--------- 1

4
---ρ0

dxκ

dτ
---------

dxκ

dτ
---------∑⎝ ⎠

⎛ ⎞–=

für gleiche  i  u  κ.

∂giκ

∂xκ
----------

1
2
---

∂gκκ

∂xi
-----------–⎝ ⎠

⎛ ⎞∑ 0= ∂∑ Δgim  =

gκκ∑ U=

Gravitationsgleichungen

Δ g11
1
2
---U–⎝ ⎠

⎛ ⎞ T 11      Δg12 T 12        ·        Δg14 T 14= = =

2ΔU T κκ∑=

Hieraus Gleichungen

Δg11 T 11
1
2
--- T κκ      Δg12 T 12        ·        Δg14 T 14= =∑+=

1
2
--- ΔU

∂gκκ

∂xσ
-----------∑–

1
2
---

∂2
gαα

∂xβ∂xβ
------------------

∂gκκ

∂xσ
-----------∑–

1
2
--- ΔU

∂U
∂xσ
---------∑–= =

=  
1
2
--- ∂2U

∂x2
----------    ·       ·       ·+++

∂U
∂xσ
---------∑–

Darstellbar in der verl. Form.
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gμνdxμdxν∑ dτ2=

η dτ
dt
----- g11 ẋ2  ·  ·++  2g12 ẋ ẏ  ·· 2g14 ẋ+ +   ·· g44+= =

η t   Extr.d∫ η~Φ L–

∂η
∂ ẋ
------– Impuls

2 g11 ẋ g12 ẏ · g14+ + +( )

2η
-----------------------------------------------------------– g11

dx
dτ
------ g12

dy
dτ
------· g14

dt
dτ
-----++⎝ ⎠

⎛ ⎞–= = =

η
∂η
∂ ẋ
------ ẋ∑– Energie=

=  
dτ
dt
----- dx

dt
------ g11

dx
dτ
------ g12

dy
dτ
------+ · g14

dt
dτ
-----++⎝ ⎠

⎛ ⎞–

dy
dt
------ g21

dx
dτ
------ g22

dy
dτ
------         ·     + +⎝ ⎠

⎛ ⎞

dz
dt
----- g31

dx
dτ
------⎝

⎛      ·       ·      · +

∂η
∂x
------–

dt
dτ
-----

∂gμν

∂xσ
-----------

dxμ

dt
---------

dxν

dt
--------∑–=

Kraft pro Volumeneinheit

G
∂gμν

∂xσ
-----------

dxμ

dτ
---------

dxν

dτ
--------∑–

=  
dτ
dt
----- 1

dtdτ
----------- dτ2 g14dxdt g24dydt   · g44dtdt+ + +(–[ ]–

Energie.
1

dtdτ
----------- g14dxdt g2dydt   · g44dtdt+ + +( ) g14

dx
dτ
------ g24

dy
dτ
------ +   · g44

dt
dτ.
-------++= =

Negativer Impuls u Energie bilden Vierervektor. Noch mit  m  zu mult..

Zugehörige Dichten durch V div. V
1

G
-------- · 

dτ
dt
----- · 

m
ρ0
-----=

Impulsdichte  g11
dx
dτ
------ dt

dτ
----- g12

dy
dτ
------ dt

dτ
----- · g14

dt
dτ
-----+ ++⎝ ⎠

⎛ ⎞ ρ0 G–

Energiedichte g41
dx
dτ
------ dt

dτ
-----                                  +⎝ ⎠

⎛ ⎞ ρ0 G.

Tensor der materiellen Strömung T iκ ρ0

dxi

dτ
-------

dxκ

dτ
---------=

Hieraus gemischter Tensor T νκ′ gνi dx〈 〉T iκ
i

∑–= Sp. - Energie - Tensor.

∂
∂xκ
-------- GgνiT iκ( )

κ
∑
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1
2
---   Δgiκ

∂giκ

∂xσ
---------- +〈 〉

1
2
--- ∂U

∂
-------〈 〉ΔU

∂U
∂xσ
---------

κ
∑–

iκ
∑–

∂2U
∂xν

2
---------- ∂U

∂xσ
--------- ∂

∂xν
-------- ∂U

∂xν
-------- ∂U

∂xσ
---------⎝ ⎠

⎛ ⎞ 1
2
--- ∂

∂xσ
--------- ∂U

∂xν
--------⎝ ⎠

⎛ ⎞ 2
–=

∂2giκ

∂xν
2

-------------
∂giκ

∂xσ
---------- ∂

∂xν
--------

∂giκ

∂xν
----------

∂giκ

∂xσ
----------⎝ ⎠

⎛ ⎞ 1
2
--- ∂

∂xσ
---------

∂giκ2

∂xν
------------⎝ ⎠

⎛ ⎞–=

∂
∂xν
--------

∂giκ

∂xν
----------

∂giκ

∂xσ
----------⎝ ⎠

⎛ ⎞ 1
2
--- ∂

∂xσ
---------

∂giκ

∂xν
----------⎝ ⎠

⎛ ⎞
2

iκν
∑–

iκν
∑

1
2
--- ∂

∂xν
-------- ∂U

∂xν
-------- ∂U

∂xσ
---------⎝ ⎠

⎛ ⎞ 1
4
--- ∂

∂xσ
--------- ∂U

∂xν
--------⎝ ⎠

⎛ ⎞ 2

∑+
ν
∑–

< U  muss verschwinden. >

∂
∂xν
-------- γ νσγ αβ

∂giκ

∂xα
----------

∂γ iκ

∂xβ
----------⎝ ⎠

⎛ ⎞

∂giκ

∂xσ
----------γ μν

∂2giκ

∂xμ∂xν
------------------ ∂

∂xν
-------- γ μν

∂giκ

∂xσ
----------

∂giκ

∂xμ
----------⎝ ⎠

⎛ ⎞ ∂giκ

∂xμ
---------- ∂

∂xν
--------

∂giκ

∂xσ
----------γ μν⎝ ⎠

⎛ ⎞–=

Wenn
∂γ μν

∂xν
-----------∑ 0=

γ μν

∂giκ

∂xμ
----------

∂2giκ

∂xν∂xσ
------------------–

zweiter Tensor transformiert

πσα
∂

∂xα
---------〈 〉
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X  Komponente der ponderomotischen Kraft:

∂gμν∑
∂xσ

--------------------- ẋμ ẋν ρ0 G〈 〉

g44 g11 ẋ2   ·  ·  ·+ +
---------------------------------------------------–

x

1– 0 0 0

0 1– 0 0

0 0 1– 0

0 0 0 c2

Energie des Punktes

g14
dx
dt
------ g24

dy
dt
------+  · g44+⎝ ⎠

⎛ ⎞ ρ0 G〈 〉

g44 g11 ẋ2   ·  ·  ·+ +
--------------------------------------------------------------------------------

g14  g24   · · · ·  verschwinden sicher im statischen Felde. Soll die Kraft sich 
ändern wie die Energie, so müssen im statischen Felde                etc.g11, g22
verschwinden.

Statischer Spezialfall.

Xx
1
c
---∂c

∂x
------∂c

∂x
------ 1

2c
------grad2c–=

4Xx
1
c3
-----

∂ c2

2〈 〉
--------

∂x
---------

∂ c2

2〈 〉
--------

∂x
--------- 1

2c3
--------grad2c2–=

 =  c · 
1
c2
----- · 

1
c2
-----∂c2

∂x
--------∂c2

∂x
-------- 1

2
--- 1

c
---〈 〉c · 

1
c2
----- · 

1
c2
-----grad2c2–

= G– γ 44γ 44

∂ γ〈 〉g44

∂x
-------------------

∂ γ〈 〉g44

∂x
------------------- 1

2
---γ 44γ 44

∂ 2〈 〉 γ〈 〉g44

∂xν
--------------------------

γ〈 〉∂g44

∂xν
-------------------

ν
∑

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

Unmöglich wegen Divergenzgleichung

G–
∂

1

c2
-----

∂x
-------

∂c2

∂x
--------

G    
∂γ iκ

∂x
----------

∂giκ

∂x
----------

iκ
∑ Spezialfall wahrscheinlich

unrichtig.
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∂γ μν′

∂xν′
-------------∑ 0= pμν 1=

πνi
∂

∂xi
------- pμα pνβγ αβ{ }∑ 0=

 ∑

= pμα

∂γ αi

∂xi
---------- γ αβπνi

∂ pμα pνβ

∂xi
---------------------∑+∑

γ αβπνi pμα

∂ pνβ

∂xi
------------ pνβ

∂ pμα

∂xi
------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

∑

= γ αi

∂ pμα

∂xi
------------ γ αβπνi pμα

∂ pνβ

∂xi
------------∑+∑

verschwindet, wenn
Funkt. Det. = 1.

= 
∂

∂xi
------- γ αi pμα( ) pμα

∂γ αi

∂xi
---------- ∂

∂xi
-------+ γ αi pμα( )– γ αβ pμα pνβ

∂πνi

∂xi
----------–∑

 

0

=

∂
∂xi
------- γ αi pμα( )–

γ αi

∂ pμα

∂xi
------------ γ αβ pμαπνi

∂ pνβ

∂xi
------------+∑

γ κl

∂2gκi

∂xl∂xm
-----------------

∂2gκm

∂xl∂xi
---------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

∑

=  · –
∂

∂xm
--------- γ κl

∂gκi

∂xl
----------∑+

Genugt, wenn                 verschwindet.
∂γ κl

∂xl
----------∑

γ lmT iκlm
lm
∑

giκ
γ iκ

∂G

∂xi∂xκ
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Grossmann

T il

∂  i  κ
κ⎩ ⎭

⎨ ⎬
⎧ ⎫

∂xl
-----------------

∂  i  l
κ⎩ ⎭

⎨ ⎬
⎧ ⎫

∂xκ
----------------–  i κ

λ⎩ ⎭
⎨ ⎬
⎧ ⎫  λ  l

κ⎩ ⎭
⎨ ⎬
⎧ ⎫  i  l

λ⎩ ⎭
⎨ ⎬
⎧ ⎫  λ κ

κ⎩ ⎭
⎨ ⎬
⎧ ⎫

–+
κl
∑=

Wenn  G  ein Skalar ist, dann                              Tensor 1. Ranges.∂lg G
∂xi

---------------- T i=

T il

∂T i

∂xl
--------  i  l

λ⎩ ⎭
⎨ ⎬
⎧ ⎫

T λ∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

   
∂  i  l

κ⎩ ⎭
⎨ ⎬
⎧ ⎫

∂xκ
----------------  i κ

λ⎩ ⎭
⎨ ⎬
⎧ ⎫  l λ

κ⎩ ⎭
⎨ ⎬
⎧ ⎫

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

κl
∑–=

Tensor 2. Ranges

Vermutlicher Gravitations-
Tensor. T il

x

Weitere Umformung des Gravitationstensors

∂  i  l
κ⎩ ⎭

⎨ ⎬
⎧ ⎫

∂xκ
----------------

1
2
--- ∂

∂xκ
-------- γ κα

∂giα

∂xl
----------

∂glα

∂xi
----------

∂gil

∂xα
---------–+⎝ ⎠

⎛ ⎞
⎝
⎛=

Wir setzen voraus                          dann ist dies gleich
∂γ κα

∂xκ
------------

κ
∑ 0,=

γ κα

∂2gil

∂xα∂xκ
------------------

∂γ κα

∂xl
------------

∂giα

∂xκ
----------

∂γ κα

∂xi
------------

∂glα

∂xκ
----------+⎝ ⎠

⎛ ⎞

 

1
2
---

∑–
 

1
2
---

∑–

Ferner

 i κ
λ⎩ ⎭

⎨ ⎬
⎧ ⎫  λ  l

κ⎩ ⎭
⎨ ⎬
⎧ ⎫

γ
1
4
---

λαγ κβ

∂giα

∂xκ
----------

∂giκ

∂xα
----------–

∂gακ

∂xi
------------+⎝ ⎠

⎛ ⎞ ∂glβ

∂xλ
----------

∂glλ

∂xβ
----------–

∂gλβ

∂xl
-----------+⎝ ⎠

⎛ ⎞=

= γ

1
4
---

λα– γ κβ

∂giα

∂xκ
----------

∂giκ

∂xα
----------–⎝ ⎠

⎛ ⎞ ∂glλ

∂xβ
----------

∂glβ

∂xλ
----------–⎝ ⎠

⎛ ⎞ γ

1
4
---

λαγ κβ

∂gακ

∂xi
------------

∂gλβ

∂xl
-----------+

α κ λ β

α β κ λ

T il
x2

– γ αβ

∂2gil

∂xα∂xβ
------------------ γ ακγ βλ

∂giα

∂xβ
-------------

∂giβ

∂xα
----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞ ∂glκ

∂xλ
----------

∂glλ

∂xk
----------–⎝ ⎠

⎛ ⎞–
⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

∂γ λα

∂xi
------------

∂gλα

∂xl
------------–

∂γ λα

∂xl
------------

∂gλα

∂xi
------------–oder

Hieraus

+
∂γ αβ

∂xi
------------ α β

l

∂γ αβ

∂xl
------------ α β

i
+

⎝ ⎠
⎜ ⎟
⎛ ⎞

  
1
4
---

∂γ αβ

∂xi
------------

∂gαβ

∂xl
------------∑+

 

1
2
---

∑

1
2
---
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∂giκ′

∂xλ
------------ πλα

∂
∂xα
--------- πiσπκτgστ( )=

= πλαπiσπκτ

1
2
---

∂giκ

∂xλ
----------

∂gκλ

∂xi
-----------

2– ∂gλi

∂xκ
----------+ +⎝ ⎠

⎛ ⎞ sei Tensor ϑiκλ

 i  l
κ

ϑilκ

+〈 〉 ∂gil

∂xκ
---------–=

 i  l
κ⎩ ⎭

⎨ ⎬
⎧ ⎫

γ κα ϑilα

+〈 〉 ∂gil

∂xα
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ϑiκl′ ϑαβγ

∂xα

∂xi′
---------

∂xβ

∂xκ′
----------

∂xγ

∂xl′
---------

αβγ
∑=

T il
x ∂

∂xκ
-------- γ κα ϑilα

+
–

∂gil

∂xα
---------–⎝ ⎠

⎛ ⎞ ϑiκα〈 〉 γ λαγ κβ ϑiκα
+
–

∂giκ

∂xα
----------–⎝ ⎠

⎛ ⎞ ϑlλβ
+
–

∂glλ

∂xβ
----------–⎝ ⎠

⎛ ⎞–=

∂γ κα

∂xκ
------------   sei  =  0     ist nicht nötig.∑

T il
xx γ κα

∂2gil

∂xκ∂xα
------------------– γ κα

∂ϑilα

∂xκ
-------------  γ λαγ κβ

∂giκ

∂xα
----------

∂glλ

∂xβ
----------

-
 + γ λα

ρβ

κ γ κβ
α

ρ
ϑiκα

ρ ∂glλ
κ

∂xβ
----------⎝

⎛–+=

ist ebenfalls ein Tensor. Ebenso

+ ϑlλβ

ρα

∂giκ

∂xα
β

----------
⎠
⎟
⎟
⎞

γ κα

∂ϑilα

∂xκ
------------- κ  i

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑρlα
κ  l
ρ⎩ ⎭

⎨ ⎬
⎧ ⎫

ϑiρα
κ α

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑilρ+ +
⎠
⎟
⎞

γ κα
⎝
⎜
⎛

∑–

also auch

γ κα

∂ϑilα

∂xκ
-------------+ γ καγ ρβ

∂giκ

∂xβ
----------ϑρlα+

∂gκl

∂xβ
----------ϑiρα+

∂gκα

∂xβ
------------ϑilρ

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑

ein Tensor. an sich
ein Tensor

Subtraktion

γ κα

∂2gil

∂xκ∂xα
------------------ γ ραγ κβ

∂giκ

∂xα
----------

∂glρ

∂xβ
----------∑+∑

ist Tensor.

1– 0 0 0

 1– 0 ·
  1– ·
   +1

 

+

-
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γ iκ

∂giκ

∂xl
----------⎝

⎛ ∂gκl

∂xi
----------

∂gli

∂xκ
---------⎠

⎞+ +

γ iκ

∂gli

∂xκ
---------∑

gli

∂γ iκ

∂xκ
----------∑–

∂γ iκ

∂xκ
----------∑

∂giκ

∂xl
----------⎝ ⎠

⎛ ⎞
′

πlλ
∂

∂xλ
-------- πiιπkκgικ( )=

Zurück transformiert piρ pkσ plτ

piρ pkσ plτπlλ
∂

∂xλ
-------- πiιπkκgικ( )

Ausführlich
∂gρσ

∂xτ
------------ piρ

∂πiι

∂xτ
---------gισ pkσ

∂πkκ

∂xτ
-----------gρκ+ +

Für infinitesimale Transformation

∂gρσ

∂xτ
------------

∂πρα

∂xτ
------------gσα

∂πσα

∂xτ
------------gρα+ +

Durch Addition aus allen drei Termen erhält man

ϑρστ gρα

∂πτα

∂xσ
-----------

∂πσα

∂xτ
------------+⎝ ⎠

⎛ ⎞  ·  ·+ ++

ϑρστ 2 gρα

∂πσα

∂xτ
------------ gσα

∂πτα

∂xρ
-----------+ gτα

∂πρα

∂xσ
------------++oder

Die Klammer soll für alle Kombinationen von           verschwinden.ρστ

g〈 〉 lα
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∂
∂xn
-------- gmνT νn( )

1
2
---

∂gμν

∂xm
-----------T μν–∑ 0=

T μν
n

γ μα
n

γ νβΘαβ=
T μν ρ0

dxμ

dτ
---------

dxν

dτ
--------=

∂
∂xn
-------- γ nαΘαm( )

1
2
---

∂γ αβ

∂xm
------------Θαβ+∑

Θαβ ρ0gμαgνβ

dxμ

dτ
---------  

dxν

dτ
--------

.
=

∂gμν

∂xm
-----------γ μαγ νβΘαβ

∂〈 〉gμν

∂γ μα

∂xm
------------γ νβΘαβ–

Kraft auf ruhenden materiellen Punkt   n  =  1

∂γ αβ

∂x1
------------ Θαβ

dx
dτ
------

0   0 0 

0   0 β 

0   β 2αx 

0   0   0  0 

    

   ρ0 

0   0   0  
1

g44

----------- 

               

 
g11

dx2

dτ
--------- …
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Divergenz eines Ebenentensors  Θiκ〈 〉

Der Ausdruck

d
dxi
------- γ iε

∂gαβ

∂xε
------------

∂γ αβ

∂xσ
------------⎝ ⎠

⎛ ⎞ 1
2
--- ∂

∂xσ
--------- γ iε

∂gαβ

∂xε
------------

∂γ αβ

∂xi
------------⎝ ⎠

⎛ ⎞–

verschwindet für das System

1 –
g
0   ωy  

  0  1 – ωx–  

y

 

– ωx– 1 ω2– x2 y2+( )

1– ω2y2+

γ
ωxy ωy

ωxy 1– ω2x2+ ωx–

ωy
 

ωx– 1

obiger Ausdruck liefert:

∂γ αβ

∂xσ
------------ d

dxi
------- γ iε

∂gαβ

∂xε
------------⎝ ⎠

⎛ ⎞ γ iε

∂gαβ

∂xε
------------

∂2γ αβ

∂xi∂xσ
-----------------+

γ iε
∂g2

αβ

∂xε∂xσ
-----------------

∂2γ αβ

∂xi∂xσ
----------------–

1
2
---

∂γ iε

∂xσ
---------

∂gαβ

∂xε
------------

∂γ αβ

∂xi
------------–

Hiedurch nahe gelegt

∂
∂xi
------- γ iε

∂gαβ

∂xε
------------⎝ ⎠

⎛ ⎞ 1
2
---

∂giε

∂xα
----------

∂γ iε

∂xβ
---------–

Probiert am Fall des rot. Körpers

α 1   β 1= =

liefert ω2.–

∂gαβ

∂xσ
------------

∂γ αβ

∂xi
------------

∂γ αβ

∂xσ
------------

∂gαβ

∂xi
------------=

∂2gαβ

∂xε∂xσ
-----------------

∂γ αβ

∂xi
------------

∂gαβ

∂xσ
------------

∂2γ αβ

∂xε∂xi
----------------+

= 
∂2γ αβ

∂xε∂xσ
-----------------

∂gαβ

∂xi
------------

∂γ αβ

∂xσ
------------

∂2gαβ

∂xε∂xi
----------------+
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∂ α  β
κ⎩ ⎭

⎨ ⎬
⎧ ⎫

∂xκ
----------------- α  λ

μ⎩ ⎭
⎨ ⎬
⎧ ⎫ β  μ

λ⎩ ⎭
⎨ ⎬
⎧ ⎫

–

∂
∂xκ
--------γ κλ

∂gαλ

∂xβ
------------

∂gβλ

∂xα
-----------

∂gαβ

∂xλ
------------–+

1
2
---γ μσγ λτ

∂gασ

∂xλ
------------

∂gαλ

∂xσ
------------–

∂gβτ

∂xμ
-----------

∂gβμ

∂xτ
-----------––

1
2
---γ μσγ λτ

∂gλσ

∂xα
------------

∂gμτ

∂xβ
-----------–

γ μσγ λτ

∂gλσ

∂xα
------------

∂gμτ

∂xβ
-----------

∂γ λτ

∂xα
-----------

∂gλτ

∂xβ
-----------–

∂γ λτ

∂xβ
-----------

∂gλτ

∂xα
-----------–= =

∂γ λτ

∂xα
-----------gλσ

∂gλτ

∂xβ
-----------–

γ– μσγ λτ

∂gασ

∂xλ
------------

∂gβτ

∂xμ
----------- γ μσγ λτ

∂gασ

∂xλ
------------

∂gβμ

∂xτ
-----------

 

 
 
∂yαβ

∂xi
-----------+

∂γ μσ

∂xλ
------------

∂γ λτ

∂xμ
-----------gασgβτ–

τ α=

 
∂γ μσ

∂xλ
------------+

∂γ λα

∂xμ
------------

∂gασ

∂xi
------------

∂
∂xκ
-------- γ κλ

∂gαβ

∂xν
------------⎝ ⎠

⎛ ⎞       1
2
---–

1
2
---–

a     a′–

   a′

b–    b+ ′
   – b′

  +  c′
   c– ′

 
∂gβτ

∂xμ
-----------

∂gλσ

∂xα
------------+

2γ μσγ λτ

∂gασ

∂xλ
------------

∂gμτ

∂xβ
-----------
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2
2

11  – 12
1

   12
1

–

2
1

12  – 12
1

11
2

–

12
4

2
∂g12

∂x4
-----------

∂g14

∂x2
-----------–

∂g24

∂x1
-----------– 0=

 1 1

 1+

1–

2–

+ +∂g22

∂x4
-----------

∂g24

∂x2
-----------– 0=

∂g44

∂x1
-----------

∂g14

∂x4
-----------– 0.=

∂
∂xε
-------- γ εi

∂gαβ

∂xi
------------⎝ ⎠

⎛ ⎞ 1
2
---

∂γ λτ

∂xα
-----------

∂gλτ

∂xβ
-----------–

∂
∂xε
-------- γ ε22ωy( )

∂
∂x1
-------- <ω2xy> ·  2 ω2y( )

∂
∂y
-----

 

 

 

 
1< ωx2>+–( ) 2ω2y⋅⎝

⎛+=

∂
∂xε
-------- gεi

∂γ αβ

∂xi
------------⎝ ⎠

⎛ ⎞ ∂γ λτ

∂xα
-----------

∂gλτ

∂xβ
-----------–

α 4   β 1    i 2= = =

∂
∂xε
-------- gε2ω( ) 0=

α 4   β 4= =

i 1=

2ω2x– verschwindet

i 2=

α 1  β 1= =
stimmt.

i 1=
∂

∂xε
-------- gε1ω2y( )

α 1  β 2= =
i 2=

∂
∂xε
-------- gε2ω2x( )    verschwindet.

Gleichung erfüllt.

∂γ αβ

∂xσ
------------ ∂

∂xε
-------- gεi

∂γ αβ

∂xi
------------⎝ ⎠

⎛ ⎞

 
∂

∂xε
--------

 

              ⎝ ⎠
⎛ ⎞ ∂2γ αβ

∂xε ∂xσ⋅
---------------------gεi

∂γ αβ

∂xi
------------–=

∂
∂xσ
---------

 

              ⎝ ⎠
⎛ ⎞ ∂γ αβ

∂xε
------------

∂γ αβ

∂xi
------------

∂gεi

∂xσ
----------+–

∂γ αβ

∂xε
------------gεi

∂2γ αβ

∂xi∂xσ
-----------------+

Unmöglich.

∂
∂xi
-------

 

              ⎝ ⎠
⎛ ⎞ ∂γ αβ

∂xσ
------------ ∂

∂xε
-------- gεi

∂γ αβ

∂xε
------------⎝ ⎠

⎛ ⎞–

1– 0 ωy

0 1– ωx–

ωy ωx– 1 ω2 x2 y2+( )–

1– ω2y2+  ω2xy ωy

ω2xy 1– ω2x2+ ωx–

ωy ωx– 1–

0 ?[ ]
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System der Gleichungen für Materie
∂

∂xn
-------- GgμνT νn( )

1
2
--- G

∂gμν

∂xm
-----------T μν– 0=

T μν ρ
dxμ

dτ
---------

dxν

dτ
--------

.
=

Ableitung der Gravitationsgleichungen

∂gμν

∂xm
-----------

 

∂
∂xα
--------- γ αβ G

∂γ μν

∂xβ
-----------⎝ ⎠

⎛ ⎞ ∂
∂xα
--------- γ αβ G

∂γ μν

∂xβ
-----------

∂gμν

∂xm
-----------⎝ ⎠

⎛ ⎞ Gγ αβ

∂γ μν

∂xβ
-----------

∂g2
μν

∂xm∂xα
-------------------–=

∂
∂xm
--------- γ αβ G

∂γ μν

∂xβ
-----------

∂gμν

∂xα
-----------⎝ ⎠

⎛ ⎞–
∂gμν

∂xα
----------- ∂

∂xm
--------- Gγ αβ

∂γ μν

∂xβ
-----------⎝ ⎠

⎛ ⎞+

o +

+

1
2
---

∂gστ

∂xm
-----------γ στ G

∂gμν

∂xα
-----------

∂γ μν

∂xβ
-----------γ αβ

∂γ αβ

∂xm
------------ G

∂gμν

∂xα
-----------

∂γ μν

∂xβ
-----------

∂gμν

∂xα
-----------+ +

1
2
---

∂gμν

∂xm
-----------γ μν G

∂gστ

∂xα
-----------

∂γ στ

∂xβ
-----------γ αβ

∂gστ

∂xm
----------- Gγ ασγ βτ

∂gμν

∂xα
-----------

∂γ μν

∂xβ
-----------–

o
------------------------------------------------------------------

∂γ αβ

∂xm
------------gασgβτ 

 

 γ α′σγ β′τ  G
∂gμν

∂xα′
-----------

∂γ μν

∂xβ′
-----------

∂gμν

∂xm
----------- ∂

∂xα
---------⎝

⎛ γ αβ G
∂γ μν

∂xβ
-----------⎝ ⎠

⎛ ⎞ Gγ αβgστ

∂γ μσ

∂xα
------------

∂γ ντ

∂xβ
-----------⎠

⎞–

Zusammenfassung

Dies ist die Kontra-Form.

=  
∂

∂xα
--------- Gγ αβ

∂γ στ

∂xβ
-----------

∂gστ

∂xm
-----------⎝ ⎠

⎛ ⎞ 1
2
--- ∂

∂xm
--------- Gγ αβ

∂gστ

∂xα
-----------

∂γ στ

∂xβ
-----------⎝ ⎠

⎛ ⎞–

+
1
2
--- G γ αμγ βν

∂gστ

∂xα
-----------

∂γ στ

∂xβ
----------- 1

2
---γ μνγ αβ

∂gστ

∂xα
-----------

∂γ στ

∂xβ
-----------–⎝ ⎠

⎛ ⎞
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1
2
---– G

∂gστ

∂xλ
-----------

∂γ στ

∂xρ
----------- 1

2
---gλργ αβ

∂gστ

∂xα
-----------

∂γ στ

∂xβ
-----------–⎝ ⎠

⎛ ⎞

Kovariante Form.

=  
∂γ λρ

∂xm
----------- ∂

∂xα
--------- γ αβ G

∂gλρ

∂xβ
-----------⎝ ⎠

⎛ ⎞ G γ αβ G〈 〉 γ μνγ αβ

∂gλμ

∂xα
-----------

∂gρν

∂xβ
-----------–

G γ αβ

∂2γ μν

∂xm∂xβ
------------------

∂
∂xβ
--------

∂γ μν

∂xm
-----------

∂gμν

∂xα
----------- Gγ αβ⎝ ⎠

⎛ ⎞

+
---------------------------------------------------------

∂γ μν

∂xm
-----------gμσgντ γ μ′σγ ν′τ

∂
∂xβ
-------- Gγ αβ

∂gμν

∂xα
-----------⎝ ⎠

⎛ ⎞–

∂gστ

∂xm
----------- 

 

 
∂

∂xβ
-------- γ μσγ ντ Gγ αβ

∂gμν

∂xα
-----------⎝ ⎠

⎛ ⎞ Gγ αβ

∂gμν

∂xα
-----------

∂γ μσγ ντ

∂xβ
--------------------–

∂
∂xβ
--------

∂γ στ

∂xα
-----------γ αβ G ⎝ ⎠

⎛ ⎞– 2 Gγ αβgμν

∂γ μσ

∂xα
------------

∂γ ντ

∂xβ
-----------+

o o

∂γ μν

∂xm
----------- ∂

∂xβ
-------- Gγ αβ

∂gμν

∂xα
-----------⎝ ⎠

⎛ ⎞–
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gσαΘαβ

gσαγ αμγ βνT μν

 
∂gμν

∂xσ
-----------γ αμγ βν–

 
∂γ α

β
μ

∂xσ
--------------T αβ+

∂
∂xβ
-------- γ βμT μσ( )

Divergenz antisymmetrischer Tensoren

T r

∂T rs

∂xs
----------- γ rα

∂gsα

∂
-----------⎝

⎛〈 〉
s  μ

r⎩ ⎭
⎨ ⎬
⎧ ⎫

T μs
s  μ

s⎩ ⎭
⎨ ⎬
⎧ ⎫

T rμ+ +
sμ
∑=

1
2
---γ rα

∂gsα

∂xμ
-----------

∂gμα

∂xs
------------

∂gμs

∂xα
-----------–+⎝ ⎠

⎛ ⎞ T μs         
μ  s

r⎩ ⎭
⎨ ⎬
⎧ ⎫

T sμ  
1
2
---γ sα

∂gsα

∂xμ
-----------

∂gαμ

∂xs
------------

∂gsμ

∂xα
-----------–+⎝ ⎠

⎛ ⎞ T rμ–

verschwindet,
wenn  T  antisymmetr.

μ  u  s   vertauscht

s  μ

μ⎩ ⎭
⎨ ⎬
⎧ ⎫

T rs

γ μα

∂gsα

∂xμ
-----------

∂gμα

∂xs
------------

∂gsμ

∂xα
-----------–+⎝ ⎠

⎛ ⎞ T rs

0
∂G
∂xs
--------T rs

∂T rs

∂xs
-----------

1
2
--- ∂G

∂xs
--------T rs+∑

 G
∂T rs

∂xs
----------- G

2 G
----------- ∂G

∂xs
--------T rs+

1

G–
-----------

∂ G– T rs( )

∂xs
----------------------------

s
∑= =

Elektr. Menge ist Skalar ebenso wahre el. Dichte

ρ0

dxν

ds
--------  kontravarianter Vektor    =   

ρ

G–
-----------  

ds
dt
-----  

dxν

ds
--------=

ρ0

e0

V
-----

e0

V 0
------ dt

ds
----- G– ρ0 G–

dt
ds
-----= = = ρ

G–
-----------

dxν

dt
--------  ·  ·  

ρ

G–
-----------

ist kontravarianter Vektor.

Hieraus Feldgleichungen (1. System.
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Kovarianter Tensor. T μν
x〈 〉

γ st

∂T rs

∂xt
----------- γ st

r  t
μ⎩ ⎭

⎨ ⎬
⎧ ⎫

T μs γ st
s  t
μ⎩ ⎭

⎨ ⎬
⎧ ⎫

T rμ+
⎝ ⎠
⎜ ⎟
⎛ ⎞

∑–

γ μt
μ  t
s⎩ ⎭

⎨ ⎬
⎧ ⎫

T rs

1
2
---γ μtγ sα

∂gμα

∂xt
------------

∂gtα

∂xμ
----------

∂gμt

∂xα
----------–+⎝ ⎠

⎛ ⎞ T rs1
2
---γ stγ μα

∂grα

∂xt
-----------

∂gtα

∂xr
----------

∂grt

∂xα
---------–+⎝ ⎠

⎛ ⎞ T μs

1
2
---

∂γ st

∂xt
---------–

∂γ μt

∂xμ
----------–

γ sα

2  〈 〉G
-------------------∂  〈 〉G

∂xα
-------------------–⎝ ⎠

⎛ ⎞ T rsWird gleichzeitig      und
                           vertauscht,
so sieht man, dass mittleres
Glied wegfällt.

μs
αt

γ μt

∂gμt

∂xs
----------

 
Γμt

G
--------

∂gμt

∂xs
---------- 1

G
---- ∂G

∂xs
--------= =

1
2
---γ st

∂γ μα

∂xt
------------grαT μs–

 
1
2
---

∂γ st

∂xα
---------γ μαgrtT μs+

⎭
⎪
⎪
⎬
⎪
⎪
⎫

  
∂γ st

∂xα
---------γ μαgrtT μs

∂γ μt

∂xα
----------– γ sαgrtT μs

γ st

∂T rs

∂xt
-----------    

∂γ st

∂xα
---------γ μαgrtT μs    

∂γ st

∂xt
---------T rs    

1
2
---

γ sα

G
------- ∂G

∂xα
---------T rs+ +–

1

G–
----------- ∂

∂xα
--------- G– γ μαT μr

γ rβ
⎝ ⎠
⎜ ⎟
⎛ ⎞

∑

∂
∂xα
--------- G– γ stγ μαgrtT μs( )∑

γ sα
t

1

G
--------∂ G

∂xα
t

-----------T rs

γ μα

∂T μr

∂xα
------------

 γ μαγ st

∂grt

∂xα
---------T μs+
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Weiteres über Div. des Kov. Tensors.

T rst

∂T rs

∂xt
----------- r  t

μ⎩ ⎭
⎨ ⎬
⎧ ⎫

T μs
s  t
μ⎩ ⎭

⎨ ⎬
⎧ ⎫

T rμ+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

s  u  T  darf vertauscht werden.
tαβ pαμπβν

T αβ pαμ pβν∑
T μν  sei antis. Punkttensor

T μνgμαgνβ      kovarianter Tensor

T ρσgρμgσα

T μνT ρσ
μρσ
∑ gρμgσα

gemischter Tensor

Spannungs energiet. T μνT ρσ∑ gρμ

Ist   Θμν   <Punkttensor> kovarianter Tensor zu  T μν

T μν                            kontravarianter      zu

Punkttensor

∂
∂xn
-------- G– gmνtνn( )

1
2
--- G–

∂gμν

∂xm
-----------tμν

μν
∑–

νn
∑ 0.=

Θμν∑ Θρσgρμ

T αβT α′β′γ αα′γ βνγ β′σ∑ ⎭
⎬
⎫ tνσ=

gebildet.

tνn ΘμνΘρngρμ T αβT α′β′γ βνγ β′n gmν+=

"

gmνtνn ΘμνΘρngρμgmν T αmT α′β′γ αα′γ β′n G–
∂

∂xn
--------+=

Θμνgρμgmνuρ G– Θρn
∂

∂xn
-------- Θμνgμρgνm( )  ·  ·  ·  (1)+

Θνμgνρgμm

"

"

γ αα′

"
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T αβ′γ β′n G–
∂

∂xn
-------- T αmγ αα′( )    ·  ·  ·   (2)   

tμν ΘαμΘβνgαβ T αβT α′β′γ αα′γ βμγ β′ν  
∂gμν

∂xm
-----------+=

T αβT α′μγ αα′ γ ββ′〈 〉
∂γ βμ

∂xm
-----------–

Divergenz des antisymmetr kov. Tensors.

γ st

∂T rs

∂xt
----------- γ st

r  t
μ⎩ ⎭

⎨ ⎬
⎧ ⎫

T μs
s  t
μ⎩ ⎭

⎨ ⎬
⎧ ⎫

T rμ+
⎝ ⎠
⎜ ⎟
⎛ ⎞

∑–

1
2
---γ stγ μα

∂grα

∂xt
-----------

∂gtα

∂xr
----------

∂grt

∂xα
---------–+⎝ ⎠

⎛ ⎞ T μs

mittleres Glied fällt weg. 1. und letztes sind gleich

γ stγ μα

∂grα

∂xt
-----------T μs

1
2
---γ stγ μα

∂gsα

∂xt
-----------

∂gtα

∂xs
----------

∂gst

∂xα
---------–+⎝ ⎠

⎛ ⎞ T rμ ∂lg G
∂xα

---------------- 1

2 G
-----------=

1
2
---

∂γ st
μ

∂xt
----------T rμ–

1
2
---

∂γ st
μ

∂xs
----------T rμ

1
2
---γ μαT rμγ st

∂gst

∂xα
---------––

Γst

Γ〈 〉G
------------- 

∂gst

∂xα
---------      

1
G
---- ∂G

∂xα
---------

γ μαT rμ
∂ G
∂xα
-----------      

1
2
---∂lgG

∂xα
------------–

γ st

∂T rs

∂xt
-----------

∂γ μs

∂xs
-----------T γ stγ μα

∂grα

∂xt
-----------T μs–

∂γ μs

∂xs
-----------T rμ γ μαT rμ

∂ G
∂xα

G
---------

-----------+ + +

γ μα

∂T rμ

∂xα
-----------

 γ st

∂γ μα

∂xt
------------grαT μs+

∂γ μα

∂xα
------------T rμ

 γ stγ μα

∂gsα

∂xt
-----------T sμ+

Gγ stT sr

grα
1

G
-------- ∂

∂xα
--------- Gγ μαT rμ( )

∂
∂xt
------- Gγ stγ μαT sμ( ) Ggrα

∂
∂xt
------- γ stγ μαT sμ( )–+

G– γ stT rs

ist für sich Vektor.

fällt weg.

G
∂G
∂xα
---------
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1

G–
-----------

∂ G– Θrs( )

∂xs
----------------------------∑

1

G
--------ir=

∂ G– T αβγ αrγ βs( )

∂xs
---------------------------------------------- 0=

Mutmassliche r〈 〉  Tensor Spannungs〈 〉  Tensor.

kovarianter Tensor  trβ

Punkttensor.〈 〉 kontrav. Tensor  ϑrβG  ΘrsgsαΘαβ

G T rsγ sαT αβ

∂
∂xλ
-------- G– grβϑrλ( )

1
2
--- G–

∂grλ

∂xβ
-----------ϑrλ–

∂
∂xλ
-------- G– γ rλtrβ( )

1
2
--- G–

∂γ rλ

∂xβ
----------trλ+

reduziert sich vermöge der Gleichungen auf

G–
∂

∂xλ
-------- γ rλT rsγ sαT αβ( )

1
2
--- G–

∂γ rλ

∂xβ
----------T rsγ sαT αλ+

G– Θαλ
∂

∂xλ
-------- grβgsαΘrs( )

1
2
--- G–

∂grλ

∂xβ
-----------ΘrsgsαΘαλ–

T μν G– εμναβΘαβ=
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Wirkungsgrade

 1 5 15 25 35

50
46
48 21 0, 28 4 3, 0 8 1–,

75

50

52 1 5, 3 6, 6 1, 4 8,

100

54
56 0 6, 2 5, 2 4, 4 7,

25
30
------ 278

10
---------⋅

20 9⋅
21

------------- 288
10

---------⋅
11
67
------ 298

10
---------⋅

083
82

---------
308

023
25

--------- 278
10

---------⋅
04 6⋅

29
-------------  

288
10

--------- 12
50
------         

124
64

---------      

02
32
------ 278

10
---------⋅

003
34 5⋅
------------- 

288
10

--------- 043
38

---------       
096
32

---------      

  7 5,  15

46  25  5 1,
56  1 8,  22

2
21
------ 28⋅

36
38
------ 28⋅

13
62
------ 29⋅

30
37
------ 29⋅

v

p

1 0
.

,

 

0 9,

 

0 8,

 

0 7,

 

0 6,

 

0 5
.

,

 

0 4,

 

0 3,

 

0 2
.

,

 

0 1,
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1.  I

 

NTRODUCTION

 

The Zurich Notebook provides what appears to be a virtually complete record of Ein-
stein’s search for gravitational field equations in the winter of 1912–1913. He had just
started to explore a new theory of gravitation in which the ten components of the met-
ric tensor take over the role of the gravitational potential in Newton’s theory.

 

1

 

 The
notes documenting Einstein’s search for field equations for this theory take up the bet-
ter part of the notebook. They start on pp. 39L–41R and continue on pp. 5R–29L and
pp. 42L–43L. Our text is a detailed running commentary on these notes.

 

2

 

 It provides
line-by-line reconstructions of all calculations and discusses the purpose behind
them.

 

3

 

 The commentary is self-contained and can in principle be read independently
of the notebook. It is designed, however, to be used in conjunction with the facsimile

 

1 For discussion of how Einstein arrived at this theory, see “The First Two Acts” (in vol. 1 of this se-
ries). In terms of this metaphor, the search for field equations comprises the third act. It starts with
the Zurich Notebook and ends with the four communications to Berlin Academy of November 1915
in which Einstein completed general relativity as we know it today with the formulation of the gen-
erally-covariant Einstein field equations (Einstein 1915a, b, c, d).

2 The commentary does not cover pp. 27L–29L, which deal with the behavior of matter in a given met-
ric field.

3 We follow the notation used in the notebook and clearly indicate whenever we use elements of mod-
ern notation (such as the Kronecker delta or a more compact notation for derivatives) in our recon-
structions of Einstein’s calculations. Einstein’s notation should be easy to follow for readers familiar
with the basics of the standard modern notation of general relativity. The one exception is Einstein’s
idiosyncratic convention before (Einstein 1914b) of writing all indices downstairs and distinguishing
between covariant and contravariant components (e.g., the components  and  of the metric)
by using Latin letters for one ( ) and Greek letters for the other ( ). In the notebook, to make
matters worse, Einstein sometimes used Latin for contravariant and Greek for covariant components.
The contravariant stress-energy tensor, e.g., is denoted by  in the notebook while its covariant
counterpart is denoted by  (see, e.g., p. 5R and equation (64)), which is just the reverse of the
notation used in (Einstein and Grossmann 1913) and subsequent publications. The summation con-
vention (repeated indices are summed over) was only introduced in (Einstein 1916a, 788). In the note-
book, however, Einstein occasionally omitted summation signs, thus implicitly using it. When
providing intermediate steps for calculations in the notebook we shall frequently and tacitly use the
summation convention.

ϑ̂

gμν gμν

gμν γ μν

T μν
Θμν
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and the transcription of the notebook presented in vol. 1 of this series. The reader seek-
ing guidance in reading a particular passage of the notebook can go directly to the sec-
tion of the commentary in which that passage is analyzed. To help the reader find the
relevant section, both the table of contents and the running heads of the text match
(sub) (sub-)sections of the commentary to pages of the notebook. When looking up the
annotation for a specific passage of the notebook, the reader is advised to consult the
introduction to the (sub-)(sub-)section of the commentary dealing with that passage
first.

After covering the earliest research on gravity documented by the notebook
(pp. 39L–41R) in sec. 2 and the derivation of the law for the energy-momentum bal-
ance between matter and gravitational field (p. 5R) in sec. 3, the commentary contin-
ues with its two longest sections, sec. 4 covering pp. 6L–13R and 41L–R and sec. 5
covering pp. 14L–25R and 42L–43L. These two sections have extensive introduc-
tions, providing an overview of the material cross-referenced both with the page num-
bers of the notebook and the numbers of the (sub-)subsections of the commentary
where the material is covered in detail. Sec. 4 covers a stage in Einstein’s research dur-
ing which, through trial and error, he found a body of results, strategies, and tech-
niques that he drew on for the more systematic search for field equations during the
next stage. Sec. 5 follows the fate of a series of candidate field equations as Einstein
checked them against a list of criteria they would have to satisfy. All these candidates
are extracted from the Riemann tensor, which makes its first appearance on p. 14L, the
first of the pages covered by sec. 5. 

In the course of his investigations, Einstein already came across some of the field
equations published in November 1915. One of the central tasks of the commentary is
to analyze why these candidate field equations were rejected three years earlier. In the
notebook Einstein eventually gave up trying to extract field equations from the Rie-
mann tensor. Drawing on results and techniques found during the earlier stage instead,
he developed a way of generating field equations guaranteed to meet what he deemed
to be the most important of the requirements to be satisfied by such equations. In this
way he found the field equations of severely limited covariance published in the spring
of 1913 in a paper co-authored with Marcel Grossmann (Einstein and Grossmann
1913). The theory and the field equations presented in this paper are known, after the
title of the paper, as the “

 

Entwurf

 

” (“outline”) theory and the “

 

Entwurf

 

” (field) equa-
tions. The derivation of the 

 

Entwurf

 

 field equations on pp. 26L–R of the notebook is
covered in sec. 6, the short section that concludes the commentary.

To get an overview of the contents of the gravitational part of the Zurich Notebook,
the reader is advised to read the balance of this section as well as secs. 4.1 and 5.1–
5.2, the introductions to the two main sections of the commentary.

 

1.1  

 

The Four Heuristic Requirements

 

For our analysis of the notebook it is important to distinguish two strategies employed
by Einstein in his search for suitable gravitational field equations and four require-
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ments serving as guideposts and touchstones in this search. In sec. 1.2 we introduce
the two strategies; in this section we introduce the four heuristic requirements, which,
for ease of reference, we have labeled relativity, equivalence, correspondence, and
conservation.

 

4

 

 

 

1.1.1  

 

The Relativity Principle

 

Throughout the period in which Einstein formulated general relativity as we know it
today (i.e., the years 1912–1915), he was under the impression that the principle of rel-
ativity for uniform motion of special relativity can be generalized to arbitrary motion
by extending the manifest Lorentz invariance of special relativity in the formulation
of Minkowski (1908), Sommerfeld (1910a, b), Laue (1911b) and others to general
covariance.

 

5

 

 Only in the fall of 1916 did Einstein come to realize that general covari-
ance does not automatically lead to relativity of arbitrary motion.

 

6

 

 Kretschmann
(1917) was the first to give a precise formulation of the difference between general
covariance and general relativity.

 

7

 

 Given his conflation of the two at the time, Einstein
tried to implement the relativity principle in the notebook by constructing field equa-
tions of the broadest possible covariance. He was thus drawn to generally-covariant
objects such as the Beltrami invariants (p. 6L) and the Riemann tensor (p. 14L). He
found these in the mathematical literature with the help of Marcel Grossmann. Ein-
stein would sacrifice some covariance to meet the other requirements the field equa-
tions had to satisfy. Contrary to what we know today, he assumed that both energy-
momentum conservation and the recovery of Newtonian theory for weak static fields
put constraints on the class of admissible coordinate transformations. Initially, his
hope was that this class would still include transformations to frames of reference in
arbitrary states of motion. In the course of the research documented in the notebook it
became clear to him that this is not the case. By the end of the notebook (pp. 26–R),
Einstein had settled for invariance under general linear transformations, hoping to
extend the principle of relativity to non-uniform motion in a different way, suggested
by the equivalence principle.

 

1.1.2  

 

The Equivalence Principle

 

Einstein’s fundamental insight in developing general relativity was that there is an
intimate connection between acceleration and gravity. As Einstein put it in 1918, the
two are “of the exact same nature” (“wesensgleich,” Einstein 1918, 176). They are two

 

4 For further discussion, see “Pathways out of Classical Physics …” (in vol. 1 of this series) and (Renn
and Sauer 1999).

5 For an analysis of Einstein’s conflation of the status of Lorentz invariance in special relativity and the
status of general covariance in general relativity, see (Norton 1992, 1999).

6 This became clear to Einstein in discussions with Willem de Sitter. For further discussion, see the
headnote, “The Einstein-De Sitter-Weyl-Klein Debate,” in (CPAE 8, 351–357).

7 For discussion of Kretschmann’s paper and Einstein’s brief response to it in (Einstein 1918), see, e.g.,
(Norton 1993, sec. 5).
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sides of the same coin, which explains Galileo’s principle that all bodies fall alike in
a given gravitational field, or, in Newtonian terms, that inertial mass is equal to grav-
itational mass. Einstein first explored the connection between acceleration and gravity
in (Einstein 1907) and started calling it the equivalence principle in (Einstein 1912a).
Einstein wanted to use this principle to extend the relativity of uniform motion to non-
uniform motion and develop a new theory of gravity at the same time.

 

8

 

The general-relativity principle that Einstein formulated on the basis of the equiv-
alence principle is of a somewhat peculiar nature. It is best illustrated with a couple of
paradigmatic examples. Two observers in the vicinity of some massive body, one in
free fall, one resisting the pull of gravity, can both claim to be at rest as long as they
agree to disagree about whether or not there is a gravitational field present in their
region of spacetime. The observer in free fall can legitimately claim that there is 

 

no

 

gravitational field, that he is at rest, and that the other observer is accelerating upward.
The observer resisting the pull of gravity is equally justified in claiming that there 

 

is

 

 a
gravitational field, that she is at rest, and that the other observer is accelerating down-
ward. They can make similar claims when they are both in some flat region of space-
time, one hovering freely, the other firing up the engines of her spacecraft. The first
observer can claim that there is no gravitational field, that he is at rest, and that the
other observer is accelerating upwards. The second observer can claim that a gravita-
tional field came into existence the moment she turned on her engines, that she is at
rest in this field, and that the other observer is accelerating downward in it. In neither
of these two cases—close to some massive body or in some flat region of spacetime—
are the situations of these two observers physically equivalent to one another. The
equivalence, in fact, is between the observer in free fall in the first case and the one
hovering in outer space in the second and between the observer resisting the pull of
gravity in the first case and the one in the accelerating rocket in the second. In both
cases it is not the motion of the two observers with respect to one another that is rela-
tive—in the sense of being determined only with reference to the observer making the
call—but the presence or absence of a gravitational field.

 

9

 

Einstein implemented the equivalence principle by letting the metric field  rep-
resent both the gravitational field and the inertial structure of spacetime. For the equiv-
alence principle to go through it is crucial that in all cases such as the ones considered
above the metric field is a solution of the same field equations in the coordinate sys-
tems of both observers. This is automatically true if the field equations are generally
covariant. But general covariance, while sufficient, is not necessary to meet this
requirement. Whenever general covariance proved unattainable in the notebook (and
similarly during the subsequent reign of the 

 

Entwurf

 

 theory with its field equations of
severely restricted covariance), Einstein tried to meet the requirement in a different
way, involving what he first called “non-autonomous” (“unselbständige”) transforma-
tions

 

10

 

 and later “justified” (“berechtigte”) transformations between “adapted”

 

8 For discussion of Einstein’s equivalence principle, see (Norton 1985).
9 For further discussion, see (Janssen 2005, 63–66).
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(“angepaßte”) coordinates.

 

11

 

In the case of ordinary, autonomous, transformations, the
new coordinates are simply functions of the old ones. If the field equations are invari-
ant under some autonomous transformation, any solution in the old coordinates is
guaranteed to turn into a solution in the new ones under that transformation. In the case
of non-autonomous transformations, the new coordinates are functions of the old
coordinates and the metric field (expressed in terms of the old coordinates).

 

12

 

 If the
field equations are invariant under a non-autonomous transformation for some metric
field that is a solution of the field equations in the old coordinates, only that particular
solution is guaranteed to turn into a solution in the new coordinates. This suffices for
the implementation of the equivalence principle. Given the difficulty of finding field
equations invariant under a broad enough class of autonomous transformations, it
need not surprise us that non-autonomous transformations play a prominent role in the
notebook. Einstein was especially interested in non-autonomous transformations to
uniformly rotating and uniformly accelerating frames of reference in flat spacetime,
in which case the metric in the old coordinates is simply the standard diagonal
Minkowski metric.

 

1.1.3  

 

The Correspondence Principle

 

An obvious constraint on Einstein’s new gravitational theory was that Newton’s the-
ory be recovered under the appropriate circumstances. We call this the correspondence
principle. In the case of weak static fields, the 44-component of the metric (where 
is the time coordinate multiplied by the velocity of light) is proportional to the gravi-
tational potential in Newtonian theory. The correspondence principle thus requires
that, in the case of weak static fields, the component of the field equations that deter-
mines  reduce to the Poisson equation for the Newtonian potential. Einstein
expected  to be the only variable component of the metric in this case so that the
spatial part of the metric would remain flat. This would allow him to connect his new
theory both to Newtonian theory and to his own earlier theory for static fields in which
the gravitational potential is represented by a variable speed of light (Einstein 1912a,
b). 

It turns out that the correspondence principle does not require the metric for weak
static fields to be spatially flat. Other components of the metric besides  can be
variable without losing compatibility with Newtonian theory. This is because, regard-
less of the values of the other components,  is the only component to enter into the
equations of motion for matter moving in the gravitational field in the relevant weak-
field slow-motion approximation. Einstein only came to realize this in the course of
his calculation of the perihelion motion of Mercury in November 1915 (Einstein
1915c).

 

13

 

 Throughout the notebook he assumed that only  can be variable for weak

 

10 Einstein to H. A. Lorentz, 14 August 1913 (CPAE 5, Doc. 467). The relevant passage is quoted in
footnote 94.

11 (Einstein and Grossmann 1914, 221; Einstein 1914b, 1070)
12 For more detailed discussion of non-autonomous transformations, see the introduction to sec. 4.3.

x4

g44
g44
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static fields. At one point he contemplated relaxing this requirement but quickly con-
vinced himself that this is not allowed.

 

14

 

 
Despite this additional constraint on the form of the metric for weak static fields,

Einstein found various field equations that satisfy the correspondence principle. On
the face of it, it looks as if Einstein applied coordinate conditions to various field equa-
tions of broad covariance to establish that they reduce to the Poisson equation in the
appropriate limit.

 

15

 

 On closer examination, it turns out that Einstein actually used
what we shall call coordinate 

 

restrictions

 

. He took expressions of broad covariance
and truncated them by imposing additional conditions on the metric to obtain candi-
date field equations that reduce to the Poisson equation in the case of weak static
fields. Einstein did not see such truncated equations as representing candidate field
equations of broader covariance in a limited class of coordinate systems for the pur-
pose of comparing them with Newtonian theory, as we would nowadays, but as can-
didates for the fundamental field equations of the theory. The status of the conditions
on the metric with which Einstein did the truncating is therefore very different from
that of modern coordinate conditions. This is why we introduced the special term coor-
dinate restrictions.

 

16

 

Coordinate restrictions played an important role in Einstein’s attempts to find non-
autonomous coordinate transformations under which candidate field equations would
be invariant. If such candidates had been extracted from expressions of broad covari-
ance with the help of some coordinate restriction, their covariance was determined by
the covariance of that coordinate restriction. The expressions involved in coordinate
restrictions are much simpler than the field equations themselves and the covariance
properties of the former are therefore much more tractable than those of the latter.
Many pages of the notebook are thus given over to the investigation of the covariance
properties of various coordinate restrictions.

 

17

 

 Einstein routinely checked whether the
coordinate restrictions he imposed allow non-autonomous transformations to uni-
formly rotating and uniformly accelerating frames of reference in Minkowski space-
time.

The correspondence principle led Einstein to expect the left-hand side of the field
equations to have the form of a sum of what we shall call a core operator, a term with
second-order derivatives of the metric that for weak static fields reduces to the Lapla-
cian acting on the metric, and various correction terms quadratic in first-order deriva-
tives of the metric that vanish in a weak-field approximation. He either extracted

 

13 See (Norton 1984, 146–147), (Earman and Janssen 1993, 144–145), and “Untying the Knot …” sec. 7
(in this volume).

14 See p. 21R discussed in secs. 5.4.4 and 5.4.6.
15 See in particular pp. 19L and 22R discussed in sec. 5.4.1 and sec. 5.5.2, respectively. When consid-

ered in isolation, these two pages strongly suggest that Einstein applied coordinate conditions in the
modern sense in the notebook, a conclusion that was indeed drawn in (Norton 1984).

16 For a particularly illuminating example of a coordinate restriction, see pp. 23L–R discussed in
sec. 5.5.4.

17 See, e.g., pp. 10L–11L (covered in secs. 4.5.1–4.5.3), p. 22L (covered in 5.5.3), and pp. 23R, 42L–R
(covered in secs. 5.5.5–5.5.6).
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equations of this form from equations of broad covariance with the help of coordinate
restrictions or he determined what terms had to be added to the core operator on the
basis of considerations of energy-momentum conservation.

 

1.1.4  

 

The Conservation Principle

 

Einstein’s 1912 theory for static gravitational fields had taught him to pay close atten-
tion to what we shall call the conservation principle, the compatibility between the
field equations and energy-momentum conservation. The field equations proposed in
(Einstein 1912a) had turned out to be incompatible with energy-momentum conserva-
tion and Einstein had been forced to add a term to them in (Einstein 1912b).

 

18

 

 The
extra term, it turned out, gave the energy density of the gravitational field and entered
the field equations on the same footing as the energy density of the field’s material
sources. This, as Einstein realized, had to be the case given the equivalence of energy
and inertial mass expressed in , the equality of inertial and gravitational
mass asserted by the equivalence principle, and the equality of active and passive
gravitational mass. The field equations of the new metric theory would thus have to
satisfy a similar requirement. Einstein accordingly sought to interpret the correction
terms to the core operator mentioned above as the energy-momentum density of the
gravitational field, occurring on a par with the stress-energy tensor of matter.

 

19

 

That the stress-energy tensor of matter should replace the mass of Newtonian the-
ory as the source of the gravitational field Einstein had learned from the development
of special-relativistic mechanics.

 

20

 

 The early years of special relativity had brought a
transition from Galilean-invariant particle mechanics based on Newton’s second law
to Lorentz-invariant continuum mechanics based on energy-momentum conservation,
expressed by the vanishing of the four-divergence of the total stress-energy tensor of
closed systems,  (  shorthand for ). The conservation principle
requires that the gravitational field equations be compatible with this law in a weak-
field approximation in which the energy-momentum of the gravitational field itself
can be neglected. The weak-field field equations have the form 

 

18 See footnote 119 for more details.
19 Following the terminology in (Einstein and Grossmann 1913, e.g., p. 11 and p. 16), we shall use the

term stress-energy tensor’ throughout the commentary rather than the more common ‘energy-mo-
mentum tensor’ or the more cumbersome ‘stress-energy-momentum (SEM) tensor’. In the notebook
Einstein referred both to the “tensor of momentum and energy” (“Tensor der Bewegungsgröße u. En-
ergie,” p. 5R) and to the “stress-energy tensor” [

 

Sp[annungs]-Energie-Tensor

 

] p. 20R).
20 In his 1912 manuscript on special relativity, Einstein called the extension of the central role of the

stress-energy tensor in electrodynamics to all of physics “the most important recent advance in rela-
tivity theory” (“den wichtigsten neueren Fortschritt der Relativitätstheorie.” CPAE 4, Doc. 1,
p. [63]). He gave credit to Minkowski, Abraham, Planck, and Laue for this development. The sym-
metry of the stress-energy tensor in its two indices encodes such physical knowledge as the inertia of
energy and the conservation of angular momentum (Laue 1911a). This means that the differential op-
erator acting on the metric set equal to the stress-energy tensor in the field equations must have that
same symmetry. This requirement is indeed imposed, though not emphasized, in the notebook
(cf. footnotes 219 and 220).

E mc2=

∂νT tot
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( is the d’Alembertian, , with  the standard
diagonal Minkowski metric). Einstein imposed the coordinate restriction 
in which case these field equations imply energy-momentum conservation in the
weak-field approximation.

 

21

 

 This coordinate restriction, which Einstein used both to
satisfy the conservation principle and to satisfy the correspondence principle, occurs
so frequently in the notebook that we have given it a special name. We call it the Hertz
restriction.

 

22

 

When the energy-momentum coming from the gravitational field cannot be
neglected, the situation gets more complicated. On p. 5R Einstein derived an equation
giving the exact energy-momentum balance between matter and gravitational field. In
modern terms, this equation states that the covariant divergence of the stress-energy
tensor of matter vanishes. It is the sum of two terms, the ordinary divergence of the
stress-energy tensor of matter and an expression, once again containing this tensor,
that can be interpreted as the gravitational force. The field equations set some second-
order differential operator acting on the metric equal to the stress-energy tensor of
matter. One of the most important tests to which Einstein submitted candidate field
equations was to use them to eliminate the stress-energy tensor from the expression
for the gravitational force in the energy-momentum balance and check whether the
resulting expression can be written as the divergence of an expression that could be
interpreted as the energy-momentum density of the gravitational field itself.

 

23

 

 Given
the form of the stress-energy tensor of the electromagnetic field and of the stress tensor
of the gravitational field in his static theory, Einstein expected and required this quan-
tity to be quadratic in first-order derivatives of the metric. That way gravitational
energy-momentum could indeed be neglected in the weak-field approximation. With
the help of this quantity, Einstein could now rewrite the energy-momentum balance
between matter and gravitational field as an ordinary divergence of the total energy-
momentum density—of matter and of the gravitational field. The balance equation
thus turns into a genuine conservation law. That a covariant divergence can be rewrit-
ten as an ordinary divergence in this manner immediately makes it clear that gravita-
tional energy-momentum density cannot be represented by a generally-covariant
tensor. It is what we now call a pseudo-tensor. Throughout the notebook, however,
Einstein tacitly assumed that its transformation properties are the same as those of any
other stress-energy tensor. He only recognized in early 1914 that this is not true.

 

24

 

 Ein-
stein eventually turned this test of the conservation principle into a powerful method
for generating field equations. It was this method that gave him the 

 

Entwurf

 

 field equa-
tions.

 

25

 

21 See p. 19R discussed in sec. 5.4.2.
22 Named after Paul Hertz, the recipient of an important letter in which Einstein discussed this restric-

tion (Einstein to Paul Hertz, 22 August 1915 [CPAE 8, Doc. 111]).
23 See, e.g., p. 19R.
24 See (Einstein and Grossmann 1914). For discussion, see (Norton 1984, sec. 5), “Pathways out of

Classical Physics …” (in vol. 1 of this series), and “What Did Einstein Know …” sec. 2 (in this vol-
ume).
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In summary, the conservation principle resulted in (at least) four related but dis-
tinct requirements that candidate field equations have to satisfy. First, the energy-
momentum density of the gravitational field has to enter into the field equations in the
same way as the energy-momentum density of matter. Secondly, the field equations
should guarantee that the four-divergence of the stress-energy tensor of matter van-
ishes in the weak-field approximation. Thirdly, the field equations should allow the
gravitational force density in the energy-momentum balance between matter and grav-
itational field to be written as the divergence of some gravitational stress-energy
pseudo-tensor. Finally, this pseudo-tensor should be an expression quadratic in first-
order derivatives of the metric. Given this rich harvest of requirements, the conserva-
tion principle was probably the most fruitful of the four heuristic principles that guided
Einstein in his search for suitable field equations.

 

1.2  

 

The Two Strategies

 

Einstein attacked the problem of finding suitable field equations for the metric field
from two directions, clearing the hurdles he had himself erected with his four heuristic
requirements— relativity, equivalence, correspondence, and conservation—in a dif-
ferent order. In what we call the ‘mathematical strategy,’ Einstein tackled relativity
and equivalence first and then moved on to correspondence and conservation. In what
we call the ‘physical strategy’ it is just the other way around. There he started with
correspondence and conservation and then turned to relativity and equivalence.

 

26

 

 The
identification of these two complementary strategies not only turned out to be key to
our reconstruction of many of Einstein’s arguments and calculations in the notebook,
it also greatly enhanced our understanding of his work on general relativity during the
subsequent period of 1913–1915.

 

27

 

 In this section we briefly characterize these two
strategies.

The mathematical strategy was to use one of the generally-covariant quantities that
can be found in the mathematical literature, such as the Beltrami invariants or the Rie-
mann tensor, to construct a second-order differential operator acting on the metric (or
its determinant) that is then set equal to the stress-energy tensor of matter (or its trace).
If this can be done without compromising the general covariance of the initial quantity
too much, such field equations will automatically meet the relativity and equivalence
requirements. The problem that Einstein ran into was that the correspondence and con-
servation requirements, if they could be met at all, called for severe coordinate restric-
tions. Still, as explained in sec. 1.1.3, knowing that candidate field equations can be
extracted from equations of broad covariance with the help of a coordinate restriction
makes their covariance properties much more tractable. Their covariance is fully

 

25 See p. 13R, p. 24R, and p. 26L-R, discussed in secs. 4.6.2, 5.6.1, and 6, respectively.
26 For more detailed discussion of these two strategies, see (Renn and Sauer 1999) and “Pathways out

of Classical Physics …” (in vol. 1 of this series).
27 See “Untying the Knot …” (in this volume).
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determined by the covariance of the coordinate restriction. Unfortunately, Einstein
found again and again that the coordinate restrictions he needed to satisfy the corre-
spondence and conservation requirements ruled out the kind of transformations to
accelerating frames of reference needed to meet the relativity and equivalence require-
ments.

The physical strategy was to model the field equations for the metric field on the
Poisson equation of Newtonian gravitational theory and Maxwell’s equations for the
electromagnetic field.

 

28

 

 As explained in secs. 1.1.3 and 1.1.4, the correspondence and
conservation requirements suggest that the field equations have a core operator, which
for weak static fields reduces to the Laplacian acting on the metric, and a term repre-
senting gravitational energy-momentum density on the left-hand side and the stress-
energy tensor of matter on the right-hand side. The conservation principle can be used
to determine the exact form of the gravitational stress-energy pseudo-tensor. The
physical strategy thus amounts to constructing candidate field equations guaranteed to
meet the correspondence and conservation requirements. The problem is that their
construction sheds little light on their covariance properties. Only their covariance
under general linear transformations is assured. It thus remains completely unclear
whether they satisfy the relativity and equivalence requirements. The best Einstein
could do on this score was to check whether they allowed the Minkowski metric in
various accelerated frames of reference so that they would at least be invariant under
some non-autonomous non-linear transformations corresponding to acceleration.

In the first half of the notes (pp. 39L–41R, 5R–13R), we see Einstein vacillate
between the mathematical and the physical strategy. On p. 6L, for instance, the Bel-
trami invariants are introduced and used as input for the mathematical strategy. Two
pages later, Einstein switched to the core operator and the physical strategy. On the
following pages Einstein combined his two strategies trying in vain to connect field
equations based on the core operator to the Beltrami invariants in an attempt to clarify
their transformation properties. On p. 13R he made further progress along the lines of
the physical strategy by introducing considerations of energy-momentum conserva-
tion. Then, on p. 14L, the Riemann tensor makes its first appearance in the notebook,
and Einstein abruptly switched from the physical to the mathematical strategy. What
follows is a concerted effort, taking up most of the second half of the notes (pp. 14L–
23R, 42L–43L), to extract field equations from the Riemann tensor. Eventually
(p. 24R–26R), Einstein went back to the physical strategy, continuing the line of rea-
soning begun on p. 13R. He briefly combined the two strategies again, trying to find
(on p. 25L) a coordinate restriction with which to extract field equations found along
the lines of the physical strategy (on p. 24R) from the Riemann tensor. He then decided
to go exclusively with the physical strategy, which led him to the 

 

Entwurf

 

 field equa-
tions on pp. 26L–R.

 

28 For detailed analysis of Einstein’s use of this analogy, see “Pathways out of Classical Physics …” (in
vol. 1 of this series).
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2.  F  IRST   E  XPLORATION    OF    A   M  ETRIC   T HEORY   OF  G RAVITATION  (39L–41L) 

2.1  

 

Introduction

 

Einstein’s attempt to construct a new dynamical theory of gravitation starts from three
basic elements: (1) the representation of the gravitational field by the ten components
of the metric tensor; (2) the four-dimensional spacetime formalism of special relativ-
ity; and (3) his scalar theory of the static gravitational field. For Einstein, all three
components were recent additions to his stock of knowledge. 

In Prague, in the spring of 1912, he brought his attempts to formulate a theory of
gravitation for the special case of a static field to a satisfactory conclusion. Only after
returning from Prague to Zurich in the summer of 1912 did he recognize the relevance
of Gauss’ theory of surfaces to the gravitation problem. Gauss’ theory represents the
metrical geometry of surfaces of variable curvature by a line element, the square root
of a quadratic differential form invariant under arbitrary coordinate transformations.
Einstein had become familiar with the four-dimensional formalism for special relativ-
ity developed by Minkowski, Sommerfeld, and Laue, and he realized that a four-
dimensional extension of Gauss’ theory could provide a mathematical framework
suitable for a new, dynamical theory of gravitation.

The three components, out of which he hoped to build the new theory, each posed
distinct but interrelated problems. Gauss’ theory for two-dimensional surfaces had to
be extended to a four-dimensional space with indefinite signature. The flat Minkowski
spacetime formalism had to be extended to a vector and tensor analysis valid for arbi-
trary coordinate systems in a non-flat spacetime. Einstein’s static gravitational theory
was formulated in terms of a single (three)-scalar gravitational potential. The single
partial differential equation governing this potential had to be generalized to a system
of partial differential equations for the ten-component tensorial gravitational potential.

On pp. 39L–41L of the notebook, Einstein explored a few simple ways of combin-
ing these three components to find the gravitational field equations for a static field in
special coordinates. No clear candidates emerged from Einstein’s first foray into the
problem. This may have signaled to him that a higher level of mathematical sophisti-
cation was called for. Even at the elementary level of these early calculations, how-
ever, one can see an alternation between physically and mathematically motivated
approaches foreshadowing the two basic strategies that we distinguished in sec. 1.2.

 

2.2  

 

The Three Building-Blocks: Gauss, Minkowski, Einstein (39L)

 

This page includes three groups of formulas, separated from each other by two hori-
zontal lines. Each of these groups can be associated with one of the elements men-
tioned above. Einstein started by writing down the square of the four-dimensional line
element

39L–41L

39L
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.   (1)  

His use of a capital letter “ ” indicates that this is the earliest occurrence of the metric
tensor in the notebook. After p. 40R, Einstein switched to the common lower-case . 

He then derived the transformational behavior of the metric tensor under four-
dimensional coordinate transformations from the condition that the line element be
invariant under such transformations. The transformations between the unprimed and
primed coordinates are expressed by a matrix of coefficients and its inverse

 

29

 

  (2)  

From the invariance of the square of the line element under such a transformation,

  (3)  

Einstein read off the transformation laws for the components of the metric

,   (4)  

and “analogously” (“analog”)

.   (5)  

Next to these results, Einstein noted explicitly the equations for the coordinate trans-
formation

.   (6)  

So apparently Einstein was considering linear transformations at this point.

 

30

 

 For the
corresponding first-order partial derivative operators, he wrote

 

29 As is indicated by a line through the first column, the transformation is given by
, etc. A similar matrix is found in (Laue 1911b, 57) and in

Einstein’s 1912 manuscript on special relativity (CPAE 4, Doc. 1, secs. 15 and 16).
30 In the transformation matrix at the top of the page he may have had non-linear transformations in

mind with non-constant ’s: In the top row of that matrix Einstein seems to have written  instead
of simply  for the first three entries, and it may have been only later that he restricted himself to
linear transformations.
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.   (7)  

In the middle of the page, below the first horizontal line, Einstein considered a
“special case for the ” (“Spezialfall für die ”), namely the case of a coordi-
nate system in which the metric is diagonal

.   (8)  

The spatial metric is flat and expressed in Cartesian coordinates, and the 44-compo-
nent of the metric is identified with the square of the speed of light.31 If  is a con-
stant, this metric represents the Minkowski spacetime of special relativity in quasi-
Cartesian coordinates. If  is a function of the spatial coordinates,

, it represents the metrical generalization of Einstein’s static the-
ory. 

At the bottom of the page, under the second horizontal line, Einstein turned to this
theory of the static gravitational field. The gravitational field equation of his static the-
ory,32

,   (9)  

is a partial differential equation for the velocity of light, which serves as the single
gravitational potential of this theory. In a four-dimensional metric theory, the field
equations will be partial differential equations for all ten components of the metric ten-
sor, resulting from the action of some differential operator acting on it. Einstein
assumed that, in the special case of a static field and with an appropriate choice of
coordinates, the metric tensor would reduce to the form given in equation (8) with

.33 In this case, the gravitational field equations would be expected
to reduce to equation (9). The problem was to reverse this reduction and find the dif-
ferential operator that enters into field equations for the metric tensor.

The first step in his attempt to find this operator was to rewrite the left-hand side
of equation (9) in terms of the components of the metric tensor in equation (8), i.e., to

31 A striking feature of this expression is the signature of the metric, which is in contrast to the appear-
ance of the metric for this special case on pp. 6R and 21R, where Einstein wrote

. One possible explanation for this is that Einstein implicitly used an imaginary
time coordinate at this point, which he had explicitly introduced on p. 32R in the context of his treat-
ment of electrodynamics in moving media.

32 (Einstein 1912b, 456, equation (3b)).
33 Einstein later made this expectation explicit (Einstein and Grossmann 1913, Sec. 2).
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rewrite the equation in terms of  instead of . Einstein began with the left-hand side
of equation (9)

.   (10)  

He then wrote down the first- and second-order partial derivatives of  with respect
to 

.   (11)  

Since the - and -derivatives behave similarly, Einstein could now read off the
Laplacian of ,

,   (12)  

as well as the gradient of ,

,   (13)  

in terms of  and its derivatives.
At this point, Einstein probably realized that various factors of  on the right-hand

sides of equations (11)–(13) cancel if one looks at  instead of . In any case, he
defined a function

  (14)  

such that

,   (15)  

and

.   (16)  

This equation allowed Einstein to express  in terms of :

.   (17)  

Using equations (15) and (17), he finally wrote the expression (10) in terms of :

.   (18)  

Einstein presumably expected that this expression could be recovered from the tenso-
rial field equations. He may have hoped that it would emerge as the 44-component of
the left-hand side of these field equation, but he could, of course, not be certain that
tensorial equations would yield the familiar static theory in this way.34

34 Alternatives are conceivable but less likely. For example, expression (18) might be the trace of the
left-hand side of the unknown gravitational field equations.
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2.3  Finding a Metric Formulation of the Static Field Equation (39R)

At the top of p. 39R, Einstein wrote down the vacuum field equations of his 1912 static
theory in terms of the variable  introduced on the facing page:

.   (19)  

Next to this equation, he started to write the word “Umfo[rmen]” (to re-express), then
deleted it in favour of “Transformieren” (to transform). Presumably, the point of such
transformations was to generalize this field equation for one component of the static
field in a special coordinate system to field equations for all components of the field—
static or non-static—in more general coordinates.

However, instead of dealing with the field equations, Einstein turned to a simpler
but related problem. In the Cartesian coordinates used so far, the static character of the
spatially flat metric in equation (8) can be expressed as35

,   (20)  

the vanishing of the time derivative of the 44-component. Einstein now tried to find a
covariant formulation of the condition that this metric be static. To this end, he began
to transform condition (20) to primed coordinates. Using equation (7), he first
expressed the derivative with respect to  in terms of primed coordinates:

  (21)  

Using equation (4), he then did the same for the 44-component of the metric 

.   (22)  

He now used the inverse transformation for  on the right-hand side:

.   (23)  

The inclusion of the term  in the first line appears to be an error, perhaps anticipating
the need for such a term on the next line, which absorbs all terms in the summation
except those containing .36 If  is a constant, as the notation suggests, then Ein-
stein seems to be considering the special case of linear transformations (in which case
only  is non-constant). It is evident from equation (23) that, under arbitrary linear
transformations, all components of  can be non-constant. This expression, how-

35 Originally, this equation was written as .
36 In the second line, Einstein presumably forgot to take out the summation signs.
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ever, does not indicate how the  depend on the primed coordinates, which would
require expressing  as a function of the primed coordinates. Perhaps looking for
such an expression, Einstein began rewriting an expression for  but quickly gave
up, possibly because such a substitution would just result in the composition of a trans-
formation and its inverse. Finally, he deleted the entire calculation and started afresh
in the top right corner of the page. (This part is ruled off by a horizontal and a vertical
line.)

So Einstein had failed to find a covariant reformulation of the physically-moti-
vated condition (20) through direct transformation. He now turned his attention to the
mathematically more promising relation

,   (24)  

which reduces to equation (20) in the case of the spatially flat static metric (8). That
Einstein did indeed find this equation promising is indicated by the word “probable”
(“wahrscheinlich”) that he wrote above it. The differential operator “Div” is analo-
gous to the quasi-Cartesian coordinate divergence of a tensor, an operation well
known in Minkowski’s four-dimensional spacetime formalism.37 Einstein was famil-
iar with the use of this operation in four-dimensional electrodynamics. The symbol
“ ” denotes the metric tensor (“Tensor der ”).

Einstein now asked “Is this invariant?” (“Ist dies invariant?”) and wrote out
equation (24) explicitly:

.   (25)  

Using the transformation equations (4) and (7), he transformed this equation to primed
coordinates:

.   (26)  

Equation (26) shows that the condition does indeed transform as a vector (i.e., is
“invariant”) under linear transformations (i.e., for constant ’s). This concludes the
investigation of the condition that the metric be static.

At this point, Einstein presumably returned to the field equations. This is suggested
by his derivation on the bottom half of p 39R of the transformation equations for sec-
ond-order derivatives. To simplify matters, he suppressed two spatial coordinates:
“Everything only dependent on  and  (time).” (“Alles nur von  und  (Zeit)
abhängig”). From the actual calculations at the bottom of p. 39R, it is clear that Ein-

37 The notation “Div” for a four-dimensional generalization of the ordinary three-dimensional diver-
gence was introduced by (Sommerfeld 1910b, 650). It is also used in (Laue 1911b, 70). The four-di-
vergence is implicitly used in the derivation of Maxwell’s equations on p. 33L. Note that the ordinary
divergence is written with a lower case “d” on p. 5R.
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stein focused on linear transformations with symmetric transformation matrices (i.e.,
).

 

38

 

 The end result of his calculation is

  (27)  

(the last term on the right does not appear in the notebook). This equation shows that,
under (symmetric) linear transformations, the set of second-order partial derivatives
of a scalar function transforms like the components of the metric tensor, an insight that
Einstein put to good use on the next page.

 
2.4  

 
Searching for a Generalization of the Laplacian in the Metric Formalism (40L–R)

 

At the bottom of p. 39R, Einstein had found that second-order partial derivatives of a
scalar function have the same transformation behavior under linear transformations as
the metric tensor. This insight probably prompted the calculations on pp. 40L–R,
which are an attempt to find candidates for the differential operator acting on the met-
ric tensor in the field equations on the basis of expressions involving well-known dif-
ferential operators acting on a scalar field. Given some striking similarities between
expressions found on p. 40L and a list of differential invariants in (Wright 1908), Ein-
stein (or Grossmann) probably consulted this book while working on the calculations
on this page.

 

39

 

 Since the field equations have to be of second order and the compo-
nents of the metric tensor are equivalent—as far as their transformation properties are
concerned

 

40

 

—to second-order derivatives of a scalar, Einstein had to consider expres-
sions containing fourth-order derivatives of the scalar function. In the course of his
calculations, he further imposed the condition that all four coordinates enter on the
same footing into the differential operator acting on the scalar function. The attempt
was abandoned after the first few lines on p. 40R.

After a few false starts, Einstein listed a number of expressions with the Laplacian
and the gradient operator acting on a scalar function . First, he wrote down three
expressions with “second-order” (“2. Ordnung”) derivatives:

.   (28)  

 

38 In the 1+1 dimensional spacetime considered by Einstein, all Lorentz transformations are boosts.
These are all represented by symmetric matrices. Presumably, this is the physical rationale behind
Einstein’s focus on such matrices.

39 Einstein was familiar with this book, as can be inferred from Einstein to Felix Klein, 21 April 1917:
“Grossmann (I believe) had the little book by Weight [sic] when we were working together on rela-
tivity four years ago” (“Das Büchlei[n] von Weight [sic] hatte Grossmann (glaube ich), als wir vor 4
Jahren zusammen über Relativität arbeiteten.” CPAE 8, Doc. 328). For historical discussion of
(Wright 1908), see (Reich 1994, 105–107).

40 The equivalence can only refer to the behavior under coordinate transformations since a direct iden-
tification of the metric tensor with the second partial derivatives of a scalar function would result in
severe, unacceptable restrictions on the metric.
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Then he wrote down a number of expressions with “fourth-order” (“4. Ordnung”)
derivatives

.   (29)  

The list shows some resemblance to a list on pp. 56–57 of (Wright 1908).

 

41

 

 On the
next line, the first of these expressions, , is expanded, with the help of the defi-
nition of the Laplacian in Cartesian coordinates in two dimensions,

. He then expanded the second term of the list, , as

 

42

 

.   (30)  

The terms  and  only contain second-order derivatives of the scalar func-
tion  and can therefore be translated into expressions with (differential operators act-
ing on) components of the metric. The underlining of these two terms in the notebook
thus confirms our interpretation of the rationale for these calculations. 

Einstein then wrote “the first two steps” (“Die ersten 2 Schritte”), drew a horizon-
tal line, wrote “2 dimensions” (“2 Dimensionen”), and then crossed out the calcula-
tions he had made so far and tried again.

Einstein’s next comment makes his strategy explicit: “system of the  equivalent
to system ” (“System der  äquivalent dem System ”). In
other words, he now spelled out the equivalence of second-order derivatives of a scalar
function and components of the metric tensor as far as their behavior under linear
coordinate transformations is concerned. Einstein’s next step was to impose an addi-
tional constraint on candidate field equations constructed from the kind of expressions
he had been examining above: “The equation should be such that in every term one
has the same number of differentiations with respect to every ” (“Gleichung soll so
sein, dass in jedem Glied nach allen  gleich oft diff[erenziert] wird.”).

Einstein now had three constraints that any acceptable expression had to satisfy.
First, for every factor  there should be two partial-derivative operators  to
enable the translation to components of the metric tensor. Second, there should be two
additional partial-derivative operators to yield second-order field equations. Third, for
each of the four coordinates the expression should contain an equal number of opera-
tors .

He first considered an expression linear in :

 

41 In Wright’s book the list is formed from combinations of the two Beltrami invariants (Wright 1908,
56–57). At this point in the notebook, the operator  does not seem to be related to the Beltrami in-
variants. Einstein nevertheless may have hoped that Wright’s book would give him some guidance in
finding a differential invariant that he could use to construct the left-hand side of the gravitational
field equations. The Beltrami invariants explicitly appear on later pages of the notebook (for the first
time on p. 7L; for discussion see sec. 4.2).

42 There is a factor of 2 missing in the third term.
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.   (31)  

Einstein rejected this possibility, writing: “linear impossible, of 8th order in ”
(“Linear unmöglich von 8. Ordnung in ”). The problem with this expression is that
it leads to sixth-order field equations. For instance, using the derivatives with respect
to  for the translation to components of the metric tensor, one arrives at the expres-
sion

.   (32)  

The next possibility he considered was an expression quadratic in :

.   (33)  

This term, as Einstein noted, would correspond to an expression with fourth-order
derivatives of the metric: “will necessarily be of fourth order” (“wird notwendig 4.
Ordnung”). 

To obtain an expression satisfying all three constraints, one needs an expression
cubic in . Einstein thus wrote: “third degree in  will be of second order, as it has
to be” (“dritten Grades in  wird 2. Ordnung, wie es sein muss”) and then wrote down
an example of such an expression:

.   (34)  

The equivalence under linear coordinate transformations of the metric tensor and
the partial derivatives of a scalar function is further explored at the top of p. 40R.
There Einstein tried a different way of achieving symmetry between the four space-
time coordinates. He changed what we identified above as the third constraint. Rather
than looking at the expression corresponding to the field equations, he now exclu-
sively concentrated on the second-order derivatives of  representing components of
the metric in this context. Taking as his starting point the product of two such second-
order derivatives (corresponding to 

 

43

 

), he ensured that all four coordinates
occur on equal footing by adding terms obtained through permutation of the indices.
Einstein initially wrote down the cyclic permutations  and . However,

, so he crossed out this first attempt and tried again. He now wrote
down the terms  and , the only non-redundant terms given the symme-
tries  and . He then translated these three terms into partial
differential operators acting on :

 

43 Here, on top of p. 40R Einstein used the lower case  for the first time, a practice he continued
throughout the rest of the notebook.
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.   (35)  

This expression is fully symmetric under permutation of the indices. By having a sec-
ond-order derivative operator symmetric in all four coordinates (such as the d’Alem-
bertian) acting on this expression, one can now construct field equations that meet all
three constraints, the two original ones and the modified version of the third one. How-
ever, Einstein did not pursue this line of inquiry any further.

2.5  Transforming the Ellipsoid Equation as a Model 

for Transforming the Line Element (40R–41L)

Einstein’s first exploration of a metric theory of gravitation ends at the horizontal line
drawn on p. 40R with the calculations discussed above. The remaining pages of this
part, pp. 40R–43L, do not seem to be a direct continuation of these investigations.

On the bottom half of p. 40R and the top half of p. 41L, Einstein considered trans-
formations of equations describing three-dimensional ellipsoids. Only these calcula-
tions, which bear on Einstein’s exploration of the transformation properties of the
metric tensor, will be discussed here. On the bottom half of p. 41L and the top half of
p. 41R, Einstein examined some properties of infinitesimal unimodular transforma-
tions. These calculations will be discussed in sec. 4.5.7 along with very similar calcu-
lations at the bottom of p. 12R. The bottom half of p. 41R, dealing with constrained
motion along a two-dimensional surface, will be discussed in the sec. 4.5.8. Finally,
most, if not all, of the material on pp. 42L–43L is related to Einstein’s considerations
on pp. 23L–R and will be discussed in secs. 5.5.6–5.5.10.

On the bottom half of p. 40R, Einstein transformed the equation for a three-dimen-
sional ellipsoid to its principal-axis form. On the top half of p. 41L, he then tried to
determine the class of linear transformations that would leave this description of the
ellipsoid invariant. The calculation on p. 40R is analogous to finding coordinate trans-
formations that take the line element in arbitrary coordinates to its standard
Minkowski form. This geometrical analogy can also be found in (Einstein and Gross-
mann 1913, sec. 3): “the real cone  appears brought to its principal axes”
(“der reelle Kegel  erscheint auf seine Hauptachsen bezogen”). The calcula-
tion on p. 41L is analogous to finding the class of linear transformations leaving the
Minkowski line element in its standard diagonal form invariant.44

The calculation starts from the defining equation for an ellipsoid in Cartesian coor-
dinates , , and :

.   (36)  

44 These calculations may have been motivated by the following remark in (Wright 1908, 18): “The
problem of the equivalence of two quadratic differential forms is reduced to that of the equivalence
of two sets of algebraic forms, where one set is obtained from the other by a linear transformation.”
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For this equation to describe an ellipsoid, the left-hand side must be a positive definite
quadratic form. Immediately below this expression, Einstein wrote the equation for
the same ellipsoid in rotated primed coordinates such that the coordinate axes are
aligned with the principal axes of the ellipsoid,

,   (37)  

where , , and  are the lengths of the three semi-principal axes of the ellipsoid.
Next he wrote down the matrix of coefficients of the orthogonal coordinate trans-

formation corresponding to this rotation:

 

45

 

.   (38)  

Under the three columns of this matrix, Einstein wrote , , and , respec-
tively, indicating that he wanted to rescale the coefficients by these factors. He
denoted the rescaled coefficients by , , etc. The matrix of the
rescaled coefficients is written below the transformation matrix,

  (39)  

For the remainder of these calculations, Einstein used the geometrical meaning of
these quantities. To understand Einstein’s reasoning, it is helpful to examine the two-
dimensional case. 

 

45 Similar transformation schemes appear on p. 39L and on the following p. 41L. More explicitly, the
transformation reads , etc.

x′2
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------- y′2
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Consider the diagram on the left. In the
primed coordinate system, the equation for
the ellipse is:

,   (40)  

which can be rewritten as

.   (41)  

In the primed coordinate system, the vectors
x,  and  have components ,

 and , respectively.
Einstein wrote down the three-dimensional

analogue of equation (41) in the unprimed coordinates:46

.   (42)  

Expanding the binomials and comparing the resulting coefficients with those of
equation (36), one finds47

  (43)  

The vectors , , and  are in the direction of the
semi-axes of the ellipsoid (cf. the figure above). It follows that these three vectors are
orthogonal and that their norms are the reciprocal of the lengths of the ellipsoid’s
semi-axes. The orthogonality of the three vectors is expressed by:

  (44)  

Their norms are given by:

46 The third term is only indicated by a dot in the notebook.
47 The equations for , , and  are indicated by dashes in the notebook, and instead of 

Einstein erroneously wrote .

A

B
x

y

x′

y′

u1

v1⎝ ⎠
⎜ ⎟
⎛ ⎞

u2

v2⎝ ⎠
⎜ ⎟
⎛ ⎞

x′2

A2
------- y′2

B2
-------+ 1=

u1 x⋅( )2 u2 x⋅( )2+ 1=

u1 u2 x′ y′,( )
1 A⁄ 0,( ) 0 1 B⁄–,( )

u1x v1y w1z+ +( )2 u2x v2y w2z+ +( )2 u3x v3y w3z+ +( )2+ + 1=

α33 α31 α12 α23
α12

u1
2 u2

2 u3
2+ + α11=

v1
2 v2

2 v3
2+ + α22=

w1
2 w2

2 w3
2+ + α33=

v1w1 v2w2 v3w3+ + α23=

w1u1 w2u2 w3u3+ + α31=

u1v1 u2v2 u3v3+ + α12.=

u1 v1 w1, ,( ) u2 v2 w2, ,( ) u3 v3 w3, ,( )

u1u2 v1v2 w1w2+ + 0,=

u1u3 v1v3 w1w3+ + 0,=

u2u3 v2v3 w2w3+ + 0.=



41L TRANSFORMING THE ELLIPSOID EQUATION sec. 2.5

514

  (45)  

Equations (44) and (45) are the ones written down at the bottom of p. 40R.48

On the next page, Einstein recapitulated, remarking that “the  determine
orientation and size of the ellipsoid” (“Die  bestimmen Lage und Grösse des
Ellipsoids.”). Equation (42) for the ellipsoid can be written

, the left-hand side of which can be interpreted as the sum
of the squared scalar products of , , and  with the
radius vector .

On p. 40R, Einstein had been concerned with the transformation to principal axes
for the ellipsoid. On p. 41L, he investigated “arbitrary linear transformations of , ,

 to , ,  for an invariant ellipsoid function” (“Beliebige lineare Transformatio-
nen der  in  bei invarianter Ellipsoidfunktion.”). In other words, he
asked which linear transformation leave the principal-axes form of the equation for the
ellipsoid invariant. He thus wrote down the equation for the ellipsoid in two different
coordinate systems:49

.   (46)  

Einstein next wrote down transformation matrices for the linear transformations
between the three spatial coordinates that parallel those introduced earlier for the four
spacetime coordinates:

  (47)  

and:50

48 The last two lines of equations (44) and (45) are only indicated by dashes in the notebook.
49 In writing this expression, Einstein seems to have added the summation signs as an afterthought: ad-

ditional terms on the right-hand side were deleted in favor of the summation sign, and the summation
index “ ” in that equation is an “ ” in the notebook.

50 Note that the notation here is the reverse of the notation introduced on p. 39L (cf. equation (2)).
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  (48)  

From equation (46), it follows that the transformation matrix for the vectors
, , and  is the transposed of the matrix in equation

(47), i.e., in Einstein’s notation:

  (49)  

Using these transformation equations, one can write:

  (50)  

The sum of these three expressions may be more conveniently expressed as:

  (51)  

In the notebook this equation is written as51

.   (52)  

Similarly, he found:

.   (53)  

The third equation, for , is indicated by a dashed line. At this point,
the calculation breaks off.

The remaining pages of the part starting from the back of the notebook contain
material that was added later and will be covered later. The calculations on the bottom
half of p. 41L and on p. 41R will be discussed in section 4; the calculations on p. 42L–
43L in section 5.

51 In other words, Einstein neglected to change  to  on the right-hand side. 
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3.  ENERGY-MOMENTUM BALANCE BETWEEN MATTER 
AND GRAVITATIONAL FIELD (5R)

We now turn to the notes on gravitation that start from the back of the notebook,
beginning with p. 5R. The calculations on these pages are not a direct continuation of
those on pp. 39L–41R examined in sec. 2. A clear indication that p. 5R ff. are later is
that the calculations on these pages are much more sophisticated mathematically than
those on pp. 39L–41R.

On p. 5R, Einstein derived the equation for the energy-momentum balance for
pressureless dust in the presence of a gravitational field,52 an argument that later
appeared in (Einstein and Grossmann 1913, secs. 2 and 4). It starts with the derivation
of the equations of motion of a point particle in a metric field from an action principle,
where the action integral is just the proper length of the particle’s worldline. Expres-
sions for the particle’s momentum and the gravitational force acting on the particle are
read off from the resulting Euler-Lagrange equations. Einstein generalized these
results to expressions for the momentum density and the force density in the case of
pressureless dust, or, as it is described in (Einstein and Grossmann 1913, 9), “contin-
uously distributed incoherent masses” (“kontinuierlich verteilter inkohärenter Mas-
sen”). He identified the expression for momentum density as part of the stress-energy
tensor for pressureless dust. Inserting this stress-energy tensor and a similar expres-
sion for the density of the force acting on the pressureless dust into the equations of
motion that he started from, Einstein arrived at a plausible candidate for the law of
energy-momentum conservation in the presence of a gravitational field, or, more accu-
rately, an equation for the energy-momentum balance between matter and gravita-
tional field.53 What made the candidate all the more promising were its transformation
properties. In fact, the equation is generally covariant. As was shown explicitly by
Grossmann in his part of (Einstein and Grossmann 1913; part II, sec. 4), it expresses
the vanishing of the covariant four-divergence of the stress-energy tensor. On p. 5R,
Einstein made a similar claim, namely that the result of the expression found at the
bottom of the page is always a vector. He performed a calculation for a special case
that at least made this claim plausible. The equation thus looked like a promising gen-
eralization of the vanishing of the ordinary four-divergence of the stress-energy ten-
sor, which Laue (1911a, b) had made the fundamental equation of relativistic
mechanics. Like Laue, Einstein presumably wanted to generalize it from the special
case of pressureless dust to arbitrary physical systems.54

Einstein’s analysis on p. 5R thus provides an excellent example of how physical
and mathematical considerations complement each other in the course of Einstein’s

52 Essentially the same calculation can be found on p. 20R. For discussion see sec. 5.4.4. P. 5R is also
discussed in (Norton 2000, appendices A through C). 

53 On p. 43LB, Einstein performed a calculation that is the “inverse” of that on p. 5R. Rather than deriv-
ing the law of energy-momentum balance from the equations of motion of a point particle, he derived
the equations of motion from the law of energy-momentum balance. This calculation will be dis-
cussed in sec. 5.5.10.

5R
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development of the general theory of relativity. First, Einstein derived an equation for
the energy-momentum balance between matter and gravitational field on the basis of
physical arguments centering on the special case of pressureless dust. Then, he con-
firmed its generalizability to arbitrary physical systems on the basis of mathematical
arguments.

We shall now examine Einstein’s calculations on p. 5R in detail. He started by
writing down the line element,

.   (54)  

Next to it, he noted that this expression is “always positive for a point” (“immer positiv
für Punkt”), i.e., the worldline of a material particle is time-like.55

As he had first done in a note added in proof to the paper presenting his second
static theory (Einstein 1912b, 458), Einstein used this line element to define the
Lagrangian—or “Hamiltonian function” (“Hamiltonsche Funktion”) as he called it
(Einstein and Grossmann 1913, 7)—for a point particle moving in a given metric
field:56 

.   (55)  

He then wrote down the corresponding Euler-Lagrange equations, the “equations of
motion” (“Bewegungsgleichungen”):

.   (56)  

The equation initially had a plus rather than a minus sign on the left-hand side. This
sign error is carried through all the way to the end of the calculation. Einstein only cor-
rected it after he discovered that it led to an unacceptable end result (see the discussion
following equation (75)). The equation,

54 Einstein made this generalization explicit in his paper with Grossmann: “We ascribe to equation (10)
a range of validity that goes far beyond the special case of the flow of incoherent masses. The equa-
tion represents in general the energy balance between the gravitational field and an arbitrary material
process” (“Der Gleichung (10) schreiben wir einen Gültigkeitsbereich zu, der über den speziellen Fall
der Strömung inkohärenter Massen weit hinausgeht. Die Gleichung stellt allgemein die Energiebilanz
zwischen dem Gravitationsfelde und einem beliebigen materiellen Vorgang dar …;” Einstein and
Grossmann 1913, p. 11). Statements almost verbatim the same as this one can be found in the printed
text of Einstein’s lecture on the problem of gravitation in Vienna in September 1913 (Einstein 1913,
1253 and 1257).

55 From this we can infer that at this point, Einstein’s sign convention is such that the Minkowski metric
in its standard diagonal form is . This same convention was used in the Nachtrag
to (Einstein 1912b) and in (Einstein and Grossmann 1913). On p. [39L], however, the Minkowski
metric in its standard diagonal form was given as  (if we switch from an imaginary
to a real time coordinate).

56 Given the sign convention on this page (see the preceding footnote),  should be  (cf. Einstein
and Grossmann 1913, 7; Einstein 1912b, 458).
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,   (57)  

written to the right of equation (56), was presumably added at that point and helped
Einstein correct his sign error. It is easy to see how equation (57) could play that role.
When the Lagrangian can be written as , where  is a potential energy
term and  (which stands for “lebendige Kraft”) is the kinetic energy term,
equation (56) is equivalent to equation (57). The latter equation is readily recognized
as a generalization of Newton’s second law. This then confirmed that the left-hand
side of equation (56) must indeed have a minus sign.

Underneath equation (56), Einstein wrote down the partial derivative of  with
respect to :57

.   (58)  

This is the -component of the momentum of a particle of unit mass. He then gener-
alized this result to an expression for the -component of the momentum density of
pressureless dust:58

  (59)  

The derivation of this expression is not given in the notebook, but can easily be recon-
structed (see Einstein and Grossmann 1913, secs. 2 and 4). Using equation (58) for the

-component of momentum  and dividing it by the volume  in the same coordi-
nate system, one arrives at an expression for the -component of momentum density

.   (60)  

To obtain equation (59), the coordinate volume  has to be replaced by the proper
volume . The relation between the two is given by (Einstein and Grossmann 1913,
10):59

,   (61)  

where  is minus the determinant of the metric tensor. Substituting this expression
for  on the right-hand side of equation (60), one arrives at equation (59) for what, as

57 .

58 Given the sign convention on this page (see footnote 55),  stands for minus the determinant of the
metric.

59 This relation can also be found on p. 20R (see equation (524)) and at the bottom of p. 27L.
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ẋ∂
∂H 1

V
----
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Einstein wrote under it, “is the momentum per unit volume” (“ist Bewegungsgrösse
pro Volumeinheit”):

  (62)  

where  is the proper density of a unit mass of dust. The energy density
 of the dust can be found through a similar argument:60

.   (63)  

Equation (62) for the -component of momentum density, similar expressions for its
- and -components, and equation (63) for the energy density, all divided by ,

give four components of the contravariant stress-energy tensor for pressureless dust,
which is written down immediately below equation (59):61

.   (64)  

Einstein called this quantity the “tensor of the motion of masses” (“Tensor der Bewe-
gung der Massen”).62 Contracting this tensor with the metric and multiplying by ,
one recovers the momentum and energy densities (cf. equations (62)–(63))

,     .   (65)  

Einstein thus introduced what he called the “tensor of momentum and energy”
(“Tensor der Bewegungsgröße u[nd] Energie.”). 

.   (66)  

In fact, this is not a tensor but a (mixed) tensor density.

60 Cf. footnote 57:

.

61 Note that the indices are written “downstairs” even though they refer to contravariant components.
Einstein’s convention here and elsewhere in the notebook is just the opposite of the one adopted in
(Einstein and Grossmann 1913), where all contravariant quantities are indicated by Greek and all co-
variant ones by Latin characters.

62 The superscript ‘b’ stands for “Bewegung” (“motion”).
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With the help of equation (64), Einstein could begin to rewrite the Euler-Lagrange
equations (56) in terms of a stress-energy tensor, which would allow him to generalize
the equation from the special case of pressureless dust to any physical system
described by a stress-energy tensor. The second term of equation (56) represents the
gravitational force on a particle. Einstein generalized this term to an expression for the
“negative ponderomotive force per volume unit” (“Negative Ponderomotorische Kraft
pro Volumeinheit”)

 

63

 

 on pressureless dust:

 

64

 .   (67)  

As with equation (59), the derivation of this expression is not given in the notebook,
but can easily be reconstructed (see Einstein and Grossmann 1913, secs. 2 and 4).
Defining the -component of the gravitational force  as  and using the def-
inition of the Lagrangian , one can write:

.   (68)  

Using the definition of the line element, one can rewrite this as:

  (69)  

With the help of equation (61), the coordinate volume  can be replaced by the proper
volume :

.   (70)  

Inserting , the stress-energy tensor for pressureless dust, for
, one arrives at the -component of Einstein’s

equation (67). As he had done before (see equation (66)), Einstein assumed that this
result, derived for the special case of the stress-energy tensor of pressureless dust, will
hold for the stress-energy tensor of any matter.

On the next line Einstein wrote down the tensorial generalization of the Euler-
Lagrange equations (56), using equations (66) and (67) and replacing  by

:

 

65,66

 

.   (71)  
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64 In the expression below,  was corrected from  (which presumably stands for “Determinante”),

the subscript  was corrected from some illegible character, and a factor  was deleted.
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At this point he dropped the index ‘b’ since he expected the equation to hold for all
matter, not just for pressureless dust.

Einstein now tried to gain some insight into the transformational behavior of this
equation by rewriting its left-hand side as the action of a generalized derivative on an
arbitrary tensor. First, he introduced the (contravariant) tensor density corresponding
to the (contravariant) stress-energy tensor  in equation (71). He wrote: “If we set”
(“Setzen wir”)67

,   (72)  

then equation (71) can be rewritten as:

.   (73)  

To write the left-hand side as a differential operator acting on a tensor,  should
appear with the same indices in both terms. Therefore Einstein relabeled the summa-
tion indices in the first term in order to conform with the occurrence of  in the sec-
ond term, made the assumption that  is symmetric, and rewrote the equation as:68

.   (74)  

To the right of this equation, he wrote: “In general associated vector” (“Im Allge-
meinen zugeordneter Vektor”), and below it “Valid for every symmetric tensor, e.g.,

” (“Gilt für jeden symm[etrischen] Tensor z. B. ”).69 “Associated”
(“zugeordnet”) means “covariant” in this context, as is clear from its usage on pp. 6L–
R. The notation  for the contravariant components of the metric (see Einstein and
Grossmann 1913, 12, note 4) occurs here for the first time in the notebook. Einstein’s

65 The expression in parentheses is underlined once, and  in the second term is underlined twice.
The equation also contains a number of corrections. The minus sign was corrected from a plus sign.
This error stems from the sign error in equation (56). In the first term, the index  was corrected from

 and the factor  was inserted later. In the second term, the factor  was deleted once and
rewritten. This correction is related to a correction in equation (75) below. Moreover,  was correct-
ed from  (as in equation (67)). Note that  in equation (71) stands for the contravariant stress-
energy tensor, whereas in equation (66) it stands for the corresponding mixed tensor density.

66 The same equation appears in slightly different versions and in slightly different notation at various
other places in the notebook (see pp. 24L, 26L, 28L, and 43LB) and in (Einstein and Grossmann 1913,
p. 10, equation (10)).

67 The notation in the notebook (see also pp. 20R, 24L, 24R, 26L, and 43LB) is different from the nota-
tion used in (Einstein and Grossmann 1913), where the contravariant stress-energy tensor is denoted
by  and the covariant form by .

68 The equation originally had a plus rather than a minus sign, an error it inherited from equation (56).
The factor  was deleted once and rewritten. This correction is related to a correction in
equation (75) below. The index  in  is corrected from . Both characters  are corrected from

’s. 
69 The word “symm[etric]” is interlineated. Recall that Einstein had to assume symmetry in going from

equation (73) to equation (74).
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claim is that the quantity on the left-hand side of equation (74) is a vector as long as
 is a symmetric tensor. This claim is correct. The expression is just the covariant

divergence of a symmetric tensor, as is shown in (Einstein and Grossmann 1913). The
result appears in Grossmann’s part, which suggests that Einstein may have learnt it
from him.

Einstein checked his claim for the specific example  mentioned above.
Insertion of this tensor density into equation (74) produces:70

,   (75)  

Since , with  the Kronecker delta, the first term is equal to

,   (76)  

which Einstein wrote underneath the first term of equation (75). Since71

,   (77)  

the expression in parentheses in the second term is equal to

,   (78)  

which Einstein wrote underneath the second term of equation (75).72

Inserting expressions (76) and (78) into equation (75), one sees that the latter is
indeed satisfied.

It is at this point that Einstein recognized two errors that had found their way into
his calculations. First, equation (75) inherited the erroneous minus sign from the
Euler-Lagrange equations (56) that formed the starting point of this whole calculation.
Second, Einstein omitted a factor  when he went from equation (74) to
equation (75). Einstein probably only caught these errors when the result of his calcu-
lations did not meet this expectation, i.e., when he saw that equation (75) with a plus
rather than a minus and without the factor  does not hold. Einstein probably cor-
rected the sign error first, tracing it all the way back to the Euler-Lagrange
equations (56). Equation (57) next to these equations was probably added in this con-
text. As to the omitted factor , Einstein originally seems to have been under the
impression that expression (76) is equal to expression (78) without the factor 
multiplying the latter in equation (75). It is probably for this reason that he deleted this

70 The equation originally had a plus rather than a minus sign, an error it inherited from equation (56).
Einstein initially omitted the factor of . The factor  was inserted later.

71 See p. 6L for a derivation of this relation.
72 The index  is corrected from .
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factor in equations (74) and (71), respectively, only to put them back in once he real-
ized that this factor was needed in equation (75) after all.

After making these corrections, Einstein wrote at the bottom of the page: “correct”
(“stimmt”). Einstein’s trial calculation supported the claim that his physically moti-
vated expression for energy-momentum balance between matter and gravitational
field does indeed lead to a differential operator that acts on a symmetric tensor to pro-
duce a vector.73

4.  EXPLORATION OF THE BELTRAMI INVARIANTS 
AND THE CORE OPERATOR (6L–13R, 41L–R)

4.1  Introduction (6L–13R, 41L–R)

Einstein returned to the question of finding field equations for the metric field on
p. 6L. He had meanwhile become more sophisticated mathematically. For example, at
this point he knew about the Beltrami invariants and carefully distinguished between
covariant and contravariant tensors. However, there were still large gaps in his knowl-
edge. He still did not know about the Riemann tensor or covariant differentiation,
which severely handicapped his search for satisfactory field equations. Most of the
calculations on pp. 6L–13L are investigations of the covariance properties of various
expressions that might either be part of the field equations or play a role in their con-
struction. These calculations did not lead to any promising candidates for the left-hand
side of the field equations, but they led to several clusters of important results, ideas,
and techniques that Einstein was able to put to good use once he learned about the Rie-
mann tensor (see p. 14L).

First of all, one can begin to discern the double strategy discussed in sec. 1.2. On
p. 6L Einstein started with two generally-covariant operators acting on a scalar func-
tion, known as the Beltrami invariants. The second Beltrami invariant is a generally-
covariant generalization of the Laplacian of a scalar function and as such provided a
natural point of departure in Einstein’s search for gravitational field equations. The
basic challenge was to get from an operator acting on a scalar function to an operator
acting on the metric tensor. Einstein did not immediately see how to achieve this goal.
On p. 7L, he therefore temporarily abandoned his mathematically-oriented approach
for a physically-oriented one. He wrote down a version of what we call the “core oper-
ator,” an expression constructed out of the metric tensor and its coordinate derivatives
in such a way that for weak fields it reduces to the d’Alembertian acting on the metric.
The problem with this core operator is that its transformation properties are unclear.
Einstein addressed this problem by trying to relate the physically well-understood core
operator to the mathematically well-understood Beltrami invariants.

73 On p. 8R, Einstein found that the generally-covariant generalization of the exterior derivative opera-
tor acting on the metric also vanishes (see the discussion following equation (182)).
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Two key components of Einstein’s mathematical strategy first emerge in the
course of the calculations documented on these pages. The first is the idea is to start
from expressions with a well-defined covariance group (either generally covariant or
covariant under unimodular coordinate transformations) and then to extract candidates
for the left-hand side of the field equations by imposing additional conditions, such as
the condition that the correspondence principle be satisfied (i.e., that the field equa-
tions reduce to the Poisson equation of Newtonian theory for weak static fields).

The other key component is the use of what Einstein would later call “non-auton-
omous transformations” (“unselbständige Transformationen”).74 To investigate the
covariance properties of various expressions constructed out of the metric tensor and
its derivatives, he wrote out the transformation law for such an expression under gen-
eral coordinate transformations and identified those terms that would have to vanish
if the expression were to transform as a tensor. The vanishing of these terms gives con-
ditions on the transformation matrices that depend explicitly on the components of the
metric (see pp. 7L-R, 9R, 10L). Because of this dependence, such transformations are
called “non-autonomous.” Initially, Einstein investigated the behavior of his candidate
field equations under such non-autonomous coordinate transformations. Eventually
he realized that the complexity of the relevant calculations could be reduced consid-
erably by combining the notion of non-autonomous transformations with the basic
idea of the mathematical strategy, namely to extract candidate field equations from
expressions with well-known covariance properties by imposing additional condi-
tions. The covariance properties of field equations constructed in this fashion are
determined by the covariance properties of these additional conditions, which typi-
cally will be much simpler than the field equations themselves. Einstein could thus
focus on determining the class of non-autonomous transformations under which these
simpler additional conditions transform tensorially.75

An important example of such an additional condition is what we shall call the
“Hertz restriction,” in which the so-called “Hertz expression,” , is set
equal to zero.76 On pp. 10L–11L, Einstein investigated whether the class of non-
autonomous transformations under which the Hertz expression transforms as a tensor
includes the transformations from quasi-Cartesian coordinates to rotating and linearly
accelerating frames in the special case of Minkowski spacetime. These transforma-
tions were crucially important to Einstein’s attempts to extend the relativity principle
from uniform to non-uniform motion and to establish the equivalence of rotation and
acceleration in Minkowski spacetime to corresponding gravitational fields.

Later in the notebook, Einstein applied the same strategy to candidate field equa-
tions constructed out of the Riemann tensor. As before, the covariance properties of
the additional condition(s) determine the covariance properties of the candidate field

74 See Einstein to H. A. Lorentz, 14 August 1913 (CPAE 5, Doc. 467). See sec. 4.3 for further discus-
sion.

75 See p. 9R and the discussion in footnote 134 for the first example of this type of argument.
76 Named after Paul Hertz (see footnote 22). The Hertz restriction reappears in the course of Einstein’s

exploration of the Riemann tensor on p. 22R (see sec. 5.5.2).
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equations. Einstein regarded such conditions as essential parts of the theory, restrict-
ing the class of admissible coordinate systems. We therefore refer to these conditions
as “coordinate restrictions.” They should be distinguished from “coordinate condi-
tions.” Mathematically, one and the same equation can express a coordinate restriction
or a coordinate condition, but the two have a very different status. Coordinate condi-
tions may always be imposed on generally-covariant equations to choose a suitable
class of coordinate systems for some particular purpose. Consequently, different coor-
dinate conditions may be used for different purposes, just as different gauge condi-
tions can be used for different purposes. In contrast, coordinate restrictions are an
integral part of the theory, imposing a limitation on the allowed class of coordinate
systems in which the theory is expected to hold. With coordinate restrictions, one does
not have the freedom to pick different conditions for different purposes.

On p. 9L, building on the energy-momentum balance equation derived on p. 5R,
Einstein arrived at two important insights related to energy-momentum conservation.
First, drawing on his experience with the 1912 static theory, he realized that for the
field equations to be compatible with energy-momentum conservation their left-hand
side should be the sum of a core operator and a quantity representing the stress-energy
of the gravitational field. Secondly, he found a way to construct a candidate for this
stress-energy tensor out of the first Beltrami invariant.

Einstein’s main concern in this part of the notebook, however, was not how to sat-
isfy the conservation principle but how to satisfy simultaneously his other three heu-
ristic requirements, the correspondence principle, the relativity principle, and the
equivalence principle.77 By the time he made the entries at the bottom of p. 12R, Ein-
stein had established a number of results related to the latter three principles. He had
(i) introduced the core operator (p. 7L); (ii) found its relation to the second Beltrami
invariant with the determinant of the metric playing the role of the scalar function in
the latter’s definition (pp. 8R–9R); (iii) investigated unimodular transformations since
the determinant of the metric transforms as a scalar under this restricted class of trans-
formations only; (iv) recognized the importance of the Hertz restriction in getting from
the second Beltrami invariant first to the core operator and then to weak field equa-
tions with the d’Alembertian acting on the metric (p. 10L); (v) derived conditions for
the classes of non-autonomous transformations under which the weak field equations
and the Hertz expression transform as a tensor and a vector, respectively (pp. 10L–
11R); and (vi) developed a strategy for checking whether such non-autonomous trans-
formations include the important special cases of the transformation to rotating and
accelerating frames in Minkowski spacetime (pp. 11L, 12L–R, 41L–R). However,
serious difficulties on all these counts remained.

On pp. 13L–R, Einstein therefore bracketed the question of the covariance proper-
ties of his candidate field equations and turned to the compatibility with energy-
momentum conservation instead, provisionally requiring only covariance under
autonomous unimodular linear transformations. On p. 13R he returned to the physical

77 See sec. 1.1 for discussion of these requirements.
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strategy trying to find the left-hand side of the field equations by starting from the
weak field equations and imposing energy-momentum conservation. An ingenious
simpler version of this strategy was used on pp. 26L–R to derive the Entwurf field
equations. On p. 13R Einstein did not yet see how to generate field equations in this
way. Given this impasse and the difficulties he had run into in his investigation of the
covariance properties on pp. 6L–12R, one can well imagine Einstein turning to his
mathematician friend Marcel Grossmann for fresh ideas.78 On the next page, p. 14L,
the Riemann curvature tensor makes its first appearance in the notebook with Gross-
mann’s name written next to it. Einstein only returned to the physical strategy emerg-
ing on p. 13R after a series of failed attempts to extract field equations from the
Riemann tensor (see pp. 14L–25R, 42L–43L covered in sec. 5).

4.2  Experimenting with the Beltrami Invariants (6L–7L)

Beltrami’s two differential invariants (more precisely “differential parameters”) are
generally-covariant scalars constructed out of the metric, its first- and second-order
derivatives, and some arbitrary, at least twice-differentiable scalar function .79 The
first Beltrami invariant can be defined as

,   (79)  

the second as80

.   (80)  

At the top of p. 6L, Einstein wrote down the contraction of the contravariant metric
with the gradient of some scalar function 

.   (81)  

78 As is related in (Kollros 1956, 278), Einstein allegedly turned to Grossmann at one point and said:
“Grossmann, you have to got to help me, otherwise I am going mad” (“Grossmann, Du mußt mir hel-
fen, sonst werd’ ich verrückt!”).

79 See (Bianchi 1910, secs. 22–24) or (Wright 1908, sec. 53).
80 Equations (79) and (80) are equivalent to (Bianchi 1910, sec. 23, eq. (8), and sec. 24, eq. (19)), re-

spectively. The second Beltrami invariant is alluded to in the 1914 review article on the Entwurf the-
ory. In sec. 8 of this paper, Einstein points out that the covariant divergence of the contravariant vector

 is equal to “the well-known generalization of the Laplacian ,

” (“die bekannte Verallgemeinerung des Laplaceschen  …;” Ein-

stein 1914b, 1051–1052; see also Einstein 1916, 797). This generalization is nothing but the second
Beltrami invariant. Following (Weyl 1918), Einstein also used the second Beltrami invariant, again
without identifying it by name, in lectures in 1919 (see CPAE 7, Doc. 19, [p. 22], and Doc. 20, [p. 1]).
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Next to this expression he wrote: “vector” (“Vektor”).81

Einstein now applied a differential operator to this vector. In this way, he obtained
the second Beltrami invariant

.   (82)  

Next to this expression, he wrote: “scalar” (“Skalar”).
Einstein then investigated a condition, under which expression (82) would reduce

to the ordinary Laplacian acting on a scalar. He called this condition a “plausible
hypothesis” (“Naheliegende Hypothese”):

  (83)  

This condition determines so-called “isothermal coordinates,”82 or, as they are now
called, harmonic coordinates. The corresponding harmonic coordinate restriction
came to play an important role later in the notebook in Einstein’s analysis of the Ricci
tensor (see pp. 19L–20L and the discussion following equation (471) in sec. 5.4.1).

In the last four lines of p. 6L, Einstein rewrote equation (83) to eliminate the deriv-
ative of the determinant , leaving only derivatives of components of the metric:

.   (84)  

Dividing by , he arrived at:

.   (85)  

He then rewrote the second term using that the components of the contravariant metric
are defined as

  (86)  

where  is the minor of the -component of the covariant metric. Einstein thus
rewrote the second term of equation (85) as:

.   (87)  

81 He initially wrote and then deleted “associated vector” (“zugeordneter Vekt”). “Associated” stands
for “covariant” in this context. Expression (81) is a contravariant vector. Cf. the use of the term
“zugeordnet” on p. 5R (see the discussion following equation (74) in sec. 3) and on p. 6R (see the re-
marks following equation (88)).

82 See, e.g., (Bianchi 1910, sec. 36-37) or (Wright 1908, sec. 57).
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Here the calculation breaks off. A possible explanation is that Einstein wanted to
check whether the spatially flat static metric, which reappears on the next page, satis-
fies the “plausible hypothesis” (83). The first term of equation (85) clearly vanishes
for this metric, but the second term does not.

On p. 6R Einstein made a fresh start, denoting the gradient of the scalar function
introduced at the top of p. 6L by:

.   (88)  

This is a covariant vector as is indicated by the label “associated vector”
(“zugeordneter Vektor”) written next to it. Recall that on the facing page 6L, Einstein
started to write and then deleted this same label next to expression (81), the contravar-
iant form of this vector.

Writing the contravariant form as , Einstein wrote down the second
Beltrami invariant (cf. equation (82)) as:

.   (89)  

Einstein now replaced all covariant elements in this expression by their contravariant
counterparts and vice versa. To this end, he defined  (with inverse

).83 He thus arrived at:

,   (90)  

where  is the determinant of the contravariant metric and 

.   (91)  

If Einstein thought that in going from the second Beltrami invariant (89) to the
expression (90) he had constructed another scalar invariant, he was wrong. But he pro-
ceeded to rewrite expression (90) in terms of  and  in order to compare it with
the second Beltrami invariant:

.   (92)  

Next to this expression, he noted that it is a “scalar” (“Skalar”). It is not.
On the next line, Einstein expanded expression (92) to:

83 Note that in these definitions, Einstein used finite coordinates  instead of infinitesimals , as
he had done on p. 39L (cf. equations (6) and (7)). It seems doubtful whether, at this time, Einstein
realized that only coordinate differentials are proper vectors, and that these formal definitions have
no invariant significance for finite coordinates.
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,   (93)  

losing a minus sign in the differentiation of . The plus sign should thus be a
minus sign.

To compare this expression with the second Beltrami invariant, he expanded
expression (82) on p. 6L for the latter to

.   (94)  

In the notebook there is actually a line connecting expression (82) on p. 6L to expres-
sion (94) on p. 6R.

Comparing the expressions (93) and (94), Einstein noted: “Should there only be
one such scalar, it has to be the case that

”   (95)  

(“Soll es nur einen derartigen Skalar geben so muss ”). Recall,

however, that expression (90) is not a scalar and that there is a sign error in the subse-
quent expression (93) for this alleged scalar. Einstein did not discover these errors
until the top of p. 7L. On p. 6R, he was under the impression that the second Beltrami
invariant and expression (92), which he took to be a scalar, were identical once

condition (95), which we shall call the “Hertz restriction,”84 was imposed. Adding
this condition, he now proceeded as if he had two expressions—the second Beltrami
invariant (89) and quantity constructed out of it in expression (92)—for one and the
same scalar invariant.

 To turn this scalar invariant into a candidate for the left-hand side of the field equa-
tions, Einstein substituted  for the scalar  in expression (92). The resulting field
equations will be invariant under unimodular transformations since  transforms as
a scalar under such transformations. In a separate box to the right of equations (92)–
(94), Einstein wrote down how  and  transform under a coordinate transformation
with determinant :85 

  (96)  

If , i.e., for unimodular transformations,  and  are indeed scalars. At the
bottom of p. 6L, Einstein had just gone through the derivation of another result for :

84 The reason for naming it after Paul Hertz is explained in footnote 22.
85 This follows from the multiplication theorem for determinants.
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.   (97)  

Inserting  for  in expression (92) and using equation (97), Einstein arrived at the
following candidate field equations:

  (98)  

“or” (“oder”), equivalently,86

.   (99)  

Note that Einstein omitted a factor  in the expressions on the left-hand sides of
both these equations. These expressions, however, retain the transformation behavior
under unimodular transformations of the supposedly-invariant expression (92) from
which Einstein constructed them. Since  is a scalar under unimodular transforma-
tion, a scalar divided by  remains a scalar.

Einstein now turned to “special cases  and ” (“Spezialfälle 
”) of diagonal metric tensors. He quickly focused on one such case, namely the

spatially flat static metric first introduced on p. 39L. He accordingly corrected “spe-
cial cases” (“Spezialfälle”) to “special case” (“Spezialfall”) and wrote down the diag-
onal components of the static metric:87

  (100)  

as well as its determinant , which he could read off from the matrix
 written directly above this expression.

Einstein now inserted the static metric into equations (98) and (99) for the index
combinations  and , the only combinations giving a
non-vanishing contribution. He found

,   (101)  

and

86 Note that .

87 In the notebook, the “ ” seems to be corrected from “ .” The contravariant components have the
wrong sign. Einstein originally wrote them down correctly, but then changed the signs.
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,   (102)  

“respectively” (“b[e]z[iehungs]w[eise]”).88 
Both equations are equivalent to89

.   (103)  

This equation has the form of the four-dimensional generalization of the Poisson equa-
tion and therefore looks promising as a component of candidate field equations.

Next to equation (103) wrote: “In this way not distinguishable” (“So nicht unter-
scheidbar.”). Presumably, this refers to Einstein’s query in the middle of the page con-
cerning the relation between expression (94) for the second Beltrami invariant and
expression (93) for what Einstein took to be an alternative scalar invariant. Since the
spatially flat static metric satisfies condition (95), which reduces the former expres-
sion to the latter, it is clear this special case cannot be used to distinguish the two.

At the top of p. 7L, Einstein returned to the more general considerations above the
horizontal line on p. 6R, where he had written down expression (93) for what he
thought was an alternative scalar invariant. In fact, it is not a scalar and contains a sign
error. Einstein had compared this expression to expression (94) for the second Bel-
trami invariant and had noticed that the former reduces to the latter if the Hertz condi-
tion (95) is imposed.

Einstein began his considerations on p. 7L by writing down an expression that can
be obtained from the second Beltrami invariant (82) on p. 6L by imposing the Hertz
condition (95):90

  (104)  

and wrote next to it that this is a “scalar” (“Skalar”). In the next two lines, Einstein
tried to construct a vector out of the scalar quantities he had formed on the preceding
two pages.

88 Inserting the components (100) of the static metric (with or without correcting the sign error noted in
the preceding note) into the left-hand sides of equations (98) and (99), one finds the left-hand sides
of equations (101) and (102) with the opposite sign. Probably, Einstein wrote down equation (101)
using  and , then adjusted the result once he changed the sign
of .

89 For equations (101) and (102), one finds  and

, respectively.

90 The labeling of the indices suggests that this expression was obtained directly from expression (82)
on p. 6L.
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On the assumption that Einstein meanwhile caught the sign error in
expression (93), one can readily understand these two lines: “If one forms [the second
Beltrami invariant]  in two ways, it follows that

  (105)  

[is] a vector” (“Bildet man  auf zwei Arten, so folgt  ein Vek-
tor”). The conclusion was subsequently deleted.

If the error in expression (93) is corrected, then the difference between expressions
(93) and (94) becomes:

.   (106)  

Except for the labeling of its indices, the term in parentheses on the right-hand side is
exactly equal to Einstein’s expression (105) above. This explains why Einstein ini-
tially expected expression (105) to be a vector. Since expression (105) contracted with
the covariant vector  (for arbitrary ) is the difference between (what Ein-
stein took to be) two scalars, the contraction must also be a scalar and expression (105)
itself must be a contravariant vector. However, Einstein presumably recognized that
expression (105) is in fact not a vector. The expression is equal to

.   (107)  

The second term is a vector. For the entire expression to be a vector, the first term
would have to be a vector as well. This, however, is not the case, as Einstein presum-
ably knew. One can thus understand why he eventually deleted the claim that expres-
sion (105) is a vector. This immediately told Einstein that the starting point of this
entire line of reasoning, the assumption that expression (90) is a scalar, had to be mis-
taken.

The reconstruction given above leaves one question unanswered: how did Einstein
discover the sign error in expression (93)? There is a plausible answer to this question.
Suppose Einstein went through the same argument that we just described before he
corrected this sign error. He would then have arrived at the conclusion that

  (108)  

is a scalar and that 

  (109)  

therefore has to be a vector. Einstein already knew this to be false (see p. 39R). This
then might well have alerted him to the sign error in expression (93). He may then have
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repeated the construction of a vector out of the difference between his two scalars (82)
and (92), using the corrected version of the former.91

4.3  Investigating the Core Operator (7L–8R)

On pp. 6L–6R Einstein had tried to construct field equations for the metric tensor
using as his starting point a familiar object from differential geometry, the generally-
covariant second Beltrami invariant. The calculations documented on these pages had
not produced any promising results. On pp. 7L–8R, he tried a different approach
inspired by physical rather than mathematical considerations. He generalized the
Laplace operator acting on the scalar potential of Newtonian gravitational theory to an
operator acting on the tensorial potential . We shall call this object the “core oper-
ator.” It is a combination of two simpler operators, explicitly called “divergence”
(“Divergenz” [p 7R]) and “exterior derivative” (“Erweiterung” [p. 8L]) in the note-
book.92 Einstein first examined the covariance properties of the core operator as a
whole (pp. 7L-R). He then switched to generalizing the two constituent operators. The
aim of both investigations was to see whether the core operator would provide him
with a basis for extending the relativity principle from uniform to non-uniform
motion. 

One can discern two strategies with which Einstein tried to achieve his aim. The
first strategy was to find a special type of non-linear coordinate transformations under
which the core operator transforms as a tensor. The second strategy was to generalize
the core operator to a differential operator that transforms as a tensor under ordinary
non-linear transformations.

We introduce some special notation to facilitate a concise discussion of these two
strategies. Consider an object, —constructed out of the metric, , and the
derivative operator, —that transforms as a tensor under arbitrary linear trans-
formations, : . The transformation law for  under the inverse transfor-
mation, , can schematically be written as:

.   (110)  

If one now expresses  and  on the right-hand side in terms of  and  with the
help of , one, of course, just reproduces  in unprimed coordinates:

.   (111)  

91 It remains unclear exactly what Einstein took the relation between expressions (82) and (92) to be.
His comment on p. 6R (“Should there only be one such scalar, it has to be the case that …”) suggests
that he thought of them as two different quantities that coincide only if an additional condition is im-
posed. However, his comment on p. 7L (“If one forms  in two ways …”) suggests that he thought
of them as different expressions of the same quantity. In that case, however, expression (90) should
vanish, whereas Einstein only says that it is a vector.

92 Cf. (Einstein and Grossmann 1913, Part I, sec. 5).
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Einstein’s strategy for dealing with arbitrary 

 

non-linear

 

 transformations, :
, involves two steps analogous to the two steps above. In general,  will 

 

not

 

transform as a tensor under . The first step is to introduce the object, , that
one obtains when applying the inverse transformation  to  

 

as if  does
transform as a tensor under 

 

, more specifically, as if 

 

 

 

transforms under  the
same way it transforms under :

.   (112)  

The tilde on  merely indicates this special use of the transformation rules. The sec-
ond step is to express  and  in terms of  and  with the help of . Since in gen-
eral  does not transform as a tensor under , this operation will in general not just
reproduce . In addition to , it will produce a (sum of) term(s), , constructed out
of , , and the transformation matrices  and  for  and :

 

93

 

  (113)  

This two-step procedure is common to both strategies distinguished above. The two
strategies differ in the way they make use of equation (113).

In the first strategy, Einstein uses equations such as equation (113) to read off the
condition on the transformation matrices  and  for  that needs to be satisfied for

 to transform as a tensor under . This will be the case if , i.e.,
in view of equations (112)–(113), if

.   (114)  

This condition gives a set of differential equations involving the transformation matri-
ces, the components of the metric, and derivatives of both. Inserting a specific metric
into equation (114) and solving the resulting equation for the transformation matrices,

 and , one arrives at a special type of coordinate transformations. In the case
of ordinary coordinate transformations, the transformation matrices are functions only
of the coordinates. In the case of these special coordinate transformations, however,
they depend both on the coordinates and on the metric. Following a suggestion by Paul
Ehrenfest, Einstein later introduced the term “non-autonomous transformations”
(“unselbständige Transformationen”) for such transformations.

 

94

 

 The transformation
rule for such non-autonomous transformations can be written as

,   (115)  

where the matrices  and  for the transformation  must satisfy a condition for
non-autonomous transformations of the form of equation (114).

In the case of the second strategy, Einstein looked upon the right-hand side of
equation (113) as a generally-covariant expression that in the special case of a diago-
nal Minkowski metric reduces to the object  he started from. One can then set

 in the transformation laws  and
 and express the transformation matrices  and  in terms of 

 

93 For the definition of these transformation matrices, see equations (119)–(122) below.
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Õ ∂   g ,  ( ) T ˜ 1– O ∂′   g ′ ,  ( )≡

T̃ 1–

∂′ g′ ∂ g T
O T

O O C
∂ g p π T T 1–

T̃ 1– O T ∂( )   T g ( ) ,  ( ) O ∂   g ,  ( ) C ∂   g ,   p ,   π ,  ( ) +=

p π T
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and its derivatives. Substituting the resulting expressions  and  into  in
equation (113), one arrives at a new expression  that depends only on the metric and
its derivatives:

.   (116)  

One can now define the generalization  of the original object :

.   (117)  

 reduces to  in the special case of the Minkowski metric in pseudo-Cartesian
coordinates. The construction of  only guarantees that  transforms as a ten-
sor under arbitrary transformations in Minkowski spacetime. Einstein, however,
expected and made an attempt to prove (at the top of p. 8L), that  would trans-
form as a tensor under arbitrary transformations for any metric field.

 Einstein applied the first of the two strategies described above to find non-auton-
omous transformation under which the core operator as a whole transforms as a tensor.
He then applied the second strategy to generalize the two constituent operators of the
core operator and thereby the core operator itself to expressions that transform as ten-
sors under arbitrary transformations. He did not see these calculations through to the
end. He came to realize that the generalized operators produced by this strategy degen-
erate when applied to the metric tensor. Einstein thereupon abandoned this second
strategy altogether. The first strategy and the concept of non-autonomous transforma-
tions, however, continue to play an important role in the notebook.

 

4.3.1  

 

Covariance of the Core Operator under 
Non-autonomous Transformations (7L–R) 

 

Underneath the horizontal line on p. 7L, Einstein wrote down the core operator:

 

94 See Einstein to H. A. Lorentz, 14 August 1913 (CPAE 5, Doc. 467): “One can consider two funda-
mentally different possibilities. 1) Transformations which are independent of the existing -field,
which Ehrenfest designated as ‘autonomous transformations;’ according to my knowledge group the-
ory has only dealt with this kind of transformations. 2) Transformations whose [matrices] would have
to be determined by differential equations for the -field considered as given, which hence have
to be adapted to the existing -field. Such transformations have—as far as I know—not yet been
systematically studied. (‘non-autonomous transformations’)” (“Zwei Möglichkeiten prinzipiell ver-
schiedener Art kommen da in Betracht. 1) Transformationen, welche von dem vorhandenen -
Feld unabhängig sind, welche Ehrenfest als ‘selbständige Transformationen’ bezeichnete; nur mit
solchen hat sich meines Wissens bisher die Gruppentheorie beschäftigt. 2) Transformationen, deren
[…] erst durch Differentialgleichungen zu dem als gegebenen zu betrachtenden -Feld zu bestim-
men wären, die also dem vorhandenen -Feld angepasst werden müssen. Solche Transformatio-
nen sind—soviel ich weiss—noch nicht systematisch untersucht worden. (‚unselbständige
Transformationen‘)”). For further discussion of non-autonomous transformations—or, as Einstein
later called them “justified” (“berechtigte”) transformations between “adapted” (“angepaßte”) coor-
dinates” (Einstein and Grossmann 1914, 221; Einstein 1914b, 1070)—see “Untying the Knot …”
sec. 3.3 (in this volume). For a modern discussion of such transformations, see (Bergmann and Komar
1972).
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.   (118)  

For weak static fields represented by a metric tensor of the form
 the 44-component of this operator reduces to minus the

Laplacian acting on , the square of the gravitational potential of Einstein’s 1912
theory.

On pp. 7L–8R, Einstein studied the transformation properties of the core operator
using transformation matrices  and , which are defined as follows. Under a
transformation from coordinates  to , a contravariant vector  transforms as

 with ,   (119)  

while a covariant vector transforms as

 

95

 

 with .   (120)  

The inverse transformation of a contravariant vector is given by:

 with ;   (121)  

the inverse transformation of a covariant vector by:

 with .   (122)  

It follows that

  (123)  

and that

,   (124)  

where we availed ourselves of the Kronecker delta, which Einstein does not use in the
notebook. 

Einstein considered the transformation of the core operator from  to . Sub-
stituting  and  into

 

96

 

95 Notice that the definitions of  and  differ from the definitions of these quantities in (Einstein
and Grossmann 1913, 24), where they are defined as  and . In other
words, the roles of  and  are interchanged as are the indices  and . This is related to the fact
that in the Zurich Notebook contravariant quantities (with some exceptions such as the contravariant
components  of the metric) are generally denoted by Latin letters and covariant quantities by
Greek ones, whereas in (Einstein and Grossmann 1913)

 

 

 

this is just the other way around.
96 Expression (125) is a concrete example of  introduced in equation (112).
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,   (125)  

one arrives at the equation written directly under expression (118) for the core opera-

tor in the notebook:

 

97

 

.   (126)  

The contraction of  and  gives . Einstein also set

,   (127)  

tacitly making the erroneous assumption that , possibly on the
basis of the following incorrect application of the chain rule:

 

98

 

.   (128)  

With these simplifications, Einstein arrived at the following expression for the core
operator in -coordinates in terms of quantities in -coordinates:

 

99

 

.   (129)  

To further investigate the covariance properties of the core operator, Einstein adopted
the two-step procedure described in the introduction of sec. 4.3. The first step is to
write down the law according to which the core operator would transform if it trans-
formed as a tensor under the transformation from  to . Adopting Einstein’s nota-
tion

  (130)  

for the core operator, one can write this tensorial transformation law as

 

100

 

.   (131)  

The second step of the procedure is to rewrite , the core operator in the primed
coordinate system, in terms of quantities in the unprimed coordinate system. Inserting

 

97 There is also a summation over  and .
98 This error was committed repeatedly by Einstein. See, e.g., pp. 7R, 8L. It was eventually discovered

on p. 10L (see sec. 4.5.1 below).
99 The notebook has  and  instead of  and .
100 Equations (131) and (132) form a concrete example of a combination of equations (112) and (113):
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(the erroneous) expression (129) for  found earlier, one arrives at the equation
given in the notebook at this point:

.   (132)  

If  transforms as a tensor under the transformation from  to  and vice
versa, the right-hand side of this equation should be equal to the core operator

.   (133)  

This is trivially true for linear transformations.

 

101

 

 Einstein wanted to find more gen-
eral transformations for which the right-hand side of equation (132) reduces to expres-
sion (133). For such transformations the sum of all terms on the right-hand side of
equation (132) that involve derivatives of the components of the transformation matrix

 should vanish. Einstein set out to collect such terms.
First, he considered the differential operator  in front of the innermost set

of parentheses on the right-hand side of equation (132). He rewrote this part of the
equation as:

.   (134)  

Then he turned to the differential operator  in front of the outermost set of
parentheses on the right-hand side of equation (132). First, using equation (134), he
wrote down the term that comes from having  act on :

.   (135)  

Finally, he wrote down the four terms that result from applying  to expression
(134) and contracting it with :

  (136)  

The core operator  transforms as a tensor under transformations with transfor-
mation matrices  if the components of the transformation matrices satisfy the con-

 

101 For linear transformations, equation (132) reduces to:
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dition that the sum of all terms in expressions (135) and (136) that involve derivatives
of  vanish for a given metric field with contravariant components . Collecting
such terms, one arrives at the condition:

 

102

 

  (137)  

This condition on the transformation matrices  is the condition for what Einstein
would later call “non-autonomous” transformations under which the core operator
transforms as a tensor (see the introduction to sec. 4.3).

 

103

 

Looking at this condition, one readily sees that it will be satisfied if

  (138)  

for all index combinations. Except for a meaningless summation sign, which Einstein
seems to have left in by mistake, and a relabeling of the indices the left-hand side of
this equation is just the expression at the top of p. 7R:

.   (139)  

This expression is introduced with the comment: “where  is differentiated at least
once.  ” (“wobei  mindestens einmal abgeleitet wird. 

”).
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 The restriction to terms in which “  is differentiated at least once” iden-
tifies those terms in expressions (135) and (136) on p. 7L that must vanish if the core
operator is to transform as a tensor under the coordinate transformation described by
the matrix . Unfortunately, condition (138) restricts the allowed transformations
to linear transformations, whereas Einstein was looking for non-linear transformation
under which the core operator transforms as a tensor.

Einstein now drew a horizontal line and made a fresh start. He wrote down the con-
traction of the core operator with the covariant metric:

  (140)  
 

102 This is a concrete example of condition (114) in the introduction to sec. 4.3.
103 This condition would still need to be corrected for the error made in going from equation (126) to

equation (129).
104 To understand the change in the labeling of the indices—from  and  to  and —note that the

core operator (see equation (132)) is obtained by contracting the sum of expressions (135) and (136)
with . In first-order approximation,  and  can be replaced by the Kronecker deltas
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writing “scalar” (“Skalar”) next to it. The expression will transform as a scalar for
transformations under which the core operator transforms as a tensor. Conversely,
Einstein may have expected that transformations under which expression (140) trans-
forms as a scalar are transformations under which the core operator transforms as a
tensor. He may have felt that the former were easier to find than the latter.

On the next line, however, Einstein returned once more to the condition derived on
p. 7L for the transformation matrices  and  (see equations (129)–(137)). We
can only make sense of the expression Einstein wrote down if we assume that he now
focused on infinitesimal transformations. Consider the right-hand of equation (132):

.   (141)  

Following Einstein’s notation on p. 10L (see equation (238)) for an infinitesimal
transformation, , and neglecting terms smaller than those of first order
in , one can write the product in the innermost parentheses in expression (141) as

  (142)  

Inserting this last expression into expression (141) and collecting all terms involving
derivatives of the transformation matrices, one finds, to first order,

  (143)  

Since only terms involving derivatives of  matter,  and  can be replaced by
Kronecker deltas in first-order approximation. This then gives

.   (144)  

If the core operator transforms as a tensor under the transformation described by ,
the sum of all terms in expressions (144) that involve derivatives of the components
of  must vanish (cf. the discussion following equation (136)). This condition can
be satisfied by requiring that the sum of all terms in

  (145)  

“in which  is differentiated at least once” (“wobei  mindestens einmal abgeleitet
wird”) vanish. Einstein wrote down expression (145)—albeit with  rather than
with —with this remark next to it, which supports our reconstruction of the pur-
pose behind it. The condition for infinitesimal transformations resulting from expres-
sion (145) is much simpler than condition (137) for finite transformations. Einstein’s
calculations nonetheless break off at this point.
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4.3.2  Generalizing the Constituent Parts of the Core Operator: 
Divergence and Exterior Derivative Operators (7R–8R)

Rather than continuing the search for non-autonomous non-linear coordinate transfor-
mations under which the core operator transforms as a tensor, Einstein, on pp. 7R–8R,
tried to find a generalization of the core operator that would transform as a tensor
under ordinary non-linear transformations. In other words, he switched from the first
to the second of the two strategies that we distinguished in the introduction of sec. 4.3.
He applied this strategy to the two constituent components of the core operator, the
divergence and the exterior derivative. On p. 7R, under the heading “Divergence of a
tensor” (“Divergenz des Tensors”), he tried to generalize the divergence operator. On
pp. 8L-R, under the heading “Exterior derivative of a tensor” (“Erweiterung des Ten-
sors”), he tried to generalize the exterior derivative operator.

To generalize the divergence operator, Einstein started from the ordinary diver-
gence of a second-rank tensor in primed pseudo-Cartesian coordinates on Minkowski
spacetime and then wrote down the expression in unprimed arbitrary coordinates that
one would get if the divergence in primed coordinates transformed as a tensor under
this transformation. In the primed coordinates the Minkowski metric has the standard
diagonal form. Since the components of this metric are constants, there will be a sim-
ple relation between the metric in unprimed coordinates and the matrices for the trans-
formation between primed and unprimed coordinates. Using this relation, one can
eliminate the transformation matrices from the expression for the divergence trans-
formed from primed to unprimed coordinates as if it were a tensor. This expression
will then be entirely in terms of components of the metric in unprimed coordinates and
their derivatives. Einstein expected that this procedure would yield the generalized
divergence operator that he had found on p. 5R (essentially the covariant divergence),
but he was unable to prove this conjecture.

These considerations begin beneath the second horizontal line on p. 7R. Under the
heading “Divergence of the Tensor” (“Divergenz des Tensors”), Einstein wrote down
the ordinary divergence of a second-rank contravariant tensor in a primed coordinate
system105

.   (146)  

In the line above this equation, Einstein characterized the primed coordinate system
with the remark: “original system ( ) shall have constant , .” (“Ursprüngliches
System ( ) habe konstante , .”). Presumably, what he had in mind was a pseudo-
Cartesian coordinate system on Minkowski spacetime.

 Einstein now applied the same two-step procedure that we encountered on p. 7L.
First, he wrote down how  would transform if it were to transform as a vector under
transformations from the special primed to arbitrary unprimed coordinates. He then
took expression (146) for the vector in primed coordinates and used the standard trans-

105 The quantity  is a concrete example  in equation (112).
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formation rules to rewrite the building blocks of this vector in terms of their counter-
parts in the unprimed coordinate system. He thus arrived at the following expression
for the vector  “in the unprimed system” (“Im ungestrichenen System”):

 

106

 

.   (147)  

He simplified the right-hand side of equation (147), using the same erroneous relation,

,   (148)  

that he had used earlier (cf. equations (127)–(128)). In this way he obtained
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.   (149)  

Einstein now indicated how he wanted to generalize the ordinary divergence operator:
“This sum is to be expressed by the  resp. . In doing so one has to use the fact that
the primed  and  are constant.” (“Diese Summe ist durch die  bzw.  auszudrük-
ken. Dabei ist zu benutzen, dass die gestrichenen  bzw.  konstant sind.”). In other
words, using the simple form of the metric in the special primed coordinates, he
wanted to express the components of the transformation matrices and their derivatives
in the last term of equation (149) in terms of the components of the metric and their
derivatives in the arbitrary unprimed coordinates. The final step producing the sought-
after generalization of the divergence operator is to replace the components of the
Minkowski metric in the unprimed coordinates in the resulting expression by compo-
nents of an arbitrary metric.

Underneath the sentence explaining the aim of his calculation, indicating the con-
nection to the last term of equation (149) by a vertical line, Einstein wrote:

.   (150)  

He thus expected that  could be written as:

.   (151)  

 

106 Equation (147) is a concrete example of a combination of equations (112) and (113):
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107 Correcting Einstein’s mistake in going from equation (147) to equation (149), one finds:
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; the last two terms to .
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One sees immediately that this cannot be correct since the right-hand side is a sum of
a contravariant and a covariant term. 

Einstein’s expectation derives from his experience with the covariant divergence
of the stress-energy tensor on p. 5R. If in equation (71) found on p. 5R one sets

, its left-hand side reduces to:

.   (152)  

Relabeling indices and using that the stress-energy tensor  is symmetric,

 

108

 

 one
can rewrite expression (152) as:

.   (153)  

Comparing this last expression with Einstein’s expectation for the form of a general-
ized divergence operator in equation (151), one easily recognizes the basic problem.
He expected the generalized divergence of a contravariant tensor to be a contravariant
vector, whereas the operator he had found on p. 5R turns a contravariant tensor into a
covariant vector (see expression (152)).

Einstein did not recognize the problem at first and tried to show that equation (149)
for  can indeed be rewritten as equation (151). This can be inferred from the last
two lines on p. 7R. He tried to show that

  (154)  

in equation (151) is equal to
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  (155)  

in equation (149). To this end he eliminated the metric in unprimed coordinates in
expression (154) in favor of the metric in primed coordinates, whose components are
constants:

.   (156)  

Finally, he wrote down one contribution coming from the second term in expression
(156), the one involving a derivative of , which also occurs in expression (155):

 

108 At the beginning of the calculation on p. 7R (see equation (146)),  was an arbitrary tensor. At
this point in the calculation, however, it becomes essential that  is symmetric.

109 Since ,  is a contravariant index. Expression (155) can thus never be equal to ex-
pression (154) in which  is a covariant index.
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.   (157)  

At this point the calculation breaks off.
The method by which Einstein tried to generalize the ordinary divergence operator

on p. 7R does not guarantee that the result will be a tensor. The main problem comes
from the final step in which an expression derived for one special metric, the
Minkowski metric, is assumed to transform as a tensor for an arbitrary metric (at least
under unimodular transformations because of the restriction to ). The deleted
calculation at the top of p. 8L may have been an attempt to prove that the method
employed on p. 7R actually does produce an object that transforms as a tensor under
arbitrary coordinate transformations. If that is indeed the purpose of this calculation,
the strategy chosen by Einstein is clear. He tried to prove that a transformation from
arbitrary unprimed coordinates to arbitrary double-primed coordinates can be decom-
posed into two transformations of the type considered on p. 7R, namely a transforma-
tion from the unprimed coordinates to special primed coordinates followed by a
transformation from these special primed coordinates to the double-primed coordi-
nates. Since any metric can locally be transformed to a Minkowski metric in standard
diagonal form, the form of the metric in the special primed coordinates, this would
guarantee that the method of p. 7R does indeed produce a tensor.

These considerations may lie behind Einstein’s question at the top of p. 8L, “Do
symmetrical transformations form a group?” (“Haben symmetrische Transformatio-
nen Gruppeneigenschaft?”), and behind the subsequent investigation of a transforma-
tion from unprimed to primed to double-primed coordinates. What remains unclear,
however, is why Einstein focused on symmetric transformations.

To determine whether symmetric transformations given by

,   (158)  

with  form a group, Einstein considered the components 

  (159)  

of the matrix for the composite transformation

  (160)  

and switched the indices of these components:

.   (161)  

He did not pursue this calculation any further. Either he concluded (correctly) that
symmetric transformations do not form a group or he did not see how to settle the
question either way.
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He now turned to rotational transformations, perhaps as an example of a class of
transformations that certainly do form a group, or to check whether such transforma-
tions are symmetric. He wrote down transformation laws for a rotation over an angle

 as well as for its inverse:

  (162)  

These expressions show that rotation does not belong to the class of symmetric trans-
formations. Perhaps this is why he deleted the calculation at the top of p. 7R. Another
possibility is that he realized that the restriction to symmetric transformations was not
necessary to show that the method of p. 7R produces a tensor.

Under the heading “Exterior derivative of the Tensor” (“Erweiterung des Ten-
sors”), Einstein now turned to the second differential operator relevant to generalizing
the core operator. This takes up the remainder of p. 8L and the first two lines on p. 8R.
As in the case of generalizing the divergence operator, Einstein’s starting point is the
ordinary exterior derivative of a contravariant second-rank tensor in special relativity.
He wrote: “In ordinary space [i.e., Minkowski spacetime in pseudo-Cartesian coordi-
nates]110

,   (163)  

is a tensor of three manifolds [i.e., of third rank]” (“Im gew. [gewöhnlichen] Raum ist
… Tensor von 3 Mannigfaltigkeiten”). He then “introduced transformations with con-
stant coefficients” (“Subst[itutionen] von konst. Koeffizienten eingeführt”)

  (164)  

and confirmed that “for such transformations  is also a tensor” (“Für solche
Transformationen ist  auch Tensor”). As indicated by the arrows in equa-
tion (164), this is because the components  of the transformation matrix can put
in front of the derivative operator .

Einstein now tried to generalize the tensor . He started by asking the ques-
tion: “What is this tensor called when arbitrary substitutions are admitted?” (“Wie
heisst dieser Tensor, wenn bel[iebige] Subst[itutionen] zugelassen werden?”). Clearly
he was not familiar with the notion of a covariant derivative at this point. Einstein used
the same two-step procedure that he had used on p. 7R (see equation (147)). First, he
wrote down how  would transform if it transformed as a tensor under transfor-

110 The quantity  is a concrete example of  in equation (112).
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mations from special primed to arbitrary unprimed coordinates. He then took expres-
sion (163) for  and used the standard transformation rules to rewrite its building
blocks in terms of their counterparts in unprimed coordinates. He thus arrived at the
following expression for the tensor  in unprimed coordinates

 

111

 

  (165)  

Einstein initially wrote  but eventually corrected it to . The right-hand side of
equation (165) gives a sum of three terms:
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.   (166)  

Using that , Einstein simplified the second term, still with  instead
of  and omitting :

.   (167)  

This expression does not allow for further simplification. This may be what drew Ein-
stein’s attention to the error in equation (165), which he then corrected. The correct
expressions (165)-(166) can be simplified further. This yields:

.   (168)  

To generalize the exterior derivative of , one proceeds in the same way as in gen-
eralizing the divergence of  on the basis of expression (149). 

Using that the metric in primed coordinates is the Minkowski metric in standard
diagonal form, one first expresses the components of the transformation matrices and
their derivatives in the last two terms of equation (168) in terms of the components of
the Minkowski metric and their derivatives in the arbitrary unprimed coordinates. In
the resulting expression, one then substitutes the components of an arbitrary metric for
the components of the Minkowski metric in unprimed coordinates.

At the top of p. 8R, Einstein tried to find the relation between the transformation
matrices and the Minkowski metric in the unprimed coordinates. This relation is given
by the first equation on p. 8R:

.   (169)  

 

111 Equation (165) is a concrete example of a combination of equations (112) and (113):

.

112 Expression (166) is a concrete example of the right-hand side of equation (113):

.
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Although the derivation of this equation is not recorded in the notebook, it is easily
reconstructed. It is basically the same calculation as in equations (163)–(168), only for

 instead of .The starting point of the derivation is the observation that in the
primed coordinates in which the Minkowski metric takes on its standard diagonal
form, the exterior derivative of the metric vanishes:

.   (170)  

The contraction of the left-hand side of this equation with the transformation matrices
 obviously still vanishes:

.   (171)  

Expressing the primed quantities in terms of their unprimed counterparts, one finds
that

,   (172)  

which can be rewritten as

.   (173)  

Since  and, consequently,

,   (174)  

equation (173) is equivalent to

.   (175)  

Bringing the second and the third term to the right-hand side and relabeling indices
(  in the second term,  in the third term), one finds an expression
for the exterior derivative of the covariant metric,

,   (176)  

which is just equation (169) given at the top of p. 8R. Underneath this equation, Ein-
stein wrote down a similar equation for the contravariant metric:

 

113

113 It looks as if Einstein first started to write down equation (177) next to equation (169) rather than un-
derneath it. 
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.   (177)  

The derivation of this equation is fully analogous to the derivation of equation (176).
The only difference is that the starting point is now  rather than

.114

Einstein did not proceed any further. With hindsight, however, knowing that the
generalization that Einstein was looking for is just the covariant derivative, one can
easily complete his chain of reasoning. With the help of equation (169) and two equa-
tions like it with different permutations of the indices , , and , one can show that
the relation between the transformation matrices and the Minkowski metric in the
unprimed coordinates that Einstein was looking for is given by

,   (178)  

where the curly brackets represent the Christoffel symbols of the second kind. This
can easily be verified by inserting equation (178) back into equation (169).115 Insert-
ing equation (178) into expression (168), one finds the generally-covariant analogue
of the exterior derivative of the contravariant tensor :116

  (179)  

Inserting equation (178) into the right-hand side of the equation in footnote 107, one
finds the covariant divergence of :

.   (180)  

114 Equation (177) can also be obtained by substituting the contravariant metric  for the contravariant
tensor  in equation (123), using equation (174) and the fact that  and by rela-
beling indices.

115 Inserting equation (178) into the right-hand side of equation (169), one recovers the left-hand side:

 =  = .

116 The final expressions in equations (179) and (180) are concrete examples of the quantities
 defined in equation (117).
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These last two equations show how close Einstein came to finding the correct gener-
ally-covariant generalizations of the two constituents of the core operator, the diver-
gence and the exterior derivative, using the second one of the two strategies that we
distinguished in the introduction of sec. 4.3.

Why did Einstein not pursue this calculation beyond the first two lines on p. 8R?
It seems unlikely that the complexity of having to solve equation (60) for

 would have deterred him. On pp. 14R–18R, we shall see Einstein
pursue far more cumbersome calculations with great tenacity. A more plausible
answer is that Einstein realized at this point, if not earlier, that the generalization of
the exterior derivative he was in the process of constructing cannot be used to build a
generalized core operator that could serve as the left-hand side of the gravitational
field equations. The problem is that the exterior derivative of the metric vanishes. On
p. 5R, Einstein had already found that the covariant divergence of the metric vanishes,
but that does not mean that the generalization of the core operator, which is essentially
the divergence of the exterior derivative of the metric, vanishes. If the exterior deriv-
ative of the metric vanishes, however, the core operator vanishes as well.

Equation (177), the second equation on p. 8R, is, in fact, the statement that the
covariant exterior derivative of the contravariant metric vanishes. This can be seen as
follows. From equations (174) and (178) it follows that

.   (181)  

Substituting this expression into equation (177), one finds,

  (182)  

Comparison with equation (179) shows that equation (182) expresses the vanishing of
the covariant exterior derivative of the metric.

 

117

 

Einstein did not have to find the relation between the transformation matrices and
the metric and rewrite equation (177) in the form of equation (182) to see that the gen-
eralization of the exterior derivative acting on the metric would vanish. It is, in fact, a
direct consequence of the method that Einstein used to construct this generalization.
Whatever the exact form of the sought-after operator acting on the metric in the arbi-
trary unprimed coordinates, its form in the special primed coordinates used to con-
struct it is  (cf. equation (163)). The primed coordinates were chosen in
such a way that the metric—be it the Minkowski metric or an arbitrary metric—takes

 

117 When Grossmann introduced the Christoffel symbols in his part of the 

 

Entwurf

 

 paper, he added a
footnote saying: “On the basis of these formulae one can easily prove that the exterior derivative of
the fundamental tensor vanishes identically” (“Auf Grund dieser Formeln beweist man leicht, dass
die Erweiterung des Fundamentaltensors identisch verschwindet,” Einstein and Grossmann 1913,
part 2, sec. 2).
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on the form of the standard diagonal Minkowski metric in these coordinates. So the
generalized exterior derivative of the metric vanishes in the special primed coordi-
nates. Now this quantity was constructed to transform as a tensor under arbitrary coor-
dinate transformations. So it will vanish in all coordinate systems.118

At this point, Einstein had no choice but to abandon his second strategy for finding
field equations on the basis of the core operator: generalizing this operator to an
expression that transforms as a tensor under arbitrary (autonomous) coordinate trans-
formations does not work. He returned to the first strategy of finding non-autonomous
non-linear transformations under which the core operator itself—if necessary with
correction terms—transforms as a tensor.

4.4  Trying to Extract Field Equations and a Gravitational Stress-Energy 

Tensor from the Beltrami Invariants (8R–9R)

On pp. 7L-8R Einstein had examined the transformation properties of candidate field
equations based on the core operator, the natural analogue of the Poisson equation in
a theory in which the gravitational potential is represented by a tensor rather than a
scalar. Einstein’s approach on these pages had thus been along the lines of what we
call the physical strategy. On pp. 8R–9R, Einstein returned to the mathematical strat-
egy, more specifically to the exploration of the Beltrami invariants introduced on
p. 6L. He tried to extract the core operator from the second Beltrami invariant, using
(some power of) the determinant of the metric as the arbitrary scalar function in the
definition of this invariant. The connection between the core operator and the Beltrami
invariant might throw light on the covariance properties of the former. Einstein’s
investigation of the covariance properties of the core operator on pp. 7L–R had
remained inconclusive.

On p. 8R, Einstein returned to the basic expression for the first and the second Bel-
trami invariants. The first Beltrami invariant can be used to find a candidate for the
quantity representing gravitational energy-momentum, the second to find a candidate
for the left-hand side of the field equations. On p. 9L Einstein managed to write the
second Beltrami invariant as a sum of two contributions, the first of which is the con-
traction of the metric with the core operator. On the bottom half of p. 9L, Einstein tried
to relate the second contribution to gravitational energy-momentum. This is the first
time in the notebook that Einstein, drawing on his experience with the 1912 static the-

118 In the Entwurf paper, Einstein mentioned this problem as one of the obstacles to formulating gener-
ally-covariant field equations: “These operations [i.e., the divergence and the exterior derivative op-
erators] degenerate if they are applied to the fundamental tensor . From this it seems to follow
that the equations sought will be covariant only with respect to a particular group of transformations,
which for the time being, however, is unknown to us” (“Aber es degenerieren diese Operationen,
wenn sie an dem Fundamentaltensor  ausgeführt werden. Es scheint daraus hervorzugehen, daß
die gesuchten Gleichungen nur bezüglich einer gewissen Gruppe von Transformationen kovariant
sein werden, welche Gruppe uns aber vorläufig unbekannt ist.” Einstein and Grossmann 1913, part
1, sec. 5).

gμν

gμν

8R–9R



8R BELTRAMI INVARIANTS AND CORE OPERATOR sec. 4.4

551

ory,119 introduces the notion that gravitational energy-momentum should enter the
field equations on equal footing with the energy-momentum of matter. Expecting
gravitational energy-momentum to be represented by a generally-covariant tensor,
Einstein turned to the first Beltrami invariant to find a candidate for the stress-energy
tensor of the gravitational field. The contraction of the metric with this supposed grav-
itational stress-energy tensor, however, turns out to be slightly different from the sec-
ond contribution to the expression for the second Beltrami invariant, and Einstein
abandoned the idea of interpreting this contribution in terms of gravitational energy-
momentum.

On p. 9R Einstein tried to find the infinitesimal non-autonomous transformations
under which this contribution to the second Beltrami invariant transforms as a scalar.
The first contribution, the contraction of the metric and the core operator, would then
be the difference between two scalars (for this restricted class of transformations) and
therefore be such a scalar itself. This in turn would suggest that the core operator trans-
form as a tensor under these transformations. Since the rationale behind the return to
the Beltrami invariants on p. 8R was presumably to avoid non-autonomous transfor-
mations, which Einstein had found difficult to handle (see pp. 7L–8R), it is not sur-
prising that the Beltrami invariants no longer explicitly appear in the notebook after
these calculations on pp. 8R–9R. Einstein, however, continued to use the restriction to
unimodularity in his calculations on the following pages. This suggests that he still
hoped to find some connection between the field equations and the Beltrami invari-
ants.

Underneath the first horizontal line on p. 8R, Einstein substituted (some power 
of) the determinant  of the metric for the arbitrary function  in the definition of
the first and the second Beltrami invariants (see equations (79) and (80), respectively):

,   (183)  

.   (184)  

Since  is a scalar only under unimodular transformations, the Beltrami invariants
 and  above are no longer generally-covariant scalars but invariants under this

restricted class of transformations only. To establish the connection with the core
operator,

119 In (Einstein 1912b, sec. 4), it was pointed out that the field equation originally proposed for the theory
for static gravitational fields,  (where the variable speed of light  doubles as the gravi-
tational potential,  is a constant, and  is the mass density), is in conflict with the action-equals-
reaction principle and thereby with energy-momentum conservation. Einstein remedied the problem
        
by adding the gravitational energy density to the source term: .
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  (185)  

(see equation (118)), Einstein rewrote  as

,   (186)  

where  is the minor of . In the second step, Einstein used that ,

and in the third step that . Next to this expression he wrote “of

zeroth power” (“nullter Potenz”).120

Inserting the first expression for  in equation (186) into equation (183),
Einstein arrived at:

,   (187)  

“or” (“oder”), as he wrote next to it, using the second expression for  in equa-
tion (186),

.   (188)  

A factor  is omitted in this last expression. This is inconsequential: since both 
and  are scalars under unimodular transformations,  is too.

After drawing a horizontal line, Einstein turned to the second Beltrami invariant,

.   (189)  

Once again, he omitted an inconsequential factor  (cf. equation (184)).121 With
the help of equation (186), Einstein rewrote this as

120 This is the only place in the notebook where the word “Potenz” occurs. Einstein only wrote “Potenz”
after writing and deleting first “of zeroth kind” (“nullter Art”) and then “of zeroth order” (“nullter
Ordnung”). At the top of p. 9L he switched back to “zeroth order” (“nullter Ordnung”). In (Bianchi
1910, Ch. II, sec. 22), the “order” (“Ordnung”) of a “differential parameter” (“Differentialparamet-
er”)—i.e., an expression constructed out of the metric and its derivatives and a number of arbitrary
functions and their derivatives—is defined as the highest-order derivative of the arbitrary functions
occurring in it. Since there are no arbitrary functions in  and  in equations (183) and (184),
these quantities are of zeroth order in this sense.

121 The expression written next to equation (189), , is likewise a scalar under
unimodular transformations.
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.   (190)  

As indicated by the proportionality sign, the overall factor  is dropped from the
expression. Einstein now set  and transferred the differentiation operator

 from the covariant to the contravariant metric using that
 The resulting expression contains the core operator:

.   (191)  

At the bottom of the page, Einstein briefly turned to the first Beltrami invariant and
wrote down a “Different expression for the above scalar ” (“Anderer Ausdruck für
obigen Skalar ”):

  (192)  

(which is indeed equivalent to equation (183) since ). The phrase
“different expression for ” (“Anderer Ausdruck für ”) is repeated two lines far-
ther down. Einstein returned to this expression on p. 9L to extract a candidate for the
stress-energy tensor of the gravitational field. 

Einstein drew a horizontal line and copied the final expression for  from equa-
tion (190),

.   (193)  

Underneath this expression he began to evaluate one of the derivatives in expression
(192),

,   (194)  

but then deleted the erroneous right-hand side.
Einstein continued his investigation of the Beltrami invariants on p. 9L. He began

by rewriting the first Beltrami invariant (183) modulo a factor . Starting from
expression (188) on p. 8R, he transferred the derivative operators from the covariant
to the contravariant metric, using that . He thus arrived at:122 

122 The quantity  in equation (195) needs to be multiplied by  to obtain the first Beltrami invariant
 as defined in equation (183). See footnote 120 for a discussion of the term “zeroth order” (“nullter

Ordnung”) written next to equation (195).
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.   (195)  

He similarly rewrote expression (190) for the second Beltrami invariant, setting
 as he had done on p. 8R:

.   (196)  

Einstein expanded this expression to

.   (197)  

The first term is the core operator (185) contracted with the covariant metric. The sec-
ond term required further attention. Einstein tried to use the relation

  (198)  

to deal with it. Differentiating this relation, he did indeed recover, up to a contraction
with , the second term on the right-hand side of equation (197) but at the price of
introducing three other terms:

  (199)  

Rather than rewriting the second Beltrami invariant with the help of equation (199),
Einstein tried to interpret the second term in equation (197) for  with the help of the
first Beltrami invariant modulo a factor , i.e., the quantity  at the top of p. 9L
(see equation (195)).

In the passage in the middle of p. 9L, set off by two horizontal lines, Einstein tried
to interpret the difference between  and the core operator contracted with  as
minus a candidate gravitational stress-energy tensor contracted with . As was
explained in the introduction to this subsection, the second Beltrami invariant would
then in all likelihood123 yield a candidate for the left-hand side of the field equations
which is (i) a tensor under unimodular transformations and (ii) equal to the core oper-
ator minus the gravitational stress-energy tensor. Setting this candidate equal to the
stress-energy tensor for matter, one sees that such field equations satisfy the require-
ment that all energy-momentum enters the field equations on the same footing. Ein-
stein naturally assumed at this point that gravitational energy-momentum like the

123 In all likelihood, because it obviously cannot be ruled out that the expression is not a tensor even
though its contraction with the metric tensor is a scalar. Its contraction with an arbitrary second-rank
tensor might not be.

ϕ1 giκglmγ μν xμ∂

∂γ iκ

xν∂

∂γ lm∑=

α 1 2⁄–=

ϕ2 xμ∂
∂

G
α 1

2
---+⎝ ⎠

⎛ ⎞

giκγ μν xν∂

∂γ iκ

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

ϕ2 giκ xμ∂
∂

γ μν xν∂

∂γ iκ( )∑ γ μν xμ∂

∂giκ

xν∂

∂γ iκ∑+=

0
xμ∂

∂giκγ iκ giκ xμ∂

∂γ iκ+
⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

γ μν

0
∂2giκ

∂xμ∂xν
-----------------γ iκ xμ∂

∂giκ

xν∂

∂γ iκ . giκ

∂2γ iκ

∂xμ∂xν
-----------------+ +  +

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

ϕ2
G 2– ϕ1

ϕ2 giκ
giκ



9L BELTRAMI INVARIANTS AND CORE OPERATOR sec. 4.4

555

energy-momentum of matter would be represented by a tensor.124 By analogy to both
the stress-energy tensor for the electromagnetic field and the one for the gravitational
field of his 1912 static theory,125 he furthermore expected the gravitational stress-
energy tensor to be quadratic in first-order derivatives of the metric. Any such object,
transforming as a tensor at least under unimodular transformations, would have to be
constructed out of the first Beltrami invariant, multiplied possibly by other scalars
under unimodular transformations such as the determinant  of the metric. The quan-
tity  in equation (195) is such an object. Moreover,  looks very similar to the
term in  to be written as the contraction of  with the gravitational stress-energy
tensor.126 Einstein thus tried to extract a gravitational stress-energy tensor from .

Einstein began this attempt with expression (192) on p. 8R. Dividing this equation
by , one arrives at the first equation in the passage set off between two horizontal
lines on the bottom half of p. 9L:

.   (200)  

The “presumable gravitation tensor” (“vermutlicher Gravitationstensor”) that can be
read off from this expression is: 

.   (201)  

(In the second step, Einstein used equation (186).) For the remainder of the argument
on p. 9L, however, Einstein used the expression127

,   (202)  

defining  through

.   (203)  

124 (Einstein and Grossmann 1914, 218, footnote 1) is the first place where Einstein explicitly stated in
print that the assumption that gravitational energy-momentum can be represented by a tensor is erro-
neous. In this footnote he identified this assumption as the flaw in an argument in (Einstein 1914a)
that appeared to restrict the covariance of the Entwurf field equations to linear transformations. For
discussion of this argument and its flaws, see (Norton 1984, sec. 5), “What Did Einstein Know …”
sec. 2 and “Untying the Knot …” sec. 3.3 (both in this volume).

125 (Einstein 1912b, 456–457).

126 Using , one can rewrite the second contribution to  in equation (197) as

, which closely resembles the expression for  in equa-

tion (195).
127 On p. 8R, Einstein had written the second Beltrami invariant in terms of this function  (see footnote

121).
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He drew a line from expression (202) to the expression on the left-hand side of equa-
tion (201) and encircled these two expressions. On the next line, he explicitly made
the claim that this choice of a gravitational stress-energy tensor is unique: “[This] is
the only tensor in which we differentiate only once” (“Ist der einzige Tensor, in dem
nur einmal diff[erenziert] wird”).

To see whether his gravitational stress-energy tensor (202) would be acceptable
from a physical point of view as well, Einstein, writing “divergence calculated”
(“Divergenz gebildet”), substituted it for the stress-energy tensor  of matter in
equation (71),

,   (204)  

for the energy-momentum balance between matter and gravitational field. 
On p. 5R, Einstein derived this equation for the stress-energy tensor of pressure-

less dust. He then postulated the same equation for the stress-energy tensor of any mat-
ter. Gravitational energy-momentum, however, plays a special role and one cannot
simply substitute the gravitational stress-energy tensor for  in equation (204).128

On p. 9L, Einstein did not recognize the special status of gravitational energy-momen-
tum and demanded that expression (202), his candidate for a gravitational stress-
energy tensor, like any other stress-energy tensor , satisfy the energy-momentum
balance equation (204):

.   (205)  

Einstein began to simplify both sides of this equation. Using (in slightly modernized
notation involving the Kronecker delta) , he wrote the left-hand side
as:

  (206)  

He used that

,   (207)  

and that  to rewrite the right-hand side of equation (205) as

128 Einstein subsequently recognized that gravitational energy-momentum cannot be handled in the same
way as the energy-momentum of matter. On p. 13R, he took a first step in this direction (see sec. ,
especially the discussion following equation (419)). On p. 19R, he had essentially arrived at the treat-
ment of gravitational energy-momentum that he would use and defend in the ensuing years (see the
discussion following equation (481) in sec. 5.4.2; see also pp. 20L, 21L, 24R–26R).
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.   (208)  

At this point, Einstein abandoned the ill-conceived condition (205). He also aban-
doned his attempt to interpret the second term in equation (197) for the Beltrami
invariant  as the contraction of  with the gravitational stress-energy tensor (202)
extracted from . Perhaps Einstein had come to realize these two expressions are not
quite the same.

 

129

 

 However, he retained the notion that the left-hand side of the field
equations be the sum of two terms, each transforming as a tensor, one term being the
core operator, the other term representing gravitational energy-momentum.

 

130

 

At the bottom of p. 9L and the top of p. 9R, Einstein returned to the investigation
of the covariance properties of the core operator through its relation with the Beltrami
invariant  in equation (196).

 

131

 

 The second term in expression (197) for , which
Einstein had tried to interpret as a correction term to the core operator representing
gravitational energy-momentum, now had to be dealt with in a new way.

 

132

 

At the top of p. 9R, Einstein copied equation (196) for the second Beltrami invari-
ant  (see the line connecting the two expressions for  on pp. 9L–R) leaving the
exponent  undetermined rather than setting :

.   (209)  

In the top right corner of p. 9R, using equation (186) for , Einstein calculated
the derivative of 

.   (210)  

With the help of this relation,  can be rewritten as:

 

133

 

129 The former can be written as , the latter as  (cf. footnote 126).

130 Exploiting this general feature, Einstein developed a strategy for finding field equations compatible
with the conservation principle. An embryonic version of this strategy can be found on p. 13R. On
pp. 26L–R, he used the mature version of this strategy to find the 

 

Entwurf

 

 field equations.
131 At the bottom of p. 9L, Einstein wrote , drew and then deleted a line connecting this in-

complete expression to equation (199) in the middle of the page. A completed version of the expres-
sion occurs at the top of p. 9R. The final pair of equations on p. 9L,  and

, give the transformation laws for contravariant and covariant vectors, respectively
(see equations (119) and (120)).

132 From a modern perspective the question arises why Einstein continued to concentrate on the covari-
ance properties of the core operator itself rather than on the covariance properties of the sum of the
core operator and the gravitational stress-energy (pseudo-)tensor. The answer to this question is that
Einstein tacitly assumed (see footnote 124) that both terms of this sum would separately transform as
a tensor.
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.   (211)  

As is indicated by the grouping of the factors in the expression under the first summa-
tion sign, this summation can be rewritten as (cf. equation (186))

.   (212)  

As Einstein noted, this means that the first term on the right-hand side of equation
(211) is a scalar: “Obvious because  vector of the second kind [i.e., a covari-
ant vector]” (“Selbstverst[ändlich] weil … Vektor zweiter Art”).

The second term on the right-hand side of equation (211) can be written as
 times the sum of two terms (see equation (197)): the core operator (185) con-

tracted with  and the term

,   (213)  

which Einstein had tried in vain on p. 9L to write as the contraction of the metric with
a gravitational stress-energy tensor. 

On the remainder of p. 9R Einstein investigated under which (infinitesimal) uni-
modular non-autonomous transformations expression (213) would be invariant.
Under such a restricted class of transformations the core operator contracted with 
and multiplied by  would also be a scalar since, by virtue of equations (211),
(212) and (197), it is equal to

,   (214)  

where we used Einstein’s notation  of p. 7L for the core operator (see equation
(130)). The first two terms on the right-hand side transform as scalars under arbitrary
unimodular transformations. The left-hand side will thus transform as a scalar under
the restricted class of unimodular transformations under which the third term on the
right-hand side transforms as a scalar. Presumably, the core operator would then trans-
form as a tensor under these transformations. Einstein thus set out to determine exactly
how the class of unimodular transformations would have to be further restricted. As
he wrote on the second line below equation (211): “Substitutions must be restricted
more” (“Subst[itutionen] müssen mehr eingeschränkt werden”).134

To find the condition for non-autonomous transformations leaving expression
(213) invariant, Einstein used the usual two-step procedure.135 He started with the
expression in primed coordinates

133 The factor  in front of the summation sign was added later. In the second term
 should be .
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.   (215)  

Using the transformation laws for the various ingredients of this expression (see equa-
tions (119) and (120) repeated at the bottom of p. 9L), he wrote expression (215) in
terms of quantities in unprimed coordinates:

,   (216)  

The right-hand side can be simplified by using that the matrices  and  are each
other’s inverse (see equations (123) and (124)):

.   (217)  

At this point, Einstein simplified the derivation by restricting himself to infinitesimal
transformations. With the help of the Kronecker delta, the transformation matrices can
then be written as

  (218)  

For such infinitesimal transformations, expression (217) reduces to:

.   (219)  

Einstein denoted these infinitesimal correction terms as “transformation infinitely
small” (“Transformation unendlich klein”). Expression (219) shows that expression
(213) transforms as a scalar, if the sum of all terms of order  and  vanish.136 This
then is the condition on the transformation matrices for infinitesimal non-autonomous
transformations leaving expression (213) invariant.

134 The calculation on p. 9R thus provides the first example of a strategy that Einstein routinely availed
himself of in investigating the covariance properties of candidate field equations extracted from the
Riemann tensor (cf. the discussion in sec. 4.1). Rather than trying to find the class of non-autonomous
transformations under which the candidate field equations themselves transform as a tensor, he tried
to find the class of non-autonomous transformations under which the coordinate restriction with the
help of which these field equations could be constructed out of an object of broad covariance trans-
formed as a tensor. In this case that coordinate restriction is to transformations leaving expression
(213) invariant.

135 See the introduction to sec. 4.3 for a discussion of how in general one finds the condition for non-
autonomous transformations (i.e., transformations for which the transformation matrices depend on
the metric and its derivatives) under which a given expression transforming as a tensor under (ordi-
nary) linear transformations retains such transformation behavior under non-linear transformations.

136 This is a concrete example of the condition  in sec. 4.3 (see equation (114)).
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This condition consists of four terms, which are obtained by differentiating one of
the four transformation matrices in expression (217) and replacing the remaining three
by Kronecker deltas:

 

137

 

,   (220)  

,   (221)  

,   (222)  

.   (223)  

Einstein wrote the last two expressions next to the first two, separating the two pairs
by a vertical line.

By rewriting expression (220) as

 

138

 

  (224)  

(where the superscript “ ” was dropped), Einstein showed that it was equal to expres-
sion (222) written next to it.

 

139

 

 Similarly, expression (221) is equal to expression
(223) written next to it. The condition for infinitesimal non-autonomous transforma-
tions under which expression (213) transforms as a scalar can thus be written as the
vanishing of the sum of expressions (222) and (223):

.   (225)  

An additional condition on the transformation coefficients was the requirement
that the transformations be unimodular. Einstein thus turned to the determinant

 

137 Lacking the Kronecker delta, Einstein indicated this procedure as follows. For the term in which the
first of the four coefficients  in expression (217) is differentiated he wrote un-
derneath expression (219): “1   .”

138 Equation (224) can be obtained from (220) with the help of (in modernized notation)
 and . The latter relation follows from 

.
139 Expressions (222) and (224) turn into one another if the summation indices  and  and the sum-

mation indices  and  are switched.
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  (226)  

of the transformation matrix for the infinitesimal transformation in equation (218).140

To first order in , the determinant (226) is equal to

.   (227)  

So the condition that an infinitesimal transformation be unimodular is simply that the
trace of  (and of ) vanish:

  (228)  

As with the conditions for non-autonomous transformations on pp. 7R and 8R,
Einstein made no attempt to find transformation matrices depending on the metric that
satisfy the conditions (225) and (228). So the calculation of p. 9R did not lead to the
identification of any specific non-autonomous transformations under which the core
operator would transform as a tensor.

4.5  Exploring the Covariance of the Core Operator 

under Hertz Transformations (10L–12R, 41L–R)

On the preceding pages, Einstein had investigated the covariance properties of the
core operator (130),

,   (229)  

and of expression (213),

,   (230)  

by deriving the conditions for non-autonomous transformations under which these
objects transform as tensors.141 None of these investigations had been carried through

140 Following Einstein, we have dropped the subscript “ .”
141 See the introduction of sec. 4.3 for discussion of the concept of non-autonomous transformation. On

p. 7L, Einstein examined expression (229), deriving conditions (137) and (145) for non-autonomous
transformations—finite and infinitesimal, respectively—under which the expression would trans-
form as a tensor. On p. 9R, he examined expression (230), deriving conditions (225) and (228) for
infinitesimal unimodular non-autonomous transformations under which this expression would trans-
form as a scalar.
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to the end. Errors were made and left uncorrected. Einstein had not even begun the
task of finding non-autonomous transformations that would actually be solutions of
such conditions. On pp. 10L–11L, however, he made a sustained effort to find infini-
tesimal unimodular non-autonomous transformations under which a much simpler
object, the Hertz expression,

,   (231)  

transforms as a vector. The task at hand was still to determine the covariance proper-
ties of the core operator. By focusing on the Hertz expression first, Einstein could split
this task into two separate and more manageable tasks. The core operator (229) can be
written as the sum of two terms, the first of which contains the Hertz expression:

.   (232)  

On pp. 10L–10R, Einstein focused on the first term, deriving the condition for unimo-
dular non-autonomous transformations under which the Hertz expression transforms
as a vector. We shall call such transformations “Hertz transformations.” Einstein only
dealt with infinitesimal Hertz transformations, which simplified his calculations con-
siderably. The restriction to unimodular transformations in the calculations on these
and the following pages indicates that he still wanted to connect the core operator to
the second Beltrami invariant  (see equations (209)–(214)).

On p. 10L, in a first attempt to derive the condition for Hertz transformations, Ein-
stein made a mistake he only discovered on p. 10R after he had already moved on to
the second term in expression (232). By that time, he had convinced himself that rota-
tion in Minkowski spacetime is a Hertz transformation. Not surprisingly, therefore,
when Einstein had derived the correct condition for Hertz transformations, he care-
fully checked once more whether the class of Hertz transformation include the impor-
tant special cases of rotation and uniform acceleration in Minkowski spacetime before
returning to the investigation of the second term in expression (232).

On p. 11L, Einstein established that the matrices  and  for transformations
to rotating frames in Minkowski spacetime with infinitesimally small angular velocity
do indeed satisfy the conditions for infinitesimal Hertz transformations. He noticed
that the transformation matrices for finite rotations satisfy these conditions for infini-
tesimal transformations as well. From this he seems to have drawn the erroneous con-
clusion that finite transformations to rotating coordinates in Minkowski spacetime are
also Hertz transformations (see sec. 4.5.2). Einstein immediately recognized, how-
ever, that transformations to uniformly accelerating coordinate systems in Minkowski
spacetime are not Hertz transformations, not even for infinitesimally small accelera-
tions. He initially thought he could circumvent this problem by modifying the trans-
formation (see sec. 4.5.3). So the class of Hertz transformations initially did seem to
include rotation and uniform acceleration in Minkowski spacetime.
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On p. 11R, Einstein turned to the second term in expression (232) for the core
operator (see sec. 4.5.4). He imposed the “Hertz restriction,” i.e., the condition that the
Hertz expression vanish.142 Under this restriction, expression (232) reduces to its sec-
ond term. Einstein now checked whether this term transforms as a tensor under Hertz
transformations. He discovered that it does not. At the bottom of p. 11R, he wrote:
“Leads to difficulties” (“Führt auf Schwierigkeiten”). The class of Hertz transforma-
tions thus needs to be restricted further. If the metric is set equal to the Minkowski
metric in its standard diagonal form, the condition expressing this further restriction
reduces to the requirement that the matrices  and  of the infinitesimal transfor-
mations be anti-symmetric. It turns out that the requirement of anti-symmetry is all
that is needed to satisfy the conditions defining the class of infinitesimal Hertz trans-
formations as well. In other words, the core operator transforms as a tensor under all
infinitesimal anti-symmetric transformations from an inertial pseudo-Cartesian coor-
dinate system in Minkowski spacetime.

At the top of p. 12L, Einstein therefore made an “attempt” (“Versuch”) to find
anti-symmetric transformations corresponding to infinitesimal rotation in Minkowski
spacetime. He went back to p. 11L and noted how the transformation matrix for infin-
itesimal rotation needs to be changed to make it anti-symmetric. He realized that this
is not feasible. The transformation matrix for infinitesimal uniform acceleration is not
anti-symmetric either—be it in its original form, or in the modified form introduced
on p. 11L. It seems that at this point Einstein deleted the modified form and accepted
that the Hertz restriction rules out the important special case of uniform acceleration
in Minkowski spacetime.

The upshot then was that the strategy Einstein adopted on p. 10L to study the cova-
riance of the core operator by splitting it into the two terms (see expression (232)) did
not produce any physically interesting transformations, not even infinitesimal non-
autonomous ones, under which the core operator would transform as a tensor. Ein-
stein’s first reaction was to change the definition of the core operator by inserting an
extra factor of . Such extra factors, however, do not affect the argument on
pp. 9R–12L. Rather than going through this argument again, Einstein, as he did on
p. 11L, turned his attention to the important test cases of rotation and acceleration in
Minkowski spacetime. On pp. 12L–R, he carefully examined rotation (see sec. 4.5.6).
On pp. 12R, 41L–R, he systematically studied (autonomous) infinitesimal unimodular
transformations with a view to recovering the transformation to uniformly accelerat-
ing frames in Minkowski spacetime. His attempt, however, to find a unimodular trans-
formation corresponding to acceleration failed (sec. 4.5.7). Since the case of uniform
acceleration was drawn from his 1912 static theory, Einstein now reexamined an
important insight connecting the 1912 theory based on one potential (the variable
speed of light) and the metric theory based on ten potentials (the components of the
metric tensor). This is the insight that the equation of motion of a test particle in a grav-
itational field can be obtained from a variational principle with the line element serv-

142 See sec. 4.1 for the definition of a coordinate restriction.

11R

pμν πμν

12L

G

12L–R,
41L–R
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ing as the Lagrangian. A consideration of constrained motion on a curved surface
probably reassured him that this insight was sound (sec. 4.5.8).

4.5.1  Deriving the Conditions for Infinitesimal Hertz Transformations (10L–R)

At the top of p. 10L, Einstein wrote down the transformation law for the Hertz expres-
sion:

.   (233)  

The structure of this quantity is considerably simpler than that of expression (213) on
p. 9R. The condition for non-autonomous transformations under which the Hertz
expression transforms as a vector will likewise be considerably simpler than condition
(225) on p. 9R, for non-autonomous transformations under which expression (213)
transforms as a scalar. Condition (225) is the one referred to in the header of p. 10L:
“For comparison with this condition” (“Zum Vergleich mit dieser Bedingung”). Ein-
stein applied his usual two-step procedure to find the condition characterizing what we
called “Hertz transformations,” i.e., unimodular non-autonomous transformations
under which the Hertz expression transforms as a vector.143

Einstein rewrote the right-hand side of equation (233) as

,   (234)  

where he used that the matrices  and —connected by the line in equation
(233)—are the inverse of one another and assumed that  vanishes.
This assumption holds for infinitesimal unimodular transformations (see note 148
below) but not in general, as Einstein soon came to realize.144

Einstein was now ready for the first step of his two-step procedure. For non-auton-
omous transformations under which the Hertz expression transforms as a vector, the
transformation of the Hertz expression from primed to unprimed coordinates is given
by:

.   (235)  

Einstein omitted this step and immediately wrote down the second step, expressing the
right-hand side in terms of unprimed quantities. Using the abbreviation  for the
Hertz expression,145 and using equations (233)–(234), he wrote:

143 On p. 10L Einstein only gives the condition for infinitesimal Hertz transformations. See footnote 146
below for a self-contained derivation of the condition for finite transformations. See the introduction
to sec. 4.3 for general discussion of the two-step procedure.

144 Einstein had made use of the relation  in situations in which this was not
warranted before (see equation (128) and footnote 98).

10L

x′ν∂

∂γ′μν∑ πνσ xσ∂
∂

pμα pνβγ αβ( )∑=

pμα xσ∂

∂γ ασ γ ασ xσ∂

∂pμα∑+∑

πνσ pνβ
πνσ ∂pνβ ∂xσ⁄( )∑

πνσ ∂pνβ ∂xσ⁄( )∑ 0=

∂γ κλ

∂xλ
----------- πμκ

∂γ′μν

∂x′ν
------------=

ακ
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.   (236)  

The first term on the right-hand side is equal to . Einstein thus concluded that the
condition for non-autonomous transformations under which the Hertz expression
transforms as a tensor is:

.   (237)  

For infinitesimal unimodular transformations this is correct (see note 148 below), but
in general, there will be additional terms.146

To simplify condition (237), Einstein restricted himself to infinitesimal transfor-
mations,

   (238)  

with  (see p. 9R and footnote 138). As he wrote underneath the second
term on the right-hand side of equation (236): “for infinitesimal transformations” (“für
infinitesimale Transformationen”)

.   (239)  

This equation, he continued, “Is a system of four conditions for the  if this should
always vanish. Furthermore, the determinant should always be equal to 1.

145 On p. 6R, Einstein had used the notation  for a covariant vector (see equation (88)).
146 The condition for finite Hertz transformations will be important for understanding Einstein’s argu-

ment on p. 11L (see sec. 4.5.2). The derivation of this condition is fully analogous to the derivation
of condition (237) for infinitesimal Hertz transformations. For finite transformations, equation (236)
needs to be replaced by:

This gives a sum of three terms

,

which can be rewritten as

,

where in the third term on the right-hand side the relation 

was used, which follows from . Hence the condition for finite Hertz transforma-

tions is:

.

ακ

ακ πμκ pμα xσ∂

∂γ ασ∑ πμκ xσ∂

∂pμαγ ασ∑+=

ακ

πμκ xσ∂

∂pμαγ ασ∑ 0=

ακ πμκα′μ πμκ

∂γ′μν

∂x ′ν
-------------⎝ ⎠

⎛ ⎞ πμκπνσ xσ∂
∂

pμα pνβγ αβ( )= = =

ακ πμκπνσ pμα pνβ

∂γ αβ

∂xσ
------------ πμκπνσ

∂pμα

∂xσ
------------ pνβγ αβ πμκπνσ pμα

∂pνβ

∂xσ
-----------γ αβ+ +=

ακ ακ πμκ

∂pμα

∂xσ
------------γ ασ

∂πνσ

∂xσ
------------ pνβγ κβ–+=

πνσ ∂pνβ ∂xσ⁄( ) ∂πνσ ∂xσ⁄( ) pνβ–=

∂ ∂xσ⁄ πνσ pνβ( )

πμκ

∂pμα

∂xσ
------------γ ασ

∂πνσ

∂xσ
------------ pνβγ κβ– 0=

pμν δμν pμν
x+=

πμν δμν πμν
x+=

pμν
x πνμ

x–=

∂ pκα
x

∂xσ
------------γ ασ∑ 0=

px
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.” (“Ist für die  ein System von 4 Bedingungen, wenn dies stets ver-
schwinden soll. Ferner soll Determinante stets gleich 1 sein. .”).

As Einstein notes here, for infinitesimal unimodular transformations

.   (240)  

It follows that the trace of the matrices  and  vanishes:147,148

.   (241)  

Together, equations (239) and (241) thus determine the class of infinitesimal Hertz
transformations (i.e., infinitesimal unimodular non-autonomous transformations
under which the Hertz expression transforms as a vector).

Raising the question, “Is it possible to have both?” (“Ist beides möglich?”), Ein-
stein now set out to solve equations (239) and (241) for the transformation matrix 
in the special case that  in equation (239) is a constant diagonal metric (be it
Euclidean or Minkowskian). He first considered the two-dimensional and then the
three-dimensional case.

Einstein introduced the coordinate transformations

  (242)  

The corresponding differentials can be written as:

.   (243)  

From this one can read off the matrix 

.   (244)  

Condition (241) then reduces to149

.   (245)  

To the right of equation (245), Einstein specified that the metric be diagonal150

147 Cf. equation (227). The condition is illustrated by a simple example written underneath it:

pαα
x∑ 0= px

pαα
x∑ 0=

det p( ) det π( ) 1= =

pμν
x πμν

x

1 ε1+  

 1 ε2+
1 ε1 ε2+ + 1=

pαα
x παα

x∑ 0= =∑

pμν
x

γ μν

x′ X x y,( )= ,

y′ Y x y,( )= .

x′d
x∂

∂X
xd

y∂
∂X

yd+= ,

y′d
x∂

∂Y
xd

y∂
∂Y

yd+= .

pμν

∂X
∂x
------- ∂X

∂y
-------

∂Y
∂x
------- ∂Y

∂y
-------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

x∂
∂X

y∂
∂Y+ 2=
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.   (246)  

Inserting these values into condition (239), one finds:

  (247)  

Inserting equation (244) for  into equation (247), one finds:

  (248)  

Einstein omitted the terms with  and  in equation (247) at this point and used
the erroneous set of equations

.   (249)  

148 It turns out that for infinitesimal unimodular transformations  and that equa-
tion (234) is correct. This, in turn, means that conditions (239)–(241) correctly specify the class of
infinitesimal Hertz transformations. The aborted calculation in the top-right corner of p. 10L suggests
that Einstein realized this. He began by writing down the term he had omitted in going from equation
(233) to equation (234):

.

Underneath this expression, he wrote:

.

One can indeed transfer the derivative operator  in expression above from  to . This
follows from:

.

Condition (241) for infinitesimal unimodular transformations implies that  vanishes:

.

where we used that  (see footnote 138) and that

.

This concludes the proof that the expression in the top-right corner of p. 10L vanishes for infinitesi-
mal unimodular transformations and that the transition from equation (233) to equation (234) is jus-
tified in this case.

149 Einstein originally wrote  and  and then deleted the primes.

πνσ ∂pνβ ∂xσ⁄( )∑ 0=

πνσ pμα xσ∂

∂pνβγ αβ∑

xσ∂

∂πνσ∑

∂ ∂xσ⁄ pνβ πνσ

0
∂

∂xσ
--------- πνσ pνβ( ) πνσ

∂ pνβ

∂xσ
------------

∂πνσ

∂xσ
------------ pνβ+= =

∂πνσ ∂xσ⁄
∂πνσ

∂xσ
------------

∂πνσ
x

∂xσ
------------

∂ pσν
x

∂xσ
------------–

∂ pσσ
x

∂xν
-------------– 0= = = =

πνσ
x pσν

x=
∂ pσν

x

∂xσ
------------

∂
∂xσ
---------

∂x ′σ
∂xν
----------⎝ ⎠

⎛ ⎞ ∂
∂xν
--------

∂x ′σ
∂xσ
----------⎝ ⎠

⎛ ⎞ ∂ pσσ
x

∂xν
-------------= = =

X ′ Y ′

γ 11 1= γ 22 1=

γ 12 0=

∂ p1α
x

∂xσ
------------γ ασ

∂ p11
x

∂x1
-----------γ 11

∂ p12
x

∂x2
-----------γ 22+

∂ p11
x

∂x1
-----------

∂ p12
x

∂x2
-----------+ 0= = = ,

∂ p2α
x

∂xσ
------------γ ασ

∂ p21
x

∂x1
-----------γ 11

∂ p22
x

∂x2
-----------γ 22+

∂ p21
x

∂x1
-----------

∂ p22
x

∂x2
-----------+ 0= = = .

pμν

∂2X
∂x2
--------- ∂2X

∂y2
---------+ 0= ,

∂2Y
∂x2
--------- ∂2Y

∂y2
---------+ 0= .

p12
x p21

x

∂2X
∂x2
--------- 0=      , ∂2Y

∂y2
--------- 0=
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Einstein eventually discovered his error. The calculation on pp. 10L–R based on equa-
tions (249) is deleted and a fresh start is made at the bottom of p. 10R, based on the
correct set of equations (248) (see equations (290)–(291) below). But first we shall
discuss the deleted calculations on pp. 10L–R

Integrating equations (249), Einstein arrived at

  (250)  

with arbitrary functions  and . The unimodularity condition (245) requires that:

.   (251)  

Einstein concluded that  and  would “both [be] constant” (“beide konstant.”). So
the only infinitesimal Hertz transformations in the two-dimensional case are linear
transformations.

In an attempt to find non-linear transformations, Einstein turned to the next sim-
plest case, a Euclidean space of “three dimensions” (“drei Dimensionen”) with a con-
stant diagonal metric. Starting point of the calculation is the coordinate transformation
(cf. equation (242)):

  (252)  

The matrix  is thus given by (cf. equation (244)):

.   (253)  

The analogue of equation (245), expressing unimodularity, is

,   (254)  

while the analogues of conditions (249)—again with omission of non-diagonal terms
of — are

.   (255)  

150 He first wrote down the Euclidean metric  and later changed it to the Minkowski metric
.

diag 1 1,( )
diag 1– 1,( )

x∂
∂X ψ y( )=

y∂
∂Y χ x( )=

ψ χ

ψ y( ) χ x( )+ 2=

ψ χ

x′ X x y z, ,( )= ,

y′ Y x y z, ,( )= ,

z′ Z x y z, ,( )= .

pμν

pμν

∂X
∂x
------- ∂X

∂y
------- ∂X

∂z
-------

∂Y
∂x
------- ∂Y

∂y
------- ∂Y

∂z
-------

∂Z
∂x
------ ∂Z

∂y
------ ∂Z

∂z
------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

∂X
∂x
------- ∂Y

∂y
------- ∂Z

∂z
------+ + 3=

pμν
x

∂2X
∂x2
--------- 0=        ∂ 

2
 Y 

∂
 
y

 
2
 --------- 0=        ∂ 

2
 Z 

∂
 
z

 
2
 --------- 0= , ,
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Integrating these equations, Einstein wrote (cf. equation (250)): 

,   (256)  

,   (257)  

.   (258)  

Inserting these expressions into equation (254) and introducing

,   (259)  

he obtained:

.   (260)  

Taking the derivative of equation (260) with respect to  and dropping the superscript
, Einstein found, at the bottom of p. 10L:

.   (261)  

At the top of p. 10R, Einstein integrated this last equation, writing the result as

.   (262)  

Taking the derivative of equation (260) with respect to  and , one similarly finds

,   (263)  

and

,   (264)  

respectively. Einstein explicitly wrote down equation (263), but not equation (264). 
Since both  and  depend on , while their sum, according to

(262), does not, Einstein could write them in the form

,   (265)  

,   (266)  

where  is some function of . He used equation (260) to write  as:

.   (267)  

Now insert equations (265)–(267) into the equations (256)–(258), keeping in mind
that 

 
all

 
  in equations (265)–(267) are actually  related to the  in equations

(256)–(258) through . 

,   (268)  

∂X
∂x
------- ψ1 y z,( )=

∂Y
∂y
------- ψ2 x z,( )=

∂Z
∂z
------ ψ3 x y,( )=

ψi
x ψi 1–≡

ψ1
x y z,( ) ψ2

x x z,( ) ψ3
x x y,( )+ + 0=

z
x

z∂

∂ψ1

z∂

∂ψ2+ 0=

10R

ψ1 ψ2+ χ3 x y,( )=

x y

ψ2 ψ3+ χ1 y z,( )=

ψ1 ψ3+ χ2 x z,( )=

ψ1 y z,( ) ψ2 z x,( ) z

ψ1 y z,( ) ψ1 y( ) ζ+=

ψ2 z x,( ) ψ2 x( ) ζ–=

ζ z ψ3

ψ3 x y,( ) ψ– 1 y( ) ψ2 x( )–=

ψis ψi
xs ψis

ψi 1 ψi
x+=

∂X
∂x
------- 1 ψ1

x y( ) ζ+ +=
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,   (269)  

.   (270)  

Integrating these equations, one finds151

,   (271)  

,   (272)  

.   (273)  

Einstein now considered a special case. Writing “Specified” (“Spezialisiert”), he
set , , and the quantities  to zero and , with . Equations
(271)–(273) then reduce to:152

  (274)  

Next to this transformation, Einstein wrote: “Is torsion and, in the case , uniform
rotation. Torsion very special case.” (“Ist Torsion & im Falle  gleichformige
Drehung. Torsion ganz spezieller Fall.”). The transformation (274) is indeed a very
special case of the much more general transformation (271)–(273); it does not, how-
ever, correspond to torsion, nor, with , to rotation.

The transformation setting an inertial pseudo-Cartesian coordinate system in
Minkowski spacetime rotating with angular velocity  is given by:

  (275)  

151 Instead of equations (271)–(273), Einstein wrote down the equations:

where  and . These equations contain a number of mistakes. In the third line,
 should be . In all three lines,  and  are conflated and the inte-

gration constants  are missing after the first equality sign. Einstein also defined and then deleted
the quantities  and  (cf. equation (373) at the bottom of p. 12R where  is
essentially defined as .).

152 As a consequence of Einstein’s conflation of  and  (see the preceding note), the notebook has
,  and  instead of equations (274).

∂Y
∂y
------- 1 ψ2

x x( ) ζ–+=

∂Z
∂z
------ 1 ψ1

x y( )– ψ2
x x( )–=

X x ψ1 y( ) ζ+( ) x η– ζ+( ) ω1 y z,( )+= = ,

Y y ψ2 x( ) ζ–( ) y ζ– ξ+( ) ω2 z x,( )+= = ,

Z z– ψ1 y( ) ψ2 z( )–( ) z ξ– η+( ) ω3 x y,( )+= = ,

ξ ψ2 x( )≡ η ψ1 y( )–≡
ψ1 y( ) ψ2 z( )– ψ1 y( ) ψ2 x( )+ ψi

x ψi
ωi

δx ψ1≡ δy ψ2≡ δx
dX

X x 1 ψ1
x y( ) ζ+ +( ) ω1 y z,( )+=

Y y 1 ψ2
x x( ) ζ–+( ) ω2 x z,( )+=

Z z 1 ψ1
x y( )– ψ2

x x( )–( ) ω3 x y,( )+=

ψ1
x y( ) ψ2

x x( ) ωi ζ αz= α 1«

ψi
x ψi

X αxz= Y αyz–= Z 0=

X x αxz+= ,

Y y αyz–= ,

Z z= .

z t=
z t=

z t=

ω

x′ x ωt y ωtsin+cos= ,

y′ x ωt y ωtcos+sin–= ,

t′ t= .
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For infinitesimal , this transformation reduces to:

  (276)  

which is clearly not the same as transformation (274) with . Einstein did not
realize this until later.

He did, however, realize at this point that he had made an error in evaluating con-
dition (239) for the special case of a constant diagonal metric.153 Under the header,
“Conditions of integrability” (“Integrabilitätsbedingungen”), he partly corrected this
error:154

.   (277)  

This condition, however, is still satisfied by the solutions of the erroneous conditions
(255) that Einstein had used up to this point.155 A line drawn from the header above
equation (277) to these solutions (see equations (271)–(273) and footnote 151), sug-
gests that Einstein actually checked this. This would explain why he initially simply
proceeded with the next part of his investigation of the transformation properties of
the core operator. 

On the next line he wrote the contraction of the core operator (130) with some arbi-
trary covariant tensor :156

.   (278)  

The core operator will transform as a tensor under all transformations under which its
contraction with  transforms as a scalar. When the Hertz restriction (i.e.,

) is imposed, the contraction (278) reduces to:

153 See equation (248) for the correct form of the condition in the two-dimensional case and equation
(255) for the incorrect form in the three dimensional case used by Einstein in his derivation of the
general transformation (271)–(273).

154 The crucial residual error in the equation below is that it has  instead of . Inserting

 into condition (239), , one finds 

 for the  component instead of equation (277) in the notebook. 

155 Inserting equations (271)–(273) into the three terms on the right-hand side of equation (277), one
finds zero, , and , respectively.

156 So far Einstein had used Latin letters for contravariant objects (see, e.g., equation (146) for  and
 on p. 7R)

ω

x′ x ωyt+= ,

y′ y ωxt–= ,

t′ t= ,

z t=

∂pyx
x ∂y⁄ ∂pxy

x ∂y⁄

γ μν diag 1 1 1, ,( )= ∂ pκα
x ∂xσ⁄( )γ ασ∑ 0=

∂pxx
x

∂x
-----------

∂pxy
x

∂y
-----------

∂pxz
x

∂z
-----------+ +

∂2X
∂x2
---------- ∂2X

∂y2
---------- ∂2X

∂z2
----------+ += κ 1=

∂ pxx
x

∂x
-----------

∂ pyx
x

∂y
----------- .+ +

∂
∂x
------∂X

∂x
------- ∂

∂y
-----∂Y

∂x
------- ∂

∂z
-----∂Z

∂x
------+ + 0= =

∂ψ2
x x( ) ∂x⁄ ∂ψ2

x x( ) ∂x⁄–

T iκ

aμ
T μν

T iκ
∂

∂xμ
-------- γ μν

∂γ iκ

∂xν
----------⎝ ⎠

⎛ ⎞∑ Skalar=

T iκ
∂γ μν ∂xμ⁄∑ 0=
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.   (279)  

The Hertz restriction is invariant under Hertz transformations. Hence, if Einstein
could show that expression (279) transforms as a scalar under infinitesimal Hertz
transformations, he would have shown that the core operator transforms as a tensor
under such transformations. This is precisely the problem that Einstein takes up at the
top of p. 11R, where he raises the question whether expression (279) is a scalar. On
p. 10R, however, he did not proceed beyond equation (278).

Expressions (277) and (278) were deleted and Einstein returned to condition (239)
for infinitesimal Hertz transformations. It was probably at this point that in the upper-
right corner of p. 10R, he wrote down the  component of condition (239) for
the special case of a diagonal Euclidean metric:

.   (280)  

Inserting equation (253) for  into equation (280), one finds:

.   (281)  

For the  and  components, one similarly finds:

,   (282)  

.   (283)  

Einstein, however, still continued to use the transformations (271)–(273) he found as
a solution of conditions (255), an erroneous version of conditions (281)–(283) and
similar conditions for  and . Inserting equation (271) for  into equation (281), he
found:

.   (284)  

The solution of this harmonic differential equation is:

.   (285)  

He added one more line,157

,   (286)  

before he realized that the replacement of conditions (255) by conditions (281)–(283)
invalidated much of the subsequent calculation on pp. 10L–R. He deleted this calcu-

157 Cf. equation (373) at the bottom of p. 12R where  is essentially defined as .

T iκγ μν

∂2γ iκ

∂xμ∂xν
-----------------∑

κ 1=

∂ p11

∂x1
-----------

∂ p12

∂x2
-----------

∂ p13

∂x3
-----------+ + 0=

pμν

∂2X
∂x2
--------- ∂2X

∂y2
--------- ∂2X

∂z2
---------+ + 0=

κ 2= κ 3=

∂2Y
∂x2
--------- ∂2Y

∂y2
--------- ∂2Y

∂z2
---------+ + 0=

∂2Z
∂x2
--------- ∂2Z

∂y2
--------- ∂2Z

∂z2
---------+ + 0=

Y Z X

ΔX 0
∂2ω1

∂y2
------------

∂2ω1

∂z2
------------+= =

ω1 α βy γz δyz ε y2 z2–( )+ + + +=

δx dX

δx konst. α1z δy〈 〉 α2y δz〈 〉  + + +=
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lation—equations (245)–(286), with the exception of equation (280) at the top of
p. 10R—and made a fresh start.

Einstein went back to the two-dimensional case examined on p. 10L. The unimo-
dularity condition (241) for this case can still be written as (see equation (245)):

,   (287)  

He then turned to condition (239) for non-autonomous transformations with
 (see equations (247)–(248)). For the first component of condition (239),

he now correctly wrote:

.   (288)  

Substituting 

  (289)  

(cf. equation (244)) into in equation (288), he found:

.   (290)  

For the second component of condition (239), he similarly wrote

.   (291)  

Equations (290) and (291) are easily solved:

,   (292)  

.   (293)  

Einstein started to calculate  for these coordinate transformations, but
proceeded no further than

.   (294)  

He then substituted equations (292)–(293) into the unimodularity condition (287) and
found

.   (295)  

The constants of integration , , , and  thus have to satisfy

,   (296)  

.   (297)  

x∂
∂X

y∂
∂Y+ 2=

γ μν δμν=

∂ p11

∂x1
-----------

∂ p12

∂x2
-----------+ 0=

p11
∂X
∂x
-------= p12

∂X
∂y
-------=

∂2X
∂x2
--------- ∂2X

∂y2
---------+ 0=

∂2Y
∂x2
--------- ∂2Y

∂y2
---------+ 0=

X α1xy α2 x2 y2–( ) x+ +=

Y β1xy β2 x2 y2–( ) y+ +=

p11 ∂X ∂x⁄=

p11 α1y 2+=

α1y 2α2x β1x 2β2y–+ + 0=

α1 α2 β1 β2

β1 2α2–=

α1 2β2=
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Equations (292)–(293) with conditions (296)–(297) give the general form for infini-
tesimal Hertz transformations for the special case of the two-dimensional Euclidean
metric .

4.5.2  Checking Whether Rotation in Minkowski spacetime 
Is a Hertz Transformation (11L)

On p. 11L Einstein checked whether transformations to uniformly rotating and uni-
formly accelerating frames in Minkowski spacetime are included in the class of (infin-
itesimal) Hertz transformations that he had studied on pp. 10L–R. At the top of the
page, under the header “Rotation” (“Drehung”), he dealt with the former; under a hor-
izontal line in the middle of the page, under the header “Acceleration”
(“Beschleunigung”), he dealt with the latter. Einstein concluded that both infinitesi-
mal and finite rotations in Minkowski spacetime are Hertz transformations. This is
true for infinitesimal but not for finite rotations. Einstein also found, however, that
uniform accelerations in Minkowski spacetime, whether infinitesimal or finite, are not
Hertz transformations (see sec. 4.5.3).

The condition for some unimodular non-autonomous transformation to be a Hertz
transformation (i.e., a unimodular transformation under which the Hertz expression,

, transforms as a vector) is:

  (298)  

(see footnote 146). For infinitesimal transformations the second term vanishes and this
condition reduces to:

  (299)  

(see equation (239)). For infinitesimal transformation the condition for unimodularity
reduces to the requirement that the trace of  and  van-
ish:

.   (300)  

(see equation (241)).
At the top of p. 11L, next to a drawing indicating rotation, Einstein wrote down the

transformation from an inertial pseudo-Cartesian coordinate system in Minkowski
spacetime to a coordinate system uniformly rotating with angular velocity :158

  (301)  

158 Anticipating the next step in the calculation, Einstein wrote  instead of .

γ μν δμν=

11L

∂γ μν ∂xν⁄

πμκ

∂pμα

∂xσ
-----------γ ασ

∂πνσ

∂xσ
----------- pνβγ κβ– 0=

∂ pκα

∂xσ
------------γ ασ 0=

pμν
x pμν δμν–≡ πμν

x πμν δμν–≡

pαα
x παα

x 0= =

ω

dt ′ dt= t ′ t=

x′ x ωt y ωtsin+cos=

y′ x ωt y ωtcos+sin–=

t′ t= .
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The differentials of the coordinates transform as:

  (302)  

For an infinitesimal rotation, equation (302) reduces to:

  (303)  

from which one can read off the components of the transformation matrix , the
“table of ” (“Tabelle der ”):159

.   (304)  

For this matrix, the trace  vanishes, and so does .160 Hence, condition (300)
is satisfied. Inserting the diagonal Minkowski metric for  in equation (299), one
readily verifies that  in equation (304) satisfies conditions (299) as well:

  (305)  

for . It follows that infinitesimal rotations are indeed infinitesimal Hertz
transformations. Next to his “table of ” Einstein accordingly wrote: “Correct”
(“Stimmt”).

In what looks like a later addition to the page, Einstein checked whether finite rota-
tions are Hertz transformations too. In the lower-left part of p. 11L, Einstein wrote
down the “table of the ” (“Tafel der ”) for a finite rotation, which can be read off
from equation (302):161

.   (306)  

Inverting this matrix, one finds the corresponding “table of the ” (“Tafel der ”):162

159 The 13-component originally had an additional term . This term should be  and can
therefore be neglected. The 23-component likewise has a deleted term , which should be

. The expressions  and  underneath the 31- and 32-components were added later (see
equation (343) in sec. 4.5.5).

160 It follows from  that  (see footnote 138).
161 Einstein omitted a factor  in  and .
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.   (307)  

Einstein noted that the second term in condition (298) for finite Hertz transformations
vanishes for this transformation matrix. He noted that

  (308)  

is “always fulfilled” (“immer erfüllt”). Since the transformation to rotating coordi-
nates is also unimodular—  for the matrix in equation (306)—Einstein
presumably concluded that finite rotations, like infinitesimal ones, are Hertz transfor-
mations. This conclusion, however, is not warranted.

The problem is that the 

 

first

 

 term of equation (298) does not vanish for finite rota-
tions. Substituting the diagonal Minkowski metric for  in the first term of
equation (298), one finds

.   (309)  

Since , this expression reduces to

.   (310)  

This expression does not vanish for the coefficients  in equation (306) for a finite
rotation. For , for instance, it is equal to .

 

163

 

 It follows that condition (298)

 

162 The notebook has  and . The inversion is done with the formula
, where  is the co-factor of  and . The expression

for  is found as follows:

A completely analogous calculation gives . Inserting equations (306) and (307) into
, one readily verifies that this gives .

163 Using equation (306), one finds that

, 

Inserting these expressions into the  component of expression (310) and using
equation (307), one finds

,

which is equal to .
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is not satisfied in the case of finite rotations in Minkowski spacetime, which means
that these transformations cannot be Hertz transformations.164

4.5.3  Checking Whether Acceleration in Minkowski Spacetime 
is a Hertz Transformation (11L)

On the lower half of p. 11L, under the heading “Acceleration” (“Beschleunigung”),
Einstein checked whether a transformation to a uniformly accelerated frame in
Minkowski spacetime is a Hertz transformation. He started from the transformation
equations that he had found for this case in the course of the work on his theory for
static gravitational fields:165

  (311)  

where  is the variable speed of light that served as the gravitational potential in Ein-
stein’s static theory. Einstein assumed  to be of the form166

.   (312)  

In the notebook, Einstein used  instead of  and  instead of .
The transformation (311) then becomes:

  (313)  

With the ansatz (312)—in terms of  rather than —the transformation (313) turns
into:

  (314)  

Inverting this transformation while neglecting terms quadratic in  and smaller, Ein-
stein found

164 A more direct way to arrive at this conclusion is to note that the Hertz expression, , van-
ishes for the standard diagonal Minkowski metric but not for the Minkowski metric in rotating coor-
dinates. The contravariant form of the latter is given by:

For this metric, the Hertz expression is: .
165 See (Einstein 1912b, 456).
166 Initially, Einstein wrote  but then deleted the factor .
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  (315)  

As he had done for rotation, Einstein considered the infinitesimal transformation

  (316)  

From the transformation matrix

,   (317)  

one immediately sees that its elements do not satisfy the two conditions (239) and
(241) for infinitesimal Hertz transformations (see also equations (299) and (300)).
Inserting  in equation (239), we find that the  component is:

,   (318)  

Condition (241) is not satisfied either:

.   (319)  

Both problems could be fixed by setting:

.   (320)  

It looks as if Einstein considered this modification. He changed the first line of equa-
tion (316) to

,   (321)  

and added the remark: “is also correct for a suitable shift of scale” (“stimmt auch bei
geeigneter Massstabverschiebung”). He subsequently deleted this remark.

For the time being, however, Einstein seems to have been satisfied that he could
ensure in this fashion that transformations to uniformly accelerating frames in
Minkowski spacetime would be included in the class of Hertz transformations. The
modification (320) of the transformation matrix (316), however, is not allowed. The
form of the transformation (311), of which transformation (316) is a special case, was
derived from the equivalence of the propagation of light in the two systems ( ) and
( )167

.   (322)  

With the adjustment (320) this fundamental equation would no longer be valid.

167 See (Einstein 1912a, sec. 1).
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4.5.4  Trying to Find Hertz Transformations under which 
the Core Operator Transforms as a Tensor (11R)

Having satisfied himself for the time being that the class of Hertz transformations
includes transformations to rotating and uniformly accelerating frames in Minkowski
spacetime, Einstein once again turned his attention to the core operator. Picking up on
an idea that had made its first appearance on p. 10R (see equations (278)–(279)), Ein-
stein examined under which transformations the contraction of the core operator and
some arbitrary covariant second-rank tensor would transform as a scalar. 

On p. 10R, Einstein had written this contraction as (see equation (278)):

.   (323)  

At the top of p. 11R Einstein wrote down a very similar expression (down to the
labeling of the indices),

,   (324)  

and asked: “Is this a scalar?” (“Ist dies ein Skalar?”). If  in equation (323) is
replaced by ,168 and, more importantly, if the Hertz restriction, 

,   (325)  

is imposed, the expressions on 10R and 11R are equivalent. So if expression (324)
transforms as a scalar under Hertz transformations, so will expression (323). Einstein
set out to find what further coordinate restrictions over and above the Hertz restriction
would be needed for expression (324) to transform as a scalar.

To this end he once again used his two step procedure.169 He wrote expression
(324) in primed coordinates, and expressed its various components in unprimed coor-
dinates:

.   (326)  

Einstein connected the factors  and  by a solid V-shaped line to indicate that
they combine to form (in modern notation) , Underneath this line, he wrote

. He likewise connected  and  by a dashed V-shaped line and
directly underneath wrote

168 It is not clear why Einstein added an ‘x’ added to  at this point. This superscript was Einstein stan-
dard notation for first-order deviations from constant values. The argument on p. 11R works with
both  and .

169 See the introduction to sec. 4.3 for a general discussion of this procedure and equations (215)–(217)
for a concrete example involving a scalar.
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  (327)  

In the first step he used that 

.   (328)  

He replaced  in  by , using that . Expression (327) has
exactly the form of the last term in equation (236) at the top of p. 10L. At that point,
Einstein had drawn the conclusion that the vanishing of this expression (see equation
(237)) was the condition for non-autonomous transformation under which the Hertz
expression transforms as a tensor. Equation (237) does indeed express the Hertz
restriction for infinitesimal transformations, but not for finite ones (see the discussion
following equation (237) and footnote 148). In the second step in equation (327), Ein-
stein nonetheless used equation (237).

On the basis of equation (327), Einstein could move  outside the scope of the
differential operator  in equation (326). As he wrote: “hence  can be taken
outside” (“also  heraus setzbar”). The factor  combines with  to give

. In a separate box Einstein summarized the simplifications  and
 in equation (326):

  (329)  

With these simplifications, equation (326) becomes:

.   (330)  

Underneath this equation Einstein wrote: “Let us restrict ourselves to an infinitesimal
substitution” (“Beschränken wir uns auf infinitesimale Substitution”). Whether Ein-
stein realized it or not, this immediately takes care of the problem that to arrive at
equation (330) he had used the Hertz restriction in a form that only holds for infinites-
imal transformations.

Einstein’s task now was to identify all those terms in equation (330) that would
have to vanish for the right-hand side to reduce to expression (324) that he had started
from. These are all terms in which the elements  of the transformation matrix are
differentiated at least once.170 The condition determining under which subclass of
infinitesimal Hertz transformations expression (324) transforms as a scalar is obtained
by setting the sum of all these terms equal to zero. If in a product of several matrix
elements  of an infinitesimal transformation one is differentiated, all others can be
replaced by Kronecker deltas. Equation (330) can thus be rewritten as:

170 Einstein had made this observation twice on p. 7R in comments on equations (139) and (145).
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  (331)  

As Einstein put it: “If one of the ’s is differentiated at all, for instance , then one
has to set , , ” (“Dann muss, falls überhaupt eines der  diff
wird, z. B.  , ,  gesetzt werden”). The second step in
equation (331) is indeed to set ,  and to set  if  is differ-
entiated and  if  is. Einstein could thus rewrite equation (330) as:171

,   (332)  

adding: “where  is to be differentiated at least once” (“wobei  mindestens einmal
zu differenzieren ist”). The last term, , is obtained if the two differential operators
both act on  or  instead of at least one of them acting on  or . For 
to be a scalar, the sum of all terms containing derivatives of  in the first term on
the right-hand side of equation (332) should vanish.

Einstein first considered the expression172

.   (333)  

Since  (see footnote 148) this can be rewritten as:

.   (334)  

Because of the Hertz restriction, ,  can be taken outside the scope
of  and  can be taken inside the scope of . Einstein thus arrived at:

.   (335)  

He repeated this result on the next line,

,   (336)  

171 The second term in parentheses in equation (332) is written underneath the first. Both  and  in
equation (332) are interlineated. Note that  is placed within the scope of the differential operators

 and , whereas in equations (330) and (331) it was not. Because of the Hertz restriction,
however, , so this makes no difference.

172 Three lines farther down, Einstein added: “Already sum over ” (“Schon Summe über ”), draw-
ing a line from expression (333) to this comment. The comment refers, perhaps, to the similarity be-
tween the sum over  in  in expression (333) and the sum over  in equation
(239), one of the conditions for infinitesimal Hertz transformations.
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but did not pursue the calculation any further. He went back to equation (332) and,
contrary to what he did in expression (333), treated the two derivative operators

 and  on an equal footing. For the term with  in equation (332)
he wrote:

.   (337)  

He indicated that the term with  gives a similar contribution by noting: “+ the
same with  &  exchanged” (“+ dasselbe mit vert[auschten]  & ”).

Here the calculation seems to break off abruptly with Einstein concluding: “Leads
to difficulties” (“Führt auf Schwierigkeiten.”). However, the considerations at the top
of p. 12L (and some additions to p. 11L resulting from them) can be seen as a natural
continuation of the search on p. 11R for Hertz transformations under which the core
operator transforms as a tensor. Einstein may therefore only have added this final
remark on p. 11R after running into difficulties on pp. 12L and 11L.

4.5.5  Checking Whether Rotation in Minkowski Spacetime Is a Hertz Transformation 
Under Which the Core Operator Transforms as a Tensor (12L, 11L)

At the bottom of p. 11R, Einstein had derived a condition determining under which
subclass of infinitesimal Hertz transformations expression (323)—the contraction of
the core operator and an arbitrary second-rank covariant tensor—transforms as a sca-
lar. He had found that, given the metric field, the matrices  for such transforma-
tions must satisfy the condition that the sum of expression (337) and a similar
expression obtained by switching the indices  and  vanish. For the special case of
a flat diagonal metric, , this condition reduces to:

,   (338)  

which is satisfied if  is anti-symmetric, i.e., .173

At the top of p. 12L, under the heading: “Attempt. Infinitesimal transformation is
anti-symmetric. Rotation modified” (“Versuch. Infinitesimale Transformation ist
schief symmetrisch. Drehung modifiziert”), Einstein turns to the investigation of anti-
symmetric infinitesimal transformations. This quickly aborted attempt can thus be
seen as a natural continuation of the considerations on p. 11R.

Einstein wrote down the transformation law for the differentials  under an
infinitesimal coordinate transformation:

.   (339)  

173 In that case, conditions (239) and (241) for infinitesimal Hertz transformations found on p. 10L are
automatically satisfied as well, the latter because  is traceless, the former because (cf. footnote
148): , which once again vanishes because  is trace-
less.
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and noted the condition of anti-symmetry

.   (340)  

As on p. 10L, he expressed the coefficients of the transformation in terms of the func-
tions  describing the coordinate transformation (cf. equations (242)–(244)),

,   (341)  

with the help of which he rewrote condition (340) as

.   (342)  

The comment “Rotation modified” (“Drehung modifiziert”) at the top of p. 12L
indicates that Einstein was interested in the special case of rotation in Minkowski
spacetime at this point. If the matrix  for this transformation were anti-symmet-
ric—which, of course, it is not—an infinitesimal rotation in Minkowski spacetime
would be an example of a non-autonomous transformation under which expression
(323) transforms as a scalar. It would then, presumably, also be a transformation under
which the core operator transforms as a tensor. Einstein thus explored whether the
matrix  for rotation can meaningfully be made anti-symmetric.

If this was indeed the point of modifying the matrix  for rotation, Einstein had
already achieved his goal without such modification. What he appears to have over-
looked is that infinitesimal rotations in Minkowski spacetime already are infinitesimal
Hertz transformations under which expression (323) transforms as a scalar. That they
are Hertz transformations was shown in p. 11L (see sec. 4.5.2). Moreover, the matrix

 for such transformations satisfies condition (338). After all,  is linear in 
and condition (338) involves only second-order derivatives of . It is true that con-
dition (340) is not satisfied, since , but that condition, although sufficient,
is not necessary to meet condition (338). Hence, Einstein did not need to modify 
for rotation at all.

Einstein seems to have missed this and returned to p. 11L to see whether the matrix
(304) for  for infinitesimal rotation in Minkowski spacetime could be made anti-
symmetric. As he indicated underneath the matrix on p. 11L, he replaced

 by  and , respectively:

  (343)  

    .

With this anti-symmetrized matrix the differential of the time coordinate transforms
as:

.   (344)  
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Einstein wrote this equation in a separate box in the left margin of p. 11L. For this
equation to be a coordinate transformation,  has to be an exact differential, i.e., it
must be possible to write it as:

.   (345)  

Comparison of equations (345) and (344) gives  and .
This implies that

.   (346)  

Hence  in equation (345) is not an exact differential. Einstein seems to have gone
through this same argument himself, although the only trace of this in the notebook
are the terms

,   (347)  

written underneath equation (344) in the same separate box. In any event, he con-
cluded that a transformation characterized by equation (344), which would yield an
antisymmetric matrix , is “impossible” (“unmöglich”). This is the last word in the
separate box on p. 11L, and it signals the end of this whole line of reasoning, which
started on p. 10L and ended with the first horizontal line on p. 12L. Einstein seems to
have reached the conclusion that the core operator does not transform as a tensor under
infinitesimal rotations in Minkowski spacetime.

Initially, Einstein, it seems, considered changing the form of the core operator.
Following the first horizontal line on p. 12L, Einstein changed the core operator (130)
on p. 7L to:

.   (348)  

The extra factors of  make this expression resemble the second Beltrami invariant
more closely (cf. equation (82) on p. 6L). Einstein did not even begin the search for
non-autonomous transformations under which this modified core operator transforms
as a tensor. Instead he drew another horizontal line and turned to a closer examination
of the important special case of rotation in Minkowski spacetime that had spelled trou-
ble for the original form of the core operator.

4.5.6  Deriving the Exact Form of the Rotation Metric (12L–R)

In the middle of p. 12L, under the heading, “The Rotational Field in First Approxima-
tion” (“Drehungsfeld in erster Annäherung”), Einstein wrote down the line element

,   (349)  
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and defined , the “Lagrangian function” (“Lagrange’sche Funktion”) for a point
particle in a metric field, in terms of a potential term  and a kinetic term :

.   (350)  

The accompanying diagram (see below) and the subsequent calculations make it clear
that Einstein considered the motion of the particle in a coordinate system

 rotating counterclockwise at constant angular velocity  around the
-axis, coinciding with the -axis of an inertial coordinate system

. The line element in the inertial coordinate system is given by:

  (351)  

where  (coordinates are chosen such that ) and
.

The relation between velocity in the inertial frame and velocity in the rotating frame
is given by:

,   (352)  

where  and .
With the help of equation (351) and the transformation equation , the

Lagrangian (350) can be written as

.   (353)  

Comparison with  leads to the identification . Einstein presum-
ably arrived at this equation simply on the basis of the interpretation of  as the kinetic
energy. Using equation (352), he found:

,   (354)  

which he expanded to:

.   (355)  
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Substituting  and  (see equation (352)) and introducing the
potential energy ,174 Einstein wrote the Lagrangian  as

.   (356)  

Given equation (350), Einstein could find  by squaring equation (356). Writ-
ing “  [  should be ] calculated up to and including  & ” (“
berechnet bis und mit  u. ”), he arrived at:

  (357)  

A simpler way of finding an expression for  is to use equations (351) and
(352):

.   (358)  

If we neglect terms containing both  and  in eq. (357) and insert , we
recover equation (358).

At the top of p. 12R, Einstein used equation (357) in combination with
, the expression for the line element in rotating coordinates, to iden-

tify the components of , the Minkowski metric in rotating coordinates:

  (359)  

This matrix contains several errors. First, the -terms in  and  come from
terms in equation (357) containing both  and , which are negligible. This mis-
take was partly corrected.175 Second, the factors of 2 in , , , and  should
be 1. The term  in (  times) equation (357), for instance, should be set
equal to , leading to the identification .176

Immediately below the matrix (359), Einstein noted that  (cf. note 174)

174 As follows directly from equation (353) and as Einstein subsequently realized (see p. 12R),  cannot
be chosen freely but has to be equal to 1.

175 The term  in the expressions for , , and  may have been deleted in the course of
Einstein’s evaluation of the determinant of this metric.
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Next, Einstein computed the determinant  of (359), again retaining only terms
up to order  or . Since so many of the elements of the matrix (359) are zero, there
are only a few contributions to its determinant:

.   (360)  

Inserting the values given in the matrix (359) into this expression, setting , and
neglecting terms smaller than of order  or , we find a result very similar to the
following expression in the notebook at this point:177

  (361)  

Einstein rewrote the right-hand side of this equation as:

  (362)  

and then as:

.   (363)  

These last two equations inherit the errors made in equation (361) (see note 177). Ein-
stein may have realized that these equations contained some errors. He subsequently
deleted all three equations (361)–(363). However, he retained the main result of his
calculation on the lower half of p. 12L and the upper half of p. 12R, expression (359)
for the Minkowski metric in rotating coordinates, which still contains several errors.

4.5.7  Trying to Find Infinitesimal Unimodular Transformations 
Corresponding to Uniform Acceleration (12R, 41L–R)

In the middle of p. 12R, under the heading, “Substitutions with Determinant 1. Infin-
itesimal in 2 Variables” (“Substitutionen mit Determinante 1. Infinitesimal in 2 Varia-
blen”), Einstein wrote down the transformation law for coordinate differentials, 

  (364)  

under the transformation

176 Einstein made the same mistake on p. 42R (see footnote 308) and in the Einstein-Besso manuscript
(CPAE 4, Doc. 14, pp. [41–42]). Largely due to this error, Einstein convinced himself at that point
that the rotation metric is a solution of the field equations of his Entwurf theory (see Janssen 1999,
145–146, and “What Did Einstein Know …” sec. 3 (in this volume).

177 Expression (361) contains a number of errors. First, the last three minus signs in the second expres-
sion in ordinary brackets were all corrected from plus signs. The first two should indeed be minus
signs but the third should be a plus sign. Secondly, the terms  and , coming from the
second term in equation (360), should both be inside the curly brackets with a minus sign.
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  (365)  

with (cf., e.g., p. 10L and equations (242)–(244)):

.   (366)  

Next to the transformation law (364), he wrote the unimodularity condition, i.e., the
condition that the determinant of the transformation matrix equals 1 (cf. equations
(240)–(241)):

.   (367)  

With the help of equation (366), this condition turns into

,   (368)  

which is automatically satisfied if there is a generating function  determining
 and  via

.   (369)  

With the help of equation (366), the coefficients  can also be expressed in terms of
:178

  (370)  

Using these expressions, Einstein rewrote the first line of the transformation (364) as

.   (371)  

He did not bother to write down the corresponding equation for . Equation (371)
in turn can be rewritten as

.   (372)  

178 In these equations,  should be .
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This last expression already follows directly, of course, from equation (365). Writing
 and  for  and  and using equation (369), Einstein wrote

  (373)  

He could thus write transformation (365) as

  (374)  

which appear at the bottom of p. 12R enclosed in a box.
In another part of the notebook, on pp. 41L–R, immediately following Einstein’s

earliest considerations on gravitation (see sec. 2), Einstein did the same calculation as
on the bottom half p. 12R but this time pursued it a little further. At the bottom of
p. 41L, he examined some specific choices for the generating function . At the top
of p. 41R, he chose one of the coordinates to be the time coordinate and compared the
transformation for a particular choice of  with the transformation to a uniformly
accelerated frame of reference, a transformation familiar from his papers on the static
gravitational field. It seems plausible that the calculation on pp. 41L–R is just a con-
tinuation of the one on p. 12R. The calculation breaks off after Einstein failed to
recover the transformation to a uniformly accelerating frame of reference in this man-
ner.

Below the horizontal line in the middle of p. 41L, under the heading, “Simplest
Substitutions, whose Determinant = 1” (“Einfachste Substitution, deren Determinante
= 1”), Einstein, as on p. 12R, began by writing down the transformation equations
(364) for coordinate differentials, albeit in a more compact form than on p. 12R and
leaving open the dimension of the space(-time) under consideration:

.   (375)  

As on p. 12R (see equation (366)), Einstein used the relations .
Underneath equation (375), Einstein wrote: “  are homogeneous and of second
degree in the coordinates. Only two coordinates are being transformed” (“  sind
homogen u. zweiten Grades in den Koordinaten. Es werden nur zwei Koordinaten
transformiert”). These comments suggest that Einstein was interested at this point in
the special case of uniform acceleration, which he explicitly considered at the top of
p. 41R. In that case only two coordinates,  and , transform non-trivially. Moreover,
the function  in  (cf. equation (365)) has to be proportional to  and
cannot have a constant term to get the desired form . In other words,

 has to be “of second degree” and “homogeneous.”
Einstein began by writing down the condition of unimodularity (cf. equations

(367)–(368))
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,   (376)  

which is satisfied automatically if there is a generating function  such that
(cf. equation (369))

.   (377)  

As before (see equation (370)), the relation between the matrix  and the function
 is given by

  (378)  

Up to this point the argument on p. 41L is identical to the argument on p. 12R.
Einstein now considered two specific choices for the generating function, namely

 and . For these two cases he evaluated the four elements of the
matrix in equation (378). Using that , so that  and

, one recovers the results given by Einstein at this point, except for an
overall factor of 3 in the case of . Einstein effectively did the calculation with

. This function gives:

  (379)  

The function  gives:

  (380)  

To the right of equations (376)–(378), Einstein wrote down two matrices

,      ,   (381)  
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which appear to be related to the considerations at the top of p. 41R. Apart from the
21-component, the second matrix is proportional to the matrix  for ,
which is found upon substitution of equation (380) into equation (378):

.   (382)  

As we shall see below, Einstein probably changed the 21-component of the second of
the two matrices (381) to zero in the course of his calculations on p. 41R.

At the top of p. 41R (the first four lines in the top left corner and the first two in
the top right corner), Einstein examined the transformation generated by , a
modification of the function  considered at the bottom of p. 41L. Replacing

 by , he then compared this transformation to the transformation to a uniformly
accelerated frame that he had considered in the context of his 1912 theory for static
gravitational fields.

Inserting equation (378) into equation (375) for two dimensions and setting
, one finds, using equation (380):

  (383)  

This result corresponds to the matrix  in equation (382) above.
Einstein wrote at the top of p. 41R:

  (384)  

This corresponds to the matrix

  (385)  

which, except for the factor , is the second of the two matrices (381) on p. 41L. It
seems that Einstein adjusted his choice of the function  to get the matrix  in equa-
tion (385) instead of the one in equation (382). It is easily seen that to achieve this

 should be replaced by . If that is done, one finds (cf. equation
(379)–(380)):
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  (386)  

Using these results in equation (383) and writing  instead of 2, one finds Einstein’s
equation (384).

Einstein now replaced  by 

 

179

 

 and integrated equations (384), using that
:

  (387)  

He compared this transformation to the transformation to a uniformly accelerating
frame

  (388)  

which he had obtained in the context of his theory for static fields of 1912 (Einstein
1912b, 456) and which he had already used on p. 11L (see equation (311)). The
expressions for  in equations (387) and (388) are quite different. So even after
changing the generating function from  (with ) to , Ein-
stein was unable to recover the transformation to a uniformly accelerating frame of
reference by integrating the infinitesimal unimodular transformation (383) generated
by . On the remainder of p. 41R, Einstein went through a calculation showing that
motion constrained to a curved surface in three-dimensional space is along a geodesic
(see sec. 4.5.8). The purpose of this calculation may simply have to been to reassure
himself after the disappointing results of p. 12R and pp. 41L-R that at least the con-
ceptual basis of his theory was sound.

 

4.5.8  

 

Geodesic Motion along a Surface (41R)

 

On p. 41R, starting with the expression , Einstein considered the motion
of a particle in three-dimensional space constrained to move on a two-dimensional
surface, but otherwise free of external forces. He proved that the trajectory of such a
particle is a geodesic of the surface by showing that the line element of the trajectory
is an extremal on the surface. Einstein had earlier recognized that the equation of
motion of a particle in a static gravitational field follows from a variational principle

 

179 The second line of equation (387) originally had  instead of .
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for a four-dimensional line element.180 At this point, he presumably realized that a
similar result holds for the equation of motion in a general gravitational field.181 In his
earlier lecture notes on mechanics, Einstein had also treated constrained motion along
a surface, but the concept of a geodesic line is not to be found in any of his published
writings up to this point.182 It is not entirely clear why Einstein considered the prob-
lem of constrained motion in this context. Einstein had long been familiar with the link
between the physical concept of constrained motion and the geometric concept of a
geodesic line from a course on infinitesimal geometry that he had taken as a student
at the ETH with Carl Friedrich Geiser.183

Einstein started from the -component of Newton’s equation of motion for a par-
ticle of mass , constrained to move on the surface .

.   (389)  

The analogous equations for the – and –components are indicated by dashed lines.
As is clear from the accompanying figure, reproduced below, the right-hand side of
this equation is the normal force that constrains the particle to move along the surface

. This normal force is proportional to the gradient of , which defines the nor-
mal direction, and which must be multiplied by a Lagrange multiplier  determined
by the magnitude of the force.

Einstein next absorbed  into a new Lagrange multiplier , and then changed
independent variables, substituting the arc length  for the time .184 He thus arrived
at

,   (390)  

where .
The rest of the proof is intended to show that this is the equation of a geodesic line

on the curved surface .185 Einstein wrote down the equation for the surface,

,   (391)  

180 See the “Nachtrag” to (Einstein 1912b).
181 See Einstein to Ludwig Hopf, 16 August 1912: “The work on gravitation is going splendidly. Unless

everything is just an illusion, I have now found the most general equations” (“Mit der Gravitation geht
es glänzend. Wenn nicht alles trügt, habe ich nun die allgemeinsten Gleichungen gefunden.” CPAE 5,
Doc. 416).

182 See CPAE 3, Doc. 1, [34–38], [75–76].
183 Einstein had registered for this course in winter semester 1897/1898 (see CPAE 1, Appendix E). Mar-

cel Grossmann’s notes on these lectures contain a page with very similar calculations (Bibliothek
ETH, Zurich, Hs. 421:15).

184 There are no forces parallel to the surface, hence the speed of the point particle is constant. 
185 Cf. Grossmann’s notes on Geyser’s lectures as well as very similar passages in Einstein’s lecture

notes on mechanics (CPAE 3, Doc. 4, [pp. 75ff.]).
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drew a horizontal line, and sketched the figure below.

He then wrote down the coordinates:

  (392)  

The coordinates ( , , ) refer to points on the actual path. To prove that
this path is a geodesic, he considered a nearby curve, produced by small variations ( ,

, ). Thus a point with coordinates ( , , ) is a point on this nearby
curve. Next, Einstein considered a nearby point on the actual path, with coordinates
( , , ), and a corresponding point on the path obtained through
variation. He only wrote down the x-coordinate of the latter point:

.   (393)  

Since Einstein was considering constrained motions, the path obtained through
variation must also lie in the surface , i.e., ( , , ) must also be
the coordinates of a point on the surface . One can bring out the meaning of
Einstein’s figure more clearly by adding the path obtained through variation and label-
ing the various points.
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Einstein now calculated the square of the line element  for the path obtained
through variation, discarding terms of order :

  (394)  

He then took the square root of this equation:

.   (395)  

Substituting  for  and  for , he wrote the variation in the line element
as:

.   (396)  

For a geodesic  vanishes, which means that:

.   (397)  

Through integration by parts Einstein transformed this equation into:

,   (398)  
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which will hold if the acceleration, with components ( , , ), is perpendicular to the
variation, with components ( , , ). Since these variations are arbitrary (except that
they have to lay within the surface), they should be perpendicular to the normal to the
surface:

.   (399)  

Hence, as Einstein wrote, “if” (“wenn”) condition (399) holds, then the actual path
will be a geodesic: “from which the assertion” (“woraus die Behauptung”).

4.6  Emergence of the Entwurf Strategy (13L–R)

On pp. 6L–12R (and pp. 41L–R), Einstein had tried in vain to find field equations
invariant under a broad enough class of transformations—autonomous or non-auton-
omous186—to meet the requirements of the relativity principle and the equivalence
principle (see sec. 1.1). He had pursued a combination of what we have called the
mathematical and the physical strategy (see sec. 1.2). 

Mathematically, the generally-covariant second Beltrami invariant (80), with
(some power of) the determinant  of the metric playing the role of the arbitrary sca-
lar function  in its definition, looked like an especially promising point of departure.
Field equations constructed out of the Beltrami invariant in this way are invariant
under arbitrary (autonomous) unimodular transformations. On p. 12R and p. 41R,
however, just prior to the entries on pp. 13L–R, Einstein had reached the conclusion
that the important special case of an (autonomous) transformation to a uniformly
accelerating frame of reference is not a unimodular transformation, not even infinites-
imally. This must have been an important setback.

From a physics point of view, the core operator (118), which for weak fields
reduces to the d’Alembertian acting on the metric, looked most promising. The draw-
back was that the core operator does not transform as a tensor under any autonomous
non-linear transformations. It might, however, transform as a tensor under a class of
non-autonomous non-linear transformation that would include the important special
cases of rotation and uniform acceleration in Minkowski spacetime (see pp. 11L–
12L). And even if this turned out not to be true for the core operator taken by itself, it
might still be true for the sum of the core operator and some correction terms. Such
correction terms were needed anyway to guarantee energy-momentum conservation
(see p. 9L and sec. 4.4, especially the passage following equation (199)). With the
help of such terms, it might furthermore be possible to connect field equations based
on the core operator to the Beltrami invariants, which would throw light on their cova-
riance properties. The Hertz restriction—the restriction to Hertz transformations, i.e.,
non-autonomous transformations under which the Hertz expression (231) transforms

186 See the introduction to sec. 4.3 for discussion of the distinction and footnote 94 for the origin of the
terminology.
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as a vector—played an important role in connecting the core operator to the Beltrami
invariants. On p. 11L, Einstein had found that, at least infinitesimally, rotation in
Minkowski spacetime was a Hertz transformation. He had also found, however, that
uniform acceleration in Minkowski spacetime is not.

Still, the physically motivated core operator clearly held more promise overall than
the mathematically more elegant Beltrami invariants. It is not surprising therefore that
Einstein, on pp. 13L–R, bracketed the problem of the covariance of the field equations
for the time being. He now began looking for field equations based on the core oper-
ator initially demanding only that such equations be invariant under arbitrary autono-
mous unimodular linear transformations. Presumably, he would check later whether
these equations were also invariant under non-autonomous non-linear transformations
such as uniform rotation and acceleration in Minkowski spacetime as was required by
the equivalence principle. That Einstein restricted himself to unimodular transforma-
tions suggests that he eventually still wanted to connect the field equations to the Bel-
trami invariants.

On p. 13L, Einstein began an inventory of expressions involving the metric and its
derivatives that transform as vectors and tensor under linear transformations and out of
which he could therefore construct the correction terms to the core operator on the left-
hand side of the field equations. On p. 13R, he substituted the core operator for the
stress-energy tensor of matter in expression (74) for the energy-momentum balance
between matter and field derived on p. 5R. In this way, it seems, Einstein hoped to
identify the correction terms to the core operator that would guarantee the compatibility
of the field equations with energy-momentum conservation. A variant of this strategy
would subsequently lead to the Entwurf field equations. On p. 13R, however, Einstein
quickly gave up on this line of reasoning. Marcel Grossmann then handed him a new
mathematical quantity, which was far more promising than the Beltrami invariants. At
the top of the very next page, p. 14L, the Riemann tensor makes its first appearance in
the notebook. Pp. 14L–24L along with pp. 42L–43L are given over to attempts to
extract field equations from this quantity along the lines of the mathematical strategy
(see sec. 5). Only after these attempts had failed did Einstein return to the strategy we
see emerging on pp. 13L–R (see p. 24R and pp. 26L–R and secs. 5.6.1 and 6).

4.6.1  Bracketing the Generalization to Non-linear Transformations: 
Provisional Restriction to Linear Unimodular Transformations (13L)

On p. 13L, under the heading, “Differential Covariants for Linear Substitutions, if one
sets ” (“Differentialkovarianten für lineare Substitutionen, falls 
gesetzt wird”), Einstein started an inventory of quantities constructed out of the metric
tensor and its derivatives that transform as vectors or tensors under (unimodular) lin-
ear transformations. All quantities that made it onto the list on p. 13L involve one and
only one first-order derivative of the metric. Hence, they all fall under the heading
“First Order” (“Erster Ordnung”) on the third line of p. 13L. Originally, this heading
was numbered “1)” but the number was subsequently deleted and no quantities involv-
ing second-order derivatives of the metric are listed. This may be because Einstein was

13L
G 1= G 1=
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interested in constructing a stress-energy tensor for the gravitational field, which is a
quantity quadratic in first-order derivatives of the metric (see sec. ).

In addition to the “order” (“Ordnung”), Einstein also considered the “degree”
(“Grad”) and the “multiplicity” (“Mannigfaltigkeit”) of the expressions he con-
structed. The degree of an expression is the number of factors of  and  it con-
tains. Its multiplicity is simply its rank.187 Einstein denoted every free index of the
vectors and tensors he constructed either by a dot (for a contravariant index) or a dash
(for a covariant index). A contravariant vector is accordingly called a “point vector”
(“Punktvektor”), a covariant vector a “plane vector” (“Ebenenvektor”).188 Similarly,
a tensor with two covariant and one contravariant index, for instance, is called a
“  tensor.” Einstein distinguished two ways of forming such vectors and tensors,
“internal” (“Innere”) and “exterior” (“Aussere”) differentiation. In the case of “inner”
differentiation, the index of the derivative operator is contracted with one of the indi-
ces of the components of the metric, so that a four-divergence is formed. In the case
of “outer” differentiation, the index of the derivative operator is different from the
indices of the components of the metric, so that a four-gradient is formed. With this
explanation of Einstein’s terminology the list on p. 13L becomes largely self-explan-
atory.

The first item on the list is the Hertz expression, a point vector of first order and
first degree obtained through “internal” differentiation:

  (400)  

Note that  cannot be replaced by  in this expression since that would involve
contraction over two covariant indices. The next items on the list are therefore

  (401)  

and189

  (402)  

both obtained through “external” differentiation.
On the next line, Einstein turned to expressions of “first order” and “second

degree” (“zweiten Grades”) and began by writing down the four different possible

187 Einstein used this same terminology on p. 8L (see equation (163)).
188 This terminology may have been inspired by Grassmann’s “Ausdehnungslehre” (Grassmann 1862).

For evidence of Einstein’s reading of Grassmann in this period, see Einstein to Michele Besso, 13
May 1911 (CPAE 5, Doc. 267), and Einstein to Conrad Habicht, 7 July 1913 (CPAE 5, Doc. 450).
Later in the notebook Einstein used this same terminology for tensors as well (see, e.g., pp. 17L–R).

189 Expression (402) is, in fact, in Einstein’s terminology, a . Einstein inadvertently may
have thought for a moment that the character of the three indices in expression (402) would be just
the opposite of those in expression (401).
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vectors of this kind that can be obtained by contracting expressions (400)–(402) with
 and  in various ways:

 

190

 

  (403)  

  (404)  

  (405)  

  (406)  

Expressions (404) and (405) are connected by a curly bracket. Not only are they equal
to one another (because of the relation ), they both vanish because
of the restriction to unimodular coordinates (for which ) and the relation 

   (407)  

(cf. equation (87)).
Finally, under the heading, “In addition the tensors of third multiplicity” (“Dazu

die Tensoren dritter Mannigfaltigkeit”), Einstein wrote down all third-rank tensors of
first order and second degree that can be constructed out of expressions (400)–(402).
The Hertz expression (400) can be turned into a tensor of this kind through multipli-
cation with either the covariant or the contravariant metric,

,   (408)  

giving, in Einstein’s terminology, a “  tensor” and a “  tensor,” respectively.
Expressions (401) and (402) can be turned into third-rank tensors of first order and
second degree by contracting them with  and . This leads to the last four
expressions on p. 13L:

  (409)  

  (410)  

  (411)  

 

190 Einstein omitted the summation sign in expression (406).
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  (412)  

 

4.6.2  

 

Trying to Find Correction Terms to the Core Operator to Guarantee 
Compatibility of the Field Equations With Energy-Momentum Conservation (13R)

 

The starting point of the considerations on p. 13R is equation (74) for the energy-
momentum balance between matter and gravitational field derived on p. 5R. This
equation is equivalent to the vanishing of the covariant derivative of the matter stress-
energy tensor . In unimodular coordinates (for which ) the left-hand side
of equation (74) can be written as

.   (413)  

Inserting the core operator (see, e.g., expression (324) on p. 11R),

,   (414)  

for the contravariant stress-energy tensor  in expression (413) and adding an
equality sign, one finds the first line of p. 13R:

.   (415)  

On the next line, Einstein wrote “Third-order derivatives do not appear, if

.”   (416)  

(“Dritte Ableitungen treten nicht auf, wenn … = 0 ist.”). Equation (416) is the by now
familiar Hertz restriction. On the remainder of p. 13R, Einstein rewrote expression
(415) using this restriction.

Why was Einstein interested in expression (415)? The simplest answer is that he
wanted to find what further restrictions, if any, would be needed to guarantee that the
field equations

  (417)  

—understood either as exact or as weak-field equations—be compatible with energy-
momentum conservation, i.e., with the vanishing of the covariant derivative of ,
or, in unimodular coordinates, the vanishing of expression (413). If the field equations
(417) hold, the vanishing of expression (413) for  implies that expression (415)
for the core operator (414) must also vanish. It is unlikely, however, that this was the
point of Einstein’s considerations on p. 13R.
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Einstein already knew that the exact field equations cannot be obtained by simply
setting the core operator equal to the stress-energy tensor of matter as in equation
(417). Energy-momentum conservation requires an additional term on the left-hand
side that can be interpreted as gravitational energy-momentum density (see p. 9L and
the discussion in sec. 4.4, especially equations (199)–(208)). In other words, Einstein
expected the exact field equations to have the form

,   (418)  

where the quantity , which represents gravitational energy-momentum, is assumed
to be quadratic in first-order derivatives of the metric. In a weak-field approximation,
this additional term can be neglected and equations (418) reduce to equations (417).
On p. 13R, however, terms quadratic in first-order derivatives of the metric are not
neglected. This strongly suggests that Einstein was implicitly using field equations of
the form of equation (418). This in turn would mean that Einstein expected expression
(415) to be equal, not to zero, but to

.   (419)  

The equality of expressions (415) and (419) would guarantee the compatibility of
energy-momentum conservation (in the form of the vanishing of expression (413))
and field equations of the form (418). Presumably, what Einstein tried to do on p. 13R
was to rewrite expression (415) in the form of equation (419) and identify . For one
thing, this would explain his concern with the elimination of third-order derivatives
from expression (415). Since  only contains first-order derivatives of the metric,
expression (419) will contain no derivatives higher than of second order. As we
pointed out in sec. 4.6.1, this may also be why Einstein only listed quantities of “first
order” (“Erster Ordnung”) on p. 13L.

Note that on this reading Einstein must have come to realize that gravitational
energy-momentum has a special status. On p. 9L he had still demanded that the quan-
tity  representing gravitational energy-momentum satisfy equation (74) posited for
all energy-momentum on p. 5R (cf. footnote 128). In that case the right-hand side of
equation (415) would simply be equal to zero rather than to expression (419).

When the Hertz restriction (416) is imposed, the left-hand side of equation (415)
reduces to

,   (420)  

which no longer contains any third-order derivatives of the metric. Regrouping terms,
one can rewrite this expression in the way Einstein wrote it on the third line of p. 13R:

.   (421)  
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Einstein concentrated on the second summation in this expression. Using

  (422)  

and the Hertz restriction (416), he arrived at:

.   (423)  

He tried to rewrite the second summation in expression (421) in such a way that he
could apply equation (423) to the term , but quickly realized that this
was not feasible. He began by pulling out the differentiation with respect to , thus
arriving at:191,192

.   (424)  

He then used relation (422) to rewrite the first term as:

.   (425)  

Here the calculation breaks off.
Einstein did not return to considerations of energy-momentum conservation until

p. 19R. At that point he had further deepened his understanding of the special status
of gravitational energy-momentum. Interpreting the second term in expression (413)
as the gravitational force density, he tried to rewrite that term as the divergence of the
quantity  representing the gravitational energy-momentum density (see the discus-
sion following equation (484) in sec. 5.4.2). Later in the notebook (on p. 24R and,
more systematically, on pp. 26L-R), he used this insight to derive field equations that
are automatically compatible both with energy-momentum conservation and with
Newtonian theory for static weak fields (see sec. 5.6.1 and sec. 6). This led him to the
Entwurf field equations. The notion that energy-momentum conservation requires
coordinate restrictions over and above the ones needed to recover Newtonian theory
for static weak fields stayed with Einstein right up until his introduction of generally-
covariant field equations in November 1915.193

191 Einstein drew a line connection expression (424) with the second summation in expression (421).
192 In this equation  should be . Because of the Hertz restriction there is no term

with .
193 Einstein later compared the Hertz restriction with coordinate restrictions in (Einstein and Grossmann

1914), which not only circumscribe the covariance of the Entwurf theory but also guarantee energy-
momentum conservation (see Einstein to Paul Hertz, 22 August 1915 [CPAE 8, Doc. 111]). For fur-
ther discussion of the role of coordinate restrictions in determining covariance properties, recovering
Newtonian theory, and guaranteeing energy-momentum conservation, see “Untying the Knot …”
sec. 1.1 (in this volume).
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5.  EXPLORATION OF THE RIEMANN TENSOR (14L–25R, 42L–43L)

5.1  Introduction (14L–25R, 42L–43L)

A new stage in Einstein’s search for gravitational field equations began on p. 14L of
the notebook with the systematic exploration of the Riemann tensor along the lines of
the mathematical strategy.194 In the course of this exploration, Einstein considered
various gravitational field equations based on the Ricci tensor that he would publish
in his communications to the Prussian Academy of November 1915 (Einstein 1915a,
b, d). He even considered, albeit only in linear approximation, the crucial trace term
that occurs in the final version of the field equations. However, the episode that, from
a modern point of view, begins so promisingly on p. 14L with the introduction of the
Riemann tensor ends disappointingly on p. 26L with the derivation of the Entwurf
field equations along the lines of the physical strategy. What happened on these pages
that made Einstein abandon the mathematical strategy and return to the physical strat-
egy?

The analysis of pp. 14L–25R and related material on pp. 42L–43L, the last three
pages of the part starting from the other end of the notebook, reveals a pattern that
holds the key to our answer to this question. Einstein’s starting point invariably is
some expression of broad if not general covariance constructed out of the Riemann
tensor. To extract from these expressions field equations that reduce to the Poisson
equation of Newtonian theory in the special case of weak static fields, Einstein intro-
duced various coordinate restrictions.195 With the help of these he could eliminate
unwanted terms with second-order derivatives of the metric. The left-hand sides of the
resulting field equations consist of a term with a core operator (i.e., a term that, in lin-
ear approximation, reduces to the d’Alembertian acting on the metric), and terms qua-
dratic in first-order derivatives of the metric, which vanish in linear approximation.
Einstein then checked whether these field equations and the coordinate restrictions
used in their construction satisfy his other heuristic requirements,196 in particular
whether they are compatible with energy-momentum conservation and whether they
are covariant under a wide enough class of coordinate transformations (autonomous
or non-autonomous197) to be compatible with the equivalence principle and a gener-
alized relativity principle. All candidates considered by Einstein failed at least one of
these tests. Finding coordinate restrictions of sufficiently broad covariance turned out
to be particularly difficult.

194 See sec. 1.2 for a characterization of the difference between the mathematical and the physical strat-
egy.

195 See sec. 4.1 for a discussion of the notion of a coordinate restriction.
196 See sec. 1.1 for a discussion of what we identified as the four major heuristic principles: the corre-

spondence principle, the conservation principle, the relativity principle and the equivalence principle.
197 See sec. 4.1 for the definitions of the notions of autonomous and non-autonomous and transforma-

tions.

14L–25R,
42L–43L
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Eventually, Einstein switched back to the physical strategy. He developed the con-
siderations of energy-momentum conservation on p. 13R into a method for generating
field equations guaranteed both to have the desired form in linear approximation, and
to be compatible with energy-momentum conservation. Field equations constructed in
this manner have the same general form as the candidate field equations that Einstein
had extracted from the Riemann tensor by eliminating unwanted second-order deriv-
ative terms with the help of coordinate restrictions. This suggested that the field equa-
tions generated by this new method could also be produced by the mathematical
strategy. It remained unclear, of course, from which generally-covariant expression
they could be extracted and whether the necessary coordinate restrictions would be of
sufficiently broad covariance and would themselves be compatible with energy-
momentum conservation. However, it must have been encouraging that the physical
strategy yielded field equations, satisfactory on all other counts, of exactly the form
that Einstein had come to expect while pursuing the mathematical strategy in his
exploration of the Riemann tensor. And as far as the unknown covariance properties
of the equations were concerned, the mathematical strategy, for all its promise on this
score, had not allowed Einstein to make any real progress either. It thus becomes
understandable that Einstein eventually gave up the idea of constructing field equa-
tions out of the Riemann tensor and instead adopted the Entwurf equations.

5.2  General Survey (14L–25R, 42L–43L)

At the top of p. 14L Einstein wrote down the fully covariant form of the Riemann ten-
sor. He wrote Grossmann’s name right next to it, suggesting that it was Grossmann
who had drawn his attention to this tensor and its importance. Einstein proceeded to
form the covariant form of the Ricci tensor by contracting the Riemann tensor over
two of its four indices. He looked at the terms involving second-order derivatives of
the metric and immediately noticed that in addition to a core-operator term the Ricci
tensor contains three other second-order derivative terms that should not occur in the
Newtonian limit. So the natural way of extracting a second-rank tensor from the Rie-
mann tensor did not seem to produce a suitable candidate for the left-hand side of the
field equations (sec. 5.3.1198).

On pp. 14R–16R, Einstein explored a different way of extracting a two-index
object from the Riemann tensor that, if not generally covariant, at least promised to be
a tensor under unimodular transformations. In close analogy to his treatment of the
Beltrami invariant on p. 9L, he computed the curvature scalar by fully contracting the
Riemann tensor. Setting the determinant of the metric equal to unity, he succeeded in
rewriting the curvature scalar as the contraction of the metric with a symmetric two-
index object denoted (on p. 16L) by . Einstein presumably expected that 

198 In this general survey we shall give a reference at the end of each brief summary of a calculation or
a line of reasoning in this part of the notebook to the subsection where the calculation or the argument
just summarized is discussed in much greater detail.
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would turn out to be a tensor under unimodular transformations. Unfortunately, 
still contains two terms with unwanted second-order derivatives of the metric in addi-
tion to a core-operator term (sec. 5.3.2).

On the following pages (pp. 17L–18R), Einstein investigated the relation between
the two expressions that he had formed out of the Riemann tensor. Since  gives the
curvature scalar when contracted with the covariant metric, it is itself a contravariant
object. To facilitate comparison between  and the covariant Ricci tensor, Einstein
(on p. 17L) first formed the contravariant version of the latter. He tried to simplify the
resulting expression using that covariance under unimodular transformations is all that
matters for the comparison with . This meant that he could assume the determinant
of the metric to be a constant. He abandoned this calculation as “too involved.” On
p. 17R he formed the covariant version of  instead and started to bring the covari-
ant Ricci tensor into a form in which it could be compared with this version of ,
again assuming the determinant of the metric to be a constant. This calculation also
turned out to be complicated, and was abandoned as well (sec. 5.3.3).

Since neither the Ricci tensor nor  had the form required by the correspondence
principle, Einstein began to investigate the possibility of obtaining suitable candidates
for the left-hand side of the field equations by restricting the range of admissible coor-
dinates. On p. 19L he showed that the terms in the Ricci tensor with unwanted second-
order derivatives can be eliminated by imposing the harmonic coordinate restriction
(sec. 5.4.1).199 He then checked whether these field equations and this coordinate
restriction are compatible with his other heuristic requirements. 

On p. 19R, Einstein examined in linear approximation the harmonic restriction and
the field equations constructed with the help of it. Einstein confirmed that the weak-
field field equations are compatible with his conservation principle: with the help of
these equations, the term giving the gravitational force density in the energy-momen-
tum balance between matter and gravitational field can be written as the divergence of
a quantity representing gravitational stress-energy density. To guarantee compatibility
between the weak-field equations and energy-momentum conservation, however, Ein-
stein had to impose an additional coordinate restriction, a linear approximation of the
Hertz restriction.200 Together, the harmonic restriction and the Hertz restriction imply
that the trace of the weak-field metric has to vanish. In turn, this implies that the trace
of the stress-energy tensor for matter has to vanish (sec. 5.4.2).

To avoid these consequences, Einstein (on p. 20L) modified the weak-field equa-
tions by adding a term proportional to the trace of the weak-field metric. This term was

199 Considering p. 19L in isolation, one would think that Einstein was simply applying the harmonic co-
ordinate condition in the modern sense to recover the Poisson equation in the limit of weak static
fields. This interpretation is even compatible with the whole passage dealing with the Ricci tensor in
harmonic coordinates (pp. 19L–21R). The interpretation is incompatible, however, with Einstein’s
usage of coordinate conditions elsewhere in the notebook, both on pages preceding and on pages fol-
lowing the examination of the harmonic coordinate condition (cf. especially p. 23L). These other pag-
es suggest that what Einstein had in mind throughout the notebook were coordinate restrictions rather
than coordinate conditions in the modern sense. Cf., e.g., our discussion at the end of sec. 5.5.4.

200 See sec. 4.1 for the introduction of this coordinate restriction.
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introduced in such a way that Einstein could now use the harmonic restriction to sat-
isfy both the conservation principle and the correspondence principle. From a purely
mathematical point of view, the resulting weak-field equations are the Einstein field
equations of the final theory of November 1915 in linear approximation. As Einstein
checked briefly on p. 20L and more carefully on p. 21L, with these modified field
equations the gravitational force density can still be written as the divergence of grav-
itational stress-energy density (sec. 5.4.3).

The modified weak-field equations, however, do not allow the spatially flat metric
that Einstein continued to use to represent static fields.201 Given this disparity, Ein-
stein reconsidered his presupposition concerning the form of the metric of weak static
fields. On p. 21R he presented a seductive but ultimately fallacious argument that cor-
roborated his prior beliefs on this point. The argument was based on the dynamics of
point particles (recapitulated on p. 20R) and Galileo’s principle that all bodies fall
with the same acceleration in a given gravitational field. This powerful physical argu-
ment seemed to rule out the harmonic restriction (secs. 5.4.4 and 5.4.6).

Einstein, however, was not ready to give up his attempt to extract the left-hand side
of the field equations from the Riemann tensor. On p. 22R, at the suggestion of Gross-
mann perhaps, whose name once again appears at the top of the page, he turned to a
different coordinate restriction that might help him achieve his goal. First, he noticed
that the Ricci tensor can be split into two parts, each of which by itself transforms as
a tensor under unimodular transformations. Einstein took one of these as his new can-
didate for the left-hand side of the field equations. We call this part the November ten-
sor, because it is the left-hand side of the field equations published in the first of
Einstein’s four papers of November 1915202 (sec. 5.5.1). The November tensor still
contains terms with unwanted second-order derivatives of the metric. Einstein elimi-
nated these by imposing the Hertz restriction. The calculations on p. 19R had shown
that the Hertz restriction is compatible with energy-momentum conservation in the
weak-field case without the need for an additional trace term in the weak-field equa-
tions.203

Given Einstein’s understanding of the status of coordinate restrictions at the time,
the logical next step was to investigate the group of transformations allowed by the
Hertz restriction. On the facing page (p. 22L) Einstein did indeed derive the condition
for non-autonomous transformations leaving the Hertz restriction invariant. Earlier in
the notebook (pp. 10L–11L), he had already found that the Hertz restriction rules out
uniform acceleration in the important special case of Minkowski spacetime
(sec. 5.5.3).204 He nonetheless held on to the Hertz restriction for the time being.

201 This form of the static metric is also incompatible with the harmonic coordinate restriction, but it is
unclear whether Einstein realized that at this point.

202 (Einstein 1915a).
203 Unlike the harmonic restriction, the Hertz restriction as well as the restriction to unimodular transfor-

mations are compatible with Einstein’s assumptions concerning the form of the weak-field static met-
ric (cf. footnote 201 above).
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The elimination of terms with unwanted second-order derivatives of the metric
from the November tensor had left Einstein (at the bottom of p. 22R) with a candidate
for the left-hand side of the field equations containing numerous terms quadratic in
first-order derivatives. On p. 23L he added another coordinate restriction to the Hertz
restriction to eliminate some of these terms. Just as he had obtained the November ten-
sor by splitting the Ricci tensor into two parts each of which transforms as a tensor
under unimodular transformations, Einstein (on p. 23L) obtained yet another candi-
date for the left-hand side of the field equations by splitting the November tensor into
various parts, each of which transforms as a tensor under a class of unimodular trans-
formations under which a quantity which we shall call the -expression transforms
as a tensor. Restricting the allowed transformations to such -transformations, Ein-
stein found that he could eliminate all but one of the terms quadratic in first-order
derivatives of the metric from the November tensor. He furthermore discovered that
the restriction to -transformations sufficed to eliminate the terms with unwanted
second-order derivatives as well. There was no need to add the Hertz restriction to the

-restriction. Einstein thus abandoned the Hertz restriction and focused on the -
restriction instead.

On p. 23R Einstein began to investigate the covariance properties of the -expres-
sion. As with the Hertz restriction, he derived the condition for non-autonomous trans-
formations leaving the -expression invariant (sec. 5.5.5). He did not attempt,
however, to find the most general (non-autonomous) transformations satisfying this
condition. Instead, he focused on the important special case of a vanishing -expres-
sion. The -expression vanishes, for instance, for the Minkowski metric in standard
diagonal form. According to Einstein’s heuristic principles, it should therefore also
vanish for the Minkowski metric in accelerated frames of reference (sec. 5.5.6). It was
thus natural for Einstein to investigate what metric fields are allowed by the condition
that the -expression vanish.

On pp. 42L–43L,205 Einstein addresses just this problem, further limiting himself
to time-independent metric fields and hence to uniformly accelerated frames of refer-
ence. The main result of his investigation was both promising and puzzling. He dis-
covered that the -expression vanishes for a metric, which we shall call the –
metric, whose covariant components are the contravariant components of the rotation
metric, i.e., the Minkowski metric in rotating coordinates (sec. 5.5.6). Einstein tried to
come to terms with this result in various ways.

First, on the bottom half of p. 42R and again at the bottom of p. 43LA, he inserted
the suggestive –metric into the Lagrangian for a point particle moving in a metric
field and began to compute the Euler-Lagrange equations. Presumably, the idea was
to check whether the components of the –metric and its derivatives could be given

204 Contrary to what Einstein had concluded on p. 11L (see sec. 4.5.2), the Hertz restriction also rules out
finite transformation to rotating frames in Minkowski spacetime.

205 These pages are found toward the end of the part starting from the other end of the notebook. At the
beginning of sec. 5.5.6 we address the question of the temporal order of the calculations on pp. 42L–
43L at one end of the notebook and those on pp. 23L–24L at the other.
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a physical interpretation in terms of centrifugal and Coriolis forces. Einstein broke off
this calculation without reaching a definite conclusion (sec. 5.5.7).

A variant of this approach can be found on p. 24L, the page immediately following
the introduction of the -restriction. This time he took the energy-momentum balance
between matter and gravitational field as his starting point rather than the Lagrangian
for a point particle moving in a metric field (sec. 5.5.9).

Einstein tried a different approach on p. 43LA. He replaced the covariant compo-
nents of the metric in the -expression by the corresponding contravariant ones.
Since the original -expression vanishes for the rotation metric if only its co- and
contravariant components are interchanged, the new version will vanish for the rota-
tion metric itself. This approach did not work either. After three failed attempts to
come to terms with the -metric, Einstein gave up the -restriction, though not the
idea of extracting field equations from the November tensor (sec. 5.5.8).

Although the actual calculation has not been preserved in the notebook, there are
strong indications that Einstein at this point did for field equations extracted from the
November tensor what he had done earlier (on pp. 19R, 20L, and 21L) for field equa-
tions extracted directly from the Ricci tensor. He confirmed that in linear approxima-
tion these field equations can be used to write the gravitational force density as the
divergence of a quantity representing gravitational stress-energy density. At the top of
p. 24R, Einstein wrote down an expression that is most naturally interpreted as the end
result of this calculation and noted that it vanishes for the rotation metric. Given some
errors in the expression for the rotation metric on p. 24R, one can understand how Ein-
stein reached this conclusion. When these errors are corrected, one sees that the
expression, in fact, does not vanish for the rotation metric (see the first half of
sec. 5.6.1).

It is the next step that Einstein took on p. 24R that marks the beginning of Ein-
stein’s return to the physical strategy abandoned on p. 13R. So far Einstein had only
verified in linear approximation that various candidate field equations allowed him to
write the gravitational force density as the divergence of the gravitational stress-
energy density. It was not at all clear whether this result would also hold exactly. On
p. 24R Einstein introduced an ingenious new approach to this problem. Rather than
starting from some candidate field equations and using them to rewrite the gravita-
tional force density as a divergence without neglecting terms of one order or another,
Einstein started from the expression for the divergence of the stress-energy density
obtained in linear approximation and determined which higher-order terms need to be
added to the linearized field equations such that this divergence becomes exactly equal
to the gravitational force density. This is the strategy that Einstein used to derive the
Entwurf equations (see pp. 26L–R).206 It is in this context that it was very important
for Einstein to check whether the expression at the top of p. 24R would vanish exactly
for the rotation metric. This is a necessary condition for the rotation metric to be a

206 For a comparison between this method of finding candidate field equations and the method used on
pp. 19L–23L, see the introduction to sec. 5.6.
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solution of field equations constructed with the help of the new strategy. Once he had
derived the new field equations, he checked directly whether the rotation metric is a
solution and discovered that it is not. However, he also discovered that he had errone-
ously cancelled two terms in his construction of the new field equations which opened
up the possibility that the rotation metric would be a solution of the corrected equa-
tions (see the second half of sec. 5.6.1).

On p. 25L Einstein tried to recover his new candidate field equations from the
November tensor by imposing an appropriate coordinate restriction. It seems to have
been Einstein’s hope at this point that he could derive the same field equations follow-
ing either the physical or the mathematical strategy (sec. 5.6.2). 

Material at the top of p. 25R shows that Einstein considered a variant of the -
restriction, which we shall call the -restriction, to extract field equations from the
November tensor. It is unclear whether he was still trying to recover the field equa-
tions found on p. 24R in this way. Einstein went back to his calculations on p. 23L,
where he had applied the original -restriction to the November tensor, and indicated
the changes that would need to be made if the -restriction were replaced by the -
restriction. Returning to p. 25R, he checked whether the -expression vanishes for
the rotation metric, as required by the equivalence and relativity principles. He discov-
ered that it does not, which is probably why he abandoned the -restriction
(sec. 5.6.3). This marks the end of Einstein’s pursuit of the mathematical strategy in
the notebook.

On the remainder of p. 25R, Einstein started tinkering with the field equations he
had found on p. 24R to ensure that the rotation metric would be a solution. Einstein
convinced himself that a slightly modified version of the equations satisfies this
requirement. These modified equations, however, are not well-defined mathemati-
cally (they involve contractions over pairs of covariant indices among other things). It
is unclear whether Einstein came to recognize this (sec. 5.6.4). He abandoned these ill-
defined equations when he found that it is not possible to rewrite the gravitational
force density as the divergence of gravitational stress-energy density with their help
(sec. 5.6.5).

On the next page (p. 26L), Einstein made a fresh start with the physical strategy.
A possible indication that he had meanwhile abandoned his hope of recovering field
equations found in this manner from the Riemann tensor is that he no longer set the
determinant of the metric equal to unity, as he had still done on pp. 24R–25R in the
hope perhaps to connect the field equations of p. 24R to the November tensor. The
exploration of the Riemann tensor had nonetheless been fruitful (independently of the
developments of November 1915). Even though it had failed to produce satisfactory
field equations with a well-defined covariance group, it had given Einstein a clear idea
of the structure any such field equations would have after unwanted terms in the Ricci
tensor or the November tensor had been eliminated by imposing the appropriate coor-
dinate restrictions. He had found a strategy to generate field equations of this form that
automatically satisfy the correspondence and conservation principles. Given the diffi-
culties Einstein had run into trying to make sure that the relativity and equivalence
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principles are satisfied as well, one can understand that he decided to bracket those
problems for the time being.

5.3  First Attempts at Constructing Field Equations 

out of the Riemann Tensor (14L–18R)

On p. 14L the Riemann tensor appears for the first time in the notebook. Einstein
immediately considered the Ricci tensor as a candidate for the left-hand side of the
field equations, but ran into the problem that it contains unwanted terms with second-
order derivatives of the metric. On the following pages (pp. 14R–18R), Einstein
extracted another candidate for the left-hand side of the field equations from the cur-
vature scalar and compared the result to the Ricci tensor. Unfortunately, this new can-
didate also contains unwanted second-order derivative terms. Moreover, its relation to
the Ricci tensor remained unclear.

5.3.1  Building a Two-Index Object by Contraction: the Ricci Tensor (14L)

At the top of p. 14L Einstein wrote down the definitions of the Christoffel symbols of
the first kind,

,   (426)  

and of the fully covariant Riemann tensor,

  (427)  

Next to the Riemann tensor Einstein wrote “Grossmann Tensor vierter Mannigfal-
tigkeit,” indicating that it was his friend and colleague Marcel Grossmann who intro-
duced him to these mathematical objects. Grossmann’s sources for the Christoffel
symbols and the Riemann tensor207 were in all probability (Christoffel 1869) and
(Riemann 1867).208 These are the sources cited for the Riemann tensor in Gross-
mann’s section of the Entwurf paper,209 where it appears in almost identical form.210

A comparison of the notation used for the Christoffel symbols and the Riemann tensor

207 It should be emphasized that by calling the expressions (426) and (427) “Christoffel symbols” and
“Riemann tensor,” we do not mean to suggest that these were the terms used by contemporary au-
thors.

208 For further discussion of Riemann’s paper, see, e.g., (Reich 1994, sec. 2.1.3).   Grossmann was aware
of Riemann’s and Beltrami’s work in non-Euclidean geometry at least as early as 1904, as the intro-
ductory paragraph of (Grossmann 1904) shows.
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by various contemporary authors

 

211

 

 further supports this conjecture.

 

212

 

 The square
brackets for the Christoffel symbols were introduced by Christoffel himself, and,
according to the survey in (Reich 1994), this notation was taken up again only in 1912
by Friedrich Kottler and then in the 

 

Entwurf

 

 paper itself, which cites (Kottler 1912)
(Einstein and Grossmann 1913, 23 and 30). The notation for the Riemann tensor used
in Christoffel’s paper is , i.e., it does not have the comma, which appears in
equation (427). The comma was used by Riemann whose notation was .
Also the occurrence of the word “Mannigfaltigkeit,” a phrase used by Riemann that
does not appear anywhere in Christoffel’s paper, suggests that Einstein and Gross-
mann consulted Riemann’s paper in addition to Christoffel’s.

There is yet another indication, however, that the actual expressions were directly
taken from Christoffel’s paper. In the top right corner, Einstein wrote the expression

,   (428)  

which gives exactly the four second-order derivative terms of the Riemann tensor in
equation (427), if the definition of the Christoffel symbols in equation (426) is
inserted. Just this derivation of the Riemann tensor in terms of derivatives and prod-
ucts of the Christoffel symbols was given on the relevant page (p. 54) of (Christoffel
1869), where the Riemann tensor was first published.

The Riemann tensor formed a promising starting point for Einstein’s search for
gravitational field equations. The first task was to construct from the fourth-rank Rie-
mann tensor an expression that could be used as the left-hand side of field equations
with the second-rank stress-energy tensor on the right-hand side.

 

209 (Einstein and Grossmann 1913, 35). In the case of Riemann the reference is to “Riemann, Ges. Wer-
ke, S. 270”. The page number does not make sense for the first edition of 1876 nor for the second
edition of 1892. In the first edition Riemann’s “Commentatio” starts on p. 370; in the second on p. 91.
It seems probable that Einstein and Grossmann used the first edition and that “270” is a misprint and
should be “370.” Among other things, the second edition differs from the first in the German notes to
the latin text of the “Commentatio.” Unfortunately, the reference in the 

 

Entwurf

 

 paper is Einstein’s
most explicit reference to Riemann. In (Einstein and Fokker 1914, p. 325), for instance, he simply
referred to the “bekannten Riemann-Christoffelschen Tensor.” In (Einstein 1914b, 1053) and in (Ein-
stein 1916, 799), the phrase “Riemann-Christoffel tensor” occurs in (sub)section headings without
any reference to the literature.

210 In the 

 

Entwurf

 

 paper, the indices  and  in the second part of equation (427) are interchanged (Ein-
stein and Grossmann 1913, 35). 

211 See (Reich 1994, 232) for a survey of the tensor analytic notation employed by various authors.
212 Some indirect confirmation of the conjecture comes from the draft of a letter from Felix Klein to Ein-

stein of 20 March 1918. Commenting on a set of lecture notes he promised to send Einstein, Klein
wrote: “You will probably immediately agree with what I have to say about Riemann, Beltrami, and
Lipschitz; it seems to me that Grossmann at the time instructed you too much from the point of view
of the school of Christoffel more narrowly” (“Was ich von Riemann, Beltrami, und Lipschitz erzähle,
wird wohl gleich ihren Beifall haben; es scheint mir, dass Grossmann Sie s. Z. zu einseitig vom Stand-
punkte der engeren Christoffelschen Schule aus instruiert hat.” CPAE 8, Doc. 487, note 26).
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The most natural way to obtain such an expression is to contract over two indices,
thus forming the second-rank Ricci tensor. This is exactly what Einstein did on the
next line

.   (429)  

He put a question mark next to this expression, presumably to indicate that he wanted
to check whether this would be an acceptable candidate for the left-hand side of the
field equations

It can be seen immediately that there is a problem with the correspondence princi-
ple. Upon contraction, the first of the four second-order derivative terms in equation
(427) gives the core-operator term

,   (430)  

but the other three terms should not occur in the Newtonian limit. In fact, at the bottom
of the page, underneath a horizontal line, Einstein wrote down these three bothersome
terms

,   (431)  

set them equal to zero, and remarked that they “should vanish” (“Sollte verschwin-
den”).

 
213

 

Einstein not only considered the second-order derivative terms in the Ricci tensor,
he also started to rewrite the first-order derivative terms. First, he introduced the rela-
tion

 

214

  (432)  

where  is the determinant of the metric.215 He inserted (the corrected version of216)
this relation into one of the two terms in the Ricci tensor with a product of Christoffel
symbols

213 In deriving this expression, Einstein apparently assumed a weak-field metric with components
 to zeroth order, which would explain why the contracting metric does not appear ex-

plicitly in the equation.
214 A factor  is missing in the expressions following the equality signs.
215 The introduction of  into the expression for the Ricci tensor would come to play an important role

on p. 22R.
216 See footnote 214.
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  (433)  

In the next step, without writing down their definition, Einstein used the Christoffel
symbols of the second kind,

,   (434)  

again following the notation of Christoffel’s 1869 paper. With the help of equations
(432) and (434), and the following relation between Christoffel symbols of the first
and the second kind,

  (435)  

he rewrote the relevant part of the Ricci tensor as217

  (436)  

217 A factor  is missing in the first two terms on the right-hand side (cf. footnote 214).
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In summary, p. 14L introduces a set of new invariant-theoretical quantities taken
from the mathematical literature that looked promising for constructing gravitational
field equations. In his first exploration of these new possibilities, however, Einstein
had also hit upon a serious obstacle, viz. the problem of unwanted second-order deriv-
ative terms in addition to a core-operator term.

5.3.2  Extracting a Two-Index Object from the Curvature Scalar (14R–16R)

On the following five pages, Einstein computed the curvature scalar from the Riemann
tensor. He simplified the calculation by setting the determinant of the metric equal to
unity. As becomes clear toward the end (on p. 16L), the aim of the calculation was to
produce an object which transforms as a scalar under unimodular transformations and
which is the contraction of the metric and a new two-index object. Einstein presum-
ably expected that this object would transform as a second-rank tensor under unimo-
dular transformations. It would thus be another candidate for the left-hand side of the
field equations. Unfortunately, the object, like the Ricci tensor, contains unwanted
second-order derivative terms.

At the top of p. 14R, Einstein fully contracted the Riemann tensor to form the cur-
vature scalar:

.   (437)  

Inserting expression (427) for the fully covariant Riemann tensor on p. 14L into this
equation, one arrives at the expression

  (438)  

given at the top of p. 14R. The lines and arrows underneath this expression provide a
flow-chart for the calculation on the next five pages. They are meant to show at a
glance exactly which terms in the expression for  are dealt with on which pages.

Einstein first dealt with the second summation in equation (438). On p 14R he
expanded and simplified the first of the two terms in this summation,

.   (439)  

This is equal to 1/4 times the sum of the underlined terms on p. 14R
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.   (440)  

On p. 15L he expanded and simplified the second term,

,   (441)  

the result being 1/4 times the sum of the underlined terms on p. 15L

  (442)  

Einstein further simplified expressions (440) and (442) by setting  and by
grouping together identical terms in expression (442). At the top of p. 15R, he wrote:
“The second sum [in equation (438)] thus reduces, in the case that one is allowed to
set , to” (“Die zweite Summe reduziert sich also in dem Falle, dass 
gesetzt werden darf, auf”):

.   (443)  

With the help of some auxiliary calculations on p. 16R, in which he used that
 for , Einstein then rewrote the two terms in the first

summation in equation (438). Underneath equation (443) on p.  15R, he wrote: “If the
determinant , one has furthermore” (“Wenn Determinante , es ist fer-
ner”):

,   (444)  

and

,   (445)  

Einstein erroneously thought that the first term on the right-hand side of equation
(445), a term that originally had an extra factor , cancelled by the third term of
expression (443), which originally did not have the factor  in front of it. More-
over, in the last term in equation (445),  originally seems to have been . All in
all, Einstein arrived at the (erroneous) expression
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  (446)  

for the curvature scalar in coordinates such that .218 Einstein proceeded to
rewrite this expression as the contraction of  with a new two-index object that
would be a candidate for the left-hand side of the field equations. It is immediately
clear, however, that these new candidate field equations would suffer from the same
problem that Einstein had already encountered on p. 14L with the Ricci tensor. The
second term in expression (446) gives rise to a core-operator term in the field equa-
tions, but the third term produces additional second-order derivative terms. Directly
underneath the troublesome third term in expression (446), Einstein wrote

  (447)  

He may have considered imposing an additional constraint to make sure that the
offending term vanishes. In passing we note that equation (447) is a weakening of the
Hertz restriction

,   (448)  

which Einstein had already used on p. 10L–11L, i.e., before he began his exploration
of the Riemann tensor.

As we have seen, the calculations on p. 15R contain several errors. Einstein cor-
rected some of these, but then made a fresh start at the top of the next page (p. 16L).
Using again that  if , he rewrote the second term of
expression (443) as

.   (449)  

Substituting this result into expression (443) and adding the various terms in expres-
sions (443)–(445), he arrived at the (correct) expression

  (450)  

for the Riemann curvature scalar in coordinates such that . In this expression
one only needs to rewrite the last term219 in order to pull out a common factor 
and to extract the two-index object

218 The corrected version is given below as expression (450).

3 gκρ xα∂

∂γ κα

xβ∂

∂γ ρβ∑ gimγ κl

∂2γ im

∂xκ∂xl
----------------∑+

        gilγ im

∂2γ κl

∂xκ∂xl
----------------∑ 3 γ κl xκ∂

∂γ mρ

xl∂

∂gmρ∑+ + .

G 1=
gκλ

∂2γ κl

∂xκ∂xl
----------------∑ 0   ?=

xl∂

∂γ kl 0=

16L
gmρ γ mρd lgGd 0= = G 1=

3
4
---γ κl xκ∂

∂γ mρ

xl∂

∂gmρ 3
4
---gmργ κl

∂2γ mρ

∂xκ∂xl
----------------–=

1
4
---gκργ αβ

∂2γ κρ

∂xα∂xβ
------------------ 1

2
---gκρ xβ∂

∂γ κα

xα∂

∂γ ρβ–
∂2γ αβ

∂xα∂xβ
------------------+

G 1=
gκρ



17L–18R EXPLORATION OF THE RIEMANN TENSOR  sec. 5.3.3

617

.   (451)  

Einstein apparently assumed that  is a contravariant tensor under unimodular
transformations since it produces a scalar under unimodular transformation when con-
tracted with .220

Unfortunately,  still contained unwanted second-order derivative terms in
addition to a core-operator term. Immediately below the expression for , Einstein
wrote down the identity

,   (452)  

probably in an attempt to eliminate the unwanted second-order derivative terms from
. He did not pursue this attempt any further.
The upshot then is that a promising alternative way of generating a candidate for

the left-hand side of the field equations from the Riemann tensor eventually led to the
same problem that Einstein had encountered with the Ricci tensor on p. 14L. In deriv-
ing these new candidate field equations he had already imposed the condition ,
but additional constraints would be needed to eliminate unwanted second-order deriv-
ative terms. He may have considered one such constraint, equation (447), a weakening
of the Hertz restriction.

5.3.3  Comparing Tiκ and the Ricci Tensor (17L–18R)

On pp. 17L–18R, Einstein investigated the relation between the two two-index objects
he had constructed out of the Riemann tensor on the preceding pages, the Ricci tensor
and the object , which promised to be a tensor under unimodular transformations.
On p. 17R he compared the contravariant forms of the two expressions, which meant
that he had to raise the covariant indices of the Ricci tensor. On pp. 17R–18R he com-

219 Immediately above it, the term was restored to the form , in which it was originally

written in equation (445). Einstein symmetrized this expression in  and :

, so that the object left after pulling out the common factor 

will be symmetric in  and . A simpler way to rewrite the last term of expression (450) as the con-

traction of  with an expression that is symmetric in  and  is to multiply it by  (cf.

the top of p. 17R, the last term in expression (458)).
220 To prove that  is a contravariant tensor (under unimodular transformations), one would, of course,

have to show that its contraction with an arbitrary covariant tensor produces a scalar (under unimo-
dular transformations). Notice, however, that Einstein did make sure that  is symmetric (see the
preceding note). Any anti-symmetric contribution to  would vanish upon contraction with the
metric, no matter whether  is a tensor or not.
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pared the covariant forms, which meant that he had to lower the contravariant indices
of . The resulting expressions quickly became so cumbersome that Einstein aban-
doned both calculations.

On p. 17L, Einstein formed the contravariant Ricci tensor and started to expand the
first-order derivative terms. The calculations are very similar to the ones on the pre-
ceding pages. Directly underneath the heading “Point tensor of gravitation”
(“Punkttensor der Gravitation”), he wrote down the symbol for the fully covariant Rie-
mann tensor introduced on p. 14L, and noted that this is a “plane tensor” (“Ebenenten-
sor”),

.   (453)  

He then formed the contravariant Ricci tensor, and noted that this is a “point tensor”
(“Punkttensor”),

.   (454)  

The prefixes “Punkt-” and “Ebene-” were introduced on p. 13L to distinguish between
contravariant and covariant indices, albeit only in the context of linear transformations
for which .221 On p. 13L only the terms “Punktvektor” and “Ebenenvektor”
occur explicitly. The terms “Punkttensor” and “Ebenentensor” occur here on p. 17L
for the first time, although they were implied on p. 13L by the convention of using dots
and dashes to denote contravariant (“Punkt”) and covariant (“Ebene”) indices, respec-
tively, for vectors as well as tensors.222 Einstein did not use this terminology in any of
his published writings.

Einstein went on to expand and simplify the “point tensor” (454). He first wrote
down an incorrect expression for the Riemann tensor,

.   (455)  

The four second-order derivative terms in equation (427) for the Riemann tensor can-
not be grouped together in this way. They can, when the Riemann tensor is fully con-
tracted to form the curvature scalar, as was done on p. 14R. This suggests that Einstein
read off equation (455) from expression (438) for the curvature scalar which formed
the starting point of his calculations on pp. 14R–16R. The error does not affect the rest
of the calculation, since Einstein did not get beyond rewriting the first-order derivative
terms in equation (455).
 The further manipulation of the contravariant Ricci tensor on this page is very sim-
ilar to that of the covariant Ricci tensor and of the curvature scalar on the preceding
pages. He first considered the first term in the second summation in equation (455)
contracted with  (see equation (454)), which he expanded to

221 See the discussion of p. 13L in sec. 5.6.1.
222 On pp. 28L and 29L, the terms “Punkttensor” and “kontravarianter Tensor” are used interchangeably.
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.   (456)  

He then pulled one pair of  factors ( ) inside the first set of parentheses and the
other pair into the second. In the resulting terms he used the relation  to
move the differentiation over from the ’s to the ’s. He also set the determinant of
metric equal to unity again, writing “  set to zero” (“ ”), in which
case the last term in the second set of parentheses in expression (456) vanishes upon
contraction with . The next step was to move the factor  from the second set of
parentheses to the first. The expression could then be simplified further through con-
tractions of the form . In this way, Einstein rewrote expression (456) as

.   (457)  

Einstein drew a horizontal line, and turned to the second term in the second sum-
mation in equation (455), proceeding in much the same way as he had with the first
term. However, after two lines he broke off the calculation with the comment, written
at the bottom of the page, that it was “too involved” (“zu umständlich”).

On pp. 17R–18R, Einstein took a slightly different approach. Under the heading
“Plane tensor constructed in two different ways” (“Auf zwei Arten Ebenentensor
gebildet”), he tried to bring the covariant versions of the Ricci tensor and the object

 of p. 16L (with a minor modification) into a form in which they could be com-
pared to one another. The calculation extends over the following three pages (17R–
18R). Again it breaks off before yielding a definite result.

Einstein began by considering what he called the “first way” (“1. Art”) of forming
a covariant tensor. This refers to the object  extracted from the curvature scalar on
pp. 14R–16R. He presumably went back to p. 16L, to expression (450) for the curva-
ture scalar under the condition that . Rewriting the last term in this expression
in a slightly different way than was done on p. 16L, one arrives at223

,   (458)  

which is  times the contraction of  with the expression in square brackets at
the top of p. 17R,

.   (459)  

223 See footnote 219 above.
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With minor modifications, this is the object  defined on p. 16L. Apart from an
overall factor of  and the labeling of its free indices, it only differs from the object
constructed on p. 16L in its last term.

The expression at the top of p. 17R gives the covariant version of this object,

.   (460)  

On the next two lines, Einstein wrote down equivalent expressions for all three
terms in expression (460), using the relation  and relations that can be
derived from it through differentiation.224

Einstein now turned to the “second way” (“2. Art”) of forming a covariant tensor,
which is contracting the Riemann tensor to form the Ricci tensor. Einstein had already
started this calculation on p. 14L, but he made a fresh start on this page. 

Using the expressions for the terms with products of Christoffel symbols on the
facing page (p. 17L, cf. expression (456)), he wrote the Ricci tensor as

  (461)  

Further simplification of this expression was facilitated by his previous investiga-
tion of the Ricci tensor on p. 14L. Without further calculation Einstein noted that the
first two terms in the second set of parentheses on the second line are identical and
“can be combined” (“vereinigt sich”), and that the third term “vanishes” (“fällt weg”),
which indicates that he once again imposed the condition that the determinant  is a
constant. These results had explicitly been derived on p. 14L (cf. equation (432)). Ein-
stein could therefore immediately rewrite the second line as

  (462)  

His increased facility in handling these expressions is also manifest in his treat-
ment of the third line of expression (461). He started to rewrite the contraction of

224 It takes a short calculation very similar to the one rehearsed in the last four lines of p. 16R to show

that the first term can be rewritten as . Einstein might have done

this calculation on a separate piece of paper.
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 with the term in the second set of parentheses, but then he noticed that he could
simplify the expression more easily by a symmetry argument. He marked four terms
in the expression by wiggly lines,

  (463)  

The first two underlined terms are antisymmetric in  and , the last two in  and .
Upon contraction with , the two remaining terms become symmetric in  and

 and  and , respectively. So, the product of the underlined terms in one set of
parentheses with the non-underlined term in the other produces the contraction of an
expression anti-symmetric with an expression symmetric in the same pair of indices.
These products thus vanish, and expression (463) reduces to

,   (464)  

the expression written at the bottom of the page. Einstein rewrote the first term as

.   (465)  

At the top of the next page (p. 18L), he inserted the results found on p. 17R (see
equation (462) and expression (464)–(465)) into expression (461) for the Ricci tensor
and arrived at225

  (466)  

On pp. 18L–R, Einstein tried to simplify this expression still further. Thus, in the
first two lines of “auxiliary calculations” (“Nebenrechnungen”) on p. 18R, he showed
that the condition that the determinant of the metric is constant allows one to rewrite
the second term in the first line of expression (466) as

225 The expression  on the third line should be , i.e., the expression should be

anti-symmetric in  and , not in  and .
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.   (467)  

This expression (without the minus sign) is given on the last line of p. 18L. By the
same token, the last term on the second line is equivalent to

,   (468)  

the expression written underneath this term, except for the fact that Einstein mistak-
enly wrote  instead of . 

Einstein performed another auxiliary calculation on p. 18R to expand the third line
of expression (466). Multiplying the end result of this auxiliary calculation by minus

, one arrives at the expression

,   (469)  

written directly underneath this term in expression (466) on p. 18L. At this point Ein-
stein gave up and crossed out his calculations on pp. 18L and 18R in their entirety. The
relation between the Ricci tensor and the two-index object , the two candidates for
the left-hand side of the field equations that Einstein had considered in his first explo-
rations of the Riemann tensor, still remained unclear.

5.4  Exploring the Ricci tensor in Harmonic Coordinates (19L–21R)

The mathematical strategy which Einstein had been following since the introduction
of the Riemann tensor on p. 14L had still not yielded a viable candidate for the left-
hand side of the gravitational field equations. The two expressions considered on the
preceding pages (14L–18R), the Ricci tensor and the object , both contain, in addi-
tion to the desired core-operator term, unwanted second-order derivative terms. On
p. 18R Einstein used the restriction to unimodular coordinates, which allowed him to
set , to eliminate one of these unwanted terms (cf. eqs. (466)-(467)). On p. 19L
Einstein eliminated all unwanted second-order derivative terms through an appropri-
ate choice of coordinates. In this way he reduced the Ricci tensor to the sum of a core-
operator term and terms quadratic in the first-order derivatives of the metric. Today
these coordinates are called “harmonic coordinates” and the corresponding condition
is called the “harmonic coordinate condition.” Let us reiterate that Einstein understood
coordinate conditions not in the modern sense of selecting at least one member from
each possible equivalence class of metrics,226 but as restrictions on the covariance
group of the field equations. That is why we adopted the phrase coordinate restric-

226 Two metrics are in the same equivalence class if and only if a coordinate transformation exists that
maps one onto the other.
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tion.227 With the help of the harmonic restriction, Einstein was finally able to extract
from the Riemann tensor field equations that satisfy the correspondence principle.

On p. 19R, Einstein began to examine these new field equations and the harmonic
restriction in a weak-field approximation. He made sure the new field equations were
compatible with energy-momentum conservation by checking that the gravitational
force on a cloud of dust particles can be written as the divergence of a quantity repre-
senting gravitational stress-energy density. To ensure compatibility between the field
equations and energy-momentum conservation, Einstein imposed an extra condition
on the metric tensor. The combination of this extra condition—a linearized version of
the Hertz restriction—and the harmonic restriction leads to the unacceptable result
that the trace of the weak-field metric has to be a constant. 

On p. 20L, Einstein modified the weak-field equations to avoid this implication.
By adding a term with the trace of the weak-field metric, he ensured that the require-
ments of the correspondence principle and the conservation principle are both satisfied
by imposing the harmonic restriction. From a purely mathematical point of view, the
left-hand side of these modified weak-field equations is, in fact, the linearized Einstein
tensor. At the bottom of p. 20L and on p. 21L, Einstein used the new weak-field equa-
tions to rewrite the gravitational force as a divergence, thus convincing himself that
the addition of the trace term to the field equations does not destroy their compatibility
with energy-momentum conservation. There was, however, a different problem. The
modified weak-field equations of p. 20L are incompatible with Einstein’s presupposi-
tion concerning static gravitational fields.228

It is no coincidence therefore that, on p. 20R, Einstein reexamined the dynamics
of point particles moving in a metric field. The purpose of this calculation becomes
clear on p. 21R. Einstein checked whether his presupposition concerning static gravi-
tational fields was actually justified. On p. 21R, using elements of his discussion of
the dynamics of point particles on p. 20R, he developed what appeared to be a very
strong argument in support of his views on the static field. This (fallacious) argument
led him to give up the harmonic restriction and the field equations constructed with its
help.

5.4.1  Extracting Field Equations from the Ricci Tensor 
Using Harmonic Coordinates (19L)

On p. 19L, as is announced in the first line: “Renewed calculation of the plane ten-
sor229” (“Nochmalige Berechnung des Ebenentensors”), Einstein re-calculated the
quantity given by the expression

227 For further discussion, see sec. 4.1.
228 This presupposition is also incompatible with the harmonic coordinate restriction, but it is unclear

whether Einstein realized that at this point.
229 See sec. 5.3.3, for a discussion of Einstein’s usage of the term “Ebenentensor” for covariant tensors.

19L
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  (470)  

This expression gives an incomplete version of the fully covariant Riemann tensor
(see, e.g., equation (427)) contracted with the contravariant metric . In other words,
it is an incomplete version of the Ricci tensor, which Einstein had already investigated
on p. 14L and on pp. 17R–18R.230 What is missing is another term with products of
Christoffel symbols. This was not just an oversight on Einstein’s part. The missing
term vanishes if the condition

  (471)  

is imposed, which Einstein actually wrote down two lines further down. This is the
condition that we today call the harmonic coordinate condition. The point of introduc-
ing this condition and the purpose of the whole calculation becomes clear in the line
immediately following expression (470). On this line, Einstein wrote down the first of
the four second-order derivative terms in expression (470),

,   (472)  

which has the form of a core operator, underlined it, and noted that it would “remain”
(“bleibt stehen”). Exactly how this comes about is recapitulated in the calculation that
follows.

Einstein indicated that he wanted to take the derivative of the condition with free
index  in equation (471) with respect to  and then do the same with the indices 
and  interchanged. Adding the two equations, Einstein got231

230 Expression (470) differs from the expressions for the Riemann tensor and the Ricci tensor given ear-
lier (cf. equations (427), (455), and (461)) in that the indices  and  in the terms with products of
Christoffel symbols (such as the last line of expression (470)) have been switched, in accordance with
the labeling of these indices in the Entwurf paper (Einstein and Grossmann 1913, 35). This could be
an indication that some time elapsed between these earlier calculations and the ones starting on
p. 19L.

231 In the very last terms in equations (473) and (474), the derivative should be with respect to  rather
than .
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  (473)  

This relation allowed Einstein to replace the three bothersome second-order derivative
terms in expression (470) by an expression

  (474)  

containing only first-order derivatives.
Einstein now turned his attention to the “second term” (“zweites Glied”), i.e., the

second line of expression (470). He invoked the same symmetry argument as on
p. 17R (cf. the discussion following expression (463) above). He marked the symmet-
ric and anti-symmetric terms in the index pairs ( , ) and ( , ) by straight and wig-
gly lines, respectively, and immediately wrote down the only two non-vanishing
contributions, one coming from the symmetric parts,

,   (475)  

and one coming from the anti-symmetric parts,

  (476)  

He now underlined the terms that form the Ricci tensor: the core-operator term in
expression (472), the right-hand side of equation (474), expression (475), and the
right-hand side of equation (476). A short auxiliary calculation showed that expres-
sion (475) and the last term in equation (474) cancel each other.232 He added the
remaining underlined terms and concluded that “the covariant tensor [the Ricci ten-
sor], multiplied by , thus takes the form” (“Der mit 2 multiplizierte Ebenentensor
erhält also die Form”)

232 The two terms only cancel if the final index in equation (474) is corrected (see the preceding note).
Einstein probably realized the index was wrong at this point, although he did not correct it. 
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  (477)  

This is the result Einstein wanted on this page: in harmonic coordinates, the Ricci
tensor is the sum of a core-operator term, which is the only remaining second-order
derivative term, and terms quadratic in first-order derivatives. He seems to have
checked this carefully, for at the bottom of the page he wrote: “Result certain. Valid
for coordinates which satisfy the equation ” (“Resultat sicher. Gilt für Koor-
dinaten, die der Gl.  genügen”). These coordinates were well-known and
were called “isothermal coordinates” in the contemporary literature.233 They are now
commonly known as “harmonic coordinates.” Einstein’s notation suggests that he (or
Grossmann) found the coordinate condition  in the literature.234

5.4.2  Discovering a Conflict between the Harmonic Coordinate Restriction, 
the Weak-Field Equations, and Energy-Momentum Conservation (19R)

On p. 19L, the mathematical strategy had finally born fruit. Einstein had found a way
of constructing field equations out of the Ricci tensor that satisfy the correspondence
principle. He now had to check whether these field equations and the harmonic restric-
tion used in their construction also satisfy his other heuristic requirements. Unfortu-
nately, in the course of checking the conservation principle on p. 19R, he discovered
a problem.

The considerations on p. 19R are all in the context of a first-order, weak-field
approximation. The metric is assumed to be the sum of a diagonalized Minkowski
metric and small deviations from this metric. With the help of an imaginary time coor-
dinate, introduced explicitly further down on the page, the zeroth order metric can be
written as 

Einstein began by writing down the harmonic restriction (see equation (471)) in
this weak-field approximation, writing: “For the first approximation our additional
condition is” (“Für die erste Annäherung lautet unsere Nebenbedingung”)235

233 See, e.g., (Bianchi 1910, sec. 36-37) or (Wright 1908, sec. 57).
234 Einstein had already used this condition in a different but equivalent form on p. 6L (see

equation (83)), but it is unclear whether he recognized the equivalence.
235 Einstein’s notation here and in the following is awkward. He used the same summation index  for

two different summations, and did not explicitly distinguish between the diagonal zeroth-order metric
and the first-order metric with small deviations from it. Introducing the more explicit notation

 where  is the Kronecker delta and , one can rewrite equation (478) more
       
carefully as: .
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.   (478)  

Einstein conjectured that this condition “can perhaps be decomposed into” (“Zerfällt
vielleicht in”) the following two conditions,236

,237   (479)  

a condition equivalent, at least in first-order approximation, to the Hertz restriction,
and

,238   (480)  

a condition on the trace of the weak-field metric.
As will become clear below, Einstein wanted to ensure energy-momentum conser-

vation by imposing the linearized Hertz restriction (479). On p. 19L he had introduced
the harmonic restriction (478) to satisfy the correspondence principle. The combina-
tion of these two restrictions implies equation (480), which was unacceptable to Ein-
stein. Einstein became aware of these implications in the course of his considerations
concerning energy-momentum conservation on the remainder of this page.

On the next line, Einstein wrote down the “equations” (“Gleichungen”)

,239   (481)  

which are just the field equations of p. 19L in first-order approximation. The left-hand
side is the core-operator term of the reduced Ricci tensor (see expression (477)). To
first order, this is the only term that contributes. The right-hand side gives the covari-
ant version of the stress-energy tensor for pressureless dust, multiplied by the gravita-
tional constant .

For Einstein, energy-momentum conservation required that the density of the four-
force of the gravitational field on the pressureless dust can be written as the four-diver-
gence of a quantity that can be interpreted as representing gravitational stress-energy

236 The combination of these two new conditions is, in fact, stronger than the original condition.

237 Using the notation introduced in footnote 235, one would write equation (479) as: .

238 Using the notation introduced in footnote 235, one would write this equation as:  In
other words, the condition is that the trace of  vanish. This is the form in which the condition is
written at the top of the next page (p. 20L):  

239 Einstein erroneously wrote  instead of . Using the notation introduced in footnote 235, one

would write this equation as: 
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density. Einstein checked whether his new field equations would actually allow him
to rewrite the gravitational force density in the form of such a divergence.240

The expression for the force density

,   (482)  

was introduced on p. 5R (see expression (67) above). Here  is the (contravariant)
stress-energy tensor for pressureless dust. The force density gives the rate at which
four-momentum is transferred from the gravitational field to the pressureless dust. As
such it enters into the energy-momentum balance between matter and gravitational
field for which Einstein had introduced the equation

  (483)  

on the next line on p. 5R (see equation (71); the superscript  was silently dropped).
This equation is equivalent to the statement that the covariant divergence of the stress-
energy tensor  vanishes. If (minus) the force density can be written as the diver-
gence of gravitational stress-energy density, then equation (483) can be written as the
vanishing of the ordinary divergence of the sum of quantities representing the stress-
energy density of matter (pressureless dust in this case) and of the gravitational field,
respectively. To find out whether some candidate field equations allow such rewriting
of the force density, one substitutes their left-hand side (divided by ) for the stress-
energy tensor in the second term of equation (483) and tries to rewrite the resulting
expression as a divergence.

In the first-order approximation considered on p. 19R, the second term in equation
(483) reduces to

.   (484)  

This expression, while not actually written down on p. 19R, provides the link between
equation (481), giving the field equations in first-order approximation, and the equa-
tion written on the next line. Eliminating  from expression (484) with the help of
equation (481) and neglecting a factor , one arrives at the equation that Einstein
did write,241

.   (485)  

240 A completely analogous consideration can be found in the Entwurf paper (Einstein and Grossmann
1913, 15). In his second static theory of 1912, Einstein likewise made sure that the (ordinary three-
)force density could be written as the divergence of a gravitational stress tensor (Einstein 1912b, 456).
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Since the right-hand side of this equation does indeed have the form of a divergence,
Einstein concluded that “energy-momentum conservation holds in the relevant
approximation” (“Energie- u. Impulssatz gilt mit der in Betr[acht] kommenden Annä-
herung”).

Einstein still had to check whether the harmonic restriction (see equation (478))
and the two conditions into which it had tentatively been split (see equations (479) and
(480)) are also compatible with energy-momentum conservation. Presumably, the sec-
ond part of the comment immediately following Einstein’s conclusion that “energy-
momentum conservation holds in the relevant approximation” refers to this issue:
“uniqueness and additional conditions” (“Eindeutigkeit u. Nebenbedingungen”). As
to the first part of this comment, Einstein apparently hoped that his heuristic require-
ments would uniquely determine the field equations. This may well have been the
motive for his (inconclusive) investigation on pp. 17L–18R of the relation between the
Ricci tensor and the two-index object extracted from the curvature scalar on pp. 14R–
16R. Einstein, however, did not actually address the uniqueness problem on p. 19R.
The question regarding the additional conditions appears to have been more pressing.

He once again wrote down the linearized field equations, this time in the more
compact form242

.   (486)  

The considerations on the remainder of the page suggest that Einstein discovered the
following problem. In first-order approximation, covariant derivatives become ordi-
nary derivatives and the energy-momentum balance between pressureless dust and
gravitational field reduces to the conservation law

.   (487)  

The easiest way to ensure that the field equations (486) are compatible with equation
(487) is to impose the linearized Hertz restriction243

241 Einstein apparently substituted the covariant object on the left-hand side of equation (481) for the

contravariant tensor  in expression (484). Correcting this and using the notation introduced in

footnote 235, one would write equation (485) as

242 The equation has covariant indices on the left- and contravariant indices on the right-hand side. Since
indices are raised and lowered with the Kronecker delta in this approximation, this does not really
matter. Using the notation introduced in footnote 235, one could write the equation more carefully as:

. Einstein also wrote  instead of  again (cf. footnote 239).
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.   (488)  

Equations (486) and (488) immediately imply equation (487):

.   (489)  

As we have seen (cf. equation (479)), the linearized Hertz restriction is just one of the
two restrictions in the tentative decomposition of the harmonic restriction given at the
top of the page. But now a problem arises, which lies neither with the Hertz restriction
nor with the harmonic restriction taken by itself, but with the combination of the two.
Together these two restrictions imply equation (480), which says that the trace of the
linearized metric has to be a constant.

This was objectionable for two reasons. First, through the field equations, it
imposes the condition that the trace of the stress-energy tensor vanish (cf. equation
(486)), which is clearly violated in the case under consideration, viz. pressureless
dust.244 Secondly, the trace of the metric , which Einstein
used to represent static fields (see p. 6R and p. 39L), is obviously not a constant. 

To avoid these problems, Einstein considered giving up the Hertz restriction. That
means that it is no longer guaranteed that the divergence of the stress-energy tensor
vanishes. The calculations at the bottom of p. 19R suggest that Einstein was prepared
to consider the possibility that this divergence is non-vanishing. The result of these
calculations, however, convinced him that was not an option. And from this he
inferred that the Hertz restriction, which is the natural way of forcing the divergence
of the stress-energy tensor to vanish, also had to be retained.

Einstein wrote down the “continuity condition” (“Kontinuitätsbedingung”) for a
cloud of pressureless dust, with “density of material points” (“Dichte materieller
Punkte”) ,245

.   (490)  

243 Or rather (see the preceding note) that: . This relation is equivalent to equation (488),
which with the help of the notation introduced in footnote 235 can be written as:

.
244 In the second of his four communications to the Prussian Academy of November 1915, Einstein brief-

ly revived the condition that the stress-energy tensor for matter be traceless (Einstein 1915b, 799) as
it is for the electromagnetic stress-energy tensor. At that point he suggested that this constraint can be
reconciled with the non-vanishing of the trace of the stress-energy tensor for pressureless dust by as-
suming that gravity plays an essential role in the constitution of matter. For discussion, see, e.g., “Un-
tying the Knot …” sec. 7 (in this volume).

245 Einstein only wrote an abbreviated form of this equation indicating the last two terms by dots.
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To combine the continuity equation with equation (487), expressing energy-momen-
tum conservation for a cloud of pressureless dust, Einstein introduced the four-veloc-
ity246

,   (491)  

in which the relation  (with ) between proper time
and coordinate time has been used, and in which the dot indicates differentiation with
respect to . With the imaginary time coordinate , the -component
becomes . Using this new notation, Einstein rewrote the continuity
equation as247

.   (492)  

Similarly, the -component of the divergence of the stress-energy tensor for pressure-
less dust (see equation (487)) can be rewritten as

  (493)  

The term in square brackets vanishes because of the continuity equation. Bringing the
remaining terms over to the left-hand side, one arrives at the final equation of
p. 19R,248

.   (494)  

Einstein noticed that the last four terms on the left-hand side add up to

.   (495)  

246 He wrote  and  above the relevant terms on the right-hand side of equation (486); and he wrote
 and  for the expressions  and  in the lower right-hand corner of the page.

247 In the notebook the third term is indicated only by a dot.
248 In the notebook the last two terms on both the first and the second line are indicated only by dots.
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The vanishing of this expression and the corresponding - and -components is the
condition that the dust particles move on geodesics in what in this first-order approx-
imation is Minkowski spacetime. Looking back at equation (493), we thus see that the
vanishing of the divergence of the stress-energy tensor follows directly from the con-
tinuity equation and the equations of motion for the dust cloud.249 It was therefore not
an option for Einstein to drop the divergence requirement. The easiest way to guaran-
tee the divergence requirement was to impose the Hertz restriction (see equations
(487)–(489)). So, Einstein wanted to hold on to the Hertz restriction to satisfy the con-
servation principle and at the same time he wanted to hold on to the harmonic restric-
tion to satisfy the correspondence principle. As Einstein put it: “both restrictions are
to be retained” (“Beide obige Bedingungen sind aufrecht zu erhalten”). He had hit
upon a serious problem: the harmonic restriction plus the Hertz restriction implied the
unacceptable condition that the trace of the linearized metric be a constant.

5.4.3  Modifying the Weak-field Equations: the Linearized Einstein Tensor (20L, 21L)

At the top of p. 20L, Einstein once again wrote down the two conditions250

  (496)  

into which he had tentatively decomposed the harmonic restriction at the top of p. 19R
(cf. equations (479)–(480)). The harmonic condition was used to reduce the Ricci ten-
sor to the d’Alembertian acting on the metric in the weak-field case. The Hertz restric-
tion was added to make sure that the divergence of the stress-energy tensor vanishes
in the weak-field case. The combination of these two restrictions implies that the trace
of the metric has to vanish. This is problematic for a couple of reasons. First, if the
metric is traceless, the weak-field equations (486) tell us that the stress-energy tensor
be traceless as well. This last inference can be avoided by modifying the weak-field
equations so as to make their right-hand side traceless. This is precisely what Einstein
did on the next line:251

249 This cannot have come as a great surprise for Einstein, for it was precisely from the equations of mo-
tion for a cloud of pressureless dust that he had derived the equation for energy-momentum conser-
vation (see, e.g., equation (483)) in the first place (see p. 5R).

250 In the second equation Einstein used the superscript “x” to indicate that he was considering first-order
deviations from the flat metric. The same convention was used elsewhere in the notebook (see
pp. 41L, 10L, 10R, 12L, 12R). 

251 Using the notation of footnote 235 along with the d’Alembertian  and the stress-energy tensor

 (with trace ), one can rewrite this equation more carefully as:

. Einstein omitted the gravitational constant , and instead of

the Kronecker delta , he wrote “for the same  and ” (“für gleiche  u. ”) underneath the

second term on the right-hand side.
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.   (497)  

With these new weak-field equations, the condition on the trace of the metric tensor
no longer implies any condition on the trace of the stress-energy tensor.252 Still, Ein-
stein must have found the result unsatisfactory, for he crossed out the two lines with
equations (496)–(497).

Eq. (497) does indeed only solve part of the problem caused by the combination of
the harmonic and the Hertz restrictions. It takes care of the problem that a traceless
metric would imply a traceless energy-momentum tensor, but it does not address a sec-
ond problem, namely that a metric of the form Einstein used to represent static fields
is not traceless. 

A more satisfactory way to solve the problems would be to modify the weak-field
equations in such a way that one avoids the condition that the metric be traceless alto-
gether. This can be done by modifying the field equations in such a way that the har-
monic restriction ensures both the elimination of unwanted second-order derivative
terms for the Ricci tensor and the vanishing of the divergence of the stress-energy ten-
sor. The combination of the harmonic and the Hertz restriction is thus replaced by the
harmonic restriction alone and the problematic condition that the metric be traceless
no longer follows. This is exactly the way in which Einstein took care of the problem
in the next line.

First he wrote down the harmonic restriction again in first-order approximation (cf.
equation (478) and footnote 235 for a more careful notation),

,   (498)  

underlining the left-hand side. He introduced the abbreviation

  (499)  

for the trace of the metric. Instead of adding a term with the trace of the stress-energy
tensor to the right-hand side of the weak-field equations as he had done in equation
(497), he now added a term with the trace of the metric to the left-hand side. He wrote
down a few components of these modified “gravitational equations”
(“Gravitationsgleichungen”), indicating the remaining components by a dot and three
lines of dashes253

252 In the fourth communication of November 1915, Einstein (1915d) similarly added a term with the
trace  of the energy-momentum tensor of matter to his field equations to avoid the condition

. For discussion, see “Untying the Knot …” sec. 7 (in this volume).
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   (500)  

In modern notation, using the Kronecker delta, these equations can be written more
compactly as254

.   (501)  

One can now ensure compatibility between the weak-field equations and the vanishing
of the divergence of the stress-energy tensor by imposing

.   (502)  

which is just the harmonic restriction (see equation (498)). The calculation for the
modified weak-field equations and the harmonic restriction is completely analogous
to the calculation for the original weak-field equations and the Hertz restriction (cf.
equation (489)),

.   (503)  

In other words, Einstein’s modification of the weak-field equations removed the need
for the Hertz restriction (equation (479)), and thereby the need for the troublesome
trace condition (equation (480)).

The modified weak-field equations (500) have exactly the same form as the weak-
field equations for the final theory of November 1915.255 The left-hand side is the lin-
earized version of the Einstein tensor . There is no indication in the
notebook that Einstein tried to find the exact equations corresponding to the weak-
field equations with trace term.

253 The  used here apparently denotes the d’Alembertian operator , ( ) which had

been denoted by the  on the preceding page (p. 19R). The notation  does not occur anywhere

else in the notebook. The use of  as the analogue of the Laplace operator or the Laplace-Beltrami

operator in four dimensions can also be found at the bottom of p. 19L. For two dimensions it is used
on p. 10R, for three dimensions on p. 40L.

254 Strictly speaking, one should write the right-hand side as , since  is a contravariant
tensor (cf. footnote 251).

255 (Einstein 1915d).
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Einstein did write the modified weak-field equations in an alternative form. Taking
the trace on both sides of equation (500), he found

  (504)  

(the factor  on the left-hand side should be ).With the help of this relation, Ein-
stein replaced the term with the trace of the metric on the left-hand side of equation
(500) by a term with the trace of the stress-energy tensor on the right-hand side. He
obtained, writing “from this equations” (“Hieraus Gleichungen”)

  (505)  

Einstein partly corrected his error in equation (504). The plus sign in equation (505),
however, should be a minus sign. In modern notation, the correct equations can be
written more compactly as (cf. equation (501))

.   (506)  

Einstein proceeded to check that the modified weak-field equations (in the form of
equation (500) rather than in the form of equation (505)) still allow the gravitational
four-force density to be written in the form of a divergence. In first-order approxima-
tion, the force density is given by (see expression (484)):

.   (507)  

Using equation (501) to eliminate  from this expression, one arrives at

  (508)  

On p. 19R, Einstein had already established that the first term on the right-hand side
can be written in the form of a divergence (see equation (485)). It only remained for
him to verify that this is true for the second term as well. He started to rewrite this term
at the bottom of p. 20L as

  (509)  

2ΔU T κκ∑=

2 1–

Δg11 T 11
1
2
--- T κκ∑+= Δg12 T 12= . Δg14 T 14=

 _____   ___    ____  ____   _____  _____     _______  _____ 

 _____   ___    ____  ____   _____  _____     _______  _____ 

 _____   ___    ____  ____   _____  _____     _______  _____ 

gij T ij
1
2
---δij T κκ∑( )–=

1
2
---T iκ xσ∂

∂giκ

T iκ

1
2
---Δ giκ

1
2
---δiκU–⎝ ⎠

⎛ ⎞
xσ∂

∂giκ– 1
2
---– Δgiκ xσ∂

∂giκ 1
2
--- UΔ

xσ∂
∂U

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2
--- ΔU

xσ∂

∂gκκ∑–
1
2
---

∂2gαα

∂xβ∂xβ
-----------------

xσ∂

∂gκκ∑–
1
2
--- ΔU

xσ∂
∂U

∑–= =

1
2
--- ∂2U

∂x2
---------- . . .+ + +⎝ ⎠

⎛ ⎞
xσ∂

∂U
∑–=



21L RICCI TENSOR IN HARMONIC COORDINATES sec. 5.4.3

636

Although the final expression still does not have the form of a divergence, Einstein
concluded that it is “representable in the required form” (“Darstellbar in der
verl[angten] Form”). Since the two terms on the right-hand side of equation (508) have
the exact same structure and since the result had already been established for the first,
this conclusion is obvious.

Nevertheless, Einstein made a fresh start with this whole calculation on p. 21L,
this time considering both terms in equation (508).256 At the top of p. 21L Einstein
wrote down the right-hand side of equation (508)

.   (510)  

He rewrote the sum in the second term as

,   (511)  

and the one in the first as

.   (512)  

Inserting these results into expression (510), he wrote the gravitational force density
in the required form of a coordinate divergence of gravitational stress-energy den-
sity,257

  (513)  

At some point, Einstein deleted the second line and wrote that the trace “  must van-
ish” (“  muss verschwinden”). He probably meant that the derivatives of  must
vanish. It is unclear why he resurrected this condition on the trace of the metric tensor.
He later deleted the remark about , but did not rescind the deletion of the second line
of expression (513).

From the fragmentary calculations on the remainder of the page, one can infer that
Einstein somehow wanted to produce an exact analogue of his first-order calculation.
Exactly how and for what purpose remains unclear. Perhaps he wanted to verify that
the exact field equations allow one to rewrite the gravitational force density as the

256 This seemingly redundant calculation may have been done in connection with the calculation at the
bottom of p. 21R involving the gravitational stress tensor for Einstein’s 1912 static theory.

257 Notice that he did not take into account the factor  in front of expression (510), which was prob-
ably only added later.
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divergence of the gravitational stress-energy density as well; or he wanted to find the
exact expression for the quantity representing gravitational stress-energy density on
the basis of the approximative expression that could be read off from expression (513).
Whatever the purpose of these calculations, he drew a horizontal line and wrote258

.   (514)  

Contrary to its linearized analogue (equation (512)), the right-hand side of this equa-
tion cannot be written as a divergence. Einstein noted that the last term can be written
as

,   (515)  

if the Hertz restriction,

,   (516)  

is imposed. This still does not make it possible, however, to rewrite the right-hand side
of equation (514) as a divergence. At this point, the calculation breaks off.259

5.4.4  Reexamining the Presuppositions Concerning the Static Field (20R, 21R)

On p. 19R Einstein had found that the compatibility between the field equations con-
structed out of the Ricci tensor on p. 19L and the correspondence and conservation
principles required that the trace of the linearized metric be a constant. This condition
was problematic for several reasons, one of which was that this requirement is not sat-
isfied by a metric of the form  which Einstein used to repre-
sent weak static fields. On p. 20L Einstein showed that the condition could be avoided
by adding a trace term to the weak-field equations, but then these weak-field equations
themselves no longer allow a metric of the form  as a solution.260,261

258 Note that the expression is ill-defined since it contracts over pairs of covariant indices. The corre-
sponding approximative calculations, of course, had the same problem, but there it was only a matter
of awkward notation (see notes 241–242).

259 Einstein drew another horizontal line, started to write down, but then immediately deleted, the trans-
formation law of what he referred to as the “second tensor” (“zweiter Tensor transformiert”).

260 This is most easily seen when these modified weak-field equations are written in the form of equation
(505). Consider a weak-field generated by some static mass distribution. The only non-vanishing
component of the stress-energy tensor will be the -component. If the weak-field equations are the
ones in equation (505), the metric of a static weak field will deviate from the Minkowski metric in all
its diagonal components, and not just in its -component, as Einstein expected.

261 A metric of this form is also incompatible with the harmonic restriction with which the field equations
of p. 19L were extracted from the Ricci tensor. It is unclear whether Einstein was aware of this prob-
lem at this point.
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Before giving up the promising new field equations in the face of these problems,
Einstein reexamined whether his presuppositions concerning the static field were
actually justified. On p. 21R he found an argument that convinced him they were. The
argument involves the dynamics of point particles in a gravitational field, which Ein-
stein reviewed on p. 20R. Einstein argued that, unless the -component is the only
variable component of the metric of a static field, particles with different energy, and
hence different inertial mass, fall with different accelerations in such fields. He thus
saw himself forced to give up the field equations considered on pp. 19L–20L.

The discussion on p. 20R of the mechanics of point particles and continuous matter
distributions in a gravitational field is essentially the same as the discussions on p. 5R
and in (Einstein and Grossmann 1913, sec. 2 and 4). At the top of the page, Einstein
wrote down the line element

,   (517)  

and introduced the Lagrangian for a point particle of unit mass moving in a given met-
ric field

.   (518)  

This last equation is written here somewhat more compactly than in the notebook.
Though he indicated most terms by dots, Einstein expanded the sum under the square
root sign,262 writing  for the coordinates . He continued to do so in most
of the equations on this page. His argument is easier to follow, however, if the more
compact notation is used.

On the basis of the Euler-Lagrange equations,

,   (519)  

where , the quantities

  (520)  

can be interpreted as the components of the force on the particle,263 and the quantities

  (521)  

as the components of its momentum. The particle’s energy is given by the Legendre
transform

262 We use a hybrid summation convention here, as did Einstein in the notebook at various places.
263 In the notebook, the factor  on the right-hand side is omitted.
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  (522)  

Equations (521)–(522) show that “minus momentum and energy form a four-vector”
(“Negativer Impuls u. Energie bilden Vierervektor”), whose components can be writ-
ten as

.   (523)  

For a particle that does not have unit mass, this expression has to be “multiplied by [its
rest mass] ” (“Noch mit  zu mult[iplizieren]”).

Instead of one particle, Einstein now considered a continuous mass distribution.
Dividing the four-momentum in expression (523) (multiplied by ) by the volume ,
which can be written as264

,   (524)  

he introduced the four-momentum density265

.   (525)  

Einstein now drew a horizontal line and wrote down the contravariant stress-
energy tensor for pressureless dust, or, as he called it, the “tensor of material flow”
(“Tensor der materiellen Strömung”)

.   (526)  

He lowered one index and introduced the notation

,   (527)  

264 (Einstein and Grossmann 1913, 10). Einstein had already used this equation on p. 5R (see equation
(61)).

265 In the notebook, “momentum density” (“Impulsdichte”) and “energy density” (“Energiedichte”) are
introduced separately.
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for the “resulting mixed tensor” (“Hieraus gemischter Tensor”), which he explicitly
identified as “stress-energy tensor” (“Sp[annungs]-Energie-Tensor”). The compo-
nents of the four-momentum density introduced in expression (525) are simply the

-component of .
Finally, Einstein wrote down the divergence of this mixed tensor density

.   (528)  

According to the energy-momentum balance between matter and gravitational field,
which Einstein had derived on p. 5R on the basis of considerations closely analogous
to those on this page, the sum of this divergence and the force density must vanish.
The latter is given by the force per unit mass (see equation (520)) multiplied by  and
divided by  (see equation (524)). The result is266

  (529)  

At the bottom of the page, however, Einstein only wrote down expression (528), the
first term in the energy-momentum balanced.

At the top of p. 21R, he returned to the consideration of force and energy rather
than of force and energy densities. He wrote down an expression equivalent to equa-
tion (520), the first component of which gives the “ -component of the ponderomo-
tive force” (“ -Komponente der ponderomotorischen Kraft”) on a point particle of
unit mass,267

,   (530)  

and an expression equivalent to equation (522) for the “energy of the point” (“Energie
des Punktes”),

.   (531)  

Right next to this expression, Einstein explicitly wrote down the metric of a static field

266 In the expression for the force density or “force per unit volume” (“Kraft pro Volumeinheit”) in the
notebook, a factor  is missing.

267 A crossed-out factor of  occurs in the numerator of both this expression and the next, which
suggests that Einstein at some point considered force and energy densities.
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,   (532)  

which would allow him to recover his 1912 static theory from a theory based on the
metric tensor. He noted that the -components “definitely vanish in a static field”
(“   … verschwinden sicher im statischen Felde”). In the static case, the numer-
ator in expression (531) for the particle’s energy thus reduces to . Special relativity
tells us that energy is proportional to inertial mass. Galileo’s principle, i.e., the princi-
ple that the gravitational acceleration is the same for all bodies, tells us that the grav-
itational force is proportional to inertial mass as well. Expressions (530) and (531),
however, imply that, unless all spatial components of the metric are constants, the ratio
of force and energy in a static field, 

,   (533)  

will depend on the particle’s velocity. As Einstein put it: “If the force is supposed to
vary like the energy, then ,  etc. must vanish for the static field” (“Soll die Kraft
sich ändern wie die Energie, so müssen im statischen Felde ,  etc. verschwin-
den”).268 Although not stated explicitly, Einstein’s conclusion was that the metric of
the static field has to be of the form (532).269

This argument has a certain prima facie plausibility, but it does not hold up under
closer scrutiny. On p. 20R, Einstein had identified a particle’s momentum  (see
equation (521)) and the force  acting on it (see equation (520) and expression (530))
in such a way that the spatial components of the geodesic equation, the Euler-
Lagrange equations for the Lagrangian in equation (518), can be written in a form
reminiscent of Newton’s second law

.   (534)  

For Einstein’s argument on p. 21R to be valid one would have to be able to substitute
(modulo a proportionality constant)  (where the energy  is given by equation
(522) or expression (531)) for  in equation (534). This substitution, however, is not

268 More accurately, the deviations of “ ,  etc.” from their constant Minkowskian values must
vanish in the static case.

269 Presumably, although this is not made explicit, Einstein only wanted to draw the conclusion that static
fields must be of this form in first-order approximation. He did not seem the least bit disturbed when
in June 1913, in an attempt to calculate the perihelion advance of Mercury on the basis of the Entwurf
theory, he found that the metric field of the sun in second-order approximation is not spatially flat (cf.
[p. 6] of the Einstein-Besso manuscript [CPAE 4, Doc. 14]).
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allowed. In other words, there is no reason to think that the antecedent of Einstein’s
conditional (i.e., “the force varies like energy”) is true, and the argument fails.

Einstein drew two figures next to expressions (530)–(531), presumably to illus-
trate his argument, although their purpose remains unclear. The upshot of Einstein’s
considerations, however, is unambiguous. He had found an argument, based on a fun-
damental postulate of classical mechanics and completely independent of the gravita-
tional field equations, that seemed to show that the metric of static gravitational fields
has to be spatially flat. This confirmed his ideas about how to recover both Newton’s
theory and his own 1912 theory for static gravitational fields from the metric the-
ory.270 A metric of this form, however, was incompatible with the modified weak-
field equations introduced on p. 20L.271 Einstein therefore gave up the idea of con-
structing field equations out of the Ricci tensor with the help of the harmonic restric-
tion.

5.4.5  Embedding the Stress Tensor for Static Gravitational Fields 
into the Metric Formalism (21R)

For a metric of the form  Einstein expected his new metric theory
to reduce to his 1912 theory for static gravitational fields. That implied that one should
also recover the expression for the gravitational stress tensor of the 1912 theory. On
the bottom half of p. 21R, Einstein tried to translate the expression for this stress ten-
sor into the language of the metric theory, replacing factors , , and  by ,

, and , respectively.272 Exactly what Einstein hoped to achieve remains
unclear. His comments and the fact that he deleted the calculation in its entirety do
make clear, however, that he was unhappy with the results. Part of the problem may
have been that the expression for the stress tensor of the 1912 theory did not seem to
agree with the corresponding components of the quantity representing gravitational
stress-energy density constructed on p. 21L.

Under the heading “static special case” (“Statischer Spezialfall”), Einstein wrote
down the -component of the stress tensor of (the final version of) his 1912 static
theory273

.   (535)  

270 In Einstein to Erwin Freundlich, 19 March 1915 (CPAE 8, Doc. 63), Einstein once again addressed
the question “whether matter at rest can generate any other gravitational field than a -field” (“ob
ruhende Materie ein anderes Gravitationsfeld als ein -Feld erzeugen kann”). “It cannot” (“Dies
ist nicht der Fall”), he wrote. In support of this claim, he presented a calculation done in first-order
approximation and based on the Entwurf field equations (i.e., on weak-field equations without a trace
term). He made no reference to any other arguments for his claim.

271 It is also incompatible with the harmonic restriction (see footnote 261).
272 On p. 39L, Einstein had attempted a similar translation of the field equations of the 1912 theory (see

sec. 2.2, equations (9)–(18)).
273 (Einstein 1912b, 456, equation (5)).
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Using the relation , he rewrote this equation as

  (536)  

He then translated this expression into the language of the metric theory, using that
, , and  for a metric of the form .

In this way, he arrived at

  (537)  

Underneath this expression Einstein wrote: “impossible because of divergence equa-
tion” (“Unmöglich wegen Divergenzgleichung”). The “divergence equation” is pre-
sumably the equation setting the gravitational four-force density equal to the
divergence of gravitational stress-energy density. In the notation of the Entwurf, this
equation can be written as274

,   (538)  

where  and  denote the contravariant stress-energy tensor for matter and the
corresponding pseudo-tensor for the gravitational field, respectively. On pp. 19R,
20L, and 21L, Einstein had checked, in a first-order approximation and using his can-
didate (weak) field equations to eliminate the stress-energy tensor for matter, whether
the gravitational force density can be rewritten as a divergence. The tentative expres-
sion for gravitational stress-energy density constructed on p. 21R confronted Einstein
with the converse problem, viz. whether the divergence of the gravitational stress-
energy density actually gives the gravitational force density. It is not clear how Ein-
stein could tell without further calculation that this is not possible—if that is in fact
what he means by his remark “impossible because of divergence equation”—but Ein-
stein may have reached this conclusion on the basis of a comparison of equation (537)
with expression (513) on p. 21L, which (in linear approximation) gives the gravita-
tional force density in the form of the divergence of gravitational stress-energy den-
sity.

The translation of equation (536) into equation (537) is not unique. Einstein, in
fact, gave an alternative translation of the first term in the expression for the stress ten-
sor

274 Cf., e.g., (Einstein and Grossmann 1913, 16–17, equations (12a) and (18)).
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.   (539)  

Apparently, this expression was not satisfactory either. Einstein deleted this whole
calculation by a diagonal line, and wrote: “special case probably incorrect”
(“Spezialfall wahrscheinlich unrichtig”).

5.4.6  Synopsis of the Problems with the Harmonic Restriction 
and the Linearized Einstein Tensor (19L–21R)

The calculations on p. 21R mark the end of Einstein’s consideration of field equations
extracted from the Ricci tensor with the help of the harmonic restriction, and of the
modified weak-field equations that we now recognize as the Einstein equations of the
final theory in linearized form. To conclude this section, we summarize the chain of
reasoning that produced this unfortunate turn of events.

On p. 19L, Einstein showed that the harmonic restriction can be used to eliminate
unwanted second-order derivative terms from the Ricci tensor. On p. 19R, examining
these new field equations in linear approximation, he found that the natural way to
make sure that the weak-field equations are compatible with energy-momentum con-
servation is to impose a further coordinate restriction, viz. the Hertz restriction. The
combination of the harmonic restriction and the Hertz restriction implies that the trace
of the linearized metric must be a constant. To avoid this implication, Einstein (on
p. 20L) added a trace term to the weak-field equations, effectively changing their left-
hand side from the linearized Ricci tensor to the linearized Einstein tensor. This mod-
ification obviates the need for the Hertz restriction and thus for the condition on the
trace of the weak-field metric. Part of the original problem, however, still persists,
albeit in a different guise.

One of the difficulties with the restriction on the trace of the metric is that it is not
satisfied by a metric of the form . Einstein believed that his the-
ory would not have a sensible Newtonian limit unless weak static fields can be repre-
sented by a metric of this form. At the same time, a metric of this form would allow
him to recover his 1912 theory for static gravitational fields from the new metric the-
ory. It was thus a serious problem that the restriction on the trace of the metric rules
out a metric of this form.

Unfortunately, with the modification needed to avoid this restriction, the weak-
field equations themselves no longer allow a solution with a metric of the form

. On p. 21R, Einstein therefore reexamined whether his presup-
positions about the static field were justified. A fallacious argument convinced him
that nothing less than Galileo’s principle that all bodies fall with the same acceleration
requires that the metric of static fields does indeed have the form he had been assum-
ing.275 This sealed the fate of the harmonic restriction and the linearized Einstein ten-
sor. Einstein only returned to field equations including a trace term by a different route
in November 1915.276
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5.5  Exploring the Ricci Tensor in Unimodular Coordinates (22L–24L, 42L–43L)

On p. 22R Einstein considered a new way of extracting a candidate for the left-hand
side of the field equations from the Riemann tensor. He started from a new expression
for the Ricci tensor, now entirely in terms of the Christoffel symbols and their first-
order derivatives. He split this tensor into two parts each of which separately trans-
forms as a tensor under unimodular transformations. Restricting the allowed transfor-
mations to unimodular transformations, he took one of these parts as the new
candidate for the left-hand side of the field equations and explored it on the following
pages. The object returned in the field equations published in the first of Einstein’s
four communications to the Berlin Academy of November 1915.277 We therefore call
it the November tensor.

The November tensor still contains terms with second-order derivatives of the
metric in addition to a core-operator term. On p. 22R, Einstein imposed the Hertz
restriction to eliminate those terms (see secs. 5.5.2–5.5.3). This coordinate restriction
would return as the coordinate condition (in the modern sense) for the November ten-
sor in (Einstein 1915a). The advantage of the Hertz restriction is that it serves two pur-
poses. It can be used to eliminate unwanted terms with second-order derivatives of the
metric, and it ensures that the divergence of the matter stress-energy tensor vanishes
in a weak-field approximation (see p. 19R). On p. 19R, Einstein had been forced to
introduce two separate conditions for these two purposes—the harmonic restriction
and the Hertz restriction. The introduction of the Einstein tensor on p. 20L can be seen
as an attempt to eliminate the Hertz restriction. The introduction of the November ten-
sor can likewise be seen as an attempt to eliminate the harmonic restriction.

The expression extracted from the November tensor with the Hertz restriction con-
tains a large number of terms quadratic in first-order derivatives of the metric. On
p. 23L, Einstein added a further addition to eliminate most of these terms. He went
back to the original form of the November tensor in terms of the Christoffel symbols
and imposed a coordinate restriction with which he could eliminate two of the three
terms of the Christoffel symbols. This coordinate restriction is to unimodular transfor-
mations under which an expression that we call the -expression transforms as a ten-
sor. We call this restriction the -restriction. Einstein discovered that the -
restriction not only eliminates many terms with first-order derivatives of the metric but
that it also takes care of the unwanted second-order derivatives that he had eliminated
earlier with the Hertz restriction. Einstein thus lifted the Hertz restriction and kept only
the -restriction (p. 23L; discussed in sec. 5.5.4). He began to investigate which non-
autonomous transformations are allowed by the -restriction. In the end, he aban-

275 Einstein checked and confirmed this expectation once more in 1915 (see footnote 270). He only re-
alized that a weak static field need not be represented by a spatially flat metric when he calculated the
perihelion motion of Mercury in (Einstein 1915c).

276 For discussion, see “Untying the Knot …” secs. 5–6 (in this volume).
277 (Einstein 1915a).
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doned the -restriction because it does not allow transformation to rotating frames in
Minkowski spacetime (pp. 23R–24L, 42L–43L; discussed in secs. 5.5.5–5.5.9).

5.5.1  Extracting the November Tensor from the Ricci Tensor (22R)

At the top of p. 22R, Einstein wrote down the covariant form of the Ricci tensor in the
form278

.   (540)  

Contrary to the expressions for the Riemann and Ricci tensors earlier in the notebook,
equation (540) is written entirely in terms of Christoffel symbols rather than in terms
of the metric tensor and its derivatives. Apparently, it was Marcel Grossmann, whose
name appears at the top of the page, who suggested this expression to Einstein. Gross-
mann may also have suggested some of the further manipulations of this expression
on p. 22R. Recall that Grossmann’s name was also written next to the first occurrence
of the Riemann tensor in the notebook on p. 14L. 

Two of the four terms in this new expression for the Ricci tensor can be combined
to form a quantity that can easily be seen to be a tensor under unimodular transforma-
tions. Under unimodular transformations the determinant  of the metric transforms
as a scalar. Hence,  also transforms as a scalar under such transformations, and
the ordinary derivative of this quantity as a vector. Einstein denoted this vector by 
and wrote that “if  is a scalar, then [...]  a tensor of first rank” (“Wenn  ein
Skalar ist, dann

  (541)  

Tensor 1. Ranges.”).279 Using the relation

,   (542)  

one can identify two of the four terms of the Ricci tensor as the covariant derivative
of the vector . Einstein regrouped the terms in equation (540) accordingly,

278 The summation should be over  and  rather than over  and .
279 Note that this is probably the first time that vectors are called “tensors of first rank” (also note that

this is all in the context of unimodular transformation only). In (Budde 1914), the generalization of
tensors to arbitrary dimension and rank was credited to Grossmann’s part of Einstein and Grossmann
1913: “Recently, Mr. Grossmann [...] has proposed a still further reaching generalization. He denotes
quantities of arbitrary rank as “tensors,” so that vectors, trivectors, and bitensors are also subsumed
under the term “tensor;” the generalization consists in extending his definitions to structures of th
rank in -dimensional space” (Budde 1914, 246). For further discussion, see the appendix to
(Norton 1992) and (Reich 1994). The term “rank” (“Rang”) appears in the notebook only on this
page. On p. 14L the fourth rank Riemann tensor was called “Ebenentensor vierter Mannigfaltigkeit.”
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.   (543)  

Under the first term in parentheses he wrote “tensor of second rank” (“Tensor 2.
Ranges”); under the second he wrote “presumed tensor of gravitation ”
(“Vermutlicher Gravitationstensor ”). Since taking the covariant derivative is a
generally-covariant operation and  is a first-rank tensor under unimodular transfor-
mations, its covariant derivative is a second-rank tensor under unimodular transforma-
tions. The second term in parentheses in equation (543), the difference between the
full generally-covariant Ricci tensor and the covariant derivative of , will therefore
also transform as a tensor under unimodular transformations. Einstein took this quan-
tity, 

  (544)  

as his new candidate for the left-hand side of the field equations. We shall refer to it
as the November tensor.

5.5.2  Extracting Field Equations from the November Tensor 
Using the Hertz Restriction (22L–R)

By imposing the Hertz restriction in addition to the unimodularity restriction, one can
reduce the November tensor to the required form of a core operator plus terms with
products of first-order derivatives of the metric. This is what Einstein confirmed on
the next two lines on p. 22R, as the first step in a “further rewriting of the tensor of
gravitation” (“Weitere Umformung des Gravitationstensors”). 

The only terms in  with second-order derivatives of the metric occur in the term
with derivatives of the Christoffel symbol. Einstein expanded this term to

,   (545)  

and then eliminated all unwanted second-order derivative terms by assuming the Hertz
restriction. “We presuppose” (“Wir setzen voraus”), he wrote, that

,   (546)  

adding that “then this [i.e., the right-hand side of equation (545)] is equal to” (“dann
ist dies gleich”):

.   (547)  
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In the notebook, the factors  in front of both terms appear above the summation
signs and were probably added later. The core-operator term in expression (547)
comes from the last term on the right-hand side of equation (545). The first two terms
in equation (545) turn into the products of first-order derivative terms in expression
(547) with the help of the Hertz restriction and the relation

.   (548)  

On the bottom half of p. 22L, we find what appears to be an earlier attempt at elim-
inating unwanted second-order derivative terms from the November tensor with the
help of the Hertz restriction. Relabeling the indices in equation (545), one can write
the first part of the November tensor as

.   (549)  

The first two terms on the right-hand side give rise to unwanted second-order deriva-
tive terms

.   (550)  

Except for the factor , this is just the expression that Einstein wrote directly
underneath the horizontal line on p. 22L. The first term in expression (550), multiplied
by a factor , can be rewritten as

.   (551)  

In the notebook, the first term, a product of first-order derivatives, is indicated only by
a dot (and an expression similar to expression (551) for the second term in equation
(550) is omitted altogether). The Hertz restriction ensures that the second term, which
can be rewritten as

,   (552)  

vanishes. As Einstein wrote directly underneath the second term in the expression
(551) in the notebook: “suffices, if  vanishes” (“Gen[ü]gt, wenn … ver-
schwindet”).

We now return to p. 22R. On the bottom half of the page, Einstein turned his atten-
tion to terms in the November tensor (544) with products of first-order derivatives of
the metric. He began by expanding the term with a product of Christoffel symbols:
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  (553)  

As in expression (547), the numerical factors were added later. In the second step, Ein-
stein used the same symmetry argument that he had used on pp. 17R and 19L (see the
discussion following expression (463)). In the following two lines, Einstein noted that
the last term can be rewritten as

  (554)  

“or” (“oder”) as

.   (555)  

Einstein also rewrote the terms with products of first-order derivatives in the first part
(547) of the November tensor. Using the relation (in modern notation)

  (556)  

and relabeling indices, one can rewrite the expression in parentheses in expression
(547) as280

  (557)  

Combining the expressions (547), (557), and (553)–(554), one arrives at 

280 This is the first time in the notebook that Einstein introduced the Christoffel symbols to replace ordi-
nary derivatives of the metric. Up to now the calculations in the notebook always proceeded by ex-
panding the Christoffel symbols and by rewriting the tensor expressions in terms of simple
derivatives of the metric instead of using the compact Christoffel symbols. Why Einstein proceeded
the other way around here is not clear, but it is tempting to speculate that it reflects a first inkling on
Einstein’s part of the importance of the Christoffel symbols in his gravitational theory.
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  (558)  

for (minus 2 times) the reduced November tensor (i.e., the November tensor in unimo-
dular coordinates satisfying the Hertz restriction). In the corresponding expression at
the bottom of p. 22R in the notebook, the second line contains some errors: above the
summation sign in front of the first two terms, Einstein added a factor ; and the
third term has  instead of .

5.5.3  Non-autonomous Transformations Leaving 
the Hertz Restriction Invariant (22L)

The field equations based on the reduced November tensor (see equation (558)) will
be covariant under those unimodular transformations that preserve the Hertz restric-
tion. On the top half of p. 22L, Einstein derived the condition for non-autonomous uni-
modular transformations leaving the Hertz restriction, and thus the corresponding
field equations, invariant.281 Note that this calculation precedes the calculations show-
ing that the Hertz restriction can be used to eliminate unwanted second-order deriva-
tive terms from the November tensor on the bottom half of p. 22L and on p. 22R.

At the top of p. 22L, Einstein began by writing the Hertz restriction in primed coor-
dinates

.   (559)  

Next to it, he wrote the determinant condition on the transformation matrix  for a
unimodular transformation

.   (560)  

These two equations can be seen as a cryptic statement of the question being addressed
on this page: given a metric field satisfying the Hertz restriction in some (unprimed)
coordinate system, what are the unimodular coordinate transformations such that the
Hertz restriction will be satisfied in the new (primed) coordinate system as well? The
answer to this question takes the form of an equation for the transformation matrix

 and its inverse . This equation involves the components of the metric field in
the unprimed system. The transformations preserving the Hertz restriction, the solu-
tions of this equation, will thus depend on which metric field one starts from in the

281 Earlier in the notebook and in a different context (see p. 10L ff.), Einstein had already investigated
this question for infinitesimal transformations (see sec. 4.5.1). The calculation on p. 22L closely fol-
lows the one on p. 10L.
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unprimed system. In other words, these transformations are examples of “non-auton-
omous transformations.”282

To find the equation for these non-autonomous transformations, Einstein trans-
formed equation (559) from - to -coordinates283

.   (561)  

Using the relation , he rewrote the left-hand side as

.   (562)  

The first term vanishes on account of the assumption that forms the starting point of
this calculation, viz. that the metric field satisfies the Hertz restriction in the unprimed
coordinates. Einstein rewrote the second term as

,   (563)  

and then, on the next line, as

.   (564)  

The first term in this last expression was familiar to Einstein from the analogous cal-
culation on p. 10L (cf. the second term in equation (234)), which may be why Einstein
underlined it. On p. 10L he had found that the vanishing of the first term is the condi-
tion for infinitesimal unimodular non-autonomous transformations preserving the
Hertz restriction. In the infinitesimal case, the second term vanishes (see footnote
148). This is probably why, on p. 22L, he wrote next to the second term in expression
(564): “vanishes if funct[ional] det[erminant] = 1.” (“verschwindet, wenn Funkt. Det.
= 1.”). For finite transformations, however, this term does not vanish, as Einstein pre-
sumably realized, for he included it in an attempt to further simplify the expression in
expression (564) on the next line. 

The first term in expression (564) can be rewritten as

;   (565)  

the second term as

282 See the discussion in sec. 4.3. Other examples of conditions for “non-autonomous transformations”
can be found on pp. 7L, 8R, 10L, and 23R.

283 The transformation matrices are defined as  and  (see equations
(119)–(120)).

x′μ xμ

pαβ ∂x ′α ∂xβ⁄= παβ ∂xβ ∂x ′α⁄=

πνi
∂

∂xi
------- pμα pνβγ αβ{ }∑ 0=

πνi pνβ δiβ=

pμα

∂γ αi

∂xi
---------- γ αβπνi

∂ pμα pνβ

∂xi
---------------------+

γ αβπνi pμα

∂ pνβ

∂xi
----------- pνβ

∂ pμα

∂xi
------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

∑

γ αi

∂ pμα

∂xi
------------∑ γ αβπνi pμα

∂ pνβ

∂xi
-----------∑+

∂
∂xi
------- γ αi pμα( ) pμα

∂γ αi

∂xi
----------–



23L–R RICCI TENSOR IN UNIMODULAR COORDINATES sec. 5.5.4

652

,   (566)  

which in turn can be rewritten as

.   (567)  

Adding expressions (565) and (567), one arrives at the expression given on the next
line in the notebook:

  (568)  

As Einstein noted, the second term vanishes (because of the Hertz restriction) and the
third term cancels with the fifth. What is left is an expression that has basically the
same structure as expression (564). On the next line, Einstein reverted to the latter.
The upshot then was that the matrix  (and its inverse ) for some unimodular
coordinate transformation from coordinates  to  must satisfy

  (569)  

to ensure that a metric field that satisfies the Hertz restriction in the -coordinates
satisfies the Hertz restriction in the -coordinates as well.

This is a rather complex condition. Examining the simpler version for infinitesimal
transformations in which case the second term in equation (569) vanishes automati-
cally, Einstein had found that it does not allow a transformation to uniformly acceler-
ated frames of reference in the important special case of Minkowski spacetime (see
pp. 10L–11L).284 He nonetheless continued to use the Hertz restriction (see p. 23L).

5.5.4  Extracting Field Equations from the November Tensor 
Using the ϑ-Restriction (23L–R)

At the bottom of p. 22R, Einstein had arrived at a candidate for the left-hand side of
the field equations extracted from the November tensor by imposing the Hertz restric-
tion (see eq. (558)). This candidate contains numerous terms with products of first-
order derivatives of the metric. Most of these terms come from the product of Chri-
stoffel symbols in the second term of the November tensor (544). On p. 23L, Einstein
returned to the expression for the November tensor in terms of Christoffel symbols
and added a new coordinate restriction to the Hertz condition with which he could
eliminate two of the three first-order derivative terms in every Christoffel symbol. In
this way he could eliminate most of terms quadratic in first-order derivative terms

284 On p. 11L, Einstein had convinced himself that the Hertz restriction does allow rotations. Rotation,
however, is also ruled out by the Hertz restriction (see sec. 4.5.2, especially equations (306)–(310)
and notes 163–164)
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found at the bottom of p. 22R. This additional coordinate restriction limits the range
of allowed coordinate transformations to those unimodular transformations under
which a quantity denoted by , which is essentially the fully symmetrized version
of , transforms as a tensor. We call this quantity the “ -expression,” the unimo-
dular transformations under which it transforms as a tensor “ -transformations,” and
the restriction to such transformations the “ -restriction.”285 Einstein’s basic strategy
on p. 23L was to subtract terms from the November tensor that by themselves trans-
form as tensors under -transformations. What was left served as Einstein’s new can-
didate for the left-hand side of the field equations. In the course of the calculations on
p. 23L, Einstein came to realize that with the -restriction he did not need the Hertz
restriction anymore to eliminate terms with unwanted second-order derivatives of the
metric. The -restriction took care of those terms all by itself. Einstein therefore
abandoned the Hertz restriction and focused on the -restriction.

On the third line of p. 23L, separated from the first two286 by a horizontal line, Ein-
stein stated the assumption that forms the starting point of the argument on this page,
viz. that the quantity287

  (570)  

“be a tensor ” (“sei Tensor ”). In other words, Einstein was interested in
transformations under which this -expression would transform according to the
transformation law for a fully covariant third-rank tensor. The next line explicitly
gives this transformation law288

.   (571)  

Einstein used the -expression to rewrite the Christoffel symbols of the first and
second kind as

285 The Hertz expression, it turns out, transforms as a vector under -transformations (see the discussion
following eq. (585)).

286 At the top of p. 23L, Einstein began an explicit transformation of the ordinary derivative of the metric:

 (  on the left-hand side should be ). The calculation breaks off

almost immediately but is taken up again on the facing page, p. 23R, in order to find the condition for

“non-autonomous transformations” under which the -expression is invariant (see sec. 5.5.5).

287 In the notebook, Einstein wrote “ ” above the last plus sign in expression (570). Above many of
the plus and minus signs in subsequent expressions on this page the opposite has been written (and,
in some cases, has been deleted again). These sign changes are related to Einstein’s consideration on
p. 25R of a variant of the -restriction, which we shall call the -restriction (see sec. 5.6.3 for dis-
cussion).

288 Note that Einstein deviates from the notation  and  typically used in the notebook for the
transformation matrices  and .
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  (572)  

and

,   (573)  

respectively. He substituted the latter expression into the November tensor (cf. equa-
tion (544)):

.   (574)  

The rationale behind the -restriction now becomes clear. Any (combination of)
term(s) in equation (574) that transforms as a tensor under -transformations can be
subtracted from the November tensor and what is left will still transform as a tensor
under -transformations. Originally, Einstein probably only meant to eliminate terms
quadratic in first-order derivatives of the metric from the November tensor. He ini-
tially expected that the Hertz restriction would still be needed to eliminate terms with
unwanted second-order derivatives. On the next line he explicitly stated the require-
ment that the Hertz expression,

,   (575)  

“be ” (“sei ”). He subsequently added the clause “is not necessary” (“ist nicht
nötig”).289

The end result of the calculation on p. 23L is:

.   (576)  

It turns out, as Einstein himself came to recognize, that there is a short-cut to get from
eq. (574), which gives the November tensor in terms of the -expression, to
eq. (576). If one sets  in eq. (574), which amounts to replacing the Christof-
fel symbols by the truncated Christoffel symbols  (see eq. (573)), one
arrives at:

289 The evidence for our assumption that this clause was indeed added later is twofold. First, the awk-
wardness of the syntax of the sentence “  be  is not necessary” (our emphasis) dis-
appears under the assumption. Second, Einstein uses the Hertz restriction in the equation immediately
following this sentence.
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,   (577)  

which is just (minus) Einstein’s expression (576).290 This shows that the -restriction
takes care of the terms with unwanted second-order derivatives in the November ten-
sor as well. Once Einstein recognized this, he presumably added the clause “is not nec-
essary” to his statement (575) of the Hertz restriction and made the necessary
corrections to the derivation of eq. (576).

In the original derivation, Einstein used the Hertz restriction in the very first step.
He introduced the quantity

  (578)  

and remarked that this “is also a tensor” (“ist ebenfalls ein Tensor”). What he meant
no doubt was: “transforms as a tensor under -transformations.” The new tensor 
differs from  by two terms:  and

.   (579)  

290 It is tempting to speculate that these considerations are related to a remark Einstein made in 1915
when he published field equations based on the November tensor. Einstein wrote that earlier he had

looked upon the quantities “  as the natural expression for the components of the gravi-

tational field although in the light of the formulae of the differential calculus, it is more natural to in-

troduce the Christoffel symbols  instead of those quantities. This was a fateful prejudice.”

(“… als den natürlichen Ausdruck für die Komponenten des Gravitationsfeldes, obwohl es im Hin-
blick auf die Formeln des absoluten Differentialkalküls näher liegt, die Christoffelschen Symbole …
statt jener Größen einzuführen. Dies war ein verhängnisvolles Vorurteil.” Einstein 1915a, 782). This
point is also emphasized in Einstein’s letter to Arnold Sommerfeld of 28 November 1915: “What
gave me the key to this solution [the Einstein field equations in their final form] was the insight that

not  but the related Christoffel symbols  should be looked upon as the natural

expression for the “components” of the gravitational field” (“Den Schlüssel zu dieser Lösung lieferte
mir die Erkenntnis, dass nicht …sondern die damit verwandten Christoffel’schen Symbole … als na-
türlichen Ausdruck für die “Komponente” des Gravitationsfeld anzusehen ist.” CPAE 8, Doc. 153).
For further discussion, see sec. 5 of “Untying the Knot …” (in this volume). 
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The first one transforms as a tensor under -transformations itself. This means that
 minus this term will still be a tensor under -transformations. The second one,

expression (579), vanishes on account of the Hertz restriction. When Einstein subse-
quently retracted the Hertz condition, he indicated that  should be included within
the scope of the derivative  in the first term on the right-hand side of equation
(578). He neglected to do so for the second term. This may simply have been an over-
sight but the fragmentary calculation at the top of p. 23R suggests that Einstein may
have realized that  itself transforms as a tensor under -transforma-
tions. So this term can also be subtracted from  and the result will still be a tensor
under -transformations.

On the next line, Einstein wrote down the covariant derivative of the -expression
contracted with 

.   (580)  

This expression will also transform as a tensor under -transformations, as Einstein
noted: “Likewise [a tensor]” (“Ebenso”). He substituted equation (573) for the Christ-
offel symbols into expression (580) and subtracted terms with products of the -
expression and the metric which are themselves tensors under -transformations. In
this way, he arrived at

,   (581)  

and noted that this would “therefore also” (“also auch”) be “a tensor” (“ein Tensor”)
under -transformations.

In modern notation, the last term in expression (581) can be rewritten as

.   (582)  

The determinant of the metric transforms as a scalar under all unimodular transforma-
tion and hence under -transformations. The derivative of its logarithm therefore
transforms as a vector under -transformations.291 As Einstein noted, the last term in
expression (581) is therefore “itself a tensor” (“an sich ein Tensor”) under -transfor-
mations. It follows that the remaining three terms in expression (581) also form a ten-
sor under -transformations. Precisely these three terms occur in the expression for

, as Einstein verified by underlining them, both in equation (578) and in expres-
sion (581), and by relabeling some of the indices in equation (578). After “subtrac-
tion” (“Subtraktion”) of these three terms from the right-hand side of equation (578)

291 On p. 22R, it was explicitly noted that this quantity transforms as a vector under unimodular transfor-
mations.

ϑ
T il

x ϑ

γ kα
∂ ∂xk⁄

∂γ kα ∂xk⁄( )ϑilα ϑ
T il

x

ϑ
ϑ

γ kα

γ kα xk∂

∂ϑilα k    i

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑρlα

k    l

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑiρα

k    α

ρ⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑilρ+ +
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

γ kα∑–

ϑ

ϑ
ϑ

γ kα xk∂

∂ϑilα γ kαγ ρβ xβ∂

∂gikϑρλα xβ∂

∂gklϑiρα xβ∂

∂gkαϑilρ+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

∑+

ϑ

gkαgρβgkα β, ϑilρ gρβ log g–( ) β, ϑilρ=

ϑ
ϑ

ϑ

ϑ
T il

xx



23L EXPLORATION OF THE RIEMANN TENSOR  sec. 5.5.4

657

and changing the minus signs in front of the two remaining terms to plus signs, he
arrived at

  (583)  

and noted that this still “is a tensor” (“ist Tensor”) under -transformations. The com-
bination of the Hertz restriction and the -restriction thus allowed Einstein to extract
from the November tensor a candidate for the left-hand side of the field equations that
has a remarkably simple form. It is the sum of a core-operator term and a term with a
product of first-order derivatives.

It is probably at this point that Einstein noticed the short-cut from eq. (574) to
expression (576). Expression (583) only differs from the latter in that  in the first
term is not included within the scope of . Einstein marked this term to indicate
that  should be included within the scope of . He did the same with the first
term on the right-hand side of eq. (578), which is the starting point of the argument
that got him from the November tensor to the new candidate for the left-hand side of
the field equations (583). This amounts to rescinding the Hertz restriction, which
explains why Einstein wrote “is not necessary” next to statement (575) of this restric-
tion. The unwanted second-order derivatives that he had eliminated on p. 22R by
imposing the Hertz restriction were absorbed into expression (580) for the covariant
derivative of the -expression and subtracted from the November tensor. By includ-
ing  within the scope of  in eq. (583), Einstein had thus extracted the fol-
lowing candidate for the left-hand side of the field equations by imposing the -
restriction alone:

.   (584)  

Without the Hertz restriction, expression (584) inherits one more term involving
the -expression from eq. (574), namely  (cf. the discussion follow-
ing expression (579)). It turns out, however, that this term is a tensor under -trans-
formations itself, so that expression (584) without this term is still a tensor under -
transformations.292

That —and consequently —are indeed tensors under
-transformations can be seen as follows. Consider the contraction of  and :

292 Note that this correction term would only give rise to terms with products of first-order derivatives of
the metric anyway, and hence would not affect the result that the -restriction can be used to elimi-
nate unwanted second-order derivative terms.
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  (585)  

Hence,  is the difference between two expressions,  and ,
that are both tensors under -transformations. It is therefore a tensor under -trans-
formations itself. It follows that  is a tensor under -transformations as well,
which is the result that we wanted to prove.

Einstein may in fact have gone through a similar calculation. This is suggested by
the calculation at the top of p. 23R, where he wrote down the right-hand side of the
first line of equation (585),

,   (586)  

as well as the terms , , and , which are all involved in the

calculation given in equation (585).293

 To conclude our discussion of p. 23L, we want to emphasize that the calculation
on this page nicely illustrates the usage of coordinate restrictions as opposed to coor-
dinate conditions in the notebook. Thinking in terms of coordinate conditions, one
would look upon expression (584) as representing the left-hand side of some candidate
field equations of broad covariance in coordinates satisfying the -restriction chosen
to facilitate comparison with Newtonian theory. It is not at all clear, however, whether
expression (584) actually is the representation of some tensor of broader covariance
in the class of coordinate systems determined by the -restriction. It can be seen as
the November tensor in coordinates such that the -expression vanishes, as follows
from the short-cut from equation (574) to equation (576). But the -restriction only
requires that the -expression transform as a tensor, not that it vanish. 

Given that Einstein conceived of the restriction to -transformations as an essen-
tial feature of the theory and not as a feature of a particular representation of the the-
ory, it was of no real interest to him to find the tensor of broader covariance
corresponding to expression (584). The relation between expression (584) and tensors
of broader covariance, such as the November tensor or the Ricci tensor, is important
only in that it allowed Einstein to construct field equations that are invariant under a
precisely defined class of coordinate transformations. It is important to keep in mind

293 Another possibility is that this calculation was related to the investigation of a modified -expression
on p. 43LA (cf. footnote 313).
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that for Einstein this construction gave field equations, or candidate field equations, in
their most general form, not just an expression of field equations of broader covariance
in some restricted class of coordinate systems.

5.5.5  Non-autonomous Transformations Leaving the ϑ-Expression Invariant (23R)

With the exception of the first few lines, which we tentatively identified as a fragmen-
tary version of the calculation given in equation (585), the purpose of the calculations
on p. 23R is to derive the condition for infinitesimal “non-autonomous transforma-
tions” leaving the -expression and thereby the field equations based on expression
(584) invariant. As in the case of the corresponding condition for the Hertz restriction
(see p. 22L and the discussion in sec. 5.5.3), this condition takes the form of an equa-
tion for the transformation matrices  and  involving the components of the
metric field in the original coordinate system.294

After drawing a horizontal line under the fragmentary calculation at the top of the
page, Einstein first derived the condition for non-autonomous transformations under
which derivatives of the metric transform as tensors.295 Adding three such equations
with cyclically permuted indices, Einstein then derived the corresponding condition
for the -expression. 

He began by writing down how derivatives of the metric transform under an arbi-
trary transformation from unprimed to primed coordinates:296

.   (587)  

If  is transformed back to the unprimed system on the assumption that the
coordinate transformation relating the two coordinate systems is no longer arbitrary
but one under which derivatives of the metric actually transform as tensors, one finds

  (588)  

where in the second step equation (587) was used, which is valid for arbitrary trans-
formations. Einstein’s own description of the transition from equation (587) to the

294 Although Einstein presumably was interested only in unimodular transformations preserving the -
expression, he did not explicitly impose the condition  on the determinant of the
transformation matrices, as he had on p. 22L in the case of the Hertz restriction (see equation (560)).

295 This condition can also be found on p. 8R (see equation (169)).
296 The transformation matrices are defined as  and  (see equations

(119)–(120)). Essentially the same equation had been written down on top of p. 23L, which suggests
that Einstein began to examine the transformation properties of the -expression before he extracted
eq (583) from the November tensor with the help of the -restriction.
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expression on second line of equation (588) is more cryptic: “transformed back 
 ” (“zurück transformiert   ”).

On the next line, following the comment “in detail” (“ausführlich”), the expression
on the second line of equation (588) is expanded. The relation  is used to
simplify the resulting three terms

.   (589)  

“For infinitesimal transformations” (“Für infinitesimale Transformationen”), one can
replace  in the last two terms by . If in addition the summation indices are rela-
beled, expression (589) reduces to

.   (590)  

Substituting this result into equation (588), one arrives at

.   (591)  

It follows that derivatives of the metric transform as tensors under infinitesimal non-
autonomous transformations if and only if the last two terms in equation (591) vanish,
i.e., if and only if the matrix  for such a transformation satisfies the equation

  (592)  

for the metric field under consideration.
Since  is essentially the symmetrized version of , one can derive

the condition for infinitesimal non-autonomous transformations under which 
transforms as a tensor by adding equation (591) and the two equations obtained from
it through cyclic permutation of its indices,

  (593)  

As Einstein put it: “Through addition [of the various terms coming] from all three
terms [of ] one obtains” (“Durch Addition aus allen drei Termen erhält man”)
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  (594)  

Einstein only wrote down the right-hand side of this equation, left out the factor 
in front of the expression in square brackets, and only indicated the last two terms in
this expression by a dot. For infinitesimal transformations one can use that297

,   (595)  

in which case the right-hand side of equation (594) reduces to

.   (596)  

In the notebook, because of the factor  omitted in equation (594), there is an extra
factor  in front of the expression in square brackets.

It follows that the condition for infinitesimal non-autonomous transformations
under which the -expression transforms as a tensor is that “the [expression in
square] brackets [in expression (596)] should vanish for all combinations of ”
(“Die Klammer soll für alle Kombinationen von  verschwinden”). In other words,
the matrix  for (the inverse of) such transformations should satisfy the equation

  (597)  

for the metric field under consideration. The field equations extracted from the
November tensor with the help of the -restriction will be invariant under all (non-
autonomous) coordinate transformations that satisfy this condition.

5.5.6  Solving the ϑ-Equation (42L–R)

No attempt is made in the notebook to find solutions of the condition for infinitesimal
non-autonomous -transformations given in equation (597). Einstein adopted a

297 For infinitesimal transformations, one has . Using the definition of 

and changing the order of differentiation, one can then write:

. 

Earlier in the notebook, Einstein had already (implicitly) used a very similar relation (see p. 10L and
footnote 148).
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somewhat different approach to get a sense of the range of transformations allowed by
the -restriction. It is clear upon inspection of its definition (570) that the -expres-
sion vanishes for the Minkowski metric in its standard diagonal form. Any -trans-
formation will preserve the vanishing of the -expression. Hence, if transformations
to accelerated frames of reference in Minkowski spacetime are -transformations, the

-expression should also vanish for the Minkowski metric expressed in the coordi-
nates of such accelerated frames. On p. 42L, toward the end of the part starting from
the other end of the notebook, Einstein set himself the task of finding the most general
form of the metric field  satisfying the equation , imposing the addi-
tional constraints that the metric be time-independent and that its determinant be equal
to unity and suppressing one spatial dimension. Given Einstein’s heuristic principles,
the general solution should include the Minkowski metric in (uniformly) rotating
coordinates. Unfortunately, this turns out not to be the case. What Einstein discovered
instead (at the top of p. 42R), is that one does obtain a solution if one simply inter-
changes the covariant and contravariant components of the rotation metric. We shall
call this solution the “ -metric.” 

Einstein tried to come to terms with this tantalizing result in various ways. One
approach was to derive the equations of motion for a particle moving in a gravitational
field described by the -metric and to identify the various components of the -met-
ric occurring in these equations in terms of inertial forces in rotating frames of refer-
ence just as one would for the ordinary Minkowski metric in rotating coordinates.
Einstein made two attempts along these lines. In one case, he derived the equations of
motion as the Euler-Lagrange equations for the Lagrangian of a particle moving in a
metric field (calculations at the bottom of pp. 42R and 43LA; discussed in sec. 5.5.7).
In the other, he derived the equations of motion from the energy-momentum balance
between matter and gravitational field (p. 24L; discussed in sec. 5.5.9). Neither calcu-
lation produced a satisfactory result. Neither did a somewhat different approach which
Einstein tried at the top of p. 43LA (discussed in sec. 5.5.8). He replaced the covariant
components of the metric in the -expression by contravariant ones, ensuring that the
new expression vanishes for the rotation metric without interchanging its co- and con-
travariant components. Einstein discovered, however, that the modified -expression
could not be used to eliminate terms with unwanted second-order derivatives of the
metric from the November tensor. Moreover, the new expression is mathematically
ill-defined. In the end, Einstein was thus forced to give up the -restriction and the
promising candidate (584) for the left-hand side of the field equations constructed with
the help of it.

The precise temporal order of the calculations on pp. 23L–24L at one end of the
notebook and on pp. 42L–43L at the other remains unclear. There are various indica-
tions that Einstein switched back and forth between these two sets of pages. As we
already noted, for instance, attempts to interpret the -metric in terms of inertial
forces in rotating frames of reference can be found both on p. 42R–43L and on
p. 24L.298 Several questions remain. Had Einstein already encountered the -expres-
sion in some other context when he used it on p. 23L to extract field equations from

ϑ ϑ
ϑ

ϑ
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ϑ
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the November tensor? If so, it would explain why Einstein’s solution of the equation
 occurs in a different part of the notebook. It would, however, also raise the

question why Einstein originally got interested in the -expression. If the calculation
on p. 23L preceded the one on p. 42R,299 this question does not arise, but in that case
it is unclear why Einstein turned over the notebook for the calculation on p. 42R
instead of simply continuing his entries on p. 24L ff. Given these uncertainties, it is
important to emphasize that the order in which we present these calculations may not
fully reflect their temporal order.

After these introductory and cautionary remarks, we turn to the actual calculation
on p. 42L. At the top of the page,300 Einstein wrote down the components of the metric
suppressing one spatial dimension301

  (598)  

Einstein then set out to find the most general time-independent solution of a set of lin-
ear first-order coupled differential equations for this metric field. In modern notation,
this set of equations can be written as

,   (599)  

where the indices can take on the values , , and . Although the -expression is
not explicitly mentioned on pp. 42L–43L, equation (599) can also be written as (cf.
expression (570))

.   (600)  

On p. 42R, Einstein explicitly imposed the additional constraint that the determinant
of the metric be equal to unity. This condition was probably part of the original prob-

298 A possible further connection between these two attempts to interpret the -metric in terms of iner-
tial forces in rotating frames of reference is the derivation on p. 43LB of the equation of motion for a
point mass moving in a metric field from the vanishing of the covariant divergence of the stress-en-
ergy tensor for pressureless dust (see sec. 5.5.10)

299 The occurrence in a calculation on p. 43LA of Christoffel symbols, which are otherwise absent from
the part that starts from the back of the notebook, suggests that at least this calculation is later than
pp. 23L–R (cf. footnote 317).

300 In the top-left corner, Einstein wrote the six independent components of this metric field arranging
them in a somewhat peculiar way. The reason behind this is unclear.

301 Underneath the 44-component, he wrote “0,” which suggests that Einstein assumed the -compo-
nent to vanish. This is puzzling but would be consistent with the expression written right next to the
metric (598) for the determinant of the metric. Perhaps, the components of (598) refer to small devi-
ations of the metric from the flat Minkowski metric . This interpretation would be
consistent with most of the rest of the calculation on this page, though not with the calculation of the
determinant of the metric right next to (598).
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lem that Einstein set himself on p. 42L, as is suggested by the fact that in the top right
corner there is an expression for the determinant of the metric (598),302 

  (601)  

Einstein then listed the index-combinations for all independent components of the set
of differential equations in equation (599)

,   (602)  

He explicitly wrote down the equations corresponding to these index-combinations,
with the exception of the last one, a clear indication that Einstein was interested only
in time-independent solutions. The equations are grouped together as follows. First,
Einstein gave the  and  components of equation (599), i.e., in modern nota-
tion,

,   (603)  

.   (604)  

He then gave the components with two indices equal to , followed by the ones with
one index equal to . In the first four of these equations, he included but then deleted
terms with derivatives with respect to . In the fifth, he omitted this term altogether.
Einstein thus arrived at

,   (605)  

,   (606)  

,   (607)  

,   (608)  

.   (609)  

Finally, he wrote down the  and  components of equation (599),

,   (610)  

.   (611)  

From equations (603) and (604) it follows that  can only be a function of  and
that  can only be a function of . Einstein thus wrote

302 Einstein either did not finish the calculation or he set  equal to zero as he indicated in (598) (cf.
footnote 301).
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,   (612)  

.   (613)  

Substituting these expressions for  and  into equations (610) and (611), he
obtained

,   (614)  

.   (615)  

From these last two equations it follows that  has to be linear both in  and .
Terms in  of second-order or higher in  would make  dependent on ,
which is contrary to equation (614); terms of second-order or higher in  would like-
wise make  dependent on , which is contrary to equation (615). Hence, 
has to be of the form

,   (616)  

where , , , and  are arbitrary constants. Inserting equation (616) into equa-
tions (614) and (615), Einstein found

,   (617)  

  (618)  

Integrating these equations and substituting the results into equations (612) and (613),
Einstein found303

,   (619)  

.   (620)  

Expressions for the components  and  can be found in a similar way. From
equations (607) and (608) it follows that  and  can be written as

,   (621)  

,   (622)  

where we introduced the notation  and  to distinguish these functions from the
functions  and  above. In the notebook, no such distinction is made. Inserting
equations (621) and (622) into equation (609), one finds that

,   (623)  

303 The constants  and  in these equations probably only got these designations after the introduc-
tion of the constants  and  in the expressions for  and , which occur immediately below
equations (619)–(620) in the notebook (cf. equations (626)–(627) below).
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which allows the separation

,   (624)  

,   (625)  

where  is a constant. The notebook has  rather than  at this point, but in subse-
quent equations Einstein renamed this constant , presumably to avoid confusion
with the constant  introduced in equation (616). Integrating equations (624) and
(625) and substituting the results into equations (621) and (622), one finds

,   (626)  

.   (627)  

An expression for  was not explicitly given in the notebook, but from equations
(605) and (606) it immediately follows that  has to be a constant.

The most general solution of the equations , under the additional con-
straint that , is thus given by (cf. equations (616), (619)–(620), and (626)–
(627))304

  (628)  

At the bottom of p. 42L Einstein drew a figure indicating rotation around the -
axis. The relation between the calculation on p. 42L and rotation becomes clear on the
next page.

At the top of page 42R Einstein wrote down a metric—or a “ -system” (“ -
Schema”) as he called it here—which is obtained from equation (628) by setting the
integration constants , , , , and  equal to zero,  and

305

.   (629)  

304 The general solution for the 2+1-dimensional case can trivially be turned into a particular solution for
the 3+1-dimensional case by adding 

305 If  represents small deviations from a flat Minkowski metric (cf. footnote 301), one needs to set
 and  instead.
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This is the solution of the equation  that we shall refer to as the -metric.
Einstein now imposed the condition that the determinant  of this metric be equal to
unity. For  he wrote306

  (630)  

Next to this equation, Einstein wrote down the condition that this determinant be equal
to unity,

.   (631)  

Using this relation between  and , he inverted the metric in equation (629) and
wrote down the result,

.   (632)  

which he denoted by , next to “ -system” at the top of the page. As Einstein noted
in a comment that he wrote next to these expressions of the -metric in its covariant
and contravariant form, “the system of the ’s for a rotating body [is] identical to the

-system given here” (“Schema der  für rotierenden Körper mit nebenstehendem -
Schema identisch”). This is an intriguing result. The -restriction does not allow the
Minkowski metric in rotating coordinates, but it does allow the -metric, which is
closely related to it. Is that enough to satisfy Einstein’s heuristic requirements? Can
the -restriction be modified in such a way that it does allow the rotation metric with-
out the need to switch its co- and contravariant components? These are the questions
that are behind the calculations on pp. 42R, 43LA, and 24L that will be discussed in
secs. 5.5.7–5.5.10.

Before Einstein began his closer examination of the -metric, he briefly consid-
ered another special case of equation (628). He drew a horizontal line and wrote the
non-vanishing components of the metric

306 With the help of the fully anti-symmetric Levi-Civita tensor —which is equal to  for every even
permutation of , ,  (or, rather,  in this case), equal to  for every odd permutation, and equal
to  otherwise—the determinant  can be written as . The three terms on the
first line of equation (630) correspond to the even permutations , , and ; the three terms
on the second line to the odd permutations , , . This way of evaluating the determinant
is known as Sarrus’ rule.
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  (633)  

This metric is obtained from equation (628) by setting the integration constants ,
, , , and  equal to zero, setting  and .307 This solu-

tion, however, does not satisfy one of Einstein’s additional constraints. As he wrote
next to the metric (633), “the determinant [of this metric field] is not ”
(“Determinante ist nicht ”). Einstein then drew another horizontal line and began his
closer examination of the tantalizing -metric of equations (629) and (632).

5.5.7  Reconciling the ϑ-Metric and Rotation (I): Identifying Coriolis 
and Centrifugal Forces in the Geodesic Equation (42R, 43LA)

On the bottom half of p. 42R, under the second horizontal line, Einstein first gave a
short derivation, similar to the one he gave on pp. 12L–R (see sec. 4.5.6), of the
Minkowski metric in rotating coordinates. As in the derivation of the -metric, with
which he wanted to compare the rotation metric, he suppressed one of the spatial
dimensions.

Consider a Cartesian coordinate system  in -dimensional
Minkowski spacetime which is rotating clockwise with angular frequency  with
respect to another Cartesian coordinate system  in which the metric
has its usual diagonal form:

.   (634)  

In this equation, ,  (in accordance with Einstein’s con-
ventions at this point), and the components of  are 
( ). The relation between the velocity with respect to the non-rotating frame
and the velocity  with respect to the rotating frame is given by (cf. equation (352)):

,   (635)  

where  is the cross-product of the vectors  (  because the
rotation is clockwise) and  in three dimensions. Taking the square of
equation (635), one finds that

  (636)  

The expressions following the equality signs in equation (636) are actually the only
ones Einstein explicitly wrote down before giving the matrix for the rotation metric.

307 Again, this metric could be obtained by setting  and  in the case that the 
were deviations. Taken together both special cases exhaust the general solution (up to constants).
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As we mentioned above, he had gone through essentially the same derivation on
pp. 12L–R. Inserting equation (636) along with  into equation (634), one
finds that the Minkowski line element in rotating coordinates is given by

,   (637)  

from which one can read off the components of the metric,

.   (638)  

Einstein read off the components of the metric from the last line of equation (636),
which is probably why he omitted the term  in . As on pp. 12L–R, he also ended
up with additional factors of  in  and .308 When the constant  in equation
(629) is set equal to the angular frequency  (in which case  according to
equation (631)), the contravariant form of the -metric does indeed turn into the
covariant form of the rotation metric in equation (638), as was noted in the top-right
corner of p. 42R.309

As he had done earlier when he was faced with the conflict between the modified
weak-field equations of p. 21R and the static metric (see the discussion in sec. 5.4.4),
Einstein turned to particle dynamics to see whether his mathematical results could be
given a physically sensible interpretation. In this case, he apparently wanted to check
whether the components of the -metric and their derivatives can be given the same
sort of physical interpretation in terms of inertial forces as the components of the usual
rotation metric and their derivatives. Although the relevant calculations—at the bot-
tom of p. 42R and again at the bottom of p. 43LA—break off after just a few lines, it
seems to be clear that this was their purpose.

Einstein inserted the -metric in its covariant form (see equation (629)) into the
Lagrangian 

  (639)  

for a point mass moving in a given metric field. The result is that

  (640)  

Einstein then wrote down the variational principle

308 Einstein made the same mistake on pp. 12L–R (see footnote 176) and in the Einstein-Besso manu-
script (CPAE 4, Doc. 14, pp. [41–42]).

309 The two equations are still not completely identical because Einstein wrote the flat Minkowski metric
as  in equation (629) and as  in equation (638).
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,   (641)  

and went through a quick derivation of the -component of the corresponding Euler-
Lagrange equations, writing

,310   (642)  

which, upon partial integration, gives

.   (643)  

Einstein now began to compute the first term of this Euler-Lagrange equation for the
Lagrangian in equation (640). The derivative of  with respect to  is given by

.   (644)  

In the notebook, there is a deleted factor of  in front of all three terms in the numer-
ator and the denominator was indicated only by a square root sign. On the next line,
Einstein took the time derivative of equation (644) in its uncorrected form

,   (645)  

i.e., with the extra factors of  and without the denominator. On the last line of p. 42R,
Einstein wrote down the second term of the Euler-Lagrange equation (643) as well,
but did not actually evaluate it for the Lagrangian under consideration. The inclusion
of the denominator in equation (644), which Einstein had originally omitted, consid-
erably complicates the Euler-Lagrange equations, which may well be why Einstein
gave up on this calculation, at least for the time being.

At the top of the next page, p. 43LA, he tried to resolve the apparent conflict
between the -metric and the rotation metric in a different manner (to be discussed in
sec. 5.5.8). This new approach, however, turned out not to be viable, and at the bottom
of p. 43LA Einstein briefly returned to the approach he had abandoned at the bottom
of p. 42R.

Under the heading “dynamics in a symmetric static rotational field” (“Dynamik im
symmetrischen statischen Rotationsfeld”), Einstein once again considered the motion
of a point mass in the -metric. The reason he explicitly referred to this case as “sym-
metric” and “static” may have been that the -metric is a time-independent solution
of an equation in which the fully symmetrized derivative of the metric is set equal to
zero (see equation (599)). Using the relation , which ensures that the
determinant of the -metric is equal to unity (see equation (631)), Einstein was able
to write the Lagrangian  of equation (640) more compactly as311

310 In the notebook the differential  was omitted.
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  (646)  

However, he only wrote down one term of the Euler-Lagrange equations,

,   (647)  

before once again breaking off this calculation. This attempt to give physical meaning
to the -metric thus remained inconclusive. On p. 24L, Einstein made another
attempt along these lines (see sec. 5.5.9), but first we shall discuss the calculation at
the top of p. 43LA.

5.5.8  Reconciling the ϑ-Metric and Rotation (II): Trying to Construct 
a Contravariant Version of the ϑ-Expression (43LA)

At the top of p. 43LA,312 Einstein introduced a variant of the -expression introduced
on p. 23L, replacing covariant components of the metric by contravariant ones.313

Since the original -expression vanishes for the -metric, i.e., the rotation metric
with its co- and contravariant components switched, this modified -expression van-
ishes for the rotation metric itself. The modified -restriction, i.e., the restriction to
unimodular transformations under which the modified -expression transforms as a
tensor, thus allows transformations to rotating coordinates in the important special
case of Minkowski spacetime. However, Einstein found that, unlike the original -
restriction, the modified -restriction could not be used to eliminate terms with
unwanted second-order derivatives of the metric from the November tensor. At that
point, he abandoned the modified -expression. He may also have come to realize
that the expression is mathematically ill-defined (because of the way in which it mixes
co- and contravariant components).

At the top of the page Einstein wrote down the expression

.   (648)  

311 In the notebook, the last term of the first line has  instead of .
312 This is the last page of the part that starts from the back of the notebook (pp. 32L–43L). It contains

entries starting from the top and from the bottom of the page (transcribed as 43LA and 43LB respec-
tively), thus suggesting that this is the place where the two parts of the notebook meet. There are,
however, six blank pages between p. 43L and p. 31L, the last page of the part that starts from the front
of the notebook. The calculation that starts from the bottom of p. 43L is also not a continuation of
p. 31L. In this brief calculation, Einstein derived the equation of motion of a particle in a metric field
by integrating the energy-momentum balance between matter and gravitational field over the volume
of the particle (for discussion see sec. 5.5.10). 

313 The fragmentary calculation at the top of p. 23R could be related to the investigation of the modified
-expression on this page (cf. the discussion following equation (585) in sec. 5.5.4 for a different

interpretation of this calculation).
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The expression in parentheses is obtained (down to the labeling of the indices) by sub-
stituting  for  in definition (570) of the -expression. Farther down on the
page, Einstein introduced the quantity  which appears to be defined as (
times) this expression

.   (649)  

Given the convention in the notebook of using Greek and Latin characters to denote
covariant and contravariant quantities, respectively,314 the notation indicates that

 is a contravariant version of . Solutions of the equation  are
obtained simply by interchanging co- and contravariant components in solutions of

. Since the -metric is a solution of  (see equations (629) and
(632)), the rotating metric is a solution of . The quantity , however, is
mathematically ill-defined. Covariant indices in one term occur as contravariant ones
in another, and there are summations over pairs of covariant indices. Next to expres-
sion (648), Einstein nonetheless wrote “Tensor,” presumably to indicate that he
wanted to consider a variant of the -restriction, i.e., a restriction to (unimodular)
transformations under which  transforms as a tensor.315

At the beginning of the calculation on p. 23L, the -expression was used to
rewrite the Christoffel symbols (see equations (572)–(573)). If , the “contravari-
ant” version of the -expression, is going to be used in a similar manner, one first
needs to lower its indices. Einstein indeed wrote down the expression

,   (650)  

which again is mathematically ill-defined, and wrote next to it that this is a covariant
or “plane tensor” (“Ebenentensor”316). Einstein rewrote this expression in such a way
that, just as the Christoffel symbols, it contains only derivatives of the covariant com-
ponents of the metric

314 Cf., e.g., on p. 24L where  and  represent the stress-energy tensor for matter in its contravar-
iant and covariant form, respectively. Note that this convention is just the opposite of the one adopted
in (Einstein and Grossmann 1913), where all contravariant quantities are indicated by Greek and all
covariant ones by Latin characters.

315 Unfortunately, this interpretation does not explain why, as Einstein noted on the next line, (minus)

the ill-defined second term of (648), , should be a vector. Maybe Einstein meant (minus)

the unproblematic first term, , which is equal to  and hence a vector under all

unimodular transformations.
316 The term “Ebenentensor” also appears on pp. 17L, 17R, 19L, and 24R. The term “Ebenenvektor” ap-

pears on p. 13L. Cf. the discussion of this terminology following equation (453) above. 
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.   (651)  

He then checked whether this modified -expression can be used to eliminate terms
with unwanted second-order derivatives of the metric from the November tensor. He
began by writing down the term in the November tensor containing second-order
derivatives317 (cf. equation (544))318

.   (652)  

Using the definition of the Christoffel symbol, he rewrote this term as319

.   (653)  

Einstein deleted this expression and made a fresh start on the next line, writing the
expression in parentheses in expression (652) as320

.   (654)  

If this expression is inserted into expression (652), the first two terms give rise to
unwanted second-order derivatives of the metric. Following the strategy on p. 23L,
one could try to eliminate these terms by absorbing them into a quantity involving

, transforming as a tensor under transformations under which  itself trans-
forms as a tensor. One can then subtract this quantity from the November tensor with-
out losing invariance under this restricted class of transformations. This appears to be
the rationale behind the last two lines of this calculation. First, Einstein underlined the
first two terms in expression (654) and rewrote them as

317 This is the first and only occurrence of the Christoffel symbol in the part that starts from the end of
the notebook. In the part that starts from the beginning of the notebook, the Christoffel symbols are
first introduced on p. 14L.

318 The notebook originally had  instead of .
319 In the notebook, the Christoffel symbol is indicated only by square brackets and is multiplied by

 instead of . The first two occurrences of the index  in the second term were originally

’s.

320 Einstein at this point changed his notation for one of the summation indices in expression (652) from
 to .
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.   (655)  

Underneath this expression he wrote321

,   (656)  

On the assumption that Einstein did indeed define  as in equation (649), this last
expression is equal to , which is part of the first term in expression (655).
At this point, it apparently became clear to Einstein that the modified -expression
could not be used to eliminate unwanted second-order derivative terms from the
November tensor. Einstein may also have come to realize that  is mathematically
ill-defined. In any case, Einstein abandoned this attempt to modify the -restriction
to ensure that it would include transformations to rotating coordinates in Minkowski
spacetime. As was already discussed at the end of sec. 5.5.7, he briefly returned to the
approach he had tried on p. 42R before giving up on that approach as well.

5.5.9  Reconciling the ϑ-Metric and Rotation (III): Identifying the 
Centrifugal Force in the Energy-Momentum Balance (24L)

On p. 24L, Einstein made yet another attempt to give physical meaning to the compo-
nents of the -metric. He checked whether the force on a particle at rest in the grav-
itational field described by the -metric can be interpreted as the centrifugal force on
a particle at rest in a rotating frame of reference. This strategy is similar to the one
behind the aborted calculations at the bottom of pp. 42R and 43LA (see sec. 5.5.7).
The new element is that in order to find the equations of motion and the expression for
the force on the particle Einstein now substituted the -metric into the energy-
momentum balance between matter and gravitational field rather than into the
Lagrangian for a point particle in a metric field.

The energy-momentum balance can be written as the vanishing of the covariant
divergence of either the contravariant or the covariant stress-energy tensor. If the
Minkowski metric in rotating coordinates is inserted into the equation which sets the
covariant divergence of the contravariant stress-energy tensor equal to zero, one
readily establishes that a term, which can be interpreted as the force on a particle at
rest in this coordinate system, is equal to the usual centrifugal force (plus correction
terms of higher order in the angular frequency of the rotating coordinate system).
What Einstein tried to do on p. 24L was to check whether one can establish an analo-
gous result if the -metric, i.e., the rotation metric with its co- and contravariant com-
ponents switched, is inserted into the equation which sets the covariant divergence of
the covariant stress-energy tensor equal to zero. The result of Einstein’s calculation

321 In the notebook, the quantity  was actually written as . It is unclear what the letter ‘c’ stands
for.
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on p. 24L suggests that one can. The calculation, however, is in error. If the errors are
corrected, one sees that one cannot.

At the top of p. 24L, Einstein wrote down an equation which expresses the vanish-
ing of the contravariant stress-energy tensor, denoted by ,322 in the special case
that the determinant of the metric is equal to unity,

.   (657)  

This equation is obtained (down to the numbering of the indices) from equation (71)
derived on p. 5R by setting . On p. 5R, as in several subsequent publica-
tions,323 this equation was derived as a generalization of the equations of motion that
follow from the variational principle  for one particle to a cloud of
pressureless dust described by the stress-energy tensor

,   (658)  

which is explicitly given at the top of p. 24L as well. On p. 43LB, Einstein went
through this derivation in reverse, showing that the equation of motion for one particle
can be obtained by integrating equation (657), with  given by equation (658), over
the volume of the particle. This calculation will be discussed in the next subsection
(sec. 5.5.10). Einstein could thus look upon equation (657) as giving the equation of
motion of a particle in a metric field with a determinant equal to unity. In particular,
he could look upon the second term,

,   (659)  

as giving the (density of the) force experienced by a particle in a metric field.324

Consider a particle at rest with respect to a rotating coordinate system in
Minkowski spacetime. In that case, the stress-energy tensor in equation (658) reduces
to

.   (660)  

For counterclockwise rotation around the -axis with angular frequency , the metric
is given by

322 We want to remind the reader that the convention used here to distinguish covariant and contravariant
quantities is the opposite of the one adopted in (Einstein and Grossmann 1913), where all contravar-
iant quantities are indicated by Greek and all covariant ones by Latin characters.

323 (Einstein and Grossmann 1913, sec. 4), (Einstein 1913, sec. 5).
324 The general interpretation of the second term in equation (657) is that it is “an expression for the ef-

fects which are transferred from the gravitational field to the material process [as described by the
stress-energy tensor]” (“ein Ausdruck für die Wirkungen, welche vom Schwerefelde auf den materi-
ellen Vorgang übertragen werden;” Einstein and Grossmann 1913, 11). See also the discussion of
p. 19R in sec. 5.4.2 (especially expression (482) and equation (483)).
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,   (661)  

Inserting equations (660) and (661) into the  component of expression (659)
for the force on the particle, one arrives at

,   (662)  

which, when terms of order  are neglected, is the -component of the centrifugal
force in ordinary Newtonian theory.

On p. 24L, Einstein performed a variant of this calculation starting from the van-
ishing of the covariant divergence of the covariant rather than the contravariant stress-
energy tensor. Einstein wrote the contravariant  in terms of the covariant ,

,   (663)  

and substituted this expression into to equation (657), which then turns into

.   (664)  

For the second term Einstein used the result of an auxiliary calculation which appears
next to equation (664),

.   (665)  

He then wrote down the covariant version of the stress-energy tensor for pressureless
dust in equation (658)

.   (666)  

Under the heading “Force acting on material point at rest ” (“Kraft auf ruhen-
den materiellen Punkt ”) he then wrote325

325 In the notebook only the - and the -components of  were written down.
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  (667)  

The calculation for the -metric that Einstein indicated in this manner is completely
analogous to the calculation for the rotation metric in equations (659)–(662). Einstein
interpreted the second term in equation (664), 

,   (668)  

with  given by equation (666), as the (density of the) force experienced by a par-
ticle in a metric field. Whereas expression (659) for the force density was a contraction
of the covariant metric and the contravariant stress-energy tensor, expression (668) is
a contraction of the contravariant metric and the covariant stress-energy tensor. Since
the contravariant components of the -metric are equal to the covariant components
of the rotation metric, expression (668) would give the same result for a particle at rest
in the field of the -metric as expression (659) for a particle at rest in a rotating frame
in Minkowski spacetime, if only the components of  in the former case were equal
to those of  in the latter. Contrary to what is suggested by the expression for 
in the expressions (667), however, this last condition does not hold.

For a particle at rest with respect to a given coordinate system, as Einstein explic-
itly wrote down (see the expressions (667)),

,   (669)  

and equation (666) reduces to

.   (670)  

The covariant components of the -metric are given by (cf. equation (629))326

326 In the notebook, both on p. 42R and on p. 24L, the -metric is given for the -dimensional case.
The generalization to the -dimensional case is trivial (cf. footnote 304)
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,   (671)  

the contravariant ones by (cf. equation (632))

,   (672)  

where  (see equation (631)). Taking the derivative of equation (672) with
respect to , one arrives at

.   (673)  

The notebook has  instead of  (see the expressions (667)), but this is only a minor
discrepancy. Inserting equation (671) into equation (670), however, one immediately
notices that  will be considerably more complicated in this case than

 given in the expressions (667) in the notebook. Inserting the simple
expression  and equation (673) into the  compo-
nent327 of expression (668), one arrives at

.   (674)  

which is equal to the centrifugal force in Newtonian theory if the identification
 is made. This would mean that the -metric can be interpreted in terms of

centrifugal forces just as the rotation metric (cf. equations (659)–(662)). However,
when Einstein’s expression for  is corrected, there will be additional terms which
spoil this physical interpretation of the -metric. 

It is not entirely clear what conclusion Einstein drew from his calculation on
p. 24L. It would seem that initially he felt that he could recover the correct expression
for the centrifugal force with the -metric as well as with the rotation metric. On the

327 In the notebook, the free index in the second term in equation (664) was originally  instead of .
This explain why the header above the expressions (667) in the notebook has “ ” instead of

.
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next page, however, he made a fresh start, abandoning the idea of the -restriction
that had led him to consider the -metric in the first place. This suggests that eventu-
ally Einstein came to realize that the calculation on p. 24L was in error and that his
third attempt at reconciling the -metric with his heuristic requirements concerning
rotation, like the first two (on pp. 42R–43LA), had failed.

The November tensor, like the Ricci tensor from which it was extracted under the
restriction to unimodular coordinate transformations, thus failed to yield acceptable
candidates for the left-hand side of the field equations. Einstein had found two differ-
ent coordinate restrictions, the Hertz restriction and the -restriction, with which
terms containing unwanted second-order derivatives of the metric can be eliminated
from the November tensor. He had also discovered, however, that both coordinate
restrictions rule out transformations to accelerated frames of reference in the impor-
tant special case of Minkowski spacetime.

5.5.10  Relating Attempts (I) and (III) to Reconcile the ϑ-Metric and Rotation: 
from the Energy-Momentum Balance to the Geodesic Equation (43LB)

In a brief calculation starting on p. 43LB, Einstein showed that the vanishing of the
covariant divergence of the stress-energy tensor for pressureless dust implies the equa-
tions of motion for a point particle in a metric field. On p. 5R, Einstein had proved the
converse of this implication. The derivation on p. 43LB essentially goes through this
earlier derivation in reverse.328 The calculation may be connected to Einstein’s
attempts to interpret the components of the -metric (see equation (629)) in terms of
the inertial forces of rotation. On p. 42R and p. 43LA he tried to do so starting from
the equations of motion (see sec. 5.5.7), whereas on p. 24R he started from the energy-
momentum balance between matter and gravitational field (see sec. 5.5.9). The point
of Einstein’s calculation on p. 43LB may have been to reassure himself that these two
approaches are equivalent.

The calculation starts from equation (71) of p. 5R for the special case that
:

  (675)  

(cf. equation (657) on p. 24L). Next to this equation, Einstein drew a line and wrote
 to indicate that he wanted to integrate this equation over three-dimensional

space. When the first term of the expression on the left-hand side of equation (675) is
integrated over all of space, the first three terms of the summation over  vanish on
account of Gauss’ theorem (and suitable assumptions about ), while the time

328 The same pattern can be found in (Einstein and Grossmann 1913, sec. 4). First, Einstein derives the
energy-momentum balance between matter and gravitational field from the equations of motion,
closely following the calculation on p 5R; then he mentions that the latter can be recovered from the
former by “integration over the filament of the flow” (“Integration über Stromfaden”).
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derivative in the  term commutes with taking the integral. Using  and 
for  and , respectively, Einstein could thus write the integral as:

.   (676)  

He then substituted

,   (677)  

the stress-energy tensor for pressureless dust, and the relation

  (678)  

between the volume  in the coordinates used and the rest volume
 of the particles described by . This relation follows from the rela-

tion  written to the far right of equations (675)–(676)
in the notebook. Using furthermore that the density  is non-vanishing only inside the
filament representing the flow of matter, Einstein arrived at

,   (679)  

as is indicated in the line following expression (676) in the notebook.329 The factors
 should be set equal to 1: if Einstein had not set  in going from equation

(71) to equation (675), the factors  would simply cancel at this point. Dividing by
, Einstein rewrote expression (679) as:

.   (680)  

Setting  and ,330 he rewrote this expression as

,   (681)  

and, finally, as

.   (682)  

329 In the second term, Einstein wrote  instead of .
330 The same notation is used in the Einstein-Besso manuscript on the perihelion advance of Mercury

(CPAE 4, Doc. 14, e.g., [p. 15], [eq. 105]).
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Setting this expression (with ) equal to zero, one recovers the Euler-

Lagrange equations for the Lagrangian  (see p. 5R and equation
(55)). This shows that the equations of motion of a test particle in a metric field can
indeed be derived from the energy-momentum balance between matter and gravita-
tional field.

5.6  Transition to the Entwurf Strategy (24R–25R)

On pp. 19L–23L, Einstein had extracted various candidates for the left-hand side of
the field equations from the Ricci tensor and the November tensor by imposing suit-
able coordinate restrictions. These coordinate restrictions should (a) make it possible
to eliminate all unwanted terms with second-order derivatives of the metric, (b) be
compatible with energy-momentum conservation at least in linear approximation, and
(c) minimally allow transformations to accelerated frames of reference in Minkowski
spacetime. In this way, Einstein’s heuristic requirements (the correspondence princi-
ple, the conservation principle, the equivalence principle, and the relativity principle)
would all at least to some extent be satisfied. All coordinate restrictions he had con-
sidered, however, failed on one count or another.

On p. 24R, Einstein proposed yet another candidate for the left-hand side of the
field equations. However, while the various candidates proposed on pp. 19L–23L had
been products of Einstein’s mathematical strategy, the new candidate was a product
of the physical strategy.331 Instead of extracting candidate field equations from the
Ricci tensor with various coordinate restrictions, Einstein on p. 24R generated field
equations starting from the requirement of energy-momentum conservation. That does
not mean that Einstein had now given up on the mathematical strategy altogether. The
weak-field equations he started from and the restriction to unimodular transformations
in all calculations on p. 24R strongly suggest that Einstein hoped to connect the field
equations found through considerations of energy-momentum conservation to the
November tensor. On p. 25L Einstein explicitly tried find a coordinate restriction with
which he could recover field equations found along the lines of the argument on
p. 24R from the November tensor.

At the top of p. 24R, Einstein wrote down an expression that can be identified as
the divergence of a quantity representing gravitational stress-energy density.
Although the derivation of this expression is not in the notebook, there are enough
clues to give a plausible reconstruction of how Einstein arrived at it. As he had done
for other linearized field equations on pp. 19R, 20L, and 21L, Einstein used the linear-
ized version of field equations extracted from the November tensor to rewrite, in linear
approximation, the gravitational force density as the divergence of the gravitational
stress-energy pseudo-tensor. The expression at the top of p. 24R is the result of this
calculation. 

331 See sec. 1.2 for a discussion of these two strategies.
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The gravitational stress-energy pseudo-tensor that one finds in this linear approx-
imation looks like a plausible candidate for the exact expression for this quantity. It is
understandable therefore that Einstein proceeded to look for terms that would need to
be added to the weak-field equations to make sure that the expression at the top of
p. 24R becomes exactly equal to the gravitational force density (see sec. 5.6.1). Essen-
tially the same method would give him the Entwurf field equations on pp. 26L–R and
in (Einstein and Grossmann 1913).332

Field equations constructed in this manner automatically satisfy both the corre-
spondence principle and the conservation principle. The problem is to determine
whether they are covariant under a wide enough class of coordinate transformations
to meet the requirements of the relativity and equivalence principles as well. In the
case of field equations extracted from the Ricci tensor or the November tensor with
the help of coordinate restrictions, this question can, at least in principle, be settled by
examining the transformation properties of expressions much simpler than the left-
hand side of the field equations, such as the Hertz expression or the -expression. In
the case of the field equations introduced on p. 24R, the construction of the equations
is of no help in determining their covariance properties. The construction only guar-
antees that the equations will be covariant under unimodular linear transformations
(unimodular because the determinant of the metric is set equal to unity in all calcula-
tions on p. 24R).

At the bottom of p. 24R, Einstein checked whether the rotation metric is a solution
of the new field equations. According to the first entry on p. 24R, the expression from
which they were derived vanishes for the rotation metric, a necessary condition for the
rotation metric to be a solution of the vacuum field equations. This was an encourag-
ing result—itself in error, it turns out—but Einstein discovered that the rotation metric
is in fact not a solution of his new field equations. He also discovered, however, that
he had erroneously cancelled two terms in his derivation of these equations. There
would consequently be additional terms quadratic in first-order derivatives of the met-
ric in the field equations. This in turn opened up the possibility that, once the equations
were corrected, the rotation metric would be a solution after all.

Rather than making these corrections, Einstein (on pp. 25L–R) tried to find a coor-
dinate restriction with the help of which (the corrected version of) these new field
equations could be recovered from the November tensor (see sec. 5.6.2). In other
words, he examined whether the field equations found following the physical strategy
could also be found following the mathematical strategy. At the bottom of p. 25L he
indicated which terms in the November tensor would have to be eliminated by impos-
ing a coordinate restriction and which ones preserved. At the top of p. 25R, Einstein
considered an ingenious modification of the -restriction, which we shall call the -
restriction (see sec. 5.6.3), although it is not clear whether the purpose of the -

332 Einstein had in effect used this method before to derive the final version of the field equations for his
theory for static gravitational fields in 1912. In that case, he had also added terms to the original field
equations of the theory to make sure that they be compatible with energy-momentum conservation
(see Einstein 1912b, 455–456).
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restriction was to extract (the corrected version of) the candidate field equations of
p 24R from the November tensor. In any case, Einstein failed to connect the Novem-
ber tensor to the physically motivated field equations of p. 24R, a connection that
would have helped clarify the covariance properties of the latter.

It is at this point in the notebook that Einstein abandoned the mathematical strategy
completely. On the remainder of p. 25R, Einstein started tinkering with the expression
found on p. 24R for the left-hand side of field equations to make sure that it vanishes
for the rotation metric (see sec. 5.6.4). Undeterred by the fact that the resulting expres-
sion is mathematically ill-defined, he checked whether this modified expression still
allowed him to write the gravitational force density as the divergence of gravitational
stress-energy density. He found that it did not, at least not exactly (see sec. 5.6.5). It
may have been because the resulting conflict with energy-momentum conservation
already ruled out this ill-defined expression as a candidate for the left-hand side of the
field equations, but Einstein made no attempt to connect the modified expression with
the November tensor. On p. 25L and at the top of p. 25R, Einstein had used the math-
ematical strategy to complement the physical strategy that he had used on p. 24R. On
the remainder of p. 25R, however, Einstein apparently decided to go exclusively with
the physical strategy, which on the very next page gave him the Entwurf equations.

5.6.1  Constructing Field Equations from Energy-Momentum Conservation 
and Checking Them for Rotation (24R)

At the top of p. 24R, Einstein wrote down the expression333

,   (683)  

and noted that it vanishes for a metric field that he wrote down as

  (684)  

He explicitly wrote: “The expression [683] vanishes for the system [684]” (“Der Aus-
druck … verschwindet für das System …”). The metric in equation (684) is easily rec-
ognized, despite some discrepancies, which are probably due to slips on Einstein’s
part, as the rotation metric with one spatial dimension suppressed. It is harder to see
what expression (683) represents. This seems to be one of the few places in the note-
book where the calculations are not self-contained. Fortunately, a convincing case can
be made for the following reconstruction of how Einstein arrived at expression (683).

333 In the notebook, the partial derivative with respect to  in the first term in equation (683) is written
as an ordinary derivative.

24R

xi

∂
∂xi
------- γ iε

∂gαβ

∂xε
-----------

xσ∂

∂γ αβ

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1

2
---

xσ∂
∂ γ iε xε∂

∂gαβ

xi∂

∂γ αβ

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

g

1– 0 ωy

0 1– ωx–

y– ωx– 1 ω2 x2 y2+( )–

γ

1– ω2y2+ ωxy ωy

ωxy 1– ω2x2+ ωx–

ωy ωx– 1.



24R TRANSITION TO “ENTWURF” STRATEGY sec. 5.6.1

684

In the field equations extracted from the November tensor with the help of the -
restriction, the term with second-order derivatives of the metric is written as (see, e.g.,
expression (584) [p. 23L] and expressions (652) and (654) [p. 43LA])334

,   (685)  

where the labeling of the indices is chosen with a view to expression (683), the deri-
vation of which we want to reconstruct. In linear approximation this is the only non-
negligible term on the left-hand side of these field equations. The linearized version
of these equation thus becomes

,   (686)  

where  is the covariant stress-energy tensor in the notation that Einstein used in
the notebook.335 Energy-momentum conservation required that these linearized field
equations can be used to rewrite the gravitational force density as the divergence of a
quantity representing gravitational stress-energy density.336 Einstein had checked this
for the linearized field equations considered on p. 19R (see equation (481)) and on
p. 20L (see equation (500)). A natural explanation of how he arrived at the expression
at the top of p. 24R is that he did the same for the linearized field equations (686). 

The expression for the force density can be read off from the energy-momentum
balance between matter and gravitational field in either its covariant or its contravari-
ant form. On p. 24L, the page immediately preceding the one under consideration
here, Einstein had actually considered both possibilities in his attempt to find a phys-
ical interpretation for the -metric (see sec. 5.5.9). These two alternative expressions
for the force density are

,   (687)  

where  is the contravariant stress-energy tensor, and

  (688)  

334 In the equations extracted from the November tensor with the Hertz restriction (see equation (558)
[p. 22R]) and in those extracted from the Ricci tensor with the harmonic restriction (see equation

(477) [p. 19L]), the term with second-order derivatives is written as . The two expres-

sions only differ, of course, by a term quadratic in first-order derivatives of the metric.
335 See, e.g., equation (663). In our reconstruction of the derivation of equation (683), we follow the no-

tation of the notebook.
336 Cf. the discussion following equation (481) in sec. 5.4.2.
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(cf. expressions (659) and (668), respectively). Note that these expressions are correct
only in linear approximation. In the exact version there will be another factor  (cf.
expression (482)), which in linear approximation can be set equal to unity. 

On pp. 19R, 20L, and 21L, Einstein had used expression (687) for the force density
but had substituted the left-hand side of the covariant linearized field equations for the
contravariant stress-energy tensor (cf. footnote 241). Using expression (688) instead
and eliminating the stress-energy tensor with the help of the linearized field equations
(686), one arrives at

.   (689)  

Ignoring the factor  (as Einstein did in the corresponding calculations on pp. 19R,
20L, and 21L), one can rewrite this expression as

.   (690)  

The first term is identical to the first term in expression (683) written at the top of
p. 24R. The second term can be rewritten in the form of the second term in expression
(683) if terms of third power in derivatives of the metric are neglected. Such third-
power terms would correspond to quadratic terms in the field equations. Since this
whole calculation is based on the linearized field equations, such terms can indeed be
neglected. One can thus write the second term in expression (690) as

.   (691)  

Once again neglecting terms of third power in derivatives of the metric, one easily
establishes that the last term on the right-hand side is equal and opposite to the term
on the left-hand side337

.   (692)  

equation (691) can thus be rewritten as

337 Farther down on p. 24R, Einstein initially cancelled these two terms with one another in a calculation
that is supposed to be exact. He later rescinded these calculations. We prove the approximate equality
of these two terms in modern notation. Using that , one can
write . If terms of third power in derivatives of the
metric are neglected, this reduces to . Contracting both sides with 
and switching  and  on the right-hand side, one arrives at ,
which is what we set out to prove.
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.   (693)  

Substituting this expression for the second term in expression (690), one recovers
expression (683) written at the top of p. 24R.

The reconstruction given here of how Einstein arrived at this expression also
seems to fit with the deleted phrase on the very first line of p. 24R: “divergence of a
plane tensor ” (“Divergenz eines Ebenentensors ”).338 The expression in
equation (683) is, in fact, the divergence of (  times) the covariant gravitational
stress-energy pseudo-tensor of the Entwurf theory.339 The notation  suggests that
Einstein was referring to the stress-energy tensor of matter rather than to the stress-
energy pseudo-tensor of the gravitational field, but energy-momentum conservation
requires the divergence of the latter to be equal and opposite to the divergence of the
former. The deleted phrase at the top of p. 24R thus seems to provide additional sup-
port for our reconstruction of the derivation of expression (683).

If there is no matter, energy-momentum conservation requires that the divergence
of the stress-energy pseudo-tensor of the gravitational field vanishes. It follows that
expression (683) should vanish for vacuum solutions of the field equations, at least in
linear approximation. As becomes clear on the bottom half of p. 24R, Einstein tried to
find the exact field equations corresponding to the linearized field equations (686) on
the assumption that expression (683) is exactly equal to the gravitational force density.
In that case, the expression should vanish exactly for vacuum solutions of the field
equations. We can thus understand why it was important for Einstein to check whether
the expression vanish exactly, for instance, for the rotation metric, which should be a
vacuum solution of any acceptable candidate field equations according to Einstein’s
heuristic principles. 

Contrary to Einstein’s claim at the top of p. 24R, expression (683) does not vanish
for the rotation metric. In the -dimensional case, the covariant components of the
rotation metric are given by

338 The term “plane tensor” (“Ebenentensor”) is used in the notebook for a covariant tensor (cf. p. 17L
and the discussion in sec. 5.3.3).

339 Relabeling indices to make it easier to compare the expression in the notebook with the corresponding
expressions in the Entwurf paper, we can rewrite expression (683) as:

. 

The quantity in square brackets is equal to  as defined in (Einstein and Grossmann 1913,
p. 16, equation (14)). Substituting this definition into the expression above and dividing by , one
arrives at the left-hand side of equation (12b) of the same paper for the special case that .
Equation (12b) is obtained from equation (12), the left-hand side of which reduces to expression
(683) if one sets .
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,   (694)  

and the contravariant components by

.   (695)  

These expressions differ slightly, but significantly as it turns out, from the expressions
(684) given in the notebook.

Consider the  component of expression (683) for the metric in equations
(694)–(695). One easily verifies that the first term only contributes340

,   (696)  

whereas the second term only contributes341

.   (697)  

The  component of expression (683) thus gives  for the metric in equa-
tions (694)–(695). The  component likewise gives .342 Only the 
component vanishes, since the metric is time-independent.

A comparison between the correct expressions for the components of the metric in
equations (694)–(695) and Einstein’s faulty expression (684) suggests that it was
because of the sign errors in  and  that Einstein came to believe that expression
(683) vanishes for the rotation metric. Inserting  instead of  for  in
equation (696), the contribution coming from equation (696) would cancel the contri-
bution coming from equation (697) and the  component of equation (683)
would vanish for the rotation metric.343 

340 There will be identical contributions for  and .
341 There will be identical contributions for  and .

342 The non-vanishing contributions to the  component of expression (683) for this metric are

.

343 A similar cancellation would occur in the  component of expression (683) (see the preceding
note).
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It is interesting to note in this context that the sign error in  is the only one of
the errors in expression (684) that Einstein repeated on p. 25R where he once again
wrote down the components of the rotation metric. What may have happened is that
Einstein read off the contravariant components of the rotation metric from the expres-
sion for the covariant components of the -metric on p. 42R (see equation (629)),
which would give , and then set  equal to  rather than to .

Whatever happened, Einstein somehow convinced himself that expression (683)
vanishes exactly for the important special case of the rotation metric.344 It now made
sense for him to look upon equation (683), which he presumably found as the result of
a calculation in linear approximation, as the exact expression for the divergence of the
gravitational stress-energy density,345 at least for metric fields with a determinant
equal to unity.

It is not entirely clear whether Einstein was aware of this last complication at this
point. Perhaps he erroneously continued to use expression (688) for the gravitational
force density in linear approximation, even though the calculation on the bottom half
of p. 24R was supposed to be exact. It is also possible that he consciously set

 to facilitate comparison of the result of his calculations with the November
tensor, which is a tensor only under unimodular transformations. Einstein would
include the factors  that were omitted on p. 24R in the derivation of the Entwurf
equations on p. 26L. Once again it is not clear whether that was because he realized
that he should have used the exact expression for the gravitational force density in a
calculation that is supposed to be exact or because he was no longer interested in try-
ing to recover his new candidate field equations from the November tensor.

If expression (683) is exactly equal to the divergence of the gravitational stress-
energy density and the determinant of the metric is set equal to unity, one can find the
exact field equations by going through the derivation of expression (683) given in
equations (686)–(693) in reverse, this time without neglecting any terms. More spe-
cifically, one can rewrite expression (683) in the form

344 In passing we note that Einstein thus missed an early opportunity to discover that the rotation metric
is not a solution of the Entwurf equations. As was pointed out in footnote 339, expression (683) is the
divergence of the gravitational stress-energy pseudo-tensor of the Entwurf theory in the special case
that . The rotation metric has a determinant equal to unity. The vanishing of expression
(683) for this metric is therefore a necessary condition for it to be a solution of the Entwurf field equa-
tions. It expresses energy-momentum conservation in this case. For further discussion of Einstein’s
struggles with rotation, see (Janssen 1999; 2005, 68–71), and “What Did Einstein Know …” sec. 3
(in this volume).

345 Note the close structural similarity between the expression for gravitational stress-energy density one
reads off from expression (683) (see the expression in square brackets in footnote 339) and the grav-
itational stress tensor of Einstein’s 1912 static theory, the -component of which Einstein had tried
to translate into a gravitational stress-energy (pseudo-)tensor in his metric theory at the bottom of
p. 21R (see sec. 5.4.5). This similarity may have been another factor leading Einstein to adopt expres-
sion (683) as the exact expression for the divergence of the gravitational stress-energy density.
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  (698)  

and take the as yet unknown expression in parentheses as the left-hand side of the field
equations. After all, substituting the right-hand side of these candidate field equa-
tions—the stress-energy tensor —for the as yet unknown expression in parenthe-
ses above, one recovers (except for an immaterial factor of ) expression (688) for the
gravitational force density

.   (699)  

These new field equations thus automatically and exactly satisfy energy-momentum
conservation. They guarantee that the gravitational force density is equal to the diver-
gence of the gravitational stress-energy density, in which case the energy-momentum
balance between matter and gravitational field can be written as the vanishing of the
divergence of the total stress-energy density.

This is exactly Einstein’s line of reasoning on p. 24R. With the comment “the
above expression yields” (“obiger Ausdruck liefert”), he began to rewrite expression
(683) in the form (698):

  (700)  

In the notebook, Einstein initially (and erroneously) cancelled the second term in this
expression against the third.346 Relabeling the summation indices in the last term, he
read off the left-hand side of the field equations from the remaining two terms. “This
suggests” (“Hierdurch nahe gelegt”), he wrote,

.   (701)  

Einstein’s next step was to check whether expression (701) vanishes for the rota-
tion metric as it should if this metric is to be a vacuum solution of these new field equa-
tions. It is not, as Einstein noted on the last two lines of p. 24R: “Tried for the case of
a rotating body[.]  gives ” (“Probiert am Fall des rot[ierenden] Kör-
pers  liefert ”).

346 These two terms cancel only if terms of third power in derivatives of the metric are neglected (see
equation (692) and footnote 337).
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Inserting either our equations (694)–(695) or Einstein‘s expressions (684)347 for
the components of the rotation metric into the -component of expression (701), one
readily verifies this result. The only non-vanishing contributions come from the sec-
ond term in expression (701)

.   (702)  

Einstein’s new candidate field equations are therefore unacceptable as they stand.
However, Einstein also discovered that the two terms that he had cancelled with one
another in his derivation of expression (701) for the left-hand side of his new field
equations do in fact not cancel. To the right of expression (700) in the notebook, Ein-
stein did a short calculation to check whether these two terms are equal to one another.
He started with the fairly self-evident relation348

.   (703)  

This equation expresses that one can simply switch co- and contravariant components
of the metric in contractions of two first-order derivatives of this form. One might
expect that this is also true for similar contractions of a first-order derivative and a sec-
ond-order derivative. Differentiating equation (703) with respect to , however, as
Einstein did on the next line,

,   (704)  

one sees that this is not the case. At this point, Einstein probably rescinded his cancel-
lations in expression (700) with the proof readers’ stet mark that he typically used for
this purpose.

On the face of it, these two terms in expression (700) would contribute additional
terms with unwanted second-order derivatives of the metric to the field equations in
equation (701). However, as we already noted in our reconstruction of the derivation
of equation (683), the two terms only differ by an expression of third power in first-
order derivatives of the metric (see footnote 337). They thus only give rise to another
term quadratic in first-order derivatives of the metric in the field equations. 

Einstein did not add such a term to expression (701), but he probably realized that
his new candidate field equations only needed to be corrected by terms quadratic in
first-order derivatives rather than by second-order derivative terms. Otherwise it
becomes hard to understand his calculations on the next page. On p. 25L he looked for
a new coordinate restriction to extract field equations from the November tensor,

347 The errors in (684) do not matter in this calculation.
348 In modern notation, the proof runs as follows (cf. footnote 337):
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using as his guide that these equations should at least include the two terms in expres-
sion (701) and no additional terms with second-order derivatives of the metric.

All in all, Einstein had made important progress on p. 24R. He had found a method
to construct exact field equations out of linearized ones by demanding exact compli-
ance with energy-momentum conservation. The first result of this method, however,
was problematic. He found that the rotation metric is not a solution of his new field
equations. Einstein also realized, however, that he had made an error along the way.
It was thus at least conceivable that the correct application of his new method would
yield field equations that do allow the rotation metric as a solution.

5.6.2  Trying to Recover the Physically Motivated Field Equations 
from the November Tensor (25L)

On p. 25L, Einstein tried to recover the field equations he had found on p. 24R from
the November tensor, not just the two terms explicitly given at the bottom of p. 24R
(see expression (701)) but also the additional terms coming from the erroneously can-
celled terms in expression (700) for the gravitational force density from which he had
read off these new field equations. 

At the top of p. 25L, Einstein wrote down the November tensor (see equation
(544))

.   (705)  

A first indication that his purpose was to recover his new candidate field equations
from this object is that he changed the free indices  and  in the original expression
for the November tensor to  and , the free indices in expression (701) for the left-
hand side of the new candidate field equations. Using the definitions of the Christoffel
symbols, Einstein rewrote (  times) expression (705) as

  (706)  

From the way the product of Christoffel symbols in expression (705) was rewritten in
expression (706), it is clear that Einstein once again used the symmetry argument that
he had already used several times before in this calculation (on pp. 17R, 19L, and
22R; see the discussion following expression (463)). The two terms that Einstein
underlined in expression (706) are easily recognized as (minus) the two terms of the
new candidate field equations in equation (701). For the first term this is just a matter
of relabeling indices. For the second term it is shown by the calculation immediately
following expression (706) in the notebook. Using that
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  (707)  

and that

,   (708)  

Einstein rewrote (  times) the last term in expression (706) as

.   (709)  

In the notebook, the relations (707) and (708) are given underneath the relevant terms
on the left-hand side of equation (709). Dividing the right-hand side of equation (709)
by , one recovers the second term in expression (701).

This was a promising start. The next task would be to identify those terms in the
November tensor that still need to be added to the field equations based on expression
(701) because of the erroneous cancellation of two terms in expression (700) for the
gravitational force density. These terms would have to come from the second of the
three terms in expression (706). This is the term that Einstein turned to next. It can be
rewritten as

.   (710)  

The second term in this expression is equal and opposite to the first, as one easily ver-
ifies by relabeling indices ( ). Expression (710) can thus be rewritten
as

,   (711)  

which is the expression written on the next line in the notebook. To facilitate compar-
ison with the two cancelled terms in expression (700), Einstein contracted expression
(711) with , which appears next to it separated by a vertical line. If the terms
in expression (711) were part of the left-hand side of the field equations, this contrac-
tion would give their contribution to the gravitational force density. Einstein rewrote
the first term in expression (711) as

,   (712)  

which, upon contraction with  gives
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.   (713)  

The calculation was not pursued any further.
Einstein drew a horizontal line and schematically rewrote (parts of) the three terms

in expression (706) for the November tensor at the top of the page349

  (714)  

The first term in equation (714) is the last of the three terms with second-order deriv-
atives of the metric in equation (706) and the only one that occurs in the candidate field
equations on p. 24R (see equation (701)). The problem is to find a coordinate restric-
tion with the help of which the other two second-order derivative terms in the Novem-
ber tensor can be eliminated. Application of this coordinate restriction will also
eliminate some of the terms quadratic in first-order derivatives that are schematically
indicated in the last two terms in expression (714). A suitable coordinate restriction,
however, should preserve the last term in its entirety (i.e., the second underlined term
in expression (706)) as well as the part of the second term corresponding to the erro-
neously cancelled terms in expression (700). In this way the field equations of p. 24R
could be extracted from the November tensor. 

Labeling the three terms in expression (706) for the November tensor , , and
, respectively, and using a prime to distinguish parts that should be preserved from

parts that should be eliminated, one can schematically write expression (706) as350

.   (715)  

The signs of  and  reflect that the signs with which the corresponding expressions
occur in the November tensor are the opposite of the signs with which they occur in
the field equations of p. 24R. Stated in terms of expression (715), the problem is to
find a coordinate restriction such that  and  can be eliminated and the left-hand side
of the field equations becomes:

.   (716)  

Since Einstein did not pursue the calculation on p. 25L any further it is hard to
interpret the material at the bottom of the page, but the reasoning leading to equations

349 In the notebook, some of the indices in the first term in expression (714) are barely legible. They have
been transcribed on the assumption that Einstein copied this term from the corresponding term in ex-
pression (706).

350 More explicitly,  and .
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(715) and (716) above at least provides a plausible interpretation of the two lines at the
bottom the p. 25L,

  (717)  

It remains unclear why next to this expression he wrote down the terms

  (718)  

These terms can be identified as coming from the expression

,   (719)  

which Einstein neglected in his expansion of (twice) the product of Christoffel sym-
bols in equation (706) on the basis of the symmetry argument that he had come to use
routinely in this calculation. Both terms vanish identically, since they are contractions
of a part that is symmetric and a part that is anti-symmetric in the same index pair. Per-
haps Einstein wanted to include these terms because the application of the coordinate
restriction he was looking for at this point would preserve some of the terms in equa-
tion (719) while eliminating others. Even on this interpretation, however, it remains
unclear what special appeal the two terms in equation (718) had for Einstein or why
they appear with a factor  rather than with a factor  as in equation (717).

Despite these uncertainties, it seems clear that the purpose of Einstein’s calcula-
tions on p. 25L was to find a way of extracting the physically motivated field equa-
tions of p. 24R from the November tensor.351 The material on the bottom half of the
page strongly suggests that Einstein hoped to achieve this goal by finding a coordinate
restriction that would allow him to eliminate all terms from the November tensor that
do not occur in these new field equations.

At the top of the next page, p. 25R, Einstein considered a variant of the -restric-
tion, with the help of which he had eliminated unwanted terms from the November
tensor on p. 23L. There is no indication, however, that Einstein specifically introduced
or used this restriction to recover the field equations of p. 24R and its correction terms
from the November tensor.

351 This is similar to Einstein’s attempt on pp. 9L–9R to connect the physically motivated core operator
to the mathematically well-defined second Beltrami invariant.
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5.6.3  The -Restriction (25R, 23L)

The fragmentary material at the top of p. 25R—various arrays of numbers, the com-
ponents of the rotation metric, and several equations—can all be understood as part of
a variant of the calculations on p. 23L and pp. 42L–R involving what we have called
the -restriction. We shall call this variant the -restriction. This interpretation of the
material on p. 25R also explains the alternate signs in many of the expressions on
p. 23L. Einstein, it seems, went back to p. 23L and indicated what would need to be
changed in his earlier calculation if the -restriction were replaced by the -restric-
tion. Most of what is actually written down at the top of p. 25R is aimed at determining
whether the -restriction allows transformations to rotating frames of reference in
Minkowski spacetime. It does not, which is probably why the -restriction was
quickly abandoned.

The basic idea of the -restriction (see sec. 5.5.4) was to absorb terms that need
to be eliminated from the November tensor into the so-called -expression. The
November tensor was then split into various parts that separately transform as tensors
under -transformations, i.e., those unimodular transformations under which the -
expression transforms as a tensor. Subtracting the parts containing the terms that need
to be eliminated, one arrives at candidate field equations that are invariant under -
transformations.

Looking at the first term of the November tensor, which Einstein had just reexam-
ined on p. 25L (cf. expressions (705)–(706) on p. 25L),

,   (720)  

one sees that the unwanted terms with second-order derivatives of the metric come
from the first two terms in the Christoffel symbol

.   (721)  

These terms can be absorbed into the -expression, defined as (see expression (570))

.   (722)  

With the help of the -expression, the Christoffel symbols of the first kind can be
written as (see equation (572))

.   (723)  

The two unwanted terms can also be absorbed into a slightly different expression,
which we shall call the -expression, and which we define as
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.   (724)  

With the help of the -expression, the Christoffel symbols of the first kind can be
written as

.   (725)  

The -expression was not written down explicitly in the notebook. In the upper right
corner of p. 25R, however, we find the schematic array of numbers

.   (726)  

Note that this is essentially a matrix with three rows and three columns. The first two
columns just have  on all three rows. Comparison of the matrix (726) with equa-
tions (721), (722), and (724) suggests the following interpretation of these numbers.
The three rows may represent the coefficients of the three terms in the -expression,
the Christoffel symbol, and the -expression, respectively.

One can use either the -expression or the -expression in combination with the
corresponding coordinate restriction to eliminate unwanted terms from the November
tensor. The pluses and minuses written above many of the signs in expressions on
p. 23L suggest that Einstein actually went back to p. 23L to see what would need to
be changed in his earlier calculations if the -expression were replaced by the -
expression. He began with expression (570), the definition of the -expression (see
also equation (722)), where he wrote  above the last plus sign,

.   (727)  

In this way the expression turns into the definition of the -expression (see equation
(724)).

Einstein then wrote plus signs above the minus signs in equations (572) and (573)
to indicate that he wanted to express the Christoffel symbols of the first and the second
kind in terms of this new -expression,
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Comparing equation (728) to equation (725), reading  for , one sees that there is
a factor  missing in front of the derivative of the metric in equation (728). Equa-
tion (729) inherits this error from equation (728). This may be why Einstein subse-
quently deleted the plus signs in these two equations. He went through the rest of the
calculation on p. 23L, however, on the assumption that the Christoffel symbols are
related to the -expression according to equations (728)-(729). He added pluses and
minuses to equations (574) and (578), and to expression (581), making only one minor
error. He neglected to change the minus sign in the first term in equation (578) to a
plus sign. Because of these errors, he found that the field equations extracted from the
November tensor with the help of the -restriction are exactly the same as those
extracted with the help of the -restriction (see expression (584)).

Einstein had abandoned these field equations because of problems with the -
restriction (see secs. 5.5.6–5.5.9). Perhaps these problems could be avoided with the

-restriction. In particular, it would be interesting to know whether the -expression,
unlike the -expression, vanishes for the rotation metric. In that case the -restric-
tion, unlike the -restriction, would at least allow transformations to rotating coordi-
nates in the important special case of Minkowski spacetime (cf. the discussion at the
beginning of sec. 5.5.6).

 At the top of p. 25R, Einstein once again wrote down the covariant and contravar-
iant components of the rotation metric in the -dimensional case (cf. equation
(694)–(695))

  (730)  

He also wrote down several components of an equation that can more compactly be
written as

.   (731)  

The choice of index combinations for which equation (731) was examined on p. 25R
confirms that the purpose of Einstein’s calculations at this point was to check whether
the metric (730) satisfies equation (731), i.e., whether the -expression vanishes for
the rotation metric. Notice that expression (730) for the components of the metric is
still not completely accurate. Comparing expression (730) to expression (684) for the
rotation metric, one sees that most of the errors on p. 24L have been corrected on
p. 25R, but that  and  still have the wrong sign352 (as does  which was given
correctly on p. 24L).
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To the left of expression (730), Einstein schematically wrote down equation (731)
for the index combinations  and :

,   (732)  

.   (733)  

Both components give the same equation,

.   (734)  

This equation is obviously satisfied by the metric (730) as are all components of equa-
tion (731) involving only the indices  and . Only components in which at least one
index is equal to  need to be examined. To the right of equation (730), Einstein wrote
down equation (731) for three such components, corresponding to the index combina-
tions , , and .353

  (735)  

,   (736)  

.   (737)  

The metric (730) satisfies the first and the second equation, but not the third. Equation
(737), the last of the five components of equation (731) given in the notebook, gives

.   (738)  

The -expression therefore does not vanish for the rotation metric. At this point, Ein-
stein seems to have abandoned the -expression and the corresponding -restriction.

In the calculation on the next two lines of p. 25R, the metric that we have called
the -metric briefly resurfaces (for discussion, see sec. 5.6.4). Recall that Einstein

352 See the discussion following equation (697) in sec. 5.6.1 for a possible explanation of why Einstein
made this particular error.

353 To the left of equation (735), Einstein wrote  to indicate that he was considering the -compo-
nent of equation (731).
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had found the -metric on p. 42R as a solution of the equation , the ana-
logue of equation (731) for the original -restriction. The -metric is obtained by
interchanging co- and contravariant components of the rotation metric (see sec. 5.5.6).
Despite considerable effort (see pp. 42R, 43LA, 24L and the discussion in secs. 5.5.7
and 5.5.9), Einstein had been unable to find a satisfactory physical interpretation for
this metric.

A possible explanation for the reoccurrence of the -metric on p. 25R is that Ein-
stein checked whether the -expression, like the original -expression, vanishes for
the -metric. Since  for the -metric, equation (737), the -component
of the equation  which was not satisfied by the rotation metric, is trivially
satisfied by the -metric. The -metric, however, does not satisfy equation (734), the

-component of the equation ,354

.   (739)  

So the -expression does not vanish for the -metric either. There would thus be no
reason for Einstein to resume his efforts to make sense of this peculiar metric. But if
Einstein, as we conjectured, did return to the -metric in this context, it may have
given him the idea for another calculation involving the -metric, which can be found
on the next two lines of p. 25R and which we shall turn to below.

5.6.4  Tinkering with the Field Equations to Make Sure That 
the Rotation Metric Is a Solution (25R)

Underneath the material at the top of p. 25R discussed in the preceding subsection, in
the two lines above the first horizontal line on p. 25R, Einstein once again wrote down
the candidate for the left-hand side of the field equations that he had found on p. 24R
(see equation (701))

.   (740)  

At the bottom of p. 24R he had noted that the -component of this expression does
not vanish for the rotation metric (see equation (702)). He now inserted the -metric,
i.e., the rotation metric with its co- and contravariant components switched, into the

-component of equation (740).355 This gives

.   (741)  

The second term gives  for the -metric as it does for the rotation metric. The
first term vanishes for the rotation metric since , but it does not for the -

354 Einstein’s sign error in  changes the last two steps in equation (739) to .
355 For a possible connection between this calculation and the calculations at the top of p. 25R, see the

discussion at the end of sec. 5.6.3.
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metric which has . In the case of the -metric, the first term in
equation (741) can thus be written as

.   (742)  

Einstein initially confused co- and contravariant components of the -metric and sub-
stituted  for  and  (or rather ) for . He subse-
quently corrected these errors and substituted  and  for  and , respectively.
In the notebook, equation (742) was thus written as

.   (743)  

Even with Einstein’s corrections, this equation still contains some minor errors.356

Einstein also seems to have dropped the minus sign in the second term on the right-
hand side at this point. This can be inferred from the fact that he clearly was under the
impression that the -component of expression (740) would vanish for the -met-
ric, if only the coefficient of the second term of the expression were changed from

 to .357 Inserting the -metric into this modified version of expression (740)
and substituting  instead of  for its first term, one arrives at

.   (744)  

Einstein’s sign error can easily be corrected. Rather than changing the coefficient
 of the second term in expression (740) to , Einstein should have changed it

to .
If an expression vanishes for the -metric, it is only a matter of interchanging co-

and contravariant components of the metric to obtain an expression that vanishes for
the rotation metric.358 On the next line of p. 25R, after drawing a horizontal line, Ein-
stein therefore wrote down the expression

,   (745)  

which is obtained by interchanging co- and contravariant components of the metric in
expression (740) and changing the factor  in the second term to . Einstein
assumed that the -component of this new expression vanishes for the rotation met-
ric. This expression thus seemed to be a promising new candidate for the left-hand side
of the field equations.359 Mathematically, however, it is ill-defined:  and  appear
as contravariant indices in the first term and as covariant ones in the second, and the

356 On the left-hand side,  should be  and in the last term on the right-hand side, a closing bracket
is missing.

357 This in turn can be inferred from his comment “   correct” (“   stimmt”)
farther down on p. 25R (see the paragraph following expression (748)).

358 Einstein had used this same insight to construct a modified -expression on p. 43LA (see sec. 5.5.8)
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summations over  and  are summations over pairs of covariant indices. Einstein had
concocted expression (745) to meet the requirement that the rotation metric be a vac-
uum solution of the field equations and had done so at the expense of basic mathemat-
ical requirements.

Einstein still had to check whether all components of expression (745) vanish for
the rotation metric. So far, he had only convinced himself that the -component
does. In principle, one would have to check six index combinations: , , , ,

, and .360 Upon inspection of expression (745), however, one easily sees that the
-component will be equal to the -component for this particular metric, and that

the -component will be equal to the -component. It thus suffices to check
whether the remaining four components vanish.

Einstein first considered the index combination “  .” The second
term in expression (745) vanishes because the metric is time-independent. The first
term can only contribute for “ ,” as Einstein noted, since otherwise

. Even for , however, there will be no contribution, as Einstein
also noted,

.   (746)  

Einstein then turned to the index combination “  .” The second term
in expression (745) again vanishes because the metric is time-independent. Consider
the first term

.   (747)  

Since , this term also vanishes. Einstein initially seems to have inserted
 instead, which would explain the expressions

  (748)  

which he wrote down and deleted. He then simply wrote: “vanishes”
(“verschwindet”).

For the next index combination, “  ,” which he wrote down after
drawing another horizontal line, Einstein just wrote: “correct” (“stimmt”). After all,
he had constructed expression (745) so that its -component would vanish for the

359 On the face of it, it may seem somewhat dubious to simply change the coefficient of the second term
in expression (740) to make the expression vanish for the -metric. Einstein knew, however, that
there should be additional terms quadratic in first-order derivatives of the metric in expression (740)
coming from the terms that he had neglected in its derivation. Einstein’s hope at this point may have
been that these correction terms would only result in a change of the coefficient of the second-term
in expression (740) as it stood.

360 In the -dimensional case, the components , ,  and  trivially vanish. All other com-
ponents are equal to the corresponding ones in the -dimensional case.
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rotation metric (see equation (744)). As we already pointed out, the -component
does in fact not vanish,

.   (749)  

Finally, Einstein considered the index combination “  .” One easily
sees that the second term in equation (745) once again vanishes. Given the sign error
in the -component of  in expression (730), Einstein wrote the possible contri-
butions coming from the first term in expression (745) as

  (750)  

Both these terms vanish. Einstein could thus concluded that the -component of
equation (745) also “vanishes” (“verschwindet”) for the rotation metric.

Einstein had now checked all independent components of equation (745) and con-
cluded: “Equation satisfied” (“Gleichung erfüllt”). Making the right errors in the right
places, he had convinced himself that the ill-defined expression in equation (745)
finally gave him field equations with the rotation metric as a vacuum solution, a test
that so many other promising candidates had failed.

5.6.5  Testing the Newly Concocted Field Equations for Compatibility 
with Energy-Momentum Conservation (25R)

In the last four lines of p. 25R, Einstein checked whether the ill-defined new field
equations based on expression (745), which looked promising from the point of view
of the equivalence principle, would satisfy the conservation principle as well. As he
had done for several other candidate field equations,361 he checked whether these field
equations could be used to write the gravitational force density as the divergence of
gravitational stress-energy density. A few lines of calculation show that this can easily
be done in linear approximation, but that the equality cannot hold exactly. Einstein
thereupon abandoned these field equations. In the course of this short calculation, Ein-
stein may also have come to realize that the equations were mathematically unaccept-
able to begin with.

In linear approximation, the gravitational force density can be written as the con-
traction of a derivative of the metric with the left-hand side of the linearized field
equations. If one uses the covariant field equations, one has to use the contravariant
metric; if one uses the contravariant field equations, one has to use the covariant met-
ric (cf. expressions (687) and (688)). Einstein, however, wrote the force density as a
contraction of the first term in expression (745), which has contravariant free indices,
and the derivative of the contravariant metric,

361 See p. 19R, 20L, 21L, 24L and 25L, and the discussion following equation (481) in sec. 5.4.2.
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.   (751)  

He thereby further compounded the problem that his new field equations are ill-
defined. In expression (751) the summations over  and  are over pairs of contra-
variant indices, while the summations of over  and  are over pairs of covariant ones.

Oblivious to these problems, it seems, Einstein proceeded to rewrite expression
(751) in the form of a divergence. First he rewrote it as362

  (752)  

The first term has the required form of a divergence, so Einstein could focus on the
second term, which he rewrote as

.   (753)  

The first term again has the required form of a divergence. The second term is of third
power in derivatives of the metric and vanishes in linear approximation. Rather than
deleting this term, however, Einstein underlined it, a clear indication that he wanted
to make this seemingly approximative calculation exact. But first he turned his atten-
tion to the third term in expression (753), which he rewrote as363

.   (754)  

He underlined both terms. This is the end of the calculation. Einstein was clearly dis-
satisfied with the result, for in the lower left corner of p. 25R, to the left of equations
(753) and (754), he wrote: “impossible” (“unmöglich”).

The reason for Einstein’s dissatisfaction must have been that the calculation in
equations (751)–(754) convinced him that his new candidate field equations are
incompatible with the exact equality of the gravitational force density and the diver-
gence of gravitational stress-energy density. In linear approximation the calculation
seems to show that the equations are compatible with this equality.364 The last term in
expression (754) is equal and opposite to expression (751) that Einstein started from.
Bringing this term to the left-hand side and dividing both sides by a factor , Einstein
would have succeeded in writing his ill-defined expression for the gravitational force
density as a sum of three terms that all have the required form of a divergence (i.e., the
first terms in expressions (752), (753), and (754)) and a term of third power in deriv-

362 In the notebook, the expressions in parentheses in equations (752) and (753) as well as the first ex-
pression in parentheses in equation (754) are indicated by pairs of parentheses only.

363 One of the derivatives  in the last term should be .
364 In fact, the calculation shows nothing of the sort, since both the field equations and the expression

that was used for the gravitational force density in this calculation are mathematically ill-defined. Ein-
stein, however, appears to have been unaware, at least initially, of these problems.
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atives of the metric that vanishes in linear approximation (i.e., the second term in
expression (753)). The equality would hold exactly if this last term could be inter-
preted as (minus) the contraction of  with the term quadratic in first-order
derivatives of the metric in the field equations. Comparison of the second term in
expression (753) to the second term in expression (745), the left-hand side of the can-
didate field equations under consideration, shows that the former cannot be interpreted
in this way,365

.   (755)  

This is probably why Einstein concluded that it was “impossible” (“unmöglich”) to
write the gravitational force density as the divergence of gravitational stress-energy
density. 

Einstein’s remark may also refer, at least in part, to the more fundamental problem
that expressions (751)–(754) as well as the new candidate field equations themselves
are mathematically ill-defined. Whatever the case may be, Einstein at this point aban-
doned these ill-defined field equations and on the next page (p. 26L) made a fresh start
with the method for generating field equations automatically satisfying energy-
momentum conservation that he had introduced on p. 24R.

5.7  Conclusion: Cutting the Gordian Knot (19L–25R)

Of all attempts to find suitable gravitational field equations recorded in the notebook,
the one on p. 25R was clearly the most desperate. As was shown in detail in secs.
5.6.4–5.6.5, the attempt is riddled with errors. One can, however, also look upon Ein-
stein’s calculations on this page in a more positive way. They reveal very clearly
which of the various requirements that had to be satisfied by putative field equations
weighed most heavily for Einstein at this point. Looking at p. 25R from this perspec-
tive, one is struck by the fact that, even though many of the expressions considered by
Einstein were not even well-defined mathematically, he continued to adhere strictly to

365 It may be interesting to note that such an interpretation would have been possible had Einstein con-

tracted  with , as he should have done, rather than with  (cf. the discussion

in the paragraph with equation (751) above). In that case, the second term in equation (753) would

change to , where the term in parentheses is indeed equal to mi-

nus the second term in equation (745). With this modification of the calculation in equations (751)–

(754), however, the last term in equation (754) would change to  and would no

longer be equal to the expression in equation (751). Consequently, the equality of gravitational force
density and divergence of gravitational stress-energy density would not even hold in linear approxi-
mation. It seems unlikely that Einstein considered this alternative.
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three requirements. First and foremost, there was the correspondence principle. The
field equations should consist of a core operator, i.e., a term with second-order deriv-
atives of the metric that reduces to the d’Alembertian acting on the metric in linear
approximation, and terms quadratic in first-order derivatives of the metric that vanish
in linear approximation. Then there was the conservation principle in the very specific
form that the field equations should make it possible, not just in linear approximation
but exactly, to write the gravitational force density as the divergence of gravitational
stress-energy density. Finally, there was the demand that the rotation metric be a vac-
uum solution of the field equations. Einstein was willing, it seems, to weaken, if only
temporarily, the much stronger demands of his relativity and equivalence principles
that the field equations be invariant under (autonomous or non-autonomous) transfor-
mations to arbitrarily accelerated frames of reference. The focus on these three
requirements, which constrain even the very problematic calculations on p. 25R, made
the task of finding suitable field equations much more manageable.

The strategy that Einstein had used on pp. 19L–23L and again on p. 25L and at the
top of p. 25R of extracting field equations from expressions of broad covariance by
imposing coordinate restrictions had failed several times. With hindsight, one can see
that most of the problems come from Einstein using coordinate restrictions rather than
coordinate conditions in the modern sense to make sure that the field equations satisfy
the correspondence principle. Einstein had found three different coordinate restric-
tions (the harmonic restriction, the Hertz restriction, and the -restriction) with the
help of which the correspondence principle could be satisfied. The covariance proper-
ties of these coordinate restrictions, however, proved to be intractable. Since Einstein
used coordinate restrictions rather than coordinate conditions, this meant that the
covariance properties of the field equations themselves became intractable as well. It
thus remained unclear whether these equations satisfy the demands of the equivalence
and relativity principles. Moreover, Einstein had not been able to confirm that the
coordinate restrictions and the associated field equations would be compatible with
the exact validity of energy-momentum conservation.

In this situation something had to give. Einstein, it seems, cut the Gordian knot by
weakening two of his heuristic principles. He weakened the equivalence principle to
the requirement that the field equations at least allow the rotation metric. He weakened
the relativity principle to the obvious minimal requirement that the field equations at
least have well-defined transformation properties. On p. 24R Einstein had found can-
didate field equations imposing the correspondence and conservation principles and
bracketing the problem of satisfying the remaining two principles. On pp. 26L–R, he
turned this derivation into a powerful method for generating field equations that auto-
matically meet the requirements of the correspondence and conservation principles.
What probably made this option all the more appealing was that Einstein believed
(mistakenly as was shown in sec. 5.6.1) that the expression that forms the starting
point of the calculation on p. 24R vanishes exactly for the rotation metric, a necessary
condition for the resulting field equations to satisfy the weakened version of the equiv-
alence principle.

ϑ
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6.  DERIVATION OF THE ENTWURF EQUATIONS (26L–R)

On pp. 26L–R, Einstein derived the identity that is at the heart of the derivation of the
Entwurf field equations in (Einstein and Grossmann 1913). His approach on these
pages is very similar to his approach on p. 24R (cf. the discussion following expres-
sion (698) in sec. 5.6.1). He substituted the left-hand side of some linearized field
equations for the stress-energy tensor  in the expression

  (756)  

for the gravitational force density and tried to rewrite the resulting expression as the
divergence of the gravitational stress-energy density. In addition to divergence terms,
he found terms that are contractions of  and terms quadratic in first-order
derivatives of the metric. By adding the latter to the linearized field equations, Einstein
arrived at exact field equations that guarantee that the gravitational force density is
exactly equal to the divergence of the gravitational stress-energy density. 

The calculation on pp. 26L–R is thus very similar to the calculation on p. 24R, but
differs from it in two important respects. First, Einstein no longer set the determinant
of the metric equal to unity, which can be seen as an indication that he had meanwhile
given up hope to recover the new candidate field equations from the November tensor
as he had still tried to do on p. 25L for the field equations of p. 24R. Second, Einstein
did not start, as he had done on p. 24R (see expression (683)) from a specific expres-
sion for (the divergence of) the gravitational stress-energy pseudo-tensor. Einstein
read off both the expression for the left-hand side of the field equations and the expres-
sion for the gravitational stress-energy pseudo-tensor from the identity obtained by
rewriting expression (756) after substitution of the left-hand side of the linearized field
equations for the stress-energy tensor.

At the top of p. 26L, Einstein began by writing down the energy-momentum bal-
ance between matter and gravitational field,366

,   (757)  

or, as he called it, the “system of the equations for matter” (“System der Gleichungen
für Materie”) and, on the next line, the (contravariant) stress-energy tensor for pres-
sureless dust,

.   (758)  

Equation (757) shows that the exact expression for the gravitational force density is

,   (759)  

366 In the first term of equation (757),  should be  (see equation (71)).
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but in the calculations on the remainder of the page Einstein ignored the factor ,
a simplification that is easily corrected for at the end of the calculation.

Under the heading “derivation of the gravitation equations” (“Ableitung der Gra-
vitationsgleichungen”), Einstein now substituted the left-hand side of linearized field
equations based on a core operator, 

,   (760)  

for the stress-energy tensor in the crude expression (756) for the force density,

,   (761)  

also ignoring, as he had done on several earlier occasions (see pp. 19R, 20L, 21L, 24R,
and 25R), the gravitational constant . Einstein set out to rewrite expression (761) as
a sum of terms of two kinds, divergence terms (marked ‘+’ and ‘×’ on pp. 26L–R) and
terms that are contractions with  (marked ‘o’ on pp. 26L–R367).

Einstein first rewrote expression (761) as

  (762)  

The first term on the right-hand side is a divergence term. It is underlined and marked
‘+.’ Einstein proceeded to rewrite the second term as

.   (763)  

Once again, the first term is a divergence term, which is underlined and marked ‘×.’
The second term gives three terms:

.   (764)  

This expression extends beyond the right margin of p. 26L and is continued on the fac-
ing page, p. 26R. The first term in expression (764) is obtained with the help of the
relation

,   (765)  

which Einstein had encountered several times before (see pp. 6L, 8R, and 9R, and
equation (87)). By relabeling indices ( ), Einstein could show that this
term can be written as a contraction of  and a term quadratic in first-order
derivatives of the metric,

367 Except in one case (see expression (766) below) which Einstein apparently forgot to mark.
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.   (766)  

The term is underlined, but Einstein for some reason neglected to mark it ‘o’ as he did
with other terms of this kind.

The second term in expression (764) is of the same kind, although it takes a little
more work to show this. Substituting  and

, Einstein rewrote this term as

,   (767)  

which, with the help of the relation , he then
rewrote as

.   (768)  

So, this term does indeed also have the form of a contraction of  and a term
quadratic in first-order derivatives of the metric. It was underlined and marked ‘o’
accordingly.

At the bottom of p. 26R, Einstein turned to the third term in expression (764). This
term contributes one ‘+’-term and two ‘o’-terms. Einstein began by rewriting it as

.   (769)  

The first term is a divergence term. It is underlined and marked ‘+’. Rewriting it as

,   (770)  

one sees that it is equal to this term in equation (762).
The second term in expression (769) is a contraction with  rather than

with . Einstein therefore rewrote it as (cf. expression (767))368

,   (771)  

and then set  equal to . His next move was to bring
 and  within the scope of the differentiation  in order to turn the deriv-

ative of  into a derivative of  (as in expression (761)). Expression (771) thus
turns into369

368 In expression (771),  should be .
369 Expression (772) originally had , but the primes were crossed out.
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∂
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.   (772)  

He then rewrote the two terms to the right of the vertical line as370

.   (773)  

He underlined both terms and marked them ‘o.’ The first term is (minus) the core oper-
ator that formed the starting point of this whole calculation (cf. equations (760)–
(761)).

Einstein now collected the ‘o’-terms on the left-hand side and the ‘+/×’-terms on
the right-hand side. The ‘o’-terms come from the left-hand side of equation (762)
(with a factor 2 because of the identical contribution from the first term in expression
(773)), from expressions (766) and (768), and from the second term in expression
(773) (contracted with ). These terms add up to

  (774)  

The ‘+/×’-terms come from the first term on the right-hand side of equation (762)
(with a factor 2 because of the identical contribution from expression (770)) and from
the first term in expression (763):

.   (775)  

Regrouping the ‘o’-terms in expression (774),371 setting them equal to the ‘+/×’-terms
in expression (775), and dividing both sides by 2, one arrives at the identity

370 For the first term, he used the relation . The second term can be rewritten as

a sum of two identical terms

.

371 The physical reasoning behind this regrouping will become clear below.
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  (776)  

which Einstein wrote down at the bottom of pp. 26L–R as the “summary”
(“Zusammenfassung”) of his calculations. Underneath this identity, he wrote: “This is
the contra-form” (“Dies ist die Kontra-Form”). It is from this identity—given as equa-
tion (12) in Einstein’s part of (Einstein and Grossmann 1913) and derived in sec. 4.3
of Grossmann’s part—that both the contravariant form of the field equations and the
contravariant form of the gravitational stress-energy pseudo-tensor of the Entwurf the-
ory can be read off.

To identify the exact expressions for the field equations and the pseudo-tensor we
need the exact relations between the left-hand side of the field equations, the gravita-
tional force density, and the gravitational stress-energy pseudo-tensor. We can no
longer afford to ignore factors . Consider once again equation (757), the vanishing
of the covariant divergence of the mixed tensor density . This equation can
be written as the ordinary divergence of the sum of the stress-energy density of matter
and gravitational field if

,   (777)  

where  is the contravariant form of the gravitational stress-energy pseudo-tensor.
Multiplying both sides by , one arrives at

.   (778)  

The identity (776) guarantees that this equation holds if both the left-hand side of the
field equations (to be substituted for  in equation (778)) and (  times) the
pseudo-tensor  are suitably chosen. Comparing the left-hand sides of equations
(776) and (778), one sees that one must choose the expression

  (779)  

i.e., the expression in square brackets in expression (776) divided by , as the left-
hand side of the field equations. This is indeed the left-hand side of the Entwurf field
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equations. To bring the right-hand side of equation (776) in form that can be compared
with the right-hand side of equation (778), one has to relabel the summation index 
by , substitute  in the first term, and substitute

 in the second term. Comparing the resulting expression,

,   (780)  

to the right-hand side of equation (778), one sees that one must choose the expression

  (781)  

as the gravitational stress-energy pseudo-tensor . This is the definition of this
quantity given in equation (13) of (Einstein and Grossmann 1913).372 Notice that the
expression in parentheses on the second line of expression (779) is equal to .
If we now introduce the notation  for the expression on the first line,373 the
left-hand side of the field equations can be written as , and the field
equations themselves as

,   (782)  

which is the form in which the Entwurf field equations are given in equation (18) of
(Einstein and Grossmann 1913). 374 Commenting on this equation (ibid., p. 17), Ein-
stein pointed out that any acceptable field equations must be such that the stress-
energy of matter and the stress-energy of the gravitational field enter the equations in
the exact same way.375

Before pp. 26L–26R, this requirement had not explicitly played a role in Einstein’s
search for suitable field equations. But the way in which Einstein grouped the terms
on the left-hand side of the identity (776)—with the terms in the first set of parentheses
giving  and those in the second giving — suggests that Einstein did
consider this requirement when he wrote down the calculations on pp. 26L–26R. 

One can understand why Einstein would have been pleased with these new candi-
date field equations. They satisfied the correspondence principle and they satisfied the
conservation principle, not just in linear approximation but exactly. Since the new
field equations were not extracted from some quantity of broad covariance with the
help of a suitable coordinate restriction, it remained unclear whether they satisfy the
relativity principle and the equivalence principle. The one encouraging result on this
score (erroneous as it turns out) was that the divergence of the gravitational stress-
energy pseudo-tensor vanishes for the rotation metric, a necessary condition for this

372 In the paper, the contravariant form is denoted by , and the covariant form by .
373 This is in keeping with (Einstein and Grossmann 1913), where this same quantity is introduced in

equation (15) as .
374 In (Einstein and Grossmann 1913), they are written as .
375 A similar result holds in the final version of Einstein’s earlier theory for static fields (see Einstein

1912b, 457) and in general relativity in its final form (see Einstein 1916, 807–808).
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metric to be a vacuum solution of the Entwurf field equations.376 More importantly,
Einstein had not been able to find any acceptable field equations along the lines of his
mathematical strategy that satisfied the relativity principle and the equivalence princi-
ple. And he had at best been able to show in linear approximation that these candidates
satisfied the conservation principle. It is thus not surprising that Einstein gave up his
attempt to construct field equations out of the Riemann tensor and decided to publish,
in his joint paper with Marcel Grossmann, the field equations found along the lines of
his physical strategy.
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JOHN D. NORTON

WHAT WAS EINSTEIN’S “FATEFUL PREJUDICE”?

In the later pages of the notebook, as Einstein let general covariance slip away, he
devised and abandoned a new proposal for his gravitational field equations. This
same proposal, revived nearly three years later, opened passage to his final theory. In
abandoning it in the notebook, Einstein had all but lost his last chance of deliverance.
This chapter reports and develops our group’s accounts of this decision. Einstein’s
later accounts of this decision blame it upon what he called the “fateful prejudice” of
misinterpreting the Christoffel symbols. We suggest that Einstein’s aberrant use and
understanding of coordinate systems and coordinate conditions was as important as
another fateful prejudice.

INTRODUCTION

Under a decade of analysis, discussion and reflection, Einstein’s Zurich Notebook
has yielded. Strategies that were once enigmatic and pages that were once obscure
have become familiar. For the great part, we understand the problems Einstein
approached, how he sought to solve them, when these efforts succeeded, when they
failed and even the hesitations behind the smallest markings. In other parts we may
follow a calculation line by line but our view of his hopes and plans remain distant.
Or he may abandon a calculation with just a few symbols surviving on the page. They
can be deciphered only through luck or clairvoyance.

The boundary that fences in the clear from the obscure has grown so that less and
less escapes it. The intriguing puzzles of the notebook remain at this boundary. They
cannot be solved with the assurance that the weight of evidence admits no alternative.
But they are not so distant that we must despair of any solution. We understand just
enough of these puzzles to sense that a complete solution lies within our grasp. We
may even articulate one or more candidates that are both plausible and attractive. Yet
the evidence we cull from the notebook and elsewhere remains sufficient to encour-
age us, but insufficient to enable a final decision.

My purpose in this chapter is to review two of these problems. I will draw heavily
on ideas that have circulated freely in our group and have grown, mutated and con-
tracted as they passed between us.1 This chapter will report on these communal ideas,

1 I gratefully acknowledge thoughtful discussion and responses on this chapter and its proposals from
the members of this group (who are also co-authors in this volume) and also from Jeroen van Dongen.



 

716 J

 

OHN

 

 D. N

 

ORTON

 

while it gives my own particular viewpoint on them and adds a conjecture. Many of
the ideas in this chapter are not reflected in our joint commentary because my view-
points and conjecture represent a minority opinion. At the boundary, where categori-
cal evidence is elusive, our intuitions and sensibilities decide. They differ as we pass
through the group. We do not all know the same Einstein.

 

Two Puzzles

 

The problems meet on page 22R of the notebook. There we find Einstein generating
the very same gravitational field equations of near general covariance that will reap-
pear briefly in his publication of 4 November 1915, when he ruefully returned to gen-
eral covariance. This supplies our first puzzle:

• Why were these field equations rejected in the notebook, when they were deemed
admissible in November, 1915?

These equations did not employ the Ricci tensor as gravitation tensor, as would the
source free field equations of Einstein’s final theory. Famously, Einstein and Gross-
mann had mentioned but discarded this possibility in their joint 

 

Entwurf

 

 paper. The
equations on page 22R employ a different gravitation tensor, which we have come to
call informally the “November tensor.” It was carefully and apparently successfully
contrived to avoid exactly the problems they imagined for the Ricci tensor.

The calculations on page 22R differ in no essential way from those Einstein
would publish in 1915. The calculations on the surrounding pages do differ. The
absolute differential calculus makes it easy to write down expressions that are gener-
ally covariant; they hold in all coordinate systems. In the modern literature we rou-
tinely restrict these expressions to specialized coordinate systems by imposing freely
chosen coordinate conditions. As Einstein’s calculations in the notebook progressed,
he became quite adept at the purely mathematical aspects of applying these condi-
tions. Careful analysis of the pages show that his use of these conditions came to dif-
fer considerably from the modern usage and possibly with fatal consequences. Our
second puzzle is to understand these differences:

• Did Einstein 

 

choose

 

 to use coordinate conditions in an idiosyncratic way later in
the notebook? Or was he unaware of the modern usage?

In solving these puzzles, more is at stake than merely deciphering a few pages of a
notebook that may not have long occupied Einstein. These pages mark Einstein’s all
but last chance to rescue himself from the misconceptions that led him to his 

 

Entwurf

 

theory and to more than two years of distress as his greatest discovery eluded him. A
solution to these puzzles will tell us if Einstein’s final slide into the abyss rested on
simple blunders, lack of imagination or creative misunderstandings that have yet to
be appreciated in the historical literature.
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Four Parts

 

This chapter is divided into four parts. In the first, I will review the circumstances that
induced Einstein to the proposal of the “November tensor”  as gravitation tensor.
Its rejection in the notebook will be explained partially by drawing on a proposal of
Jürgen Renn’s. At the time of the notebook, as Einstein later recalled, he failed to see
that the Christoffel symbols were the natural expression for the components of the
gravitational field, his “fateful prejudice.” As a result, he was unable to see how to
recover a stress-energy tensor for the gravitational field and the associated conserva-
tion laws from the “November tensor.” The calculation just proved too complicated.
This problem was resolved in November 1915 when Einstein had developed more
powerful mathematical methods.

The second part outlines the puzzle surrounding Einstein’s use of coordinates. I
will distinguish the standard way in which coordinate conditions are used from the
way that Einstein came to use them later in the notebook. It is so different that our
group labels coordinate conditions used this way as “coordinate restrictions.” This
non-standard use of coordinate restrictions can aid us in explaining the notebook
rejection of the “November tensor,” if in addition we assume that Einstein was
unaware that the same mathematical manipulations could be used in the modern man-
ner as coordinate conditions. The evidence available to us admits no final decision
over Einstein’s awareness of this usage. I will suggest however that there are suffi-
cient indications to make his supposed lack of awareness implausible and that page
22R of the notebook might well mark a transition from the use of coordinate condi-
tions to coordinate restrictions.

The third part develops a conjecture on what might lie behind Einstein’s idiosyn-
cratic use of coordinate conditions in the notebook. In his later hole argument, Ein-
stein erred in tacitly according an independent reality to coordinate systems. It is now
speculated he may have committed this same error within the notebook while using
coordinate conditions to extract the Newtonian limit from the “November tensor.”
The outcome would be that his theory overall would seem to gain no added covari-
ance from the use of coordinate conditions rather than coordinate restrictions, to
which Einstein reverted for their greater simplicity. Once again, the available evi-
dence admits no final decision. I will suggest however that the conjecture is plausible
since it requires us to suppose no additional errors by Einstein; he merely needs to
follow through consistently on the misapprehensions we know he harbored in the
context of the hole argument.

The fourth part offers a summary conclusion.

T il
x
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1. THE PUZZLE OF THE GRAVITATION TENSORS

Why did Einstein abandon the gravitational field equations in the notebook on page
22R that he later deemed suitable for publication on 4 November 1915? This is our
first puzzle. In the first section of this part I will review the essential background to
this puzzle. In the pages preceding page 22R, Einstein considered and rejected the
natural candidate for a gravitation tensor, the Ricci tensor. It fell to misconceptions
about static fields and the form of gravitational field equations in the case of weak
fields. In the second section of this part I will describe how the proposal of page 22R
was contrived ingeniously to circumvent the illusory flaws he had imagined for the
Ricci tensor. In the third section I will review Einstein’s later recollections concern-
ing the notebook rejection and the central role that, as I shall call it, “  prejudice”
played in them. Drawing on a proposal by Jürgen Renn, I will advance what I believe
is a plausible account of its significance. The difficulty was the recovery of an expres-
sion for the stress-energy tensor of the gravitational field and its associated conserva-
tion law. Because Einstein did not recognize that the Christoffel symbols are the
natural structure for representing the components of the gravitational field, he
thought this recovery required the algebraic expansion of the Christoffel symbols.
That yielded such a surfeit of terms that Einstein despaired of completing the calcula-
tion. This difficulty, along with others to be reviewed in later parts of this chapter, led
Einstein to abandon the proposed gravitation tensor. In 1914, in the course of his
work on the 

 

Entwurf

 

 theory, Einstein developed more powerful variational methods.
These enabled him to complete the calculation and to see the significance of the
Christoffel symbols.

 

1.1 Background: The Rejection of the Ricci Tensor

The Entwurf Papers

 

In the 

 

Entwurf

 

 paper, Einstein and Grossmann famously report their failure to find
generally covariant gravitational field equations. Their search had focused on finding
a gravitation tensor,  constructed from the metric tensor and its derivatives, to be
used in the gravitational field equations

(1)

where  is the stress-energy tensor and  is a constant. The absolute differential
calculus of Ricci and Levi-Civita supplied the natural structure from which generally
covariant gravitation tensors can readily be constructed. It is the Riemann tensor,
written in Einstein’s paper of 4 November 1915 (Einstein 1915a) as

 

2

 

 

 

2 My policy with notation will be to follow the conventions used at the time of the work discussed. In
November 1915, Einstein indicated contravariant and covariant components of a tensor by raised and
lowered indices. Summation over repeated indices was 

 

not

 

 implied. The notation for the Riemann ten-
sor and Christoffel symbols do not respect this raising and lowering convention.

{}

Gμν ,

Gμν κT μν,=

Tμν κ
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(2)

where the Christoffel symbols of the second kind are

(The term  is the Christoffel symbol of the first kind and is defined implicitly
in this expression.) The Ricci tensor is the first nontrivial contraction, unique up to
sign, of the Riemann tensor, written by Einstein as

(3)

Einstein later chose this tensor as the gravitation tensor in the source free case.
Einstein and Grossmann had revealed that they had considered this candidate for

the gravitation tensor in preparing the 

 

Entwurf

 

 paper. They explained, in Gross-
mann’s words, “...it turns out that this tensor does 

 

not

 

 reduce to the [Newtonian]
expression  in the special case of an infinitely weak, static gravitational field.”

 

3

 

Einstein and Grossmann’s explanation proved all too brief. It did not even mention
the use of the coordinate conditions that are expected by the modern reader and that
must be stipulated to restrict the coordinate systems of a generally covariant theory to
those coordinate systems in which Newton’s equations can hold. This omission even
led to the supposition in the early history of this episode that Einstein was unaware of
his freedom to apply these coordinate conditions.

With its earliest analyses,

 

4

 

 we learned from the Zurich Notebook that Einstein
understood all too well how to reduce generally covariant gravitational field equa-
tions to a Newtonian form by restricting the coordinate systems under consideration.
In particular, he knew how to select what we now call “harmonic coordinates” to
reduce the Ricci tensor to an expression analogous to the Newtonian  With
deeper analysis as developed in our commentary, the notebook provides a detailed
account of how Einstein tested the Ricci tensor against his other expectations and
how he was led to reject it.

 

Two Misconceptions: The Static Field…

 

What precluded acceptance of the Ricci tensor as the gravitation tensor were two
interrelated expectations that proved to be incompatible with Einstein’s final theory.
On the basis of several apparently sound arguments, Einstein expected that static

 

3 “Allein es zeigt sich, daß sich dieser Tensor im Spezialfall des unendlich schwachen statischen
Schwerefeldes nicht auf den Ausdruck  reduziert.” (Einstein and Grossmann 1913, 256–257)

4  See (Norton 1984) and also (Stachel 1980).
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gravitational fields would be represented by a spatially flat metric, whose coefficients
in a suitable coordinate system would be

(4)

where the  component  is some function of the three spatial coordi-
nates  The spatial flatness is represented by the constant value

 for the other non-zero components,   and  This spatial
flatness is not realized in general in the final theory.

We can understand exactly why Einstein would fail to anticipate this lack of spa-
tial flatness. His explorations were based on the principle of equivalence, which
asserted that a transformation to uniform acceleration in a Minkowski spacetime
yielded a homogenous gravitational field (see Norton 1985). The Minkowski metric
in standard coordinates is given by

(5)

for  now a constant interpreted as the speed a light. If one transforms to a coordinate
system in uniform acceleration, the metric reverts to a form Einstein associated with a
homogeneous gravitational field,  which has the form of  but in which 
is a linear function of the spatial coordinates,    If the acceleration is in the
direction of the  coordinate, for example, then  for  and  arbi-
trary constants whose values are set by the particulars of the transformation, so that

(6)

Einstein’s early strategy in his work on gravitation had been to recover the properties
of arbitrary gravitational field by judiciously generalizing those of  His mis-
take, in 1912 and 1913, was to fail to anticipate that the spatial flatness of  was
not a property of all static fields, but a very special peculiarity of 
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…and the Field Equations for Weak Fields

Einstein’s second expectation concerned how the gravitational field equations (1)
would reduce to the Newtonian limit. In the weak field case, one supposes that one
can find coordinate systems in which the metric adopts the form

(7)

The quantities  are of first order of smallness. For this weak field, Einstein sup-
posed that the gravitation tensor of (1) would reduce to5 

(8)

If the gravitation tensor reduced to this form in the weak field, then all that would
remain to first order is the first term of (8), so that the gravitational field equations
would reduce to the near-Newtonian expression

(9)

or more simply expressed

It turns out that these most natural of intermediates in the transition to Newton’s law
of gravitation are not realized by the final theory. In it, the weak field equations corre-
sponding to (9) include an extra trace term. See (Einstein 1922, 87).

(9’)

These two expectations concerning the static field and weak field are closely con-
nected. In particular, as Einstein showed in Einstein (Einstein 1913, 1259), one
recovers a spatially flat static metric  if one solves the weak field equation (9)
for the case a of a time independent field produced by a static, pressureless dust

5 I revert to the notation of (Einstein and Grossmann 1913). Summation is not implied by repeated indi-
ces. All indices are written as subscript with the covariant and contravariant forms of a tensor repre-
sented by Latin and Greek letters respectively. Thus the modern  is written as  but the
modern  is written as  Coordinate indices are written as subscript as well.
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cloud.6 This recovery of a spatially flat solution is blocked by the added trace term 
in (9’) in the final theory.

That Prove Fatal

On page 19L of the notebook, Einstein showed that he knew how to reduce the Ricci
tensor to the weak field form required by (9). Using a standard device in the literature,
he simply restricted his coordinate systems to those in which the harmonic condition

(10)

is satisfied. He immediately found that he could eliminate all the second derivative
terms that were not required by the operator (8) for the Newtonian limit. Disaster
ensued over the pages 19R–21R for this promising combination of Ricci tensor as
gravitation tensor and harmonic coordinate systems. Einstein sought to bring this
combination into accord with his expectations (4) for static fields and for the weak
field equations (9). He failed and inevitably so. The coordinate systems used to bring
the static field into the form of  in (4) are not harmonic. That coordinate system
does, however, satisfy a formally similar coordinate condition

(11)

(We call this “Hertz condition” in this volume since it is mentioned by Einstein in a
letter to Paul Hertz of 22 August 1915 (CPAE 8, Doc. 111).) What makes this condi-
tion attractive is that it entails the weak field form of the energy momentum conserva-
tion law7

(12)

Einstein even realized that he could retain this form of the energy conservation law
and the harmonic condition if he added the trace term in  in (9’), but the modified
field equations were no longer compatible with his expectations for the weak static

6 The prediction of spatial flatness is almost immediate. The stress energy tensor  for this static
dust cloud will satisfy  excepting  Thus we have immediately for all values of  
excepting  that  for all spacetime. With finite values at spatial infinity as a boundary
condition, these last equations solve to yield  for all   excepting  as
required by  of (4).

7  is the contravariant form of the stress-energy tensor  The condition (11) combined with the
field equation (9) yields the weak field form of the energy conservation law through
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field  so they could not stand. Harmonic coordinate systems no longer
appear in the notebook.

1.2 The “November Tensor”

The outcome of Einstein’s investigations of the Ricci tensor was disappointing. But
his creative energies were far from spent. He then turned immediately to another pro-
posal for a gravitation tensor, the one he would publish on 4 November 1915, upon his
return to general covariance. It is laid out on page 22R of the notebook. Einstein
shows how it is possible to split off a part of the Ricci tensor that is not a generally
covariant tensor, but at least transforms tensorially under unimodular transformations.

Unimodular Transformations

The class of unimodular transformations has a simple defining property. A coordinate
transformation  is fully specified by the associated matrix of differential
coefficients  A transformation is unimodular if the determinant of this
matrix is unity:

(13)

Unimodular transformations preclude transformations that uniformly expand the
coordinate system, such as  They are volume preserving in spacetime.8 

The coefficients of the metric tensor transform according to

Taking the determinants of these quantities we find that the (positive valued)9 deter-
minant  transforms according to

It now follows immediately that  for unimodular transformations, that is,
when (13) holds. This equality tells us that  transforms as a scalar under unimod-
ular transformation, as do functions of it such as  We can easily form unimo-
dular vectors from this quantity. The coordinate derivative  of a generally
covariant scalar  is a generally covariant vector. Similarly, the coordinate derivative

8 They are volume preserving in the coordinate space. A volume element  for a region
bounded by the four coordinate differentials  in coordinate space is preserved since it transforms
according to the rule  The invariant volume
element of a metrical spacetime,  is also preserved since  is an invariant under
unimodular transformation. 

9  In other places, it is written as 
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of a unimodular scalar is a unimodular vector. Therefore  is a unimodular

vector. This result is the key to Einstein’s plan.

Proposal: A Unimodular Tensor....

On page 22R of the notebook, Einstein took the Ricci tensor  and expressed it as
the sum of two parts. He wrote

(14)

His purpose is quite clear. And if there were any doubt, the proposal is explained in
detail in (Einstein 1915a). The first term of  is a just the covariant derivative of the
unimodular vector

and therefore a tensor under unimodular transformations. Since the Ricci tensor 
transforms as a tensor under all transformations, Einstein could infer that the second
term of (14) must also transform as a tensor under unimodular transformations.10

This second term, denoted as  is chosen by Einstein as a candidate gravitation
tensor. Because of its reappearance in November 1915, we have labeled it the
“November tensor” in this volume. Its selection is compatible with Einstein’s ambi-
tions for extending the principle of relativity to acceleration. While not supplying
general covariance, covariance under unimodular transformations is sufficiently
expansive to capture transformations between inertial and accelerated coordinate sys-
tems. As Einstein shows in (Einstein 1915a, 786), these acceleration transformations
include ones that set the spatial coordinate axes into rotation as well as ones that
accelerate its spatial origin without rotation.11

…that Gives the Newtonian Limit and Energy Conservation

The remainder of the page explains why Einstein was attracted to this new candidate.
He had been unable to reduce the entire Ricci tensor to the form (8) without employ-
ing a coordinate condition, the harmonic condition, that brought fatal problems. Ein-

10 The result is automatic. The quantity  can be expressed as a difference of two quantities, each of
which are tensors at least under unimodular transformations. 
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stein now showed that he could reduce the tensor  to the form (8) if he considered
coordinate systems which satisfied the coordinate condition (11) introduced above.

As Einstein proceeded to show, with the assumption of this condition, the candi-
date gravitation tensor  reduced to

(15)

In the weak field of (7), the terms quadratic in

will all be of order  and thus of the second order of smallness; the first term of (15)
agrees with the first term of (8) in quantities of first order. The candidate tensor 
has been reduced to the requisite form (8). In addition, the reduction has been
effected by just the condition (11) needed to enforce energy conservation in the weak
field. As Einstein had already found, that coordinate condition, in conjunction with
the weak field equations (9) entailed energy conservation in the weak field form (12).

11 This last compatibility is not straightforward. The choice of  as gravitation tensor is not compati-
ble with Einstein’s favorite examples of a field produced by uniform, rectilinear acceleration in
Minkowski spacetime, the static, homogeneous field,  given as (6). One finds by explicit calcu-
lation that  is not a solution of the source free field equations  This failure is already
suggested by that fact that  is only a tensor under unimodular transformations and that the trans-
formation from  to  is not unimodular. (Unimodular transformations preserve the determi-
nant of the metric. But  whereas 
Now  is obviously a solution of the source free field equations  So we cannot infer from
the covariance properties of  that  is also a solution.
If Einstein was aware of this problem, he did not find it immediately fatal to  as gravitation tensor.
The problem should have been apparent as soon as Einstein contemplated a gravitation tensor covari-
ant only under unimodular transformations. Yet he proceeded on page 22R with the elaborate recovery
of the Newtonian limit. Again there is no trace of a concern over the homogeneous field,  in the
pages surrounding and following. (The concern is directed towards the coordinate restriction (11) and
the rotation field  defined below.) The failure amounts to a failure of his principle of equiva-
lence. But Einstein had already reconciled himself to such a failure in his theories of 1912 and it arose
again in his Entwurf theory. See (Norton 1985, §4.3).
In the text I have explained his apparent indifference by assuming that he adopted the position
expressed later in (Einstein 1915a, 786). Employing the same gravitation tensor  the theory of
that paper was also covariant under unimodular transformations. In order to affirm that the theory sat-
isfied the relativity of motion, he observed (in part) that the coordinate transformation 

   with  and  arbitrary functions of  is unimodular. We
might note that this transformation corresponds to a large class of unidirectional accelerations. While
the class does not include the transformation from  to  Einstein may well have simply
assumed that it did include related transformation of comparable physical significance.
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…Or Does It? 

Einstein could hardly hope for a more satisfactory outcome. He was burdened by strict
and unforgiving requirements on static fields and the weak field limit. Yet he found
gravitational field equations of very broad covariance compatible with both. So satis-
factory is this resolution that Einstein published it in November 1915 upon his return
to general covariance.  is the gravitation tensor he proposed in his communication
of 4 November to the Prussian Academy (Einstein 1915a). On 4 November, he had lit-
tle choice. The natural gravitation tensors, the Ricci tensor and then the Einstein ten-
sor, were still unavailable to him. He was still bewitched by his early, mistaken
expectations concerning static fields and the weak field limit. These expectations were
dispelled after that communication, over the course of that November. A rapid series
of communications first brought him his successful explanation of the anomalous
motion of Mercury and then his final, generally covariant field equations.

In the 4 November communication, Einstein paused to explain the transient
charms of the “November tensor”  He closed the communication of 4 November
by showing (§4) that the coordinate condition (11), in the case of weak fields, reduces
his field equations to the form (9). 

Yet Einstein’s achievement on page 22R of the Zurich Notebook proves to be as
puzzling as it is impressive. For the proposal disappears as rapidly as it appeared; it
receives no further serious consideration in the notebook.12 The difficulties that led to
its dismissal cannot be those that defeated the combination of the Ricci tensor and the
choice of harmonic coordinate systems. These were the misleading expectations
about static fields and the weak field limit. The gravitation tensor  was compatible
with both. Why did Einstein so rapidly discard this promising candidate for his grav-
itation tensor? What changed to make it acceptable in November 1915? 

1.3 The {} Prejudice

We have fragments of evidence that allow us to answer these questions. Some come
from the pages of the notebook surrounding page 22R. The most important come in
Einstein’s later recollections.

A Letter to Sommerfeld of 28 November 1915

Einstein’s most complete account comes in all too brief remarks in this letter. Having
recounted the final field equations of his theory, Einstein continued:

Of course it is easy to write down these generally covariant equations. But it is hard to
see that they are the generalization of Poisson’s [Newtonian] equations and not easy to
see that they allow satisfaction of the conservation laws.

12 We shall see below in section 3.7 that  is reevaluated on the following page 23L, but now with the
coordinate restriction (11) replaced by another. The candidate gravitation tensor reappears briefly on
page 25L in an incomplete attempt to compute the stress energy tensor of the gravitational field asso-
ciated with this gravitation tensor.
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Now one can simplify the whole theory significantly by choosing the reference system so
that  Then the equations take on the form

I had already considered these equations 3 years ago with Grossmann up to the second
term on the right hand side, but had then arrived at the result that they did not yield New-
ton’s approximation, which was erroneous. What supplied the key to this solution was
the realization that it is not

but the associated Christoffel symbols  that are to be looked upon as the natural
expression for the “components” of the gravitational field. If one sees this, then the above
equation becomes simplest conceivable, since one is not tempted to transform it by mul-
tiplying out [Ausrechnen] the symbols for the sake of general interpretation.13

Which equations had he considered three years before? “…[T]hese equations…up to
the second term on the right hand side…,” that is, excluding the trace term in 
coincide with the choice of the “November tensor”  as gravitation tensor on page
22R. Einstein tells Sommerfeld that he had considered these equations with Gross-
mann and that detail is affirmed by the appearance of Grossmann’s name on the top
of page 22R.14

The Fateful Prejudice

The elements of the account Einstein laid out to Sommerfeld reappear in other places
in Einstein’s writing. In his publication, (Einstein 1915a, 778), he also recounted his
misidentification of the “‘components’ of the gravitational field.” He recalled how he

13 “Es ist natürlich leicht, diese allgemein kovarianten Gleichungen hinzusetzen, schwer aber, einzuse-
hen, dass sie Verallgemeinerungen von Poissons Gleichungen sind, und nicht leicht, einzusehen, dass
sie den Erhaltungssätzen Genüge leisten. Man kann nun die ganze Theorie eminent vereinfachen,
indem man das Bezugssystem so wählt, dass  wird. Dann nehmen die Gleichungen die
Form an, […]. Diese Gleichungen hatte ich schon vor 3 Jahren mit Grossmann erwogen/ bis auf das
zweite Glied der rechten Seite, war aber damals zu dem Ergebnis gelangt, dass sie nicht Newtons
Näherung liefere, was irrtümlich war. Den Schlüssel zu dieser Lösung lieferte mir die Erkenntnis,
dass nicht […] sondern die damit verwandten Christoffel’schen Symbole […] als natürlichen Aus-
druck für die “Komponente” des Gravitationsfeldes anzusehen ist. Hat man dies gesehen, so ist die
obige Gleichung denkbar einfach, weil man nicht in Versuchung kommt, sie behufs allgemeiner Inter-
pretation umzuformen durch Ausrechnen der Symbole.” Einstein to Arnold Sommerfeld, 28 Novem-
ber 1915 (CPAE 8, Doc. 153).

14 Presumably Einstein alludes to his earlier recovery of these equations in the introduction to his paper
of 4 November 1915. Einstein recalls his work three years earlier with Grossmann and then claims:
“In fact we had already then come quite close to the solution of the problem given in the following.”
(“In der Tat waren wir damals der im nachfolgenden gegebenen Lösung des Problems bereits ganz
nahe gekommen.”) (Einstein 1915a, 778)
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had reformulated the energy conservation law in his earlier work, (Einstein 1914c). In
the absence of non-gravitational forces, the law is just the vanishing of the covariant
divergence of the stress-energy tensor  It could be re-expressed as15

where the tensor density  Einstein now reflected upon his earlier error:

This conservation law had earlier induced me to view the quantities

as the natural expression for the components of the gravitational field, even though it is
obvious, in view of the formulae of the absolute differential calculus, to introduce the
Christoffel symbols

instead of those quantities. This was a fateful prejudice.16

Einstein continues to argue for the naturalness of this choice. The Christoffel symbols
are symmetric in the indices  and  and they reappear in the geodesic equation.
However he does not explain precisely how this “prejudice” led him astray. For con-
venience, I will call this the “  prejudice.”

A letter written to Lorentz the following January repeats and slightly clarifies the
role of the  prejudice. 

I had already considered the present equations [of the final theory, not of 4 November] in
their essentials 3 years ago with Grossmann, who had made me aware of Riemann’s ten-
sor. But since I had not recognized the formal meaning of the  I could achieve no
overview and could not prove the conservation laws.17

The Problems Collected

If we assemble the clues, we find Einstein giving two reasons for his rejection of the
“November tensor”  when he worked with Grossmann:18

15 Einstein refers back to the results in (Einstein 1914c). There the energy conservation law was written
in terms of the covariant divergence of  In his paper of 4 November 1915, Einstein had discarded
a term in  to simplify the result at the expense of reducing its covariance to unimodular transfor-
mations only.

16 “Diese Erhaltungsgleichung hat mich früher dazu bereleitet, die Größen [eq.] als den natürlichen Aus-
druck für die Komponenten des Gravitationsfeldes anzusehen, obwohl es im Hinblick auf die Formeln
des absoluten Differenzialkalküls näher liegt, die Christoffelschen Symbole [eq.] statt jener Größen
einzuführen. Dies war ein verhängnisvolles Vorurteil.” (Einstein 1915a, 782)

17 “Die jetzigen Gleichungen hatte ich im Wesentlichen schon vor 3 Jahren zusammen mit Grossmann,
der mich Riemanns Tensor aufmerksam machte, in Betracht gezogen. Da ich aber die formale Bedeu-
tung der  nicht erkannt hatte, konnte ich keine Übersichtlichkeit erzielen und die Erhaltungssätze
nicht beweisen.” Einstein to Hendrik A. Lorentz, 1 January 1916 (CPAE 8, Doc. 177).
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• He was unable to recover the Newtonian limit.

• The  prejudice precluded recognition of the inherent simplicity of the equations
and the recovery of the energy conservation law.

Both elements of Einstein’s account are puzzling. A straightforward reading of page
22R shows Einstein recovering the Newtonian limit in exactly the same way as in his
later publication of 4 November 1915. A more careful analysis will be needed, but
that will be postponed to later parts of this chapter. Einstein’s remarks about the 
prejudice are also puzzling at first. Einstein had a perfectly acceptable expression for
the energy conservation law. It is just the vanishing of the covariant divergence of

 and was introduced by Einstein on page 5R of the notebook. I believe that these
last remarks admit a fairly simple explication.

Recovering Energy Conservation

To understand why this prejudice was fateful, we need to recall a major difference
between Einstein’s work in the notebook and in November 1915. Here I draw heavily
on the insights of Jürgen Renn and Michel Janssen.19 By 1915 Einstein had devel-
oped techniques of considerably greater sophistication for recovering energy conser-
vation than he had used in 1913. Also, when Einstein talks of proving the
conservation laws, we must understand him to mean a little more than merely recov-
ering the standard result that the covariant divergence of  vanishes. We must
understand an important part of the recovery to be the identification of a stress-energy
tensor for the gravitational field,  that will figure in an alternate form of the
energy conservation law (as given in Einstein and Grossmann 1913, 17)

At the time of the Entwurf theory, Einstein employed a simple device for generat-
ing this stress-energy tensor. It had been used on pages 19R, 20L and 21L of the note-
book in the weak field, while Einstein weighed the fate of the Ricci tensor as
gravitation tensor. Einstein took the expression for the gravitational force density in
the weak field (7),

where  is the contravariant form of the stress-energy tensor  He then substi-
tuted for  using the gravitational field equation for the weak field (9). A simple

18 Since recollections are not infallible, there is always a possibility that the first difficulty with the New-
tonian limit was misremembered and really pertained only to his problem with the Ricci tensor. We
need not have such concerns for the  prejudice. Since it was published on 4 November 1915, the
notion was clearly formulated before Einstein had realized the problems with the Newtonian limit
associated with his assumptions about the static field and the weak field equations.

19 See “Untying the Knot …” (What Did Einstein Know).
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manipulation that preserved only terms of lowest order in the derivatives of 
allowed this force density to be rewritten as the divergence of a tensor 20

Einstein identified that tensor with the stress-energy tensor of the gravitational field.
This equation holds only for quantities of second order of smallness (  in the

metric tensor of (7) of the weak field. The major part of Einstein’s strategy for deriv-
ing his Entwurf field equations was to determine what quantities must be added to the
gravitation tensor of the weak field equations (9) to make the relation between force
density and the divergence of  exact, that is, true for all orders. This strategy reap-
pears after page 22R, on pages 24R and 25R, and then in the full derivation of the
Entwurf gravitational field equations by this strategy on pages 26L–26R.

Why the  Prejudice Was Fateful

Now we can understand why the  prejudice was fateful as Einstein inspected the
candidate gravitation tensor  on page 22R. On his account, he was unable to see
how to recover the Newtonian limit, a problem we shall return to. He also needed to
assure himself that the gravitation tensor was compatible with energy conservation
and that included admission of a well-defined stress-energy tensor  for the gravi-
tational field. Following his standard practice, that would mean that he must be able
to reformulate the expression for gravitational force density as a divergence. We can
immediately see the problem Einstein would face. The tensor  is expressed fully
in terms of Christoffel symbols, with each representing a sum of three terms in

The product of two Christoffel symbols would yield nine of these derivative terms.21

Faced with so many terms, we could well imagine Einstein’s sense that he had no

20 The symbol  where  when  and zero otherwise, was not then used by Einstein,
but is introduced here for simplicity.

21 Einstein’s Entwurf gravitation tensor has one second derivative term and three first derivative terms.
Unless there are duplications, the November tensor would have three second derivative terms and nine
first derivative terms. 
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overview (as he wrote to Lorentz above) or that this was certainly not the simplest
conceivable equation (as he wrote to Sommerfeld above). We could well imagine that
this difficulty, along with failure of the Newtonian limit, would be sufficient grounds
for him to abandon the candidate tensor.

What changed by November 1915? In the course of 1914, Einstein developed
powerful variational methods for recovering energy conservation and expressions for
the stress-energy tensor of the gravitational field. (Einstein and Grossmann 1914;
Einstein 1914c). He applied those to his field equations of 4 November 1915, and
found that the expressions took on just about the simplest form one could expect—as
long as all quantities were expressed in terms of the Christoffel symbols. His field
Lagrangian was just

It is one of the simplest fully contracted expressions quadratic in the Christoffel sym-
bols. (The Lagrangian must be quadratic if it is to return field equations linear in the
second derivatives of the metric tensor.) His expression for the canonical stress-
energy tensor of the gravitational field was scarcely more complicated.

Einstein’s analysis in the notebook began with a force density

expressed in terms of the derivatives of the metric tensor. It overwhelmed him and he
abandoned it. Einstein’s analysis in November 1915 retained the Christoffel symbols
and, using his more powerful methods, yielded just about the simplest expressions he
could expect. In hindsight, Einstein diagnosed the error to lie in his starting point.
Had he not misidentified the components of the gravitational field, would he have
resisted the temptation to expand the Christoffel symbols? Would he have come to
see that he had the right equations before him?

Einstein used the term “prejudice”—a belief not properly grounded in evidence. It
is a fitting label for the error we reconstruct. He was not assured that energy conser-
vation would fail for this tensor in the notebook. He had no firm proof, no result
around which to maneuver. He merely balked at a very complicated calculation that
could have, in principle, been completed. He had no good reason to abandon the ten-
sor other than the hunch that the true way could not be that complicated. And he later
found that it was not at all complicated when viewed from another perspective.

2. COORDINATE CONDITIONS AND COORDINATE RESTRICTIONS

On page 22R of the notebook, Einstein shows how to use the coordinate condition
(11) to reduce the gravitation tensor  to the requisite Newtonian form (8). Why
does he report to Sommerfeld that he and Grossmann had originally thought the
resulting gravitational field equations incompatible with the Newtonian limit? In this
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part of the chapter and in the part to follow, I will describe two explanations, both
requiring that Einstein did not use coordinate conditions in the modern way. The
explanation to be developed in this part is the simpler of the two. It asserts that Ein-
stein understood field equations to be compatible with the Newtonian limit if they
had the form (8) not just in some specialized coordinate systems, but in all coordinate
systems. A cursory inspection would reveal that  does not have this form (8), ren-
dering it incompatible with the Newtonian limit.

For this account to be tenable, we must now explain why page 22R displays the
apparently successful reduction of the tensor  to the Newtonian form (8) using
coordinate condition (11). This part will supply that explanation by suggesting that
Einstein did not use the coordinate condition (11) in the standard way, as it was later
in Einstein’s paper of 4 November 1915. It was not a condition just to be invoked in
the case of the Newtonian limit. It was a postulate to be used universally. In part one
of this section, I will review the these two ways of using conditions such as (11). In
this volume, we reserve the term “coordinate condition” for the standard usage and
“coordinate restriction” for the other usage suggested here. This notion of coordinate
restriction was introduced by Jürgen Renn and Tilman Sauer.22 We will see in the
second section of this part that there is clear evidence that Einstein used coordinate
restrictions in the notebook on page 22 and afterwards.

In the third section of this part, I will describe how we can use the notion of coor-
dinate restrictions to explain why Einstein abandoned the gravitation tensor  To
do so, we need a further assumption. Einstein did not just use (11) as a coordinate
restriction on page 22. We must assume that he was unaware of the other possibility
of using (11) as a coordinate condition. Then his rejection of  as gravitation tensor
is automatic; it does not have the Newtonian form (8). This account is the majority
viewpoint within our group.

The account depends upon the assumption that Einstein was unaware of the possi-
bility of using (11) as a coordinate condition. In the fourth section of this part, I will
explain why I do not believe the assumption. There is no single piece of evidence that
allows us to decide either way on the assumption. It lies on the boundary. However I
believe that there are so many indications that speak against it, that their combined
weight makes the assumption untenable. The most plausible account, I believe, is that
page 22 of the notebook marks a turning point. Prior to it, Einstein used coordinate
conditions; after he reverted to the use of coordinate restrictions.

2.1 Two Uses of One Equation

Four Equations Select a Coordinate System…

The equations of a generally covariant spacetime theory hold in arbitrary coordinate
systems. In applying the theory, we may pick the coordinate system freely. The four
coordinates are just four real valued functions  defined on the spacetime manifold.

22 See “Pathways out of Classical Physics …” (in vol. 1 of this series).
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Therefore a coordinate system can be chosen with four conditions 
where the  are four arbitrary real valued functions of suitable differentiability
defined over events  Thus four arbitrary conditions are associated with the choice
of a coordinate system.

This simple fact about coordinate systems is often rendered as the much looser
idea that there are four degrees of freedom in a generally covariant theory associated
with the freedom of choice of the coordinate system.23 These four degrees of free-
dom are more usually exploited indirectly by specifying four differential conditions
on quantities defined in spacetime. Examples are the harmonic condition (10) and the
condition (11) used on page 22R. They do not fully exhaust the freedom. Since they
are differential conditions on the metric, they do not force a unique choice of coordi-
nate system; differential equations admit many solutions according to the choice of
boundary conditions. So each of (10) and (11) admit many coordinate systems. For
example, if one admits a coordinate system  it also admits any coordinate system
linearly related to it. This follows immediately from the covariance of (10) and (11)
under linear coordinate transformations.

In the case of the harmonic condition (10), the relation between the different
forms of the condition can be made more explicit. We can define the natural, gener-
ally covariant analog of the d’Alembertian operator used in (9) as follows. If  is
a scalar, we take its covariant derivative twice and contract with  over the two
resulting indices. In Einstein’s notation of 1913, this gives

If we now form  for each of the four coordinates, we quickly see that the har-
monic condition (10) is equivalent to24

(10’)

23 This slogan—four degrees of freedom associated with the choice of coordinates—must be
approached with some caution. It does not mean we can adjoin any four equations we like to our the-
ory under the guise of choosing the coordinate system. Adding the single equation  where 
is the curvature scalar, does a great deal more than restrict the coordinate system. One might imagine
that restricting the equations to first order derivatives in  would protect us from these problems,
since, at any event in spacetime, we can always transform such derivatives to zero. But it does not.
Imagine that we have 100 such conditions,   …,  that more than exhaust
the freedom to choose coordinates. They can be disguised as a single equation

24 To see the equivalent, notice that the first term of (10’) vanishes for any coordinate system. The sec-
ond term vanishes if (10) holds. So (10) entails (10’). Conversely, if (10’) holds, its second term must
vanish, which immediately entails (10).
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One sees from this equation that the harmonic condition cannot fix the coordinate
system uniquely.25 If the condition is satisfied by  it will also be satisfied by any
linear transform of it. Other transforms will also be admissible. The condition cannot
fix the coordinate system up to linear transformation unless one invokes further
restrictive conditions (see Fock 1959, §93).

We know that Einstein was aware of this form (10’) of the harmonic condition on
coordinate systems, then routinely available in the literature on infinitesimal geome-
try as the “isothermal” coordinates. At the bottom of page 19L on which he intro-
duced the condition in form (10), he wrote “…Holds for coordinates which satisfy
the eq[uation] 

We see how equations (10) and (11) allow us choose a restricted set of coordi-
nates. There are two ways relevant to our present interests that these equations may
be used: as coordinate conditions and as coordinate restrictions.

…As Coordinate Conditions

Einstein later used a standard procedure for recovering the Newtonian limit from his
generally covariant general theory of relativity. See for example, (Einstein 1922, 86–
87). That theory must revert to Newton’s theory of gravitation in the special circum-
stance of weak static fields, that is, under the assumption that the metric has the form
(7) and is static. In addition, Newton’s theory is not generally covariant, but is covari-
ant under Galilean transformation only.26 Therefore the covariance of Einstein’s the-
ory must be restricted if Newton’s theory is to be recovered.

That covariance is already restricted in part by the presumption that the metric
have the form (7). That form is not preserved under arbitrary transformations. The
restriction to the weak field metric (7) is not, however, sufficient to reduce the covari-
ance of the theory to the Galilean covariance of Newton’s theory. That form is pre-
served by any transformation which introduces small changes of order of the  to
the coefficients of the metric. This last freedom is eliminated by imposing a coordi-
nate condition, such as the harmonic condition (10). We have already seen the direct
effect of this condition. It eliminates all second derivative terms from the Ricci tensor
beyond those in the Newtonian like form (8). In so far as Einstein expected his
Entwurf theory to have broad covariance, he must have believed the restriction of the
metric to the weak field form (7) was sufficient restriction on its covariance for the
recovery of the weak field limit.

A coordinate condition is used only in the special circumstances of the Newtonian
limit; it is not imposed universally on the theory.

25 Notice that the operator  is invariant under linear transformation.

26 At least, this is the way it seemed to Einstein in the 1910s. Cartan and Friedrichs later showed that
Newtonian theory could be given a generally covariant formulation, so that the problem of recovering
the Newtonian limit from Einstein’s theory takes on a different cast. See (Havas 1964) and also “The
Story of Newstein …” (in vol. 4 of this series).
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…As Coordinate Restrictions

The same equation (10) and (11) can be used in a different way. Einstein’s goal in the
notebook is a theory with sufficient covariance to satisfy a generalized principle of
relativity. General covariance supplies more covariance than he needs; it includes
covariance under transformations not associated with changes of states of motion,
such as the transformation from Cartesian spatial coordinates to radial coordinates.
So Einstein can afford to use the generally covariant expressions of the Ricci Levi
Civita calculus merely as intermediates. If those expressions are not themselves suit-
able for his theory, then he can simplify them to generate others of somewhat less
covariance that are. The generation of the November tensor  on page 22R is an
example. The Ricci tensor itself appeared unsuitable as a gravitation tensor. There
proved to be a way of splitting the tensor into two parts each of which is a tensor
under unimodular transformations. Since Einstein was willing to accept unimodular
covariance instead of general covariance, he could select one of these parts as his
gravitation tensor.

The equations (10) and (11) could be used in the same way. If the Ricci tensor or
the tensor  proved unsuitable as a gravitation tensor, why not sacrifice a little more
covariance to produce expressions that are suitable? Conjoining (10) or (11) to their
associated tensors produces simpler expressions. The tensor  for example is
reduced to (15). If Einstein selected this reduced form as his gravitation tensor, then
he assured recovery of the Newtonian limit. The gravitation tensor has the required
form (8).

The cost of using equations (10) and (11) in this way is a further sacrifice of cova-
riance. The final equations will have no more covariance than the coordinate restric-
tions (10) and (11). Whether these have sufficient covariance to support an extension
of the principle of relativity cannot easily be read by inspecting equations (10) and
(11). It is a matter of computation.

2.2 The Evidence for Einstein’s Use of Coordinate Restrictions

There is strong evidence that Einstein used equation (11) and another similar restric-
tion as a coordinate restriction, that is, as a universal restriction not limited to the spe-
cial case of the Newtonian limit.

The Non-Linear Transformation of Equation (11)

The first piece of evidence is on page 22L. There Einstein undertakes a simple calcu-
lation. He writes down two equations. The second is  Since, in Einstein’s
notation,

this is just the condition that the transformation  be unimodular. The first is
equation (11) in the primed coordinate system. Einstein then expands this equation in
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terms of unprimed quantities and the coefficients of the transformation  and their
inverses.

The calculation is incomplete and its outcome obscure. Its purpose is not obscure
and that is all that matters here. Einstein is checking the covariance of equation (11)
within the domain of unimodular transformations. If Einstein intended (11) to be a
coordinate condition, it is hard to see why he would concern himself with its transfor-
mation properties. The role of equation (11) as a coordinate condition is merely to
assist in reducing the covariance of the theory to enable recovery of the Newtonian
limit. Galilean covariance only is required in that Newtonian limit. Einstein can be
assured of this much covariance. Galilean transformations are a subset of the linear
coordinate transformations. Einstein can determine rapidly that equation (11), used as
a coordinate condition, will give him that much covariance. The calculation is trivial.
It merely requires noticing that the coefficients

and their inverses

are constants under linear transformation. Therefore the quantity in equation (11)
transforms as a vector under linear transformation since

where we use  Hence, if this quantity vanishes in one coordinate

system as (11) requires, it will vanish in any coordinate system to which one trans-
forms with a linear transformation.

Einstein cannot have had this simple linear case in mind on page 22L. For the cal-
culation there clearly allows non-constancy of the coefficients  he does not elim-
inate the derivative terms

which vanish automatically for linear transformations. This concern is unintelligible
if equation (11) is being used as a coordinate condition. The concern is explained
quite simply if that equation is being used as a coordinate restriction. The quantity in
(15), the tensor  after reduction by coordinate restriction (11), is his gravitation
tensor. He is computing its covariance the easy way. By its construction, this candi-
date gravitation tensor will transform as a tensor under unimodular transformations
that leave equation (11) unchanged. If the candidate gravitation tensor is to allow a
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generalization of the principle of relativity, its covariance must include non-linear
transformations.

The Theta Requirement

The result of the calculation on page 22L cannot have been encouraging for the com-
bination of the tensor  and condition (11) receive no further serious attention in
the notebook. Instead, on page 23L, Einstein introduced another way of recovering
the Newtonian like expression (8) from  that did not require use of equation (11).
That it not be required was apparently of some importance since, in a document of
pure calculation with essentially no explanatory text at all, Einstein went to the trou-
ble to explain in writing

“  is not necessary.”

In its place Einstein introduced a coordinate restriction of another type. He con-
structed the quantity

(16)

and required that transformations between coordinates be so restricted that this quan-
tity  transform as a tensor. (We shall call this the “theta requirement,” the “theta
condition” or the “theta restriction” according to its interpretation.) He then pro-
ceeded to show by adding and discarding terms in  from  how one could con-
struct a quantity

(17)

that is a tensor under unimodular transformations for which  transforms tensori-
ally. Einstein’s efforts have produced another expression in the form of (8), appar-
ently yet another candidate for the gravitation tensor, at least in the Newtonian limit.

Its Relation to Rotational Covariance…

Through another part of the notebook we also learn what apparently interested Ein-
stein in the requirement that  transforms tensorially. The simplest requirement of
this type would be to ask that the quantity  transform as a tensor. But that,
perhaps, was an excessively restrictive. It is easy to see that this quantity transforms
as a tensor only under linear transformations of the coordinate systems. If one sought
a natural weakening of this requirement, the simplest weakening is to consider just
the symmetric part of  which is (up to multiplicative factor) the quantity

27 One might hope that the weakened requirement would now admit other inter-
esting transformations, such as those to coordinate systems in uniform rotation. More
explicitly, these are the transformations that take the coordinates  to a
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new coordinate system  in uniform rotation at angular velocity 
about the  axis

   (18)

That this is Einstein’s hope is revealed, apparently, by calculations on pages 42L–
42R of the notebook. Einstein sets up and solves the following problem: what are all
the metrics of unit determinant that satisfy the conditions28

 and (19)

The problem posed by Einstein is a reformulation of this more interesting problem:
assume we start from the metric  To which time (=  coordinate) independent
metrics can we transform by means of unimodular coordinate transformations for
which  transforms as a tensor? Since  has constant coefficients, we have

 so that the requirement that  transforms as a tensor reduces to the
requirement that  remain the zero tensor. Thus the metrics to which we can trans-
form must satisfy (19). Apparently Einstein hoped that these transformations would
include the unimodular transformation (18), so that this class of metrics would
include what we can call a “rotation field”, the form of the metric  that results
when it is transformed by the rotation transformation (18)

(20)

… Is Not Close Enough

And Einstein’s hopes were almost realized. The result of his calculation was that the
two conditions (19) were satisfied by a metric whose coefficients in its covariant
form equaled those of the contravariant form of  that is  This was close
to showing that the transformations under consideration would allow the transforma-
tion from  to  But it is not good enough for a mathematical result such as
this to be close. It either succeeds or fails—and this one failed. Einstein revealed his
frustration by remarking in one of the few textual comments in the notebook of calcu-
lations, “Schema of  for a rotating body identical with the adjacent schema!” The

27 Another advantage is that the symmetrized form  of  is very similar in structure to the
Christoffel symbols, so that the Christoffel symbols in  can readily be rewritten in terms of 
easing the course of the calculations.

28 Einstein also suppresses the  coordinate.
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exclamation remark is very unusual and flags Einstein’s surprise and, probably, dis-
appointment.29

The Theta Requirement is Not a Coordinate Condition

We can reconstruct the content of these calculations fairly confidently. But their pur-
pose is quite mysterious if we assume that the theta requirement is simply a coordi-
nate condition being used to reduce  to the Newtonian form (8) for the case of the
Newtonian limit. There are two problems. First, if the theta requirement has this pur-
pose, then there is no need to investigate its covariance under rotation transformations
(18) or, for that matter, to contrive the condition to have this covariance. Linear cova-
riance is sufficient for the Newtonian limit and it is obvious without calculation that
the theta condition has that much covariance.30 Nonetheless, lack of rotational cova-
riance seems to have been fatal to the proposal of the theta condition.

The second problem is that the reduction of  to (17) is not the calculation that
would be undertaken if the theta condition were a coordinate condition. In that case,
one would merely seek the expression to which  reduced in coordinate systems
compatible with the condition. Expression (17) is not that expression. In generating
it, Einstein freely added terms in  so contrived as not to disturb the covariance of
the resulting expression under these transformations. One cannot revert to  merely
by relaxing the constraint of the theta restriction. In short, (17) is guaranteed to trans-
form tensorially under these restricted transformations, but it is not the quantity one
would seek if one chose  as the gravitation tensor and sought its Newtonian limit
through a coordinate condition.

Both these problems are resolved immediately if we assume that Einstein is using
the theta requirement as a coordinate restriction. The expression (17) is his candidate
gravitation tensor. It can have no more covariance than the theta condition, so an
investigation of the latter’s covariance is, indirectly, an investigation of the covariance
of the candidate gravitation tensor. Moreover  is merely an intermediate used in
the construction of the candidate gravitation tensor (17). There is no need to ensure
that this latter expression be a form of  in a restricted class of coordinates. Ein-
stein’s goal is merely a quantity of Newtonian form (8) with as much covariance as
the theta condition. Einstein can add terms in theta freely if they allow a simpler final
result, for these terms do not compromise the covariance of the result.

29 That this result proved fatal to the proposal of the theta restriction is confirmed by the calculations that
follow on page 43L. There Einstein attempts to define a contravariant form of  and begins to
check whether it might be able to reduce the tensor  if used in the same way as  in the origi-
nal theta restriction. Presumably Einstein chose a contravariant form of  as a replacement of the
failed  in the hope that a calculation analogous to that on pages 42L–42R would yield the correct
covariant form of 

30 The deep concern with the covariance of the theta condition is also evident on the page facing the one
on which the theta restriction is introduced. That facing page, 23R, is given over to computation of the
transformation behavior of  under infinitesimal transformations.
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2.3 The Problem of the Newtonian Limit

How can the notion of coordinate restriction help us understand why Einstein
rejected  as a candidate gravitation tensor in the notebook? In particular, how can
it help us to understand Einstein’s remark to Sommerfeld that the tensor did not yield
the Newtonian limit when page 22R of the notebook appears to contain the calcula-
tion that shows how to recover the Newtonian limit? That is, it shows how to use
equation (11) to reduce  to a Newtonian form, just as Einstein would in his paper
of 4 November 1915.

The answer is simple. The expression  does not have the Newtonian form (8)
and that may already be sufficient to explain Einstein’s remark. Indeed, in addition to
problems of energy conservation, Einstein may also have succumbed at this point to
the temptation to multiply out the Christoffel symbols in an effort to get closer to an
expression of the Newtonian form (8). If equation (11) is being used as a coordinate
restriction in this effort, then  has ceased to be Einstein’s candidate gravitation
tensor. The new gravitation tensor is its reduced form, expression (15). While the for-
mal manipulation of the reduction to expression (15) is the same in the notebook and
in the 4 November 1915, paper, their interpretations would be very different. In 1915,
the calculation shows how to recover the Newtonian limit from  In the notebook,
the calculation merely used  as an intermediate to generate a new candidate gravi-
tation tensor, expression (15).

What was the fate of this new candidate gravitation tensor? It does not survive
beyond page 22R. The notion of coordinate restriction can help us surmise its fate. If
expression (15) is to be used as a gravitation tensor, it is of the greatest importance to
determine its covariance. As we have seen, that is determined indirectly by investigat-
ing the covariance of the coordinate restriction (11). Presumably this was Einstein’s
goal on the facing page 22L when he probed the covariance of equation (11). We do
not know how far Einstein went in these investigations. But we do know the results
he would have found had he persisted. It is not too hard to see that coordinate restric-
tion (11) is not covariant under rotation transformation (18). The simplest way to see
this is to substitute  directly into (11). Since (11) vanishes for  if it is cova-
riant under rotation transformation (18), then it must also vanish for  But it
does not. We have

We know that the rotation transformation (18) and the rotation field  became a
topic of continued concern to Einstein on the pages following page 22. The rotation
field enters indirectly on page 23L through the connection of the theta condition to
the rotation field on pages 42L–42R. The rotation field is explicitly the subject of
pages 24L, 24R and 25L.

It is natural to suppose that Einstein somehow came to see that his coordinate
restriction (11) lacked rotational covariance, although we cannot identify a particular
calculation in the notebook that unequivocally returns the result. The supposition that
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he had found the result would explain the strategy of the introduction of the theta con-
dition on page 23L. Having found that his coordinate restriction (11) fails to satisfy
rotational covariance, Einstein would respond by introducing a new coordinate restric-
tion explicitly contrived to have rotational covariance. The theta condition is formu-
lated directly as a covariance condition—Einstein will consider coordinate systems for
which  transforms as a tensor. As we saw above, the quantity  was plausibly
chosen exactly because it might yield covariance under rotation transformation (18).
And we saw that Einstein remarked with evident satisfaction on page 23L that equa-
tion (11) was not needed, affirming his goal of replacing it with the theta condition.

This account of the failure of  as a gravitation tensor in the notebook is both
simple and appealing. It depends crucially on one assumption: Einstein was unaware
of how to use conditions like (11) as a coordinate condition at the time of the writing
of the notebook. Without this assumption, we cannot use the notion of coordinate
restrictions to explain Einstein’s remark that the candidate gravitation tensor  does
not yield the Newtonian limit. For, if he then understood the use of coordinate condi-
tions, the calculation of page 22R supplied everything needed for recovery of the
Newtonian limit. We must assume that he was unaware of the use to which his formal
manipulation could be put.

2.4 Was Einstein Unaware of Coordinate Conditions?

I know of no evidence that decisively answers this question. So my final assessment
is that we just do not know. There are weak indications, however, that point in both
directions and I will try to assess them here. My view is that the case for the negative
is stronger; that is, I find it most credible that Einstein was aware of possibility of
using coordinate conditions.

In the Notebook

Requirements that may be either coordinate conditions or coordinate restrictions play
a major role in the notebook on pages 19–23. The harmonic condition/restriction per-
sists on pages 19–21, the requirement (11) on page 22 and then the theta requirement
on page 23. The theta requirement was used as coordinate restriction and Einstein’s
calculation admitted no alternative interpretation of its use as a coordinate condition
because of the way he added terms in  in the course of his calculation. The calcu-
lation that used requirement (11) on page 22R is compatible with the requirement
being used as either coordinate condition or coordinate restriction or both; the inter-
est in the non-linear transformation of (11) on page 22L suggests its use as a coordi-
nate restriction. There seems to be no indication that lets us decide whether the
harmonic condition is used as a coordinate condition or restriction.31 In particular, if
it were used as a coordinate restriction, we might expect Einstein at some point to
check its covariance in the way that he checked the covariance of requirement (11)
and the theta restriction. The pages 19–21 contain no such check. Was that because he
was using the requirement as a coordinate condition so that it needed no such check?
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Or was is that he was too preoccupied with the ultimately fatal difficulty of recover-
ing the Newtonian limit and energy conservation to proceed to a test of covariance?

While Einstein certainly used coordinate restrictions in the notebook, nothing in the
above precludes his awareness of coordinate conditions and that he may have also
thought of using the harmonic requirement and equation (11) as coordinate restrictions.

“Presumed Gravitation Tensor”

Of the fragments of relevant evidence in the notebook, the most important is Ein-
stein’s labeling on page 22R. There, as we saw above in expression (14), Einstein
splits the Ricci tensor into two parts. The first is easily seen to be a tensor under uni-
modular transformation. Therefore the second is also such a tensor. Einstein labels
this second quantity “Vermutlicher Gravitationstensor —“presumed gravitation
tensor. 

If Einstein is unaware of the use of coordinate conditions, then the identification
of  as a gravitation tensor is very hard to understand. It does not have the Newto-
nian form (8). The derivative of the Christoffel symbol will immediately contribute
three second derivative terms in the metric tensor, two more than (8) allows. This fail-
ure is not difficult to see. A Christoffel symbol is the sum of three first derivative
terms. Its derivative will contain three second derivative terms in the metric tensor.
Perhaps a novice in these calculations might overlook it. But Einstein is not a novice
in these calculations at this stage in the notebook. In the pages preceding in the note-
book he has become increasingly adept at more and more elaborate calculations
involving the expansion of Christoffel symbols. On the following page 23L he
devises the theta requirement. It depends on the recognition that the quantity 
and a Christoffel symbol have very similar structures so that the latter could be re-
expressed profitably in terms of the former.

31 We might clutch at straws. If the harmonic requirement is used as a coordinate condition merely for
the Newtonian limit, one needs to recover only the second derivative terms in the metric tensor and
not the full reduced expression with first derivative terms, as Einstein does on page 19L. Or is this just
Einstein being thorough and carrying a simple computation through to completion, wondering, per-
haps, if the full result has an especially simple form? If the harmonic requirement were used as a coor-
dinate restriction, then the full result would be needed, but that would still not preclude the possibility
that Einstein weighed the use of the harmonic requirement as both coordinate condition and coordi-
nate restriction. At the top of page 19R Einstein decomposes the harmonic requirement in the weak
field into two equations comprising five conditions in all. That is one more than is allowed for a coor-
dinate condition but admissible for coordinate restrictions. But since one of the new equation sets is
just energy momentum conservation in the weak field, the decomposition is not necessarily an illegit-
imate strengthening of a coordinate condition as supplementing it with a physical requirement he
demands on other grounds. Alternately but in the same spirit, that same condition, which is just equa-
tion (11) in the weak field, is a differential condition that must be satisfied by any static metric of form
(4), as Einstein has already found earlier on page 39R of the notebook. On this same page 19R, he
calls the harmonic requirement a “Nebenbedingung”—a “supplementary condition.” If the require-
ment is a coordinate restriction, that is an odd label for what is as much a physical postulate as the
original gravitational field equations they modify. But then perhaps that is the right way to view their
action—as a universal supplement to those equations.
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Perhaps this was just an oversight by Einstein. Perhaps it was haste that led him to
label a manifestly inadmissible term as his presumed gravitation tensor. This supposi-
tion of haste becomes harder and harder to reconcile with what we know. At least the
top half of page 22R is fairly neatly written and compact in argument, suggesting that
it is not a live calculation but the record of deliberations elsewhere. Perhaps they
record the outcome of a meeting with Grossmann—this is suggested by Grossmann’s
name on the top of the page and Einstein’s later report to Sommerfeld of 28 Novem-
ber 1915, that he and Grossmann together had considered the gravitation tensor of
this page. Einstein’s failure to notice the two additional second derivative terms
would have to survive whatever deliberation or meeting that produced the result and
its transcription.

Yet more curious is the success of the equation (11) in reducing the tensor  to
the Newtonian form (8). If Einstein chose  as a candidate gravitation tensor in
haste, what sublime good fortune came with the equation (11). It just happens to be a
restriction compatible both with the form he demanded for the static field and with
energy conservation in the weak field, the problems that proved fatal to the harmonic
requirement. And it just happened to the one that rescued his poor choice of  as
gravitation tensor and allowed him to use it as an intermediate on the way to a better
choice. On the supposition that Einstein was unaware of the use of coordinate condi-
tions, we cannot presume that he already knew that equation (11) would effect this
reduction. For if he already knew that, he would not label  his presumed gravita-
tion tensor. It would just be an intermediate as the Ricci tensor itself is.

The supposition of haste and unanticipated good fortune seems necessary to make
the page compatible with a lack of awareness of the use of coordinate conditions. I
find this supposition incredible. I find it much more credible that Einstein simply
wrote what he meant. He chose  as his gravitation tensor, fully aware of the sur-
plus second derivative terms and fully aware, by the time of the writing of page 22R,
that they could be eliminated by the condition (11). That condition (11) has this
power need longer be a fortuitous coincidence. After the failure of the harmonic
requirement, we may suppose that Einstein sought a tensor that could be reduced to
the Newtonian form by equation (11), for that was the requirement that was mani-
festly compatible with energy conservation in the weak field. Surely what attracted
Einstein to the gravitation tensor  was exactly the fact that condition (11) allowed
its reduction to the Newtonian form (8) and its selection as a presumed gravitation
tensor resulted from working backwards from this result.

If we accept this last version of the story, then we accept that Einstein intended to
use requirement (11) on page 22R as a coordinate condition and only later considered
using it as a coordinate restriction.

Einstein’s Later Discussion and Treatment of Coordinate Conditions

If the content of the notebook allows no final decision, we might look for evidence
elsewhere. If Einstein were unaware of the use of coordinate conditions and this
played some role in his failure, we might expect some trace of it in his later recollec-
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tions and writings. He would have failed to see what later became his standard
method for recovery of the Newtonian limit. Many of the errors of the notebook and
Entwurf theory are mentioned later. He remarks both in correspondence and in his
publications on his surprise that static fields turn out not to be spatially flat, (see
Norton 1984, §8). He eventually also puts some effort into explaining to his corre-
spondents how he erred in the “hole argument” and an enduring trace of this correc-
tion was his publication of the “point-coincidence argument,” see section 3.2 below
and (Norton 1987). I know of no place in which Einstein directly allows that he was
unaware of the use of coordinate conditions when he devised the Entwurf theory.

What were the errors he corrected when he returned to the tensor  A problem
with the Newtonian limit accrues a brief mention in his letter to Sommerfeld. The real
force of Einstein’s correction in that letter lies in his confession of the  prejudice.
That he regarded this error as decisive is affirmed by the fact that it also is discussed
at some length in the text of the paper of 4 November 1915, as we say above. In stark
contrast, the use of coordinate conditions gets no mention in this correspondence. In
the 4 November paper, the correct use of coordinate conditions is introduced with an
indifference that suggests he thinks their use entirely obvious.32 His complete discus-
sion is merely:

[Through this previous equation] the coordinate system is still not determined, in that
four equations are needed for their determination. Therefore we may arbitrarily stipulate
for the first approximation

33 [(11)]

If Einstein had suffered a failure to see that equation (11) could be used this way for
almost three years, would he not offer some elaboration if only to assure readers that
the manipulation is admissible? Or should we assume that Einstein was feeling too vul-
nerable at this crucial time in his theory’s development to admit all his former errors?34

32 This nonchalant attitude persisted into his review article (Einstein 1916, E§21), where the recovery of
the Newtonian limit is formally incomplete exactly because Einstein neglects to invoke a coordinate
condition. Einstein considers just the first term of the tensor  as part of his recovery of the Newto-
nian limit. He observes correctly that from it one recovers Poisson’s equation of Newtonian theory,

 (where  is the Laplacian,  a constant and  the mass density) by considering just the
44 component in the case of a time (  independent field. That observation is insufficient for the
recovery of the Newtonian limit. One must also establish that the remaining components of the field
equations do not impose further conditions that restrict Poisson’s equation in a way incompatible with
the Newtonian limit. This further step requires a coordinate condition and that Einstein simply neglects
to introduce or even mention. Einstein’s later textbook exposition (Einstein 1922, 87) does give a ser-
viceable account of how coordinate conditions are used to reduce the gravitational field equations to a
Newtonian form, but without any special care that would suggest he thought the matter delicate.

33 “Hierdurch ist das Koordinatensystem noch nicht festgelegt, indem zur Bestimmung desselben 4
Gleichungen nötig sind. Wir dürfen deshalb für die erste Näherung willkürlich festsetzen [(11)].”
(Einstein 1915a, 786)
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The Entwurf Theory

What is striking about the Entwurf theory is that it does not require coordinate condi-
tions for the recovery of the Newtonian limit. Its gravitation tensor already has the
Newtonian form (8). So merely presuming a weak field of form (7) indirectly intro-
duces enough of a restriction on the coordinate system to allow recovery of the New-
tonian limit.

This striking feature of the Entwurf theory and Einstein’s silence on coordinate
conditions would be explained quite simply by the supposition that Einstein was then
unaware of the use of coordinate conditions. But both could also be explained in
another way. If he decided in favor of the Entwurf field equations for other reasons,
then he might well never mention the use of coordinate conditions simply because he
had no occasion to. Indeed, even in his later theory which did require them, he
seemed quite reluctant to say anything more than the absolute minimum about them.

One thing that we cannot infer from the Entwurf theory and his writings associ-
ated with it is that Einstein was somehow naive about coordinate systems and how
one might introduce a specialized coordinate system. We shall see below in section
3.6 that Einstein explained both in print and correspondence that he understood that
equations of restricted covariance must correspond to generally covariant equations if
they are to be anything more than just a restriction on the choice of coordinate sys-
tem. He also made quite clear that he understood the subtleties of introducing special-
ized coordinate systems. That is, they might be introduced in two ways. In one way,
one merely chooses to consider a restricted class of the coordinate systems already
available; this decision does not alter the geometry of the spacetime. In the second
way, one demands that this geometry must be such that it admits a coordinate system
of a particular type; this demand indirectly applies a further and often profound
restriction to the geometry of the spacetime.

If Einstein was unaware of the possibility of using coordinate conditions, it was not
part of a broader blindness or lack of sophistication concerning coordinate systems.

What is More Plausible?

Since none of these items of evidence is decisive, we should also ask after the plausi-
bility of different answers. Here our personal Einsteins speak as much as evidence.
One might be comfortable with an Einstein unaware of the possibility of coordinate
conditions. They never appear unequivocally in the notebook—although the labeling
of  on page 22R as the “presumed gravitation tensor” is, in my view, very hard to
explain if the initial intent was not to use a coordinate condition. So perhaps, on a
principle of parsimony, we attribute the least knowledge we need to Einstein.

I find the supposed lack of awareness quite implausible. Coordinate systems and
covariance requirements are Einstein’s great strength and the locus of his deepest

34 Einstein did not explain in this paper where his “hole argument” against general covariance had erred.
Below (see section 3.7) I will suggest that this reticence may have reflected a difficulty in seeing
clearly what the problem was and this difficult will be a part of the account developed there.
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reflection. As we shall recall below in section 3.4, the essential goal in devising his
general theory of relativity was the elimination of the preferred inertial coordinate
systems of Newtonian theory and special relativity, which is in turn sustained by their
limited covariance. It is fundamental to his entire research project that his final theory
not harbor them. So how then is Einstein to recover the Newtonian limit from his the-
ory? He must introduce specialized assumptions that obtain only in the case of the
Newtonian limit and restores the characteristically Newtonian elements. One
assumption is that the metric field have the specialized weak form of (7). He must
also reduce the covariance of theory and thereby reintroduce exactly the preferred
coordinate systems he had labored so hard to eliminate. Einstein’s knew how to
restrict covariance. It is done partly in the coordinate dependence of the metric given
as (7). It is done explicitly through a set of four equations such as the harmonic
requirement or equation (11). But is it really possible that Einstein would fail to
notice that he need only impose these covariance restricting requirements in the cir-
cumstances of the Newtonian limit? He would see that a specialized form of the met-
ric is admissible in these special circumstances. But he must somehow overlook that
a restriction of covariance in these special circumstances is also admissible.

Mistakes and oversights are all too common in science. We enter them into the
historical record readily when we have evidence for them. This is one for which we
have no unequivocal evidence and we have indications that speak against it. It must
happen in Einstein’s area of greatest expertise and concern. And it must not be a
momentary lapse. It must persist35 into the development of the Entwurf at least up to
the development of his general arguments against general covariance later in 1913.

A Transition from Coordinate Conditions to Coordinate Restrictions?

Our evidence on Einstein’s awareness or lack of awareness of the use of coordinate
conditions remains incomplete. Yet all these considerations make it most credible that
Einstein was aware of their use and could have considered using requirements such as
the harmonic and equation (11) as both coordinate conditions and coordinate restric-
tions. Let us go a little further. If we had to choose a single narrative that would fit
best with the progression of calculations in the notebook, it would be this.

When the harmonic requirement is introduced on page 19L, it is used as a coordi-
nate condition, with Einstein perhaps reserving the possibility of using it as a coordi-
nate restriction if that should prove viable and simpler. On page 22R, requirement
(11) is introduced as a coordinate condition with  chosen as the gravitation ten-
sor. However he is unable to see how to use  as his gravitation tensor. So he
decides he must look for simpler expressions. He reverts to use of requirement (11) as
a coordinate restriction so that he can use the simpler gravitation tensor (15), the

35 Thoughts of the use of condition (11) did not leave Einstein after the Entwurf theory was completed.
As late as August 1915, he recalled in a letter to Paul Hertz how he had struggled with this condition,
Einstein to P. Hertz, 22 August 1915, (CPAE 8, Doc. 111). Presumably this continued presence facili-
tated revival of  in November 1915.T il
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reduced form of  That also proves inadmissible, presumably because of its
restricted covariance. So, on the following page, Einstein introduces the theta restric-
tion, which can only be a coordinate restriction. It is especially contrived to have the
covariance that requirement (11) lacked.

What makes it credible that page 22R is the turning point is Einstein’s labeling of
 as the “presumed gravitation tensor” when he must have known already that

equation (11) would reduce it to the Newtonian form. That suggests that equation
(11) was first introduced as a coordinate condition. The investigation of its covariance
properties on page 22L marks the decision to treat the requirement as a coordinate
restriction.36 In the earlier pages 19–21, the harmonic requirement could have been
either coordinate condition or restriction. Nothing in the calculations would have
committed Einstein to either. The lack of interest in the covariance properties of the
harmonic requirement suggests that Einstein had less interest in its use as a coordi-
nate restriction.

If these suppositions are correct, then they bear directly on the “mathematical” and
“physical strategy” we describe Einstein as using elsewhere in these volumes. The use
of coordinate conditions would be associated with the mathematical strategy in its
purest form. If recovery of the Newtonian limit will be through the harmonic condi-
tion, for example, then Einstein is able to use the full Ricci tensor as his gravitation
tensor and not a simpler reduced form. With his failure to see that the Ricci tensor or
that  are viable gravitation tensors, Einstein begins to withdraw from the mathe-
matical strategy towards the physical strategy. The use of coordinate restrictions rep-
resents an intermediate stage in that withdrawal. He is still trying to use the gravitation
tensors naturally suggested by the mathematical formalism, but now in reduced form.
The failure of these last efforts leads him to revert to the physical strategy.

3. A CONJECTURE: THE HOLE ARGUMENT AND THE INDEPENDENT 
REALITY OF COORDINATE SYSTEMS 

The Puzzle Continues

If we accept that Einstein knew about the possibility of using coordinate conditions,
page 22R once again presents us with a troubling puzzle. In his later recollection to

36 Is there a trace of two stages of calculation on page 22R? The calculations there are divided by a hor-
izontal rule. The calculations above the rule deal only with the term in  that contains second deriv-
atives of the metric tensor and its reduction by equation (11) to the Newtonian form (8). Those below
deal with expansion of the terms quadratic in the Christoffel symbols in  The calculations above
the rule are the ones needed if equation (11) is to be used as a coordinate condition; in the Newtonian
limit all that matters are the terms in the second derivatives of the metric. The ones below are needed
in addition if (11) is used as a coordinate restriction; they give the full expression for the reduced form
of  The calculations above the rule are neater and, as I suggested earlier, may just report discus-
sions and calculations conducted elsewhere. Those below the rule are massively corrected and have
the look of live calculations. Were they undertaken later after Einstein had decided to revert from the
use of (11) as a coordinate condition to a coordinate restriction?
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Sommerfeld, Einstein reports that he had been unable to recover the Newtonian limit
from the gravitation tensor  But page 22R contains just the calculation that seems
to do this. As we saw in section 2, the remark could be explained using the notion of
coordinate restrictions. But that explanation fails if we accept that Einstein was aware
of the use of coordinate conditions. So how can we reconcile his later recollection
with the content of the notebook?

There is a further aspect of page 22R that bears cautious reflection. Page 22R
should have been a great triumph for Einstein. He had labored since page 14L
through calculations of great complexity in an effort to recover a gravitation tensor
from the Riemann tensor. The problem seemed to yield on page 19L with the intro-
duction of the harmonic condition and the easy reduction of the Ricci tensor to a
quantity of Newtonian form (8). But the success faded over the following pages in the
face of a final hitch that grew to be fatal. He could not see how to reconcile the har-
monic condition with the form he expected for the static field, the weak field equa-
tions and energy conservation in the weak field. On page 22R he finally had the
answer to that last hitch. By choosing  as his gravitation tensor, he could replace
the harmonic condition with condition (11) and this new condition resolved all the
earlier problems, since it was both compatible with the form expected for static fields
and with energy conservation in the weak field. The solution was so unobjectionable
that he published it upon his return to general covariance in November 1915. But in
the notebook, that successful solution is just abandoned and apparently quite hastily.
His later recollections explain this decision in terms of the  prejudice. Just when
he had everything else working, he gave up because, on the best reconstruction, he
could not see how to extract an energy-momentum tensor for the gravitational field
from the tensor. He gave up more than just the gravitation tensor  He seems to
have given up the use of coordinate conditions entirely and with it the easy access to
the gravitation tensors of broad covariance naturally suggested by the mathematical
formalism. If the  prejudice was all there was to it, Einstein had lost his customary
tenacity and become fickle or faint hearted or both.

Might there have been a further difficulty that compromised the recovery of the
Newtonian limit and that he did not report?

Another Error?

Might we find another error or misconception that Einstein may have committed that
would give answers to both the above questions? Of course it is always possible to
invent hidden errors varying from the trivial slip to the profound confusion, tailor
made to fit this or that aberration. The real difficulty is to establish that the error was
really committed.

If there is such an error, we would expect it to be somehow associated with the
use and understanding of coordinate systems. We do know of a serious misconcep-
tion concerning coordinate systems that drove Einstein away from general covariance
during the years of the Entwurf theory. This was the misconception that supported the
hole argument. Months after the completion of the Entwurf theory, Einstein intro-
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duced this argument as a way of showing that the achievement of general covariance
in his gravitation theory would be physically uninteresting. After he had returned to
general covariance Einstein explained the error of the hole argument. He had unwit-
tingly accorded an independent reality to spacetime coordinate systems and this had
compromised his understanding of what is represented physically in a transformation
of the fields of his theory.37 In our histories to date, this error affected Einstein only
through the hole argument and thus well after Einstein’s turn away from general
covariance in 1912 and 1913. However Einstein’s theory was, on his own report,
dependent intimately and fundamentally on the transformation of fields and space-
time coordinates. Is it possible that Einstein’s misconception on the independent real-
ity of coordinate systems had earlier damaging effects?

The Conjecture

The conjecture to be advanced here is that Einstein’s misconception about the inde-
pendent reality of coordinate systems did not just exert its harmful influence with
Einstein’s discovery of the hole argument, well after the Entwurf theory was in place.
Rather I shall urge that it decisively misdirected Einstein’s investigations at a much
earlier stage, the time of the calculation of the notebook. I believe that it can explain
why Einstein abandoned the use of coordinate conditions so precipitously, why he
would have judged the calculation concerning the Newtonian limit of page 22R to be
a failure and why he acquiesced so readily to the gravely restricted covariance of the
Entwurf theory. Einstein failed to see this error until 1915. Until then it precluded his
use of coordinate conditions. It led him to expect that any coordinate condition must
have sufficient covariance to support an extension of the principle of relativity to
acceleration.

More specifically, I will suggest that when Einstein applied a coordinate condition
such as (11), he unwittingly accorded an independent existence to the coordinate sys-
tems picked out by the condition. Then, merely by repeating the same way of thinking
about transformations as used in the hole argument, he would end up entertaining
extraordinary expectations for each of these special coordinate systems. If some met-
ric field  is a solution of his field equations in one of these special coordinate sys-
tems, then he would expect all its transforms (in a sense I will make clear below) 
also to be realizable as solutions in this coordinate system. A failure of the coordinate
system to admit these transforms would appear as an objectionable, absolute property
of the coordinate system. Such properties are just the type that Einstein had denounced
in the inertial systems of classical physics and special relativity and which he prom-

37 More precisely stated: A particular set of coordinate values in a coordinate system will designate a
definite physical event in spacetime. In Einstein’s later view and our modern view, the physical event
designated depends on the metric field; an alteration of the metric field changes which physical event
is designated by these coordinate values. Einstein initially believed, however, that these same coordi-
nate values could continue to pick out the same physical event even though the metrical field in that
coordinate system was changed. That is, the coordinate system’s power to pick out events is indepen-
dent of the metrical field.
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ised his new theory would eliminate. Now the transforms  will only be admissible
in the special coordinate system if they are compatible with the coordinate condition
that defines the special coordinate system. Thus the covariance of theory as a whole
had effectively been reduced to the covariance of the coordinate condition used in
extracting the Newtonian limit. That condition had to be of sufficient covariance to
support Einstein’s hopes for a generalization of the principle of relativity to accelera-
tion. In spite of proposals of great ingenuity in his preparation for the Entwurf theory,
Einstein could find no combination of gravitational field equations of broad covariance
and coordinate condition that satisfied these extraordinary demands.

The effect of the misconception conjectured is that coordinate conditions would
lose their appeal. If a coordinate condition was used to extract the Newtonian limit,
the covariance of the theory as a whole would now be reduced to that of the coordi-
nate condition. As a result, Einstein would acquire no additional covariance for his
theory in using a requirement as a coordinate condition rather than a coordinate
restriction. The advantage of the latter, however, is that it delivers a gravitation tensor
of considerably simpler form. Therefore I suggest that Einstein’s recognition of this
outcome, quite plausibly on page 22R itself, would explain why he so precipitously
abandoned coordinate conditions in the notebook. The extraction of the Newtonian
limit from tensor  via equation (11), whether it is construed as a coordinate condi-
tion or restriction, would fail for the same reason. Equation (11) would fail to have
sufficient covariance.

Its Tacit Character

In the hole argument, the independent reality of the coordinate systems has a tacit,
hidden character. Indeed Einstein found it hard to express explicitly what he meant.
Even something as simple as the exact steps of his construction really only became
clear with publication of the fourth version of the argument. It was not until after his
return to covariance and possibly some prompting from his correspondents that he
seemed able to give a clear account of where the argument erred. We must surely pre-
sume that, at the time of the hole argument, Einstein was simply not aware that his
manipulations presumed an independent reality for his coordinate systems. It is an
essential part of the present conjecture that he was not aware of the corresponding
presumption earlier at the time of the calculations of the notebook. The hole argument
was first offered in a hasty, ill-digested form that still led to a powerful conclusion,
the inadmissibility of general covariance. The same would be true in the notebook. A
similarly hasty check of the covariance of the coordinate condition would suffice to
convince Einstein that disaster had struck. Its haste would allow him to overlook that
his conclusion depended upon an assumption about the independent reality of coordi-
nate systems that he would surely never endorse if it were articulated clearly.

In the Sections to Follow…

I will layout the background, context and elaboration of the conjecture. In section 3.1,
I will describe the hole argument and, in section 3.2, how Einstein later diagnosed his
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error as the improper attribution of an independent reality to coordinate systems. In
section 3.3 I will lay out the content of the conjecture in greater detail. Einstein’s
treatment of coordinate systems founders since it ends up ascribing absolute proper-
ties to certain coordinate systems. In section 3.4, I will review Einstein’s insistence
on the inadmissibility of such absolute properties, for that inadmissibility is what
defeats his use of coordinate conditions. In section 3.5, I will review Einstein’s early
remarks on the restricted covariance of his Entwurf theory and his recognition that
the restricted equations must correspond to generally covariant equations. I will use
Einstein’s mistaken attitude to the independent reality of the coordinate systems to
explain his evident indifference towards finding those equations. During the reign of
the Entwurf theory, Einstein gave several accounts of the introduction of specialized
coordinate systems. In section 3.6, I will review these remarks to show that they are
compatible with the present conjecture concerning Einstein’s attitude to coordinate
systems. Finally in section 3.7, I will review our evidence concerning the conjecture.
I will conclude that we have neither decisive evidence in favor of it or against it, but
weaker indications that both benefit and harm it. 

3.1 The Hole Argument

Its Fullest Statement

Einstein and Grossmann’s Entwurf paper was published mid 1913 as a separatum by
Teubner (Einstein and Grossmann 1913).38 There they reported their failure to find
acceptable, generally covariant gravitational field equations. By late 1913, Einstein
had found what soon became his favored vehicle for excusing this lack of general
covariance, the “hole argument,” which purported to show that all generally covariant
gravitational field equations would be physically uninteresting.39 Of its four presen-

38 In a letter of 28 May 1913 to Paul Ehrenfest, Einstein promises that paper will appear “in at least a
few weeks” (CPAE 5, Doc. 441).

39 The earliest written and unambiguously dated mention of the hole argument is in a letter of 2 November
1913, from Einstein to Ludwig Hopf, (CPAE 5, Doc. 480). Einstein is not likely to have had the hole
argument in hand much earlier than this. The hole argument supplanted another means of exonerating
his theory’s lack of general covariance, a consideration based on the law of conservation of energy-
momentum. We know from a letter of 16 August 1913, from Einstein to Lorentz that Einstein only hit
upon this earlier consideration on 15 August (CPAE 5, Doc. 470). For further discussion see (Norton
1984, §5). (The hole argument is also mentioned in the printed version of a lecture delivered on
9 September to the 96th annual meeting of the Schweizerische Naturforschende Gesellschaft in Frauen-
feld (Einstein 1914b, 289). But we cannot be assured that Einstein had the hole argument at the time of
the lecture since the printed version of the lecture was published many months later on 16 March 1914,
see (CPAE 4, 484). Also the hole argument is not mentioned in another, briefer, printed version of the
talk (Einstein 1913). That briefer version does call for a restriction on the basis of the conservation laws.
It is curious that the mention of the hole argument in the printed version of (Einstein 1914b) appears in
the context of the discussion of the conservation laws. In this longer and presumably later version, did
Einstein strike out the consideration based on the conservation laws and write in a mention of the hole
argument?)
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tations, the clearest is the final version of November 1914:

§12. Proof of the Necessity of a Restriction on the Choice of Coordinates.

We consider a finite region of the continuum  in which no material process takes
place. Physical occurrences in  are then fully determined, if the quantities  are
given as functions of the  in relation to a coordinate system  used for description.
The totality of these functions will be symbolically denoted by 

Let a new coordinate system  be introduced, which agrees with  outside  but
deviates from it inside  in such a way that the  related to the  are continuous
everywhere like the  (together with their derivatives). We denote the totality of the

 symbolically with   and  describe the same gravitational
field. In the functions  we replace the coordinates  with the coordinates  i.e.
we form  Then, likewise,  describes a gravitational field with respect to

 which however does not agree with the real (or originally given) gravitational field.

We now assume that the differential equations of the gravitational field are generally
covariant. Then they are satisfied by  (relative to  if they are satisfied by

 relative to  Then they are also satisfied by  relative to  Then relative
to  there exist the solutions  and  which are different from one another,
although both solutions agree in the boundary region, i.e. occurrences in the gravita-
tional field cannot be uniquely determined by generally covariant differential equations
for the gravitational field. [Einstein’s emphasis]40

A Notational Convenience

The content, interpretation and significance of the hole argument has been examined
extensively elsewhere.41 Thus I will concentrate on those aspects of importance to
the present conjecture. The argument depends on exploiting the defining property of a
covariance group to generate new solutions of the gravitational field equations from
old solutions. Assume that a transformation from coordinate system  to  is

40 “§12. Beweis von der Notwendigkeit einer Einschränkung der Koordinatenwahl.
Wir betrachten einen endlichen Teil  des Kontinuums, in welchem ein materieller Vorgang nicht
stattfindet. Das physikalische Geschehen in  ist dann vollständig bestimmt, wenn in bezug auf ein
Funktion der  gegeben werden. Die Gesamtheit dieser Funktionen werde symbolisch durch 
bezeichnet.
Es werde ein neues Koordinatensystem  eingeführt, welches außerhalb  mit  übereinstimme,
innerhalb  aber von  abweiche, derart, daß die auf  bezogenen  wie die  (nebst ihren
Ableitungen) überall stetig sind. Die Gesamtheit der  bezeichnen wir symbolisch durch 

 und  beschreiben das nämliche Gravitationsfeld. Ersetzen wir in den Funktionen 
die Koordinaten  durch die Koordinaten  d. h. bilden wir so beschreibt  eben-
falls ein Gravitationsfeld bezüglich  welches aber nicht übereinstimmt mit dem tatsächlichen
(bzw. ursprünglich gegebenen) Gravitationsfelde.
Setzen wir nun voraus, daß die Differentialgleichungen des Graviationsfeldes allgemein kovariant
sind, so sind sie für  erfüllt (bezüglich ), wenn sie bezüglich  für  erfüllt sind. Sie
sind dann die voneinander verschiedenen Lösungen  und  trotzdem an den Gebietsgren-
zen beide Lösungen übereinstimmten, d. h. durch allgemein kovariante Differentialgleichungen für
das Gravitationsfeld dann das Geschehen in demselben nicht eindeutig festgelegt werden.” (Einstein
1914c, 1067)

41 See, for example, (Stachel 1980, §§3–4; Norton 1984, §5; 1987).
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within the covariance group of the gravitational field equation and that a metric field
 in the coordinate system  satisfies the field equations. It follows that the

metric  in the coordinate system  defined by the tensor transformation
law

(21)

is also a solution of the field equations. These two solutions of the field equations are
merely representations in different coordinate systems of the same gravitational field;
it is represented by  in the coordinate system  and by  in the
coordinate system  In an attempt to reduce distracting notational complications,
Einstein represented the two metrics as “  and “  His point was to draw
attention to the functional dependence of the  on the coordinates  with the lat-
ter considered as variables; and the functional dependence of the  on  The
device is helpful, since it suppresses the various indices that play no role in Einstein’s
argument. I will use it below but with lower case  instead of upper case 

 is represented by 

 is represented by (22)

 is represented by 

How the Argument Works

This functional dependence allows Einstein to generate a further solution of the grav-
itational field equations that is, apparently, physically distinct from the original field
described by  and  It is constructed by considering the solution  as
a set of ten functions of the four independent variables comprising the coordinate sys-
tem  One then replaces the independent variables  by  so that Einstein recov-
ers a new field in the original coordinate system  which is  Now  is a
solution of the gravitational field equations not because of any special properties of
the coordinate system  but merely because of the functional dependence of the

 on the independent variables  That functional form is all that generally
covariant gravitational field equations consider in determining whether  is
admissible. By construction,  shares exactly the same functional dependence on
its independent variables as  Thus if  is a solution of the field equations
so is 42

Einstein can now complete his argument. He has two solutions of his gravitational
field equations  and  both in the same coordinate system  These two
solutions were constructed from the transformation  to  This transformation had
a special property. By supposition the transformation is the identity everywhere but
inside a matter free region of spacetime  (the “hole”), where it comes smoothly to
differ from the identity. This special property confers a corresponding property on the
two solutions  and  they agree outside the hole, but they come smoothly
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to disagree within, for the  and  are different functions within that hole. And
since they are defined in the same coordinate system, this difference entails, Einstein
urged, that they represent physically distinct gravitational fields. The result is a viola-
tion of determinism. The metric field and matter distribution outside the matter free
hole fails to determine how the metric field will extend into the hole; it may extend as

 or  Einstein deemed this circumstance sufficiently troublesome to war-
rant rejection of all generally covariant gravitational field equations, for all generally
covariant field equations will admit solution pairs  and 

The Hole Construction

For our purposes what is important is that Einstein saw in the general covariance of
the gravitational field equations an immediate license to construct the field 
from  This construction will be the focus of our attention, so I will restate it:

If

(a) a transformation  to  is within the covariance group of the gravitational
field equations and 

(b) a metric field  in the coordinate system  satisfies the field equations,

then

the metric field  is also a solution of the gravitational field equations in the
original coordinate system  where the functions  are defined by the tensor
transformation law (21).

Einstein’s Difficulty in Expressing the Argument

Einstein found it very hard to make clear that his hole argument depended essentially
on the use of the hole construction. Rather, the three earlier versions of the hole argu-

42 An example illustrates the reasoning. The metric 

happens to be a solution of the generally covariant gravitational field equations  where 
is the Ricci tensor, in a coordinate system  What makes this  a solution is the way that each
coefficient of  depends functionally on the coordinates  All coefficients are  or  excepting

 which is the square of the coordinate  We find  vanishes if we compute it for a  with
this functional dependence. It now follows immediately that the metric

in the coordinate system  is also a solution since it shares this same functional dependence.
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ment seemed to depend on merely noticing that the two coordinate representations
 and  of the same gravitational field employed different functions. In that

case the hole argument becomes the elementary blunder of failing to notice that the
one gravitational field has different representations in different coordinate systems. I
take this as evidence that, in his own work, Einstein did not clearly distinguish the
two types of transformations  to  and  to  His invocation of
the transformation law (21) could refer to either, without the need for explanation or
apology. As we shall see below, Einstein’s early presentations of the hole argument
merely invoked (21) and Einstein must have presumed that readers would follow him
and understand the transformation under consideration to be  to 

The hole argument appears in Einstein’s 1914 addendum to (Einstein and Gross-
mann 1913) where the crucial passage reads “...one can obtain  [for the
metric field ] for at least a part of [the hole] ...it follows...that more than one
system of the  is associated with the same [matter distribution].”43 In a later ver-
sion (Einstein and Grossmann 1914, 218), the corresponding passage reads “at least
for a part of [the hole]   ... so that more than one system of  is associ-
ated with the same system of [stress-energy tensor]  ...” Again, in the version of
the hole argument of Einstein in (Einstein 1914a), the corresponding passage reads
“... even though we do have  everywhere [for stress-energy tensor den-
sity  the equations  are certainly not all satisfied in the interior of
[the hole]  This proves the assertion.”44 Fortunately Einstein gave a cryptic but
sufficient clue in this last instance that he intended the failure of the equality

 to be understood in the manner of the hole construction above, for he
appended a footnote to the sentence containing the inequality  that read:
“The equations are to be understood in such a way that the same numerical values are
always assigned to the independent variables  on the left sides as to the variables

 on the right sides.”
These presentations were sufficiently ambiguous to confuse the early historical lit-

erature on the hole argument. It interpreted Einstein as believing that the two coordi-
nate representations of the same field,  and  somehow represented
physically distinct fields. One of the achievements of Stachel in his path-breaking paper
(Stachel 1980) was to demonstrate that Einstein was not guilty of this novice blunder.45

43 “Daß wenigstens für einen Teil von   ist. … zu dem nämlichen System der  mehr
als ein System der  gehört. (Einstein and Grossmann 1913; translation from CPAE 4E, 289)

44 “… so ist zwar überall  dagegen werden im Inneren von  die Gleichungen
 sicherlich nicht alle erfüllt sein. Hieraus folgt die Behauptung.” (Einstein 1914a, 178;

translated in CPAE 4E, 285)
45 As Stachel showed, the transformation from  to  corresponded to what we now call a pas-

sive transformation in which the coordinate system changes but not the field. The transformation of
the hole construction from  to  corresponds to an active transformation in which the coor-
dinate system remains unchanged but the field alters. See (Norton 1987; 1989, §2). However, as I
argue in (Norton 1989, §5), it is possible to remain faithful to Einstein’s purpose and wording without
explicitly introducing the notions of active and passive transformations.
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3.2 The Error of the Hole Argument: The Independent Reality of Coordinate Systems

Why the Hole Argument Fails

Of course the hole argument fails to establish that all generally covariant gravitational
field equations are physically uninteresting. The standard resolution allows that the
two fields  and  are mathematically distinct but counters that they repre-
sent the same physical field. Thus the hole argument does not show that the field and
matter distribution outside the hole leave the field within underdetermined. It just
shows that the mathematical description of the field within the hole is undetermined.
After his return to general covariance, Einstein argued for the physical equivalence of
the fields  and  with his “point-coincidence argument;” the two fields are
equivalent since they must agree on the disposition of all coincidences, such as the
intersections of the world lines of particles.46 Alternatively, following the approach
favored in Göttingen by the Hilbert school, we could argue for the equivalence of the
two fields by noting that they agree on all invariant properties.47 

Letters to Ehrenfest and Besso Explain Einstein’s Error

The point coincidence argument explains how we should understand the system
described in the hole argument. But it does not diagnose the error of thought that
lured Einstein to interpret the system differently prior to November 1915. That diag-
nosis came in Einstein’s letters in late 1915 and early 1916 when he explained to his
correspondents how he had erred in the hole argument. In preparing his correspon-
dent Paul Ehrenfest for the point coincidence argument, Einstein explained in a letter
of 26 December 1915:

In §12 of my work of last year, everything is correct (in the first three paragraphs) up to
the italics at the end of the third paragraph. One can deduce no contradiction at all with
the uniqueness of occurrences from the fact that both systems  and  related
to the same reference system, satisfy the conditions of the grav. field. The apparent force
of this consideration is lost immediately if one considers that

(1) the reference system signifies nothing real

(2) that the (simultaneous) realization of the two different  systems (better said, two
different gravitational fields) in the same region of the continuum is impossible accord-
ing to the nature of the theory.

In the place of §12 steps the following consideration. The physical reality of world
occurrences (in opposition to that dependent on the choice of reference system) consists
in spacetime coincidences... [Einstein’s emphasis]48

He wrote an essentially identical explanation to his friend Michele Besso a little over
a week later on 3 January 1916:

46 See (Norton 1987; Howard and Norton 1993, §7) for a proposal on the origin of the point-coincidence
argument.

47 See (Howard and Norton 1993) for the proposal of a premature communication of this viewpoint to an
unreceptive Einstein by Paul Hertz in the late summer of 1915.
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Everything was correct in the hole argument up to the last conclusion. There is no physi-
cal content in two different solutions  and  existing with respect to the same
coordinate system  To imagine two solutions simultaneously in the same manifold
has no meaning and the system  has no physical reality. In place of the hole argument
we have the following. Reality is nothing but the totality of spacetime point coinci-
dences... [Einstein’s emphasis]49

Ehrenfest proved difficult to convince of the correctness of Einstein’s new way of
thinking over the hole argument and Einstein needed to enter into a more detailed
exchange that centered on the example of light from a star passing through an aper-
ture onto a photographic plate.50 In his letter of 5 January 1916, Einstein noted the
instinctive attractiveness of the notion of the reality of the coordinate system:

I cannot blame you that you still have not seen the admissibility of generally covariant
equations, since I myself needed so long to achieve full clarity on this point. Your prob-
lem has its root in that you instinctively treat the reference system as something “real.”51

Surely we are to read in this that Einstein too was misled by this instinct. 

On Being Real

We learn from these letters that Einstein was under the influence of a deep-seated
prejudice at the time of formulation of the hole argument: he improperly accorded a
physical reality to coordinate systems. It can often be difficult to decipher precisely
what is meant by an attribution of reality or non-reality—one need only recall the
extended debates over realism in philosophy of science to be reminded of these diffi-

48 “In §12 meiner Arbeit vom letzten Jahre ist alles richtig (in den ersten 3 Absätzen) bis auf das am
Ende des dritten Absatzes gesperrt Gedruckte. Daraus, dass die beiden Systeme  und 
auf das gleiche Bezugssystem bezogen, den Bedingungen des Grav. Feldes genügen, folgt noch gar
kein Widerspruch gegen die Eindeutigkeit des Geschehens. Das scheinbar Zwingende dieser Überle-
gung geht sofort verloren, wenn man bedenkt, dass
1) das Bezugssystem nichts Reales bedeutet
2) dass die (gleichzeitige) Realisierung zweier verschiedener Systeme (besser gesagt zweier ver-
schiedener Grav. Felder) in demselben Bereiche des Kontinuums der Natur der Theorie nach unmög-
lich ist.
An die Stelle des §12 hat folgende Überlegung zu treten. Das physikalisch Reale an dem Weltgesche-
hen (im Gegensatz zu dem von der Wahl des Bezugssystem Abhängigen) besteht in raumzeitlichen
Koinzidenzen.” Einstein to Paul Ehrenfest, 26 December 1915 (CPAE 8, Doc. 173). Adjusted transla-
tion from (Norton 1987, 169).

49 “An der Lochbetrachtung war alles richtig bis auf den letzten Schluss. Es hat keinen physikalischen
Inhalt, wenn inbezug auf dasselbe Koordinatensystem  zwei verschiedene Lösungen  und

 existieren. Gleichzeitig zwei Lösungen in dieselbe Mannigfaltigkeit hineinzudenken, hat kei-
nen Sinn und das System  hat ja keine physikalische Realität. Anstelle der Lochbetrachtung tritt
folgende Überlegung. Real ist physikalisch nichts als die Gesamtheit der raumzeitlichen Punktkoinzi-
denzen.” Einstein to Michele Besso, 3 January 1916 (CPAE 8, Doc. 178).

50 For details, see (Norton 1987, §4).
51 “Das Du die Zulässigkeit allgemein kovarianter Gleichungen noch nicht eingesehen hast, kann ich Dir

nicht verübeln, weil ich selbst so lange brauchte, um über diesen Punkt volle Klarheit zu erlangen.
Deine Schwierigkeit hat ihre Wurzel darin, dass Du instinktiv das Bezugssystem als etwas “Reales”
behandelst.” Einstein to Paul Ehrenfest, 5 January 1916 (CPAE 8, Doc. 180).
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culties. But in this case the attribution of reality has quite precise consequences.
When Einstein accords physical reality to a coordinate system  this entails that the
coordinate system can support two distinct fields,  and  In particular, Ein-
stein is committed to the  in each system of metrical coefficients representing the
same coordinate system. This sameness entails that the two mathematical structures,

 and  represent different physical fields. Some particular set of coordinate
values, such as will pick out the same point of spacetime in each
field. But, since the  and  are different functions of the same coordinates in a
neighborhood of the point, they will each attribute different properties to that point,
revealing that they represent different physical fields.

In Einstein’s later view it no longer makes sense to say that  represents the same
coordinate system in each structure  and  Thus we can no longer con-
clude that some particular set of coordinate values picks out the same point in each
field and the inference to their physical distinctness is blocked. 

Einstein’s misconception about the independent reality of coordinate systems was
clearly firmly in place towards the end of 1913, the time of his creation of the hole
argument.52 Nothing we have seen indicates that this misconception arose at that
time. Rather his description of its “instinctive” character suggests that Einstein had
tacitly harbored this misconception beforehand. Might this misconception have mis-
directed Einstein’s work on his Entwurf theory at an earlier stage? In the following I
will conjecture that it did in a quite precise way. 

3.3 The Conjecture: How the Independent Reality of Coordinate Systems 
Defeats the Use of Coordinate Conditions

I have urged that Einstein knew about the possibility of coordinate conditions, that he
used them in the notebook and then abandoned them in favor of the use of coordinate
restrictions. I have even suggested that this transition may have taken place on page
22R of the notebook, in which the same requirement (11) might have been used first
as a coordinate condition and then as a coordinate restriction. I now conjecture that
Einstein abandoned the use of coordinate conditions because of the same error com-
mitted in the context of the hole argument. Einstein unwittingly attributed an inde-
pendent reality to the coordinate systems introduced by coordinate conditions. The
effect was that he mistakenly believed that the covariance of his entire theory was
reduced to that of the coordinate condition. The reversion to coordinate restrictions is
now natural. He mistakenly thought that using coordinate conditions to recover the

52 In describing Einstein’s earlier misconception I will speak of his belief that the coordinate system has
“independent reality,” which is to be understood as asserting reality independent of the metrical field.
This is because Einstein’s later denial of the physical reality of the coordinate system can only apply
to a reality independent of the metric. For it is entirely compatible with Einstein’s later views that a
coordinate system can reflect an element of reality, but only if it does so indirectly by virtue of its rela-
tion to the metric defined on the spacetime. For example, the possibility of a coordinate system in
which the metrical coefficients are all constant, reflects a real property of the spacetime, its flatness.
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Newtonian limit provided no greater covariance for this theory and the use of coordi-
nate restrictions had the advantage of simplifying the equations of his theory.

The Example of 

To see how this notion of the independent reality of coordinate systems would defeat
the use of coordinate conditions, we will look at the example of coordinate condition
(11) applied to the candidate gravitation tensor The example illustrates clearly
the general argument. It is also of interest in itself since I believe Einstein may well
have fallen into the general mistake outlined while considering this very example.

Einstein’s essential purpose in considering a structure as complicated at  is to
achieve the broadest covariance possible for his gravitational field equations. By con-
struction,  is covariant under unimodular transformations. We have seen that one
particular unimodular transformation comes to special prominence in the pages
immediately following the proposal of the gravitation tensor  That is the transfor-
mation (18) to uniformly rotating coordinates that brings a rotation field  (20)
into being in a Minkowski spacetime.53

The simple reading of this covariance of the gravitational field equations in the
case of a Minkowski spacetime is that it admits the transformation of  to the
rotation field  under the coordinate transformation (18). They are just the
same Minkowski spacetime represented in two coordinate systems  and  How-
ever we have already seen that when Einstein speaks of such a simple transformation
he may actually be referring to a more complicated transformation. In the context of
the hole argument, as we saw above, when Einstein wrote about the transformation of
a metric  under the transformation of the coordinates  to  he did not just refer
to the transformation of  to  He also tacitly referred to construction of a
new solution of the field equations  in the original coordinate system  Indeed
Einstein seemed to treat the construction of the new field  as an automatic con-
sequence of the covariance of the gravitational field equations—so much so that, in
three of four presentations of the hole argument, Einstein appears just to refer to the
transformation  to  whereas he intended to refer to the construction of the
new field  Thus Einstein would read the covariance of his gravitational field
equations under transformation (18) as the license to take the solution  of
these equations and construct a new solution  both in the same coordinate
system 

Applying the Hole Construction

Einstein would see this construction as an automatic part of the covariance of his field
equations, although its construction requires some manipulation as codified in what I
called the “hole construction” above. We may pause here for a moment to affirm that
the construction of the new solution  follows directly from the hole con-

53 I shall continue to use the abbreviation (22), so that  stands for 

T il
x

T il
x .

T il
x

T il
x

T il
x .

gSR

gSR x( ) g μν
SR xα( ) .

gSR x( )
gROT x′( )

x x′.

g x x′,
g x( ) g′ x′( ).

g′ x( ) x.
g′ x( )

g x( ) g′ x′( )
g′ x( ).

gSR x( )
gROT x( ),

x.

gROT x( )



760 JOHN D. NORTON

struction, although Einstein would surely not have resorted to such a labored devel-
opment. The two antecedent conditions (a) and (b) are satisfied as:

a) If  is chosen as the gravitation tensor, then the gravitational field equations are
covariant under the transformation (18) from inertial to uniformly rotating coordi-
nates, for this is a unimodular transformation.

b)  is a solution of the source free field equations 54

It now follows that  will also be a solution of the source free field equations
in the original coordinate system 

The Independent Reality of the Coordinate Systems  of the Newtonian Limit…

In his evaluation of  Einstein would have a particular class of coordinate systems
in mind as admitting  as a solution. These are the coordinate systems in which the
candidate gravitation tensor  reduces to (8) in preparation for recovery of the
Newtonian limit. Let us label one of these coordinate systems  Thus Einstein’s
field equations must admit both  and  as solutions of the
source free field equations in the same coordinate system 

While these results follow from a straightforward application of Einstein’s 1913
understanding of covariance and coordinate systems, they have brought us close to
disaster for the candidate gravitation tensor  To complete the journey to disaster
we now must now ask what it would mean to say that these source free field equa-
tions must admit both  and  as solutions. In Einstein’s later
view (and the modern view), this could mean nothing more than the following: there
exists coordinate systems  in which  solves the source free field equations;
and there exists coordinate systems  in which  solves the source free field
equations. But there can be no physical sense in the notion that the coordinate sys-
tems  and  are the same coordinate systems. Yet the Einstein of 1912 and 1913
would be committed to the notion that the coordinate systems  appearing in each
solution are the same coordinate systems.

There is only one resource available to give meaning to this sameness. The coordi-
nate systems  of the Newtonian limit are introduced and identified in calculation
by satisfaction of the coordinate condition (11). If it is really the same coordinate sys-
tems  appearing in each of  and then coordinate condi-
tion (11) must be satisfied by both  and  In hindsight, we
know that this demand is excessive. But, I conjecture, the Einstein of 1912 and 1913
did not realize this. There is a natural robustness to the application of coordinate con-
ditions such as (11) in the modern sense that is easily mistaken for the troublesome
use of the condition that I attribute to Einstein. It was legitimate in 1912 and 1913 and
remains legitimate today to use the same coordinate condition to pick out the coordi-
nate systems for the Newtonian limit in a diverse array of distinct physical situations:
in the source free case, in the case of static fields, in the case of fields with propagat-

54  has all constant coefficients; so all its derivatives vanish and  along with them.
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ing gravitational waves, in the case of a field produced by a single mass or in the case
of a field produced by distributed matter; and in many more cases. Now we might use
a condition such as the harmonic coordinate condition rather than Einstein’s (11) but
that difference is inessential to the point. In using the same harmonic condition in
each of these distinct physical cases, we routinely say that we choose harmonic coor-
dinates. Are we always aware that the harmonic coordinates of a Minkowski space-
time are not the same in any physical sense as the harmonic coordinates of a
Minkowski spacetime perturbed ever so slightly by the most minute of gravitational
waves? Proceeding with the tacit assumption of the independent reality of coordinate
systems, Einstein could easily overlook this subtlety. It would surely be quite natural
for him to presume that his coordinate condition (11) would pick out the same coordi-
nate systems  in all these cases and also in the case of  and 

Treated this way, the coordinate condition (11) becomes a physical postulate that
picks out a real entity, the class of coordinate systems  much as the gravita-
tional field equations pick out the gravitational fields that can be realized physically.
This character of the coordinate condition (11) does not compromise our freedom to
stipulate the coordinate systems that we will use in describing our fields. We are still
free to choose which coordinate systems we will use and that choice can be made by
accepting or rejecting a coordinate condition such as (11). But that choice is among
entities that enjoy some physical reality.

… Brings Disaster and Explains Why Einstein Would Check 
the Covariance of His Coordinate Condition

Thus I infer that the Einstein of 1912 and 1913 would expect that the condition (11)
picks out the same coordinate systems  in the cases of the solutions 
and  This is the disastrous conclusion. While the coordinate condition
(11) holds for  we saw above that it fails for  Einstein has
arrived at a contradiction that serves as a reductio ad absurdum of his choice of 
as gravitation tensor and the expectation that his theory is covariant under all unimo-
dular transformations. If the theory has that degree of covariance,  must
be a solution of its source free field equations in the coordinate system  But it is
not. The proposed gravitation tensor has failed.

This is a failure of coordinate condition (11) to have sufficient covariance. Under
the normal understanding of coordinate conditions, Einstein would have no reason to
check the covariance of (11). But if Einstein accords independent reality to the coor-
dinate system  then the natural outcome is to check its covariance. If the
present conjecture is correct, this explains why Einstein checked the covariance of
condition (11) on page 22L, the one facing the page on which condition (11) is used
to reduce  to a Newtonian form.

This contradiction between the expected and actual covariance of Einstein’s the-
ory would appear to have a particular character to Einstein, a conflict between the
covariance of his theory and the ability to recover the Newtonian limit. Upon choos-
ing  as the gravitation tensor, his entire gravitation theory would be covariant at
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least under unimodular transformations. That is, the gravitational field equations are
covariant under unimodular transformations and the remaining equations governing
energy-momentum conservation, the motion of particles and the electromagnetic
field are generally covariant. However if the theory admits coordinate systems in
which the Newtonian limit can be realized, then the theory loses its broad covariance.
In particular, it loses covariance under transformations to uniform rotation, so that
Einstein could no longer conceive of uniform rotation as a rest state, in contradiction
with his requirement of a generalized principle of relativity.

The Problem Generalized

The power attributed to the coordinate condition (11) does not depend on any specific
properties of the gravitation tensor  or the coordinate condition (11). The argu-
ments rehearsed here would proceed equally with any candidate gravitation tensor of
suitably broad covariance and any coordinate condition able to reduce that gravitation
tensor to the form (8). Again, the argument does not require that the transformation
be a rotation transformation (18). Any transformation in the covariance group of the
gravitational field equations could be used. Thus, if the conjecture is correct, Einstein
must have held very restrictive expectations for the covariance of his emerging gen-
eral theory of relativity, whatever its gravitation tensor might be.

To find these expectations, we generalize the argument above for any gravitation
tensor, any transformation in the covariance group of the resulting field equations and
any coordinate condition that reduces the gravitation tensor to the form (8). For the
case of the gravitation tenor  the coordinate condition (11) picks out the class of
coordinate systems  in which the Newtonian limit obtains and the gravitation
tensor has form (6). Correspondingly for some gravitation tensor  of broad cova-
riance, a coordinate condition  will pick out the coordinate systems in which
the Newtonian limit obtains and the gravitation tensor reduces to form (8). Since rota-
tion transformation (18) is in the covariance group of  Einstein would expect
through the hole construction that the two metrics  and  related by this
transformation, are admissible as solutions in this coordinate system  But this
can only obtain if the coordinate condition (11) is covariant under rotation transfor-
mation (18). Correspondingly, if  and  are solutions of the (source free) gravita-
tional field equations based on the gravitation tensor  Einstein would expect,
through the hole construction, that they are solutions of the reduced gravitational field
equations in the limit coordinate system. But this can only obtain if the coordinate
condition  is covariant under the transformation that takes  to  That is,
Einstein would expect the following results (C1), (C2) and (C3), to obtain:

(C1) The covariance of the theory as a whole is limited to the covariance of the
coordinate condition used to pick out the coordinate systems in which the Newto-
nian limit is realized.

For the covariance of that coordinate condition delimits the transformations admissi-
ble for solution of the field equations in those coordinate systems.
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(C2) The covariance of the gravitational field equations, after they have been
reduced by the coordinate condition to the form (8), defines the covariance of the
theory as a whole.

For these reduced gravitational field equations just result from the conjunction of the
unreduced gravitational field equations and the coordinate condition so that their
covariance is limited by the covariance of the coordinate condition. (In both (C1) and
(C2), if the unreduced gravitational fields equations have restricted covariance, then
these conditions also limit the covariance of the theory as a whole.)

(C3) In a viable theory, the coordinate condition used and the resulting reduced
gravitational field equations will still exhibit broad covariance, including covari-
ance under the rotation transformations (18), so that they admit  as a solu-
tion.

If the covariance required in (C1) or (C2) does not include acceleration transforma-
tions, such as the rotation transformation (18), then the theory fails to meet the
demands of a generalized principle of relativity. It harbors covariance restricting
coordinate systems akin to the objectionable, absolute inertial systems of classical
mechanics and special relativity (see below).

If the present conjecture is correct, Einstein would adopt (C1), (C2) and (C3). The
immediate outcome would be that there is no gain is using a requirement like (11) as
a coordinate condition rather than a coordinate restriction. In either use, the equation
will impose the same restriction on his gravitation theory’s covariance. But the
advantage of using coordinate restrictions is that they allow for simpler gravitational
field equations.

Moreover, let us suppose that Einstein came to see (C1), (C2) and (C3) as a part
of his evaluation of the candidate gravitation tensor  on page 22R. Then his natu-
ral response would be to discontinue the use of coordinate conditions, as he does after
page 22R. Indeed his construction of the theta condition on page 23L would be a nat-
ural next step. He abandons coordinate conditions in favor of coordinate restrictions,
so he contrives a coordinate restriction specifically to have the rotational covariance
lacked by (11).

3.4 The Problem of Absolute Coordinates 

The cause of the difficulty is the coordinate systems  essential for the recovery
of the Newtonian limit. Throughout his scientific life Einstein had railed against the
objectionable, absolute properties of inertial coordinate systems. The coordinate sys-
tems  had now adopted just those objectionable properties and Einstein could
not tolerate their presence in his theory. Einstein had made quite clear that the funda-
mental goal of his general theory of relativity was to eliminate exactly these preferred
systems of coordinates.
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His Denunciations Persist from his Early Work…

Typical of his denunciations of such systems were his remarks written in the early
days of the Entwurf theory:

The theory presently called “the theory of relativity” [special relativity] is based on the
assumption that there are somehow preexisting “privileged” reference systems  with
respect to which the laws of nature take on an especially simple form, even though one
raises in vain the question of what could bring about the privilegings of these reference
systems  as compared with other (e.g., “rotating”) reference systems  This consti-
tutes, in my opinion, a serious deficiency of this theory.55

The privileging of the reference system  in special relativity resides in the fact that
only in  do free bodies move inertially (the “specially simple form” of the laws of
motion of free bodies), whereas in  they move under the influence of a rotation
field.  and  cannot switch roles.  cannot admit a rotation field while bodies
move inertially in  Of course Einstein was not referring in these remarks to the
special coordinate systems  introduced in the Zurich Notebook. However, these
special coordinate systems have exactly the properties that Einstein found objection-
able in  the coordinate systems  admit  so that free bodies will move
inertially in  But  does not admit the rotation field 

The presence of such absolute coordinate systems would cut Einstein to the quick.
In the course of nearly half a century of writing on the general theory of relativity,
Einstein found the need to reappraise much of what he wrote on the foundations of
his theory. His vacillations on Mach’s principle are probably the best known instance.
But he never wavered in his insistence that the absolute of the inertial system must be
eliminated. These sentiments supported the need for a generalization of the principle
of relativity to acceleration when Einstein wrote his explanatory texts:

All of the previous considerations have been based upon the assumption that all inertial
systems are equivalent for the description of physical phenomena, but that they are pre-
ferred, for the formulation of the laws of nature, to spaces of reference in a different state
of motion. We can think of no cause for this preference for definite states of motion to all
others, according to our previous considerations, either in the perceptible bodies or in the
concept of motion; on the contrary, it must be regarded as an independent property of the

55 “Die gegenwärtig als “Relativitätstheorie” bezeichnete Theorie ist auf die Annahme gegründet, daß es
gewissermaßen präexistierende “bevorzugte” Bezugssysteme  gebe, auf die bezogen die Naturge-
setze eine besonders einfache Form annehmen, trotzdem man vergeblich die Frage aufwirft, wodurch
die Bevorzugungen jener Bezugsysteme  gegenüber anderen Bezugssystemen  (z. B. “rotieren-
den”) bedingt sein könnte. Es liegt hierin meiner Ansicht nach ein schwerer Mangel dieser Theorie.”
(Einstein 1914a, 176; translation in CPAE 4E, 282). Again writing at the time of the Entwurf theory,
Einstein expressed similar sentiments when he spoke of “...reference systems with respect to which
freely moving mass points carry out rectilinear uniform motion (inertial systems). What is unsatisfac-
tory is that it remains unexplained how the inertial systems can be privileged with respect to other sys-
tems.” (“… Bezugssysteme zu entschlüpfen, in bezug auf welche kräftefrei bewegte Massenpunkte
eine geradlinig gleichförmige Bewegung ausführen (Inertialsysteme). Das Unbefriedigende liegt
dabei darin, daß unerklärt bleibt, wieso die Inertialsystemen ausgezeichnet sein können.”) Einstein’s
parentheses and emphasis, (Einstein 1913, 1260; translation in CPAE 4E, 219).
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spacetime continuum. The principle of inertia, in particular, seems to compel us to
ascribe physically objective properties to the spacetime continuum. Just as it was consis-
tent from the Newtonian standpoint to make both the statements, tempus est absolutum,
spatium est absolutum, so from the standpoint of the special theory of relativity we must
say, continuum spatii et temporis est absolutum. In this latter statement absolutum means
not only “physically real,” but also “independent in its physical properties, having a
physical effect, but not itself influenced by physical conditions.”56

…To His Final Years

These sentiments persist essentially unchanged in the final years of his life. In a letter
of 28 December 1950, Einstein explained to D. W. Sciama his concern over the lat-
ter’s theory of restricted covariance; the equations held in coordinate systems in the
set  but not in the forbidden set 

We now ask: on what basis can natural laws hold with respect to  but not with respect
to  (Logically considered, both sets  and  are after all completely equivalent.)
If one takes the theory really seriously, there is only one answer: the preference for 
over  is an independent physical property of space, which must be added as a postu-
late to the field equations, so that the physical theory as a whole can have a clear mean-
ing. Newton recognized this with complete clarity (“Spacium est absolutum”). In fact,
each theory based on a subgroup introduces an “absolute space”, only one that is “less
absolute” than classical mechanics.

It was first achieved in G. R., that a space with independent (absolute) properties is
avoided. There first are the laws, as they are expressed through the field equations, com-
plete and require no augmenting assumptions over physical space. “Space” subsists then
only as the continuum property of the physical-real (field), not as a kind of container
with independent existence, in which physical things are placed.57

These same sentiments would apply to  In resisting admission of  the
coordinate system would be restoring independent, absolute properties to spacetime,
properties that went beyond what was given through the field equations. Einstein

56 “Alle bisherigen Überlegungen beruhen auf der Voraussetzung, daß die Inertialsysteme für die physi-
kalische Beschreibung gleichberechtigt, den Bezugsräumen von anderen Bewegungszuständen für die
Formulierung der Naturgesetze aber überlegen seien. Für diese Bervorzugung bestimmter Bewe-
gungszustände vor allen anderen kann gemäß unseren bisherigen Betrachtungen in den wahrnehmba-
ren Körpern bzw. in dem Begriff der Bewegung eine Ursache nicht gedacht werden; sie muß vielmehr
auf eine selbständige, d. h. durch nichts anderes bedingte Eigenschaft des raumzeitlichen Kontinuums
zurückgeführt werden. Insbesondere scheint das Trägheitsgesetz dazu zu zwingen, dem Raum-Zeit-
Kontinuum physikalisch-objektive Eigenschaften zuzuschreiben. War es vom Standpunkt Newtons
konsequent, die beiden Begriffe auszusprechen; “Tempus absolutum, spatium absolutum”, so muß
man auf dem Standpunkt der speziellen Relativitätstheorie von “continuum absolutum spatii et tem-
poris est” sprechen. Dabei bedeutet “absolutum” nicht nur “physikalisch-real”, sondern auch “in ihren
physikalischen Eigenschaften selbständig, physikalisch bedingend, aber selbst nicht bedingt”.” From
the popular (Einstein 1917, Ch.XXI) and the textbook (Einstein 1922, 55).

57 The typescript of the letter is EA 20–469. The autograph manuscript, EA 20 470, contains an extra
sentence given in parentheses here as the second sentence, (“Logically considered...”). (EA 20–469
denotes the item with control number 20–469 in the Einstein Archive.)
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would shortly characterize just such behavior as a reversion to the flawed viewpoints
of Antiquity. To George Jaffé on 19 January 1954, he wrote:

You consider the transition to the special theory of relativity as the most essential of all
the ideas of the theory of relativity, but not the transition to the general theory of relativ-
ity. I hold the reverse to be true. I see the essential in the conquest of the inertial system,
a thing that acts on all processes but experiences no reaction from them. This concept is
in principle no better than that of the central point of the world in Aristotelian physics.58

3.5 The Structure and Program of the Entwurf Theory

Explaining Einstein’s Indifference to General Covariance

According to the accounts developed in this volume, at the time of the creation of his
Entwurf theory, Einstein thought rather differently from his later views on coordinate
systems. There appears to be a trace of this difference in his early discussion of the
limited covariance of his Entwurf theory. That is, he was curiously indifferent about
discovering the generally covariant gravitational field equations that he believed must
correspond to his Entwurf equations. Once Einstein has developed general arguments
against the admissibility of general covariance, we need not search for a reason for
this indifference. But these arguments emerged only later in 1913, after the Entwurf
was published. We need some explanation for this indifference in the intervening
months.

The accounts discussed in this paper supply them. The Entwurf equations would
be recovered from generally covariant equations by application of a coordinate condi-
tion. So, if Einstein accorded an independent reality to the coordinate systems so
introduced, then his indifference would be explained by the misapprehension that his
theory overall would gain no added covariance from the transition to these generally
covariant equations. Or, more simply, if Einstein was just unaware of the use of coor-
dinate conditions, then he would be unaware of how to retain the Entwurf gravita-
tional field equations for the essential case of the Newtonian limit, so the generally
covariant equations would appear unusable within his theory.

The Restricted Covariance of the Entwurf theory

Einstein’s exploration of  and the theta restriction are some of his final efforts in
the Zurich Notebook to recover gravitational field equations from covariance consid-
erations. These efforts halt decisively on pages 26L–26R, where Einstein laid out in
capsule the derivation of the gravitational field equations of the Entwurf theory. This
derivation uses no covariance considerations at all. It is based essentially on the

58 “Sie betrachten den Uebergang zur speziellen Relativitätstheorie als den wesentlichen Gedanken der
Relativität überhaupt, nicht aber den Uebergang zur allgemeinen Relativitätstheorie. Ich halte das
Umgekehrte für richtig. Das Wesentliche sehe ich in der Ueberwindung des Inertialsystems, eines
Dinges das auf alle Vorgänge wirkt, von diesen aber keine Rückwirkung erfährt. Dieser Begriff ist im
Prinzip nicht besser als der des Weltmittelpunktes in der Aristotelischen Physik.” (EA 13 405)
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demand of the Newtonian limit and energy-momentum conservation. Einstein and
Grossmann arrived at a gravitation tensor of form (8)

Unfortunately Einstein and Grossmann were unable to specify the covariance group
of the resulting gravitational field equations. They were able to assure the reader only
of covariance under linear transformation. Of course Einstein was apologetic over
their failure to discover the covariance of these equations. In closing his critique of
any gravitation theory based on a scalar gravitation potential, Einstein candidly con-
ceded how this omission had crippled Einstein’s program:

Of course, I must admit that, for me, the most effective argument for the rejection of such
a theory rests on the conviction that relativity holds not only with respect to orthogonal lin-
ear substitutions but also with respect to a much wider group of substitutions. But already
the mere fact that we were not able to find the (most general) group of substitutions associ-
ated with our gravitational equations makes it unjustifiable for us to press this argument.59 

What is puzzling is that the deficiency could be set aside with such a simple dis-
claimer. The driving force of Einstein’s program was the conviction that the relativity
of motion must be extended to acceleration and that this would be realized by a the-
ory covariant under non-linear coordinate transformations, for only the latter corre-
sponded to transformations to accelerated states of motion.

To see just how puzzling this is, we need to recall two of Einstein’s commitments
at this time. First we are assured by Einstein’s remarks in a letter to Lorentz of
14 August 1913 of his continued commitment to a broader covariance and his alarm
at his continued failure to affirm the broader covariance of the theory:

But the gravitational equations themselves unfortunately do not have the property of
general covariance. Only their covariance under linear transformations is assured. How-
ever the whole trust in the theory rests on the conviction that acceleration of the reference
system is equivalent to a gravitational field. Therefore if all the systems of equations of
the theory, thus also equation (18) [gravitational field equations], do not admit still other
transformations aside from the linear, then the theory contradicts its own starting point;
it’s left hanging in the air. [Einstein’s emphasis]60

It is a measure of Einstein’s frustration and desperation that the following day—
15 August 191361—he fell into an embarrassing error. He thought that he could

59 “Ich muß freilich zugeben, daß für mich das wirksamste Argument dafür, daß eine derartige Theorie
zu verwerfen sei, auf der Überzeugung beruht, daß die Relativität nicht nur orthogonalen linearen
Substitutionen gegenüber besteht, sondern einer viel weiteren Substitutionsgruppe gegenüber. Aber
wir sind schon deshalb nicht berechtigt, dieses Argument geltend zu machen, weil wir nicht imstande
waren, die (allgemeinste) Substitutionsgruppe ausfindig zu machen, welche zu unseren Gravitations-
gleichungen gehört.” (Einstein and Grossmann 1913, I§7; translation in CPAE 4E, 170–171)
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establish from the requirement of energy conservation that his gravitation theory
could be at most covariant under linear transformations. He retracted this trivially
flawed argument in a paper published the following May (Einstein and Grossmann
1914, 218), but not before the argument had appeared several times in print.62

Correspondence with Generally Covariant Equations

Second, Einstein expressed his belief that his Entwurf field equations must corre-
spond to generally covariant equations. Having presented his Entwurf gravitational
field equations, he continued:

It is beyond doubt that there exists a number, even if only a small number, of generally
covariant equations that correspond to the above equations, but their derivation is of no
special interest either from a physical or from a logical point of view, as the arguments pre-
sented in point 8 clearly show.[63] However, the realization that generally covariant equa-
tions corresponding to [these gravitational field equations] must exist is important to us in
principle. Because only in that case was it justified to demand the covariance of the rest of
the equations of the theory with respect to arbitrary substitutions. On the other hand, the
question arises whether those other equations might not undergo specialization owing to
the specialization of the reference system. In general, this does not seem to be the case.64

Although Einstein does not make explicit what the relation of correspondence is
between the Entwurf equations and their generally covariant counterparts, it would
surely be that the former are recovered from the latter by some kind of coordinate
condition or restriction.

While these remarks come from a paper of January 1914, we have no reason to
doubt that they reflected Einstein’s feelings just a few months earlier at the time of
completion of the Entwurf paper. They provide a natural interpretation of remarks

60 “Aber die Gravitationsgleichungen selbst haben die Eigenschaft der allgemeinen Kovarianz leider
nicht. Nur deren Kovarianz linearen Transformationen gegenüber ist gesichert. Nun beruht aber das
ganze Vertrauen auf die Theorie auf der Überzeugung, dass Beschleunigung des Bezugssystems
einem Schwerefeld äquivalent sei. Wenn also nicht alle Gleichungssysteme der Theorie, also auch
Gleichungen (18) ausser den linearen noch andere Transformationen zulassen, so widerlegt die Theo-
rie ihren eigenen Ausgangspunkt; sie steht dann in der Luft.” (CPAE 5, Doc. 467)

61 The dating is derived from Einstein’s report to Lorentz in a letter of 16 August 1913 (CPAE 5,
Doc. 470).

62 For discussion see (Norton 1984, §6).
63 In his point 8, Einstein had stated the hole argument and the argument against general covariance

based on the conservation of energy-momentum.
64 “Es ist zweifellos, daß diesen Gleichungen eine, wenn auch geringere Zahl von allgemein kovarianten

Gleichungen entspricht, deren Aufstellung aber weder vom physikalischen noch vom logischen
Standpunkte von besonderem Interesse ist, wie aus den unter 8 gegebenen Überlegungen deutlich her-
vorgeht. Prinzipiell wichtig aber ist uns die Erkenntnis, daß den Gleichungen (6) entsprechende allge-
mein kovariante existieren müssen. Denn nur in diesem Falle war es gerechtfertigt, die Kovarianz der
übrigen Gleichungen der Theorie beliebigen Substitutionen gegenüber zu fordern. Es entsteht ande-
rerseits die Frage, ob jene anderen Gleichungen durch die Spezialisierung des Bezugssystems keine
Spezialisierung erfahren. Dies scheint im allgemeinen nicht der Fall zu sein.” (Einstein 1914a, 179;
translation in CPAE 4E, 286)
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made by Einstein when he reflected on their failure to find generally covariant gravi-
tational field equations:

To be sure, it cannot be negated a priori that the final, exact equations of gravitation
could be of higher than second order. Therefore there still exists the possibility that the
perfectly exact differential equations of gravitation could be covariant with respect to
arbitrary substitutions. But given the present state of our knowledge of the physical
properties of the gravitational field, the attempt to discuss such possibilities would be
premature. For that reason we have to confine ourselves to the second order, and we must
therefore forgo setting up gravitational equations that are covariant with respect to arbi-
trary transformations. [Einstein’s emphasis]65

Einstein cannot mean by this that the higher order equations are incompatible with
the Entwurf equations. For then solutions of the Entwurf equations would not be solu-
tions of the higher order equations, so that each would admit a different class of phys-
ical fields. In this case, the selection of the Entwurf equations is just the selection of
the wrong equations. It is hard to imagine that Einstein would dismiss correcting such
an outright error by calling the correction “premature.” But the dismissal is more
intelligible if these higher order equations are the generally covariant equations that
reduce to the Entwurf equations with the application of a coordinate condition or
restriction. For then all solutions of the Entwurf equations would be solutions of the
higher order equations; transition to the higher order equations would merely admit
more coordinate representations of the same physical fields into the theory.

The Incongruity of Einstein’s Approach…

If Einstein held these two views at the time of publication of the Entwurf theory and
he also held to an essentially modern view of coordinate systems and coordinate con-
ditions, then his assessment of the theory’s state and his further development of the
theory is quite mysterious. For the sole effect of a coordinate condition, in this mod-
ern view, is to obscure the covariance of the theory. As long as the coordinate condi-
tion does not extend beyond the four equations routinely allowed, it does not preclude
any physical field; it merely reduces the range of coordinate representations of each

65 “A priori kann allerdings nicht in Abrede gestellt werden, daß die endgültigen, genauen Gleichungen
der Gravitation von höherer als zweiter Ordnung sein könnten. Es besteht daher immer noch die Mög-
lichkeit, daß die vollkommen exakten Differentialgleichungen der Gravitation beliebigen Substitutio-
nen gegenüber kovariant sein könnten. Der Versuch einer Diskussion derartiger Möglichkeiten wäre
aber bei dem gegenwärtigen Stande unserer Kenntnis der physikalischen Eigenschaften des Gravitati-
onsfeldes verfrüht. Deshalb ist für uns die Beschränkung auf die zweite Ordnung geboten und wir
müssen daher darauf verzichten, Gravitationsgleichungen aufzustellen, die sich beliebigen Transfor-
mationen gegenüber als kovariant erweisen.” (Einstein and Grossmann 1913, I.§5; translation in
CPAE 4E, 160) Michel Janssen has suggested an alternative interpretation: Einstein may merely mean
that his Entwurf field equations might be good empirical approximations in the domain of weaker
fields for some set of generally covariant gravitational field equations of higher order. If this interpre-
tation is correct, we still have ample evidence from his other remarks that Einstein also expected the
Entwurf field equations to be recoverable from generally covariant equations by means of a coordinate
condition. See, for example, the remarks quoted in section 3.6.
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physical field.66 In so far as the field equations, after reduction by the coordinate con-
dition, are intended to yield the Newtonian limit, they need only exhibit covariance
under linear transformation. It might just happen that the reduced field equations
exhibited greater covariance so that they might play a direct role in the generalization
of the principle of relativity. But there is no reason to expect this. The only sure way
to expand the covariance of the theory is to find the unreduced, generally covariant
form of the gravitational field equations. That is the obvious and natural way to
develop the Entwurf theory.

This was not Einstein’s approach. Rather than seeking out these generally covari-
ant equations, he let all his hopes hang on a slender thread: the Entwurf equation
might just have sufficient covariance to support a generalized principle of relativity.
So Einstein devoted his efforts to two tasks, both of which came to fruition after he
had hit upon the hole argument. First he sought to discover the extent of the covari-
ance of his Entwurf equations, describing this as the most important problem to be
solved in the context of this theory.

...the equation of the gravitational field that we have set up do not possess this property
[of general covariance]. For the equations of gravitation we have only been able to prove
that they are covariant with respect to arbitrary linear transformations; but we do not
know whether there exists a general group of transformations with respect to which the
equation are covariant. The question as to the existence of such a group for the system of
equations (18) and (21) [gravitational field equations] is the most important question
connected with the considerations presented here. [Einstein’s emphasis]67

These efforts culminated in the discovery with Grossmann (Einstein and Grossmann
1914) that the covariance of his theory extends to what they call “adapted coordinate
systems;” that is, coordinate systems that satisfy

(23)

Second he threw himself into the task of establishing that whatever limited covari-
ance the Entwurf theory may have is good enough, for further covariance would be

66 For example, if our “field equation” is just a flatness requirement, the vanishing of Riemann-Christof-
fel curvature tensor, then one of its solutions is a Minkowski spacetime, whose coordinate representa-
tions include  and  The effect of a coordinate condition such as (11) is not to eliminate a
physical possibility such as this solution. It precludes the representation  with which is it
incompatible; but it admits 

67 “… daß die von uns aufgestellten Gleichungen des Gravitationsfeldes diese Eigenschaft nicht besit-
zen. Wir haben für die Gravitationsgleichungen nur beweisen könne, daß sie beliebigen linearen
Transformationen gegenüber kovariant sind; wir wissen aber nicht, ob es eine allgemeine Transforma-
tionsgruppe gibt, der gegenüber die Gleichungen kovariant sind. Die Frage nach der Existenz einer
derartigen Gruppe für das Gleichungssystem (18) bzw. (21) ist die wichtigste, welche sich an die hier
gegebenen Ausführungen anknüpft.” (Einstein and Grossmann 1913, I.§6; translation in CPAE 4E,
167) The continuation of the letter to Lorentz of 14 August 1913, quoted above describes some of his
efforts to uncover these covariance properties.
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physically uninteresting. Here Einstein had more success than his material warranted.
He first showed in a trivially flawed and soon retracted argument that one can expect
no more than linear covariance. Then the hole argument showed that generally cova-
riance would be physically uninteresting and his analyses of 1914 showed that the
Entwurf theory has the maximum covariance compatible with the hole argument.68

… is Explained

While Einstein’s approach is baffling if we assume that he had a modern understand-
ing of coordinate systems and coordinate conditions, it becomes entirely reasonable
in the light of the conjecture of this part. He believed his Entwurf field equations to
result from some set of unknown generally covariant equations reduced by a coordi-
nate condition, presumably what turned out to be the adapted coordinate condition
(23). In accord with (C1) and (C2), Einstein would pay no penalty in using the
reduced form of the field equations in his theory. The covariance of the theory as a
whole is just the covariance of the reduced equations (or, equivalently, the covariance
of the coordinate condition (23). So the reduced form of these equations is not
obscuring the true covariance of the theory as a whole, contrary to the modern view.
And, since the effect of a coordinate condition (23) is just to restrict the covariance of
the generally covariant equations, the reduced equations are not eliminating any
physical fields; the limitation is just that each physical field arises in the theory in
fewer coordinate representations. Thus, with the completion of the Entwurf theory in
mid 1913, Einstein could have entered into the search for the generally covariant
equations that correspond to his Entwurf equations. But there would have been little
to gain from finding them. Finding them would not alter the covariance of the theory
as a whole and it would not admit into the theory any new physical fields.69

There was a more pressing problem that had to absorb his immediate attention.
Einstein did not know the covariance of the Entwurf theory. According to (C3), Ein-
stein hoped that this covariance would extend to include transformations representing
acceleration, for otherwise Einstein’s hopes of extending the principle of relativity to
acceleration would not be met by his theory. More was at stake. Einstein believed that
his Entwurf gravitational field equation were unique; that is, they were the only equa-
tions employing a gravitation tensor of form (8) compatible with energy-momentum
conservation.70 Thus if the Entwurf equations failed to have sufficient covariance,
then Einstein’s entire project would be called into doubt. He could not just reject the

68 For discussion, see (Norton 1984, §6).
69 Or more simply, if Einstein was unaware of the use of coordinate conditions, the use of the generally

covariant field equations, unsupplemented by adapted coordinate condition (23), would be incompati-
ble with recovery of the Newtonian limit, since those equations would be unlikely to have the Newto-
nian form (8).

70 The uniqueness of these equations is suggested by the description of the identities (12) of Einstein and
Grossmann (Einstein and Grossmann 1913, §5) used in the derivation of these equations as “uniquely
determined” and then directly affirmed by Einstein (Einstein 1914b, 289). See (Norton 1984, §4) for
discussion; the equations prove not to be unique, although this is not easy to see.
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Entwurf field equations and seek a better alternative. He now believed that he had no
option other than the Entwurf equations. Thus Einstein had to find the covariance of
the Entwurf equations and, if his efforts to extend the principle of relativity were to
succeed, it had to include acceleration transformations.

Thus the conjecture explains exactly the direction of Einstein’s research on com-
pletion of the Entwurf theory.71 He would gain nothing of significance from finding
the generally covariant equations corresponding to his Entwurf equations. The prob-
lem urgently needing his attention was the discovery of the extent of the covariance
of his Entwurf equations. These efforts of discovery soon transformed into the argu-
ments that sought to established the need, in physical terms, for a restriction on cova-
riance: that is, the arguments from the conservation laws and the hole argument. As
Einstein’s remarks from early 1914 quoted above indicate, these arguments establish
that the quest for the generally covariant equations is of “no special interest”—a con-
clusion that I urge had already been forced implicitly by his according independent
physical reality to the coordinate systems arising in the process of extracting the
Newtonian limit.

3.6 Einstein’s Pronouncements on the Selection of Specialized Coordinate Systems

The conjecture advanced here requires that Einstein’s 1912–1915 understanding of
coordinate systems in quite irregular. It is essential that this conjecture be compatible
with Einstein’s pronouncements on coordinate systems from this period. As it turns
out, Einstein made few such pronouncements—so few, that it was initially thought in
the history of science literature that Einstein was unaware of how to use four condi-
tions to constrain the choice of coordinate systems. My purpose in this section is to
review Einstein’s most important pronouncements on the selection of specialized
coordinate systems from this period and to show that they are quite compatible with
the conjecture advanced here, although they neither speak for nor against it.

Two Ways to Introduce Specialized Coordinate Systems

Best known of these pronouncements is a distinction made in (Einstein 1914a, 177–
178). Since this last pronouncement turns out to be a somewhat awkward statement
of the same distinction explained more clearly in a later letter to Lorentz, I shall con-
sider the later remarks first. In a letter of 23 January 1915 to Lorentz, Einstein sought
to explain that his “choice of coordinates makes no assumption physically about the
world.” He used a “geometric comparison” to illustrate the possibilities:

I have a surface of unknown kind upon which I want to carry out geometrical investiga-
tions. If I require that a coordinate system  on the surface can be so chosen that

71 A supposed lack of awareness of the use of coordinate conditions would also explain this direction.
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then I thereby assume that the surface can be developed onto a plane. However if I
require only that the coordinates can be so chosen that

i.e. that the coordinates are orthogonal, I thereby assume nothing about the nature of the
surface; one can realize them on any surface.72

Einstein’s remark is a commonplace of differential geometry and applies equally in
the geometry of two-dimensional surfaces and in the geometry of spacetimes. In pre-
suming the existence of a particular coordinate system, we might be tacitly restricting
the geometry of the space, or we might not. So, as in Einstein’s first example, if we
assume that there is a coordinate system in which the metrical coefficient  are
constant, then we are assuming that the space is also metrically flat.73 For constancy
of the  is necessary and sufficient for metrical flatness. Other coordinate systems,
however, can be realized in any space, so that the presumption of their existence does
not restrict the geometric properties of the space.

To proceed to Einstein’s (1914) remarks, we express the constraint that picks out
a coordinate system in which the metrical coefficients are all constant as

(24)

This condition is equivalent to metrical flatness, which is a condition that can be
given in invariant or generally covariant form, that is, as the vanishing of the Rie-
mann-Christoffel curvature tensor

(24’)

However the now familiar

(11)

consumes just the four degrees of freedom available in selection of a coordinate sys-
tem in any four-dimensional spacetime and thus places no restriction on its geometry.
Whatever (11) states cannot be re-expressed by a non-vacuous invariant or generally
covariant relation.

72 “Es liegt mir eine Fläche unbekannter Art vor, auf der ich geometrische Untersuchungen machen will.
Verlange ich, es solle auf der Fläche ein Koordinatensystem  so gewählt werden, dass

 [s]o setzte ich damit voraus, dass die Fläche auf eine Ebene abwickelbar sei. Ver-
lange ich aber nur, dass die Koordinaten so gewählt seien, dass  ist,
d. h. dass die Koordinaten orthogonal seien, so setzte ich damit über die Natur der Fläche nichts vor-
aus; man kann dies auf jeder Fläche erzielen.” Einstein to H. A. Lorentz, 23 January 1915 (CPAE 8,
Doc. 47).

73 That a surface “can be developed onto a plane” is synonymous with flatness.
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Working Backwards

This is the distinction that Einstein describes in (Einstein 1914a). The difference is
that Einstein starts with an expression of restricted covariance and then works back-
wards, asking if the expression came from a generally covariant expression by
restriction of the coordinate system.

If we are given equations connecting any quantities whatsoever74 that are valid only for a
special choice of the coordinate system, then one has to distinguish between two cases:

1. To these equations there correspond generally covariant equations, i.e. equations valid
with respect to arbitrary reference systems;

2. There are no generally covariant equations that can be deduced from the equations
given for the specially chosen reference frame.

In case 2, the equations say nothing about the things described by the quantities in ques-
tion; they only restrict the choice of reference system. If the equations say anything at all
about the things represented by the quantities, then we are dealing with case 1, i. e., in
that case, there always exist generally covariant equations between the quantities.75

The constraint (24) is an instance of a non-generally covariant equation of case 1. Its
existence does restrict the quantities involved, for it entails the flatness of the metric.
Thus there is a corresponding generally covariant relation (24’). The requirement
(11), however, generates no restriction on these quantities and thus corresponds to no
(non-vacuous) generally covariant requirement.

The distinction outlined here does not bear on the reading of coordinate restric-
tions I urge Einstein held in 1912–1915. The requirement (11), places no restriction on
the geometric properties represented by the metric  That is an issue independent
of how the requirement picks out particular coordinate systems. To parrot Einstein, the
requirement “says nothing” about the metrical quantities, but it certainly “says some-

74 Einstein’s footnote: “Of course, the transformation properties of the quantities themselves must be
considered here as being given for arbitrary transformations.” (“Die Transformationseigenschaften
der Größen selbst müssen natürlich hierbei als für beliebige Transformationen gegeben betrachtet
werden.”)

75 “Wenn Gleichungen zwischen irgendwelchen Größen gegeben1) [see previous note] sind, die nur bei
spezieller Wahl des Koordinatensystems gültig sind, so sind zwei Fälle zu unterscheiden:
1. Es entsprechen den Gleichungen allgemein kovariante, d. h. bezüglich beliebiger Bezugssysteme
gültige Gleichungen;
2. es gibt keine allgemein kovarianten Gleichungen, die aus den für spezielle Wahl des Bezugssy-
stems gegebenen Gleichungen gefolgert werden können.
Im Falle 2 sagen die Gleichungen über die durch die Größen dargestellten Dinge gar nichts aus; sie
beschränken nur die Wahl des Bezugssystems. Sagen die Gleichungen über die durch die Größen dar-
gestellten Dinge überhaupt etwas aus, so liegt stets der Fall 1 vor, d. h. es existieren dann stets allge-
mein kovariante Gleichungen zwischen den Größen.” (Einstein 1914a, 177–178; translation in
CPAE 4E, 284) Einstein’s purpose is to assert that his non-generally covariant gravitational field
equations of the Entwurf theory do make some assertion about the quantities involved. Thus they are
an instance of case 1. and there must exist corresponding generally covariant equations.
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thing” about the coordinate systems, for it admits some and precludes others. Decid-
ing just what it says about them is the issue that defeated Einstein in 1912–1915.

Specialized Coordinate Systems and Nordström’s Theory of Gravitation

There is an important instance of case 1 in (Einstein and Fokker 1914), submitted for
publication in February 1914, a month after the submission of (Einstein 1914a). Their
work pertains to Nordström’s latest theory of gravitation, which Einstein judged the
most viable of the gravitation theories then in competition with the Einstein and
Grossmann Entwurf theory.76

Nordström’s theory had been developed by Nordström and Einstein as a Lorentz
covariant theory of gravitation. With Fokker, Einstein now showed that the theory
could be recovered in the generally covariant framework of the Entwurf theory, com-
plete with its generally covariant energy conservation law. In place of the Einstein-
Grossmann gravitational field equations, Einstein and Fokker adopted the single field
equation  where  is the Riemann curvature scalar,  the trace of the stress-
energy tensor and  a constant. That single equation would be insufficient to fix the
ten coefficients of the metric tensor, so additional constraints were needed. “It turns
out,” Einstein and Fokker observed in their introductory summary, “that one arrives at
the Nordström theory instead of the Einstein-Grossmann theory, if one makes the sole
assumption that it is possible to choose preferred coordinate systems in such a way that
the principle of the constancy of the speed of light obtains.”77 They interpreted the pre-
sumption of such a coordinate system as equivalent to assuming the existence of coor-
dinate systems in which the spacetime’s line element has the form78

(25)

That a spacetime admits a line element of this form greatly restricts its geometry; it is
equivalent to conformal flatness. As Einstein suggests, this restriction can be written
in generally covariant form. It was later found to be equivalent to the vanishing of the
Weyl conformal tensor.

Einstein does not mention the Nordström theory in remarks in a letter to Planck
7 July 1914, written about six months after publication of Einstein and Fokker’s
paper. However his remarks describe exactly the specialized coordinate system intro-
duced in the Einstein-Fokker formulation of the Nordström theory.

There is a fundamental difference between that specialization of the reference system
that classical mechanics or [special] relativity theory introduces and that which I apply in

76 For an account of Nordström’s theories, see (Norton 1992; 1993).
77 “Es erweist sich hierbei, daß man zur Nordströmschen Theorie statt zur Einstein-Großmannschen

gelangt, wenn man die einzige Annahme macht, es sei eine Wahl bevorzugter Bezugssysteme in sol-
cher Weise möglich, daß das Prinzip von der Konstanz der Lichtgeschwindigkeit gewahrt ist.” (Ein-
stein and Fokker 1914, 321)

78 Then a light signal, for which  propagates with unit coordinate velocity. For example, if it
propagates along the  axis, the light signal satisfies 
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the theory of gravitation. That is, one can always introduce the latter, no matter how the
 may be chosen. However the specialization introduced by the principle of the con-

stancy of the speed of light presumes differential relations between the  and indeed
relations whose physical interpretation would be very difficult. The satisfaction of these
relations cannot be enforced for every given manifold through suitable choice of the ref-
erence system. According to the latter understanding, there are two heterogeneous condi-
tions for the  
1) the analog of Poisson’s equation

2) the conditions that enable the introduction of a system of constant 79

These two “heterogeneous conditions” correspond exactly with the two laws of the
Nordström theory. The first, the field equation  is the analog of Poisson’s
equation. The second is the presumption that we can introduce a coordinate system in
which the line element takes the conformally flat form (25). Its introduction is
enabled by further conditions, which were later found to be expressible as “differen-
tial relations between the  the vanishing of the Weyl conformal tensor.

3.7 Was Einstein Really Defeated by According an Independent Reality
to Coordinate Systems?

That is, is the conjecture of this part true? In sum, the answer is similar to the one
given in section 2.4 to the question of whether Einstein was aware of coordinate con-
ditions. There is no decisive piece of evidence for or against, but there are indications
that point in both directions. Again, our ultimate assessment depends in some signifi-
cant measure on issues of plausibility. My view is that the latter favor the conjecture. 

The Notebook and the Entwurf Theory

If we accept that Einstein was aware of the use of coordinate conditions in the note-
book and later, then we have several incongruities to explain. Why does he abandon
their use so precipitously? Why does his later correspondence discount a perfectly
serviceable extraction of the Newtonian limit from the candidate gravitation tensor

 Why is his discussion of the Entwurf theory, prior to his discovery of general
arguments against general covariance so indifferent to the recovery of the generally

79 “Es gibt einen prinzipiellen Unterschied zwischen derjenigen Spezialisierung des Bezugssystems,
welche die klassische Mechanik bezw. die Relativitätstheorie einführt und zwischen derjenigen, wel-
che ich in der Gravitationstheorie anwende. Die letztere kann man nämlich stets einführen, wie auch
die  gewählt werden mögen. Diese durch das Prinzip der Konstanz der Lichtgeschwindigkeit ein-
geführte Spezialisierung dagegen setzt Differenzialbeziehungen zwischen den  voraus, und zwar
Beziehungen, deren physikalische Interpretation sehr schwierig sein dürfte. Das Erfülltsein dieser
Beziehungen kann nicht für jede gegebene Mannigfaltigkeit durch passende Wahl des Bezugssystems
erzwungen werden. Es gibt nach letzterer Auffassung zwei heterogene Bedingungen für die 
1) das Analogon der Poisson’schen Gleichung
2) die Bedingungen, welche die Einführung eines Systems von konstantem  ermöglichen.” Einstein
to Max Planck, 7 July 1914 (CPAE 8, Doc. 18).
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covariant gravitational field equations he allowed must exist? The conjecture of this
part supplies an explanation that answers all of these questions.

Before we embrace that explanation, however, we should note that there is no
direct evidence that Einstein did accord an independent reality to coordinate systems
in the relevant context of the Newtonian limit. That is, we do not have unequivocal
remarks by Einstein announcing it or a calculation whose only reasonable interpreta-
tion is that independence. It is hard to know how seriously to take this omission.
Since Einstein was not using coordinate conditions to recover the Newtonian limit in
his Entwurf theory, he had no occasion to undertake calculations that would unequiv-
ocally display an independent reality accorded his limit coordinate systems. What
Einstein does give us are the manipulations of the hole argument. It is quite evident
that he does there accord independent reality to the coordinate systems and his later
admissions affirm this. Similarly, there were few occasions for Einstein to discuss
how coordinate conditions could be used to recover the Newtonian limit, for this was
not the construction he used in the Entwurf theory. On the few occasions in which he
discussed general principles surrounding specialization of the coordinate system (see
section 3.6 above), he makes no mention of an independent reality of the specialized
coordinate systems. But then we would not expect him to. In section 3.1 we saw Ein-
stein’s difficulty in making explicit just how the manipulation of the hole argument
depended on the independent reality of the coordinate system. If Einstein had such
difficulty describing that independent reality when it was the essential point of the
calculation, why should we expect him to express it clearer elsewhere?

Einstein’s Later Discussion

Once Einstein had discovered his errors and returned to general covariance, he again
had the opportunity to admit that he had accorded an independent reality to his coor-
dinate systems. There were two prime occasions for such admission: his paper of
4 November 1915, and his letter to Sommerfeld of 28 November, in which he
explained his rejection of the candidate gravitation tensor  In both places, how-
ever, he emphasized the  prejudice as the source of his mistake. What is odd about
both sources is that neither seek to explain the most public conceptual error of his
Entwurf theory, the hole argument. At the time of the 4 November paper, Einstein had
not yet discovered his misconception about static fields. As far as we know, the hole
argument was the only foundational error of principle in the Entwurf theory, short of
the ultimate mistake of choosing the Entwurf equations of restricted covariance.
Since the error of the hole argument and the conjectured misuse of coordinate condi-
tions are closely related, hesitancy in discussing the one should be expected to
accompany hesitancy in discussing the other. And there was great hesitancy.

There are early published remarks that amount to the briefest retraction of the
hole argument. But they offer little to explain the error of the argument. They appear
in Einstein’s celebrated computation of the anomalous motion of Mercury, in a paper
presented to the Berlin Academy on 18 November 1915. There Einstein considers the
gravitational field of a point mass at the origin of spatial coordinates, which he takes
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to be the sun. Solving for this case, even in lower order approximation, involves a
system analogous to the hole of the hole argument. The field is constrained by
Minkowskian boundary conditions at spatial infinity, just as the field in the hole is
constrained by the surrounding matter distribution. In addition the field of the sun is
constrained by the requirements that it be static and spatially symmetric about the
origin. These additional requirements do not preclude all transformations; a spatial
radial coordinate  could be arbitrarily transformed as long as the transformation
does not disturb the limit at spatial infinity and preserves unit modulus by, say, corre-
sponding adjustments elsewhere. Einstein remarked:

We should however bear in mind that for a given solar mass the that the  are still not
completely determined mathematically by the equations (1) and (3).[80] This follows
since these equations are covariant with respect to arbitrary transformations of determi-
nant 1. We may assume, however, that all these solutions can be reduced to one another
through such transformations, so that they differ from one another only formally but not
physically (for given boundary conditions). As a result of this conviction, I am satisfied
for the present to derive a solution without being drawn into the question of whether it is
the only possible [solution].81

If the covariance of the field equations is to block determination of the field in this
case, it must be through the hole construction, so we have many solutions mathemat-
ically in the one coordinate system. Einstein parries the threat by observing that these
solutions “differ from one another only formally but not physically” and the same
remark would serve as an escape from the hole argument. Only a quite attentive
reader would see the connection and even then such a reader may well find the
remark unconvincing. Certainly Ehrenfest needed a more elaborate account of the
failure of the hole argument before he was satisfied.82 Yet Einstein concluded by
explicitly disavowing any further discussion This neglect is striking in comparison to
the careful self diagnosis elaborated as the  prejudice.

Why might he be reluctant to discuss the error of the hole argument? He may just
have been reluctant to relive a painful experience, especially if he saw no benefit from
it. Or perhaps he had some difficulty formulating precisely what the error was, even
after he knew of it. It was sufficient that he knew that the hole construction did not
produce physically distinct fields. If he had suffered this difficulty it would explain
why he delayed detailed discussion of the error of the hole argument for nearly two

80 Einstein’s equations are  and  which are covariant under unimodular transforma-
tions.

81 “Es ist indessen wohl zu bedenken, daß die  bei gegebener Sonnenmasse durch die Gleichungen
(1) und (3) mathematisch noch nicht vollständig bestimmt sind. Es folgt dies daraus, daß diese Glei-
chungen bezüglich beliebiger Transformationen mit der Determinate 1 kovariant sind. Es dürfte
indessen berechtigt sein, vorauszusetzen, daß alle diese Lösungen durch solche Transformationen auf-
einander reduziert werden können, daß sie sich also (bei gegebenen Grenzbedingungen) nur formell,
nicht aber physikalisch voneinander unterscheiden. Dieser Überzeugung folgend begnüge ich mich
vorerst damit, hier eine Lösung abzuleiten, ohne mich auf die Frage einzulassen, ob es die einzig
mögliche sei.” (Einstein 1915b, 832)

82 See section 3.2 and (Norton 1987, §4).

r

gμν

T il
x

0= gμν 1= ,

gμν

{}



WHAT WAS EINSTEIN’S “FATEFUL PREJUDICE”? 779

months after his public announcement of his return to general covariance. As far as
we know from documents available to us, the first detailed discussion comes in his
letter of 26 December 1915, to Ehrenfest (see section 3.2).

Whatever may have underpinned his reluctance to discuss the error of the hole
argument, the same reason would surely induce a similar reluctance to discuss the
closely related error conjectured here.

Einstein’s Letter to de Sitter

According to the conjecture of this part, there is a close connection between two of
Einstein’s errors: the notebook rejection of the candidate gravitation tensor  and
the hole argument. We would hope to see some trace of that connection. Such a trace
may appear in a letter Einstein wrote to de Sitter on 23 January 1917.

To see how this letter can be interpreted, we must recall Einstein’s return to gen-
eral covariance in the fall of 1915. In several places, Einstein listed the clues that
forced him to accept the inadequacy of his Entwurf theory.83 In particular, Einstein
had erroneously convinced himself that the Entwurf theory was covariant under rota-
tion transformation (18).84 The discovery of this error cast Einstein into despair over
his theory, as he confided to his astronomer colleague Erwin Freundlich in a letter of
30 September 1915 (CPAE 8, Doc 123). In it, he was reduced to a despondent plea for
help. He was not frozen into inactivity, however. A little over a month later, on
4 November, he announced his return to general covariance and the adoption of  as
his gravitation tensor.

That one discovery of the lack of rotational covariance of the Entwurf theory
seems to have been a powerful stimulus. Two things followed rapidly after it. He
returned to general covariance (and therefore rejected the hole argument) and he
readmitted the gravitation tensor  as gravitation tensor. If the original rejection of

 had been due to improperly according independent reality to coordinate systems,
then we may readily conceive natural scenarios that connect the two. For example,
lack of rotational covariance would be fatal to Einstein’s hopes of generalizing the
principle of relativity to acceleration. So if he now realized that his Entwurf theory
could not supply it, he might well return to the last candidate gravitation tensors con-
sidered in the context of the rotation transformation (18). That would be  and the
related proposals around page 22 of the notebook. Now wiser and desperate and sus-
picious of all his methods and presumptions, Einstein might just finally be able to see
past his objection to the coordinate condition (11) to the recognition that there was
something improper in the core of his objection, his interpretation of what I have
called the hole construction. That realization would have simultaneously allowed him
to see that the hole argument does not succeed in showing the inadmissibility of gen-

83 See (Norton 1984, §7).
84 Janssen (1999) supplies a fascinating chronicle of this episode. It includes display of calculations in

Einstein’s hand apparently from June 1913 in which Einstein erroneously affirms that  is a solu-
tion of the Entwurf gravitational field equations and then a repetition of the same calculation probably
from late September 1915 in which Einstein finds the error.
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erally covariant gravitational field equations. For it also depends on the same inter-
pretation of the hole construction. Because of the close connection between the two
errors, some such scenario among many obvious variants is credible.

As we saw in section 3.2, Einstein gave several accounts of the error of the hole
argument. None mentioned above contain autobiographical remarks on how Einstein
found the error. There is one exception, a recollection in a letter of 23 January 1917,
to de Sitter concerning the errors of Einstein (Einstein 1914c)

...there were the following two errors of reasoning [in (Einstein 1914c)]: 

1) The consideration of §12 [the hole argument] is incorrect, since occurrences can be
uniquely determined without the same being true for the functions used for their descrip-
tion. 

2) In §14 at the top of page 1073 is a defective consideration. 

I noticed my mistakes from that time when I calculated directly that my field equations
of that time were not satisfied in a rotating system in a Galilean space. Hilbert also found
the second error.85

Here Einstein assures us that he found the errors of his 1914 review article, with the
hole argument listed as the first of the two errors, because he discovered the lack of
rotational covariance of his Entwurf field equations.86 Without the conjecture of this
part, it is hard to see why Einstein would proceed without great detours from that lack
of rotational covariance to the rejection of the hole argument.

What is More Plausible?

In the absence of decisive evidence, we once again ask after the plausibility of the
conjecture. To my mind, the one factor that speaks against the conjecture is this very
lack of evidence. Things might have transpired as conjectured without more decisive
evidence surviving. Einstein was not obligated to annotate his private calculations or
later recount every misstep, so as to save the labor of future historians. The resulting
paucity of evidence, however, is also compatible with a simpler explanation: things
just did not go as conjectured. One factor makes this case a little different from the
earlier deliberations on Einstein’s supposed unawareness of the use of coordinate
conditions: the conjecture ties Einstein’s misturnings to the error of the hole argu-

85 “… folgende zwei Denkfehler waren darin: 
1) Die Betrachtung des §12 ist unrichtig, weil das Geschehen eindeutig bestimmt sein kann, ohne dass
die zu seiner Beschreibung dienenden Funktionen es sind.
2) In §14 ist oben auf Seite 1073 eine fehlerhafte Überlegung.
Ich merkte meine damaligen Irrtümer daran, dass ich direkt ausrechnete, dass meine damaligen Feld-
gleichungen für ein in einem Galileischen Raume rotierendes System nicht erfüllt waren. Den zweiten
Fehler hat auch Hilbert gefunden.” (CPAE 8, Doc. 290)

86 By a “Galilean space,” Einstein refers to a Minkowski spacetime in the coordinates of (5). The second
error is presumably the one Einstein discusses with Hilbert in a letter of 30 March 1916, to Hilbert
(CPAE 8, Doc. 207) and concerns the failure of a variation operator to commute with coordinate dif-
ferentiation. For discussion, see (Norton 1984, end of §6).
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ment. In that case we have no doubt of Einstein’s reticence to leave later traces of his
error and that reticence would carry over to the related rejection of the tensor 
But now we tread on dangerous ground. We offer an account that also predicts that it
will be difficult to find evidence for that account. Such accounts can be correct. They
can also be a signal that a defective account has been protected illegitimately from
refutation. There are earnest accounts of how our small planet is routinely visited by
aliens intent on abductions. They face a sustained lack of concrete evidence. So we
are assured that no irrefutable evidence of the visits survives because of a massive
government conspiracy or the ingenuity and thoroughness of the aliens in eradicating
all such traces!

These serious hesitations should be weighed against the need for some account of
Einstein’s twisted path. Again we risk a pitfall. If we are willing to multiply the errors
Einstein is supposed to have committed, there is scarcely any pathway that we could
not explain. What is appealing about the conjecture is that it requires us to posit no
new errors. Aside from outright blunders of calculation and self deception, as docu-
mented in (Janssen 1999), Einstein was led astray for nearly three years by two
groups of misconceptions. The first surrounded his presumptions on the form of the
static metric and the weak field equations. The second pertained to the hole argument
and the independent reality of the coordinate systems.

To arrive at the second, we need only ask that Einstein was consistent and thor-
ough in his support of the misconception the hole argument. Then just one error leads
Einstein to reject the use of coordinate conditions, to acquiesce to the gravely
restricted covariance of the Entwurf theory and not to pursue its generally covariant
generalization. The recognition of that same error both frees Einstein from the hole
argument late in 1915 and allows him to propose  as his gravitation tensor.87 If I
must choose an account, I find this one plausible.

CONCLUSION

Why did Einstein reject the candidate gravitation tensor  in the notebook? His
own answer emphasized his “fateful prejudice,” the  prejudice. He did not see that
the Christoffel symbols are the natural expression for the components of the gravita-
tional field. As a result he could not properly relate the gravitation tensor to the
requirement of energy conservation. Instead he was tempted to multiply out the
Christoffel symbols to recover expressions explicitly in the metric tensor that would
prove unwieldy.

That may well have been all that it took to convince Einstein to abandon the pro-
posal. We must then discount as unrelated his anomalous concern with questions of

87 For comparison, consider the alternative account in which Einstein is just unaware of the use of coor-
dinate conditions. This awareness must come if  is to be admissible as a gravitation tensor. So the
preparation for the new proposals of November 1915 must include recognition of two independent
errors, that of the hole argument and the neglect of coordinate conditions.
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covariance on the pages surrounding page 22R on which the gravitation tensor is ana-
lyzed. While Einstein had clearly mastered the mathematical manipulations needed to
apply a coordinate condition to expressions of general or near general covariance, his
treatment of them suggests that his interpretation of the conditions was idiosyncratic.
His concern for their covariance properties cannot be reconciled with his later attitude
to them. So we have presumed that his treatment and interpretation of these coordinate
condition supplied a further fateful prejudice that precluded admission of the candi-
date gravitation tensor  by somehow obstructing his extraction of the Newtonian
limit. The supposition of this additional fateful prejudice makes Einstein appear far
less capricious. In finding the gravitation tensor  he had circumvented the tangled
cluster of problems he had imagined facing the Ricci tensor as gravitation tensor. We
suppose that he abandoned the new proposal not just because the calculation looked
complicated but because deeper matters of principle also seemed to speak against it.

Just how did Einstein’s treatment of coordinate conditions defeat him? There is
clear evidence in the notebook that Einstein used the requirements as what we call
“coordinate restrictions”: they are not just applied in the case of the Newtonian limit
but universally. That alone does not explain why Einstein would think his candidate
gravitation tensor unable to yield the Newtonian limit in a satisfactory manner. We
have found two additional hypotheses that would supply the explanation. The first
supposes an obtuse Einstein, overlooking a natural option. It supposes he just persis-
tently failed to see that coordinate conditions could be invoked selectively as part of
the restriction on covariance imposed in recovery of the Newtonian limit. The sec-
ond, which I favor, portrays an excessively acute Einstein, zealously consistent even
in his errors. He would soon improperly accord an independent reality to coordinate
systems in the hole argument and the conjecture is that he did the same thing earlier
in applying coordinate conditions. Both hypotheses have the same outcome. Einstein
would come to an impossible demand: the requirement that reduces the candidate
gravitation tensor to a Newtonian form must have sufficient covariance to support a
generalization of the principle of relativity to acceleration. The first is a dim Einstein,
felled by overlooking a standard device in general relativity that he later used without
apology. The second is an Einstein of Byzantine sophistication, pursuing his errors,
even when only dimly aware of them, to their farthest catastrophe. Perhaps another
Einstein, the real Einstein, neither dim nor Byzantine, still waits to be discovered.
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MICHEL JANSSEN

WHAT DID EINSTEIN KNOW AND WHEN DID HE 
KNOW IT? A BESSO MEMO DATED AUGUST 1913

1. THE CHALLENGE OF THE BESSO MEMO

The Nachlass of Einstein’s close friend and confidant Michele Besso (1873–1955)
contains four pages, written on a folded sheet, with what appear to be Besso’s notes
of discussions with Einstein about a preliminary version of general relativity known
in the historical literature as the “Entwurf” (“outline”) theory.1 The first two pages of
this Besso memo are reproduced in facsimile in Figs. 1 and 2.2 Of the various points
recorded in the memo two in particular are bound to catch the eye of a modern histo-
rian of relativity.

First, under point “b) 2.” on the first page, Besso writes: 

If through rotation of a hollow sphere one produces a Coriolis field inside of it, then a
centrifugal field is produced [...] that is not the same as the one that would occur in a
rotating rigid system with the same Coriolis field. One can therefore not think of rota-
tional forces as produced by the rotation of the fixed stars …3 

The basic result that Besso is alluding to in the first sentence (as will be explained in
detail in sec. 3) is that the ‘rotation metric’4 is not a vacuum solution of the Entwurf
field equations, the field equations of severely restricted covariance of the Entwurf
theory. And, as Besso indicates in the second sentence, if the rotation metric is not a
solution, then the theory fails to relativize rotation along Machian lines.

Second, Einstein and Besso seem to have been on the brink of resolving what is
essentially the well-known “hole argument.”5 This argument was first mentioned in

1 The name derives from the title of (Einstein and Grossmann 1913), the paper in which Einstein and
his former classmate Marcel Grossmann first presented a theory of gravitation based on the metric
tensor.

2 For a facsimile reproduction of all four pages of the Besso memo, see (Renn 2005, 127–130).
3 “Stellt man durch Rotation einer Hohlkugel ein Coriolisfeld in deren Innerem her, so entsteht ein

Centrifugalfeld [...] welches nicht dem gleich ist, der in einem rotierenden starren System von glei-
chem Coriolisfeld statt finden würde. Man kann also die Rotationskräfte sich nicht hervorgebracht
denken durch die Rotation der Fixsterne …”

4 I use this phrase as short-hand for the metric describing the geometry of Minkowski spacetime viewed
from a uniformly rotating Cartesian coordinate system. See note 67 below for the explicit form of this
metric.
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Figure 1: Besso Memo, p. 1.
Reproduced with permission of the Besso Family Trust, Geneva, Switzerland

 

5 The classic historical discussions of Einstein’s hole argument are (Stachel 1989, secs. 3–4), and
(Norton 1984, sec. 5).
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correspondence in November 1913 and first published in January 1914.

 

6

 

 The argument
was supposed to show that field equations for the metric field cannot be generally
covariant, if the metric field is to be uniquely determined by its sources. At the bot-
tom of the second page of the memo, Besso offers an escape from the hole argument: 

 

It is, however, not necessary that the [components of the metric]  themselves are deter-
mined uniquely, only the observable phenomena in the gravitation space, e.g., the motion
of a material point, must be.

 

7

 

 

 

This escape is then rejected in a comment appended to this passage.
Without any further information, I would not have hesitated dating Besso’s memo

to the fall of 1915. The two points singled out above strongly suggest that it belongs
to the period between late September, when Einstein discovered the problem of rota-
tion in his 

 

Entwurf

 

 theory,

 

8

 

 and late October, when Einstein replaced the 

 

Entwurf

 

field equations by equations of much broader covariance than the hole argument
would seem to allow.

 

9

 

Dating the memo to October 1915, however, is completely at odds with Besso’s
own dating of the document. In the top-right corner of the first page of the memo,
Besso wrote: “28 VIII 13.” With the apparent exception of the two passages quoted
above, the available evidence supports Besso’s own dating, as I will show in detail in
sec. 2. I can understand the temptation to chalk it up to a slip on Besso’s part. Accep-
tance of Besso’s date poses some serious challenges for the reconstruction of Ein-
stein’s path to general relativity. With regard to both the problem of rotation and the
hole argument the Besso memo raises the troubling question usually associated with
politicians rather than scientists: what did he know and when did he know it?

Consider some of the other evidence we have pertaining to the problem of rota-
tion. Writing to Freundlich in September 1915, Einstein made it sound as if he had
just discovered that the rotation metric is not a vacuum solution of the 

 

Entwurf

 

 field
equations. And reflecting on the tumultuous events of November 1915 in oft-quoted
letters written shortly afterwards, he also talked about the problem of rotation as if it
were a recent discovery that had precipitated the demise of the 

 

Entwurf

 

 theory.

 

10

 

Until late September 1915, it seems, Einstein had been under the impression that the
rotation metric 

 

is

 

 a vacuum solution of the 

 

Entwurf

 

 field equations. The 1913 portion
of the so-called Einstein-Besso manuscript contains a calculation, erroneous as it
turns out, with which Einstein explicitly confirmed that this is the case.

 

11

 

 Further

 

6 See Einstein to Ludwig Hopf, 2 November 1913 (CPAE 5, Doc. 480) and the “Comments”
(“Bemerkungen”) added to the journal version of the 

 

Entwurf

 

 paper (Einstein and Grossmann 1914a).
7 “Es ist allerdings nicht nötig, dass die  selbst eindeutig bestimmt sind, sondern nur die im Gravitati-

onsraum beobachtbaren Erscheinungen, z.B. die Bewegung des materiellen Punktes, müssen es sein.”
8 Einstein first reported the problem in a letter to Erwin Freundlich of 30 September 1915 (CPAE 8,

Doc. 123).
9 Einstein published these equations in (Einstein 1915a), submitted to the Prussian Academy of Sci-

ences on 4 November 1915.
10 See Einstein to Arnold Sommerfeld, 28 November 1915 (CPAE 8, Doc. 153) and Einstein to H. A.

Lorentz, 1 January 1916 (CPAE 8, Doc. 177).

g

g
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elaboration of the 

 

Entwurf

 

 theory in 1914 (and possibly another erroneous calcula-
tion) reinforced this belief.

 

12

 

 The Machian account of rotation based in part on this
(specious) result is hailed as one of the great triumphs of the 

 

Entwurf

 

 theory in the
introduction of the lengthy exposition of the theory published in November 1914
(Einstein 1914e, 1031–1032). But if we accept the date of the Besso memo, Einstein
already knew in August 1913 that the rotation metric is 

 

not

 

 a vacuum solution of the

 

Entwurf

 

 field equations! How can this be reconciled with the other available evi-
dence?

Similar questions can be raised about the hole argument. If the Besso memo is
indeed from August 1913, the argument discussed in these pages is the earliest extant
version of the hole argument. As we saw, Besso explicitly recognized that the field
equations need not determine the metric field uniquely, only such things as particle
trajectories. It may seem but a small step from particle trajectories to 

 

intersections of

 

particle trajectories. With this modification we arrive at the core of the so-called
“point-coincidence argument” with which Einstein explained the failure of the hole
argument in correspondence of late 1915 and early 1916.

 

13

 

 But if Einstein and Besso
came this close to the resolution of the hole argument in August 1913, why did Ein-
stein proceed to publish the argument no less than four times in 1914?

After making the case for accepting the date on the Besso memo in sec. 2, I try to
answer these questions, for the problem of rotation in sec. 3, for the hole argument in
sec. 4. I argue that, despite appearances to the contrary, there is a plausible recon-
struction of events that can accommodate the Besso memo quite naturally. This
reconstruction, however, does require that we invoke a certain element of opportun-
ism—or expediency, to use a somewhat more neutral term—in Einstein’s 

 

modus
operandi

 

. By this I mean that Einstein had a tendency to believe the results he wanted
to believe and that he was quite adept at cooking up arguments to suit his needs, argu-
ments he did not necessarily scrutinize all that closely. I want to make it clear right
away that I do not use the term “opportunistic” in its pejorative sense. On the con-
trary, I strongly suspect that the way in which Einstein responded to the problems he
ran into with his 

 

Entwurf

 

 theory is quite typical of creative work in theoretical phys-
ics and probably in other sciences as well. The reason I want to emphasize Einstein’s
opportunistic streak is that it has somehow been lost in the dominant tradition in
recent Einstein studies, exemplified by the work of John Stachel and John Norton. To
a very large extent my paper is squarely within this tradition, but I see it as an impor-
tant weakness that, at least so far, it has failed to take into account this aspect of Ein-
stein’s general 

 

MO

 

.

 

11 See (CPAE 4, Doc. 14, [pp. 41–42]) for the calculation, and (Janssen 1999) for a detailed analysis.
12 See Einstein to Michele Besso, ca. 10 March 1914 (CPAE 5, Doc. 514); Einstein to Joseph Petzoldt,

16 April 1914 (CPAE 8, Doc. 5); Einstein to Wilhelm Wien, 15 June 1914 (CPAE 8, Doc. 14).
13 See Einstein to Paul Ehrenfest, 26 December 1915 and 5 January 1916 (CPAE 8, Docs. 173 and 180)

and Einstein to Michele Besso, 3 January 1916 (CPAE 8, Doc. 178). The argument was published in
(Einstein 1916, 776–77). For historical discussion of the point-coincidence argument, see (Stachel
1989, sec. 6; Norton 1987; Kox 1989; Howard and Norton 1993; and Howard 1999).
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Figure 2: Besso Memo, p. 2.
Reproduced with permission of the Besso Family Trust, Geneva, Switzerland
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2. CAN BESSO’S DATING OF HIS MEMO BE TRUSTED?

 

2.1 Survey of the New Besso Material Containing the Besso Memo

 

The Besso memo is part of an assortment of manuscript pages that Laurent Besso
showed to Robert Schulmann, then director of the Einstein Papers Project at Boston
University, in Lausanne in 1998. The material consists of loose sheets of paper of var-
ious sorts and sizes carrying notes and calculations, all in Besso’s hand. General rela-
tivity is the topic of most—but not all—pages. Leaving aside the Besso memo for a
moment, one can divide the pages on general relativity into two groups of about ten
pages each, one from (late) 1913 and possibly 1914, and one from 1916. The Besso
memo, or so I will argue, belongs to the first group. But let me say a few words about
the second group first.

 

2.1.1 The Second Group of Pages (1916)

 

There is strong evidence that the second group of new Besso pages related to general
relativity is from 1916. There are several references to Einstein’s review article on
general relativity published in March 1916 (Einstein 1916) and no references to any-
thing published later. The centerpiece of this group of pages is a partial draft of an
unpublished essay entitled “The Relativity Principle in an Epistemological Formula-
tion” (“Das Relativitätsprinzip in erkenntnistheoretischer Formulierung”). The
remaining pages contain notes, mainly on (Einstein 1916), which Besso probably
made while preparing this essay. The essay in turn is probably related to a lecture on
Einstein’s new theory that Besso was asked to give for the 

 

Physikalische Gesellschaft

 

in Zurich.

 

14

 

 This is suggested by the following remark jotted down at the top of the
fourth page of the essay:

 

Orechiante—whistling Beethoven symphony—the three professional musicians should
straighten me out

 

15

 

Besso used the exact same imagery in the draft of a letter to Einstein of late June
1916. The relevant passage explains what Besso meant by the cryptic remark above.
At the same time, Besso’s self-deprecating comment nicely illustrates how he per-
ceived his relationship with his friend Einstein when it came to matters of science:

 

… the devil has gotten into my friends in the Physical Society and they want a talk from
me on your latest papers: even though there are at least three people here—Abraham,
Grossmann, and Weyl—who know a hundred times more about the topic than I do. I feel
like someone for whom Beethoven has whistled his symphony and who now on the basis
of that has to whistle after him—someone with the score in front of his eyes, but only
being able to read it the way I read sheet music …

 

16

 

14 In that case, these pages could be the manuscript referred to in the context of this lecture in (Speziali
1972, 73, fn. 1).

15 “Orechiante—Beethoven symphonie pfeifen—die 3 Fachmusiker sollen mich zurecht weisen”
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It seems safe to assume that letter and essay were drafted around the same time. We
are thus led to date this whole group of pages to 1916.

Could the troublesome Besso memo be from 1916 as well? More specifically,
could the memo have been prepared for Besso’s talk to the Zurich Physical Society?
One can well imagine that Besso wanted to go over some of the stumbling blocks on
Einstein’s path to the latest version of the theory. He would have been in an ideal
position to do so. The date on the memo could then either simply be a slip or refer to
a particularly memorable discussion with Einstein, which Besso, known for his
absent-mindedness,

 

17

 

 nonetheless confused with one of the many other memorable
discussions they must have had over the years. This is an extremely unlikely scenario.
There is strong evidence that the Besso memo is from 1913. An important part of this
evidence is that the memo touches on many of the same topics that are addressed in
the first of the two groups of pages that I distinguished above, pages that are almost
certainly from 1913–1914.

 

2.1.2 The First Group of Pages, the Einstein-Besso Manuscript, and the Besso Memo

 

The contents of the first group of new Besso pages related to general relativity
strongly suggest that they belong to the Einstein-Besso manuscript on the perihelion
motion of Mercury (CPAE 4, Doc. 14).

When the original 53 pages of the Einstein-Besso manuscript were published, the
editors of CPAE 4 divided them into two parts. Part One, which makes up the bulk of
the manuscript (about 43 pages), was thought to have been produced in close collab-
oration during a visit by Besso to Einstein in Zurich in the spring of 1913 (with possi-
ble additions by Einstein alone during the remainder of 1913). Part Two, comprising
the remaining ten pages, was thought to have been produced by Besso alone some-

 

16 “… der Teufel ist in die Freunde der physikalischen Gesellschaft gefahren und sie wollen von mir
einen Vortrag über deine neuesten Arbeiten: obwohl mindestens drei da sind, Abraham, Grossmann
und Weyl, die die Sache hundert mal besser kennen als ich. Ich komme mir vor, wie einer dem Beet-
hoven seine Symphonie vorgepfiffen hätte und der nun daraus nachpfeifen soll—die Partitur zwar vor
Augen hat, aber sie eben so lesen kann, wie ich eine Partitur …” Michele Besso to Einstein, draft, 28
June 1916 (CPAE 8, Doc. 229).

17 In a letter of March 1901, Einstein relates a typical example: “Once again, Michele had nothing to do.
So his principal sends him to the Casale power station to inspect and check the newly installed lines.
Our hero decides to leave in the evening, to save valuable time, of course, but unfortunately he missed
the train. The next day he remembered the commission too late. On the third day he went to the train
on time, but realized, to his horror, that he no longer knew what he had been told to do; so he immedi-
ately wrote a postcard to the office, asking that they should wire him what he was supposed to do! I
think he has a screw loose” (“Hatte der Michele einst wieder einmal nichts zu thun. Da schickt ihn
sein Prinzipal in die Zentrale Casale, damit er die neu gemachte Leitungen inspiziere und prüfe.
Unser Held entschließt sich, abends zu fahren, natürlich um kostbare Zeit zu sparen, versäumte aber
leider den Zug. Am nächsten Tag dachte er zu spät an seinen Auftrag. Am dritten Tag ging er zeitig an
die Bahn, merkte aber zu seinem Schrecken, daß er nicht mehr wußte, was man ihm aufgetragen
hatte; er schrieb also sofort eine Karte ins Bureau, man solle ihm hintelegrafieren, was er zu thun
hätte! Ich glaube, der ist nicht normal.” Einstein to Mileva Maric, 27 March 1901 [CPAE 1, Doc. 94]).
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time between the beginning of 1914 and the demise of the Entwurf theory in 1915.18

The new pages appear to belong to Part Two.
Clear-cut evidence that the original 53 pages of the Einstein-Besso manuscript

could not all have been produced in the spring of 1913 was provided by one page
(CPAE 4, Doc. 14, [p. 53]) with various references to the article that Einstein pre-
pared for his lecture of 23 September 1913 to the 85th meeting of the Gesellschaft
Deutscher Naturforscher und Ärzte (GDNA) in Vienna. Einstein gave Besso page
proofs of the Vienna lecture at some point,19 but these were certainly not available
before late August 1913.20 

The decision of the editors of CPAE 4 to make January 1914 rather than August
1913 the lower limit for the date of Part Two was based on a letter from Einstein to
Besso of early January 1914, which begins:

Here you finally have your manuscript package. It is really a shame if you do not bring
the matter to completion.21

The Einstein-Besso manuscript was eventually discovered in the Besso Nachlass. It
was thus conjectured that Besso left the perihelion calculations with Einstein when he
departed Zurich in June 1913 and that early in 1914 Einstein sent them to Besso (per-
haps along with material added in the meantime), whereupon Besso added the pages
that constitute Part Two of the manuscript. In view of the Besso memo, it is very
likely, as I will argue below, that Besso and Einstein met again in late August 1913.
This means that some pages—both among the new ones and among both parts of the
published portion of the manuscript—may have been produced during this visit.

Most of the material in the first group of the new Besso pages appears to have been
intended for a paper on the perihelion problem. First of all, I want to point out that this
provides a perfectly respectable explanation for why Einstein never published the
result that he and Besso had presumably already obtained in the spring of 1913, viz.
that the Entwurf theory predicts a secular advance of  for the perihelion motion of
Mercury on top of the Newtonian prediction.22 The cynical explanation (Earman and
Janssen 1993, p. 136) is that Einstein wanted to suppress this result because the

18 For a more complete statement than will be given here of the considerations that went into the dating
of (what at the time of publication of CPAE 4 was available of) the Einstein–Besso manuscript, see
sec. III of the editorial note, “The Einstein-Besso Manuscript on the Motion of Mercury’s Perihelion,”
CPAE 4, 344–359.

19 In the draft of the letter of June 1916 quoted on p. 790 above, Besso referred to “galley proofs”
(“Druckbögen”) of the Vienna lecture. The reference occurs in a deletion that was silently omitted in
the transcription of this document in CPAE 8. The relevant sentence reads: “Secondly, although I have
as a paradigm your Vienna lecture 〈in the old presentation〉, equations 1d) und 7e′) page 19, 〈of the
page proofs I have〉 I am not able to develop the corresponding relations according to the new gravita-
tional equations” (“Zweitens: trotzdem ich als Paradigma 〈in der alten Darstellung〉 deinen wiener
Vortrags habe, Gleichungen 1d) und 7e′) Seite 19, 〈der mir vorliegenden Druckbögen〉 bringe ich es
nicht fertig, die entsprechenden Beziehungen nach den neuen Gravitationsgleichungen zu entwik-
keln.” My emphasis). In the printed versions of the lecture, (Einstein 1913a, 1914a), equations 1d)
und 7e′) occur on p. 1261 and p. 23, respectively. The deleted clause “in the old presentation” presum-
ably refers to the old version of Einstein’s gravitational theory, i.e., the Entwurf theory.
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Entwurf theory could not (yet) account for the full discrepancy of  between the
Newtonian prediction and the astronomical observations. A more charitable explana-
tion is that Einstein and Besso agreed that the latter would continue to look for addi-
tional effects contributing to the perihelion motion and write up the results. Despite
some prodding from Einstein (see the letter of early 1914 quoted above), Besso never
completed this project. In December 1914, they were then scooped by Lorentz’s stu-
dent Johannes Droste, who independently found and published the basic result of 
(Droste 1914).23 It seems reasonable to assume that no further additions to the Ein-
stein-Besso manuscript were made after Droste’s publication.

The new pages suggest that Besso actually had given up much earlier. The scope
of the treatise on the perihelion problem that he envisioned was simply too ambitious.
Consider the following table of contents which is among the new pages:

1. General Introduction
2. The equations of motion of ordinary relativity theory
3. Application of the Einsteinian equations of gravitation—they only lend themselves
(initially) to iterative approximation. 

First approximation (for the rotation of the sun and for pressure forces)
Second approximation: for the deviations from the Newtonian law.

Equations of motion for spherical symmetry
 " " "  axial symmetry

3a. Calculation for the case of rest α. Deviations from Newtonian law etc.
β. Pressure forces […]

3b. Calculation for the case of rotation α. Rotation of the sun
β. Perturbations by Jupiter

4. Scalar theories

20 Einstein submitted the manuscript of his lecture together with a short letter to Alexander Witting, the
editor of the Verhandlungen of the GDNA (CPAE 5, Doc. 464). He did not date this letter and the first
digit of the postmark ([-]1.VIII.13) is illegible. In CPAE 5, the date is given as 11 August 1913. Jür-
gen Renn, however, has argued persuasively that the manuscript was probably not finished until after
15 August 1913. The main text includes an argument against generally-covariant field equations (Ein-
stein 1913a, 1258) that Einstein only found that day. (In a letter to H. A. Lorentz of 16 August 1913
[CPAE 5, Doc. 470], Einstein wrote that he found the argument the day before.) If the manuscript had
been completed and sent off earlier, it is puzzling that this argument occurs in the main text whereas
the hole argument is only alluded to in a footnote that appears to have been added later (see p. 801
below for the text and the dating of this footnote). This suggests that the illegible first digit of the post-
mark is a 2 or a 3 rather than a 1. Given that Einstein asked Witting for expedited processing of his
manuscript so that he would have page proofs by September 5, it is unlikely that he sent the manu-
script on August 31. In short, the most plausible date is 21 August 1913.

21 “Hier erhältst Du endlich Dein Manuskriptbündel. Es ist sehr schade wenn Du die Sache nicht zu
Ende führst” Einstein to Michele Besso, after 1 January 1914 (CPAE 5, Doc. 499).

22 The value given in the Einstein-Besso manuscript is actually  (CPAE 4, Doc. 14, [p. 28]) but
there are several indications that Einstein and Besso realized that this result was off by a factor 100
due to an error of a factor 10 in the value they used for the mass of the sun (see CPAE 4, Doc. 14,
[p. 30], note 136, and [p. 35], note 161).

23 One might even go as far as to speculate that it was partly due to some lingering resentment over this
missed opportunity that Einstein did not acknowledge Besso in his perihelion paper of November
1915 (Einstein 1915b).
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5. Four-vector theories
6. Six-vector theories
7. Theory of Abraham
8. Comparison with observations. Introduction of solar oblateness. Mass of Venus out of
corrected motion of Mercury.24

Calculations for most of the effects listed in sec. 3 (on the Entwurf theory) can be
found in the published portion of the Einstein-Besso manuscript. Calculations for
secs. “3a α” (which give the  mentioned above) and “3b α” take up most of Part
One;25 calculations for secs. “3a β” and “3b β” can be found in Part Two.26 A discus-
sion, in Besso’s hand, of the iterative approximation procedure mentioned at the
beginning of sec. 3 can be found on the verso of a letter from C.-E. Guye to Einstein
of 31 May 1913 (CPAE 5, Doc. 443, and CPAE 4, Doc. 14, [p. 16]). Among the
newly discovered Besso material, there is a page with a similar discussion of the
approximation procedure.27 

However, of the various alternative theories to be covered in secs. 4–7 in Besso’s
table of contents, the Nordström theory is the only one for which any calculations
have been preserved.28 Among the new material there is one page of calculations
related to p. 53 of the published portion of the Einstein-Besso manuscript, which
summarizes Besso’s analysis of the perihelion motion predicted by the Nordström
theory (this is the page with references to the Vienna lecture mentioned on p. 792).29

Finally, there are no calculations related to solar oblateness30 or the mass of Venus,
two topics to be covered in sec. 8.

24 “1. Allgemeine Einleitung
2. Die gewöhnliche Relativitätstheoretische Bew.gl.
3. Anwendung d. Einst. Grav.-Gl.—Sie eignen sich (zunächst) nur zur stufenweisen Näherung

Erste Annäherung (für die Sonnenrotation und f. die Druckkräfte)
Zweite Annäherung: f. d. Abw[eichungen] vom Newtonschen Ges.

Bewegungsgleichungen f.Punktsymmetrie
 " " " Axensymmetrie

3a. Ausrechnung f. d. Fall der Ruhe α. Abweichungen vom Newtonschen Ges. etc.
β. Druckkräfte […]

3b. Ausrechnung f. d. Fall d. Rotation α. Sonnenrotation
β. Jupiterstörungen

4. Skalare Th.
5. Vierer-V. Th.
6. Sechser-V. Th.
7. Abraham. Th.
8. Vergleich m. der Erfahrung. Einführung der Abplattung der Sonne

      Venusmasse aus der korr. Merkurbewegung”
25 For an outline of these calculations, see secs. II.1 and II.2 of the editorial note, “The Einstein-Besso

Manuscript on the Motion of Mercury’s Perihelion” (CPAE 4, 344–359).
26 See (CPAE 4, Doc. 14, [p. 51]) for calculations of the effect of solar pressure, and [p. 50] and [p. 46]

for (badly flawed) calculations of the effect of Jupiter.
27 Following the notation of the Entwurf paper, Besso wrote the contravariant components of the metric

as  on this page. This supports dating the page to 1913–1914. Einstein adopted the modern nota-
tion  in (Einstein 1914e) published in November 1914.
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The overly ambitious character of Besso’s paper becomes even clearer if we look
at a table on another one of the new pages. The table has rows for scalar theories,
four-vector theories, and six-vector theories (cf. secs. 4–6 in the table of contents
above). Nordström, Laue (with a question mark31) and Mie are listed under scalar
theories and get one row each. The final row, labeled “tensor theory,” is for the
Entwurf theory. The table has eight columns with the following headers:

characteristic assumptions ⏐ bending of light rays ⏐ effect of uniformly moving masses
⏐ effect of accelerated masses ⏐ perihelion motion ⏐ motion of nodes ⏐ effect of pertur-
bations on perihelion motion ⏐ correction of Leverrier’s value for the mass of Venus cal-
culated on the basis of perturbations of Mercury32

Besso did not even begin the task of filling out this table.33 He did, however, produce
a draft, replete with deletions as seems to have been his style, of an introductory para-
graph leading up to this table. There is another page with what appear to be drafts of
yet another introductory paragraph, this time for a somewhat less ambitious version
of the paper, focusing more narrowly on the Entwurf theory.

How much of the work for Besso’s magnum opus remained to be done, is further
illustrated by two pages with a numbered list of sixteen problem areas that Besso was
still planning to address. One of the entries in this list is related to the problem of
rotation:

15. Final result about centrifugal forces without Coriolis forces? Would that not have
astronomical consequences as well?34

28 There is, however, a page with a calculation of the perihelion advance predicted by a theory proposed
in (Hall 1894), in which Newton’s -law is replaced by a -law. Besso’s source for this
hypothesis was probably (Newcomb 1895), which is explicitly cited on p. 31 of the published portion
of the Einstein-Besso manuscript and on one of the new pages. For a brief discussion of the predic-
tions of various alternative gravitational theories for the perihelion motion of Mercury, see (Earman
and Janssen 1993, sec. 3).

29 The new page contains a derivation of the expression for the angle between perihelion and aphelion
predicted by the Nordström theory given on [p. 53] of the Einstein-Besso manuscript. The perihelion
advance (in radians per half a revolution) is given by the deviation of this angle from . There is a
sign error in the relevant expression on [p. 53], see (CPAE 4, Doc. 14, [eq. 372] and note 248 for an
analysis of the calculation). The expression on this new page also contains this error.

30 Given the controversy decades later over whether solar oblateness throws off the general relativistic
prediction for the advance of Mercury’s perihelion by a few seconds of arc (Dicke and Goldenberg
1967; 1974), it is interesting that Besso also considered solar oblateness in 1913–1914.

31 I know of no gravitational theory by Laue, so I can understand Besso’s question mark. Perhaps Besso
confused Laue with Abraham. There is no row for Abraham’s theory, despite its inclusion in Besso’s
table of contents (sec. 7).

32 “Karakteristische Annahmen ⏐ Lichtstrahlen Krüng ⏐ Einfluss gleichförmig bewegter Massen ⏐ Ein-
fluss beschl. Massen ⏐ Perihelbew. ⏐ Knotenbew. ⏐ Peri Störungsbeeinfl. ⏐ Correktion d. Venusmasse
von Leverriersch Wert, ermittelt aus den Störgen des Merkur.”

33 Part Two of the published portion of the Einstein-Besso manuscript does contain calculations for the
motion of nodes, the phenomenon listed in the sixth column, on the basis the Entwurf theory
(CPAE 4, Doc. 14, [pp. 45–49], and related material on [p. 31] and [pp. 41–42]). For an outline of
these calculations, see sec. II.3 of the editorial note, “The Einstein-Besso Manuscript on the Motion
of Mercury’s Perihelion,” (CPAE 4, 344–359).

1 r2⁄ 1 r2 δ+⁄
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In the margin, Besso wrote down his answer to the second question:

Need not be taken into consideration, if one does not want to consider the Oppolzer cur-
vature.35

Oppolzer is the astronomer Theodor Egon von Oppolzer (1841–1886). Other than
that, I have no idea what Besso meant by this comment. The Besso memo, however,
contains a passage in which Besso appears to be making a similar point. In the last
full paragraph of the memo, he writes:

Since, in Einstein’s gravitational theory, our noticing the absence of Coriolis and/or cen-
trifugal forces still does not prove that we find ourselves in an allowed frame of refer-
ence, we need to take into account, in dealing with the astronomical problem, such a[n
allowed?] system of forces imposed from the outside (Schwarzschild-Oppolzer motion
of the fixed stars)36

I have only the vaguest of notions of what Besso might have meant by this convoluted
sentence. I nonetheless find the similarity between these two passages quite striking.

The issue of the relation between centrifugal forces and Coriolis forces apparently
continued to exercise Besso. Both in 1914 and in 1916 it crops up in his correspon-
dence with Einstein.37 As I argued in the final section of (Janssen 1999), the relevant
letter from Einstein of 1916 is particularly revealing in this context.38 Here I want to
draw attention to the draft of a letter from Besso to Einstein of March 1914. In early
March 1914, Einstein had written to Besso (CPAE 5, Doc. 514) about the analysis of
the covariance properties of the Entwurf field equations to be published in (Einstein
and Grossmann 1914b). In reply, Besso raised the question:

Does the result you obtained also give a clue perhaps for a more complete treatment of
the rotation problem, so that one can get the correct value for the centrifugal force?
Unfortunately, my brain, the way it happens to have developed, is much too feeble to
answer this question myself, or even to guess from what side it could be attacked. For
reasons already discussed, it seems to me (?) of importance for the astronomical problem

34 “15. Definitives Resultat über Centrifugalkräfte ohne Corioliskräfte? Würde das nicht auch astrono-
misch in Betracht kommen können?”

35 “Kommt nicht in Betracht, wenn man nicht die Oppelzersche Krümmung betrachten will.”
36 “Da bei der Einst. Gravitationstheorie durch Constatierung der Abwesenheit von Coriolis oder/und

Centrifugalkräften noch nicht bewiesen ist, dass man sich in einem zulässigen Bezugssystem befindet,
ist bei der astronomischen Aufgabe ein von aussen aufgeprägtes solches System von Kräften mit zu
berücksichtigen (Schwarzschild-Oppolzerschen Fixsternbewegung).”

37 For the sake of completeness, I note that the 1916 portion of the new Besso material also contains a
reference to the inertial forces of rotation. On the fourth page of the draft of his essay, Besso wrote
sideways in the margin: “That a rotating disc produces a centrifugal and a Coriolis field in its vicinity,
and an accelerated mass an acceleration field, are direct consequences of the principle of general rela-
tivity: how big the effects are is given by the theory of general relativity” (“Dass eine rot. Scheibe in
der Nähe ein Zentrifugal und Coriolisfeld erzeugt, eine beschl. Masse ein Beschleunigungsfeld, sind
direkte Konsequenzen des Allg. Relativitätsprinzips: wie gross die Wirkungen sind ergibt die allge-
meine Relativitätstheorie.”)

38 Einstein to Michele Besso, 31 July 1916 (CPAE 8, Doc. 245).
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as well (since earlier at least it looked as if a system in which there are no Coriolis forces
could still be the seat of centrifugal forces or the other way around).39

This otherwise maddening passage does seem to make it clear that the comments on
Coriolis forces and centrifugal forces in the new Besso material were written earlier.
There is no discussion of these issues in any of the extant correspondence between
Einstein and Besso prior to this letter. Besso’s “for reasons already discussed” must
therefore either refer to correspondence that is now lost or, more likely, to discussions
he and Einstein had in person.

The new Besso material also contains a page with a derivation of the equations of
motion for a point mass in the metric field of the form generated by a rotating mass
distribution.40 The calculation, under the heading “field corresponding to a Coriolis
force” (“Feld, welches einer Corioliskraft entspricht”), starts from the general equa-
tion of motion of a point mass in a metric field as given in equations (6)–(7) of (Ein-
stein and Grossmann 1913), just as similar calculations in the Einstein-Besso
manuscript.41

The final page that we need to examine is the verso of the page with the calcula-
tion on the Nordström theory discussed earlier (see note 29). The passage written on
this page once again touches on the problem of rotation as well as on other themes
addressed in the Besso memo. It starts with equation (9b) of the Vienna lecture (Ein-
stein 1913b, 1259). This equation expresses the vanishing of the divergence of the
sum of a mixed tensor density describing the energy-momentum density of matter42

and a similar quantity for the gravitational field. Besso writes:

39 “Gibt das erreichte Resultat vielleicht auch einen Wink für eine vollständigere Behandlung des Dre-
hungsproblems, so dass man den richtigen Wert der Centrifugalkraft bekommen kann? Leider ist
mein Kopf, wenigstens so wie er einmal erzogen ist, viel zu schwach, um mir die Frage selbst zu
beantworten, oder auch nur zu ahnen, wo man sie angreifen könnte. Aus schon besprochenen Grün-
den scheint sie (?) mir auch für das astronomische Problem von Bedeutung (weil es früher wenigstens
so aussah, dass ein System in welchem keine Corioliskräfte huschen, doch Sitz von Centrifugalkräf-
ten sein können oder umgekehrt)” Michele Besso to Einstein, draft, 20 March 1914 (CPAE 5,
Doc. 516).

40 This calculation is done on a sheet of paper with the name and address of a Zurich hospital and sana-
torium (“‘Paracelsus’ Neues Privat-Krankenhaus und Augenheilanstalt”) printed at the top and the
name and address of a nearby pharmacy (“Apotheke Th. Vogel”) at the bottom. Following the header
there is a printed “Rp.,” which suggests that it is a (blank) prescription (“Rezept”) form. Besso’s cal-
culation appears on the verso of the sheet. On the recto Besso wrote down a list of three short items,
the third of which is: “Departure Wednesday evening 11:40” (“Abreise Mittwochabends 11:40”). We
know from an entry in Ehrenfest’s diaries that Besso’s visit with Einstein in the spring of 1913 ended
18 June (CPAE 4, 357, note 57). For what it is worth, this was a Wednesday. In a letter to Jost Win-
teler, Besso’s father-in-law, of 23 June 1913 (CPAE 5, Doc. 447), Einstein mentioned that Besso had
suffered from “persistent diarrhea” (“einem hartnäckigen Darmkatharrh”) during his visit, which
could explain the prescription form.

41 See (CPAE 4, Doc. 14, p. 8, especially [eq. 48] and note 35, and [p. 20], especially [eqs. 133–137]).
42 In (Einstein 1913a, 1258), this quantity is defined as , where  is Einstein’s

notation during this period for the contravariant components of the energy-momentum tensor.
Tσν g– gσμΘμν≡ Θμν
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Equation (9b) 

which expresses the conservation laws is of such character that it is only covariant under
linear transformations in any case. In this way the linearity of possible transformations of
the [field] equations of gravitation has been “proven” and has at the same time been
reduced to the conservation laws. Only such frames of reference are justified for which
the conservation laws hold. It remains an open question, however, whether all frames of
reference for which the conservation laws hold are justified in the sense of the equations
of gravitation. There remains of course the possibility that, through using higher than
second-order derivatives, one arrives at different equations of gravitation; if everything
that happens, however, is to be determined uniquely by them, there still has to be a crite-
rion for the admissibility of the coordinate system anyway (cf. the one-sided deformation
in empty space), for which purpose in Einstein’s theory the conservation laws can consis-
tently be used (which definitely was not automatic given the tensorial nature of the grav-
itational quantities and the full determination of the kinematics by them).
Do the equations of gravitation tell us something about the kinematics of the rotating
system? Probably not, because one cannot transform it into a Galilean [system].43

Unfortunately, I do not understand Besso’s intriguing parenthetical remark “cf. the
one-sided deformation in empty space” (“vgl. die einseitige Deformation im leeren
Raume”). Most of rest of the passage, however, sounds very familiar. The comment
about the possibility of field equations containing higher-order derivatives of the met-
ric echoes a similar comment in the Entwurf paper. Einstein had drawn attention to
this possibility to argue that such higher-order equations might be generally covari-
ant.44 The hole argument, to which Besso alludes in the next sentence, would obvi-
ously restrict the covariance of such higher-order equations as well. Whereas the hole
argument is only alluded to, the other argument against general covariance that Ein-

43 “Gleichung (9b) 

die die Erhaltungssätze ausdrückt, hat einen solchen Charakter, dass sie jedenfalls nur f. lineare
Transf. covariant ist. Damit ist die Linearität der möglichen Transformationen bei den Gravitationsgl.
«erwiesen» und gleichzeitig auf die Erhaltungssätze zurückgeführt. Es sind nur solche Bezugssy-
steme berechtigt, für welche die Erhaltungssätze gelten. Es bleibt aber die Frage offen ob alle Bez.
syst. für welche die Erh. s. gelten berechtigte sind im Sinne der Gravitationsgleichungen. Dabei bleibt
natürlich unbenommen, dass man durch Mitnahme höheren als die zweiten Ableitungen, andere Gra-
vitationsgl. erhalten kann; soll aber durch dieselben das Geschehen eindeutig bestimmt sein, so muss
immerhin noch ein Criterium für die Zulässigkeit des Coordinatensystems vorliegen (vgl. die einsei-
tige Deformation im leeren Raume) als welches Criterium bei der Einst. Theorie die Erhaltungssätze
widerspruchsfrei benutzt werden konnten (was durchaus nicht selbstverständlich war bei der Tensor-
natur der Gravitationsgrössen und der alleinigen Besti[mmu]ng der Kinematik durch dieselbe).
Lehren uns die Gravitationsgl. etwas über die Kinematik des rot. Systems? Wohl nein, da man es nicht
auf ein Galileisches transformieren kann.”

44 Einstein writes: “A priori one cannot deny the possibility that the final exact equations of gravitation
could be of higher than second order. There is still the possibility therefore that the fully exact differ-
ential equations of gravitation could be covariant under arbitrary substitutions.” (“A priori kann aller-
dings nicht in abrede gestellt werden, daß die endgültigen, genauen Gleichungen der Gravitation von
höherer als zweiter Ordnung sein könnten. Es besteht daher immer noch die Möglichkeit, daß die
vollkommen exakten Differentialgleichungen der Gravitation beliebigen Substitutionen gegenüber
kovariant sein könnten” [Einstein and Grossmann 1913, 11–12]).

∂
∂xν
-------- Tσν tσν+( )∑ 0=

∂
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-------- Tσν tσν+( )∑ 0=
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stein advanced in late 1913 is given in some detail at the beginning of this passage.
The form of equation (9b) for the energy-momentum conservation law, the argument
goes, restricts the covariance of the field equations to linear transformations.45

We encounter both these arguments in the Besso memo as well, although this time
the argument from energy-momentum conservation is only referred to implicitly
while (a prototype of) the hole argument is stated explicitly. At the bottom of the first
and the top of the second page of the memo (see Figs. 1 and 2), immediately after the
sentence quoted in the introduction about the problem of rotation, Besso writes:

One can therefore not think of rotational forces as produced by the rotation of the fixed
stars according to the Einsteinian [field] equations of gravitation, but one has to assume
for them as for Galilean mechanics, that they only hold for an appropriately chosen
[coordinate] system (which would be defined through the conservation laws)46 

To distinguish the crude argument from energy-momentum conservation of late 1913
from a more sophisticated argument from energy-momentum conservation of early
1914, it is important to establish that Besso was under the impression at this point
that energy-momentum conservation requires the field equations to be covariant
under linear transformations only. Fortunately, this can be done with the help of a
passage that starts at the bottom of the third and continues at the top of the fourth
page of the memo:

From the gravitational theory … it is then inferred that the position and acceleration (but
not the velocity) of masses in each other’s vicinity affect the line element; and (recently)
that the gravitational field cannot be transformed away anywhere since an accelerated
frame of reference (because the conservation laws are not satisfied) is not a justified
frame47

Since Besso claims that energy-momentum conservation rules out all accelerated
frames of reference, it is clear that he is referring to the crude rather than to the
sophisticated argument. As was pointed out above (see footnote 20), we know that
Einstein hit upon the crude argument on 15 August 1913. This strongly supports the
date on the Besso memo. On 28 August 1913, Besso had every reason to refer to this
argument as something that had only been found “recently” (“neuerdings”).

On the second page of the memo, Besso indicated (with two arrows; see Fig. 2)
two comments to be appended to the clause “which would be defined through the
conservation laws.” The second comment once again raises the open question that

45 For a concise discussion of this argument and its flaws, see (Norton 1984, sec. 5). This is the argument
that was referred to in footnote 20.

46 “Man kann also die Rotationskräfte sich nicht hervorgebracht denken durch die Rotation der Fix-
sterne gemäss den Einst. schen Grav.-Gleichungen, sondern muss für diese annehmen wie für die
Galileische Mechanik, dass sie nur für ein passend gewähltes System gelten (welches durch die Erhal-
tungssätze definiert wäre)”

47 “Aus der … Grav.-theorie wird dann geschlossen, dass die Lage und die Beschleunigung benachbarter
Massen auf das Linienelement von Einfluss ist (nicht aber deren Geschwindigkeit); und (neuerdings)
dass an keiner Stelle ein Gravitationsfeld wegtransformiert werden kann, da ein beschleunigtes
Bezugssystem (wegen Nichterfüllung der Erhaltungssätze) kein berechtigtes System ist.”
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Besso had identified in the passage quoted on p. 798: “Is every system that satisfies
the conservation laws a justified system?”48 Then, as in the passage quoted on p. 798,
he goes into what is essentially the hole argument, this time in some detail. Discus-
sion of this passage will be postponed until sec. 4.

2.2 Piecing Together the Case for Accepting the Date on the Besso Memo

What conclusions can be drawn from the preceding survey of the new material about
the date of the Besso memo? I think a strong case can be made for accepting Besso’s
own dating of the document, even though this does require two additional assump-
tions: first, that an important footnote alluding to the hole argument was added to the
text of the Vienna lecture in early September a few weeks before Einstein actually
gave the lecture; second, that Besso visited Einstein in Zurich in late August 1913.

Perhaps the strongest evidence in support of Besso’s date of 28 August 1913 is
that he refers to Einstein’s argument against general covariance from energy-momen-
tum conservation of 15 August 1913 as something that was shown “recently”
(“neuerdings”). In any case, as we shall see below, the reference to this argument
rules out any date after 20 March 1914, when Besso expressed his satisfaction that
Einstein had meanwhile replaced this crude argument by a more sophisticated one.49

Let me emphasize that the memo would still present the puzzles described in the
introduction even if it had been written in March 1914 instead of in August 1913.

The combination of the two arguments against general covariance referred to in
the memo, the argument from energy-momentum conservation and the hole argu-
ment, is characteristic of the period late 1913–early 1914. This provides another rea-
son for accepting the date on the Besso memo, even though 28 August 1913 seems to
be a little early given the dates of other texts documenting this state of affairs. Con-
sider the following passage from the printed summary of Einstein’s lecture to the
96th annual meeting of the Schweizerische Naturforschende Gesellschaft in Frauen-
feld on 9 September 1913, less than two weeks after the date on the Besso memo.
Einstein writes:

On the other hand, it turns out to be logically impossible to formulate equations to deter-
mine the gravitational field (i.e., the ) that are covariant with respect to arbitrary sub-
stitutions. Starting from the conservation laws of momentum and energy, we are led to
choose the frame of reference […] in such a way that only linear transformations—but
contrary to the situation in ordinary relativity theory arbitrary linear transformations—
leave the equations covariant.50

48 “Ist jedes System, welches den Erhaltungssätzen genügt, ein berechtigtes System?”
49 See the quotation on p. 805 below from Besso to Einstein, draft, 20 March 1914.
50 “Dagegen erweist es sich als logisch unmöglich, Gleichungen zur Bestimmung des Gravitationsfeldes

(d. h. der ) aufzustellen, die bezüglich beliebigen Substitutionen kovariant sind. Wir gelangen,
ausgehend von den Erhaltungssätzen des Impulses und der Energie, dazu, das Bezugssystem […] der-
art zu wählen, dass nur mehr lineare, aber im Gegensatz zur gewöhnlichen Relativitätstheorie belie-
bige lineare Substitutionen die Gleichungen kovariant lassen” (Einstein 1913b, 138).
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Very similar comments can be found in the more extended version of the Frauenfeld
lecture first published 15 December 1913 and then reprinted as (Einstein 1914d, see
pp. 288–289). Unfortunately, it is not clear for either of these documents how close
the printed texts are to what Einstein actually said in his lecture. What makes one sus-
picious is that the texts must have been completed after Einstein completed the
printed text of the Vienna lecture, delivered on 23 September 1913.51 In the latter, the
hole argument is alluded to only in a footnote:

Over the last few days, I found the proof that such a generally-covariant solution to the
problem [of finding suitable gravitational field equations] cannot exist at all.52

If this footnote were added after the Vienna lecture was delivered, Einstein could not
have alluded to the hole argument in Frauenfeld in early September even though such
allusions do occur in the printed texts. And, more importantly for my purposes, Besso
could not have known about the hole argument on 28 August and the date on the Besso
memo would have to be incorrect. If we accept the date on the Besso memo, we there-
fore have to assume that Einstein added the footnote alluding to the hole argument to
the text of his Vienna lecture sometime in early September, a few weeks before he
delivered the lecture. This assumption is much more natural than it appears to be at
first glance. Recall that Einstein submitted the manuscript for the lecture in late August
and that he requested that page proofs be ready by September 5 (see note 20).

Unfortunately, the earliest extant correspondence documenting the state of affairs
transpiring from these published texts and from the Besso memo (i.e., the combina-
tion of the two arguments against general covariance) is from November 1913, two
months after the date on the memo. The letter to Hopf, already mentioned in the
introduction, is from 2 November 1913. In addition there are two undated letters to
Ehrenfest (CPAE 5, Docs. 481 and 484) that can both be dated to November 1913,
one to early November, the other to the second half of the month. In this second letter,
Einstein put the matter very concisely:

A unique determination of the  by the [components of the energy-momentum tensor]
 is only possible if special coordinate systems are chosen (rigorously provable).

Energy-momentum conservation only allows linear substitutions.53 

51 In CPAE 4, the texts related to the Frauenfeld lecture (Einstein 1913b; 1914d) are presented as
Docs. 15 and 16, respectively, whereas the printed text of the Vienna lecture (Einstein 1913c) is pre-
sented as Doc. 17. Since the order of presentation in the Collected Papers is determined by the date of
completion of the texts, the order should have been reversed.

52 “In den letzten Tagen fand ich den Beweis dafür, daß eine derartige allgemein kovariante Lösung
überhaupt nicht existieren kann” (Einstein 1913a, 1257).

53 “Eine eindeutige Bestimmung der  aus den  ist nur bei Wahl spezieller Koordinatensysteme
möglich (streng beweisbar). Die Impuls-[E]nergie-Erhaltung lässt nur lineare Substitutionen zu.” Ein-
stein to Paul Ehrenfest, second half of November 1913 (CPAE 5, Doc. 484). In both these letters to
Ehrenfest, Einstein briefly explored the consequences of the restriction of the covariance of the field
equations to linear transformations in geometrical terms. Einstein also refers to these ideas in the
printed text of the Frauenfeld lecture (Einstein 1914d, 289).
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Neither in this letter nor in the letters to Ehrenfest and Hopf from early November
does Einstein say exactly when he found these results. It is thus perfectly conceivable
that he already had them two months earlier, as we are forced to accept if we accept
the date on the Besso memo, and that he actually did present them in his lecture in
Frauenfeld in early September. Given all available evidence, I would say that this is
not only conceivable but actually quite plausible.

A third consideration in support of accepting the date on the Besso memo is that
Besso’s date is consistent with the date one would assign to the memo on the basis of
various connections with the group of new Besso pages belonging to the Einstein-
Besso manuscript. These pages can firmly be dated to the period 1913–1914, and
most of them can plausibly be dated more narrowly to late 1913. For instance, in the
drafts (mentioned on p. 795) of an introductory paragraph for a paper on various
astronomical predictions of the Entwurf theory, Besso refers to the Entwurf paper as
“Z. f. M. & P. … 1913” (my emphasis). This is the reprint of the Entwurf paper in the
Zeitschrift für Mathematik und Physik (Einstein and Grossmann 1914a). In the first
part of the Einstein-Besso manuscript of June 1913 (CPAE 4, Doc. 14, [p. 8]), Besso
used the page numbers of the original separatum (Einstein and Grossmann 1913).
The journal version was not published until 30 January 1914. This suggests that
Besso wrote this page in late 1913, expecting the journal version to become available
before the end of the year.

There is a particularly striking connection between the memo and one of the new
pages of the Einstein-Besso manuscript with calculations for the Nordström theory
on the recto (see note 29) and a discussion of the covariance of the field equations on
the verso (see p. 798). The calculations on the recto are related both to the page on
the Nordström theory in the published part of the Einstein-Besso manuscript
(CPAE 4, Doc. 14, [p. 53]) and to the first entry of the Besso memo (see Fig. 1):54

a)  On the motion of planets in the Nordström theory:
I do not know how to interpret  (whether  can be put in front of the differ-

entiation since it is constant in time)—no, to be interpreted as co-moving with the point!
The field comes out as in Newton[:] the area velocity [is] a constant. 〈Where does

that leave room for deviation from the Newtonian motion?〉 Meaning of the coordinates?
(Does not play a role given the cyclical integration)55

The discussion of the covariance of the field equations on the verso of this new page
closely matches the corresponding discussion in the Besso memo.56 First comes the
(crude) argument from energy-momentum conservation, then the question whether

54 It may seem that the connection between the memo and the Vienna lecture through p. 53 of the Ein-
stein-Besso manuscript amounts to an argument against accepting the date on the memo. 28 August,
one could argue, is too late for Besso to have had access to the manuscript of the lecture, which Ein-
stein probably submitted 21 August, and too early to have had access to page proofs, which Einstein
probably did not receive until early September (see note 20 for the argument in support of these
dates). It could well be, however, that the entry on the Nordström theory is somewhat earlier than the
two pages of calculations that have been preserved. The questions raised in the memo are rather ele-
mentary and could refer to an earlier attempt to do these calculations.

d ds⁄ ϕ
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all frames of reference in which the conservation laws hold are justified, and then the
hole argument. Moreover, in both cases it is mentioned in this context that a rotating
frame is not a justified frame.

I already drew attention to the striking similarity between a comment on the prob-
lem of rotation on the last page of the Besso memo and an entry in a list of open ques-
tions to be addressed in Besso’s ambitious paper on the perihelion problem (see
p. 795). In both cases, Besso comments on the problematic relation between centrifu-
gal forces and Coriolis forces in Einstein’s theory; in both cases, he emphasizes the
astronomical relevance of the problem; and, for what it is worth, in both cases he
refers to the astronomer Oppolzer.

There is one question though that still needs to be answered before we can feel
comfortable accepting the date on the Besso memo and move on to the discussion of
the resulting problems for reconstructing Einstein’s path to general relativity. The
question is this: how did Besso find out about Einstein’s two arguments against gen-
eral covariance in late August 1913.57 Neither argument had been published yet. The
argument from energy-momentum conservation was probably included in the page
proofs of the Vienna lecture, but it is extremely unlikely that Besso would have read
those by 28 August 1913. And, as we have seen (see the footnote quoted on p. 801),
even in the final text of the Vienna lecture there is no more than an allusion to the hole
argument.58 There are also no letters from Einstein to Besso during this period
explaining these arguments. But then no letters survive from the period between
March 1912 and the end of 1913. There are two letters from Einstein to Besso of
early 1914 and a draft of Besso’s reply to the second and then there is another gap
from late March 1914 to February 1915. So it is possible that there were more letters
that are now lost, in one of which Einstein explained these arguments. It is much

55 “a) Zur Planetenbew. in der Nordströmschen Theorie
weiss ich nicht wie das  zu verstehen ist (ob  als zeitl. const. vor das Diff. zeichen zu neh-

men ist)—nein, mit dem bewegten Punkt zu verstehen!
Es ergibt sich das Feld wie bei Newton[:] die Flächengeschwindigkeit eine Constante. 〈Wo bleibt

da noch Platz für ein Unterschied gegen die Newtonsche Bewegung?〉 Bedeutung der Coordinaten?
(Kommt nicht in Betracht bei der cycl. Integration[)].”
The quantity  represents the scalar gravitational potential in the Nordström theory. In the Einstein-
Besso manuscript, the perihelion motion is derived in part from a quantity called the “area velocity”
(see CPAE 4, Doc. 14, [p. 8], note 38). If the area velocity is constant, Kepler’s area law holds and
there is no perihelion motion.

56 For reasons similar to those given in note 54, the passage in the memo is presumably earlier than the
other passage, which starts with equation (9b) from the Vienna lecture.

57 Given everything we know about the interaction between Einstein and Besso, we can safely rule out
the possibility that Einstein got these arguments from Besso.

58 Given that the first three of the four published versions of the hole argument are notoriously cryptic,
the Besso memo reflects a remarkably thorough understanding of how the argument is supposed to
work (as will become clear in sec. 4). It is also remarkable, that Besso, as we have seen (see p. 798),
realized that the hole argument undercuts Einstein’s claim in the Entwurf paper that higher-order
gravitational field equations might be generally covariant.

d ds⁄ ϕ
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more likely, however, that Einstein explained them to Besso in person during a visit
by the latter to Zurich around 28 August 1913.59 

This would provide a natural explanation for a striking feature of the Besso memo
that I did not emphasize so far. At several points the memo records a certain back and
forth: a question is raised to which an answer is appended (see, e.g., the entry on the
Nordström theory quoted on p. 802) or an argument is put forward to which a counter-
argument is appended. The most striking example in the latter category is the passage
on the hole argument (see Fig. 2 for a facsimile reproduction and sec. 4 for a transcrip-
tion and discussion). First, the argument is stated. In the next paragraph a counter-
argument is given. Appended to this paragraph is a comment purporting to refute the
counter-argument, which begins: “Of no use” (“Nützt nichts”). This same phrase is
appended to a passage at the top of the page (although in that case it was subsequently
deleted and replaced by another comment). A natural explanation for this back and
forth is that Besso recorded Einstein’s responses to some of the points he raised.

There is no direct independent evidence that Besso visited Einstein in Zurich in
late August 1913,60 but it is not at all implausible that such a visit took place. And all
three extant letters between Einstein and Besso of 1914 yield important indirect evi-
dence for this conjecture. The strongest evidence comes from the second of these let-
ters. Einstein writes:

The strict equivalence of inertial and gravitational mass, also of the gravitational field, I
had, I believe, already proven by the time of your visit.61

The editors of CPAE 5 identify this visit as Besso’s well-documented visit of June
1913, but they refer to an addendum to the published version of the Vienna lecture as
the place where Einstein first published the result he mentions (Einstein 1914b). The
result clearly belongs to the period of the Vienna lecture and not to the period shortly
after the completion of the Entwurf paper. Hence, it is much more likely that Einstein
is referring to a visit by Besso in late August than to the visit in June.

A second visit by Besso in August 1913 also fits better with Einstein’s first letter
to Besso of 1914, the one with which he presumably sent the Einstein-Besso manu-
script. After exhorting Besso to finish the work on the perihelion problem, he writes:

59 The other possibility—of a visit during this period by Einstein to Besso in Görz, Austria (now Gori-
zia, Italy)—can be ruled out. In a letter to Freundlich received on 26 August 1913, Einstein wrote
from Zurich: “I will be here until the middle of September, with the exception of September 7 & 8
when I have to give a talk in Frauenfeld.” (“Ich bin bis Mitte September hier, ausgenommen den 7. &
8. September, wo ich in Frauenfeld einen Vortrag zu halten habe.” Einstein to Erwin Freundlich,
before 26 August 1913 [CPAE 5, Doc. 472]).

60 As I pointed out above, one of the new Besso pages is written on letterhead of a Zurich hospital,
which would lead one to think that this page was written in Zurich. It may have been written, how-
ever, during Besso’s visit of June 1913 (see note 40).

61 “Die strenge Aequivalenz der trägen und schweren Masse, auch des Gravitationsfeldes, hatte ich,
glaube ich, schon zur Zeit deines Besuches bewiesen.” Einstein to Michele Besso, ca. 10 March 1914
(CPAE 5, Doc. 514).
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I have not found out much since. But I have shown rigorously that the measure for the
inertial as well as the gravitational mass of closed systems is given by the total rest
energy of the system including its gravitational energy.62

The result mentioned in this passage is the same as the result mentioned in the letter
of March 1914. This is obviously not the only result since Besso’s visit of June 1913
that is worth mentioning. One need only think of the arguments against general cova-
riance. If Einstein and Besso got together again in August 1913, it would presumably
be in reference to this later visit, that Einstein writes that he has “not found out much
since,” which makes much more sense.63

I already pointed out that the draft of Besso’s reply to Einstein’s letter of March
1914 (see p. 796) requires us to assume either that some correspondence between Ein-
stein and Besso is missing or that they had the opportunity to discuss the problem of
rotation in person. A visit by Besso to Zurich in August 1913 would take care of that
problem as well. It would also explain Besso’s remarkably sharp grasp of the new
stage of the Entwurf theory that was reached with Einstein’s new treatment of the the-
ory’s covariance properties in (Einstein and Grossmann 1914b). In his letter of March
1914, Einstein briefly explained these developments to Besso. In the draft of his reply,
Besso wrote (in a passage immediately preceding the passage quoted on p. 796):

You already had the fundamental insight that the conservation laws represent the condi-
tion for positing an admissible coordinate system; but it did not appear to be ruled out
that a restriction to Lorentz transformations was thereby essentially already given, so that
nothing interesting epistemologically comes out of it. Now everything is fundamentally
completely satisfactory.64

Besso’s clear appreciation of the situation becomes readily understandable when we
assume that he and Einstein had the opportunity in August 1913 to discuss the earlier
stage of the theory in person.

The upshot of the discussion in this section then is that we have very good reason
to believe (a) that the date on the Besso memo is accurate, and (b) that the memo
reflects discussions between Einstein and Besso during a visit by the latter to Zurich
around 28 August 1913. Of course, I largely avoided the two troublesome passages in

62 “Ich habe seitdem wenig herausgefunden. Strenge bewiesen habe ich aber, dass sowohl für die
schwere wie für die träge Masse abgeschlossener Systeme die gesamte Ruheenergie des Systems mit
Einschluss der Schwereenergie massgebend ist.” Einstein to Michele Besso, after 1 January 1914
(CPAE 5, Doc. 499).

63 A slight discrepancy remains: the letter of January 1914 suggests that Einstein only found the result in
question after Besso’s last visit, whereas the letter of March 1914 suggests that he had already found
the result by the time of this visit. In the letter of March 1914, however, Einstein also indicates that he
is not entirely sure.

64 “Du hattest schon principiell eingesehen, dass die Erhaltungssätze die Bedingung für die Aufstellung
eines zulässigen Coordinatensystems darstellen; aber es schien nicht ausgeschlossen, dass schon
dadurch, im Wesentlichen, die Beschränkung auf die Lorentztransformationen gegeben sei, so dass
nichts erkenntnistheoretisch besonders interessantes herauskam. Nun ist alles principiell vollkommen
befriedigend.” Michele Besso to Einstein, draft, 20 March 1914 (CPAE 5, Doc. 516).
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the memo quoted in the introduction. In the remainder of this paper, I will focus on
those two passages.

3. THE BESSO MEMO AND THE PROBLEM OF ROTATION

Consider, once again, the comments on the problem of rotation on the first page of
the Besso memo (see Fig. 1 for a facsimile reproduction):

If through rotation of a hollow sphere one produces a Coriolis field inside of it, then a
centrifugal field, independent of the size of the hollow sphere, is produced that is not the
same as the one that would occur in a rotating rigid system with the same Coriolis field.
One can therefore not think of rotational forces as produced by the rotation of the fixed
stars according to the Einsteinian gravitational [field] equations65

As will become clear below, this passage requires a serious modification of the recon-
struction I gave in (Janssen 1999) of Einstein’s struggles with rotation in the period
1913–1915. At the same time, however, it confirms a conjecture in my paper about the
Machian motivation behind the specific way in which Einstein checked, both in 1913
and in 1915, whether or not the rotation metric is a vacuum solution of the Entwurf
field equations. The strongest evidence for this conjecture offered in my paper came
from a letter written after the fact.66 The Besso memo provides contemporary evi-
dence.

Let me first reiterate briefly how Einstein checked whether the rotation metric is
a vacuum solution of the Entwurf field equations (see Janssen 1999, secs. 5–9, for
details). The rotation metric has several components proportional to , the constant
angular frequency with which the coordinate system rotates in Minkowski space-
time, and (in its covariant form) only one component with a term proportional to

67 For a slowly rotating frame, the terms proportional to  can be looked upon
as small first-order deviations from the standard diagonal Minkowski metric; the
term proportional to  as a second-order deviation. It is clear upon inspection that,

65 “Stellt man durch Rotation einer Hohlkugel ein Coriolisfeld in deren Innerem her, so entsteht ein
Centrifugalfeld, unabhängig von der Grösse der Hohlkugel, welches nicht dem gleich ist, der in einem
rotierenden starren System von gleichem Coriolisfeld statt finden würde. Man kann also die Rotati-
onskräfte sich nicht hervorgebracht denken durch die Rotation der Fixsterne gemäss den Einst.schen
Grav.-Gleichungen”

66 Einstein to Michele Besso, 31 July 1916 (CPAE 8, Doc. 245), quoted and analyzed in (Janssen 1999,
sec. 11).

67 In a Cartesian coordinate system  (with  and with units such that the
velocity of light ), rotating counterclockwise around its z-axis with respect to some inertial
frame in Minkowski spacetime, the Minkowski line element is given by:

 

(where ). For a quick derivation of this expression, see p. 42R of the Zurich Note-
book (discussed in “Commentary …” [in this volume], sec. 5.5.7). The non-vanishing components of
the metric can easily be read off from the line element:  
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to first order in  the rotation metric is a vacuum solution of the Entwurf field equa-
tions (Janssen 1999, 141–142). To check whether this is also true to second order in

 Einstein used the same iterative approximation procedure that he used in his
perihelion calculations (both in the Einstein-Besso manuscript and in Einstein
1915b). The second-order terms in the vacuum Entwurf field equations are of two
kinds: terms with second-order derivatives of second-order terms in the metric, and
terms with products of first-order derivatives of first-order terms in the metric. Insert-
ing the -terms of the rotation metric into the latter and solving for the -term in
the one component of the metric that has an -term in the case of the rotation met-
ric, Einstein checked whether this -term is the same as the -term in the rota-
tion metric. In 1913, he convinced himself that it is.68 In 1915, he redid the
calculation and discovered that it is not.69 He reported the result in a letter to Erwin
Freundlich of 31 September 1915 (CPAE 8, Doc. 123), calling it “a blatant contra-
diction” (“ein flagranter Widerspruch”). Rotation thus became the nemesis of the
Entwurf theory.

I now turn to the Machian motivation behind Einstein’s use of his iterative
approximation procedure in this context. Inserting the rotation metric into the geode-
sic equation, one sees that the -terms give the Coriolis force, while the -term
gives the centrifugal force (Janssen 1999, sec. 11). The “Coriolis field” mentioned in
the quoted passage of the Besso memo accordingly refers to the -terms in a metric
of the form of the rotation metric, and the “centrifugal field” refers to the -term in
such a metric. In the Einstein-Besso manuscript, Einstein had, in first-order approxi-
mation and using Minkowskian boundary conditions at infinity, already solved the
Entwurf field equations for a material source consisting of a hollow thin shell rotating
with angular frequency  (CPAE 4, Doc. 14, [pp. 36–37]). He referred to these cal-
culations in a letter to Mach of June 1913 (to which I will return below), so it is clear
that this calculation was done either during or shortly after Besso’s visit to Zurich of
June 1913. Einstein found that, to first order in , the metric field inside the rotating
shell has the same form as the rotation metric. Contrary to what Besso claims in his
memo, this metric is not independent of the size of the shell, but by choosing the

68 The relevant calculations can be found in the Einstein-Besso manuscript (CPAE 4, Doc. 14, [pp. 41–
42]).

69 (A version of) this calculation has been preserved on a sheet of paper that Einstein subsequently used
for the draft of a letter to Otto Naumann (CPAE 8, Doc. 124). The draft is from early October 1915,
the calculation probably from late September 1915. On the verso of this document there is an aborted
attempt to circumvent the problem. The calculation on the recto shows that the standard transforma-
tion to rotating coordinates in Minkowski spacetime leads to a metric field that is not a vacuum solu-
tion of the Entwurf field equations. On the verso, Einstein modified this transformation, presumably to
check whether this would lead to a metric field that is. It is possible that Einstein had tried this strat-
egy before, even though no records of such attempts survive. Given how quickly he gave up on it in
1915, it is unlikely, I would say, that he ever found an acceptable escape from the problem of rotation
along these lines. One other calculation that might be related to the problem of rotation should be
mentioned here. This calculation can be found in the 1913 portion of the Einstein-Besso manuscript
(CPAE 4, Doc. 14, [pp. 43–44]). Unfortunately, the purpose of this calculation remains unclear.
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radius and the mass of the shell appropriately, its metric field near the center can
nonetheless be used to mimic the part of the rotation metric giving rise to the Coriolis
force. The Entwurf theory thus seemed to provide the resources necessary to produce
a Machian account of Newton’s rotating bucket experiment.70 If the inertial forces in
a rotating frame in Minkowski spacetime can be interpreted as gravitational forces in
a frame at rest, the rotation with respect to absolute space in Newton’s explanation of
the bucket experiment can be replaced by the relative rotation of the bucket with
respect to the rest of the universe. Einstein’s first-order calculations for a rotating hol-
low shell showed that the Coriolis force can be interpreted as a gravitational force due
to rotating distant masses. Inserting the Coriolis field, the -terms in the rotation
metric, into the second-order vacuum field equations and solving for the -terms,
Einstein hoped to show that the centrifugal force can be interpreted as due to the
gravitational field produced by this first-order field. This, I conjectured, is what lies
behind Einstein’s use of his iterative approximation procedure to check whether the
rotation metric is a vacuum solution of the Entwurf field equations.

Rephrasing the quoted passage from the Besso memo using the terminology
introduced above, one sees both why it provides strong evidence in support of this
conjecture and why it is hard to square with everything else we know about Einstein’s
struggles with rotation. Starting from the -terms of the rotation metric (more pre-
cisely: from a Coriolis field inside a rotating shell mimicking the Coriolis field in a
rotating coordinate system in Minkowski spacetime) and using the vacuum Entwurf
field equations to calculate the -term, one finds an -term (the centrifugal field
inside the rotating shell) that is not the same as the -term of the rotation metric
(the centrifugal field in a rotating coordinate system in Minkowski spacetime). This is
precisely the “blatant contradiction” that Einstein reported to Freundlich over two
years later!

What was Einstein’s response to Besso’s claim? That is the question that will
occupy us for most of the remainder of this section. One possibility that can be ruled
out immediately is that Einstein carefully redid the calculation himself. If he had, he
would have found that Besso was right. And the assumption that Einstein in August
1913 knew for a fact that the rotation metric is not a vacuum solution of the Entwurf
field equations would render the developments of 1914–1915 completely incompre-
hensible. I believe that Einstein was quite capable of fooling himself, but not that he
was in denial for two years about the problem of rotation.

So Einstein did not check Besso’s claim, at least not carefully. The interesting
question then becomes: did he accept it or not? Before I address that question, I want
to examine (and reject) one concrete scenario in which Einstein made a half-hearted
attempt to check Besso’s claim and satisfied himself that it was false alarm. 

70 At this point I need to add the usual disclaimer that I am concerned only with Einstein’s reading of
Mach, not with what Mach actually may or may not have said. See (Barbour and Pfister 1995) for fur-
ther discussion.
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In this scenario, the calculations in the Einstein-Besso manuscript with which
Einstein confirmed that the rotation metric is a vacuum solution of the Entwurf field
equations were done not in June 1913, as has so far been assumed, but in late 1913 in
response to the claim in the Besso memo. As I emphasized in sec. 2, these pages
could in principle have been written any time between June 1913 and January 1914
(when Einstein presumably sent the whole package to Besso). There is, however, a
good argument against redating these particular pages. Examining Einstein’s calcula-
tions on these pages, one gets the impression that he was so convinced that the rota-
tion metric is a vacuum solution of the Entwurf field equations that he made the right
errors in the right places to arrive at the result he expected all along (Janssen 1999,
sec. 8). The analysis of the Zurich Notebook in this volume provides a good explana-
tion for why in June 1913 Einstein would have been so confident. When Einstein first
derived and decided to publish the Entwurf field equations, he felt that these were the
only equations that agree with Newtonian theory in the static weak-field limit while at
the same time being compatible with energy-momentum conservation. Convinced of
the existence of field equations satisfying all his heuristic requirements, Einstein
must have had the strong expectation that the rotation metric would be a vacuum
solution of the Entwurf field equations. This requirement had played a particularly
important role in Einstein’s search for such equations.71 It is therefore much more
likely that the calculations on [pp. 41–42] of the Einstein-Besso manuscript were
done in June 1913, when Einstein was supremely confident that the rotation metric
was a vacuum solution, than that they were done in August 1913, when Besso’s cal-
culations called this into question.

It is, of course, conceivable that Einstein in August 1913 was still sufficiently
convinced that the rotation metric would be a vacuum solution to dismiss Besso’s
claim out of hand, trusting his own calculation of June 1913 over Besso’s. In and of
itself this would not even be that unreasonable. Besso’s contributions to the Einstein-
Besso manuscript contain several egregious mathematical errors.72 If Einstein simply
dismissed Besso’s claim, the story I told in (Janssen 1999) does not have to be
changed much. All that needs to be added is that Einstein missed yet another opportu-
nity to discover that the rotation metric is not a vacuum solution of the Entwurf field
equations.

71 See the Zurich Notebook, pp. 42L–43L, p. 24R, and p. 25R, discussed in “Commentary …” (in this
volume), secs. 5.5.6–5.5.9, sec. 5.6.1, and sec. 5.6.4, respectively. On p. 24R, Einstein missed his first
opportunity to discover that the rotation metric is not a vacuum solution of the Entwurf field equa-
tions. Since the Entwurf field equations are constructed so as to guarantee energy-momentum conser-
vation, the divergence of  the mixed tensor density representing gravitational energy-momentum
density in the Entwurf theory, vanishes for every vacuum solution of these field equations. The diver-
gence of  does not vanish for the rotation metric, which implies that the rotation metric cannot be
a vacuum solution of the Entwurf field equations. At the top of p. 24R, however, Einstein wrote that an
expression that can be identified as the divergence of  does vanish for the rotation metric.

72 Compare, for instance, Einstein’s impeccable derivation of the metric inside a rotating shell on
pp. 36–37 of the manuscript to Besso’s bungled derivation of the metric inside a rotating ring on p. 50
(see CPAE 4, Doc. 14, note 234).
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The most plausible scenario, however, if we take into account all available source
material, is that Einstein accepted Besso’s claim. Recall that on 15 August 1913, less
than two weeks before the discussions recorded in the Besso memo, Einstein had
found the (fallacious) argument from energy-momentum conservation73 that con-
vinced him that it was a desirable rather than a problematic feature of the Entwurf
theory that its field equations seemed to be invariant under linear transformations
only. On the basis of this argument, Einstein was prepared to accept that the rotation
metric is not a solution of these equations. This sounds like a perfectly natural sce-
nario. Einstein clearly believed at this point that the Entwurf field equations are not
invariant under the non-linear transformation to a rotating coordinate system. Does it
not simply follow from this that the rotation metric cannot be a vacuum solution of
these equations?

What complicates matters is that this does not follow, as I emphasized in (Janssen
1999, sec. 2). The statement that some field equations are invariant under rotation is
much stronger than the statement that the rotation metric is a solution of these equa-
tions. The former is a statement about an arbitrary metric expressed in two coordi-
nate systems rotating with respect to one another, the latter is a statement about a
specific metric, the Minkowski metric, in two such coordinate systems. In late 1913–
early 1914, Einstein could therefore consistently have held both the (mistaken) belief
that the rotation metric is a vacuum solution of the Entwurf field equations and the
(correct) belief that these equations are not invariant under rotation.

Long before the discovery of the Besso memo, Jürgen Renn (private communica-
tion) already rejected this analysis of the situation as “logical hair-splitting.” The
Besso memo, I think, has proven Renn right. The most plausible scenario, I now
believe, is that Einstein, without careful consideration, accepted Besso’s claim that
the rotation metric is not a vacuum solution of the Entwurf field equations, and that
he accepted it largely because he believed that the equations were not invariant under
rotation anyway.

There is clear evidence, however, that less than two weeks earlier Einstein had
been keenly aware of the logical picture I painted above. My analysis of the situation
essentially turns on the distinction between “autonomous” (“selbständige”) and “non-
autonomous” (“unselbständige”) transformations that Einstein himself made in a letter
to Lorentz of 14 August 1913. “Autonomous transformations” are the usual type of
transformations from old to new coordinates, in which the latter are simply functions
of the former. “Non-autonomous transformations” are coordinate transformations in
which the new coordinates depend not only on the old coordinates but also on the com-
ponents of a specific metric field expressed in terms of the old coordinates. Although
Einstein had not used the term “non-autonomous transformations” before, the notion
already played an important role in the Zurich Notebook.74 It was further developed in
1914 when Einstein began to analyze the covariance properties of the Entwurf field

73 See p. 798 for Besso’s statement of the argument.
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equations in terms of “justified” (“berechtigte”) transformations between “adapted”
(“angepasste”) coordinate systems (Einstein and Grossmann 1914b, 221).

When Einstein first explicitly introduced the distinction between “autonomous”
and “non-autonomous” transformations in his letter to Lorentz, the lack of covariance
of the Entwurf field equations had become something of an embarrassment for him.
He wrote:

But the gravitational [field] equations themselves unfortunately do not have the property
of general covariance. Only their covariance with respect to linear transformations is
guaranteed. The entire confidence one has in the theory, however, rests on the conviction
that acceleration of the frame of reference is equivalent to a gravitational field. Hence, if
not all sets of equations of the theory, hence also equations (18) [one of the forms in
which the “Entwurf” field equations are given in (Einstein and Grossmann 1913)], allow
other transformations besides linear ones, then the theory refutes its own starting point
and is left hanging in the air.75

After explaining the distinction between “autonomous” and “non-autonomous” trans-
formations in the next paragraph, he continued:

The existence of “autonomous” non-linear transformations [that preserve the form of the
“Entwurf” field equations] is the simpler possibility; but that possibility does not seem to
obtain, although I would not know how to prove this. The existence of “non-autono-
mous” non-linear transformations, however, already suffices to avoid a conflict a posteri-
ori with the equivalence hypothesis.76

This suggests that Einstein wanted to do for the Entwurf field equations what he had
done for several candidate field equations in the Zurich Notebook, viz. to check
whether they allow transformations to uniformly rectilinearly accelerated frames as
well as to uniformly rotating frames in the special case of Minkowski spacetime.
Hence, on 14 August 1913, Einstein was fully aware of the possibility that the
Entwurf field equations might not be invariant under autonomous transformations to
rotating coordinates, while still being invariant under non-autonomous transforma-
tions to rotating coordinates in the special case that the metric in the old coordinates
is the standard diagonal Minkowski metric.

74 See, e.g., p. 22L and p. 23R, discussed in “Commentary …” (in this volume), secs. 5.5.3 and 5.5.5,
respectively). For general discussion of “non-autonomous transformations” see “Commentary …” (in
this volume), the introduction to sec. 4.3.

75 “Aber die Gravitationsgleichungen selbst haben die Eigenschaft der allgemeinen Kovarianz leider
nicht. Nur deren Kovarianz linearen Transformationen gegenüber ist gesichert. Nun beruht aber das
ganze Vertrauen auf die Theorie auf der Überzeugung, dass Beschleunigung des Bezugssystems
einem Schwerefeld äquivalent sei. Wenn also nicht alle Gleichungssysteme der Theorie, also auch
Gleichungen (18), ausser den linearen noch andere Transformationen zulassen, so widerlegt die Theo-
rie ihren eigenen Ausgangspunkt; sie steht dann in der Luft.” Einstein to Lorentz, 14 August 1913
(CPAE 5, Doc. 467).

76 “Die Existenz “selbständiger” nicht linearer Transformationen ist die einfachere Möglichkeit; dies
scheint aber nicht zuzutreffen, ohne dass ich dies zu beweisen wüsste. Es genügt aber schon die Exi-
stenz “unselbständiger” nicht linearer Transformationen, um mit der Aequivalenzhypothese nicht
nachträglich in Konflikt zu geraten.” Ibid.
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Two days later, Einstein wrote to Lorentz again, telling him that the previous day
he had hit upon the argument from energy-momentum conservation that, he felt, made
it fully respectable that the Entwurf field equations appear to be invariant only under
(autonomous) linear transformations. The tone of this second letter is markedly differ-
ent from that of the first. The first letter, more than any other document I know of,
shows Einstein deeply troubled by the lack of general covariance of his field equa-
tions. The second shows him greatly relieved. This second letter concludes:

Only now does the theory please me, after this ugly dark spot seems to have been
removed.77

The darkest hour had been right before the dawn.
Einstein was probably quite happy to abandon his quest for non-autonomous non-

linear transformations leaving the Entwurf field equations invariant. What he conve-
niently neglected to mention in the first letter to Lorentz was that he had already tried
this strategy during his search for suitable field equations recorded in the Zurich
Notebook, and that despite extensive efforts it had never gotten him anywhere (see,
e.g., “Commentary …” (in this volume), sec. 4.3.1–4.3.278 and secs. 5.5.5–5.5.9). He
had now found an argument that seemed to show that invariance under autonomous
linear transformations was enough. The Entwurf field equations, he felt, no longer
needed to be invariant under non-autonomous transformations to rotating systems.79

77 “Erst jetzt macht mir die Theorie Vergnügen, nachdem dieser hässliche dunkle Fleck beseitigt zu sein
scheint.” Einstein to H. A. Lorentz, 16 August 1913 (CPAE 5, Doc. 470). Translation from (Norton
1984, sec. 5).

78 Einstein was quite happy to switch from looking for non-autonomous transformations under which

the expression  transforms as a tensor to finding a suitable generalization of this

expression that would transform as a tensor under ordinary autonomous transformations.
79 I can think of one other consideration that indicates that Einstein did not want to bother anymore with

non-autonomous transformations once he had found his argument from energy-momentum conserva-
tion. The argument supposedly restricts the covariance of the field equations to those transformations

preserving the form  of the law of energy-momentum conservation. Under Ein-

stein’s (erroneous) assumption that  has the same transformation character as , this law is

indeed invariant only under linear transformations as far as autonomous transformations are con-
cerned. But it might be invariant under non-linear non-autonomous transformations. In fact, it is pre-
cisely this possibility that Einstein exploited in (Einstein and Grossmann 1914b) and (Einstein
1914e), where the covariance properties of the Entwurf field equations are analyzed in terms of “justi-
fied” transformations between “adapted” coordinates. If we assume that Einstein in late 1913 still
remembered and believed the (erroneous) result he had recorded in the Zurich Notebook, viz. that

 for the rotation metric (see note 71 above), he would even have had an example of

such a non-linear non-autonomous transformation preserving the form of the equation

 viz. the transformation to rotating coordinates in the important special case

where the old metric in the old coordinates is the Minkowski metric in its standard diagonal form.
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The rotation metric no longer needed to be a solution. If Besso now told him that it
was not a solution, so be it.

There still seems to be one weighty objection to this reconstruction of events. If
the rotation metric was not a vacuum solution of the Entwurf field equations, then
Einstein’s hopes for a Machian account of Newton’s bucket experiment were dashed.
The Besso memo shows that even Besso clearly saw that implication. There is ample
contemporary evidence for Einstein’s Machian hopes for the Entwurf theory. And
Einstein’s recollections a few years later indicate that these Machian hopes became
especially important once he had convinced himself that generally-covariant field
equations were not to be had. In November 1916, Einstein wrote to Willem de Sitter:

Psychologically, this conception [of a full relativity of inertia] played an important role
for me, since it gave me the courage to continue to work on the problem when I abso-
lutely could not find covariant field equations.80 

In view of this letter, it is hard to believe that Einstein would have given up the hope
that his theory would provide a Machian account of the bucket experiment just when
he had come to accept that the covariance of the Entwurf field equations is extremely
limited. These considerations then would seem to rule out that, in August 1913, Ein-
stein would have accepted, even if only temporarily, that the rotation metric is not a
vacuum solution of the Entwurf field equations. Comparison of two letters to Mach,
however, one from June 1913 and one from December 1913, shows a remarkable
change in Einstein’s conception of what made his theory Machian. This change fits
exactly with the reconstruction given above of Einstein’s reaction to Besso’s claim in
the memo of August 1913.

First consider Einstein’s letter to Mach of June 1913. In this letter, as in the letter
from December 1913, Einstein acknowledged the inspiration he had drawn from
Mach’s work in formulating the Entwurf theory. If the theory’s prediction of the
bending of light could be confirmed during the solar eclipse of 1914,81 Einstein
enthusiastically told Mach, then

your brilliant studies about the foundations of mechanics receive […] beautiful confirma-
tion. For it necessarily follows [from the theory] that inertia has its origin in a form of
interaction between bodies, completely in the sense of your considerations about New-
ton’s bucket experiment.82

80 “Psychologisch hat diese Auffassung bei mir eine bedeutende Rolle gespielt; denn sie gab mir den
Mut, an dem Problem weiterzuarbeiten, als es mir absolut nicht gelingen wollte, kovariante Feldglei-
chungen zu erlangen.” Einstein to Willem de Sitter, 4 November 1916 (CPAE 8, Doc. 273). The letter
is Einstein’s first contribution to the famous Einstein–De Sitter debate. See the editorial note, “The
Einstein–De Sitter–Weyl–Klein Debate,” (CPAE 8, 351–357), for further discussion.

81 Einstein’s astronomer friend Erwin Freundlich was planning an expedition to the Crimea for this
purpose.

82 “erfahren Ihre geniale Untersuchungen über die Grundlagen der Mechanik […] eine glänzende Bestä-
tigung. Denn es ergibt sich mit notwendigkeit, dass die Trägheit in einer Art Wechselwirkung der Kör-
per ihren Ursprung hat, ganz im Sinne Ihrer Überlegungen zum Newton’sche Eimer-Versuch.”
Einstein to Ernst Mach, 25 June 1913 (CPAE 5, Doc. 448).
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Einstein went on to describe two concrete examples of effects illustrating the relativ-
ity of inertia, and thereby the Machian character of his theory. I already discussed the
second example, which is that of a rotating shell producing a Coriolis field. These
same examples are mentioned in the first of the two letters to Lorentz of August 1913
discussed above. In both letters, Einstein emphasized that the effects will be very
small. The relativity of inertia is also mentioned prominently in the two lectures of
fall 1913, the Frauenfeld lecture and the Vienna lecture (see Einstein 1913a, sec. 9;
1913b, p. 138; and 1914d, p. 290). In the Vienna lecture, though not in the Frauenfeld
lecture, Einstein once again emphasized that the effects will be small:

unfortunately, the effect one expects is so small that we cannot hope to detect it in terres-
trial experiments or in astronomy.83

My conjecture is that Einstein accepted in late 1913 that the relativity of inertia
effects predicted by the Entwurf theory, for all their importance from a conceptual
point of view, were too small to produce a full Machian account of the bucket experi-
ment. I want to suggest that he could accept this because of the argument from
energy-momentum conservation of August 1913. That argument, or so Einstein
thought, explains why the frame in which the bucket is rotating is privileged over the
frame in which the bucket is at rest.

This may sound like wild speculation but surprisingly strong evidence for this
conjecture comes from a second letter from Einstein to Mach of December 1913. Ein-
stein begins this letter in much the same way as he began his letter half a year earlier:

It pleases me enormously that the development of the theory reveals the depth and the
importance of your studies about the foundation of classical mechanics.84

Gone, however, are the references to the relativity of inertia “in the sense of [Mach’s]
considerations about Newton’s bucket experiment.” Einstein’s identification of what
makes his theory Machian has changed drastically:

For me it is an absurdity to ascribe physical properties to “space.” The totality of masses
generates a -field (gravitational field), which in turn governs the unfolding of all
events, including the propagation of light rays and the behavior of measuring rods and
clocks. Everything that happens is initially described in terms of four completely arbi-
trary spatio-temporal variables. If the conservation laws for momentum and energy are
to be satisfied, these variables then need to be specialized in such a way that only (fully)
[Einstein probably meant ‘arbitrary’; MJ] linear substitutions connect one justified frame
of reference to another. The frame of reference is, in a manner of speaking, tailored to the
existing world with the help of the energy law and loses its nebulous a priori existence.85

The important point is no longer that inertia comes out as an interaction between
masses and that Newton’s bucket experiment can be accounted for without invoking

83 “leider ist der zu erwartende Effekt so gering, daß wir nicht hoffen dürfen, ihn durch terrestrische Ver-
suche oder in der Astronomie zu konstatieren” (Einstein 1913a, 1261–1262).

84 “Es freut mich ausserordentlich, dass bei der Entwickelung der Theorie die Tiefe und die Wichtigkeit
Ihrer Untersuchungen über das Fundament der klassischen Mechanik offenkundig wird.” Einstein to
Ernst Mach, second half of December 1913 (CPAE 5, Doc. 495).
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absolute motion. Rather it is that the law of energy-momentum conservation now
explains why certain frames of reference are privileged. In other words, the argument
from energy-momentum conservation of 15 August 1913 not only made it possible
for Einstein to give up the Machian requirement that the rotation metric be a solution
of the gravitational field equations, it also supplied what Einstein saw as a perfectly
good alternative Machian feature of his theory!

I confess that it is not clear to me why Einstein ever felt that this was a satisfactory
solution to the problem of absolute space.86 Einstein’s answer to the question why cer-
tain frames of reference are privileged—if I understand the passage quoted above cor-
rectly—is that in those frames the law of energy-momentum conservation has a
particularly simple form. Is this really an answer or is it just a way of restating the ques-
tion? How does Einstein’s answer differ from the following “answer”? Inertial frames
are privileged because in those frames Newton’s second law takes the form .
That just side-steps the question what it is about those frames that is responsible for
Newton’s second law taking this form. In the end, of course, none of Einstein’s
attempts to make his theory Machian ever panned out, but in the case of the other
attempts it is at least clear how they could in principle have met the challenge of New-
ton’s bucket experiment. In this case, not even that much is clear, at least not to me.

The important point, however, in this context is that Einstein believed that with
his simple argument from energy-momentum conservation he had somehow solved
the thorny problem of absolute space. And this removes what seemed to be the one
strong objection to the scenario in which Einstein accepted in late 1913 that the rota-
tion metric is not a solution of the Entwurf equations.

Einstein’s satisfaction with this state of affairs was relatively short-lived. The sim-
ple argument from energy-momentum conservation of August 1913 was retracted in
print in (Einstein and Grossmann 1914b, 218, footnote). This paper was not published
until May 1914, but it was almost certainly completed by the time Einstein left Zurich
for Berlin in March 1914.87 As I pointed out in sec. 2, Einstein briefly outlined the
new treatment of the covariance properties of the Entwurf field equations of (Einstein

85 “Für mich ist es absurd, dem “Raum” physikalische Eigenschaften zuzuschreiben. Die Gesamtheit
der Massen erzeugt ein -Feld (Gravitationsfeld), das seinerseits den Ablauf aller Vorgänge, auch
die Ausbreitung der Lichtstrahlen und das Verhalten der Massstäbe und Uhren regiert. Das Geschehen
wird zunächst auf vier ganz willkürliche raum-zeitliche Variable[n] bezogen. Die müssen dann, wenn
den Erhaltungssätzen des Impulses und der Energie Genüge geleistet werden soll, derart spezialisiert
werden, dass nur (ganz) lineare Substitutionen von einem berechtigten Bezugssystem zu einem
andern führen. Das Bezugssystem ist der bestehenden Welt mit Hilfe des Energiesatzes sozusagen
angemessen und verliert seine nebulose apriorische Existenz.” Ibid. One might be tempted to read the
second sentence of this passage as an early statement of what later became “Mach’s principle” (Ein-
stein 1918), the requirement that the metric field be fully determined by matter. However, since the
Minkowski metric in its standard diagonal form is a vacuum solution of the Entwurf field equations,
the Entwurf theory certainly does not qualify as Machian by this criterion.

86 Einstein, like everybody else at the time, did not systematically make the distinction, at the heart of
the modern analysis of these issues (see Earman 1989), between the problem of motion (absolute ver-
sus relative) and the problem of space (substantival versus relational).
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and Grossmann 1914b) in a letter to Besso of early March 1914.88 In particular, Ein-
stein claimed that the rotation metric satisfies the condition formulated in that paper
for “adapted” coordinates. As a matter of fact, it does not (see Janssen 1999, fn. 47). If
Einstein explicitly checked this, he must have botched this calculation too. It is possi-
ble, however, that he reached his conclusion on the basis of more general consider-
ations. Such considerations can be found in a letter to Lorentz at the beginning of the
following year, January 1915. In this letter, Einstein claimed that the condition for
“adapted” coordinates puts no restrictions whatsoever on the state of motion of
allowed coordinate systems. Referring to secs. 12–14 of (Einstein 1914e), published
in November 1914, he explained how the condition for “adapted” coordinates
uniquely determines the coordinates inside some matter-free spacetime region 
once the coordinates on the region’s borders are specified. The letter then continues:

From what has been said it is then also clear that linear transformations belong to the
“justified” transformations. It is also clear that the state of motion of justified systems can
be chosen arbitrarily since the coordinates at the regions’ borders can be freely chosen;
one can easily verify this for special cases.89

Unfortunately, I do not understand Einstein’s argument, so I cannot pinpoint where it
fails. That it fails is clear from the fact that the rotation metric does not satisfy the
condition for “adapted” coordinates. The results in (Einstein 1914e) on which this
argument of January 1915 turns are a natural extension of the results reported in (Ein-
stein and Grossmann 1914b). So Einstein may well have hit upon this argument in
early 1914. Regardless, however, of how exactly Einstein convinced himself in early
1914 that the rotation metric is a vacuum solution of the Entwurf field equations after
all, it is clear that in doing so he essentially reverted to the position of the first of the
two letters to Lorentz of August 1913 discussed above. He believed that the Entwurf
field equations were invariant under a broad enough class of non-autonomous trans-
formations to satisfy the demands of the equivalence principle and the generalized
relativity principle.

At this juncture, an assumption I made earlier becomes crucial, viz. that Einstein
accepted the claim about rotation in the Besso memo without carefully checking it.
When in early 1914 his new approach indicated that the rotation metric is a vacuum
solution of the Entwurf field equations, Einstein either had forgotten about Besso’s

87 In June 1914, referring to (Einstein and Grossmann 1914b), Einstein wrote: “While still in Zurich I
found the proof of the covariance of the gravitational [field] equations. Now the relativity theory has
really been extended to arbitrarily moving systems” (“In Zürich fand ich noch den Nachweis der
Kovarianz der Gravitationsgleichungen. Nun ist die Relat[ivitäts]theorie wirklich auf beliebig
bewegte Systeme ausgedehnt.” Einstein to Wilhelm Wien, 15 June 1914 [CPAE 8, Doc. 14]).

88 The uncharacteristically lucid part of the draft of Besso’s reply is quoted on p. 805; the more typical
muddle-headed part on p. 796.

89 “Aus dem Gesagten ist dann auch klar, dass die linearen T[ra]nsformationen zu den “berechtigten”
gehören. Ebenso ist klar, dass der Bewegungszustand berechtigter Systeme willkürlich wählbar ist, da
die Koordinatenwahl an den Gebietsgrenzen frei ist; man kann sich dies an Spezialfällen leicht verge-
genwärtigen.” Einstein to H. A. Lorentz, 23 January 1915 (CPAE 8, Doc. 47).
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earlier calculations or assumed they must have been in error. In his letter to Besso of
March 1914, he did not refer to these calculations at all. Besso accepted the verdict
implied by this omission. In the draft of his reply, he modestly inquired whether the
new treatment gives the right answer for the centrifugal force.90 Theirs was not a
partnership of equals.

By convincing himself that the Entwurf field equations allow non-autonomous
transformations to rotating coordinates in Minkowski spacetime, Einstein also con-
vinced himself that the Entwurf theory vindicates the Machian account of Newton’s
bucket experiment. The latter claim is featured prominently in what was clearly
meant to be the definitive exposition of the Entwurf theory submitted to the Prussian
Academy on 29 October 1914. In the introduction, Einstein wrote:

Let … K be a justified coordinate system in the Galilean-Newtonian sense, and let K′ be
a coordinate system rotating uniformly with respect K. In that case there will be centrifu-
gal forces acting on masses at rest with respect to K′, whereas there will be no such
forces on masses at rest with respect to K. Newton already considered this proof that one
has to look upon the rotation of K′ as an “absolute” rotation, and that one is not equally
justified in treating K′ as being “at rest” as one is with K. This argument, however—as
has been shown in particular by E. Mach—is not valid. We do not necessarily have to
attribute the existence of centrifugal forces to the motion of K′; we can just as well
attribute them to the average rotational motion of the ponderable distant masses of the
surroundings with respect to K′, where we treat K′ as being “at rest.”91

So, by the end of 1914, any doubts Einstein might have had concerning rotation had
completely evaporated.92

In March 1915, the Italian mathematician Tullio Levi-Civita produced a coordi-
nate transformation that turned the Minkowski metric in its standard diagonal form
into a metric field that is no longer a vacuum solution of the Entwurf field equations,
even though the transformation was specifically constructed in such a way that it was
“justified” (“berechtigt”) according to Einstein’s own criterion for “adapted”
(“angepasste”) coordinate systems.93 Einstein had claimed that this condition is both
necessary and sufficient for coordinates to be adapted to a given metric field. Einstein
tried to get around Levi-Civita’s counter-example, but Levi-Civita remained uncon-

90 See the quotation on p. 796 from Besso to Einstein, draft, 20 March 1914.
91 “Es sei … K ein im Galilei-Newtonschen Sinne berechtigtes Koordinatensystem, K′ ein relativ zu K

gleichförmig rotierendes Koordinatensystem. Dann wirken auf relativ zu K′ ruhende Massen Zentrifu-
galkräfte, während auf relativ zu K ruhende Massen solche nicht wirken. Hierin sah bereits Newton
einen Beweis dafür, daß man die Rotation von K′ als eine »absolute« aufzufassen habe, daß man also
K′ nicht mit demselben Rechte wie K als »ruhend« behandeln könne. Dies Argument ist aber—wie
insbesondere E. Mach ausgeführt hat—nicht stichhaltig. Die Existenz jener Zentrifugalkräfte brau-
chen wir nämlich nicht notwendig auf eine Bewegung von K′ zurückzuführen; wir können sie viel-
mehr ebensogut zurückführen auf die durchschnittliche Rotationsbewegung der ponderablen fernen
Massen der Umgebung in bezug auf K′, wobei wir K′ als »ruhend« behandeln” (Einstein 1914e,
p. 1031).

92 It is very telling that the title of (Einstein 1914e) proudly announces a “general” (“allgemeinen”) the-
ory of relativity, whereas the titles of (Einstein and Grossmann 1913; 1914b; and Einstein 1914c) had
more modestly announced only a “generalized” (“verallgemeinerten”) theory of relativity.
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vinced, and the exchange between the two men about the covariance properties of the
Entwurf field equations ended in a stalemate (see Einstein to Tullio Levi-Civita,
5 May 1915 [CPAE 8, Doc. 80]). It appears that Einstein remained supremely confi-
dent of his theory, but perhaps Levi-Civita’s criticism got under his skin more than he
cared to admit. There is no indication, however, that Einstein expressed any doubts
about his theory in his Wolfskehl lectures in Göttingen in the summer of 1915. And
although he preferred not to include any papers on the Entwurf theory in a proposed
new edition of the Teubner anthology on the principle of relativity, this does not seem
to have been because of any doubts concerning the theory (see Einstein to Arnold
Sommerfeld, 15 July 1915 [CPAE 8, Doc. 96]).

Still, at some point during the late summer of 1915, Einstein must have gotten
sufficiently worried about his theory to subject it to a test the outcome of which, be it
positive or negative, he had essentially taken for granted for two years: is the rotation
metric a vacuum solution of the Entwurf field equations or not? It could very well be,
as Jürgen Renn has suggested to me, that Besso brought up the problem of rotation
again during Einstein’s visit to Zurich in September 1915 and that this is what finally
made Einstein decide to repeat the calculation carefully. Despite the early warning
signs recorded in the Besso memo two years earlier, one can understand the shock
that comes through in the letter to Freundlich in which Einstein reported that the rota-
tion metric is definitely not a solution.

This is the most convincing reconstruction of Einstein’s struggles with rotation in
the period 1913–1915 that I can come up with given all available source material. In
(Janssen 1999), I argued that Einstein probably believed throughout the life span of
the Entwurf theory that the rotation metric is a vacuum solution of its field equations.
I now believe that there is strong evidence that there was a period in late 1913–early
1914 when Einstein believed that the rotation metric is actually not a solution. The
comments about rotation in the Besso memo constitute the most important part of
this evidence, but striking corroborating evidence comes from the comparison of Ein-
stein’s letters to Mach of June and December 1913. 

In the reconstruction given in this section, one feature of the reconstruction I gave
in (Janssen 1999) gets strongly amplified. One clearly sees a certain opportunistic
streak in Einstein’s modus operandi. In (Janssen 1999), I argued that Einstein on at
least two occasions94 missed the problem of rotation in his Entwurf theory because
he was too convinced that his calculations would bear out his stable expectation that
the rotation metric would be a vacuum solution of the Entwurf field equations. In the
new reconstruction, things get worse in two (rather different) ways. 

First, Einstein repeatedly failed to check carefully whether his theory fulfilled his
expectations even though these expectations changed over time. In June 1913 and in

93 Tullio Levi-Civita to Einstein, 28 March 1915 (CPAE 8, Doc. 67). For a discussion of this exchange
between Einstein and Levi-Civita, see (Cattani and De Maria 1989). This specific result is discussed
on pp. 189–190.

94 In June 1913, when he did the calculations on pp. 41–42 of the Einstein-Besso manuscript, and in March
1914, when he checked whether the rotation metric satisfies the condition for adapted coordinates.
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March 1914 he expected the rotation metric to be a vacuum solution of the Entwurf
field equations, but in August 1913 he expected it not to be. Yet, in none of these
cases did he take the trouble to do a relatively simple calculation to establish once
and for all whether the rotation metric is a solution or not. 

Secondly, Einstein drastically changed the formulation of what would make his
theory Machian according to what he thought the Entwurf theory could deliver. When
he was under the impression that the rotation metric was a vacuum solution of the
field equations, he claimed that rotating and non-rotating frames of reference are
equivalent in his theory. When he was under the impression that it was not, he
claimed that the theory explained why rotating and non-rotating frames of reference
are not equivalent. I am not saying that this was an unreasonable thing to do. On the
contrary, it would have been foolish for Einstein to hold on stubbornly to the letter of
his heuristic requirements if he felt that an otherwise attractive theory simply lacked
the resources to meet this or that requirement. Creative scientists may need a healthy
dose of opportunism. We shall see more manifestations of this trait of Einstein when
we turn to the hole argument in the next section.95

4. THE BESSO MEMO AND THE HOLE ARGUMENT

We now finally get to the most intriguing passage of the Besso memo, the bottom half
of the second page, where in three short paragraphs we find, first, the earliest extant
version of the hole argument, second, a promising proposal for an escape from the
argument, and, third, a brusque rejection of this escape. A facsimile reproduction of
this passage can be found in Fig. 2. The first of the three paragraphs reads:

The requirement of 〈general〉 covariance of the gravitational equations under arbitrary
transformations cannot be imposed: if all matter 〈is given〉 were contained in one part of
space and for this part of space a coordinate system [is given], then outside of it the coor-
dinate system could still 〈essentially〉 except for boundary conditions be chosen arbi-
trarily, 〈through which the  arbitrarily〉 so that a unique determinability of the ’s
cannot be obtained. 96

In essence, this is (a qualitative description of) the hole argument: if the field equa-
tions for the metric field are generally covariant, then a given matter distribution does
not uniquely determine the metric field in matter-free regions. It is not essential to the

95 The two opportunistic moves distinguished above nicely illustrate an insightful distinction introduced
in (Earman and Eisenstaedt 1999, 230) and amplified in (Kennefick 2005, 119–120). There are (at
least) two kinds of opportunism: the garden variety—what Earman and Eisenstaedt call “unscrupu-
lous opportunism”—and a much rarer form, which they call, using a beautiful oxymoron, “principled
opportunism.” Einstein, they argue and Kennefick concurs, was the master of the latter. Opportunism
comes into play when there is a conflict between a principle (e.g., relativity of motion) and some con-
crete result (e.g., the rotation metric is not a solution of the vacuum Entwurf field equations). Faced
with such a conflict, the unscrupulous opportunist changes the principle (as Einstein did when he
redefined what makes a theory Machian), whereas the principled opportunist finds ways to ignore the
result (as Einstein did with the troublesome rotation metric). I am grateful to Dan Kennefick for mak-
ing me appreciate this point.
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argument which regions contain matter and which regions do not. It is also not essen-
tial whether the argument is phrased in terms of regions of four-dimensional space-
time or in terms of regions of three-dimensional space. In the published versions of
the hole argument, there is a finite matter-free region of spacetime—the “hole” from
which the argument derives its name97—while there can be matter everywhere else.98

In the version of the Besso memo it is just the other way around. There is a finite
region of space in which all matter is concentrated while there is no matter anywhere
else. This, of course, also divides spacetime into regions with and without matter. So,
what Besso describes could be called an inverted hole argument or a hole argument
without a hole. It should not be surprising that the hole argument is not yet stated in
its canonical form given that Einstein only found it somewhere between 16 August
1913, when he reported the argument against general covariance from energy-
momentum conservation to Lorentz, and 28 August 1913, the date of the Besso
memo.

The formulation of the hole argument in the Besso memo suggests that the argu-
ment originated in concerns about the uniqueness of the metric field of the sun, which
Einstein and Besso calculated in their attempt to account for the perihelion anomaly
on the basis of the Entwurf theory. In his summary of the iterative approximation pro-
cedure used to find the static spherically symmetric solution of the Entwurf field
equations to represent the metric field of the sun, Besso explicitly raised the issue of
the solution’s uniqueness: “Is the static gravitational field [. . .] a particular solution?
Or is it the general solution expressed in particular coordinates?” (CPAE  4, Doc. 14,
[p. 16]).99

The second paragraph of the passage from the Besso memo is the one quoted in
the introduction. It proposes an escape from the hole argument:

It is, however, not necessary that the  themselves are determined uniquely, only the
observable phenomena in the gravitation space, e.g., the motion of a material point,
must be.100 

The more cryptic third paragraph, appended to the second, purports to show why the
escape fails:

96 “Die Anforderung der 〈allgemeinen〉 Covarianz der Gravitationsgleichungen für beliebige Transfor-
mationen kann nicht aufgestellt werden: wenn in einem Teile des Raumes alle Materie 〈gegeben ist〉
enthalten wäre und für diesen Teil ein Coordinatensystem, so könnte doch ausserhalb desselben das
Coordinatensystem noch, 〈im wesentlichen〉 abgesehen von den Grenzbedingungen, beliebig gewählt
werden, 〈wodurch die  beliebig eine〉 so dass eine eindeutige Bestimmbarkeit der  s nicht eintreten
könne.”

97 I know of only one place where Einstein explicitly used the phrase “hole argument”
(“Lochbetrachtung”) in writing and that is in his letter to Besso of 3 January 1916 (CPAE 8,
Doc. 178). In the first two published versions of the argument, the letter ‘L,’ which presumably stands
for “Loch” (Stachel 1989, 71), is used to designate the matter-free region (Einstein and Grossmann
1914a, 260; 1914b, 217–218). In the last two published versions, the matter-free region is designated
by ‘ ’ (Einstein 1914c, 178) and by ‘ ’ (Einstein 1914e, 1067), respectively.
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Of no use, since with 〈the〉 a solution a motion is also fully given. If in coordinate system
1, there is a solution , then this same construct is also a solution in 2,   how-
ever, also a solution in 1.101

As I explained in sec. 2 (see p. 803–805), I am assuming that the Besso memo is
the record of discussions between Einstein and Besso during a visit by the latter to
Zurich in late August 1913. On this assumption, the first of the three paragraphs is
most naturally understood as Besso’s formulation of an embryonic version of the hole
argument that Einstein had just told him about; the second as giving Besso’s own pro-
posal for an escape from the argument; and the third as giving (Besso’s recollection
of) Einstein’s negative response to this proposal. As I pointed out in the introduction,
Besso’s proposal does not seem to be all that different from the point-coincidence
argument with which Einstein himself explained the failure of the hole argument over
two years later in letters to Ehrenfest and Besso. The main task of this section there-
fore will be to make it plausible that Einstein was aware of the escape proposed by
Besso as early as August 1913 and nonetheless continued to trot out the hole argu-
ment for the next two years.

Before I get to this task, I want to point out that the passage on the hole argument
in the Besso memo, like the passage on rotation discussed in sec. 3, supports the
existing reconstruction of events in at least one important respect even though it may
undermine it in others.102 The last sentence of the third paragraph provides strong
support for the interpretation of the first three published versions of the hole argu-
ment as cryptic statements of the fourth103 (Norton 1984, 131).104

98 Einstein’s hole argument is not quite the same as the argument advanced under the same name in
(Earman and Norton 1987). Discussions of the latter account for a disproportionate fraction of the
recent literature in philosophy of space and time. In one of the more interesting early contributions to
this debate, Tim Maudlin gave a concise statement of how Einstein’s argument differs from Earman
and Norton’s: “the question [in Einstein’s case] is not whether the entire state of the universe outside
the hole determines the state inside [as in Earman and Norton’s case]. Rather the question is whether
the stress-energy tensor […] defined everywhere determines the metric […] everywhere” (Maudlin
1990, 556). Maudlin goes on to suggest that Einstein was not so much worried about a conflict
between general covariance and determinism (which is the focus of Norton and Earman’s hole argu-
ment), but rather about a conflict between general covariance and Mach’s principle, the requirement
that matter fully determines the metric field. What militates against Maudlin’s suggestion is that this
requirement was not formulated until three and a half years later in Einstein to Willem de Sitter,
24 March 1917 (CPAE 8, Doc. 317) and was only published in (Einstein 1918). In late 1913, as we
saw in sec. 3, Einstein still articulated his Machian intuitions in terms of the relativity of inertia. Ein-
stein moreover explicitly introduced the final version of the hole argument in terms of a conflict
between general covariance and the “law of causality” (“Kausalgesetz,” Einstein 1914e, 1066). It is
true that Maudlin only proposed his Machian interpretation for the first three published versions of the
hole argument, which he sharply distinguished from the fourth, but the Besso memo, as we shall see,
strongly suggests that there is no such distinction and that the first three versions are just cryptic for-
mulations of the fourth. Despite these reservations, I find it an appealing suggestion that the worries
about determinism and causality that are behind Einstein’s hole argument have strong Machian over-
tones. This same suggestion was made in (Hoefer 1994).

99 “Ist das stat Schwerefeld [. . .] ein spezielles? Oder ist es das allgemeine, auf spec. Coordinaten
zurück geführtes?” I owe this observation about the origin of the hole argument to Jürgen Renn.

K1 K2; K2,
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To make good on this claim, I need to remind the reader of some of the fine print
of the argument. It will be convenient to do so for the canonical form of the argument,
rather than for the “inverted” form in the Besso memo. Consider two coordinate sys-
tems—one with coordinates , the other with coordinates —that differ only in
some finite matter-free region of spacetime (“the hole”). It follows that the compo-
nents of the energy-momentum tensor, which describe the matter distribution, are
given by the exact same functions of the coordinates in these two coordinate systems:

.105 Suppose we have some local field equations setting some
differential operator acting on the metric tensor equal to the energy-momentum ten-
sor.106 Suppose  is a solution of these field equations in the unprimed coordi-
nate system for the matter distribution . If the field equations are invariant
under the transformation from  to , as would be case for generally-covariant
field equations, then  will be a solution for  in the primed coordi-
nate system. Inside the hole, 107 even though 
everywhere.

The standard interpretation of the hole argument before the work of John Stachel
and John Norton in the 1980s, was that Einstein thought that the inequality

 amounted to indeterminism and that because of this the field equa-
tions could not be allowed to be invariant under such transformations as the one from

 to  (see, e.g., Pais 1982, 222). Needless to say, this interpretation is not very

100 “Es ist nun allerdings nicht nötig, dass die  selbst eindeutig bestimmt sind, sondern nur die im Gra-
vitationsraum beobachtbaren Erscheinungen, z.B. die Bewegung des materiellen Punktes, müssen es
sein.”

101 “Nützt nichts, denn durch 〈der〉 eine Lösung ist auch eine Bewegung voll gegeben. Ist im Coordina-
tensystem 1 eine Lösung , so ist dieses selbe Gebilde auch eine Lösung in 2, ;  aber auch
eine Lösung in 1.” The deleted fragment at the bottom of the page (“〈Es h〉”) is the beginning of the
(deleted) first sentence of the third page: “〈After all, it is only called covariance, not invariance of the
gravitational [field] equations!?〉” (“〈Es heisst aber auch bloss Covarianz, nicht Invarianz, der Grav.
gl.!?〉”).

102 In the case of rotation, the Besso memo provided strong support for my earlier conjecture that Ein-
stein used his iterative approximation procedure to check whether the rotation metric is a vacuum
solution of the Entwurf field equations in order to interpret the inertial forces of rotation as gravita-
tional forces due to distant rotating masses. At the same time, it seriously undermined my earlier
assumption that from June 1913 till the end of September 1915 Einstein never wavered in his belief
that the rotation metric to be a vacuum solution of the Entwurf field equations.

103 See note 97 for detailed references to all four versions.
104 Even in (Stachel 1989), the possibility is left open that the fourth version “may represent a significant

evolution in Einstein’s thinking about the “hole” argument” (ibid., 72).
105 Let me state this equality somewhat more precisely with the help of some modern terminology. At

every point p of the manifold covered by two maps—one with coordinates , the other with coordi-
nates —the components  at p in -coordinates are equal to the components of  at p in

-coordinates. A more explicit form of the equality would be . For points p
outside and on the edge of the hole, the equality holds because . For points p inside the
hole, the equality holds, even though , simply because .

106 It is important for the hole argument to go through that the equations always set quantities evaluated
at the same point equal to one another: hence the restriction to local field equations.
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flattering to Einstein. It accuses him of mistaking different coordinate representations
of one and the same field configuration for physically distinct field configurations.
Only the last of the four published versions of the hole argument, however, unambig-
uously rules out this unkind reading. 

In the fourth version, Einstein explicitly added an extra step, making the argument
much more interesting. If  is a solution for  in the primed coordi-
nates, then  is a solution for  in the unprimed coordinates.
After all, the functions  will be a solution of the local field equations no mat-
ter whether we read its arguments as primed or as unprimed coordinates. Notice that
Einstein has now generated two metric fields,  and , expressed in the
same coordinates, that differ inside the hole, even though they are both solutions of
the field equations for the same matter distribution .108 In other words, the
fourth version of the hole argument explicitly involves an active point transformation
rather than just a passive coordinate transformation. It was in order to avoid the kind
of indeterminism that seems to come out of these active point transformations—and
not to avoid the completely innocuous non-uniqueness of the metric field’s coordi-
nate representation—that Einstein wanted to rule out field equations that are invariant
under transformations such as the one from  to  used in the hole construction.

The last sentence of the passage on the hole argument in the Besso memo shows
that the crucial extra step of the fourth published version of the argument was there
from the very beginning. Let me quote this sentence again, this time adding some of
the notation introduced above (but suppressing all indices) to bring out the point
more clearly:

If in coordinate system 1 [with coordinates ], there is a solution  [i.e., ], then
this same construct [modulo a coordinate transformation] is also a solution in [coordinate
system] 2 [with coordinates ],  [i.e., ]; , however, [is] also a solution in
1 [i.e., ]

So already in August 1913, Einstein went through the full sequence “  → 
→ ,” which only makes sense if he wanted to argue against generally-covariant
field equations on the basis of the indeterminism lurking in the inequality

. This makes it extremely unlikely that when he subsequently published
the argument he would stop at  and base his argument on the trivial inequality

. The Besso memo therefore strongly suggests that the first three pub-
lished versions of the hole argument are no different from the fourth, except that they
were stated much more cryptically.

I now turn to the central question of this section. Why did Einstein reject Besso’s
escape from the hole argument in August 1913? Given the reconstruction in sec. 3 of

107 More explicitly, for points p in the overlap of the -map and the -map, 
(cf. note 105).

108 It is helpful to think in somewhat more intuitive terms of how Einstein’s two-step procedure changes
the situation inside the hole. First, the values  are transformed to new values  for every point
inside the hole. Then these new values are redistributed over the points in the hole.
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Einstein’s struggles with rotation during this same period, an easy answer to this
question readily suggests itself. We could simply invoke Einstein’s opportunistic
streak again. The story would then go something like this.

In the fall of 1913, about the last thing Einstein wanted was an escape from the
hole argument. His letters to Lorentz of 14 August and 16 August 1913, discussed on
pp. 810–813 above, show how in two short days he went from grave concern, thinking
that any acceptable field equations had to be of broad covariance, to great relief, think-
ing that energy-momentum conservation restricts the covariance of the field equations
to general linear transformations. The hole argument dovetailed very nicely with this
argument from energy-momentum conservation.109 As a result, Einstein was proba-
bly, shall we say, less than receptive to Besso’s suggestion shortly afterwards that the
hole argument might not rule out generally-covariant field equations after all.110

Two years later, the story continues, the situation was very different. In November
1915, Einstein replaced the Entwurf field equations by generally-covariant ones. Yet,
in the relevant publications one searches in vain for an explanation of what is wrong
with the hole argument. Einstein only offered such an explanation about a month later
when pressed on the issue in correspondence with Ehrenfest and Besso. Given that
Einstein at this point wanted to dispose of the hole argument, one can understand why
he now endorsed essentially the same escape that he had rejected two years earlier,
when the conclusion of the hole argument had been more congenial to him.

The basic presumption in this reconstruction, in which expediency is the sole
determining factor, is that the escape proposed in the Besso memo is very close to the
escape based on the point-coincidence argument. Besso argued that only wordlines
need to be determined uniquely. Einstein’s minor emendation was to replace ‘world-
lines’ by ‘intersections of worldlines.’ The step from one to the other, however, is per-
haps not as trivial as it may appear to be at first sight. Taking my inspiration from the
debate over the hole argument in the recent philosophy of space and time literature
(see note 98), I will argue that it may in fact have been a very significant step. The
“Of no use”-comment with which Besso’s escape is rejected in the memo can then be
seen as a serious objection, which can be answered only when point coincidences,
i.e., intersections of wordlines, are substituted for worldlines. There is strong evi-
dence that Einstein got the notion of point coincidences from (Kretschmann 1915),
which he probably read shortly after it appeared in late 1915 (Howard and Norton
1993, 52–55). On this reconstruction then, Einstein did not have the resources in
August 1913 to overcome what in the unkind glare of hindsight looks like a lame
objection to a perfectly viable escape from the hole argument. Pursuing this line of
thought, one arrives at an answer to the question why Einstein rejected Besso’s
escape from the hole argument in 1913 that does not involve any opportunism at all.

109 Cf., e.g., the passage from a letter to Ehrenfest of November 1913 quoted on p. 801.
110 It would not be the last time that Einstein overhastily rejected a viable escape from the hole argument.

The same thing happened in the fall of 1915 in correspondence with the Göttingen mathematician
Paul Hertz. For a detailed reconstruction of this episode, see (Howard and Norton 1993).



WHAT DID EINSTEIN KNOW AND WHEN DID HE KNOW IT? 825

Using the language of modern differential geometry,111 one can say that a metric
field, by assigning metrical properties to all points of the manifold, “dresses up” the
“bare” manifold to become a spacetime. Before the manifold acquires it spatio-tem-
poral properties from geometrical object fields such as the metric or the affine con-
nection, it is not really a spacetime at all. Now two solutions,  and , of
some generally-covariant field equations—where  is generated from 
through Einstein’s hole construction—dress up the bare manifold differently. Sup-
pose  dresses up the bare manifold points p and q inside the hole to become
the spacetime points P and Q connected by a timelike geodesic. The metric field

 will (in general) dress up p and q to become two different spacetime points
that (in general) will not be connected by a timelike geodesic. So, if bare manifold
points can be individuated independently of the metric field,  and 
give different geodesics.112 The antecedent of this conditional expresses a strong
form of spacetime substantivalism. Given his Leibnizian-Machian relationist lean-
ings, Einstein would of course have rejected such substantivalism, had he recognized
it. But that recognition did not come until late 1915. So the above does provide us
with a way to make sense of his comment in 1913 that Besso’s escape fails “since
with a solution a motion is also fully given.” Since, on the tacit substantivalist
assumption spelled out above,  and  give different geodesics, gener-
ally-covariant field equations do not seem to determine particle trajectories uniquely,
just as they do not seem to determine the metric field uniquely.

The problem disappears the moment we accept that bare manifold points cannot
be individuated independently of the metric field. Both  and  then turn
the bare manifold into the same spacetime. It does not matter that  dresses up
the bare manifold points p and q to become the spacetime points P and Q connected
by a timelike geodesic, whereas  will dress up some other bare manifold
points r and s to become those same spacetime points P and Q. The bare manifold
points p, q, r, and s only get their identity by becoming the spacetime points P and Q.
The last time I checked, it was still an open question among philosophers of space
and time whether this is a philosophically coherent account of identity and individua-
tion.113 But philosophical qualms aside, the above does seem to capture Einstein’s
response to the hole argument in his letters to Ehrenfest and Besso in December
1915–January 1916.114 

111 I will phrase the argument using the kind of language that is used in discussions of the hole argument
in modern philosophy of space and time. I am relying in particular on chap. 9 of (Earman 1989) on the
hole argument, and on—various incarnations of—(Stachel 1993).

112 For example,  and  may have a timelike geodesic that is the same in both solutions
outside the hole but then splits into two different ones inside the hole.

113 See, e.g., (Earman 1989, 196–199; Butterfield 1989, 21; and Maudlin 1990, 539). The basic problem
is how to strike a balance between “thisness” and “suchness” in one’s philosophical account of iden-
tity. In this area, Maudlin argued, Einstein could have learned a thing or two from Aristotle. Both Ear-
man and Butterfield turn to more recent work, viz. (Adams 1979), for help with this difficult
philosophical problem.
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The point-coincidence argument plays an important role in these letters. It is easy
to see why. Curves in the -coordinate system representing geodesics will be differ-
ent inside the hole, depending on whether one uses  or  to dress up the
manifold with its spatio-temporal properties. By focusing on intersections of these
geodesics (i.e., on point coincidences), however, one easily sees that there will be no
observable differences. There is a one-one correspondence between the curves repre-
senting the geodesics in the picture based on  and the curves representing the
geodesics in the picture based on . One picture can be obtained from the
other by a process of continuous deformation that preserves all point coincidences.
Such point coincidences, Einstein suggested, exhaust the empirical content of the the-
ory.115 In an often reproduced diagram in his letter to Ehrenfest of 5 January 1916,
Einstein illustrated this state of affairs with an example of null-geodesics originating
from a star, going through an aperture, and then hitting a photographic plate. These
considerations show that the metric fields  and  are empirically fully
equivalent. Ontologically one still has indeterminism, but of an epistemologically
totally harmless variety. If one rejects the tacit assumption from which the hole argu-
ment ultimately derives its apparent force (i.e., the assumption that bare manifold
points have their identities independently of the geometrical object fields responsible
for their spatio-temporal properties), the ontological indeterminism also disappears.

Given that Einstein did not have the notion of point coincidences in August 1913,
one can understand why it would not have been easy for him to answer his own
objection to Besso’s proposed escape from the hole argument, even if he had tried.
Given that the conclusion of the hole argument suited him just fine at the time, he
probably did not try very hard. I therefore believe that the “Of no use”-comment in
the Besso memo reflects both a genuine difficulty that Einstein saw in Besso’s pro-
posal and a certain impatience with Besso’s criticism of a new and promising way to
justify the limited covariance of the Entwurf field equations. In other words, I believe
that the most plausible reconstruction of Einstein’s dismissal of Besso’s proposed
escape from the hole argument is obtained by recognizing both the opportunistic ele-
ment and the important conceptual gap between Besso’s suggestion of 1913 and Ein-
stein’s resolution of the hole argument in late 1915.

For the record, I note that the notion of point coincidences is completely absent
from the 1913–1914 portion of the new Besso material, whereas it is mentioned
prominently on one of the pages from 1916. On the third page of the draft of his essay
“The Relativity Principle in an Epistemological Formulation” (cf. pp. 790–791),
Besso wrote in the margin: 

114 See note 13 for exact references. These letters are quoted and commented on at length in (Stachel
1989, 86–88; Norton 1987, 168–184; and Howard 1999, 467–471). There is no need to quote them
again here. It suffices to say that I subscribe to the view, shared by these three authors, that the point-
coincidence argument should be seen not as signalling a retreat on Einstein’s part to crude verifica-
tionism but as a vehicle for individuating spacetime points.

115 The proper length of the sections of geodesics between corresponding point coincidences will, of
course, also be the same in the two pictures. 
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What happens at the same place and at the same time—the spatiotemporal coinci-
dence〈s〉—is the basic element of this kinematical world. ‘at the same time and place’
has absolute meaning; ‘at the same time’ or ‘at the same place’ alone do not.116

The reconstruction given above suggests that the notion of point coincidences was
crucial to Einstein’s resolution of the hole argument in late 1915. Kretschmann’s
paper, from which he presumably got this notion, must have come as a godsend. As
was pointed out in (Howard and Norton 1993, 54): “What is extremely suggestive is
that Kretschmann’s paper appeared in an issue of the Annalen der Physik that was
distributed on December 21, 1915, five days before the earliest of the surviving letters
in which Einstein articulates the point-coincidence argument, his letter to Ehrenfest
of December 26.” It is true that Einstein had already made statements, both in print
and in correspondence, about how his new generally-covariant theory robbed space
and time of the last remnant of objective reality.117 I think it is a mistake though to
read the denial of the sort of spacetime substantivalism that gives the hole argument
its apparent force into these statements.118 They are much more naturally understood,
I believe, in the light of Einstein’s Machian commitments. Einstein thought that gen-
eral covariance automatically meant full relativity of motion, an illusion he was dis-
abused of sometime in 1916.119 As late as July 1916, he still believed, for instance,
that general relativity, simply by virtue of its generally-covariant field equations,
finally provided the Machian account of rotation that had eluded him in the end with
the Entwurf theory.120 In November 1915 Einstein may have had some vague ideas
about how to resolve the hole argument, but I very much doubt that he had articulated
these ideas before Ehrenfest and Besso started pressing him on the issue or that he
would have been able to articulate them had not Kretschmann’s paper fallen into his
lap at exactly the right time. If Einstein already had a fully worked-out escape from
the hole argument when he replaced the Entwurf field equations by generally-covari-
ant ones, it becomes hard to understand why he did not even mention the existence of
such an escape in his papers of November 1915.

So Einstein published generally-covariant field equation without knowing exactly
what was wrong with an argument that he had meanwhile published four times and

116 “Was am gleichen Orte und zur gleichen Zeit eintrifft—〈die〉 der zeiträumliche Coinzidenz〈en〉—ist
das Grundelement dieser kinematischen Welt. Gleichzeitortlich hat absoluten Sinn; gleichzeitig
allein, oder gleichortig allein hat keinen”

117 In the introduction of the paper on the perihelion motion presented on 18 November 1915, Einstein
wrote about the assumption of general covariance “by which time and space are robbed of the last
trace of objective reality” (“durch welche Zeit und Raum der letzten Spur objektiver Realität beraubt
werden,” Einstein 1915b, 831). In a letter to Schlick, he again wrote about general covariance that
“[t]hereby time and space lose the last vestige of physical reality” (“Dadurch verlieren Zeit & Raum
den letzter Rest von physikalischer Realität.” Einstein to Moritz Schlick, 14 December 1915 [CPAE 8,
Doc. 165]).

118 This interpretation is implied in (Stachel 1989, sec. 6).
119 See the editorial note, “The Einstein–De Sitter–Weyl–Klein Debate” (CPAE 8, 351–357), for further

discussion. Cf. also note 86 above.
120 See the letter cited in note 66.
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according to which generally-covariant field equations are physically unacceptable.
On the face of it, this looks like another blatantly opportunistic move. Given that Ein-
stein knew that Hilbert was hot on his trail, such opportunism would even be under-
standable. As in the case of his response to Besso’s proposed escape in 1913,
however, opportunism is not the whole story. Einstein may in fact have had good rea-
son to believe that the hole argument had to be wrong by the time he published (Ein-
stein 1915a), even if he could not quite put his finger yet on exactly where it went
wrong.

This possibility is suggested by the close connection between the hole argument
and so-called “coordinate restrictions.”121 This connection was first made by John
Norton, who conjectures that the same sort of spacetime substantivalism that Einstein
tacitly assumed in the hole argument was also responsible for Einstein’s use of coor-
dinate restrictions rather than coordinate conditions in the Zurich Notebook.122 It is
my belief that Einstein used coordinate restrictions in the Zurich Notebook simply
because he did not yet have the modern understanding of coordinate conditions. No
further explanation is needed. Consequently, I am skeptical about Norton’s conjec-
ture. It does suggest, however, that Einstein may well have realized something had to
be wrong with the hole argument once he made the transition from coordinate restric-
tions to coordinate conditions.

A coordinate condition in the modern sense picks out (at least) one representative
of each equivalence class of metric field configurations. Two metric field configura-
tions are equivalent if they are merely different coordinate representations of what
physically is one and the same field configuration. I want to emphasize two features
of such coordinate conditions. First, a good coordinate condition picks a representa-
tive of each equivalence class of metric field configurations, no matter whether that
field configuration is allowed by the field equations or not. It is not the job of the
coordinate condition to decide which field configurations are allowed and which ones
are not. That is the job of the field equations. Secondly, different coordinate condi-
tions can be used for different problems. For example, the coordinate condition we
use to show that the field equations have a sensible Newtonian limit need not be the
same as the coordinate condition we use in deriving the exact solution for the case of
a point mass.

The Zurich Notebook contains many examples of conditions that, at first sight,
look like coordinate conditions. The role of these “coordinate conditions,” however,
is not clearly separated from the role of the field equations. Moreover, the freedom to
apply different coordinate conditions in different contexts is not recognized. In sev-
eral cases, Einstein rejected some candidate field equations because the “coordinate
condition” used in showing that the equations had a sensible Newtonian limit ruled
out, for example, the rotation metric. As these two observations illustrate, Einstein

121 For discussion of the difference between such coordinate restrictions and coordinate conditions in the
modern sense, see also “Commentary …” (in this volume), e.g., the conclusion of sec. 5.5.4.

122 See “What was Einstein’s fateful prejudice?” (in this volume).
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treated these conditions as integral parts of the theories he was examining, on a par
with the field equations, and not simply as a way of choosing a representation of the
theory that would be convenient in a given context. The term “coordinate restric-
tions” was therefore introduced to distinguish these conditions from coordinate con-
ditions in the modern sense.

In November 1915, Einstein’s understanding of the role of coordinate conditions
had become much closer to the modern understanding.123 On the last page of (Ein-
stein 1915a), Einstein first imposed the condition  to show that his
new field equations had a sensible Newtonian limit and then, in the next paragraph,
wrote that the theory allows transformations to rotating coordinate systems because
rotations are part of the covariance group of the field equations. This is no longer true
after the condition above is imposed. As Einstein presumably came to realize in the
course of the research documented in the Zurich Notebook,  for the
rotation metric. By November 1915, Einstein had apparently understood that this is
not a problem at all. This suggests that he had essentially arrived at the modern
understanding of coordinate conditions.

If Einstein did indeed have the modern understanding of coordinate conditions in
November 1915, then he faced a very serious difficulty for the hole argument.
Remember that a good coordinate condition picks out a representative of every equiv-
alence class of metric field configurations. Hence, if the hole argument is valid, a
good coordinate condition should not be selective between representations of differ-
ent field configurations in the same coordinate system (such as  and 
related to one another through the hole construction); but it should be selective
between representations of the same field in different coordinate systems (such as

 and ). There is, however, a one-one correspondence between
 and  So, if the hole argument is valid, coordinate conditions must

do the impossible. Despite the one-one correspondence between  and
 it must be selective between  and  but not between

 and  Einstein may have sensed this absurdity124 and may have con-
cluded from it that the hole argument had to be wrong. A month or so later, he read
(Kretschmann 1915) and was able to articulate exactly why the hole argument failed.

In the meantime, he had charged ahead and had published generally-covariant field
equations, making it clear by doing so that he no longer believed in the hole argument
but not explaining why not. There still is an element of opportunism in this. But it
would have been foolish on Einstein’s part to wait until he had found a fully satisfac-
tory resolution of the hole argument. Just how tricky the hole argument is was illus-
trated forcefully a few years ago by the discovery of page proofs of Hilbert’s first
paper on general relativity (Corry et al. 1997). These page proofs suggest that even the

123 See “Untying the Knot” (in this volume), sec. 1.5 and sec. 5, for a reconstruction of how Einstein
went from using coordinate restrictions to using coordinate conditions.

124 In the Berlin group analyzing the Zurich Notebook, we used to refer to this absurdity as “the Norton
elephant” and we had lengthy discussions about whether or not Einstein swallowed the elephant.
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great Göttingen mathematician originally fell hook, line, and sinker for the hole argu-
ment. There is still no consensus among philosophers of space and time exactly what
the resolution of the hole argument is supposed to be. Einstein had more pressing busi-
ness to take care of. He recognized that the Entwurf field equations were unacceptable
and had to find new ones, preferably before Hilbert would. Pondering the niceties of
the hole argument could be left for another occasion. Physics is not philosophy.

The upshot of this section then is that both in the 1913 chapter and in the 1915
chapter of the hole story we see a mixture of grappling with serious difficulties and a
certain opportunism, the overhasty rejection of the escape from the hole argument pro-
posed in the Besso memo in 1913, and the overhasty rejection of the hole argument
itself in 1915. It is fair to say, however, that opportunism played a much smaller part in
the hole story than in the rotation saga examined in sec. 3. I argued that there is an
important difference between worldlines and intersections of worldlines and that the
escape from the hole argument in the Besso memo of 1913 is therefore significantly
different from the escape based on the point-coincidence argument of 1915. I also
argued that Einstein may have recognized that the hole argument had to be wrong
once he had reached the modern understanding of coordinate conditions in the fall of
1915 even though this did not tell him exactly where the argument went wrong.

5. EINSTEIN’S OPPORTUNISTIC STREAK AND THE CHARITY PRINCIPLE

In closing, I want to draw attention one more time to what I consider to be the most
important feature of the story told in this paper. The story of Einstein’s struggle with
the problem of rotation and with the hole argument highlights what I have called, for
lack of a better term, Einstein’s opportunistic streak. This element is missing from
current accounts of the genesis of general relativity.

In attempts to reconstruct Einstein’s route to general relativity following the path-
breaking papers of John Stachel and John Norton in the 1980s (especially Stachel
1989 and Norton 1984), there has been a tendency to adopt a strong form of the so-
called “charity principle.” In practice, what this means is that one tries to reconstruct
the development of Einstein’s work starting from the strong presumption that he had
good reasons for every move he made. So, to put it somewhat bluntly, whenever one
encounters a passage containing what on the face of it looks like an error on Ein-
stein’s part, the strategy is to look for an interpretation in which the apparent error is
the manifestation of some deep conceptual difficulty that had to be overcome before
general relativity as we know it could be formulated.125

The two most impressive results of this approach were new much more satisfac-
tory answers to two questions central to any reconstruction of Einstein’s search for

125 In his classic 1984 paper, John Norton, for instance, explicitly stated that one of his major goals was
to show that “Einstein’s difficulties were based on nontrivial misconceptions and that the path he fol-
lowed was a thoroughly reasonable one” (Norton 1984, 102). Certainly not all authors writing on Ein-
stein these days adopt the charity principle. In fact, some are quite uncharitable. See, for instance,
(Earman and Eisenstaedt 1999).
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field equations for the metric field. The results are well known (Norton 1984, 101–
102), but I nonetheless want to describe them briefly in order to bring out both the
appeal and the danger of adopting the charity principle in this context. The two (pairs
of) questions are the following. First, why did Einstein originally reject field equations
based on the Ricci tensor and what made him eventually change his mind? Second,
what exactly was Einstein’s hole argument against general covariance and how did he
overcome this argument in the end? In the older literature (see, e.g., Pais 1982, 221–
223, 244, 251–252), the answers to these questions essentially turn on ascribing an
elementary blunder to Einstein. The big stumbling block, the story went, was that Ein-
stein did not fully appreciate that one and the same metric field can be represented in
different coordinates. He initially believed that such different coordinate representa-
tions correspond to physically different field configurations. This, the story continued,
had two dire consequences. First, Einstein did not recognize the freedom to apply
coordinate conditions and had to reject the Ricci tensor because it apparently did not
reduce to the Laplace equation of Newtonian theory in the special case of weak static
fields. Secondly, it led Einstein to believe that a generally-covariant theory would be
indeterministic, as illustrated in the hole argument. After the big stumbling block was
removed, the story concluded, Einstein realized that the Ricci tensor was acceptable
after all and that the indeterminism in the hole argument was completely illusory.

Might there not be more charitable answers to the questions under consideration?
Of course, we now know there are.126 As John Stachel first suggested, Einstein did
not mistake the existence of different coordinate representations of the same metric
field configuration for indeterminism, he only used these different coordinate repre-
sentations to construct what look like genuinely different field configurations in one
and the same coordinate system (cf. the discussion on p. 822 above). Consequently,
Stachel argued, Einstein had to make an important conceptual leap to remove the
apparent indeterminism revealed in the argument: he had to recognize that spacetime
points cannot be individuated independently of the metric field. Similarly, we now
know that Einstein’s rejection of and eventual return to the Ricci tensor can be given
a much more charitable interpretation. As John Norton argued, following another
suggestion of John Stachel, the problem with the Ricci tensor and the Newtonian
limit was not that Einstein did not know about coordinate conditions; the problem
was that the relevant coordinate condition ruled out the simple form that Einstein
mistakenly but quite naturally expected the metric field to take in the case of weak
static fields. Once the calculations on the perihelion motion of Mercury in November
1915 made it clear that this expectation was not warranted, Einstein promptly
returned to the Ricci tensor.

Both Stachel and Norton made extensive use of textual evidence, both published
and unpublished, to argue for their new answers and against the old answers to the
various questions at issue. A close reading of the various published versions of the

126 The great virtue of these new answers that is emphasized in the introductions of both (Norton 1984)
and (Stachel 1989) is, in fact, that one no longer has to attribute trivial errors to Einstein.
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hole argument, for instance, shows that the final version is compatible only with
Stachel’s more charitable interpretation of Einstein’s reasoning. In more spectacular
fashion, John Norton conclusively disproved the old interpretation of Einstein’s prob-
lem with the Ricci tensor and the Newtonian limit by producing a page of the Zurich
Notebook (p. 19L) containing a calculation formally identical to the application of a
coordinate condition reducing the Ricci tensor to the Laplace equation for weak static
fields. When one adds to this the enormous impact that the historical work on the hole
argument has had in the philosophy of space and time literature, one readily under-
stands why several historians of relativity, myself included, adopted the charity prin-
ciple without too much critical reflection in further work on this fascinating episode.

Why have I nonetheless grown suspicious of the charity principle? For two rea-
sons. The first is that there is a real danger that, in searching for charitable interpreta-
tions of Einstein’s writings, one reads modern results back into these texts. John
Norton’s use of p. 19L of the Zurich Notebook to demonstrate that Einstein knew
perfectly well about coordinate conditions provides a case in point, a case all the
more instructive for its subtlety. The further analysis of the Zurich Notebook reported
in this volume strongly suggests that Einstein did not yet have the modern under-
standing of coordinate conditions when he did the calculation on p. 19L after all. It
now seems plausible that this lack of understanding played a much more important a
role in Einstein’s rejection of the Ricci tensor than his preconceptions concerning the
form of the metric for weak static fields.127

The story told in this paper brings out a second and, at least to my mind, more
serious danger of adopting the charity principle in reconstructing Einstein’s route to
general relativity. When one is not careful, one easily ends up with a seriously dis-
torted view of Einstein’s modus operandi. It is fair to say, I think, that the charity
principle, as used in the tradition of Stachel and Norton, rests in part on the convic-
tion that scientists like Einstein working on fundamentally new theories proceed in
accordance with very strict standards of rationality, the kind one would expect, for
instance, of a modern philosopher of science. Obviously I am in no position to spell
out these standards. Fortunately I do not have to. What I hope to have shown in this
paper is that at various points on his path to general relativity, Einstein made moves
that can clearly and noncontroversially be recognized as blatant violations of such
standards. Einstein’s handling of the problem of rotation probably provides the most
clear-cut example. For most of the life-span of the Entwurf theory, it was crucial for
Einstein’s goal of giving a Machian account of rotation that the rotation metric be a
vacuum solution of the Entwurf field equations. Yet, for about two years, he never
bothered to do a simple calculation with sufficient care to determine once and for all
whether this was the case or not. Instead, his beliefs on this score appear to have been
guided by wishful thinking, strong enough to ignore warning signs that something
was wrong. In a historically accurate and well-balanced picture of how Einstein
arrived at general relativity, these aspects of Einstein’s work cannot be ignored.

127 See “Untying the Knot” (in this volume), sec. 1.1.
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What is at stake here is not just a matter of historical accuracy in this particular
case. Presumably, an important motivation for studying the case of Einstein and gen-
eral relativity is that it may tell us something more general about the way in which
new scientific theories are produced. One of the morals of this paper then is that the
model that implicitly underlies the charity principle of scientists having logically
cogent reasons for every move they make needs to be modified. As I suggested at the
end of sec. 3, creative science may need a healthy dose of opportunism.

Even those readers who share my worries about the charity principle may feel,
given the impressive results achieved with the help of it, that the dangers do not out-
weigh the benefits. I therefore want to make one final observation, namely that the
charity principle deserves only part of the credit for these results. The most important
factor behind the successes of Stachel and Norton was undoubtedly their ability and
willingness to examine in unprecedented detail all relevant source material available
to them. Their findings confirmed their strong suspicions that earlier historians had
been too quick to attribute basic errors to Einstein. A new picture emerged in which
the development of general relativity became predominantly a matter of Einstein
struggling with subtle conceptual issues. Further evaluation of the source material
augmented by important new archival findings such as the Besso memo discussed in
this paper have modified that picture. The charity principle has become somewhat of
a hindrance at this stage of the game, and we can easily do without it. That way we
shall be better prepared to recognize aspects of Einstein’s modus operandi that do not
fit the model of scientific theorizing it presupposes.

NOTE ADDED IN PROOF

Since I wrote this paper, one more document that bears on the problem of rotation has
come to light. A. J. Kox has alerted me to a letter that Paul Ehrenfest wrote to
H. A. Lorentz in August 1913, shortly before the Besso Memo discussed in this
paper.128 The letter contains the following intriguing passage:

It would also be nice at some point to check the calculation of the gravitational effects
connected to rotational motion (constant angular velocity around a fixed axis). Five or six
times Einstein has done this now—calculational errors have produced a different result
almost every time: the Coriolis force came out correctly, but not the centrifugal force. To
this day he still does not know whether this is merely the result of a calculational error or
of a fundamental impossibility.129

The problem alluded to by Ehrenfest is basically the same as that recorded in the
Besso Memo: the rotation metric—the Minkowski metric in rotating coordinates—is

128 Ehrenfest dated this letter 10 August 1913. The letter, however, is in response to a letter from Lorentz
of 14 August 1913. Lorentz, in turn, responded to Ehrenfest’s letter on 24 August 1913. Hence, the let-
ter must have been written sometime between the 15th and the 23rd. I am grateful to A. J. Kox for
alerting me to this letter, for providing me with a transcription, and for the information about its dating.
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not a vacuum solution of the Entwurf field equations (for a more detailed exegesis,
see the beginning of sec. 3). 

How does the Ehrenfest letter affect the argument of my paper? First of all, it pro-
vides further evidence that the date on the Besso Memo was not just a slip on Besso’s
part. The possible dates for the letter, 15–23 August 1913, are remarkably close to the
date on the memo, 28 August 1913. Second, the letter shows that by the middle of
August Einstein was already aware of the trouble with rotation. In the paper I sug-
gested that it was Besso who alerted him to the problem. In view of this letter, how-
ever, it is a definite possibility that Besso simply recorded the problem as explained
to him by Einstein, as I conjectured he did in the case of the hole argument (see
sec. 4). Third, since the letter makes it clear that Einstein had spent considerable time
and effort on the problem of rotation, the question arises what, if anything, he might
have been doing besides performing “five or six times” the relatively simple calcula-
tion mentioned in the Besso memo and found both in the 1913 portion of the Ein-
stein-Besso manuscript (CPAE 4, Doc. 14, [pp. 41–42]) and on the 1915 Naumann
draft (CPAE 8, Doc. 124)? The only two items I am aware of that may contain clues
to answer this question are the calculation on [pp. 43–44] of the Einstein-Besso
manuscript (the purpose of which remains unclear) and the calculation on the verso
of the Naumann draft (see note 69). Both calculations break off before Einstein
reached any definite conclusions. There is thus no evidence of a concerted effort on
Einstein’s part to find an escape from the problem of rotation. This then leads me to
the fourth, and for the purposes of this paper, most important conclusion. If, as
Ehrenfest’s remarks suggest, by August 1913 Einstein had checked “five or six times”
whether the rotation metric is a vacuum solution of the Entwurf field equations, find-
ing “a different result almost every time,” it becomes all the more astonishing that he
was able to convince himself in early 1914 that the rotation metric is a solution and
that it took him until September 1915 to establish that it is not. The Ehrenfest letter
thus provides striking additional evidence for the opportunistic streak in Einstein’s
modus operandi.
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UNTYING THE KNOT: HOW EINSTEIN FOUND 
HIS WAY BACK TO FIELD EQUATIONS 

DISCARDED IN THE ZURICH NOTEBOOK

“She bent down to tie the laces of my shoes. Tangled up in blue.”
—Bob Dylan

1. INTRODUCTION: NEW ANSWERS TO OLD QUESTIONS

Sometimes the most obvious questions are the most fruitful ones. The Zurich Note-
book is a case in point. The notebook shows that Einstein already considered the field
equations of general relativity about three years before he published them in Novem-
ber 1915. In the spring of 1913 he settled on different equations, known as the
“Entwurf” field equations after the title of the paper in which they were first pub-
lished (Einstein and Grossmann 1913). By Einstein’s own lights, this move compro-
mised one of the fundamental principles of his theory, the extension of the principle
of relativity from uniform to arbitrary motion. Einstein had sought to implement this
principle by constructing field equations out of generally-covariant expressions.1 The
Entwurf field equations are not generally covariant. When Einstein published the
equations, only their covariance under general linear transformations was assured.
This raises two obvious questions. Why did Einstein reject equations of much
broader covariance in 1912-1913? And why did he return to them in November 1915? 

1 Throughout the period covered by this paper, Einstein thought that general covariance automatically
extends the principle of relativity from uniform to arbitrary motion. In part, this was because he did
not distinguish carefully, for reasons laid out in (Norton 1999), between the roles of Lorentz invari-
ance in special relativity and of general covariance in general relativity. In part, as is argued in (Jans-
sen 2005), it was just a matter of misleading terminology. Einstein chose to describe a key feature of
his new theory—i.e., observers in arbitrary motion with respect to one another can both maintain to be
at rest as long as they agree to disagree about whether or not there is a gravitational field—in terms of
general relativity of motion, whereas what is relative is not so much the motion but the split of inertio-
gravitational effects into inertial and gravitational components. As Einstein put it in 1920: “Like an
induced electric field, the gravitational field at a particular point only has a relative existence” (“Das
Gravitationsfeld hat an einem betrachteten [Punkte] in ähnlicher Weise nur eine relative Existenz wie
das durch magnetelektrische Induktion erzeugte elektrische Feld.” CPAE 7, Doc. 31, [p. 21]).
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A new answer to the first question has emerged from the analysis of the Zurich
Notebook presented in this volume. This calls for a reassessment of Einstein’s subse-
quent elaboration of the 

 

Entwurf

 

 theory and of the transition to the theory of Novem-
ber 1915. On the basis of a reexamination of Einstein’s papers and correspondence of
this period, we propose a new answer to the second question.

For the discussion of these matters, it is important to distinguish between two
strategies for finding suitable gravitational field equations, a ‘physical strategy’ and a
‘mathematical strategy’. Following the physical strategy, one constructs field equa-
tions in analogy with Maxwell’s equations, making sure from the start that energy-
momentum conservation is satisfied and that the Poisson equation of Newtonian the-
ory is recovered in the case of weak static fields. This is the approach that originally
led Einstein to the 

 

Entwurf

 

 field equations. Following the mathematical strategy, one
picks candidate field equations based largely on considerations of mathematical ele-
gance and then investigates whether they make sense from a physical point of view.

 

2

 

With hindsight, one easily recognizes that the latter approach provides a royal road to
the generally-covariant field equations of November 1915. Einstein himself used a
combination of the two strategies. In the Zurich Notebook, he tried the mathematical
strategy first, ran into what appeared to be insurmountable difficulties, switched to
the physical strategy, and ended up with the 

 

Entwurf

 

 field equations. On that much all
scholars working in this area agree. The question is what Einstein did in late 1915.
The currently standard answer is that he abandoned the physical strategy, went back
to the mathematical strategy prematurely abandoned in the Zurich Notebook, and in
short order produced the happy results of November 1915.

 

3

 

 With very few excep-
tions, Einstein’s pronouncements—both at the time and in retrospect years later—fit
very well with this answer.

As the title of our paper suggests, however, we see no abrupt change of strategy in
1915. Our metaphor is not “cutting the knot” but “untying the knot.” We argue that
Einstein found the field equations of general relativity by changing one element in a
formalism he had developed in 1914 encoding the various physical considerations
that had gone into the derivation of the 

 

Entwurf

 

 field equations. He picked a new
mathematical object, known as the Christoffel symbols, to represent the gravitational
field. This one modification, it turned out, untangled the knot of conditions and defi-
nitions that his theory had become in 1914–1915. We thus argue that the field equa-
tions of general relativity were the fruit of Einstein’s relentless pursuit of the physical
strategy. That is not to say that the mathematical strategy did not play any role at all.
Without it Einstein would not have recognized that his new definition of the gravita-
tional field was the key to the solution of his problem of finding suitable field equa-
tions. What happened in 1915 was that the physical strategy led Einstein back to field

 

2 For more careful discussion of the distinction between the ‘mathematical strategy’ and the ‘physical
strategy’, see secs. 1.1 and 5.1 of “Commentary …” (in this volume).

3 See, e.g., (Norton 1984, 142), (Janssen 1999, 151), (Van Dongen 2002, 30). The most explicit version
of this account is given in (Norton 2000). We shall have occasion to quote some typical passages from
this paper in sec. 10.
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equations to which the mathematical strategy had already led him in the Zurich Note-
book but which he had then been forced to reject since he could not find a satisfactory
physical interpretation for them. With two routes to the same field equations, Einstein
had the luxury of a choice in how to present them to the Berlin Academy. He went
with the mathematical considerations, which he turned into a simple and effective
argument for his new field equations. It would have been much more complicated and
less persuasive to opt for an exposition faithful to the arduous journey he himself had
been forced to undertake only to discover in the end that equations he had considered
very early on were the right ones after all.

 

4

 

 In the context of discovery, the physical
argument had been primary and the role of the mathematical argument had been to
reinforce that argument. In the context of justification, it was just the other way
around. Einstein gave pride of place to the mathematical argument and used elements
from his physical argument only to show that his new field equations were perfectly
acceptable on physical grounds. Once the mathematical route to the field equations
had been reified in his first communication to the Berlin Academy of November
1915, the physical route rapidly faded from memory. The streamlined argument of
the context of justification quickly supplanted the messy reasoning of the context of
discovery. Einstein succumbed to a typical case of selective amnesia. Before long he
had eyes only for the mathematical strand in his reasoning and had lost sight of the
physical strand altogether.

 

5

 

In the remainder of this introduction, we give an outline, as non-technical as pos-
sible, of our new understanding of the path that took Einstein away from generally-
covariant field equations and back again in the period 1912–1915. The emphasis will
be on the second part of this fascinating tale. The case for our new reconstruction is
strong but largely circumstantial. We shall highlight the most important pieces of evi-
dence in the introduction, so that the reader can judge for him- or herself how well
our reconstruction is supported by the documents without having to go through the
detailed calculations that make up the balance of the paper.

 

6

 

1.1 Tying the Knot: Coordinate Restrictions

 

The central problem frustrating Einstein’s search for generally-covariant field equa-
tions in the Zurich Notebook was his peculiar use of what a modern relativist would
immediately recognize as coordinate conditions. One needs to impose such condi-
tions, which the metric tensor has to satisfy in addition to the field equations, if one
wants to compare equations of general relativity, which are valid in arbitrary coordi-
nates, to equations in Newtonian gravitational theory, which in their standard form

 

4 A paper written by one of us (JR) which we have cannibalized for this paper was therefore called
“Progress in a Loop.”

5 Jeroen van Dongen (2002, 46–47) has emphasized that Einstein’s selective memory only served him
all too well in his later years in his defense of relying on a purely mathematical strategy in the search
for a unified field theory.

6 For a short version of our account, see (Janssen 2005, 75–82).
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are valid only in inertial frames. In particular, one needs a coordinate condition to
show that the relevant component of the generally-covariant field equations of gen-
eral relativity reduces to the Poisson equation of Newtonian theory in the case of
weak static fields (see, e.g., Wald 1984, 75–77).

 

7

 

 Such conditions are not essential to
the theory. One can pick whatever coordinate condition is most convenient for the
problem at hand. From a modern point of view this is trivial and there would be no
point in spelling it out, if it were not for the fact that Einstein’s use of such additional
conditions both in the Zurich Notebook and in his subsequent elaboration of the

 

Entwurf

 

 theory deviated sharply from our modern use.
As Einstein was examining various generally-covariant expressions in 1912-1913

to determine whether physically acceptable field equations could be extracted from
them, he assumed that he needed additional conditions not just to recover the Poisson
equation for weak static fields but also to guarantee that the equations be compatible
with the law of energy-momentum conservation.

 

8

 

 In general relativity energy-
momentum conservation is a direct consequence of the general covariance of the Ein-
stein field equations (see Einstein 1916c and sec. 9). This result is an instantiation of
one of Emmy Noether’s celebrated theorems connecting symmetries and conserva-
tion laws (Noether 1918).

 

9

 

 In 1912–1913, however, Einstein thought that energy-
momentum conservation required that the covariance of the field equations be
restricted. In the Zurich Notebook he did not make a clear distinction between condi-
tions imposed to guarantee energy-momentum conservation and conditions imposed
to recover the Poisson equation for weak static fields. On the contrary, once he had
found a condition that accomplished the latter, he would investigate what further con-
ditions, if any, were needed for the former.

 

10

 

Einstein used these conditions to eliminate various terms from equations of broad
covariance and looked upon the truncated equations of severely restricted covariance
rather than upon the equations of broad covariance he started from as candidates for
the fundamental field equations of his theory. Since coordinate conditions used in this
manner are ubiquitous in the Zurich Notebook we introduced a special name for
them. We call them 

 

coordinate restrictions

 

.

 

11

 

7 Einstein originally imposed the stronger requirement that this would be the only non-trivial compo-
nent of the field equations in the case of weak static fields. This was because he assumed that the met-
ric for a weak static field must be spatially flat. It was only in November 1915 that he came to realize
that this is not necessary (see p. 891 below).

8 This is a lesson Einstein had learned the hard way earlier in 1912 when he had been forced to modify
the field equations of his theory for static gravitational fields because the original equations violated
energy-momentum conservation (Einstein 1912, sec. 4). For further discussion, see “Pathways out of
Classical Physics …” (in vol. 1 of this series).

9 For careful discussion of Noether’s theorems and some simple but informative applications of them,
see (Brading 2002); for a discussion of how they emerged from the discussion of general relativity in
Göttingen, see (Rowe 1999), (Sauer 1999), and “Hilbert’s Foundation of Physics …” (in vol. 4 of this
series). For a concise discussion of Einstein’s ideas about energy-momentum conservation in the
period 1912–1918, see sec. VIII of the introduction to CPAE 8.

10 This approach is clearly in evidence on pp. 19L–20L of the Zurich Notebook.
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This notion is the key to understanding why Einstein did not publish field equa-
tions based on the Riemann tensor in 1913. He recognized that the Riemann tensor—
or rather the Ricci tensor, a direct descendant of it—was the natural starting point for
finding field equations, but he had great difficulty finding coordinate restrictions that
would guarantee compatibility with energy-momentum conservation even in first
approximation. Moreover, none of the coordinate restrictions with which he could
recover the Poisson equation for weak static fields left him enough covariance to
implement the equivalence principle and the generalized principle of relativity.

 

12

 

 
So towards the end of the notes on gravity in the Zurich Notebook, Einstein

switched from the mathematical to the physical strategy. Instead of starting from a
mathematical object such as the Ricci tensor with well-defined covariance properties,
he now started from the physical requirements that the Poisson equation be recovered
for weak static fields and that energy-momentum conservation be satisfied. Instead of
demanding broad covariance, he only demanded covariance under general linear
transformations.

 

13

 

 From these requirements he derived the equations that would
serve as the fundamental field equations of his theory without bothering to find the
generally-covariant equations of which these equations would be the truncated ver-
sion or the coordinate restriction with which to do the truncating. Einstein convinced
himself that this procedure led to a unique result: the 

 

Entwurf

 

 field equations.

 

11 See secs. 4.1 of “Commentary …” (in this volume). There is no agreement among the authors of this
volume as to why Einstein used coordinate restrictions. The majority view is that Einstein at the time
did not yet have the modern understanding of coordinate conditions. John Norton, however, argues
that Einstein did have the modern understanding all along and offers a different explanation for why
he nonetheless chose to use coordinate restrictions instead (see “What was Einstein’s ‘Fateful Preju-
dice’?” [in this volume]). The story we tell in this paper is compatible with both views. This is an indi-
cation of how difficult it is to decide between them. John Norton argues that it boils down to one’s
view of Einstein’s 

 

modus operandi

 

. For the record, we share the view presented in “What Did Einstein
Know …” (in this volume).

12 John Norton (1984, 102, 111–112, 142-143) argued that the incompatibility of the harmonic coordi-
nate condition with the spatially flat metric that Einstein thought should describe weak static fields
plays a crucial role both in Einstein’s rejection of field equations based on the Ricci tensor in 1912–
1913 and in his choice of new field equations in the first paper of November 1915 (Einstein 1915a).
We seriously doubt whether Einstein was even aware of this incompatibility either at the time of the
Zurich Notebook or in November 1915. We see no evidence that this incompatibility played any role
in Einstein’s search for gravitational field equations (cf. sec. 5.4 of “Commentary …” [in this volume]
and the conclusion of sec. 5 below). Einstein’s prejudice about the form of the metric for weak static
field, for which there is abundant textual evidence, did play a role—as Norton (1984, 146–148) also
emphasized—in that it was incompatible with field equations containing a term with the trace of the
energy-momentum tensor of matter. Aside from general covariance, this trace term is the most impor-
tant feature distinguishing the Einstein field equations from their 

 

Entwurf

 

 counterpart (see sec. 7 and
the appendix).

13 Einstein’s hope was that the equations would also be invariant under what he later called “non-auton-
omous” transformations to accelerating frames of reference. See sec. 3.3 below for discussion of the
concept of non-autonomous transformations.
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1.2 Tightening the Noose: Covariance Properties
of the Entwurf Field Equations

 

Einstein’s further elaboration of the 

 

Entwurf

 

 theory in 1913–1914 centered on clari-
fying the covariance properties of the 

 

Entwurf

 

 field equations. In August 1913, he
produced an argument purporting to show that because of energy-momentum conser-
vation the equations’ covariance group had to be limited to general linear transforma-
tions. This argument was published in an addendum to the journal version of the

 

Entwurf

 

 paper (Einstein and Grossmann 1914a). Within a few months, Einstein real-
ized that it was based on a faulty premise.

 

14

 

 The idea that energy-momentum conser-
vation circumscribes the covariance of the field equations nonetheless survived. In
the same paper in which he retracted his fallacious argument (Einstein and Gross-
mann 1914b), he and Grossmann presented a new argument tying the covariance of
the 

 

Entwurf

 

 field equations to energy-momentum conservation. With Noether’s theo-
rems still four years into the future, Einstein’s intuition that energy-momentum con-
servation is closely related to the covariance of the field equations is quite
remarkable. It will play a crucial role in our story.

Einstein and Grossmann (1914b) found four conditions, compactly written as
 that in conjunction with the 

 

Entwurf

 

 field equations imply energy-momen-
tum conservation. They then used a variational formalism to show that these same
conditions determine the covariance properties of the 

 

Entwurf

 

 field equations. Ein-
stein thought that these conditions were the coordinate restriction with which the

 

Entwurf

 

 field equations could be extracted from generally-covariant equations.

 

15

 

 He
had no interest in finding the latter, since his infamous ‘hole argument’ had mean-
while convinced him that the field equations could not possibly be generally covari-
ant.

 

16

 

 In fact, Einstein and Grossmann claimed that the four conditions they had
found gave the field equations the maximum covariance allowed by the hole argu-
ment. With these results, the theory appeared to have reached its definitive form.

In the spring of 1914, Einstein left Zurich and Grossmann and moved to Berlin. In
October 1914, nearly three months into the Great War, he completed a lengthy review
article on his new theory, no longer called “a general

 

ized

 

 theory of relativity” (Ein-
stein and Grossmann 1913) but “the 

 

general

 

 theory of relativity” (Einstein 1914c). In
this article, he reiterated and tried to improve on the results of his second paper with
Grossmann. He now used the variational formalism to deal both with the covariance
properties of the field equations and with energy-momentum conservation. And he
did so without specifying the Lagrangian ahead of time as he had done in the paper
with Grossmann. He only assumed that the Lagrangian transforms as a scalar under

 

14 For discussion of this episode, see (Norton 1984, sec. 5), “Pathways out of Classical Physics …” (in
vol. 1 of this series), and sec. 2 of “What Did Einstein Know …” (in this volume).

15 Einstein (1914b, 178) believed that there is a corresponding generally-covariant equation for any
physically meaningful equation that is not. See note 57 below for the relevant passage.

16 For a discussion of (the origin of) the hole argument, see sec. 4 of “What Did Einstein Know …” (in
this volume).
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general linear transformations. He found that a generic version of the set of condi-
tions he had found with Grossmann, still written as  is necessary both for the
covariance of the field equations and for their compatibility with energy-momentum
conservation. Energy-momentum conservation, however, called for an additional set
of conditions, compactly written as  Einstein believed that these extra condi-
tions uniquely picked out the Lagrangian giving the 

 

Entwurf

 

 field equations. As a
matter of fact they do no such thing.

 

1.3 At the End of His Rope: The Demise of the Entwurf Field Equations

 

In early 1915, the Italian mathematician Tullio Levi-Civita contested some of the
results of Einstein’s review article but Einstein did not give ground.

 

17

 

 Curiously,
Levi-Civita did not take aim at Einstein’s uniqueness argument, even though his
interest in Einstein’s article had been triggered by a letter from Max Abraham com-
plaining about the arbitrariness of Einstein’s choice of the Lagrangian (Cattani and
De Maria 1989, 185). It was not until October 1915 that Einstein himself realized that
his uniqueness argument was illusory. This setback came hard on the heels of another
one. He had discovered that the 

 

Entwurf

 

 field equations are incompatible with one of
the guiding ideas of the theory—the idea that the inertial forces of rotation can be
conceived of as gravitational forces. Michele Besso had already put his finger on this
problem two years earlier, but Einstein had ignored his friend’s warnings.

 

18

 

 He
finally faced up to the problem in September 1915.

In a letter to H. A. Lorentz of October 12, 1915 (CPAE 8, Doc. 129), Einstein
explained where his uniqueness argument went wrong. The extra conditions 
that he had used to determine the Lagrangian are trivially satisfied by any Lagrangian
invariant under general linear transformations. So both sets of conditions—
and 

 

—

 

needed for energy-momentum conservation also emerge from the
analysis of the theory’s covariance properties. From a modern point of view, this is
just an instance of one of Noether’s theorems. If one sets the Lagrangian in Einstein’s
variational formalism equal to the Riemann curvature scalar, as Einstein (1916c) him-
self would do the following year, the four conditions  become the contracted
Bianchi identities.

 

1.4 Pulling a Thread: from the Entwurf Field Equations to the
November Tensor and the Einstein Field Equations

 

Despite the problem of rotation and the evaporation of the uniqueness argument, Ein-
stein was not ready to part with the 

 

Entwurf

 

 field equations just yet. He told Lorentz
that they are still the only equations that allow one to recover the Poisson equation for
weak static fields. Just a few weeks later, however, on November 4, 1915, he submit-

 

17 See the correspondence between Einstein and Levi-Civita in March–May 1915 in (CPAE 8).
18 For discussion of Einstein’s struggles with the problem of rotation in 1913–1915, see sec. 3 of “What

Did Einstein Know …” (in this volume) and (Janssen 2005, 68–71).
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ted a short paper to the Berlin Academy in which he replaced the 

 

Entwurf

 

 field equa-
tions by equations based on the Riemann tensor. He had examined and rejected these
exact same equations three years earlier in the Zurich Notebook. Three more short
communications to the academy followed in rapid succession, two of them with fur-
ther modifications of the field equations (Einstein 1915b, d) and one on the perihelion
motion of Mercury (Einstein 1915c). By the end of November, Einstein had thus
arrived at the generally-covariant field equations that still bear his name and he had
solved an outstanding puzzle in planetary astronomy.

What happened those last few weeks of October? Einstein has left us some tanta-
lizing clues. In the first November paper, he singled out one element and called it “a
fateful prejudice.”

 

19

 

 In a letter written later that month, shortly after the dust had set-
tled, he wrote that changing that one element had been “the key to [the] solution.”

 

20

 

The element in question is the definition of the components of the gravitational field.
In the 

 

Entwurf

 

 theory, they are essentially just the derivatives of components of the
metric field. This is the straightforward generalization of the definition of the gravita-
tional field in Newtonian theory as the gradient of the gravitational potential. In Ein-
stein’s theory the components of the metric field play the role of the gravitational
potentials. In the final version of the theory, the gravitational field is represented by
the so-called Christoffel symbols. The Christoffel symbols consist of a sum of three
terms with derivatives of the metric. These objects play an important role in Rieman-
nian geometry. They also occur in the geodesic equation, which makes them the natu-
ral candidates for representing the gravitational field. Surprisingly from a modern
point of view, the first November paper is the first place where Einstein actually
makes this observation. Why did he put so much emphasis all of a sudden on the def-
inition of the gravitational field?

 

21

 

In the 

 

Entwurf

 

 theory, both the field equations and the equation for energy-
momentum conservation were originally formulated in terms of the metric, the quan-
tity representing the gravitational potentials, not in terms of the quantity representing
the gravitational field.

 

22

 

 Einstein, however, also tried to write both equations in terms
of the field. In this form, the analogy between the 

 

Entwurf

 

 theory and electrodynam-

 

19 “ein verhängnisvolles Vorurteil” (Einstein 1915a, 782). Cf. note 38 below.
20 “Den Schlüssel zu dieser Lösung …” Einstein to Arnold Sommerfeld, 28 November 1915 (CPAE 8

 

,

 

Doc. 153). Cf. note 39 below.
21 Without the analysis of the Zurich Notebook presented in this volume, Einstein’s remarks about the

definition of the gravitational field have, as John Norton (1984, 145) put it, “all the flavor of an after-
the-fact rationalization.” Norton was also right in that these comments do not help us understand why
Einstein turned his back on equations extracted from the Riemann tensor in 1913.

22 As John Stachel points out in “The Story of Newstein …” (in vol. 4 of this series), this is in part
because Einstein had to make do with the mathematics available to him. Far from providing all the
tools he needed, differential geometry at the time still lacked the concept of an affine connection,
which is a much more natural object than the metric to describe the inertio-gravitational field of gen-
eral relativity. The absence of the notion of parallel displacement and the concept of an affine connec-
tion also tripped up H. A. Lorentz in 1916 when he tried to give a coordinate-free formulation of
general relativity (Janssen 1992).
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ics, which Einstein had consciously pursued in constructing the theory,

 

23

 

 was
brought out more clearly. This in turn made the physical meaning of the equations
more perspicuous.

In August 1913, Einstein had found that the 

 

Entwurf

 

 field equations can be writ-
ten in the form of Maxwell’s equations, with the four-divergence of the field on the
left-hand side and the field’s sources—the sum of the energy-momentum densities of
matter and gravitational field

 

24

 

—on the right-hand side (Einstein 1913, 1258, eq. 7b).
He had written the equations in this form ever since.

 

25

 

 In the Zurich Notebook he had
already noticed that the term representing the gravitational force density in the
energy-momentum balance equation can be interpreted as an inner product of the
field and its sources, just like the Lorentz force that some extended charge distribu-
tion experiences from its self-field. Most importantly, in his review article of 1914,
Einstein wrote the Lagrangian for the 

 

Entwurf

 

 field equations in terms of the compo-
nents of the gravitational field (Einstein 1914c, 1076, note 1). The 

 

Entwurf

 

Lagrangian is the same quadratic expression in the field as the Lagrangian for the free
Maxwell field. These structural similarities to electrodynamics—in the field equa-
tions and in the expressions for the force density and the Lagrangian—carry over
from the 

 

Entwurf

 

 theory to the theory of the November 1915 papers if the compo-
nents of the gravitational field are redefined as the Christoffel symbols.

 

26 
In view of this continuity, Einstein’s remark that the new definition of the gravita-

tional field was “the key to the solution” suggests a natural pathway along which,
sometime during the second half of October 1915, Einstein found his way back to field
equations of broad covariance discarded three years earlier in the Zurich Notebook.

Not long after his letter to Lorentz of October 12, Einstein must have come to
accept that the problem of rotation was the nemesis of the Entwurf field equations
(Janssen 1999). He needed new field equations or rather a new Lagrangian from
which such new equations could be derived. His variational formalism would give
him the conditions to guarantee compatibility with energy-momentum conservation.

23 For further discussion of the role of this analogy, see “Pathways out of Classical Physics …” (in vol. 1
of this series).

24 Because of the equivalence of energy and mass (inertial and gravitational) it is clear that the gravita-
tional field contributes to its own source. This, of course, is a major disanalogy between the gravita-
tional field equations and Maxwell’s equations. For one thing, unlike Maxwell’s equations, the
gravitational field equations will not be linear in the components of the field.

25 See, e.g., (Einstein 1914a, 289, eq. 5), (Einstein 1914b, 179, eq. 6), (Einstein and Grossmann 1914b,
217, eq. II), and (Einstein 1914c, 1077, eq. 81). For the original form of the Entwurf field equations,
see (Einstein and Grossmann 1913, 15–17, eqs. 13–16, 18, and 21).

26 Both in the Entwurf theory and in the theory of the first November paper, the Lagrangian has the form

 where  are the components of the gravitational field. In the Entwurf theory,

 in the first November paper,  The

Lagrangian is modelled on the Lagrangian for the free Maxwell field,  where  and

 are the covariant and contravariant components of the electromagnetic field, respectively.
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The analogy with electrodynamics could be used to narrow the range of plausible
candidates for the new Lagrangian. Replacing the derivatives of the metric field by
the Christoffel symbols as components of the gravitational field in the Entwurf
Lagrangian may well have been one of the first things he tried.

The expression for the left-hand side of the field equations that one finds upon
feeding this new Lagrangian into the variational formalism bears a striking resem-
blance to the left-hand side of field equations that Einstein had extracted from the
Ricci tensor in the Zurich Notebook by imposing the (relatively weak) restriction to
unimodular transformations. These are transformations with a Jacobian equal to one,
or, equivalently, transformations under which the determinant  of the metric trans-
forms as a scalar. Imposing the restriction to unimodular transformations on the gen-
eral variational formalism, which allows one to omit a factor of  in the action,
and feeding the new Lagrangian into this version of the formalism, one finds that the
left-hand side of the resulting field equations is exactly the same as the left-hand side
of field equations discarded in the Zurich Notebook. Because of its reappearance in
November 1915, we call this expression the November tensor.27

By adjusting the physical reasoning that had gone into the derivation of the
Entwurf field equations, Einstein had thus found new field equations that could also be
derived along the lines of the mathematical strategy. This was exactly the sort of con-
vergence of physical and mathematical considerations that had eluded Einstein in the
Zurich Notebook and in his work on the Entwurf theory. The best he had been able to
do was to convince himself in 1914 that the Entwurf field equations can at least in
principle be extracted from generally-covariant ones with the help of the coordinate
restriction  Now physical and mathematical considerations both pointed to
the November tensor. He set the November tensor equal to the energy-momentum ten-
sor for matter, and confidently replaced the Entwurf field equations by these new
equations in his first communication to the Berlin Academy of November 1915.

In the Zurich Notebook, Einstein had not been able to prove compatibility of field
equations based on the November tensor with energy-momentum conservation. His
variational formalism, even though it had to be used with caution because of the
restriction to unimodular transformations, now provided all the guidance he needed
to solve that problem. This unexpected windfall, however, brought a new puzzle.
Having caught on to the connection between covariance and conservation laws, Ein-
stein had come to expect that the covariance of the field equations was determined by
the four conditions  in his variational formalism that at the same time guar-
antee energy-momentum conservation. The covariance of the November tensor, how-
ever, is much broader than these conditions would seem to allow. What did Einstein
make of this apparent mismatch between covariance and conservation laws? The
November 1915 papers again provide some important clues.

In the first of these papers (Einstein 1915a, 785), Einstein rewrote the four condi-
tions  in such a way that they can be replaced by one stronger condition. He

27 See sec. 5.5 of “Commentary …” (in this volume).
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then showed that this stronger condition can be replaced by the requirement that the
determinant of the metric not be a constant. In the second and in the fourth paper,
Einstein proposed ways to circumvent this requirement. These moves become readily
understandable if we assume that they were made in response to the discrepancy
between covariance and conservation laws mentioned above. Given that the Novem-
ber tensor is invariant under arbitrary unimodular transformations, Einstein expected
that energy-momentum conservation would not require any further restrictions. As
we mentioned above,  the determinant of the metric, transforms as a scalar under
unimodular transformations. This explains why Einstein tried to rewrite the standard
four conditions  giving energy-momentum conservation as one condition on

 It also explains why he was not satisfied with the requirement that  not be a con-
stant. The restriction to unimodular transformations only requires  to transform as a
scalar, not that it be either a constant or a variable. In fact, it turns out to be advanta-
geous to impose the stronger restriction to unimodular coordinates, i.e., coordinates
in which  It is thus perfectly understandable that Einstein tried to replace the
condition that  not be a constant by the condition that  This was the driv-
ing force behind the transition from the field equations of the first November paper to
those of the fourth one. In this last paper of November 1915, Einstein showed that
one arrives at the desired condition  if a term involving the trace of the
energy-momentum tensor is added to the field equations of the first November paper.
These equations can be looked upon as generally-covariant equations expressed in
terms of unimodular coordinates. The generally-covariant equations are the Einstein
field equations.

1.5 Untying the Knot: Coordinate Conditions

Two problems that had defeated the November tensor in the Zurich Notebook still
need to be addressed. How did Einstein recover the Poisson equation for weak static
fields and how did he show that his new field equations allow Minkowski spacetime
in rotating coordinates? These are two separate problems and they are easily solved
separately, but in the Zurich Notebook they had become entangled with one another
and with the problem of energy-momentum conservation. The entanglement was the
result of Einstein’s use of coordinate restrictions. One and the same restriction had to
reduce the relevant component of the field equations to the Poisson equation in the
case of weak static fields, guarantee energy-momentum conservation, and allow the
metric for Minkowski spacetime in rotating coordinates. Coordinate conditions only
have to do the first of these three things. The three problems can thus be disentangled
by switching from coordinate restrictions to coordinate conditions.

Einstein, we believe, made this switch when he saw that field equations based on
the November tensor can be made compatible with energy-momentum conservation
by imposing just one weak coordinate restriction. Recovering the Poisson equation
for weak static fields still required the usual four restrictions. This discrepancy of one
restriction versus four opened up the possibility to handle recovery of the Poisson
equation with a coordinate condition in the modern sense and impose a coordinate

g,

Bμ 0=
g. g

g

g 1.–=
g g 1.–=

g 1–=
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restriction only for energy-momentum conservation. It is impossible to say whether
Einstein had arrived at the modern understanding of coordinate conditions earlier or
whether he only reached this point when faced with this unexpected discrepancy.
Only the separation of the two sets of conditions, however, made it possible to put the
modern understanding of coordinate conditions to good use. Not only could Einstein
now decouple the problem of energy-momentum conservation from the problem of
recovering the Poisson equation, he could also decouple the latter from the problem
of rotation. It is this disentanglement of various conditions and requirements that we
tried to capture in the title of our paper: “Untying the knot.”

The first November paper contains the first unambiguous instance of Einstein
applying a coordinate condition in the modern sense to show that the relevant compo-
nent of the field equations reduces to the Poisson equation for weak static fields (Ein-
stein 1915a, 786). In the Zurich Notebook Einstein had used what we call the Hertz
restriction28 for this purpose. One of the problems with this restriction was that it
does not allow the Minkowski metric in rotating coordinates. In the first November
paper, Einstein used the exact same mathematical formula, but now interpreted as a
coordinate condition rather than a coordinate restriction. As Einstein clearly recog-
nized, it then no longer is a problem that the condition is not satisfied by the
Minkowski metric in rotating coordinates. Right after he applied the Hertz condition,
he pointed out that the class of unimodular transformations under which the field
equations are invariant allow transformations to rotating coordinates. The obvious
implication is that the new theory steers clear of the problem of rotation that had
defeated the old one.

Einstein had untied the knot. The definition of the components of the gravitational
field had been the thread he had pulled to do so. No wonder that he called the old def-
inition “a fateful prejudice” and the new one “the key to the solution.”

1.6 Tug of War: Physics or Mathematics?

How well does the text of the November 1915 papers support our reconstruction of
how Einstein found his way back to generally-covariant field equations? As a matter
of fact, Einstein does not introduce the new field equations by pointing out that they
can be obtained simply by changing the definition of the gravitational field in the
expression for the Lagrangian from which he had earlier derived the Entwurf equa-
tions. Instead, he uses that the new field equations are closely related to the generally-
covariant Riemann tensor, rehearsing the argument that had led him to the November
tensor in the Zurich Notebook. At first glance, this looks like a strike against us. On
closer examination, it is not such a clear call. In his paper, Einstein was presumably
concerned with making the strongest possible case for his new field equations. No
matter how Einstein had arrived at these new field equations, it clearly was more con-

28 The only reason for this name is that the condition is discussed in Einstein to Paul Hertz, August 22,
1915 (CPAE 8, Doc. 111). See sec. 5.5.2 of “Commentary …” (in this volume).
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vincing to show that these equations can easily be extracted from the Ricci tensor
than to show that they can be obtained by a natural adjustment of the formalism that
Einstein had used the year before in his failed attempt to prove the uniqueness of the
Entwurf field equations. Emphasizing the former argument and suppressing the latter
would have been the obvious preemptive strike against skeptical readers who might
want to remind him of that fiasco. But it need not even have been a calculated rhetor-
ical move on Einstein’s part. He himself probably saw the connection to the Riemann
tensor as the most convincing evidence in favor of his new field equations. It thus
makes perfect sense that this is what he emphasized in his presentation and that he
only availed himself of the variational formalism to do the one thing he did not know
how to do any other way, namely proving compatibility with energy-momentum con-
servation.

If we are right, Einstein’s papers of November 1915 not only gave his contempo-
raries and a host of later commentators a misleading picture of how he found the field
equations of general relativity, they also and most importantly fooled their own
author. Einstein would soon forget that he had arrived at the new field equations pur-
suing the physical strategy and that the complementary mathematical strategy had
served mainly to give him the confidence that he was finally on the right track. In his
later years, Einstein extolled the virtues of a purely mathematical approach to theory
construction. As John Norton (2000) and, in much greater detail, Jeroen van Dongen
(2002, 2004) have shown, the older Einstein routinely claimed that this was the les-
son he had drawn from the way in which he had found general relativity. The way
Einstein remembered it, physics had led him astray; it was only after he had decided
to throw in his fate with mathematics that he had found the right theory. In our recon-
struction, however, Einstein found his way back to generally-covariant field equa-
tions by making one important adjustment to the Entwurf theory, a theory born
almost entirely out of physical considerations. He saw that he could redefine the com-
ponents of the gravitational field without losing any of the structural similarities to
electrodynamics that made the Entwurf theory so attractive from a physical point of
view. After a few more twists and turns, this path led him to the Einstein field equa-
tions. That mathematical considerations pointed in the same direction undoubtedly
inspired confidence that this was the right direction, but guiding him along this path
were physical not mathematical considerations.

1.7 The Red Thread: Einstein’s Variational Formalism

In the rest of this paper, we fill in the details of our new reconstruction of the transi-
tion from the Entwurf theory to general relativity. For those who do not want to go
through the derivations, we give short summaries at the beginning of all (sub-)sec-
tions of the results derived in them. In sec. 2, we review the one result we need from
the Zurich Notebook, namely the extraction of the November tensor from the Ricci
tensor. In sec. 3, we give a self-contained exposition of the variational formalism of
(Einstein 1914c) that plays a pivotal role in our account. In sec. 4, we show how Ein-
stein used this formalism to make what he considered his most compelling case for
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the Entwurf theory. In secs. 5–7, we analyze how Einstein used the formalism in his
papers of November 1915 (Einstein 1915a, b, d). In secs. 8 and 9, we turn to two
papers (Einstein 1916a, 1916c) in which the results of November 1915 were consoli-
dated, again with the help of the formalism of 1914. In sec. 10, we address the dis-
crepancy noted above between how Einstein presented and remembered his
discovery of general relativity and how he actually discovered it. Finally, in the
appendix, drawing on calculations scattered throughout the body of the paper, we
present a concise and sanitized version of the transition from the Entwurf field equa-
tions to the Einstein field equations, which makes the relation between these two sets
of equations more perspicuous.

2. THE NOVEMBER TENSOR IN THE ZURICH NOTEBOOK

We review how the field equations based on the November tensor in (Einstein 1915a)
made their first appearance in the Zurich Notebook. Einstein extracted the November
tensor from the Ricci tensor by imposing a restriction to unimodular transformations.
He then showed how the Hertz restriction reduces the November tensor to the
d’Alembertian acting on the metric in the case of weak fields.

On p. 22R of the Zurich Notebook—at the instigation, it seems, of his friend and col-
laborator Marcel Grossmann whose name appears at the top of the page—Einstein
wrote down the Ricci tensor in the form

(1)

where

(2)

are the Christoffel symbols.29 Einstein extracted an expression from the Ricci tensor
that transforms as a tensor under unimodular transformations. Under such transfor-
mations, the quantity
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(5)

which is (minus) the difference between the generally-covariant Ricci tensor in
eq. (1) and the expression in eq. (4), also transforms as a tensor under unimodular
transformations. This is the quantity we call the November tensor. 

Setting the November tensor equal to the energy-momentum tensor,  multi-
plied by the gravitational constant  one arrives at the field equations of Einstein’s
first paper of November 1915 (Einstein 1915a, 783, eq. 16a):

(6)

The first term on the left-hand side does not reduce to the d’Alembertian acting on
the metric in the weak-field case. There are additional terms with unwanted second-
order derivatives of the metric. At the time of the Zurich Notebook, this made the
November tensor itself unacceptable as a candidate for the left-hand side of the field
equations. Einstein, however, extracted a candidate for the left-hand side of the field
equations from the November tensor by imposing what we call the Hertz restriction,

(7)

Expanding the Christoffel symbols in the first term of the November tensor, one finds

Using the Hertz restriction and the relation

29 We have adopted a notation that lies somewhere between slavishly following the original text and
translating everything into modern language. Our guiding principle has been to use a notation that
makes the equations both easy to follow for those familiar with the standard notation of modern gen-
eral relativity and easy to compare with the original sources for those who want to check our claims
against Einstein’s own writings. On this basis, we have adopted the following rules. We typically fol-
low Einstein’s choice of letters for quantities and indices in the document under discussion. E.g., the
Ricci tensor is not written as  as it is in most modern texts, but as  in our discussion of the
Zurich Notebook in this section and as  in our discussion of (Einstein 1915b) in sec. 7. As in Ein-
stein’s writings of this period, all indices, Greek and Latin, run from 1 through 4. However, we do not
follow Einstein’s idiosyncratic convention before (Einstein 1914c) of writing nearly all indices down-
stairs and distinguishing between covariant and contravariant components (e.g., the components 
and  of the metric) by using a Latin letter for one ( ) and a Greek letter for the other ( ). We
use Latin letters for all quantities and write all covariant indices downstairs and all contravariant indi-
ces upstairs. Following Einstein, we use Fraktur for tensor densities (e.g., ). Deviating
from Einstein, we occasionally use commas and semi-colons for ordinary and covariant differentia-
tion, respectively. We consistently use the summation convention (introduced in Einstein 1916a, 788).
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(where ), one can rewrite this expression as:

(8)

The first term in parentheses reduces to  for weak fields. The other two terms
are quadratic in first-order derivatives of the metric like the contribution coming from
the term in the November tensor quadratic in the Christoffel symbols. All these terms
can be neglected for weak fields. 

On p. 23L of the notebook, Einstein tried to bring down the number of terms qua-
dratic in first-order derivatives of the metric in his field equations by introducing yet
another coordinate restriction in addition to the Hertz restriction and the restriction to
unimodular transformations. We call this new restriction the -restriction.30 Einstein
discovered that this new coordinate restriction could be used to eliminate the
unwanted terms with second-order derivatives as well, so that there was no longer
any need for the Hertz restriction. Einstein eventually abandoned the -restriction
because the -restriction—like the Hertz restriction for that matter—ruled out trans-
formations to rotating frames in Minkowski spacetime. After a few more twists and
turns, Einstein settled on the Entwurf field equations. The November tensor and the
Hertz restriction—used now as a coordinate condition—only reappeared in Novem-
ber 1915.

3. EINSTEIN’S VARIATIONAL FORMALISM: FIELD EQUATIONS, ENERGY-
MOMENTUM CONSERVATION, AND COVARIANCE PROPERTIES

We cover various aspects of the variational formalism that Einstein used both in his
review article on the Entwurf theory of October 1914 and in a number of papers on
general relativity in 1915–1918. The Lagrangian is left unspecified, so all results
hold both in the Entwurf theory and in modern general relativity. The main point of
the section is to show how two very different lines of reasoning—one aimed at finding
conditions to ensure energy-momentum conservation, the other aimed at finding
coordinate transformations leaving the action invariant—lead to the exact same
conditions on the Lagrangian, written as  and  The convergence of
these two lines of reasoning confirmed what Einstein had come to suspect in the fall
of 1913, namely that energy-momentum conservation is directly related to the
covariance of the gravitational field equations.

30 For discussion of the -restriction, see note 69 below and secs. 5.5.4–5.5.10 in “Commentary …” (in
this volume).
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In early November 1915, Einstein (1915a) replaced the Entwurf field equations of
severely limited covariance by field equations just a few tweaks away from the gener-
ally-covariant Einstein field equations of (Einstein 1915d). The way Einstein initially
described it, it was a wholesale replacement:

After all confidence in the result and the method of the earlier theory had thus given way,
I saw clearly that a satisfactory solution could only be found in a connection to the gen-
eral theory of covariants, i.e., to Riemann’s covariant (our emphasis).31

About six weeks later, he recognized that the old had not been all bad:

The series of my papers on gravitation is a chain of erroneous paths, which nonetheless
gradually brought me closer to my goal.32

It is true that Einstein discarded some of his earlier results, but he retained the method
that he had used to obtain those results. This method is the variational formalism first
presented in (Einstein and Grossmann 1914b) and further developed in the definitive
exposition of the Entwurf theory (Einstein 1914c, part D). In the latter paper, he used
this formalism to produce an elegant derivation of the Entwurf field equations, to
investigate their covariance properties, and to prove their compatibility with energy-
momentum conservation. We argue that he used this same formalism to find the suc-
cessor to the Entwurf field equations, published in the first of his four communica-
tions to the Prussian Academy in November 1915 (Einstein 1915a). 

What complicates the use of the formalism both in the four November papers
(Einstein 1915a, b, c, d) and in the first systematic exposition of the new theory (Ein-
stein 1916a) is a restriction to unimodular transformations in the first paper and the
choice of unimodular coordinates33 in the other four. In all these papers, Einstein
nonetheless relied heavily on the formalism to guide him in his analysis of the rela-
tion between field equations and energy-momentum conservation. 

31 “Nachdem so jedes Vertrauen im Resultate und Methode der früheren Theorie gewichen war, sah ich
klar, dass nur durch einen Anschluss an die allgemeine Kovariantentheorie, d.h. an Riemanns Kovari-
ante, eine befriedigende Lösung gefunden werden konnte.” Einstein to Arnold Sommerfeld, Novem-
ber 28, 1915 (CPAE 8, Doc. 153; our emphasis). Unless otherwise noted, all translations are based on
those in the companion volumes to the Einstein edition. This letter to Sommerfeld provides the most
detailed account of the developments of November 1915 that culminated in the publication of the Ein-
stein field equations and the explanation of the anomalous motion of Mercury’s perihelion. This docu-
ment, however, needs to be treated with care. It was a calculated move on Einstein’s part to tell
Sommerfeld the whole story rather than, say, Lorentz, with whom he had corresponded much more
intensively on matters general relativistic. In the fall of 1915, Sommerfeld was kept apprised of devel-
opments not only by Einstein but also by Hilbert. Writing to Sommerfeld, Einstein probably first and
foremost wanted to make sure that Sommerfeld knew that he had put his house in order without any
help from Hilbert.

32 “Die Serie meiner Gravitationsarbeiten ist eine Kette von Irrwegen, die aber doch allmählich dem
Ziele näher führten.” Einstein to H. A. Lorentz, January 17, 1916 (CPAE 8, Doc. 183). The mixing of
metaphors (“Kette von Irrwegen”) is Einstein’s, not ours.

33 Recall the discussion of the difference between coordinate restrictions and coordinate conditions in
the introduction.
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It was only in (Einstein 1916c), written in October 1916, that Einstein first pre-
sented the new theory entirely in arbitrary rather than in unimodular coordinates. This
paper follows the exposition of the variational formalism in (Einstein 1914c) almost
to the letter (as already emphasized in Norton 1984, 141). In early 1918, Einstein
used the formalism again to defend his approach to energy-momentum conservation
in general relativity against objections from Levi-Civita, Lorentz, Klein, and others
(Einstein 1918d). The formalism can also be found in Einstein’s lecture notes for a
course on general relativity in Berlin in 1919 (CPAE 7, Doc. 19, [pp. 13–17]). 

Einstein’s reliance on this variational formalism thus provides an important ele-
ment of continuity in the transition from the Entwurf theory to general relativity and
puts the lie to Einstein’s remark to Sommerfeld that he had lost all confidence in both
“the result and the method” of the old theory. 

In this section, we cover various aspects of Einstein’s formalism: the derivation of
the field equations (sec. 3.1), the treatment of energy-momentum conservation (sec.
3.2), and the investigation of covariance properties (sec. 3.3). In subsequent sections,
we discuss the applications of the formalism in the period 1914–1916. In sec. 4, we
examine the relevant portion of (Einstein 1914c) published in November 1914. In
secs. 5–7, we turn to the papers of November 1915 documenting the transition from
the Entwurf theory to general relativity (Einstein 1915a, b, d). In sec. 8, we present
the streamlined version of the argument of November 1915 given in the review article
completed in March 1916 (Einstein 1916a, part C). In sec. 9, we cover what is proba-
bly the most elegant application of the formalism, the demonstration that energy-
momentum conservation in general relativity is a direct consequence of the general
covariance of the field equations. This argument was made in (Einstein 1916c), pre-
sented to the Prussian Academy in November 1916. Our story thus covers a time-
span of two years, from November 1914 to November 1916. Our main focus will be
on the tumultuous developments of one month in the middle of this period, Novem-
ber 1915.

3.1 Field Equations

With the appropriate definition of the gravitational energy-momentum pseudo-tensor,
the field equations can be written in a form resembling Maxwell’s equations, with the
divergence of the gravitational field on the left-hand side and the sum of the energy-
momentum densities of matter and gravitational field on the right-hand side.

Consider the gravitational part of the action

(9)J Q τ,d∫=
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where  is the gravitational part of the Lagrangian,34  is some as yet
completely undetermined function of  and its first derivatives  and

 is a four-dimensional volume element. The condition that  be an extre-
mum,  leads to the Euler-Lagrange equations

(10)

Although his proof did not satisfy Levi-Civita, Einstein thought he could show that
the expression on the left-hand side transforms as a tensor density under all transfor-
mations under which  transforms as a scalar. 

He generalized the vacuum field equations (10) to

(11)

in the presence of matter described by the energy-momentum tensor  This equa-
tion can be written in a form analogous to Maxwell’s equations, with the divergence
of the gravitational field on the left-hand side and the sources of the field, the energy-
momentum densities of matter and gravitational field, on the right-hand side. Con-
traction with  of the left-hand side of eq. (11) gives:

contraction with  of the right-hand  If the gravitational energy-
momentum pseudo-tensor  is defined as

(12)

then eq. (11) can be rewritten as

(13)

where  and  are mixed tensor densities. These field equa-
tions fulfill an important requirement: the energy-momentum of the gravitational
field enters the source term in the same way as the energy-momentum of matter. 

If the quantity in parentheses on the left-hand side of eq. (13) is identified as the
gravitational field, the equations have the same structure as Maxwell’s equations,

 where  is the electromagnetic field tensor,  is a constant, and
 is the charge-current density, the source of the electromagnetic field.

34 Strictly speaking,  is the Lagrangian density (for detailed discussion, see Wald 1984, Appendix E).
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3.2 Energy-Momentum Conservation

In addition to the field equations, it is assumed that the covariant divergence of the
energy-momentum tensor of matter vanishes. This equation can be rewritten as the
vanishing of the ordinary divergence of the sum of the energy-momentum tensor den-
sities for matter and gravitational field, provided that the gravitational energy-
momentum pseudo-tensor is defined appropriately. Compatibility of this definition
and the definition in the preceding subsection leads to the conditions  on the
Lagrangian. In 1914, Einstein (erroneously) thought that these conditions uniquely
pick out the Entwurf Lagrangian. Einstein imposed four more conditions, written as

 Taken together with the field equations, the conditions  imply
energy-momentum conservation. In general relativity, these conditions turn into the
contracted Bianchi identities.

The energy-momentum balance for matter in a gravitational field can be written as35

(14)

This equation is equivalent to (cf. Einstein 1914c, 1056, eq. 42a):36

four-momentum density of matter at any given point can only
change in two ways: it can flow to or from neighboring points and it can be trans-
ferred to or from the gravitational field at that point. The left-hand sides of eqs. (14)–
() describe the former process, the right-hand sides the latter. The right-hand sides
give the rate at which four-momentum density is transferred from gravitational field
to matter. This term thus represents the gravitational force density. The analogy with
the Lorentz force density —the contraction of the electromagnetic field

 and its source, the charge-current density —suggests that this quantity should
be equal to minus the contraction of the gravitational field and its source, the energy-
momentum tensor of matter. The minus sign reflects that the gravitational force

35 Eq. (14) is equivalent to 

Upon substitution of , this equation turns into

which can be rewritten as eq. (14).
36 Using definition (2) of the Christoffel symbols, one can rewrite the right-hand side of eq. (14) as

The first term of this last expression vanishes since it is the contraction of a quantity symmetric in the
indices  and  and a quantity anti-symmetric in those same indices.
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between two masses is attractive whereas the electric force between two like charges
is repulsive. In the Entwurf theory, Einstein read off the expression for the gravita-
tional field from the right-hand side of eq. ().37 In the November 1915 theory, he used
the right-hand side of eq. (14) instead. Commenting on this switch in his first paper of
November 1915, Einstein wrote:

This conservation law [essentially eq. ()] has led me in the past to look upon the quanti-
ties [ ] as the natural expressions of the components of the gravitational
field, even though the formulas of the absolute differential calculus suggest the Christof-
fel symbols […] instead. This was a fateful prejudice.38

After the fourth paper of November 1915, he told Sommerfeld:

The key to this solution was my realization that not [ ] but the related Christoffel
symbols […] are to be regarded as the natural expression for the “components” of the
gravitational field.39

To appreciate the full significance of these comments, one needs to see how the
November tensor drops out of Einstein’s variational formalism (see sec. 5 below). For
now, we shall follow the treatment in (Einstein 1914c) and work with eq. () rather
than with eq. (14).

In relativistic continuum mechanics, which is carefully tailored to electrodynam-
ics, the theory for which it was first developed, a four-force density can be written as
the four-divergence of a suitably chosen energy-momentum tensor.40 So Einstein
tried to write the gravitational force density in eq. () as the four-divergence of a suit-
ably chosen gravitational energy-momentum (pseudo-)tensor density  If this can
be done, energy-momentum conservation can be written as the vanishing of an ordi-
nary divergence:

(15)

Eq. () can indeed be written in this form, but the resulting expression for  differs
from expression (12) for  found earlier. Einstein therefore had to add an extra con-
dition to his theory that sets these two expressions equal to one another. As he discov-
ered in October 1915, this same condition pops up in the analysis of the covariance
properties of the theory.

37 In doing so, Einstein omitted a minus sign. The motivation for using eq. () rather than eq. (14) to iden-
tify the components of the gravitational field is explained in (Einstein 1914c, 1060, note 1). See also
Einstein to Hans Thirring, 7 December 1917 (CPAE 8, Doc. 405, note 4).

38 “Diese Erhaltungsgleichung hat mich früher dazu verleitet, die Größen […] als den natürlichen Aus-
druck für die Komponenten des Gravitationsfeldes anzusehen, obwohl es im Hinblick auf die Formeln
des absoluten Differentialkalküls näher liegt, die Christoffelschen Symbole statt jener Größen einzu-
führen. Dies war ein verhängnisvolles Vorurteil” (Einstein 1915a, 782; our emphasis).

39 “Den Schlüssel zu dieser Lösung lieferte mir die Erkenntnis, dass nicht […] sondern die damit ver-
wandten Christoffel’schen Symbole […] als natürlichen Ausdruck für die “Komponente” des Gravita-
tionsfeldes anzusehen ist.” Einstein to Arnold Sommerfeld, 28 November 1915 (CPAE 8, Doc. 153).
Our emphasis.

40 See, e.g., sec. 20 of Einstein’s “Manuscript on the Special Theory of Relativity” (CPAE 4, Doc. 1).
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Since  eq. () can also be written as:

(16)

The second term has to be written in the form of  To this end, the field equations
(11) are used to replace  by an expression in terms of the metric field and its
derivatives:41

(17)

The right-hand side of this expression can indeed be written in the form  with:42

(18)

We introduce the more explicit notations  for  as defined in eq. (18)
and  for  as defined in eq. (12).43

Compatibility between these two definitions is assured if the quantity  defined
as (Einstein 1914c, 1075, eq. 76a),44

(19)

41 This method for identifying the expression for the gravitational energy-momentum pseudo-tensor can
already be found at several places in the Zurich Notebook (see, e.g., p. 19R and p. 24R, discussed in
secs. 5.4.2 and 5.6.1, respectively, of “Commentary …” [in this volume]). It was also used in (Ein-
stein and Grossmann 1913, 15). Einstein had used a completely analogous method in his earlier the-
ory for static fields (Einstein 1912, 456).

42 Using that

with  one can rewrite the first term on the right-hand side of eq. (17) as

One thus arrives at

from which eq. (18) follows.
43 The designations “source” and “cons[ervation]” refer to the fact that these two definitions are found

from considerations of the source term of the field equations and considerations of energy-momentum
conservation, respectively.

44 Our derivation of eq. (19) follows Einstein to H. A. Lorentz, 12 October 1915 (CPAE 8, Doc. 129). In
his 1914 review article, Einstein derived this equation by substituting the left-hand side of eq. (11) for

 in both terms on the left-hand side of eq. (16).
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vanishes. This quantity is equal to (  times) the difference between the two defini-
tions of 

(20)

At the time of his review article on the 

 

Entwurf

 

 theory, Einstein thought that this
condition uniquely determined  to be the Lagrangian for the 

 

Entwurf

 

field equations. As it turns out,  vanishes for 

 

any

 

  that transforms as a scalar
under general linear transformations (see eqs. (30)–(31) below).

Einstein imposed another set of conditions on the Lagrangian density  which
guarantee energy-momentum conservation. Taking the divergence of both sides of the
field equations (13), one arrives at

(21)

The field equations thus imply energy-momentum conservation, if  satisfies the
condition (Einstein 1914c, 1077):

. (22)

Energy-momentum thus calls for two sets of conditions:

 (23)

These same conditions, it turns out, also express the covariance properties of the field
equations (see eq. (33) below).

 

3.3 Covariance Properties

The conditions the Lagrangian has to satisfy for the action to be invariant under a
given coordinate transformation are determined. The assumption that the action is at
least invariant under general linear transformations leads to the conditions 
Einstein did not explicitly write down these conditions in 1914, which explains why
he thought that these conditions, which he did encounter in the context of energy-
momentum conservation, could be used to determine the Lagrangian. The conditions
for additional non-linear transformations leaving the action invariant are 
which, as Einstein did recognize, were also the conditions guaranteeing energy-
momentum conservation. In the Entwurf theory, these four conditions determine the
class of what Einstein called “adapted coordinates.” In general relativity, they turn
into the generally-covariant contracted Bianchi identities.

 

What are the transformations that leave the action  (with  an arbi-
trary function of  and ) invariant?

 

45

 

 Consider an arbitrary infinitesimal coor-
dinate transformation  The changes in  and  under this
transformation are given by

 

46,47

κ
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(24)

(25)

The change in  is given by

(26)

The Jacobian  can be written as 48  can then be rewritten
as

(27)

Since  is a function of  and ,  is given by

Inserting eqs. (24)–(25) for  and  one finds49

(28)

Inserting this expression for  into expression (27) for  one finds:

(29)

The expression in curly brackets in the first integral is just the quantity  defined in
eq. (19) in the course of the discussion of energy-momentum conservation. Eq. (29)
can thus be written more compactly as

45 Ultimately, the question is under which transformations the field equations are invariant. Both in (Ein-
stein and Grossmann 1914b) and in (Einstein 1914c, 1069–1071), Einstein argued that these are just
the transformations under which the action is invariant. Levi-Civita’s criticism was aimed at this part
of Einstein’s argument, which for our purposes is not important. Einstein and Grossmann (1914b,
219, note 2) credit Paul Bernays with the suggestion to use a variational formalism to investigate the
covariance properties of the Entwurf field equations.
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(30)

Einstein now focused his attention on functions  that transform as scalars under
arbitrary linear transformations. This implies that the action  is invariant under lin-
ear transformations (  is an invariant volume element). For linear transforma-
tions the second-order derivatives of  all vanish, so the second integral in eq. (30)
does not contribute to  This means that the first integral must vanish identically
for arbitrary values of the first-order derivatives of  i.e., that:

(31)

Through partial integration, the second integral in eq. (30) can be rewritten as

plus surface terms that can all be assumed to vanish. The integrand is the contraction
of  and an expression which is exactly equal to the quantity  defined in
eq. (22) in the context of the discussion of energy-momentum conservation:

Assuming that condition (31) holds, one can thus rewrite eq. (30) as

 

46 Einstein had an idiosyncratic way of computing the variations induced by coordinate transformations.
Felix Klein, David Hilbert, Emmy Noether, and other mathematicians in or closely affiliated with
Göttingen (such as Hermann Weyl in Zurich) used what is called the “Lie variation” of the metric ten-
sor, defined as . Commenting on (Weyl 1918), which he was reading in
proof, Einstein wrote: “He [Weyl] derives the energy law for matter with the same variational trick
that you used in the note that recently appeared [Klein 1917]” (“Den Energiesatz der Materie leitet er
mit demselben Variations-Kunstgriff ab wie Sie in Ihrer neulich erschienenen Note,”

 
 

 

Einstein to Felix
Klein, 24 March 1918 [CPAE 8, Doc. 492]). Two years earlier he had already noted that Lie variation
and differentiation commute (Einstein to David Hilbert, 30 March 1916 [CPAE 8, Doc. 207]). This is
not the case if one does the variation the way Einstein does (see eq. (25)). One would have expected
Einstein to pick up on this quickly. After all, the crucial distinction between  and 
was very familiar to him from the hole argument (see, e.g., sec. 4 in “What Did Einstein Know …”.
[in this volume]). In fact, Einstein still had not fully assimilated the notion of Lie variation in late
1918, as can be inferred from his comments on (Klein 1918a): “At first I had some trouble under-
standing your equation (6) [involving Lie variation]. The point is that with your preferred way of
doing variations ” (“Anfänglich hatte ich etwas Mühe, Ihre Glei-
chung (6) zu begreifen. Der Witz ist eben, dass bei der von Ihnen bevorzugten Art zu varieren […]
ist,”

 

 

 

Einstein to Felix Klein, 22 October 1918 [CPAE 8, Doc. 638]). Old habits die hard. In his lec-
tures on general relativity in Berlin in 1919, Einstein still vacillated between his own way of doing the
variations and that of Weyl and Klein (CPAE 7, Doc. 19, [pp. 13–17]). For discussion of different
types of variation that played a role in the early years of general relativity, see (Kichenassamy 1993),
sec. 3.
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(32)

The upshot then is that the following two sets of conditions have to be satisfied for
the action to be invariant under some coordinate transformation 

 (33)

These conditions are the same as the conditions guaranteeing energy-momentum
conservation that we found in eq. (23).

In the case of the four conditions  Einstein clearly recognized in his
1914 review article that they play this dual role (Einstein 1914c, 1076–1077). In the
case of the conditions  however, he did not. He only encountered these con-
ditions in the context of energy-momentum conservation. He did not encounter them
in his analysis of the covariance of the action  Einstein started from

(34)

rather than from eq. (26). He did not bother to write down the coefficients of
 in  as we did for  (see eq. (28)). He wrote:

We now assume that  is invariant under linear transformations, i.e., that  should
vanish if the [ ] vanish. On this assumption we arrive at

47 Eq, (24) for  follows from

eq. (25) for  from:

48 The Jacobian can be computed as follows:

49 Eq. (28) is found as follows:

Grouping terms in  and in  and relabeling indices, one arrives at eq. (28).
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With the help of [this equation and ] one arrives at

and from this through partial integration at

 

50

 

Using eq. (28) with  instead of  and the invariance of  one arrives at

The condition that the expression in curly brackets vanish guarantees that 
for linear transformations. Comparing this expression to  the coefficients of

 in eq. (29), one sees that the condition read off of the expression for 
above is equivalent but not identical to the conditions  So even if Einstein
actually did calculate the coefficients of  in  and , he would not
have arrived at the conditions  found in the context of energy-momentum
conservation. Consequently, he would still not have realized that  for any
function that transforms as a scalar under general linear transformations and that
these conditions therefore cannot be used to determine the Lagrangian.

 

51

 

Almost a year went by before Einstein discovered his error. As he wrote to
Lorentz in early October 1915:

 

The invariant-theoretical method actually does not tell us more than the Hamiltonian
principle when it comes to the determination of your function  ( ) [see
Lorentz 1915, 763]. That I did not realize this last year is because I nonchalantly intro-
duced the assumption on p. 1069 of my paper [Einstein 1914c] that  be an invariant
under 

 

linear

 

 transformations.

 

52

 

The conditions on  coming from the “Hamiltonian principle” are presumably the
ones coming from the requirement that expressions (13) and (19) for  are equal to
one another. This is how Einstein derives the conditions  in his letter to

 

50 “Wir nehmen nun an daß  bezüglich linearer Transformationen eine Invariante sei; d. h.  soll
verschwinden, falls die […] verschwinden. Unter dieser Voraussetzung enthalten wir […]. Mit hilfe
von […] erhält man […] und hieraus durch partielle Integration […]” (Einstein 1914c, 1069–1070).

51 In (Einstein 1916c, 1113–1115), the conditions  and  are derived in yet another way
(see sec. 9, eqs. (117)–(122)).
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Lorentz. He then adds: “This is also the condition for [ ] being an invariant under
linear transformations” (ibid.).

 

53

 

We now turn from the conditions  to the conditions  These are
the conditions for “coordinates adapted to the gravitational field.”

 

54

 

 or “adapted coor-
dinates” for short. If some metric field  expressed in coordinates  satisfies
these conditions, the coordinates are called adapted to that field. Transformations
from one adapted coordinate system to another are called “justified.”

 

55

 

 Such transfor-
mations are not mappings of the form  like ordinary coordinate transfor-
mations, but mappings of the form  Because of their
dependence on the metric, Einstein, at Ehrenfest’s suggestion, called them “non-
autonomous” transformations at one point.

 

56

 

 
Einstein looked upon the conditions  for adapted coordinates as the coor-

dinate restriction with which the 

 

Entwurf

 

 field equations could be extracted from
unknown generally-covariant equations.

 

57

 

 He must have been pleased to see that
these coordinate restrictions follow from energy-momentum conservation. In March
1914, Einstein wrote a letter to Besso reporting on the results that would be published
a few months later in (Einstein and Grossmann 1914b). He showed how the condi-
tions  follow from the field equations and energy-momentum conservation
(cf. eqs. (21)–(22)). The 

 

Entwurf

 

 field equations, he told Besso, “

 

hold in every frame
of reference adapted to this condition.

 

”

 

58

 

 Einstein claimed that this class of reference
frames included all sorts of accelerated frames, including the important case of a
rotating frame.

 

59

 

 This is not true,

 

60

 

 but that does not matter for our purposes. What is
interesting for our story is the following passage from the draft of Besso’s reply:

 

You already had the fundamental insight that the conservation laws represent the condi-
tion for positing an admissible coordinate system; but it did not appear to be ruled out
that a restriction to Lorentz transformations was thereby essentially already given, so that
nothing particularly interesting epistemologically comes out of it. Now everything is fun-
damentally completely satisfactory.

 

61

 

52 “Thatsächlich liefert die invariantentheoretische Methode nicht mehr als das Hamilton’sche Prinzip
wenn es sich um die Bestimmung der Ihrer Funktion  ( ) handelt. Dass ich dies letztes
Jahr nicht merkte liegt daran, dass ich auf Seite 1069 meiner Abhandlung leichtsinnig die Vorausset-
zung einführte,  sei eine Invariante bezüglich linearer Transformationen.” Einstein to
H. A. Lorentz, October 12, 1915 (CPAE 8, Doc. 129). The function  was introduced in (Lorentz
1915, 763).

53 “Dies ist gleichzeitig die Bedingung dafür, dass [ ] eine Invariante bezüglich linearer Substitutio-
nen ist.”

54 “dem Gravitationsfeld angepaßte Koordinatensysteme” (Einstein 1914c, 1070). In (Einstein and
Grossmann 1914b, 221), such coordinates are called “‘adapted’ to the manifold” (“der Mannigfaltig-
keit „

 

angepaßte“”).
55 “„berechtigte“” (Einstein and Grossmann 1914b, 221).
56 “„unselbständige“.” Einstein to H. A. Lorentz, 14 August 1913 (CPAE 5, Doc. 467). Non-autono-

mous transformations play an important role in the Zurich Notebook (see sec. 4.3 of
“Commentary …” [in this volume]).

Q H g–=

H
Q

Qdτ

Qdτ

Sσ
ν 0= Bμ 0.=

gμν xμ

xμ x′μ,→
xμ   g μν x ( ) ,  ( ) x ′ μ   g ′ μν x ′( ) ,  ( ) . →
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In the first sentence Besso is referring to Einstein’s argument of late 1913 which
seemed to show that energy-momentum conservation limits the covariance of the

 

Entwurf

 

 field equations to linear transformations. Einstein had touted this specious
result in several places. To Paul Ehrenfest, for instance, he wrote in November 1913,
referring both to the argument from energy-momentum conservation and to the ‘hole
argument’:

 

The gravitation affair has been resolved to my 

 

full satisfaction

 

 (namely the circumstance
that the equations of the gravitational field are only invariant under linear transforma-
tions[)]. It turns out that one can prove that  generally-covariant   equations that  fully   deter-
mine the field on the basis of the matter [energy-momentum] tensor cannot exist at all.
What can be more beautiful than that the necessary specialization follows from the con-
servation laws?

 

62

 

The argument that energy-momentum conservation restricts the covariance of the
field equations to linear transformations evaporated early in 1914. But the triumphant
rhetorical question in the passage above can also be applied to the argument leading
to the condition  that took its place: “What can be more beautiful than that
the necessary specialization follows from the conservation laws?”

Neither in (Einstein and Grossmann 1914b) nor in (Einstein 1914c) do we find
statements drawing attention to the close connection between covariance of the field
equations and energy-momentum conservation. Einstein probably did emphasize this
connection though in his Wolfskehl lectures in Göttingen in the summer of 1915.

 

63

 

Afterwards, in two letters to his friend Heinrich Zangger,

 

64

 

 Einstein expressed his sat-
isfaction that he had been able to convince the Göttingen mathematicians, and David
Hilbert in particular, of his 

 

Entwurf

 

 theory. In November 1915, Einstein found himself
in a race against Hilbert to find field equations to replace the discarded 

 

Entwurf

 

 equa-

 

57 This fits with Einstein’s general attitude towards general covariance at the time. In (Einstein 1914b,
177–178), he wrote: “When one has equations relating certain quantities that only hold in certain
coordinate systems, one has to distinguish between two cases: 1. There are generally-covariant equa-
tions corresponding to the equations […]; 2. There are no generally-covariant equations that can be
found on the basis of the equations given for a particular choice of reference frame. In case 2, the
equations do not tell us anything about the things represented by these quantities; they only restrict
the choice of reference frame. If the equations tell us anything at all about the things represented by
these quantities, we are always dealing with case 1” (“Wenn Gleichungen zwischen irgendwelchen
Größen gegeben sind, die nur bei spezieller Wahl des Koordinatensystems gültig sind, so sind zwei
Fälle zu unterscheiden: 1. Es entsprechen den Gleichungen allgemein kovariante Gleichungen […]; 2.
es gibt keine allgemein kovarianten Gleichungen, die aus den für spezielle Wahl des Bezugssystems
gegebenen Gleichungen gefolgert werden können. Im Falle 2 sagen die Gleichungen über die durch
die Größen dargestellten Dinge gar nichts aus; sie beschränken nur die Wahl des Bezugssystems.
Sagen die Gleichungen über die durch die Größen dargestellten Dinge überhaupt etwas aus, so liegt
stets der Fall 1 vor […].”). Similarly, he told Ehrenfest: “Grossmann wrote to me that he has now also
been able to derive the gravitational [field] equations from the theory of general covariants. That
would be a neat addition to our investigation [i.e., Einstein and Grossmann 1914b]” (“Grossmann
schrieb mir, dass es ihm nun auch gelinge, die Gravitationsgleichungen aus der allgemeinen Kovari-
antentheorie abzuleiten. Es wäre dies eine hübsche Ergänzung zu unserer Untersuchung,” Einstein to
Paul Ehrenfest, before 10 April 1914 [CPAE 8, Doc. 2]).
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tions. Page proofs of (Hilbert 1915),

 

65

 

 the final version of which would not be pub-
lished until late March 1916, show that the theory originally proposed by Hilbert has a
structure that is remarkably similar to that of the 

 

Entwurf

 

 theory as presented in (Ein-
stein and Grossmann 1914b) and (Einstein 1914c). In these page proofs, Hilbert intro-
duces field equations that are invariant under arbitrary transformations of the
coordinates—or, as Hilbert calls them, “world parameters” (“Weltparameter”). He
then rehearses what is essentially Einstein’s ‘hole argument’ to argue that these
“world parameters” need to be restricted to what he calls “spacetime coordinates”
(“Raum-Zeitkoordinaten”). Such spacetime coordinates are defined as those world
parameters for which a condition called the “energy theorem” (“Energiesatz”)
holds.

 

66

 

 It is probably because of these similarities between Hilbert’s original theory
and the 

 

Entwurf

 

 theory, that Einstein accused Hilbert of “nostrification”
(“Nostrifikation”) in another letter to Zangger.

 

67

 

 This episode is interesting for our
purposes since it provides circumstantial evidence for our conjecture that Einstein did
mention in his Wolfskehl lectures that it should be possible to extract the 

 

Entwurf

 

 field
equations from (unknown) generally-covariant equations by imposing the coordinate
restriction  given by the demands of energy-momentum conservation.

 

58 “… 

 

für jedes Bezugssystem gelten, welches dieser Bedingung angepasst ist.

 

” Einstein to Michele
Besso, ca. 10 March 1914 (CPAE 5, Doc. 514). Levi-Civita constructed a counter-example to Ein-
stein’s claim, Tullio Levi-Civita to Einstein, 28 March 1915 (CPAE 8, Doc. 67). In our notation, Levi-
Civita found a non-autonomous transformation  satisfying the condi-
tion for justified transformations between adapted coordinates (i.e.,

), under which the 

 

Entwurf

 

 field equations were nonetheless 

 

not

 

invariant (i.e.,  is a solution but  is not). In Levi-Civita’s example,  =

59 This claim was based on a general argument given in Einstein to H.A. Lorentz, 23 January 1915
(CPAE 8, Doc. 47).

60 For the Minkowski metric in rotating coordinates,  (Janssen 1999, 150–151, note 47)
61 “Du hattest schon principiell eingesehen, dass die Erhaltungssätze die Bedingung für die Aufstellung

eines zulässigen Coordinatensystems darstellen; aber es schien nicht ausgeschlossen, dass schon
dadurch, im Wesentlichen, die Beschränkung auf die Lorentztransformationen gegeben sei, so dass
nichts erkenntnistheoretisch besonders interessantes herauskam. Nun ist alles principiell vollkommen
befriedigend.” Michele Besso to Einstein, draft, 20 March 1914 (CPAE 5, Doc. 516). For further dis-
cussion of this letter, see sec. 2.2 of “What Did Einstein Know …” (in this volume).

62 “Die Gravitationsaffäre hat sich zu meiner 

 

vollen Befriedigung

 

 aufgeklärt (der Umstand nämlich, dass
die Gleichungen des Gr. Feldes nur linearen Transformationen gegenüber kovariant sind. Es lässt sich
nämlich beweisen, dass 

 

allgemein kovariante

 

 Gleichungen, die das Feld aus dem materiellen Tensor
vollständig bestimmen, überhaupt nicht existieren können. Was kann es schöneres geben, als dies,
dass jene nötige Spezialisierung aus den Erhaltungssätzen fliesst?” Einstein to Paul Ehrenfest, before
7 November 1913 (CPAE 5, Doc. 481).

63 Notes taken by an unknown auditor present at (some of) these lectures were found by Leo Corry and
are published in Appendix B of CPAE 6. These notes, however, do not touch on the field equations,
nor on energy-momentum conservation.

xμ   ,  g μν x ( )( ) x ′ μ   ,  g ′ μν x ′( )( )→

Bμ gμν x( )( ) Bμ g ′μν x ′( )( ) 0= =
gμν x( ) g ′μν x ′( ) gμν x( ) ημν=

diag 1– 1– 1– 1, , ,( ) .
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4. THE MAXWELLIAN 

 

ENTWURF

 

 LAGRANGIAN

 

We feed the gravitational part of the Lagrangian for the Entwurf field equations,
modelled on the Lagrangian for the free Maxwell field, into the general formalism of
(Einstein 1914c) and derive the field equations, the expression for the gravitational
energy-momentum pseudo-tensor, and the condition for “adapted coordinates” that
determines for each solution what other coordinate representations of the solution
are allowed by the Entwurf field equations.

 

One arrives at the gravitational part of the Lagrangian  for the 

 

Entwurf

 

field equations through the following choice for the function  (Einstein 1914c,
1076, note 1):

 

68

 

(35)

where  are the components of the gravitational field, defined as (Einstein 1914,
p. 1077, eq. 81a):

(36)

The Lagrangian is modelled on the Lagrangian  for the free Maxwell field.
Since  is a scalar under linear transformations, the conditions  are satisfied
(see eqs. (30)–(31)).

 64 Einstein to Heinrich Zangger, 7 July 1915 (CPAE 8, Doc. 94) and between 24 July and 7 August 1915
(CPAE 8, Doc. 101).

65 These page proofs are located at the Niedersächsische Staats- und Universitätsbibliothek in Göttingen
(Cod. Ms. D. Hilbert 634), where they were discovered by Leo Corry. For discussion, see (Corry et al.
1997), (Sauer 1999), and “Hilbert’s Foundation of Physics …” (in vol. 4 of this series).

66 This restriction is stated in “Axiom III (Axiom of space and time)” (“Axiom III (Axiom von Raum
und Zeit”)) in the page proofs. This axiom is also mentioned in David Hilbert to Einstein, 13 Novem-
ber 1915 (CPAE 8, Doc. 140). It no longer occurs in (Hilbert 1915).

67 Einstein to Heinrich Zangger, 26 November 1915 (CPAE 8, Doc. 152). From Einstein to David Hil-
bert, 18 November 1915 (CPAE 8, Doc. 148) it can be inferred that Einstein saw a manuscript with an
early version of the theory that would eventually be published in (Hilbert 1915).

68 The expression for  actually differs by a factor  from the one that leads to the 

 

Entwurf

 

 field
equations as given in Einstein’s publications prior to (Einstein 1914c). Substituting eq. (36) for 
into eq. (35), one can rewrite the function  as:

Since  this expression can also be written as (Einstein 1914, 1076, eq. 78):

To recover the 

 

Entwurf

 

 field equations, the factor  should be replaced by  (see Einstein and
Grossmann 1914, 219, eq.Va, and note 72 below). In other words, the function  should be defined
as 

Q H g–=
H

H 1 2⁄
Γμτ

ρ

H

H gμν 1
2
---gασgσβ μ,⎝ ⎠

⎛ ⎞ 1
2
---gβτgτα ν,⎝ ⎠

⎛ ⎞ .–=

gασgβτgτα ν, gν
σβ ,–=

H
1
4
---gμνgσβ μ, gν

σβ .=

1 4⁄ 1 2⁄
H

H 2gμνΓβμ
α Γαν

β .–=

H gμνΓβμ
α Γαν

β ,–=

Γβμ
α

Γβμ
α 1

2
---gαρgρβ μ, .≡

1
4
---FμνFμν–

H Sσ
ν 0=
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The definition of the components of the gravitational field is suggested by the
energy-momentum balance equation, written in the form of eq. (), which with the
help of eq. (36) can be rewritten as

The second term represents the gravitational force density and has the same form as
the Lorentz force density,  It is the contraction of the field  and its
source  

The quantities  in eq. (36) are truncated versions of the Christoffel symbols69

Note that, unlike the Christoffel symbols, the  are not symmetric in their lower
indices.

We derive the left-hand side of the Entwurf field equations from the action princi-
ple  The gravitational part of the action is (see eq. (9))

with  There are two contributions to 

(37)

69 On p. 23L of the Zurich Notebook, Einstein had tried to extract field equations from the November
tensor by truncating the Christoffel symbols in a similar fashion. Introducing the quantities

Einstein could write the Christoffel symbols as

Inserting this expression into the November tensor,

(see eq. (5)), and eliminating all terms involving  with the help of the appropriate coordinate
restriction, Einstein arrived at the following candidate for the left-hand side of the field equations

As Einstein realized, this expression can be obtained in one fell swoop by setting  and sub-
stituting  for the Christoffel symbols in the November tensor. Like all other candidates
extracted from the Riemann tensor in the Zurich Notebook, this candidate was rejected because the
necessary coordinate restriction turned out to be too restrictive. For a more detailed analysis, see sec.
5.5.4 of “Commentary …” (in this volume).

Tμ α,
α Γαμ

β Tβ
α– 0.=

f μ Fμν jν.= Γβμ
α

Tβ
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ϑilα
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T il
x

xk∂
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⎧ ⎫ λ
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⎧ ⎫ k
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Since  (see Einstein 1914c, 1051, eqs. 32–34; Einstein 1916a, 796,
eq. 29),

(38)

Inserting this expression and eq. (35) for  into the second contribution to  in
eq. (37), one arrives at:

(39)

Variation of  in the first contribution to  in eq. (37) gives:

For  one finds:70

It follows that:71

Substituting this into the expression for  above and collecting terms with 
and  one finds:

(40)

Inserting eqs. (39) and (40) into eq. (37), one finds:

Comparison of this expression with  gives

70 Using eq. (36) for , one finds:

Since , the last term can be rewritten as:

71 This follows from

after relabeling indices.
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(41)

(42)

Inserting equations (41)–(42) into the general form of the field equations,

(43)

(see eq. (11)), one can write the 

 

Entwurf

 

 field equations as:

 

72

 

(44)

The 

 

Entwurf

 

 field equations can be written in a more compact form (Einstein
1914c, 1077). Instead of using eq. (43), one can use the field equations in the general
form

 

72 Expressing  in terms of  and multiplying the left-hand side of eq. (44) by 2 to correct for the
error in eq. (35) for  (see note 68), one recovers the 

 

Entwurf

 

 field equation as originally given in
(Einstein and Grossmann 1913). The first two terms on the left-hand side of eq. (44) can be written as:

The expression in curly brackets is the quantity  defined in (Einstein and Grossmann 1913,
16, eq. 16). The last two terms on the left-hand side eq. (44) can likewise be written as:

The expression in square brackets is the quantity  in (Einstein and Grossmann 1913, 16,
eq. 14). The left-hand side of eq. (44) can thus be rewritten as:

Omitting the erroneous factor  and dividing by , one sees that eq. (44) can be rewritten as

 

which is just (Einstein and Grossmann 1913, 17, eq. 21).
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(45)

(see eq. (13)), along with eq. (18) for the gravitational energy-momentum tensor

 

73

 

(46)

Using expression (35) for  in  one recovers the 

 

Entwurf

 

 field equa-
tions as given by Einstein. From eq. (42) it follows that eq. (45) in this case is:

 

74

 

(47)

From eqs. (35) and (42) it follows that eq. (46) in this case is:

(48)

Simplifying this expression, one finds

 

75

 

(49)

This is indeed the expression for the gravitational energy-momentum pseudo-tensor
as given in (Einstein 1914c, 1077, eq. 81b). And with this expression for  the field
equations (47) are indeed the 

 

Entwurf

 

 field equations as given in (Einstein 1914c,
1077, eq. 81).

 

76

 

From eq. (47) it follows that the conditions —playing the dual role of
restricting the coordinates (see eq. (32)) and guaranteeing the vanishing of the diver-
gence of  (see eqs. (21)–(22))—take on the specific form:

(50)

 

73 This expression is simpler than expression (12), which depends both on  and on
 Since  expressions (12) and (18) are equivalent (see eq. (18)–(20)).

74 In detail: 

75 The last term in eq. (48) can be rewritten as:

where in the last step eq. (36) was used.
76 To obtain the 

 

Entwurf

 

 field equations of Einstein’s earlier publications, one needs to multiply both the
left-hand side of eq. (47) and the right-hand sides of eqs. (48)–(49) by 2 (see notes 68 and 72).
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Commenting on eq. (36) for the gravitational field, eq. (47), the Entwurf field
equations, and eq. (49) for the gravitational energy-momentum pseudo-tensor, Ein-
stein wrote

Despite its complexity, the system of equations admits of a simple physical interpreta-
tion. The left-hand side [of eq. (47)] expresses a kind of divergence of the gravitational
field [eq. (36)]. This [divergence] is—as the right-hand side shows—determined by the
components of the total energy tensor. What is very important is the result that the energy
tensor of the gravitational field [eq. (49)] acts as a source of the field in the same way as
the energy tensor of matter.77

On the preceding page, Einstein boasted that his new derivation of the Entwurf field
equations is essentially free from physical considerations. After showing that the
expression for  in eq. (35) satisfies the conditions —as would any other
expression transforming as a scalar under linear transformations—he wrote:

We have now in a completely formal manner, i.e., without direct use of our physical
knowledge about gravity, arrived at very definite field equations.78

Even if we forget for a moment that the uniqueness argument immediately preceding
it is hogwash, this statement is patently false. The derivation of the Entwurf field
equations in (Einstein 1914c, part D) may be more formal than earlier derivations, but
it still relies heavily on physical considerations. The function  giving the
Lagrangian is modelled on the Lagrangian for the free Maxwell field. It is assumed to
depend only on first-order derivatives of the metric because the Poisson equation of
Newtonian theory suggests that the gravitational field equations do not contain any-
thing higher than second-order derivatives of the metric (Einstein and Grossmann
1913, 11). The conditions  that supposedly determine  uniquely are
derived from the energy-momentum balance law of matter in a gravitational field (see

77 “Das Gleichungssystem […] läßt trotz seiner Kompliziertheit eine einfache physikalische Interpreta-
tion zu. Die linke Seite drückt eine Art Divergenz des Gravitationsfeldes aus. Diese wird—wie die
rechte Seite zeigt—bedingt durch die Komponente des totalen Energietensors. Sehr wichtig ist dabei
das Ergebnis, daß der Energietensor des Gravitationsfeldes selbst in gleicher Weise felderregend
wirksam ist wie der Energietensor der Materie” (Einstein 1914c, 1077).

78 “Wir sind nun auf rein formalem Wege, d. h. ohne direkte Heranziehung unserer physikalischen
Kenntnisse von der Gravitation, zu ganz bestimmten Feldgleichungen gelangt” (Einstein 1914c,
1076). Einstein had already announced this proudly in the introduction of the paper: “In particular, it
was possible to obtain the equations for the gravitational field in a purely covariant-theoretical way”
(“Es gelang insbesondere, die Gleichungen des Gravitationsfeldes auf einem rein kovarianten-theore-
tischen Wege zu gewinnen;” ibid., 1030). Earlier in 1914, in a paper co-authored with Adriaan D.
Fokker, Einstein had made a similar claim for his reformulation of the Nordström theory in terms of
Riemannian geometry. In the conclusion of their paper, the authors wrote: “In the foregoing it was
possible to show that, if one bases oneself on the principle of the constancy of the velocity of light,
one can arrive at Nordström’s theory by purely formal considerations, i.e., without recourse to addi-
tional physical hypotheses” (“Im vorstehenden konnte gezeigt werden, daß man bei Zugrundelegung
des Prinzips von der Konstanz der Lichtgeschwindigkeit durch rein formale Erwägungen, d.h. ohne
Zuhilfenahme weiterer physikalischen Hypothesen zur Nordströmschen Theorie gelangen kann;”
Einstein and Fokker 1914, 328).

H Sσ
ν 0=

H
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sec. 3.2). Moreover,  only gives the gravitational part of the field equations. The
matter part,  is inserted on the basis of physical considerations. The same is true
for the way in which the gravitational part of the field equations is split into a term
with the divergence of the gravitational field and a term with the gravitational energy-
momentum pseudo-tensor. All this is hard to reconcile with Einstein’s claim to have
derived the equations “in a completely formal manner.”79

The claim, we suggest, should be understood against the backdrop of Einstein’s
obvious satisfaction that physical and mathematical considerations now seemed to
point to the same field equations. Material in the Zurich Notebook shows that when
Einstein began to generate field equations from their weak-field form by imposing
energy-momentum conservation—the method that originally gave him the Entwurf
field equations—he also tried to recover the resulting equations from the November
tensor.80 Such an alternative derivation of the field equations would have thrown light
on their covariance properties. What Einstein presents in the review article of 1914
amounts to the same thing. Although he still had not found any connection between
the Entwurf field equations and the Ricci tensor or the November tensor, he did sup-
plement the physical considerations in the derivation of the Entwurf field equations
by mathematical considerations that clarify—or so Einstein thought—their covari-
ance properties. It therefore need not surprise us that Einstein overrated the impor-
tance of mathematical considerations in his new derivation of the Entwurf field
equations.

5. A ‘FATEFUL PREJUDICE’ AND THE ‘KEY TO THE SOLUTION’: FROM 
THE ENTWURF LAGRANGIAN TO THE NOVEMBER LAGRANGIAN

When in the Entwurf Lagrangian the gravitational field is redefined as minus the
Christoffel symbols, we find new field equations that bear a striking resemblance to
field equations based on the November tensor found in the Zurich Notebook. When a
factor  is omitted in the action with the new definition of the gravitational field,
the field equations are exactly the same as these equations in the Zurich Notebook.
Einstein called the old definition of the gravitational field a “fateful prejudice” and
the new definition “the key to the solution.” This strongly suggests that the way in
which Einstein found his way back to these discarded field equations of the Zurich
Notebook shortly before he published them in (Einstein 1915a) was essentially the
same as the way in which they are recovered in this section.

What are the field equations if one retains the form of (the gravitational part of) the
Entwurf Lagrangian  with

79 Einstein likewise overestimated the importance of purely mathematical considerations in deriving the
field equations of the Nordström theory in (Einstein and Fokker 1914).

80 See pp. 24R–25R of the Zurich Notebook and sec. 5.6 of “Commentary …” (in this volume) for
detailed analysis.
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(51)

(see eq. (35)), but changes the definition of the components of the gravitational field
from

(52)

(see eq. (36)) to

(53)

as Einstein did in his first November 1915 paper? 
As before (see eqs. (35)-(44)), the left-hand side of the field equations follows

from  where

(54)

Variation of  gives two contributions (see eq. (37)):

(55)

The second contribution is the same as before (see eq. (39)):

(56)

Likewise,  can once again be written as

However, since  in eq. (53) is symmetric in its lower indices whereas  in
eq. (52) is not, the expression for  ends up being much simpler than before (cf.
eq. (40)). The expression for  above can be rewritten as

which reduces to:81

(57)

81 Using the definition of  in eq. (53), one can rewrite the last term of the expression above as

Since  is symmetric in  and  and  is anti-symmetric in  and  their
contraction vanishes and the expression above reduces to:

Using that  one can rewrite this as 
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Inserting eqs. (56) and (57) into eq. (55), one finds:

(58)

It follows that

(59)

(60)

Inserting equations (59)–(60) into eq. (43), one finds the field equations:

(61)

If one omits the factors  in the first two terms and uses eq. (53) for the com-
ponents of the gravitational field, these two terms become:

This is just minus the November tensor which Einstein had extracted from the Ricci
tensor in the Zurich Notebook by imposing the restriction to unimodular transforma-
tions. It is not hard to see how the calculation in eqs. (54)–(61) needs to be modified
in order to recover the field equations (6) based on the November tensor without any
of the additional extra terms and factors in eq. (61). First, one only requires  to
transform as a scalar under unimodular transformations whenever  does. One can
then start from

(62)

Before (see eq. (54)) a factor  was needed because only the combination 
is an invariant volume element under arbitrary transformations. Under unimodular
transformations, however,  by itself is invariant. 

It turns out (see sec. 6) that omission of a factor  in the action seriously com-
plicates the use of the formalism of (Einstein 1914c). It would have been easier to
work with the field equations (61) retaining all factors of  The covariance prop-
erties of these equations, however, look as intractable as those of the Entwurf equa-
tions. Omission of a factor  was a small price to pay for field equations with a
broad well-defined covariance group closely connected to the Riemann tensor.82 This
was the connection Einstein had been looking for in vain in the days of the Zurich
Notebook. In (Einstein 1914c) he thought that such a connection was no longer
needed, that instead he could supplement the physical considerations going into the
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derivation of the Entwurf field equations with mathematical ones establishing, or so it
seemed, that their covariance was broad enough for the generalization of the relativ-
ity principle he envisioned. That approach had ultimately failed. The action (62) now
promised to resurrect the old ideal of the Zurich Notebook in which physical and
mathematical considerations would point to the same field equations. Complications
coming from omitting a factor  could be dealt with later.

Eq. (62) is indeed the action from which the field equations are derived in (Ein-
stein 1915a, 784, eq. 17). Einstein used the notation  for   is given by (see
eq. (51)):

(63)

The field equations are:

(64)

(Einstein 1915a, 784, eq. 18). The variation  can be read off of eq. (57). It
follows that (Einstein 1915a, 784, eqs. 19–19a):83

(65)

(66)

Inserting eqs. (65)–(66) into eq. (64), one finds the field equations (Einstein 1915a,
783, eq. 16a):

(67)

When minus the Christoffel symbols are substituted for the quantities  eq. (67)
turns into eq. (6) based on the “November” tensor familiar from the Zurich Note-
book. These field equations replace the Entwurf equations in (Einstein 1915a).

By changing the definition of the gravitational field in the Entwurf Lagrangian
and by restricting the variational formalism of sec. 3 to unimodular transformations,

82 Another advantage was that unimodular transformations are autonomous. Einstein had been greatly
relieved when, in August 1913, he hit upon the (fallacious) argument that energy-momentum conser-
vation limited the covariance of the Entwurf equations to linear transformations. That meant that he
could stop searching for non-linear non-autonomous transformation leaving the equations invariant.
He had been unable to find a single one up to that point (Einstein to Lorentz, 14 and 16 August 1913
[CPAE 5, Docs. 467 and 470]; for further discussion, see sec. 3 of “What Did Einstein Know …” [in
this volume]). After the argument had evaporated, Einstein had been forced to reconsider non-autono-
mous transformations. He eventually concluded that the condition  for the Entwurf theory
(see eq. (50)) allows non-autonomous transformations to arbitrarily moving systems. The simple case
of rotation in Minkowski spacetime proved him wrong. With field equations invariant under unimodu-
lar transformations, Einstein could avoid these problematic non-autonomous transformations alto-
gether.
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we have thus arrived at field equations with a clearly defined covariance group. Ein-
stein’s comments that the old definition (52) of the gravitational field was a “fateful
prejudice” (cf. note 38) and that the new definition (53) was “the key to the solution”
(cf. note 39) provide strong textual evidence that he found his way back to the field
equations (67) in essentially the same way in which they were derived in this section.

This provides a remarkably simple solution to one of the central puzzles in recon-
structing Einstein’s path to the Einstein field equations. As John Norton (1984, 142)
put it: “Why Einstein should choose [the November tensor, i.e., the left-hand side of
eq. (67)] as his gravitation tensor rather than a generally-covariant tensor, such as the
Ricci tensor or even the Einstein tensor itself, has hitherto been a puzzle.” Norton
conjectured that it was Einstein’s prejudice about the form of the metric for weak
static fields that prevented him from choosing the Ricci tensor. To reduce the Ricci
tensor to the d’Alembertian acting on the metric in the case of weak fields, the argu-
ment went, one needs the harmonic coordinate condition, which is not satisfied by
Einstein’s metric for weak static fields. In the case of the November tensor, one can
use the Hertz condition for this purpose (see eqs. (7)-(8)), which is satisfied by Ein-
stein’s metric for weak static fields. Aside from solving Norton’s puzzle, there is no
evidence that the incompatibility between the harmonic condition and Einstein’s prej-
udice about the form of the metric for weak static fields played a role at this juncture.
Our alternative solution to the puzzle removes the need for invoking this incompati-
bility.84 Why did Einstein choose the November tensor rather than the Ricci tensor?
Because both the mathematical and the physical strategy he employed in his search
for suitable field equations pointed to the November tensor, not to the Ricci tensor.

83 The operations ‘doing the variations’ and ‘setting ’ do not commute. Setting  in
eqs. (59)–(60)—i.e., after doing the variations in eqs. (54)–(58)—does not reduce these equations to
eqs. (65)-(66), which are obtained by setting  in eq. (54)—i.e., before doing the variations.
If the condition  is imposed first, the variation is done under a constraint (Kichenassamy
1993, 197). This is the analogue in functional analysis of the problem in ordinary calculus of finding
the extrema of a function under a constraint. Such problems can be replaced by the problem of finding
the extrema of a related function(al) without constraints through the well-known technique of
Lagrange multipliers. Einstein was familiar with these techniques for functionals from his work in
statistical mechanics. To derive various ensembles in statistical mechanics (micro-canonical, canoni-
cal, or grand canonical), one maximizes the entropy under two constraints, one on the total energy and
one on the total particle number. The difference with the case of varying the action for the metric field
is that the constraint  has to be imposed at every point  so that there is an infinite
number of constraints. The Lagrange multipliers thus become a new field. Techniques for doing this
have been worked out in the context of what has come to be known as unimodular gravity, a theory
first proposed in (Einstein 1919) and first cast in Lagrangian form in (Anderson and Finkelstein
1971).

84 Norton (1984, 102) invoked this same incompatibility to explain why Einstein abandoned field equa-
tions based on the Ricci tensor in the Zurich Notebook. As we mentioned earlier (see note 12), we see
no evidence that it played any role there either.
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6. THE FIRST NOVEMBER PAPER: THE KNOT UNTIED

In the Zurich Notebook Einstein had not been able to show that field equations based
on the November tensor are compatible with energy-momentum conservation. In
1915 the variational formalism of (Einstein 1914c) showed him how to solve this
problem. He essentially just had to find the conditions  for this specific
Lagrangian. As we saw in sec. 3, such conditions also determine the covariance
properties of the field equations. Because of the way in which the November tensor
can be extracted from the Ricci tensor, it is clear that the field equations based on the
November tensor are invariant under unimodular transformations. One would
therefore expect that in this case the four conditions  reduce to one condition
expressing the restriction to unimodular transformations. The four conditions can
indeed be replaced by one, but this one condition says that  can not be a
constant. This is more restrictive than the condition that  transform as a scalar.
It was nonetheless an important result that the compatibility of the field equations
with energy-momentum conservation only called for one additional condition. It still
takes four conditions to show that the relevant component of the field equations
reduces to the Poisson equation for weak static fields. We suggest that this made it
clear to Einstein that he could use coordinate conditions in the modern sense to
recover the Poisson equation and that a coordinate restriction was needed only for
energy-momentum conservation.

According to the general formalism of (Einstein 1914c), the gravitational field equa-
tions are compatible with energy-momentum conservation if the conditions 
and  are satisfied (see eqs. (19)–(23)). These conditions, however, were
derived for an action of the form  The field equations of (Einstein 1915a)
were derived from an action of the form without the factor  (see eqs. (62)–
(63)). This seriously complicates matters (see notes 83 and 88) and in his papers of
November 1915, as Einstein realized, he could not simply apply the formalism. He
nonetheless relied heavily on the formalism to guide him in his analysis of the new
theory. In (Einstein 1915a, 784–785), for instance, he went through a calculation
closely analogous to the one in the general formalism (see sec. 3.2, eqs. (16)–(22)) to
establish that the field equations derived from  are compatible with energy-
momentum conservation under the restriction to unimodular transformations.

Einstein (1915a, sec. 1–2) first exploited the restriction to unimodular transforma-
tions to replace the energy-momentum balance equation,  by a simpler
equation. The covariant divergence of  the energy-momentum tensor of matter,
is given by (see note 35):

(68)

The second term on the right-hand side can be rewritten as (see note 35):
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the third term as (see note 36):

Inserting both expressions into eq. (68) and regrouping terms, one finds

(69)

The left-hand side of eq. (69) is a generally-covariant vector. The last term on the
right-hand side transforms as a vector under unimodular transformations. It follows
that the expression in square brackets must also transform as a vector under unimod-
ular transformations. In (Einstein 1915a) the vanishing of this expression is used as
the energy-momentum balance law:

(70)

Note that eq. (70) is not equivalent to  unless the last term of eq. (69) van-
ishes, as it does when the restriction to unimodular transformations is strengthened
by setting 85

Einstein (1915a, 784–785) investigated whether any restrictions over and above
the restriction to unimodular transformations would be needed to make sure that the
field equations (67) are compatible with energy-momentum conservation as
expressed in eq. (70). Using the field equations (64) on the right-hand side of
eq. (70), one finds (cf. eq. (17)):

85 Einstein explicitly acknowledged that eq. (70) is not equivalent to  The restriction to uni-
modular transformations, Einstein (1915a, 780) conceded, cannot be used to simplify the basic formu-
lae for covariant differentiation given in his systematic exposition of the Entwurf theory (Einstein
1914c, 1050, eqs. (29) and (30)). But, he added, the “defining definition” (“Definitionsgleichung”) of
the covariant divergence can be simplified. He then went through the argument following eq. (69) to
redefine the covariant divergence of an arbitrary symmetric tensor  (Einstein 1915a, 780, eq. 9)
as:  He noted (ibid., 781) that this equation has the same form as the
covariant divergence of the tensor density  as defined in (Einstein 1914c, 1054,
eq. 41b). This illustrates the general remark he made at the beginning of sec. 1 of (Einstein 1915a):
“Because of the scalar character of  a simplification of the basic formulae for the formation of
invariant objects is possible … which in short comes down to this, that the factors  and 
no longer occur in the basic formulae and that the difference between tensors and tensor densities dis-
appears” (“Vermöge des Skalarscharakters von  lassen die Grundformeln der Kovariantenbil-
dung … eine Vereinfachung zu, die kurz gesagt darin beruht, daß in den Grundformeln die Faktoren

 und  nicht mehr auftreten und der Unterschied zwischen Tensoren und -Tensoren
wegfällt.”).
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(71)

This can be rewritten as (Einstein 1915a, eq. 20)

by introducing a gravitational energy-momentum pseudo-tensor defined as (ibid.,
eq. 20a):86

(72)

Inserting eq. (63) for  and eq. (66) for its derivative with respect to , one finds

which can be rewritten as (ibid, eq. 20b)87

(73)

Einstein now rewrote (the mixed form of) the field equations in such a way that
they have  on the right-hand side. The divergence of the left-hand side then
gives the quantity  in the new theory. The vanishing of  in conjunction with the
field equations guarantees energy-momentum conservation, i.e., the vanishing of the
ordinary divergence of 88

Contraction of the field equations (67) with  gives:

86 The derivation of eq. (72) is fully analogous to the derivation of eq. (18) in the general formalism
(replace  by  in the calculation in note 31). 

87 Since the covariant derivative of the metric vanishes,

it follows that 
88 Einstein could not just replace  by  in the field equations in the form of eq. (13) and read

off  from the resulting equations. Recall that there are two definitions of the gravitational energy-
momentum tensor, designated earlier as  and  (cf. eqs. (19)–(20)). The
condition  guarantees that these two quantities are equal to one another. The correspond-
ing quantities  and  however, are not equal to one another, since

 (cf. the discussion following eq. (34)).The analogue of eq. (13) in this case would be:

The gravitational energy-momentum pseudo-tensor in eq. (73) corresponds to  (as will be
clear from comparing eq. (72) to eq. (18)). This quantity cannot be used interchangeably with
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This can be rewritten as:

 

89

 

The second term on the left-hand side is equal to the last term of eq. (73). Hence:

The field equations can thus be written as:

 

90

 

(74)

The quantity  in this case is thus given by (cf. eqs. (21)–(22)):

(75)

The condition  guarantees that 
Given his analysis of the covariance properties of the 

 

Entwurf

 

 field equations in
1914, Einstein had come to expect that this same condition  circumscribes
the covariance of the field equations. In the case of field equations (67), he knew that
their covariance group is that of arbitrary unimodular transformations, i.e., transfor-
mations under which the determinant  of the metric transforms as a scalar. This
only gives one condition, not four as in eq. (75). In view of this mismatch, it is under-
standable that Einstein tried to replace these four conditions by one condition on .
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His first step was to rewrite  in the form  and make  vanish by
imposing the stronger condition . Eq. (75) can be rewritten as

The first term works out to be 
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 so this equation becomes (Einstein 1915a,
785, eq. 22
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)

 

89 The left-hand side can be written as

Substituting  for  in the second term (see note 87), one finds:

The second term cancels against the fourth and the two remaining terms form the left-hand side of the
equation below.

90 Einstein omitted the manipulations to get to eq. (74). He simply wrote: “after simple rearrangement”
(“nach einfacher Umformung,” Einstein 1915a, 785). The second term on the left-hand side of
eq. (74) is, as we shall see later (see eq. (85)), equal to  where  is the trace of 

91 As we see no other plausible explanation for this move, this provides strong evidence for our claim
that Einstein relied heavily on the formalism of (Einstein 1914c) to guide him in the analysis pre-
sented in the papers of November 1915.
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(76)

Einstein now replaced the four conditions  by a single stronger condition
(ibid., eq. 22a):

(77)

The next step was to replace this condition by a condition on . To this end, Ein-
stein fully contracted the field equations and compared the resulting condition to con-
dition (77). Contraction of the field equations (67) with  gives:

(78)

This equation can be rewritten as

(79)

The first term on the left-hand side is equal to:94

the second to minus twice the third:95

Inserting these last two expressions into eq. (79), one finds (Einstein 1915a, 785,
eq. 2196):

92 Inserting eq. (53) for  one finds

Using that  one can rewrite this as:

The first and the third term in parentheses can be grouped together to form a quantity anti-symmetric
in  and  and thus vanish upon contraction with  the second term can be rewritten as

 Finally, 
93 Einstein did not use the designation  for this quantity, thereby obscuring its origin in the varia-

tional formalism of (Einstein 1914c).
94 Inserting eq. (53) for  one finds (cf. note 92):

The first term on the right-hand side can be rewritten as  the second term as

(see, e.g., Einstein 1914c, 1051, eq. 32). The sum of these two terms gives the expression below.
95 Substituting  for  in  (cf. note 87), one finds  Rela-

beling of the summation indices gives the expression below.
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(80)

The first two terms on the left-hand side of this equation are equal to the two terms on
the left-hand side of eq. (77). Given that eq. (80) follows from the field equations
(67), it suffices to demand that

(81)

(ibid., 785, eq. 21a) to make sure that condition (77) is also satisfied. Through
eq. (76) this guarantees that  This in turn guarantees that 
(see eqs. (74)–(75)). One condition on the determinant of the metric thus suffices to
guarantee compatibility of the field equations (67) with energy-momentum conserva-
tion. The condition is an odd one though. The energy-momentum tensor phenomeno-
logically representing ordinary matter has a non-vanishing trace. Eq. (81) thus says
that  cannot be a constant. This means that there still is a residual discrepancy
between the covariance of the field equations and the coordinate restriction needed to
guarantee compatibility with energy-momentum conservation. The restriction to uni-
modular transformations only demands  to transform as a scalar, it does not say that
it cannot be a constant. Within a few weeks, Einstein published two modifications of
his field equations to change this condition to the more congenial condition

 for unimodular coordinates (see sec. 7).
It was nonetheless an extremely important result that the four conditions 

can be reduced to one condition in this case. Up to this point, Einstein had not made a
distinction between coordinate restrictions needed to recover the Poisson equation for
weak static fields and those needed to ensure compatibility with energy-momentum
conservation. It now turned out that the latter demand could be satisfied by one condi-
tion whereas the former continued to call for four. We conjecture that this drove home
the point that the two requirements should be dealt with separately. 

In fact, immediately after eq. (81) in (Einstein 1915a), we find the very first
unambiguous instance in both Einstein’s published papers and extant manuscripts
and correspondence of a coordinate condition used in the modern sense. Einstein
(1915a, 786, eqs. 22 and 16b) showed how the conditions  which we have
called the Hertz condition/restriction (see eq. (7)), reduce the November tensor to the
d’Alembertian acting on the metric in the case of weak fields. Einstein had done the
same calculation in the Zurich Notebook (see eqs. (7)–(8)). There he had used

 as a coordinate restriction. As such it was unacceptable because it was not
satisfied, for instance, by the Minkowski metric in rotating coordinates.

 

97

 

 The return
of  in (Einstein 1915a) makes it clear that Einstein did not see this as a prob-
lem anymore in 1915. Einstein had come to realize that the conditions  are

 

96 Einstein omitted the manipulations to get from eq. (78) to eq. (80), again writing simply “after simple
rearrangement” (cf. note 90)
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not an integral part of the theory and only serve to facilitate comparison of the field
equations to the Poisson equation of Newtonian theory in the case of weak static
fields. In other words, Einstein now saw that  is not a coordinate restriction
but a coordinate condition in the modern sense.

The theory of (Einstein 1915a) was thus of broad covariance. The only restric-
tions were that the determinant of the metric transform as a scalar and that it not be a
constant. The way Einstein saw it, this was all that was needed to solve the problem
of rotation that had brought down the  Entwurf   theory.  98   In the concluding paragraphs
of (Einstein 1915a), he pointed out that transformations to rotating coordinates
belong to the class of unimodular coordinates under which the new field equations
are invariant.

 

99

 

Looking back on secs. 5 and 6, we can clearly see how redefining the components
of the gravitational field untied the tight knot of conditions and definitions that had
been the 

 

Entwurf

 

 theory and retied it in a slightly different way to become a theory
within hailing distance of general relativity as we know it today. First and foremost,
the redefinition of the gravitational field led to the replacement of the 

 

Entwurf

 

 field
equations and their intractable covariance properties by field equations invariant
under arbitrary unimodular transformations. But that was not all. In the new theory,
instead of the four additional restrictions  familiar from the 

 

Entwurf

 

 theory, it
took only a minimal strengthening of the restriction to unimodular transformations
(namely that the determinant of the metric not be a constant) to ensure that these new
field equations yield energy-momentum conservation. Finally, because energy-
momentum conservation only called for one extra condition whereas recovery of the
Poisson equation continued to call for four, it became clear that these two types of
conditions have a different status. Taking advantage of this insight, Einstein used a
coordinate condition in the modern sense to show that the relevant component of the
new field equations reduces to the Poisson equation for weak static fields and only
used a coordinate restriction to satisfy the demands of energy-momentum conserva-
tion. There was thus enough covariance left in the new theory to meet the demands of
Einstein’s relativity and equivalence principles.

 

97 John Norton (1984, 119 and 143) already suggested that Einstein rejected the combination of the
November tensor and the conditions  in the Zurich Notebook because  for the
Minkowski metric in rotating coordinates. We agree. Note, however, that Einstein’s argument is
cogent only if the conditions  are seen as a coordinate restriction rather than a coordinate
condition. In fact, it was in an attempt to make sense of these remarks in (Norton 1984) that one of us
(JR) first hit upon the distinction between coordinate conditions and what we have come to call coor-
dinate restrictions.

98 In fact, the problem of rotation persisted even in the final version of general relativity. General covari-
ance does not make rotation—or 

 

any

 

 non-geodesic motion for that matter—relative (see Janssen
2005, 68–72).

99 On the face of it, it may seem that the theory still does not allow the Minkowski metric in rotating
coordinates because its determinant equals one. Since the Minkowski metric is a vacuum solution of
the field equations, however, it does not matter in this case that through eq. (81)  implies
that  as well.
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7. FROM THE NOVEMBER TENSOR TO THE EINSTEIN FIELD EQUATIONS

 

Einstein soon found ways of replacing the condition of (Einstein 1915a) that 
cannot be a constant by the more congenial condition  for unimodular
coordinates. In (Einstein 1915b), he achieved this through the assumption that the
trace  of the energy-momentum tensor of matter vanishes. He justified this
assumption by adopting the view, promoted by Gustav Mie and others, that all matter
is electromagnetic. Energy-momentum conservation now followed from the field
equations in unimodular coordinates without any additional coordinate restrictions.
And the field equations themselves could be looked upon as generally-covariant field
equations in unimodular coordinates. So Einstein had found generally-covariant field
equations at last:  (with  the Ricci tensor). In his calculations,
both in November 1915 and in (Einstein 1916a), however, he continued to use
unimodular coordinates. And he soon had second thoughts about paying for general
covariance by committing himself to the electromagnetic view of nature. In (Einstein
1915d), he changed the condition that  cannot be a constant to the condition

 without imposing any restrictions on . This he achieved by adding a term
with  to the right-hand side of the field equations based on the November tensor. He
realized that this trace term was needed anyway to ensure that the energy-momentum
tensor for matter enters the field equations in the exact same way as the gravitational
energy-momentum pseudo-tensor. This told Einstein that these were the equations he
had been looking for. As before, they could be looked upon as generally-covariant
equations expressed in unimodular coordinates. Einstein had thus found the Einstein
field equations: 

 

In the second and fourth of his communications to the Berlin Academy in November
1915, Einstein (1915b, 1915d) proposed two different ways to avoid the requirement
that  cannot be a constant found in the first communication (Einstein 1915a). In
the second November paper, a three-page “Addendum” (“Nachtrag”) to the first, he
assumed that all matter is electromagnetic, in which case  (Einstein 1915b).
Condition (81) can then be satisfied by setting  the condition for unimodu-
lar coordinates. This has three advantages. First, by looking upon the field equations
as holding only in unimodular coordinates (rather than in coordinates related to one
another by unimodular transformations) he removed the residual discrepancy
between the covariance of the field equations and the restriction needed to guarantee
energy-momentum conservation. Second, with  the energy-momentum
balance equation,  reduces to  (see eq. (70)),
the equations used in the analysis of energy-momentum conservation in (Einstein
1915a). The third and most important advantage is that the field equations (67) could
now be looked upon as generally-covariant field equations expressed in unimodular
coordinates. Setting  also has one disadvantage. It rules out a metric of the
form  which Einstein still assumed was the gen-
eral form of the metric for weak static fields. Either Einstein did not think of this dis-
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advantage at this point (though we shall see that he had thought of it a week later), or
it was outweighed, at least for the time being, by the advantages.

Einstein (1915b, 800, eq. 16b) wrote these generally-covariant field equations as

(82)

where  is the Ricci tensor. As in (Einstein 1915a), he wrote the Ricci tensor as
the sum of two terms,100

The first term is defined as minus what we called the November tensor (i.e.,  in
eq. (5)):

The second term is defined as:

Since the first and the third Christoffel symbol in this expression are equal to the gra-
dient of  it follows that  in unimodular coordinates. In the Zurich
Notebook and in his first November paper, Einstein used the decomposition of the
Ricci tensor only to show that the November tensor transforms as a tensor under uni-
modular transformations. In unimodular coordinates, the Ricci tensor actually
reduces to the November tensor and the field equations (82) reduce to the field equa-
tions (67) of (Einstein 1915a):

(83)

(Einstein 1915b, 801, eq. 16).
Einstein had thus finally found generally-covariant field equations. His calcula-

tions in (Einstein 1915a) show that in unimodular coordinates these field equations
guarantee energy-momentum conservation (see eqs. (70)–(85)). Although Einstein
did not explicitly show this, it was reasonable to assume that the corresponding gen-
erally-covariant equations  guarantee energy-momentum conservation
in arbitrary coordinates.

Most of the “Addendum” (Einstein 1915b) is taken up by a defense of the
assumption  The results reported in the “Addendum” all depend on this
assumption. The assumption holds for electromagnetic fields in Maxwell’s theory
and might continue to hold in the non-linear generalizations of Maxwell’s theory pur-
sued by Gustav Mie and other proponents of the electromagnetic view of nature.101 It
does not hold for the energy-momentum tensor routinely used to give a phenomeno-

100 See (Einstein 1915a, 782; 1915b, 800; 1915d, 844).
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logical description of ordinary matter. To get around this problem, Einstein assumed
that gravitational fields play an important role in the constitution of matter. In that
case the energy-momentum tensor phenomenologically describing matter should not
be identified with  but with  and the non-vanishing trace might come
from  rather than  Einstein’s flirtation with the electromagnetic world picture
was short-lived, but three and a half years later he resurrected the idea that gravity
plays a role in the structure of matter in a theory that makes the cosmological con-
stant of (Einstein 1917) responsible both for the stability of the cosmos and the stabil-
ity of elementary particles (Einstein 1919).102

At first Einstein was very enthusiastic about the electromagnetic turn his theory
had taken. In an abstract for his third paper of November 1915 (Einstein 1915c)—the
one in which he used the field equations of (Einstein 1915b) in unimodular coordi-
nates to explain the anomalous advance of the perihelion of Mercury—Einstein wrote
that this result “confirms the hypothesis of the vanishing of the scalar of the energy
tensor of “matter” [i.e., ].”103 His enthusiasm, however, waned quickly. In a
footnote to the perihelion paper itself, he announced:

In a communication that will follow shortly it will be shown that this hypothesis [i.e.,
] is dispensable. Essential is only that a choice of reference frame is possible such

that the determinant  takes on the value 104

As we shall see, the calculation of the perihelion advance of Mercury played an
important role in showing Einstein that one can set  without setting 

In (Einstein 1915d), the fourth and final paper of November 1915 and the commu-
nication announced in the footnote quoted above, Einstein changed the field equa-
tions in such a way that condition (81) changes to

(84)

This makes it possible to choose unimodular coordinates (i.e., set ) without
putting any condition on the trace  of the energy-momentum tensor.

How did Einstein arrive at this new condition (84)? Recall that the original condi-

101 Einstein knew about Hilbert’s work along these lines. See (Sauer 1999) and “Hilbert’s Foundation of
Physics …” (in vol. 4 of this series).

102 This theory is enjoying renewed interest. It now goes by the name of “unimodular gravity” (see
Anderson and Finkelstein 1971); for a more recent discussion and further references, see (Finkelstein
et al. 2002, Earman 2003).

103 “Dadurch wird die Hypothese vom Verschwinden des Skalars des Energietensors der “Materie” bestä-
tigt.” Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte (1915): 803. For
further discussion, see “Hilbert’s Foundation of Physics …” (in vol. 4 of this series) and “Pathways
out of Classical Physics …” (in vol. 1 of this series).

104 “In einer bald folgenden Mitteilung wird gezeigt werden, daß jene Hypothese entbehrlich ist. Wesent-
lich ist nur, daß eine solche Wahl des Bezugssystems möglich ist, daß die Determinante  den
Wert  annimmt” (Einstein 1915c, 831, note 1).
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tion (81) followed from combining two equations. The first is eq. (77) which comes
from the condition  for the field equations (67) of (Einstein 1915a). The sec-
ond is eq. (80) which comes from fully contracting those field equations. These two
equations can be written more compactly by introducing the trace of the gravitational
energy-momentum pseudo-tensor (73) as Einstein first did in (Einstein 1915d,
846):

 

105

 

(85)

Inserting  in the second terms of both eq. (77) and eq. (80), one finds:

(86)

(87)

The combination of these two equations gives the problematic condition (81). Upon
inspection of eqs. (86)–(87), one sees that condition (81) would change to condition
(84) if, instead of eqs. (86)–(87), one had (cf. Einstein 1915d, eqs. 10 and 9, respec-
tively):

(88)

(89)

The difference between eq. (87) and eq. (89) is the sign of the term  Recall that
eq. (87) was obtained by fully contracting the field equations (67). One can change
the sign of the term  in eq. (87) by adding a trace term to the right-hand side of
eq. (67):
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(90)

Fully contracting these new field equations and rewriting the resulting equations, one
arrives at (cf.  eqs. (78)–(80))

Using eq. (85) to substitute  for the second term on the left-hand side, one arrives
at eq. (89).

The new field equations (90) contracted with  are

 

105 This follows from 
106 Contracting  with  one finds 
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which can be rewritten as (cf. eq. (74)):

Using eq. (85) to substitute  for , one arrives at:

(91)

Energy-momentum is guaranteed—i.e., —if the divergence of the
left-hand side vanishes:

This can be rewritten (cf. eqs. (75)–(76)) as

In other words, energy-momentum conservation is guaranteed if the expression in
square brackets vanishes, which is just eq. (88). As we noted above, combining
eqs. (88) and (89) gives condition (84) which makes it possible to set  with-
out any consequences for the value of  Eq. (89) is a direct consequence of the field
equations. Eq. (88), which guarantees energy-momentum conservation, is therefore a
consequence of the field equations plus the condition  There is no need
anymore for the highly speculative assumption that all matter is electromagnetic.

As Norton (1984, 146–147) has emphasized, the addition of the trace term
 to the field equations was not an option for Einstein before the perihe-

lion paper (Einstein 1915c). In the Zurich Notebook, Einstein had briefly considered
adding a trace term to field equations based on the Ricci tensor in a weak-field
approximation. He had rejected such modified weak-field equations because they do
not allow the spatially flat metric,  which Ein-
stein expected to describe weak static fields.
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 The derivation of the perihelion
motion of Mercury freed Einstein from this prejudice. It showed that weak static

 

107 These considerations can be found on pp. 20L–21R of the Zurich Notebook. See “Commentary …”
(in this volume), secs. 5.4.3–5.4.4 for a detailed analysis and sec. 5.4.6 for a concise summary. The
problem is this. For weak static fields, the field equations with trace term reduce to:

(with ). For a static mass distribution described by 
( ), the non-trivial components of these equations are:

The spatially flat metric  is not a solution of these equations.
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fields do not have to be spatially flat. This insight was directly related to his use of
unimodular coordinates in this calculation (Earman and Janssen 1993, 144–145). If

 and  is non-constant, then at least some of the spatial components 
( ) must be non-constant as well (  for a static field). This
removes the objection against adding a trace term. Einstein could now set 
without committing himself to the electromagnetic worldview.

The field equations (90) with the trace term have another feature that strongly rec-
ommends them. Compare the field equations (90) in the form of eq. (91) to the field
equations (67) of (Einstein 1915a) in the form of eq. (74). Using eq. (85) to substitute

 in the second term on the left-hand side, one can write eq. (74) as:

(92)

The crucial difference between eq. (91) and eq. (92) is that in eq. (91) the energy-
momentum tensor of matter enters the field equations in the exact same way as the
energy-momentum pseudo-tensor for the gravitational field, whereas in eq. (92) it
does not. In eq. (92) there is a term  missing on the left-hand side. Ein-
stein made this same observation comparing eq. (89) (after setting ) to its
counterpart eq. (87) for the field equations (67) without the trace term:

Note that our additional [trace] term brings with it that in [eq. 9 of (Einstein 1915d),
] the energy tensor of the gravitational field occurs alongside the

one for matter in the same way, which is not the case in [the corresponding eq. 21 of
(Einstein 1915a), ].108

In the general formalism of (Einstein 1914c), the conditions  guarantee
the vanishing of  and the conditions  guarantee that  enters
the field equations in the same way as  (see secs. 3.1 and 3.2). The conditions

 however, do not hold if the restriction to unimodular transformations or
unimodular coordinates is made (see note 88). In his first November paper, Einstein
made sure that  holds, but he did not check whether  and 
enter the field equations in the same way. If he had, he would have recognized the
need for the trace term right away.109

108 “Man beachte, daß es unser Zusatzglied mit sich bringt daß in (9) der Energietensor des Gravitations-
feldes neben dem der Materie in gleicher Weise auftritt, was in Gleichung (21) a. a. O. nicht der Fall
ist” (Einstein 1915d, 846).

109 Einstein concisely summarized this part of his struggle to come up with satisfactory field equations in
a letter to Besso a little over a month later: “The first paper [Einstein 1915a] along with the addendum
[Einstein 1915b] still suffers from the problem that the term  is missing on the right-
hand side; hence the postulate  Obviously, things have to be done as in the last paper [Ein-
stein 1915d], in which case there is no condition anymore on the structure of matter” (“Die erste
Abhandlung samt dem Nachtrag krankt noch daran dass auf der rechten Seite das Glied 
fehlt; daher das Postulat  Natürlich muss die Sache gemäss der letzten Arbeit gemacht wer-
den, wobei sich über die Struktur der Materie keine Bedingung mehr ergibt.”) Einstein to Michele
Besso, 3 January 1916 (CPAE 8, Doc. 178).
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Einstein needed to check one more thing in his fourth November paper to make
sure that the new field equations (90) with trace term do indeed give energy-momen-
tum conservation in unimodular coordinates. He had to show that  is
equivalent to the energy-momentum balance equation in unimodular coordinates,

(93)

(cf. eqs. (68)–(70)). The question is whether the second term on the left-hand side of
this equation can be rewritten as  The standard procedure for doing this is to
replace  in this term by the left-hand side of the field equations (see note 41,
eqs. (16)–(18) and eqs. (71)–(72)). In this case, however, the field equations have

 on the right-hand side rather than simply  It turns out that this
does not lead to any complications. In unimodular coordinates, as Einstein (1915d,
846) noted, 

It follows that the second term of eq. (93) can be written as:

With the help of the field equations (90) this turns into

As Einstein had already shown in his first November paper (see eqs. (71)–(73)), this
expression is equal to the divergence of the gravitational energy-momentum pseudo-
tensor in unimodular coordinates (Einstein 1915d, 846, eq. 8a; 1915a, 785, eq. 20b)

defined in eq. (73) and used throughout this section and sec. 6. In unimodular coordi-
nates, the field equations (90) of (Einstein 1915d) thus satisfy all requirements
needed for energy-momentum conservation: 

(1)  and  enter the field equations in the exact same way; 

(2) The field equations guarantee the vanishing of the divergence of 

(3) The divergence of  is equal to the gravitational force density.

As with the field equations (83) of the “Addendum” (Einstein 1915b), Einstein
looked upon the field equations (90),
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where  is the November tensor (Einstein 1915d, 845, eq. 6), as generally-covari-
ant field equations expressed in unimodular coordinates. The corresponding gener-
ally-covariant equations are the Einstein field equations,

(94)

where  is the full Ricci tensor (ibid., eq. 2a). As in (Einstein 1915b), he tacitly
assumed that these equations would guarantee energy-momentum conservation in
arbitrary coordinates.

To conclude our analysis of Einstein’s four papers of November 1915, we summa-
rize what we see as the four key steps in the transition from the Entwurf field equa-
tions to the Einstein field equations.110 The first step was the redefinition of the
components of the gravitational field which led Einstein back to field equations
invariant under unimodular transformations that he had considered but rejected three
years earlier in the Zurich Notebook. The second step was to rewrite the four condi-
tions that in conjunction with the field equations guarantee energy-momentum con-
servation as one condition on , the determinant of the metric, to reflect the
connection between energy-momentum conservation and the covariance of the field
equations. This made it possible for Einstein to start using coordinate conditions in
the modern sense. The third step was to recognize that the theory could be tweaked to
turn the one condition on  into the condition  for unimodular coordinates.
This made it possible to look upon the new field equations as generally-covariant
equations expressed in unimodular coordinates. This is what Einstein had to show for
his brief dalliance with the electromagnetic worldview. The fourth and final step was
to recognize that energy-momentum conservation dictates that such tweaking be done
in a specific way, namely through adding a term with the trace of the energy-momen-
tum tensor for matter to the field equations. The perihelion paper (Einstein 1915c)
was important in this context in that it freed Einstein from his prejudice about the
form of the metric for weak static fields which he had found to be incompatible with
such a trace term in the Zurich Notebook. We reiterate that this whole chain of rea-
soning was set in motion by replacing definition (52) of the components of the gravi-
tational field, the “fateful prejudice,” by definition (53), “the key to the solution.” In
all of this Einstein relied heavily on the general variational formalism of (Einstein
1914c). The exact expressions, relations, and conditions given by this formalism
could not be used because of the restriction to unimodular transformations and uni-
modular coordinates in the papers of November 1915, but the insights encoded in the
formalism were Einstein’s main guide in taking steps one, two, and four.

110 The first two steps were made in (Einstein 1915a) and are discussed in secs. 5 and 6, respectively; the
last two were made in (Einstein 1915b) and (Einstein 1915d), respectively, and are both discussed in
this section, sec. 7.
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8. THE 1916 REVIEW ARTICLE: 
THE ARGUMENT OF NOVEMBER 1915 STREAMLINED

Einstein’s argument in (Einstein 1915d) for adding a trace term on the right-side of
the field equations proved difficult to follow even for those most supportive of his
efforts, such as his Leyden colleagues Paul Ehrenfest and H. A. Lorentz. Although
Einstein claimed in the introduction of (Einstein 1915d) that the paper was self-
contained, it in fact relied heavily on (Einstein 1915a) in its justification of the trace
term. The relevant part of (Einstein 1915a) in turn relied heavily on the exposition of
the Entwurf theory in (Einstein 1914c). In early 1916, in a letter to Ehrenfest,
Einstein produced a self-contained version of the argument leading to the trace term
and the Einstein field equations of the fourth November communication without the
detour through the various discarded field equations preceding them. This letter
became the blueprint for the part on field equations and energy-momentum
conservation in (Einstein 1916a), the first systematic self-contained exposition of the
new theory.

It was clear to Einstein that the field equations of his last communication of Novem-
ber 1915 met all requirements that he had imposed on such equations and that no fur-
ther changes would be needed. Given the rapid succession of different field equations
during that one month, however, it is understandable that this was not so clear to his
readers. Even those most supportive of Einstein’s efforts, such as the Leyden physi-
cists Paul Ehrenfest and H. A. Lorentz, had difficulties following the argument. 

Einstein himself best described the impression that the flurry of papers of Novem-
ber 1915 must have made on his colleagues. Knowing that the final result was correct
and fully aware of the monumental character of his achievement, Einstein could
afford to poke fun at the chaotic way in which victory had at long last been achieved.
“It’s convenient with that fellow Einstein,” he wrote to Ehrenfest, “every year he
retracts what he wrote the year before.”111 With similar self-deprecation, he told
Sommerfeld: “Unfortunately I have immortalized my final errors in this battle in the
academy-papers [Einstein 1915a, b] that I can soon send you.”112 When he did send
the papers a week and a half later, he urged Sommerfeld to study them carefully
despite the fact “that, as you are reading, the final part of the battle for the field equa-
tions unfolds right in front of your eyes.”113

111 “Es ist bequem mit dem Einstein. Jedes Jahr widerruft er, was er das vorige Jahr geschrieben hat.”
Einstein to Paul Ehrenfest, 26 December 1915 (CPAE 8, Doc. 173). With this comment, Einstein pref-
aced his retraction of the hole argument (see sec. 4 of “What Did Einstein Know …” [in this vol-
ume]).

112 “Die letzten Irrtümer in diesem Kampfe habe ich leider in den Akademie-Arbeiten, die ich Ihnen bald
senden kann, verevigt [sic].” Einstein to Arnold Sommerfeld, 28 November 1915 (CPAE 8, Doc. 153).

113 “… dass sich beim Lesen der letzte Teil des Kampfes um die Feldgleichungen vor Ihren Augen
abspielt.” Einstein to Arnold Sommerfeld, 9 December 1915 (CPAE 8, Doc. 161).
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As was his habit, Ehrenfest pestered his friend Einstein with questions about the
new theory.114 Lorentz, who had already filled an uncounted number of pages with
calculations on the Entwurf theory and had cast the theory in Lagrangian form
(Lorentz 1915), immediately went to work on the new theory and sent Einstein three
letters with comments and queries.115 One topic of discussion was the hole argument,
which Einstein had silently and unceremoniously dropped upon his return to general
covariance in November 1915.116 For our purposes in this paper, the interesting part
of the discussion concerns the relation between the field equations and energy-
momentum conservation and the necessity of the trace term. At one point in his corre-
spondence with Ehrenfest, Einstein refers to “the warrant demanded by you for the
inevitability of the additional term ”117

Ehrenfest’s obstinacy paid off. Einstein finally broke down and sent him a lengthy
self-contained version of the argument that before had to be pieced together from the
papers of November 1915. As Einstein promised at the beginning of the letter: “I
shall not rely on the [November 1915] papers at all but show you all the calcula-
tions.”118 After delivering on this promise, Einstein closed the letter saying:

I assume you will have no further difficulty. Show the thing to Lorentz too, who also has
not yet appreciated the necessity of the structure of the right-hand side of the field equa-
tions. Could you do me a favor and send these sheets back to me as I do not have these
things so neatly in one place anywhere else.119

Ehrenfest presumably obliged. The letter reads like the blueprint for the sections on
the field equations and energy-momentum conservation in (Einstein 1916a), the first
systematic exposition of general relativity, sent to Willy Wien, the editor of Annalen
der Physik, in March 1916120 and published in May of that year.

As in his papers of November 1915 and in the letter to Ehrenfest, Einstein used
unimodular coordinates in this paper. He started with the November Lagrangian

114 For discussion of the relationship between Einstein and Ehrenfest, see (Klein 1970, chap. 12).
115 This can be inferred from Einstein to H. A. Lorentz, 17 January 1916 (CPAE 8, Doc. 183). Unfortu-

nately, none of the letters from Ehrenfest and Lorentz to Einstein of this period (late 1915–early 1916)
seem to have been preserved. For a discussion of the three-way correspondence between Einstein,
Lorentz and Ehrenfest in this period, see (Kox 1988). 

116 For discussion of the hole argument and its replacement, the point-coincidence argument, and refer-
ences to the extensive literature on these topics, see sec. 4 of “What Did Einstein Know …” (in this
volume) and (Janssen 2005, 73–74).

117 “die von Dir verlangte Gewähr der “Zwangläufigkeit” für das Zusatzglied .” Einstein to
Paul Ehrenfest, 17 January 1916 (CPAE 8, Doc. 182).

118 “Ich stütze mich gar nicht auf die Arbeiten, sondern rechne Dir alles vor.” Einstein to Paul Ehrenfest,
24 January 1916 or later (CPAE 8, Doc. 185).

119 “Du wirst nun wohl keine Schwierigkeit mehr finden. Zeige die Sache auch Lorentz, der die Notwen-
digkeit der Struktur der rechten Seite der Feldgleichungen auch noch nicht empfindet. Es wäre mir
lieb, wenn Du mir diese Blätter dann wieder zurückgäbest, weil ich die Sachen sonst nirgends so
hübsch beisammen habe.” Ibid.

120 Einstein to Wilhelm Wien, 18 March 1916 (CPAE 8, Doc. 203). Einstein had told Wien in February
that he was in the process of writing this paper, Einstein to Wilhelm Wien, 28 February 1916
(CPAE 8, Doc. 196).
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(95)

(Einstein 1916a, 804, eq. 47a; see eq. (63) above with  rather than ). The
Euler-Lagrange equations,

(96)

(ibid., 805, eq. 47b), for this Lagrangian are:

(97)

(ibid., 803, eq. 47; see eqs. (63)–(67) with ). These are the vacuum field
equations. The question is how to generalize these equations in the presence of mat-
ter. To this end, Einstein rewrote the vacuum field equations in terms of the gravita-
tional energy-momentum pseudo-tensor  He then added the energy-momentum
tensor for matter  in such a way that it enters the field equations in the exact same
way as  This strategy originated in the letter to Ehrenfest. After writing down the
field equations in the form of eq. (91) (eq. 8 in the letter), Einstein wrote: “This equa-
tion is interesting because it shows that the origin of the gravitational [field] lines is
determined solely by the sum  as one has to expect.”121

To find  Einstein contracted the left-hand side of the eq. (96) with 

(98)

Since he did not have the field equations in the presence of matter yet, Einstein could
not give the usual rationale for this move. Using eq. (90), the Einstein field equations
in the presence of matter in unimodular coordinates, one can rewrite the left-hand
side of eq. (98) as  As we saw in sec.  7, in unimodular
coordinates , so this is equal to  which is  times the gravi-
tational force density. By writing the left hand side of eq. (98) as a divergence, Ein-
stein could thus express the gravitational force density as the divergence of
gravitational energy-momentum density. As we have seen, this was Einstein’s stan-
dard procedure for introducing  (see note 41, eqs. (16)–(18), eqs. (71)–(72), and
the derivation following eq. (93)).

Eq. (98) can be rewritten as  if  is defined as122

121 “Diese Gleichung ist interessant, weil sie zeigt, dass das Entspringen der Gravitationslinien allein
durch die Summe  bestimmt ist, wie man ja auch erwarten muss.” Einstein to Paul Ehrenfest,
24 January 1916 or later (CPAE 8, Doc. 185).

122 Einstein (1916a, 805) added a footnote saying: “The reason for the introduction of the factor 
will become clear later” (“Der Grund der Einführung des Faktors  wird später deutlich wer-
den.”). He is referring to the generalization of the vacuum field equations (102) to the field equations
(103) in the presence of matter in sec. 16 and to the discussion of energy-momentum conservation in
secs. 17–18 of his paper (ibid., 807–810).
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(99)

(Einstein 1916a, 805, eq. 49). Substituting eq. (66) (with ) and eq. (95) into
eq. (99), one finds (cf. eq. (73))

(100)

(ibid., 806, eq. 50).
Einstein now used  to rewrite the field equations (97). The trace of the pseudo-

tensor is (see eq. (85)):

Eq. (100) can thus be rewritten as

(101)

The contraction of the vacuum field equations (97) with 

can be rewritten as (see footnote 89):

Using eq. (101) for the second term, one can thus write the vacuum field equations in
unimodular coordinates as

(102)

(ibid., 806, eq. 51). 
On the argument that  should enter the field equations in the exact same way

as  Einstein generalized the vacuum equations to

(103)

in the presence of matter (ibid., 807, eq. 52). Since eq. (102) is just an alternative way
of writing the vacuum field equations contracted with  eq. (103) is equivalent to

(ibid., 808, eq. 53; cf. eqs. (90)). These equations are more easily recognized as the
generally-covariant Einstein field equations (94) in unimodular coordinates.
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In the next section of his paper, Einstein (1916a, sec. 17) showed that energy-
momentum conservation in the form  is a direct consequence of the
field equations (103). Fully contracting eq. (103), one finds

(104)

with the help of which eq. (103) itself can be rewritten as

The field equations thus guarantee energy-momentum conservation if

(105)

This equation, it turns out, is an identity. The first term can be rewritten as123

the second as minus this same expression.124 Eq. (106) gives the contracted Bianchi
identities  in unimodular coordinates.

Einstein (1916a, 809) finally showed that energy-momentum conservation in the
form  is equivalent to the energy-momentum balance equation

 (see the derivation following eq. (93)).
Three short sections of the review paper (Einstein 1916a, part C, secs. 15–18,

pp. 804–810) thus provided a streamlined version of an argument that had been hard
to piece together from the four papers of November 1915 even for the likes of
Lorentz and Ehrenfest.

123 Using the definition (53) of  as minus the Christoffel symbols, one can write

The combination of the first and the third term in the innermost parentheses are anti-symmetric in 
and  They are contracted with a quantity symmetric in these same indices (cf. footnote 92 above).

The expression above thus reduces to

124 Using eq. (53), one can write

Since  (Einstein 1916a, 796, eq. 29) vanishes for unimodular coordinates, the
expression above reduces to
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9. FROM THE NOVEMBER LAGRANGIAN TO THE RIEMANN SCALAR: 
GENERAL COVARIANCE AND ENERGY-MOMENTUM CONSERVATION

Both in the papers of November 1915 and in the review article that following March
(Einstein 1916a), Einstein used the November Lagrangian—i.e., the Entwurf
Lagrangian with the components of the gravitational field redefined as minus the
Christoffel symbols—to derive the gravitational part of the Einstein field equations in
unimodular coordinates. The use of unimodular coordinates clearly brings out the
relation between the old and the new field equations (see the appendix), but
complicates the use of the general formalism of (Einstein 1914c). Most seriously
affected is the discussion of energy-momentum conservation. It was only in
unimodular coordinates that Einstein was able to show that the field equations
guarantee energy-momentum conservation in unimodular coordinates. He also did
not make the connection between energy-momentum conservation and covariance of
the field equations. In (Einstein 1916c) the November Lagrangian is replaced by a
Lagrangian based on the Riemann scalar. Applying the formalism of (Einstein
1914c), Einstein now showed that the general covariance of the Einstein field
equations guarantees that energy-momentum conservation holds in arbitrary
coordinates. This is expressed in the conditions  and . The latter are
just the contracted Bianchi identities.

Shortly after the triumphs of November 1915, Einstein acknowledged the desirability
of deriving (the gravitational part of) the generally-covariant form of the field equa-
tions from a variational principle. In the November 1915 papers, as we have seen, he
had only done so in unimodular coordinates (Einstein 1915a, 784). He realized that
the generally-covariant Lagrangian would have to come from the Riemann curvature
scalar. He also realized that terms with second-order derivatives of the metric in the
Riemann scalar, which would lead to terms with third-order derivatives in the field
equations, could be eliminated from the action through partial integration. He con-
cluded that the effective Lagrangian had to be

All this can be found in a letter to Lorentz of January 17, 1916. Einstein wrote that he
had only gone through the calculation once, but the expression above is actually cor-
rect. He also told Lorentz that he had not attempted to derive the corresponding
Euler-Lagrange equations: “The calculation of  and  however,
is rather cumbersome, at least with my limited proficiency in calculating.”125

When he wrote the review article (Einstein 1916a) less than two months later, he
apparently still did not have the stomach for this cumbersome though straightforward

125 “Die Berechnung von  und  ist aber ziemlich beschwerlich, wenigstens bei mei-
ner geringen Sicherheit im Rechnen.” Einstein to H. A. Lorentz, 17 January 1916 (CPAE 8,
Doc. 183). He explicitly said he had not done the calculation in another letter to Lorentz two days
later (Einstein to H. A. Lorentz, 19 January 1916 [CPAE 8, Doc. 184]).
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calculation. As we have seen in sec. 8, both the presentation of the field equations and
the discussion of energy-momentum conservation in secs. 14–18 of (Einstein 1916a)
are in terms of unimodular coordinates. 

Einstein may originally have planned to cover this material in arbitrary coordi-
nates. This is suggested by a manuscript for an ultimately discarded five-page appen-
dix to the review article (CPAE 6, Doc. 31). At the top of the first page of the
manuscript, we find “§14” which was subsequently deleted and replaced by “Appen-
dix: Formulation of the theory based on a variational principle.”126 Sec. 14 is the first
of the five sections in (Einstein 1916a) on the field equations and energy-momentum
conservation. In the manuscript under consideration here, Einstein gave a variational
derivation of the field equations in arbitrary coordinates along the lines sketched in
the letter to Lorentz discussed above. He still did not explicitly evaluate the Euler-
Lagrange equations. But he did write down the quantities  and  of the general
formalism of (Einstein 1914c) for the effective Lagrangian of the new theory (now
denoted by ). He pointed out that the general covariance of the Riemann scalar
guarantees that these quantities vanish identically. He did not mention that this auto-
matically implies energy-momentum conservation (see sec. 3.2 and 3.3). This might
simply be because Einstein did not bother to finish this manuscript once he had
decided to rewrite sec. 14 and the remainder of part C of his review article in unimo-
dular coordinates. The original generally-covariant treatment was relegated to an
appendix, which ultimately did not make it into the published paper. Einstein
returned to it a few months later, revised and completed the manuscript, and submit-
ted it to the Prussian Academy on October 26, 1916. This paper, (Einstein 1916c),
will be the main focus of this section. But first we discuss some of Einstein’s pro-
nouncements on the topic in the intervening months.

Ehrenfest must have taken Einstein to task for using unimodular coordinates in
the crucial sections of the review article (Einstein 1916a). In May 1916, shortly after
the article was published, Einstein wrote to his friend in Leyden defensively: “My
specialization of the coordinate system is not just based on laziness.”127 Did Einstein
have some reason to believe that the choice of unimodular coordinates was not just
convenient but physically meaningful?128 At the time of this letter to Ehrenfest, it
may not have been more than an inkling, but a month later Einstein actually pub-
lished an argument purporting to show that unimodular coordinates are indeed physi-
cally privileged (Einstein 1916b).

Given that general relativity had been developed in analogy with electrodynamics
(see sec. 3.1 and 3.2), it was only natural for Einstein to explore the possibility of

126 “Anhang: Darstellung der Theorie ausgehend von einem Variationsprinzip.” (CPAE 6, Doc. 31,
[p. 1]).

127 “Meine Spezialisierung des Bezugssystems beruht nicht nur auf Faulheit.” Einstein to Paul Ehrenfest,
24 May 1916 (CPAE 8, Doc. 220).

128 In December 1915, Einstein had called the choice of unimodular coordinates “epistemologically
meaningless” (“erkenntnistheoretisch ohne Bedeutung,” Einstein to Moritz Schlick, 14 December
1915 [CPAE 8, Doc. 165]).
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gravitational waves in his theory. This is what he did in (Einstein 1916b). He found
three types of waves, two of which curiously do not transport energy (Einstein 1916b,
693). In an addendum to the paper, Einstein noted that these spurious waves can be
eliminated by choosing unimodular coordinates. This, he concluded, shows that the
choice of unimodular coordinates has “a deep physical justification.”129 He also
rehearsed this argument in a letter to De Sitter, another member of the Leyden group
around Lorentz and Ehrenfest working on relativity.130 

Two letters from Leyden to Berlin the following year suggest that, in late 1917,
Einstein still believed that unimodular coordinates have a special status. The author
of these letters was Gunnar Nordström, who was in Leyden on a three-year fellow-
ship (CPAE 8, Doc. 112, note 3). Nordström had a hard time convincing Einstein that
in unimodular coordinates the gravitational field of the sun carries no energy.131

Nordström also caught an error in (Einstein 1916b), which prompted Einstein to pub-
lish a corrected version of his 1916 paper on gravitational waves (Einstein 1918a). He
now used a different argument to eliminate the spurious gravitational waves, one that
makes no mention of unimodular coordinates (ibid., 160–161). By the time Gustav
Mie, in his efforts to convince Einstein of the need for special coordinates, reminded
him of the original argument, Einstein had abandoned the notion of privileged coordi-
nates, unimodular or otherwise, altogether.132

Immediately following the defensive passage from the letter to Ehrenfest of May
1916 quoted above (see footnote 127), Einstein promised: “At some point I may
present the matter without such specialization [of the coordinates], along the lines of
[Lorentz 1915].”133 Given Einstein’s views at the time that unimodular coordinates
were special, such a fully generally-covariant presentation of the theory was probably
not a matter of great urgency to him. He was nonetheless forced to keep thinking
about the issue, not by Ehrenfest this time but by a new correspondent. 

In June 1916, Théophile de Donder, professor of mathematical physics in Brus-
sels, respectfully informed Einstein that the latter’s expression for the gravitational
energy-momentum pseudo-tensor was wrong (Théophile de Donder to Einstein, 27
June 1916 [CPAE 8, Doc. 228]). An exchange of letters across enemy lines ensued,
mercifully cut short a little over a month later by exhaustion on the Belgian side. De
Donder began what would turn out to be the last letter of this testy correspondence
with the announcement of a truce of sorts: “the extensive research and innumerable
calculations that I have devoted to your theory have forced me to take some rest for a
few weeks.”134 Einstein probably read this with a sigh of relief. Even though De

129 “eine tiefe physikalische Berechtigung” (Einstein 1916b, 696).
130 Einstein to Willem de Sitter, 22 June 1916 (CPAE 6, Doc. 32). The work of the Leyden group is

described in (Kox 1992).
131 Gunnar Nordström to Einstein, 22–28 September 1917, 23 October 1917 (CPAE 8, Docs. 382, 393).
132 Gustav Mie to Einstein, 6 May 1918 (CPAE 8, Doc. 532). For brief discussions of the episode

described in the last two paragraphs, see (CPAE 8, li-lii, and CPAE 7, xxv).
133 “Vielleicht werde ich die Sache auch einmal ohne die Spezialisierung darstellen, so wie Lorentz in

seiner Arbeit.”



 UNTYING THE KNOT 903

Donder’s missives were ostensibly about clarifying the relation of his own work to
Einstein’s, it is hard not to get the impression that De Donder’s ulterior motive was to
have Einstein concede priority for at least part of general relativity to his Belgian col-
league.135 If this was indeed De Donder’s hidden agenda, he must have been bitterly
disappointed by the letters from Berlin. The way Einstein saw it, De Donder had sim-
ply overlooked that the expressions whose correctness he was contesting only held in
unimodular coordinates. In Einstein’s last contribution to the debate, he showed how
one would obtain the expression for the gravitational energy-momentum pseudo-ten-
sor without choosing unimodular coordinates. The formula that Einstein gives is 

 is Einstein’s notation in this letter for the effective Lagrangian extracted from the
Riemann scalar.136 The letter shows that Einstein had no trouble with the continua-
tion of the argument of the appendix to (Einstein 1916a) discussed above.

In the fall of 1916, Einstein finally finished what he had begun in this appendix
and published a generally-covariant discussion of the field equations and energy-
momentum conservation. The paper, (Einstein 1916c), brings together in a systematic
fashion the various elements of this discussion that we encountered piecemeal in the
letter to Lorentz, the discarded appendix, and the letter to De Donder. As is acknowl-
edged in the introduction of (Einstein 1916c), both Hilbert (1915) and Lorentz
(1916a) had already shown how to derive the Einstein field equations from a varia-
tional principle without choosing special coordinates.137 Einstein’s own paper owes
little or nothing to this earlier work.138 It follows the relevant sections of (Einstein
1914c) virtually step by step.

Einstein starts from the action

134 “Les longues recherches et les innombrables calculs que j’ai consacré à vos théories m’obligent à
prendre quelques semaines de repos.” Théophile de Donder to Einstein, 8 August 1916 (CPAE 8,
Doc. 249)

135 The following year, De Donder (1917) claimed priority for the field equations with cosmological con-
stant of (Einstein 1917b). This prompted Einstein to write to Lorentz who had communicated De
Donder’s paper to the Amsterdam Academy. Clearly embarrassed to bother Lorentz with this matter,
Einstein emphasized that it was because of a serious error in De Donder’s paper not because of the
priority claim that he urged his Dutch colleague to have De Donder publish a correction. Einstein to
H. A. Lorentz, 18 December 1917 (CPAE 8, Doc. 413). We do not know whether Lorentz took up this
matter with De Donder. We do know that no correction ever appeared.

136 In terms of the more explicit notation introduced in our discussion of the general formalism of (Ein-
stein 1914c) in sec. 3,  would be written as  (cf. eq. (18)).

137 See (Sauer 1999) and “Hilbert’s Foundation of Physics …” (in vol. 4 of this series) for discussion of
Hilbert’s work; and (Janssen 1992) for discussion of Lorentz’s work.

138 See footnote 46 for discussion of how Einstein’s variational techniques deviated from the standard
techniques of the Göttingen crowd.
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where  the gravitational part of the Lagrangian, is the Riemann scalar and  the
Lagrangian for the material part of the system, is left unspecified (Einstein 1916c,
1111–1112).139 Through partial integration, all terms involving second-order deriva-
tives of the metric can be removed from the integral over  The gravitational part of
the field equations thus follows from the variational principle

(106)

where  is the effective Lagrangian we encountered at the beginning of this section

(107)

(Ibid., 1113, note 2). For  this expression for  reduces to expression
(95) for the Lagrangian  in unimodular coordinates used in (Einstein 1916a).140

The field equations are the Euler-Lagrange equations

(108)

(Einstein 1916c, 1113, eq. 7). Einstein still did not bother to evaluate the functional
derivatives  and  to show that the left-hand side reproduces the
Einstein tensor (or rather, the corresponding tensor density). The right-hand side
gives minus the energy-momentum tensor density for matter:141

139 As Einstein writes in the introduction: “In particular, specific assumptions about the constitution of
matter should be kept to a minimum, in contrast especially to Hilbert’s presentation” (“Insbesondere
sollen über die Konstitution der Materie möglichst wenig spezialisierende Annahmen gemacht wer-
den, im Gegensatz besonders zur Hilbertschen Darstellung.” Einstein 1916c, 1111). Following Mie,
Hilbert (1915) had endorsed the electromagnetic worldview, according to which the matter
Lagrangian is a function only of  and of the components  of the electromagnetic four-vector
potential and their first-order derivatives. Einstein had tired of this electromagnetic program almost as
fast as he had become enamored of it in November 1915. In a footnote to the discarded appendix to
(Einstein 1916a), he characterized Hilbert’s approach as “not very promising” (“wenig aussichts-
voll”). This phrase was meant for public consumption. He was much more dismissive of Hilbert’s
work in the letter to Ehrenfest from which we already quoted in footnotes 127 and 133 (see also foot-
note 152 below). And reporting on (Einstein 1916c) to Weyl, Einstein bluntly wrote: “Hilbert’s
assumption about matter seems infantile to me, in the sense of a child innocent of the deceit of the
outside world” (“Der Hilbertsche Ansatz für die Materie erscheint mir kindlich, im Sinne des Kindes,
das keine Tükken der Aussenwelt kennt,” Einstein to Hermann Weyl, 23 November 1916 [CPAE 8,
Doc. 278]).

140 The second term in square brackets in eq. (107) vanishes since 

141 Factors of  the gravitational constant, are not to be found in (Einstein 1916c). Presumably, they are
absorbed into the Lagrangians  and  for matter and gravitational field.
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(109)

(Einstein 1916c, 1115, eq. 19). 
Substituting this definition into eq. (108) and contracting the resulting equations

with  one arrives at:

As we have seen in sec. 3.1 (eqs. (11)–(13)), this equation can be rewritten as

(110)

(ibid., eq. 18), if  the gravitational energy-momentum pseudo-tensor, is defined
as:

(111)

(ibid., eq. 20, first part). 
Energy-momentum conservation in the form

(112)

(ibid., eq. 21) is guaranteed through eq. (110) if

(113)

(ibid., eq. 17; Einstein does not use the notation  in this paper). 
Eq. (112) is equivalent to energy-momentum conservation in the form

 or, equivalently (see eqs. (14)–(16) and footnote 35),

(ibid., 1116, eq. 22), if 

Using definition (109) of  and the field eqs. (108), one can rewrite this as

As we have seen in sec. 3.2 (eqs. (17)–(18)), this equation holds, if  is defined as
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(114)

(ibid., 1115, eq. 20, second part). 
Compatibility of the definitions (111) and (114) of  requires that142

(115)

Energy-momentum conservation thus requires both eq. (113) and eq. (115):

   (116)

(see sec. 3.2, eq. (23)). 
Before these considerations of energy-momentum conservation Einstein (1916c,

1114–1115) has already shown that both equations are satisfied identically for  as
a consequence of the general covariance of the action in eq. (106).143 Consider a
coordinate transformation  where the  are chosen such that they
vanish outside of some arbitrarily chosen region of spacetime. Since the integral over

 only differs by surface terms from the integral over the Riemann scalar  the
invariance of the latter under coordinate transformations  implies
that the former is invariant under such transformations as well. Hence,

(117)

(the second step is justified because  is an invariant volume element). The
integrand is the sum of two terms:

(118)

The first term can be written as (see sec. 3.3, eq. (28))

the second term as144

142 In the more explicit notation of sec. 3, eq. (111) defines  and eq. (114) defines
 Compatibility requires that  Note

that definition (115) of , which is the one given in (Einstein 1916c, 1114, eq. 14), differs by a fac-
tor 2 from definition (19), which is the one given in (Einstein 1914c, 1075, eq. 76a).

143 In the discarded appendix to (Einstein 1916a), the covariance properties are also discussed first. Ein-
stein never gets to energy-momentum conservation in that document (CPAE 6, Doc. 31).
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Inserting these expressions into eq. (118), one finds

(119)

The expression in curly brackets is just  as defined in eq. (115). Eq. (119) can thus
be written more compactly as

(120)

(Einstein 1916c, 1114, eq. 13). Since  transforms as a scalar under arbitrary linear
transformations,

(121)

(ibid., eq. 15). The only contribution to the action comes from the second term on the
right-hand side of eq. (120). Through partial integration this contribution can be
rewritten as

plus surface terms that will vanish. The invariance of  thus implies that

(122)

These are the contracted Bianchi identities. The general covariance of (the
Lagrangian for) the Einstein field equations thus results in two identities—
and —that guarantee energy-momentum conservation (see eq. (116)).

144 Using that  (eq. (38)), one can write

Using that  (eq. (24) and Einstein 1916c, 1114, eq. 11), one finds:

from which the equation below follows.
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For Einstein this was the central point of the paper. Writing to Ehrenfest, he
summed up the paper as follows: “I have now given a Hamiltonian [read: variational]
treatment of the essential points of general relativity as well, in order to bring out the
connection between relativity and the energy principle” (our emphasis).145 He told
four other correspondents the same thing. Shortly after he had submitted the paper, he
wrote to Besso: “You will soon receive a short paper of mine about the foundations of
general relativity, in which it is shown how the requirement of relativity is connected
with the energy principle. It is very amusing.”146 Similarly, he wrote to De Sitter a
few days later: “Take a look at the page proofs [of (Einstein 1916c)] that I sent to
Ehrenfest. There the connection between relativity postulate and energy law is
brought out very clearly.”147 A little over a week later, he sent Lorentz an offprint of
the paper describing it as “a short paper, in which I explained how in my opinion the
relation of the conservation laws to the relativity postulate is to be understood.”148 He
emphasized that the conservation laws are satisfied for any choice of the Lagrangian

 for matter, adding: “So the choice [of ] made by Hilbert appears to have no
justification.”149 He made the same point in a letter to Weyl in which he once more
reiterated the key point of (Einstein 1916c), namely that “[t]he connection between
the requirement of general covariance and the conservation laws is also made
clearer.”150 

Two years earlier Einstein had already made the connection between covariance
and energy-momentum conservation in the context of the Entwurf theory (Einstein
1914c). He had shown that the conditions  and  that in conjunction
with the Entwurf field equations guarantee energy-momentum conservation also
determine the class of “justified transformations” between “adapted coordinates” (see
sec. 3.3). In the review article (Einstein 1916a), he had not connected the conditions
guaranteeing energy-momentum conservation in unimodular coordinates to the cor-
responding covariance of the field equations. Instead, he had shown by direct calcula-
tion that these conditions are identically satisfied as long as unimodular coordinates

145 “Ich habe nun das Prinzipielle an der allgemeinen Relativitätstheorie auch hamiltonisch dargestellt,
um den Zusammenhang zwischen Relativität und Energieprinzip zu zeigen.” Einstein to Paul Ehren-
fest, 24 October 1916 (CPAE 8, Doc. 269).

146 “Du erhältst bald eine kleine Arbeit von mir über die Basis der allgemeinen Relativitätstheorie, in der
gezeigt wird, wie die Rel-Forderung mit dem Energieprinzip zusammenhängt. Es ist sehr amusant.”
Einstein to Michele Besso, 31 October 1916 (CPAE 8, Doc. 270).

147 “Sehen Sie sich die Druckbogen an, die ich Ehrenfest geschickt habe. Es kommt dort der Zusammen-
hang zwischen Relat. Postulat und Energiesatz besonders klar heraus.” Einstein to Willem de Sitter, 4
November 1916 (CPAE 8, Doc. 273).

148 “eine kleine Arbeit, in der ich dargestellt habe, wie nach meiner Ansicht die Beziehung der Erhal-
tungssätze zum Relativitätspostulat aufgefasst werden soll.” Einstein to H. A. Lorentz, 13 November
1916 (CPAE 8, Doc. 276).

149 “Die von Hilbert getroffene Wahl erscheint daher durch nichts gerechtfertigt.” Ibid.
150 “Auch wird der Zusammenhang zwischen allgemeiner Kovarianz-Forderung und Erhaltungssätzen

deutlicher.” Einstein to Hermann Weyl, 23 November 1916 (CPAE 8, Doc. 278). This is the same let-
ter in which Einstein sharply criticizes Hilbert’s adherence to the electromagnetic program (see foot-
note 139).
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are used (Einstein 1916a, sec. 17, eq. 55; cf. eq. (105) and footnotes 123 and 124). As
he wrote to Ehrenfest: “In my earlier presentation [in Einstein 1916a] with

 direct calculation establishes the identity that is here [in Einstein 1916c]
presented as a consequence of the invariance [of the action].”151 The variational treat-
ment in arbitrary coordinates in (Einstein 1916c) thus fills two important gaps. The
paper explicitly shows that energy-momentum conservation holds in arbitrary and not
just in unimodular coordinates. More importantly, it establishes for the new theory
what Einstein had already found for the old one, namely that there is an intimate con-
nection between covariance and conservation laws.

It is no coincidence that the generalization of Einstein’s insight—the celebrated
Noether theorems—was formulated only two years later. Energy-momentum conser-
vation in general relativity was hotly debated in Göttingen following the abstruse
treatment of the topic in (Hilbert 1915).152 In the course of his first attempt to make
sense of this part of Hilbert’s paper, Felix Klein (1917) claimed that energy-momen-
tum conservation is an identity in Einstein’s theory. Klein claimed—or, to be more
charitable to Klein, Einstein took him to claim—that eq. (112) holds as a direct con-
sequence of the invariance of the action (106), independently of the field equations. In
fact, only eq. (113) is an identity (see eq. (122)). And it is only in conjunction with
the field equations (110), that this identity implies energy-momentum conservation as
expressed in eq. (112). Einstein immediately set Klein straight on this score.153 This
was the start of a correspondence between the two men about energy-momentum
conservation in general relativity.154 

The debate quickly shifted from the status of the identities flowing from the gen-
eral covariance of the action to the (related) issue of whether or not it was acceptable
in a generally-covariant theory to have a non-generally-covariant gravitational
energy-momentum tensor. Unaware that Lorentz (1916b, c) and Levi-Civita (1917)
had already made the same proposal, Klein suggested to define the left-hand side of
the gravitational field equations as the generally-covariant gravitational energy-
momentum tensor. Like Lorentz and Levi-Civita before him, Klein even wrote a
paper on this proposal, which Einstein convinced him not to publish.155 

151 “In meiner früheren Darstellung mit  wird die Identität direkt durch Ausrechnen konstatiert,
welche hier als Folge der Invarianz dargestellt wird.” Einstein to Paul Ehrenfest, 7 November 1916
(CPAE 8, Doc. 275).

152 In the letter to Ehrenfest from which we already quoted in footnotes 127 and 133, Einstein vented his
irritation with (Hilbert 1915): “I do not care for Hilbert’s presentation. It is […] unnecessarily compli-
cated, not honest (= Gaussian) in its structure (creating the impression of being an übermensch by
obfuscating one’s methods)” (“Hilberts Darstellung gefällt mir nicht. Sie ist […] unnötig kompliziert,
nicht ehrlich (= Gaussisch) im Aufbau (Vorspiegelung des Übermenschen durch Verschleierung der
Methoden).”). Our assessment of Hilbert’s paper follows “Hilbert’s Foundation of Physics …” (in
vol. 4 of this series). For a more positive assessment, see (Sauer 1999).

153 See the first paragraph of Einstein to Felix Klein, 13 March 1918 (CPAE 8, Docs. 480).
154 The most interesting letters are the first three, all written in March 1918: (1) the letter cited in footnote

153; (2) Felix Klein to Einstein, 20 March 1918 (CPAE 8, Doc. 487); (3) Einstein to Felix Klein, 24
March 1918 (CPAE 8, Doc. 492).
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Einstein was virtually alone at this point in his defense of the pseudo-tensor. As
he stated with his usual flair for high drama in the first sentence of (Einstein 1918d):
“While the general theory of relativity has met with the approval of most physicists
and mathematicians, almost all my colleagues object to my formulation of the
energy-momentum law.”156 Einstein was unfazed by the opposition. Drawing heavily
on (Einstein 1916c), (Einstein 1918d) provides a sustained defense of the views on
energy-momentum conservation that had guided Einstein in finding and consolidat-
ing the Entwurf theory in 1913–1914 and that had guided him again in finding and
consolidating its successor theory in 1915–1916. Subsequent developments would
prove Einstein right. We now know that gravitational energy-momentum is repre-
sented by a pseudo-tensor and not by a tensor because gravitational energy-momen-
tum cannot be localized.

Klein meanwhile continued to discuss the problem of energy-momentum conser-
vation with other Göttingen mathematicians, notably with Carl Runge and Emmy
Noether—one of the wrong sex, the other too old to be sent to the front. With Runge
he undertook a systematic survey of the relevant literature. These efforts resulted in
two important papers on the topic (Klein 1918a, 1918b). Noether’s work on the prob-
lem resulted in her seminal paper on symmetries and conservation laws (Noether
1918).157

The importance of (Einstein 1916c) for our story is not so much its role in the run-
up to Noether’s theorems, but the evidence it provides for the continuity of Einstein’s
reliance on the variational formalism of (Einstein 1914c) in the transition from the
Entwurf theory to general relativity. There was no abrupt break, no sudden switch
from physical to mathematical strategy. Instead, the transition was brought about by
changing one key element in the formalism encoding much of the physical knowl-
edge that went into the Entwurf theory and then modifying other parts of the formal-
ism (if necessary) to accommodate the new version of this one element. Einstein
himself pinpointed this one element for us. It was the definition of the components of
the gravitational field. Not all modifications necessitated by changing this definition
were in place by the time he published the first of his four communications of
November 1915 to the Prussian Academy (Einstein 1915a). Most of them were in
place by the time he published the fourth (Einstein 1915d). This Einstein made clear
in his systematic exposition of the theory in (Einstein 1916a). Even this paper, how-

155 Two drafts of this paper can be found in the Klein Nachlass in the Niedersächsische Staats- und Uni-
versitätsbibliothek in Göttingen (see CPAE 7, Doc. 9, note 5, for more details).

156 “Während die allgemeine Relativitätstheorie bei den meisten theoretischen Physikern und Mathemati-
kern Zustimmung gefunden hat, erheben doch fast alle Fachgenossen gegen meine Formulierung des
Impuls-Energiesatzes Einspruch” (Einstein 1918d, 448). This paper pulls together and amplifies ear-
lier comments in (Einstein 1918a, sec. 6), written in response to Levi-Civita, and (Einstein 1918b),
written in response to one of two short, little-known, and inconsequential excursions into general rel-
ativity by Erwin Schrödinger (1918). For discussion of the debate over energy-momentum conserva-
tion between Einstein and Levi-Civita, see (Cattani and De Maria 1993).

157 In broad outline this story can be found in (Rowe 1999). For a particularly illuminating analysis of
Noether’s theorems and their applications in physics, see (Brading 2002).



 UNTYING THE KNOT 911

ever, left at least one important question unanswered (viz., do the field equations
guarantee energy-momentum conservation in arbitrary coordinates) and failed to
transfer at least one important insight from the Entwurf theory to the new theory (viz.,
the relation between covariance and energy-momentum conservation). These issues
were settled only with (Einstein 1916c), a paper that can be seen as the end of the
consolidation phase of the theory, although one can argue that this phase was not
brought to a conclusion until the publication of (Einstein 1918a, c, d).

10. HOW EINSTEIN REMEMBERED HE FOUND HIS FIELD EQUATIONS

In his papers of November 1915, Einstein introduced his new field equations by
arguing that they were the natural choice given the central role of the Riemann tensor
in differential geometry. The field equations are thus presented as a product of what
we have called the mathematical strategy. The continuity with the Entwurf field
equations, a product of the physical strategy, is lost in Einstein’s presentation and the
reader is left with the impression that Einstein abruptly switched from the physical to
the mathematical strategy in the fall of 1915. This is exactly how Einstein himself
came to remember the breakthrough of November 1915. The physics, he felt, had
been nothing but a hindrance; he had been saved at the eleventh hour by the
mathematics. In his later years Einstein routinely used this version of events to justify
the purely mathematical approach in his work in unified field theory. 

The way Einstein presented his new field equations in the first of his four papers of
November 1915 (Einstein 1915a) is very different from the way we claim he found
them. The paper opens with the retraction of the uniqueness argument of (Einstein
1914c) for the Entwurf field equations. After explaining what is wrong with this argu-
ment, Einstein writes in the third paragraph:

For these reasons I completely lost confidence in the field equations I had constructed
and looked for a way that would constrain the possibilities in a natural manner. I was thus
led back to the demand of a more general covariance of the field equations, which I had
abandoned with a heavy heart three years ago when I was collaborating with my friend
Grossmann. In fact, back then we already came very close to the solution of the problem
given below.158

The fourth paragraph announces a new theory in which all equations, including the
field equations, are covariant under arbitrary unimodular transformations. Einstein
does not explain, neither in this paragraph nor anywhere else in the paper, what made
him forgo general covariance at this point. Our explanation is that the physical strat-
egy pointed not to the generally-covariant Ricci tensor but to the November tensor,
which only transforms as a tensor under unimodular transformations. We showed
how changing the definition of the gravitational field set in motion a chain of reason-
ing that led from the Entwurf field equations to field equations based on the Novem-
ber tensor. Reading the passage quoted above, one would not have suspected such
continuity. In fact, Einstein’s revelations that he has “completely lost confidence” in
the Entwurf field equations and that he had already come “very close to the [new]
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solution” three years earlier suggest a dramatic about-face. The fifth and final para-
graph of Einstein’s introduction confirms this impression and suggests an abrupt
switch from the physical to the mathematical strategy:

Hardly anybody who has truly understood the theory will be able to avoid coming under
its spell. It is a real triumph of the method of the general differential calculus developed
by Gauss, Riemann, Christoffel, Ricci, and Levi-Civita.159

This impression is further reinforced by the way in which the field equations are
introduced in the paper. In sec. 2, on the construction of quantities transforming as
tensors under unimodular transformations, Einstein shows how to extract the Novem-
ber tensor  from the Ricci tensor  (Einstein 1915a, 782, eqs. (13),
(13a), (13b)) just as he had done in the Zurich Notebook.160 At the beginning of
sec. 3, he then writes:

After what has been said so far, it is natural to posit field equations of the form
 because we already know that these equations are covariant under arbi-

trary transformations of determinant 1.161 

It is only at this point that Einstein gives the Lagrangian formulation of these field
equations (Einstein 1915a, 784, eq. (17)) and goes through the argument demonstrat-
ing that they are compatible with energy-momentum conservation (see sec. 6).162

Not surprisingly in light of the above, some of the best modern commentators on
(Einstein 1915a) have concluded that its author had abruptly switched strategies in
the fall of 1915. The clearest, most concise and most explicit version of this account

158 “Aus diesen Gründen verlor ich das Vertrauen zu den von mir aufgestellten Feldgleichungen vollstän-
dig und suchte nach einem Wege, der die Möglichkeiten in einer natürlichen Weise einschränkte. So
gelangte ich zu der Forderung einer allgemeineren Kovarianz der Feldgleichungen zurück, von der ich
vor drei Jahren, als ich zusammen mit meinem Freunde Grossmann arbeitete, nur mit schwerem Her-
zen abgegangen war. In der Tat waren wir damals der im nachfolgenden gegebenen Lösung des Pro-
blems bereits ganz nahe gekommen” (Einstein 1915a, p. 778). The Zurich Notebook shows that
Einstein and Grossmann did indeed consider field equations based on the November tensor three
years earlier (see sec. 2). Norton (2000, 150) inaccurately translates “gelangte … zurück” as “went
back” rather than as “was led back.” The difference is not unimportant. Norton’s “went back” conveys
discontinuity: Einstein abandoned one approach and adopted another, characterized by “the demand
of a more general covariance.” On this reading “a more general covariance” sounds odd. One would
have expected “general covariance.” Our “was led back” conveys continuity: staying the course Ein-
stein ended up with “the demand of a more general covariance.” On our reading “demand” sounds
odd. One would have expected “property” or “feature” instead. Our reading, however, does fit with
Einstein’s remark quoted at the beginning of sec. 3 (see footnote 32): “The series of my papers on
gravitation is a chain of erroneous paths, which nonetheless gradually brought me closer to my goal.”
Einstein to H.A. Lorentz, 17 January 1916 (CPAE 8, Doc. 183)

159 “Dem Zauber dieser Theorie wird sich kaum jemand entziehen können, der sie wirklich erfaßt hat; sie
bedeutet einen wahren Triumph der durch Gauss, Riemann, Christoffel, Ricci, und Levi-Civita
begründeten Methode des allgemeinen Differentialkalküls” (Einstein 1915a, p. 779).

160 See eqs. (1)–(5) in sec. 2;   and  are defined in the equations following eq. (82).
161 “Nach dem bisher Gesagten liegt es nahe, die Feldgleichungen in der Form  anzuset-

zen, da wir bereits wissen, daß diese Gleichungen gegenüber beliebigen Transformationen von der
Determinante 1 kovariant sind” (Einstein 1915a, p. 783).

Rij Gij Rij Sij+=

Gij , Rij , Sij

Rμν κT μν ,–=

Rμν κT μν–=
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can be found in (Norton 2000).163 At the beginning of sec. 5, “Reversal at the Elev-
enth Hour,” Norton gives the following summary of the developments of fall 1915:

… aware of the flaws in his Entwurf theory, Einstein decided he could only find the cor-
rect theory through the expressions naturally suggested by the mathematics. He pro-
ceeded rapidly to the completion of the theory and the greatest triumph of his life […].
Einstein now saw the magic in mathematics. (Norton 2000, 148)

He elaborates:

In effect, [Einstein’s] new tactic [in the fall of 1915] was to reverse his decision of 1913.
When the physical requirements appeared to contradict the formal mathematical require-
ments, he had then chosen in favour of the former. He now chose the latter and, writing
down the mathematically natural equations, found himself rapidly propelled towards a
theory that satisfied all the requirements and fulfilled his ‘wildest dreams’164 […] Ein-
stein’s reversal was his Moses that parted the waters and led him from bondage into the
promised land of his general theory of relativity—and not a moment too soon. Had he
delayed, the promised land might well have been Hilbert’s.165 (Einstein 1933b, 289)
recalled how he ‘ruefully returned to the Riemann curvature’. He now saw just how
directly the mathematical route had delivered the correct equations in 1913 and, by con-
trast, how treacherous was his passage if he used physical requirements as his principal
compass (Norton 2000, 151–152)

There is an amusing pair of quotations from letters to Besso that can be used as
evidence for ‘Einstein’s reversal’ (cf. Norton 2000, 152). In March 1914, reporting
results that seemed to solidify the Entwurf theory (see sec. 3), Einstein told Besso:

The general theory of invariants only proved to be an obstacle. The direct route proved to
be the only feasible one. The only thing that is incomprehensible is that I had to feel my
way around for so long before I found the obvious [our emphasis].166

In December 1915, Einstein used the same term to tell Besso the exact opposite: “the
obvious” (“das Nächstliegende”) now refers to the mathematically rather than the
physically obvious:

This time the obvious was correct; however Grossmann and I believed that the conserva-
tion laws would not be satisfied and that Newton’s law would not come out in first
approximation [our emphasis].167

162 The same pattern can be found in the review article. Einstein (1916a, 803–804) introduces the field
equations by connecting them to the Riemann tensor and then proceeds to discuss them using the vari-
ational formalism. In the letter to Ehrenfest, however, that (as we argued in sec. 8) formed the blue-
print for the discussion of the gravitational field equations in the review article, Einstein writes down
the Lagrangian right a way and does not say a word about the connection between the field equations
and the Riemann tensor. Einstein to Paul Ehrenfest, 24 January 1916 or later (CPAE 8, Doc. 185). Of
course, he could simply have omitted that part because that was not what Ehrenfest had trouble with.

163 In a recent paper, Jeroen van Dongen (2004, sec. 2) fully endorses Norton’s account. He is more care-
ful in his dissertation (Van Dongen 2002).

164 See Einstein to Michele Besso, 10 December 1915 (CPAE 8, Doc. 162).
165 See (Corry et al. 1997) for conclusive evidence of Einstein’s priority (cf. footnote 65 above)
166 “Die allgemeine Invariantentheorie wirkte nur als Hemmnis. Der direkte Weg erwies sich als der ein-

zig gangbare. Unbegreiflich ist nur, dass ich so lange tasten musste, bevor ich das Nächstliegende
fand.” Einstein to Michele Besso, ca. 10 March 1914 (CPAE 5, Doc. 514).
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These twin quotations seem to provide strong, if anecdotal, evidence for Einstein
changing horses in the fall of 1915.

Even in late 1915, however, as the last quotation illustrates, Einstein mentioned
physical as well as mathematical considerations. The same thing he told Besso he
told Sommerfeld and Hilbert too:

It is easy, of course, to write down these generally-covariant field equations but difficult
to see that they are a generalization of the Poisson equation and not easy to see that they
satisfy the conservation laws.168

The difficulty did not lie in finding generally-covariant equations for the ; this is eas-
ily done with the help of the Riemannian tensor. Rather it was difficult to recognize that
these equations formed a generalization of Newton’s laws and indeed a simple and natu-
ral generalization.169

To be sure, these references to physical considerations fit with the alleged ‘reversal’
from physics to mathematics. First, we have to keep in mind that Einstein had ulterior
motives in emphasizing that the mathematics was easy and that getting the physics
straight was the hard part. He wanted to downplay the importance of Hilbert’s work.
Einstein felt that Hilbert had only worked on the theory’s mathematical formalism
and had not wrestled with the physical interpretation of the formalism the way he
had. Second, Einstein’s comments on the difficulty of the physical interpretation of
the field equations still suggest that the decisive breakthrough occurred in the mathe-
matics and that the physics then fell into place. We have argued that it was just the
other way around. 

Why did Einstein nonetheless choose to present the new theory as a product of his
mathematical strategy? Undoubtedly, part of the answer is that the key mathematical
consideration pointing to the new field equations—the November tensor’s pedigree in
the Riemann tensor—is much simpler than the physical reasoning that had led Ein-
stein to these equations in the first place. But even had the physical considerations
been less forbidding, they would in all likelihood not have made for an effective and

167 “Diesmal ist das Nächstliegende das Richtige gewesen; Grossmann und ich glaubten, dass die Erhal-
tungssätze nicht erfüllt seien, und das Newton’sche Gesetz in erster Näherung nicht herauskomme.”
Einstein to Michele Besso, 10 December 1915 (CPAE 8, Doc. 162).

168 “Es ist natürlich leicht, diese allgemein kovariante Gleichungen hinzusetzen, schwer aber, einzuse-
hen, dass sie Verallgemeinerungen von Poissons Gleichungen sind, und nicht leicht, einzusehen, dass
sie den Erhaltungssätzen Genüge leisten.” Einstein to Arnold Sommerfeld, 28 November 1915
(CPAE 8, Doc. 153; see footnote 31 for a discussion of the context in which this letter was written). It
is very telling that recovering the Poisson equation is presented as a problem that is harder than prov-
ing energy-momentum conservation. This is indeed the case—it requires overcoming the notion of
coordinate restrictions and the prejudice about the form of the static metric—but one would never
have guessed this from the November 1915 paper where the Poisson equation is recovered simply by
applying the Hertz condition.

169 “Die Schwierigkeit bestand nicht darin allgemein kovariante Gleichungen für die  zu finden; denn
dies gelingt leicht mit Hilfe des Riemann’schen Tensors. Sondern schwer war es, zu erkennen, dass
diese Gleichungen eine Verallgemeinerung, und zwar eine einfache und natürliche Verallgemeinerung
des Newton’schen Gesetzes bilden.” Einstein to David Hilbert, 18 November 1915 (CPAE 8,
Doc. 148).

gμν

gμν
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convincing argument for the new field equations. After all, Einstein had essentially
drawn on these same considerations a year earlier for his fallacious argument for the
uniqueness of the Entwurf field equations. That debacle was bound to come back and
haunt a new argument along similar lines.

The math envy Einstein developed in the course of his work on general relativity
may also have been a factor. As he confessed to Sommerfeld early on in his collabo-
ration with Grossmann: “One thing for sure though is that I have never before in my
life exerted myself even remotely as much and that I have been infused with great
respect for mathematics, the subtler parts of which I until now, in my innocence, con-
sidered pure luxury. Compared to this problem, the original theory of relativity is
child’s play.”170 In 1917 he told Levi-Civita that “[i]t must be a pleasure to ride
through these fields on the steed of real mathematics, while the likes of us must
trudge through on foot.”171

We suspect, however, that Einstein’s main reason for going with the mathematical
argument was simply that he felt that this was by far the most persuasive argument in
favor of the new field equations. Recall Einstein’s satisfaction in October 1914 with
the physical and mathematical lines of reasoning apparently converging on the
Entwurf field equations, thereby finally rendering their covariance properties tracta-
ble (see our discussion at the end of sec. 4). If anything, the convergence of mathe-
matical and physical lines of reasoning in late 1915 was more striking than it had
been the year before. The concomitant clarification of the equations’ covariance
properties was accordingly more complete and more perspicuous. In the case of the
Entwurf field equations, the clarification had taken the form of a complicated condi-
tion for non-autonomous transformations. In the case of the November tensor, the
connection to the Riemann tensor immediately told Einstein that his new field equa-
tions were invariant under arbitrary unimodular transformations. Given how pleased
Einstein had been with his much more modest result in 1914, this new result cannot
have failed to impress him. As we saw at the end of sec. 4, Einstein got carried away
by the earlier result, claiming that he had found definite field equations “in a com-
pletely formal manner, i.e., without direct use of our physical knowledge about grav-
ity” (Einstein 1914c, 1076; cf. footnotes 78 and 79). The same happened in
November 1915. In arguing for his new field equations, Einstein emphasized the
covariance considerations to the exclusion of (at least) equally important consider-
ations concerning energy-momentum conservation and the relation to Newtonian
gravitational theory.

170 “Aber das eine ist sicher, dass ich mich im Leben noch nicht annäherend so geplag[t] habe, und dass
ich grosse Hochachtung für die Mathematik eingeflösst bekommen habe, die ich bis jetzt in ihren sub-
tileren Teilen in meiner Einfalt für puren Luxus ansah! Gegen dies Problem ist die ursprüngliche
Relativitätstheorie eine Kinderei.” Einstein to Arnold Sommerfeld, 29 October 1912 (CPAE 5,
Doc. 421).

171 “Es muss hübsch sein, auf dem Gaul der eigentlichen Mathematik durch diese Gefilde zu reiten, wäh-
rend unsereiner sich zu Fuss durchhelfen muss.” Einstein to Tullio Levi-Civita, 2 August 1917
(CPAE 8, Doc. 368).
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These physical considerations rapidly faded from memory. The way Einstein
came to remember it, the general theory of relativity—the crowning achievement of
his scientific career—was the result of a purely mathematical approach to physics.
Sometimes he knew better than that. In 1918, for instance, he wrote to Besso:

Re-reading your last letter I find something that almost makes me angry: that speculation
has proved itself to be superior to empiricism. You are thinking here about the develop-
ment of relativity theory. I find that this development teaches something else, which is
almost the opposite, namely that a theory, to deserve our trust, must be built upon gener-
alizable facts [… In the case of g]eneral relativity: equality of inertial and gravitational
mass […] Never has a truly useful and profound theory really been found purely specula-
tively.172

Statements like this, however, are the exception. Much more typical is what he wrote
to Cornelius Lanczos in 1938: “the problem of gravitation has made me into a believ-
ing rationalist, i.e., one who looks for the only reliable source of truth in mathemati-
cal simplicity.”173 This distorted memory of how he had found general relativity
served an important purpose in his subsequent career. Whenever the need arose to
justify the speculative mathematical approach that never got him anywhere in his
work on unified field theory, Einstein reminded his audience that he could boast of at
least one impressive successful application of his preferred methodology.

The emblematic text documenting the later Einstein’s extreme rationalist stance
on scientific methodology is his Herbert Spencer lecture, held in Oxford on June 10,
1933.174 This is where Einstein famously enthused that “[o]ur experience hitherto
justifies us in believing that nature is the realization of the simplest conceivable math-
ematical ideas” (Einstein 1933a, 274175). Einstein routinely claimed that this was the
lesson he had drawn from the way in which he had found general relativity. The pas-
sage in the letter to Lanczos that we just quoted is a good example. A few more exam-

172 “In Deinem letzten Brief finde ich beim nochmaligen Lesen etwas, das mich geradezu erbost: die Spe-
kulation habe sich als der Empirie überlegen gezeigt. Du denkst dabei an die Entwicklung der Relati-
vitätstheorie. Aber ich finde, dass diese Entwicklung etwas anderes lehrt, das fast das Gegenteil davon
ist, nämlich, dass eine Theorie, um Vertrauen zu verdienen, auf verallgemeinerungsfähige Thatsachen
aufgebaut sein muss […] Algemeine Relativität: Gleichheit der trägen und schweren Masse […] Nie-
mals ist eine wirklich brauchbare und tiefgehende Theorie wirklich rein spekulativ gefunden worden.”
Einstein to Michele Besso, 28 August 1918 (CPAE 8, Doc. 607). Quoted and discussed in (Holton
1968, 246–247).

173 “… hat das Gravitationsproblem mich zu einem gläubigen Rationalisten gemacht, d.h. zu einem, der
die einzige zuverlässige Quelle der Wahrheit in der mathematischen Einfachheit sucht.” Einstein to
Cornel Lanczos, 24 January 1938 (EA 15 267). Quoted and discussed in (Holton 1968, 259) and (Van
Dongen 2002, 48).

174 For discussion, see, e.g., (Holton 1968, 251–252), (Norton 2000), and (Van Dongen 2002).
175 The German manuscript (EA 1 114) has: “Nach unserer bisherigen Erfahrung sind wir nämlich zu

dem Vertrauen darin berechtigt, dass die Natur die Realisierung des mathematisch denkbar Einfach-
sten ist.”
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ples must suffice here.176 In a letter to Louis de Broglie the year before he died
Einstein wrote that he arrived at the position expounded in his Spencer lecture

through the experiences with the gravitational theory. The gravitational [field] equations
could only be found on the basis of a purely formal principle (general covariance), i.e.,
on the basis of trust in the largest imaginable simplicity of the laws of nature.177

In his autobiographical notes of 1949, he similarly wrote that

I have learned something else from the theory of gravitation: no collection of empirical
facts however comprehensive can ever lead to the formulation of such complicated equa-
tions […] Equations of such complexity as are the equations of the gravitational field can
be found only through the discovery of a logically simple mathematical condition that
determines the equations completely or [at least] almost completely. Once one has those
sufficiently strong formal conditions, one requires only little knowledge of facts for the
setting up of a theory; in the case of the equations of gravitation it is the four-dimension-
ality and the symmetric tensor as expression for the structure of space which together
with the invariance concerning the continuous transformation group, determine the equa-
tions almost completely.178

Discussing this passage, Jeroen van Dongen (2002, 30) notes that this is hardly a his-
torically balanced account and that it reads more “like a unified field theory mani-
festo.” As we have shown in this paper, the Einstein field equations were found not, as
the later Einstein would have it, by extracting the mathematically simplest equations
from the Riemann tensor, but by pursuing the analogy with Maxwell’s equations for
the electromagnetic field, making sure that they be compatible with Newtonian gravi-
tational theory and energy-momentum conservation. Considerations of mathematical
elegance played a role at various junctures but were always subordinate to physical
considerations.

176 For more examples, see, e.g., (Holton 1968, 259–260), (Norton 2000), and (Van Dongen 2002).
177 “durch die Erfahrungen bei der Gravitationstheorie. Die Gravitations-gleichungen waren nur auffind-

bar auf Grund eines rein formalen Prinzipes (allgemeine Kovarianz), d.h. auf Grund des Vertrauens
auf die denkbar grösste logische Einfachheit der Naturgesetze” Einstein to Louis de Broglie, 8 Febru-
ary 1954. This letter is quoted and discussed in (Van Dongen 2002, 8)

178 “Noch etwas anderes habe ich aus der Gravitationstheorie gelernt: Eine noch so umfangreiche Samm-
lung empirischer Fakten kann nicht zur Aufstellung so verwickelter Gleichungen führen […] Glei-
chungen von solcher Kompliziertheit wie die Gleichungen des Gravitationsfeldes können nur dadurch
gefunden werden, dass eine logisch einfache mathematische Bedingung gefunden wird, welche die
Gleichungen völlig oder nahezu determiniert. Hat man aber jene hinreichend starken formalen Bedin-
gungen, so braucht man nur wenig Tatsachen-Wissen für die Aufstellung der Theorie; bei den Gravi-
tationsgleichungen ist es die Vierdimensionalität und der symmetrische Tensor als Ausdruck für die
Raumstruktur, welche zusammen mit der Invarianz der kontinuierlichen Transformationsgruppe die
Gleichungen praktisch vollkommen determinieren” (Einstein 1949, 88–89).
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APPENDIX: THE TRANSITION FROM THE ENTWURF FIELD 
EQUATIONS TO THE EINSTEIN FIELD EQUATIONS SANITIZED

Drawing on calculations scattered throughout this paper and with the benefit of hind-
sight, we present a sanitized version of the path that took Einstein from the Entwurf
field equations to the Einstein field equations. We start from the vacuum field equa-
tions in unimodular coordinates. In the form in which they were originally presented
(Einstein and Grossmann 1913, 16-17, eqs. 15 and 18) the Entwurf equations look
nothing like the Einstein field equations. In unimodular coordinates they can be writ-
ten in a form that clearly brings out the relation to their successor.

Comparing Vacuum Field Equations. Both in the Entwurf theory and in general rela-
tivity, the vacuum field equations in unimodular coordinates can be derived from the
action principle  In both cases the Lagrangian is given by:

(A.1)

(see eq. (63) with  for general relativity and eq. (35) with  for the
Entwurf theory). In general relativity the gravitational field is defined as (see eq. (53))

(A.2)

in the Entwurf theory as (see eq. (52) with a minus sign)

(A.3)

To distinguish between corresponding quantities in the two theories, we shall write
the Entwurf quantities with a tilde, as in eq. (A.3). Note that  in eq. (A.3) is noth-
ing but a truncated version of  in eq. (A.2). Also note that the Lagrangian in
eq. (A.1) is modelled on the Lagrangian for the free Maxwell field, 

The structural identity of the Lagrangians in the two theories does not carry over
to the Euler-Lagrange equations. This is because of two complications. (1) The oper-
ations ‘setting ’ and ‘doing the variations’ do not commute (see footnote
83). In the Entwurf theory we do the variations first. In general relativity we set

 first. (2) The quantities  are symmetric in their lower indices, whereas
their counterparts,  in the Entwurf theory are not.

In unimodular coordinates, the vacuum Einstein field equations can be written as
(see footnote 89)179

(A.4)

and the vacuum Entwurf field equations as (see eqs. (47) and (49)):

(A.5)

We can get these equations to resemble each other even more closely by defining 
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(A.6)

in general relativity and the corresponding quantities

(A.7)

in the Entwurf theory. Note that the order of the indices  and  is different in
eqs. (A.6) and (A.7).180 Inserting these quantities into eqs. (A.4) and (A.5), we find:

(A.8)

(A.9)

The first two terms in these two equation have the exact same form.
Expressed in unimodular coordinates and in terms of  and

 respectively, the gravitational energy-momentum pseudo-tensors of the
two theories also take on the exact same form. With the help of eq. (A.6) the pseudo-
tensor of general relativity in unimodular coordinates (see eq. (73)) can be written as

(A.10)

With the help of eq. (A.7) the pseudo-tensor of the Entwurf theory in unimodular
coordinates, with an overall minus sign because of the switch from  to 
(see minus eq. (49) for ) can be written as

(A.11)

Eqs. (A.10) and (A.11) have the exact same form. The first term in both expressions
contains the trace of the pseudo-tensor:

     (A.12)

Using the expressions for the gravitational energy-momentum pseudo-tensors and
their trace, we can write the field equations (A.8) and (A.9) in a form that brings out

179 When the variation  for  in eq. (A.1) is done before setting  one finds

(see eq. (61) with ). Contracting this equation with  one finds

Not surprisingly, this last equation resembles eq. (A.5) in the Entwurf theory more closely than
eq. (A.4), obtained when the variation is done after setting 

180 Expressed in terms of the new quantities  and  the Lagrangians for the two theories retain
their structural identity:  and  

δ g– L τd∫ L g– 1,=

Γμν α,
α Γβμ

α Γαν
β 1

2
---gμνgρσΓβρ

α Γασ
β+ + 0=

Tμν 0= gνλ ,

gνλΓμν
α( ) α, gνρΓαρ

λ Γμν
α–

1
2
---δν

λgρσΓβρ
α Γασ

β+ 0=

g– 1.=

Γα
μν gμβΓαβ

ν≡

Γ̃α
μν gνβΓ̃αβ

μ≡

μ ν

Γα
μν Γ̃α

μν ,
L gμνΓβμ

α Γαν
β Γμβ

α Γα
μβ= = L̃ gμνΓ̃βμ

α Γ̃αν
β Γ̃βμ

α Γ̃α
βμ .= =

Γμ
λα( ) α, Γα

νλΓνμ
α– 0,=

Γ̃μ
λα( ) α, Γ̃α

τλΓ̃τμ
α 1

2
---δμ

λΓ̃β
ατΓ̃ατ

β+– 0.=

Γαβ
μ   ,  Γ μ

αβ { }
Γ̃αβ

μ   ,  Γ ˜  μ
αβ { } ,

κtσ
λ 1

2
---δσ

λΓμβ
α Γα

μβ Γμσ
α Γα

μλ.–=

H L H–=
g– 1=

κ t̃μ
λ 1

2
---δμ

λΓ̃βρ
α Γ̃α

βρ Γ̃τμ
α Γ̃α

τλ.–=

κt Γμβ
α Γα

μβ,= κ t̃ Γ̃βρ
α Γ̃α
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the physical interpretation of the various terms more clearly. Using eq. (A.12), we
can rewrite eq. (A.10) as:

Substituting this equation into the field equations (A.8), we find

 

181

 

(A.13)

Substituting eq. (A.11) into the field equations (A.9), we find

(A.14)

The crucial difference between these last two equations is the trace term on the left-
hand side of eq. (A.13).  

From the Entwurf Field Equations to the Einstein Field Equations.

 

 Eqs. (A.13)–
(A.14) suggest a short-cut for getting from the 

 

Entwurf

 

 field equations in unimodular
coordinates to the Einstein field equations, first in unimodular coordinates and then in
their generally-covariant form. Comparison of eq. (A.14) to eq. (A.13) shows that
changing the definition of the gravitational field from  in eq. (A.3) to  in
eq. (A.2) changes the way in which the gravitational energy-momentum pseudo-ten-
sor occurs in the gravitational part of the field equations in unimodular coordinates.
Since the energy-momentum of matter should enter the field equations in the same
way as the energy-momentum of the gravitational field itself, this also affects the
matter part of the field equations. In the presence of matter described by an energy-
momentum tensor  the vacuum equations (A.14)—based on definition (A.3) of
the gravitational field, Einstein’s “fateful prejudice”—should be generalized to

(A.15)

These are the 

 

Entwurf

 

 field equations in unimodular coordinates. By the same token,
eq. (A.13)—based on definition (A.2) of the gravitational field, Einstein’s “key to the
solution”—should be generalized to:

 

182

 

181 If eq. (A.4) obtained by doing the variations 

 

after

 

 setting  are replaced by the equations

obtained by doing the variations 

 

before

 

 setting  (see footnote 179), then eq. (A.13) gets
replaced by  which has the exact same form as eq. (A.14) in the 

 

Entwurf

 

 theory.
182 In his first November paper, Einstein (1915a) chose field equations in the presence of matter that set

the left-hand side of eq. (A.13) equal to  In the fourth November paper, Einstein (1915d)
replaced the right-hand side by 

Γα
νλΓνμ

α– κtμ
λ 1

2
---δμ

λκt .–=

g– 1=

gνλΓμν
α( ) α, gνρΓαρ

λ Γμν
α–

1
2
---δν

λgρσΓβρ
α Γασ

β+ 0,=

g– 1=
Γμ

λα( ) α, κ tμ
λ+ 0=

Γμ
λα( ) α, κtμ

λ 1
2
---δμ

λκt–+ 0.=

Γ̃μ
λα( ) α, κ t̃μ

λ+ 0.=

Γ̃βμ
α Γβμ

α

T μν,

Γ̃μ
λα( ) α, κ t̃μ

λ T μ
λ+( ).–=

κ– T μ
λ .

κ T μ
λ 1 2⁄( )δμ

λT–( ) .–
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(A.16)

These are the proper field equations for the successor theory to the Entwurf theory. 
Eq. (A.15) guarantees energy-momentum conservation,  in the

Entwurf theory, if—in addition to —the condition

(A.17)

holds (cf. eq. (50)). 
Eq. (A.16) guarantees energy-momentum conservation,  in the

new theory if—in addition to —the condition

(A.18)

holds. Contracting eq. (A.16), one finds that

(see eq. (104)). Using this equation to eliminate  from eq. (A.18), one arrives at the
condition  in the new theory

(A.19)

(see eq. (105)). Eq. (A.19), it turns out, is an identity (see eq. (105) and footnotes
123–124). Eq. (A.17) in the Entwurf theory imposes a coordinate restriction over and
above unimodularity. Eq. (A.19), its counterpart in the new theory, imposes no addi-
tional restriction.

The gravitational part of the field equations (A.16), i.e., the left-hand side of
eq. (A.13), is nothing but an alternative expression for the November tensor

 (see eq. (67)), which itself is nothing but the Ricci tensor in unimo-
dular coordinates (see eqs. (82)–(83)). It follows that the field equations (A.16) are
(the mixed form of) the generally-covariant Einstein field equations,

(A.20)

in unimodular coordinates (where  is the Ricci tensor). Eq. (A.19) gives the con-
tracted Bianchi identities in unimodular coordinates.

The generally-covariant form of the Einstein field equations can be derived from
the action principle,  where  is the Riemann curvature scalar. All
terms involving second-order derivatives of the metric can be eliminated from the
action through partial integration. One then arrives at an action of the form

(A.21)

Γμ
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λ T μ
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1
2
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B̃μ Γ̃μ
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tμ
λ T μ
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λα( ) α,

1
2
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λ,
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Γρ
ρα( ) α, κ t T+( )=

T
Bμ 0=
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λα 1

2
---δμ

λΓρ
ρα–

αλ,
≡ 0=

Γμν α,
α Γβμ

α Γαν
β+

Rμν κ T μν
1
2
---gμνT–⎝ ⎠

⎛ ⎞ ,–=

Rμν

δ g– R τd∫ 0,= R

G* τ,d∫
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where

(A.22)

In unimodular coordinates  reduces to 

(A.23)

This is just the Lagrangian given in eq. (A.1) with the gravitational field defined as
minus the Christoffel symbols (see eq. (A.2)).183
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GRAVITATION IN THE TWILIGHT OF CLASSICAL 
PHYSICS: AN INTRODUCTION

AIM AND STRUCTURE OF THIS BOOK

More than is the case for any other theory of modern physics, general relativity is
usually seen as the work of one man, Albert Einstein. In taking this point of view,
however, one tends to overlook the fact that gravitation has been the subject of con-
troversial discussion since the time of Newton. That Newton’s theory of gravitation
assumes action at a distance, i.e., action without an intervening mechanism or
medium, was perceived from its earliest days as being problematical. Around the turn
of the last century, in the twilight of classical physics, the problems of Newtonian
gravitation theory had become more acute. Consequently, there was a proliferation of
alternative theories of gravitation which were quickly forgotten after the triumph of
general relativity. In order to understand this triumph, it is necessary to compare gen-
eral relativity to its contemporary competitors. As we shall see, general relativity
owes much to this competition. A historical analysis of the struggle between alterna-
tive theories of gravitation and the different approaches to the problem of gravitation
thus complements the analysis of Einstein’s efforts. An account of the genesis of gen-
eral relativity that does not discuss these competitors remains incomplete and biased.
At the same time, this wider perspective on the emergence of general relativity pro-
vides an exemplary case of alternatives in the history of science, presenting a whole
array of alternative theories of gravitation and the eventual emergence of a clear win-
ner. It is thus an ideal topic for addressing long-standing questions in the philosophy
of science on the basis of detailed historical evidence.

The present book, comprising volumes 3 and 4 of the series, discusses alternative
theories of gravitation that were relevant to the genesis of general relativity and thus
constitute its immediate scientific context. Many of these theories figured in the dis-
cussions of Einstein and his contemporaries. The set of theories covered here is not
complete as far as gravitation theories in the late nineteenth and early twentieth cen-
turies are concerned. But even a comprehensive treatment of this narrower set of the-
ories represents a considerable challenge for the history of science. Unlike Einstein’s
work, many of the theories dealt with here are known only to a few specialists. This
situation has only just begun to improve through recent work on the genesis of gen-
eral relativity and much remains to be done in the future.
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What is presented in these volumes are two types of texts, sources and interpreta-
tions. The sources are key documents relevant to the history of general relativity.
Many of these texts were originally written in German and are presented here for the
first time in English translation. The interpretative texts are essays, most of them spe-
cially written for these volumes. They provide historical context and analysis of the
theories presented in the sources. The book is divided into sections reflecting a classi-
fication of approaches to the problem of gravitation. Different subdisciplines of clas-
sical physics generated different ways of approaching the problem of gravitation. The
emergence of special relativity further raised the number of possible approaches
while creating new requirements that all approaches had to come to terms with. Each
section of this book is dedicated to one of these approaches and, as a rule, consists of
an historical essay and several sources.

THE UNFOLDING OF ALTERNATIVE THEORIES OF GRAVITATION

From the perspective of an epistemologically oriented history of science, the unfold-
ing of alternative theories of gravitation in the twilight of classical physics can be
interpreted as the realization of the potential embodied in the knowledge system of
classical physics to address the problem of gravitation, this knowledge system even-
tually being transformed by the special-relativistic revolution. The dynamics of this
unfolding was largely governed by internal tensions of the knowledge system rather
than by new empirical knowledge, which at best played only a minor role. A central
problem of the Newtonian theory of gravitation was, as already mentioned, that it
assumed the action between two attracting bodies to be instantaneous and that it did
not provide any explanation for the instantaneous transport of action along arbitrary
distances. This characteristic feature of the gravitational force, called action at a dis-
tance, became even more dubious after the mid-nineteenth century when it was rec-
ognized that electromagnetic forces did not comply with the idea of action at a
distance. This internal tension of the knowledge system of classical physics was
intensified, but not created, by the advent of the theory of special relativity, according
to which the notion of an instantaneous distance between two bodies as it appears in
Newton’s force law can no longer be accepted.

The attempts to resolve these kinds of tensions typically crystallized around men-
tal models representing the gravitational interaction on the basis of other familiar
physical processes and phenomena. A mental model is conceived here as an internal
knowledge representation structure serving to simulate or anticipate the behavior of
objects or processes, like imagining electricity as a fluid. Mental models are flexible
structures of thinking that are suitable for grasping situations about which no com-
plete information is available. They do so by relying on default assumptions that
result from prior experiences and can be changed if additional knowledge becomes
available without having to give up the model itself.

Thus, in what may be called the 

 

gas model

 

, gravitation could be conceived as
resulting from pressure differences in a gaseous aether. Or, in what may be called the
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umbrella model

 

, the attraction of two bodies could be imagined to result from the
mutual shielding of the two bodies immersed in an aether whose particles rush in ran-
dom directions and, in collisions with matter atoms, push them in the direction of the
particles’ motions. Or one could think of gravitation in analogy to the successful
description of electromagnetism by the 

 

Lorentz model

 

, accepting a dichotomy of
gravitational field on the one hand and charged particles—masses—that act as
sources of the field on the other. The elaboration of these approaches, with the help of
mathematical formalism, led typically to a further proliferation of alternative
approaches and, at the same time, provided the tools to explore these alternatives to a
depth that allowed new tensions to be revealed. The history of these alternative
approaches can thus be read, in a way similar to Einstein’s work, as an interaction
between the physical meaning embodied in various models and the mathematical for-
malism used to articulate them.

THE POTENTIAL OF CLASSICAL PHYSICS

The history of treatments of gravitation in the nineteenth century reflects the transi-
tion from an era in which mechanics constituted the undisputed fundamental disci-
pline of physics to an era in which mechanics became a subdiscipline alongside
electrodynamics and thermodynamics.

From the time of its inception, the action-at-a-distance conception of Newtonian
gravitation theory was alien to the rest of mechanics, according to which interaction
always involved contact. This explains the early occurrence of attempts to interpret
the gravitational force by means of collisions, for instance, by invoking the umbrella
model described above. During these early days the comparison of the gravitational
force to electric and magnetic forces had already been suggested as well. However,
the analogy with electricity and magnetism became viable only after theories on
these subjects had been sufficiently elaborated. There were even attempts at thermal
theories of gravitation after thermodynamics had developed into an independent sub-
discipline of physics. Besides providing new foundational resources for approaching
the problem of gravitation, the establishment of independent subdisciplines and the
questioning of the primacy of mechanics that resulted from it affected the develop-
ment of the theoretical treatment of gravitation in yet another way, namely through
the emergence of revisionist formulations of mechanics. This 

 

heretical mechanics

 

, as
we shall call it, consisted in attempts to revise the traditional formulation given to
mechanics by Newton, Euler and others, and often amounted to questioning its very
foundations.

Approaches to the problem of gravitation in the context of these developments of
classical physics are covered by the first and last sections of the first volume of this
book, 

 

The Gravitational Force between Mechanics and Electrodynamics

 

, and 

 

From
Heretical Mechanics to a New Theory of Relativity

 

. Further stimuli for rethinking
gravitation came from the development of astronomy and mathematics. This
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approach is addressed by the second section, 

 

An Astronomical Road to a New Theory
of Gravitation

 

.

 

The Mechanization of Gravitation

 

Before the advent of the special theory of relativity, the validity of Newton’s law of
gravitation was essentially undisputed in mainstream physics. Alternative laws of
gravitation were, of course, conceivable but Newton’s law proved to be valid to a high
degree of precision. While the minute discrepancies between the observed celestial
motions and those predicted by Newtonian theory, most prominently the advance of
Mercury’s perihelion, could be resolved by one of these alternatives, they could also
be resolved by adjusting lower-level hypotheses such as those regarding the distribu-
tion of matter in the solar system. In any case, the empirical knowledge at that time
did not force a revision of Newtonian gravitation theory. The more pressing problem
of this theory was that it did not provide a convincing model for the propagation of
the gravitational force.

The most elaborate theories to address this problem made use of the umbrella
model. These theories start from the idea of an impact of aether particles on matter, as
formulated by Le Sage in the late eighteenth century. The gravitational aether is
imagined to consist of particles that move randomly in all directions. Whenever such
an aether atom hits a material body it pushes the body in the direction of its move-
ment. A single body remains at rest since the net impact of aether particles from all
sides adds up to zero. However, if two bodies are present, they partly shield each
other from the stream of aether particles. As a result, the impact of aether particles on
their far sides outweighs that on their near sides and the two bodies are driven
towards each other.

Caspar Isenkrahe, Sir William Thomson (Lord Kelvin), and others developed dif-
ferent theories based on this idea in the late nineteenth century. But regardless of the
details, this approach suffers from a fundamental problem related to the empirical
knowledge about the proportionality of the force of gravity with mass. In order to
take this into account one needs to allow the aether particles to penetrate a material
body in such a way that they can interact equally with all of its parts. This require-
ment is better fulfilled the more transparent matter is to the aether particles. But, the
more transparent matter is, the less shielding it provides from the aether particles on
which the very mechanism for explaining gravity is based. Hence, without shielding
there is no gravitational effect; without penetration there is no proportionality of the
gravitational effect to the total mass. Furthermore, in theories explaining gravitation
by the mechanical action of a medium, the problem of heat exchange between the
medium and ordinary matter arises (in analogy to electromagnetic heat radiation), in
most approaches leading to an extreme heating of matter.

From a broader perspective, such attempts at providing a mechanical explanation
of gravity had lost their appeal by the end of the nineteenth century after the success-
ful establishment of branches of physics that could not be reduced to mechanics, such
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as Maxwell’s electrodynamics and Clausius’ thermodynamics. Nevertheless, this
development led indirectly to a contribution of the mechanical tradition to solving the
problem of gravitation by provoking the emergence of revised formulations of
mechanics, referred to here as heretical mechanics.

 

Heretical Mechanics

 

A critical revision of mechanics, pursued in different ways by Carl Neumann, Lud-
wig Lange, and Ernst Mach among others, had raised the question of the definition
and origin of inertial systems and inertial forces, as well as their possible relations to
the distribution of masses in the universe. Through the latter issue, this revision of
mechanics was also important for the problem of gravitation. It also gave rise to
attempts at formulating mechanics in purely relational terms, that is, exclusively in
terms of the mutual distances of the particles and derivatives of these distances. Such
attempts are documented, for instance, in the texts presented in this book of Imman-
uel and Benedict Friedlaender and of August Föppl. As becomes clear from these
texts, heretical mechanics contributed to understanding the relation between gravita-
tional and inertial forces as both are due to the interaction of masses. According to
Föppl there must be velocity-dependent forces between masses although he did not
think of these forces as being gravitational. The Friedlaender brothers also conceived
of inertia as resulting from an interaction between masses and did speculate on its
possible relation to gravitation. In spite of such promising hints, heretical mechanics
remained marginal within classical physics, in part because it lacked a framework
with which one could explore the relation between gravitation and inertia. This rela-
tion was established by Einstein within the framework of field theory, first in 1907
through his principle of equivalence, and more fully with the formulation of general
relativity.

Einstein’s successful heuristic use of Machian ideas in his relativistic theory of
gravitation encouraged the mechanical tradition to continue working toward a purely
relational mechanics in the spirit of Mach. Attempts in this direction were made by
Hans Reissner, Erwin Schrödinger, and, more recently, Julian Barbour and Bruno
Bertotti. The success of general relativity provided a touchstone for the viability of
these endeavors. At the same time, the question to which extent the issues raised by
heretical mechanics, such as a relational understanding of inertia, have been settled
by general relativity is still being discussed today.

 

From Peripheral Mathematics to a New Theory of Gravitation

 

The success or failure of a physical idea hinges to a large extent on the mathematical
tools available for expressing it. In view of the crucial role of the mathematical con-
cept of affine connection at a later state in the development of the general theory of
relativity, it is interesting to consider the impact this tool might have had on the for-
mulation of physical theories had it been part of mathematics by the latter half of the
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nineteenth century. That this counter-factual assumption is actually not that far-
fetched can be seen from the work of Hermann Grassmann, Heinrich Hertz, Tullio
Levi-Civita, and Elie Cartan, in part reproduced in this book. Such a fictive develop-
ment might have given rise to a kind of heretical gravitation theory driven by periph-
eral mathematics and formulated by some “Newstein” long before the advent of
special relativity. Perhaps the search for a different conceptualization of mechanics in
which gravitation and inertia are treated alike, as is the case according to Einstein’s
equivalence principle, could have provided a physical motivation for such an alterna-
tive formulation of classical mechanics with the help of affine connections. Perhaps
Heinrich Hertz’s attempt to exclude forces from mechanics, replacing them by geo-
metrical constraints, might have served as a starting point for such a development,
triggering a geometrization of physics, had it not been so marginal to the mainstream
of late nineteenth-century physics.

As with ordinary classical mechanics, Newstein’s theory would have eventually
conflicted with the tradition of electrodynamics and its implication of a finite propa-
gation speed for physical interactions, which ultimately leads to the metrical structure
of special relativity with its constraints on physical interactions. Then the problem
that arose from this conflict could be—in contrast to the actual course of history—
formulated directly in terms of the compatibility of two well-defined mathematical
structures, the affine connection expressing the equality in essence of gravitation and
inertia, and the metric tensor expressing the causal structure of spacetime. This for-
mulation of the problem would have smoothed the pathway to general relativity con-
siderably since the heretical aspect of Einstein’s work—the incorporation of the
equality in essence of gravitation and inertia—would have already been implemented
in Newstein’s predecessor theory. General relativity might thus have been the out-
come of mainstream research.

 

The Potential of Astronomy

 

Another field of classical science that might have contributed more than it actually
did to the emergence of general relativity is astronomy. This is made evident by the
sporadic interventions by astronomers such as Hugo von Seeliger, who questioned
the seemingly self-evident foundations of the understanding of the universe in classi-
cal science. Their work was stimulated by new mathematical developments such as
the emergence of non-Euclidean geometries or by heretical mechanics insofar as it
raised questions relevant to astronomy, for instance, concerning the definition of iner-
tial systems. It was further stimulated by the recognition of astronomical deviations
from the predictions of Newton’s law (such as the perihelion advance of Mercury), or
by the paradoxes resulting from applying classical physics to the universe-at-large
when this is assumed to be infinite (such as the lack of definiteness in the expression
of the gravitational force, or Olbers’ paradox of the failure of the night sky to be as
bright as the Sun).
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Although the full extent to which these problems were connected became clear
only after the establishment of general relativity, the astronomer Karl Schwarzschild,
who was exceptional in his interdisciplinary outlook, addressed many of them and
was even able to relate them to one another. He explored, for instance, the cosmolog-
ical implications of non-Euclidean geometry and considered the possibility of an
anisotropic large-scale structure of the universe in which interial frames can only be
defined locally. With less entrenched disciplinary boundaries of late nineteenth-cen-
tury classical science, such considerations could have had wider repercussions on the
foundations of physics, perhaps giving rise to the emergence of a non-classical cos-
mology.

 

A Thermodynamic Analogy

 

In rejecting the assumption of an instantaneous propagation of gravitational interac-
tions, it makes sense to modify classical gravitation theory by drawing upon analo-
gies with other physical processes that have a finite propagation speed, such as the
propagation of electromagnetic effects or the transport of heat in matter. Such analo-
gies obviously come with additional conceptual baggage. A gravitational theory built
according to the model of electrodynamic field theory, for instance, was confronted
with the question of whether the gravitational analogue of electromagnetic waves
really exist, or the question of why there is only one kind of charge (gravitational
mass) in gravitation theory as opposed to two in electromagnetism (positive and neg-
ative charge). To avoid such complications, one could also consider amending New-
tonian theory by extending the classical Poisson equation for the gravitational
potential into a diffusion equation by adding a term with a first-order time derivative
term, exploiting the analogy with heat transport in thermodynamics. In 1911, such a
theory was proposed by Gustav Jaumann without, however, taking into account the
spacetime framework of special relativity. As a consequence, it had little impact.

 

Electromagnetism as a Paradigm for Gravitation

 

Since early modern times magnetism served as a model for action at a distance as it
apparently occurs between the constituents of the solar system. However, as long as
there was no mathematical formulation describing magnetic forces, no quantitative
description of gravitation could be obtained from this analogy. After Newton had
established a quantitative description of gravitation, this could now conversely be
used as a model for describing magnetic and electric forces, as realized in the laws of
Coulomb, Ampère, and Biot-Savart. With the further development of electromagnetic
theory as represented by velocity-dependent force laws and Maxwellian field theory,
it regained its paradigmatic potential for understanding gravitation. After the striking
success of Einstein’s field theory of gravitation, which describes the gravitational
force in terms of the geometry of spacetime, gravitation took the lead again as
attempts were made that aimed at a geometrical description of electromagnetism and
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the other fundamental interactions with a view toward the unification of all natural
forces. Such attempts are still being made today.

The motive of unification also underlay nineteenth-century attempts to reduce
gravitation to electricity, such as those of Ottaviano Fabrizio Mossotti and Karl
Friedrich Zöllner, who interpreted gravity as a residual effect of electric forces. They
assumed that the attractive electric force slightly outweighs the repulsive one, result-
ing in a universal attraction of all masses built up from charged particles. Ultimately,
however, this interpretation amounts to little more than the statement that there is a
close analogy between the fundamental force laws of electrostatics and Newtonian
gravitation.

The paradigmatic role of electromagnetism for gravitation theory was boosted
dramatically when electrodynamics emerged as the first field theory of physics. A
field-theoretic reformulation of Newtonian gravity modelled on electrostatics was
provided by the Poisson equation for the Newtonian gravitational potential. Even
though the Poisson equation was merely a mathematical reformulation of Newton’s
law, it had profound implications for the physical interpretation of gravitation and
introduced new possibilities for the modification of Newtonian gravitation theory.
The analogy with electromagnetism raised the question of whether gravitational
effects propagate with a finite speed like electromagnetic effects. A finite speed of
propagation further suggested the existence of velocity-dependent forces among
gravitating bodies, amounting to a gravitational analogue to magnetic forces. It also
suggested the possibility of gravitational waves. In short, a field theory of gravitation
opened up a whole new world of phenomena that might or might not be realized in
nature.

The uncertainty of the existence of such phenomena was in any case not the most
severe problem that a field theory of gravitation was confronted with. If gravitation is
conceived of as a field with energy content, the fact that like “charges” always attract
has a number of problematic consequences. First and foremost, ascribing energy to
the gravitational field itself leads to a dilemma that does not occur in the electromag-
netic case. In the latter case, the work performed by two attracting charges as they
approach each other can be understood to be extracted from the field, and the field
energy disappears when they meet at one point. In contrast, while work can also be
performed by two approaching gravitating masses, the field energy is enhanced,
rather than diminished, as they come together at one point. (Accordingly no equiva-
lent of a black hole is known in electrodynamics.) As Gustav Mie explains in his
paper on the gravitational potential presented in this book, the gravitational field is
peculiar in that it becomes stronger when work is released. While a similar effect
occurs with the magnetic field of two current-bearing conductors, the source of the
energy is obvious in this case. The energy comes from an external energy supply such
as a battery. Such an external supply is missing in the case of gravitation. A plausible
escape strategy was to assume that the energy of the gravitational field is negative so
that, when the field becomes stronger, positive energy is released, which can be
exploited as work. For the plausible option of formulating a theory of gravitation in
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strict analogy to electrodynamics by simply postulating Maxwell’s equations with
appropriately changed signs for the gravitational field, this negative energy assump-
tion has dramatic consequences when considering dynamic gravitational fields. A
minute deviation of a gravitating system from equilibrium will cause the field to
release more and more energy, while the system deviates further and further from its
original state of equilibrium. In fact, due to the reversed sign, gravitational induction,
if conceived in analogy to electromagnetic induction, becomes a self-accelerating
process. This will be referred to here as the 

 

negative energy problem

 

.
Despite this problem, Hendrik Antoon Lorentz took up the thread of Mossotti and

others and proposed to treat gravitation as a residual force resulting from electromag-
netism. While the electromagnetic approach to gravitation offered, in principle, the
possibility to account for observed deviations from Newtonian gravitation theory, the
field theories actually elaborated by Lorentz and others failed to yield the correct
value for the perihelion advance of Mercury, a commonly used touchstone. 

All in all, the analogy of gravitation with electromagnetism, promising as it must
have appeared, could not be as complete as advocated by its proponents. The consid-
erable potential of the tradition of field theory for formulating a new theory of gravi-
tation still needed to be explored and the key to disclosing its riches had yet to be
discovered.

The attempts to subsume gravitation under the familiar framework of electromag-
netism were later followed by approaches that aimed at a unification of physics on a
more fundamental level, still focusing, however, on gravitation and electromagne-
tism. The most prominent attempts along these lines, contemporary to the genesis of
general relativity, were those of Gustav Mie and David Hilbert. Their works are cov-
ered in the sections 

 

From an Electromagnetic Theory of Matter to a New Theory of
Gravitation

 

 and 

 

Including Gravitation in a Unified Theory of Physics

 

. These
attempts, however, only led to a formal integration of the two forces without offering
any new insights into the nature of gravity.

The key to successfully exploiting the resources of field theory for a new theory
of gravitation was only found when the challenge of formulating a gravitational field
theory was combined with insights from heretical mechanics. Instead of attempting a
formal unification of two physical laws, Einstein combined the field theoretic
approach with the idea of an equality in essence of gravitation and inertia, and even-
tually achieved an integration of two knowledge traditions hitherto separated due to
the high degree of specialization of nineteenth-century physics.

THE CHALLENGE OF SPECIAL RELATIVITY FOR GRAVITATION

The advent of special relativity in 1905 made the need for a revision of Newtonian
gravitation theory more urgent since an instantaneous propagation of gravitation was
incompatible with the new spacetime framework in which no physical effect can
propagate faster than the speed of light. A revision of this kind could be achieved in
various ways. One could formulate an action-at-a-distance law involving a finite time
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of propagation as had been developed in electromagnetism, e.g. by Wilhelm Weber.
Or one could formulate a genuine field theory of gravitation. The four-dimensional
formulation of special relativity emerging from the work of Henri Poincaré, Hermann
Minkowski, and Arnold Sommerfeld brought about a set of clearly distinguished
alternative approaches for realizing such a field theory of gravitation. Eventually,
however, due to the implications of special relativity not only for the kinematic con-
cepts of space and time but also for the dynamic concept of mass, gravitation was
bursting out of the framework of special relativity.

 

A New Law of Gravitation Enforced by Special Relativity

 

The simplest way to make gravitation theory consistent with special relativity was to
formulate a new direct particle interaction law of gravitation in accordance with the
conditions imposed by special relativity, e.g., that the speed of propagation of the
gravitational force be limited by the speed of light. This kind of approach, which was
pursued by Poincaré in 1906 and by Minkowski in 1909, and which is presented here
in the section 

 

A New Law of Gravitation Enforced by Special Relativity

 

, could rely on
the earlier attempts to introduce laws of gravitation with a finite speed of propagation.
However, the stricter condition of Lorentz invariance now had to be satisfied.

While the formulation of a relativistic law of gravitation could solve the particular
problem of consolidating gravitation theory with the new theory of special relativity,
it disregarded older concerns about Newtonian gravitation, such as those relating to
action at a distance. Furthermore, questions concerning fundamental principles of
physics such as that of the equality of action and reaction emerged in these formula-
tions. It remained, in any case, unclear to which extent the modified laws of gravita-
tion could be integrated into the larger body of physical knowledge.

 

Towards a Field Theory of Gravitation

 

More important and more ambitious than the attempts at a new direct-particle interac-
tion law of gravitation was the program of formulating a new field theory of gravita-
tion. As pointed out above, if gravitation—in analogy to electromagnetism—is
transmitted by a field with energy content, the fact that in the gravitational case like
“charges” (masses) attract has problematic consequences, such as the negative energy
problem. A promising approach to the negative energy problem was the assumption
that masses also have energy content defined in such a way that the energy content of
two attracting masses decreases when the masses approach each other. This effect can
in turn be ascribed to a direct contribution of the gravitational potential to the energy
content of the masses. Hence, there is a way to infer a relation between mass and
energy content by considering the negative energy problem of a gravitational field
theory.

The above considerations on the negative energy problem of gravitational field
theory suggest that the potential plays a greater role in such a theory than it does in
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classical electromagnetic field theory. How to represent the gravitational potential is
further directly connected with the question of how to represent the gravitational
mass, or, more generally, the source of the gravitational field, since both are related
through the field equation. The following three mathematical types of potentials were
considered before the establishment of general relativity with the corresponding
implications on the field strengths and the sources.

•

 

Scalar theories

 

. Potential and source are Lorentz scalars and the field strength is a
(Lorentz) four-vector.

•

 

Vector theories

 

. Potential and source are four-vectors and the field is what was
then called a “six-vector” (an antisymmetric second-rank tensor).

•

 

Tensor theories

 

. Potential and source are symmetric second-rank tensors and the
field is represented by some combination of derivatives of the potential.

From what has been said above about a theory of gravitation construed in analogy
with electrodynamics, the problems of a vector theory become apparent. In contrast
to the electromagnetic case, where the charge density is one component of the four-
current, the gravitational mass density is not one component of a four-vector. From
this it follows in particular that no expression involving the mass is available to solve
the negative energy problem by forming a scalar product of source and potential in
order to adjust the energy expression.

Having thus ruled out vector theories, only scalar theories and tensor theories
remain. Einstein’s theories, in particular the 

 

Entwurf

 

 theory and his final theory of
general relativity, belong to the latter class. Further alternative tensor theories of
gravitation were proposed, but only after the success of general relativity, which is
why they are not discussed here. As concerns scalar theories, a further branching of
alternatives occurs as shall be explained in the following.

Every attempt to embed the classical theory of gravitation into the framework of
special relativity had to cope not only with its kinematic implications, that is, the new
spacetime structure which required physical laws be formulated in a Lorentz covari-
ant manner, but also with its dynamical implications, in particular, the equivalence of
energy and mass expressed by the formula  Since, in a gravitational field,
the energy of a particle depends on the value of the gravitational potential at the posi-
tion of the particle, the equivalence of energy and mass suggests that either the parti-
cle’s mass or the speed of light (or both) must also be a function of the potential.
Choosing the speed of light as a function of the potential immediately exits the
framework of special relativity, which demands a constant speed of light. It thus may
seem that choosing the inertial mass to vary with the gravitational potential is prefer-
able since it allows one to stay within that framework.

According to contemporary evidence and later recollections, Einstein in 1907
explored both possibilities, a variable speed of light and a variable mass. He quickly
came to the conclusion that the attempt to treat gravitation within the framework of
special relativity leads to the violation of a fundamental tenet of classical physics,
which may be called 

 

Galileo’s principle

 

. It states that in a gravitational field all bod-
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ies fall with the same acceleration and that hence two bodies dropped from the same
height with the same initial vertical velocity reach the ground simultaneously. The
latter formulation generalizes easily to special relativity. If the inertial mass increases
with the energy content of a physical system, as is implied by special relativity, a
body with a horizontal component of motion will have a greater inertial mass than the
same body without such a motion, and hence fall more slowly than the latter.

The same conclusion can be drawn by purely kinematic reasoning in the frame-
work of special relativity. Consider two observers, one at rest, the other in uniform
horizontal motion. When the two observers meet, they both drop identical bodies and
watch them fall to the ground. From the viewpoint of the stationary observer, the
body he has dropped will fall vertically, while the body the moving observer has
dropped will fall along a parabolic trajectory. From the viewpoint of the moving
observer, the roles of the two bodies are interchanged: the first body will fall along a
parabolic trajectory while the second will fall vertically.

If one now assumes that, in the reference frame of the stationary observer, the
bodies will touch the ground simultaneously, as is required by Galileo’s principle in
the above formulation, the same cannot hold true in the moving system due to the rel-
ativity of simultaneity. In other words, Galileo’s principle cannot hold for both
observers. Thus, the assumption of Galileo’s principle leads to a violation of the prin-
ciple of relativity. On the other hand, if one assumes, in accordance with the principle
of relativity, that the two observers both measure the same time of fall for the body
falling vertically in their respective frame of reference, the time needed for the body
to fall along a parabolic path can be determined from this time by taking time dilation
into account. It thus follows that the time needed for the fall along a parabolic path is
longer than the time needed for the vertical fall, in accordance with the conclusion
drawn from the dynamical assumption of a growth of inertial mass with energy con-
tent.

Both of the possibilities considered by Einstein, a dependence on the gravitational
potential either of the speed of light or of the inertial mass, were later explored by
Max Abraham and Gunnar Nordström respectively. These theories, which repre-
sented the main competitors of Einstein’s theories of gravitation, are discussed in the
sections 

 

The Problem of Gravitation as a Challenge for the Minkowski Formalism

 

and 

 

A Field Theory of Gravitation in the Framework of Special Relativity

 

, to which
the remainder of this introduction is devoted.

 

The Problem of Gravitation as a Challenge for the Minkowski Formalism

 

The assumption of a dependence of the speed of light on the gravitational potential
made it necessary to generalize the Minkowski formalism, although the full conse-
quences of this generalization became clear only gradually. It was Max Abraham who
took the first steps in this direction by implementing Einstein’s 1907 suggestion of a
variable speed of light related to the gravitational potential within this formalism.
Questioned by Einstein about the consistency of the modified formalism with
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Minkowski’s framework, he introduced the variable line element of a non-flat four-
dimensional geometry.

Abraham’s theory stimulated Einstein in 1912 to resume work on a theory of
gravitation. Apart from developing his own theory, Abraham also made perceptive
observations on alternative options for developing a relativistic theory of gravity, on
internal difficulties as well as on physical and astronomical consequences such as
energy conservation in radioactive decay or the stability of the solar system.

 

A Field Theory of Gravitation in the Framework of Special Relativity?

 

While Abraham explored the implications of a variable speed of light, Nordström
pursued the alternative option of a variable mass. Nordström thus remained within
the kinematic framework of special relativity. As in all such approaches, however, he
did so at the price of violating to some extent Galileo’s principle.

More importantly, Nordström also faced the problem that in a special relativistic
theory of gravitation the dynamical implications of special relativity need to be taken
into account as well. These dynamical consequences suggested, for example, ascrib-
ing to energy not only an inertial but also a gravitational mass, which immediately
implies that light rays are curved in a gravitational field. This conclusion, however, is
incompatible with special relativistic electrodynamics in which the speed of light is
constant.

Another implication of the dynamic aspects of special relativity concerns the
source of the gravitational field. If any quantity other than the energy-momentum ten-
sor of matter is chosen as a source-term in the gravitational field equation, as is the
case in all scalar theories including Nordström’s, gravitational mass cannot be fully
equivalent to inertial mass, whose role has been taken in special relativistic physics
by the energy-momentum tensor. However, while such conceptual considerations cast
doubt on the viability of special relativistic theories of gravitation, they were not
insurmountable hurdles for such theories. In fact, Nordström’s final version of his
theory remained physically viable as long as no counter-evidence was known. Ein-
stein’s successful calculation of Mercury’s perihelion advance on the basis of general
relativity in late 1915 undermined Nordström’s theory, which did not yield the correct
value. This, however, did not constitute a fatal blow as long as other astrophysical
explanations of Mercury’s anomalous motion remained conceivable. The fatal blow
only came when the bending of light in a gravitational field was observed in 1919.
Nordström’s theory did not predict such an effect. For the final version of his theory
this can easily be seen by observing that the trace of the energy-momentum tensor,
which acts as the source of the gravitational field in that theory, vanishes for electro-
magnetic fields. Another way of seeing this makes use of the work of Einstein and
Adriaan Fokker, who showed that Nordström’s theory can be viewed as a special case
of a metric theory of gravitation with the additional condition that the speed of light is
a constant, thus excluding a dispersion of light waves that gives rise to the bending of
light rays.
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Before Nordström’s theory matured to its final version, which constitutes a fairly
satisfactory special relativistic theory of gravitation, several steps were necessary in
which the original idea was elaborated, in particular regarding the choice of an appro-
priate source expression. The most obvious choice and the first considered by Nord-
ström is the rest mass density. The problem with this quantity is, however, that it is
not a Lorentz scalar. Nordström’s second choice was the Lagrangian of a particle.
This, however, leads to a violation of the equality of gravitational and inertial mass.
While according to special relativity, kinetic energy, (e.g. the thermal motion of the
particles composing a body), adds to the body’s inertial mass, it is subtracted from
the potential energy in the Lagrangian. If that Lagrangian hence describes the gravita-
tional mass, the difference between the two masses increases as more kinetic energy
is involved. In his final theory Nordström chose, at Einstein’s suggestion, the trace of
the energy-momentum tensor, the Laue scalar, thus extending the validity of the
equivalence principle from mass points at rest to “complete static systems.” A com-
plete static system is a system for which there exists a reference frame in which it is
in static equilibrium. In such a frame, the mechanical behavior of the system is essen-
tially determined by a single scalar quantity. In fact, since in special relativity the
inertial behavior of matter is determined by the energy-momentum tensor, the
requirement of equality of inertial and gravitational mass implies that a scalar respon-
sible for the coupling of matter to the gravitational field must be derived from the
energy-momentum tensor.

The problem in choosing the Laue-scalar as a source expression is how deal with
the transport of stresses in a gravitational field while maintaining energy conserva-
tion. Einstein argued that such stresses may be used—unless appropriate provisions
are taken—to construct a 

 

perpetuum mobile

 

, since—by creating or removing
stresses—one can, so to speak, apparently switch gravitational mass on and off. In
other words, while the work required for creating a stress can simply be recovered by
removing it, the gravitational mass created by the stress can meanwhile be used to
perform work in the presence of a gravitational field. Given that stresses depend on
the geometry of the falling object under consideration, a solution can be found by
appropriately adjusting the geometry, as Nordström showed. In other words, the
assumption that gravitational mass can be generated by stresses led, in conjunction
with the requirement of energy-momentum conservation, to the conclusion that the
geometry has to vary with the gravitational potential.

According to Einstein’s assessment of Nordström’s final theory in his Vienna lec-
ture, the theory satisfies all one can require from a theory of gravitation based on con-
temporary knowledge, which did not yet include the observation of light deflection in
a gravitational field. At that time no known gravitation theory was able to explain
Mercury’s perihelion advance. Einstein’s only remaining objection concerned the fact
that what he considered to be Mach’s principle—the assumption that inertia is caused
by the interaction of masses—appears not to be satisfied in Nordström’s theory.

But as we have seen, because of the role of stresses for gravitational mass, Nord-
ström had to assume that the behavior of rods and clocks also depends on the gravita-
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tional potential. Indeed, as becomes clear from the hindsight of general relativity, it is
arguable whether his theory really fits the special relativistic framework, correspond-
ing as it does to a spacetime theory that is only conformally flat, i.e., based on a met-
ric that is flat besides a scalar factor. The way that Nordström’s theory stands to
general relativity in that it attributes transformations to material bodies, which in the
later theory are understood as transformations of spacetime, is reminiscent of the way
that Lorentz’s theory of the aether stands to special relativity.
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JÜRGEN RENN

THE THIRD WAY TO GENERAL RELATIVITY:
EINSTEIN AND MACH IN CONTEXT

1. INTRODUCTION

The relationship between Einstein and Mach is often discussed as a prototypical case
of the influence of philosophy on physics.1 It is, on the other hand, notoriously diffi-
cult to accurately pinpoint such influences of philosophy on science, in particular
with regard to modern physics. To a working scientist, such influences must seem to
belong to a past era. There seems to be little room left for philosophy in the practice
of today’s physics. It plays virtually no part in the physics curriculum, and scholars
who are both active physicists and philosophers are rare exceptions. In view of this
situation it may be appropriate to reexamine the mythical role that philosophy played
for one of the founding heroes of modern physics, Albert Einstein. It is conceivable
that the disjointed remarks on philosophy that are dispersed throughout his œuvre can
be integrated into a coherent image of what may then rightly be called “his philoso-
phy.” But even if such a reconstruction should be successful and yield more than an
eclectic collection of occasional reflections, the more decisive question of the utility
of philosophy for his science would be left unanswered. In fact, Einstein as a philoso-
pher may have been a rather different persona from Einstein the physicist, and having
two souls in one breast would not be an atypical state of affairs for a German intellec-
tual. This contribution will therefore not undertake a systematic attempt at recon-
structing his philosophy, but rather be limited to a case study of the interaction
between philosophy and physics, reexamining the impact of Mach’s philosophical
critique of classical mechanics on Einstein’s discovery of general relativity.2 This
reexamination is made possible by newly discovered documentary evidence concern-
ing Einstein’s research as well as by the achievements of recent studies in the history
of general relativity.3 Both factors contribute to an historical understanding of the

1 The literature on this subject is considerable; for more or less comprehensive accounts, see among
others, (Blackmore 1992; Boniolo 1988; Borzeszkowski and Wahsner 1989, in particular, pp. 49–64;
Goenner 1981; Hoefer 1994; Holton 1986, chap. 7; Norton 1993; Pais 1982, 282–288; Reichenbach
1958; Sciama 1959; Sewell 1975; Stein 1977; Torretti 1978, 1983, 194–202; Wolters 1987), as well as
other literature quoted below. An earlier version of the present paper has been widely circulated in
preprint form since 1994, an Italian version of this can be found in (Pisent and Renn 1994). Its themes
have been taken up in various subsequent publications, see, e.g., (Barbour and Pfister 1995; CPAE 8).

2 For Mach’s critique, see (Mach 1883: translated in Mach 1960).
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relation between Mach’s philosophy and Einstein’s physics that is not only richer in
detail, but also in context, and hence able to reveal the alternatives available to the
historical actors in the search for a new theory of gravitation.

The main result of the analysis presented below is that the theory of general rela-
tivity can be seen to have emerged as the result of one among several possible strate-
gies dealing with conceptual problems of classical physics, strategies which were
worked out to different degrees in the course of the historical development. Since this
development was, in other words, not completely determined by the intrinsic features
of the scientific problems which the historical actors confronted, it is now possible to
evaluate more clearly the external factors affecting the choice between different strat-
egies.

 

4

 

 The approach pursued by Einstein can be characterized as a combination of
field theoretical and mechanistic approaches shaped by his philosophical outlook on
foundational problems of physics. In the following, two conclusions are drawn in
particular:

i) The heuristics under the guidance of which Einstein elaborated general relativ-
ity was rooted in the heterogeneous conceptual traditions of classical physics. At least
in its intermediate stages of development, the conceptual framework of Einstein’s
theory resembled the peculiar combination of field theoretic and mechanistic ele-
ments in Lorentz’s electron theory, rather than the coherent and self-contained con-
ceptual framework of special relativity, which had superseded the conceptual
patchwork of Lorentz’s theory.

 

5

 

 Mach’s ideas were one element in this mixture of tra-
ditional conceptual frameworks; their interpretation by Einstein depended on the con-
text provided by the other elements. In particular, the heuristic role of Mach’s ideas
has to be seen in the wider context of the role that classical mechanics played for the
emergence of general relativity. As with the other heuristic elements, Mach’s ideas
were eventually superseded by the conceptual consequences of general relativity, as
Einstein saw them. In particular, Mach’s concept of inertia as a property not of space
but of the interaction between physical masses played a role comparable to that of the
aether in Lorentz’s theory of electrodynamics: it introduced a helpful heuristics that
led to its own elimination, since the conceptual preconditions of the development of
general relativity turned out to be incompatible with its outcome.

ii) What distinguished Einstein’s early approach to the problem of gravitation
from that of his contemporaries was his refusal to accept that a mechanistic and a
field theoretic outlook on physics were mutually exclusive alternatives. It was his
philosophical perspective on foundational problems of physics that allowed him to
conceive of field theory and mechanics as complementary resources for the formula-
tion of a new theory of gravitation. Contrary to most contemporary physicists dealing

 

3 For new evidence, see in particular, the various volumes of

 

 The Collected Papers of Albert Einstein

 

.
For recent historical studies of the development of general relativity, see the contributions to vols. 1
and 2 of this series and the references given therein.

4 For a similar kind of argumentation, see (Freudenthal 1986).
5 See the extensive discussion in “Classical Physics in Disarray …” and “Pathways out of Classical

Physics …” (both in vol. 1 of this series).



 

T

 

HE

 

 T

 

HIRD

 

 W

 

AY

 

 

 

TO

 

 G

 

ENERAL

 

 R

 

ELATIVITY

 

23

with the problem of gravitation, he attempted to incorporate in his new theory both
foundational assumptions of classical mechanics and their critical revision by Mach;
and contrary to most physicists searching for a physical implementation of Mach’s
analysis of the foundations of mechanics, he took into account the antimechanistic
philosophical intentions of this critique. Einstein’s philosophical perspective is, how-
ever, not only characterized by his interest in and understanding of such philosophi-
cal intentions, but even more by his integrative outlook on the conceptual foundations
of physics. His peculiar approach to the specific problem of gravitation can only be
understood if one acknowledges that for him the problem of a new theory of gravita-
tion was simultaneously the problem of developing new conceptual foundations for
the entire body of physics. Although it may not be common to label such an integra-
tive perspective as “philosophical”—in view of the predominantly metatheoretical
concerns of the philosophy of science—it was also no longer a self-evident preoccu-
pation of science at the beginning of this century, let alone of science today. Never-
theless, the fruitfulness of Einstein’s approach argues for its reconsideration by both
philosophy and science.

In the following, it will first be discussed how Einstein’s project of generalizing
the principle of relativity emerged in the context of his own research as well as in that
of other contemporary approaches to the problem of gravitation (section 2). Some of
the historical presuppositions of the conceptual innovation represented by general
relativity will then be examined, paying particular attention to the contributions of
mechanics and field theory to its development. The aim is to describe the horizon of
possibilities open to the historical actors (section 3).

 

6

 

 Next, the influence of Mach’s
critique of classical mechanics on the creation and interpretation of general relativity
by Einstein (section 4) will be traced in some detail. Finally, the question of Ein-
stein’s philosophical perspective on the foundational problems of physics and its role
in the emergence of general relativity (section 5) will be addressed once again.

2. A NEW THEORY OF GRAVITATION IN THE CONTEXT OF 
COMPETING WORLDVIEWS

 

2.1 A Relativistic Theory of Gravitation as a Problem of “Normal Science”

 

In 1907, when Einstein first dealt with the problem of a relativistic theory of gravita-
tion, philosophical interests seemed to be far from his main concerns. Although he
was employed by the Swiss patent office at that time, he was no longer an outsider to
academic physics. By way of his publications, correspondence, and personal relation-
ships, he was already becoming a well-respected member of the physics establish-
ment. The times had passed when philosophical readings in the mock “Olympia”
academy, which Einstein had founded some years earlier together with other bohe-
mian friends, formed one of the centers of his intellectual life. Einstein was first con-

 

6 For the concept of horizon, see (Damerow and Lefèvre 1981).
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fronted with the task of revising Newton’s theory of gravitation in light of the
relativity theory of 1905 when he was asked to write a review on relativity theory that
would also cover its implications for various areas of physics not directly related to
the field from which it originated, namely the electrodynamics of moving bodies.

 

7

 

Hence, the revision of Newton’s theory of gravitation entered Einstein’s intellectual
horizon, not as the consequence of a philosophically minded ambition to go beyond
the original special theory towards a more general theory of relativity, but as a neces-
sary part of the usual “mopping up operation” whereby new results are integrated
with the traditional body of knowledge. The necessity to modify the classical theory
of gravitation appeared to Einstein and his contemporaries all the more pressing, as
within the conceptual framework of classical physics an asymmetry could already be
observed between the instantaneous propagation of the gravitational force and the
propagation of the electromagnetic field with the finite speed of light. It therefore
comes as no surprise that not only Einstein but also several of his contemporaries
addressed the problem of formulating a field theory of gravitation that was to be in
agreement with the principles suggested by the theory of the electromagnetic field
and, most importantly, with the new kinematics of relativity theory.

 

8

 

2.2 The Proliferation of Alternative Approaches to the Problem of Gravitation

 

It appears to be a phenomenon characteristic of the development of science that in a
situation of conceptual conflict of this kind, alternative approaches to the solution of
the conflict begin to proliferate. Among the factors accounting for this proliferation
are the diverse resources upon which the alternative approaches can draw. Even after
the establishment of special relativity, the instruments available for a revision of New-
ton’s theory of gravitation had to be taken essentially from the arsenal of classical
physics, in particular from classical mechanics and classical electrodynamics. As
these two branches of classical physics were founded on different conceptual struc-
tures—on the one hand the direct interaction between point particles, and on the other
hand, the propagation of continuous fields in time—the use of resources from one or
the other branch to solve the same problem could present itself as a choice between
conceptual alternatives. In this way, the problem of a new theory of gravitation
assumed right from the beginning the character of a borderline problem of classical
physics.

 

9

 

 The choice among alternative approaches to the problem of gravitation was

 

7 See (Einstein 1907b, sec. V). See also Einstein’s later recollections, e.g. those reported in (Wheeler
1979, 188). For a historical discussion of this paper, see (Miller 1992).

8 See, among others, the source papers in this and in vol. 4 of this series (Lorentz 1910; Minkowski
1908; Poincaré 1906), as well as the various papers by Abraham, Nordström, and Mie. See also
(Abraham 1912a, 1912b; Lorentz 1910; Mie 1914; Minkowski 1911a [1908], in particular, pp. 401–
404; Minkowski 1911b [1909], in particular, pp. 443–444; Nordström 1912; Poincaré 1905, in partic-
ular, pp. 1507–1508; 1906, in particular, pp. 166–175; Ritz 1909).

9 For the concept of borderline problem, see “Classical Physics in Disarray …” (in vol. 1 of this series).
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therefore also related to the way in which such borderline problems were handled at
that time.

Even before the turn of the century, that is, long before the great conceptual revo-
lutions of early twentieth century physics, many physicists saw themselves at a cross-
roads, forced to decide between alternative conceptual foundations for their field.

 

10

 

Mechanics had long played the dual role of a subdiscipline and of an ontological
foundation of physics, and at the threshold to the twentieth century, there were still
physicists who adhered to the ontological primacy of mechanics, and who were
therefore convinced that the entire body of physics should be built on conceptual
foundations drawn from mechanics. With the formulation of classical electrodynam-
ics by Maxwell, Hertz, and Lorentz, the difficulty of achieving such a reduction of
physics to the conceptual apparatus of mechanics became increasingly evident.
Although field theory itself was initially formulated in a mechanical language,
towards the end of the century it came to represent an autonomous conceptual frame-
work largely independent of that of mechanics. To some physicists, such as Wien and
Lorentz, field theory even appeared to offer an alternative conceptual foundation for
all of physics; they speculated about an electrodynamic worldview in which mechan-
ics would have to be reformulated as a field theory rather than the other way around.
Finally, with the development of classical thermodynamics in the mid-nineteenth
century, including the formulation of the principle of conservation of energy, a third
alternative conceptual foundation of physics (discussed under the name of “energet-
ics”) seemed to volunteer itself.

 

11

 

 Hence, the mechanistic conception of physics, the
electromagnetic worldview, and energetics distinguished themselves by the choice of
the subdiscipline of classical physics to which they granted a foundational role for the
entire field.

The formulation of a field theory of gravitation in analogy with, or even on the
basis of, the Maxwell-Lorentz theory of the electromagnetic field was thus not a far-
fetched thought in the context of the electrodynamic world picture and had been
approached by several authors.
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 In such a theory, gravitation, like electrodynamical
interactions, would have to propagate with a finite speed. The establishment of the
theory of relativity in 1905 did not make attempts in this direction obsolete; on the
contrary, the issue of formulating a theory of gravity became even more urgent, since
Newton’s theory clearly violated one of the fundamental principles of the relativity
theory—the requirement that no physical action propagates with a velocity greater
than that of light. The primary task was to reformulate the experimentally well-con-

 

10 For further discussion of the conceptual foundations of classical physics at the turn of the century, see
“Classical Physics in Disarray …” (in vol. 1 of this series). For a brief account of the different
approaches prevalent at the turn of the century, see also (Jungnickel and McCormach 1986, chap. 24).

11 For a comprehensive historical analysis of energetics, see (Deltete 2000).
12 For contemporary reviews, see “Gravitation” (Zenneck 1903); “Recent Theories of Gravitation”

(Abraham 1915), (both in this volume). For the heuristic role of electrodynamics for Einstein’s formu-
lation of a field theory of gravitation, see “Pathways out of Classical Physics …” (in vol. 1 of this
series).



 

26 J

 

ÜRGEN

 

 R

 

ENN

 

firmed Newtonian law of gravitation in accordance with the principles of the new
kinematics, in particular with the Lorentz transformations of space and time coordi-
nates, under which the classical law does not remain invariant. It is in fact not diffi-
cult to formulate a Lorentz covariant field equation which can be interpreted as a
direct generalization of Newton’s law. Around 1907 Einstein apparently pursued this
line of research without, however, achieving satisfying results. Indeed, if such a
Lorentz covariant generalization of Newton’s theory could have been formulated
without problems, there would have been no reason for Einstein to look beyond the
special theory of relativity of 1905 and choose the thorny path that was to lead him to
the formulation of the general theory of relativity in 1915.

One of the difficulties encountered by Einstein concerns the concept of mass, or
more precisely the relation between the 

 

two

 

 concepts of mass in classical mechanics:
gravitational and inertial. According to the special theory of relativity the inertial
mass of a body depends on its energy content.
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 On the other hand, it was empirically
known in the context of classical mechanics that the inertial mass is always exactly
equal to the gravitational mass. In a relativistic theory of gravitation, the gravitational
mass of a physical system should therefore also depend on its total energy. In a later
recollection, Einstein summarized his view of this implication of classical mechanics
and the special theory of relativity for a relativistic theory of gravitation: 

 

If the theory did not accomplish this or could not do it naturally, it was to be rejected.
The condition is most naturally expressed as follows: the acceleration of a system falling
freely in a given gravitational field is independent of the nature of the falling system
(specially therefore also of its energy content).

 

14

 

It was precisely this requirement, however, which turned out not to be fulfilled in the
early attempts at a special relativistic theory of gravitation.

 

15

 

In other words, a straightforward relativistic generalization of Newton’s gravita-
tional law seemed to be in conflict with “Galileo’s principle,” i.e., with the principle
that the accelerations of bodies falling in a gravitational field are equal.

 

16

 

 Quantita-
tively, however, the failure of the Galileo’s principle may have been negligibly small,
as Mie, for instance, claimed for his later special relativistic theory of gravitation.

 

17

 

Researchers such as Mie, whose outlook on this issue was shaped by the electrody-

 

13 See (Einstein 1907a), in which this conclusion is rederived in a general way, possibly with the prob-
lems of a relativistic theory of gravitation already in mind.

14 “Wenn die Theorie dies nicht oder nicht in natürlicher Weise leistete, so war sie zu verwerfen. Die
Bedingung lässt sich am natürlichsten so aussprechen: die Fall-Beschleunigung eines Systems in
einem gegebenen Schwerefelde ist von der Natur des fallenden Systems (speziell also auch von sei-
nem Energie-Inhalte) unabhängig.” (Einstein 1992, 64, 65)

15 For a reconstruction of Einstein’s failed attempt to incorporate gravitation within the relativity theory
of 1905, see “Classical Physics in Disarray …” sec. 2.9 (in vol. 1 of this series), see also “Einstein,
Nordström, and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation” (in this vol-
ume). For Einstein’s later recollections, see (Einstein 1992, 58–63).

16 Galileo’s name is usually (but incorrectly) associated with the introduction of the principle of inertia,
while the principle which is named after him here can indeed be found in his work; for historical dis-
cussion, see (Damerow et al. 2004, chap. 3).



 

T

 

HE

 

 T

 

HIRD

 

 W

 

AY

 

 

 

TO

 

 G

 

ENERAL

 

 R

 

ELATIVITY

 

27

namic worldview, were all the more willing to give up the Galileo’s principle as they
did not feel obliged to consider the implications of classical mechanics as founda-
tional for physics, unless they perceived an unavoidable conflict with experimental
evidence. Einstein, however, somewhat prematurely gave up this line of research. In
the years 1912 to 1914, Nordström, with the help of contributions from von Laue and
Einstein himself, attempted to formulate a consistent special relativistic field theory
of gravitation and eventually succeeded to some extent in including the equality of
gravitational and inertial mass.

 

18

 

 This theory even triggered insights—e.g., that
clocks and rods are affected by the gravitational field—upon which its further devel-
opment in the direction of general relativity could have been based. Hence, it consti-
tuted at least the beginning of an independent road towards a theory similar to general
relativity, “the route of field theory.”

 

2.3 Mach’s Critique of Mechanics and the Three Routes to General Relativity

 

From the conflict between classical mechanics and the special theory of relativity,
which Einstein perceived in 1907, he drew a conclusion that was diametrically
opposed to that of the followers of an electromagnetic worldview. For him the equal-
ity of inertial and gravitational mass was not just an empirically confirmed but other-
wise marginal result of classical mechanics; he held onto it as a principle upon which
a new theory of gravitation was to be based. He was therefore ready to accept that this
theory would no longer fit into the framework of special relativity.
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 Hence Einstein’s

 

17 See (Mie 1913, 50). Similar views are also found in other authors pursuing a special relativistic field
theory of gravitation, see e.g. (Nordström 1912, 1129): “From a letter from Herr Prof. Dr. A. Einstein
I learn that earlier he had already concerned himself with the possibility I used above for treating
gravitational phenomena in a simple way. However, he became convinced that the consequences of
such a theory cannot correspond with reality. In a simple example he shows that, according to this the-
ory, a rotating system in a gravitational field will acquire a smaller acceleration than a non-rotating
system. I do not find this result dubious in itself, for the difference is too small to yield a contradiction
with experience.” (“Aus einer brieflichen Mitteilung von Herrn Prof. Dr. A. Einstein erfahre ich, daß
er sich bereits früher mit der von mir oben benutzten Möglichkeit befaßt hat, die Gravitationserschei-
nungen in einfacher Weise zu behandeln, daß er aber zu der Überzeugung gekommen ist, daß die
Konsequenzen einer solchen Theorie der Wirklichkeit nicht entsprechen können. Er zeigt an einem
einfachen Beispiel, daß nach dieser Theorie ein rotierendes System im Schwerkraftfelde eine kleinere
Beschleunigung erhalten wird als ein nichtrotierendes. Diese Folgerung finde ich an sich nicht
bedenklich, da der Unterschied zu klein ist, um einen Widerspruch mit der Erfahrung zu geben.”)

18 For Nordström’s work, see the section “A Field Theory of Gravitation in the Framework of Special
Relativity,” in particular “Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant
Theories of Gravitation” (in this volume).

19 Einstein remarked with regard to the violation of Galileo’s principle in Abraham’s and Mie’s theories
of gravitation (Einstein 1914, 343): “Due to their smallness, these effects are certainly not accessible
to experiments. But it seems to me that there is much to be said for taking the connection between
inertial and gravitational mass to be warranted 

 

in principle

 

, regardless of what forms of energy are
taken into account.” (“Diese Wirkungen wären zwar wegen ihrer Kleinheit dem Experiment nicht
zugänglich. Aber es scheint mir viel dafür zu sprechen, dass der Zusammenhang zwischen der trägen
und schweren Masse 

 

prinzipiell

 

 gewahrt ist, abgesehen von der Art der auftretenden Energieformen.”)
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further considerations did not lead him away from mechanics, but rather brought him
into contact with its foundational questions, in particular with the role of inertial sys-
tems in classical mechanics.

Mach’s philosophical critique of the foundations of classical mechanics suggested
to Einstein that the problem of a new theory of gravitation had to be resolved in con-
nection with a generalization of the relativity principle of classical mechanics and spe-
cial relativity. Quite apart from the specific problem of gravitation, some of Mach’s
contemporary readers, as well as researchers who had independently arrived at similar
views, had drawn the conclusion that one should look for a new, generally relativistic
formulation of mechanics.

 

20

 

 Their conceptual and technical resources were mostly
confined to those of classical mechanics, and their chances of making contact with the
more advanced results of physics at the turn of the century, which to a large extent
were based on field theory (in particular, classical electrodynamics), were, at least at
that time, slender. Nevertheless, the line of research that extends from the work of
these early followers of Mach (discussed in more detail in the next section) to the
recent work of Julian Barbour and Bruno Bertotti, Fred Hoyle and Jayant Narlikar,
André Assis and others demonstrates that the project of formulating a generally rela-
tivistic theory of mechanics, including a treatment of gravitation, could be as success-
fully pursued as the project of a purely field theoretic approach to the problem of
gravitation, as represented in particular by the work of Nordström.

 

21

 

 In the following,
this approach will be called “the mechanistic generalization of the relativity principle.”

In view of this historical context, the heuristics that guided Einstein’s formulation
of the general theory of relativity can now be identified as a “third way,” a peculiar
mixture of field theoretical and mechanical elements. This affirmation suggests sev-
eral questions, which are addressed in the following: What are the advantages and the
disadvantages of the different strategies? What exactly are the contributions of the
field theoretical and of the mechanical tradition to Einstein’s heuristic strategy? What
is the relation between the conceptual structures guiding Einstein’s research and
those that were newly established by it? As the development of the general theory of
relativity was apparently not uniquely determined by the intrinsic nature of the prob-
lem to be solved, what then were the external factors that shaped Einstein’s perspec-
tive and what role did philosophical positions play among them?

 

20 See, for example, the source texts in the first part of this volume “The Gravitational Force between
Mechanics and Electrodynamics.” For a survey of the interpretation of Mach’s critique by contempo-
rary readers, see also (Norton 1995).

21 For historical overviews of attempts to incorporate Mach’s critique in physical theories, see (Assis
1995; Barbour 1993, Barbour and Pfister 1995; Goenner 1970, 1981).
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3. ROOTS OF GENERAL RELATIVITY IN CLASSICAL PHYSICS

 

3.1 Resources and Stumbling Blocks Presented by the Tradition of Field Theory

 

The conceptual roots of general relativity in the tradition of field theory are more
familiar than those in the tradition of mechanics. As mentioned above, not only spe-
cial relativity but even the classical theory of the electromagnetic field made it plausi-
ble to conceive of gravitation as a field propagated with finite velocity. But there were
also other contributions from this tradition which sooner or later found their way into
the development of general relativity. Notably, field theory endows space with physi-
cal properties and thus contributes to blurring the distinction between matter and
space. That this tendency (even taken by itself) could suggest the introduction of non-
Euclidean geometry as a physical property of space is illustrated by the work of
Georg Friedrich Bernhard Riemann and William Clifford in the nineteenth century.

 

22

 

In any case, field theory enriched the limited ontology of classical mechanics by
introducing the field as a reality in its own right, an apparently trivial consequence,
which, as we shall see, took considerable time to achieve a firm standing even within
the development of general relativity. Field theory also suggested the existence of
forces more general than the two-particle interactions usually considered in point
mechanics, as is illustrated, for instance, by the transition from Coulomb forces
between point charges to electrodynamic interactions such as induction; and it
offered a mechanism for unifying separate forces as aspects of one more general
field, as can again be illustrated by the example of electrodynamics conceived of as a
unification of electric and magnetic interactions. It was therefore natural for those
who pursued the program of formulating a field theory of gravitation either on the
basis of, or in analogy to electrodynamics to search for the dynamic aspects of the
gravitational field, considering Newton’s law (in analogy to Coulomb’s) as a descrip-
tion of the field’s static aspects only. But the knowledge of the Newtonian special
case could, and also did serve as a touchstone for any attempt at a more general the-
ory—including Einstein’s general theory of relativity, in whose development the
question of the “Newtonian limit” was to play a crucial role.

 

23

 

 The mature formula-
tion of electrodynamic field theory by H. A. Lorentz also suggested a model for the
essential elements of a field theory of gravitation and for their interplay: a field equa-
tion was needed to describe the effect of sources on the field, and an equation of
motion was needed to describe the motion of bodies in the field.

 

24

 

 Finally, those who
looked for an “electromagnetic” theory of gravitation were also very clear about the

 

22 See (Clifford 1976 [1889]; Riemann 1868). On p. 149 of his paper, Riemann claims that non-Euclid-
ean geometry could be important in physics if the concept of body should turn out not to be indepen-
dent of that of space. He expected this consideration to be of relevance for a future microphysics. 

23 See (Norton 1989b) and “Pathways out of Classical Physics …” (in vol. 1 of this series).
24 For a discussion of the historical continuity between Lorentz’s electron theory and Einstein’s theory

of general relativity, see (McCormmach 1970) and “Pathways out of Classical Physics…” (in vol. 1 of
this series).
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experimental evidence to be accounted for by the new theory: the explanation of the
perihelion shift of Mercury was in fact mentioned as an empirical check in almost all
discussions of electromagnetic theories of gravitation, which, in this sense, can be
said to have left a very tangible patrimony to general relativity in pointing to one of
its classical tests.

 

25

 

But as much as the tradition of field theory was able to contribute to the concep-
tual development of general relativity, it did not determine a heuristic strategy that
clearly outlined the way to a satisfactory solution of the problem of gravitation. What
is more, in hindsight, from the perspective of the completed theory of general relativ-
ity, it becomes evident that the tradition of classical field theory also included con-
ceptual components that must be considered as stumbling blocks on the way to such a
solution. In first turning to the problem of the heuristic ambiguity of field theory, as
mentioned above, there were indeed several different lines to follow in formulating a
field theory of gravitation within this tradition.
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 One of the factors accounting for
this proliferation of alternatives lay in the uncertainty as to which principles of
mechanics were to be maintained in a field theory of gravitation, given the necessity
of revising at least some of them. The electromagnetic approach to the problem of
gravitation tended, in any case, to ignore the foundational problems of mechanics, as
long as this seemed experimentally acceptable. An early example of this tendency,
characteristic of the electromagnetic world picture, is provided by the stepmotherly
way in which, before the advent of special relativity, the principle of relativity and the
principle of the equality of action and reaction was treated in Lorentz’s electron the-
ory. The same attitude characterized his later attempts to integrate gravitation into the
conceptual framework of field theory. For instance, in a 1910 review paper (Lorentz
1910) Lorentz seemed unperturbed by the fact that the relativistic law of gravitation
he proposed violated the principle of the equality of action and reaction. This diffi-
culty is just one representative example of the problems associated with the task of
reconstructing the shared knowledge accumulated in mechanics on the basis of
purely field theoretic foundations. In addition to these problems, there was little
experimental guidance in how to proceed in building the new theory of gravitation—
apart from the speculations about the perihelion shift of Mercury mentioned above.
To use a metaphor employed by Einstein (1913, 1250): the task of constructing a field
theory of gravitation was similar to finding Maxwell’s equations exclusively on the
basis of Coulomb’s law of electrostatic forces, that is, without any empirical knowl-
edge of non-static gravitational phenomena.

Let us now address the problem of the conceptual stumbling blocks. Their evalua-
tion naturally depends on the point of view one takes. In view of the conceptual
framework of the finished general theory of relativity, classical field theory must have
been misleading in several respects. One obvious aspect is the linearity of the classi-

 

25 See (Zenneck 1903). For a contemporary survey of the problem of gravitation and the role of the peri-
helion shift, see (Roseveare 1982).

26 See note 8 above.
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cal theory in contrast to the non-linearity of the field equations of general relativity. A
related aspect is the independence of the field equation and the equation of motion
from each other in the classical theory, as opposed to their interdependence in general
relativity. Closely associated with these more structural aspects—and perhaps even
more important—are the conceptual changes with respect to classical physics
brought about by general relativity. These changes include the introduction of new
concepts of space and time, the new role of the gravitational field acting as its own
source, and the changes of the concepts of energy and force manifested, for instance,
by the absence of a gravitational stress-energy tensor in general relativity, in contrast
to the existence of such a stress-energy tensor for the electromagnetic field in classi-
cal field theory. These changes could not have been anticipated on the basis of classi-
cal field theory; furthermore, in the search for a new theory of gravitation, classical
field theory necessarily engendered expectations which were flatly contradicted by
the outcome of that search.

 

3.2 The Foundational Critique of Mechanics and the Mechanistic Generalization
of the Relativity Principle

 

The heuristic contributions of classical physics to the development of general relativ-
ity as well as the conceptual stumbling blocks it presented for this development obvi-
ously require a more detailed treatment and should be discussed in particular in the
context of the concrete theories which are subsumed here under the rather general
heading of “classical physics.” For the purposes of the present contribution, an exam-
ination of this kind will be attempted only for the tradition of mechanics, for which
one particular strand was of primary influence on the development of general relativ-
ity—both directly and as an alternative to Einstein’s theory. This strand was repre-
sented by a reevaluation of mechanics, which was the outcome of a debate on its
foundations in the second half of the nineteenth century. In this period some basic
concepts of classical mechanics had ceased to be as self-evident as they had once
appeared in the Newtonian tradition.

A central example is Newton’s claim that even a single body in an otherwise
empty universe possesses inertia, a claim which—in spite of its metaphysical charac-
ter—played a crucial role in his argument in favor of the existence of absolute
space.
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 This argument involves a bucket filled with water, which is considered first
in a state in which the bucket rotates but the water is at rest and its surface flat, and
second in a state in which both the bucket and the water rotate, producing a curved
surface. According to Newton’s interpretation of this experiment, the second case
represents an absolute rotation, whereas the first case represents only a relative
motion between water and bucket that does not cause physical effects. The conclu-
sion that this argument provides evidence for the existence of absolute space is, how-
ever, only legitimate if other physical causes of the curvature of the water in the

 

27 This has been shown in detail in (Freudenthal 1986), on which also the following remarks are based.
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second case can be excluded; in other words, the argument is convincing only under
the physically unrealizable assumption that a rotational motion of the water in an oth-
erwise empty universe would also give rise to the same effect. This assumption in
turn is based on the metaphysical premise that a system is composed of parts which
carry their essential properties (such as inertia in the case of a material system) even
when they exist in isolation in empty space. It was also on this premise that Newton
considered gravitation—in contrast to inertia—to be a universal but not an essential
property of a material body.
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In the middle of the nineteenth century, a motivation for revisiting such metaphys-
ical foundations of mechanics was provided by the establishment of non-mechanical
theories such as electrodynamics and thermodynamics as mature subdisciplines of
classical physics.
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 As a consequence of this development, mechanics not only lost
its privileged status as the only conceivable candidate providing a conceptual basis
for the entire building of physics, a status which was often associated with a claim to

 

a priori

 

 truth, but also the conceptual foundation of mechanics itself could now be
critically reexamined, including, for instance, the concept of absolute space and its
justification by Newton. This revision of the status of the fundamental concepts of
mechanics alone helped to prepare the conditions for a change of these concepts,
should such a change become necessary in view of the growing body of knowledge.
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In any case, the critical reevaluation of the conceptual presuppositions of mechan-
ics led to a proliferation of alternative approaches to the problem of gravitation, much
as with the proliferation of alternative approaches within the framework of field the-
ory. It was possible to elaborate more clearly the presuppositions upon which classi-
cal Newtonian mechanics was built, to revise the theory by attempting to eliminate
those assumptions, which now appeared to be no longer acceptable (without any
other substantial changes), or to formulate a new theory altogether. Carl Neumann’s
paper “On the Principles of the Galilean-Newtonian Theory” of 1869 provides an
example of the first alternative: in order to replace Newton’s concept of absolute
space, he introduced the “body alpha” as the material embodiment of an absolute ref-
erence frame, comparing it with the luminiferous aether of electrodynamics as a like-

 

28 See the explanation of 

 

Regula

 

 III in (Newton 1972 [1726], 389).
29 Compare also the sequence in which Einstein, in his 

 

Autobiographical Notes

 

 (Einstein 1992), treats
the 

 

external

 

 criticism of mechanics (the critique of mechanics as the basis of physics, pp. 22–23) and
the “internal,” conceptual criticism (pp. 24–31).

30 Compare e.g. the remark by Carl Neumann in 1869 (Neumann 1993 [1870], 367): “Finally, just as the
present theory of electrical phenomena may perhaps one day be replaced by 

 

another

 

 theory, and the
notion of an electric fluid could be removed, it is also the case that it is not an absolute impossibility
that the Galilean-Newtonian theory will be supplanted one day by another theory, by some other pic-
ture, and the body alpha be made superfluous.” (“Ebenso endlich, wie die gegenwärtige Theorie der
elektrischen Erscheinungen vielleicht dereinst durch eine 

 

andere

 

 Theorie ersetzt, und die Vorstellung
des elektrischen Fluidums beseitigt werden könnte; ebenso ist es wohl auch kein Ding der absoluten
Unmöglichkeit, dass die Galilei-Newton’sche Theorie dereinst durch eine andere Theorie, durch ein
anderes Bild verdrängt, und jener Körper Alpha überflüssig gemacht werde.”) For the “body alpha”
see below.
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wise hypothetical, yet legitimate, conceptual element of the theory.
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 Nevertheless,
by this reformulation Neumann did not intend to change the substance of Newton’s
theory, in particular not with respect to the question of relative and absolute motion,
as the following passage illustrates:

 

This seems to be the right place for an observation which forces itself upon us and from
which it clearly follows how unbearable are the contradictions that arise when motion is
conceived as something relative rather than something absolute.

Let us assume that among the stars there is one which is composed of fluid matter and is
somewhat similar to our terrestrial globe and that it is rotating around an axis that passes
through its center. As a result of such a motion, and due to the resulting centrifugal
forces, this star would take on the shape of a flattened ellipsoid. We now ask: 

 

What shape
will this star assume if all remaining heavenly bodies are suddenly annihilated (turned
into nothing)?

 

These centrifugal forces are dependent only on the state of the star itself; they are totally
independent of the remaining heavenly bodies. Consequently, this is our answer: These
centrifugal forces and the spherical ellipsoidal form dependent on them will persist
regardless of whether the remaining heavenly bodies continue to exist or suddenly disap-
pear.

 

32

 

The critical examinations of the foundations of classical mechanics in (Lange 1886)
and (Mach 1960) correspond to the second alternative mentioned above, since both
authors were guided by the intention to revise mechanics by eliminating problematic
assumptions. They may be considered as attempts to provide a conceptual reinterpre-
tation of the existing formalism of classical mechanics (possibly even including

 

31 “But a further question arises, whether this body exists—really, concretely, as the earth, the sun, and
the remaining heavenly bodies do. We may answer this question, as I see it, by saying that its exist-
ence can be stated with the same right, with the same certainty, as the existence of the luminiferous
ether or the electrical fluid.” (“Aber es erhebt sich die weitere Frage, ob jener Körper denn eine wirk-
liche, concrete Existenz besitze gleich der Erde, der Sonne und den übrigen Himmelskörpern. Wir
könnten, wie mir scheint, hierauf antworten, dass seine Existenz mit demselben Recht, mit derselben
Sicherheit behauptet werden kann wie etwa die Existenz des Licht-Aethers oder die des elektrischen
Fluidums.”) (Neumann 1993 [1870], 365).

32 “Es mag hier eine Betrachtung ihre Stelle finden, welche sich leicht aufdrängt, und aus welcher deut-
lich hervorgeht, wie unerträglich die Widersprüche sind, welche sich einstellen, sobald man die
Bewegung nicht als etwas Absolutes, sondern nur als etwas Relatives auffasst.
Nehmen wir an, dass unter den Sternen sich einer befinde, der aus 

 

flüssiger

 

 Materie besteht, und der—
ebenso etwa wie unsere Erdkugel—in rotirender Bewegung begriffen ist um eine durch seinen Mittel-
punkt gehende Axe. In Folge einer solchen Bewegung, infolge der durch sie entstehenden Centrifugal
kräfte wird alsdann jener Stern die Form eines abgeplateten Ellipsoids besitzen. 

 

Welche Form wird

 

—
fragen wir nun—

 

der Stern annehmen, falls plötzlich alle übrigen Himmelskörper vernichtet (in Nichts
verwandelt) würden?

 

Jene Centrifugalkräfte hängen nur ab von dem Zustande des Sternes selber; sie sind völlig unabhängig
von den übrigen Himmelskörpern. Folglich werden—so lautet unsere Antwort—jene Centrifugal-
kräfte und die durch sie bedingte ellipsoidische Gestalt ungeändert 

 

fortbestehen

 

, völlig gleichgültig
ob die übrigen Himmelskörper fortexistiren oder plötzlich verschwinden.”) (Neumann 1993 [1870],
366, n. 8)
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minor adjustments of this formalism), with no ambition to formulate a new theory or
to cover new empirical ground. Lange’s approach is today the less well known, pre-
cisely because his contribution was the introduction of the concept of an inertial sys-
tem, a contribution that was successful in becoming part of the generally accepted
conceptual interpretation of classical mechanics. Mach’s widely discussed critique of
the foundations of classical mechanics, on the other hand, is characterized by vacilla-
tion between more or less successful attempts to reformulate Newtonian mechanics
on a clearer and leaner conceptual basis and suggestions to create a new theory. It
seems plausible to assume that this ambiguity was actually not in conflict with
Mach’s intentions, as the principal aim of his reformulation of elements of classical
mechanics was to stress and clarify the dependence of this theory on experience, and
hence to open up the possibility of revising the theory if required by new empirical
evidence.33

One of the principal targets of Mach’s critique was Newton’s interpretation of the
bucket experiment as evidence in favor of the existence of absolute space.34 To New-
ton’s argument, according to which the curvature of the surface of the rotating water
is a physical effect of the rotation with respect to absolute space, he objected that in
our actual experience this rotation can be considered as a relative rotation, namely
with respect to the fixed stars: 

Try to fix Newton’s bucket and rotate the heaven of fixed stars and then prove the
absence of centrifugal forces. (Mach 1960, 279)

Thus, Mach questioned the fundamental metaphysical presupposition of Newton’s
conclusion that physical effects of absolute space would also occur if the rotation
took place in an otherwise empty universe, i.e. the presupposition that all elements of
a system retain their essential properties independently of their relation to the com-
posite system: 

Nature does not begin with elements, as we are obliged to begin with them. (Mach 1960,
287–288)

On the grounds of his different philosophical view, Mach demanded that the entire
corpus of mechanics should be reformulated in terms of the motion of material bod-
ies relative to each other. For instance, he introduced a new definition of the concept
of mass based on the mutual accelerations of bodies with respect to each other. He
also suggested that inertial frames of reference should be determined on the basis of
the observable relative motions of bodies in the universe, e.g. by determining a frame
of reference in which the average acceleration of a mass with respect to other—ide-

33 This seems to be the most natural explanation for Mach’s rather indifferent reaction to the controversy
about the purpose of his critique as observed in (Norton 1995). Compare Mach’s remarks on his
revised principle of inertia: “It is impossible to say whether the new expression would still represent
the true condition of things if the stars were to perform rapid movements among one another. The gen-
eral experience cannot be constructed from the particular case given us. We must, on the contrary,
wait until such an experience presents itself.” (Mach 1960, 289)

34 See (Mach 1960, chap. 2, sec. 6), in particular, pp. 279–284.
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ally all—bodies in the universe vanishes. On the one hand, Mach’s proposals for a
reformulation of classical mechanics clearly presuppose the validity of classical
mechanics: both his new definition of mass by mutual accelerations and his idea of
introducing increasingly improved inertial frames of reference by taking into account
more and more bodies, over whose relative motion an average can be taken, assume
that the concept of an inertial frame makes sense exactly as understood in classical
mechanics. In other words, his proposal presupposes that there is indeed such a privi-
leged class of reference frames and that they can be realized physically with sufficient
approximation.35 However, Mach’s analysis also indicated the limits of the validity
of classical mechanics, in particular by explicitly relating the concept of inertial
frame to the motion of cosmic masses. Thus, without changing the substance of clas-
sical mechanics, he succeeded nevertheless in making clear—by proposing an alter-
native formulation based on different philosophical presuppositions—that the range
of application of classical mechanics may be more limited than hitherto assumed, and
that the theory might have to be changed eventually, for instance, in light of growing
astronomical knowledge. Only on the basis of such an increased knowledge could it
then be decided whether Mach’s suggestion to reformulate classical mechanics in
terms of relative motions would actually amount to proposing a new theory, substan-
tially different from Newton’s.

Attempts to formulate such a new theory, even in the absence of new empirical evi-
dence, form a third alternative reaction to the critical reevaluation of the foundations
of mechanics in the second half of the nineteenth century. Whether these attempts
were stimulated by Mach or not, their common starting point was the rejection of
Newton’s philosophical presupposition that the properties of the elements of a physi-
cal system could be ascribed to each one of them even if they existed alone in empty
space. It was this presupposition that enabled Newton to infer from the nature of the
inertial effects present in the bucket experiment to that of the inertial behavior of a sin-
gle particle in empty space, and from there, to the physical reality of empty space.
Only by introducing an entity such as “absolute space” did Newton succeed in distin-
guishing between the kinematical and dynamical aspects of motion. Hence, if now this
presupposition had become questionable, so had the entire relation between dynamics
and kinematics. In particular, the distinction between force-free motions and those
explained by the action of forces had to be given a new grounding in terms of relative
motions between ponderable bodies. While Mach had essentially presupposed the
validity of classical mechanics and attempted to reconstruct its achievements on this
new basis, it was also conceivable to start from first principles and reformulate dynam-
ics from the beginning in terms of relative motions between ponderable bodies, possi-
bly even without using the concept of an inertial frame in the sense of classical
mechanics. Attempts in this direction of a mechanistic generalization of the relativity
principle were first undertaken around the turn of the century by Benedict and Imman-

35 See the penetrating analysis in (Wahsner and von Borzeszkowski 1992, 324–328).
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uel Friedlaender, August Föppl, and Wenzel Hofmann, then decades later by Reissner
and Schrödinger, and in our days by Barbour, Bertotti and others.36

Physicists of at least the first generation in this genealogy were confronted with
the difficulty of taking up once again many of the foundational questions of mechan-
ics discussed centuries earlier by Galileo Galilei, René Descartes, Isaac Newton,
Gottfried Wilhelm Leibniz, and Christiaan Huyghens, and they attempted to recreate
mechanics essentially from scratch. Indeed, apart from the foundational role given to
the concept of relative motion even in dynamics and the known laws of classical
mechanics, this approach of a mechanistic generalization of the relativity principle
had few heuristic clues to go on. One of these clues was directly related to the criti-
cism of Newton’s interpretation of the bucket experiment: if it is indeed true that the
curvature of the rotating water in the bucket is due to an interaction between the water
and the distant cosmic masses, then a similar but smaller effect should be observable
if large but still manipulable terrestrial masses are brought into rotation with respect
to a test body. Experiments along these lines were suggested by several of these
researchers and conducted by, among others, the Friedlaender brothers and Föppl—
all with a negative result.37 Nevertheless, the theoretical efforts continued—even
though they remained marginal—and eventually found additional resources and
inspiration in the theory of general relativity formulated in 1915 by Einstein.

3.3 Resources and Stumbling Blocks Presented by the Tradition of Mechanics

After this discussion of the historical roots of the mechanistic generalization of the
relativity principle, we can now summarize some of the principal heuristic contribu-
tions and obstacles which the tradition of mechanics presented to the development of
general relativity, as in the beginning of this section for field theory. First and fore-
most it was the idea of abolishing the privileged status of the inertial frame, which
emerged from the foundational critique of mechanics in the nineteenth century, that
proved to be an essential component of both Einstein’s early research concerning
generalized relativity, and of the considerations surrounding the competing traditions
to provide a mechanistic generalization of the relativity principle. In fact, if separable
material bodies are to be the ultimate basis of reality, as they are in the approach of a
mechanistic generalization of the relativity principle, each material body should be
equally well suited to defining a reference frame, and therefore should enter into the
laws of physics on the same level with all other bodies. The idea of abolishing the
privileged status of inertial frames was associated with the interpretation of the so-
called inertial forces—such as those acting on the rotating water in Newton’s
bucket—as aspects of a new, yet to be discovered, velocity-dependent physical inter-
action between masses in relative motion with respect to each other. Under the desig-

36 See, e.g., (Friedlaender and Friedlaender 1896; Föppl 1905a, 1905b; Hofmann 1904; Reissner 1914,
1915; Schrödinger 1925, Barbour and Bertotti 1977).

37 See (Friedlaender and Friedlaender 1896; Föppl 1905a).
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nation of “dragging effects,” such interactions became an important theme of the later
general theory of relativity; there they can be understood as a new aspect of the grav-
itational interaction between masses, which was unknown in Newtonian mechanics.
Finally, Mach’s definition of inertial mass in terms of the accelerations that two bod-
ies induce in each other brought the concept of inertial mass even closer to the con-
cept of gravitational mass than their quantitative identity in classical mechanics had
so far. It follows from this definition that, contrary to Newtonian mechanics, inertial
mass, in contrast to gravitational mass, can no longer be considered as a property that
bodies possess independently of their interaction with each other. The search for
effects of the presence of other bodies on the inertial mass of a test body became a
component of the heuristics guiding Einstein’s research on a generalized theory of
relativity.

While these were the specific and crucial contributions of the foundational cri-
tique of mechanics, other aspects of mechanics in the nineteenth century also con-
tained important heuristic hints and conceptual resources for the development of
general relativity; these resources, however, cannot be dealt with here systematically.
In particular, the introduction of laws of motion expressed in generalized coordinates,
the formulation of mechanics for non-Euclidean geometry, and the attempts at an
elimination of the concept of force all represent resources which could be, and in part
were, exploited in the development of general relativity.38 The study of motion con-
strained to curved surfaces in classical mechanics provided, for instance, the blue-
prints for the formulation of the geodesic law of motion as a generalization of the
principle of inertia in general relativity: in both cases the essential assertion is that
motion not subject to external forces follows a geodesic line.

But unlike the foundational critique of mechanics, these other aspects of the devel-
opment of classical mechanics did not themselves constitute another independent
research program for formulating a substantially new mechanics that could lead to a
theory comparable to general relativity. Rather their heuristic contribution to formu-
lating such a new theory became relevant only in the context of Einstein’s later
attempt to solve the problem of gravitation, and only on the basis of results that lay
outside their scope. For instance, Hertz’s mechanics (Hertz 1894) is a reformulation
of classical mechanics in which the elimination of the concept of force requires the
introduction of hypothetical invisible masses acting as constraints for the visible
motions. Not only does its formalism and, in particular, its generalized geodesic law
of motion bear a number of similarities with the formalism of general relativity, but
also the general approach of replacing the concept of force by geometrical concepts is
common to both theories.39 Although, even in the context of classical mechanics, the
concept of force can be eliminated in the specific case of the gravitational interaction
without introducing Hertz’s speculative entities—merely on the basis of Galileo’s
principle, that is, by realizing that all bodies move with equal speeds in a gravitational

38 For a historical account of these developments, see (Lützen 1993).
39 The geometrical interpretation of general relativity is, however, a largely post-1915 development.
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field—a systematic exploitation of formal results such as Hertz’s required not only a
restriction of mechanics to the special case of gravitational interaction, but also the
introduction of Minkowski’s reformulation of special relativity uniting the time with
the space-coordinates into one spacetime continuum. Only under these presupposi-
tions did the formal achievements of nineteenth-century mechanics become a resource
for the insight that force-free motion in a gravitational field can also be understood as
geodesic motion in a non-Euclidean spacetime continuum.

Considered in hindsight, however, these contributions to the development of gen-
eral relativity that were rooted in the tradition of classical mechanics also presented
conceptual obstacles to its development. First of all, as in the case of field theory dis-
cussed above, there was much ambiguity in the research program of a mechanistic
generalization of the relativity principle. It is impossible to assess the direction that
this program would have taken by itself without the guidance of Einstein’s achieve-
ment, since the general theory of relativity was formulated in 1915—long before an
elaborate and more or less successful realization of this program emerged. Around
1915 it was far less advanced than the attempts to solve the problem of gravitation in
the context of field theory. The papers proposing a mechanistic generalization of the
relativity principle are mostly in the form of programmatic treatises. They contain
few technical details, and show, even by their style, that they deal with foundational
problems of mechanics as commonly discussed by Galileo and his contemporaries in
early modern times. In particular, in exploring the postulated velocity-dependent
interaction, the mechanistic approach had few tools comparable to the powerful
methods developed in the field-theoretic context: of particular interest were the tools
for coping with the interaction of electrically charged masses in motion with respect
to each other. Also on the experimental level, the mechanistic generalization of the
relativity principle failed to identify evidence in favor of this new interaction between
moving masses. It is therefore not surprising that the followers of a mechanistic gen-
eralization of the relativity principle were few and played only a marginal role in con-
temporary discussions. In addition to its weaknesses as an independent program of
research, the idea of a mechanistic generalization of the relativity principle included
aspects that, if judged from the perspective of the accomplished theory of general rel-
ativity, were both stimulating and misleading: while the ideal of a theory in which all
physical aspects of space are derived from the relations between separable material
bodies was an essential motivation for the search for a general theory of relativity, it
turned out to be incompatible with its outcome since in general relativity the gravita-
tional field has an existence in its own right, which cannot be reduced to the effects of
matter in motion.

3.4 The Example of Benedict and Immanuel Friedlaender

The opportunities and difficulties presented by a mechanistic generalization of the
relativity principle are best illustrated by the contribution of the Friedlaender broth-
ers. Their philosophical starting point is the critique of the concept of motion of a sin-
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gle body in an otherwise empty space, on which, as we have seen, Newton’s
argument for absolute space was founded: 

Now think (if you can) of a progressive motion of a single body in a universal space that
is otherwise imagined to be totally empty; how can the motion be detected, i.e. distin-
guished from rest? By nothing we should think; indeed the whole idea of such an abso-
lute, progressive motion is meaningless.40

Like other critics of Newtonian mechanics, Immanuel and Benedict Friedlaender
question the meaning of inertial frames and postulate a new velocity-dependent inter-
action between moving masses. But unlike other representatives of a mechanistic
generalization of the relativity principle, they explicitly link this new interaction to
gravitation: 

If this phenomenon was verifiable, this would be the incentive for a reformulation of
mechanics and at the same time a further insight would have been gained into the nature
of gravity, since these phenomena must be due to the actions at a distance of masses, and
here in particular to the dependence of these actions at a distance on relative rotations.41

How far they went in anticipating the relation between gravitation and inertia as
understood in general relativity becomes clear from speculations presented towards
the end of their paper: 

It is also apparent that according to our conception the motions of the bodies of the solar
system could be seen as pure inertial motions, whereas according to the usual view the
inertial motion, or rather its permanent gravitationally modified tendency, would strive to
produce a rectilinear-tangential motion.42 

And, in another suggestive passage: 

But it seems to me that the correct formulation of the law of inertia will be found only
when relative inertia as an effect of masses on each other, and gravity, which is after all
also an effect of masses on each other, are reduced to a unified law.43

At a first glance, the insight formulated by the Friedlaenders into the relation between
velocity-dependent inertial forces and gravitation seems to contradict the claim that a

40 “Nun denke man sich aber, (wenn man kann,) eine fortschreitende Bewegung eines einzigen Körpers
in dem als sonst völlig leer gedachten Weltenraume; woran wäre die Bewegung bemerklich, d.h. von
Ruhe unterscheidbar? An Nichts sollten wir meine; ja, die ganze Vorstellung einer solchen absoluten,
fortschreitenden Bewegung ist sinnleer.” The first part of their jointly published booklet, pp. 5–17, is
by Immanuel Friedlaender and the second part, pp. 18–35, by Benedict Friedlaender. (Friedlaender
and Friedlaender 1896, 20)

41 “War diese Erscheinung nachzuweisen, so war der Anstoß zu einer Umformung der Mechanik gege-
ben und zugleich ein weiterer Ausblick in das Wesen der Gravitation gewonnen, da es sich ja dabei
nur um Fernwirkungen von Massen und zwar hier der Abhängigkeit dieser Fernwirkungen von relati-
ven Rotationen handeln kann.” (Friedlaender and Friedlaender 1896, 15)

42 “Es ist auch leicht ersichtlich, daß nach unsrer Auffassung die Bewegungen der Körper des Sonnensy-
stems als reine Beharrungsbewegungen angesehen werden könnten; während nach der üblichen
Anschauung die Beharrungsbewegung, oder vielmehr deren fortwährend durch die Gravitation abge-
änderte Tendenz eine geradlinig-tangentiale Bewegung hervorzurufen bestrebt wäre.” (Friedlaender
and Friedlaender 1896, 33)
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mechanistic generalization of the relativity principle did not possess tools compara-
ble to those used in the electromagnetic tradition to treat the interaction of charged
masses in motion with respect to one another. However, a footnote to the same pas-
sage makes it clear that the source of this insight into a possible relation between
gravity and inertia actually is the combination of the introduction of velocity-depen-
dent forces by the mechanistic generalization of the relativity principle and of the
treatment of velocity-dependent forces in the electromagnetic tradition: 

For this it would be very desirable to resolve the question whether Weber’s law applies to
gravity, as well as the question concerning gravity’s speed of propagation.44

The reference is to Wilhelm Weber’s fundamental law for the force between electric
point charges, which is a generalization of Coulomb’s law for the electrostatic force,
taking into account also the motion of the charges. By including velocity-dependent
terms, Weber’s law represents an attempt to cover electrodynamic interactions too,
while maintaining the form of an action-at-a-distance law, that is, of a direct interac-
tion between the point charges without an intervening medium. In other words, the
Friedlaenders established a connection between their foundational critique of
mechanics and the contemporary discussions about an electromagnetic theory of
gravitation.45

By the time their paper was published, however, action-at-a-distance laws such as
Weber’s had been largely superseded by the field-theoretic approach to electromag-
netism taken by Maxwell, Hertz, and others, who assumed a propagation of the elec-
tromagnetic force by an intervening medium, the aether.46 The Friedlaenders
themselves seem to have entertained considerations along these lines, without, how-
ever, drawing any technical consequences from them:

No mind thinking scientifically could ever have permanently and seriously believed in
unmediated action at a distance; the apparent action at a distance can be nothing other
than the result of the action of forces that are transmitted in some way by the medium
being situated between the two gravitating bodies.47

43 “Mir will aber scheinen, daß die richtige Fassung des Gesetzes der Trägheit erst dann gefunden ist,
wenn die relative Trägheit als eine Wirkung von Massen auf einander und die Gravitation, die ja auch
eine Wirkung von Massen auf einander ist, auf ein einheitliches Gesetz zurückgeführt sein werden.”
(Friedlaender and Friedlaender 1896, 17)

44 “Es wäre dazu sehr zu wünschen, daß die Frage, ob das Webersche Gesetz auf die Gravitation anzu-
wenden ist, sowie die nach der Fortpflanzungsgeschwindigkeit der Schwerkraft gelöst würden.”
(Friedlaender and Friedlaender 1896, 17)

45 Hints to such a connection are also found in other authors, even if they are less explicit; see, e.g.,
(Föppl 1905b, 386–394; Mach 1960, 296), with reference to the Friedlaender brothers and Föppl. For
a discussion of Mach’s position, see (Wolters 1987), in particular, pp. 37–70.

46 For the role of Weber’s law in the later tradition of generally relativistic mechanics, see (Assis 1989,
1995; see also Barbour 1992, 145).

47 “An die unvermittelte Fernwirkung kann kein naturwissenschaftlich denkender Kopf jemals andau-
ernd und ernstlich geglaubt haben; die scheinbare Fernkraft kann nichts anderes sein, als das Resultat
von Kraftwirkungen, die durch das zwischen beiden gravitirenden Körpern befindliche Medium in
irgend einer Art vermittelt werden.” (Friedlaender and Friedlaender 1896, 19)
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But whether in the field-theoretic or in the action-at-a-distance form, it was the tools
of the electromagnetic tradition of classical physics which allowed the Friedlaenders
to establish the link between the new understanding of inertia and gravitation. It is
therefore not surprising that they treat the dragging effects of masses in relative
motion to each other in analogy with electromagnetic induction: 

... only in order to indicate the extent to which the problem of motion that we have raised
and hypothetically solved here is related to that of the nature of gravity, but at the same
time that comes rather close to the known effects of electric forces, will the following
parallel be pointed out: a body that approaches a second one or moves away from it
would be without influence on the latter as long as the velocity of approach (to be taken
either with a positive or a negative sign) remains unchanged; any change of this velocity
would entail the above-demonstrated [dragging] effect. 

As is well known, the presence of a current in a conductor is not sufficient for the gener-
ation of induction effects, either the magnitude of the current or the distance must vary;
in our case the change of distance, i.e. the motion, would not suffice for the generation of
the attractive or repulsive effects, but rather the velocity itself has to change.48

3.5 The Historical Horizon Before Einstein’s Contribution

In summary, we have identified and discussed two entirely different strategies—both
pursued at the time when Einstein began to work seriously on a relativistic theory of
gravitation—for dealing with important conceptual issues at the foundations of
mechanics and gravitation theory. The field theoretic approach to the problem of
gravitation was, around this time, mainly stimulated by the incompatibility between
Newton’s theory of gravitation and the special theory of relativity, while the starting
point of the mechanistic generalization of the relativity principle was a philosophical
critique of the foundations of Newtonian mechanics based on newly established
branches of classical physics. Their relation can be understood in the context of the
two principal competing worldviews of classical physics around the turn of the cen-
tury, the electromagnetic worldview and the mechanical worldview. In particular,
these worldviews determined the different conceptual resources from which the two
strategies drew rather exclusively, those of field theory and of classical mechanics
respectively. Whereas the mechanistic generalization of the relativity principle

48 “… und nur, um anzudeuten, in wie fern das hier angeregte und hypothetisch gelöste Bewegungspro-
blem mit demjenigen des Wesens der Gravitation zusammenhängt, sich zu gleicher Zeit aber den
bekannten Wirkungsweisen elektrischer Kräfte einigermaßen nähert, sei auf folgende Parallele hinge-
wiesen: Ein Körper, der sich einem zweiten nähert oder von ihm entfernt, würde ohne Einfluß auf die-
sen sein, solange die positiv oder negativ zu nehmende Annäherungsgeschwindigkeit unverändert
bleibt; jede Aenderung der Geschwindigkeit hingegen würde die vorher gezeigte Wirkung ausüben.
Das Vorhandensein eines Stromes in einem Leiter genügt bekanntlich zur Erzeugung von Induktions-
wirkungen nicht, es muß entweder die Stromstärke oder die Entfernung wechseln; in unserem Falle
würde nun zur Erzeugung der anziehenden oder abstoßenden Wirkungen auch die Entfernungsände-
rung, d.h. die Bewegung nicht ausreichen, es muß vielmehr die Geschwindigkeit selbst sich ändern.”
(Friedlaender and Friedlaender 1896, 30)
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remained in the margin of contemporary physics, the field theoretic approach to grav-
itation, at least for a while, played a larger part in contemporary discussions, and both
strategies were pursued in ignorance of one another.

The two strategies encountered problems which, in hindsight, can be recognized
as being closely related to each other. On a general level, the difficulties of the two
strategies were in an inverse relation to each other: those following the field theoretic
approach were confronted with the problem of reconstructing on a new conceptual
basis the shared knowledge accumulated in classical mechanics, e.g. the insight into
the equality of gravitational and inertial mass. The followers of a mechanistic gener-
alization of the relativity principle, on the other hand, had to face the task of keeping
up in their terms with the immense contribution of field theory to the progress of
physics in the nineteenth century, a formidable challenge even for current attempts to
pursue the tradition of the mechanistic generalization of the relativity principle. But
on the specific level of the gravitational and inertial interactions of masses, the prob-
lems faced by the two approaches are better characterized as being complementary to
each other: on the basis of concise theoretical considerations, the electromagnetic
approach to the problem of gravitation required the existence of a velocity-dependent
gravitational interaction in analogy to electromagnetic induction, for which there
was, however, little, if any, experimental evidence; the mechanistic generalization of
the relativity principle, on the other hand, postulated a new velocity-dependent inter-
action between inertial masses in order to explain well-known observations such as
the curvature of the water’s surface in Newton’s bucket experiment, but failed to
develop a theoretical framework for its systematic treatment. Since the two traditions
remained isolated from each other—with the remarkable but inconsequential excep-
tion of the Friedlaender brothers—their complementary strengths were not exploited
before Einstein’s contribution.

4. MACH’S PRINCIPLE:
BETWEEN A MECHANISTIC GENERALIZATION OF THE

RELATIVITY PRINCIPLE AND A FIELD THEORY OF GRAVITATION

4.1 The Emergence of a Link Between Einstein’s Research on Gravitation
and Mach’s Critique of Mechanics in 1907 

The problems of a field theory of gravitation, from which Einstein had started in
1907, pointed in two ways to Mach’s critique of Newton’s mechanics, namely, to his
redefinition of the concept of mass and to his rejection of absolute space as a founda-
tion for the understanding of inertial motion. As discussed in the previous section, the
concept of inertial mass and the concept of absolute space were in fact connected
through Newton’s assumption that the essential properties of the elements of a system
are independent of these elements’ part in the larger (composite) system. The rejec-
tion of this assumption shattered both Newton’s distinction between inertial and grav-
itational mass as essential and non-essential properties of a body respectively, and his
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demonstration of absolute space. Einstein had been familiar with Mach’s critique of
Newton’s mechanics since his student days49 and probably reread the corresponding
chapters of the Mechanik after his first attack on the problem of gravitation in 1907.50

The physical asymmetry between inertial and gravitational mass, which, as per-
ceived by Einstein in 1907, was at the heart of the conflict between a special relativis-
tic theory of gravitation and classical mechanics, may have directed his attention to
their more general asymmetry in Newtonian mechanics. According to Newtonian
mechanics, inertial mass is a property that can also be ascribed to a single body in an
otherwise empty universe, whereas gravitational mass can only be conceived as a
property of a system of bodies. Mach’s analysis of the concept of inertial mass can be
considered as an attempt to remove just this asymmetry, at least on the level of an
operational definition of inertial mass. According to this definition, inertial mass is
determined, as we have seen, on the basis of the mutual accelerations within a system
of bodies, i.e. not as the independent property of a single body. Although Mach’s
intention was probably only to give a more concise account of classical mechanics
without changing its content, nevertheless his definition makes it clear that, in princi-
ple, the interaction between two masses, and hence their magnitude, may depend on
the presence of other masses in the world (recall that the inertial frame within which
the accelerations are measured is, according to Mach’s critique of absolute space,
determined by the distribution of masses in the universe). In any case, according to
Mach, inertial mass and gravitational mass both depend upon interactions between
bodies. This lends additional strength to Einstein’s conclusion that the equivalence of
inertial and gravitational mass in classical mechanics points to a deeper conceptual
unity that is to be preserved also in a new theory of gravitation.

Einstein’s introduction of the principle of equivalence, which expresses the equal-
ity of inertial and gravitational mass independent of the specific laws of motion of
classical mechanics, indicated a connection to Mach’s critical discussion of Newton’s
purported demonstration of absolute space. The successful use of a uniformly accel-
erated frame of reference to describe the behavior of bodies falling in a constant grav-
itational field must naturally have raised questions about the relation between
arbitrarily accelerated reference frames and more general gravitational fields. For
Einstein, such questions pointed in particular to the problem of the privileged role of
inertial frames in classical mechanics, as he confirms in the recollection already
quoted in the first section:

49 For an early reference to Mach, see Einstein to Mileva Mari¶, 10 September 1899 (CPAE 1, Doc. 54;
Renn and Schulmann 1992, 14, 85). For later recollections mentioning Mach, see (Einstein 1933,
1954b, 1992).

50 For contemporary evidence of Einstein’s rereading, see p. 58 of Einstein’s Scratch Notebook 1910–
1914? (CPAE 3, 592, app. A), where Einstein wrote the title of the crucial sec. 6 of chap. 2 of Mach’s
Mechanics (Mach 1960); pp. 7–8 of Einstein’s Lecture Notes for an Introductory Course on Mechan-
ics at the University of Zurich, Winter semester 1909/1910, (CPAE 3, 15–16, discussed in more detail
below); and the discussion of Mach’s ideas in a notebook on Einstein’s Course on Analytical Mechan-
ics, Winter semester 1912/13, by Walter Dällenbach, (for a brief description, see (CPAE 4, app. A).
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So, if one considers pervasive gravitational fields, not a priori restricted by spatial
boundary conditions, physically possible, then the concept of ‘inertial system’ becomes
completely empty. The concept of ‘acceleration relative to space’ then loses all meaning
and with it the principle of inertia along with the paradox of Mach.51

In other words, the appearance of accelerated frames of reference in an argument
concerning gravitation made it possible to relate to each other two theoretical tradi-
tions which had until then led essentially separate existences, the tradition of a field
theory of gravitation in the sense of electrodynamics and the tradition of foundational
critique of mechanics in the sense of what is called here “mechanistic generalization
of the relativity principle.” In the previous section, we have seen that the idea of
including accelerated frames of reference on an equal footing with inertial systems
was as alien to the tradition of field theory as the idea of a field theory of gravitation
was to the tradition of the mechanistic generalization of the relativity principle.

Now, however, Mach’s critical examination of the privileged role of inertial
frames in classical mechanics provided Einstein with the context for considering his
introduction of an accelerated frame of reference in the equivalence principle argu-
ment, not only as a technical trick to deal with a specific aspect of the problem of for-
mulating a field theory of gravitation, but as a hint to the solution of a foundational
problem of classical mechanics. But while Mach’s critique justified the consideration
of arbitrary frames of reference as a basis for the description of physical processes,
and hence the extension of the equivalence principle argument to include more gen-
eral accelerated frames, such as the rotating frame of Newton’s bucket,52 it did not
provide Einstein with the conceptual tools for dealing with the strange effects
encountered in such frames. The tradition of field theory, in the context of which he
had first approached the problem of gravitation, offered him, on the other hand, just
the conceptual tools that allowed him to interpret the inertial forces in accelerated
frames of reference as aspects of a more general notion of a gravito-inertial field, in
the same sense that electromagnetic field theory makes it possible to conceive induc-
tion as an aspect of a more general notion of an electric field.

In other words, instead of attempting to resolve Mach’s paradox of the privileged
role of inertial frames in the context of a revised version of classical mechanics, as
did the adherents of a mechanistic generalization of the relativity principle, Einstein
was now able to address this foundational problem of mechanics in the context of a
field theory of gravitation in which inertial forces could be understood as an aspect of

51 “Wenn man also das Verhalten der Körper inbezug auf das letztere Bezugssystem als durch ein “wirk-
liches” (nicht nur scheinbares) Gravitationsfelder als möglich betrachtet, so wird der Begriff des Iner-
tialsystems völlig leer. Der Begriff “Beschleunigung gegenüber dem Raume” verliert dann jede
Bedeutung und damit auch das Trägheitsprinzip samt dem Mach’schen Paradoxon.” (Einstein 1992,
62–63)

52 For the particular role of rotating frames in motivating this generalization, compare Einstein’s later
remark concerning an objection against the privileged role of inertial frames in classical mechanics
and in special relativity: “The objection is of importance more especially when the state of motion of
the reference-body is of such a nature that it does not require any external agency for its maintenance,
e.g. in the case when the reference body is rotating uniformly.” (Einstein 1961, 72)
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a unified gravito-inertial field. By establishing a “missing link” between the traditions
of a mechanistic generalization of the relativity principle and field theory, he had
found the key to the problems which appeared to be unsolvable within each of the
two traditions taken separately. Where the followers of a field theory of gravitation
searched in vain for an empirical clue which could have guided them beyond “Cou-
lomb’s law” of static gravitation (i.e. Newton’s law) to a gravitational dynamics, Ein-
stein succeeded with the help of Mach’s critique in recognizing in the inertial effects
of a rotating system, such as Newton’s bucket, the case of a stationary gravitational
field caused by moving masses. He interpreted this case as a gravitational analogue to
a magnetostatic field in electrodynamics which can also be conceived as being caused
by moving (in this case: electrical) masses.53 And vice versa, where the adherents of
a mechanistic generalization of the relativity principle searched in vain for new
effects that could reveal more about the mysterious interaction between distant
masses in relative motion with respect to each other, which in the only case known to
them was responsible for the curvature of the water’s surface in Newton’s bucket,
Einstein had no qualms about identifying this force as a dynamical aspect of univer-
sal gravitation and thus relating the unknown force to a well-explored domain of clas-
sical physics. In summary, Einstein’s experiences with a field theory of gravitation
and his familiarity with the foundational problems of mechanics had set the stage for
his reception of whatever these two traditions had to offer for his program to build a
relativistic theory of gravity that was also to be a theory of general relativity. What
had previously seemed to be mutually exclusive approaches, to some extent now
became, from his perspective, complementary.

4.2 Hints at a Machian Theory of Mechanics in Einstein’s Research
on Gravitation Between 1907 and 1912

The following is a brief account of those features of Einstein’s heuristics that reflect
the complementary influence of the two traditions in the sense outlined above. While
there is no direct contemporary evidence for the role of Mach’s critique of mechanics
on Einstein’s 1907 formulation of what later became known as the equivalence princi-
ple, such an influence very likely forms the background for Einstein’s reaction to the
problems of a relativistic theory of gravitation.54 Beyond shaping this reaction and
opening the perspective towards a generalization of relativity theory, Mach’s influence
on the further development of this theory remained secondary, even when Einstein
began to elaborate his original insight into the equivalence principle in papers pub-
lished in 1911 and 1912.55 The principal reason for this secondary status is that, in

53 See Einstein to Paul Ehrenfest, 20 June 1912 (CPAE 5, Doc. 409), discussed below.
54 See, in particular, (Einstein 1954b) for evidence that Einstein’s perspective was indeed shaped at a

very early stage by Mach’s critique of mechanics. For a discussion of the relation between equiva-
lence principle and Mach’s interpretation of the bucket experiment, see “Classical Physics in Disarray
…” (in vol. 1 of this series).

55 See, in particular, (Einstein 1911, 1912a, 1912b, 1912c).
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this period, he drew mainly on the resources of field theory with the aim of construct-
ing a field equation—analogous to the classical field equation for Newton’s gravita-
tional field—for the static gravitational field of his elevator thought experiment.56

Nevertheless, between 1907 and 1912 Einstein seems also to have collected hints
pointing at a Machian theory of mechanics. For instance, he made use of Mach’s
analysis of the conceptual foundations of mechanics in preparing a course on classi-
cal mechanics at the University of Zurich for the winter semester 1909/191057 and
referred to it in connection with his research on gravitation in correspondence to
Ernst Mach of the same period.58 At about the same time, he wrote the following in a
letter to a friend:

I am just now lecturing on the foundations of that poor, dead mechanics, which is so
beautiful. What will its successor look like? With that question I torment myself cease-
lessly.59 

In the notes Einstein prepared for his lecture course he introduces Mach’s definition
of mass.60 He emphasized the close relation between gravitational and inertial mass,
following from the independence of gravity from material properties:

The fact that the force of gravity is independent of the material demonstrates a close kin-
ship between inertial mass on the one hand and gravitational action on the other hand.61

The dependence of inertial mass on the entire system of bodies in the universe
implicit in Mach’s definition of mass made it conceivable for Einstein that the inertial
mass of a given body may also be a function of the system of other bodies, which var-
ies with their distribution around the given body.62 In (Einstein 1912c), he partially
confirmed this conclusion by calculating the effect on the inertial mass of a body due
to the presence of a massive spherical shell around it; the paper also deals with the
effect on this body by an accelerated motion of the spherical shell. This paper, dedi-
cated to Einstein’s theory of the static gravitational field, is not only the first paper in

56 For an extensive discussion, see “Classical Physics in Disarray …” (in vol. 1 of this series).
57 See Einstein’s Lecture Notes for an Introductory Course on Mechanics at the University of Zurich,

Winter semester 1909/1910 in (CPAE 3). 
58 See Einstein to Ernst Mach, 9 August 1909 (CPAE 5, Doc. 174, 204) and Einstein to Ernst Mach, 17

August 1909 (CPAE 5, Doc. 175, 205).
59 “Ich lese gerade die Fundamente der armen gestorbenen Mechanik, die so schön ist. Wie wird ihre

Nachfolgerin aussehen? Damit plage ich mich unaufhörlich.” Einstein to Heinrich Zangger, 15
November 1911 (CPAE 5, Doc. 305, 349).

60 See pp. 7–8 of Einstein’s Lecture Notes for an Introductory Course on Mechanics at the University of
Zurich, Winter semester 1909/1910 (CPAE 3, 15–16). 

61 “Die Thatsache, dass die Kraft der Schwere vom Material unabhängig ist, zeigt eine nahe Verwand-
schaft zwischen träger Masse einerseits und Gravitationswirkung andererseits.” See p. 15 of Ein-
stein’s Lecture Notes for an Introductory Course on Mechanics at the University of Zurich, Winter
semester 1909/1910 (CPAE 3, 21; my translation)

62 This is in disagreement with the claim expressed in (Barbour 1992, 135), that Einstein was not justi-
fied in maintaining that he was a following a stimulation by Mach in considering a dependence of
inertial mass on the presence of other masses in the universe.



THE THIRD WAY TO GENERAL RELATIVITY 47

which he publicly mentions Mach’s critique as a heuristic motivation behind his
search for a generalized theory of relativity, but it also carries a title expressing the
translation of this heuristics into the language of field theory: “Is there a gravitational
effect which is analogous to electrodynamic induction?”

In 1912 Mach’s critique gained a new importance for Einstein’s work on gravita-
tion for yet another reason. After convincing himself that he had found a more or less
satisfactory theory of the static gravitational field, he turned to what he considered to
be the next simple case, the stationary field represented by the inertial forces in a
rotating frame. In other words, after exhausting, at least for the time being, the heuris-
tic potential of the “elevator,” he now turned to that of the “bucket.” His contempo-
rary correspondence confirms that he considered this case both from the perspective
of field theory and from that of the mechanistic generalization of the relativity princi-
ple. In a letter to Ehrenfest from 20 June 1912, with reference to his theory of the
static gravitational field and to the generalization necessary to cope with situations
such as that of a rotating ring, he wrote:

In the theory of electricity my case corresponds to the electrostatic field, while the more
general static case would further include the analogue of the static magnetic field. I am
not yet that far.63

In a letter to Besso dated 26 March 1912, Einstein remarked—probably referring to
the same topic, i.e., the treatment of the inertial forces in a rotating frame as general-
ized gravitational effects in a frame at rest—in the spirit of Mach’s remark on New-
ton’s bucket: “You see that I am still far from being able to conceive rotation as
rest!”.64 Not only Einstein’s publications and correspondence but also his private
research notes document the influence of both traditions—electrodynamics and
mechanics—on the terminology in which he expressed the heuristics of his theory.
Thus, we can exclude the possibility that his choice of words was merely a matter of
making himself understood by his audience.65

4.3 Einstein’s Machian Heuristics in his Research on a 
Relativistic Theory of Gravitation between 1912 and 1915

Einstein found it difficult to accomplish the transition from his treatment of the static
special case to a more general theory that included the dynamical aspects of the grav-
itational field. In the summer of 1912, however, he attained the insight into the crucial
role of non-Euclidean geometry for formulating the gravitational field theory he

63 “Mein Fall entspricht in der Elektrizitätstheorie dem elektrostatischen Felde, wogegen der allge-
meine[r]e statische Fall noch das Analogon des statischen Magnetfeldes mit einschliessen würde.”
Einstein to Paul Ehrenfest, 20 June 1912, (CPAE 5, Doc. 409, 486).

64 “Du siehst, dass ich noch weit davon entfernt bin, die Drehung als Ruhe auffassen zu können.” Ein-
stein to Michele Besso, 26 March 1912, (CPAE 5, Doc. 377, 436).

65 See, in particular, Einstein’s comments on his calculation of the effect of rotation and linear accelera-
tion of a massive shell on a test particle in his and Michele Besso’s May 1913 “Manuscript on the
Motion of the Perihelion of Mercury” in (CPAE 4, Doc. 14).
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searched for, an insight which, in spite of the many difficulties still to be resolved,
paved the way for the final theory of general relativity published in 1915. This insight
provides an important example of the fruitfulness of the combined heuristics of “ele-
vator” (i.e., Einstein’s equivalence principle) and “bucket” (i.e., Newton and Mach’s
bucket in Einstein’s interpretation).66 The heuristics of the bucket, i.e. the Machian
idea to consider water in a bucket as constituting a frame at rest, first provided the
qualitative insight into a possible role of non-Euclidean geometry in a rotating frame
of reference.67 The heuristics of the elevator, i.e. the elaboration of the theory of the
static gravitational field, then prepared, in combination with Minkowski’s four-
dimensional formalism, the technical environment for the concrete application of this
insight to the problem of gravitation. The crucial link between the general idea and
this technical environment was provided by Gaussian surface theory, which made it
possible to interpret the equation of motion suggested by the formalism of the static
theory as the geodesic equation of a non-Euclidean geometry. It was only possible,
however, to exploit the formal similarity between the two equations because of the
deeper conceptual similarity between the problem of motion in a gravitational field
and the problem of inertial motion in an accelerated frame of reference, as suggested
by Einstein’s Machian interpretation of inertia. This conceptual similarity may have
helped Einstein to think of Gaussian surface theory in the first place, as he had been
familiar since his student days with the relation in classical mechanics between
motion constrained to a surface without external forces—which also can be con-
ceived of as generalized inertial motion—and the geodesic equation in Gaussian sur-
face theory.68

But even after Einstein recognized that the gravitational potential of his static the-
ory could be interpreted as a component of the metric tensor in four-dimensional
geometry, he would nevertheless have been, at least in principle, in the same situation
as those searching for a dynamic theory of the gravitational field starting from New-
ton’s theory as the only known special case. It was his “Machian” insight that the
inertial effects in accelerated frames can be considered as an aspect of a more general
gravito-inertial field that provided him with an entire class of examples supporting
the relation between the equation of motion, metric tensor, and gravito-inertial field,
which emerged from the generalization of the static theory. In fact, Einstein could

66 Compare also Einstein’s Kyoto Lecture (Ishiwara 1971, 78–88).
67 This was first stressed in (Stachel 1989). For a more extensive reconstruction, see “Classical Physics

in Disarray …” and “The First Two Acts” (both in vol. 1 of this series).
68 This is suggested by the similarity between a page in the Zurich Notebook by Einstein (p. 41R of

“Research Notes on a Generalized Theory of Relativity,” dated ca. August 1912, in (CPAE 4, Doc. 10)
and p. 88 of the student notes on Geiser’s lecture course on infinitesimal geometry, taken by Einstein’s
friend Marcel Grossmann in 1898 (Eidgenössische Technische Hochschule, Zürich, Bibliothek, Hs
421: 16); for Einstein’s attendance of this course in the summer semester 1898, see (CPAE 1, 366);
for his later recollections on the significance of this course for his work on general relativity, see (Ishi-
wara 1971, 78–88). The connection between Einstein’s research notes and Grossmann’s student notes
was identified by Tilman Sauer; see also (Castagnetti et al. 1994) and “Commentary” (in vol. 2 of this
series).
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easily show that the inertial motion of a particle in an arbitrarily accelerated frame of
reference can be described by the same type of equation as that published in May
1912 for a static gravitational field,69 involving not just one variable but indeed a 4-
by-4 metric tensor.

The introduction of the metric tensor provided Einstein with the framework for
capturing the resources of the two traditions, field theory and the mechanistic gener-
alization of the relativity principle, as well as those of the mathematical tradition
established, among others, by Riemann and Christoffel. The tradition of field theory
suggested, for instance, that—following the model of Poisson’s equation for the grav-
itational potential in classical physics—some second-order differential operator was
to be applied to the metric tensor in order to yield the left-hand-side of a gravitational
field equation.70 It therefore comes as no surprise to find that the first entries in the
Zurich Notebook, in which Einstein tackled the problem of gravitation, reflect his
attempt to translate the field equation of the theory for the static field into a second
order differential equation for the metric tensor.71 However, the construction of a sat-
isfactory field equation for the gravitational field was an incredibly difficult task that
would demand Einstein’s attention for the following three years. In his search, he
could rely on the tradition of the mechanistic generalization of the relativity principle
which offered him concrete examples for metric tensors to be covered by the new the-
ory, such as the metric tensor for Minkowski space described from the perspective of
a rotating frame of coordinates. The inertial forces arising in such a rotating frame are
well known from classical physics and could hence serve as criteria for the theory to
be constructed.

In the course of Einstein’s long search for a gravitational field equation, he contin-
ued to exploit the heuristics of the “elevator” and “bucket” in particular, and the tradi-
tions of field theory and mechanics in general, in order to build up a considerable
“machinery” of formalisms, mathematical techniques, and conceptual insights. This
machinery eventually developed a dynamics of its own and led to a “conceptual
drift”; i.e., to results that were not always compatible with Einstein’s heuristic start-
ing points, whether they were rooted in field theory or in the mechanistic generaliza-
tion of the relativity principle.72

One of the first indications of such a conceptual drift was a revision published in
1912 of the theory of the static gravitational field, which conflicted with the “heuris-
tics of the elevator,” and also with an expectation raised by traditional field theory.73

69 See (Einstein 1912b).
70 For more extensive discussion, see “Pathways out of Classical Physics …” (in vol. 1 of this series).
71 See p. 39L of “Research Notes on a Generalized Theory of Relativity” (dated ca. August 1912) in

(CPAE 4, Doc. 10). See also “Facsimile and Transcription of the Zurich Notebook” (in vol. 1 of this
series).

72 See (Elkana 1970).
73 For Einstein’s first theory, see (Einstein 1912a), for his second, revised theory, see (Einstein 1912b).

For historical discussion, see “The First Two Acts” and “Pathways out of Classical Physics …” (both
in vol. 1 of this series).
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The revision of Einstein’s static theory became necessary after he found out that his
theory violated the principle of the equality of action and reaction. The non-linearity
of the revised field equation turned out to be incompatible with the equivalence prin-
ciple as formulated by Einstein in 1907. The homogeneous static gravitational field
which he replaced by a uniformly accelerated frame of reference was simply no
longer a solution of the revised, non-linear field equation.74 In other words, after the
revision, the theory of the static gravitational field contradicted its own heuristic start-
ing point. Consequently, Einstein had to restrict the principle of equivalence. But
from the perspective of our present discussion, the most significant implication of this
episode was that the gravitational field had entered the scene in its own right, on a par
with the material bodies acting as its source. Hence it became, at least in principle,
conceivable that non-trivial gravito-inertial fields could exist without being caused by
material bodies. Einstein, however, remained hesitant to accept this conclusion—
which is in obvious contradiction with the Machian requirement that all inertial
effects are due to ponderable masses—even after he had formulated the final theory
of general relativity.

During Einstein’s work on his generalized theory of relativity in the years 1912
and 1913, the “heuristics of the bucket” did not fare much better. In Einstein’s
research notes from this period, one encounters again and again the metric tensor rep-
resenting the Minkowski space as seen from a rotating frame of reference.75 How-
ever, it remained unclear for some time whether or not the field equation of the
preliminary theory of gravitation, which Einstein published in 1913 with his mathe-
matician friend Marcel Grossmann (Einstein and Grossmann 1913), satisfied this
requirement of incorporating the Machian bucket. Einstein’s eventual discovery that
the “Entwurf” theory conflicted with this expectation was an important motive for
discarding this theory and for beginning anew the search for a theory that promised to
fulfill his original goals.76 In this way, the “heuristics of the bucket” once more
played a crucial role in the genesis of the general theory of relativity.

4.4 Attempts at a Machian Interpretation of General Relativity
in the Period 1915–1917

After Einstein had formulated his theory in 1915, the tension between his original
heuristics and the implications of the new theory remained unresolved; this tension
continued to characterize the further development of the theory until at least 1930.
Initially, one motive behind Einstein’s emphasis on epistemological arguments based

74 For an extensive evaluation of Einstein’s principle of equivalence, see (Norton 1989a), and, in partic-
ular, for the present discussion, p. 18.

75 See, e.g., pp. 42R, 43L, 11L, 12L, 12R, 24R, and 25R of “Research Notes on a Generalized Theory of
Relativity” (dated ca. August 1912) in (CPAE 4, Doc. 10). See also “Facsimile and Transcription of
the Zurich Notebook” (in vol. 1 of this series).

76 See, e.g., Einstein to Arnold Sommerfeld, 28 November 1915, (CPAE 8, Doc. 153). For historical dis-
cussion, see (Janssen 1999) and “What Did Einstein Know …” (in vol. 2 of this series).
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on the relation between the new theory and its Machian heuristics may have been his
desire to make his achievement acceptable to the scientific community. In fact, an
important element of the empirical confirmation of the theory was only supplied
when the eclipse expedition of 1919 confirmed the bending of light in a gravitational
field. In 1913 Einstein had written to Mach that the agreement which he had found
between the consequences of his then preliminary theory of gravitation and Mach’s
critique of Newtonian mechanics was practically the only argument he had in its
favor.77 Also in his early publications on the final theory he continued to insist on its
epistemological advantages, which provided additional support for its claim of supe-
riority with regard to competing theories.78

But Einstein’s insistent pursuit of the Machian aspects of general relativity in the
early years after its formulation was determined less by tactical motives than by the
perceived need for a physical interpretation of the technical features of the new the-
ory in light of his original heuristics. For instance, Einstein soon realized that, as a
rule, the field equation determines the gravitational field only if, in addition to the
matter distribution, boundary conditions are specified. This technical feature of the
theory had to be brought together with his intention to realize a generally relativistic
theory and his Machian hopes of explaining inertial behavior by material bodies
only.79 For some time in 1916 and early 1917, he attempted to formulate boundary
conditions that would somehow comply with his original intentions.80 He searched,
for example, for boundary conditions in which the components of the metric tensor
take on degenerate values since he assumed that a singular metric tensor would
remain invariant under general coordinate transformations, and thus make it possible
to maintain the requirement of general covariance even at the boundary region of
spacetime. He also searched for a way to define a region outside the system of masses
that constituted the physical universe in which a test body would possess no inertia,
so that he might then be able to claim that inertia is indeed created by the physical
system circumscribed by this empty boundary region.81 In the course of these
attempts, the expectation that general relativity was to provide a Machian explanation
of inertia began to be silently transformed from a requirement concerning the nature
of the theory to a criterion to be applied to specific solutions of the theory. Since
Minkowski’s flat spacetime, with inertial properties familiar from classical mechan-
ics and special relativity, was a solution to the vacuum field equations of general rela-

77 See Einstein to Ernst Mach, second half of December 1913 (CPAE 5, 583–584).
78 See, e.g., (Einstein 1916a, 771–772).
79 See Einstein to Lorentz, 23 January 1915 (CPAE 8, Doc. 47), and the extensive historical discussion

in (Kerszberg 1989a, 1989b), as well as in (Hoefer 1994), on which the following account is based.
See also the introduction to (CPAE 8); “The Einstein-de Sitter-Weyl-Klein Debate,” (CPAE 8, 351–
357).

80 See, e.g., Einstein to Michele Besso, 14 May 1916, (CPAE 8, Doc. 219).
81 See Einstein to de Sitter, 4 November 1916 (CPAE 8, Doc. 273) and Einstein to Gustav Mie, 8 Febru-

ary 1918 (Doc. 460).
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tivity, it simply could not be true in general that in this theory inertial effects are
explained by the presence of matter.

After Einstein’s failure to find a satisfactory treatment of the supposed Machian
properties of general relativity along the road of singular boundary conditions, in
(Einstein 1917) he advanced a completely different proposal for dealing with the cos-
mological aspects of the theory. He introduced a spacetime that satisfied all his
expectations concerning the constitution of the universe, including the explanation of
its inertial properties by the masses acting as sources of the gravitational field, but at
the price of modifying the field equations to which this spacetime was a solution. As
Einstein’s cosmological paper of 1917 has been discussed a number of times, it may
suffice to briefly emphasize its place in the development of the tensions between Ein-
stein’s Machian heuristics and the implications of the new theory.82 The solution to
the field equations—modified by the introduction of a “cosmological constant”—
which Einstein considered in 1917 describes a spatially closed, static universe with a
uniform matter distribution. It therefore entirely avoided the problem of specifying
appropriate boundary conditions and, at the same time, was believed by him to corre-
spond to a more or less realistic picture of the universe as known at that time. In gen-
eral, though, Einstein tended to neglect the relation between the new theory and
astronomy, as well as the exploration of the properties of the solutions to its field
equations. In contrast, Willem de Sitter—at the time Einstein’s principal opponent in
the discussion of the allegedly Machian features of general relativity— repeatedly
emphasized the astronomical consequences of the various solutions to the field equa-
tions.83 In any case, Einstein not only hoped that his radical step of modifying the
field equations of general relativity allowed him to find at least one acceptable solu-
tion to the field equations, but he also assumed that he would succeed in excluding
altogether empty space solutions in which inertial properties are present in spite of
the absence of matter.84 It was therefore an unpleasant surprise—which he found dif-
ficult to digest and at first attempted to refute—when de Sitter demonstrated shortly
after the publication of Einstein’s paper that even the modified field equations allow
such an empty space solution.85 In 1918 Einstein published a critical note on de Sit-
ter’s solution in which he wrote:

If de Sitter’s solution were valid everywhere, then it would be thereby shown that the
purpose which I pursued with the introduction of the -term [the cosmological con-

82 See, in particular, (Hoefer 1994) for a detailed discussion of this paper from the point of view of
Mach’s influence on Einstein.

83 See, e.g., Einstein to Willem de Sitter, before 12 March 1917, (CPAE 8, Doc. 311), where he referred
to his solution as a “Luftschloss,” (castle in the air) having the principal purpose of showing that his
theory is free of contradictions. See also Einstein to Michele Besso, 14 May 1916, for the Machian
motivations of Einstein’s construction. For a historical account of the controversy between Einstein
and de Sitter on the implementation of Machian ideas and cosmological considerations in general rel-
ativity, see (Kerszberg 1989a, 1989b).

84 See Einstein to de Sitter, 24 March 1917, (CPAE 8, Doc. 317).
85 See de Sitter to Einstein, 20 March 1917, (CPAE 8, Doc. 313).
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stant–J R.] has not been reached. In my opinion the general theory of relativity only
forms a satisfactory system if according to it the physical qualities of space are com-
pletely determined by matter alone. Hence no -field must be possible, i.e., no space-
time-continuum, without matter that generates it.86

4.5 The Introduction of “Mach’s principle” in 1918

The increasing tension between Einstein’s original intentions and the ongoing explo-
ration of the consequences of the new theory was accompanied by attempts to
rephrase the criteria of what it meant to satisfy the philosophical requirements corre-
sponding to the heuristics that had guided the discovery of the theory. Characteristi-
cally, Einstein (Einstein 1918a, 241–242) introduced and defined the very term
“Mach’s principle” in the context of a controversy over whether or not the general the-
ory of relativity in fact represented a realization of his intention to implement a gener-
alization of the relativity principle of classical mechanics and special relativity. His
paper of 1918 was a response to the argument by Kretschmann that the general cova-
riance of the field equations of general relativity does not imply such a generalization
of the relativity principle, but can be considered as a mathematical property only. Ein-
stein argued that he had so far not sufficiently distinguished between two principles,
which he now introduced as the principle of relativity and Mach’s principle.87

The first principle, as defined by Einstein, states that the only physically meaning-
ful content of a relativistic theory are coincidences of physical events at points of
space and time. Since the occurrence of these point coincidences is independent of
whether they are described in one or the other coordinate frame, their most appropri-
ate description is by a generally covariant theory. This principle had, of course, not
been the starting point of Einstein’s search for a generally relativistic theory of gravi-
tation, but rather constitutes a result of his reflection on complications encountered in
a long, but eventually successful, search for such a theory.88 For our purposes here, it
is particularly remarkable that this formulation of the principle of relativity no longer
appeals to the intuition of a world of isolated bodies distributed in an otherwise
empty space whose physical interactions should depend only on their relative dis-
tances, velocities, etc. As we have seen, this intuition was characteristic of the mech-
anistic generalization of the relativity principle, and was at the root of Einstein’s
search for a generalized theory of relativity.

86 “Bestände die De Sittersche Lösung überall zu Recht, so würde damit gezeigt sein, daß der durch die
Einführung des “ Gleides” von mir beabsichtigte Zweck nicht erreicht wäre. Nach meiner Meinung
bildet die allgemeine Relativitätstheorie nämlich nur dann ein befriedigendes System, wenn nach ihr
die physikalischen Qualitäten des Raumes allein durch die Materie vollständig bestimmt werden. Es
darf also kein -Feld, d. h. dein Raum-Zeit-Kontinuum, möglich sein ohne Materie, welche es
erzeugt.” (Einstein 1918b, 271)

87 For historical discussions of this paper and its context, on which the following account is based, see
(Norton 1992a, in particular, pp. 299–301, 1993, 806–809; Rynasiewicz 1999).

88 See the various discussions of Einstein’s “hole argument” in the recent literature, e.g. in (Norton
1989b, sec. 5). See also the discussion in “Untying the Knot …” (in vol. 2 of this series).
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This original intuition in fact included Mach’s suggestion to conceive of inertial
effects as the result of physical interactions between the bodies of such a world. Now,
however, the causal link between inertial effects and matter suggested by Mach’s crit-
ical analysis of the foundations of classical mechanics needed to be reinterpreted in
light of the newly developed formalism of general relativity. According to this for-
malism, inertial effects are described by the metric tensor representing the gravito-
inertial field, while matter is described by the energy-momentum tensor representing
the source term of the field equations for the gravitational field. It was therefore natu-
ral for Einstein to translate the supposed causal nexus between inertial forces and
matter into the requirement that the gravitational field be entirely determined by the
energy-momentum tensor. It is this requirement which he chose in 1918 to call
“Mach’s principle.”89 Certainly, this was not a mathematically concise criterion to
determine whether general relativity as a theory, or, as particular solutions of the the-
ory, do or do not satisfy Mach’s principle. Two aspects of this principle are neverthe-
less clear. First, the translation of Mach’s original suggestion into the language of
general relativity transferred it from the conceptual context of mechanics into that of
field theory, as both terms in Einstein’s 1918 definition of Mach’s principle—the
gravitational field and the energy-momentum tensor—are basically field theoretical
concepts. Second, it is obvious from the context of this definition, discussed above,
that whatever was precisely intended, Einstein considered empty space solutions of
the gravitational field equations as a violation of this principle.

4.6 The Conceptual Drift from Mach’s Principle to “Mach’s Aether”
(1918–1920)

Ironically, both these aspects of Einstein’s first explicit definition of Mach’s principle
in his writings contributed to the preparation for its eventual rejection. As a first step
towards this rejection, de Sitter established that not only Einstein’s gravitational field
equations of 1915, but even the equations modified by the introduction of the cosmo-
logical constant, admit empty space solutions. As a consequence, Mach’s principle
now definitely took on the role of a selection principle for solutions to the field equa-
tions. It seems that one interpretative reaction by Einstein to this serious defeat of his
principle was to extend the field theoretical interpretation of general relativity at the
expense of the emphasis on the mechanical roots of his original heuristics. By 1920,
the 1918 attempt to define Mach’s principle in terms of the conceptual building
blocks of his theory had been complemented by the introduction of a “Machian
aether” as a means of capturing its conceptual implications.90 In a lecture given in
Leiden, Einstein (1920) exploited the time-honored concept of an aether, to which

89 “Mach’s principle: The G-field is completely determined by the masses of bodies. Since mass and
energy are identical in accordance with the results of the special theory of relativity and the energy is
described formally by means of the symmetric energy tensor ( ), the G-field is conditioned and
determined (bedingt und bestimmt) by the energy tensor of the matter.” See (Einstein 1918a, 241–
242), quoted from (Barbour 1992, 138).
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Lorentz had given the definitive form in the realm of electrodynamics, in order to
explain the new concept of space which had emerged with general relativity. He now
directly turned against Mach’s interpretation of inertial effects as caused by cosmic
masses, because this interpretation presupposed an action at a distance, a notion
incompatible with both field theory and relativity theory. Instead, contrary to his orig-
inal heuristics, Einstein (1920, 11–12) associated these inertial effects with the nature
of space, which he now conceived as being equipped with physical qualities, and
which he hence appropriately called aether. Contrary to Lorentz’s aether, however,
Mach’s aether, which Einstein thought of as being represented by the metric tensor,
was supposed not only to condition but also to be conditioned, at least in part, by mat-
ter. This capacity of being influenced by the presence of matter was, apparently, the
last resort for the Machian idea of the generation of inertial effects by the interaction
of material bodies in Einstein’s conceptual framework.

For the time being, however, two aspects of the relation between matter and space
remained open problems: with space—under the name Machian aether—taking on
the role of an independent physical reality, the question presented itself of whether
matter had not lost all claims to primacy in a causal nexus between space and matter.
In his Leiden lecture, Einstein (1920, 14) noted that it was possible to imagine a
space without an electromagnetic field, but not one without a gravitational field, as
space is only constituted by the latter; he concluded that matter, which for him was
represented by the electromagnetic field, appears to be only a secondary phenomenon
of space. In (Einstein 1919), he had made an attempt at a derivation of the properties
of matter from the gravitational and the electrodynamic field, an attempt which he
considered as still being unsatisfactory but which, for him, constituted the beginning
of a new line of research in the tradition of the electrodynamic—or field theoretical—
worldview. This kind of research program held out the possibility not only of reintro-
ducing the concept of an aether in order to represent the physical qualities of space,
but also of providing a theoretical construction of matter as an aspect of this aether.
The other outstanding question concerning the relation between matter and space,
which was left unclarified even after Einstein’s introduction of a Machian aether, was
the astronomical problem of the distribution of masses and of the large-scale spatial
structure of the universe. Both questions, the theoretical as well as the empirical,
turned out to be significant, not only for Einstein’s further exploration of general rel-
ativity, but indirectly for the fate of Mach’s principle as well.

90 For historical discussions, see (Illy 1989; Kox 1989; Kostro 1992, 2000; Renn 2003). Probably under
the influence of Lorentz, Einstein had begun to reconsider the concept of aether already in 1916. On
17 June of this year he had written to H. A. Lorentz: “I admit that the general theory of relativity is
closer to the aether hypothesis than the special theory.” (“Ich gebe Ihnen zu, dass die allgemeine Rela-
tivitätstheorie der Aetherhypothese näher liegt als die spezielle Relativitätstheorie.” (CPAE 8, Doc
226; English translation in Kostro 1992, 262.) At that time, however, as the same letter suggests, Ein-
stein took it for granted that the aether is entirely determined by material processes. The transition to
the aether concept as explained in the following seems to be complete by the end of 1919, see Einstein
to H. A. Lorentz, 15 November 1919, (CPAE 9, Doc. 165).
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4.7 Mach’s Principle: From the Back Burner to Lost in Space (1920–1932)

The program of interpreting general relativity along the lines of Mach’s philosophical
critique of classical mechanics ceased to play a significant role in Einstein’s research
after 1920. In addition to the difficulty of implementing Machian criteria in the elabo-
ration of the theory, his exploration during the twenties of the heuristic potential that
general relativity offered for the formulation of a unified theory of gravitation and
electrodynamics was probably responsible for this shift of interest.91 As this heuristic
potential for a further unification of physics was associated with the field theoretic
aspects of general relativity, the relation of the theory to the foundational problems of
mechanics naturally faded into the background. Nevertheless, on several occasions
during his ongoing research on a unified theory of gravitation and electromagnetism,
Einstein hoped that he could link the program of a unified field theory with a satisfac-
tory solution of the cosmological problem in the sense of his Machian heuristics. In
1919, for example, he emphasized that his new theory had the advantage that the cos-
mological constant appears in the fundamental equations as a constant of integration,
and no longer as a universal constant peculiar to the fundamental law; he made a point
of showing that again a spherical world results from his new equations (Einstein
1919, 353; 1923b, 36). An additional reason for not completely rejecting Mach’s prin-
ciple may have been Einstein’s awareness, in a period which saw the triumph of quan-
tum mechanics, that, after all, the corpuscular foundation of physics and not the field
theoretic might prevail in the end; fields would then indeed have to be conceived as
epiphenomena of matter, like the gravitational field according to Mach’s principle.92

There was also a rather mundane reason why Mach’s principle did not figure
prominently in Einstein’s publications of this period, while not being entirely dis-
missed by him. More than its definition in 1918, its association with the cosmological
model of 1917 had brought the principle to an end point of its theoretical develop-
ment, to a point where the question of whether or not Mach’s principle could be
implemented in general relativity had become a question of its confirmation or refuta-
tion by astronomical data. In 1921 Einstein remarked, with reference to the possibil-
ity of explaining inertia in the context of his cosmological model: 

Experience alone can finally decide which of the two possibilities is realized in nature.
(Einstein 1922a, 42)93

In any case, for the time being, he remained convinced that astronomical research on
the large systems of fixed stars would bear a model of the universe compatible with
his Machian expectations. In 1921 he also wrote:

91 See (Pais 1982, 287–288); see also the extensive discussion in (Vizgin 1994).
92 See, in particular, Einstein’s views expressed in connection with theoretical and experimental studies

of radiation in this period, for example: “It is thus proven with certainty that the wave field has no real
existence, and that the Bohr emission is an instantaneous process in the true sense.” Einstein to Max
Born, 30 December 1921, my translation; see also the discussion in (Vizgin 1994, 176).

93 The German original is (Einstein 1921a).
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A final question has reference to the cosmological problem. Is inertia to be traced to
mutual action with distant masses? And connected with the latter: Is the spatial extent of
the universe finite? It is here that my opinion differs from that of Eddington. With Mach,
I feel that an affirmative answer is imperative, but for the time being nothing can be
proved. (Einstein 1921b, 784)94

In other words, although in the period between 1920 and 1930 Einstein invested his
hopes and his research efforts mainly in the creation of a unified field theory, he nev-
ertheless kept Mach’s principle on the back burner as long as it was not contradicted
by astronomical data.

Einstein’s firm conviction made him sceptical with respect to the possibility of
alternative cosmological models. In 1922 he criticized, among other proposals, Fried-
mann’s paper on solutions to the original field equations which correspond to a
dynamical universe.95 He mistakenly identified a calculational error in Friedmann’s
solution, which he had viewed with suspicion from the beginning. In another paper of
the same year (Einstein 1922b, 437), he explicitly criticized a cosmological model for
its incompatibility with “Mach’s postulate.” In 1923, however, Einstein recognized
that he had committed an error in rejecting Friedmann’s dynamical solutions. He
published a retraction (Einstein 1923c) of his earlier criticism and henceforth no
longer expected an astronomical confirmation of his Machian cosmology with the
same certainty as before. The change of Einstein’s attitude is apparent from a com-
parison between the published retraction of his criticism with a manuscript version
that has been preserved. In the manuscript version Einstein wrote: 

It follows that the field equations, besides the static solution, permit dynamic (that is,
varying with the time coordinate) spherically symmetric solutions for the spatial struc-
ture, to which a physical significance can hardly be ascribed. 

In the published paper, on the other hand, Einstein omitted the last half-sentence.96 In
another paper of the same year, Einstein referred with scepticism to “Mach’s postu-
late” and to the modification of the field equations that it required, because the intro-
duction of the cosmological constant was not founded on experience. He concluded: 

For this reason the suggested solution of the ‘cosmological problem’ can, for the time
being, not be entirely satisfactory.97

Nevertheless, until the end of the twenties Einstein did not give up hope that Mach’s
principle could be maintained as a feature of a cosmologically plausible solution of
the field equations of general relativity. When he discussed the “aether” of general

94 Einstein’s astronomical views in this period were strongly under the influence of his Machian belief,
see, e.g., (Einstein 1922b, 436).

95 See (Einstein 1922d); for Einstein’s criticism of other proposals, see (Einstein 1922b, 1922c).
96 This has been noted by John Stachel. For the translation of the passage, see also (Stachel 1986, 244).
97 “Aus diesem Grunde kann die angedeutete Lösung des kosmologischen Problems einstweilen nicht

völlig befriedigen.” (Einstein 1923a, 8; my translation.) He also modified an earlier version of an
attempt to formulate a unified field theory by omitting the cosmological constant, see (Vizgin 1994,
192–193).
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relativity in (Einstein 1924, 90), he added that it is determined by ponderable masses
and that this determination is complete if the world is spatially finite and closed in
itself. In the same paper, he dealt both with the possibility that a unification of gravi-
tation and electrodynamics can be achieved by field theory and with the possibility
that an understanding of the quantum problem can be achieved without field theoreti-
cal components.98 As suggested above, it is conceivable that this ambivalence as to
which of the foundational concepts—field or corpuscle—would eventually prevail
may have reinforced the role of Mach’s principle in Einstein’s thinking. In 1926, he
discussed the cosmological implications of general relativity in line with his earlier
arguments in favor of a finite static universe.99 In 1929 he wrote: 

Nothing certain is known of what the properties of the space-time continuum may be as a
whole. Through the general theory of relativity, however, the view that the continuum is
infinite in its time-like extent but finite in its space-like extent has gained in probability.
(Einstein 1929, 107)

Around 1930, however, things began to change. Primarily driven by his strong intel-
lectual engagement in the program to formulate a unified field theory, Einstein
expressed himself even more definitely than earlier in favor of a causal primacy of
space in relation to matter—in sharp contrast to his original Machian heuristics. He
would still ask the question:

If I imagine all bodies completely removed, does empty space still remain?

and suggest a negative answer. But now this question was not so much intended to
refer to the constitution of the universe, but was rather an epistemological inquiry
regarding the construction of the concept of space: 

But how is the concept of space itself constructed? If I imagine all bodies completely
removed, does empty space still remain? Or is even this concept to be made dependent
on the concept of body? Yes, certainly, I reply.100

While in the sequel of the paper, Einstein develops at length his reasons for suggest-
ing a cognitive primacy of the concept of physical object with respect to the concept
of space, he concludes his discussion of the state of research on the foundations of
physics with the following remark:

Space, brought to light by the corporeal object, made a physical reality by Newton, has in
the last few decades swallowed ether and time and seems about to swallow also the field
and the corpuscles, so that it remains as the sole medium of reality.101

98 See (Einstein 1924), in particular, pp. 92–93.
99 See (Einstein 1926–1927) and, for historical discussion, (Vizgin 1994, 212–213).
100 “Wie kommt aber der Raumbegriff selbst zustande? Wenn ich die Körper allesamt weggenommen

denke, bleibt doch wohl der leere Raum über? Soll etwa auch dieser vom Körperbegriff abhängig
gemacht werden? Nach meiner Überzeugung ganz gewiß!” (Einstein 1930a, 180)

101 “Der Raum, ans Licht gebracht durch das körperliche Objekt, zur physikalischen Realität erhoben
durch Newton, hat in den letzten Jahrzehnten den Äther und die Zeit verschlungen und scheint im
Begriffe zu sein, auch das Feld und die Korpuskeln zu verschlingen, so daß er als alleiniger Träger der
Realität übrig bleibt.” (Einstein 1930a, 184)
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In a lecture given in 1930 Einstein formulated his view even more drastically:

The strange conclusion to which we have come is this—that now it appears that space
will have to be regarded as a primary thing and that matter is derived from it, so to speak,
as a secondary result. Space is now turning around and eating up matter. We have always
regarded matter as a primary thing and space as a secondary result. Space is now having
its revenge, so to speak, and is eating up matter. (Einstein 1930b, 610)

In the course of his work on unified field theory, assisted by his epistemological
reflections, Einstein had come a long way from believing that a successful implemen-
tation of Mach’s principle would entail a synthesis of physics in which the concept of
matter would play a primary and the concept of space a secondary role. Nevertheless,
as the development of Mach’s principle in his thinking had become so closely associ-
ated with his cosmological ideas, the question of Mach’s principle remained open
precisely to the extent that the decision about Einstein’s static universe was left open
by observational cosmology. In the period between 1917 and 1930, a prevailing prob-
lem debated by researchers in this field was whether de Sitter’s or Einstein’s static
universe is a better model of reality, while the question of expanding universes, raised
by Friedmann in 1922 and by Lemaître in 1927, largely remained outside the horizon
of observational cosmology.102 The range of theoretical alternatives taken into
account by contemporary researchers testifies to the persistent role of Einstein’s
Machian interpretation of general relativity for cosmology, even if this interpretation
gradually became a mere connotation of one of the cosmological alternatives rather
than being the primary issue.

With the stage thus set for an observational decision on Mach’s principle, a defin-
itive blow to Einstein’s belief in it came with the accumulation of astronomical evi-
dence in favor of an expanding universe, the decisive contribution being Hubble’s
work published in 1929.103 Einstein became familiar with these results early in 1931
during a stay at the California Institute of Technology. As is suggested by an entry in
his travel diary from 3 January 1931, Richard Tolman convinced Einstein that his
doubts about the correctness of Tolman’s arguments in favor of the role of nonstatic
models for a solution of the cosmological problem were not justified.104 In March of
the same year Einstein wrote to his friend Michele Besso:

The Mount Wilson Observatory people are excellent. They have recently found that the
spiral nebulae are spatially approximately uniformly distributed and show a strong Dop-
pler effect proportional to their distance, which follows without constraint from the the-
ory of relativity (without cosmological constant).105

102 See (Ellis 1989, 379–380).
103 For historical discussion, see (Ellis 1989, 376–378).
104 “Doubts about correctness of Tolman’s work on cosmological problem. Tolman, however, was in the

right.” Quoted from (Stachel 1986, n. 53, 249); for a discussion of Tolman’s contribution, see (Ellis
1989, 379–380).

105 Einstein to Michele Besso, 1 March 1931, quoted from (Stachel 1986, 245).
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Almost immediately after his return to Berlin, Einstein published a paper (Einstein
1931b) on the cosmological problem in which he stated that the results of Hubble had
made his assumption of a static universe untenable. As it was even easier for general
relativity to account for Hubble’s results than for a static universe—because no mod-
ification of the field equations by the introduction of a cosmological constant was
required—his earlier static solution now appeared unlikely to Einstein, given the
empirical evidence (Einstein 1931b, 5).

In a lecture given in October of 1931, he still mentioned his static solution in con-
nection with the implementation of Mach’s ideas in general relativity, but, in spite of
the numerous remaining difficulties of the dynamical conception of the universe, he
now had definitely given up his belief in a Machian world (Einstein 1932). In 1932, in
a joint paper with de Sitter—his main antagonist in the earlier controversy about a
Machian explanation of inertia—Einstein himself presented an expanding universe
solution to the unmodified field equations. In this paper, the original Machian motiva-
tion for Einstein’s static universe solution is no longer even mentioned: 

Historically the term containing the “cosmological constant”  was introduced into the
field equations in order to enable us to account theoretically for the existence of a finite
mean density in a static universe. It now appears that in the dynamical case this end can
be reached without the introduction of  (Einstein and de Sitter 1932, 213)

In other words, in the course of the evolution of Einstein’s cosmological views, from
his adherence to a static world to his acceptance of an expanding universe, Mach’s
principle had simply disappeared.

4.8 Reflections in the Aftermath of Mach’s Principle

Although Einstein continued to acknowledge the role of Mach’s critique of classical
mechanics for the emergence of general relativity even after 1930, one can neverthe-
less notice a tendency to reinterpret even the heuristics which had originally guided
his formulation of the theory. In his later accounts of the conceptual foundations of
general relativity, he appealed to the field concepts in order to point out those weak-
nesses of classical physics that he had discussed earlier in the spirit of Mach’s cri-
tique of mechanics. He emphasized, for instance, that it was due to the introduction
of the field concept that the standpoint of considering space and time as independent
realities had been surmounted.106 Or he argued (Einstein 1961, app. V, 153) that the
principle of equivalence, which had originally motivated the extension of the relativ-
ity principle beyond the special theory of relativity, already demonstrated the exist-
ence of the field as a reality in its own right, that is, independent of matter, since for
the field experienced by an observer in an accelerated frame of reference the question
of sources does not arise.

When the occasion presented itself, Einstein also became quite explicit about his
rejection of his earlier Machian heuristics. In a letter to Felix Pirani, for instance, he

106 See, e.g., (Einstein 1961, app. V, 144).

λ

λ .



THE THIRD WAY TO GENERAL RELATIVITY 61

explains with reference to Mach’s principle, as he himself had earlier defined it, that
he no longer finds it plausible that matter represented by the energy-momentum ten-
sor could completely determine the gravitational field, since the specification of the
energy-momentum tensor itself already presupposes knowledge of the metric field. In
the same letter Einstein explicitly revokes Mach’s principle:

In my view one should no longer speak of Mach’s principle at all. It dates back to the
time in which one thought that the “ponderable bodies” are the only physically real enti-
ties and that all elements of the theory which are not completely determined by them
should be avoided. (I am well aware of the fact that I myself was long influenced by this
idée fixe.)107

He similarly explains in his Autobiographical Notes: 

Mach conjectures that in a truly reasonable theory inertia would have to depend upon the
interaction of the masses, precisely as was true for Newton’s other forces, a conception
that for a long time I considered in principle the correct one. It presupposes implicitly,
however, that the basic theory should be of the general type of Newton’s mechanics:
masses and their interaction as the original concepts. Such an attempt at a resolution does
not fit into a consistent field theory, as will be immediately recognized.
(Einstein 1992, 27)

In summary, this section has shown that Mach’s critique of classical mechanics was a
crucial element in the heuristics guiding Einstein’s way to the formulation of the gen-
eral theory of relativity. It played this role as one among several aspects of the tradi-
tion of classical physics and was, just as many of these other elements, eventually
superseded by the development of general relativity. At the outset, it opened up Ein-
stein’s perspective towards a generalization of the relativity principle and towards an
explanation of inertial effects, and hence of the physical properties of space, by mate-
rial bodies. By conceptualizing inertial forces as an interaction of bodies in motion, it
provided a decisive complement to the prospect of a dynamical theory of gravitation,
which was suggested by the conceptual tradition of field theory, but lacked an empir-
ical substantiation that could offer orientation among a variety of possible research
directions. The results which Einstein accumulated in the course of his search for a
general theory of relativity enforced several adjustments and reformulations of his
original heuristics. Eventually, it became impossible for him to bring the progress of
general relativity into agreement with these heuristics.108 Here we have seen that this
is the case for those aspects of his heuristics which were founded on the stimulation
received from Mach’s critique of mechanics. It turns out, however, that the incompat-
ibility between the conceptual framework that shaped Einstein’s original heuristics
and that which emerged from the final theory can be demonstrated more generally.109

107 Einstein to Felix Pirani, 2 February 1954 (my translation). (Einstein Archives: call number 17 -
447.00.)

108 See also the systematic discussions of the relation between Mach’s principle and the progress of gen-
eral relativity in (Goenner 1970, 1981; Torretti 1983, 199–201).

109 For extensive discussion, see “Pathways out of Classical Physics …” (in vol. 1 of this series)
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5. EINSTEIN’S PHILOSOPHICAL PERSPECTIVE ON THE 
FOUNDATIONAL PROBLEMS OF PHYSICS

5.1 Einstein’s Route to General Relativity: Between Physics and Philosophy

The account given in the previous section of the impact of Mach’s critique on the
development of general relativity seems to provide a strong case in point for an influ-
ence of philosophy on physics. Einstein himself confirms in many contemporary
comments as well as in later recollections that he conceived the emergence of general
relativity at least in part as a response to Mach’s analysis of the foundations of classi-
cal mechanics.110 He indeed continued his search for such a response even when
more simple alternative approaches to the problem of gravitation seemed to be avail-
able and when only epistemological arguments could motivate the continuation of his
search for a generalization of the relativity principle.111 The fact that also the follow-
ers of a mechanistic generalization of the relativity principle could refer to Mach’s
analysis as the philosophical background of their enterprise, however, raises some
doubts as to how significant the contribution of philosophy to Einstein’s particular
approach actually was. The starting point of Einstein’s revision of the foundations of
mechanics was in fact, as we have seen, in contrast to that of these “Machians,” not a
general philosophical concern but a concrete problem which he encountered in the
course of his research. It was not that the principle of equivalence had been formu-
lated as a consequence of Einstein’s search for a generalization of the principle of rel-
ativity, but vice versa, that the introduction of the equivalence principle in the context
of a problem of “normal science” had opened up the perspective towards the founda-
tional questions of mechanics. In a recollection from 1919 Einstein laconically states
with reference to the emergence of general relativity: 

The epistemological urge begins only in 1907.112

There is, however, a crucial distinction between the reaction of Einstein and that of
the adherents of a mechanistic generalization of the relativity principle to Mach’s cri-
tique of the foundations of mechanics. In Einstein’s view, the primary philosophical
force of Mach’s critique was directed against precisely what seemed to be for the
“Machian relativists”—at least within the context of this particular research prob-
lem—an undisputed presupposition of their thinking, namely the mechanistic ontol-

110 For contemporary evidence, see, e.g., Einstein’s correspondence with Mach quoted above, for a later
recollection, see, e.g., (Einstein 1954a, 133–134). The significance of Mach’s philosophical critique
of mechanics for Einstein is exhaustively treated in (Wolters 1987, chap. 1).

111 See (Einstein 1914, 344), where Einstein comments on Nordström’s competing theory.
112 “Das erkenntnistheoretische Bedürfnis beginnt erst 1907.” Einstein to Paul Ehrenfest, 4 December

1919 (CPAE 9, Doc. 189 - my translation). See also (Wheeler 1979, 188), for a later recollection by
Einstein, according to which he recognized the significance of the equality of inertial and gravita-
tional mass only as a consequence of his failure to formulate a special relativistic theory of gravita-
tion. For a different interpretation, see (Barbour 1992, 130, 133).
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ogy on the basis of which they attempted a generalization of the relativity principle.
Einstein himself later remembered that questioning the self-evident character of the
concepts of mechanics was one of the principal effects that Mach’s philosophy had
upon him:

We must not be surprised, therefore, that, so to speak, all physicists of the last century
saw in classical mechanics a firm and definitive foundation for all physics, yes, indeed,
for all natural science, and that they never grew tired in their attempts to base Maxwell’s
theory of electromagnetism, which, in the meantime, was slowly beginning to win out,
upon mechanics as well. ... It was Ernst Mach who, in his History of Mechanics, shook
this dogmatic faith; this book exercised a profound influence upon me in this regard
while I was a student.113

In other words, in contrast to those physicists whose reception of Mach’s critique of
mechanics was shaped only by the perspective of this one subdiscipline of physics,
Einstein read Mach as a philosopher and understood the central philosophical inten-
tion behind Mach’s historical and critical account of mechanics, which was directed
against the special status which mechanics had had for a long time among the subdis-
ciplines of physics.

We may therefore ask whether it was this philosophical sensibility with regard to
the epistemological character of some of the foundational problems of classical phys-
ics which protected Einstein from the temptation to seek a solution to these problems
within one of the subdisciplines of classical physics, as for instance, the adherents of a
mechanistic generalization of the relativity principle. Indeed, there can be little doubt
that Einstein’s thinking was characterized by such a sensibility, which was heightened
by his reading of philosophical authors such as Kant, Hume, Helmholtz, Mach, and
Poincaré.114 But it seems doubtful, on the other hand, whether philosophical scepti-
cism with regard to false pretensions of a conceptual system is sufficient to overcome
its limitations. At the turn of the century, philosophical critics of the privileged status
of classical mechanics, often associated as it was with the pretension of an a priori
character, may themselves serve as counter examples. Neither Mach nor Poincaré
built the foundations of a new mechanics upon the basis of their respective epistemo-
logical critiques, let alone the foundations of a new conceptual framework for all of
physics. As late as 1910, Poincaré—who had emphasized the conventional character
of scientific concepts—was nevertheless of the opinion that the principles of mechan-
ics may turn out to be victorious in their struggle with the new theory of relativity, and

113 “Wir dürfen uns daher nicht wundern, dass sozusagen alle Physiker des letzten Jahrhunderts in der
klassischen Mechanik eine feste und endgültige Grundlage der ganzen Physik, ja der ganzen Natur-
wissenschaft sahen, und dass sie nicht müde wurden zu versuchen, auch die indessen langsam sich
durchsetzende Maxwell’sche Theorie des Elektromagnetismus auf die Mechanik zu gründen. […]
Ernst Mach war es, der in seiner Geschichte der Mechanik an diesem dogmatischen Glauben rüttelte;
dies Buch hat gerade in dieser Beziehung einen tiefen Einfluss auf mich als Student ausgeübt.” (Ein-
stein 1992, 20–21) See also (Holton 1986, chap. 7, 237–277, in particular, p. 241; 1988, chap. 4, 77–
104; Wolters 1987, chap. 1, 20–36).

114 For a list of some of Einstein’s philosophical readings, see the introduction to (CPAE 2).
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that it was hence unjustified to prematurely abandon these principles.115 Mach (1960,
295–296) had left it open, as we have seen, that new empirical evidence may require a
modification of the principles of mechanics. Contrary to Einstein, he speculated that
an electromagnetic worldview may provide a new universal conceptual framework for
the entire body of physics, while his own contributions to such a unity remained
rather on the level of a metatheoretical reflection on science.116 Einstein, in any case,
was convinced that one should not attempt to identify Mach’s crucial contribution in
what can also be found in the works of Bacon, Hume, Mill, Kirchhoff, Hertz, or
Helmholtz, but rather in his concrete analysis of scientific content.117

In addition, it can be historically documented that Einstein’s scepticism, with
respect to the competing worldviews based on mechanics, electrodynamics, or ther-
modynamics, was rooted in his precise knowledge of their respective scientific fail-
ings and not only in his epistemological awareness.118 Shortly after the turn of the
century, when the electromagnetic worldview still appealed to many physicists as the
most promising starting point for a new conceptual foundation of physics, Einstein
had already recognized the devastating consequences which the discovery by Planck
of the law of heat radiation had for classical electrodynamics and hence for the con-
ceptual backbone of a worldview based on traditional field theory. But does this
observation not imply that Einstein’s philosophical perspective on the foundational
problems of physics simply dissolves, in the end, into technical competence in phys-
ics? This conclusion would only be justified if one accepted the conceptual distinc-
tion between philosophy of physics and physics as accepted today, that is, as a
distinction between a methodological, epistemological, or metaphysical—in any
case, a metatheoretical—study of physics and the concrete occupation with its scien-
tific problems. In order to respond to the question of the philosophical character of
Einstein’s perspective, we therefore have to examine briefly the historical situation of
the relation between physics and philosophy in Einstein’s time.

5.2 The Historical Context of Einstein’s Philosophical Perspective on Physics

At the turn of the century, the separation between philosophy of science and science
in the sense accepted today had long been complete. The more recent history of this
separation can be understood as a consequence of the failure of traditional philosophy
to integrate the natural sciences into its reflective enterprise. This failure is partly due
to the explosive growth of the shared knowledge of the various disciplines, and partly

115 See (Poincaré 1911); see also (Cuvaj 1970, 108) for a historical discussion.
116 For an extensive discussion of Mach’s attitude with respect to the electromagnetic worldview, see

(Wolters 1987, 29–36). For Mach’s attempt to integrate mechanics into the body of physics on the
level of methodological reflections, see (Mach 1960, chap. 5).

117 See his remarks to this effect in his obituary for Mach, (Einstein 1916b, 154–155).
118 See, in particular, Einstein’s own account in his Autobiographical Notes (Einstein 1992), in particular,

pp. 42–45, which is confirmed by contemporary evidence such as Einstein’s letters to Mileva Mari¶,
see (Renn and Schulmann 1992; CPAE 1).
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to the change of the cultural and political role which philosophy, and philosophy of
science in particular, underwent in the nineteenth century. In German academic phi-
losophy of the second half of the nineteenth century, for instance, neo-Kantianism,
which saw itself as a critical reaction to the philosophy of German idealism, played a
weighty role.119 Its stance was that of a politically neutral epistemology which—in
contrast to the natural philosophy of German idealism—often anything but politically
neutral—no longer issued any prescriptions for science but just attempted to capture
the epistemological and methodological structures that made scientific progress pos-
sible. Although neo-Kantianism and the tradition in philosophy of science that pur-
sued its metatheoretical concerns took the natural sciences as their guidepost, they
did not, however, offer a theoretical framework that enabled scientists to reflect upon
the body of scientific knowledge in its totality, let alone to discuss the social and cul-
tural conditions and implications of science.

On the other hand, since the middle of the nineteenth century, the intrinsic neces-
sity of dealing with science as a social and cultural phenomenon had been
approached primarily on a pragmatic level, as is witnessed by the increasing role in
the development of the large-scale structure of science played by state science and
education policy and the creation of funding agencies and scientific organizations
(such as the Kaiser-Wilhelm-Gesellschaft in Germany). Attempts to achieve an intel-
lectual integration of scientific knowledge, for instance in the form of a scientific
worldview, remained in the shadow of this development towards a practical control of
the sciences as a social system, and was only later supplemented by theoretical stud-
ies of science policy and the sociology of science.120 As a consequence of this com-
plex dynamics of the social and the intellectual development of science, the transfer
of knowledge beyond disciplinary boundaries, and the establishment of connections
between disparate branches of the body of knowledge, remained a process largely left
to chance and to the initiative of the individual researcher. Only to a small degree was
this process systematically furthered by the requirements of the intellectual integra-
tion of science for the purposes of education, to mention one extreme, and in the con-
text of a few, themselves highly specialized interdisciplinary research projects, to
mention the other extreme. The lack of a global intellectual synthesis of scientific
knowledge was, on the other hand, only poorly compensated for by a popular scien-
tific literature whose aim was often less the distribution and mediation of scientific
knowledge than its mystification.

The lack of a systematic place in the social system of the sciences and of aca-
demic philosophy for reflection on the contents of science beyond the narrow require-
ments of disciplinary specialization lent a particular importance to the philosophical
efforts by scientists themselves. For Einstein’s intellectual development it is in fact
clear that the writings of scientists such as Mach, Duhem, Poincaré, and Helmholtz

119 For this and the following, see the detailed study, (Köhnke 1986).
120 For an attempt to assess this historical situation from the point of view of a systematic historical epis-

temology, see (Damerow and Lefèvre 1994).
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had a greater impact on his philosophical reflection on science than the works of con-
temporary academic philosophers, precisely because they often dealt with the philo-
sophical implications of concrete problems at the forefront of research. Nevertheless,
it would be misleading to consider Einstein’s own philosophical contribution only as
a continuation of the tradition of epistemological and methodological reflections by
nineteenth-century philosopher-scientists. Although this view is naturally suggested
by the separation of physics and philosophy as understood today, it is too restrictive
to capture the peculiar way in which research in physics and philosophical reflection
are intertwined in Einstein’s work. In fact, Einstein’s scientific contributions to many
branches of physics, from thermodynamics to statistical mechanics, from the theory
of relativity to quantum physics, cannot be understood without assuming the back-
ground of a scientific world picture holding together otherwise disparate chunks of
knowledge. As student, Einstein already possessed an extraordinary overview of the
state of physics of his time. This enabled him to recognize foundational questions of
physics in problems which others preferred to see only from the point of view of their
area of specialization.121 In comparison to Einstein’s perception of the entire body of
physics and its conceptual incongruences, the claim of those who undertook the con-
struction of, say, an electromagnetic world picture almost appears to be an attempt to
conceal the limitations of a specialists’ outlook. In any case, Einstein’s perspective
distinguished itself profoundly—and with significant consequences—from the
mutual ignorance that characterized the field theoretical approach to the problem of
gravitation and the approach of a mechanistic generalization of the relativity princi-
ple, as we have seen earlier.

5.3 Einstein and the Culture of Science

From this sketch of the historical relation between physics and philosophy, it should
be clear that the roots of the scientific worldview, which shaped Einstein’s perception
of physics at the beginning of his career, could only have been of a highly eclectic
and backward character. From what is known of his early biography, it is clear that
his reading of popular scientific books, together with his exposure to the technical
culture associated with the business activities of his family, played a crucial role in
the early development of his scientific worldview.122 The popular scientific books
that he devoured as an adolescent combined an easily accessible and conceptually
organized overview of scientific knowledge with the claim that the enterprise of sci-
ence also serves as a model for the development of moral and political standards.123

These works represented an attempt to transmit the values of democracy and of polit-
ical and technological progress (which had been defeated on the political scene with

121 For a reconstruction of Einstein’s discoveries of 1905 along these lines, see (Renn 1993). See also
(Holton 1988, chap. 4).

122 For evidence, see (Einstein 1992), as well as the documents collected in (CPAE 1); for historical dis-
cussion, see (Damerow and Lefèvre 1994; Gregory 2000; Pyenson 1985; Renn 1993).

123 See, in particular, (Bernstein 1867–1869).
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the failure of the revolution of 1848) in the medium of popular science.124 Einstein’s
scientific worldview, which apparently had some of its roots in his early fascination
with these popular scientific books, has indeed much in common with their image of
science as a substitute for religion, with their appeal to the moral and also political
ideals of science, and with their effort to achieve a conceptual unification of scientific
knowledge beyond its disciplinary boundaries.125

The conceptual framework that formed the basis of this effort was a rather primi-
tive combination of remnants of the old natural philosophy from the beginning of the
nineteenth century, and of scientific results roughly on the level of the state of knowl-
edge at the middle of the century. It was, however, apparently sufficient to provide the
young Einstein with a global perspective on science to which he could then assimilate
a broad array of detailed knowledge without committing himself to a premature spe-
cialization. In any case, during his entire scientific career he pursued the idea of a
conceptual unity of physics, whose first primitive image he may have encountered in
his early reading of popular scientific literature. The history of Einstein’s formulation
of the special theory of relativity, for instance, illustrates not only that he saw, even at
the start of his career, in the conceptual diversity of mechanics and field theory a
challenge to this unity of physics, but also that he was aware that neither of the two
subdisciplines alone could provide the basis for a solution of this conflict. The foun-
dation of the special theory of relativity—the principle of relativity being rooted in
classical mechanics, and the principle of constancy of the speed of light in the tradi-
tion of field theory—makes it clear that the conceptual innovation represented by this
theory presupposed an integration of the knowledge accumulated in these two
branches of classical physics.126

In Einstein’s reaction to the clash between classical mechanics and field theory in
the case of gravitation it is now possible to recognize an intellectual attitude that was
deeply rooted in his scientific worldview and shaped by his experience with the cre-
ation of the special theory of relativity.127 The approach of a mechanistic generaliza-
tion of the relativity principle had a function for the emergence of general relativity
which is similar to the function mechanics had for the development of special relativ-
ity: it supported the principle of relativity with a network of arguments that went
beyond the narrow scope of the specific questions under examination, whether these
concerned the electrodynamics of moving bodies or the integration of Newton’s the-
ory of gravitation into a relativistic field theory. Although Einstein’s perspective on
the foundational problems of physics encompassed the entire range of classical phys-

124 The biographical background of Bernstein, the author of the book which apparently played a key role
for Einstein’s early intellectual development, is discussed in (Gregory 2000). For more on the relation
between popular scientific literature and political developments in the nineteenth century, see (Gre-
gory 1977); see also (Lefèvre 1990).

125 For a systematic analysis of the role of “images of science” as a mediator between science and its
external influences, see (Elkana 1981). For a discussion of the religious dimensions of Einstein’s sci-
entific worldview, see (Renn 2005).

126 For further discussion, see “Classical Physics in Disarray …” (in vol. 1 of this series).
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ics, there can be no doubt that it was dominated by the tension between its two major
conceptual strands, field theory and mechanics. In 1931, for instance, he wrote:

In a special branch of theoretical physics the continuous field appeared side by side with
the material particle as the representative of physical reality. This dualism, though dis-
turbing to any systematic mind, has today not yet disappeared.

He then added with specific reference to Lorentz’s theory of electrons, as well as with
respect to the special and general theories of relativity: 

The successful physical systems that have been set up since then represent rather a com-
promise between these two programmes, and it is precisely this character of compromise
that stamps them as temporary and logically incomplete, even though in their separate
domains they have led to great advances. (Einstein 1931a, 69–70, 72)

For Einstein, the insight into the need to overcome the dualism of matter and field
was not just paying lip service to the conceptual unity of physics, but one of the prin-
cipal determinants of his research program. While his perspective was broader than
that of many contemporary physicists, it was also limited by this same program. The
extent to which Einstein’s intellectual horizon was actually circumscribed by the
problem of reconciling the fundamental, conceptual conflict he perceived at the heart
of classical physics can be seen in his role, up to the twenties, in the exploration of
the consequences of the theory of general relativity. Contrary to other researchers
who took part in this research, Einstein’s interest focused almost exclusively on what
might be called the “philosophical closure” of the new theory. Whether concerning
boundary conditions for the gravitational field, or the exact solutions to the field
equations, his interest in these emerging research topics was not guided by a program
of exploring new features of the theoretical structures he had created, nor by compar-
ing these structures with the empirical results of astronomy, but rather by the question
of whether or not a deeper understanding of general relativity would reveal its agree-
ment with the heuristics that had guided its discovery. This interest merely reflects the
perspective which had accompanied Einstein’s work on general relativity since its
inception: he had not searched for a theoretical foundation of cosmology, but rather
for a contribution to the conceptual unification of classical physics and, in particular,
a synthesis of the field theoretical and mechanical aspects of gravitation.

127 Einstein himself compared the heuristics which motivated his search for a general theory of relativity
with that guiding his formulation of special relativity: “The theory has to account for the equality of
the inertial and the gravitational mass of bodies. This is only achieved if a similar relation is estab-
lished between inertia and gravitation as that [which is established] by the original theory of relativity
between Lorentz’s electromotive force and the action of electrical field strength on an electrical mass.
(Depending on the choice of the frame of reference, one is dealing with one or the other.)” (“Die
Theorie muss Rechenschaft geben von der Gleichheit der trägen und schweren Masse der Körper.
Dies wird nur erzeilt, wenn zwischen Trägheit und Schwerkraft eine ähnliche Beziehung hergestellt
wird, wie durch die urprüngl. Relativitätstheorie zwischen Lorentz’scher elektromotorischer Kraft
und Wirkung elektrischer Feldstärke auf eine elektrische Masse. (Je nach der Wahl des Bezugssy-
stems liegt das eine oder das andere vor.)”) Einstein to H. A. Lorentz, 23 January 1915 (CPAE 8, Doc.
47 - my translation).
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In spite of these limitations of Einstein’s perspective, and in spite of the conflict
between his heuristic expectations and the conceptual implications of what he had
found, it is remarkable that in the course of his work on general relativity he was nev-
ertheless gradually able to overcome his own preconceived expectations and to adapt
the interpretation of his theory to new results. This contrasts with many other cases of
conceptual innovation in science, in which the crucial step of conceptual innovation
takes place at a generational transition, in the transmission of knowledge from “mas-
ter” to “disciple” so to speak, as was actually the case in the transformation of
Lorentz’s electrodynamics into Einstein’s special theory of relativity.128 Einstein’s
own significant contribution to the conceptual understanding of general relativity is
related to the fact that, from his earliest efforts to formulate such a theory until the
end of his life, he expounded unceasingly the conceptual presuppositions and conse-
quences of his research in accounts accessible also to the non-specialist. Einstein was
himself one of the great authors of popular scientific literature. With only minimal
technical content, his writings made the intellectual core of his scientific problems
accessible to readers. That Einstein’s general accounts of the theory of relativity func-
tioned not only to disseminate expert knowledge to the layman, and that they also
formed a medium for his own reflection on the conceptual aspects of scientific prob-
lems, are facts often overlooked by philosophers of science. But the gradual adapta-
tion of Einstein’s Machian heuristics to the implications of general relativity, and its
eventual definitive abandonment in the light of these implications, provide a vivid
illustration of the impact these reflective accounts had on Einstein’s own understand-
ing of general relativity.

In general, it is hardly possible to overlook the significance that the effort to
explain scientific knowledge to laymen had for Einstein’s intellectual biography, in
particular his capacity to address foundational questions beyond the limits imposed
by disciplinary specialization. In Bern, as well as in Zurich, he shared his ideas with a
group of friends, most of whom were not physicists. We know with certainty that Ein-
stein was indebted to Michele Besso for a decisive inspiration which made possible
the breakthrough in the formulation of the special theory of relativity.129 Einstein
also belonged to amateur science societies in Bern and in Zurich that offered an insti-
tutional framework for an exchange of ideas which transgressed the usual academic
and social boundaries. Even before studying physics in Zurich, he attended an
unusual high school in Aarau whose intellectual atmosphere presented no sharp
demarcation between research and education, and in which he could experience the
spirit of a res publica litterarum. Teachers, who were also scientists, such as the
physicists Conrad Wüest and August Tuchschmid, or the linguist Jost Winteler, must
have confirmed Einstein’s conviction that science could offer the foundation for mak-
ing a life, and not just an intellectual life.130

128 See (Damerow et al. 2004; Renn 1993).
129 See the acknowledgement in (Einstein 1905) as well as the recollection in (Ishiwara1971).
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To conclude: a culture of science which includes the effort of explanation as well
as the search for conceptual unity in the diversity of scientific knowledge, that is, a
“culture of scientific mediation,” forms an essential background for Einstein’s philo-
sophical perspective on the foundational problems of physics. The historical precon-
ditions that made this perspective possible were already fragile at the time: evidently,
neither popular scientific literature nor amateur science societies could halt the disci-
plinary fragmentation of scientific knowledge and the loss of possibilities for a single
individual to achieve a comprehensive overview. Despite the claim by many physi-
cists of Einstein’s generation of the proximity of their field to philosophy, Einstein
was in fact already part of a small minority who continually attempted to reflect upon
the whole of physics and to search for its conceptual unity. The isolation in which he
worked on his later attempts to create a unified field theory testify to his failure to
achieve a unity of physics along these lines. But considering how much a single indi-
vidual could accomplish, even on the basis of inadequate presuppositions, we can
read the history of Einstein’s achievements as the challenge and the encouragement
to work on a culture of science that responds to the needs of today.
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1. Newton’s Law 

 

As is well known, the fundamental gravitational law was first

 

1

 

 conceived clearly by
Newton, and formulated in the third book of his 

 

Philosophiae naturalis principia
mathematica

 

, propositions I–VII. |
It states: If at a certain instant of time two mass elements with masses  and 

are at distance  from each other, then at the same instant a force acts on each of the
two elements in the direction of the other with a magnitude

In this expression,  is a universal—i.e., only dependent on the system of units—
constant, the so-called gravitational constant. 

1. DETERMINATION OF THE GRAVITATIONAL CONSTANT

 

2

 

2. Significance of this Determination

 

The inherent significance of the absolute determination of any physical constant is
enhanced in the case of the gravitational constant for two additional reasons:

1. If the gravitational constant is known, the acceleration due to gravity  and the
dimensions of the Earth yield the mass and the mean density of the Earth.

 

3

 

 The latter

 

1 About Newton’s forerunners cf. F. Rosenberger, 

 

Isaac Newton und seine physikalischen Prinzipien

 

,
Leipzig 1895. A compilation of nearly all papers (up to 1869) which are in some way related to the

 

mathematical

 

 implementation of the law of attraction can be found in I. Todhunter, 

 

History of the
mathematical theories of attraction and the figure of the Earth

 

, 2 Vols., London 1873.
2 Principal review literature about absolute determinations: J.H. Poynting, 

 

The Mean Density of the
Earth

 

, London 1894; F. Richarz and O. Krigar-Menzel, 

 

Berl. Abh

 

. 1898, Appendix; C.V. Boys, 

 

Rapp.
congrès internat. phys.

 

 3, Paris 1900, p. 306–349. Then there are Gehler’s 

 

Physikalisches Handwör-
terbuch

 

, Leipzig 1825, articles: 

 

Anziehung, Drehwage, Erde, Materie

 

; S. Günther, 

 

Lehrbuch der Geo-
physik

 

 1, 2nd ed., Stuttgart 1879; F. Richarz, Leipzig,

 

 Vierteljahrschr. astr. Ges.

 

 24 (1887), p. 18–32
and 184–186.

3 If  is the mean density of the Earth and  its radius, to first approximation we get

Considering the corrections which are caused by flattening, centrifugal force and their differences
within various latitudes, then one arrives at the relation explained in detail by F. Richarz and O. Kri-
gar-Menzel

 

2

 

where
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RP earth radius at the pole 6356079m,= =

a flattening 0.0033416,= =

c relation between centrifugal force and gravity at the equator 0.0034672.= =
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was the ultimate aim of most determinations; therefore, they are usually known as

 

determinations of the mean density of the Earth

 

.
2. If the Earth’s mass is known, the masses of the | other planets and of the Sun

follow, since the proportion of these masses to the Earth’s mass is supplied by astro-
nomical observation.

 

4

 

3. Survey of Various Methods

 

The various methods chosen to gain the value for the gravitational constant  in
absolute terms can be divided essentially into three main classes:

1. The force that masses of known magnitudes at known distances exert on each
other, was determined directly: determinations with the torsion balance, the double
pendulum, and the ordinary balance.

 

5

 

2. Changes in the direction or magnitude of the acceleration due to gravity 
caused by masses of known magnitudes were measured: deflection of the plumbline,
pendulum observations.

3. It was attempted to calculate the Earth’s mean density and thereby the gravita-
tional constant from the density at the surface, based on a more or less hypothetical
law about the increase of density towards the center of the Earth.

 

4. Determinations with the Torsion Balance

a. Static method

 

. The weights attached to the balance beam are attracted by masses

 

next to

 

 the beam. The resulting rotation of the beam is a measure of the attractive
force’s magnitude.

This method, which was probably first suggested by Reverend J. Michell,

 

6

 

 was
used by H. Cavendish,

 

7

 

 F. Reich,

 

8

 

 F. Baily,

 

9

 

 A. Cornu and J. Baille,

 

10

 

 C.V. Boys,

 

11

 

and finally by C. Braun.

 

12

 

Reich’s advance over Cavendish lies primarily in his use of a mirror arrangement
to make measurements. Baily’s measurements are particularly valuable because they
were extended to a large number of materials, and were varied in other, manifold
ways. Cornu and Baille have shown that the same | accuracy (the same deflection
angle) can be achieved despite any reduction of scale, if only a suitable choice in sus-

 

4 But cf. section 11.
5 In the latter method,  enters into the result.
6 Quoted from Cavendish, 

 

Lond. Trans

 

. 88 (1798).
7 See above note.
8 “Versuche über die mittlere Dichtigkeit der Erde mittelst der Drehwage,” Freiberg 1838, and “Neue

Versuche mit der Drehwage”, Leipzig 1852.
9

 

Lond. Astr. Soc. Mem. 

 

14 (1843).
10 Paris, 

 

C. R.

 

 76 (1873), p. 954–58.
11

 

Lond. Trans.

 

 186 (1889), p. 1–72.
12

 

Wien. Denkschr

 

. 64 (1897), p. 187–285. Report on this: F. Richarz, 

 

Leipzig Vierteljahrsschr. astr. Ges.

 

33 (1898), p. 33–44.
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pension provides equal oscillation periods of the torsion balance. Consequently, they
used much smaller dimensions for their apparatus and so avoided a number of distur-
bances. Boys

 

13

 

 extended this reduction to a smaller scale and made it possible to
replace the metal suspension wires with much more favorable quartz fibers. Braun
uses a torsion balance in a vacuum to avoid totally the worst disturbance while mea-
suring with the torsion balance, namely the air currents. 

Boys partly evaded the deficiency of the extremely small dimensions he used by
skillful arrangement of his torsion balance; however, the disadvantage remains that
with small dimensions, apart from the strong damping of the oscillations, errors in
length determination and deficient homogeneity of the material can easily spoil the
result’s accuracy.

 

14

 

 To avoid this deficiency of small dimensions and nevertheless
reach high sensitivity, F. R. Burgess

 

15

 

 suggested that arranging the weights to float on
mercury would enable the use of large masses and thin suspension wires. In a pre-
experiment with weights of  on both sides, he found a 12° deflection, but
has not yet carried out his determinations.

 

b. Dynamical method.

 

 The attracting masses are placed 

 

in line

 

 with the balance beam.
Their attraction serves to reinforce the restoring torque of the suspension. The result-
ing decrease of the oscillation period gives a measure of the attractive force’s magni-
tude.

With this method, C. Braun obtained a value of  that agrees very well with
results of his measurements via the static method. R. von Eötvös

 

16

 

 suggested modi-
fying this | method but has not yet published final results.

 

5. Determinations with the Double Pendulum

 

J. Wilsing’s vertical double pendulum

 

17

 

—a vertical balance beam with a weight at
each end, attracted by horizontally displaced masses—does not work by torsion of
wires, but uses gravity as the restoring force. The torque is reduced to a minimum by
placing the double pendulum’s center of gravity only ca.  beneath the edge.
Such an arrangement combines high sensitivity

 

18

 

 with significant stability, and more-
over, in contrast to the torsion balance, has the advantage of being influenced to a
lesser degree by air currents.

 

13 At length 2.3 cm of the balance beam, loaded on both sides with 1.3 to 3.98 g and deflected at each
side by 7.4 kg, Boys received a deflection of ca. 370 scale sections. For Cavendish the quantities con-
cerned were 196 cm, 730 g, 158 kg; he received a deflection of 6–14 scale sections.

14 Cf. F. Richarz’s report cited in note 12.
15 Paris, 

 

C.R.

 

 129 (1899), p. 407–409. Poynting

 

2

 

 had already performed a similarly arranged experi-
ment, but abandoned this arrangement due to interfering currents in the fluid.

16

 

Ann. Phys. Chem.

 

 59 (1896), p. 354–400.
17

 

Potsdam. Astr.-physik

 

.

 

 Obs.

 

 6 (1887), No. 22 and 23.
18 At  1 to  deflection.

10 2 kg×

G
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6. Determinations with the Ordinary Balance

 

The principle of this method, seemingly already presented by Descartes,

 

19

 

 is as fol-
lows. Two equal weights  are placed on the scales of a balance. Underneath one of
the two scales—possibly simultaneously above the other one—a mass  is brought
in. The weight difference now observed provides a measure of the attraction  has
on 

For the purpose of absolute determination of the gravitational constant this
method was probably first used by Ph. von Jolly,

 

20

 

 later by J.H. Poynting,

 

2

 

 and then
by F. Richarz and O. Krigar-Menzel.

 

2

 

Jolly’s arrangement, which was already used in Newton’s time by Hooke

 

21

 

 in a
quite similar way to determine a decrease of  with height, has the disadvantage that
vertical air currents caused by temperature differences can disturb the weighing pro-
cess by friction on the long suspending wires. Poynting avoided this shortcoming; fur-
thermore, he saw to it that the angle by which the balance beam rotates can be read
precisely, and that the attracting weights can be removed or brought closer without
having to lock the balance or to expose it to vibration. Richarz’s and Krigar-Menzel’s
method has the advantage of tolerating extraordinarily large attracting | masses
(100,000 kg lead) without excessive difficulties, and moreover of allowing an effective
four-fold attraction of this mass. However, the method suffers from the drawback that
relieving and locking the balance becomes necessary in the course of determination.

 

7. Determinations with Plumbline and Pendulum

a. Static method 

 

(

 

plumbline deflection

 

). Deflecting masses were always mountains,
and their deflection of the plumbline was determined by measuring the difference of
geographical latitude between two points, if possible taken to the north and south of
the deflecting mountain, once astronomically—where the direction of the plumbline
enters—and then trigonometrically. The difference between the two determinations is
twice the deflection caused by the mountain. The dimensions and the specific weight
of the rocks determine the mass of the mountain.

Determinations of this kind were carried out by Bouguer

 

22

 

 at Chimborazo, by
N. Maskelyne and C. Hutton,

 

23

 

 later by James

 

24

 

 and Clarke at mountains in the Scot-
tish highlands, by E. Pechmann

 

25

 

 in the Alps and under particularly favorable condi-
tions by E.D. Preston

 

26

 

 on the Hawaiian islands.

 

19 Cited in 

 

Observ. Sur la physique

 

, 2, Paris 1773.
20

 

Münchn. Abh.

 

 (2) 14 (1881); 

 

Ann. Phys. Chem.

 

 14 (1881), p. 331–335.
21 Cited in Rosenberger, note 1.
22

 

La figure de la terre

 

, Paris 1749, sec. VII, chap. IV.
23

 

Lond. Trans.

 

 1775, p. 500–542; 1778, p. 689–788; 1821, p. 276–292.
24 Phil. Mag. (4) 12 (1856), p. 314–316; 13 (1856), p. 129–132 and Lond. Trans. 1856, p. 591–607.
25 Wien. Denkschr. (math.-naturw. Kl.) 22 (1864), p. 41–88.
26 Washington, Bull. Phil. Soc. 12 (1895), p. 369–395.
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It has been suggested to use the sea at low and high tide27 or a drainable lake28

instead of a mountain, but a determination never seems to have been performed this
way, though it would have significant advantages over using a mountain.
b. Dynamical method (pendulum observation). The scheme of such determinations is
the following. Either at the foot and the top of a mountain or on the Earth’s surface
and in the depth of a mine, the oscillation period of the same pendulum is observed.
The measured difference in oscillation period and hence in the acceleration due to
gravity at the two points | yields the attraction of the mountain or the layer of Earth
above the mine, respectively.29

Determinations of the first kind are due to Bouguer22 (Cordills), Carlini30 (and
Plana) (Mont Cenis), under particularly favorable conditions from Mendenhall31

(Fujiyama, Japan) and E.D. Preston26 (Hawaiian islands).
Determinations of the second kind were first suggested by Drobisch,32 later car-

ried out by G.B. Airy33 and in large number by R.v. Sterneck.34

A third method, in principle definitely more favorable, was attempted by A. Ber-
get:35 artificial alteration of  due to a difference in the water level of a drainable
lake. However, his determination was spoiled by an unsuitable measurement of this
change in 

8. Calculation of the Gravitational Constant36

1. Laplace37 based his calculations on the following conditions, as did Clairaut and
Legendre:

a. The Earth consists of separate ellipsoidal layers. The density within each layer is
constant.

b. The rotation is so slow that the deviation from the spherical shape becomes small,
as well as the influence of the centrifugal force on 

c. The Earth’s substance shall be regarded as fluid.

27 By Robison 1804 (cited by Richarz and Krigar-Menzel, see note 2), Boscowich 1807 (cited in Monatl.
Korrespondenz z. Beförd. d. Erd- u. Himmelskunde 21 (1810)), furthermore by von Struve (cited in
Astr. Nachr. 22 (1845), p. 31 f.)

28 F. Keller, Linc. Rend. 3 (1887), p. 493.
29 Cf. for this and the following numbers vol. VI of the Encyclop., Geophysik.
30 Milano Effem. 1824. Cf. E. Sabine, Quart. J. 2 (1827), p. 153 and C.J. Guilio, Torino Mem. 2 (1840),

p. 379
31 Amer. J. of Science. (3) 21 (1881), p. 99–103.
32 De vera lunae figura etc., Lipsiae 1826.
33 Lond. Trans. 1856, p. 297–342 and 343–352. For calculation cf. S. Haughton, Phil. Mag. (4) 12

(1856), p. 50–51 and F. Folie, Bruxelles Bull. (2) 33 (1872), p. 389–409.
34 Wien. Mitteil. d. milit.-geogr. Inst. 2–6, 1882–1886 and Wien. Ber. 108 (2a), p. 697–766.
35 Paris C. R. 116 (1893), p. 1501–1503. Cf. Gouy’s objection (Paris C. R. 117 (1893), p. 96) that the

temperature would have had to be constant at least to 
36 Cf. F. Tisserand, Mécan. cél. 2, Paris 1891, chap. XIV and XV.
37 Méc. cél. 5 (1824), Livr. 11, chap. 5.

[32]
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Under these circumstances Laplace calculates the conditions of equilibrium, into
which, besides the Earth’s elliptical property, the | law expressing the density of an
Earth layer as a function of its distance from the center enters. Laplace makes two
assumptions for this law:

(1)

(2)

where  stands for the density,  for the distance of a layer to the Earth’s center
(Earth radius  and   as well as   are constants. These constants are
determined on the one hand by the value of  on the Earth’s surface, and on the other
hand by the derived equilibrium conditions. One then obtains a relation between the
mean density of the Earth (and hence of the gravitational constant) and the Earth’s
surface density  that is, from the first assumption regarding increasing density
towards the center of the Earth, it follows that

and from the second assumption, that

if the Earth’s ellipticity is assumed to equal 
2. On essentially the same basis, using Laplace’s second assumption regarding
increasing density towards the center of the Earth, Clairant’s formula for the equilib-
rium of the rotating Earth, taken to be a fluid, and the value  for the elliptic-
ity of the Earth, J. Ivory38 arrives at the relation:39

3. The recent extensive literature on this question (Lipschitz, Stieltjes, Tisserand,
Roche, Maurice Lévy, Saigey, Callandreau, Radau, Poincaré, Tumlirz) can not be dis-
cussed here; therefore we refer to the previously cited chapters in Tisserand40 or to
Vol. VI of the Encyclopedia.

9. The Result of the Determinations

Regarding the question of what should be taken as the most probable value for the
gravitational constant, the results of the methods discussed in sections 7 and 8 must
immediately be excluded. |

38 Phil. Mag. 66 (1825), p. 321 f.
39 Taking for the mean density all over the Earth surface S. Haughton’s33 value  one would

obtain according to Laplace:  and according to Ivory: 
40 Cf. note 36.[1] 

[33]
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Indeed, the terrestrial methods (section 7) actually carried out have the advantage
over laboratory methods (sections 4–6) in that the attracting masses and hence the dif-
ferences to be observed have a relatively significant magnitude. But this advantage is
more than outweighed by the fact that dimensions and density of the attracting masses
are known only incompletely, and that the inadequately observed mass distribution
below the place of observation plays an essential, but entirely uncontrollable, part.41

Those terrestrial methods, however, that could have had prospects for success,
because not only do they allow for using very large masses, but also because the mag-
nitude of the attracting masses could be determined with sufficient accuracy, and
because the influence of the environment—such as change of magnitude or direction
of  by a lake or the sea at different levels—would drop out, have not been carried
out at all or were carried out only in a flawed manner.

The attempts to calculate the gravitational constant (section 8) can not provide a
reasonably reliable result, either. Apart from other uncertainties, the mean surface den-
sity of the Earth enters this calculation, and this is far from being known with as much
accuracy as the gravitational constant itself when obtained by laboratory determination.

Thus only the results of laboratory determinations remain (sections 4–6). Consid-
ering the two most recent determinations from each method only, we get the follow-
ing compilation:

41 Cf. W.S. Jacob, Phil. Mag. (4) 13 (1857), p. 525–528. Conversely, such determinations can be signifi-
cant because they allow for a conclusion about mass distribution close to the place of observation. Cf.
R. v. Sterneck’s Messungen.34

Δ G

Torsion balance
Boys 

Braun 

5.527 

5.5270a

a. In copies issued later, Braun assumed the most probable result of his observations to be = 5,52725
(communicated by Prof. F. Richarz).

6.658 · 10–8 cm3 s–2 g–1

(Double pendulum Wilsing 5.577 6.596 · 10–8 cm3 s–2 g–1)

Balance

Poynting 

Richarz and  
Krigar-Menzel

5.4934 

5.5050 

6.698 · 10–8 cm3 s–2 g–1

6.685 · 10–8 cm3 s–2 g–1

Mean value of these 
determinations

5.513b

b. As we know, Newton (Principia lib. III, prop. X) estimated the Earth’s mean density to be 5–6.
The mean 5.5 thus agrees with the mean value from the most recent measurements to 

6.675 · 10–8 cm3 s–2 g–1

[34]
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| The good agreement42 between the values obtained by the same method on the
one hand, and the relatively significant disagreements among results of different
methods43 on the other, show that these disagreements can only be due to deficiencies
in principle of the methods. As long as these have not been cleared up, none of the
results can be given more weight than another. It is a pity that Wilsing’s method has
not yet been employed by a second observer to check Wilsing’s result, and that the
influence of magnetic permeability of the double pendulum has not yet been exam-
ined.44 Therefore, we did not take Wilsing’s result into consideration in the calcula-
tion of the mean value above.

2. ASTRONOMICAL AND EXPERIMENTAL TESTS
OF NEWTON’S LAW

10. General

Two independent fields insure that Newton’s law, even if not absolutely accurate, rep-
resents real conditions with a far-reaching accuracy unmatched by hardly any other
law. 

In the astronomical45 domain, this law yields planetary motions not only to the
first approximation (Kepler’s laws); but even to the second approximation, the devia-
tions of planetary motion due to pertubations by other planets follow from Newton’s
law so accurately that the observed perturbations led to the prediction of the orbit and
relative mass of a hitherto unknown planet (Neptune).

On the other hand there are a number of astronomical | observations that show
deviations compared to calculations based on Newton’s law. This deviation amounts
to46

1. ca.  per century in the perihelion motion of Mercury;

2. 5-fold probable error in the motion of the node of Venus’ orbit;

3. 3-fold probable error in the perihelion motion of Mars; and

4. 2-fold probable error (uncertain!) in the eccentricity of Mercury’s orbit.

In addition there are:

5. significant anomalies in the motion of Encke’s comet; and

42 Between torsion balance determinations there is a difference  between balance determi-
nations there is a difference of ca. 0.2%.

43 The largest difference between balance and double pendulum determinations is ca. 1.5%.
44 According to F. Richarz and O. Krigar-Menzel (Bemerkungen zu dem ... von Herrn C.V. Boys über die

Gravitationskonstante ... erstatteten Bericht, Greifswald 1901) the deviation of Wilsing’s result from
others could be caused by such an influence.

45 Discussion of the validity of Newton’s law in the astronomical domain in Tisserand, Méc. cél. 4
(1896), chap. 29 and S. Newcomb.48

46 S. Newcomb, The elements of the four inner planets etc., Washington 1895. On page 109 ff. is a dis-
cussion of possible explanations of these deviations.

[35]
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6. small irregularities in the Moon’s orbit.

Small corrections of Newton’s law are therefore not excluded by the astronomical
evidence,47 even if it is not at all settled—particularly in the cases listed in 5) and 6)
where conditions are more complicated and uncertain than for planetary orbits—that
the above differences are due to an inaccuracy of the gravitational law.46

In the experimental area the best determinations of the gravitational constant,
which all rest on the assumption of the validity of Newton’s law, yield results in
rather good agreement.48 As these determinations were carried out with masses of a
great variety of magnitudes, materials and distances, this agreement therefore
excludes any considerable inaccuracy of | Newton’s law, and allows at most for small
corrections.

11. Dependence on Mass: Astronomical Test

Newton inferred that the force that two bodies exert on each other is proportional to
the mass of each body as follows:

a. Observation shows Jupiter conferring acceleration to its satellites, the Sun to
the planets, Earth to the Moon, and the Sun to Jupiter and its satellites, which is equal
at equal distance. Hence, it follows that in these cases the force must be proportional
to the mass of the attracted body.

47 Th. von Oppolzer (Tagebl. d. 54. Vers. d. Naturf. u. Ärzte, Salzburg, 1881) even draws quite an apod-
ictic conclusion: “The theory of the Moon makes a conjecture quite probable, the theory of Mercury
points at it firmly, Encke’s comets lift it up to an irrefutable certainty that the theories built solely on
Newton’s law of attraction in present form are not sufficient for explaining the motion of heavenly
bodies.”

48 To compare the best terrestrial and laboratory methods:

Laboratory   

methods   

  Observer

Boys

Braun

Poynting

Wilsing

Richarz  and Krigar-Menzel      ⎩
⎪
⎪
⎨
⎪
⎪
⎧

attracting mass          

7.4 kg     

9.1 ”       

154 ”       

325 ”       

100.000 ”              

   Δ

5.527

5.5270

5.4934

5.577

5.5050

Terrestrial    

methods     

  Observer

Mendenhall

E. D. Preston

      ”   

von Sterneck

(Wien. Ber. 108)        

      ”   

      ”   ⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

attracting mass     
mountain of 3.800 m height     

      ”          3.000       ”        

      ”          4.000       ”        

strata of various thickness     

 ”   

 ”   

 ”   

   Δ
5.77

5.57

5.13 ⎭
⎬
⎫

 5.35

5.275

5.56

5.3

5.35

[37]
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b. The principle of action and reaction then implies that the force must be propor-
tional to the mass of the attracting body as well.

M.E. Vicaire49 raised the following objection against this line of reasoning, which
would however require discussion.50 The examples presented represent a very special
case: a very large body attracting a relatively very small body. But then the assump-
tion that at equal distance the attraction can only be a function of the two masses
already provides the result that the attractive force must be approximately propor-
tional to the small body’s mass.

This is because the function  which expresses the attraction a large mass 
has on small mass  is certainly homogeneous in  and  One can hence put: |

so the attraction is to first approximation proportional to  Hence, from the fact that
this proportionality is confirmed by observation, one must not conclude that the
attraction is also proportional to the mass of the attracting large body. However, from
this it would follow that calculations of planetary masses in relation to the Sun’s mass
based on Kepler’s third law are in principle misguided.

Vicaire also objects to supporting these calculations by the usual calculations
from the planetary perturbations. The secular perturbations of a planet  by another

 which are primarily observed and drawn upon in these calculations, do not at all
result in the relative mass of planet  but in the proportion  which
according to the above does not need to be identical to  Only the periodic
perturbations could provide information about 

12. Dependence on Mass:
Experimental Test for Masses of the Same Material

The -determinations of Poynting2 and of Richarz and Krigar-Menzel2 are of spe-
cial value in relation to the question of how far the proportionality of the attractive
force to the mass is guaranteed for masses of the same material. Both experimenters
used unobjectionable laboratory methods carried out with the greatest care. Both

49 Paris, C.R. 78 (1874), p. 790–794.
50 This is opposed by the agreement within probable error between the mass of the planets determined

from the perturbations which they exert on other planets, and the mass of the same planets determined
from the motion of their moons, if they have any. For example, the mass of Mars from Jupiter’s per-
turbations results in  from the elongation motions of its moons

 Cf. as well F.W. Bessel, Berl. Abh. 1824 and Ges. Werke 1, p. 84.
1 2.812.526,⁄=

1 3.093.500.⁄=
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determinations employed the same material (lead) and the same method of measure-
ment, but masses of very different magnitudes (154 or 100.000 kg). Even though in
one case the mass was 650 times greater than the other, the results agree to approxi-
mately 0.2%.

13. Dependence on Mass:
Experimental Test for Masses of Various Chemical Compositions

Three different methods have been used to examine whether the proportionality of
the attractive force to mass is also strictly valid for masses of different chemical com-
positions.

a. The gravitational constant was determined for masses of different materials.
F. Baily9 carried out a large number of measurements of this kind. If his results

are arranged according to the specific weight | of the mass which was suspended from
the torsion balance,51 and if we take for each material the mean value from all mea-
surements, the following is revealed. The values of  increase—the values of 
decrease accordingly—as the specific weight of the mass is decreased.52 However,
there is reason to assume that these disagreements are a matter of a basic error in his
arrangement or calculation.53

In any case, the fact that the results of Boys11 and Braun12 agree to 0.01%,
although they refer to different materials, counts against the assumption that these
different results are due to a different value of the gravitational constant for different
substances. Likewise, with the help of a particularly sensitive torsion balance,
v. Eötvös16 claims to have found that the difference of attraction of glass, antimony,
and corkwood from that of brass is less than  and of air from that of brass
less than  of the total attraction.

b. Pendulums were produced out of various materials to compare their periods of
oscillation.

51 Same attracting substance everywhere = lead.
52       
                                 

53 Cf. also F. Reich in the paper cited in note 8, “Neue Versuche etc.”, p. 190.

[39]

Δ G

Substance          specific weight        Δ  

Platinum              

Lead

Brass

Zinc

Glass

Ivory

21                   

11.4                

8.4                

7                   

ca.  2.6                

1.8                

5.609

5.622

5.638

5.691

5.748

5.745 ⎭
⎬
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This method, already employed by Newton,54 has been refined by F.W. Bessel,55

in particular. While Newton could only conclude from his experiments that the differ-
ence of attraction which the Earth exerts on bodies of very different composition is
smaller than  of the total attraction, Bessel managed to squeeze this limit
down to 

c. A sealed vessel which contains two different chemical substances is weighed,
then the substances combine, and after completion of the chemical reaction the vessel
is weighed again. |

The first experiments of this kind by D. Kreichgauer56 with mercury and bro-
mine, and with mercury and iodine gives the result “that with the bodies employed, a
change of attraction by the Earth due to chemical forces should stay below 1/
20,000,000 of the total attraction.” But H. Landolt57 found under conditions as sim-
ple as possible—except for reactions, where a change of weight could not be deter-
mined with certainty—the following:

1. For reduction of silver sulphate by ferrosulphate in three series of experiments,
a weight decrease by 0.167, 0.131 and 0.130 mg.

2. For iodic acid and hydrogen iodide weight decreases in six experimental series,
varying between 0.01 and 0.177 mg.

Not only do these decreases in weight exceed probable measurement errors, but
some of them also exceed the largest deviation among single measurements.
A. Heydweiller58 resumed these measurements after M. Hänsel59 established that the
deviations observed by Landolt in the first example can not be explained by the influ-
ence of magnetic forces. He also obtains decreasing weight in a series of cases and
reaches the conclusion: “one may regard a change in weight as ascertained: in the
effect iron has on copper sulphate in acid or basic solution ... , regarding the dissolu-
tion of acid copper sulphate ... , and in the effect potassium hydroxide has on copper
sulphate ... .”

The cases presented above are therefore well established but for the time being
completely unexplained deviations from the proportionality of the action of gravity to
mass.

54 Principia lib. III, propos. VI.
55 Astr. Nachr. 10 (1833), p. 97.
56 Berl. physik. Ges. 10 (1891), p. 13–16.
57 Zeitschr. physik. Chem. 12 (1894), p. 11. He cites that in the synthesis of iodine and bromide silver

J. S. Stas always obtained less than equivalent of the initial quantities. Indeed, the difference
amounted on average in five experiments to  of the total mass.

58 Ann. Phys. 5 (1901), p. 394–420.
59 Diss. Breslau 1899.
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14. Dependence on Mass:
Experimental Test for Masses of Various Structures

The conjecture that attraction between two masses could depend on their structure is
suggested by several theories explaining gravitation. This was examined experimen-
tally in two directions. |

a. Kreichgauer56 examined whether a body (acetic sodium) changes weight while
crystallizing. He found, however, that any change of weight is below  of
the total attraction.60

b. A. S. Mackenzie61 as well as J. H. Poynting and P. L. Grey62 deal with the
question of whether the gravitational effect of a crystalline substance varies with dif-
ferent directions. Mackenzie tested calcite against lead, and also calcite against cal-
cite, but he found the difference to be smaller than 1/200 of the total attraction.
Poynting and Grey arrive at the result that the attraction of quartz to quartz at parallel
and crossed axes differs less than 1/16500 of the total attraction, and that at parallel
axes, when one of the crystals is rotated by 180°, the attraction changes by less than
1/2850 of the total.

15. Dependence on Distance: Astronomical Test (cf. Vol. VI)[2]

S. Newcomb63 discussed the question of the extent to which the  in Newton’s
law is fixed by astronomical data. He reaches the following result:

a. The agreement between the observed parallax of the Moon and that calculated
from the magnitude of  on the Earth surface shows that for values of  that lie
between Earth’s radius and the radius of the Moon’s orbit, the 2 in  is guaranteed
up to 1/5000 of its value. 

b. The agreement between the observed perturbation of the Moon by the Sun and
the calculation based on Newton’s law proves (with about the same accuracy) the
validity of  up to distances of the order of magnitude of the Earth’s orbit, i.e.
approximately up to 24000 times the Earth’s radius.

c. The validity of Newton’s law up to the limits of the entire planetary system fol-
lows from the validity of Kepler’s third law; that is, up to distances which amount to
20 times the Earth orbit’s radius. Yet for this range the | accuracy with which 
can be established from observation cannot be stated with certainty.

One more touchstone of the same question, as Newton64 already emphasized, is
related to the fact that perihelion motion of the planets would result from a deviation
in the exponent of the distance from 2. While on the one hand such a deviation can

60 Earlier Bessel,57 and more recently von Eötvös,16 found no difference between crystalline and amor-
phous bodies in their experiments.

61 Phys. Rev. 2 (1895), p. 321–343.
62 Lond. Trans. A 192 (1899), p. 245–256.
63 In the paper cited in note 46.
64 Principia lib. I, sec. IX.
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not be large, because otherwise this would result in perihelion motions which contra-
dict observation, on the other hand the observed anomalous perihelion motions could
be rooted in a minor inaccuracy of the gravitational law. Indeed, M. Hall65 proved
that the law previously examined by G. Green,66 which replaces  with 
where  stands for a small number, is sufficient to explain the anomalous perihelion
motion of Mercury, if  This figure for  would also give the right
result for the observed anomalous perihelion motion of Mars, though for Venus and
Earth the consequence would be somewhat too large a perihelion motion.67 However,
Newcomb, after discussing the respective conditions, states that Hall’s assumption
seems to him “provisionally not inadmissible.”

16. Dependence on Distance: Experimental Test

This question was examined directly by Mackenzie,61 by measuring at various dis-
tances the attraction of the same bodies with the torsion balance. He found that the
discrepancy between the observed result and that calculated from Newton’s law is in
any case smaller than 1/500 of the total attraction.

From a theoretical perspective, our confidence in the 2 in the exponent of New-
ton’s law stems essentially from the fact that from the standpoint of field theory
(section 34) this law alone is compatible with the assumption of a general, source-
free distribution of field strength; i.e., the concept of lines of force of the gravitational
field is meaningful only if this law is valid precisely.

17. Influence of the Medium on Gravitation

The analogy of electric and magnetic charges, whose effect depends to a large degree
on the medium in which they are contained, makes it seem altogether possible that
such an influence is present in gravitation | as well, and that hence the gravitational
constant is not universal, as Newton assumed, but rather depends on the medium. Just
the relatively good agreement, in spite of the very different form of the employed
masses, among -determinations excludes a fairly considerable influence of bodies
in the region between the attracting masses.68 Furthermore, with a torsion balance
L.W. Austin and C.B. Thwing69 directly examined the question of whether a body
with a different permeability for gravitation than air exists. Between two bodies
attracting each other they inserted plates of various substances whose thickness was
1/3 the distance between the attracting masses. The result was that the difference
would have to be smaller than 0.2% of the total attraction.

In another direction, Laplace70 discussed the question of a possible influence of
the medium. He assumes that bodies except air may possess a small absorption coef-

65 Astr. Journ. 14, p. 45.
66 Cambr. Trans. 1835, p. 403.
67 Cf. Newcomb in the paper cited in note 46, p. 109.
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ficient  for gravitation so that the gravitational law for two mass elements  and
 embedded in such a medium would be:

The application of this law to the Sun-Moon-Earth system, however, leads him to the
conclusion that the value for Earth (radius  would have to be:71

18. Influence of Temperature

Some mechanical theories about the nature of gravitation72 make it seem quite possi-
ble that the gravitational effect is modified by the temperature of | the medium. A
direct examination of this question has not yet been carried out; however, von Jolly
points out that in his absolute determinations, the temperature difference was maxi-
mally 29.6°, without any difference in the results exceeding the magnitude of experi-
mental error.

19. Dependence on Time: Constancy

The tacit assumption of the gravitational effect’s independence on time in Newton’s
law has been challenged in two respects:

a. Is the gravitational constant also a constant with respect to time, or does it
change over the course of time?

b. Does gravitation need time to take effect—does it have a finite speed of propa-
gation, or is the gravitational effect instantaneous? 

68 Wilsing uses long cylinders, Boys and Braun use spheres, Richarz and Krigar-Menzel use cubes, nev-
ertheless good agreement, namely:

Cf. in particular note 48.
69 Phys. Rev. 5 (1897), p. 294–300.
70 Méc. Cél. 5, book XVI, chap. IV, §6.
71 Poynting presents an indirect proof against the existence of a specific gravitational permeability: A

deflection (refraction) of the gravitational effect has never been observed. However this question
appears not to have been carefully examined to date.

72 Cf. part V of this article.
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R. Pictet73 discussed the first question based on the idea that gravitation is caused
by impacts of aether particles.72 His reasoning is the following: The total energy of
the solar system consists of two parts: 1) the vis viva of planets and Sun; 2) the vis
viva of aether particles. The vis viva of planets varies strongly depending on their
momentary position with respect to the Sun. If the total energy of the solar system
remains constant, then it follows that the vis viva of aether atoms and thereby the
gravitational constant have to change with the course of time.

Experiments to prove such a temporal change of the gravitational constant would
have a chance to succeed according to R. Pictet and P. Cellérier,74 since the differ-
ence in the vis viva of the planets—the decisive ones are Jupiter and Saturn—e.g.,
between the minimum of year 1898–99 to the maximum of 1916–17, comes to about
18%.

20. Dependence on Time: Finite Speed of Propagation75

The second question, whether gravitation operates instantaneously or has a finite
speed of propagation, was examined recently in terms of planetary motion by
R. Lehmann-Filhès76 and J. v. Hepperger.77 |

Both works introduce a finite propagation velocity in the same way. At the
moment when the planet (mass  is at distance  from the Sun (mass  the force

 as per Newton’s law is propagated from the Sun with a finite velocity.
This force then takes effect on the planet at a time when its distance from the Sun is
different from  in direction as well as in magnitude. The same holds for the force
that the planet exerts on the Sun.

There is some difference between Lehmann-Filhès and von Hepperger in their
equations of motion, as the former takes the Sun’s velocity, the latter the velocity of
the Sun’s and the planet’s center of gravity, to be constant. 

Both arrive at the result that the most influential change of planetary motion
would be a secular change of the mean radius. From this it follows: first, that the
introduction of a finite speed propagation while retaining Newton’s law does not con-
tribute anything to remove the difficulties regarding planetary orbits as presented on
p. 86 [p. 36]; and second that the hypothetical propagation velocity would have to be
much larger than the velocity of light, because otherwise a secular change of the
mean radius would result, by an amount that would contradict observation. If the
velocity of the Sun’s proper motion lies between 1 and 5 km/sec,78 then the propaga-

73 Genève Bibl. (6 sér., 3 période) 7 (1882), p. 513–521.
74 Genève Bibl. (6 sér., 3 période) 7 (1882), p. 522–535.
75 Lecture on this question: S. Oppenheim, Jahresber. kais. kgl. akad. Gymn. Wien 1894–1895, p. 3–28;

F. Tisserand, Méc. cél. 4 (1896), chap. 28; F. Drude, Ann. Phys. Chem. 62 (1897).
76 Astr. Nachr. 110 (1885), p. 208.
77 Wien. Ber. 97 (1888), p. 337–362.
78 According to recent examinations, however, this should be appr. 15 km/sec. (cf. H. C. Vogel, Astr.

Nachr. 132 (1893), p. 80 f.
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tion velocity of gravitation would have to be at least 500 times larger than the veloc-
ity of light, according to v. Hepperger.

A stricter test of the assumption of a temporal propagation velocity is provided by
its application to the Moon’s motion, as carried out by R. Lehmann-Filhès.79 He
draws the conclusion that in order to keep the perturbations of the Moon’s radius
below an acceptable amount while retaining Newton’s law, the propagation velocity
of gravitation would have to be given an enormous value, perhaps a million times the
velocity of light. Also the sign of the perturbation does not correspond to the discrep-
ancy found between observation and theory for the Moon.

Th. v. Oppolzer47 comes across similar difficulties when | applying the assumed
finite propagation velocity to calculate orbits of comets.

3. EXTENSION OF NEWTON’S LAW TO MOVING BODIES80

21. Transferring Fundamental Electrodynamic Laws to Gravitation

The result of the attempts to introduce a finite propagation of gravitation while retain-
ing Newton’s law for moving bodies as well, and thereby to remove the existing dis-
agreements between observation and calculation, must be characterized as rather
unsatisfactory. It is therefore small wonder that attempts were made to question the
validity of Newton’s law for moving bodies, to regard it merely as a special case for
bodies at rest, and to replace it with an extended law for moving bodies.

Above all it was examined whether the previously known electrodynamic funda-
mental laws were sufficient for this purpose. 

C. Seegers81 and G. Holzmüller82 applied Weber’s fundamental law, according to
which the potential for two mass elements  and  at a distance  is

which as is well known Zöllner thought to be the fundamental law of all action-at-a-
distance forces, to planetary motion in general, and the planetary motions were calcu-
lated numerically by F. Tisserand83 and H. Servus.84 For Mercury, the application of
Weber’s law results in an anomalous secular perihelion motion of ca. 14’’.

79 Münch. Ber. 25 (1896), p. 371.
80 Reviews of a part of the work in this area in S. Oppenheim,77 P. Drude,77 and F. Tisserand.77

81 Diss. Göttingen 1804.
82 Zeitschr. Math. Phys. 1870, p. 69–91.
83 Paris, C. R. 75 (1872), p. 760 and 110 (1890), p. 313.
84 Diss. Halle 1885. F. Zöllner cites (based on correspondence) that W. Schreibner calculated a secular

perihelion motion of  for Mercury based on Weber’s law. The reason for this figure’s two-fold
deviation from the figures cited in the text is that Schreibner equates the constant  in Weber’s law
with  times the velocity of light.
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Transferring Gauss’85 fundamental electrodynamic law to gravitation, in the
sense that one introduces an attractive force  between two mass elements with co-
ordinates  and  given by: |

gives a secular perihelion motion of Mercury of only  according to
F. Tisserand’s86 calculation.

Riemann’s87 fundamental law

would imply, according to M. Lévy,88 twice the perihelion motion of Mercury that
follows from Weber’s law.

Therefore, Levy suggested a combination of Riemann’s and Weber’s laws in the
form:

 

where  was then to be determined from the observed secular perihelion motion of
Mercury. Assuming the perihelion motion of  as observed and 89 as given
by Weber’s law, one finds 88 On the basis of a perihelion
motion of Mercury of  as given by other observers, and a motion given by
Weber’s law of 89  becomes 

The law one obtains in this way has the decisive advantage of matching the
achievement of Riemann’s and Weber’s laws in electrodynamics, and moreover it
represents an extension of Newton’s law to moving bodies that eliminates the worst
disagreement between observation and calculation that has persisted until now.

85 Ges. Werke 5, p. 616 f., Nachlass.
86 Paris, C.R. 110 (1890), p. 313.
87 Schwere, Elektrizität und Magnetismus, ed. Hattendorf, Hannover 1896, p. 313 ff.
88 Paris, C. R. 110 (1890), p. 545–551. For motion of two masses the law was earlier discussed in gen-

eral by O. Limann (Diss. Halle 1886).
89 Tisserand85 (Paris, C. R. 75), and Servus.86
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22. Transferring Lorentz’s Fundamental Electromagnetic Equations to Gravitation 

H.A. Lorentz90 has attempted to use Maxwell’s equations,91 as extended by him to
moving bodies, for gravitation. His conception | of the constitution of gravitating
molecules is essentially in agreement with that of F. Zöllner, though in slightly mod-
ernized form. The foundation of Lorentz’s approach is covered in section 36.

The additional forces Lorentz obtains, apart from the ones given by Newton’s law,
have a factor of either  or  where  is the velocity of the central
body taken to be constant,  is the velocity of the planet relative to the central body,
and  is the velocity of light. These additional forces are so small that they will prob-
ably be beyond observation in all cases; in the case of Mercury they are certainly
below what is observable, as shown by Lorentz’s calculation. It follows that Lorentz’s
equations, combined with Zöllner’s conception of the nature of gravitating mole-
cules, can be applied to gravitation,92 but they do not contribute to removing existing
disagreements between observation and calculation.

23. Laplace’s Assumption

Previously Laplace93 envisaged an extension of Newton’s law for moving bodies in
quite a different way. He seems to imagine the force coming from an attracting body

 as a sort of wave, which exerts an attractive force on each body  it encounters
of magnitude  in the direction in which it propagates. The effect such a
wave has on a moving body  depends only on the relative motion of wave and
body. One can thus imagine body  at rest in space, if one ascribes to the wave
another velocity component apart from its velocity in the -direction, equal and
opposite to the velocity of  If velocity of  and  indicates the propaga-
tion velocity of gravitation, then the body  receives a force component opposite to
its orbit’s direction and of value 94 rather than receiving only a
force component in the -direction. |

Following through with this point of view gives little satisfaction with respect to
the planets: it does not result in a perihelion motion at all, but in a secular change of
the mean radius; e.g., this change for the Moon has a value such that the lowest limit
for  would have to be about 100,000,000 times the velocity of light. It is, however,
not uninteresting that Laplace’s conception achieves the same effect as a resistance of
the medium proportional to the velocity of the planet.

90 Amsterdam Versl., April 1900.
91 Harlem, Arch. Néerl. 25 (1892), p. 363.
92 This includes the possibility that the propagation velocity of gravitation is equal to the velocity of

light.
93 Méc. cél. 4, book X, chap. VII, §19 and 22.
94 These conditions would therefore correspond completely with those for the aberration of light.
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According to Encke95 and v. Oppolzer,96 a resistance of the medium—however,
proportional to the square of the velocity—could perhaps explain the irregularities of
Encke’s comet presented on p. 36. The anomalies of Winnecke’s comet, presupposed
by Oppolzer and explained the very same way, have since been shown to be non-exis-
tent by E. v. Haerdtl’s97 calculations.

24. Gerber’s Assumption

P. Gerber’s98 two premises are:
a. The potential  transmitted from a mass  to a second one  is  where 

is the distance from  to  at the moment of transmitting the potential. This poten-
tial propagates with finite velocity 

b. A certain time is necessary for the potential “to reach  to impart itself to the
mass; i.e., to evoke in  the state of motion corresponding to the potential.” “If the
masses are at rest, the motion of the potential passes  with its own velocity; then its
value transmitted to  is in inverse proportion to the distance. If the masses speed
towards each other, the time of transmission as well as the transmitted potential
decrease proportionally to the ratio of the characteristic velocity of the potential to
the sum of its and the masses’ velocity, as the potential has this total velocity relative
to 

Gerber arrives at the value that the potential must have under these assumptions in
the following manner:

“The potential moves with the velocity of the attracting mass in addition to its
own velocity  The space | 99 traversed in time  by the two motions, one
of the potential and the other one of the attracted mass, is thus

while  So for the distance where the potential starts developing and to
which it is in inverse proportion, one obtains

Since, moreover, the velocity with which the motions pass each other has the value

95 Cited by von Oppolzer.
96 Astr. Nachr. 97, p. 150–154 and 228–235.
97 Wien. Denkschr. 56 (1889), p. 179 f.
98 Zeitschr. Math. Phys. 43 (1898), p. 93–104.
99  for increasing 
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the potential turns out also to be proportional to

due to the time consumed to impart itself to  Thus one finds:

As long as the distance  is short and therefore  small compared to  one
may replace the latter by  So it becomes

from which it follows with help of the binomial law to the second power:

The application of this equation to planetary motions yields the following remarkable
result: If the propagation velocity  is determined from Mercury’s observed perihe-
lion motion, then one finds  which is the velocity of light with
surprising accuracy. In other words, if in Gerber’s equation the velocity of light
replaces the propagation velocity of gravitation, then this equation yields exactly the
observed anomalous perihelion motion of Mercury.

No difficulties for the other planets follow from Gerber’s assumption, | except for
Venus, where Gerber’s approach gives a slightly too large secular perihelion motion
of 

Gerber’s assumption thus shows, as does Lévy’s, that a propagation velocity of
gravitation of the same magnitude as the velocity of light is not only possible, but can
also serve to eliminate the worst disagreement that has existed between astronomical
observation and calculation so far. To be sure, this was achieved only by confining the
validity of Newton’s Law to bodies at rest and postulating an extended law for mov-
ing bodies.
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4. EXTENSION OF NEWTON’S LAW TO INFINITELY LARGE MASSES

25. Difficulty with Newton’s Law for Infinitely Large Masses

Doubts have been expressed concerning the universal validity of Newton’s law lead-
ing in quite a different direction, and the necessity of an extension has been consid-
ered.

In case the universe contains infinitely many masses, to obtain the force acting at
any point one would strictly speaking have to solve the problem: to specify the effect
of infinitely many masses of finite size at one particular point. 

C. Neumann100 was probably the first to point out that in this case the forces
resulting from Newton’s law may become indefinite. H. Seeliger101 examined this
question in a more general way, and showed that for infinite masses Newton’s law
can produce infinitely large forces as well as leaving them completely indefinite.

26. Elimination of the Difficulty by Altering the Law of Attraction

Seeliger suggests a slight modification of Newton’s law in order to eliminate this dif-
ficulty, and he discusses various possibilities.

The form already discussed by Laplace

| is physically expected to suffice for the above purpose, as it corresponds to the
assumption of absorption by the medium. In fact, it does suffice, and would moreover
have the advantage of giving planetary perihelion motion. Yet the value of

 taken from Mercury’s observed perihelion motion gives perihe-
lion motions for the other planets which are difficult to reconcile with observa-
tions.102

The laws discussed by C. Neumann, according to which the potential  takes the
form

serve the same purpose, but the resulting perihelion motions of the planets stand in
severe contradiction to observation.

In contrast, Green-Hall’s law discussed earlier,

100 Leipz. Abh. 1874.
101 Astr. Nachr. 137 (1895), p. 129–136; Münchn. Ber. 26 (1896), p. 373–400. Controversy between

J. Wilsing and H. Seeliger about this issue, Astr. Nachr. 137 and 138.
102 Münchn. Ber. 26 (1896), p. 388.
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which would be suitable to account for the perihelion motions of the planets, retains
the same problems as Newton’s law with regards to infinite masses.

27. Elimination of the Difficulty by Introducing Negative Masses

A. Föppl103 introduced the idea that the difficulty of Newton’s law emphasized by
Neumann and Seeliger is to be eliminated by introducing “negative masses” and
maintaining the law, rather than by altering the form of the law. As with the gravita-
tional force lines emitted by the familiar positive masses, there would be force lines
flowing into negative masses. If the sum of the negative masses is taken to equal that
of the positive ones, the total would be  as in the electric and the magnetic domain
there would be the same number of sources and sinks.

With this assumption, the expression for field energy cannot be based upon the
usual one,

where  is a constant of the medium,  the vector of field strength defining the grav-
itational field,  its | absolute value, and  a volume element. Rather, as Maxwell
already pointed out, one must replace this expression by

to obtain an attraction between masses of the same sign. Cf. section 34 regarding the
significance of the constant 

Prior to Föppl, C. Pearson122 had already suggested the mere introduction of neg-
ative masses of the same magnitude as the familiar positive masses. This suggestion
is actually a consequence of his theory, which attempts to derive electrical, optical,
chemical and gravitational phenomena from suitably chosen aether motions.

The introduction of negative masses hardly causes any problems. For the fact that
repulsion between two masses has never been observed, i.e. a negative mass has
never been noticed, points to the possibility—though not to the necessity—that such
masses were driven to spaces no longer accessible to observation due to the repulsion
from positive masses in our system. On the other hand, according to A. Schuster,104

who had the same thought (though merely in a “holiday dream”), the introduction of
negative masses could perhaps serve to shed completely new light upon several phe-
nomena, such as comet tails.

103 Münchn. Ber. 27 (1897), p. 93–99.
104 Nature 58 (1898), p. 367 and 618.
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5. ATTEMPTS TO EXPLAIN GRAVITATION THROUGH MECHANICS105

28. Pressure Differences and Currents in the Aether106

The conjecture that gravitation could be caused by pressure differences in the suppos-
edly homogeneous aether surrounding gravitating | masses stems from Newton107

himself. According to him the aether would become denser the further it is from
masses. Since each body has the tendency—later on he speaks of an elastic force of
the medium—to go from the denser parts of the medium to the less dense ones, each
of the two bodies must move in the direction of the other.

Similar ideas have been worked out by Ph. Villemot,108 L. Euler,109

J. Herapath110 and in a slightly different way by J. Odstrçil.110

A consequence of the assumption of pressure differences in the aether, combined
with the idea that aether behaves like a fluid or a gas, is that aether currents must flow
into the atoms.[3] According to J. Bernoulli,108 B. Riemann,111 and J. Yarkovski,112

it is these aether currents which carry the body along and hence cause gravitation.
G. Helm,150 as well as C. Pearson,113 arrived at a similar conception while trying “to
explain gravitation with energy transfer in the aether.” 

Yarkovski pondered the question of the cause of the aether currents, but produced
an explanation that is physically not tenable.

Among the many objections raised against these theories, there is also the ques-
tion of what happens to the aether that flows into the atoms. There are only two possi-
ble answers: either the aether accumulates or it disappears inside them. Bernoulli,
Helm, Yarkowski have decided for the former possibility; Riemann for the latter, who
allows matter in ponderable bodies constantly to make a transition “from the physical
world into the spiritual world.” 

105 Review articles: W.B. Taylor, Smithson. Inst. Rep. for 1876 (1877), p. 205–282: Detailed discussion of
papers up to 1873. C. Isenkrahe, a) Isaac Newton und die Gegner seiner Gravitationstheorie etc.,
Progr. Gymn. Crefeld, 1877–1878. b) das Rätsel von der Schwerkraft, Braunschweig 1879. c) Zeit-
schr. Math. Phys. 37, Suppl. (1892), p. 161–204; P. Drude77; partly also H. Gellenthin, “Bemerkungen
über neuere Versuche, die Gravitation zu erklären etc.”, Progr. Realgymn. Stettin 1884 and Gehler,2

Articles: Anziehung, Materie.
106 The term “aether” is not always used with the same meaning in the following text; also in the original

papers it is not always sufficiently defined. What is meant roughly in each case, is given by the con-
text.

107 According to W. B. Taylor,107 Newton expressed this view in a letter and repeated it in his Optice.
108 Cf. Taylor.107

109 Cf. Taylor107 and especially Isenkrahe.107

110 Wien. Ber. 89 (1884), p. 485–491.
111 Ges. Werke, 2nd ed. 1853, p. 529.
112 Hypothèse cinétique de la gravitation universelle etc. Moscou 1888.
113 Amer. J. of math. 13 (1898), p. 419.
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29. Aether Vibrations

The idea that aether vibrations in the form of longitudinal waves may cause not only
the phenomena of light and heat, but also gravitation, has been developed in two
directions. | 

1. According to the first view the attracting body, or its atoms, are supposed to
vibrate themselves; these vibrations pass on to the aether, propagate to the attracted
body and cause its approach.

Hooke,114 Newton’s inventive rival, already expressed this conception, which was
taken up again by J. Guyot and F. Guthrie. The latter two seem to have arrived at this
through the observation that light objects close to a vibrating body are pushed
towards it. However, the fact that the approach takes place only under very particular
conditions, and that under different conditions one observes an apparent repulsion—
such was also included by F.A.E. and E. Keller115 for explaining gravitation—proves
that the assumption of an elastic aether and vibrating atoms does not suffice to
explain gravitation. There must be at least one more assumption which produces con-
ditions that guarantee an attraction under all circumstances.

To find these conditions, J. Callis116 examined the following question analytically
and in detail: What effect do longitudinal waves in a fluid whose pressure changes
proportionally to changes in density, have on small inelastic, smooth spheres embed-
ded in the elastic fluid medium? He reaches the conclusion that if the wave length is
large compared to the spheres’ radius, the spheres are then pushed towards the center
of the spherical wave. For explaining gravitation, one would thus need to assume that
there are vibrations whose wave lengths in the aether are large compared to the
dimensions of the gravitating atoms.

A deficiency of this treatment is the requirement that only the attracting body
emits waves. Such a principled differentiation between attracting and attracted body
is incompatible with the nature of gravitation. The question must not be what effect
do spherical waves have on bodies at rest, but rather what effect do they have on a
body which is itself vibrating.

This complete problem was probably first handled mathematically by C.A. |
Bjerknes,117 for the case of an incompressible aether and pure pulsation of the
spheres (atoms). He proved that two pulsating spheres, whose radius is small com-
pared to their separation, show an apparent attraction, and that this attraction is pro-
portional to the intensity of pulsation and inversely proportional to the square of
distance, if their pulsations agree in frequency and phase. If gravitation is to be attrib-
uted to pulsating atoms and molecules,[2] then at least the following additional
assumptions are needed:

114 Cf. W.B. Taylor105 and F. Rosenberger.1

115 Paris, C. R. 56 (1863), p. 530–533; also cf. Taylor.105

116 E.g. Phil. Mag. (4) 18 (1859), p. 321–334 and 442–451, cf. Taylor105 about other work by Callis.
117 Cf. the compilation in V. Bjerknes, “Vorlesungen über hydrodynamische Fernkräfte nach C.A. Bjerk-

nes’ Theorie”, Leipzig 1900.
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a. The pulsations of all atoms or molecules must agree in frequency and phase.
b. The intensity of pulsation must be proportional to the mass.
There is one more thing. A.H. Lealy118 pointed out that for the case of a com-

pressible fluid, the effect of two spheres pulsating with equal phase and frequency
reverses its sign if the distance between them exceeds half a wave length. So if one
wants to use Bjerknes’ results for gravitation, one would have to suppose either that
the aether is completely incompressible (Bjerknes) or that it has such low compress-
ibility that half the wave length of aether vibrations is larger than the distances for
which observations have established the validity of Newton’s law (A. Korn119). Only
then is attraction always guaranteed, in agreement with observation.

Bjerknes’ conception received further development by C. Pearson120 and in the
work by A. Korn just mentioned. The latter extended these ideas mainly to electro-
magnetic phenomena, the former to phenomena of optics and molecular physics,
assuming complicated modes of vibration of the atoms. In his last paper, Pearson
abandoned the assumption of oscillations for gravitation and only retained this
assumption for optics and molecular physics, while replacing the | pulsating atoms by
places in the incompressible aether at which aether continuously flows in and out in
an oscillatory manner (“aether squirts”). For gravitation, he assumes that there is a
constant flow in addition to the oscillating one at the locations concerned. With this
requirement, the assumed incompressibility of the aether leads directly to the conclu-
sion that apart from places of emission (source points, ordinary masses) there must be
just as many places of absorption (sink points, “negative masses”).121

Using Bjerknes’ results for explaining gravitation suffers from the obvious defi-
ciency that assumptions are required which would first have to be explained them-
selves. Attempts to supply real reasons have been made for only one of these
assumptions, the synchronous pulsation of atoms. J.H. Weber122 points out that in the
attempt to demonstrate Bjerknes’ results the synchronization of the two spheres hap-
pens quickly “on its own”; i.e., due to the forces which are caused by the vibrations in
the fluid, even if the pulsations were not synchronous at first. From this he concludes
that if atoms pulsate at all, the pulsations should become synchronous “on their own”
(as specified above).

According to Korn, the assumption of synchronous pulsation can be replaced by
another one, which is that the whole solar system is exposed to a periodic pressure.
This assumption may be preferred due to its simplicity, but this is the only advantage
over Bjerknes’s assumption.

118 Cambr. Trans. 14 (1) (1885), p. 45, 188.
119 “Eine Theorie der Gravitation und der elektrischen Erscheinungen auf Grundlage der Hydrodyna-

mik”, 2nd ed., Berlin 1898.
120 Quart. J. 20 (1883), p. 60, 184; Cambr. Trans. 14 (1889), p. 71 ff.; Lond. math. Proc. 20 (1888–1889),

p. 38–63; Amer. J. of math. 13 (1898).
121 See section 27 of this article.
122 Prometheus 9 (1898), p. 241-244, 257–262.
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2. The second class of attempts to base an explanation of gravitation on aether
vibrations assumes that the atoms are not themselves vibrating, but that their activity
consists only in a kind of shielding or absorption of aether vibrations.

Representatives of this view include F. and E. Keller,115 Lecoq de Bois-
baudran,123 and, in a slightly different way, N. von Dellinghausen.124

30. Aether Impacts: The Original Ideas of Le Sage

The starting point of all aether impact theories is an idea which | Le Sage125 devel-
oped in a particularly clear and skillful way. According to him the gravitational aether
surrounding the atoms of a body consists of discrete particles—“corpuscules ultra-
mondains”—which zoom about in all directions with the same extraordinarily high
velocity. No continuous motion is imparted to a single atom embedded in this aether
due to the impacts of these aether particles, since the effect of aether impacts from all
directions cancels out. But if two atoms  and  are brought into this aether, the
conditions change in two respects:

a.  shields  from a part of the aether atoms: The side of  turned towards
 is hit by fewer aether particles than its side turned away from  The conse-

quence would have to be that  is driven towards  by the action of the aether
impacts, and conversely  is driven towards 

If the atoms are assumed to be very large in comparison to the aether particles, it
follows directly that this shielding effect of one atom of a body on another decreases
with the square of distance. To make the shielding proportional to mass, Le Sage
introduces the assumption that the gravitating masses are extraordinarily porous126 to
the aether particles so that the efficacy of the whole body becomes proportional to the
number of atoms it contains.127

b. Due to the reflection of aether particles on  a number of aether particles also
hit the atom  that would not have hit  without the presence of 128 If these
reflected aether atoms had the same velocity as those hitting  directly, then they
would cancel out the approach of  towards  caused by the shielding effect of

 thus, gravitation would not be produced.

123 Cf. Paris, C. R. 69 (1869), p. 703–705; cf. Taylor.107

124 “Die Schwere oder das Wirksamwerden der potentiellen Energie,” Kosmos 1, Stuttgart 1884. Cf. C.
Isenkrahe.107

125 Berlin Mém. 1782 and in P. Prévost, Deux traîtés de Physique mécanique, Paris 1818. In the last paper
it is quoted that similar theories have been established before (by Nicolas Fatio and F. A. Redecker).

126 Strangely enough, Le Sage extends the assumption of very high porosity to every single atom of a
body and therefore arrives at the conception of the peculiar “box atoms” [Kastenatome].

127 But cf. section 32, c).
128 In P. Drude77 we find the note that Le Sage simply ignores reflection and thus his observation lacks

rigor. This is probably a mistake: Le Sage devotes chapter IV to reflection in P. Prévost.
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106 JONATHAN ZENNECK

This is why Le Sage assumes furthermore that the aether particles are absolutely
inelastic—“privé de toute élasticité”—and | states that under this assumption the
average velocity of the reflected atoms  of the non-reflected ones.129

Thus the difference of effects a) and b) still results in both atoms approaching
each other.

31. Aether Impacts: Further Development of Le Sage’s Theory

Recently, Le Sage’s theory was primarily defended by C. Isenkrahe, who emphasized
in particular the assumption that collisions between the aether particles and atoms are
subject to the laws of inelastic collision. Isenkrahe’s progress beyond Le Sage consists
of the following points:

a. He ascribes to gravitational aether the properties of a gas in the sense of kinetic
gas theory. Hence he is giving up the assumption of equal velocity130 of the aether
atoms.

b. He does not explain the porosity of the body to aether particles by porosity of
the atoms themselves, but by assuming that the distance between atoms131 is large
compared to their dimensions.

c. To achieve the proportionality between attraction and mass, which was guaran-
teed by Le Sage’s assumption only for bodies of the same composition, he assumes
that “the final components of matter are all of equal size; they may be the aether
atoms themselves.” 

A. Rysáneck’s132 assumptions are very similar. His achievement consists of the
precise implementation of the ideas of kinetic gas theory.133 In his calculations he
actually takes into consideration that the velocities of aether atoms are distributed
according to Maxwell’s law, whereas e.g. Isenkrahe does assume different velocities
of aether atoms, but replaces them by one average velocity in all his derivations.

Prior to Isenkrahe S.T. Preston134 | already pointed out that Le Sage’s conceptions
could be suitably replaced by ideas of kinetic gas theory, if the mean free path of
aether atoms is assumed to be of the order of planetary distances. He developed this
idea in several papers, though without going into details as carefully as Isenkrahe and
Rysáneck.

129 About justification and validity of this information cf. C. Isenkrahe107 in paper b., p. 155 ff.
130 Which Le Sage also chose merely for simplicity, as he explicitly points out the different velocities in

the reflections of aether particles and atoms.
131 Which are assigned a spherical form for simplicity.
132 Repert. Exp.-Phys. 24 (1887), p. 90–115.
133 But cf. section 33.
134 Phil. Mag. (5) 4 (1877); Wien Ber. 87 (1882); Phil. Mag. (5) 11 (1894); Diss. München 1894.

[59]

2 3⁄=

[60]



GRAVITATION 107

32. Aether Impacts: Difficulties of these Theories

a. A necessary condition for a gravitational effect is that aether atoms lose transla-
tional velocity upon collision with atoms, which is achieved most easily by assuming
inelastic collisions.

However, this assumption leads to the problem of where the energy lost at impact
goes. P. Leray135 and later P.A. Secchi,136 W. Thomson,137 S.T. Preston,134 then
A. Vaschy,138 Isenkrahe himself and Rysáneck tried to avoid this problem in many
different ways. None of these attempts, however, is itself unobjectionable.139

b. J. Croll140 turns against the assumption made in most aether impact theories,
which is that the distance between two molecules is very large compared to their
dimensions, or rather compared to their spheres of action. He notes that this assump-
tion grossly contradicts W. Thomson’s estimates regarding the size of the molecules
and their number per unit volume.

c. Objections can be raised from a different angle against the assumption of high
porosity of the body for the aether atoms. If the porosity is presumed to be so large
that the aether atoms that passed one layer of a body hit the next layer with com-
pletely undiminished velocity, then the proportionality between attraction and mass
would be strictly preserved. At the same time, this requirement excludes any attrac-
tion at all. Hence, one must assume that the aether atoms forfeit a noticeable amount
of their energy when passing a body layer. A.M. Bock141 has shown that this assump-
tion | is not incompatible with the required strict proportionality between attraction
and mass.

d. Bock pointed out one more problem. If a third mass comes between two
masses, then the attraction of the two masses is considerably modified, such that the
third mass seems to have a larger permeability, as shown by a mathematical examina-
tion of this case based on aether impact theories. Because this case is not rare, e.g.,
for the Moon, Earth and Sun, there would have to be observable perturbations over
the course of time. But in fact no perturbations of this type have ever been observed.

e. Le Sage already discussed another objection against aether impact theories. If
any body, e.g. a planet, moves in an aether with the assumed properties, then it must
experience resistance. But none has been observed for the planets. 

The last question was examined more precisely by Rysáneck, Bock and
W. Browne142 on the basis of astronomical data.143 Since the secular changes of

135 Paris, C.R. 69 (1869), p. 615–621; also cf. Taylor.
136 Cited in Isenkrahe.107b

137 Phil. Mag. (4) 45 (1871), p. 321–332.
138 J. de Phys. (2) 5 (1886), p. 165–172.
139 Cf. C. Isenkrahe107b; Maxwell, Encycl. Brit., 9th ed. Article: Atom und Scient. Pap. 2, p. 445, Cam-

bridge 1890.
140 Phil. Mag. (5) 5 (1877), p. 45–46.
141 Diss. München 1891. Isenkrahe107b has already examined this question, though not fully.
142 Phil. Mag. (5) 10 (1894), p. 437–445.
143 Cf. also section 23.
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planetary orbits give an upper limit on this hypothetical resistance, the aether impact
theories yield a lower limit on the velocity of the aether atoms, if their density is
assumed to be known. By using a density of the same order of magnitude as has been
estimated for the optical aether, one obtains enormous numbers as the lower limit on
the mean velocity. Rysáneck, e.g. based on calculations on Neptune’s orbit, obtained
the number 

f. Of all the objections that P. du Bois-Reymond144 raised against the aether
impact theories, one is particularly noteworthy.

Think of a ponderable truncated cone (cross-section  with a molecule 
close to the top. According to the aether impact theories, the acceleration which 
receives towards the cone is the difference between the effect the aether atoms with
solid angle  and the effect the aether atoms with solid angle  have on the mole-
cule. The first effect remains unaltered, but the second decreases if  the distance
between base  and cone top  increases. | Therefore, the total effect always
remains smaller than the effect of the aether atoms of solid angle 

On the other hand, since according to Newton’s law the attraction of the cone on
 increases with  and exceeds any specifiable number, if the same is assumed

about  there are then only two possibilities: either to presume that the effect of

144 Naturw. Rundschau 3 (1888), p. 169–178.
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aether atoms in space  on molecule  is infinitely large, or to assume that New-
ton’s law no longer holds for infinitely extended masses.145

Isenkrahe146 countered P. du Bois-Reymond’s objection with the latter assump-
tion. However, the difficulty persists, in that one must ascribe an enormous, if not
infinite, magnitude to the aether atom’s effect, which leads to shortcomings in other
areas.147

33. Aether Impacts: Jarolimek’s Objections and Theory

A. Jarolimek148 emphasized a deficiency of all aether impact theories that suppose
aether to be a gas in the sense of kinetic gas theory. The derivation of the law of grav-
ity in these theories is based on a simple calculation with a certain mean free path of
the aether atoms, which fails to take the variety of paths into account.

Regarding this point, Jarolimek notes that in order to produce mutual attraction
of two molecules, only those aether atoms whose actual path length is larger than the
distance between the two molecules can be effective. Thus it depends precisely upon
the absolute |—and not the average—path length. But if one takes the variety of
absolute path lengths into account, under the usual conditions of aether impact theory
one does not obtain Newton’s law at all.

Referring to Isenkrahe’s149 assumption that the atoms of a body may themselves
be an aggregate of the extremely fine aether atoms, Jarolimek points out one more
difficulty: this assumption contradicts a shielding effect of two body elements that
decreases with the square of the distance. If these elements are identical to aether
atoms, then an element could shield another only from those aether atoms whose cen-
ter lies exactly on the line connecting the two elements; the shielding effect would
therefore not depend on the distance at all, if the distance is so large compared to the
element’s radius that the element could be regarded as devoid of size. 

Jarolimek establishes the following theory based on such considerations. He
keeps Isenkrahe’s assumption—the ultimate elements of atoms are identical to gravi-
tational aether atoms. This practically fully frees him from a shielding effect. He
arrives at a decrease of the gravitational effect with the square of the distance in the
following way: “One has to think of the infinite number of swarming aether atoms as
uniformly distributed in space at every instant, and one has to imagine that atoms
bouncing off from one point fly off in straight lines in all directions. Considering a
cone bundle, whose vertex is the point of origin and whose cross-section accordingly
increases in quadratic proportion with distance to the vertex and which therefore con-
tains at increasing distance more uniformly distributed aether atoms in quadratic pro-
portion, one must realize that for atoms that bounced off (of which a definite number

145 Cf. section 4.
146 In the book: Über die Fernkraft und das durch P. du Bois-Reymond aufgestellte etc., Leipzig 1889.
147 The field representation leads to a similar problem (see section 34).
148 Wien. Ber. 882 (1883), p. 897–911.
149 Cf. section 31.
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passes the observed cone bundle from the vertex), the probability to hit another atom
in space must increase in quadratic proportion to the distance between the two.

From this it follows directly that the number of freely and linearly moving atoms
decreases with increasing distance in quadratic proportion, or in other words: that the
aether contains  times as many atoms with free path  as with free path ” Con-
sequently, “the simplest explanation for the law of gravity | is provided by the ine-
quality of the path lengths of the aether molecules.”

6. REDUCTION OF GRAVITATION TO ELECTROMAGNETIC PHENOMENA

34. Gravitation as a Field Effect

Before reporting on explanatory attempts based on electromagnetism, the empirical
facts contained in Newton’s law will be mathematically formulated by describing the
“gravitational field” without reference to any particular conception of its nature.150

One is used to regarding Newton’s law as the most distinguished example of an
action at a distance. On the other hand, it must be emphasized that its content can be
formulated by the following statement, which corresponds to the field theory stand-
point: “The field strength of gravitation is irrotational, and source-free in those
regions of space where there are no masses. Where there are masses, the divergence
of the field strength is proportional to the local mass density 

We understand by field strength the attractive force exerted on a unit mass; the
force exerted on mass  is -times as large as the field strength. The proportion-
ality factor for the divergence of the field strength is identical to  In formu-
las,151 the expression of our description of the gravitational field takes the following
form, if  stands for the vector of field strength:

This formulation and the classical formulation given in section 1 are mathematically
exactly equivalent; in particular, it follows from the above differential equations
according to the laws of potential theory that the field strength due to a single mass

 at distance  is calculated to be

This yields the following value of the field strength (or its magnitude in the -
direction) in agreement with Newton’s law:

150 Field representations of particular kinds are given by G. Helm, Ann. Phys. Chem. 14 (1881), p. 149;
O. Heaviside, Electrician 31 (1893), p. 281 and 359.

151 Because of the significance of vector symbols rot, div, grad, cf. the beginning of the 2nd semi-volume
V of the encyclopedia.
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| So far the field interpretation of gravitation offers neither advantages nor disad-
vantages over the action-at-a-distance interpretation. An advantage of the former
would arise if a finite propagation velocity of gravitational effects could be proven
with certainty, especially if it turned out to be equal to the velocity of light. Then the
above differential equations for stationary gravitational effects would have to be
extended to the case of a time-varying gravitational effect, which could easily be pat-
terned after the example of the electromagnetic equations. On the other hand, the
field interpretation involves a serious problem which Maxwell152 pointed out.
Enquiring about the gravitational energy contained in a volume element  of the
field, one must, in order to get an attraction of masses of the same sign, assume the
form

for this energy, where the constant  is identical to  The constant  would
have to be larger than  so that the gravitational energy has a positive
value throughout, where  stands for the largest value of field strength at any point
in space. However, it would follow from this that at points of vanishing field strength,
e.g. between the Earth and Sun at the point where the Sun’s and the Earth’s attraction
compensate each other, the energy content of space would have to have the enormous
quantity  per unit volume. Maxwell adds that he can not possibly imagine a
medium with such a property.

35. Electromagnetic Vibrations

The hypothesis that gravitation could be caused by aether vibrations, already dis-
cussed in section 29, was examined by H.A. Lorentz92 under the following assump-
tions:

a. The gravitating molecules consist of ions possessing an electric charge.
b. The aether vibrations are electromagnetic vibrations whose wave length is

small compared to all those distances over which Newton’s law is still valid.
Lorentz arrives at this result: an attraction is possible under these conditions only

if | electromagnetic energy flows continuously into the volume elements that contain
gravitating molecules. If the assumptions are changed so that such a disappearance of
electromagnetic energy is avoided, then no attractive forces are obtained. This is why
Lorentz himself dismisses this theory and in the further course of his discussion joins
Mossotti-Zöllner’s conception (see below).

152 Lond. Trans. 155 (1865), p. 492 = Scient. Papers 1, p. 570, Cambridge 1890.
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36. Mossotti’s Assumption and its Modern Development

In a completely different direction, O.F. Mossotti153 tried to reduce gravitation to
electrical forces, apparently following Aepinus. He assumes that a repulsion takes
place between two molecules and likewise between two “aether atoms,” but that there
is an attractive force between a molecule and an aether atom which exceeds the repul-
sion between two molecules or two aether atoms. This assumption provides an attrac-
tion between two molecules embedded in the aether, as required by Newton’s law.

This idea was simplified by F. Zöllner.154 He imagines that each gravitating mole-
cule or atom consists of one negatively and one positively charged particle, and
assumes that the repulsion between two equal charges is smaller than the attraction
between two unequal ones of the same size.

Zöllner’s assumption was examined mathematically by W. Weber155 based on his
electrodynamic fundamental law. This was applied to moving bodies only recently by
H.A. Lorentz,90 using his generalized Maxwell equations (cf. section 22). Lorentz’s
approach is continued in a paper by W. Wien.156 Cf. the end of article 14 of this vol-
ume concerning this most recent phase of the gravitational problem.

As attractive as the explanatory attempts based on electromagnetism, in particular,
may appear today, it behooves one to wait, since little of the subject has been worked
out, to see if tangible advantages arise from it for understanding the | gravitational
effect and for release from persistent problems. According to section 22, it seems that
not much can be gained in this direction by the electromagnetic conception.

For the time being, one will have to summarize the above considerations as fol-
lows: all attempts to connect gravitation with other phenomena in a satisfying way
are to be regarded as unsuccessful or as not yet adequately established. With this,
however, one has, at the beginning of the 20th century, returned to the view of the
18th century, to the view that takes gravitation to be a fundamental property of all
matter.

EDITORIAL NOTES

[1] In the original, Zenneck mistakenly refers to note 46 (44 according to our num-
bering), rather than 36.

[2] This reference is to volume 6 of the Encyklopädie der mathematischen Wissen-
schaften, which covers astronomy.

[3] The terms “Körperatom” and “Körpermolekül” have been translated as “atom”
and “molecule” throughout this article, whereas “Ätheratom” and
“Äthermolekül” have been translated as “aether atom” and “aether molecule.”

153 Sur les forces qui régissent la constitution intérieure des corps, Turin 1836.
154 Erklärung der universellen Gravitation aus den statischen Wirkungen der Elektrizität, Leipzig 1882.
155 Cf. F. Zöllner.156

156 Über die Möglichkeit einer elektromagnetischen Begründung der Mechanik, Arch. Néerl. 1900.
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§1. After all we have learned in the last twenty or thirty years about the mechanism of
electric and magnetic phenomena, it is natural to examine in how far it is possible to
account for the force of gravitation by ascribing it to a certain state of the aether. A
theory of universal attraction, founded on such an assumption, would take the sim-
plest form if new hypotheses about the aether could be avoided, i. e. if the two states
which exist in an electric and a magnetic field, and whose mutual connection is
expressed by the well known electromagnetic equations were found sufficient for the
purpose.

If further it be taken for granted that only electrically charged particles or ions,
are directly acted on by the aether, one is led to the idea that every particle of ponder-
able matter might consist of two ions with equal opposite charges—or at least might
contain two such ions—and that gravitation might be the result of the forces experi-
enced by these ions. Now that so many phenomena have been explained by a theory
of ions, this idea seems to be more admissible than it was ever before.

As to the electromagnetic disturbances in the aether which might possibly be the
cause of gravitation, they must at all events be of such a nature, that they are capable
of penetrating all ponderable bodies without appreciably diminishing in intensity.
Now, electric vibrations of extremely small wave-length possess this property; hence
the question arises what action there would be between two ions if the aether were
traversed in all directions by trains of electric waves of small wave-length.

The above ideas are not new. Every physicist knows Le Sage’s theory in which
innumerable small corpuscula are supposed to move with great velocities, producing
gravitation by their impact against the coarser particles of ordinary ponderable mat-
ter. I shall not here discuss this theory which is not in harmony with modern physical
views. But, when it had been found that a pressure against a body may be produced as
well by trains of electric waves, by rays of light e. g., as by moving projectiles and
when the Röntgen-rays with their remarkable penetrating power had been discovered,

© 2007 Springer. 
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it was natural to replace Le Sage’s corpuscula by vibratory motions. Why should
there not exist radiations, far more penetrating than even the rays, and which
might therefore serve to account for a force which as far as we know, is independent
of all intervening ponderable matter?

I have deemed it worthwhile to put this idea to the test. In | what follows, before
passing to considerations of a different order (§5), I shall explain the reasons for
which this theory of rapid vibrations as a cause of gravitation can not be accepted.

§2. Let an ion carrying a charge  and having a certain mass, be situated at the
point  it may be subject or not to an elastic force, proportional to the dis-
placement and driving it back to  as soon as it has left this position. Next, let the
aether be traversed by electromagnetic vibrations, the dielectric displacement being
denoted by  and the magnetic force by  then the ion will be acted on by a force

whose direction changes continually, and whose components are

(1)

In these formulae  means the velocity of light.
By the action of the force (1) the ion will be made to vibrate about its original

position  the displacement  being determined by well known differential
equations.

For the sake of simplicity we shall confine ourselves to simple harmonic vibra-
tions with frequency  All our formulae will then contain the factor,  or

 and the forced vibrations of the ion may be represented by expressions of the
form

(2)

with certain constant coefficients  and  The terms with   and  have been
introduced in order to indicate that the phase of the forced vibration differs from that
of the force  this will be the case as soon as there is a resistance, propor-
tional to the velocity, and the coefficient  may then be shown to be positive. One
cause of a resistance lies in the reaction of the aether, called forth by the radiation of
which the vibrating ion itself becomes the center, a reaction which determines at the
same time an apparent increase of the mass of the particle. We shall suppose however
that we have kept in view this reaction in establishing the equations of motion, and in
assigning their values to the coefficients  and  | Then, in what follows, we need
only consider the forces due to the state of the aether, in so far as it not directly pro-
duced by the ion itself.
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x aedy beḋy,–=
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Since the formulae (2) contain  as a factor, the coefficients  and  will be
independent of the charge; their sign will be the same for a negative ion and for a pos-
itive one.

Now, as soon as the ion has shifted from its position of equilibrium, new forces
come into play. In the first place, the force  will have changed a little,
because, for the new position,  will be somewhat different from what it was at the
point  We may express this by saying that, in addition to the force (1), there will be
a new one with the components

(3)

In the second place, in consequence of the velocity of vibration, there will be an
electromagnetic force with the components 

(4)

If, as we shall suppose, the displacement of the ion be very small, compared with
the wave-length, the forces (3) and (4) are much smaller than the force (1); since they
are periodic—with the frequency —they will give rise to now vibrations of the
particle. We shall however omit the consideration of these slight vibrations, and
examine only the mean values of the forces (3) and (4), calculated for a rather long
lapse of time, or, what amounts to the same thing, for a full period 

§3. It is immediately clear that this mean force will be  if the ion is 

 

alone

 

 in a
field in which the propagation of waves takes place equally in all directions. It will be
otherwise, as soon as a second ion  has been placed in the neighborhood of 
then, in consequence of the vibrations emitted by  after it has been itself put in
motion, there may be a force on  of course in the direction of the line  In com-
puting the value of this force, one finds a great number of terms, which depend in dif-
ferent ways on the distance  We shall retain those which are inversely proportional
to  or  but we shall neglect all terms varying inversely as the higher powers of 
indeed, the influence of these, compared with that of the first mentioned terms will be
of the order  if  is the | wave-length, and we shall suppose this to be a very
small fraction. 

We shall also omit all terms containing such factors as  or
  a moderate number). These reverse their signs by a very small

change in  they will therefore disappear from the resultant force, as soon as,
instead of 

 

single

 

 particles  and  we come to consider systems of particles with
dimensions many times greater than the wave-length.

From what has been said, we may deduce in the first place that, in applying the
above formulae to the ion  it is sufficient, to take for  and  the vectors that
would exist if  were removed from the field. In each of these vectors two parts are
to be distinguished. We shall denote by  and  the parts existing independently
of  and by  and  the parts due to the vibrations of this ion.
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e ẏHz żHy–( ), etc.

2n,

2π n⁄ .
0

Q P;
Q

P, QP.

r .
r r2, r;

λ r⁄ λ [562]

2πkr λ⁄cos
2πkr λ⁄sin (k

r;
P Q,

P, d H

P
d1, H1,

Q d2 H2



116 HENDRIK A. LORENTZ

Let  be taken as origin of coordinates,  as axis of  and let us begin with
the terms in (2) having the coefficient .

To these corresponds a force on  whose first component is

(5)

Since we have only to deal with the mean values for a full period, we may write
for the last term

and if, in this expression,  and  be replaced by

 and 

becomes

(6)

where  is the numerical value of the dielectric displacement.
Now,  will consist of three parts, the first being  the second  and the third

depending on the combination of  and 
Evidently, the value of (6), corresponding to the first part, will be 
As to the second part, it is to be remarked that the dielectric displacement, pro-

duced by  is a periodic function of the time. At distant points the amplitude takes
the form  where  is independent | of  The mean value of  for a full period
is  and by differentiating this with regard to  or to  we should get  in
the denominator.

The terms in (6) which correspond to the part

in  may likewise be neglected. Indeed, if these terms contain no factors such as to
 or  there must be between  and  either no phase-dif-

ference at all, or a difference which is independent of  This condition can only be
fulfilled, if a system of waves, proceeding in the direction of  is combined with
the vibrations excited by  in so far as this ion is put in motion by that system itself.
Then, the two vectors  and  will have a common direction perpendicular to 
say that of the axis of  and they will be of the form
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Ḣy Ḣz

4πV 2 dz∂

x∂
-------

dx∂

z∂
-------–⎝ ⎠

⎛ ⎞ 4πV 2 dx∂

y∂
-------

dy∂

x∂
-------–⎝ ⎠

⎛ ⎞

2πV 2e2a
d

2( )∂
x∂

------------,

d

d
2

d1
2, d2

2

d1 d2.
0.

Q,
c r⁄ c[563] r . d

2

c2 2r2⁄ x r , r3

2 d1xd2x d1yd2y d1zd2z+ +( )

d
2,
2πkr λ⁄cos 2πkr λ⁄sin d1 d2,

r .
QP,

Q,
d1 d2 QP,
y,

d1y q n t
x
V
---- ε1+–⎝ ⎠

⎛ ⎞cos=



CONSIDERATIONS ON GRAVITATION 117

The mean value of  is

and its differential coefficient with regard to  has  in the denominator. It ought
therefore to be retained, were it not for the extremely small intensity of the. systems
of waves which give rise to such a result. In fact, by the restriction imposed on them
as to their direction, these waves form no more then a very minute part of the whole
motion.

§4. So, it is only the terms in (2), with the coefficient  with which we are con-
cerned.The corresponding forces are

(7)

and

(8)

| If  were removed, these forces together would be  as has already been
remarked. On the other hand, the force (8), taken by itself, would then likewise be 
Indeed, its value is

(9)

or, by Poynting’s theorem  if  be the flow of energy in a direction
parallel to the axis of  Now, it is clear that, in the absence of  any plane must be
traversed in the two directions by equal amounts of energy.

In this way we come to the conclusion that the force (7), in so far as it depends on
the part (  is  and from this it follows that the total value of (7) will vanish,
because the part arising from the combination of (  and (  as well as that which
is solely due to the vibrations of  are  As to the first part, this may be shown by
a reasoning similar to that used at the end of the preceding section. For the second
part, the proof is as follows.

The vibrations excited by  in any point  of the surrounding aether are repre-
sented by expressions of the form

where  depends on the direction of the line  and  denotes the length of this
line. If, in differentiating such expressions, we wish to avoid in the denominator pow-
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dx∂

y∂
------- ḋz
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ers of  higher than the first—and this is necessary, in order that (7) may remain free
from powers higher than the second–  and  have to be treated as constants.
Moreover, the factors  are such, that the vibrations are perpendicular to the line

 If, now,  coincides with  and  with the axis of  in the expression for
 we shall have  and since this factor is not to be differentiated, all terms in

(7) will vanish.
Thus, the question reduces itself to (8) or (9). If, in this last expression, we take

for  and  their real values, modified as they are by the motion of  we may
again write for the force

 

this time, however wo have to understand by  the flow of energy as it is in the
actual case. | 

Now, it is clear that, by our assumptions, the flow of energy must be symmetrical
all around  hence, if an amount  of energy traverses, in the outward direction, a
spherical surface described around  as center with radius  we shall have

and the force on  will be

It will have the direction of  prolonged.
In the space surrounding  the state of the aether will be stationary; hence, two

spherical surfaces enclosing this particle must be traversed by equal quantities of
energy. The quantity  will be independent of  and the force  inversely propor-
tional to the square of the distance.

If the vibrations of  were opposed by no other resistance but that which results
from radiation, the total amount of electromagnetic energy enclosed by a surface sur-
rounding  would remain constant;  and  would then both be  If, on the con-
trary, in addition to the just mentioned resistance, there were a resistance of a
different kind, the vibrations of  would be accompanied by a continual loss of elec-
tromagnetic energy; less energy would leave the space within one of the spherical
surfaces than would enter that space.  would be negative, and, since  is positive,
there would be attraction. It would be independent of the signs of the charges of 
and 

The circumstance however, that this attraction could only exist, if in some way or
other electromagnetic energy were continually disappearing, is so serious a difficulty,
that what has been said cannot be considered as furnishing an explanation of gravita-
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tion. Nor is this the only objection that can be raised. If the mechanism of gravitation
consisted in vibrations which cross the aether with the velocity of light, the attraction
ought to be modified by the motion of the celestial bodies to a much larger extent
than astronomical observations make it possible to admit.

§5. Though the states of the aether, the existence and the laws of which have been
deduced from electromagnetic phenomena, are found insufficient to account for uni-
versal attraction, yet one may try to establish a theory which is not wholly different
from that of | electricity, but has some features in common with it. In order to obtain a
theory of this kind, I shall start from an idea that has been suggested long ago by
Mossotti and has been afterwards accepted by Wilhelm Weber and Zöllner.

According to these physicists, every particle of ponderable matter consists of two
oppositely electrified particles. Thus, between two particles of matter, there will be
four electric forces, two attractions between the charges of different, and two repul-
sions between those of equal signs. Mossotti supposes the attractions to be somewhat
greater than the repulsions, the difference between the two being precisely what we
call gravitation. It is easily seen that such a difference might exist in cases where an
action of a specific electric nature is not exerted.

Now, if the form of this theory is to be brought into harmony with the present
state of electrical science, we must regard the four forces of Mossotti as the effect of
certain states in the aether which are called forth by the positive and negative ions.

A positive ion, as well as a negative one, is the center of a dielectric displacement,
and, in treating of electrical phenomena, these two displacements are considered as
being of the same nature, so that, if in opposite directions and of equal magnitude,
they wholly destroy each other.

If gravitation is to be included in the theory, this view must be modified. Indeed, if
the actions exerted by positive and negative ions depended on vector-quantities of the
same kind, in such a way that all phenomena in the neighborhood of a pair of ions
with opposite charges were determined by the resulting vector, then electric actions
could only be absent, if this resulting vector were  but, if such were the case, no
other actions could exist; a gravitation, i.e. a force in the absence of an electric field,
would be impossible.

I shall therefore suppose that the two disturbances in the aether, produced by pos-
itive and negative ions, are of a somewhat different nature, so that, even if they are
represented in a diagram by equal and opposite vectors, the state of the aether is not
the natural one. This corresponds in a sense to Mossotti’s idea that positive and nega-
tive charges differ from each other to a larger extent, than may be expressed by the
signs  and 

After having attributed to each of the two states an independent and separate,
existence, we may assume that, though both able to act on positive and negative ions,
the one has more power over the positive particles and the other over the negative
ones. This difference | will lead us to the same result that Mossotti attained by means
of the supposed inequality of the attractive and the repulsive forces.

[566]
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§6. I shall suppose that each of the two disturbances of the aether is propagated
with the velocity of light, and, taken by itself, obeys the ordinary laws of the electro-
magnetic field. These laws are expressed in the simplest form if, besides the dielectric
displacement  we consider the magnetic force  both together determining, as we
shall now say, one state of the aether or one field. In accordance with this, I shall
introduce two pairs of vectors, the one   belonging to the field that is produced
by the positive ions, whereas the other pair   serve to indicate the state of the
aether which is called into existence by the negative ions. I shall write down two sets
of equations, one for   the other for   and having the form which I have
used in former papers1 for the equations of the electromagnetic field, and which is
founded on the assumption that the ions are perfectly permeable to the aether and that
they can be displaced without dragging the aether along with them.

I shall immediately take this general case of moving particles.
Let us further suppose the charges to be distributed with finite volume-density,

and let the units in which these are expressed be chosen in such a way that, in a body
which exerts no electrical actions, the total amount of the positive charges has the
same numerical value as that of the negative charges.

Let  be the density of the positive, and  that of the negative charges, the first
number being positive and the second negative.

Let  (or  be the velocity of an ion.
Then the equations for the state  are2

 (I)

| and those for the state 

(II)

1 Lorentz, La théorie électromagnétique de Maxwell at son application aux corps mouvants, Arch.
Néerl. XXV, p. 363; Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten
Körpern.
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In the ordinary theory of electromagnetism, the force acting on a particle, moving
with velocity  is

per unit charge.3

In the modified theory: we shall suppose that a positively electrified particle with
charge  experiences a force

(10)

on account of the field  and a force

(11)

on account of the field  the positive coefficients  and  having slightly dif-
ferent values.

For the forces, exerted on a negatively charged particle I shall write,

(12)

and

(13)

expressing by these formulae that  is acted on by  in the same way as  by
 and vice versa.

§7. Let us next consider the actions exerted by a pair of oppositely charged ions,
placed close to each other, and remaining so during their motion, For convenience of
mathematical treatment, we may even reason as if the two charges penetrated each
other, so that, if they are equal,  |

On the other hand  hence, by (I) and (11),

Now let us put in the field, produced by the pair of ions, a similar pair with
charges  and  and moving with the common velocity  Then, by (10)–
(13),

The total force on the positive particle will be

3  is the vector-product of  and 

v,

4πV 2
d v.H[ ],+

v  . H[ ] v H .

e

k1 α 4πV 2
d v.H[ ]+{ }e=

d H,( ),

k2 β 4πV 2
d' v.H'[ ]+{ }e=

d' H',( ), α β

k3 β 4πV 2
d v'.H[ ]+{ }e'=

k4 α 4πV 2
d' v'.H'[ ]+{ }e',=

e d H,( ) e'
d' H',( ),

ρ' ρ.–=
[569]v' v,=

d' d–= and H' H.–=

e e' -e,= v.

k2
β
α
---– k1,= k3

β
α
---– k1,= k4 k1.=



122 HENDRIK A. LORENTZ

and that on the negative ion

These forces being equal and having the same direction, there is no force tending
to separate the two ions, as would be the case in an electric field. Nevertheless, the
pair is acted on by a resultant force

If now  be somewhat larger than  the factor  will have a certain
negative value  and our result may be expressed as follows:

If we wish to determine the action between two ponderable bodies, we may first
consider the forces existing between the positive ions in the one and the positive ions
in the other. We then have to reverse the direction of these forces, and to multiply
them by the factor  Of course, we are led in this way to Newton’s law of gravitation.

The assumption that all ponderable matter is composed of positive and negative
ions is no essential part of the above theory. We might have confined ourselves to the
supposition that the state of the aether which is the cause of gravitation is propagated
in a similar way as that which exists in the electromagnetic field. |

Instead of introducing two pairs of vectors  and  both of which
come into play in the electromagnetic actions, as well as in the phenomenon of grav-
itation, we might have assumed one pair for the electromagnetic field and one for uni-
versal attraction.

For these latter vectors, say   we should then have established the equations
(I),  being the density of ponderable matter, and for the force acting on unit mass,
we should have put

where  is a certain positive coefficient,
§8. Every theory of gravitation has to deal with the problem of the influence,

exerted on this force by the motion of the heavenly bodies. The solution is easily
deduced from our equations; it takes the same form as the corresponding solution for
the electromagnetic actions between charged particles.4

I shall only treat the case of a body  revolving around a central body  this
latter having a given constant velocity  Let  be the line  taken in the direc-

4 See the second of the obeys cited papers.
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tion from  towards   the relative coordinates of  with respect to  to
the velocity of  motion relatively to   the angle between  to and 
finally  the component of  in the direction of 

Then, besides the attraction

(14)

which would exist if the bodies were both at rest,  will be subject to the following
actions. 

1st. A force

(15)

in the direction of 
2nd. A force whose components are

(16)

| 3rd. A force

 (17)

parallel to the velocity 
4th. A force

(18)

in the direction of 
Of these, (15) and (16) depend only on the common velocity  (17) and (18) on

the contrary, on  and  to conjointly.
It is further to be remarked that the additional forces (15)-(18) are all of the sec-

ond order with respect to the small quantities 
In so far, the law expressed by the above formulae presents a certain analogy with

the laws proposed by Weber, Riemann and Clausius for the electromagnetic actions,
and applied by some astronomers to the motions of the planets. Like the formulae of
Clausius, our equations contain the absolute velocities, i. e. the velocities, relatively
to the aether.

There is no doubt but that, in the present state of science, if we wish to try for
gravitation a similar law as for electromagnetic forces, the law contained in (15)-(18)
is to be preferred to the three other just mentioned laws.
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§9. The forces (15)-(18) will give rise to small inequalities in the elements of a
planetary orbit; in computing these, we have to take for  the velocity of the Sun’s
motion through space. I have calculated the secular variations, using the formulae
communicated by Tisserand in his Mécanique céleste.

Let  be the mean distance to the Sun,
 the eccentricity,
 the inclination to the ecliptic,
 the longitude of the ascending node,
 the longitude of perihelion,
 the mean anomaly at time,  in this sense that, if  | be the mean

motion, as determined by  the mean anomaly at time  is given by

Further, let   and  be the direction-cosines of the velocity  with respect
to: 1st. the radius vector of the perihelion, 2nd. a direction which is got by giving to
that radius vector a rotation of  in the direction of the planet’s revolution, 3rd. the
normal to the plane of the orbit, drawn towards the side whence the planet is seen to
revolve in the same direction as the hands of a watch.

Put   and   is the velocity in a circular
orbit of radius 

Then I find for the variations during one revolution

(19)
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§10. I have worked out the case of the planet Mercury, taking  and  for
the right ascension and declination of the apex of the Sun’s motion. I have got the fol-
lowing results: |

 

Now,  and, if we put , we get

The changes that take place in a century are found from these numbers, if we mul-
tiply them by 415, and, if the variations of    and  are to be expressed in
seconds, we have to introduce the factor  The result is, that the changes in

   and  amount to a few seconds, and that in  to 
Hence we conclude that our modification of Newton’s law cannot account for the

observed inequality in the longitude of the perihelion—as Weber’s law can to some
extent do—but that, if we do not pretend to explain this inequality by an alteration of
the law of attraction, there is nothing against the proposed formulae. Of course it will
be necessary to apply them to other heavenly bodies, though it seems scarcely proba-
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ble that there will be found any case in which the additional terms have an apprecia-
ble influence.

The special form of these terms may perhaps be modified. Yet, what has been said
is sufficient to show that gravitation may be attributed to actions which are propa-
gated with no greater velocity than that of light.

As is well known, Laplace has been the first to discuss this question of the veloc-
ity of propagation of universal attraction, and later astronomers have often treated the
same problem. Let a body  be attracted by a body  moving with the. velocity 
Then, if the action is propagated with a finite velocity  the influence which reaches

 at time  will have been emitted by  at an anterior moment, say  Let 
be the position of the acting body at this moment,  that at time  It is an easy mat-
ter to calculate the distance between those positions. Now, if the action at time |  is
calculated, as if  had continued to occupy the position  one is led to an influ-
ence on the astronomical motions of the order  if  were equal to the velocity
of light, this influence would be much greater than observations permit us to suppose.
If, on the contrary, the terms with  are to have admissible values,  ought to be
many millions of times as great as the velocity of light.

From the considerations in this paper, it appears that this conclusion can be
avoided. Changes of state in the aether, satisfying equations of the form (I), are prop-
agated with the velocity  yet, no quantities of the first order  or  (§8),
but only terms containing  and  appear in the results. This is brought
about by the peculiar way—determined by the equations—in which moving matter
changes the state of the aether; in the above mentioned case the condition of the
aether will not be what it would have been, if the acting body were at rest in the posi-
tion 
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ABSOLUTE OR RELATIVE MOTION? 

Originally published in German as a pamphlet “Absolute oder relative Bewegung?”
by Verlag von Leonhard Simion, Berlin 1896. 1: Immanuel Friedlaender; Berlin,
Spring 1896. 2: Dr. Benedict Friedlaender; Berlin, January 1896.

1. The Question of the Reality of Absolute Motion and a Means for its Experimental
Resolution. 

2. On the Problem of Motion and the Invertibility of Centrifugal Phenomena on the
Basis of Relative Inertia. 

PREFACE

The question treated in the following is old; in addition to the cited writings there
exists a rather extensive literature on it, about which we reserve comment to a later
time. Our work was conceived without knowledge of that literature. It once more illu-
minates the uncertainty of the basis of our mechanics and of all exact science in gen-
eral—wherein it must necessarily deal with long-known material—and points the way
toward an attempt to solve the question, without any claim of already presenting the
solution. If experiments now in progress lead to a result, they may silence the fre-
quently raised objection that the limitations on our experience do not permit a deci-
sion. But if the experiments do not succeed, we may perhaps lead others to successful
work in this direction by pointing out that the invertibility [Umkehrbarkeit] of the cen-
trifugal force, considered already by Newton, urgently needs an experimental treat-
ment as well as a theoretical investigation by reduction to a law of relative inertia. |

1. THE QUESTION OF THE REALITY OF ABSOLUTE MOTION

A body whose position in space changes is said to be in motion. This is one of two
possible but fundamentally different definitions of motion. It presupposes that the
process of change in position of a single body in space, quite independent of actual or
possible relations to other bodies, has content, that is, that it differs from the state of
rest by recognizable effects. When we apply this concept to any mechanical problems
we have to refer observed motions to a coordinate system fixed in space in order to
represent them properly; to do this we must know the true motion of our Earth—from

[3]

[5]
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which all measurements originate—so that we can transform from its co-moving
coordinates, which we have fixed in the Earth, to a system of coordinates at absolute
rest in the universe.

This definition with its consequences forms the basis of our present-day mechan-
ics, and the well-founded high regard for the achievements of this science often pre-
vents critics from daring to examine the justification of this definition. Nevertheless
many have already stated the suspicion that this definition of motion is wrong,
because only the relative motions of two or several bodies have 

 

reality

 

, and | because
the motion of one body, apart from its relations to other bodies, does 

 

not

 

 differ from a
state of rest. This notion corresponds to our laws of thought and powers of imagina-
tion, but, as we shall see, not to the world of phenomena as understood according to
the principles of mechanics.

Two groups of phenomena are relevant:
1. The appearance of the centrifugal force,
2. The stability of the free axes and of the plane of a Foucault pendulum.
The question of whether an absolute motion possesses reality, or whether there

can be only relative motion, can be answered in different ways; to be precise there are

 

three

 

 views that we want to consider here.

 

1

 

 We will totally neglect those who deny
the reality of absolute motion at the beginning of textbooks, give only the definition
of relative motion, and then as they go along introduce a coordinate system fixed in
space without allowing it to be noticed (without noticing it themselves?), particularly
for the phenomena of rotation. Others, Kirchhoff for example, introduce 

 

ab initio

 

coordinates at absolute rest, and in that way at least avoid self-contradiction. Only
rarely is the question posed and discussed before it is answered.

Newton was the first to encounter the difficulty; he opines that it should be solved
by experiment, and on the basis of an admittedly totally inadequate experiment

 

2

 

 he
arrives at | the view that absolute motion is real (see Mach, 

 

Geschichte der Mechanik

 

,
p. 317).

Kant grasped the question in its full significance with perfect clarity. He arrives at
a solution by construing a difference between purely mathematical, “phoronomical”
motion and physical, “phenomenological” motion; about the first he states the fol-
lowing (

 

Metaphysische Anfangsgründe der Naturwissenschaft

 

, 1786, Phoronomie,
Grundsatz 1):

 

[1]

 

 

 

Every motion, as object of a possible experience, can be viewed arbitrarily as motion of
the body in a space at rest, or else as rest of the body, and, instead, as motion of the space
in the opposite direction with the same speed.

 

By way of contrast, propositions 1 and 2 of the Phenomenology state: 

 

1 In the following only the three main points of view will be briefly sketched, as seems necessary for
understanding the experiment, without entering into the theoretical treatment of the question by
numerous authors.

2 Cf. below, [p. 20 in the original].

[6]

[7]
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1. The rectilinear motion of a matter with respect to an empirical space, as distinct from
the opposite motion of the space, is a merely 

 

possible

 

 predicate. The same when thought
in no relation at all to a matter external to it, that is

 

 as absolute motion

 

, is 

 

impossible

 

. [...]

2. The circular motion of a matter, as distinct from the opposite motion of the space, is an

 

actual

 

 predicate of this matter; by contrast, the opposite motion of a relative space,
assumed instead of the motion of the body, is no actual motion of the latter, but, if taken
to be such, is mere semblance.

 

What Kant states here can be found in Budde’s general mechanics

 

[2]

 

 in a different
form, which more nearly corresponds to the modern point of view and will therefore
be more easily understood. He does admit (p. 6) that the determination of position is
relative in nature, but after making the transition from 

 

phoronomics to kinetics

 

 he
observes—presupposing the principle of inertia—that we are forced by the facts to
assume an absolute coordinate system, 

 

a | fundamental system within which the center of the Sun lies, with an angular velocity
 relative to the Earth. The principle of inertia holds in this system  and in every

other system that is at rest or in uniform translation relative to it; but this principle is no
longer valid in a different system that rotates with respect to  as shown by our experi-
ence on Earth.

 

We can properly state this claim of Kant and Budde as follows: in the purely geomet-
ric phenomenon of motion, or in mathematical space, there are neither fixed direc-
tions nor a fixed system of coordinates, all motion here is only relative; but in the
dynamical phenomena of motion, or in physical space, there is such a coordinate sys-
tem, which however can be translated parallel to itself without resulting in any real
change. In the following I will call this a 

 

fixed system of directions

 

, and for purposes
of visualization I wish to compare physical space with the interior of a crystal imag-
ined to be infinite in extent, in which to a certain extent each rotation, but no transla-
tional motion, would have a physical meaning. Indeed, Budde concludes that space is
filled with a 

 

medium

 

, and that the principle of inertia is a property of matter relative
to this medium.

 

3

 

 
Finally, the third possible conception is taken by Mach (p. 322); namely, that only

relative motion is real, that our present-day mechanics is incomplete, and that 

 

“the
mechanical principles can probably be put in such a form that centrifugal forces
result also for relative rotation.”

 

In short, the three conceptions are:

 

4

 

 |
1. There is absolute motion, translation as well as rotation; physical space, as

opposed to purely geometrical space, possesses a 

 

fixed coordinate system

 

.

 

3 Earlier authors already expressed similar views.
4 The first point of view is taken by Newton, Euler, Laplace, Lagrange, Poinsot, Poisson, Narr, the sec-

ond, however partially in a quite different formulation, by Maxwell, Thomson-Tait, Streintz, Lange
and others; the third especially by Mach. Some of these authors vacillate in their view or try, like
Lange, to unite views 2 and 3.

[8]
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2. There is no absolute translation, but there is absolute rotation. Real space, as
opposed to that corresponding to our conceptual ability [

 

Denkvermögen

 

], has an

 

absolute system of directions

 

.
3. There is nothing but relative motion; 

 

physical

 

 space does 

 

not differ

 

 from 

 

math-
ematical

 

 space; but our present-day mechanics explains the phenomena of rotation
incorrectly, or at least incompletely.

In the following we wish to treat the special case of centrifugal force first, in order
to test the validity of the three views

Imagine a rigid system, consisting of a weightless rigid rod of length  which
has two equal spheres, each of mass  attached to its ends.

If we allow this system to rotate about an axis perpendicular to the rod at its mid-
point—motions being referred to the Earth or to the fixed stars, because in the follow-
ing we want to assume that the motion of the Earth relative to the fixed stars can be
neglected as rather minor compared to that of our system—then there occurs a ten-
sion in the rod that equals  according to the well-known formula, where  is
the velocity of the mass  Now we treat this system, which we take to be located on
the Earth, based on the three possible assumptions concerning motion. If we first pro-
ceed on the assumption that there is only relative motion, and that | our coordinate
system can be fixed completely arbitrarily, then whenever we take the rod itself as a
coordinate, for example, or choose any coordinate system rigidly connected to our
system of bodies, there is no accounting for the occurrence of the centrifugal force,
that is, the measurable stress in the rod. For the rotational motion would then be rep-
resented as a rotation of the Earth and the whole firmament of fixed stars about our
rod with the two spheres. 

However, the rotation of these external bodies cannot explain the existence of the
stress in the rod according to any law of mechanics known to date.

Secondly, let us assume that space is constituted somewhat like an infinitely large
crystal, that there is no fixed system of axes in it, but that it possesses a system of
directions. In this case only the angular velocity and the direction of the rotational
axis would be uniquely determined, and we would therefore be entitled to assume
that our system is rotating about a fixed axis, perpendicular to the rod and at a dis-
tance  from its midpoint. We then obtain on one side of the axis the stress

and on the other side, 

where  denotes the 

 

same

 

 speed as in our earlier equation. Since the rotational axis
just assumed—which is only imaginary—is actually free, the rod will take on a uni-
form stress along its entire extent, namely

2r ,
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mv2 r⁄ , v
m.
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but this stress equals

 

5

 

 

| What we have shown in this special example is valid in general according to
Budde’s treatment: A system of directions in space, which suffices only to define the
angular velocity of a system without yielding information on its translational motion,
is enough to determine uniquely the centrifugal forces.

In our case just mentioned the motion would consist not only in rotation of one
sphere about the other, which is simultaneously rotating about its axis with the same
angular velocity and in the same sense, but at the same time the Earth together with
the system of the world considered as a whole would move in a circle of radius 
about our axis of rotation. This rotation would take place with the same angular veloc-
ity as that of our system and in the same sense, but such that the Earth and system of
the world would always be only parallely displaced, and every line placed through the
Earth and the firmament of fixed stars would maintain a constant direction.

Let us finally go on to the third point of view, the one which admittedly appeals
least to us. Let us assume that there is absolute motion—even translation—that is, a
space with a fixed coordinate system. Then an absolute rotation can be determined by
using systems of masses such as our rod with the two spheres. Thereby we are
enabled to refer our motion to a coordinate system of which we can claim that rela-
tive to space—relative to an absolute coordinate system—it does not rotate, but it
may execute an arbitrary translational motion, for whose determination we have no
basis. The whole edifice of our mechanics is based on this view, and by taking this
view no contradiction with experience has yet turned up, as far as I know. But until
one is in a position to exhibit an absolute translation, the known facts | agree equally
well with a space in which only a system of directions possesses reality. Experiments
in this direction have been performed, but we do not want to go into that here.

So the phenomena of centrifugal force teach us—on the basis of the usual
mechanical views, namely the formula —that there is an absolute space, or at
least a system of directions, and that the motion of a rigid system in this space in cer-
tain cases 

 

really 

 

differs from rest in a perceptible way, that is, by the existence of the
measurable centrifugal force. But this assumption means that there is a real and in
certain circumstances mechanically effective space that significantly differs from the
space of mathematics. The only attempt known to us to make this idea moderately

 

5 The tension in a thread at whose two ends the mass  is being pulled under the influence of an
acceleration  by a force  and  with the acceleration  and the force  is given by
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understandable is Budde’s above-mentioned attempt6 to regard space as occupied,
and to regard inertia as a consequence of relative motion with respect to the occupy-
ing medium. 

The second group of phenomena mentioned above, namely the fact that free axes
and the plane of the Foucault pendulum (at the pole) remain fixed with respect to the
sky of fixed stars, can be treated more briefly here, since they behave in exactly the
same way. Suppose we take the view that there is only relative motion. Then we can-
not explain the phenomena mentioned above if we treat, say, the Earth as fixed. Why
the Sun, Moon and stars should drag along the free axes or the plane of the pendulum
upon their daily revolution about the Earth could not be explained by mechanics. If
we take the second view—that space | has a system of directions—then the phenom-
ena mentioned above prove that the Earth possesses its own absolute rotation. They
are explained and calculable under this assumption.

Of course, the same follows on the basis of a space in which not only absolute
rotations, but also absolute translational motions are real.

We briefly summarize again what we have stated so far: our way of thinking is in
accordance with a space in which one position as such does not differ from another
position, nor one direction from another direction. That a body or a rigid system
moves in this space, or that it rotates about an interior or exterior point or stays at rest,
would then be only different ways of stating the same set of facts, depending on
whether it pleases us to fix our system of coordinates by an external body, with
respect to which the corresponding relative motion takes place, or by the system in
question itself.

But from this point of view we cannot—as shown above—explain the two groups
of phenomena of centrifugal force and preservation of axes on the basis of an arbi-
trary coordinate system.

We can then ascribe to space a system of directions, or assume that space is fixed
in a sense and that we can recognize absolute rotation by the appearance of centrifu-
gal phenomena—on the Earth, for example, by a decrease in  toward the equator,
etc.; whereas, at least for the time being, we lack evidence for the recognition of any
absolute translational motion of the Earth. 

To repeat, our intuition opposes this result; the proper reason for this opposition is
that we see ourselves forced to admit a factual difference between mathematical |
space and actual space, or differently put, between the space that corresponds to our
conceptual ability and the space of phenomena perceived by our senses. 

We can try to explain this result the way Budde did. Similar ideas are found
already in Kant, who also tried to explain that the content of vis viva [lebendige
Kraft] in a moving mass equals  by filling space with a medium.7 But if we
are not content with this, we must contest the result by disputing the premises; that is,

6 This idea was already formulated by Kant in the 1747 treatise regarding the true assessment of vis
viva [lebendige Kraft] (which is in other respects full of obscurities), and it was later expressed by
many others, in different forms.[3]
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we must question the basis of the usual mechanical explanation of the rotational phe-
nomena under discussion (namely, the law of inertia and the formula  for the
vis viva).

Without knowing that Mach had already done this, I have for many years had
doubts about the completeness of these foundations of mechanics, and in particular I
have become convinced that the phenomenon of centrifugal force, properly mechani-
cally understood, should also be explicable solely in terms of the relative motions of
the system concerned without taking refuge in absolute motion. But I was well aware
that the mere statement of these doubts does not amount to much, and that one must
find either a new formulation of the expression for vis viva of a moving mass and
thereby an improved version of the law of inertia, | or one must prove the inadequacy
of the prevailing view experimentally. The phenomena of the centrifugal force in par-
ticular seemed to me suited for such an experimental resolution of the question: if the
centrifugal force that appears in a flywheel can be explained solely from its relative
motion, then it must be possible to derive it also under the assumption that the fly-
wheel is at rest, but that the Earth is turning with the same angular speed about the
flywheel axis in the opposite sense. Now, just as the centrifugal force appeared in the
resting wheel as a consequence of the rotation of the massive Earth together with the
universe, so there should appear, I reasoned, in correspondingly smaller measure an
action of centrifugal force in resting bodies in the vicinity of massive moving fly-
wheels. If this phenomenon was verifiable, this would be the incentive for a reformu-
lation of mechanics, and at the same time further insight would have been gained into
the nature of gravity, since these phenomena must be due to the actions at a distance8

of masses, and here in particular to the dependence of these actions at a distance on
relative rotations.

In light of the smallness of the masses available for our experiment, I had little
hope of an experimental solution, until I thought of a promising experimental
arrangement in the fall of 1894. This arrangement consists of putting the most sensi-
tive of all physical instruments, a torsion balance, in the extension of the axis of a
heavy mass that rotates as rapidly as possible, namely a large flywheel, for example
in a rolling-mill. If the beam of the balance, bearing two small spheres at its ends, is
not parallel to the (vertical) plane of the flywheel when the latter is at rest but inclined
by an angle of about  to it, then according to our | theory tensile forces that tend
to separate the spheres from the extension of the axis must appear, so as to make the
balance parallel. However, a sensitive balance is a delicate instrument, and a rolling-

7 See footnote 6. Even if I think of space as filled, because otherwise action at a distance would remain
inexplicable, I nevertheless strongly doubt that the phenomenon of inertia (respectively, of vis viva)
derives from motion relative to the nearly massless aether, but I am of the opinion that motion relative
to the aether as influenced by nearby gravitating masses, or equivalently motion relative to the gravi-
tating masses themselves causes the inertia (respectively, the vis viva) of a moving mass through
mediation by the aether.

8 Whether these actions are, as the writers believe, transmitted through a medium or not makes no dif-
ference to the matter.
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mill is probably not the most comfortable and optimal location for precision mea-
surements, and so due to the many sources of error my experiments, which I started
already in November of 1894 at the rolling-mill in Peine—with the kindest support
on the part of the management and engineers—have brought to light no incontestable
results that I would want to transmit to the public, even though a deviation in the
expected sense was established at the beginning and the end of the motion. But since
the balance that was used also reacted to other influences, in particular being deviated
by a burning candle at a distance of 4 meters in a room (the closer sphere being
“attracted”), and since at the rolling-mill at Peine certain furnace doors are opened
and closed in the same time intervals as the starting and stopping of the machines we
used, I do not yet consider my results unobjectionable. Experiments with a torsion
balance inside a double-walled box of copper with a layer of water about 
thick between the two walls, have shown that even this precaution does not suffice to
make the needle completely independent of external heat sources. Whether the heat
perturbations are to be explained simply by the circulation of air in the interior of the
box—which is always sealed airtight to the exterior—or whether effects as with a
radiometer are to be considered, I do not dare to decide for the time being. A new
instrument that is being prepared will, we hope, exclude all previous sources of error.
Although reliable results are not yet available, the constant occupation with the mat-
ter and the frequent discussions with my brother Dr. Benedict Friedlaender have led
us to the conclusion that the matter is of sufficient importance | to publish our
thoughts already. My brother called my attention to Mach right at the start and in
joint work we have drawn many of the consequences that would result from our view.
The results of these considerations, as well as several opinions that I cannot fully
share, were put together by my brother in the second part of this treatise, and there he
has also attempted to state the law of inertia differently, so that one can derive from it
the relativity, hence also the invertibility, of centrifugal forces. But it seems to me that
the correct formulation of the law of inertia will be found only when the relative iner-
tia, as an effect of masses on each other, and gravity, which is after all also an effect
of masses on each other, are reduced to a unified law.9 The challenge to theoreticians
and calculators to attempt this will only be truly successful when the invertibility of
centrifugal force has been successfully demonstrated. |

2. ON THE PROBLEM OF MOTION AND THE INVERTIBILITY OF 
CENTRIFUGAL PHENOMENA

We are accustomed to regard mechanics as the most perfect of all natural sciences, and
efforts are made to reduce all other sciences to mechanics or, so to speak, to resolve

9 For this it would be very desirable to resolve the question of whether Weber’s law applies to gravity,
as well as the question concerning gravity’s speed of propagation. Regarding the latter question, one
might use an instrument that makes it possible to measure statically the diurnal variations of the
Earth’s gravity as it depends upon the position of the celestial bodies.
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them in mechanics. Mechanics is the most concrete and nevertheless also the mathe-
matically (that is, for quantitative calculations) finest, clearest and most exactly devel-
oped science. We have no cause to examine to what extent this evaluation of mechanics
is justified, and we recalled the above statements only in order to indicate that all con-
siderations or matters of fact related to the foundations of mechanics may claim more
than the usual interest and importance. Our subject at present is such a consideration,
which truly concerns the foundations of mechanics and thereby those of our whole sci-
entific worldview; however, this is no new subject, but surely a nearly forgotten and at
any rate not always sufficiently respected problem, the problem of motion. This prob-
lem is probably connected with another one, which has been discussed far more fre-
quently in former and more recent times, but which is apparently still a long way from
an even moderately satisfactory solution, the problem of gravitation. |

Concerning gravity we have nothing more than the knowledge of superficially
perceptible facts, along with a purely mathematical theory, which is in no way physi-
cal. No mind thinking scientifically could ever have permanently and seriously
believed in unmediated action at a distance; the apparent force at a distance can be
nothing other than the result of the effects of forces that are transmitted in some way
by the medium being situated between two gravitating bodies. But our presentations
refer primarily only to the problem indicated first, that of motion, as we may briefly
denote it, and not directly to the latter problem. For the science of motion with all its
derivations and consequences contains an image, or rather a formulation that can not
be imagined, which must be a hint of a present flaw to all who are convinced that
something that cannot be imagined also cannot be actual, i.e. acting. Vis viva, for
example, is defined to be proportional to the velocity squared  and the
velocity is defined as the measure of distance divided by that of time  Centrifu-
gal phenomena are explained by the conflict between a constrained, curvilinear
motion and inertia, which tends to maintain rectilinear motion. In both cases, and
more generally, one thinks of motion—or let us say, rather, one defines motion—as
absolute motion, as motion of a mass from one “absolute position” to another “abso-
lute position”; for thinking about absolute motion is just what we can not do, and pre-
cisely this motivated the following considerations. The root of these considerations,
as far as the author is concerned, lies in some difficulties and obscurities of none less
than Newton, which | I came to know in the early 90’s from quotes of Mach in his
Geschichte der Mechanik.

In themselves the arguments are as simple as they are unusual, which can easily
lead to obscurity if one does not demonstrate and think through the matter step by
step from the simplest case. 

What we perceive of motion is always only relative motion, changes in position of
masses with respect to other masses. Our hand moves against the rest of the body,
considered as relatively motionless; we move on the deck of a ship, the ship moves on
the surface of the Earth, it changes its distance from the continent, thought of as
fixed. Our planet moves in the universe, namely with respect to a coordinate system
that is considered fixed somewhere (in the Sun, for example), and so forth.
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Now think (if you can) of a progressive motion of a single body in a universal
space that is otherwise imagined to be totally empty; how can the motion be detected,
i.e. distinguished from rest? By nothing we should think; indeed, the whole idea of
such an absolute, progressive motion is meaningless. And still, in one case, namely
when in motion, our absolutely moving body, thought of as isolated, is supposed to
possess an amount of energy that is proportional to (half) the square of its (meaning-
less) velocity!

That this cannot be imagined is no new discovery; it is so apparent, and in con-
nection with our astronomical knowledge the reasoning suggests itself so naturally,
that many should have encountered it. (Cf., e.g., Wundt, System der Philosophie etc.)

More tenacious than the absurd idea of an absolute, so-called translational
motion is that of the rotation of a sphere, for example, about an axis taken in its abso-
lute sense. | To make the picture more concrete and impressive, let us immediately
consider one of those well-known apparatuses used in schools for illustrating centrif-
ugal effects. An approximately spherical framework of elastic brass blades can be
rapidly rotated about its axis, so that all the blades are bent in such a way that this
originally spherical frame suffers a polar flattening and an equatorial thickening.
Here too, according to the usual interpretation, one thinks of the rotational motion as
absolute and explains the whole phenomenon in the well-known way. Connected
with this, or at least with an entirely equivalent example, is the difficulty that Newton
already felt strongly, and which seduced that researcher into statements that seem to
us more than merely risky. Newton had suspended a glass of water on two strings so
that after twisting the strings about each other they put the glass into rapid rotation as
they unwound. Since the friction between the glass and the water is rather small, and
the inertia of the mass of water in the glass is quite considerable, at the beginning the
glass turns nearly alone, whereas the water remains behind; only slowly does the
mass of water take part in the rotation. One observes, as is well known, that no cen-
trifugal effects whatever occur as long as the glass rotates alone (or almost alone); the
surface of the water remains flat. But as the water takes part in the rotation more and
more, it increasingly rises at the rim and falls at the center. Newton concludes from
this that the centrifugal effects are a consequence of absolute—but not of relative—
rotation; for in the beginning the glass turns compared to the objects “at rest” in the
room, including also the mass of water in the glass; but afterwards, according to N.,
the water rotates “absolutely,” and this absolute rotation brings centrifugal effects
into play. It is not difficult to establish the | untenability or even the incorrectness of
this Newtonian idea, as Mach did. In the beginning the glass turns with respect to the
objects at rest in the room or with respect to the Earth, or more correctly the universe;
whereas later the mass of water rotates with respect to the universe. In the first case
there was relative rotation between mass of water (+ universe) and glass, in the sec-
ond between mass of water (+ glass) and the universe; and only the latter, but not the
former, produced the centrifugal effects. Mach justifiably points out that “absolute
rotation” is a fiction, or more accurately, an unthinkable absurdity. The naive mind
will immediately object that it is just not possible to hold the mass of water fixed and
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now “let the universe rotate” about the same rotation axis; but the more acute mind
will quickly agree that both ideas are plainly identical, namely indistinguishable in
any logical or practical way. The true fact of the matter is just this, that the rotation of
the glass with respect to the mass of water releases no centrifugal forces, but that the
rotation of the universe with respect to the glass (or equivalently the rotation of the
mass of water with respect to the universe) does do so. In the first case it is the very
small mass of the glass’s wall that rotates with respect to the mass of water, in the
second case it is the universe; we should not be surprised that the vanishingly small
mass of the glass does not call forth any noticeable centrifugal forces, but no one
could know, as Mach aptly remarked, how the experiment would turn out if the thick-
ness of the glass were significantly increased and its walls ultimately became several
leagues thick. Of course, this experiment cannot be executed in this form. But there is
still the question of whether an experimental arrangement is possible in practice that
would amount to the same thing, and allow us to establish the invertibility or relativ-
ity of centrifugal effects. |

Now it was my brother Immanuel who devised and tried to test an experimental
arrangement of this type. Technical difficulties, some of them quite unexpected, have
so far prevented the realization of a reliable result.

It is well known that the torsion balance is the most sensitive of all instruments.
The large flywheels in rolling mills and other large factories are probably the largest
rotating masses with which we can experiment. The centrifugal forces express them-
selves in a push causing recession from the axis of rotation. Thus, if we place a tor-
sion balance at not too great a distance from a large flywheel, so that the point of
suspension of the part of the torsion balance that can turn (the “needle”) lies exactly
or approximately on the extension of the flywheel’s axis, then if the needle was not
originally parallel to the plane of the flywheel it should tend to approach that position
and show a corresponding deflection. Namely, the centrifugal force acts on each ele-
ment of mass that is not on the rotation axis in a direction tending to move it away
from the axis. It is immediately apparent that the greatest possible separation is
reached when the needle becomes parallel. So far the difficulties opposing the exper-
iment were that a sensitive torsion balance is also put into motion by perturbing influ-
ences —particularly effects of heat— as if, by the way, the warmer parts of the
apparatus would have an attractive effect.

Now if we assume that the experiment were to work flawlessly, we would have
thereby discovered a new mechanical-physical phenomenon, whose consequences
would be extraordinarily far-reaching. Certainly the phenomenon would be explica-
ble and predictable, as shall be shown immediately, if one were to recast motion and
all concepts connected with it, including | inertia in particular, in such a way that rel-
ative motion would replace the present tacitly assumed concept of absolute motion.
However, the predictability on the basis of this suggested recasting would be no
objection to the claim that we would be dealing with a fundamentally new phenome-
non; for precisely this recasting has not been carried out and tested by anyone. The
law of inertia in the usual manner of representation can be transparently described by
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saying that every body opposes any change of its velocity (conceived as absolute)
with a resistance proportional to its mass in the corresponding direction. Here, the
remaining bodies of the universe are completely ignored; in fact, a point that must be
especially emphasized is that the concept of mass is, except for its derivation from
gravity  derived precisely from the facts of inertia. Every change in velocity,
i.e., every acceleration (in the simplest case, for example, the imparting of motion to
a body previously at rest until it reaches a certain velocity) is held to be opposed by a
resistance, the overcoming of which requires the quantity of energy that is after-
wards, when the body is in motion, supposed to be contained in that motion as
“kinetic energy.” It is here to be noted once more that translational motion of a single
body in space otherwise regarded as empty is an absurdity, namely, it does not differ
from its opposite, rest. Thus, the creation of such a chimera should not require any
energy; therefore, if in contrast the actual world does agree with our prerequisites of
thought [Denknotwendigkeiten], it should surely make a difference with respect to
which other bodies motion is to be created, in a word, what relative motion of previ-
ously nonmoving bodies is to be created. Accordingly, inertia is to be grasped rela-
tively; one could formulate the law of relative inertia as follows: All | masses strive to
maintain their mutual state of motion with respect to speed and direction; every
change requires positive or negative energy expenditure, that is, work is either
required—in the case of an increase in velocity—or is released—in the case of a
decrease in velocity. The resistance to changes in velocity would then, as soon as we
regard all motions as relative, be expressed not only in the one body that, as we are
accustomed to say, we “set in motion” (that is, set in motion relative to the Earth) but
also in all the others that we regard as being at rest in accordance with the usual con-
ception. According to the usual conception, inertia occurs on a railway train that is to
be brought from rest to a certain velocity, but not on the Earth; according to our view
it occurs also on the Earth, even though this is not noticeable due to the extraordinar-
ily much larger mass. But when we put very large masses into motion, to the extent
permitted by our technology, and we can observe the behavior of very easily moved
masses in the vicinity, it is possible that the relativity of inertia can be shown directly.
Precisely that experiment of my brother, namely to find the needle in parallel orienta-
tion, which has been unsuccessful so far, would be, as is easily demonstrated, not
only the proof of the invertibility of the centrifugal force, but also of the relativity of
inertia. In our view, both are the same.

The application of the thought indicated here is very simple but unusual to a high
degree. For if we consider the resistance to acceleration that some body exhibits, we
do not have the slightest thought of other masses that are nearby! But if we do so and
hold firmly to the guiding thought that the masses strive to maintain their relative
velocity, it turns out that (for motion on a | straight line of body  relative to body 
as the simplest case):

mg( ),
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In the first two cases a recession, and conversely in the last two cases an approach
of the second body  would satisfy the striving to maintain the relative velocity, that
is, the inertia considered as relative. But since the second body  has to be treated as
inert with respect to the Earth as well, the motion induced in it in this way by body

 having changing velocities, will not annul the relative velocity, but only reduce it;
and no matter how large we may choose the mass of body  it will always be
extremely small compared to the Earth’s mass, so the motion of body B with respect
to the Earth can only be very small, and if it be detectable at all, then only by a sensi-
tive apparatus. As further illustration one can say that due to its inertia with respect to

 body  strives to set itself in motion with respect to the Earth, but because of its
inertia with respect to the Earth it strives to move relative to  rather than relative to
the Earth. 

Let us now apply these considerations to our flywheel and the torsion balance
placed before it.

Let the circle  [in Fig. 1] represent the rim of the flywheel and  a
readily movable body or mass point within the rim of the flywheel, as close as possi-
ble to its plane, namely a part of the mass of the arm of the torsion balance. For sim-
plicity, let us assume that the point  actually lies within the plane of the flywheel,
which of course cannot be realized with strict accuracy | for common wheels whose
spokes and rim lie in one plane.

[Beschleunigte Annäherung–accelerated approach; Verz. Annäherg–decelerated approach; 
Beschl. Entf.–accelerated withdrawal; Verzögerte Entfernung–decelerated withdrawal.]
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Let us now join point  to the center of the flywheel  rotating in the direction
of the arrow, and extend this line until it meets the rim at  on the left, at  on the
right and also erect the perpendicular on  at  cutting the rim above at  below
at  Then it is clear that every mass point of the rim on its way from  over  to

 approaches the point  and then on the way from  over  to  recedes from it.
However, the approach on the semicircle  is accelerated up to  and then decel-
erated to  similarly, the withdrawal on the semicircle  is accelerated to  and
decelerated from  to . In view of the simplicity of the situation we can dispense
with an analytic proof. But since in accordance with what we have said accelerated
approach and decelerated withdrawal act in the same sense, namely both repulsively,
while decelerated approach and accelerated withdrawal both act attractively, we see
that we can divide the rim into two parts that differ | in their effect, namely, the part
left of  which repels, and that part right of  which attracts the point  But
it is also easily understood that only the force components acting along the line 
are effective. Namely, opposite to every point  on the rim there is another, 
whose force components along the line  reinforce each other, whereas the perpen-
dicular components cancel, being equal and opposite. All forces that push from the
left of  and all those that pull from the right of  act together along the line

 in the direction from  to  Therefore, on the basis of the conception of the
relativity of inertia an acceleration away from the axis is imparted to the point  as
our conception of the invertibility of centrifugal force requires. The relative rotation
between the wall of Newton’s bucket and the water contained in it would indeed gen-
erate appreciable centrifugal forces in the water if the wall were sufficiently massive
to be no longer practically non-existent compared with the mass of the Earth.10 

If the ideas sketched here are correct, many consequences will follow, some of
which will admittedly seem very strange. The same amount of gunpowder, acting on
the same cannon ball in the same cannon, would impart to the projectile a greater
velocity on, for example, the Moon than on the Earth. Naturally, however, the greater
velocity would represent, rather than a greater amount, the same amount of energy as
the smaller velocity that the projectile receives on our more massive planet. This
would reveal itself in the fact that despite the greater velocity, | the penetration capac-
ity on the Moon would not be greater than on the Earth. For the  as measure of
the so-called kinetic energy would not be the complete formula, as it fails to take into
account the surroundings with regards to mass and distance, that is, the specification
of the masses for which the velocity “  holds. 

One should not be overly hasty in rejecting our ideas as obviously incorrect
because of their actual or apparent consequences. For example, Foucault’s pendulum
should be explicable according to our ideas as well. According to the conception of
relativity of all motion the fact that the plane of the pendulum is carried along not by
the Earth, assumed to be rotating, but rather by the universe when it is assumed to be

10 We originally said “universe” but now the “Earth.” It is to be assumed that the Earth will probably
play a much larger role than the more distant masses of the universe.
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rotating; the plane notoriously follows the latter, and not the Earth. To resolve the dif-
ficulty one only has to assume that the forces that turn the plane have their origin in
the one-sided action of the masses of Sun and Moon, whereas the uniformly distrib-
uted mass of the Earth has no effect.

The phenomena of the tides would also have to have a treatment different from
the usual one; namely, in our figure we merely need to take our point  outside the
circle and draw tangents from it to  and  [Fig. 2]; the circle then represents the
Earth, the point  the Moon or the Sun, and  and  the axial section of a cone
tangent to the Earth from the Moon, treated as a point. One will then see that the
Earth will be divided by the approximately circular plane  which appears in the
figure as a line, into two parts that, on account of the distance, are very nearly equal;
of these, the half below  i.e., the part turned toward the Moon, will be attracted,
while the part above  away from the Moon, must be repelled; the mobile water
follows these attractive and repulsive forces and excites both the tidal waves that cir-
cle the Earth in the time between two culminations | of the Moon. Incidentally, this
explanation differs from the standard one essentially, rather than only in the point of
view. Were it possible to connect the two objects rigidly, so that rotation but no
approach or recession were possible, then a difference would result; according to the
usual explanation the wave away from the Moon could not be realized; according to
our explanation the occurrence of the tides would not be materially changed.

It is not our intention to dwell on the many other consequences, and likewise we
forgo a more detailed interpretation of the analogies that suggest themselves. Still, let
us mention the following parallels only in order to indicate the extent to which the
problem of motion that we have raised and hypothetically solved here is related to
that of the nature of gravity and at the same time comes rather close to the known
effects of electric forces: a body that approaches a second one or moves away from it
would be without influence on the latter as long as the velocity of approach (to be
taken either with a positive or a negative sign) remains unchanged; any change of this
velocity on the other hand would entail the above-demonstrated effect.

As is well known, the presence of a current in a conductor is not sufficient for the
generation of induction effects, either the magnitude of the current or the distance
must vary; in our case the change of distance, i.e. the motion, would not suffice for
the generation of the attractive or repulsive effects, but rather the velocity itself has to
change.

If we think of the effects in question as originating from some as yet unspecified
waves, for example from longitudinal pressure waves (although most people would
rather think first of transverse waves, due to the prevailing opinions!), then | the
breaking of the waves with equal speed would have no effect, whereas acceleration of
the rhythm would induce a repulsive force as long as it lasts, and deceleration an
attractive force. It should be noted that these last considerations are only hints and not
completed developments that could be understood by attentive reading only. They are
also hypothetical to a high degree, as are our main statements, which of course can be
regarded as facts only if the experiments described above (or equivalent experiments)
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are successful. But let us finally emphasize that the success of the experiments would
prove the presence of the type of action in question (even if not our interpretation),
but its failure would not disprove this action. It remains questionable whether the
effect is of an order of magnitude that would be reliably observable in the face of the
experimental error sources. But if we deny the existence of the “inverse centrifugal
force,” for short, there would be consequences that would really be totally untenable.
The incomprehensible would be deemed a fact, the logical absurdity of absolute
motion would have to be regarded as having an effect, hence also as actual or real. To
imagine and grasp this again in a concrete way, let the reader imagine being on a seat
that is fixed on the axis of a rotational apparatus, freely rotating in otherwise empty
space, in such a way that he must take part in the “rotation” of the apparatus. The
“rotation” of the apparatus would then be accompanied by no change in position with
respect to other heavenly bodies, it would not only be imperceptible as such, it would
be totally unthinkable. It would be a logical monster. Nevertheless, according to the
prevailing view that unthinkable “rotation,” which cannot be differentiated from rest,
is supposed to generate centrifugal forces so that the reader sitting on that seat can
observe the phantom “rotation” by the | equatorial bulge of his little speck of matter,
and can even measure the motion, not to say the ghost of the motion, by the amount
of the deformation.

The world as a whole, we dare say, is not made in a way that would be in conflict
with our prerequisites of thought. And therefore the idea of the relativity of all motion
and also the origin of the centrifugal effects in relative acceleration resistance may
have a priori probability on its side, and not against it, in spite of all its unaccustomed
and seemingly alarming consequences. 

On the basis of our conception it is naturally also necessary to modify the inter-
pretation of the astronomical facts. The Ptolomaic and the Copernican system are
both equally “correct” as far as they both describe the actual motions of the celestial
bodies truthfully; but this description takes a much simpler form if one puts the coor-
dinate system at the larger so-called central body, rather than at the Earth. In accor-
dance with the conception of the relativity of all motions, including therefore central
motions, a revolution of the Earth can be completely replaced by an axial rotation of
the Sun insofar as only these two bodies come into consideration. The circumstance
that the Earth, despite the “attraction,” does not plunge into the Sun, or the Moon into
the Earth, is of course explained on the basis of the usual conception by the motion of
revolution of the smaller celestial body; while, for example, the axial rotation of the
Sun with respect to the universe is taken to be negligible, and plays no role at all. If
our conception is correct, the so-called axial rotations are not irrelevant to the equilib-
rium of the world systems but must be equally taken into account like all other fac-
tors. Incidentally, the assumption of an attraction of the Earth by the Sun is not a
felicitous interpretation of the factual situation insofar as the so-called attractive |
forces can only be adduced from the reduction of distance; naturally, this is not to say
that the Sun would not attract the Earth if the relative motions of the two bodies were
other than they actually are. However, as the facts stand, that true attraction does not
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obtain; in accordance with everything we know, it would indeed occur in the case of
relative rest of the bodies and bring about the fall of the Earth into the Sun. The
attraction is compensated by the existing relative motions, and this would correspond
to the usual conception if it would take into account the relative motions instead of
operating with the phantom of absolute rotation and inertia treated correspondingly
as absolute.

It is also apparent that according to our conception the motions of the bodies of
the solar system could be seen as pure inertial motions, whereas according to the
usual view the inertial motion, or rather its permanent gravitationally modified ten-
dency, would strive to produce a rectilinear-tangential motion.

The central point upon which our view differs from the conventional one can also
be expressed precisely as follows. The prevailing view refers all locations, hence all
motions and derived concepts such as accelerations and inertia in particular, to a coor-
dinate system considered absolutely fixed in space; the absolutely fixed point in space
would accordingly be not only an idea, but would have a most real meaning; it would
be actual because it could act. It would be such although no criterion can be given for
its being fixed. A sympathetic devotee of Kant objected in a private communication
that my law of inertia is | not well defined, whereas the usual is definite and moreover
is merely an application of the law of causality to mechanics, with its (allegedly) a
priori character. “No body changes its motion without cause.” By no means do we
acknowledge the a priori character of the law of causality; if so, the work of Galileo,
to the extent that he discovered inertia, would then have been labor in vain and would
have resulted only in trivialities, so to speak, which could have been obtained far more
simply by deductively applying theorems that were certain a priori. To repeat, this we
deem incorrect; yet our law of inertia may be given quite an analogous formulation,
such as the statement that “no bodies change their relative motions without cause”;
wherein the “old” law, you see, is only completed by the emphasized word “relative.”
That Kantian objection is surprising, since it, in particular, further supports the objec-
tively real meaning of spatial relations. This is also the basis for the interest that our
treatment may perhaps claim, even in the case that it would for some reasons turn out
to be untenable. Namely, in that case we would have shown that it is possible to pro-
ceed from the relativity of all motions, that one can explain inertia and centrifugal
motions on the basis of the relativity hypothesis; but that upon following this chain of
thought further one hits upon factual contradictions, which make the assumption of
absolute motion necessary and therefore make manifest the real significance of a
coordinate system taken to be absolutely fixed in space, and thereby with even greater
probability make manifest the reality of the spatial relations.

From private objections I gather incidentally that if incorrectly, that is incom-
pletely, applied, our hypothesis seems to include a violation of the principle of con-
servation of energy; when considered more exactly, however,| namely when our point
of view is completely implemented, this apparent contradiction disappears. It is true,
as we already emphasized, that the formulas for the kinetic energy and everything
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depending on it are in need of an appropriate completion by respecting the other
masses in the vicinity.
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Originally published as “Über absolute und relative Bewegung” in Sitzungsberichte
der Bayerischen Akademie der Wissenschaften, mathematisch-physikalische Klasse
(1904) 34: 383–395 (submitted November 5, 1904). Excerpts already translated by
Julian Barbour have been used. (Julian Barbour and Herbert P�ster (eds.)“Mach’s
Principle: From Newton’s Bucket to Quantum Gravity.”) 

The most acute observations on the physical signi�cance of the law of inertia and the
related concept of absolute motion are due to Mach. According to him, in mechanics,
just as in geometry, the assumption of an absolute space and, with it, an absolute
motion in the strict sense is not permitted. Every motion is only comprehensible as a
relative motion, and what one normally calls absolute motion is only motion relative
to a reference system, a so-called inertial system, which is required by the law of
inertia and has its orientation determined in accordance with some law by the masses
of the universe.

Most authors are today in essential agreement with this point of view, as
expressed most recently by Voss1 and Poincaré2 in particular. A different standpoint
is adopted by Boltzmann,3 who does not believe he can simply completely deny an
absolute space and, with it, an absolute motion. Here, however, I shall proceed from
Mach’s view and attempt to add some further considerations to it. |

Mach summarizes his considerations in the following sentence:4 “The natural
standpoint for the natural scientist is still that of regarding the law of inertia provi-
sionally as an adequate approximation, relating it in the spatial part to the heaven of
�xed stars and in the time part to the rotation of the Earth, and to await a correction or
re�nement of our knowledge from extended experience.” Now it seems to me not
entirely impossible that just such an extended experience could now be at hand. In a
recent publication of K. R. Koch5 on the variation in time of the strength of gravity
we read: “Accordingly, the assumption of a genuine variation of gravity, or, more pre-

1 A. Voss, “Die Prinzipien der rationellen Mechanik” Enzyklop. d. math. Wissensch., Band IV, 1, p. 39,
1901. 

2 H. Poincaré, Wissenschaft und Hypothese. German translation by F. und L. Lindemann, Leipzig 1904.
3 L. Boltzmann, Prinzipe der Mechanik, II, p. 330, Leipzig 1904.
4 E. Mach, Mechanik, 4th ed. p. 252, Leipzig 1901.
5 K. R. Koch, Drude’s Annalen der Physik, Band 15, p. 146, 1904.
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cisely, its difference between Stuttgart and Karlsruhe, seems to me appropriate.” We
shall naturally have to wait and see if this assertion stands up to further testing; at the
least, we must now reckon with the real possibility that it is correct.

An explanation of such a phenomenon, if it is correct, would be very difficult on
the basis of known causes. This circumstance encourages me to come forward now
with a consideration that I have already developed earlier and long ago led me to the
assumption that small periodic variations of gravity of measurable magnitude should
be considered as a possibility.

Experience teaches us first that the inertial system required by the law of inertia
can be taken to coincide with the heaven of the fixed stars to an accuracy adequate for
practical purposes. It is also possible to choose a reference system differently, for
example, fixed relative to the Earth, in order to describe the phenomena of motion.
However, it is then necessary to apply to every material point the additional Coriolis
forces of relative motion if one is to predict the motions correctly. One can therefore |
say that the inertial system is distinguished from any other reference system by the
fact that in it one can dispense with the adoption of the additional forces. Rectilinear
uniform translation of the chosen reference system can be left out of consideration
here as unimportant.

However, it is obvious that the fixing of the inertial system relative to the heaven
of the fixed stars cannot be regarded as fortuitous. Rather, one must ascribe it to the
influence, expressed in some manner, of the masses out of which it is composed. We
can therefore pose the question of the law in accordance with which the orientation of
the inertial system is determined when the instantaneous form and relative motion of
the complete system of masses, i.e., the values of the individual masses, their separa-
tions, and the differential quotients of these separations with respect to the time, are
regarded as given.

The logical need for such a formulation of the problem if one wishes to avoid the
assumption of an absolute space was also felt by Boltzmann when he referred in pass-
ing to the possibility

 

6

 

 that the three principal axes of inertia of the complete universe
could provide the required orientation. If this rather natural supposition could be
maintained, the conceptual difficulties would indeed be overcome. However, I believe
that this supposition is not admissible. Let us imagine, for example, a universe that is
otherwise arranged like ours but with the only difference that there are no forces at all
between the individual bodies in the universe. Then for the inertial system valid for
this universe, all the bodies in it would move along straight lines. However, a calcula-
tion that is readily made shows us that under this assumption the principal axes of
inertia of the complete system would in general execute rotations relative to the iner-
tial system. It is therefore necessary to look for a different condition that can enable
us to understand the fixing of the inertial system. |

If first we assume that all the bodies of the universe are at rest relative to each
other except for a single mass point that I suppose is used to test the law of inertia,

 

6 Loc. cit., p. 333.
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and which I will call the “test point,” [

 

Aufpunkt

 

] then in accordance with the experi-
ences we already have one could not doubt that the test point would, when no forces
act on it, describe a straight path relative to a reference system rigidly fixed to the
masses. In this case, the inertial system would be immediately fixed in space.

We can now imagine the case in which the bodies of the universe consist of two
groups, one of which is “overwhelmingly” large compared to a smaller group and in
which the masses within each group do not change their relative separations, whereas
the smaller group, regarded in its totality, does carry out at the considered time a
motion, say a rotation, relative to the larger group. If only one of the two groups were
present, the inertial system would have to be fixed relative to it. Since the two work
together, and one of the groups has been assumed to be much more “powerful” than
the other, the inertial system will now be indeed very nearly at rest relative to the first
group, but it will still execute a small motion relative to that group, which, of course,
will be the consequence of the influence of the second, smaller group.

Given such a situation, what would be the most expedient way to proceed? I
believe that one cannot be in doubt. One would fix the reference system exclusively
using the first, overwhelming group and calculate as if this were the inertial system
but take into account the influence of the second group by applying in this case to
every test point the very weak additional forces of the relative motion that the chosen
reference system executes relative to the true inertial system. If one makes such a
decision, then these Coriolis forces no longer appear as mere computational quanti-
ties that arise from a coordinate transformation but as physically existing forces that
are exerted by the masses of the smaller group | on every test point and arise because
these masses have a motion relative to the chosen reference system.

To develop this idea further, one could start by investigating the case in which the
second, smaller group that I just mentioned is represented by a single body. One then
has the task of determining the magnitude and direction of the force, which will
depend on the velocities of the single body and the test point relative to the reference
system determined by the remaining bodies of the universe and on the separation
between the single body and the test point. If we suppose that this problem has been
solved for a single body, then, using the superposition law, we can also obtain the
influence of a whole group of moving bodies.

The securely established observational results that are currently available are cer-
tainly not adequate to solve this fundamental problem; however, one does not there-
fore need to doubt that on the basis of further observations we could arrive at a
solution.

After these preliminary considerations, I now turn to the case that corresponds to
reality. Using the circumstance that the constellation of the fixed stars changes little
in the course of several years or centuries, we can suppose that a reference system
that more or less coincides with the inertial system is fixed relative to three suitably
chosen stars. However, in order to take into account the small deviations that still
remain, one must suppose that to each test point there are applied Coriolis forces,
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which, as we have just described, are to be interpreted as forces that depend on the
velocities of the individual bodies in the universe and the velocity of the test point.

We are now in the position—and on this I put considerable value—to specify a
condition meeting our requirement for causality that must be satisfied by the true
inertial system required by the law of inertia. Namely, the true inertial system is the
reference system for which all the | velocity-dependent forces that arise from the indi-
vidual bodies of the universe are in balance at the test point. Even if in practice it is
clear that we have not gained very much through this statement, it does appear to me
that we have thereby obtained a very suitable basis for forming a clear concept of
what is known as absolute motion in mechanics. There is at the least a prospect
opened up of a way of determining the inertial system once the law that establishes
the velocity-dependent forces has been found. In other words, it will be possible to
construct the absolute space that appears in the law of inertia without having to sacri-
fice the notion that ultimately all motions are merely relative.

Besides, in all these considerations my main aim is to make it at least plausible
that if one is to find a satisfactory solution to the questions that relate to the law of
inertia it will be necessary to assume the existence of forces between the bodies in the
universe that depend on their velocities relative to the inertial system. If this is
accepted, then there follows the task of looking for possible phenomena whose rela-
tion to the expected general law of nature could be such that the law governing the
velocity-dependent forces could be inferred. These forces, which for brevity I shall in
what follows simply call “velocity forces,” have nothing to do with gravitational
forces, which arise concurrently with them, and specifically they can—and probably
will— follow a quite different law than the gravitational forces with regard to dis-
tance dependence.

At this point I should like to make a remark in order to divide this communication
into two quite separate sections. I believe that I can defend with complete definiteness
and confidence what I have said up to now. However, I regard what follows as merely
an attempt that could very | well fail; nevertheless, it is an attempt that at the least has
a prospect of success and therefore must be brought forward at some time.

It seems to me that the most promising way of proving the existence of the postu-
lated velocity forces and finding the law in accordance with which they act is to
observe with the greatest possible accuracy phenomena associated with motions near
the Earth that occur with great velocity. Just as the discovery of gravitation had as its
starting point the observation of free fall, here too the first step to the solution of the
puzzle could be obtained through observations of terrestrial motions and their correct
interpretation. The immediate vicinity of the Earth’s mass opens up some prospect of
proving the existence of velocity forces more accurately than would be possible with
the finest astronomical observations, which, as experience teaches, are certainly only
very weak under normal circumstances.

This thought led me some time ago to make the gyroscope experiments that I
reported to the Academy very nearly a year ago.

 

7

 

 I expected then, as I explicitly said,
to establish a behavior of the gyroscope that did not agree with the usual theory in the
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hope that the observed deviation could be attributed to the velocity forces I seek and
that these would therefore be made accessible to experimental research. Now certain
indications of a deviation were indeed discernible, but as a careful and conscientious
experimentalist I could not put any weight on them and I was forced, as I did, to
declare a negative result of the experiment as regards the direction that it was
intended to follow in the first place. In the meanwhile, I have made some further
experiments with the same apparatus, though admittedly few, since they are very
laborious and time consuming. However, the result could do nothing but | strengthen
me in the view that the accuracy that can be achieved with this experimental arrange-
ment is not sufficient to prove the existence of the velocity forces if they exist at all.

More promise of success probably lies in a further continuation of the free fall
experiments, whose results to date can already be described as rather encouraging,
after all. The ordinary theory, which does not take velocity forces into account, leads
one to expect in the northern hemisphere, in addition to an easterly deviations of free
fall motion from the vertical, a southerly deviation of such an extraordinarily small
amount only that its experimental confirmation would be entirely out of the question.
Nevertheless observers have time and again found southerly deviations of measurable
magnitude, which are of a totally different order of magnitude (several hundred times
larger and more) than those expected from theory. The newest observations in this
area, due to the well-known American physicist E. H. Hall,

 

8

 

 famous as an experimen-
talist and discoverer of “Hall’s Phenomenon,” have confirmed these experiences
again. Indeed Hall considers further experiments on a larger scale (for greater heights
of fall) necessary, and he holds out a prospect of such experiments. One may expect
very valuable insights from them. Perhaps it will also serve to further the continued
performance of such experiments if the hope for a positive result is strengthened by
the theoretical considerations as I have offered here. For it takes indeed no small
measure of courage to undertake painstaking and lengthy experiments, if the unani-
mous opinion of all theoreticians comes to this, that they cannot possibly lead to the
expected result. This consideration has been for me the main motive to come forward
with my views, although | I must admit that so far they are too deficient in an ade-
quate experimental basis to be likely to meet with much approval. 

Now I come to the admittedly most doubtful conjecture that I formed in connec-
tion with the above, and which is connected with the observation of Koch mentioned
in the beginning. One can understand immediately that I must also expect velocity
forces that arise from the motion of the Earth with respect to the Sun. The Sun is a
fixed star like others and it contributes its part to the determination of the inertial sys-
tem; or, in other words, it exerts velocity forces, if we account for the motion relative
to a system of reference that is established without regard to the Sun. Even if nothing
is known about the dependence of these forces on distance we may nonetheless
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regard it as probable that the influence of a closer body is larger than that of a much
more distant one. Therefore nothing is more natural than the assumption of velocity
forces of such a kind that could cause a small periodic change of gravity with a diur-
nal as well as an annual period. 

One difficulty, a very serious and possibly insurmountable one, arises only when
one assumes that these velocity forces could be of such a magnitude that they would
be measurable on the surface of the Earth and that the observations of Koch could be
evaluated in this sense. Then one necessarily encounters the astronomers’ objections,
who have noticed nothing of the occurrence of such forces in spite of the great accu-
racy with which they can predict the phenomena of motion in the solar system. 

This objection is so lucid that one would almost abandon the hope of being able to
silence it. To be sure, as long as nothing is conclusive about the | laws of action of the
velocity forces in other ways, one could retreat to the view that a remote possibility
exists that this contradiction could be cleared up later. And in this hope one could first
quietly wait and see what consequences derive from such observational results as
those found by Koch, temporarily neglecting the contradiction. If for example the
original observation of Koch were not only confirmed, but if also the daily period of
gravity fluctuations were really found as are expected on the basis of the views pro-
posed here, then one could regard this as a certain confirmation of the suggested the-
ory in spite of all objections. 

However, I understand that such a position would be untenable. If it is not possi-
ble even now to make it reasonably credible that the interpretation of Koch’s observa-
tions that I regard as possible does not necessarily have to be in contradiction with
astronomical experience, then no one will pay heed to my interpretation, and the dan-
ger could arise that the same fate awaits Koch’s observations as so far has befallen the
southerly deviation of falling bodies, that is, that one does not take it seriously and
immediately tends to assign it to errors in observation, because it does not fit with the
accepted theory. 

Only with this intention and by no means in order to represent the several possi-
bilities I am about to discuss as somehow particularly probable, I still mention the
following. 

Consider a planet that circles its central body in agreement with the first two laws
of Kepler. Let the law of the velocity forces be of the form that the planet is subject to
an attraction by its sun that is proportional to the velocity component orthogonal to
the radius vector and inversely proportional to the first power of the distance. One
immediately recognizes that under these circumstances one would not need any grav-
itational force in addition to the velocity force in order to | explain the motion of the
planet that is given by the observations. The astronomers of a solar system with only
a single planet would have indeed no means to decide whether Newton’s gravitational
force or the velocity force adopted in the indicated manner were correct if they
wished to restrict themselves to observation of the orbit alone. However, the differ-
ence would immediately be apparent when they took into account observations on
their planet.
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In accordance with Newton’s gravitational law as well, there is, as is well known,
a daily period of variation of the gravity force that gives rise to the contribution of the
Sun to the motion of the tides but is too weak to be established by pendulum observa-
tions. However, if the astronomers of that solar system were to make the attempt to
replace Newton’s law of gravitation by the law of the velocity forces that we have
mentioned, they would have to expect a much greater daily period, which, for the
same relations between our Earth and the Sun, would be about 180 times greater than
would be expected in the other case.

It should also be remarked here that the velocity law, which was chosen at ran-
dom, is in fact only one of infinitely many that would all achieve the same, namely,
the explanation of the motion of a single planet around its sun in agreement with
Kepler’s first two laws without having to invoke in addition Newton’s gravitational
force. All one needs to do is to allow the velocity component in the direction of the
radius vector, which was hitherto assumed to be without influence, to participate as
well in accordance with some arbitrary law and then arrange the law according to
which the orthogonal velocity component acts on the force of attraction in such a way
that the required motion results. There is also no need to make a restriction to the first
power of the velocity; one could also consider the second or other powers. |

When a solar system has more than one planet, it is naturally much more difficult
to explain all the planetary orbits merely with the help of velocity forces, since it is
now necessary to satisfy Kepler’s third law as well. So far as I can see, one would then
be forced to make quite artificial assumptions. Even if one could achieve success in a
simpler manner than it now appears to me, it would still be questionable if one could
also explain the disturbances of the planetary orbits, the motions of the moons, etc.

However, one should not forget the aim of this discussion. It is in no way my
intention to replace Newton’s law by a law of velocity forces. I only want to make it
plausible that under certain circumstances the velocity forces by themselves could
have effects very similar to those of the gravitational forces. If this is then granted, it
immediately follows that in such an event it would be very difficult to separate out
from the astronomical observations the part due, on the one hand, to gravitational
forces and, on the other, to the velocity forces.

On the basis of this consideration, I believe it is best not to be deflected by the
admittedly very weighty objections of the astronomers from seeking phenomena that
could be related to velocity forces. If it does prove possible, following this entirely
independent research approach, to derive a law of the velocity forces, it will still be
possible to make, as the best test of the admissibility of the result, an accurate com-
parison with the astronomical observations, taking into account the error limits that
are relevant.

Naturally, I would not recommend such a procedure if I did not have great confi-
dence in the very existence of the velocity forces, even though I must leave it as an
open question whether they have a magnitude such | that they are measurable in
motions accessible to our perception. If one will admit an absolute space, then, of
course, every reason for the assumption of velocity forces disappears. However, in
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this point at least—that I do not recognize an absolute space—I am in agreement with
the majority of natural scientists, and I therefore hope that I shall receive recognition
among them, at least for the conclusions drawn in the first part of this communication.
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1. KARL SCHWARZSCHILD: PIONEER OF RELATIVISTIC ASTRONOMY

Only a few weeks after Einstein had presented the successful calculation of Mer-
cury’s perihelion advance on the basis of his new theory of general relativity in late
1915, the German astronomer Karl Schwarzschild (1873–1916) published the first
non-trivial exact solution of Einstein’s field equations (Schwarzschild 1916a). The
solution describes the spherically symmetric gravitational field in a vacuum and
holds a central place in gravitation theory, comparable to that of the Coulomb poten-
tial in electrodynamics. It was not only an important point of departure for further
theoretical research but also, up to recent times, the basis for all empirical tests of
general relativity that proved not only the principle of equivalence but also the field
equations themselves. Schwarzschild made a further substantial contribution to the
theory when he found another exact solution describing the interior gravitational field
of a sphere of fluid with uniform energy density (Schwarzschild 1916b). In this com-
munication an important quantity makes its first appearance. It is the quantity that is
later known as the 

 

Schwarzschild radius

 

, which plays an important role in the theory
of black holes many decades later.

 

1

 

 But even long before the final theory of general
relativity was established, Schwarzschild had already occupied himself with possible
implications of its predecessors for astronomy; in 1913 he carried out observations of
the solar spectrum in order to clarify if the gravitational redshift predicted by Einstein
on the basis of the equivalence principle was detectable (Schwarzschild 1914).

In view of the fundamental role played by general relativity in astronomy, astro-
physics, and cosmology today, it appears quite natural that an astronomer would
engage in the study of this theory. Astronomical objects of all scales ranging from
supermassive stars via galaxy nuclei and quasars to the universe as a whole are
described on its basis. However, at the time when Schwarzschild made his contribu-
tions, the situation was quite different. None of the spectacular objects nowadays so
successfully described by general relativity were in the focus of research, most of

 

1 For a thorough analysis of the early history of the interpretation of Schwarzschild’s solutions and the
Schwarzschild radius in particular, see (Eisenstaedt 1982; 1987;

 

 

 

1989). See also (Israel 1987), in par-
ticular sec. 7.7 on the 

 

Schwarzschild ‘Singularity’

 

.

© 2007 Springer.



 

156 M

 

ATTHIAS

 

 S

 

CHEMMEL

 

them not even known at all. Rather, the deviations from Newtonian theory that gen-
eral relativity predicted were so small that in most cases they lay on the verge of
detectability, even on astronomical scales. General relativity could thus easily be con-
sidered a physical theory—it was developed in the attempt to solve problems in phys-
ics such as the incompatibility of Newtonian gravitation theory and special
relativity—with little implications on astronomy. And even as a physical theory it
was still controversial, as is strikingly illustrated by the case of the physicist Max von
Laue who as late as 1917 preferred Nordström’s theory of gravitation to Einstein’s.

 

2

 

Accordingly, at the time, astronomers showed little interest in general relativity. Ein-
stein’s plea to put the theory to an empirical test went unheard by most of them. In his
attempts to provide empirical evidence for the theory, Erwin Freundlich, an outsider
to the astronomical community, even met with hostility among Germany’s most
prominent astronomers.
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 Why was Schwarzschild an exception to this? What put him
in the position to recognize so early the significance of general relativity?

The clue for answering these questions lies in the study of work Schwarzschild
had done long before the rise of general relativity. In the course of the late 19th cen-
tury, foundational questions surfaced in classical physics that had implicit conse-
quences for astronomy: consequences that were often of a cosmological dimension.
Mach’s critique of Newton’s absolute space, for example, immediately led to the
question of an influence of distant stars on terrestrial physics. The deviation of the
geometry of physical space from Euclidean geometry, to give another example, had
become a possibility with the work of Gauss and Riemann and could be imagined to
be measurable on cosmological scales. A further example is provided by the various
attempts to modify Newton’s law of gravitation. Such a modification would have con-
sequences not only for planetary motion but also touches upon questions concerning
the stability of the whole universe and the large-scale distribution of matter therein.

 

4

 

These foundational questions were, despite their astronomical implications, not on
the agenda of contemporary astronomical research. Nevertheless, they were studied
by a few individual scientists, among them Karl Schwarzschild.

In this paper it is argued that a continuity exists between Schwarzschild’s prerela-
tivistic work on foundational problems on the borderline of physics and astronomy
and his occupation with general relativity. After a brief biographical introduction
(sec. 2), Schwarzschild’s prerelativistic considerations on the relativity of rotation
(sec. 3) and on the non-Euclidean nature of physical space (sec. 4) are presented as
they are documented in his publications as well as in his unpublished notes. On this
background, Schwarzschild’s reception of general relativity will then be shown to
have been shaped to a large extent by his earlier experiences. In fact, what at first
sight may appear to be a rather technical contribution to a physical theory—Schwarz-

 

2 See (Laue 1917).
3 For an account on Freundlich’s work on empirical tests of general relativity and the astronomers’

reaction to it, see (Hentschel 1997).
4 For a discussions of fundamental problems arising in Newtonian cosmology, see (Norton 1999).
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schild’s derivation of an exact solution of Einstein’s field equations—turns out to
have been motivated by Schwarzschild’s concern for a consolidation of the connec-
tion between astronomy and the foundations of physics as established by Einstein’s
successful calculation of Mercury’s perihelion motion (sec. 5). What is more,
Schwarzschild was reexamining his prerelativistic cosmological considerations in the
framework of the new theory of relativity as hitherto neglected manuscript evidence
reveals for the case of the problem of rotation (sec. 6, a manuscript page from
Schwarzschild’s Nachlass is reproduced with annotations in the Appendix). Further-
more it turns out that, prepared by his earlier cosmological considerations, Schwarz-
schild was the first to consider a closed universe as a solution to Einstein’s field
equations (sec. 7). Summing up, Schwarzschild’s road to general relativity may be
called an astronomical one. Concluding this paper it will be argued that it was no
coincidence that Schwarzschild of all astronomers took this road, but that this was the
natural outcome of his interdisciplinary approach to the foundations of the exact sci-
ences (sec. 8).

2. KARL SCHWARZSCHILD: 
ASTRONOMER, PHYSICIST AND ASTROPHYSICIST

Schwarzschild was born on October 9, 1873 in Frankfurt am Main, the eldest of
seven children of a Jewish businessman.
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 He studied astronomy in Strasbourg and in
Munich, where he obtained his doctoral degree in 1896 under Hugo von Seeliger
(1849–1924), one of the most prominent German astronomers at the time. After hav-
ing worked for three years at the Kuffner Observatory in Ottakring near Vienna,
Schwarzschild obtained his post-doctoral degree (

 

Habilitation

 

) in Munich in 1899.
On this occasion, Schwarzschild had to defend five theses, mostly concerned with
foundational questions, that inspired him, as we will see, to much of the work rele-
vant to our discussion. It is therefore interesting to question the extent to which
Schwarzschild’s teacher, von Seeliger, was involved in formulating these theses.
While it may well be the case that Schwarzschild himself played some role in their
creation, their exact wording makes it plausible that they were formulated by von
Seeliger (see the discussion below). Thus this sheds some light on von Seeliger’s
ambivalent role in the early history of relativity. On one hand he was known to be
very sceptical of relativity theory. For example, he severely criticized Erwin Freun-
dlich’s attempts to provide empirical evidence supporting general relativity. On the
other hand he was interested in foundational questions of theoretical astronomy and
apparently inspired Schwarzschild to much of the work discussed here.

In 1901, Schwarzschild was appointed professor of astronomy and director of the
observatory of Göttingen University. He became closely associated with the circle of
mathematicians and natural scientists around Felix Klein and furthered the integra-
tion of Göttingen astronomy with general scientific life.
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 Schwarzschild left Göttin-

 

5 For a short biographical account on Schwarzschild, see (Schwarzschild 1992, 1–25).
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gen in 1909 and became director of the 

 

Astrophysikalisches Institut

 

 in Potsdam, but,
for the short remainder of his life, he maintained the personal and scientific relation-
ships established in Göttingen. Thus it was his Göttingen colleagues and acquaintan-
ces who, on several occasions, wrote him about the latest developments of Einstein’s
theory and pointed out the importance of its astronomical verification.
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 On May 11,
1916, Schwarzschild died an untimely death from a skin disease he contracted while
serving at the Russian front.

Schwarzschild’s scientific work is characterized by its rare breadth. The range of
topics from physics and astronomy covered by his more than one hundred publica-
tions is hardly surpassed by any other single scientist of the twentieth century.
Schwarzschild is further known to be one of the founders of astrophysics in Germany
and was its most prominent exponent at the time. While disciplinary astrophysics
itself was a rather specialized enterprise—using physical instruments for astronomi-
cal observation and applying physical theory to astronomical objects—Schwarz-
schild’s interdisciplinary outlook on the foundations of science
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 enabled him to
overcome the constraints imposed by specialization and deal with foundational prob-
lems on the borderline of physics and astronomy that were not in the focus of main-
stream research.

3. SCHWARZSCHILD’S PRERELATIVISTIC CONSIDERATIONS
ON THE RELATIVITY OF ROTATION

In 1897, while he was assistant at the Kuffner Observatory in Ottakring, Schwarz-
schild published a popular article entitled 

 

Things at Rest in the Universe

 

 (

 

Was in der
Welt ruht,

 

 Schwarzschild 1897). In this paper he discusses the relativity of motion
and the problem of finding appropriate reference frames. In particular, he is con-
cerned with the question of how fixed directions in space can be defined.

Schwarzschild’s starting point is the observation that the motion of an object can
only be perceived relative to other objects and that therefore any object may be con-
sidered at rest. The question of what thing is at rest in the universe should therefore
be reformulated in a historical manner as “[w]hat things in the universe did one find
useful to treat as being at rest, at different times [in history]?”.
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 In the Copernican
system, Schwarzschild explains, fixed directions in space were defined by reference

 

6 See (Blumenthal 1918).
7 See, in particular, Schwarzschild’s correspondence with David Hilbert. On a postcard to Schwarz-

schild from October 1915, for example, Hilbert wrote: “The astronomers, I think, should now leave
everything aside and only strive to confirm or refute Einstein’s law of gravitation.” (“Die Astronomen,
meine ich, müssten nun Alles liegen lassen u. nur danach trachten, das Einsteinsche Gravitationsge-
setz zu bestätigen oder widerlegen!”) Hilbert to Schwarzschild, 23 October, 1915, N Briefe 331, 6r.
(This and all following translations are my own, a few of them are based on the companion volumes
to the Einstein edition.) Examples of this kind are also found in Schwarzschild’s correspondence with
Arnold Sommerfeld. A selection of Sommerfeld’s scientific correspondence has recently been pub-
lished (Sommerfeld 2000–2004).

8 See sec. 8.
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to the system of fixed stars. Towards the end of the 17th century it became clear how-
ever that the Copernican stipulation is not unambiguous: the stars perform motions
relative to one another, the so-called proper motions. Schwarzschild therefore next
considers the electromagnetic aether as a candidate for a material reference of rest but
comes to the conclusion that the aether too cannot serve such a purpose since it is
affected by ponderable matter moving through it. Schwarzschild concludes that there
are no material objects in the universe that one could reasonably consider at rest and
that one can only take resort to “certain conceptually defined points and directions
that may serve as a substitute to a certain extent”.

 

10

 

In order to explain how fixed directions in space may be defined on the basis of
the law of inertia, Schwarzschild refers to Foucault’s pendulum. By accurate observa-
tions of the rotation of the pendulum’s plane of oscillation, Schwarzschild explains,
one could calculate the speed of rotation of the Earth, and would then have to
describe as fixed the direction with respect to which the Earth rotates with the calcu-
lated speed.

In following this idea further, Schwarzschild establishes an interesting connection
between inertia and gravitation in the following way. In regarding the planets orbiting
around the Sun as gigantic, diagonally pushed pendulums, he conceives an astronom-
ical realization of the physical model of the pendulum. In analogy to Foucault’s pen-
dulum, fixed directions in space are then given by the aphelia (or perihelia) of the
orbits of the different planets. However, Schwarzschild explains, astronomical obser-
vations since the middle of the 19th century reveal that the directions singled out by
the orbits of the different planets rotate with respect to each other at a very slow rate,
so that it is “impossible to consider all as fixed.”

 

11

 

 Although Schwarzschild was
aware of possible astronomical explanations, such as interplanetary friction, he con-
sidered it more probable that an explanation of these small anomalies has to go fur-
ther, requiring a revision of the classical law of gravitation.

In this way, Schwarzschild established a relation between the two physical phe-
nomena, inertia and gravitation, the integration of which was later to lie at the basis
of Einstein’s theory of general relativity. Moreover, the observational fact by which
Schwarzschild links the two phenomena—the perihelion shift of the inner planets—
was later to play a crucial role in the establishment of general relativity, for some
years being the only empirical fact suggesting a superiority of general relativity over
the Newtonian theory.

There are, of course, fundamental aspects of general relativity that have no ana-
logue in Schwarzschild’s prerelativistic considerations. Most notably, Schwarzschild
did not consider a field theory of gravitation that unifies gravitation and inertia in one

 

9 “[w]as in der Welt hat man zu verschiedenen Zeiten als ruhend zu betrachten für gut befunden?”
(Schwarzschild 1897, 514). All page numbers cited for this text refer to vol. 3 of the 

 

Collected Works

 

edition (Schwarzschild 1992).
10 “[...] gewisse begrifflich definierte Punkte und Richtungen, die einigermaßen als Ersatz eintreten kön-

nen [...]” (Schwarzschild 1897, 516).
11 “[...] unmöglich alle als fest betrachtet werden können.” (Schwarzschild 1897, 520.)



 

160 M

 

ATTHIAS

 

 S

 

CHEMMEL

 

single field. In fact, in this text, Schwarzschild does not even question the origin of
inertia. Unlike Mach and Einstein, he does not search for a physical cause of inertia
but rather assumes inertia to be given and, on its basis, defines fixed directions in
space. Most probably he therefore thought of modifications of the Newtonian law of
gravitation that do not affect inertial frames. For example, it was well known at the
time that the change of the exponent in Newton’s inverse square law yields perihelion
motions.

 

12

 

 Such a motion could have easily been subtracted from the observed
motions in order to obtain the “true” inertial directions in space given by the planets’
orbits. There are however notes found in Schwarzschild’s manuscripts that show that
he was concerned with the question of the origin of inertia and that, in this context, he
considered the possibility of local inertial frames rotating with respect to one another.
These notes, in which Schwarzschild was again using orbits of celestial bodies in
order to determine inertial directions, shall now be discussed.

As explained in sec. 2, Schwarzschild had to defend five theses, probably formu-
lated by his teacher von Seeliger, in order to obtain his post-doctoral degree in 1899.
One of these theses read: “The existence of centrifugal forces is comprehensible only
under the assumption of a medium pervading all of space.”

 

13

 

 In a notebook of 1899
(N 11:17),

 

14

 

 we find Schwarzschild’s tentative defense of this thesis. In a thought
experiment reminiscent of Einstein’s later ones, attempting to clarify the nature of
rotation, Schwarzschild imagines two planets of identical constitution rotating with
different angular velocity and having atmospheres that are so dense that the outer
world cannot be observed.

 

15

 

 An inhabitant of one of the planets travelling to the other
would have no way of understanding how the difference in the “gravitational condi-
tions” (

 

Schwereverhältnisse

 

) arises, since he would not notice the rotation. This
shows clearly, Schwarzschild explains,

 

12 Thus, Schwarzschild’s teacher Hugo von Seeliger wrote in a letter to Arnold Sommerfeld: “that the
law of attraction  [causes] perihelion shifts, that is known to any astronomer since
time immemorial. [...] 

 

Newton

 

 already treated this case, or a quite similar one, in his ‘Principia.’”
(“[...] daß das Anziehungsgesetz  Perihelbewegungen [hervorruft], das ist jedem
Astronomen seit jeher bekannt. [...] Schon 

 

Newton

 

 hat diesen oder einen ganz ähnlichen Fall in den
‘Prinzipien’ behandelt.”) Hugo von Seeliger to Arnold Sommerfeld, May 25, 1902, Arnold Sommer-
feld Nachlass, Deutsches Museum, Munich, HS 1977-28/A, 321, 1-1.

13 “Die Existenz von Centrifugalkräften ist nur unter der Annahme eines den ganzen Raum erfüllenden
Mittels zu begreifen.” A document naming the five theses can be found in N 21 (for an explanation of
this notation see the next footnote).

14 Here and in the following, references to Karl Schwarzschild’s Nachlass in the Niedersächsische
Staats- und Universitätsbibliothek Göttingen are indicated by an archival number following an ‘N’
(e.g. N 11:17).

15 Consider, for example, Einstein’s thought experiment involving two identical fluid bodies rotating
with respect to one another (Einstein 1916, 771–772). Schwarzschild’s thought experiment is further
reminiscent of a later one by Poincaré, who also considered a planet covered by clouds so that its
inhabitants cannot see the sun or stars. They therefore, Poincaré argued, would have to wait longer
than we did until a “Copernicus” arrived, who could explain the centrifugal and Coriolis forces by
assuming that the planet rotates (Poincaré 1902, chap. 7).

1 rn⁄  n 2≠( )

1 rn⁄  n 2≠( )
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that not only the internal relative circumstances but also the relations to the surrounding
space have an influence on the processes in a system of bodies. Following Newton we
could state that there is an absolute space and that the relation of motions to this absolute
space has an influence on the forces appearing through this motion. Or, in other words:
absolute space has an effect on the bodies. Now, we are used to thinking of anything hav-
ing an effect as something real, namely something material, and from this it follows that,
if we want to stick to the usual way of thinking, we have to imagine space, Newton’s
absolute space, filled with a substance.

 

16

 

The hypothetical identification of space with a substance now puts Schwarzschild
in a position to discuss the global validity of the locally distinguished directions:

 

This substance does not have to be at absolute rest, but only in a state of motion that in
some way distinguishes three fixed directions in space [...]. Then it is comprehensible
that the centrifugal forces are based on a relation of the motion of the usual bodies to the
motion of this substance.

 

17

 

From the observation that the perihelia of double stars are at rest with respect to
the directions that seem fixed inside the solar system, Schwarzschild concludes that
the directions distinguished in their region of space have to be the same as in the solar
system.

To sum up, while in the previous example, Schwarzschild had established a rela-
tion between inertia and gravitation, here he relates inertia to the structure of space,
considering the possibility that the local inertial directions may vary on cosmological
scales.

4. SCHWARZSCHILD’S PRERELATIVISTIC CONSIDERATIONS
ON NON-EUCLIDEAN COSMOLOGY

A second example for Schwarzschild’s prerelativistic treatment of foundational ques-
tions having cosmological implications is provided by his application of non-Euclid-
ean geometry to physical space. Again, this work appears to have been inspired by
one of the five theses Schwarzschild had to defend in order to attain his degree. This
thesis reads: “The hypothesis that our space is curved should be rejected”.

 

18

 

 It is

 

16 “[...] daß auf die Vorgänge in einem Körpersystem nicht nur die inneren relativen Verhältnisse, son-
dern auch die Beziehungen zum Raum, der sie umgiebt, von Einfluß sind. Wir könnten mit Newton
sagen, daß es einen absoluten Raum giebt und daß das Verhalten der Bewegungen zu diesem absolu-
ten Raum auf die bei der Bewegung auftretenden Kräfte von Einfluß ist. Oder in anderen Worten: der
absolute Raum hat eine Wirkung auf die Körper. Nun pflegen wir uns aber alles, was eine Wirkung
hat, als etwas wirkliches, nämlich als etwas Materielles zu denken, und daraus folgt, daß wir, wenn
wir überhaupt in der üblichen Denkweise bleiben wollen, uns den Raum, Newtons absoluten Raum
durch einen Stoff erfüllt denken müssen.” (N 11:17, 8v–9r.) There are no page numbers in this note-
book. The page numbers given here refer to my pagination.

17 “Dieser Stoff muß nicht absolut ruhen, sondern nur eine Bewegungsform haben, welche auf irgend
eine Weise drei besondre feste Richtungen auszeichnet [...]. Dann ist begreiflich, daß die Centrifugal-
kräfte auf einer Beziehung der Bewegung der gewöhnlichen Körper zur Bewegung dieses Stoffes
beruhen.” (N 11:17, 9r.)

18 “Die Hypothese einer Krümmung unseres Raumes ist zu verwerfen” (N 21).
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plausible to assume that this thesis too was formulated by von Seeliger. In fact, the
thesis seems to reflect von Seeliger’s attitude toward the application of non-Euclidean
geometry to physics and astronomy which was extremely sceptical as may be illus-
trated by the following passage from a talk by von Seeliger entitled 

 

Remarks on the
So-Called Absolute Motion, Space, and Time

 

:

 

[...] the common and therefore very fatal misapprehension has emerged that one believed
to be able to decide by measurement which geometry is the “true” one, or even, which
space is the one in which we live. From the stand point taken here the latter formulation
is by far the more dangerous one, since space in itself has no properties at all.

 

19

 

In the above-mentioned notebook of Schwarzschild we find an entry in which the
thesis is slightly reformulated as follows: “The assumption of a curvature of our
space is without any advantage for the explanation of the structure of the system of
fixed stars”.

 

20

 

 The note is accompanied by considerations and calculations in which
Schwarzschild examines empirical consequences of a curvature of space, for exam-
ple, on the parallaxes of stars. One year later, Schwarzschild published a more
detailed account of these considerations, though now under a different perspective.
While the notebook entries aimed at a rejection of the curvature of space—under-
standably so in view of their context, the defense of a thesis—the purpose of the pub-
lished article is to estimate the degree of curvature that can be assumed without
contradicting observation. The article bears the title 

 

On the Permissible Scale of the
Curvature of Space (Über das zulässige Krümmungsmaass des Raumes,

 

 Schwarz-
schild 1900).

 

21

 

In his article Schwarzschild mainly discusses two cases: hyperbolic space, having
constant negative curvature, and spherical space, having constant positive curvature.
He makes the assumption that light travels along geodesics.

As far as hyperbolic space is concerned, Schwarzschild is able to estimate a mini-
mal radius of curvature with the help of the parallax. As is well known, the parallax
of a star, for simplification assumed to be nearly perpendicular to the ecliptic, is
defined as half the difference of the two angles under which the star is seen in an
interval of half a year,  (see Fig. 1). (In Euclidean space this coin-
cides with the angle under which the radius of the Earth’s orbit is seen from that star.)
In Euclidean space, therefore, a parallax of exactly zero implies that the star is infi-
nitely far from the Earth, since parallel geodesics in Euclidean space intersect at
infinity. In hyperbolic space, in contrast, neighboring geodesics diverge. Thus even
stars infinitely remote from the Earth possess a certain parallax. This minimal paral-

 

19 “[Es] ist der verbreitete, aber gerade darum sehr verhängnisvolle Irrtum entstanden, daß man glaubte
durch Messungen entscheiden zu können, welche Geometrie die “wahre” ist, oder gar, welcher Raum
der ist, in dem wir leben. Von dem hier vertretenen Standpunkt aus ist die letztere Fassung die bei wei-
tem gefährlichere, da der Raum an sich überhaupt keine Eigenschaften hat.” (Seeliger 1913, 200–201.)

20 “Die Annahme einer Krümmung unseres Raumes ist ohne jeden Vorteil für die Erklärung des Baues
des Fixsternsystems.” (N 11:17, 4r.)

21 The article is based on a talk Schwarzschild held at the Heidelberg meeting of the 

 

Astronomische
Gesellschaft

 

 in 1900.
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lax decreases with an increase in the radius of curvature. Since for most stars no par-
allax can be observed, the minimal parallax is given by the accuracy of observation.
This is given by Schwarzschild as  From this he concludes that the curvature
radius of hyperbolic space must be at least 4 million times the radius of the Earth’s
orbit.

 

Figure 1: The annual parallax of a star nearly perpendicular to the ecliptic

Figure 2: Two-dimensional hyperbolic space. Two geodesics are drawn as dotted lines

 

As concerns spherical space, Schwarzschild discusses the special case of an ellip-
tic space. The latter can be obtained from usual spherical space by identifying antipo-
dal points. As a consequence, two geodesics going around the world intersect at only
one point. Schwarzschild’s reason for preferring elliptic to spherical space is that, in
the latter, light emitted at one point in space in different directions would converge on
the antipodal point, a rather artificial-looking consequence which, according to
Schwarzschild, one would not accept without being forced to.

0.05″.
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Figure 3: Two-dimensional elliptic space (the antipodal points on the circle c are to be identified). 
Two geodesics are drawn as dotted lines

 

In the case of elliptic space there is no minimal parallax and physical consider-
ations are required in order to determine a minimal radius of curvature. Schwarz-
schild offers the following reasoning. In elliptic space neighboring geodesics
converge and thus intersect already at a finite distance, namely at the distance

 where  denotes the curvature radius. Stars having a parallax smaller than a
certain given value, say  therefore have all to be located within a finite volume.
Now, there are approximately 100 stars of parallax above  All other stars are
thus to be found in this finite volume. If one assumes a uniform distribution of stars,
one can determine a certain minimal radius of curvature. A weaker requirement, how-
ever, is that the stars with parallax less than  occupy a volume large enough so
that they do not influence each other in a way that could not have escaped observa-
tion. Schwarzschild does, for instance, calculate that if the elliptic space had a curva-
ture radius of about 30,000 times the radius of the Earth’s orbit, stars at great
distances from the Earth would be separated from one another by only about 40 times
the radius of the Earth’s orbit. The physical interactions between the stars resulting
from this could hardly be concealed from observation. From these considerations
Schwarzschild concludes that the minimal radius of curvature of elliptic space is of
the order of 100 million times the radius of the Earth’s orbit. Schwarzschild further
argues that such a relatively small radius of curvature (roughly 1600 light years) is
only a realistic possibility if one further assumes an absorption of the starlight of
about 40 magnitudes in one circulation around the universe because it is only under
this assumption that the appearance of a counter image of the Sun can be avoided.

In this article, as in a later one (Schwarzschild 1909), Schwarzschild expresses his
preference for the elliptic space over the hyperbolic or even the Euclidean one,
because its finiteness would make it possible in principle to investigate the macro-
scopic world exhaustively. This idea would have a soothing effect on the mind.

While the differences between Schwarzschild’s application of non-Euclidean
geometry to physical space on one side and modern cosmology on the other are obvi-

π/2( )R, R
0.1″,

0.1″.
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ous (application to three-dimensional space rather than to four-dimensional space-
time, no dynamics of geometry, consideration of scales that today are hardly
considered cosmological), Schwarzschild’s consideration also contains striking par-
allels to the modern treatment of the problem such as the idea that light proceeds
along geodesics and, most notably, the possibility that the universe is spatially
closed.22

5. THE PERIHELION BREAKTHROUGH

In sec. 3 we have seen how Schwarzschild put the perihelion anomalies of the inner
planets into the context of the fundamental physical phenomena of inertia and gravi-
tation. In view of this, Einstein’s successful calculation of Mercury’s perihelion
motion on the basis of his new theory must have appeared to Schwarzschild as the
realization of his earlier speculations on the relations between physics and astron-
omy. In this sec. it will be argued that it was indeed Einstein’s perihelion result that
instigated Schwarzschild’s interest in general relativity. It turns out that even
Schwarzschild’s derivation of his first exact solution was motivated by his concern to
consolidate Einstein’s result.

As early as 1912 Schwarzschild had been confronted with the question of the
observability of astronomical consequences of general relativity and its predeces-
sors—in particular consequences of the principle of equivalence. Interestingly, in
view of Schwarzschild’s correspondence, it was not Einstein himself who first con-
fronted Schwarzschild with the question of astronomical consequences of such a the-
ory but rather one of his antagonists in the search for a new theory of gravitation: the
theoretical physicist Max Abraham (1875–1922). Abraham, at that time holding a
post as professor of rational mechanics at the University of Milan, was himself work-
ing on a new theory of gravitation on which he had already published.23 Although
Einstein and Abraham were in severe disagreement about the foundations the new
theory of gravitation should build upon, some empirical consequences of Abraham’s
theory coincided with those Einstein had derived from his more general consider-
ations. Thus, in his first publication on the matter, Abraham discusses the bending of
light in a gravitational field that follows from Huygens’ principle whenever the speed
of light is assumed to be variable, and, in a footnote, points out that Einstein has
drawn the astronomers’ attention to the fact that the bending of star light in the gravi-
tational field of the Sun may be observable (Abraham 1912, 2).

There are two remnants of Schwarzschild’s correspondence with Abraham found
in Schwarzschild’s Nachlass. The first is a draft in Schwarzschild’s hand of a letter
most probably addressed to Abraham,24 the second is a letter from Abraham to
Schwarzschild, dated October 13, 1912 (N Briefe 5). From Schwarzschild’s draft it

22 In an addendum to his article, Schwarzschild mentions a further possibility that later became a
debated subject in relativity theory: the possible application of different topologies to physical space.

23 His first publication on that matter being (Abraham 1912).
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becomes apparent that Abraham had previously raised the question whether there
would be an effect recognizable through astronomical observation if the Sun’s loss of
inertial mass was proportional to the energy it radiates away, while the gravitational
mass did not change in this proportion. In his letter from October 13, 1912, Abraham
formulated another idea, arguing that the energy loss of the planets when cooling
down in the process of the genesis of the solar system must have diminished the iner-
tial and the gravitational mass in equal proportion, since otherwise Kepler’s third law
of planetary motion could not be valid. Finally, in their correspondence, the two dis-
cussed the possible shift of spectral lines in a gravitational field. Here, as elsewhere in
his correspondence and writings prior to Einstein’s perihelion result, Schwarzschild
is very sceptical about the astronomical detectability of the predicted effects,
although he appears to regard the nascent theory of relativity with openness. Thus, as
concerns the redshift in the solar spectrum, Schwarzschild writes:

The shift of the wavelengths on the Sun that Einstein demands, exists [...] due to a
strange coincidence in exactly the right magnitude. There is, however, no doubt that it is
to be blamed partly on pressure and partly on downwards motions in the solar atmo-
sphere. To see more clearly in this respect, one has to study the lines at the different
points of the solar disk. Until now, this has only been done in a really sufficient manner
for the lines 3933 Å of calcium (St. John, Astrophysical J[ournal).] His results do in fact
speak against the existence of the sought-after shift. Despite this, I do not want to claim
that this is already an absolute veto against the theory. Before that, more lines would
have to be equally well investigated.25

In 1913 Schwarzschild himself started an investigation of exactly the kind he had
spoken of in his letter to Abraham, performing a series of observations of the band at
3883 Å in the solar spectrum. The continuation of these observations was foiled by
the outbreak of war in 1914, but Schwarzschild reported on the results so far obtained
in a communication that was presented to the Prussian Academy of Sciences by Ein-
stein on November 5, 1914 (Schwarzschild 1914). In the introduction to this commu-

24 N Briefe 846. The draft is dated in another hand as “1912” and commented on as “possibly [to] W.
Lorey.” The contents however makes it most probable that it is the draft of a letter to Max Abraham. It
may be dated September 29, 1912 (or a little earlier) on the basis of Abraham’s letter to Schwarzschild
from October 13, 1912, mentioning a letter from Schwarzschild from September 29: most probably
the letter that was written on the basis of the draft.

25 “Die Verschiebung der Wellenlängen auf der Sonne, die Einstein fordert, besteht [...] durch einen
merkwürdigen Zufall genau in der richtigen Größe. Es ist aber kein Zweifel, daß dieselbe zum Teil
auf Druck, zum Teil auf absteigende Bewegungen in der Sonnenatmosphäre zu schieben sind. Um
Klarheit darüber zu bekommen, muß man die Linien an den einzelnen Punkten der Sonnenscheibe
studieren. Das ist in wirklich ausreichender Weise bisher nur für die Linien 3933 A. E. des Calciums
geschehen (St. John, Astrophysical J. dessen Resultate sprechen durchaus gegen die Existenz der
gesuchten Verschiebung. Trotzdem möchte ich nicht behaupten, daß hiermit schon ein absolutes Veto
gegen die neue Theorie gegeben ist. Es müßten doch erst noch mehr Linien gleich gut untersucht wer-
den.” Draft of a letter from Schwarzschild to Abraham, probably September 29, 1912, N Briefe 846,
27v, 28r. St. John’s publications in the Astrophysical Journal on the motion of calcium vapour in the
solar atmosphere are (St. John 1910; 1910–11). For an account on St. John’s later work on line shifts
and its relation to general relativity, see (Hentschel 1993).
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nication, Schwarzschild points out that the observation of the solar spectrum is of
interest not only for the sake of solar physics, but “can, according to Mr. Einstein,
inform us about the relativity of the world”.26 By referring to Einstein’s article on the
influence of gravitation on the propagation of light (Einstein 1911), Schwarzschild
explicitly relates the gravitational redshift to the principle of equivalence. However,
once more Schwarzschild does not conclude affirmatively, describing his preliminary
results and other astronomers’ observations he reports on as still being indecisive
concerning the gravitational redshift.

In his correspondence with Max Planck in 1913, Schwarzschild even more clearly
expresses his doubts concerning an astronomical verification of Einstein’s theory. In a
letter from January 31, 1913, Planck had asked Schwarzschild for an assessment of
the feasibility and the expenses of the eclipse expedition that Erwin Freundlich was
planning for the year 1914 and for which he was going to apply to the Preussische
Akademie der Wissenschaften for funding (N Briefe 593, 2r, v). Freundlich intended
to search for a deflection of starlight near the solar disk as predicted by Einstein.
Schwarzschild commented on the observational side of the problem in the following
way:

In the problem itself I also have no particular confidence. The diminution of the fre-
quency on the Sun and the shift to red of all spectral lines on the Sun that Einstein
assumes can be regarded as refuted by the observations. The last word has not yet been
spoken, but the shifts which for single lines are also to violet, can be too well interpreted
as being due to pressure. Since this whole thing looks rather fishy, it won’t be much dif-
ferent for the deflection of light rays by the Sun’s gravitation.27

When Einstein succeeded in deriving the correct value for Mercury’s perihelion
shift from his theory,28 Schwarzschild’s appraisal of the new theory of relativity
changed drastically. Einstein presented his calculation of Mercury’s perihelion
advance to the Prussian Academy of sciences on November 18, 1915. Schwarzschild
was on leave from his military duties at the Russian front and attended the meeting.29

Back in Russia, Schwarzschild wrote to Einstein:

It is quite a wonderful thing that from such an abstract idea the Mercury anomaly
emerges so stringently.30

26 “[...] kann nach Hrn. Einstein auch Auskunft über die Relativität der Welt geben.”
(Schwarzschild 1914, 1201.)

27 “Auch zum Probleme selbst habe ich kein besonderes Fiduz. Die Verminderung der Schwingungszahl
auf der Sonne und die [...] Verschiebung aller Spektrallinien nach Rot auf der Sonne, die Einstein
annimmt [...] kann als durch die Beobachtungen als widerlegt angesehn werden. Das letzte Wort ist
noch nicht gesprochen, aber die [...] Verschiebungen, die [...] bei einzelnen Linien auch nach Violett
gehen, lassen sich zu gut als Druckverschiebungen deuten. Da es hiermit ziemlich faul [?] steht, wird
es mit der Ablenkung der Lichtstrahlen durch die Sonnengravitation auch nicht viel anders sein.”
Draft of a letter from Schwarzschild to Planck, after January 31, 1913, N Briefe 593, 6r. The passages
omitted are crossed-out in Schwarzschild’s manuscript.

28 On Einstein’s derivation and its historical context, see (Earman and Janssen 1993).
29 See the minutes of the meeting on November 18, 1915, Archiv der Berlin-Brandenburgischen Akade-

mie der Wissenschaften II–V, Vol. 91, 64–66.
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In a letter of the same day to Arnold Sommerfeld, Schwarzschild even explicitly
states that to him the perihelion result was much more convincing than the empirical
consequences of Einstein’s theory discussed earlier:

Did you see Einstein’s paper on the motion of Mercury’s perihelion in which he obtains
the observed value correctly from his last theory of gravitation? That is something much
closer to the astronomers’ heart than those minimal line shifts and ray bendings.31

It is a matter of course that the quantitatively appropriate explanation of an anom-
aly that had been detected by astronomers more than half a century earlier provided a
stronger argument for the new theory than the hardly detectable effects that it also
predicted. However, Einstein’s successful calculation of the perihelion shift did not
convince everybody to the same degree as Schwarzschild. More than one year after
Einstein’s calculation, Max von Laue still described the result as a “agreement of two
single numbers”32 which 

remarkable as it may be, does not seem to us to give sufficient reason to change the
whole physical world picture in its foundations, as Einstein’s theory does.33

In view of Schwarzschild’s earlier contextualization of perihelion motions, it
becomes understandable why, for him, Einstein’s result signified much more than the
“agreement of two single numbers.” Furthermore, on the background of Schwarz-
schild’s prerelativistic cosmological considerations that included the application of
non-Euclidean geometry to physical space and the idea of mutually accelerated iner-
tial systems, the changes brought about by Einstein’s theory must have appeared less
drastic to Schwarzschild than to most others, including von Laue.

Einstein’s derivation of the perihelion advance which was based on an approxi-
mation had, however, one blemish: the uniqueness of the solution remained question-
able. In order to consolidate Einstein’s result, Schwarzschild tried to prove the
uniqueness of the solution. In the above-mentioned letter to Sommerfeld, Schwarz-
schild reports:

In Einstein’s calculation the uniqueness of the solution remains doubtful. In the first
approximation, which Einstein makes, the solution, when carried out completely, is even
apparently ambiguous—one additionally gets the beginning of a divergent expansion. I
have tried to derive an exact solution, and that was unexpectedly easy.34

30 “Es ist eine ganz wunderbare Sache, daß von so einer abstrakten Idee aus die Erklärung der Mer-
kuranomalie so zwingend herauskommt.” Schwarzschild to Einstein, December 22, 1915 (CPAE 8,
Doc. 169).

31 “Haben Sie Einstein’s Arbeit über die Bewegung des Merkurperihels gesehen, wo er den beobachte-
ten Wert richtig aus seiner letzten Gravitationstheorie heraus bekommt? Das ist etwas, was den Astro-
nomen viel tiefer zu Herzen geht, als die minimalen Linienverschiebungen und
Strahlenkrümmungen.” Schwarzschild to Sommerfeld, December 22, 1915, München, Deutsches
Museum Archiv NL 89, 059, p. 1.

32 “Übereinstimmung zwischen zwei einzelnen Zahlen”
33 “[...] scheint uns, so bemerkenswert sie ist, doch kein hinreichender Grund, das gesamte physikalische

Weltbild von Grund aus zu ändern, wie es die Einsteinsche Theorie tut.” (Laue 1917, 269.)
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And even in his publication that is today known for containing the first derivation of
an exact non-trivial solution of Einstein’s field equations, Schwarzschild emphasizes
that, rather than the quest for an exact solution, it is the consolidation of Einstein’s
result which is of primary concern:

It is always convenient to possess exact solutions of a simple form. More important is
that the calculation yields, at the same time, the uniqueness of the solution about which
Mr. Einstein’s treatment remained doubtful and which arguably, in view of the way in
which it emerges below, could hardly have been proven by such an approximative
method.35

6. THE RELATIVITY OF ROTATION REVISITED

After his consolidation of the connection between general relativity and observa-
tional astronomy established by Einstein’s perihelion calculation, Schwarzschild
turned to other questions of theoretical astronomy for which general relativity
appeared to provide the adequate framework. One of these questions concerned the
relativity of rotation, a question we already encountered in Schwarzschild’s prerela-
tivistic work. 

The major source documenting Schwarzschild’s work on this question in the con-
text of general relativity is a formerly unrecognized manuscript page in Schwarz-
schild’s Nachlass in the University Library of Göttingen (N 2:2, 12r). A reproduction
with explanations of the page is given in the Appendix. The page is full of calcula-
tions and contains hardly any text. It is found among a few similar pages, some of
which contain notes on general relativity the purpose of which however is not obvi-
ous. The notes on the page under discussion are undated but obviously stem from the
short period between Einstein’s successful perihelion calculation in November 1915
and Schwarzschild’s death in May 1916.

In these notes, Schwarzschild distinguishes an “inner” and an “outer” metric. The
inner metric describes a Minkowski spacetime in a coordinate system rotating with
constant angular velocity  Using cylindrical coordinates, the outer metric can be
written as

34 “Bei Einstein’s Rechnung bleibt die Eindeutigkeit der Lösung noch zweifelhaft. In der ersten Annähe-
rung, die Einstein macht, ist die Lösung sogar, wenn man sie vollständig macht, scheinbar mehrdeutig
— man bekommt noch den Anfang einer divergenten Entwicklung herein. Ich habe versucht, eine
strenge Lösung abzuleiten, und das ging unerwartet einfach.” Schwarzschild to Sommerfeld, Decem-
ber 22, 1915, München, Deutsches Museum Archiv NL 89, 059, 1. In his letter to Einstein from
December 22, 1915, Schwarzschild reports in even more detail about the motivation that led him to
his exact solution, see (CPAE 8, Doc. 169).

35 “Es ist immer angenehm, über strenge Lösungen einfacher Form zu verfügen. Wichtiger ist, daß die
Rechnung zugleich die eindeutige Bestimmtheit der Lösung ergibt, über die Hrn. Einsteins Behand-
lung noch Zweifel ließ, und die nach der Art, wie sie sich unten einstellt, wohl auch nur schwer durch
ein solches Annäherungsverfahren erwiesen werden könnte.” (Schwarzschild 1916a, 190.)

n.
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where  is a radial coordinate,  is an angle,  is parallel to the symmetry axis of
the cylinder, and  is a time-like coordinate.  and  are functions of

 only. For the radial coordinate becoming infinitely large, Schwarzschild imposes
the condition that the outer metric tends to the (non-rotating) Minkowski metric, res-
caled in such a way that it satisfies the determinant condition, 36 The
spacetime Schwarzschild attempts to investigate thus consists of a cylindrical section
of Minkowski space, the inner space, rotating with constant angular velocity  rela-
tive to an inertial frame at radius infinity and surrounded by an outer space, becoming
Minkowskian for 

Schwarzschild then obviously tries to find general expressions for the metric
functions  and  (the -component of the outer metric Schwarz-
schild had set to  In this he follows exactly the procedure he elaborated in his
publication on the field of a point mass (Schwarzschild 1916a). First, he constructs
the Lagrangian of a point particle

Next, he calculates  and  for  and puts the resulting
terms into the Euler-Lagrange equation

He then manipulates the resulting equations—further using the determinant condition
—in such a way that he may read off the field strengths  by a

comparison of the coefficients with those appearing in the equations of motion of a
point particle. He then puts the expressions for the field strengths into the field equa-
tions and manipulates them in order to determine the functions  and  by integra-

36 As in (Schwarzschild 1916a), Schwarzschild here employs the condition that the determinant of the
metric tensor be unity. Einstein had introduced this condition in an addendum to his publication Con-
cerning the Theory of General Relativity (Zur allgemeinen Relativitätstheorie (Nachtrag), Einstein
1915a), and continued to use it in his paper on the perihelion motion of Mercury (Einstein 1915b).
The field equations Einstein presented and used in these papers read  where 
denotes the Ricci tensor and  denotes the energy-momentum tensor. These are not the field equa-
tions of the final theory, which contain a trace term on either the left or the right-hand side. However,
since in vacuum the older field equations coincide with those of the final theory, Einstein and
Schwarzschild’s solutions still hold there.
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tion. However, while in the case of the spherically symmetric vacuum field this
procedure led to a simple result, in this case the differential equations become rather
involved and no solution is obtained. The calculations on the page discussed end with
a second order differential equation coupling  and  (see the equation at the bottom
right-hand side of Schwarzschild’s manuscript page reproduced as Fig. 6 in the
Appendix).

What is the purpose of Schwarzschild’s notes? Clearly these notes are concerned
with the problem of the relativity of rotation in general relativity. As was explained in
sec. 3, Schwarzschild had, in his earlier work, considered the possibility of inertial
reference frames rotating with respect to one another. The spacetime Schwarzschild
considers here is a realization of such an arrangement in the framework of general
relativity, one inertial system being given at radial infinity, the other within the rotat-
ing cylindrical section of spacetime. The difficulty in making any further-reaching
statements about the physical situation Schwarzschild is trying to describe here arises
from the fact that, in his notes, Schwarzschild does not specify the matter distribution
he assumes.37 It is, however, plausible to assume that the spacetime under consider-
ation should function as a model for the spatially two-dimensional situation of a
rotating disk of Minkowski space. Then Schwarzschild’s calculations can be inter-
preted as the exploration of a simple model for the spacetime inside and outside the
rotating system of fixed stars.38 This would mean that Schwarzschild assumed the
spacetime within the system to be approximately Minkowskian, an assumption that is
consistent with his earlier observation that the perihelia of remote double stars do not
rotate relative to the directions defined by the planetary orbits in the solar system and
that therefore inertial frames inside the Galaxy do not rotate with respect to one
another. At the same time, Schwarzschild must have assumed that in its rotational
motion the matter content of the system of fixed stars—be it concentrated in a ring or
distributed over an ellipsoidal volume—drags along the interior Minkowski space.39

37 A spacetime similar to the one Schwarzschild describes here is generated by an infinitely long, rotat-
ing, cylindrical shell of matter. The interior field of such a matter distribution is indeed Minkowskian;
see (Davies et al. 1971). The exterior vacuum metric of such a matter distribution, including the drag-
ging of inertial frames close to the shell, is discussed in (Frehland 1972). Non-local effects of such a
matter distribution, corresponding to the Aharonov-Bohm effect in electrodynamics, are discussed in
(Stachel 1983). The problem of the relativity of rotation was addressed in 1918 by Thirring who con-
sidered a rotating spherical mass shell rather than a cylindrical one (Thirring 1918, see also Lense and
Thirring 1918).

38 In an earlier publication (Schwarzschild 1909, 41–42), Schwarzschild had described the solar system
whose dynamics is dominated by a central mass as being of “monarchic constitution”, and the Galaxy
where every star is acted upon by all other stars as being of “republican constitution”, and had specu-
lated that the whole Universe might be built up from a hierarchical sequence of structures of these two
basic types. While Schwarzschild’s first exact solution to Einstein’s field equations provides the basis
for describing the monarchic constitution in the framework of general relativity, the notes considered
here can be understood as an attempt to complement this with the description of the republican consti-
tution within that framework. 

39 The spacetime of an axially symmetric distribution of particles revolving with constant angular veloc-
ity was later derived by (Stockum 1937).

f f 1
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In fact, Schwarzschild could have hoped that, within general relativity, a problem
concerning the rotation of the system of fixed stars could be resolved. On one hand,
namely, Schwarzschild contended that, by analogy to other celestial motions, it must
be assumed that the system of fixed stars as a whole rotates.40 Yet, on the other hand,
such a rotation had hardly been observed, as Schwarzschild explained in an earlier
text:

[...] it turns out that the average of those few thousand stars, whose proper motions are
known, displays no evidence of rotation with respect to [the] directions [defined by the
planetary orbits] [...].41

General relativity now provided a possible explanation of this phenomenon, if it was
assumed that, together with the stars themselves, the global inertial system within the
Galaxy was rotating. In searching for the functions  and  describing the outer
metric, Schwarzschild would then have attempted to clarify in what sense one may
speak in general relativity of a rotation of the system of fixed stars as a whole.

That Schwarzschild indeed considered the question of the rotation of the Galaxy
in the context of general relativity is made evident by a letter from Einstein dated Jan-
uary 9, 1916.42 In a preceding letter by Schwarzschild which is lost, Schwarzschild
must have raised several questions, which Einstein answers one by one. Einstein’s
second point reads as follows:

The statement that “the system of fixed stars” is free of rotation may retain a relative
meaning, which is to be fixed by a comparison.

The surface of the Earth is irregular, as long as I regard very small sections of it. How-
ever, it approaches the flat elementary shape when I regard larger sections of it, whose
dimensions are still small in comparison to the length of the meridian. This elementary
shape becomes a curved surface when I regard even larger sections of the Earth’s surface.

For the gravitational field things are similar. On a small scale the individual masses pro-
duce gravitational fields that, even with the most simplifying choice of the reference sys-
tem, reflect the character of the quite irregular matter distribution on the small scale. If I
consider larger regions, as astronomy presents them to us, the Galilean reference system
provides me with the analogue to the flat elementary shape of the Earth’s surface in the
previous comparison. But if I consider even larger regions, there probably will be no con-
tinuation of the Galilean system to simplify the description of the universe to the same
degree as on a small scale, that is, throughout which a mass point sufficiently remote
from other masses moves uniformly in a straight line.43

Schwarzschild’s response is consistent with the calculations as interpreted above:

As concerns the inertial system, we are in agreement. You say that beyond the Milky Way
system conditions may arise under which the Galilean system is no longer the simplest. I
only hold that within the Milky Way system such conditions do not arise.44

40 See, for example, (Schwarzschild 1897, 519).
41 “[...] zeigt sich, dass der Durchschnitt aus jenen paar Tausend Sternen, deren Eigenbewegung man

kennt, [...] keine Rotation gegen diese Richtungen aufweist.” (Schwarzschild 1897, 520.)
42 Einstein to Schwarzschild, January 9, 1916, N 193, 3-5, see also (CPAE 8, Doc. 181). 
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In view of this exchange between Schwarzschild and Einstein, it appears obvious
that Schwarzschild’s calculations are related to the question he must have posed to
Einstein: Does it make sense to speak of a rotation of the system of fixed stars? The
calculations then document the attempt to explore the “even larger regions” outside
the system of fixed stars, in which “there probably will be no continuation of the
Galilean system.”

7. A CLOSED UNIVERSE AS A SOLUTION OF
EINSTEIN’S FIELD EQUATIONS

In his calculations, Schwarzschild had assumed the Universe to be asymptotically
Minkowskian. In his correspondence with Einstein on the question of global frames
of inertia, Schwarzschild mentions a further possibility. In direct continuation of the
passage quoted above, he explicates:

As concerns very large spaces, your theory has a quite similar position as Riemann’s
geometry, and you are certainly not unaware that one obtains an elliptic geometry from
your theory, if one puts the entire universe under uniform pressure (energy tensor

45

Thus, Schwarzschild was the first to entertain the possibility of a closed universe with
an elliptic geometry as a solution to Einstein’s field equations. Schwarzschild’s
remark that Einstein’s theory had a similar position as Riemann’s geometry thereby
alludes to his prerelativistic application of elliptic geometry to the universe on the
background of Riemannian geometry discussed in sec. 4.

Contrary to Schwarzschild’s assumption, Einstein was, at the time, most probably
unaware of such cosmological implications of his theory.46 It was only through a
debate with the Dutch astronomer Willem de Sitter (1872–1934) beginning in fall

43 “Die Aussage, dass “das Fixsternsystem” rotationsfrei sei, behält wohl einen relativen Sinn, der durch
ein Gleichnis festgelegt sei.
Die Oberfläche der Erde ist, solange ich ganz kleine Teile derselben ins Auge fasse, unregelmässig.
Sie nähert sich aber der ebenen Grundgestalt, wenn ich grössere Teile ins Auge fasse, deren Abmes-
sungen aber immer noch klein sind gegen die Länge des Meridians. Diese Grundgestalt wird zu einer
gekrümmten Fläche, wenn ich noch grössere Teile der Erdoberfläche ins Auge fasse.
So ähnlich ist es auch mit dem Gravitationsfeld. Im Kleinen liefern die einzelnen Massen Gravitati-
onsfelder, welche auch bei möglichst vereinfachender Wahl des Bezugssystems den Charakter der
ziemlich regellosen Verteilung der Materie im Kleinen widerspiegeln. Betrachte ich grössere Gebiete,
wie sie uns die Astronomie bietet, so bietet mir das Galileische Bezugssystem das Analoge zu der ebe-
nen Grundgestalt der Erdoberfläche beim vorigen Vergleich. Betrachte ich aber noch grössere
Gebiete, so wird es wohl keine Fortsetzung des Galileischen Systems geben, welche in solchem
Masse wie im Kleinen die Beschreibung der Welt einfach gestaltet d.h. in welchem überall der von
anderen Massen hinlänglich entfernte Massenpunkt sich gradlinig gleichförmig bewegt.” Einstein to
Schwarzschild, January 9, 1916 (CPAE 8, Doc. 181).

44 “Was das Inertialsystem angeht, so sind wir einig. Sie sagen, daß jenseits des Milchstraßensystems
sich Verhältnisse einstellen können, in denen das Galilei’sche System nicht mehr das einfachste ist.
Ich behaupte nur, daß sich innerhalb des Milchstraßensystems solche Verhältnisse nicht einstellen.”
Schwarzschild to Einstein, February 6, 1916, N 193, 7–8, see also (CPAE 8, Doc. 188).
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1916 that Einstein was led to consider a closed universe which he hesitantly proposed
in 1917 (Einstein 1917).47 The distinction between spherical and elliptic space had
thereby remained obscure to him. De Sitter pointed the distinction out to Einstein,
referring to Schwarzschild’s 1900 paper on the curvature of space and the argument
for preferring elliptic to spherical space given therein.48

In Einstein’s debate with de Sitter, the question of the global geometry of the uni-
verse emerged from a discussion of the relativity of inertia. Strikingly, in Schwarz-
schild’s correspondence with Einstein, the question of the global geometry of the
Universe is brought up in exactly the same context.49 It is therefore tempting to see
here the commencement of an Einstein–Schwarzschild debate foreshadowing the
later Einstein–de Sitter debate. Einstein appears, however, to have not yet been pre-
pared to consider the cosmological implications of his theory at that time. And by the
time he was slowly pushed into that direction in his exchange with the astronomer de
Sitter, Schwarzschild had already died. Nevertheless, in view of Schwarzschild’s
deliberations discussed here, it seems safe to say that, had Schwarzschild lived
longer, he could have made a substantial contribution to the cosmological debates
emerging later.

8. SCHWARZSCHILD’S INTERDISCIPLINARY APPROACH
TO THE FOUNDATIONS OF SCIENCE

Let us come back to the question raised at the beginning: Why did Schwarzschild rec-
ognize the significance of general relativity at such an early stage? Here it has been
attempted to show that, already in his early astronomical work, Schwarzschild did not
act as a specialist but attempted to meet the challenges resulting from the implica-

45 “Was die ganz großen Räume angeht, hat Ihre Theorie eine ganz ähnliche Stellung, wie Riemann’s
Geometrie, und es ist Ihnen gewiß nicht unbekannt, daß man die elliptische Geometrie aus Ihrer
Theorie herausbekommt, wenn man die ganze Welt unter einem gleichförmigen Druck stehen läßt
(Energietensor ” Schwarzschild to Einstein, February 6, 1916, N 193, 7–8, see also
(CPAE 8, Doc. 188). This energy tensor actually does not yield a spherical static universe. It does,
however, yield the universe Schwarzschild is speaking of when the trace term in the field equations is
neglected, i.e. in the context of the older field equations  where  denotes the
Ricci tensor and  denotes the energy-momentum tensor (see footnote 36). It may be the case that
Schwarzschild originally conceived of the tensor on the basis of these field equations and later did not
modify it as the new field equations would have demanded. Schwarzschild continues his letter by
explaining the solution inside a sphere of fluid with uniform energy density (energy tensor

 Here, as well as in the corresponding publication (Schwarzschild 1916b, 431–432),
Schwarzschild points out that inside the sphere spherical geometry applies.

46 In November 1916, Einstein still calls the question of the boundary conditions of the metric field
“purely a matter of taste which will never attain a scientific meaning.” (“eine reine Geschmacksfrage,
die nie eine naturwissenschaftliche Bedeutung erlangen wird.”) Einstein to de Sitter, November 4,
1916 (CPAE 8, Doc. 273).

47 On the Einstein–de Sitter debate, see (CPAE 8, 351–357) and the references given therein, in particu-
lar (Kerszberg 1989; 1989a).

48 De Sitter to Einstein, June 20, 1917 (CPAE 8, Doc. 355).

p p p 0 ) .,–,–,–

Gμν κT μν ,–= Gμν
T μν

p p p ρ0 ) .,–,–,–



SCHWARZSCHILD’S CLASSICAL AND RELATIVISTIC WORK ON COSMOLOGY 175

tions of foundational questions in physics on astronomy. Thus it comes as no surprise
that Schwarzschild was also among the first to recognize that Einstein had—without
being aware of it—provided the astronomers with the adequate framework for treat-
ing their questions. As a result, a clear continuity can be perceived in Schwarzschild’s
work on cosmology, prerelativistic and relativistic. In this context it is interesting to
question the extent to which parallel cases are provided by the work of other pioneers
of relativistic astronomy such as Willem de Sitter and Arthur Eddington (1882–
1944). The study of this question, however, does not lie in the scope of this contribu-
tion. Here, in conclusion, it shall only be pointed out that it was no coincidence that
Schwarzschild took an astronomical road to general relativity, but that this may rather
be seen as the natural outcome of his interdisciplinary approach to the foundations of
the exact sciences.

Indeed, not only is interdisciplinarity the hallmark of Schwarzschild’s scientific
work, but he also was quite aware of the general significance of interdisciplinarity for
the progress of science. On many occasions Schwarzschild explained how he saw sci-
entific progress emerging from the interplay of the different branches of science, for
instance when, on the occasion of his inaugural lecture at the Prussian Academy of
Sciences, he stated that “the greatest yet unsolved problem of celestial mechanics, the
so-called many-body problem, most closely touches a problem of physics that con-
cerns the foundations of its newest developments”.50 As a further example, consider
the following passage from the same speech in which Schwarzschild describes the
establishment of special relativity:

[...] an important source for the electron and relativity theory lay in an astronomical
problem. The astronomical aberration results from the finite propagation speed of light
through the aether in combination with the Earth’s motion in space. H.A. Lorentz occu-
pied himself many times with the theory of aberration and searched for a satisfying pic-
ture of the aether’s behavior when large masses, like the Earth, move through it, until he

49 In Einstein’s letter to Schwarzschild from January 9, there is, in fact, a passage in which he expresses
exactly the kind of strong Machian claims concerning his theory which later sparked off his debate
with de Sitter. In direct continuation of the passage quoted above, Einstein explains: “According to
my theory, inertia is an interaction between masses, in the end, not an effect in which, besides the
mass under consideration, ‘space’ itself would be involved. The essence of my theory is precisely that
no independent properties are attributed to space itself.
Jokingly one may put it this way. If I let all things in the world disappear, according to Newton the
Galilean inertial space remains, according to my perception, however, nothing remains.”
(“Die Trägheit ist eben nach meiner Theorie im letzten Grunde eine Wechselwirkung der Massen,
nicht eine Wirkung bei welcher ausser der ins Auge gefassten Masse der ‘Raum’ als solcher beteiligt
ist. Das Wesentliche meiner Theorie ist gerade, dass dem Raum als solchem keine selbständigen
Eigenschaften gegeben werden.
Man kann es scherzhaft so ausdrücken. Wenn ich alle Dinge aus der Welt verschwinden lasse, so
bleibt nach Newton der Galileische Trägheitsraum, nach meiner Auffassung aber nichts übrig.”) Ein-
stein to Schwarzschild, January 9, 1916 (CPAE 8, Doc. 181).

50 “[...] berührt sich das höchste noch ungelöste Problem der Himmelsmechanik, das sogenannte Viel-
körperproblem, aufs engste mit einem Problem der Physik, das an die Fundamente ihrer neuesten Ent-
wicklung greift.” (Schwarzschild 1913, 597.)
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finally cut the knot by consistently implementing Fresnel’s assumption that the aether is
absolutely rigid and cannot be brought to flow by any force acting on it. In this way the
path was cleared for the electron theory. Furthermore, the completely rigid aether
stepped out of the circle of the objects that can be influenced and thus can be more
closely perceived, so much so that relativity theory became possible, in which the con-
cept of the aether only appears as a spacetime concept deepened by new experience.

Electron theory and relativity theory in turn have already posed various problems to
astronomy as a consequence of the modifications of celestial mechanics they necessi-
tate.51

Clearly Schwarzschild was equipped to take up these challenges posed to astron-
omy by its neighboring disciplines. He knew that scientific progress is not a matter of
the advancement of isolated disciplines, as both the previous and the following quota-
tions make clear:

Mathematics, physics, chemistry, astronomy march in line. Whichever lags behind is
pulled forward. Whichever hastens ahead pulls the others forward. The closest solidarity
exists between astronomy and the whole circle of exact sciences.52
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51 “[...] eine wichtige Quelle für die Elektronen- und Relativitätstheorie in einem astronomischen Pro-
bleme lag. Die astronomische Aberration ist eine Folge der endlichen Ausbreitungsgeschwindigkeit
des Lichtes im Äther verbunden mit der Bewegung der Erde im Weltraum. H.A. Lorentz hat sich viel-
fach mit dem Problem der Aberration beschäftigt und nach einer befriedigenden Anschauung über das
Verhalten des Äthers, wenn große Massen, wie die Erde, sich durch ihn hindurchbewegen, gesucht,
bis er schließlich den Knoten zerhieb durch völlig konsequente Durchführung der alten Fresnelschen
Annahme, daß der Äther absolut starr und durch keine auf ihn wirkende Kraft zum Fließen zu bringen
sei. Dadurch war die Bahn frei geworden für die Elektronentheorie. Der völlig starre Äther trat ferner
so sehr aus dem Kreis der beeinflußbaren und damit näher erkennbaren Objekte heraus, daß auch die
Relativitätstheorie möglich wurde, bei welcher der Begriff des Äthers nur als ein durch neue Erfah-
rungen vertiefter Raum-Zeitbegriff erscheint.
Elektronentheorie und Relativitätstheorie haben auch Rückwärts der Astronomie schon wieder man-
cherlei Probleme gestellt infolge der Modifikationen der Himmelsmechanik, die sie notwendig
machen.” (Schwarzschild 1913, 598.)

52 “Mathematik, Physik, Chemie, Astronomie marschieren in einer Front. Wer zurückbleibt, wird nach-
gezogen. Wer vorauseilt, zieht die anderen nach. Es besteht die engste Solidarität der Astronomie mit
dem ganzen Kreis der exakten Naturwissenschaften.” (Schwarzschild 1913, 599.)
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APPENDIX:
ANNOTATED REPRODUCTION OF SCHWARZSCHILD’S RELATIVISTIC 

NOTES ON THE PROBLEM OF ROTATION

In this appendix, the manuscript page that documents Schwarzschild’s relativistic cal-
culations on the problem of rotation referred to in sec. 6 is reproduced with annota-
tions. It is preserved as a part of Schwarzschild’s Nachlass in the Niedersächsische
Staats- und Universitätsbibliothek Göttingen as page 12r of folder 2:2. The page is
found among a few similar pages, some of which contain further notes on general rel-
ativity. For technical reasons this reproduction is divided into three parts shown in
figs. 4, 5, and 6, respectively. I am grateful to the Niedersächsische Staats- und Uni-
versitätsbibliothek Göttingen for their permission to reproduce this page.

Figure 4: Schwarzschild N 2:2, 12r, upper part

Schwarzschild begins his considerations by writing down the metric for the
“inner” and the “outer” spacetime in Cartesian coordinates,

.

In the following calculation (figs. 5 and 6), he then shifts to cylindrical coordinates
and absorbs the factors of  in the function  The outer metric then reads
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Figure 5: Schwarzschild N 2:2, 12r, middle part, with annotations
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Figure 6: Schwarzschild N 2:2, 12r, lower part, with an annotation
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Is there anything in the universe that is at rest, around which or within which the rest
of the universe is constructed, or is there no hold in the unending chain of motions in
which everything seems to be caught up? It is worth considering the extent to which
these questions are justi�ed and how they can be answered.

On a clear evening a few weeks ago, many people claimed to have observed how
the Moon rushed across the sky with most unusual speed. On that evening a light veil
of mist seems to have been blown past the Moon by the wind, more subtly creating
the same illusion one believes one observes every time broken clouds move quickly
past it: one assumes that the clouds stand still and that the Moon rushes through them
against the wind.

This phenomenon and other much more common ones, such as the apparent rota-
tion of long furrows when one travels through a �at landscape by train, or the
enchanted room at recent fairs which leads one to believe that one is upside down and
walking on the ceiling, simply provide evidence to support the immediately compre-
hensible statement that all perceptible motion is relative, that one can say that an
object moves relative to another one but never in absolute terms that an object moves
or is at rest.

With this one can already see that neither of the original two questions has been
properly formulated. Namely, if only the motion of different objects relative to each
other can be perceived, then without actually contradicting experience one may
ascribe a completely arbitrary motion to a particular object in the universe or, as a
special case, declare it to be at rest. Thus, everything and nothing is at rest in the uni-
verse. Logically, there is nothing to stop someone from stipulating, for example, that
the wing tips of a buzzing insect are still. In that case one would simply have to
ascribe a buzzing motion in the opposite direction to one’s own body, the Earth, and
all celestial objects, in order to recover the directly observable relative motion of the
insect’s wings with respect to the rest of the universe.

Why, however, does one smile at he who would seriously wish to claim that the
Moon really did rush across the sky, or that the �elds rotated when one went through
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them on the train? The reasons are of a purely practical and utilitarian nature. A
clumsy assumption regarding things at rest in the universe would result in an
unspeakable confusion of ideas. And for this reason, the above questions are to be
replaced by the following: What things in the universe did one find it useful to treat as
being at rest, at different times? Each time it becomes necessary to redefine what can
be treated as being at rest, an important stage is passed in the process of development
of human ideas concerning the universe. It has often been forgotten, or not even rec-
ognized, that here we are | dealing with arbitrary assumptions, and at times the opin-
ions have become doctrines which have even found their own martyrs.

When one talks of motion or rest in everyday life, one leaves out the object with
respect to which motion or rest is ascribed, but one means: relative to the ground or to
objects fixed with respect to the ground. It is useful to tacitly assume this particular
completion of the concept of motion because most of what appears before our eyes
during the course of the day is at rest relative to the ground, or at least we can name a
special cause when something moves relative to the ground. However, since Coperni-
cus science has begun to recognize other completions as useful, to ascribe motion to
other objects, and to treat other things as “points at rest” in the universe.

Indeed, Copernicus suggested that all motion is relative to the center of the Sun
and showed that all the complicated curves and ribbons traced by the planets in the
sky found an explanation if one allows the planets to describe circles around the Sun,
which is taken to be fixed.

But more precisely, Copernicus makes a further assumption, in that he stipulates
that the fixed stars, located at a huge distance from our planetary system, should be
considered to be at rest. In fact, the single assumption that the center of the Sun is
fixed would not suffice as a definition of all motion. One could then recognize only
changes in distance relative to this point but not rotations about it, just as one does not
know whether a completely smooth ball, whose surface is the same all over, is sta-
tionary or rotating about its center.

Accordingly, in the Copernican system, one describes the motion of a body by giv-
ing its distance from the Sun, and direction in terms of a fixed star as seen from the
Sun, at various times. The assumption that the fixed stars are at rest thereby forces one
to attribute a daily rotation from west to east to the Earth, because relative to the
Earth’s surface the fixed stars apparently revolve from east to west within a 24 hour
period. Consequently one must imagine that together with our surroundings we rush
through space with the speed of a cannon ball, and that the direction of this motion
continually changes. It cannot be said that at first such a way of thinking seems to be
particularly in accordance with the principle of utility, which we must recognize as the
single decisive principle for these questions. From this viewpoint, the reluctance of the
Aristotelians at the time certainly does not seem to be as naive and ridiculous as it is
generally made out to be. All the more worthy of admiration is a man such as Galileo,
who, through his mechanical principles, made the adventurous elements of the new
view as well as the presumed contradictions with everyday experience disappear, so
that only its overwhelming advantages in the depiction of celestial motions remained. |
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It was not until the end of the seventeenth century—when the use of the telescope
and progress in the production of finely divided circles, used to read off the position
of stars, had led to an unexpected improvement in observation skills—that the Coper-
nican stipulation of motion was recognized as not being wholly exact and unambigu-
ous. At that time it was noticed that the fixed stars do not actually deserve their name:
they all shift in position relative to each other, and in the very distant past Cygnus and
Orion once formed quite different constellations. However, these shifts in position
progress extremely slowly. If Stephan’s Tower would list so far in the course of one
year that its top shifted by one centimeter, then this shift, as observed from Kahlen-
berg, would be conspicuous compared to the shift in position of the majority of the
fixed stars visible to the naked eye.

 

[1]

 

 But as soon as the shifts are at all perceptible,
Copernicus’ use of the fixed star system as a basis for motion is no longer possible.

From those same observations concerning the change in position of the fixed stars
relative to each other it has also emerged that the other Copernican point of reference,
the center of the Sun, possesses no particular right to the privilege of being consid-
ered at rest. The “proper motions” of the fixed stars, such being the technical term,
are indeed distributed irregularly so that neighboring stars in the sky move away in all
possible directions, but on average out of several hundred stars one can see that when
one looks into the sky in a certain direction, on the whole the constellations seem to
spread, to get bigger, and in the opposite direction, to get smaller. From this it follows
that the Sun and the former region of the sky come closer to each other. Although it
would not be impossible to do, there would be no point in ascribing this motion
wholly to the fixed stars and continuing to treat the Sun as being at rest, for we know
that the Sun is a relatively subordinate member of the great family of stars.

Just realize into what insecurity the universe has fallen as a result, how imagina-
tion finds no place to drop anchor and no single rock in the world has a special right
to be thought of as fixed and at rest.

Unfortunately we have still not reached the epoch of astronomy that will inter-
vene offering a new fundamental definition. This will have come about when a pat-
tern has been found in the seemingly so irregular proper motions. No effort is being
spared in order to promote its appearance. Twenty observatories have joined together
in order to produce a catalogue which details the position of 150,000 fixed stars rela-
tive to each other at the present time, and a major part of this huge task has already
been completed. Just as many institutes have divided up the sky amongst themselves
in order to establish the position of two million stars with even greater precision
through photographic images. When this work is repeated | in a few decades time,
such a huge number of proper motions will be known to us that a law, if it exists,
must reveal itself, and that a new Copernicus, who admittedly would have no preju-
dice to overcome, can show from where and how these motions appear ordered.
Admittedly, it could also turn out that no general order exists within the army of fixed
stars. In this case, all these spheres in space are to be compared with gas molecules,
which fly around completely irregularly, so irregularly that the irregularity itself
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becomes a principle, according to which the effect of the gas mass as a whole can be
derived through considerations of probabilities and averages.

But, for the time being, to what does the astronomer refer the heavenly motions?
Among the pieces of ponderable matter there is none, as we have seen, which can

be reasonably distinguished as stationary. Thus among material things one’s only
chance is to look around for imponderables. As is well known, the universe is filled
with an all-pervasive substance, which is weightless, neither solid nor fluid, neither
visible nor invisible, and to which there is no physical description that really fits: this
is the aether, the only imponderable of modern physics. Through the aether do the
gentlest light waves shimmer, but the aether also mediates the mighty effects of elec-
trical machinery. When the power of a distant waterfall is transferred to a central
power station, then in a certain sense aether is the long rod impacted by the water
over there and pushing the wheel of the machine here. The electrical cable is of only
secondary importance; it simply maintains the energy flowing in the desired direc-
tion, rather than dispersing. Now, it would be very tempting from a philosophical
standpoint to take the ever-present aether to be the basic stationary substance, and
occasionally this has actually been done. But eventually, both optical and electrical
phenomena have pressed upon us the conviction that the aether certainly cannot
remain at rest where ponderable masses move through it, nor can it remain at rest in
empty space, that rather it is traversed by internal currents. According to an investiga-
tion which Helmholtz carried out in the penultimate year of his life, the aether
smoothly transfers energy from one particle to another without itself moving, as long
as the energy is delivered to it evenly. Every build-up or acceleration in the energy
supply, however, sets the aether into motion; and that will happen often enough.

Now that this hope has also come to naught, there remains no material object in
the universe that one would have reason to consider at rest. There remain only certain
conceptually defined points and directions that can serve as a substitute to a certain
extent. For bringing these to its attention, astronomy owes thanks to a | science to
which it is intimately related, namely mechanics. Thus we arrive at the path along
which research is currently moving.

One of the basic laws of mechanics, the law of inertia, goes as follows: Each body
moves in a straight line at an unchanging speed, as long as no forces act on it. This
statement, however, contains more than a law based on experience; it contains at the
same time a certain definition of what should be considered as being at rest in space.
Since we can only identify relative motions, we can in theory ascribe any motion we
choose to an individual body, even when it is unaffected by other forces. The law of
inertia prescribes: Take any body (or to be more exact, so that rotations can also be
recognized, any three bodies remaining at unchanging distances from each other) on
which no forces act, and ascribe to these bodies a straight path and a uniform speed.
The same will then apply for every other body on which no forces act. The system of
inertia has so innumerably many important applications near and far that it is cer-
tainly fit and proper to make those arbitrary assumptions which lend it its simplest
and only natural form.
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So let us look at which ideas concerning celestial motions astronomy has to
develop on the basis of this stipulation implicit in the law of inertia.

In a system comprising many mutually attracting bodies, naturally no single body
describes a straight line in general, but when such a system is isolated from the
effects of any forces from external, foreign bodies, still its center of gravity will
describe a straight line, as shown by a simple conclusion from the law of inertia. If
one treats all the bodies of the universe as constituents of one system, there would
certainly be no external influence because nothing else exists beyond this system, and
so its center of gravity must proceed along a straight line. Recall further an experi-
ence from mechanics, that in a train even at the highest speed, every activity can be
carried out just as it can when all is at rest, provided that the speed does not alter and
the train does not go around curves. This too is a special case of a general conclusion
drawn from the law of inertia, which can be stated as follows: The internal processes
within an isolated system of bodies are exactly the same whether its center of gravity
is stationary or whether it is moving in a straight line at uniform speed. As far as the
internal processes in the star system are concerned, it is therefore equally irrelevant
whether its center of gravity is stationary or moving steadily. Since, furthermore, the
only things we can learn about are internal processes in the star system, it is sensible
to stipulate that the center of gravity of all masses in the universe and in the entire star
system is the ideal point of rest.

It will, of course, look bad for the practical realization of this stipulation if, as is
plausible, an infinite number of bodies of finite mass exist in the universe, all of
which we then | cannot hope ever to know. However, the center of gravity of the larg-
est possible system of masses is to be taken as an approximation to the definition of
this ideal point of rest, especially when this system of masses is separate and remote
from other such systems and as such experiences nearly no forces due to them. It is
likely that the millions of stars that can be seen through a medium-sized telescope
form a special system, which has been given the name “Milky Way System.” The
shimmering band of the Milky Way is in reality a huge ring comprised of a countless
number of stars, which forms the largest mass in this system and characterizes its
form. What remains of the brighter stars appear to be scattered inside this ring or to
form small external appendages. Maybe other similar specimens existing in unimag-
inably distant regions of space are co-ordinated with our own Milky Way, but perhaps
it is the only one of its kind and beyond it exist only chaotic nebular masses.

The center of gravity of the Milky Way System should then for the time being be
seen as a point at rest. One will know more about its position when the great under-
takings mentioned above are completed and have been sifted. However, this falls into
the next phase of astronomy; for now, one makes do with a rather poor substitute. To
date one knows only the proper motions of a few thousand stars, and for now one
assumes that the center of gravity of these stars is at rest. As calculation shows, a
speed of approximately twelve kilometres per second must then be ascribed to the
Sun, a speed of similar magnitude to that with which the planets move in their orbits
around the Sun.
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Now there is still the matter of fixing certain directions with respect to which the
rotations of each body can be reckoned. As far as the ring of the Milky Way is con-
cerned, by analogy with all known celestial motions we must assume that it rotates in
some way; therefore, from the outset it cannot be used for this purpose. However,
here again new consequences of the law of inertia provide help.

Foucault’s pendulum experiment is well known. If one hangs a heavy ball from a
thread and causes this pendulum to oscillate from east to west, then in the course of a
few hours one notices a rotation of the direction of oscillation, gradually moving in
the north-south direction and, if only the pendulum swings long enough, it eventually
completes a full revolution in over a day. This extremely remarkable process is usu-
ally considered to be the best proof of the Earth’s rotation. For in theory, under the
assumptions of the law of inertia, the 24-hour rotation of the Earth, and the Earth’s
gravitational pull, one finds just the amount of rotation of the oscillation direction
shown by observations; whereas in the case of a stationary Earth, no rotation should
take place at all. Strictly speaking, however, the Foucault pendulum experiment
proves only | that a rotation of the Earth must be assumed whenever one wants to use
the stipulations implicit in the law of inertia concerning that, to which motion is to be
referred. Conversely, by accurate observations of the rotation of the pendulum, one
could calculate the speed of rotation that has to be ascribed to the Earth according to
the law of inertia, and one would then have to describe as fixed the direction with
respect to which the Earth rotates with the calculated speed.

Because terrestrial pendulums are subject to too many disturbances due to air
resistance and friction, one uses with a similar aim the larger pendulum experiments
with which nature presents us. One can cause a pendulum to describe an elongated
elliptical curve by pushing it at an angle, as in a well-known game of bowling. The
planets are pendulum bobs of a similar kind. It is well known that the planets describe
flattened curves, ellipses, around the Sun. The point in its path where a planet is fur-
thest away from the Sun is called its aphelion. From the law of inertia and Newton’s
law of gravitation, it follows that for an isolated planet which revolves around the
Sun, the direction of the aphelion is fixed in space. In reality, however, the planets are
not isolated but exist in greater number, yet Newton’s law allows the calculation of
the small deviations from the elliptical path and the small rotations which the direc-
tion to the aphelion suffers as a result of the disturbing influences from other planets.
Thus, after subtracting these disturbances from the observed aphelion directions, a
direction fixed in space is obtained.

If one carries this out with the level of precision which was possible 50 years ago,
then everything seems to fit together beautifully. The directions that, according to the
theory, should turn out to be fixed for the different planets also appear to be fixed with
respect to each other, and additionally it turns out that the average of those few thou-
sand stars, whose proper motions we know, displays no evidence of rotation with
respect to these directions within these limits of precision. According to this, the
entire ring of the Milky Way can also rotate only extremely slowly. Today, however,
things look different. With the level of precision which theory and observation have
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now achieved, one finds that the directions which one derives from the aphelions of
the various planets and which one would expect to be fixed, actually perform minimal
yet clearly recognizable shifts relative to each other, and thus it is impossible to treat
them all as fixed. Our measure of time depends upon which directions one considers
to be fixed. For we define a day to be the time it takes the Earth to revolve once
around its axis and we must, of course, have a fixed direction within space in order to
be able to judge when the Earth has completed a rotation. Two clocks, which agree at
the beginning of a century, one tied to the direction of Jupiter’s aphelion, the other to
Mercury’s aphelion, | would differ by three seconds at the end of it. One does not
really know how to explain this difference. It is possible that friction plays a role in
the case of these heavenly pendulums as well, for they do not swing through an abso-
lutely empty space. However, it is more likely that Newton’s law does not describe
the attractive forces of the Sun and the planets with absolute accuracy. However, there
are still insufficient clues to know how a correction of Newton’s law should actually
read, and so one must renounce the wish to determine fixed directions with greater
precision from the planetary motions using mechanical theorems. At present one pre-
fers to hold on to the other result which, from these considerations, proved itself to be
reasonably correct, and to treat those few thousand stars as being without rotation on
average. That is the provisional stipulation that, in a roundabout way, one has to
choose also as regards the definition of rotations in the universe.

Finally, a certain arbitrariness, with which each definition of fixed points and
directions based on mechanical theorems is afflicted, is still to be pointed out. One
can only base a conclusion on the law of inertia when all forces that act in a given
case are known, or when it is known that no forces are present. Now there could
always be forces acting in our surroundings, which spin us, together with all the
neighboring stars, around arbitrarily in the universe, without however exerting any
influence on the relative position of all these bodies. Such forces would, of course,
completely elude our experience, and therefore the principle of utility, which alone
guides us, commands us not to allow ourselves to become disconcerted by the
thought of such a possibility when using theorems based on the law of inertia.

One senses a certain feeling of unease when one stops and thinks about all that is
provisional, intermediate, undecided in present-day science concerning a point which
is so important for a clear idea of the universe, as is the establishment of what is at
rest in the universe. Yet, that is a characteristic of our times. The proud era of natural
science, when it believed to have found absolute laws and to be able to give philoso-
phy a real basis, is over. Similar instances of relativity as are found in the case of
motion, exist everywhere, and with each broadening of experience, uncertainties turn
up in previously accepted definitions. A profound scepticism has become fashion-
able, for one asks oneself even about the foundations of exact natural science, which
are given the honorable name of “laws of nature”: what can they be other than the
most practical summary possible of what is most important for man within a limited
field of experience?
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EDITORIAL NOTE

[1] Mount Kahlenberg lies to the north of central Vienna, about 8 km from Stephan’s
Tower.
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INTRODUCTION

In July, 1905, Henri Poincaré (1854–1912) proposed two laws of gravitational attrac-
tion compatible with the principle of relativity and all astronomical observations
explained by Newton’s law. Two years later, in the fall of 1907, Albert Einstein
(1879–1955) began to investigate the consequences of the principle of equivalence
for the behavior of light rays in a gravitational field. The following year, Hermann
Minkowski (1864–1909), Einstein’s former mathematics instructor, borrowed
Poincaré’s notion of a four-dimensional vector space for his new matrix calculus, in
which he expressed a novel theory of the electrodynamics of moving media, a space-
time mechanics, and two laws of gravitational attraction. Following another two-year
hiatus, Arnold Sommerfeld (1868–1951) characterized the relationship between the
laws proposed by Poincaré and Minkowski, calling for this purpose both on space-
time diagrams and a new 4-vector formalism.

Of these four efforts to capture gravitation in a relativistic framework, Einstein’s
has attracted the lion’s share of attention, and understandably so in hindsight, but at the
expense of a full understanding of what is arguably the most significant innovation in
contemporary mathematical physics: the four-dimensional approach to laws of phys-
ics. In virtue of the common appeal made by Poincaré, Minkowski, and Sommerfeld
to four-dimensional vectors in their studies of gravitational attraction, their respective
contributions track the evolving form of four-dimensional physics in the early days of
relativity theory.
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 The objective of this paper is to describe in terms of theorists’ inten-
tions and peer readings the emergence of a four-dimensional language for physics, as
applied to the geometric and symbolic expression of gravitational action.

The subject of gravitational action at the turn of the twentieth century is well-
suited for an investigation of this sort. This is not to say that the reform of Newton’s

 

1 In limiting the scope of this paper to the methods applied by their authors to the problem of gravita-
tion, four contributions to four-dimensional physics are neglected: that of Richard Hargreaves, based
on integral invariants (Hargreaves 1908), two 4-vector systems due to Max Abraham (Abraham 1910)
and Gilbert Newton Lewis (Lewis 1910a), and Vladimir Vari
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law was a burning issue for theorists. While several theories of gravitation claimed
corroboration on a par with that of classical Newtonian theory, contemporary theoreti-
cal interest in gravitation as a research topic—including the Lorentz-invariant vari-
ety—was sharply curtailed by the absence of fresh empirical challenges to the inverse-
square law. Rather, in virtue of the stability of the empirical knowledge base, and two
centuries of research in celestial mechanics, the physics of gravitation was a well-
worked, stable terrain, familiar to physicists, mathematicians and astronomers alike.
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The leading theory of gravitation in 1905 was the one discovered by Isaac New-
ton over two centuries earlier, based on instantaneous action at a distance. When
Poincaré sought to bring gravitational attraction within the purview of the principle
of relativity, he saw it had to propagate with a velocity no greater than that of light in
empty space, such that a reformulation of Newton’s law as a retarded action afforded
a simple solution.

Newton’s law was the principal model for Poincaré, but it was not the only one.
With the success of Maxwell’s theory in explaining electromagnetic phenomena
(including the behavior of light) during the latter third of the nineteenth century, the-
ories of contiguous action gained greater favor with physicists. In 1892, the Dutch
theorist H. A. Lorentz produced a theory of mobile charged particles interacting in an
immobile aether, that was an habile synthesis of Maxwell’s field theory and Wilhelm
Weber’s particle theory of electrodynamics. After the discovery of the electron in
1897, and Lorentz’s elegant explanation of the Zeeman effect, certain charged micro-
scopic particles were understood to be electrons, and electrons the building-blocks of
matter.
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In this new theoretical context of aether and electrons, Lorentz derived the force
on an electron moving in microscopic versions of Maxwell’s electric and magnetic
fields. To determine the electromagnetic field of an electron in motion, Alfred
Liénard and Emil Wiechert derived a formula for a potential propagating with finite
velocity. In virtue of these two laws, both of which fell out of a Lagrangian from Karl
Schwarzschild, the theory of electrons provided a means of calculating the force on a
charged particle in motion due to the fields of a second charged particle in motion.
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An electron-based analogy to gravitational attraction of neutral mass points was
then close at hand. Lorentz’s electron theory was held in high esteem by early twenti-

 

2 For an overview of research on gravitation from 1850 to 1915, see (Roseveare 1982). On early 20th-
century investigations of gravitational absorption, see de Andrade Martins (de Andrade Martins
1999). While only Lorentz-covariant theories are considered in this paper, the relative acceptance of
the principle of relativity among theorists is understood as one parameter among several influencing
the development of four-dimensional physics.

3 See (Buchwald 1985, 242; Darrigol 2000, 325; Buchwald and Warwick 2001).

4 Lorentz took the force per unit charge on a volume element of charged matter moving with velocity 

in the electric and magnetic fields  and  to be  where the brackets indicate a vec-

tor product (Lorentz 1904c, 2:156–7). For a comparison of electrodynamic Lagrangians from Max-
well to Schwarzschild, see (Darrigol 2000, app. 9).

v

d h f d
1
c
--- v h⋅[ ] ,+=



 

B

 

REAKING

 

 

 

IN

 

 

 

THE

 

 4-V

 

ECTORS

 

195

eth-century theorists, including both Poincaré and Minkowski, who naturally catered
to the most promising research program of the moment. They each proposed two
force laws: one based on retarded action at a distance, the other appealing directly to
contiguous action propagated in a medium. All four particle laws were taken up in
turn by Sommerfeld.
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Several other writers have discussed Poincaré’s and Minkowski’s work on gravi-
tation. Of the first four substantial synoptic reviews of the two theories, none
employed the notation of the original works, although this fact itself reflects the rapid
evolution of formal approaches in physics. Early comparisons were carried out with
either Sommerfeld’s 4-vector formalism (Sommerfeld 1910b; Kretschmann 1914), a
relative coordinate notation (de Sitter 1911), or a mix of ordinary vector algebra and
tensor calculus (Kottler 1922). No further comparison studies were published after
1922, excepting one summary by North (North 1965, 49–50), although since the
1960s, the work of Poincaré and Minkowski has continued to incite historical inter-
est.
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 Sommerfeld’s contribution, while it inflected theoretical practice in general, and
contemporary reception of Lorentz-covariant gravitation theory in particular, has
been neglected by historians.

The present study has three sections, beginning with Poincaré’s contribution,
moving on in the second section to Minkowski’s initial response to Poincaré’s theory,
and a review of his formalism and laws of gravitation. A third section is taken up by
Sommerfeld’s interpretation of the laws proposed by Poincaré and Minkowski. The
period of study is thus bracketed on one end by the discovery of special relativity in
1905, and on the other end by Sommerfeld’s paper. While the latter work did not spell
the end of either 4-vector formalisms or Lorentz-covariant theories of gravitation, it
was the first four-dimensional vector algebra, and represents a point of closure for a
study of the emergence of a conceptual framework for four-dimensional physics.

1. HENRI POINCARÉ’S LORENTZ-INVARIANT LAWS OF GRAVITATION

Poincaré’s memoir on the dynamics of the electron (Poincaré 1906), like Einstein’s
relativity paper of 1905, contains the fundamental insight of the physical significance
of the group of Lorentz transformations, not only for electrodynamics, but for all nat-
ural phenomena. The law of gravitation, to no lesser extent than the laws of electrody-
namics, fell presumably within the purview of Einstein’s theory, but this is not a point
that Einstein, then working full time as a patent examiner in Bern, chose to elaborate
upon immediately. Poincaré, on the other hand, as Professor of Mathematical Astron-

 

5 On the Maxwellian approach to gravitation, see (North 1965, chap. 3; Roseveare 1982, 129–31;
Norton 1992, 32). The distinction drawn here between retarded action at a distance and field represen-
tations reflects that of Lorentz (Lorentz 1904b), for whom this was largely a matter of convenience.
On nineteenth-century conceptions of the electromagnetic field, see (Cantor and Hodge 1981).

6 On Poincaré’s theory see (Cunningham 1914, 173; Whitrow and Morduch 1965, 20; Harvey 1965,
452; Cuvaj 1970, app. 5; Schwartz 1972; Zahar 1989, 192;Torretti 1996, 132). On Minkowski’s the-
ory see (Weinstein 1914, 61; Pyenson 1985, 88; Corry 1997, 287).
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omy and Celestial Mechanics at the Sorbonne, could hardly finesse the question of
gravitation. In particular, his address to the scientific congress at the St. Louis World’s
Fair, on 24 September, 1904, had pinpointed Laplace’s calculation of the propagation
velocity of gravitation as a potential spoiler for the principle of relativity.
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There may have been another reason for Poincaré to investigate a relativistic the-
ory of gravitation. In the course of his study of Lorentz’s contractile electron,
Poincaré noted that the required relations between electromagnetic energy and
momentum were not satisfied in general. Raised earlier by Max Abraham, the prob-
lem was considered by Lorentz to be a fundamental one for his electron theory.

 

8

 

Solving the stability problem of Lorentz’s contractile electron was a trivial matter
for Poincaré, as it meant transposing to electron theory a special solution to a general
problem he had treated earlier at some length: to find the equilibrium form of a rotat-
ing fluid mass.
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 He postulated a non-electromagnetic, Lorentz-invariant “supplemen-
tary” potential that exerts a binding (negative) pressure inside the electron, and
reduces the total energy of the electron in an amount proportional to the volume
decrease resulting from Lorentz contraction. When combined with the electromag-
netic field Lagrangian, this binding potential yields a total Lagrangian invariant with
respect to the Lorentz group, as Poincaré required.

In accordance with the electromagnetic world-picture and the results of Kauf-
mann’s experiments, Poincaré supposed the inertia of matter to be exclusively of
electromagnetic origin, and he set out, as he wrote in §6 of his paper, 

 

to determine the total energy due to electron motion, the corresponding action, and the
quantity of electromagnetic momentum, in order to calculate the electromagnetic masses
of the electron.

 

7 Laplace estimated the propagation velocity of gravitation to be 10

 

6

 

 times that of light, and Poincaré
noted that such a signal velocity would allow inertial observers to detect their motion with respect to
the aether (Poincaré 1904, 312).

8 See (Poincaré 1906, 153–154; Miller 1973, 230–233). Following Abraham’s account (Abraham 1905,
205), the problem may be presented in outline as follows (using modified notation and units). Con-
sider a deformable massless sphere of radius  and uniformly distributed surface charge, and assume
that this is a good model of the electron. The longitudinal mass  of this sphere may be defined as
the quotient of external force and acceleration,  where  is the electromagnetic
momentum resulting from the electron’s self-fields, and  is electron velocity. Defining the electro-
magnetic momentum to be  where  and  denote the electric and magnetic self-
fields, and  is for volume, we let  and find the longitudinal mass for small velocities to be

 Longitudinal electron mass may also be defined in terms of the electromag-

netic energy  of the electron’s self-fields, assuming quasistationary motion:  where

 This leads, however, to an expression for longitudinal

mass different from the previous one:  From the difference

in these two expressions for longitudinal mass, Abraham concluded that the Lorentz electron required
the postulation of a non-electromagnetic force and was thereby not compatible with a purely electro-
magnetic foundation of physics.

9 See (Poincaré 1885, 1902a, 1902b). In the limit of null angular velocity, gravitational attraction can be
replaced by electrostatic repulsion, with a sign reversal in the pressure gradient.
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Non-electromagnetic mass does not figure in this analysis, and consequently, one
would not expect the non-electromagnetic binding potential to contribute to the ten-
sorial electromagnetic mass of the electron, although Poincaré did not state this in so
many words. Instead, immediately after obtaining an expression for the binding
potential, he derived the small-velocity, “experimental” mass from the electromag-
netic field Lagrangian alone, neglecting a contribution from the binding potential.
The mass of the slowly-moving Lorentz electron was then equal to the electrostatic
mass, just as one would want for an electromagnetic foundation of mechanics. This
fortuitous result, which revised Lorentz’s electron mass value downward by a quarter,
was obtained independently by Einstein, using a method that did not constrain elec-
tron structure (Einstein 1905, 917).
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 Although the question of electron mass was far
from resolved, Poincaré had shown that the stability problem represented no funda-
mental obstacle to the pursuit of a new mechanics based on the concept of a contrac-
tile electron.

With this obstacle out of the way, Poincaré proceeded as if the laws of mechanics
were applicable to the experimental mass of the electron.
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 Noting that the negative
pressure deriving from his binding potential is proportional to the fourth power of
mass, and furthermore, that Newtonian attraction is itself proportional to mass,
Poincaré conjectured that 

 

there is some relation between the cause giving rise to gravitation and that giving rise to
the supplementary potential. 

 

On the basis of a formal relation between experimental mass and the binding poten-
tial, in other words, Poincaré predicted the unification of his negative internal elec-
tron pressure with the gravitational force, in a future theory encompassing all three
forces.
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On this hopeful note, Poincaré began his memoir’s ninth and final section, entitled
“Hypotheses concerning gravitation.” Lorentz’s theory, Poincaré explained, promised
to account for the observed relativity of motion:

 

In this way Lorentz’s theory would fully explain the impossibility of detecting absolute
motion, if all forces were of electromagnetic origin.

 

13

 

10 Poincaré also neglected the mass contribution of the binding potential in his 1906–1907 Sorbonne lec-
tures, according to student notes (Poincaré 1953, 233). For reviews of Poincaré’s derivation of the
binding potential, see (Cuvaj 1970, app. 11) and (Miller 1973). On post-Minkowskian interpretations
of the binding potential (also known as Poincaré pressure), see (Cuvaj 1970, 203; Miller 1981, 382, n.
29; Yaghjian 1992).

11 In this paper Poincaré made no distinction between inertial and gravitational mass.
12 As Cuvaj points out (Cuvaj 1968, 1112), Poincaré may have found inspiration for this conjecture in

Paul Langevin’s remark that gravitation stabilized the electron against Coulomb repulsion. Unlike
Langevin, Poincaré anticipated a unified theory of gravitation and electrons, in the spirit of theories
pursued later by Gustav Mie, Gunnar Nordström, David Hilbert, Hans Reissner, Hermann Weyl and
Einstein; for an overview see (Vizgin 1994).

13 “Ainsi la théorie de Lorentz expliquerait complètement l’impossibilité de mettre en évidence le mou-
vement absolu, si toutes les forces étaient d’origine électromagnétique” (Poincaré 1906, 166).
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The hypothesis of an electromagnetic origin of gravitational force had been advanced
by Lorentz at the turn of the century. On the assumption that the force between “ions”
(later “electrons”) of unlike sign was of greater magnitude at a given separation than
that between ions of like sign (following Mossotti’s conjecture), Lorentz represented
gravitational attraction as a field-theoretical phenomenon analogous to electromagne-
tism, reducing to the Newtonian law for bodies at rest with respect to the aether.
Lorentz’s theory tacitly assumed negative energy density for the “gravitational” field,
and a gravitational aether of huge intrinsic positive energy density, two well-known
sticking-points for Maxwell. Another difficulty stemmed from the dependence of
gravitational force on absolute velocities.
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Neither Lorentz’s gravitation theory nor Maxwell’s sticking-points were men-
tioned by Poincaré in the ninth section of his memoir. Instead, he recalled a well-
known empirical fact: two bodies that generate identical electromagnetic fields need
not exert the same attraction on electrically neutral masses. Although Lorentz’s the-
ory clearly accounts for this fact, Poincaré concluded that the gravitational field was
distinct from the electromagnetic field. What this tells us is that Poincaré’s attention
was not focused on Lorentz’s theory of gravitation.
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To Poincaré’s way of thinking, it was the impossibility of an electromagnetic
reduction of gravitation that had driven Lorentz to suppose that all forces transform
like electromagnetic ones:

 

The gravitational field is therefore distinct from the electromagnetic field. Lorentz was
obliged thereby to extend his hypothesis with the assumption that 

 

forces of any origin
whatsoever, and gravitation in particular, are affected by a translation

 

 (or, if one prefers,
by the Lorentz transformation) 

 

in the same manner as electromagnetic forces

 

. (Poincaré
1906, 166.)

 

16

 

14 See (Lorentz 1900; Havas 1979, 83; Torretti 1996, 131). On Lorentz’s precursors see (Whittaker
1951–1953, 2:149; Zenneck 1903). Lorentz’s theory of gravitation failed to convince Oliver Heavi-
side, who had carefully weighed the analogy from electromagnetism to gravitation (Heaviside 1893).
In a letter to Lorentz, Heaviside called into question the theory’s electromagnetic nature, by character-
izing Lorentz’s gravitational force as “action at a distance of a double kind” (18 July, 1901, Lorentz
Papers, Rijksarchief in Noord-Holland te Haarlem). Aware of these difficulties, Lorentz eventually
discarded his theory, citing its incompatibility with the principle of relativity (Lorentz 1914, 32).

15 In his 1906–1907 Sorbonne lectures (Poincaré 1953), Poincaré discussed a different theory (based on
an idea due to Le Sage) that Lorentz had proposed in the same paper, without mentioning the Mos-
sotti-style theory. His first discussion of the latter theory was in 1908, when he considered it to be an
authentic relativistic theory, and one in which the force of gravitation was of electromagnetic origin
(Poincaré 1908, 399).

16 Poincaré’s account of Lorentz’s reasoning should be taken with a grain of salt, as Lorentz made no
mention of his theory of gravitation in the 1904 publication referred to by Poincaré, “Electromagnetic
phenomena in a system moving with any velocity less than that of light.” While the electron theory
developed in the latter paper did not address the question of the origin of the gravitational force, it
admitted the possibility of a reduction to electromagnetism (such as that of his own theory) by means
of the additional hypothesis referred to in the quotation: all forces of interaction transformed in the
same way as electric forces in an electrostatic system (Lorentz 1904a, §8). The contraction hypothesis
formerly invoked to account for the null result of the Michelson-Morley experiments, Lorentz added,
was subsumed by the new hypothesis.
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It was the cogency of the latter hypothesis that Poincaré set out to examine in detail,
with respect to gravitational attraction. The situation was analogous to the one
Poincaré had encountered in the case of electron energy and momentum mentioned
above, where he had considered constraining internal forces of the electron to be
Lorentz-invariant. Such a constraint solved the problem immediately, but Poincaré
recognized that it was inadmissible nonetheless, because it violated Maxwell’s theory
(p. 136). A similar violation in the realm of mechanics could not be ruled out in the
case of gravitation, such that a careful analysis of the admissibility of the formal
requirement of Lorentz-invariance was called for.

Poincaré set out to determine a general expression for the law of gravitation in
accordance with the principle of relativity. A relativistic law of gravitation, he rea-
soned, must obey two constraints distinguishing it from the Newtonian law. First of
all, the new force law could no longer depend solely on the masses of the two gravi-
tating bodies and the distance between them. The force had to depend on their veloc-
ities, as well. Furthermore, gravitational action could no longer be considered
instantaneous, but had to propagate with some finite velocity, so that the force acting
on the passive mass would depend on the position and velocity of the active mass at
some earlier instant in time. A gravitational propagation velocity greater than the
speed of light, Poincaré observed, would be “difficult to understand,” because attrac-
tion would then be a function of a position in space not yet occupied by the active
mass (p. 167).

These were not the only conditions Poincaré wanted to satisfy. The new law of
gravitation had also (1) to behave in the same way as electromagnetic forces under a
Lorentz transformation, (2) to reduce to Newton’s law in the case of relative rest of
the two bodies, and (3) to come as close as possible to Newton’s law in the case of
small velocities. Posed in this way, Poincaré noted, the problem remains indetermi-
nate, save in the case of null relative velocity, where the propagation velocity of grav-
itation does not enter into consideration. Poincaré reasoned that if two bodies have a
common rectilinear velocity, then the force on the passive mass is orthogonal to an
ellipsoid, at the center of which lies the active mass.

Undeterred by the indeterminacy of the question in general, Poincaré set about
identifying quantities invariant with respect to the Lorentz group, from which he
wanted to construct a law of gravitation satisfying the constraints just mentioned. To
assist in the identification and interpretation of these invariants, Poincaré referred to a
space of four dimensions. “Let us regard,” he wrote, 

 

as the coordinates of 3 points  in space of 4 dimensions. We see that the
Lorentz transformation is merely a rotation in this space about the origin, regarded as
fixed. Consequently, we will have no distinct invariants apart from the 6 distances
between the 3 points  considered separately and with the origin, or, if one pre-
fers, apart from the 2 expressions:

x ,     y ,     z ,     t 1–

δx ,     δy ,     δz ,     δt 1–

δ1x ,     δ1y ,     δ1z ,     δ1t 1– ,

P P ′ P″ ,,,

P P ′ P″ ,,,
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or the 4 expressions of like form deduced by arbitrary permutation of the 3 points

 

17

Here Poincaré formed three quadruplets representing the differential displacement of
two point masses, with respect to a certain four-dimensional vector space, later called
a pseudo-Euclidean space.18 By introducing such a 4-space, Poincaré simplified the
task of identifying quantities invariant with respect to the Lorentz transformations,
the line interval of the new space being formally identical to that of a Euclidean 4-
space. He treated his three points  and  as 4-vectors, the scalar products of
which are invariant, just as in Euclidean space. In fact, Poincaré did not employ vec-
tor terminology or notation in his study of gravitation, but provided formal definitions
of certain objects later called 4-vectors.

Poincaré’s habit, and that of the overwhelming majority of his French colleagues
in mathematical physics well into the 1920s, was to express ordinary vector quanti-
ties in Cartesian coordinate notation, and to forgo notational shortcuts when differen-
tiating, writing these operations out in full.19 Although he did not exclude symbols
such as  or  from his scientific papers and lectures, he employed them parsimo-
niously.20 In line with this practice, Poincaré did little to promote vector methods
from his chair at the Sorbonne. In twenty volumes of lectures on mathematical phys-
ics and celestial mechanics, there is not a single propadeutic on quaternions or vector
algebra.21 Poincaré deplored the “long calculations rendered obscure by notational

17 “Regardons  comme les coordonnées de 3
points  dans l’espace à 4 dimensions. Nous voyons que la transformation de Lorentz n’est
qu’une rotation de cet espace autour de l’origine, regardée comme fixe. Nous n’aurons donc pas
d’autres invariants distincts que les six distances des trois points  entre eux et à l’origine, ou,
si l’on aime mieux, que les 2 expressions:  ou les 4 expres-
sions de même forme qu’on en déduit en permutant d’une manière quelconque les 3 points

” (Poincaré 1906, 168–9).
18 Poincaré’s three points  may be interpreted in modern terminology as follows. Let the

spacetime coordinates of the passive mass point be  with ordinary velocity
 such that at time  it occupies the spacetime point 

 Likewise for the active mass point, 
 with ordinary velocity  such that at time  it

occupies the spacetime point  Poincaré’s
three quadruplets may now be expressed as position 4-vectors: 

19 While the first German textbook on electromagnetism to employ vector notation systematically dates
from 1894 (Föppl 1894), the first comparable textbook in French was published two decades later by
Jean-Baptiste Pomey (1861–1943), instructor of theoretical electricity at the École supérieure des
Postes et Télégraphes in Paris (Pomey 1914–1931, vol. 1).

20 The Laplacian was expressed generally as  but by Poincaré as 
The d’Alembertian,  became in Poincaré’s notation:

 Poincaré employed  in his lectures on electricity and optics (Poincaré 1901,
456), and was the first to employ it in a relativistic context.

x2 y2 z2 t2,     xδx– yδy zδz tδt ,–+ + + +

P P ′ P″ .,,

x y z t 1– δx δy δz δt 1– δ1x δ1y δ1z δ1t 1– ,, , , ,, , , ,, , ,
P P ′ P″, ,

P P ′ P″, ,
x2 y2 z2 t2–+ + xδx yδy zδz tδt ,–+ +,

P P ′ P″, ,
P P ′ P″, ,

A x0 y0 z0 t0, , ,( ) ,=
ξ δx δt⁄ δy δt⁄ δz δt⁄, ,( ) ,= t0 δt+ A ′  =
x0 δx+ y0 δy+ z0 δz+ t0 δt+, , ,( ) . B x( 0 x+ y0 y z0 z ,+,+,=

t0 t ) ,+ ξ1 δ1x δ1t⁄ δ1y δ1t⁄ δ1z δ1t⁄, ,( ) ,= t0 t δ1t ,+ +
B ′ x0 x δ1x+ + y0 y δ1y+ + z0 z δ1z t0 t δ1t+ +,+ +, ,( ) .=

P B A P ′ B ′ B P″  = ,–=,–=
A ′ A .–

P P′,, P″

Δ  

∇2 ∂2 ∂x2⁄ ∂2 ∂y2 ∂2 ∂z2⁄ ,+⁄+= Δ .
 ∂2 ∂x2⁄ ∂2 ∂y2⁄ ∂2 ∂z2⁄ ∂2 ∂t2,⁄–+ +≡

 Δ d2 dt2⁄ .–≡
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complexity” in W. Voigt’s molecular theory of light, and seems to have been of the
opinion that in general, new notation only burdened the reader.22

The point of forming quadruplets was to obtain a set of Lorentz-invariants corre-
sponding to the ten variables entering into the right-hand side of the new force law,
representing the squared distance in space and time of the two bodies and their veloc-
ities  How did Poincaré obtain his invariants? According to the
method cited above, six invariants were to be found from the distances between

 and the origin, or from the scalar products of  and  These six
intermediate invariants were then to be combined to obtain homogeneous invariants
depending on the duration of propagation of gravitational action and the velocities of
the two point masses. Poincaré skipped over the intermediate step and produced the
following four invariants, in terms of squared distance, distance and velocity (twice),
and the velocity product: 

(1)

The Lorentz-invariance and geometric significance of these quantities are readily ver-
ified.23 These four invariants (1), the latter three of which were labeled  and 
formed the core of Poincaré’s constructive approach to the law of gravitation. (For
convenience, I refer to Poincaré’s four invariants [1] as his “kinematic” invariants.)

Inspection of the signs of these invariants reveals an inconsistency, the reason for
which is apparent once the intermediate calculations have been performed. Instead of
constructing his four invariants out of scalar products, Poincaré introduced an inver-
sion for  and 24 This sign inconsistency had no consequence on his search

21 Poincaré’s manuscript lecture notes for celestial mechanics, however, show that he saw fit to introduce
the quaternionic method to his students (undated notebook on quaternions and celestial mechanics,
32 pp., private collection, Paris; hpcd 76, 78, 93, Henri Poincaré Archives, Nancy).

22 Manuscript report of the PhD. thesis submitted by Henri Bouasse, 13 December, 1892, AJ165535,
Archives Nationales, Paris. From Poincaré’s conservative habits regarding formalism, he appears as
an unlikely candidate at best for the development of a four-dimensional calculus circa 1905; cf. H. M.
Schwartz’s counterfactual conjecture: if Poincaré had adopted the ordinary vector calculus by the time
he wrote his Rendiconti paper, “he would have in all likelihood introduced explicitly ... the convenient
four-dimensional vector calculus” (Schwartz 1972, 1287, n. 7).

23 The invariants (1) may be expressed in ordinary vector notation, letting 
and for convenience,  such that the four quantities (1) read as
follows: 

24 Poincaré’s four kinematic invariants (1) are functions of the following six intermediate invariants:

 In terms of
the latter six invariants, the four kinematic invariants (1) may be expressed as follows: 

 and  For a slightly different reconstruction of
Poincaré’s kinematic invariants, see (Zahar 1989, 193).

ξ η ζ ξ1 η1 ζ1, , , , ,( ).

P P′ P″,,, P P′,, P″.

x2 t2
t xξ ∑–

1 ξ2∑–
------------------------

t xξ1∑–

1 ξ1
2

∑–
------------------------

1 ξξ1∑–

1 ξ2∑–( ) 1 ξ1
2

∑–( )

----------------------------------------------------------., , ,–∑

A, B, C ,

Σx x Σξ, v= = Σξ1 v1,=,
k 1 1 Σξ2–⁄ k1, 1 1 Σξ1

2–⁄ ,= =
x2 t2– k t xv–( ) k1 t xv1–( ) kk1 1 vv1–( ) ., , ,

A, B, C .

a x2 y2 z2 t2–+ +  b, xδx yδy zδz tδt–+ +  c, xδ1x yδ1y zδ1z tδ1t–  d,+ + δxδ1x  += = = =
δyδ1y δzδ1z δtδ1t–+  e, δx2 δy2 δz2 δt2  f,–+ + δ1x2 δ1y2 δ1z2 δ1t2.–+ += =

Σx2 t2 = a ,–
A b– e–⁄=  B, c– f– ,⁄= C d– e–(⁄ f– ) .=
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for a relativistic law of gravitation, although it affected his final result, and perplexed
at least one of his readers, as I will show in section 3.

What Poincaré needed next for his force law was a Lorentz-invariant expression
for the force itself. Up to this point, he had neither a velocity 4-vector nor a force 4-
vector definition on hand. Presumably, the search for Lorentz-invariant expressions
of force led him to define these 4-vectors. Earlier in his memoir (p. 135), Poincaré
had determined the Lorentz transformations of force density, but now he was inter-
ested in the Lorentz transformations of force at a point. The transformations of force
density:

(2)

where  is the Lorentz factor,  and  designates frame velocity, led
Poincaré to define a fourth component of force density,  as the product of the force
density vector with velocity, 25 He gave the same definition for the tem-
poral component of force at a point: 26 Next, dividing force density by
force at a point, Poincaré obtained the charge density  Ostensibly from the trans-
formation for charge density, Poincaré singled out the Lorentz-invariant factor:27

(3)

The components of a 4-velocity vector followed from the foregoing definitions of
position and force density:

The Lorentz transformation ... will act in the same way on  as on
 with the difference that these expressions will be multiplied moreover by

the same factor 28

Concerning the latter definition, Poincaré observed a formal analogy between the
force and force density 4-vectors, on one hand, and the position and velocity 4-vec-
tors, on the other hand: these pairs of vectors transform in the same way, except that
one member is multiplied by  While this analogy may seem mathemat-
ically transparent, it merits notice, as it appears to have eluded Poincaré at first.

With these four kinematic 4-vectors in hand, Poincaré defined a fifth quadruplet
 with components of force density  Just as in the previous case,

the scalar products of his four quadruplets  and  were to deliver four new
Lorentz-invariants in terms of the force acting on the passive mass 29

25 This definition was remarked by (Pauli 1921, 637).
26 The same subscript denotes the force acting on the passive mass,  and the velocity of the active

mass, 
27 The ratio  is equal to the Lorentz factor, since in Poincaré’s configuration,  Some writ-

ers hastily attribute a 4-current vector to Poincaré, the form  being implied by Poincaré’s
4-vector definitions of force density and velocity.

28 “La transformation de Lorentz ... agira sur  de la même manière que sur 
avec cette différence que ces expressions seront en outre multipliées par le même facteur

” (Poincaré 1906, 169).
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(4)

The fourth invariant in (4) was always null by definition of  leaving only three
invariants, denoted  and  (In order to distinguish these invariants from the
kinematic invariants, I will refer to [4] as Poincaré’s “force” invariants.)

Comparing the signs of the kinematic invariants (1) with those of the force invari-
ants (4), we see that Poincaré obtained consistent signs only for the latter invariants.
He must not have computed his force invariants in the same way as his kinematic
invariants, for reasons that remain obscure. It is not entirely unlikely that in the
course of his analysis of the transformations of velocity and force, Poincaré realized
that he could compute the force invariants directly from the scalar products of four 4-
vectors. Two facts, however, argue against this reading. In the first place, Poincaré did
not mention that his force invariants were the scalar products of position, velocity and
force 4-vectors. Secondly, he did not alter the signs of his kinematic invariants to
make them correspond to scalar products of position and velocity 4-vectors.30 The
fact that Poincaré’s kinematic invariants differ from products of 4-position and 4-
velocity vectors leads us to believe that when forming these invariants he was not
thinking in terms of 4-vectors.31

From this point on, Poincaré worked exclusively with arithmetic combinations of
three force invariants  and four kinematic invariants 
in order to come up with a relativistic law of gravitation. He had no further use, in
particular, for the four quadruplets he had identified in the process of constructing

29 The invariants (4) may be expressed in ordinary vector notation, recalling the definitions of note 23,
and letting  and 
The fourth invariant is obviously null in this form.

30 Poincaré’s force invariants (4) are functions of the following six intermediate invariants:
  

   and 
 Let the four force invariants (4) be denoted by  and  then 

 and 
The same force invariants (4) are easily calculated using 4-vectors. Recalling the definitions in notes
23 and 29, let  and  where 
Then the force invariants (4) may be expressed as scalar products of 4-vectors: 

  and 
31 The kinematic invariants (1) obtained by Poincaré differ from those obtained from the products of 4-

position and 4-velocity, contrary to Zahar’s account (Zahar 1989, 194). Recalling the 4-vectors
 from n. 30, we form the products:  and  In Poincaré’s notation, the

latter four products are expressed as follows: 

 

These invariants differ from those of Poincaré (1) only by the sign of  and  as noted by
(Sommerfeld 1910b, 686). 

ΣX1 f 1,= T 1 f 1v:  k2 f 1
2 1 v2–( ) k f 1 x vt–( ) kk1 f 1 v1 v–( ) k2 f 1 v v–( ) .,,,=

X1
2 T 1

2–∑
1 ξ2∑–

------------------------   
X1x T 1t–∑
1 ξ2∑–

-----------------------------   
X1ξ1 T 1–∑

1 ξ2 1 ξ1
2∑–∑–

-------------------------------------------------   
X1ξ T 1–∑
1 ξ2∑–

---------------------------., , ,

T 1,
M N ,, P.

m k X1δx Y 1δy Z1δz T 1δt–+ +( ) ,= n k X1δ1x Y 1δ1y Z1δ1z T 1δ1t–+ +( ) ,= o k X( 1x  +=
Y 1y Z1z T 1t ) ,–+ p k

2
X1

2 Y 1
2 Z1

2 T 1
2–+ +( ) ,= q δx2 δy2 δz2 δt2,–+ += s δ1x2 +=

∂1y2 ∂1z2 ∂1t2.–+ M N P ,, , S , M  =
p N, o P, n s–⁄ ,= = S m q–⁄ .=

R x it,( ) U, k v i,( ) U1, k1 v1 i,( ) ,= = = F1 k f 1 i f 1v,( ) ,= 1– i .=
M F1F1,=

N F1R ,= P F1U1,= S F1U .=

R U U1,, , RR RU RU1,,, UU1.

Σx2 t2 t Σxξ–

1 Σξ2–
----------------------

t Σxξ1–

1 Σξ1
2–

----------------------
t Σξξ1–

1 Σξ2–( ) 1 Σξ1
2–( )

--------------------------------------------------- .–,–,–,–

A B ,, C ,

M N P, ,( ) x2 t2 A B C, , ,–∑( )



204 SCOTT WALTER

these same invariants (corresponding to modern 4-position, 4-velocity, 4-force-den-
sity and 4-force vectors), although in the end he expressed his laws of gravitation in
terms of 4-force components.

To find a law applicable to the general case of two bodies in relative motion,
Poincaré introduced constraints and approximations designed to reduce the complex-
ity of his seven invariants and recover the form of the Newtonian law in the limit of
slow motion  Poincaré naturally looked first to the velocity of propagation
of gravitation. He briefly considered an emission theory, where the velocity of gravi-
tation depends on the velocity of the source. Although the emission hypothesis was
compatible with his invariants, Poincaré rejected this option because it violated his
initial injunction barring a hyperlight velocity of gravitational propagation.32 That
left him with a propagation velocity of gravitation less than or equal to that of light,
and to simplify his invariants Poincaré set it equal to that of light in empty space,
such that  This stipulation reduced the total number of invariants
from seven to six.

With the propagation velocity of gravitation decided, Poincaré proceeded to con-
struct a force law for point masses. He tried two approaches, the first of which is the
most general. The basic idea of both approaches is to neglect terms in the square of
velocity occurring in the invariants, and to compare the resulting approximations
with their Newtonian counterparts. In the Newtonian scheme, the coordinates of the
active mass point differ from those in the relativistic scheme (cf. note 18); Poincaré
took the former to be  at the instant of time  where the
subscript 0 corresponds to the position of the passive mass point, and the coordinates
with subscript 1 are found by assuming uniform motion of the source:

(5)

In the first approach, Poincaré made use of both the kinematic and force invari-
ants. Substituting the values (2) into the kinematic invariants  and  from (1)
and the force invariants  and  from (33), neglecting terms in the square of
velocity, Poincaré obtained their sought-after Newtonian counterparts. Replacing the
force vector occurring in the transformed force invariants by Newton’s law

 and rearranging, Poincaré obtained three quantities in terms of dis-
tance and velocity.33 He then re-expressed these quantities in terms of two of his
original kinematic invariants,  and  and equated the three resulting kinematic
invariants to their corresponding original force invariants (4). He now had the solu-
tion in hand; three expressions relate his force invariants (containing the force vector

) to two of his kinematic invariants:

32 An emission theory was proposed a few years later by Walter Ritz; see (Ritz 1908).
33 Using (5), Poincaré found the transformed force invariants  and
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(6)

He noted that complementary terms could be entertained for the three relations (6),
provided that they were certain functions of his kinematic invariants  and 
Then without warning, he cut short his demonstration, remarking that the gravita-
tional force components would take on imaginary values:

The solution (6) appears at first to be the simplest, nonetheless, it may not be adopted. In
fact, since  are functions of  and  the values of

 can be drawn from these three equations (6), but in certain cases these values
would become imaginary.34

The quoted remark seems to suggest that for selected values of the particle velocities,
the force turns out to be imaginary. However, the real difficulty springs from the
equation  which allows for a repulsive force. The general approach
failed to deliver.35 

The fact that Poincaré published the preceding derivation may be understood in
one of two ways. On the one hand, there is a psychological explanation: Poincaré’s
habit, much deplored by his peers, was to present his findings more or less in the order
in which he found them. The case at hand may be no different from the others. On the
other hand, Poincaré may have felt it worthwhile to show that the general approach
breaks down. From the latter point of view, Poincaré’s result is a positive one.

For his second attack on the law of gravitation, Poincaré adopted a less general
approach. He knew where his first approach had become unsuitable, and conse-
quently, leaving aside his three force invariants, he fell back on the form of his basic
force 4-vector, which he now wrote in terms of his kinematic invariants, re-expressed
in terms of  and 36 He assumed the
gravitational force on the passive mass (moving with velocity ) to be a func-
tion of the distance separating the two mass points, the velocity of the passive mass
point, and the velocity of the source, with the form: 

34 “Au premier abord, la solution (6) paraît la plus simple, elle ne peut néanmoins être adoptée; en effet,
comme  sont des fonctions de  et de  on peut tirer de ces trois
équations (6) les valeurs de  mais dans certains cas ces valeurs deviendraient imaginaires”
(Poincaré 1906, 172).

35 Replacing  and  in (6) by their definitions results in the three equations: 

 Equations  and  imply an attractive force for all values of  and
 while  leads to the ambiguously-signed solution:  Presumably,

the superfluous plus sign in (6) is an indication of Poincaré’s preoccupation with obtaining a force of
correct sign.

36  and 
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(7)

where  and  denote functions of the kinematic invariants.37 By definition, the
component  is the scalar product of the ordinary force and the velocity of the passive
mass point,  such that the three functions  satisfy the equation:

(8)

Poincaré further assumed  thereby eliminating a term depending on the
velocity of the passive mass, and fixing the value of  in terms of  Applying the
same slow-motion approximation and translation (5) as in his initial approach,
Poincaré found  and by comparison with Newton’s law,  reduces to

 In terms of the kinematic invariants (1), this relation was expressed as
 and the law of gravitation (7) took on the form:38

(9)

Inspection of Poincaré’s gravitational force (9) reveals two components: one parallel
to the position 4-vector between the passive mass and the retarded source, and one
parallel to the source 4-velocity. The law was not unique, Poincaré noted, and it
neglected possible terms in the velocity of the passive mass.

Poincaré underlined the open-ended nature of his solution by proposing a second
gravitational force law. Rearranging (9) and replacing the factor  by 
such that the force depended linearly on the velocity of the passive mass, Poincaré
arrived at a second law of gravitation:39

37 Using modern 4-vector notation, and denoting Poincaré’s gravitational force 4-vector 
 equation (7) may be expressed:  where  denotes a

light-like 4-vector between the mass points,  stand for undetermined functions of the three
kinematic invariants  and  while  designate the 4-velocities of
the passive and active mass points, respectively.

38 In ordinary vector form, recalling the definitions in notes 23 and 29, the spatial part of Poincaré’s law
is expressed as follows:  Cf. (Zahar
1989, 199).

39 This law may be reformulated using the vectors defined in notes 23 and 29, and neglecting (with
Poincaré) the component  Cf. (Zahar 1989,
199). Comparable expressions were developed by Lorentz and Kottler (Lorentz 1910, 1239; Kottler
1922, 169).
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(10)

where

Poincaré neglected to write down the expression for  probably because of its
complicated form. (For the sake of simplicity, I refer to [9] and [10], including the
latter’s neglected fourth component, as Poincaré’s first and second law.) The
unprimed triplet  supports what Poincaré termed a “vague analogy” with
the mechanical force on a charged particle due to an electric field, while the primed
triplet  supports an analogy to the mechanical force on a charged par-
ticle due to a magnetic field. He identified the fields as follows:

Now  is an electric field of sorts, while  or rather

 is a magnetic field of sorts.40

While Poincaré wrote freely of a “gravity wave” [onde gravifique], he abstained from
speculating on the nature of the field referred to here. As one of the first theorists
(with FitzGerald and Lorentz) to have employed retarded potentials in Maxwellian
electrodynamics, Poincaré must have considered the possibility of introducing a cor-
responding gravitational 4-potential (Whittaker 1951–1953, 1: 394, n. 3).41 But as
matters stood when Poincaré submitted this paper for publication in July, 1905, he
was not in a position to elaborate the physics of fields in four-dimensional terms,
since he possessed neither a 4-potential nor a 6-vector.

Poincaré had realized the objective of formulating a Lorentz-invariant force of
gravitation. As we have seen, he surpassed this objective by identifying not one but

40 “Alors  ou  est une espèce de champ électrique, tandis que  ou
plutôt  est une espèce de champ magnétique” (Poincaré 1906, 175).

41 A 4-potential corresponding to Poincaré’s second law (10) was given by Kottler (Kottler 1922, 169).
Additional assumptions are required in order to identify a “gravito-magnetic” field with a term arising
from the Lorentz transformation of force:  or the second term of the 3-vector version of
(10) (neglecting the global factor; see note 39). In particular, it must be assumed that when the sources
of the “gravito-electric” field  are at rest, the force on a mass point  is

 independent of the velocity of  For a detailed discussion, see (Jackson 1975,
578).
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two such force laws. Designed to reduce to Newton’s law in the first order of approxi-
mation in  (or particle velocity divided by the speed of light), Poincaré’s laws could
diverge from Newton’s only in second-order terms. The argument satisfied Poincaré,
who did not report any precise numerical results, explaining that this would require
further investigation. Instead, he noted that the disagreement would be ten thousand
times smaller than a first-order difference stemming from the assumption of a propa-
gation velocity of gravitation equal to that of light, “ceteris non mutatis” (p. 175). His
result contradicted Laplace, who had predicted an observable first-order effect arising
from just such an assumption. At the very least, Poincaré had demonstrated that
Laplace’s argument was not compelling in the context of the new dynamics.42

On several occasions over the next seven years, Poincaré returned to the question
of gravitation and relativity, without ever comparing the predictions of his laws with
observation. During his 1906–1907 Sorbonne lectures, for example, when he devel-
oped a general formula for perihelion advance, Poincaré used a Lagrangian approach,
rather than one or the other of his laws (Poincaré 1953, 238). Student notes of this
course indicate that he stopped short of a numerical evaluation for the various elec-
tron models (perhaps leaving this as an exercise). However, Poincaré later provided
the relevant numbers in a general review of electron theory. Lorentz’s theory called
for an extra 7'' centennial advance by Mercury’s perihelion, a figure slightly greater
than the one for Abraham’s non-relativistic electron theory.43 According to the best
available data, Mercury’s anomalous perihelial advance was 42'', prompting Poincaré
to remark that another explanation would have to be found in order to account for the
remaining seconds of arc. Astronomical observations, Poincaré concluded soberly,
provided no arguments in favor of the new electron dynamics (Poincaré 1908, 400).44

Poincaré capsulized the situation of his new theory in a fable in which Lorentz
plays the role of Ptolemy, and Poincaré that of an unknown astronomer appearing
sometime between Ptolemy and Copernicus. The unknown astronomer notices that
all the planets traverse either an epicycle or a deferent in the same lapse of time, a
regularity later captured in Kepler’s second law. The analogy to electron dynamics
turns on a regularity discovered by Poincaré in his study of gravitation:

If we were to admit the postulate of relativity, we would find the same number in the law
of gravitation and the laws of electromagnetism, which would be the velocity of light;
and we would find it again in all the other forces of any origin whatsoever.45

42 Poincaré reviewed Laplace’s argument in his 1906–1907 lectures (Poincaré 1953, 194). For a contem-
porary overview of the question of the propagation velocity of gravitation see (Tisserand 1889–1896,
1: 511).

43 Fritz Wacker, a student of Richard Gans in Tübingen, published similar results in (Wacker 1906).
44 Poincaré explained to his students that Mercury’s anomalous advance could plausibly be attributed to

an intra-Mercurial matter belt (Poincaré 1953, 265), an idea advanced forcefully by Hugo von
Seeliger in 1906 (Roseveare 1982, 78). In a lecture delivered in September, 1909, Poincaré revised his
estimate of the relativistic perihelial advance downward slightly to 6'' (Poincaré 1909).

45 “[S]i nous admettions le postulat de relativité, nous trouverions dans la loi de gravitation et dans les
lois électromagnétiques un nombre commun qui serait la vitesse de la lumière; et nous le retrouve-
rions encore dans toutes les autres forces d’origine quelconque” (Poincaré 1906, 131).

ξ1
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This common propagation velocity of gravitational action, of electromagnetic fields,
and of any other force, could be understood in one of two ways: 

Either everything in the universe would be of electromagnetic origin, or this aspect—
shared, as it were, by all physical phenomena—would be a mere epiphenomenon, some-
thing due to our methods of measurement.46

If the electromagnetic worldview were valid, all particle interactions would be gov-
erned by Maxwell’s equations, featuring a constant propagation velocity. Otherwise,
the common propagation velocity of forces had to be a result of a measurement con-
vention. In relativity theory, as Poincaré went on to point out, the measurement con-
vention to adopt was one defining lengths as equal if and only if spanned by a light
signal in the same lapse of time, as this convention was compatible with the Lorentz
contraction. There was a choice to be made between the electromagnetic worldview
(as realized in the electron models of Abraham and Bucherer-Langevin) and the pos-
tulate of relativity (as upheld by the Lorentz-Poincaré electron theory). Although
Poincaré favored the latter theory, he felt that its destiny was to be superseded, just as
Ptolemaic astronomy was superseded by Copernican heliocentrism.

The failure of his Lorentz-invariant law of gravitation to explain the anomalous
advance of Mercury’s perihelion probably fed Poincaré’s dissatisfaction with the
Lorentz-Poincaré theory in general, but what he found particularly troubling at the
time was something else altogether: the discovery of magneto-cathode rays. There is
no place in the Lorentz-Poincaré electron theory for rays that are both neutral (as Paul
Villard reported in June, 1904) and deflected by electric and magnetic fields, which is
probably why Poincaré felt the “entire theory” to be “endangered” by magneto-cath-
ode rays.47

Uncertainty over the empirical adequacy of the Lorentz-Poincaré electron theory
may explain why the Rendiconti memoir was Poincaré’s last in the field of electron
physics. But is it enough to explain his disinterest in the development of a four-
dimensional formalism? One year after the publication of his article on electron
dynamics, Poincaré commented: 

A translation of our physics into the language of four-dimensional geometry does in fact
appear to be possible; the pursuit of this translation would entail great pain for limited
profit, and I will just cite Hertz’s mechanics, where we see something analogous. Mean-
while, it seems that the translation would remain less simple than the text and would
always have the feel of a translation, and that three-dimensional language seems the best
suited to the description of our world, even if one admits that this description may be car-
ried out in another idiom.48

46 “Ou bien il n’y aurait rien au monde qui ne fût d’origine électromagnétique. Ou bien cette partie qui
serait pour ainsi dire commune à tous les phénomènes physiques ne serait qu’une apparence, quelque
chose qui tiendrait à nos méthodes de mesure” (Poincaré 1906, 131–132).

47 See (Poincaré 1906, 132; Stein 1987, 397, n. 29). On the history of magneto-cathode rays, see
(Carazza and Kragh 1990).



210 SCOTT WALTER

Poincaré clearly saw in his own work the outline of a four-dimensional formalism for
physics, yet he saw no future in its development, and this, entirely apart from the
question of the empirical adequacy of the Lorentz-Poincaré theory.

Why did Poincaré discount the value of a language tailor-made for relativity?
Three sources of disinterest in such a prospect spring to mind, the first of which stems
from his conventionalist philosophy of science. Poincaré recognized an important
role for notation in the exact sciences, as he famously remarked with respect to
Edmond Laguerre’s work on quadratic forms and Abelian functions that

in the mathematical sciences, having the right notation is philosophically as important as
having the right classification in the life sciences.49

More than likely, Poincaré was aware of the philosophical implications of a four-
dimensional notation for physics, although he had yet to make his views public. But
given his strong belief in the immanence of Euclidean geometry’s fitness for physics,
he must have considered the chances for success of such a language to be vanishingly
small.50

A second source for Poincaré’s disinterest in four-dimensional formalism is his
practice of physics. As mentioned above, Poincaré dispensed with vectorial systems
(and most notational shortcuts); he even avoided writing  for  When consid-
ered in conjunction with his conventionalist belief in the suitability of Euclidean
geometry for physics, this conservative habit with respect to notation makes Poincaré
appear all the less likely to embrace a four-dimensional language for physics.

The third possible source of discontent is Poincaré’s vexing experience with
invariants of pseudo-Euclidean 4-space. As shown above (p. 205), Poincaré’s first
approach to the construction of a law of gravitation ended unsatisfactorily, and the
failure of Poincaré’s intuition in this instance may well have colored his view of the
prospects for a four-dimensional physics.

An immediate consequence of Poincaré’s refusal to work out the form of four-
dimensional physics was that others could readily pick up where he left off. Roberto
Marcolongo (1862–1945), Professor of Mathematical Physics in Messina, and a lead-
ing proponent of vectorial analysis, quickly discerned in Poincaré’s paper a potential

48 “Il semble bien en effet qu’il serait possible de traduire notre physique dans le langage de la géométrie
à quatre dimensions; tenter cette traduction ce serait se donner beaucoup de mal pour peu de profit, et
je me bornerai à citer la mécanique de Hertz où l’on voit quelque chose d’analogue. Cependant, il
semble que la traduction serait toujours moins simple que le texte, et qu’elle aurait toujours l’air d’une
traduction, que la langue des trois dimensions semble la mieux appropriée à la description de notre
monde, encore que cette description puisse se faire à la rigueur dans un autre idiome” (Poincaré 1907,
15). See also (Walter 1999b, 98), and for a different translation, (Galison 1979, 95). On Hertz’s
mechanics, see (Lützen 1999).

49 “[D]ans les Sciences mathématiques, une bonne notation a la même importance philosophique qu’une
bonne classification dans les Sciences naturelles” (Poincaré 1898–1905, 1:x).

50 Poincaré’s analysis of the concepts of space and time in relativity theory appeared in 1912 (Poincaré
1912). On the cool reception among mathematicians of Poincaré’s views on physical geometry, see
(Walter 1997).

i 1– .
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for formal development. Marcolongo referred, like Poincaré, to a four-dimensional
space with one imaginary axis, but defined the fourth coordinate as the product of
time  and the negative square root of  (i.e.,  instead of ). After form-
ing a 4-vector potential out of the ordinary vector and scalar potentials, and defining a
4-current vector, he expressed the Lorentz-covariance of the equations of electrody-
namics in matrix form. No other applications were forthcoming from Marcolongo,
and a failure to produce further 4-vector quantities and functions limited the scope of
his contribution, which went unnoticed outside of Italy (Marcolongo 1906).51 Noth-
ing further on Poincaré’s method appeared in print until April, 1908, when Hermann
Minkowski’s paper on the four-dimensional formalism and its application to the
problem of gravitation appeared in the Göttinger Nachrichten.

2. HERMANN MINKOWSKI’S SPACETIME LAWS OF GRAVITATION

The young Hermann Minkowski, second son of an immigrant family of Russian
Jews, attended the Altstädtische Gymnasium in Königsberg (later Kaliningrad).
Shortly after graduation, Minkowski submitted an essay for the Paris Academy’s
1882 Grand Prize in Mathematical Sciences. His entry on quadratic forms shared top
honors with a submission by the seasoned British mathematician Henry J. S. Smith,
his senior by thirty-eight years.52 The young mathematician went on to study with
Heinrich Weber in Königsberg, and with Karl Weierstrass and Leopold Kronecker in
Berlin. In the years following the prize competition, Minkowski became acquainted
with Poincaré’s writings on algebraic number theory and quadratic forms, and in par-
ticular, with a paper in Crelle’s Journal containing some of the results from
Minkowski’s prize paper, still in press. To his friend David Hilbert he confided the
“angst and alarm” brought on by Poincaré’s entry into his field of predilection; with
his “swift and versatile” energy, Poincaré was bound to bring the whole field to clo-
sure, or so it seemed to him at the time.53 From the earliest, formative years of his
scientific career, Minkowski found in Poincaré—his senior by a decade—a daunting
intellectual rival.

While Minkowski had discovered in Poincaré a rival, he was soon to find that the
Frenchman could also be a teacher, from whom he could learn new analytical skills
and methods. Named Privatdozent in Bonn in 1887, Minkowski contributed to the
abstract journal Jahrbuch der Fortschritte der Mathematik, and in 1892, took on the
considerable task of summarizing the results of the paper for which Poincaré was

51 This paper later gave rise to a priority claim for a slightly different substitution:  (Marcolongo
to Arnold Sommerfeld, 5 May, 1913, Archives for History of Quantum Physics 32). On Marcolongo’s
paper see also (Maltese 2000, 135).

52 See (Rüdenberg 1973; Serre 1993; Strobl 1985).
53 Minkowski to Hilbert, 14 February, 1885, (Minkowski 1973, 30). Minkowski’s fears turned out to be

for naught, as Poincaré pursued a different line of research (Zassenhaus 1975, 446). On Minkowski’s
early work on the geometry of numbers see (Schwermer 1991); on later developments, see (Krätzel
1989).
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awarded the King Oscar II Prize (Minkowski 1890–1893). The mathematics Poincaré
created in his prize paper (the study of homoclinic points in particular) was highly
innovative, and at the same time, difficult to follow. Among those whom we know
had trouble understanding certain points of Poincaré’s prize memoir were Charles
Hermite, Gustav Mittag-Leffler, and Karl Weierstrass, who happened to constitute the
prize committee.54 Minkowski, however, welcomed the review as a learning opportu-
nity, as he wrote to his friend and former teacher, Adolf Hurwitz:

Poincaré’s prize paper is also among the works I have to report on for the Fortschritte. I
am quite fond of it. It is a fine opportunity for me to get acquainted with problems I have
not worried about too much up to now, since I will naturally set a positive goal of making
my case well.55

In the 1890s, building on his investigations of the algebraic theory of quadratic
forms, Minkowski developed the geometric analog to this theory: geometrical num-
ber theory. A high point of his efforts in this new field, and one which contributed
strongly to the establishment of his reputation in mathematical circles, was the publi-
cation of Geometrie der Zahlen (Minkowski 1896). The same year, Minkowski
accepted a chair at Zurich Polytechnic, whereby he rejoined Hurwitz. Minkowski’s
lectures on mathematics and mathematical physics attracted a small following of tal-
ented and ambitious students, including the future physicists Walter Ritz and Albert
Einstein, and the budding mathematicians Marcel Grossmann and Louis Kollros.56

Minkowski’s lectures on mechanics in Zurich throw an interesting light on his
view of symbolic methods in physics at the close of the nineteenth century. The the-
ory of quaternions, he noted in 1897, was used nowhere outside of England, due to its
“relatively abstract character and inherent difficulty.”57 Two of its fundamental con-
cepts, scalars and vectors, had nevertheless gained broad approval among physicists,
Minkowski wrote, and had found “frequent application especially in the theory of
electricity.”58 Applications of quaternions to problems of physics were advanced in
Germany with the publication of Felix Klein and Arnold Sommerfeld’s Theorie des
Kreisels, a work referred to in Minkowski’s lecture notes of 1898–1899 (Klein and
Sommerfeld 1879–1910).59 Minkowski admired Klein and Sommerfeld’s text,

54 See (Gray 1992) and the reception study by Barrow-Green (Barrow-Green 1997, chap. 6).
55 Minkowski to Hurwitz, 5 January, 1892, Cod. Ms. Math. Arch. 78: 188, Handschriftenabteilung,

Niedersächsische Staats- und Universitätsbibliothek (NSUB). On Minkowski’s report see also (Bar-
row-Green 1997, 143).

56 Minkowski papers, Arc. 4° 1712, Jewish National and University Library (JNUL); Minkowski to Hil-
bert, 11 March, 1901, (Minkowski 1973, 139).

57 Vorlesungen über analytische Mechanik, Wintersemester 1897/98, p. 29, Minkowski papers, Arc. 4°
1712, JNUL.

58 Loc. cit. note 57. The concepts of scalar and vector mentioned by Minkowski were those introduced
by W. R. Hamilton (1805–1865), the founder of quaternion theory. Even in Britain, vectors were
judged superior to quaternions for use in physics, giving rise to spirited exchanges in the pages of
Nature during the 1890s, as noted by (Bork 1966) and (Crowe 1967, chap. 6). On the introduction of
vector analysis as a standard tool of the physicist during this period, see (Jungnickel and McCormm-
ach 1986, 2:342), and for a general history, see (Crowe 1967).
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expressing “great interest” in the latter to Sommerfeld, along with his approval of the
fundamental significance accorded to the concept of momentum. However, their text
did not make the required reading list for Minkowski’s course in mechanics.60

In 1899, at the request of Sommerfeld, who a year earlier had agreed to edit the
physics volumes of Felix Klein’s ambitious Encyclopedia of the Mathematical Sci-
ences including Applications (hereafter Encyklopädie), Minkowski agreed to cover a
topic in molecular physics he knew little about, but one perfectly suited to his skills
as an analyst: capillarity.61 The article that appeared seven years later represented his
second contribution to physics, after a short note on theoretical hydrodynamics pub-
lished in 1888, but which, ten years later, Minkowski claimed no one had read—save
the abstracter (Minkowski 1888, 1907).62

When Minkowski accepted Göttingen’s newly-created third chair of pure mathe-
matics in the fall of 1902, the pace of his research changed brusquely. The University
of Göttingen at the turn of the last century was a magnet for talented young mathema-
ticians and physicists.63 Minkowski soon was immersed in the activities of Göttin-
gen’s Royal Society of Science, its mathematical society, and research seminars.
Several faculty members, including Max Abraham, Gustav Herglotz, Eduard Riecke,
Karl Schwarzschild, and Emil Wiechert, actively pursued theoretical or experimental
investigations motivated by the theory of electrons, and it was not long before
Minkowski, too, took up the theory. During the summer semester of 1905 he co-led a
seminar with Hilbert on electron theory, featuring reports by Wiechert and Herglotz,
and by Max Laue, who had just finished a doctoral thesis under Max Planck’s super-
vision.64

Along with seminars on advanced topics in physics and analytical mechanics,
Göttingen featured a lively mathematical society, with weekly meetings devoted to
presentations of work-in-progress and reports on scientific activity outside of Göttin-
gen. The electron theory was a frequent topic of discussion in this venue. For
instance, the problem of gravitational attraction was first addressed by Schwarzschild
in December, 1904, in a report on Alexander Wilken’s recent paper on the compati-
bility of Lorentz’s electron theory with astronomical observations.65

59 Vorlesungen über Mechanik, Wintersemester 1898/99, 47, 59, Minkowski papers, Arc. 4° 1712,
JNUL. Minkowski referred to Klein and Sommerfeld’s text in relation to the concept of force and its
anthropomorphic origins, the kinetic theory of gas, and the theory of elasticity.

60 Minkowski to Sommerfeld, 30 October, 1898, MSS 1013A, Special Collections, National Museum of
American History. An extensive reading list of mechanics texts is found in Minkowski’s course notes
for the 1903–1904 winter semester, Mechanik I, 9, Minkowski papers, Arc. 4° 1712, JNUL.

61 Minkowski to Sommerfeld, 30 October, 1898, loc. cit. note 60; Minkowski to Sommerfeld, 18
November, 1899, Nachlass Sommerfeld, Arch HS1977-28/A, 233, Deutsches Museum München;
research notebook, 12 December, 1899, Arc. 4° 1712, Minkowski papers, JNUL.

62 Minkowski to Sommerfeld, 30 October, 1898, loc. cit. note 60.
63 On Göttingen’s rise to preeminence in these fields, see (Manegold 1970; Pyenson 1985, chap. 7;

Rowe 1989, 1992).
64 Nachlass Hilbert 570/9, Handschriftenabteilung, NSUB; (Pyenson 1985, chap. 5).
65 Jahresbericht der deutschen Mathematiker-Vereinigung 14, 61.
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A focal point of sorts for the mathematical society, Poincaré’s scientific output
fascinated Göttingen scientists in general, and Minkowski in particular, as mentioned
above.66 Minkowski reported to the mathematical society on Poincaré’s publications
on topology, automorphic functions, and capillarity, devoting three talks in 1905–
1906 to Poincaré’s 1888–1889 Sorbonne lectures on this subject (Poincaré 1895).
Others reporting on Poincaré’s work were Conrad Müller on Poincaré’s St. Louis lec-
ture on the current state and future of mathematical physics (31 January, 1905), Hugo
Broggi on probability (27 October, 1905), Ernst Zermelo on a boundary-value prob-
lem (12 December, 1905), Erhard Schmidt on the theory of differential equations (19
December, 1905), Max Abraham on the Sorbonne lectures (6 February, 1906) and
Paul Koebe on the uniformization theorem (19 November, 1907). One gathers from
this list that the Göttingen mathematical society paid attention to Poincaré’s contribu-
tions to celestial mechanics, mathematical physics, and pure mathematics, all sub-
jects intersecting with the ongoing research of its members. It also appears that no
other member of the mathematical society was quite as assiduous in this respect as
Minkowski.67

When Einstein’s relativity paper appeared in late September, 1905, it drew the
attention of the Bonn experimentalist Walter Kaufmann, a former Göttingen Privat-
dozent and friend of Max Abraham, but neither Abraham nor any of his colleagues
rushed to report on the new ideas to the mathematical society.68 Poincaré’s long
memoir on the dynamics of the electron, published in January, 1906, fared better,
although nearly two years went by before Minkowski found an occasion to comment
on Poincaré’s gravitation theory, and to present his own related work-in-progress.
Minkowski’s typescript has been conserved, and is the source referred to here.69

On the occasion of the 5 November, 1907, meeting of the mathematical society,
Minkowski began his review of Poincaré’s work by observing that gravitation
remained an “important question” in relativity theory, since it was not yet known
“how the law of gravitation is arranged for in the realm of the principle of relativ-
ity.”70 The basic problem of gravitation and relativity, in other words, had not been
solved by Poincaré. Eliding mention of Poincaré’s two laws, Minkowski recognized

66 Although Poincaré spoke on celestial mechanics in Göttingen in 1895 (Rowe 1992, 475) and was
invited back in 1902, he did not return until 1909, a few months after Minkowski’s sudden death. See
Hilbert to Poincaré, 6 November, 1908 (Dugac 1986, 209); Klein to Poincaré, 14 Jan., 1902 (Dugac
1989, 124–125). Sponsored by the Wolfskehl Fund, Poincaré’s 1909 lecture series took place during
“Poincaré week”, in the month of April. His lectures were published the following year (Poincaré
1910) in a collection launched in 1907, based on an idea of Minkowski’s (Klein 1907, IV).

67 Jahresbericht der deutschen Mathematiker-Vereinigung 14: 128, 586; 15: 154–155; 17: 5.
68 On Kaufmann’s cathode-ray deflection experiments, see (Miller 1981, 226) and (Hon 1995). Read-

ings of Kaufmann’s articles are discussed at length by Richard Staley (Staley 1998, 270).
69 Undated typescript of a lecture on a new form of the equations of electrodynamics, Math. Archiv

60: 3, Handschriftenabteilung, NSUB. This typescript differs significantly from the posthumously-
published version (Minkowski 1915).

70 “Es entsteht die grosse Frage, wie sich denn das Gravitationsgesetz in das Reich des Relativitätsprin-
zipes einordnen lässt” (p. 15).
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in his work only one positive result: by considering gravitational attraction as a “pure
mathematical problem,” he said, Poincaré had found gravitation to propagate with the
speed of light, thereby overturning the standard Laplacian argument to the contrary.71

Minkowski expressed dissatisfaction with Poincaré’s approach, allowing that
Poincaré’s was “only one of many” possible laws, a fact stemming from its construc-
tion out of Lorentz-invariants. Consequently, Poincaré’s investigation “had by no
means a definitive character.”72 A critical remark of this sort often introduces an alter-
native theory, but in this instance none was forthcoming, and as I will show in what
follows, there is ample reason to doubt that Minkowski was actually in a position to
improve on Poincaré’s investigation. Nonetheless, at the end of his talk Minkowski
set forth the possibility of elaborating his report.

Minkowski’s lecture was not devoted entirely to Poincaré’s investigation of
Lorentz-invariant gravitation. The purpose of his lecture, according to the published
abstract, was to present a new form of the equations of electrodynamics leading to a
mathematical redescription of physical laws in four areas: electricity, matter, mechan-
ics, and gravitation.73 These laws were to be expressed in terms of the differential
equations used by Lorentz as the foundation of his successful theory of electrons
(Lorentz 1904a), but in a form taking greater advantage of the invariance of the qua-
dratic form  Physical laws, Minkowski stated, were to be
expressed with respect to a four-dimensional manifold, with coordinates 

 where units were chosen such that  the ordinary Cartesian coordinates
 and  went over into the first three, and the fourth was defined to be an imagi-

nary time coordinate,  Implicitly, then, Minkowski took as his starting point
the four-dimensional vector space described in the last section of Poincaré’s memoir
on the dynamics of the electron.

Minkowski acknowledged, albeit obliquely, a certain continuity between
Poincaré’s memoir and his own program to reform the laws of physics in four-dimen-
sional terms. By formulating the electromagnetic field equations in four-dimensional
notation, Minkowski said he was revealing a symmetry not realized by his predeces-
sors, not even by Poincaré himself (Walter 1999b, 98). While Poincaré had not sought
to modify the standard form of Maxwell’s equations, Minkowski felt it was time for a
change. The advantage of expressing Maxwell’s equations in the new notation,
Minkowski informed his Göttingen colleagues, was that they were then “easier to
grasp” (p. 11).

His reformulation naturally began in the electromagnetic domain, with an expres-
sion for the potentials. He formed a 4-vector potential denoted  by taking the

71 Actually, Poincaré postulated the light-like propagation velocity of gravitation, as mentioned above,
(p. 204).

72 “Poincaré weist ein solches Gesetz auf, indem er auf die Betrachtung von Invarianten der Lorentz-
schen Gruppe eingeht, doch ist das Gesetz nur eines unter vielen möglichen, und die betreffenden
Untersuchungen tragen in keiner Weise einen definitiven Charakter” (p. 16). See also (Pyenson 1973,
233).

73 Jahresbericht der deutschen Mathematiker-Vereinigung 17 (1908), Mitt. u. Nachr., 4–5.

x2 y2 z2 c2t2.–+ +
x1 x2,,

x3 x4,, c 1,=
x y,, z,

x4 it .=

ψ( )



216 SCOTT WALTER

ordinary vector potential over for the first three components, and setting the fourth
component equal to the product of  and the scalar potential. The same method was
applied to obtain a four-component quantity for current density: for the first three
components, Minkowski took over the convection current density vector,  or
charge density times velocity, and defined the fourth component to be the product of

 and the charge density. Rewriting the potential and current density vectors in this
way, Minkowski imposed what is now known as the Lorentz condition,

 where Div is an extension of ordinary divergence. This led him to the
following expression, summarizing two of the four Maxwell equations: 

(11)

where  is the d’Alembertian, employed earlier by Poincaré (cf. note 20).
Of the formal innovations presented by Minkowski to the mathematical society,

the most remarkable was what he called a Traktor, a six-component entity used to
represent the electromagnetic field.74 He defined the six components via the 4-vector
potential, using a two-index notation:  noting the anti-
symmetry relation  and zeros along the diagonal  In this way,
the Traktor components  match up with the field quanti-

ties 75

The Traktor first found application when Minkowski turned to his second topic:
the four-dimensional view of matter. Ignoring the electron theories of matter of
Lorentz and Joseph Larmor, Minkowski focused uniquely on the macroscopic elec-
trodynamics of moving media.76 For this subject he introduced a Polarisationstrak-
tor,  along with a 4-current-density,  defined by the current density vector 
and the charge density  (p. 9). Recalling (11), Minkowski wrote
Maxwell’s source equations in covariant form: 

(12)

Minkowski’s relativistic extension of Maxwell’s theory was all the simpler in that it
elided the covariant expression of the constitutive equations, which involves 4-veloc-
ity.77 While none of his formulas invoked 4-velocity, Minkowski acknowledged that
his theory required a “velocity vector of matter ” (p. 10).

74 The same term was employed by Cayley to denote a line which meets any given lines, in a paper of
1869 (Cayley 1869).

75 When written out in full, one obtains, for example,  Minkowski
later renamed the Traktor a Raum-Zeit-Vektor II. Art (Minkowski 1908, §5) but it is better known as
either a 6-vector, an antisymmetric 6-tensor, or an antisymmetric, second-rank tensor. As the suite of
synonyms suggests, this object found frequent service in covariant formulations of electrodynamics.

76 For a comparison of the Lorentz and Larmor theories, see (Darrigol 1994).
77 On the four-dimensional transcription of Ohm’s law see (Arzeliès and Henry 1959, 65–67).
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In order to express the “visible velocity of matter in any location,” Minkowski
needed a new vector as a function of the coordinates  (p. 7). Had he under-
stood Poincaré’s 4-velocity definition (see above, p. 202), he undoubtedly would
have employed it at this point. Instead, following the same method of generalization
from three to four components successfully applied in the case of 4-vector potential,
4-current density, and 4-force density, Minkowski took over the components of the
velocity vector  for the spatial elements of the quadruplet designated

(13)

There are two curious aspects to Minkowski’s definition. First of all, its squared
magnitude does not vanish when ordinary velocity vanishes; even a particle at rest
with respect to a reference frame is described in that frame by a 4-velocity vector of
nonzero length. This is also true of Poincaré’s 4-velocity definition, and is a feature of
relativistic kinematics. Secondly, the components of Minkowski’s quadruplet do not
transform like the coordinates  and consequently lack what he knew to
be an essential property of a 4-vector.78

The most likely source for Minkowski’s blunder is Poincaré’s paper. We recall
that Poincaré’s derivation of his kinematic invariants ignored 4-vectors (see above,
p. 202), and what is more, his paper features a misleading misprint, according to
which the spatial part of a 4-velocity vector is given to be the ordinary velocity vec-
tor.79 Other sources of error can easily be imagined, of course.80 It is strange that
Minkowski did not check the transformation properties of his 4-velocity definition,
but given its provenance, he probably had no reason to doubt its soundness.

Minkowski’s mistake strongly suggests that at the time of his lecture, he did not
yet conceive of particle motion in terms of a world line parameter. Such an approach
to particle motion would undoubtedly have spared Minkowski the error, since it ren-
ders trivial the definition of 4-velocity.81 As matters stood in November, 1907, how-
ever, Minkowski could proceed no further with his project of reformulation.82 The
development of four-dimensional mechanics was hobbled by Minkowski’s spare

78 Minkowski mentions this very property on p. 6.
79 The passage in question may be translated as follows: “Next we consider  as the coor-

dinates of a fourth point  the invariants will then be functions of the mutual distances of the five
points  and among these functions we must retain only those that are 0th degree
homogeneous with respect, on one hand, to  (variables that can be further
replaced by ), and on the other hand, with respect to  (vari-
ables that can be further replaced by )” (Poincaré 1906, 170). The misprint is in the next-
to-last set of variables, where instead of 1 we should have 

80 One other obvious source for Minkowski’s error is Lorentz’s transformation of charge density:
 where  and  is a constant later set to unity (Lorentz 1904a, 813),

although this formula was carefully corrected by Poincaré.
81 Let the differential parameter  of a world line be expressed in Minkowskian coordinates by

 The 4-velocity vector  is naturally defined to be the first deriva-
tive with respect to this parameter, 
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stock of 4-vectors even more than that of electrodynamics. Although Minkowski
defined a force-density 4-vector, the fourth component of which he correctly identi-
fied as the energy equation, he did not go on to define 4-force at a point.83 Once
again, the definition of a force 4-vector at a point would have been trivial, had
Minkowski possessed a correct 4-velocity definition. No more than a review of
Planck’s recent investigation (Planck 1907), Minkowski’s discussion of mechanics
involved no 4-vectors at all. Likewise for the subsequent section on gravitation,
which reviewed Poincaré’s theory, as shown above (p. 214). Without a valid 4-vector
for velocity, Minkowski’s electrodynamics of moving media was severely hobbled;
without a point force 4-vector, his four-dimensional mechanics and theory of gravita-
tion could go nowhere.

The difficulty encountered by Minkowski in formulating a four-dimensional
approach to physics is surprising in light of the account he gave later of the back-
ground to his discovery of spacetime (Minkowski 1909). Minkowski presented his
spacetime view of relativity theory as a simple application of group methods to the
differential equations of classical mechanics. These equations were known to be
invariant with respect to uniform translations, just as the squared sum of differentials

 was known to be invariant with respect to rotations and translations
of Cartesian axes in Euclidean 3-space, and yet no one, he said, had thought of com-
pounding the two corresponding transformation groups. When this is done properly
(by introducing a positive parameter ), one ends up with a group Minkowski desig-
nated  with respect to which the laws of physics are covariant. (The group  is
now known as the Poincaré group.) Presumably, the four-dimensional approach
appeared simple to Minkowski in hindsight, several months after his struggle with 4-
velocity.

In summary, while Minkowski formulated the idea of a four-dimensional lan-
guage for physics based on the form-invariance of the Maxwell equations under the
transformations of the Lorentz group, his development of this program beyond elec-
trodynamics was hindered by a misunderstanding of the four-dimensional counter-
part of an ordinary velocity vector. This was to be only a temporary obstacle.

On 21 December, 1907, Minkowski presented to the Royal Society of Science in
Göttingen a memoir entitled “The Basic Equations for Electromagnetic Processes in
Moving Bodies,” which I will refer to for brevity as the Grundgleichungen.84

Minkowski’s memoir revisits in detail most of the topics introduced in his 5 Novem-
ber lecture to the mathematical society, but employs none of the jargon of spaces,

82 The incongruity noted by Pyenson (Pyenson 1985, 84) between Minkowski’s announcement of a
four-dimensional physics on one hand, and on the other hand, a trifle of 4-vector definitions and
expressions, is to be understood as a indication of Minkowski’s gradual ascent of the learning curve of
four-dimensional physics.

83 Minkowski defined the spatial components of the empty space force density 4-vector  in terms of
the ordinary force density components  and their product with velocity:

 such that  He also expressed the force density 4-vector as the
product of 4-current-density and the Traktor: 
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geometries, and manifolds. What it emphasizes instead—in agreement with its title—
is the achievement of the first theory of electrodynamics of moving bodies in full
conformance to the principle of relativity. Also underlined is a second result
described as “very surprising”: the laws of mechanics follow from the postulate of
relativity and the law of energy conservation alone. On the four-dimensional world
and the new form of the equations of electrodynamics, both topics headlined in his
November lecture, Minkowski remained coy. Curiously, the introduction mentions
nothing about a new formalism, even though all but one of fourteen sections intro-
duce and employ new notation or calculation rules (not counting the appendix).

The added emphasis on the laws of mechanics in Minkowski’s introduction, on
the other hand, reflects Minkowski’s recent discovery of correct definitions of 4-
velocity and 4-force, along with geometric interpretations of these entities. It was in
the Grundgleichungen that Minkowski first employed the term “spacetime”
[Raumzeit].85 For example, he introduced 4-current density as the exemplar of a
“spacetime vector of the first kind” (§5), and used it to derive a velocity 4-vector.
Identifying  with  just as he had done in his lecture
of 5 November, Minkowski wrote the transformation to a primed system moving with
uniform velocity 

(14)

Observing that this transformation did not alter the expression 
Minkowski announced an “important remark” concerning the relation of the primed
to the unprimed velocity vector (§4). Dividing the 4-current density by the positive
square root of the latter invariant, he obtained a valid definition of 4-velocity, 

(15)

the squared magnitude of which is equal to –1. Minkowski seemed satisfied with this
definition, naming it the spacetime velocity vector [Raum-Zeit-Vektor Geschwindig-
keit]. 

84 Minkowski’s manuscript was delivered to the printer on 21 February, 1908, corrected, and published
on 5 April, 1908 (Journal für die “Nachrichten” der Gesellschaft der Wissenschaften zu Göttingen,
mathematische-naturwissenschaftliche Klasse 1894–1912, Scient. 66, Nr. 1, 471, Archiv der Akade-
mie der Wissenschaften zu Göttingen). I thank Tilman Sauer for pointing out this source to me.

85 While the published version of Minkowski’s 5 November lecture refers on one occasion to a
“Raumzeitpunkt” (Minkowski 1915, 934) the term occurs nowhere in the archival typescript. The
source of this addition is unknown. A manuscript annotation of the first page of the typescript bears
Sommerfeld’s initials, and indicates that he compared parts of the typescript to the proofs, as Lewis
Pyenson correctly points out (Pyenson 1985, 82). Pyenson errs, however, in attributing to Sommerfeld
the authorship of the remaining annotations, which were all penned in Minkowski’s characteristic
cramped hand.
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The significance of the spacetime velocity vector, Minkowski observed, lies in the
relation it establishes between the coordinate differentials and matter in motion,
according to the expression 

(16)

The Lorentz-invariance of the right-hand side of (16), signaled earlier by both
Poincaré and Planck, now described the relation of the sum of the squares of the
coordinate differentials to the components of 4-velocity.

The latter relation plays no direct role in Minkowski’s subsequent development of
the electrodynamics of moving media, and in this it is unlike the 4-velocity definition.
Rewriting the right-hand side of (16) as the ratio of the coordinate differential  to
the temporal component of 4-velocity,  Minkowski defined the spacetime integral
of (16) as the “proper time” [Eigenzeit] pertaining to a particle of matter. The intro-
duction of proper time streamlined Minkowski’s 4-vector expressions, for instance,
4-velocity was now expressed in terms of the coordinate differentials, the imaginary
unit, and the differential of proper time, 

(17)

Along with the notational simplification realized by the introduction of proper time,
Minkowski signaled a geometric interpretation of 4-velocity. Since proper time is the
parameter of a spacetime line (or as he later called it, a world line), it follows that 4-
velocity is equal to the slope of a world line at a given spacetime point, much like
ordinary three-velocity is described by the slope of a displacement curve in classical
kinematics. What Minkowski pointed out, in other words, is that 4-velocity is tangent
to a world line at a given spacetime point (p. 108).

In order to develop his mechanics, Minkowski needed a workable definition of
mass. He adapted Einstein’s and Planck’s notion of rest mass to the arena of space-
time by considering that a particle of matter sweeps out a hypertube in spacetime.
Conservation of particle mass  was then expressed as invariance of the product of
rest mass density with the volume slices of successive constant-time hypersurfaces
over the length of the particle’s world line, such that  Minkowski did
not consider the case of variable rest mass density, which arises, for instance, in the
case of heat exchange.

Minkowski’s decision to adopt a constant rest mass density is linked to his view
of the electrodynamics of moving media. Recall that he had introduced a six-vector
in his 5 November lecture to represent the field. The product of the field and excita-
tion six-vectors, he noted, leads to an interesting 4 by 4 matrix, combining the Max-
well stresses, Poynting vector, and electromagnetic energy density. He did not assign
a name to this object, known later as the energy-momentum tensor, and often viewed
as one of Minkowski’s greatest achievements in electrodynamics.86 Of special inter-
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est to Minkowski was the fact that the 4-divergence of this matrix, denoted  is a
4-vector, 87

(18)

This 4-divergence (18) was used to define the “ponderomotive” force density, or gen-
eralized force per unit volume, neither mechanical nor non-mechanical in the pure
sense of these terms. The 4-vector  is not normal, in general, to the velocity  of a
given volume element, so to ensure that the ponderomotive force acts orthogonally to

 Minkowski added a component containing a velocity term: 

(19)

The parentheses in (19) indicate a scalar product, and  stands for the transpose of
 By defining the ponderomotive force density in this way, Minkowski effectively

opted for an equation of motion in which 4-acceleration is normal to 4-velocity.88 It
appears that Minkowski let this view of force and acceleration guide his development
of spacetime mechanics. In the latter domain, he formed a 4 by 4 matrix  in the
force density and energy of an elastic media with the same transformation properties
as the energy-momentum tensor  of (18), and used the 4-divergence of this tensor to
express the equations of motion of a volume element of constant rest mass density 
(p. 106): 

(20)

The factor  was determined by the definition of 4-velocity to be equal to the scalar
product  much like the definition of ponderomotive force (19). In sum, it may
be supposed that the non-orthogonality with respect to a given volume element of the
4-divergence of Minkowski’s asymmetric energy-momentum tensor for moving media
led Minkowski to introduce a velocity term to his definition of ponderomotive force.
This definition was then ported to spacetime mechanics, where for the sake of consis-
tency, Minkowski held rest mass density constant in the equations of motion (20).

Minkowski’s stipulation of constant rest mass density was eventually challenged
by Max Abraham (Abraham 1909, 739) and others, for reasons that do not concern us
here. Despite its obvious drawbacks, it greatly simplified the tasks of outlining the
mechanics of spacetime and developing a theory of gravitation. For example, it per-

86 While Minkowski’s tensor is traceless, it is also asymmetric, a fact which led to criticism and rejec-
tion by leading theorists of the day. His asymmetric tensor was later rehabilitated; for a technical dis-
cussion with reference to the original papers, see (Møller 1972, 219). In the absence of matter, his
tensor assumes a symmetric form; in this form, it was hailed by theorists.

87 Minkowski defined the energy-momentum tensor  in two ways: as the product of six-vectors,
 where  is the Lagrange density, and in component form via the equations for Max-

well stresses, the Poynting vector, and electromagnetic energy density (Minkowski 1908, 96).
88 Minkowski’s alternative between a 4-force definition and the “natural” spacetime equations of motion

was underlined by Pauli (Pauli 1921, 664).
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mitted him to define the equations of motion of a particle in terms of the product of
rest mass and 4-acceleration, where the latter is the derivative of 4-velocity with
respect to proper time. Since 4-velocity is orthogonal to 4-acceleration, for constant
proper mass it is also orthogonal to a 4-vector Minkowski called a “driving force”
[bewegende Kraft, p. 108]. Minkowski wrote four equations defining this force: 

(21)

The first three expressions differ from Planck’s equations of motion, in that Planck
defined force as change in momentum, instead of mass times acceleration. It was only
a few months later that Minkowski explicitly defined four-momentum as the product
of 4-velocity with proper mass (Planck 1906, eq. 6; Minkowsi 1909, §4).89 By divid-
ing Minkowski’s first three equations by a Lorentz factor, one obtains Planck’s equa-
tions. Minkowski’s fourth equation,  formally dependent on the other three,
expresses the law of energy conservation.90 From energy conservation and the rela-
tivity postulate alone, Minkowski concluded, one may derive the equations of
motion. This is the single “surprising” result of his investigation of relativistic
mechanics, referred to at the outset of his paper (see above, p. 218).

If Minkowski found few surprises in spacetime mechanics, many of his readers
were taken aback by his four-dimensional approach. For example, the first physicists
to comment on his work, Albert Einstein and Jakob Laub, rewrote Minkowski’s
expressions in ordinary vector notation, sparing the reader the “sizable demands”
[ziemlich große Anforderungen] of Minkowski’s mathematics (Einstein and Laub
1908, 532). They did not specify the nature of the demands, but the abstracter of their
paper pointed to the “special knowledge of the calculation methods” required for
assimilation of Minkowski’s equations.91 In other words, for Minkowski’s readers, his
novel matrix calculus was the principal technical obstacle to overcome. Where
Poincaré pushed rejection of formalism to an extreme, Minkowski pulled in the other
direction, introducing a formalism foreign to the practice of physics. What motivated
this brash move is unclear, and his choice is all the more curious because he know-
ingly defied the German trend of vector notation in electrodynamics.92 As mentioned
above, Minkowski was ill-disposed toward quaternions, although he admitted in print
that they could be brought into use for relativity instead of matrix calculus. He spoke
here from experience, as manuscript notes reveal that he used quaternions (in addition
to Cartesian-coordinate representation and ordinary vector analysis) to investigate the
electrodynamics of moving media.93 In the end, however, he felt that for his purposes
quaternions were “too limited and cumbersome” [zu eng und schwerfällig, p. 79].

89 In the latter lecture, Minkowski proposed the modern definition of kinetic energy as the temporal
component of 4-momentum times  or  The “spatial” part of the driving force (21) was
referred to by Lorentz (Lorentz 1910, 1237) as a “Minkowskian force” [Minkowskische Kraft], differ-
ing from the Newtonian force by a Lorentz factor. Lorentz complemented the Minkowskian force
with a “Minkowskian mass” [Minkowskische Masse].
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As far as notation is concerned, Minkowski’s treatment of differential operations
broke cleanly with then-current practice. It also broke with the precedent of his 5
November lecture, where he had introduced, albeit parsimoniously, both  and 
(see above, p. 215). For the Grundgleichungen he adopted a different approach,
extending the  to four dimensions, and labeling the resulting operator lor, already
encountered above in (18). The name is short for Lorentz, and the effect is the opera-
tion:  When applied to a 6-vector, lor results in a 4-
vector, in what Minkowski described as an appropriate translation of the matrix prod-
uct rule (p. 89); it also mimics the effect of the ordinary  Transforming as a 4-vec-
tor, lor is liberally employed in the second part of the Grundgleichungen, to the
exclusion of any and all particular 4-vector functions.94 The use of lor made for a
presentation of electrodynamics elegant in the extreme, at the expense of legibility
for German physicists more used to thinking in terms of gradients, divergences, and
curls (or rotations).

Minkowski’s equations of electrodynamics departed radically in form with those
of the old electrodynamics, shocking the thought patterns of physicists, and creating
a phenomenon of rejection that took several years—and a new formalism—to over-
come.95 Why did Minkowski break with this tradition? Did he feel that the new phys-
ics of spacetime required a clean break with nineteenth-century practice? Perhaps,

90 Minkowski’s argument may be summarized as follows. From the definition of a 4-vector, the follow-
ing orthogonality relation holds for the driving force 

(22)

Integration of the rest-mass density over the hypersurface normal to the world line of the mass point
results in the driving force components (21), but if the integration is to be performed instead over a
constant-time hypersurface, proper time is replaced by coordinate time, such that the fourth equation
reads:  From (22) we obtain an expression for  which we multiply
by 

(23)

Minkowski reasoned that since the right-hand side of (23) describes the rate at which work is done on
the particle, the left-hand side must be the rate of change of the particle’s kinetic energy, such that (23)
represents the law of energy conservation. He immediately related (23) to the kinetic energy of the
particle:

(24)

Minkowski did not justify the latter expression, but in virtue of his definition of proper time,
 the left-hand side of (23) may be rewritten as  such that

upon integration the particle’s kinetic energy is  where  is a constant. For agree-
ment with the Newtonian expression of kinetic energy in case of small particle velocities  we
let  which accords both with (24) and the definition of kinetic energy given in a later lecture
(cf. note 89).

91 Jahrbuch über die Fortschritte für Mathematik 39, 1908, 910.
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but he must have recognized that the old methods would prove resistant to change.
His own subsequent practice shows as much: after writing the Grundgleichungen
Minkowski did not bother with lor during his private explorations of the formal side
of electrodynamics, preferring the coordinate method.96

He also relied largely—but not exclusively—on a Cartesian-coordinate approach
during his preliminary investigations of the subjects treated in the Grundgleichungen.
His surviving research notes, made up almost entirely of symbolic calculations, shed
an interesting light on Minkowski’s path to both a theory of the electrodynamics of
moving media, and a theory of gravitation, or more generally to his process of discov-
ery. Notably, where the subjects of mechanics and gravitation are relegated to the
appendix of the Grundgleichungen, these notes show that Minkowski pursued ques-
tions of electrodynamics and gravitation in parallel, switching from one topic to the
other three times in the course of 163 carefully numbered pages. At least fifteen of
these pages are specifically concerned with gravitation; the notes are undated, but those
concerning gravitation are certainly posterior to the typescript of the 5 November lec-
ture, because unlike the latter, they feature valid definitions of 4-velocity and 4-force.

Minkowski’s attempt to capture gravitational action in terms of a 4-scalar poten-
tial is of particular interest. We recall that Minkowski had expressed Maxwell’s equa-
tions in terms of a 4-vector potential (11) during his lecture of 5 November, and on
this basis, it was natural for him to investigate the possibility of representing gravita-
tional force on a point mass in a fashion analogous to that of the force on a point
charge moving in an electromagnetic field. In his scratch notes, Minkowski defined a
4-scalar potential  in terms of which he initially devised the law of motion: 

92 This trend is described by Darrigol (Darrigol 1993, 270). The sharp contrast between the importance
assigned to vector methods in France and Germany may be linked to the status accorded to applied
mathematics in these two nations, as discussed by H. Gispert in her review of the French version of
Klein’s Encyklopädie (Gispert 2001).

93 At one point during his calculations Minkowski seemed convinced of the utility of this formalism,
remarking that electrodynamics is “predestined for application of quaternionic calculations” (Math.
Archiv 60: 6, 21, Handschriftenabteilung, NSUB).

94 A precedent for Minkowski’s exclusive use of lor may be found in (Gibbs and Wilson 1901), where
 is similarly preferred to vector functions.

95 Cf. Max von Laue’s remark that physicists understood little of Minkowski’s work because of its unfa-
miliar mathematical expression (Laue 1951, 515) and Chuang Liu’s account of the difficulty experi-
enced by Max Abraham and Gunnar Nordström in applying Minkowski’s formalism (Liu 1991, 66).
While Minkowski’s calculus is a straightforward extension of Cayley’s formalism (for a summary, see
(Cunningham 1914, chap. 8), the latter formalism was itself unfamiliar to physicists.

96 Math. Archiv 60: 5, Handschriftenabteilung, NSUB. This 82-page set of notes dates from 23 May to 6
October, 1908. A posthumously published paper on the electron-theoretical derivation of the basic
equations of electrodynamics for moving media, while purported to be from Minkowski’s Nachlass,
was written entirely by Max Born, as he acknowledged (Minkowski and Born 1910, 527). In the latter
publication lor makes only a brief appearance.
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(25)

where constants are neglected,  denotes proper time, and primes indicate differenti-
ation with respect to coordinate time  (i.e. 97This generalization of
the Newtonian potential to a 4-scalar potential appears to be one of the first paths
explored by Minkowski in his study of gravitation, but his investigation is inconclu-
sive. In particular, there is no indication in these notes of a recognition on
Minkowski’s part that a four-scalar potential conflicts with the postulates of invariant
rest mass and light velocity.98 Nor is there any evidence that he considered suspend-
ing either one of these postulates.

Likewise, in the Grundgleichungen there is no question of adopting either a vari-
able mass density or a gravitational 4-potential. Once he had established the founda-
tions of spacetime mechanics, Minkowski took up the case of gravitational attraction.
The problem choice is significant, in that the same question had been treated at length
by Poincaré (although not to Minkowski’s satisfaction, as mentioned above, p. 215).
Implicitly, Minkowski encouraged readers to compare methods and results. Explic-
itly, proceeding in what he described (in a footnote) as a “wholly different way” from
Poincaré, Minkowski said he wanted to make “plausible” the inclusion of gravitation
in the scheme of relativistic mechanics (p. 109). It will become clear in what follows
that his project was more ambitious than the modest elaboration of a plausibility
argument, as it was designed to validate his spacetime mechanics.

The point of departure for Minkowski’s theory of gravitation was quite different
from that of Poincaré, because the latter’s results were integrated into the former’s
formalism. For example, where Poincaré initially assumed a finite propagation veloc-
ity of gravitation no greater than that of light, only to opt in the end for a velocity
equal to that of light, Minkowski assumed implicitly from the outset that this velocity
was equal to that of light. Similarly, Poincaré initially supposed the gravitational

97 Math. Archiv 60: 6, 10, Handschriftenabteilung, NSUB.
98 This “peculiar” consequence of Minkowski’s spacetime mechanics was underlined by Maxwell’s

German translator, the Berlin physicist Max B. Weinstein (Weinstein 1914, 42). In Minkowski space-
time, 4-acceleration is orthogonal to 4-velocity:  where  is the
proper time. We assume a 4-scalar potential  such that the gravitational 4-force 
If we consider a point mass with 4-velocity  subjected to a 4-force  derived from this potential,
we have  Writing 4-velocity as  and substituting in the latter
expression, we obtain 

 

and consequently,  which means that the law of motion describes the trajectory of the
passive mass  only in the trivial case of constant  along its world line.
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force to be Lorentz covariant, only to opt in the end for an analog of the Lorentz
force, where Minkowski required implicitly from the outset that all forces transform
like the Lorentz force.

Combining geometric and symbolic arguments, Minkowski’s exposition of his
theory of gravitation introduces a new geometric object, the three-dimensional “ray
form” [Strahlgebilde] of a given spacetime point, known today as a light hypercone
(or lightcone). For a fixed spacetime point  the lightcone of

 is defined by the sets of spacetime points  satisfying the equation

(26)

For all the spacetime points  of this lightcone,  is what Minkowski called B’s
lightpoint. Any world line intersects the lightcone in one spacetime point only,
Minkowski observed, such that for any spacetime point  on a world line there exists
one and only one lightpoint  Minkowski remarked in a later lecture that the light-
cone divides four-dimensional space into three regions: time-like, space-like and
light-like.99

Using this novel insight to the structure of four-dimensional space, in combina-
tion with the 4-vector notation set up in earlier in his memoir, Minkowski presented
and applied his law of gravitational attraction in two highly condensed pages.
Minkowski’s geometric argument employs non-Euclidean relations that were unfa-
miliar to physicists, yet he provided no diagrams. Visually-intuitive arguments had
fallen into disfavor with mathematicians by this time, with the rise of the axiomatic
approach to geometry favored by David Hilbert (Rowe 1997), yet Minkowski never
renounced the use of figures in geometry; he employed them in earlier works on num-
ber geometry, and went on to publish spacetime diagrams in the sequel to the Grund-
gleichungen.100 For the purposes of my reconstruction, I refer to a spacetime diagram
(Fig. 1) of the sort Minkowski employed in the sequel (reproduced in Fig. 3).101

99 Minkowski introduced the terms zeitartig and raumartig in (Minkowski 1909).
100 There is little agreement on where to situate Minkowski’s work on relativity along a line running from

the intuitive to the formal. Peter Galison (Galison 1979, 89) for example, underlines Minkowski’s
visual thinking (i.e., reasoning that appeals to figures or diagrams), while Leo Corry (Corry 1997,
275; 2004, chap. 4) considers Minkowski’s work in the context of Hilbert’s axiomatic program for
physics.

101 Two spatial dimensions are suppressed in Fig. 1, and lightcones are represented by broken lines with
slope equal to  the units being chosen so that the propagation velocity of light is unity  In
this model of Minkowski space, orthogonal coordinate axes appear oblique in general, for example,
the spatial axes  are orthogonal to the tangent  at spacetime point  of the central
line of the filament  described by a particle of proper mass 
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Figure 1: Minkowski’s geometry of gravitation, with source in arbitrary motion.

On the assumption that the force of gravitation is a 4-vector normal to the 4-
velocity of the passive mass  Minkowski derived his law of attraction in the fol-
lowing way. The trajectories of two particles of mass  and  correspond to two
spacetime filaments  and  respectively. Minkowski’s arguments refer to world
lines he called central lines [Hauptlinien] of these filaments, which pass through
points on the successive constant-time hypersurfaces delimited by the respective par-
ticle volumes. The central lines of the filaments  and  are shown in Fig. 1. An
infinitesimal element of the central line of  is labeled  and the two lightpoints
corresponding to the endpoints  and  are labeled  and  on the central line
of  From the origin of the rest frame  a 4-vector parallel to  intersects at

 the three-dimensional hypersurface defined by the equation 
Finally, a space-like 4-vector  extends from  to a point  on the world line
tangent to the central line of  at 

Referring to the latter configuration of seven spacetime points, two central lines, a
lightcone and a calibration hypersurface, Minkowski expressed the spatial compo-
nents of the driving force of gravitation exerted by  on  at 

(27)

Minkowski’s gravitational driving force is composed of the latter 4-vector (27) and a
second 4-vector parallel to  at  such that the driving force is always orthog-
onal to the 4-velocity of the passive mass  at  (For reasons of commodity, I will
refer to this law of force as Minkowski’s first law.)

The form of Minkowski’s first law of gravitation is comparable to that of his pon-
deromotive force for moving media (19), in that the driving force has two compo-
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nents, only one of which depends on the motion of the test particle. In the gravitational
case, however, Minkowski did not write out the 4-vector components in terms of
matrix products. Instead, he relied on spacetime geometry and the definition of a 4-
vector. The only way physicists could understand (27) was by reformulating it in
terms of ordinary vectors referring to a conveniently chosen inertial frame, and even
then, they could not rely on Minkowski’s description alone, as it is incomplete.102

Even without spacetime diagrams or a transcription into ordinary vector notation,
the formal analogy of (27) to Newton’s law is readily apparent, and this is probably
why Minkowski wrote it this way. In doing so, however, he passed up an opportunity
to employ the new matrix machinery at his disposal. Had he seized this opportunity,
he would have gained a simple, self-contained, coordinate-free expression of the law
of gravitation, and provided readers with a more elaborate example of his calculus in
action, but the latter desiderata must not have been among his primary objectives.103

102 The 4-vector  in (27) has unit magnitude by definition in all inertial frames, while  is a
time-like 4-vector tangent to the central line of  at  Consequently,  may be taken to
coincide with the temporal axis of a frame instantaneously at rest with  at  such that it has
only one nonzero component: the difference in proper time between the points  and  It is
assumed that the rest frame may be determined unambiguously for a particle in arbitrary motion, as
asserted without proof by Minkowski in a later lecture (Minkowski 1909, §III); subsequently, Max
Born (Born 1909, 26) remarked that any motion may be approximated by what he called hyperbolic
motion, and noted that such motion is characterized by an acceleration of constant magnitude (as
measured in an inertial frame). If we locate the origin of this frame at  and let 
then  and  Likewise in this same frame,

 and  Minkowski understood the term
 as the ratio [Verhältnis] of two parallel 4-vectors, an operation familiar from the cal-

culus of quaternions, but one not defined for 4-vectors. While modern vector systems ignore vector
division, in Hamilton’s quaternionic calculus the quotient of vectors is unambiguously defined; see,
for example, (Tait 1882–1884, chap. 2). Accordingly, the quotient in (27) is the ratio of lengths,

 and the cubed ratio is  The point  lies on the same constant-time hyper-
surface as  so we assign it the value  This assignment determines the value of
the 4-vector  Since  is a lightpoint of  we can apply (26) to
obtain  and consequently,  Substituting for  results in

 The 4-vector  is space-like, such that its projection on the
constant-time hypersurface orthogonal to  at  is the ordinary vector  In
terms of ordinary vectors and scalars measured in the rest frame of  Minkowski’s expression (27)
is equivalent to Newton’s law (neglecting the gravitational constant): 

(28)

Neither (27) nor (28) contains any velocity-dependent terms, while the time-like component of
Minkowski’s first law depends on the velocity of the passive mass. Newton’s law (28) thus coincides
with Minkowski’s first law only in the case of relative rest.
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Figure 2: Minkowski’s geometry of gravitation, with source in uniform motion.

Minkowski was not yet finished with his law of gravitation. Unlike Poincaré, after
writing his law of gravitation, Minkowski went on to apply it to the particular case of
uniform rectilinear motion of the source  He considered the latter in a comoving
frame, in which the temporal axis is chosen to coincide with the tangent to the central
line of  at  (cf. the situation described in note 102). Referring to the recon-
structed spacetime diagram in Fig. 2, the temporal axis is represented by a vertical
line  such that the origin is established in a frame comoving with  To the
retarded position of  denoted  Minkowski assigned the coordinates

 and to the position  of the passive mass  he assigned the coordi-
nates  The geometry of this configuration fixes the location of  at

 from which the 4-vectors  and
 are determined. In this case, Minkowski pointed out,

(26) reduces to:

(29)

Substituting the above values of  and  into Minkowski’s formula (27),
the spatial components of the 4-acceleration of the passive mass  at  due to the
active mass  at  turn out to be:104

(30)

103 Minkowski’s driving force may be expressed in his notation as a function of scalar products of 4-
velocities and 4-position: 

Here I let  and  designate 4-velocity at the passive and active mass points, while  is the asso-
ciated 4-position, the parentheses denote a scalar product, and the bar indicates transposition.
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From (30) and (29), the corresponding temporal component at  may be deter-
mined:105

(33)

Inspecting (30), it appears that the only difference between these acceleration compo-
nents and those corresponding to Newtonian attraction is a replacement in the latter
of coordinate time  by proper time 106

The formal similarity of (30) to the Newtonian law of motion under a central
force probably suggested to Minkowski that his law induces Keplerian trajectories.
With the knowledge gained from (30), to the effect that the only difference between
classical and relativistic trajectories is that arising from the substitution of proper
time for coordinate time, Minkowski demonstrated the compatibility of his relativis-
tic law of gravitation with observation using only Kepler’s equation and the definition
of 4-velocity.

Writing Kepler’s equation in terms of proper time yields: 

(34)

where  denotes the mean anomaly,  the eccentricity, and  the eccentric anom-
aly. Minkowski referred to (34) and to the norm of a 4-velocity vector:

(35)

104 The intermediate calculations can be reconstructed as follows. Let the driving force be designated
 Since  and  equations (21) and

(27) yield: 

105  Minkowski omitted the intermediate calculations, which may be reconstructed in modern notation as
follows. Let the 4-velocity of the passive mass point be designated 

 while the first three components of its 4-acceleration, designated  at  due to the
source  are given by (30). From the orthogonality of 4-velocity and 4-acceleration we have:

Rearranging (31) results in an expression for the temporal component of 4-acceleration:

Differentiating (29) with respect to  results in 
 the right-hand side of which we substitute in (32) to obtain (33).

106 A young Polish physicist in Göttingen, Felix Joachim de Wisniewski later studied this case, but with
equations differing from (30) by a Lorentz factor (de Wisniewski 1913a, 388). In a postscript to the
second installment of his paper (Wisniewski 1913b, 676) he employed Minkowski’s matrix notation,
becoming, with Max Born, one of the rare physicists to adopt this notation.
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in order to determine the difference between the mean anomaly in coordinate time 
and the mean anomaly in proper time  From (35), Minkowski deduced:107

(37)

Solving (37) for the coordinate time  expanding to terms in  and multiplying
by  led Minkowski to the expression:

(38)

Recalling (34), Minkowski managed to express the difference between the mean
anomaly in coordinate time and proper time:108

(39)

Evaluating the relativistic factor  for solar mass and the Earth’s semi-
major axis to be 10-8, Minkowski found the deviation from Newtonian orbits to be
negligible in the solar system. On this basis, he concluded that

a decision against such a law and the proposed modified mechanics in favor of the New-
tonian law of attraction with Newtonian mechanics would not be deducible from astro-
nomical observations.109

According to the quoted remark, there was more at stake here for Minkowski than
just the empirical adequacy of his law of gravitational attraction, as his claim is for
parity between Newton’s law and classical mechanics, on one hand, and the system

107 The intermediate calculations were omitted by Minkowski, but figure among his research notes
(Math. Archiv 60: 6, 126–127, Handschriftenabteilung, NSUB). Following the method outlined by
Otto Dziobek (Dziobek 1888, 12), Minkowski began with the energy integral of Keplerian motion:

(36)

where  denotes the velocity of light,  is the sum of the masses times the gravitational constant,
  is the radius, and  is a constant. The left-hand side of (36) is the same as the

right-hand side of (35) for  In order to express  (which is to say ) in terms of
 Minkowski considered a conic section in polar coordinates, with focus at the origin:

 where  denotes the semi-major axis, and  is the
true anomaly. By eliminating  in favor of  and  and differentiating (34), Minkowski obtained
an expression equivalent to (37).

108 I insert the eccentricity  in the second term on the right-hand side, correcting an obvious omission in
Minkowski’s paper (Minkowski 1908, 111, eq. 31).

109 “... eine Entscheidung gegen ein solches Gesetz und die vorgeschlagene modifizierte Mechanik zu
Gunsten des Newtonschen Attraktionsgesetzes mit der Newtonschen Mechanik aus den astronomi-
schen Beobachtungen nicht abzuleiten sein” (Minkowski 1908, 111).
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composed of the law of gravitation and spacetime mechanics on the other hand. This
new system, Minkowski claimed, was verified by astronomical observations at least
as well as the classical system formed by the Newtonian law of attraction and Newto-
nian mechanics.

Instead of comparing his law with one or the other of Poincaré’s laws, Minkowski
noted a difference in method, as mentioned above. In light of Minkowski’s emphasis
on the methodological difference with Poincaré, and the hybrid geometric-symbolic
nature of Minkowski’s exposition, it is clear that the point of reexamining the prob-
lem of relativity and gravitation in the Grundgleichungen was not simply to make
plausible the inclusion of gravitation in a relativistic framework. Rather, since gravi-
tational attraction was the only example Minkowski provided of his formalism in
action, his line of argument served to validate his four-dimensional calculus, over and
above the requirements of plausibility.

From the latter point of view, Minkowski had grounds for satisfaction, although
one imagines that he would have preferred to find that his law diverged from New-
ton’s law just enough to account for the observed anomalies. It stands to reason that if
Minkowski had been fully satisfied with his first law, he would not have proposed a
second law in his next paper—which turned out to be the last he would finish for pub-
lication. The latter article developed out of a well-known lecture entitled “Space and
Time” (Raum und Zeit), delivered in Cologne on 21 September, 1908, to the mathe-
matics section of the German Association of Scientists and Physicians in its annual
meeting (Walter 1999a, 49).

In the final section of his Cologne lecture, Minkowski took up the Lorentz-
Poincaré theory, and showed how to determine the field due to a point charge in arbi-
trary motion. On this occasion, just as in his earlier discussion of gravitation in the
Grundgleichungen, Minkowski referred to a spacetime diagram, but this time he pro-
vided the diagram (Fig. 3). Identifying the 4-vector potential components for the
source charge on this diagram, Minkowski remarked that the Liénard-Wiechert law
was a consequence of just these geometric relations.110

110 Minkowski’s explanation of the construction of his spacetime diagram (Fig. 3) may be paraphrased in
modern terminology as follows. Suppressing the z-axis, we associate two world lines with two point
charges  and  The world line of  passes through the point at which we wish to determine the
field,  To find the retarded position of the source  we draw the retrograde lightcone (with bro-
ken lines) from  which intersects the world line of  at  where there is a hyperbola of curva-
ture  with three infinitely-near points lying on the world line of  it has its center at  The
coordinate origin is established at  by letting the t-axis coincide with the tangent to the world line.
A line from  intersects this axis orthogonally at point  it is space-like, and if its projection on a
constant-time hypersurface has length  the length of the 4-vector  is  The 4-vector poten-
tial has magnitude  and points in the direction of  (i.e., parallel to the 4-velocity of  at ).
The x-axis lies parallel to  such that  is the intersection of a line through  normal to the x-
axis.
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Figure 3: Minkowski’s spacetime diagram of particle interaction (Minkowski 1909, 86).

Minkowski then described the driving force between two point charges. Adopting
dot notation for differentiation with respect to proper time, he wrote the driving force
exerted on an electron of charge  at point  by an electron of charge 

(40)

where  and  are 4-velocity components of the test charge  and  is a certain
4-vector. This was the first such description of the electrodynamic driving force due
to a 4-vector potential, the simplicity of which, Minkowski claimed, compared favor-
ably with the earlier formulations of Schwarzschild and Lorentz.111

In the same celebratory tone, Minkowski finished his article with a discussion of
gravitational attraction. The “reformed mechanics”, he claimed, dissolved the dis-
turbing disharmonies between Newtonian mechanics and electrodynamics. In order
to provide an example of this dissolution, he asked how the Newtonian law of attrac-
tion would sit with his principle of relativity. Minkowski continued:

I will assume that if two point masses   describe world lines, a driving force vec-
tor is exerted by  on  exactly like the one in the expression just given for the case
of electrons, except that instead of  we must now put in 

111 Minkowski noted four conditions on  it is normal to the 4-velocity of  at  
 and  where  is the space-like distance between the test charge  at

 and the advanced position  of the source  and  is the y-component of e’s 4-acceleration at
 For a derivation of the 4-potential and 4-force corresponding to Minkowski’s presentation, see

(Pauli 1921, 644–645).
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Applying the substitution suggested by Minkowski to (40), we obtain:

(41)

where the coefficients  and  refer to proper masses. Minkowski’s new law of
gravitation (41) fully expresses the driving force, unlike the formula (27) of his first
law, which describes only one component. In addition, the 4-vectors are immediately
identifiable from the notation alone. (In order to distinguish the law given in the
Grundgleichungen from that of the Cologne lecture [41], I will call [41] Minkowski’s
second law.)

Since (40) was obtained from Lorentz-Poincaré theory via a 4-vector potential,
the law of gravitation (41) ostensibly implied a 4-vector potential as well; in other
words, following the example set by Poincaré’s second law (10), Minkowski
appealed in turn to a Maxwellian theory of gravitation similar to those of Heaviside,
Lorentz, and Gans.112 Although Minkowski made no effort to attach his law to these
field theories, it was understood by Sommerfeld to be a formal consequence of just
such a theory, as I will show in the next section.

What were the numerical consequences of this new law? Minkowski spared the
reader the details, noting only that in the case of uniform motion of the source, the
only divergence from a Keplerian orbit would stem from the replacement of coordi-
nate time by proper time. He indicated that the numbers for this case had been
worked out earlier, and his conclusion with respect to this new law was naturally the
same: combined with the new mechanics, it was supported by astronomical observa-
tions to the same extent as the Newtonian law combined with classical mechanics.

Curiously enough, Minkowski offered no explanation of the need for a second
law of attraction. Furthermore, by proposing two laws instead of one, Minkowski tac-
itly acknowledged defeat; despite his criticism of the Poincaré’s approach (see above,
p. 215), he could hardly claim to have solved unambiguously the problem of gravita-
tion. It may also seem strange that Minkowski discarded the differences between his
new law (41) and the one he had proposed earlier.113

Minkowski revealed neither the motivation behind a second law of gravitation,
nor why he neglected the differences between his two laws, but there is a straightfor-

112 See above, p.  198, (Heaviside 1893), and (Gans 1905). Theories in which the gravitational field is
determined by equations having the form of Maxwell’s equations were later termed vector theories of
gravitation by Max Abraham (Abraham 1914, 477). For a more recent version of such a theory, see
(Coster and Shepanski 1969).

113 Minkowski’s neglect of the differences between his two theories may explain why historians have
failed to distinguish them. The principal difference between the two laws stems from the presence of
acceleration effects in the second law. By 1905 it was known that accelerated electrons radiate energy,
such that by formal analogy, a Maxwellian theory of gravitation should have featured accelerated
point masses radiating “gravitational” energy. For a brief overview of research performed in the first
two decades of the twentieth century on the energy radiated from accelerated electrons, see (Whit-
taker 1951–1953, 2:246).
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ward way of explaining both of these mysteries. First, we recall the circumstances of
his Cologne lecture, the final section of which Minkowski devoted to the theme of
restoring unity to physics. What he wanted to stress on this occasion was that
mechanics and electrodynamics harmonized in his four-dimensional scheme of
things:

In the mechanics reformed according to the world postulate, the disturbing disharmonies
between Newtonian mechanics and modern electrodynamics fall out on their own.114

To support this view, Minkowski had to show that his reformed mechanics was a syn-
thesis of classical mechanics and electrodynamics. A Maxwellian theory of gravita-
tion fit the bill quite well, and consequently, Minkowski brought out his second law
of gravitation (41). Clearly, this was not the time to point out the differences between
his two laws. On the contrary, it was the perfect occasion to observe that a law of
gravitation derived from a 4-vector potential formally identical to that of electrody-
namics was observationally indistinguishable from Newton’s law. Naturally,
Minkowski seized this opportunity.

Sadly, Minkowski did not live long enough to develop his ideas on gravitation and
electrodynamics; he died on 12 January, 1909, a few days after undergoing an opera-
tion for appendicitis. At the time, no objections to a field theory of gravitation analo-
gous to Maxwell’s electromagnetic theory were known, apart from Maxwell’s own
sticking-points (see above, p. 198). However, additional objections to this approach
were raised by Max Abraham in 1912, after which the Maxwellian approach withered
on the vine, as Gustav Mie and others pursued unified theories of electromagnetism
and gravitation.115

Minkowski’s first law of gravitation fared no better than his second law, but the
four-dimensional language in which his two laws were couched had a bright future.
The first one to use Minkowski’s formal ideas to advantage was Sommerfeld, as we
will see next.

3. ARNOLD SOMMERFELD’S HYPER-MINKOWSKIAN
LAWS OF GRAVITATION

Neither Poincaré’s nor Minkowski’s work on gravitation and relativity drew comment
until 25 October, 1910, when the second installment of Arnold Sommerfeld’s vecto-
rial version of Minkowski’s calculus, entitled “Four-dimensional vector analysis”
[Vierdimensionale Vektoranalysis], appeared in the Annalen der Physik (Sommerfeld
1910b). Sommerfeld’s contribution differs from those of Poincaré and Minkowski in
that it is openly concerned with the presentation of a new formalism, much as its title

114 “In der dem Weltpostulate gemäß reformierten Mechanik fallen die Disharmonien, die zwischen der
Newtonschen Mechanik und der modernen Elektrodynamik gestört haben, von selbst aus”
(Minkowski 1909, §5).

115 Abraham showed that a mass set into oscillation would be unstable due to the direction of energy flow
(Norton 1992, 33). On the early history of unified field theories, see the reference in note 12.



236 SCOTT WALTER

indicates. In this section, I discuss Sommerfeld’s interest in vectors, the salient
aspects of his 4-vector formalism, and his portrayal of Poincaré’s and Minkowski’s
laws of gravitation.

Sommerfeld displayed a lively interest in vectors, beginning with his editorship of
the physics volume of Klein’s six-volume Encyklopädie in the summer of 1898.116

He imposed a certain style of vector notation on his contributing authors, including
typeface, terminology, symbolic representation of operations, units and dimensions,
and the choice of symbols for physical quantities. Articles 12 to 14 of the physics vol-
ume appeared in 1904, and were the first to implement the notation scheme backed
by Sommerfeld, laid out the same year in the Physikalische Zeitschrift.117 While
Sommerfeld belonged to the Vector Commission formed at Felix Klein’s behest in
1902, it was clear to him as early as 1901 that the article on Maxwell’s theory (com-
missioned to Lorentz) would serve as a “general directive” for future work in electro-
dynamics.118 His intuition turned out to be correct: the principal “vector” of influence
was Lorentz’s Article 13 (Lorentz 1904b), featuring sections on vector notation and
algebra, which set a de facto standard for vector approaches to electrodynamics.

As mentioned above (p. 210), only one effort to extend Poincaré’s four-dimen-
sional approach beyond the domain of gravitation was published prior to
Minkowski’s Grundgleichungen. By 1910, the outlook for relativity theory had
changed due to the authoritative support of Planck and Sommerfeld, the announce-
ment of experimental results favoring Lorentz’s electron theory, and the broad diffu-
sion (in 1909) of Minkowski’s Cologne lecture. Dozens of physicists and
mathematicians began to take an interest in relativity, resulting in a leap in relativist
publications.119

The principal promoter of Minkowskian relativity, Sommerfeld must have felt by
1910 that it was the right moment to introduce a four-dimensional formalism. He was
not alone in feeling this way, for three other formal approaches based on
Minkowski’s work appeared in 1910. Two of these were 4-vector systems, similar in
some respects to Sommerfeld’s, and worked out by Max Abraham and the American
physical chemist Gilbert Newton Lewis, respectively. A third, non-vectorial approach
was proposed by the Zagreb mathematician Vladimir Variçak. Variçak’s was a real,
four-dimensional, coordinate-based approach relying on hyperbolic geometry. Som-
merfeld probably viewed this system as a potential rival to his own approach;
although he did not mention Variçak, he wrote that a non-Euclidean approach was

116 Sommerfeld’s work on the Encyklopädie is discussed in an editorial note to his scientific correspon-
dence (Sommerfeld 2001–2004, 1:40).

117 See (Reiff and Sommerfeld 1904; Lorentz 1904b, 1904c, Sommerfeld 1904). The scheme proposed
by Sommerfeld differed from that published in articles 12 to 14 of the Encyklopädie only in that the
operands of scalar and vector products were no longer separated by a dot.

118 Sommerfeld to Lorentz, 21 March, 1901, (Sommerfeld 2001–2004, 1:191). On Sommerfeld’s partici-
pation on the Commission see (Reich 1996) and (Sommerfeld 2001–2004, 1:144).

119 For bibliometric data, and discussions of Sommerfeld’s role in the rise of relativity theory, see (Walter
1999a, 68–73, 1999b, 96, 108).
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possible but could not be recommended (Sommerfeld 1910a, 752, note 1). Of the
three alternatives to Sommerfeld’s system, the non-Euclidean style pursued by
Variçak and others was the only one to obtain even a modest following. An investiga-
tion of the reasons for the contemporary neglect of these alternative four-dimensional
approaches is beyond the purview of our study; for what concerns us directly, none of
these methods was applied to the problem of gravitation.120

Sommerfeld’s paper, like those of Abraham, Lewis, and Variçak, emphasized for-
malism, and in this it differed from the Grundgleichungen, as mentioned above. Like
the latter work, it focused attention on the problem of gravitation. Following the
example set by both Poincaré and Minkowski, Sommerfeld capped his two-part
Annalen paper with an application to gravitational attraction, which consisted of a
reformulation, comparison and commentary of their work in his own terms. Not only
was Sommerfeld’s comparison of Poincaré’s and Minkowski’s laws of gravitation the
first of its kind, it also proved to be the definitive analysis for his generation.

Sommerfeld’s four-dimensional vector algebra and analysis offered no new 4-vec-
tor or 6-vector definitions, but it introduced a suite of 4-vector functions, notation, and
vocabulary. The most far-reaching modification with respect to Minkowski’s calculus
was the elimination of lor (cf. pp. 223–223) in favor of extended versions of ordinary
vector functions. In Sommerfeld’s notational scheme, the ordinary vector functions
div, rot, and grad (used by Lorentz in his Encyklopädie article on Maxwell’s theory)
were replaced by 4-vector counterparts marked by a leading capital letter: Div, Rot,
and Grad. These three functions were joined by a 4-vector divergence marked by Ger-
man typeface, Div. Sommerfeld chose to retain  (cf. note 20), while noting the
equivalence to his 4-vector functions:  The principal advantage of the
latter functions was that their meaning was familiar to physicists. In the same vein,
Sommerfeld supplanted Minkowski’s unwieldy terminology of “spacetime vectors of
the first and second type” [Raum-Zeit-Vektoren Iter und IIter Art] with the more suc-
cinct “four-vector [Vierervektor] and “six-vector” [Sechservektor]. The result was a
compact and transparent four-dimensional formalism differing as little as possible
from the ordinary vector algebra employed in the physics volume of the Encyklopä-
die.121

To show how his formalism performed in action, Sommerfeld first took up the
geometric interpretation and calculation of the electrodynamic 4-vector potential and
4-force. In the new notation, Sommerfeld wrote the electrodynamic 4-force 
between two point charges  and  in terms of three components in the direction of
the light-like 4-vector  the source 4-velocity  and the 4-acceleration 

120 See (Abraham 1910; Lewis 1910a, 1910b; Variçak 1910). On Variçak’s contribution see (Walter
1999b).

121 Not all of Sommerfeld’s notational choices were retained by later investigators; Laue, for instance,
preferred a notational distinction between 4-vectors and 6-vectors. For a summary of notation used by
Minkowski, Abraham, Lewis, and Laue, see (Reich 1994).

 
 = Div Grad.
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(42)

where parentheses indicate scalar products. Sommerfeld was careful to note the
equivalence between (42) and what he called Minkowski’s “geometric rule” (40).

In the ninth and final section of his paper, Sommerfeld took up the law of electro-
statics and the classical law of gravitation. The former was naturally considered to be
a special case of (42), with two point charges relatively at rest. The same was true for
the law of gravitation, as Sommerfeld noted that Minkowski had proposed a formal
variant of (40) as a law of gravitational attraction (what I call Minkowski’s second
law, [41]). Sommerfeld’s expression of the electrodynamic 4-force is unwieldy, but
takes on a simpler form in case of uniform motion of the source  Neglecting
the  factor, and substituting  for  Sommerfeld expressed the corre-
sponding version of Minkowski’s second law:

(43)

The latter law is compact and self-contained, in that its interpretation depends only
on the definitions and rules of the algebraic formalism. In this sense, (43) improves
on the Minkowskian (41), even if it represents only a special case of the latter law.

Once Sommerfeld had expressed Minkowski’s second law in his own terms, he
turned to Poincaré’s two laws. The transformation of Poincaré’s first law was more
laborious than the transformation of Minkowski’s second law. First of all, Sommer-
feld transcribed Poincaré’s first law (9) into his 4-vector notation, while retaining the
original designation of invariants. This step itself was not simple: in order to cast
Poincaré’s kinematic invariants as scalar products of 4-vectors, Sommerfeld had to
adjust the leading sign of (9), to obtain:

(44)

Sommerfeld noted the “correction” of what he called an “obvious sign error” in
(9).122 The difference is due to Poincaré’s irregular derivation of the kinematic invari-
ants (1), as mentioned above (p. 203), although from Sommerfeld’s remark it is not
clear that he saw it this way.

122 “Mit Umkehr des bei Poincaré offenbar versehentlichen Vorzeichens” (Sommerfeld 1910b, 686, n. 1).
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The transformation of Poincaré’s second law (10) was less straightforward. It
appears that instead of deriving a 4-vector expression as in the previous case, Sommer-
feld followed Poincaré’s lead by eliminating the Lorentz-invariant factor  from the
denominator on the right-hand side of the first law (44), which results in the equation:

(45)

Sommerfeld expressed Poincaré’s kinematic invariants  and  as scalar products:

(46)

He also replaced the mass term  in (44) and (45) by the product of rest mass 
and the Lorentz factor  i.e.,  At this point, he could express Poincaré’s
two laws exclusively in terms of constants, scalars, and 4-vectors:

(47)

(48)

In the latter form, Sommerfeld’s (approximate) version of Minkowski’s second law
(43) matches exactly his (exact) version of Poincaré’s second law (48). Sommerfeld
pointed out this equivalence, and noted again that the difference between (47) and
(48) amounted to a single factor, in the scalar product of 4-velocities:

 (All six Lorentz-invariant laws of gravitation of Poincaré,
Minkowski, and Sommerfeld are presented in Table 1.) Sommerfeld summed up his
result by saying that when the acceleration of the active mass is neglected,
Minkowski’s special formulation of Newton’s law (41) is subsumed by Poincaré’s
indeterminate formulation. In other words, the approximate form of Minkowski’s sec-
ond law was captured by Poincaré’s remark that his first law (9) could be multiplied
by an unlimited number of Lorentz-invariant quantities (within certain constraints).

The message of the basic equivalence of Poincaré’s pair of laws to Minkowski’s
pair echoes the latter’s argument in his Cologne lecture, to the effect that spacetime
mechanics removed the disharmonies of classical mechanics and electrodynamics
(see above, p. 234). This message was reinforced by Sommerfeld’s graphical repre-
sentation of the 4-vector components of these laws in a spacetime diagram, repro-
duced in Fig. 4. The 4-vector relations in (47) and (48) are shown in the figure; the
world line of the active mass  appears on the left-hand side of the diagram, and the
line  (which coincides with ) lies on the retrograde lightcone from the origin 
on the world line of the passive mass  All three 4-vectors in (47) and (48),

 and  are represented in the diagram, along with an angle  correspond-
ing to the Lorentz-invariant  distinguishing (47) and (48).123
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Figure 4: Sommerfeld’s illustration of the two laws of gravitation (Sommerfeld 1910b, 687).

So far, Sommerfeld had dealt with three of the four laws of gravitation, leaving
out only Minkowski’s first law. Since Minkowski’s presentation of his first law was a
purely geometric affair, Sommerfeld had no choice but to reconstruct his argument
with reference to a spacetime diagram describing the components of (27) in terms of
the angle  and a fourth 4-vector,  He showed the numerator in (47) and (48) to
be equal to the product  and expressed the denominator of (48) in terms of
the length  of the 4-vector  in Fig. 4, to obtain the formula:

(49)

which he showed to be equivalent to (47). Eliminating the factor  from
the latter equation, Sommerfeld obtained an expression for (48) in terms of 

(50)

The latter two driving force equations, (49) and (50), were thus rendered geometri-
cally by Sommerfeld, facilitating the comprehension of their respective vector-sym-
bolic expressions (47) and (48).

In general, the driving force of (49) is weaker, ceteris paribus, than that of (50)
due to the cosine in the former, but Sommerfeld did not develop these results numeri-
cally, noting only that the four laws were equally valid from an empirical stand-

123 Sommerfeld explained Fig. 4 roughly as follows: two skew 4-velocities  and  determine a
three-dimensional space, containing all the lines shown. Points  are coplanar, while the trian-
gles  and  and the parallelogram  all generally lie in distinct planes. In particular,

 lies outside the plane of  and  is orthogonal to  The broken vertical line  repre-
sents the temporal axis of a frame with origin  a space-like plane orthogonal to  at  intersects
the world line of  at point  The space-like 4-vector  is orthogonal to  while  is orthog-
onal to  both  and  intersect the origin, while  and  together form an angle 
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point.124 He noted that Poincaré’s analysis allowed for several other laws, but that in
all cases, one sticking-point remained: there was no answer to the question of how to
localize momentum in the gravitational field.

By rewriting Poincaré’s and Minkowski’s laws in his new 4-vector formalism,
Sommerfeld effectively rationalized their contributions for physicists. The goal of his
paper, announced at the outset, was to display the “remarkable simplification of elec-
trodynamic concepts and calculations” resulting from “Minkowski’s profound space-
time conception.”125 Actually, Sommerfeld’s comparison of Poincaré’s and
Minkowski’s laws of gravitation was designed to show his formalism in an attractive
light. In realizing this comparison in his own formalism, Sommerfeld smoothed out
the idiosyncrasies of Poincaré’s method, inappropriately lending him a 4-vector
approach. He felt that Poincaré had “already employed 4-vectors” (Sommerfeld
1910b, 685) although as shown in the first section, Poincaré’s use of four-dimen-
sional entities was tightly circumscribed by the objective of formulating Lorentz-
invariants. In Thomas Kuhn’s optical metaphor (Kuhn 1970, 112), Sommerfeld read
Poincaré’s theory through a Minkowskian lens; in other words, he read it as a space-
time theory. For Sommerfeld, no less than for Minkowski, the discussion of gravita-
tion and relativity was modulated by the programmatic objective of promoting a four-
dimensional formalism. Satisfying this objective without ignoring Poincaré’s work,
however, meant rationalizing Poincaré’s contribution.126

Sommerfeld’s reading of Minkowski’s second law contrasts with its muted expo-
sition in the original text (see above, pp. 234–234), in that he gave it pride of place
with respect to the other three laws. This change in emphasis on Sommerfeld’s part
reflects his own research interests in electrodynamics, and his outlook on the future
direction of physics.127 But what originally motivated him to propose a 4-dimen-
sional formalism? The inevitability of a 4-dimensional vector algebra as a standard
tool of the physicist was probably a foregone conclusion for him by 1910, such that
the promotion of the ordinary vector notation used in the Encyklopädie obliged him
to propose essentially the same notation for 4-vectors. Sommerfeld referred modestly
to his work as an “explanation of Minkowskian ideas” (Sommerfeld 1910a, 749) but
as he explained to his friend Willy Wien, co-editor with Planck of the Annalen der

124 This view was confirmed independently by the Dutch astronomer W. de Sitter, who worked out the
numbers for the one-body problem (de Sitter 1911). De Sitter found the second law to require a post-
Newtonian centennial advance in Mercury’s perihelion of  while the first law required no addi-
tional advance. His figure for the second law agrees with the one given by Poincaré (see above,
p. 208).

125 “In dieser und einigen anschließenden Studien möchte ich darstellen, wie merkwürdig sich die elek-
trodynamischen Begriffe und Rechnungen vereinfachen, wenn man sich dabei von der tiefsinnigen
Raum-Zeit-Auffassung Minkowskis leiten läßt” (Sommerfeld 1910a, 749).

126 Faced with a similar situation in his Cologne lecture of September, 1908, Minkowski simply
neglected to mention Poincaré’s contribution; see (Walter 1999a, 56).

127 Sommerfeld later preferred Gustav Mie’s field theory of gravitation. Such an approach was more
promising than that of Poincaré and Minkowski, which grasped gravitation “to some extent as action
at a distance” (Sommerfeld 1913, 73).

7″ ,
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Physik, Minkowski’s original 4-vector scheme had evolved. “The geometrical sys-
tematics” Sommerfeld announced, “is now hyper-Minkowskian.”128 In the same let-
ter to Wien, Sommerfeld confessed that his paper had required substantial effort, and
he expressed doubt that it would prove worthwhile. Sommerfeld displayed either pes-
simism or modesty here, but in fact his effort was richly rewarded, as his streamlined
four-dimensional algebra and analysis quickly won both Einstein’s praise and the
confidence of his contemporaries.129

Sommerfeld’s work was eagerly read by young theoretical physicists raised in the
heady atmosphere of German vectorial electrodynamics. One of the early adepts of
Sommerfeld’s formalism was Philipp Frank (1884–1966), who was then a Privatdo-
zent in Vienna. By way of introduction to his 1911 study of the Lorentz-covariance of
Maxwell’s equations, Frank described the new four-dimensional algebra as a combi-
nation of “Sommerfeld’s intuitiveness with Minkowski’s mathematical elegance”
(Frank 1911, 600). He recognized, however, that of late, physicists had been over-
loaded with outlandish symbolic systems and terminology, and promised to stay
within the boundaries of Sommerfeld’s system, at least as far as this was possible.

Physicists were indeed inundated in 1910–1911 with a bewildering array of new
symbolic systems, including an ordinary vector algebra (Burali-Forti and Mar-
colongo 1910), and a quaternionic calculus (Conway 1911), in addition to the hyper-
bolic-coordinate system and three 4-vector formalisms already mentioned. By 1911,
4-vector and 6-vector operations featured prominently in the pages of the Annalen
der Physik. Out of the nine theoretical papers concerning relativity theory published
in the Annalen that year, five made use of a four-dimensional approach to physics,
either in terms of 4-vector operations, or by referring to spacetime coordinates. Four
out of five authors of “four-dimensional” papers cited Minkowski’s or Sommerfeld’s
work; the fifth referred to Max Laue’s new relativity textbook (Laue 1911). This
timely and well-written little book went far in standardizing the terminology and
notation of four-dimensional algebra, such that by January of 1912, Max Abraham
preferred the Sommerfeld-Laue notation to his own for the exposition of his theory of
gravitation (Abraham 1910, 1912a, 1912b).

While young theorists were quick to pick up on the Sommerfeld-Laue calculus,
textbook writers did not follow the trend. Of the four textbooks to appear on relativity
in 1913–1914, only the second edition of Laue’s book (Laue 1913) employed this
formalism. Ebenezer Cunningham presented a 4-dimensional approach based on
Minkowski’s work, but explicitly rejected Sommerfeld’s “quasi-geometrical lan-
guage”, which conflicted with his own purely algebraic presentation (Cunningham

128 “Die geometrische Systematik ist jetzt hyper-minkowskisch” (Sommerfeld to Wien, 11 July, 1910,
Sommerfeld 2001–2004, 1:388).

129 Einstein to Sommerfeld, July, 1910, (CPAE 5, 243–247; Sommerfeld 2001–2004, 1:386–388). In
light of Einstein and Laub’s earlier dismissal of Minkowski’s formalism (see above, pp. 222–223),
Sommerfeld naturally supposed that Einstein would disapprove of his system, prompting the protest:
“Wie können Sie denken, dass ich die Schönheit einer solchen Untersuchung nicht zu schätzen wüs-
ste?”
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1914, 99). A third textbook by Ludwik Silberstein (Silberstein 1914), a former stu-
dent of Planck, gave preference to a quaternionic presentation, while the fourth, by
Max B. Weinstein (Weinstein 1913), opted for Cartesian coordinates. Curiously
enough, Weinstein dedicated his work to the memory of Minkowski. Apparently dis-
turbed by this profession of fidelity, Max Born, who had briefly served as
Minkowski’s assistant, deplored the form of Weinstein’s approach to relativity:

[Minkowski] put perhaps just as much value on his presentation as on its content. For
this reason, I do not believe that entrance to his conceptual world is facilitated when it is
overwhelmed by an enormous surfeit of formulas.130

By this time, Born himself had dropped Minkowski’s formalism in favor of the Som-
merfeld-Laue approach, such that the target of his criticism was Weinstein’s disregard
for 4-dimensional methods in general, and not the neglect of Minkowski’s matrix cal-
culus.131 What Born was pointing out here was that it had become highly impractical
to study the theory of relativity without recourse to a 4-dimensional formalism. This
may explain why Laue’s was the only one of the four textbooks on relativity to be
reedited, reaching a sixth edition in 1955.

In summary, the language developed by Sommerfeld for the expression of the
laws of gravitation of Poincaré and Minkowski endured, while the laws themselves
remained tentative at best. This much was clear as early as 1912, when Jun Ishiwara
reported from Japan on the state of relativity theory. This theory, Ishiwara felt, had
shed no light on the problem of gravitation, with a single exception: Minkowski and
Sommerfeld’s “formal mathematical treatment” (Ishiwara 1912, 588). The trend from
Poincaré to Sommerfeld was one of increasing reliance on formal techniques catering
to Lorentz-invariance; in the space of five years, the physical content of the laws of
gravitation remained stable, while their formal garb evolved from Cartesian to hyper-
Minkowskian.

4. CONCLUSION: 
ON THE EMERGENCE OF THE FOUR-DIMENSIONAL VIEW

After a century-long process of accommodation to the use of tensor calculus and
spacetime diagrams for analysis of physical interactions, the mathematical difficulties
encountered by the pioneers of 4-dimensional physics are hard to come to terms with.
Not only is the oft-encountered image of flat-spacetime physics as a trivial conse-
quence of Einstein’s special theory of relativity and Felix Klein’s geometry consistent
with such accommodation, it reflects Minkowski’s own characterization of the back-

130 “[Minkowski] hat auf seine Darstellung vielleicht ebenso viel Wert gelegt, wie auf ihren Inhalt.
Darum glaube ich nicht, daß der Zugang zu seiner Gedankenwelt erleichtert wird, wenn sie von einer
ungeheuren [sic] Fülle von Formeln überschüttet wird” (Born 1914).

131 By the end of 1911 Born had already acknowledged that, despite its “formal simplicity and greater
generality compared to the tradition of vectorial notation,” Minkowski’s calculus was “unable to hold
its ground in mathematical physics” (Born 1912, 175).



244 SCOTT WALTER

ground of the four-dimensional approach (cf. p. 218). However, this description ought
not be taken at face value, being better understood as a rhetorical ploy designed to
induce mathematicians to enter the nascent field of relativistic physics (Walter 1999a).
When the principle of relativity was formulated in 1905, even for one as adept as
Henri Poincaré in the application of group methods, the path to a four-dimensional
language for physics appeared strewn with obstacles. Much as Poincaré had predicted
(above, p. 209), the construction of this language cost Minkowski and Sommerfeld
considerable pain and effort.

Clear-sighted as he proved to be in this regard, Poincaré did not foresee the emer-
gence of forces that would accelerate the construction and acquisition of a four-
dimensional language. With hindsight, we can identify five factors favoring the use
and development of a four-dimensional language for physics between 1905 and 1910:
the elaboration of new concepts and definitions, the introduction of a graphic model
of spacetime, the experimental confirmation of relativity theory, the vector-symbolic
movement, and problem-solving performance.

In the beginning, the availability of workable four-dimensional concepts and defi-
nitions regulated the analytic reach of a four-dimensional approach to physics.
Poincaré’s discovery of the 4-vectors of velocity and force in the course of his elabora-
tion of Lorentz-invariant quantities, and Minkowski’s initial misreading of Poincaré’s
definitions underline how unintuitive these notions appeared to turn-of-the-century
mathematicians. The lack of a 4-velocity definition visibly hindered Minkowski’s
elaboration of spacetime mechanics and theory of gravitation. It is remarkable that
even after Minkowski presented the notions of proper time, world line, rest-mass den-
sity, and the energy-momentum tensor, putting the spacetime electrodynamics and
mechanics on the same four-dimensional footing, his approach failed to convince
physicists. Nevertheless, all of these discoveries extended the reach of the four-dimen-
sional approach, in the end making it a viable candidate for the theorist’s toolbox.

Next, Minkowski’s visually-intuitive spacetime diagram played a decisive role in
the emergence of the four-dimensional view. While the spacetime diagram reflects
some of the concepts mentioned above, its utility as a cognitive tool exceeded by far
that of the sum of its parts. In Minkowski’s hands, the spacetime diagram was more
than a tool, it was a model used to present both of his laws of gravitation. Beyond
their practical function in problem-solving, spacetime diagrams favored the diffusion
in wider circles of both the theory of relativity and the four-dimensional view of this
theory, in particular among non-mathematicians, by providing a visually intuitive
means of grasping certain consequences of the theory of relativity, such as time dila-
tion and Lorentz contraction. Minkowski’s graphic model of spacetime thus
enhanced both formal and intuitive approaches to special relativity.

In the third place, the ultimate success of the four-dimensional view hinged on the
empirical adequacy of the theory of relativity. It is remarkable that the conceptual
groundwork, and much of the formal elaboration of the four-dimensional view was
accomplished during a time when the theory of relativity was less well corroborated
by experiment than its rivals. The reversal of this situation in favor of relativity theory
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in late 1908 favored the reception of the existing four-dimensional methods, and pro-
vided new impetus both for their application and extension, and for the development
of alternatives, such as that of Sommerfeld.

The fourth major factor influencing the elaboration of a four-dimensional view of
physics was the vector-symbolic movement in physics and mathematics at the turn of
the twentieth century (McCormmach 1976, xxxi). The participants in this movement,
in which Sommerfeld was a leading figure, believed in the efficacy of vector-sym-
bolic methods in physics and geometry, and sought to unify the plethora of notations
employed by various writers. The movement’s strength varied from country to coun-
try; it was largely ignored in France, for example, in favor of the coordinate-based
notation favored by Poincaré and others. Poincaré’s pronounced disinterest in the
application and development of a four-dimensional calculus for physics was typical
of contemporary French attitudes toward vector-symbolic methods. In Germany, on
the other hand, electrodynamicists learned Maxwell’s theory from the mid-1890s in
terms of curl  and div  In Zürich and Göttingen during this period, Minkowski
instructed students (including Einstein) in the ways of the vector calculus. Unlike
Poincaré, Minkowski was convinced that a four-dimensional language for physics
would be worth the effort spent on its elaboration, yet he ultimately abandoned the
vector-symbolic model in favor of an elegant and sophisticated matrix calculus. This
choice was deplored by physicists (including Einstein), and mooted by Sommerfeld’s
conservative extension of the standard vector formalism into an immediately success-
ful 4-vector algebra and analysis. In sum, the vector-symbolic movement functioned
alternatively as an accelerator of the elaboration of four-dimensional calculi (existing
systems served as templates), and as a regulator (penalizing Minkowski’s neglect of
standard vector operations).

The fifth and final parameter affecting the emergence of the four-dimensional
view of physics was problem-solving performance. From the standpoint of ease of
calculation, any four-dimensional vector formalism at all compared well to a Carte-
sian-coordinate approach, as Weinstein’s textbook demonstrated; the advantage of
ordinary vector methods over Cartesian coordinates was less pronounced. As we have
seen, Poincaré applied his approach to the problem of constructing a Lorentz-invari-
ant law of gravitational attraction, and was followed in turn by Minkowski and Som-
merfeld, both of whom also provided examples of problem-solving. In virtue of the
clarity and order of Sommerfeld’s detailed, coordinate-free comparison of the laws of
gravitation of Poincaré and Minkowski, his 4-vector algebra appeared to be the supe-
rior four-dimensional approach, just when physicists and mathematicians were turn-
ing to relativity in greater numbers.

h E.
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ordinary velocities of the passive and active mass points, with components  and  

The time  is set equal to the negative distance between the passive mass point and the retarded position

of the active mass point,  Poincaré’s second law is shown in the bottom row; he

neglected to write the fourth component  determined from the first three by the orthogonality condi-

tion  The new variables in the bottom row are:

b The formula in the top row describes the first three components of the driving force: the fourth compo-
nent is obtained analytically. The constants  and  designate the passive and active proper mass,
respectively, while the remaining letters stand for spacetime points, as reconstructed in Fig. 1 (p. 227).
The formula in the bottom row represents the driving force of gravitation as described, but not formally
expressed, in (Minkowski 1909). The constants  and  designate the passive and active proper mass,

 and  are 4-velocity components of the passive mass,  is the speed of light and  is a 4-vector,
for the definition of which see note 111.

c The constants  and  designate the passive and active proper mass, respectively,  denotes the speed
of light,  and  represent the corresponding 4-velocities, and  stands for the light-like interval
between the mass points.
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Originally published as “Sur la dynamique de l’électron” in Rendiconti del Circolo
Matematico di Palermo 21 (1906), pp. 129–175. Author’s date: Paris, July 1905. The
Introduction, §1, and §9 are translated here.

 

[1]

 

INTRODUCTION

It seems at first that the aberration of light and related optical and electrical phenom-
ena will provide us with a means of determining the absolute motion of the Earth, or
rather its motion with respect to the aether, as opposed to its motion with respect to
other celestial bodies. Fresnel pursued this idea, but soon recognized that the Earth’s
motion does not alter the laws of refraction and reflection. Analogous experiments,
like that of the water-filled telescope, and all those considering terms no higher than
first order relative to the aberration, yielded only negative results; the explanation was
soon discovered. But Michelson, who conceived an experiment sensitive to terms
depending on the square of the aberration, failed in turn.

It appears that this impossibility to detect the absolute motion of the Earth by
experiment may be a general law of nature; we are naturally inclined to admit this
law, which we will call the 

 

Postulate of Relativity

 

 and admit without restriction.
Whether or not this postulate, which up to now agrees with experiment, may later be
corroborated or disproved by experiments of greater precision, it is interesting in any
case to ascertain its consequences.

An explanation was proposed by Lorentz and FitzGerald, who introduced the
hypothesis of a contraction of all bodies in the direction of the Earth’s motion and
proportional to the square of the aberration. This contraction, which we will call the

 

Lorentzian contraction

 

, would explain Michelson’s experiment and all others per-
formed up to now. The hypothesis would become insufficient, however, if we were to
admit the postulate of relativity in full generality.

Lorentz then sought to extend his hypothesis and to modify it in order to obtain
perfect agreement with this postulate. This is what he succeeded in doing in his arti-
cle entitled 

 

Electromagnetic phenomena in a system moving with any velocity smaller
than that of light 

 

(

 

Proceedings of the Amsterdam Academy

 

, 27 May, 1904).
The importance of the question persuaded me to take it up in turn; the results I |

obtained agree with those of Mr. Lorentz on all the significant points. I was led [130]
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merely to modify and extend them only in a few details; further on we will see the
points of divergence, which are of secondary importance.

Lorentz’s idea may be summed up like this: if we are able to impress a translation
upon an entire system without modifying any observable phenomena, it is because
the equations of an electromagnetic medium are unaltered by certain transformations,
which we will call 

 

Lorentz transformations

 

. Two systems, one of which is at rest, the
other in translation, become thereby exact images of each other.

Langevin

 

*

 

) sought to modify Lorentz’s idea; for both authors, the moving elec-
tron takes the form of a flattened ellipsoid. For Lorentz, two axes of the ellipsoid
remain constant, while for Langevin, ellipsoid volume remains constant. The two sci-
entists also showed that these two hypotheses are corroborated by Kaufmann’s exper-
iments to the same extent as the original hypothesis of Abraham (rigid-sphere
electron).

The advantage of Langevin’s theory is that it requires only electromagnetic
forces, and bonds; it is, however, incompatible with the postulate of relativity. This is
what Lorentz showed, and this is what I found in turn using a different method, which
calls on principles of group theory.

We must return therefore to Lorentz’s theory, but if we want to do this and avoid
intolerable contradictions, we must posit the existence of a special force that explains
both the contraction, and the constancy of two of the axes. I sought to determine this
force, and found that 

 

it may be assimilated to a constant external pressure on the
deformable and compressible electron, whose work is proportional to the electron’s
change in volume

 

.
If the inertia of matter is exclusively of electromagnetic origin, as generally

admitted in the wake of Kaufmann’s experiment, and all forces are of electromag-
netic origin (apart from this constant pressure that I just mentioned), the postulate of
relativity may be established with perfect rigor. This is what I show by a very simple
calculation based on the principle of least action.

But that is not all. In the article cited above, Lorentz judged it necessary to extend
his hypothesis in such a way that the postulate remains valid in case there are forces
of non-electromagnetic origin. According to Lorentz, all forces are affected by the
Lorentz transformation (and consequently by a translation) in the same way as elec-
tromagnetic forces.

It was important to examine this hypothesis closely, and in particular to ascertain
the modifications we would have to apply to the laws of gravitation.

We find first of all that it requires us to assume that gravitational propagation | is
not instantaneous, but occurs with the speed of light. One might think that this is rea-
son enough to reject the hypothesis, since Laplace demonstrated that this cannot be
the case. In reality, however, the effect of this propagation is compensated in large

 

* Langevin was anticipated by Mr. Bucherer of Bonn, who earlier advanced the same idea. (See:
Bucherer, 

 

Mathematische Einführung in die Elektronentheorie

 

, August, 1904. Teubner, Leipzig).
[Poincaré’s footnote.]
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part by a different cause, in such a way that no contradiction arises between the pro-
posed law and astronomical observations.

Is it possible to find a law satisfying Lorentz’s condition, and reducing to New-
ton’s law whenever the speeds of celestial bodies are small enough to allow us to
neglect their squares (as well as the product of acceleration and distance) with respect
to the square of the speed of light? 

To this question we must respond in the affirmative, as we will see later.
Modified in this way, is the law compatible with astronomical observations?
It seems so on first sight, but the question will be settled only after an extended

discussion.
Suppose, then, that this discussion is settled in favor of the new hypothesis, what

should we conclude? If propagation of attraction occurs with the speed of light, it
could not be a fortuitous accident. Rather, it must be because it is a function of the
aether, and then we would have to try to penetrate the nature of this function, and to
relate it to other fluid functions.

We cannot be content with a simple juxtaposition of formulas that agree with each
other by good fortune alone; these formulas must, in a manner of speaking, interpen-
etrate. The mind will be satisfied only when it believes it has perceived the reason for
this agreement, and the belief is strong enough to entertain the illusion that it could
have been predicted.

But the question may be viewed from a different perspective, better shown via an
analogy. Let us imagine a pre-Copernican astronomer who reflects on Ptolemy’s sys-
tem; he will notice that for all the planets, one of two circles—epicycle or deferent—
is traversed in the same time. This fact cannot be due to chance, and consequently
between all the planets there is a mysterious link we can only guess at.

Copernicus, however, destroys this apparent link by a simple change in the coor-
dinate axes that were considered fixed. Each planet now describes a single circle, and
orbital periods become independent (until Kepler reestablishes the link that was
believed to have been destroyed).

It is possible that something analogous is taking place here. If we were to admit
the postulate of relativity, we would find the same number in the law of gravitation
and the laws of electromagnetism—the speed of light—and we would find it again in
all other forces of any origin whatsoever. This state of affairs may be explained in one
of two ways: either everything in the universe would be of electromagnetic origin, or
this aspect—shared, as it were, by all physical phenomena—would be a mere epiphe-
nomenon, something due to our methods of | measurement. How do we go about
measuring? The first response will be: we transport objects considered to be invari-
able solids, one on top of the other. But that is no longer true in the current theory if
we admit the Lorentzian contraction. In this theory, two lengths are equal, by defini-
tion, if they are traversed by light in equal times.

Perhaps if we were to abandon this definition Lorentz’s theory would be as fully
overthrown as was Ptolemy’s system by Copernicus’s intervention. Should that hap-
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pen some day, it would not prove that Lorentz’s efforts were in vain, because regard-
less of what one may think, Ptolemy was useful to Copernicus.

I, too, have not hesitated to publish these few partial results, even if at this very
moment the discovery of magneto-cathode rays seems to threaten the entire theory.

1. LORENTZ TRANSFORMATION

Lorentz adopted a certain system of units in order to do away with  factors in for-
mulas. I will do the same, and in addition, select units of length and time in such a
way that the speed of light equals 1. Under these conditions, and denoting electric
displacement  magnetic intensity  vector potential  scalar
potential charge density  electron velocity  and current  the fun-
damental formulas become:

(1)

An elementary particle of matter of volume  is acted upon by a mechani-
cal force, the components of which are derived from the formula:

(2)

These equations admit a remarkable transformation discovered by Lorentz, which
owes its interest to the fact that it explains why no experiment can inform us of the
absolute motion of the universe. Let us put:

(3)

where  and  are two arbitrary constants, such that

 |

Now if we put:

we will have:

Let a sphere be carried along with the electron in uniform translation, and let the
equation of this mobile sphere be:

4π

f g h,, , α β γ ,, , F G H ,, ,
ψ, ρ, ξ η ζ,, , u v w,, ,

u
fd
td

------ ρξ+ γd
yd

-----
βd
zd

------,–= = α Hd
yd

-------
Gd
zd

-------,–= f
Fd
td

------–
ψd
xd

-------,–=

αd
td

------ gd
zd

------
hd
yd

------,       ρd
td

------ ρξd
xd

---------∑+ 0,       fd
xd

------∑ ρ,       ψd
td

------- Fd
xd

------∑+ 0,===–=

 Δ d2

t2d
-------– d2

x2d
--------∑ d2

t2d
-------,–= = ψ ρ,–= F ρξ.–=

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

dxdydz

X ρf ρ ηγ ζβ–( ).+=

x′ kl x εt+( ),=    t′ kl t εx+( ),=     y′ ly,=     z′ lz,=

l ε

k
1

1 ε2–
------------------.=
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and the volume of the sphere be [2]

The transformation will change the sphere into an ellipsoid, the equation of which
is easy to find. We thus deduce easily from (3):

(3')

The equation of the ellipsoid then becomes:

This ellipsoid is in uniform motion; for  it reduces to

and has a volume:

If we want electron charge to be unaltered by the transformation, and if we desig-
nate the new charge density  we will find:

(4)

What will be the new velocity components  and  We should have:

whence:

(4')

Here is where I must point out for the first time a difference with Lorentz. In my
notation, Lorentz put (loc. cit., page 813, formulas 7 and 8):

 |

In this way we recover the formulas:

x ξt–( )2 y ηt–( )2 z ζt–( )2+ + r2,=

4
3
---πr3.

x
k
l
-- x′ εt′–( ),=     t

k
l
-- t′ εx′–( ),=     y

y′
l
----,=     z

z′
l
----.=

k2 x′ εt′ ξt′ εξx′+––( )2 y′ ηkt′– ηkεx′+( )2 z′ ζkt′– ζkεx′+( )2+ + l2r2.=

t′ 0,=

k2x′2 1 ξε+( )2 y′ ηkεx′+( )2 z′ ζkεx′+( )2+ + l2r2.=

4
3
---πr3 l3

k 1 ξε+( )
-----------------------.

ρ′

ρ′
k
l3
---- ρ ερξ+( ).=

ξ′, η′ ζ′?

ξ′ x′d
t′d

------- x εt+( )d
t εx+( )d

---------------------
ξ ε+

1 εξ+
---------------,= = =

η′ y′d
t′d

------- yd
k t εx+( )d
------------------------

η
k 1 εξ+( )
-----------------------,= = = ζ′

ζ
k 1 εξ+( )
-----------------------,=

ρ′ξ′
k
l3
---- ρξ ερ+( ),= ρ′η′

1
l3
----ρη,= ρ′ζ′

1
l3
----ρζ.=

ρ′
1

kl3
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ρ′ξ′
k
l3
---- ρξ ερ+( ),=     ρ′η′

1
l3
----ρη,=     ρ′ζ′

1
l3
----ρζ;=
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although the value of  differs.
It is important to notice that the formulas (4) and (4') satisfy the condition of con-

tinuity

To see this, let  be an undetermined coefficient and  the Jacobian of 

(5)

with respect to  It follows that:

with 

Let [3] then the 4 functions

(5')

are related to the functions (5) by the same linear relationships as the old variables to
the new ones. Therefore, if we denote  the Jacobian of the functions (5') with
respect to the new variables, it follows that:

and thereby:[4]

Under Lorentz’s hypothesis, this condition would not be met since  has a dif-
ferent value.

We will define the new vector and scalar potentials in such a way as to satisfy the
conditions

(6)

From this we deduce:

(7)

These formulas differ noticeably from those of Lorentz, although the divergence
stems ultimately from the definitions employed.

New electric and magnetic fields are now chosen in order to satisfy the equations:

(8)

| It is easy to see that:
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-------------∑+ 0.=
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t′d

--------
ρ′ξ′d
x′d

-------------.∑+= = =     Q. E. D.
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1
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f′ F′d
t′d

--------–
ψ′d
x′d

--------,–= α′ H′d
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and we deduce thereby:

(9)

These formulas are identical to those of Lorentz.
Our transformation does not alter (1). In fact, the condition of continuity, as well

as (6) and (8) were already featured in (1) (neglecting the primes).
Combining (6) with the condition of continuity, we obtain:

(10)

It remains for us to establish:

and it is easy to see that these are necessary consequences of (6), (8) and (10).
We must now compare forces before and after the transformation.
Let  be the force prior to the transformation, and  the force after

the transformation, both forces being per unit volume. In order for  to satisfy the
same equations as before the transformation, we must have:

or, replacing all quantities by their values (4), (4') and (9), and in light of (2):

(11)

Instead of representing the components of force per unit volume by 
we now let these terms represent the force per unit electron charge, and we let

 represent the latter force after transformation. It follows that:
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| and we obtain the equations:

(11')

Lorentz found (page 813, equation (10) with different notation):

(11'')

Before going any further, it is important to locate the source of this significant
divergence. It obviously springs from the fact that the formulas for  and  are
not the same, while the formulas for the electric and magnetic fields are the same.

If electron inertia is exclusively of electromagnetic origin, and if electrons are
subject only to forces of electromagnetic origin, then the conditions of equilibrium
require that:

inside the electrons.
According to (11), these relationships are equivalent to

The electron’s equilibrium conditions are therefore unaltered by the transforma-
tion.

Unfortunately, such a simple hypothesis is inadmissible. In fact, if we assume
 the condition  leads necessarily to

 and consequently, to  i.e.,  Similar results

obtain for the most general case. We must then admit that in addition to electromag-
netic forces there are either non-electromagnetic forces or bonds. Therefore, we need
to identify the conditions that these forces or these bonds must satisfy for electron
equilibrium to be undisturbed by the transformation. This will be the object of an
upcoming section.

[…]

X1 f ηγ ζβ,–+=    X′1 f′ η′γ′ ζ′β′,–+=    X ρX1,   = X′ ρ′X′1=
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9. HYPOTHESES CONCERNING GRAVITATION.

In this way Lorentz’s theory would fully explain the impossibility of detecting abso-
lute motion, if all forces were of electromagnetic origin.

But there exist other forces to which an electromagnetic origin cannot be attrib-
uted, such as gravitation, for example. It may in fact happen, that two systems of bod-
ies produce equivalent electromagnetic fields, i.e., exert the same action on electrified
bodies and on currents, and at the same time, these two systems do not exert the same
gravitational action on Newtonian masses. The gravitational field is therefore distinct
from the electromagnetic field. Lorentz was obliged thereby to extend his hypothesis
with the assumption that forces of any origin whatsoever, and gravitation in particu-
lar, are affected by a translation (or, if one prefers, by the Lorentz transformation) in
the same manner as electromagnetic forces.

It is now appropriate to enter into the details of this hypothesis, and to examine it
more closely. If we want the Newtonian force to be affected by the Lorentz transfor-
mation in this fashion, we can no longer suppose that it depends only on the relative
position of the attracting and attracted bodies at the instant considered. The force
should also depend on the velocities of the two bodies. And that is not all: it will be
natural to suppose that the force acting on the attracted body at the instant  depends
on the position and velocity of this body at this same instant  but it will also depend
on the position and velocity of the attracting body, not at the instant  but at an ear-
lier instant, as if gravitation had taken a certain time to propagate.

Let us now consider the position of the attracted body at the instant  and let
 be its coordinates, and  its velocity components at this instant; let us

consider also the attracting body at the corresponding instant  and let its coordi-
nates be  and its velocity components be  at this
instant.

First we should have a relationship

(1)

in order to define the time  This relationship will define the law of propagation of
gravitational action (I do not constrain myself by any means to a propagation velocity
equal in all directions).

Now let  be the three components of the action exerted on the attracted
body at the instant [5] we want to express  as functions of

(2)

What conditions must be satisfied? |
1° The condition (1) should not be altered by transformations of the Lorentz

group.
2° The components  should be affected by transformations of the

Lorentz group in the same manner as the electromagnetic forces designated by the
same letters, i.e., in accordance with (11') of section 1.

[166]
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3° When the two bodies are at rest, the ordinary law of attraction will be recovered.
It is important to note that in the latter case, the relationship (1) vanishes, because

if the two bodies are at rest the time  plays no role.
Posed in this fashion the problem is obviously indeterminate. We will therefore

seek to satisfy to the utmost other, complementary conditions.
4° Since astronomical observations do not seem to show a sensible deviation from

Newton’s law, we will choose the solution that differs the least with this law for small
velocities of the two bodies.

5° We will make an effort to arrange matters in such a way that  is always nega-
tive. Although we can imagine that the effect of gravitation requires a certain time in
order to propagate, it would be difficult to understand how this effect could depend
on the position not yet attained by the attracting body.

There is one case where the indeterminacy of the problem vanishes; it is the one
where the two bodies are in mutual relative rest, i.e., where:

this is then the case we will examine first, by supposing that these velocities are con-
stant, such that the two bodies are engaged in a common uniform rectilinear transla-
tion.

We may suppose that the axis is parallel to this translation, such that
 and we will let 

If we apply the Lorentz transformation under these conditions, after the transfor-
mation the two bodies will be at rest, and it follows that:

The components  should then agree with Newton’s law and we will
have, apart from a constant factor:

         (3)

But according to section 1 we have:
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We have in addition:

and

(4)

which may be written:

(4')

It seems at first that the indeterminacy remains, since we made no hypotheses
concerning the value of  i.e., the transmission speed; and that besides,  is a func-
tion of  It is easy to see, however, that the terms appearing in our formulas,

 do not depend on 
We see that if the two bodies translate together, the force acting on the attracted

body is perpendicular to an ellipsoid, at the center of which lies the attracting body.
To advance further, we need to look for the invariants of the Lorentz group.
We know that the substitutions of this group (assuming  are linear substi-

tutions that leave unaltered the quadratic form

Let us also put:

we see that the Lorentz transformation will make  and
 undergo the same linear substitutions as 

Let us regard

as the coordinates of 3 points  in space of 4 dimensions. We see that the
Lorentz transformation is merely a rotation in this space about the origin, assumed
fixed. Consequently, we will have no distinct invariants apart from the 6 distances
between the 3 points  considered separately and with the origin, or, if one
prefers, | apart from the two expressions 
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or the 4 expressions of like form deduced from an arbitrary permutation of the 3
points 

But what we seek are invariants that are functions of the 10 variables (2). There-
fore, among the combinations of our 6 invariants we must find those depending only
on these 10 variables, i.e., those that are 0th degree homogeneous with respect both to

 and to  We will then be left with 4 distinct invariants:

(5)

Next let us see how the force components are transformed; we recall the equations
(11) of section 1, that refer not to the force  considered at present, but to
the force per unit volume: 

We designate moreover

we will see that (11) can be written  

(6)

in such a way that  undergo the same transformation as  Conse-
quently, the group invariants will be

However, it is not  that we need, but  with

We see that

Therefore, the Lorentz transformation will act in the same manner on
 as on  except that these expressions will be multiplied

moreover by

Likewise, the Lorentz transformation will act in the same way on  as on
 except that these expressions will be multiplied moreover by the same

factor:
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Next we consider  as the coordinates of a fourth point |  the
invariants will then be functions of the mutual distances of the five points

and among these functions we must retain only those that are 0th degree
homogeneous with respect, on one hand, to

(variables that can be replaced further by  and on the other
hand, with respect to[6]

(variables that can be replaced further by 
In this way we find, beyond the four invariants (5), four distinct new invariants:

(7)

The latter invariant is always null according to the definition of 
These terms being settled, what conditions must be satisfied?
1° The first term of (1), defining the velocity of propagation, has to be a function

of the 4 invariants (5).
A wealth of hypotheses can obviously be entertained, of which we will examine

only two:
A) We can have

from whence  and, since  has to be negative,  This means that the
velocity of propagation is equal to that of light. It seems at first that this hypothesis
ought to be rejected outright. Laplace showed in effect that the propagation is either
instantaneous or much faster than that of light. However, Laplace examined the
hypothesis of finite propagation velocity ceteris non mutatis; here, on the contrary,
this hypothesis is conjoined with many others, and it may be that between them a
more or less perfect compensation takes place. The application of the Lorentz trans-
formation has already provided us with numerous examples of this.

B) We can have

tδ
t′δ

------
1

k 1 ξε+( )
-----------------------.=

X Y Z T 1–, , , [170]Q;

O,    P,    P′,    P″,    Q

X ,    Y ,    Z ,    T ,    x,    y,    z,    tδδδδ

X1 Y 1 Z1 T 1 ξ η ζ 1),, , , , , , ,

δ1x,    δ1y,    δ1z,    δ1t

ξ1 η1 ζ1 1)., , ,

X1
2∑ T 1

2–

1 ξ2∑–
--------------------------,    

X1x∑ T 1t–

1 ξ2∑–
-------------------------------,    

X1ξ1∑ T 1–

1 ξ2∑– 1 ξ1
2∑–

----------------------------------------------------,    
X1ξ∑ T 1–

1 ξ2∑–
-----------------------------.

T 1.

x2∑ t2– r2 t2– 0,= =

t r ,±= t t r .–=
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2∑–

------------------------- 0,= t xξ1.∑=
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The propagation velocity is therefore much faster than that of light, but in certain
cases  could be positive, which, as we mentioned, seems hardly admissible.[7] We
will therefore stick with hypothesis (A).

2° The four invariants (7) ought to be functions of the invariants (5).
3° When the two bodies are at absolute rest,  ought to have the | values

given by Newton’s law, and when they are at relative rest, the values given by (4).
For the case of absolute rest, the first two invariants (7) ought to reduce to

or, by Newton’s law, to

in addition, according to hypothesis (A), the 2nd and 3rd invariants in (5) become:

that is, for absolute rest,

We may therefore admit, for example, that the first two invariants in (7) reduce
to[8]

although other combinations are possible.
A choice must be made among these combinations, and furthermore, we need a

3rd equation in order to define  In making such a choice, we should try to
come as close as possible to Newton’s law. Let us see what happens when we neglect
the squares of the velocities  etc. (still letting  The 4 invariants (5) then
become:

and the 4 invariants (7) become:

Before we can make a comparison with Newton’s law, another transformation is
required. In the case under consideration,  represent the coordi-
nates of the attracting body at the instant  and  With Newton’s law
we have to consider the coordinates of the attracting body  at
the instant  and the distance 

t

X1 Y 1 Z1, ,[171]

X1
2,∑ X1x,∑

1
r4
----,

1
r
---;–

r– xξ∑–

1 ξ2∑–
--------------------------,

r– xξ1∑–

1 ξ1
2∑–

----------------------------,

r ,– r .–

1 ξ1
2∑–( )2

r xξ1∑+( )4
--------------------------------,

1 ξ1
2∑–

r xξ1∑+
-------------------------;–

X1 Y 1 Z1., ,

ξ η,, t r).–=

0, r– xξ,∑– r– xξ1,∑– 1

X1
2,∑ X1 x ξr+( ),∑ X1 ξ1 ξ–( ),∑ 0.

x0 x+ y0 y+ z0 z,+, ,
t0 t ,+ r Σx2.=

x0 x1+ y0 y1+ z0 z1+, ,
t0, r1 x1

2∑ .=
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We may neglect the square of the time  required for propagation, and proceed,
consequently, as if the motion were uniform; we then have:

 |

or, since 

such that our 4 invariants (5) become:

and our 4 invariants (7) become:

In the second of these expressions I wrote  instead of  because  is multiplied by
 and because I neglect the square of 

For these 4 invariants (7), Newton’s law would yield

Therefore, if we designate the 2nd and 3rd of the invariants (5) as  and  and
the first 3 invariants of (7) as  we will satisfy Newton’s law to first-order
terms in the square of velocity by setting:

(8)

This solution is not unique. Let  be the 4th invariant in (5);  is of the order
of the square of  and it is the same with 

The solution (8) appears at first to be the simplest, nevertheless, it may not be
adopted. In fact, since  are functions of  and  the
values of  can be drawn from these three equations (8), but in certain cases
these values would become imaginary.

To avoid this difficulty we will proceed in a different manner. Let us put:

which is justified by analogy with the notation

featured in the Lorentz substitution.

t

x x1 ξ1t ,+=     y y1 η1t ,+=     z z1 ζ1t ,    r r r1–( ) xξ1t;∑=+=

[172]t r ,–=
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X1
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r1 r , r
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1
r1

4
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r1

2
--------------------------------,–     
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--------------------------------,    0.
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-------------.=
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In this case, and in light of the condition  the invariants (5) become:

 |

Moreover, we notice that the following systems of quantities:

undergo the same linear substitutions when the transformations of the Lorentz group
are applied to them. We are led thereby to put:

(9)

It is clear that if  are invariants,  will satisfy the fundamen-
tal condition, i.e., the Lorentz transformations will make them undergo an appropri-
ate linear substitution.

However, for equations (9) to be compatible we must have

which becomes, replacing  with their values in (9) and multiplying by

(10)

What we would like is that the values of  remain in line with Newton’s
law when we neglect (as above) the squares of velocities  etc. with respect to the
square of the velocity of light, and the products of acceleration and distance.

We could select

To the adopted order of approximation, we obtain

r– t ,=

0,     A k0– r xξ∑+( ),     B k1– r xξ1∑+( ),     C k0k1 1 ξξ1∑–( ).===

[173]
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The 1st equation in (9) then becomes

But if the square of  is neglected,  can be replaced by  or | by 
which yields:

Newton’s law would yield

Consequently, we must select a value for the invariant  which reduces to 
in the adopted order of approximation, that is,  Equations (9) will become:

(11)

We notice first that the corrected attraction is composed of two components: one
parallel to the vector joining the positions of the two bodies, the other parallel to the
velocity of the attracting body.

Remember that when we speak of the position or velocity of the attracting body,
this refers to its position or velocity at the instant the gravitational wave takes off; for
the attracted body, on the contrary, this refers to the position or velocity at the instant
the gravitational wave arrives, assuming that this wave propagates with the velocity
of light.

I believe it would be premature to seek to push the discussion of these formulas
further; I will therefore confine myself to a few remarks.

1° The solutions (11) are not unique; we may, in fact, replace the global factor
 by
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where  and  are arbitrary functions of  Alternatively, we may forgo set-
ting  to zero, but add any complementary terms to  that satisfy condition
(10) and are of second order with respect to the  for  and of first order for 
and 

2° The first equation in (11) may be written:

(11')

and the quantity in brackets itself may be written:

(12)

| such that the total force may be separated into three components corresponding to
the three parentheses of expression (12); the first component is vaguely analogous to
the mechanical force due to the electric field, the two others to the mechanical force
due to the magnetic field; to extend the analogy I may, in light of the first remark,
replace  in (11) by  in such a way that  are linear functions
of the attracted body’s velocity  since  has vanished from the denominator
of (11').

Next we put:

(13)

and since  has vanished from the denominator of (11'), it will follow that:

(14)

and we will have moreover:

(15)

Now  or  is an electric field of sorts, while  or rather

 is a magnetic field of sorts.

3° The postulate of relativity would compel us to adopt solution (11), or solution
(14), or any solution at all among those derived on the basis of the first remark. How-
ever, the first question to ask is whether or not these solutions are compatible with
astronomical observations. The deviation from Newton’s law is of the order of 
i.e., 10000 times smaller than if it were of the order of  i.e., if the propagation were
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to take place with the velocity of light, ceteris non mutatis; consequently, it is legiti-
mate to hope that it will not be too large. To settle this question, however, would
require an extended discussion.

EDITORIAL NOTES

[1] Translated by Scott Walter from Rendiconti del Circolo Matematico di Palermo
21, 1906, 129–176. The original notation is faithfully reproduced, including the
use of “d” for both ordinary and partial differentiation. The translator’s endnote
calls are bracketed. For alternative translations of Poincaré’s memoir, see C. W.
Kilmister (Special Theory of Relativity, Oxford: Pergamon, 1970, 145–185), and
by H. M. Schwartz (American Journal of Physics 39:1287–1294; 40:862–872,
1282–1287).

[2] The original reads: “ ”.

[3] The original reads: “ ”.

[4] The original reads: “ ”.

[5] The original reads: “à l’instant ”.

[6] The original reads: “ ”

[7] The original reads: “  pourrait être négatif.”

[8] The original has (4) instead of (7).
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It would be highly unsatisfactory if the new conception of the notion of time, which is
characterized by the freedom of Lorentz transformations, could be accepted as valid
for only a subfield of physics.

Now, many authors state that classical mechanics is opposed to the relativity pos-
tulate, which has been taken here to be the foundation of electrodynamics.

In order to assess this we focus on a special Lorentz transformation as represented
by eqs. (10), (11), (12),

 

[1]

 

 with a non-zero vector  of arbitrary direction, and magni-
tude  that is  But for the moment we will pretend that the ratio of the unit of
length and the unit of time has not yet been established, and accordingly we will
write in these equations  instead of  where  is a certain positive
constant, and we must have  The equations referred to then become

we recall that  means the spatial vector  and  means the spatial vector

In these equations we fix  and pass to the limit  with the result

| These new equations would mean a transition from the system of spatial coordinates
 to another spatial coordinate system  with parallel axes, whose origin

moves with respect to the first in a straight line with constant velocity, while the time
parameter would be totally unaffected.

On the basis of this remark one may state:

 

Classical mechanics postulates covariance of the laws of physics for the group of
homogeneous linear transformations of the expression

[98]

v
q <1.

ct ct ′
q
c
---,, t t ′ q,,, c

q c.<
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c rv qt–( )

c2 q2–
-----------------------,= t′
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c c2 q2–
-------------------------;=
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v c ∞,=

rv′ rv,= rv′ rv qt ,–= t′ t .=
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(1)

 

into itself, with the specification 

 

Now it would be downright confusing to find in one subfield of physics a covari-
ance of the laws for transformations of expression (1) into itself with a certain finite

 but with  in another subfield. That Newtonian mechanics could only claim
this covariance for  and could not devise it with  equal to the speed of light,
needs no explanation. But is it not legitimate today to try and regard that traditional
covariance for  as only an approximation, gained from preliminary experi-
ence, to a more exact covariance of the laws of nature for a certain finite 

I want to explain in detail that by 

 

reforming mechanics, replacing Newton’s rela-
tivity postulate with  by one with a finite 

 

 the axiomatic construction of
mechanics even seems to attain considerable perfection.

The ratio of the unit of time to the unit of length shall be normalized so that the
relevant relativity postulate has 

When I now want to transfer geometrical pictures to the manifold of the four vari-
ables   it may be convenient for ease of understanding what follows to
exclude totally  from consideration at first, and to interpret  and  as arbitrary
oblique-angled rectilinear coordinates in a plane.

A spacetime origin  remains fixed under the Lorentz
transformations. The object

(2)

| a 

 

hyperbolic shell

 

, includes the spacetime point  and all
spacetime points  that appear as  in the new components

 after some Lorentz transformation.
The direction of a radius vector  from  to a point  of (2) and the direc-

tions of the tangents to (2) at  shall be called 

 

normal

 

 to each other.
Let us follow a definite point in the matter on its orbit for all times  I call the

totality of the spacetime points  that correspond to this point at different
times  a

 

 spacetime line

 

 [world line].

 

[2]

 

The problem of determining the motion of matter is to be understood in this way:

 

For every spacetime point the direction of the spacetime line running through it is to
be determined.

 

To

 

 transform

 

 a spacetime point  

 

to rest

 

 means to introduce by a
Lorentz-transformation a system of reference  such that the -axis 
acquires that direction which is exhibited by the spacetime line running through 
The space  which is to be laid down through  shall be called the 

 

nor-
mal 

 

space to the spacetime line at  To the increment  of time  starting at 
there corresponds the increment

 

1

 

1 We resume the earlier conventions (see sections 3 and 4) for the notation with indices and the symbols

 

[3]
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 (3)

of the parameter  to be introduced in this construction. The value of the integral

calculated over the spacetime line from any fixed initial point  to an endpoint 
taken to be variable, shall be called the proper time of the corresponding point of the
matter at the spacetime point  (This is a generalization of the concept of local time
introduced by Lorentz for uniform motion.)

If we take a spatially extended body  at a particular time  then the region of
all the spacetime lines passing through the spacetime points  shall be called a
spacetime thread [pencil].

If we have an analytic expression  such that  is met
at one point by every spacetime line of the thread, where |

then we will call the set  of the meeting points involved a cross section of the tread.
At every point  of such a cross section we can introduce a system of ref-
erence  by means of a Lorentz-transformation such that thereafter we
have

The direction of the corresponding unique -axis shall be called the upper nor-
mal [future-pointing normal] of the cross section  at the point  and the value

 for a neighborhood of  within the cross section shall be called
an element of volume content [Inhaltselement] of the cross section. In this sense

 can be called the thread’s cross section  normal to the -axis, and the
volume of the body  can be called the volume content [Inhalt] of this cross section.

By allowing the space  to converge to a point we arrive at the concept of an
infinitely thin spacetime thread. In such a thread we will always think of one space-
time line as a somehow distinguished central line. Also, we understand by the proper
time of the thread the proper time measured on this central line; by the normal section
of the thread its intersections with the spaces that are normal to the central line at its
points.

Now we formulate the principle of conservation of mass.
To every region  at a time  there belongs a positive quantity, the mass within 

at time  If  converges to a point  then the quotient of this mass and the
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volume of  shall approach a limit  the mass density at the spacetime
point 

The principle of mass conservation states: For an infinitely thin spacetime thread
the product  of the mass density  at one point  of the thread (i.e., of the
central line of the thread) and the volume content  of the normal section to the -
axis passing through the point is always constant along the entire thread.

Now the volume content  of the thread’s normal section passing through
 is calculated as |

(4)

and therefore let us define

(5)

as the rest-mass density at the point  Then the principle of mass conserva-
tion can also be formulated as follows:

For an infinitely thin spacetime thread the product of the rest-mass density and the
volume content of the normal section at a point of the thread is always constant along
the entire thread.

In an arbitrary spacetime thread, fix an initial cross section  and then a second
cross section  which has those and only those points in common with  that lie
on the thread’s boundary, and let the spacetime lines within the thread assume larger
values  on  than on  The finite region bounded by  and  together shall
be called a spacetime sickle [lens], with  the lower and  the upper boundary of
the sickle.

Think of the thread decomposed into many very thin spacetime threads; then to
every entrance of a thin thread in the lower boundary of the sickle there corresponds
an exit through the upper boundary, where the product  formed in the sense of
(4) and (5) takes the same value each time. Therefore the difference of the two inte-

grals  vanishes, when the first extends over the upper, the second over the
lower boundary of the sickle. According to a well-known theorem of integral calculus
this difference equals the integral[4]

taken over the whole region of the sickle, where we have (cf. (67) in section 12)[5]

If the sickle is contracted to one spacetime point  the consequence of this is
the differential equation
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(6)

that is, the continuity condition |

 

Further we form the integral

(7)

taken over the whole region of a spacetime sickle. We divide the sickle into thin
spacetime threads, and further divide each thread into small elements  of its proper
time, which are however still large compared to the linear dimension of the normal
section; we put the mass of such a thread  and write  and  for the
proper time of the thread on the lower resp. upper boundary of the sickle; then the
integral (7) can also be interpreted as

over all the threads in the sickle.
Now I consider the spacetime lines within a spacetime sickle as curves made of a

substance, consisting of substance-points, and I imagine them subjected to a continu-
ous change in position within the sickle of the following type: The whole curves shall
be displaced arbitrarily but with fixed end points on the lower and upper boundary of
the sickle, and each substance-point on them shall be guided so that it is always dis-
placed normal to its curve. The whole process shall be capable of analytic representa-
tion by means of a parameter  and the value  shall correspond to the curves
that actually run as spacetime lines inside the sickle. Such a process shall be called a
virtual displacement within the sickle.

Let the point  in the sickle for  arrive at
 for the parameter value  then the latter quantities are

functions of  Let us again consider an infinitely thin spacetime thread at
the location  with a normal section of volume content  and let

 be the volume content of the normal section at the corresponding loca-
tion of the varied thread; then we will take the principle of conservation of mass into
account by assuming at this varied location a rest mass density  according to

(8)

| where  is understood to be the actual rest mass density at  According to
this convention the integral (7), extended over the region of the sickle, then varies
upon the virtual displacement as a definite function  of  and we will call
this function  the mass action associated with the virtual displacement.

Using index notation we will have:
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(9)

Now it soon becomes evident by reason of the remarks already made above that
the value of  for parameter value  will be:

(10)

taken over the sickle, where  means the quantity derived from

by means of (9) and

thus we have

(11)

Now we want to subject the value of the differential quotient

(12)

to a transformation. Since every  as function of the arguments 

vanishes in general for  we also have in general  for  If we

now put

(13)

then it follows by reason of (10) and (11) for the expression (12):

For the systems  on the boundary of the sickle,  are to
vanish for all values of  and | therefore also  are everywhere zero.
Accordingly the last integral changes by partial integration into
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Herein the expression in parentheses is

Here the first sum vanishes due to the continuity condition (6), the second one can be
represented as

where  indicates differential quotients in the direction of the spacetime line of
one location. Hence this finally results in the expression for the differential quotient
(12)

(14)

For a virtual displacement in the sickle we had demanded in addition that the
points, considered as points of a substance, should proceed normal to the curves that
are formed from them; this means for  that the  have to satisfy the condition 

 (15)

If we recall the Maxwell stresses in the electrodynamics of bodies at rest and con-
sider on the other hand our results in the sections 12 and 13, then a certain adaptation
of Hamilton’s principle for continuous extended elastic media to the relativity postu-
late suggests itself.

Let there be specified at every spacetime point (as in section 13) a spacetime
matrix of the second kind

(16)

where  are real quantities. |
For a virtual displacement in a spacetime sickle with the notation as above, let the
value of the integral
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(17)

over the region of the sickle be called the stress action associated with the virtual dis-
placement.

The sum that occurs here is, written out in more detail and with real quantities

Now we will postulate the following principle of least action [Minimalprinzip]
for mechanics:

Whenever any spacetime sickle is delimited, then for each virtual displacement in
the sickle the sum of the mass action and of the stress action shall always be an extre-
mum for the actually occurring behavior of the spacetime lines in the sickle.

The point of this statement is that for each virtual displacement we shall have
(using the notation explained above)

(18)

By the methods of variational calculus the following four differential equations
follow immediately by transformation (14) from this principle of least action, taking
into account the condition (15)

(19)

where

(20)

are the components of the spacetime vector of the first kind  and  is a fac-
tor to be determined from  By multiplying (19) by  and then | sum-
ming over  one finds  and  clearly becomes a
spacetime vector of the first kind normal to  Writing the components of this vector
as

we arrive at the following laws for the motion of matter:
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(21)

Here we have

and

and by reason of these relations the fourth of the equations (21) could be viewed as a
consequence of the first three of them.

From (21) we further derive the laws for the motion of a point mass, that is for the
course of an infinitely thin spacetime thread.

Let  denote a point of the center line, defined arbitrarily within the thread.
We form the equations (21) for the points of the thread’s normal section through

 and integrate their product by the volume element [Inhaltselement] of the
section over the entire region of the normal section. Let the integrals of the right-hand
sides be  and  be the constant mass of the thread, yielding

(22)

| Here  with the components  is again a spacetime vector of the first
kind, which is normal to spacetime vector of the first kind  the velocity of the
mass point, with components
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We will call this vector  the accelerating force [bewegende Kraft] of the mass point.
If, on the other hand, one integrates the equations not over the thread’s normal

section but correspondingly over a cross section normal to the -axis and passing
through  then one obtains (see (4)) the equations (22) multiplied by 
in particular the last equations is

The right-hand side will have to be interpreted as the work done on the point mass per
unit time. The equation itself will then be viewed as the energy theorem for the
motion of the point mass, and the expression

will be identified with the kinetic energy of the point mass.
Since one always has  one could characterize the quotient

 as the advancement of time with respect to proper time of the point
mass, and then put it as follows: the kinetic energy of the point mass is the product of
its mass and the advancement of time with respect to its proper time.

The quadruplet of equations (22) again shows the full symmetry in  as
demanded by the relativity postulate, where the fourth equation, analogous to what
we have encountered in electrodynamics, can be said, as it were, to be more highly
evident physically. On the basis of this symmetry the triplet of the first three equa-
tions is to be constructed according to the pattern of the fourth equation, and in view
of this circumstance the claim is justified: If the relativity postulate is put at the head
of mechanics, then the complete | laws of motion follow solely from the energy theo-
rem. 

I would not like omit making it plausible that a contradiction to the assumptions
of the relativity postulate is not to be expected from the phenomena of gravitation.2

For  a fixed spacetime point, the region of all spacetime points
 satisfying

(23)

shall be called the ray object [future lightcone] of the spacetime point 
This object intersects any spacetime line only in a single spacetime point  as fol-

lows on the one hand from the convexity of the object, and on the other hand from the
circumstance that all possible directions of the spacetime line are directed from 
only toward the concave side of the object.  shall then be called a light point of 

2 H. Poincaré Rend. Circ. Matem. Palermo, Vol. XXI (1906), p. 129 [in this volume] has attempted to
make the Newtonian law of attraction compatible with the relativity postulatem, along quite different
lines than what I present here.
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If the point  in the condition (23) is considered as fixed, and the point
 as variable, then the same relation represents the region of all

spacetime points  that are light points of  and one shows in an analogous way
that on any spacetime line there always occurs just a single point  that is a light
point of 

Let a mass point  of mass  experience an accelerating force, in the presence
of another mass point of mass  according to the following law. Consider the
spacetime threads of  and  with center lines contained in them. Let  be an
infinitesimal element of the center line of  further let  and  be the light
points of  and  respectively, on the center line of  and let  be the radius
vector parallel to  of the fundamental hyperbolic shell (2), and finally let  be
the intersection point of the line  with its normal space that passes through 
The accelerating force of the point mass  at the spacetime point  shall now be
that spacetime vector of the first kind, normal to  which is formed additively
from the vector

(24)

in the direction BD* and a suitable vector | in the direction B*C*. Here 
is understood to be the ratio of the two parallel vectors concerned.

It is clear that this definition is to be characterized as covariant with respect to the
Lorentz group.

Now we ask how the spacetime thread of  behaves according to these consider-
ations if the point mass  executes uniform translational motion, so that the center
line of the thread of  is a straight line. We shift the spacetime origin  to it and
can then introduce this straight line as the -axis by means of a Lorentz transforma-
tion. Now let  mean the point  and  the proper time of the point 
with origin at  Our definition then leads to the equations

(25)

and
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where we have
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and

(28)
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In view of (27) the three equations (25) read the same as the equations for the motion
of a mass point under attraction by a fixed center according to Newton’s law, except
that the time  is replaced by the proper time  of the mass point. The fourth equa-
tion (26) then gives the connection between proper time and time for the point mass.

Now let the orbit of the space point  for different  be an ellipse with semi-
major axis  and eccentricity  and let  be its eccentric anomaly,  the increase
in proper time for a full execution of an orbit, and finally  so that for a
suitable origin of  Kepler’s equation

(29)

holds. If we also change the unit of time and denote the speed of light by  then (28)
becomes

(30)

| By neglecting  compared to 1 it follows that

which by using (29) results in[6]

(31)

Here the factor  is the square of the ratio of a certain mean speed of  in its orbit

to the speed of light. If we substitute for  the mass of the Sun and for  the semi-

major axis of the Earth’s orbit, then this factor amounts to 
A law of attraction for masses according to the formulation exhibited above in

connection with the relativity postulate would also imply propagation of gravitation
with the speed of light. In view of the smallness of the periodic term in (31) a decision
against such a law and the suggested modified mechanics in favor of Newton’s law of
attraction with Newtonian mechanics should not be derivable from astronomical
observations.
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EDITORIAL NOTES

[1] The equations (10) to (12) in the actual body of the text (not reproduced here)
represent the Lorentz transformations and read

 for the direction of (10)

 for any direction  perpendicular to (11)

and further (12)

[2] For some of Minkowski’s technical terms, the English equivalent according to
present-day physics is given in square brackets.

[3] The references are to sections in the actual body of the text.  denotes the three-
dimensional velocity vector of matter at the given spacetime point,  denotes
the corresponding four-vector:

[4] Minkowski defines lor as the  matrix

[5] Equation (67) in the body of the text reads

(67)

[6] The eccentricity  in the second term on the right-hand side of eq. (32) has been
inserted, correcting an obvious omission.
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SECOND LECTURE

To discuss Einstein’s 

 

principle of relativity

 

 here at Göttingen, where Minkowski was
active, seems to me a particularly welcome task. 

The significance of this principle can be illuminated from several different angles.
We will not speak here of the mathematical aspect of the question, which was given
such a splendid treatment by Minkowski, and which was further developed by Abra-
ham, Sommerfeld and others. Rather, after some epistemological remarks about the
concepts of space and time, the physical phenomena that may contribute to an exper-
imental test of the principle shall be discussed. 

The principle of relativity claims the following: If a physical phenomenon is
described by certain equations in the system of reference  then a phenome-
non will also exist that can be described by the same equations in another system of
reference  Here the two systems of reference are connected by relations
containing the speed of light  and expressing the motion of one system with a uni-
form velocity relative to the other. 

If observer  is located in the first, and  in the second system of reference, and
each is supplied with measuring rods and clocks at rest in his system, then  will
measure the values of  and  the values of  where it should be
noted that  and  can also use one and the same measuring rod and the same clock.
We have to assume that when the first observer somehow hands his rod and clock
over to the second observer, they automatically assume the proper length and the
proper rate so that  arrives at the values  from his measurements. Either
one will then find the same value for the speed of light, and will quite generally be
able to make the same observations.
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Assume there is an aether; then among all systems  a single one would be
distinguished by the state of rest of its coordinate axes as well as its clock in the
aether. If one associates with this the idea (also held tenaciously by the speaker) that
space and time are totally different from each other and that there is a “true time”
(simultaneity would then exist independent of location, corresponding to the circum-
stance that we are able to imagine infinitely large velocities) then it is easily seen that
this true time should be shown precisely by clocks that are at rest in the aether. Now,
if the principle of relativity were generally valid in nature, then we would of course
not be in a position to determine whether the system of reference being used at the
moment is the distinguished one. Thus one arrives at the same results as those found
when one denies the existence of the aether and of the true time, and regards all sys-
tems of reference as equivalent, following Einstein and Minkowski. It is surely up to
each individual which of the two schools of thought he wishes to identify with.

In order to discuss the physical aspect of the question, we first have to establish
the transformation formulas, limiting ourselves to a special form | already used in the
year 1887 by W. Voigt in his treatment of the Doppler principle; namely,

where the constants   satisfy the relation 

which entails the identity  The origin of
the system  moves with respect to the system  in the direction with
speed  which is always less than  In general we have to assume that every
velocity is less than  

All state variables of any phenomenon, measured in one or the other system are
connected by certain transformation formulas. For example, for the speed of a point
these are

where

Further we consider a system of points whose velocity is a continuous function of
the coordinates. Let  be a volume element surrounding the point  at time

 to this value of  there corresponds according to the transformation equations a
point  in time  in the other system of reference, and every point lying in  at
time  has certain [coordinates]  for this fixed value of  The points

 fill a volume element  which is related to  as follows

 

[1]

x y z t, , ,

[1237]

x' x,= y' y,= z' az bct– ,= t' at
b
c
---z– ; =

a 0,> b

a2 b2– 1,=

x'2 y'2 z'2+ + c2t'2– x2 y2 z2 c2t2.–+ +=
x' y' z', , x y z, , z-

b a⁄( )c, c.
c.

vx'
vx

ω
----,= vy'

vy

ω
----,= vz'

avz bc–

ω
-------------------,=

ω a
bvz

c
-------.–=

Sd P x y z, ,( )
t; t

P t' Sd
t x' y' z', , t'.

x' y' z', , S',d Sd



 

O

 

LD

 

 

 

AND

 

 N

 

EW

 

 Q

 

UESTIONS

 

 

 

IN

 

 P

 

HYSICS

 

 (E

 

XCERPT

 

) 289

Let us imagine some agent (matter, electricity etc.) connected with the points, and
let us assume that the observer  has occasion to associate with each point the same
amount of the agent as the observer  then the spatial densities must obviously be in
the inverse ratio as the volume elements, that is

All these relations are reciprocal, that is, the primed and unprimed letters may be
interchanged if at the same time  is replaced by 

The basic equations of the electromagnetic field retain their form under the trans-
formation if the following quantities are introduced: 

Thus in the system  the following equations hold between these quanti-
ties, the transformed space density  and the transformed velocity  

 

With this the field equations of the electron theory satisfy the principle of relativ-
ity; but there is still the matter of harmonizing the equations of motion of the elec-
trons themselves with this principle.

We will consider somewhat more generally the motion of an arbitrary material
point. Here it is useful to introduce the concept of “proper time,” Minkowski’s beau-
tiful invention. According to this there belongs to each point a time of its own, as it
were, which is independent of the system of reference chosen; its differential is
defined by the equation 

The expressions formed with the aid of the proper time  
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which are linear homogeneous functions of the components of the ordinary accelera-
tion, will be called the components of the “Minkowskian acceleration.” We describe
the motion of a point by the equations: 

where  is a constant, which we call the “Minkowskian mass.” We designate the
vector  as the “Minkowskian force.” 

It is then easy to derive the transformation formulas for this acceleration and this
force; we leave  unchanged. Thus we have 

The essential point is the following. The principle of relativity demands that if for an
actual phenomenon the Minkowskian forces depend in a certain way on the coordi-
nates, velocities, etc. in one system of reference, then the transformed Minkowskian
forces | depend in the same way on the transformed coordinates, velocities etc. in the
other system of reference. This is a special property that must be shared by all forces
in nature if the principle of relativity is to be valid. Presupposing this we can calculate
the forces acting on moving bodies if we know them for the case of rest. For example,
if an electron of charge  is in motion, we consider a system of reference in which it
is momentarily at rest. Then the electron in this system is under the influence of the
Minkowskian force

from this it follows by application of the transformation equations for  and  that
the Minkowskian force acting on the electron that moves with velocity  in an arbi-
trary coordinate system amounts to 

This formula does not agree with the usual ansatz of the electron theory, because of
the presence of the denominator. The difference is due to the fact that usually one
does not operate with our Minkowskian force, but with the “Newtonian force” 
and we see that these two forces are related as follows for an electron: 

It is to be assumed that this relation is valid for arbitrary material points. 
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Thus the phenomena of motion can be treated in two different ways, using either
the Minkowskian or the Newtonian force. In the latter case the equations of motion
take the form 

and here  means the ordinary acceleration in the direction of motion,  the ordi-
nary normal acceleration, and the factors 

are called the “longitudinal” and the “transverse mass.”
Just like the Minkowskian forces, the Newtonian forces that occur in nature must

also fulfill certain conditions in order to satisfy the relativity principle. This is the
case if, for example, a normal pressure of a constant magnitude  per unit area acts
on a surface regardless of the state of motion; then in the transformed system a nor-
mal pressure of the same magnitude acts on the corresponding moving surface ele-
ment. Since we have already recognized the invariance of the field equations, the
question of whether the motions in an electron system satisfy the relativity principle
amounts merely to an experimental test of the formulas for the longitudinal and trans-
verse masses   although the experiments of Bucherer and Hupka seem to
confirm these formulas, one has not yet arrived at a definitive decision. 

Concerning the mass of the electron, one should remember that this is electro-
magnetic in nature; so it will depend on the distribution of charge within the electron.
Therefore the formulas for the mass can be correct only if the charge distribution, and
hence also the shape of the electron, vary in a definite way with the velocity. One
must assume that an electron, which is a sphere when at rest, becomes an ellipsoid
that is flattened in the direction of motion as a result of translation; the amount of flat-
tening is 

If we assume that the shape and size of the electron are regulated by internal forces,
then to agree with the relativity principle these forces must have properties such that
this flattening occurs by itself when in motion. Regarding this Poincaré has made the
following hypothesis. The electron is a charged, expandible skin, and the electrical
repulsion of the different points of the electron is balanced by an inner normal tension
of unchangeable magnitude. Indeed, according to the above such normal tensions sat-
isfy the relativity principle. 

In the same way all molecular forces acting within ponderable matter, as well as
the quasi-elastic and resistive forces acting on the electron, have to satisfy certain
conditions in order to be in accord with the relativity principle. Then every moving
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body will be unchanged for a co-moving observer, but for an observer at rest it will
experience a change in dimensions, which is a consequence of the change in molecu-
lar forces demanded by these conditions. This also leads automatically to the contrac-
tion of bodies, which was already | devised earlier to explain the negative outcome of
Michelson’s interferometer experiment and of all similar experiments that were to
determine an influence of the Earth’s motion on optical phenomena. 

Concerning rigid bodies, as investigated by Born, Herglotz, Noether, and Levi-
Civita, the difficulties occurring in the consideration of rotation can surely be relieved
by ascribing their rigidity to the action of particularly intense molecular forces.

Finally let us turn to gravitation. The relativity principle demands a modification
of Newton’s law, foremost a propagation of the effect with the speed of light. The
possibility of a finite speed of propagation of gravity was already discussed by
Laplace, who imagined as the cause of gravity a fluid streaming toward the Sun,
which pushes the planets toward the Sun. He found that the speed  of this fluid must
be assumed to be at least 100 million times larger than that of light, so that the calcu-
lations remain in agreement with the astronomical observations. The necessity of
such a large value of  is due to the occurrence of  to the first power in his final
formulas, where  is the speed of a planet. But if the propagation speed  of gravity
is to have the value of the speed of light, as demanded by the relativity principle, then
a contradiction with the observations can only be avoided if only quantities of second
(and higher) order in  occur in the expression for the modified law of gravitation. 

Restricting oneself to quantities of second order, one can, on the basis of a sug-
gestive electron-theoretic analogy, easily give a condition that determines the modi-
fied law in a unique way. Namely, if one considers the force acting on an electron that
moves with a velocity  

then the vectors  and  depend, in addition, on the velocities  of the electrons that
produce the field; in the vector product  products of the form  do occur,
but not the square  of the speed of the electron under consideration. Accordingly
let us assume that in the expression for the attraction acting on the point 1 due to
point 2 there is no term in the square of the velocity  of point 1. Then all velocities
whatsoever must drop out in a system of reference in which point 2 is at rest

 therefore the law will reduce to the usual Newtonian one in this system.
Now making the transition by transforming to an arbitrary coordinate system, one
finds that the force acting on point 1 is composed of two parts, the first, an attraction
in the direction of the line connecting them of magnitude

the second, a force in the direction of  of magnitude

[1239]
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here  means the distance between two simultaneous positions of the two points, 
the component of  along the connecting line drawn from 1 to 2, and  that function
of  which represents the law of attraction in the case of rest  for Newto-
nian attraction,  for quasielastic forces). Note that “force” is always under-
stood to be the “Newtonian force,” not the “Minkowskian” one. Minkowski, by the
way, has given a somewhat different expression for the law of gravity. The latter as
well as the one described above can be found in Poincaré. 

THIRD LECTURE 

At the end of the previous lecture a modified law of gravitation was given, which
is in agreement with the relativity principle. Concerning this one should note that the
principle of equality of action and reaction is not satisfied.

Now the perturbations that can arise due to those additional second order terms
will be discussed. Besides many short-period perturbations, which have no signifi-
cance, there is a secular motion of the planets’ perihelia. Prof. de Sitter computes

 per century for Mercury’s perturbations. Since Laplace, it has been known
that Mercury has an anomalous perihelion motion of  per century; although this
anomaly has the right sign, it is much too large to be explained by those additional
terms. Instead, Seeliger attributes it to a perturbation by the carrier of the zodiacal
light, | whose mass one can suitably determine in a plausible way. So, from this one
can arrive at no decision, as long as the accuracy of astronomical measurements is not
significantly increased. To be absolutely accurate one would also have to take into
account the difference between the Earth’s “proper time” and the time of the solar
system. 

A different method to test the validity of the modified law of gravitation can be
based on a procedure suggested by Maxwell to decide whether the solar system
moves through the aether. If this were the case, then the eclipses of Jupiter’s moons
should be advanced or delayed depending on Jupiter’s position with respect to the
Earth.

For if the Jupiter-Earth distance is  and the component of the solar system’s
velocity in the aether in the direction of the line connecting Jupiter to Earth is  then
the time required to cover the distance  in the case of rest,  would be changed
to  thus the motion brings about an advance or delay, which amounts to

 up to terms of second order, and which takes on different values according to
the value of the velocity component  which of course depends on the position of
the two planets. Now it is clear that such a dependence of the phenomena on the
motion through the aether contradicts the relativity principle. 
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In order to clear up this contradiction let us simplify the situation schematically.
We suppose that the Sun  has a mass that is infinitely large compared to that of the
planet. Let the velocity of the solar system coincide with the axis, which we lay
through the Sun. The intersection points of the planet’s orbit with the axis are
denoted as the upper resp. lower transit,  resp.  (Fig. 1) 

We place the observer at the Sun. At each transit of the planet through the axis
a signal will propagate towards the Sun. The period of revolution shall be  When
the Sun is at rest the time between an upper and lower transit will be  for the
assumed circular motion; the same is true for the time between the arrivals of the two
light signals. By contrast, if the Sun is in motion in the direction, the signal from
the upper transit must suffer an advance  that from the lower transit a delay
of the same amount; if the uniform orbital motion (assumed as self-evident by Max-
well) is preserved without perturbation, the time interval between the arrivals of the
light signals of two successive passes would appear alternately increased and
decreased by  Preservation of the uniform circular motion during a transla-
tion through the aether, as is assumed above, is, however, impossible according to the
relativity principle. For if we describe the process in a coordinate system that does
not take part in the motion, the modified law of gravitation will have to be applied,
and this results in a non-uniform planetary motion, due to which the difference in
time intervals between the arrivals of the light signals exactly cancels.

Therefore the determination of whether an advance or delay of the eclipses in fact
occurs can be used to decide in favor or against the relativity principle. However, the
numerical situation is again rather unfavorable. Thus Mr. Burton, who has access to
330 photometric observations of eclipses of Jupiter’s first moon made at the Harvard
observatory, estimates the probable error of the final result for  as 50 km/sec; on the
other hand, one has observed speeds of stars of 70 km/sec, and the speed of the solar
system with respect to the fixed stars is estimated at 20 km/sec. The relativity princi-
ple is therefore hardly supported by Burton’s calculations; at best they could invali-
date it, namely if, for example, the final result were a value exceeding 100 km/sec. 

Let us leave it undecided whether or not the new mechanics will receive confirma-
tion by astronomical observations. But we will not fail to familiarize ourselves with
some of its basic formulas.

If one defines work as the scalar product of “Newtonian force” and | displace-
ment, then the equations of motion yield the energy principle in its usual form, so that
the work done per unit of time equals the increase in energy : 

Here energy is expressed by
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this agrees up to second order terms with the value of the kinetic energy in customary
mechanics:

Furthermore, from the equations of motion one can derive Hamilton’s principle

here  is the work of the “Newtonian force” upon a virtual displacement and  is
the Lagrangian, which takes the form 

From Hamilton’s principle one can conversely obtain the equations of motion.
The quantities 

are to be identified as the components of the momentum. 
All these formulas can be verified by the electromagnetic equations of motion for

an electron. One then has to take the following value for the “Minkowskian mass”  

and to add to the electric and magnetic energy the energy of those internal stresses
which determine the shape of the electron, as we saw above. Thus from the general
principle of least action for arbitrary electromagnetic systems, discussed in the first
lecture, one can obtain Hamilton’s principle for a point mass as given above by spe-
cialization to an electron, but the work of those internal stresses must be taken into
account. 

We now go over to a discussion of the equations of the electromagnetic field for
ponderable bodies. These have been written down purely phenomenologically by
Minkowski, then M. Born and Ph. Frank showed that they can also be derived from
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the ideas of electron theory; by the latter procedure Lorentz himself also found these
equations, in a slightly different technical form.

To obtain relations between observable quantities one must smear out the details
of the phenomena due to individual electrons by averaging over a large number of
them. One is lead to the following equations (which are identical to those of the usual
Maxwell theory): 

Here  is the dielectric displacement,  the magnetic induction,  the mag-
netic force,  the electric force,  the electric current, and  the density of the
observable electric charges. Denoting mean values by an overbar we have, for example, 

where   have their former meaning; further we have 

where  is the electric moment and  the magnetization per unit volume, and 
denotes the velocity of matter. When deriving these formulas one divides the elec-
trons into three types. The first type, the polarization electrons, generate the electric
moment  by their displacement; the second type, the magnetization electrons, gen-
erate the magnetic state  by their orbital motion; the third type, the conduction
electrons, move freely within the matter and generate the observable charge density

 and the current  The latter is additionally to be divided into two parts; for if 
is the relative velocity of the electrons with respect to the matter, then the total veloc-
ity of the electrons is  hence the current carried by them is 

 is the observable charge   is the convection current, and  the conduction
current proper. 

There are transformation formulas for all these quantities, | and we give a few of
them below: 
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Further, the following auxiliary vectors are useful:

Now the field equations given above must still be completed by establishing the
relations that exist between the vectors  and  These relations can be
obtained in two ways. 

The first, phenomenological method proceeds as follows: One considers an arbi-
trarily moving point of matter and introduces a system of reference in which it is at
rest; if the element of volume surrounding the point is isotropic in the rest system, the
equation appropriate for bodies at rest (between  and  for example)

holds; or equally well 

because the auxiliary vectors  are identical with  when  But 
and  transform in the same way, and this implies that also in the original system
the equation 

and correspondingly

remains valid. Concerning the conduction current we remark only that it depends
on 

The second method has its roots in the mechanics of electrons. Just as the equa-
tion  for bodies at rest turns out to be a consequence of the assumption of
quasielastic forces, which restore the electrons to their rest positions, so one will
obtain the equation  for moving bodies if one ascribes to the quasi-elastic
forces the properties demanded by the relativity principle. The latter will be satisfied
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if one takes for these forces the expression of the generalized law of attraction, where
 must be taken proportional to 

The explanation of the resistance to conduction proceeds similarly. A satisfactory
electron-theoretic explanation of the magnetic properties of matter is presently not at
hand.

Finally the significance of the above equations shall be elucidated in three
remarkable cases.

The first remark is connected with the equation

According to this,  can vanish without having  if a current  is present;
that is, an observer  will declare a body to be charged that must be treated as
uncharged by  moving relative to him. One can understand this by noting that every
body contains an equal number of positive and negative electrons, which compensate
in uncharged bodies. When the body moves with velocity  in the presence of a con-
duction current, the two types of electrons will attain different total velocities, there-
fore the quantity  will also have different values for the two types.
When an observer  moving with the body calculates the mean charge density

 for both types of electrons he can obtain zero for the sum, even when for
an observer  in whose reference frame the body is moving the mean values  of the
positive and negative electrons do not compensate. 

This circumstance calls forth the memory of an old question. Around the year
1880 there was a great discussion among physicists about Clausius’ fundamental law
of electrodynamics. One attempted to derive a contradiction between this law and
observations by concluding that according to the law a current-carrying conductor on
the Earth would have to exert an influence on a co-moving charge  due to the
motion of the Earth, which could have been observed. That the law actually does not
demand this influence was noted by Budde; this is because the current due to the
Earth’s motion acts on itself and causes a “compensating charge” in the current-car-
rying conductor, which exactly cancels the first influence. The electron theory leads
to similar conclusions, and Lorentz finds |

for the density of the compensating charge, if the velocity is in the direction of the
axis; this must be assumed by an observer  who does not take part in the motion

of the Earth, whereas it does not exist for a co-moving observer  The value given
above agrees exactly with the formula derived from the relativity principle; for if

 one finds from this formula
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and since, according to what was said in the second lecture on p. 288 [p. 1237 in the
original],  is the speed of the two systems of reference with respect to
each other, one indeed finds 

The second remark starts from the transformation equations for the electric
moment  p. 296 [p. 1241 in the original] in which the presence of the magnetiza-
tion  lets us recognize the impossibility of differentiating precisely between polar-
ization- and magnetization electrons. Rather, in a magnetized body 

 can vanish when judged from one system of reference, whereas in another
 differs from zero. This will now be applied to a special case, where we confine

attention to quantities of first order. The body we consider (such as a steel magnet)
shall contain only conduction electrons and electrons that produce an  but no 
when the body is at rest; it shall have the shape of an infinitely extended plate,
bounded by two planes  the middle plane shall be the plane. (Fig. 2) When it
is at rest a constant magnetization  shall be present, whereas  When the
body is given a speed  in the direction an observer who does not take part in the
motion will observe the electric polarization 

Now we imagine at either side of the body two conductors  which form together
with it two equal condensers, and these shall be shorted out by a wire (from  to 
When there is motion, charges will be created on  and  which can be calculated
as follows. Since a current is clearly impossible in the direction, we have

 or  Since the process is stationary we have  then
the existence of a potential  follows from  If  is the thickness of the
slab one has 

From the symmetry of the arrangement it clearly follows that 

and because the plates  are shorted out, we must have 

this implies
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If  is the capacity of one of the two condensers, the charge of plate  becomes 

and  receives the equal and opposite amount. 
Now we compare this process with the inverse case, that the magnet  is at rest

and the plates  move with the opposite velocity. According to the relativity prin-
ciple everything would have to be the same as in the first case. Indeed one finds at
once from the usual law of induction exactly the amount of charge on plate  given
above. But this charge on  must now induce an equal and opposite one on the plane

 of the magnet at rest, and corresponding statements must hold for  and  Since
no current can flow  there must be the same charges on the magnet,
whether the magnet is moving and the plates are at rest or conversely. So we have to
think how it happens that in the first case the opposite charge appears on the plane 
of the moving magnet as on the plate  this becomes possible only due to the polar-
ization | produced by the motion. For one has

since here  is to be neglected to first order in the velocity, that is the term ,
we have 

But  is zero because we assume the plate to be infinitely extended. This implies

i.e., in the moving plate there is no dielectric displacement, so the charge on  corre-
sponds to that on  as the relativity principle demands.

The last remark concerns again the circumstance that according to the relativity
principle the motion of the Earth cannot have any influence on electromagnetic pro-
cesses. But Liénard has pointed out a phenomenon where such an influence is to be
expected, an influence of first order in magnitude; Poincaré has also discussed this
case in his book Electricité et Optique. It concerns the ponderomotive force on a con-
ductor. To determine this force one may make the suggestive ansatz for the force act-
ing on the conduction electrons per unit charge:

then this results in the force caused by the Earth’s motion on the conductor in the
direction of the motion by an amount
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since  is the heat generated by the conduction current  this expression is
easily calculated numerically (which admittedly results in a value inaccessible to
observation). 

If one now asks oneself, how this result that contradicts the relativity principle can
come about, one finds that indeed one has not calculated the force acting on the mat-
ter of the conductor, but on the electrons moving inside the conductor. The latter
force must first be transferred to the matter by forces, which are unknown to us in
detail, and that happens without change of magnitude only if action equals reaction
for the forces between matter and electrons. But for moving bodies action does not
equal reaction in this case according to the relativity principle, and this circumstance
exactly compensates Liénard’s force.

In summary, one can say that there is little prospect for an experimental confirma-
tion of the principle of relativity; except for a few astronomical observations, only
measurements of the electron mass are worth considering. But one must not forget
that the outcome of the negative experiments, such as Michelson’s interference exper-
iment and the experiments to find a double refraction caused by the Earth’s motion,
can only be explained by the relativity principle.

EDITORIAL NOTE

[1] In the original, the denominator is missing from the right-hand side.
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1. THE FRAGILE LADDER OF THE MINKOWSKI FORMALISM

 

1.1 Abraham’s Bold Step

 

Today Max Abraham is known mainly for his achievements in the field of electrody-
namics and, in particular, for the successful series of textbooks associated with his
name.

 

1

 

 He is, however, largely forgotten as a pioneer of a relativistic theory of gravi-
tation. The papers he dedicated to the subject between 1911 and 1915 are mainly
remembered for the controversy with Einstein that they document.

 

2

 

 In hindsight it is
clear that Abraham’s approach to a relativistic theory of gravitation—an attempt to
formulate a field theory of gravitation in the framework of Minkowski’s formalism—
would lead to a dead end. However, only by exploring the consequences of this
approach did it eventually become clear that it did not lead anywhere. And it was,
after all, the failure of Abraham’s bold step which encouraged others to either pursue
his endeavor through more appropriate means, as was the case with Gunnar Nord-
ström, or to take even bolder steps than Abraham and attempt even higher summits,
as was the case with Einstein.

 

3

 

 In fact, it was largely due to Abraham’s efforts that
Einstein became familiar with the limits of Minkowski’s formalism and also learned
how to overcome them.

In the following, we will first review Abraham’s attempt to take up the challenge
of using Minkowski’s formalism as the framework for a relativistic theory of gravita-
tion and then show how this bold step led to an ardent controversy with Einstein
which, for Abraham, eventually led to a rejection of relativity theory altogether. We
will then consider some of the insights and achievements that Abraham attained in
the course of his research, which have been largely forgotten because his approach
turned out to lead to a dead end. In short, we will portray Abraham as someone who

 

1 See (Abraham and Föppl 1904–1908) and the subsequent editions of this work.
2 See, in particular (Abraham 1912e, 1912f) and for a historical discussion (Cattani and De Maria

1989), to which the following account is much indebted.
3 See the papers by Nordström in this volume.
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almost scaled the summit, who aimed high but failed to reach the goal he envisioned.
As a consequence of his failure and of criticism by others, he eventually gave up
mountain climbing altogether but, at the same time, encouraged others to attempt the
summit he had failed to reach, not least because of the magnificent vistas about
which, on the basis of his experience, he could report.

The starting point for Abraham’s work on a relativistic theory of gravitation were
some of the insights that Einstein had attained on the basis of his equivalence princi-
ple, in particular the idea of a variable speed of light.

 

4

 

 Precisely because of this
insight, Einstein did not consider Minkowski’s formalism to be a useful tool for
building up a relativistic theory of gravitation, since he took the constancy of the
speed of light to be one of its fundamental principles. Moreover, Einstein was skepti-
cal of such a path for other reasons as well.
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 Abraham, on the other hand, took the
bold step of modifying Minkowski’s framework by accommodating it to the assump-
tion of a variable speed of light. In this way, he succeeded in overcoming the unac-
ceptably restrictive conditions imposed by the constancy of the speed of light on a
straightforward, special relativistic theory of gravitation. Abraham thus became the
first to exploit the mathematical potential of Minkowski’s four-dimensional formal-
ism for a theory of gravitation.

In the introduction to a paper submitted in December 1911 and published in Janu-
ary 1912, Abraham first of all acknowledges his debt to Einstein’s idea concerning
the relation between a variable speed of light and the gravitational potential:

 

In a recently published paper A. Einstein proposed the hypothesis that the speed of light
( ) depends on the gravitational potential ( ). In the following note, I develop a theory
of the gravitational force which satisfies the principle of relativity and derive from it a
relation between  and  which in first approximation is equivalent to Einstein’s.
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Abraham then adopts Minkowski’s formalism for his purposes:

 

Following Minkowski’s presentation we regard

(1)

as the coordinates of a four-dimensional space.
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4 See “The First Two Acts” and “The Third Way to General Relativity” (in vol. 1 and vol. 3 of this
series respectively).

5 See, for instance, Einstein’s comments in his contemporary letters, e.g., to Wilhelm Wien, 11 March
1912 and 17 May 1912, (CPAE 5, Doc. 371 and 395) to which we shall refer later. See also the histor-
ical discussion in the “Editorial Note” in (CPAE 4, 122–128).

6 “In einer vor kurzem erschienenen Arbeit hat A. Einstein die Hypothese aufgestellt, daß die
Geschwindigkeit des Lichtes ( ) vom Gravitationspotential ( ) abhänge. In der folgenden Note ent-
wickle ich eine Theorie der Schwerkraft, welche dem Prinzip der Relativität genügt, und leite aus ihr
eine Beziehung zwischen  und  ab, die in erster Annäherung mit der Einsteinschen gleichwertig
ist.” See (Abraham 1912h, 1). A complete English translation of this paper is given in this volume.

7 “In dem wir der Darstellung Minkowskis folgen, betrachten wir  als
Koordinaten eines vierdimensionalen Raumes.”

 

 

 

(Abraham 1912h, 1)
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He immediately proceeds to state a differential equation for the gravitational poten-
tial, which essentially corresponds to a four-dimensional generalization of the classi-
cal Poisson equation:

 

Let the “rest density”  as well as the gravitational potential  be scalars in this
space, and let them be linked through the differential equation:

(2)

(  is the gravitational constant.)
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Somewhat later Abraham introduced further Minkowskian concepts and terminology:

 

We write     for the first derivatives of the coordinates of a material “world point”
with respect to its “proper time”  i.e., for the components of the “velocity” four-vector

 and     for the second derivatives, i.e., for the components of the “accelera-
tion” four-vector 
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He then observes that, in Minkowski’s formalism, the first derivatives must satisfy a
certain relation involving the speed of light:

 

Between the first derivatives the following identity holds:

(3)

or

 ... .
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(4)

 

Finally Abraham derives a relation corresponding to the orthogonality relation
between four-velocity and acceleration in ordinary Minkowski space but now under
the assumption of a variable speed of light:

 

Now, by differentiating eq. (4) [eq. (3)] with respect to proper time, Minkowski obtains
the condition of “orthogonality” of the velocity and acceleration four-vectors. However,
if  is considered to be variable, the place of that condition is taken by the following:

(5)

as the differentiation of eq. (4) [eq. (3)] shows.
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8 “Die “Ruhdichte”  sei ein Skalar in diesem Raume, und ebenso das Schwerkraftpotential  sie
mögen miteinander verknüpft sein durch die Differentialgleichung: …(1) [eq. (2)]. (  ist die Gravita-
tionskonstante.)” (Abraham 1912h, 1)

9 “Wir schreiben     für die ersten Ableitungen der Koordinaten eines materiellen “Weltpunk-
tes” nach seiner “Eigenzeit”  d. h. für die Komponenten des Vierervektors “Geschwindigkeit” 
und     für die zweiten Ableitungen, d. h. für die Komponenten des Vierervektors “Beschleuni-
gung ” (Abraham 1912h, 1)

10 “Es besteht zwischen den ersten Ableitung die Identität: …(4) [eq. (3)] oder … [eq. (4)].” (Abraham
1912h, 1–2)
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ẋ ẏ ż u̇
τ ,
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In this way, the introduction of the hypothesis of a variable speed of light makes it
possible for Abraham to circumvent a problematic restriction imposed by
Minkowski’s formalism on a relativistic theory of gravitation.

 

12

 

 In fact, in a theory
with variable  the four-vectors for velocity and for acceleration no longer have to
be orthogonal to each other. It follows that the gravitational potential also no longer
has to be constant along the world line of a particle, contrary to the conclusion
reached in the usual Minkowski’s formalism. Although Abraham’s line of attack was
clearly stimulated by Einstein’s earlier use of a variable speed of light, it thus
emerges as being so closely associated with a plausible modification of the four-
dimensional formalism that this approach may also be conceived as exploring an
independent possibility offered by the contemporary state of the gravitation problem.

In Einstein’s papers of 1907 and 1911, the variable speed of light was linked to
the gravitational potential via the concept of time in an accelerated frame of refer-
ence, i.e., via an essentially kinematic relation, independently of the use of the equiv-
alence principle for transferring the results obtained in an accelerated system to a
system with a gravitational field. For Abraham, on the other hand, an analogous rela-
tion between the speed of light and the gravitational potential follows if the second
derivative terms in equation (5) are identified with the acceleration due to the gravita-
tional force, i.e., from an essentially dynamic relation. Indeed, for the relation
between four-dimensional gravitational force and four-dimensional gravitational
potential Abraham assumed:

(6)

He further assumed that the relation between four-acceleration and four-force is anal-
ogous to Newton’s second law:

(7)

With these two relations, equation (5) can now be written as a relation between the
speed of light and the gravitational potential:

(8)

 

11 “Nun erhält Minkowski, indem er Gl. (4) [eq. (3)] nach der Eigenzeit differenziert, die Bedingung der
“Orthogonalität” der Vierervektoren Geschwindigkeit und Beschleunigung. Wenn jedoch  als verän-
derlich angesehen wird, tritt an Stelle jener Bedingung die folgende: … (5) [eq. 5] wie die Differentia-
tion von Gl. (4) [eq. (3)] zeigt.” (Abraham 1912h, 2)

12 See “Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravita-
tion,” (in vol. 3 of this series).
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which can be rewritten as:

(9)

The last equation in turn can be integrated to yield:

(10)

where  and  are the speed of light and the gravitational potential at the origin of
coordinates. Abraham comments on this formula:

The increase of half the square of the speed of light is equal to the increase of the gravi-
tational potential.

Instead of this relation, which is exactly valid according to our theory, one can, neglect-
ing the square of the quotient of  and  take Einstein’s formula (loc. cit. p. 906):

(11)

However, eq. (6) [eq. (10)] better serves to manifest the independence from the arbi-
trarily chosen origin of coordinates.13

Abraham had thus achieved all essential elements of Einstein’s research in the years
1907 to 1911, albeit in an entirely different way which, in addition, offered a wealth
of mathematical resources for the further elaboration of a full-fledged theory of grav-
itation.

1.2 Abraham’s Mathematics versus Einstein’s Physics

While the exploitation of Minkowski’s formalism had opened up new mathematical
possibilities to Abraham, the physical interpretation of his results had yet to be
explored. Whereas Einstein had been aware from the beginning that he was trans-
gressing the limits of his original theory of relativity, Abraham seemed to have been
initially convinced that he had found the relativistic theory of gravitation that was
called for after the establishment of the principle of relativity, as is clear from his
introductory remark quoted above. But since the constancy of the speed of light was
one of the foundational elements of special relativity, it was questionable with which
right Abraham could make use of relations derived from Minkowski’s reformulation
of special relativity for a theory in which the speed of light depends on the gravita-

13 “Der Zuwachs des halben Quadrats der Lichtgeschwindigkeit ist gleich dem Zuwachs des Schwer-
kraftpotentials. Anstelle dieser, nach unserer Theorie exakt gültigen Beziehung kann man, bei Ver-
nachlässigung des Quadrats des Quotienten aus  und  die Einsteinsche Formel setzten (loc. cit.
S. 906): … [eq. 11]. Indessen läßt die Formel (6) besser die Unabhängigkeit von dem willkürlich
wählbaren Koordinatenursprung hervortreten.” [Reference is to (Einstein 1911).] (Abraham 1912h, 2)
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tional potential. It seems that Einstein, in a personal communication now lost, imme-
diately brought Abraham’s attention to this conflict between the formalism of the
latter’s theory and one of its fundamental assumptions, the variability of the speed of
light.14 

Abraham’s use of the straightforward special relativistic generalization of the
Poisson equation (2), as well as of other elements of Minkowski’s formalism, without
really bothering about the gravity of energy, made Einstein skeptical about Abra-
ham’s claims. For Einstein, the gravity of energy and the variability of the speed of
light were closely connected:

It is a great pity that the gravitation theory is leading to so little which is observable. But
it nevertheless must be taken seriously because the theory of relativity requires such a
further development with urgency since the gravitation vector cannot be integrated into
the relativity theory with constant  if one requires the gravitational mass of energy.15

In Einstein’s opinion, a special relativistic framework was hence not the appropriate
starting point for coping with the concept of a gravity of energy and for predicting
effects such as the gravitational deflection of light, while Abraham, in fact, claimed
that he could do so:

But as far as the bending of light rays in the gravitational field is concerned, which can be
derived from (6) [eq. (10)] with the help of Huygens’ principle, it is identical with the
bending of the trajectories of those light particles. This is one of the numerous incom-
plete analogies between the modern theory of radiation and the emission theory of
light.16

Einstein, on the other hand, criticized Abraham’s theory for not really explaining the
bending of light, probably because it so closely resembled a special relativistic theory:

I am having a controversy with Abraham because of his theory of gravitation. The latter
does in reality not give an account of a bending of light rays.17

14 For evidence of this personal communication see the “Correction” (“Berichtigung”) to (Abraham
1912h), quoted in note 20.

15 “Es ist sehr schade, dass die Gravitationstheorie zu so wenig Beobachtbarem führt. Aber sie muss
trotzdem ernst genommen werden, weil die Relativitätstheorie eine derartige Weiterentwicklung
gebieterisch verlangt, indem der Gravitationsvektor in die Rel. Theorie mit konstantem  sich nicht
einfügen lässt, wenn man die schwere Masse der Energie fordert.” Einstein to Wilhelm Wien, 17 May
1912, (CPAE 5, Doc. 395, 465).

16 “Was aber die Krümmung der Lichtstrahlen im Schwerkraftfelde anbelangt, die aus (6) [eq. (10)] mit
Hilfe des Huygensschen Prinzips sich ableiten läßt, so ist sie identisch mit der Krümmung der Bahn-
kurve jener Lichtteilchen. Es ist dies eine der Zahlreichen unvollständigen Analogien zwischen der
modernen Strahlungstheorie und der Emissionstheorie des Lichtes.” (Abraham 1912h, 2) He referred
to Einstein’s 1911 paper and also undertook a comparison with light deflection in an emission theory
of light.

17 “Ich habe eine Kontroverse mit Abraham wegen dessen Theorie der Gravitation. Dieselbe gibt in
Wahrheit von einer Krümmung der Lichtstrahlen nicht Rechenschaft.” Einstein to Wilhelm Wien,
27 January 1912, (CPAE 5, Doc. 343, 394).
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In later comments Einstein acknowledged that light deflection actually follows from
Abraham’s theory and concentrated his criticism more generally on what he per-
ceived as an incoherent use of the mathematical formalism of special relativity:

The theory of Abraham, according to which light is also curved, just as it is in my case, is
inconsequent from the point of view of the theory of invariants.18

What Einstein meant precisely becomes clearer from another contemporary comment:
The matter is not, however, as simple as Abraham believes it to be. In particular the prin-
ciple of the constant  and hence the equivalence of the four dimensions is lost.19

Einstein must also have addressed such criticism to Abraham directly. The latter, in
any case, reacted to Einstein’s arguments by pursuing his modification of
Minkowski’s formalism in greater depth. In a short note published on 15 February
1912 as a reply to Einstein’s critique, Abraham revoked the lines with which he had
earlier referred to Minkowski’s formalism, instead introducing an infinitesimal line
element with variable metric, thus effectively extending Minkowski’s spacetime to a
more general semi-Riemannian manifold:

In lines 16, 17 of my note “On the Theory of Gravitation” an oversight has to be cor-
rected which was brought to my attention by a friendly note from Mr. A. Einstein. One
should read there: ‘we consider  and  as components of a
displacement  in four-dimensional space’.

Hence

(12)

is the square of the four-dimensional line element where the speed of light c is deter-
mined by equation (6) [eq. (10)].20

In this way, Abraham had effectively introduced the mathematical representation of
the gravitational potential that was to be at the core of later general relativity, the gen-
eral four-dimensional line element involving a variable metric tensor. However, for
the time being, Abraham’s expression remained an isolated mathematical formula
without context and physical meaning which, at this point, was indeed neither pro-
vided by Abraham’s nor by Einstein’s physical understanding of gravitation. Abra-
ham’s expression in particular was neither related to insights about coordinate

18 “Die Theorie von Abraham, nach welcher das Licht ebenfalls ebenso wie bei mir gekrümmt ist, ist
vom invariantentheoretischen Standpunkt inkonsequent.” Einstein to Erwin Freundlich, mid-August
1913, (CPAE 5, Doc. 468, 550).

19 “So einfach, wie Abraham meint, ist die Angelegenheit aber nicht. Insbesondere geht das Prinzip des
konstanten  und damit die Gleichwertigkeit der 4 Dimensionen verloren.” Einstein to Wilhelm
Wien, 11 March 1912, (CPAE 5, Doc. 371, 430).

20 “Auf Z. 16, 17 meiner Note “Zur Theorie der Gravitation” ist ein Versehen zu berichtigen, auf welches
ich durch eine freundliche Mitteilung des Herrn A. Einstein aufmerksam geworden bin. Man lese
daselbst: ‘betrachten wir  und  als Komponenten einer Verschiebung 
im vierdimensionalen Raume’. Es ist also  das Quadrat des vierdi-
mensionalen Linienelementes, wobei die Lichtgeschwindigkeit  durch G. (6) bestimmt ist.”
(“Berichtigung,” Abraham 1912h, 176)
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systems nor to any ideas about a generalized inertial motion, as is the case for the line
element in general relativity. It therefore comes as no surprise that Abraham’s formu-
lation did not constitute any noteworthy “discovery” and that it was not even taken
very seriously by either Abraham or Einstein.21

Einstein did acknowledge the impressive formal advance owed to Abraham’s bold
“mathematical” approach, in particular when compared with his own sluggish
progress; but he quickly realized the theory’s impoverished physical meaning. In a
letter written shortly after the publication of Abraham’s first paper on 27 January
1912, he remarked: 

Abraham has supplemented my gravitation thing, making it into a closed theory, but he
made considerable errors in reasoning so that the thing is probably incorrect. This is what
happens when one operates formally, without thinking physically!22

However, he must have been initially impressed by the elegance with which Abra-
ham’s formalism yielded essentially the same results as his own, mathematically
more pedestrian efforts, and also more than what he himself had achieved. This is
evident from a comment Einstein made about two months later, when he was already
convinced that Abraham’s theory was not tenable:

Abraham’s theory has been created out of thin air, i.e., out of nothing but considerations
of mathematical beauty, and is completely untenable. I find it hard to understand how
this intelligent man allowed himself to get carried away with such superficiality. At first
(for 14 days!) I too was completely “bluffed” by the beauty and simplicity of his formu-
las. [my emphasis]23

At the beginning of February, Einstein was apparently still willing to concede to
Abraham the benefit of the doubt. He wrote:

Abraham has further developed the new gravitation theory; we are corresponding about
this since we are not completely of the same opinion.24

As early as mid-February, however, Einstein had formed his firm, negative judgement
on Abraham’s theory:

Abraham’s theory is completely untenable.25

21 For a critical view on the notion of discovery, see (Renn et al. 2001).
22 “Abraham hat meine Gravitationssache zu einer geschlossenen Theorie ergänzt, aber bedenkliche

Denkfehler dabei gemacht, sodass die Sache wohl unrichtig ist. Das kommt davon, wenn man formal
operiert, ohne dabei physikalisch zu denken!” Einstein to Heinrich Zangger, 27 January 1912,
(CPAE 5, Doc. 344, 395).

23 “Abrahams Theorie ist aus dem hohlen Bauche, d. h. aus blossen mathematischen Schönheitserwä-
gungen geschöpft und vollständig unhaltbar. Ich kann gar nicht begreifen, wie sich der intelligente
Mann zu solcher Oberflächlichkeit hat hinreissen lassen können. Im ersten Augenblick (14 Tage
lang!) war ich allerdings auch ganz “geblüfft” durch die Schönheit und Einfachheit seiner Formeln.”
Einstein to Michele Besso, 26 March 1912, (CPAE 5, Doc. 377, 436–437).

24 “Abraham hat die neue Gravitationstheorie weiter ausgeführt; wir korrespondieren darüber, weil wir
nicht vollkommen gleicher Meinung sind.” Einstein to Michele Besso, 4 February 1912, (CPAE 5,
Doc. 354, 406).
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Einstein’s harsh judgement may have also been related to the progress he himself was
meanwhile making on a theory of gravitation based on the equivalence principle. In
fact, the first reference to this theory, later published in Einstein’s papers on the static
gravitational field, is found in a letter from mid-February:

The second thing concerns the relationship: gravitational field—acceleration field—
velocity of light. Simple and beautiful things emerge here quite automatically. The veloc-
ity of light  is variable. It determines the gravitational force. A stationary point with
mass 1 is acted upon by the force

In empty space  satisfies Laplace’s equation. The inertial mass of a body is  that
is, it decreases with the gravitational potential. The equations of motion for the material
point agree essentially with those of the customary theory of relativity. Abraham’s theory
is unfounded in every respect if there really is an equivalence between the gravitational
field and the “acceleration field.”26

It thus seems that around the end of January, Einstein, impressed by “the beauty
and simplicity” of Abraham’s formulas, had taken up work on a gravitation theory of
his own and that he had then, in mid February, after an exchange of letters with Abra-
ham, come to the conclusion that the latter’s theory must be untenable, not least
because its essential achievements could also be obtained on a physically much more
sound basis from the equivalence principle. The relation between Einstein’s own
work on a gravitation theory and his negative judgement of Abraham’s theory is also
confirmed by another contemporary comment:

In the course of my research on gravitation I discovered that Abraham’s theory (1st issue
of Phys. Zeitschr.) is completely untenable.27

After having initially limited himself to private communications, Einstein then pre-
pared himself for a public controversy with Abraham:

25 “Abrahams Theorie der Gravitation ist ganz unhaltbar.” Einstein to Paul Ehrenfest, 12 February 1912,
(CPAE 5, Doc. 357, 408).

26 “Die zweite Sache betrifft die Beziehung Gravitationsfeld—Beschleunigungsfeld—Lichtgeschwin-
digkeit. Es kommen da einfache und schöne Dinge ganz zwangläufig heraus. Die Lichtgeschwindig-
keit  ist variabel. Sie bestimmt die Gravitationskraft. Auf einen ruhenden Punkt von der Masse 1
wirkt die Kraft

 erfüllt im leeren Raume die Laplace’sche Gleichung. Die träge Masse eines Körpers ist  sinkt
also mit dem Schwerepotential. Die Bewegungsgleichungen des materiellen Punktes stimmen mit
denen der gewöhnlichen Relativitätstheorie im Wesentlichen überein. Die Theorie Abrahams ist in
allen Teilen unzutreffend, wenn die Aequivalenz zwischen Schwerefeld und “Beschleunigungsfeld”
wirklich besteht.” See Einstein to Hendrik A. Lorentz, 18 February 1912, (CPAE 5, Doc. 360, 413).

27 “Bei meiner Untersuchung über Gravitation entdeckte ich, dass Abrahams Theorie (1. Heft der phys.
Zeitschr.) ganz unhaltbar ist.” Einstein to Heinrich Zangger, before 29 February 1912, (CPAE 5, Doc.
366, 421).
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Abraham’s theory is completely wrong. I will probably get into a heavy ink fight with
him.28

As no letters by Abraham on this issue have survived, only the controversy, published
later, allows one to infer how he defended himself against Einstein’s criticism in his
letters. This issue is of importance since Einstein’s published criticism of February
1912 addresses a point that is not explicitly made in Abraham’s early papers, the
admissibility of Lorentz transformations in the infinitesimally small. But Abraham’s
later papers do suggest that he viewed the correction published in February 1912 as
showing that the Lorentz transformation can be at least locally upheld. In the intro-
ductory section of a paper published in September 1912 he wrote for example:

I have just availed myself of the language of the theory of relativity. But it will become
clear that this theory cannot be brought into agreement with the views on the force of
gravity presented here, in particular because the axiom of the constancy of the speed of
light is relinquished. In my earlier papers on gravitation I have attempted to preserve at
least in the infinitesimally small the invariance with respect to the Lorentz transforma-
tions.29

Similarly Abraham wrote in June 1912:

I had given to the expressions of the gravitation tensor as well as to the equations of
motion of the material point in the gravitational field a form which in the infinitesimally
small is invariant with respect to Lorentz transformations.30

Indeed, in the series of four papers (plus one correction) Abraham published between
January and March 1912, starting from his basic paper “On the Theory of Gravita-
tion,” via “The Elementary Law of Gravitation,” the “Correction,” and “The Free
Fall,” up to “The Conservation of Energy and Matter in the Gravitational Field”31

Abraham made free use of infinitesimal Lorentz transformations, and even of their
integration,32 without ever explicitly justifying that this procedure is legitimate in the
case of a variable speed of light.

In February 1912, Einstein published his criticism of Abraham in the context of
his own first paper on a field theory of gravitation. To the editor of the Annalen der
Physik he wrote:

28 “Abrahams Theorie ist ganz falsch. Ich werde wohl ein schweres Tintenduell mit ihm bekommen.”
Einstein to Ludwig Hopf, after 20 February 1912, (CPAE 5, Doc. 364, 418).

29 “ Ich habe mich soeben der Sprache der Relativität bedient. Doch wird sich zeigen, daß diese Theorie
mit den hier vorgetragenen Ansichten über die Schwerkraft nicht zu vereinbaren ist, schon darum
nicht weil das Axiom von der Konstanz der Lichtgeschwindigkeit aufgegeben wird. Ich habe in mei-
nen früheren Arbeiten über die Gravitation versucht, wenigstens in unendlich kleinen die Invarianz
gegenüber den Lorentz-Transformationen zu bewahren.” (Abraham1912b, 793–794)

30 “Ich hatte den Ausdrücken des Gravitationstensor, sowie den Bewegungsgleichungen des materiellen
Punktes im Schwerefelde eine Form gegeben, die im unendlich kleinen gegenüber Lorentztransfor-
mationen invariant ist.” (Abraham 1912f, 1057)

31 See (Abraham 1912h, 1912a, 1912c, 1912d) respectively.
32 See (Abraham 1912c, 310).
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I hereby send you a paper for the Annalen. Many a drop of sweat is hanging on it, but I
now have complete confidence in the matter. Abraham’s theory is completely unaccept-
able. How could anybody have the luck to guess effortlessly equations which are correct!
Now I am looking for the dynamics of gravitation. But this will not happen so quickly!33

In his paper, the aim of criticizing Abraham’s theory is immediately announced in the
introduction:

Since then, Abraham has constructed a theory of gravitation which contains the conse-
quences drawn in my first paper as special cases. But we will see in the following that
Abraham’s system of equations cannot be brought into agreement with the equivalence
hypothesis, and that his conception of time and space cannot be maintained even from
the purely mathematically formal point of view.34

Einstein’s argument against Abraham’s theory is given in §4 of his paper “General
Remarks on Space and Time”:

Which is now the relation of the above theory to the old theory of relativity (i.e. to the
theory of the universal )? According to Abraham’s opinion the transformation equa-
tions of Lorentz are still valid in the infinitesimally small, that is, there shall be an 
transformation so that:

(13)

are valid.  and  must be complete differentials. Therefore the following equations
must be valid:

(14)

33 “Ich sende Ihnen hier eine Arbeit für die Annalen. Hängt mancher Schweisstropfen daran, aber ich
habe jetzt alles Vertrauen zu der Sache. Abrahams Theorie der Gravitation ist ganz unannehmbar. Wie
könnte einer auch das Glück haben Gleichungen mühelos zu erraten, die richtig sind! Nun suche ich
nach der Dynamik der Gravitation. Es wird aber nicht schnell damit gehen!” Einstein to Wilhelm
Wien, 24 February 1912, (CPAE 5, Doc. 365, 420).

34 “Seitdem hat Abraham eine Theorie der Gravitation aufgestellt, welche die in meiner ersten Arbeit
gezogenen Folgerungen als Spezialfälle enthält. Wir werden aber im folgenden sehen, daß sich das
Gleichungssystem Abrahams mit der Äquivalenzhypothese nicht in Einklang bringen läßt, und daß
dessen Auffassung von Zeit und Raum sich schon vom rein mathematisch formalen Standpunkte aus
nicht aufrecht erhalten läßt.” (Einstein 1912, 355)
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In the unprimed system the gravitational field shall now be static. Then  is an arbitrarily
given function of  but independent of  If the primed system shall be a ‘uniformly’
moved one, then for fixed   must be in any case independent of  The left-hand
sides of the equations, and hence also the right-hand sides must therefore vanish. But the
latter is impossible, since for  given in terms of arbitrary functions of  both right-
hand sides cannot be made to vanish by appropriately choosing  in dependence on 
Therefore it is shown that even for infinitesimally small regions of space and time one
cannot adhere to the Lorentz transformation as soon as one gives up the universal con-
stancy of 35

In modern terminology, Einstein’s argument amounts to showing that it is gener-
ally impossible to transform a coordinate system in which the metric does not have
the Minkowskian form into another, well-defined one by means of a Lorentz transfor-
mation. In a letter somewhat later Einstein summarized his negative attitude toward
Abraham’s treatment of space and time as follows:

I have now finished my studies on the statics of gravitation and have great confidence in
the results. But the generalization appears to be very difficult. My results are not in
agreement with those of Abraham. The latter has worked here, contrary to his usual style,
rather superficially. Already his treatment of space and time is untenable.36

In spite of Einstein’s criticism, Abraham nevertheless continued to use
Minkowski’s framework for elaborating consequences of his theory of gravitation,
some of which will be discussed below. Einstein, in turn, became gradually con-
vinced that it was worthwhile after all to take a closer look at the utility of a modifica-
tion of this formalism for his version of a gravitational field theory as well. Driven by
Abraham’s bold and occasionally stubborn persistence, Einstein in May 1912 thus
finally recognized that a generalized line element, as suggested by Abraham’s note of
three months earlier, indeed represents the key to a generally relativistic gravitation
theory.37

35 “In was für einem Verhältnis steht nun die vorstehende Theorie zu der alten Relativitätstheorie (d. H.
zu der Theorie des universellen )? Nach Abrahams Meinung sollen die Transformationsgleichungen
von Lorentz nach wie vor im unendlich Kleinen gelten, d. h. es soll eine –Transformation geben,
so daß [eq. (13)] gelten.  und  müssen vollständige Differentiale sein. Es sollen also die Glei-
chungen gelten [eq. (14)]. Es sei nun im ungestrichenen System das Gravitationsfeld ein statisches.
Dann ist  eine beliebig gegebene Funktion von  von  aber unabhängig. Soll das gestrichene
System ein “gleichförmig” bewegtes sein, so muß  bei festgehaltenem  jedenfalls von  unabhän-
gig sein. Es müssen daher die linken Seiten der Gleichungen, somit auch die rechten Seiten ver-
schwinden. Letzteres ist aber unmöglich, da bei beliebig in Funktionen von  gegebenem  nicht
beide rechten Seiten zum Verschwinden gebracht werden können, indem man  in Funktion von 
passend wählt. Damit ist also erwiesen, daß man auch für unendlich kleine Raum-Zeitgebiete nicht an
der Lorentztransformation festhalten kann, sobald man die universelle Konstanz von  aufgibt.” (Ein-
stein 1912, 368)

36 “Die Untersuchungen über die Statik der Gravitation habe ich nun fertig und setze grosses Vertrauen
in die Resultate. Aber die Verallgemeinerung scheint sehr schwierig zu sein. Meine Ergebnisse sind
mit denen von Abraham nicht im Einklang. Dieser hat gegen seine sonstige Gewohnheit hier recht
oberflächlich gearbeitet. Schon seine Behandlung von Raum und Zeit ist unhaltbar.” Einstein to Lud-
wig Hopf, 12 June 1912, (CPAE 5, Doc. 408, 483).

37 See “Classical Physics in Disarray …” and “The First Two Acts” (both in vol. 1 of this series).
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1.3 Abraham’s Rejection of Relativity

As time went by, Abraham’s reaction to the controversy with Einstein became more
and more acrid, until eventually he rejected the theory of relativity altogether. This is
in stark contrast to Einstein’s ever more resolved search for a generalization of the
relativity principle as familiar from classical physics. In fact, Einstein had concluded
his criticism of Abraham with the following comment:

To me the spacetime problem seems to lie as follows. If one limits oneself to a region of
constant gravitational potential, the natural laws take on an outstandingly simple and
invariant form if one refers them to a spacetime system of that manifold which are con-
nected to each other by the Lorentz transformations with constant  If one does not
restrict oneself to regions of constant  then the manifold of equivalent systems, just as
the manifold of the transformations that leave the natural laws unchanged, will become a
larger one, but the laws will, on the other hand, become more complicated.38

In his published response to Einstein’s critique, Abraham, on the other hand, wrote
(the first sentence is quoted above):

I had given to the expressions of the gravitation tensor as well as to the equations of
motion of the material point in the gravitational field a form which in the infinitesimally
small is invariant with respect to Lorentz transformations. In the restriction to the infini-
tesimally small it is already implicit that this invariance shall not be maintained in the
finite. In fact, if the gravitational field influences the speed of light, then it is clear from
the outset that there is an essential difference between a reference system  in
which the gravitational field is a static one and a reference frame  which is
uniformly moved with respect to the former, in which the gravitational field, and hence
also the speed of light, is changing with time. There can be no talk about any kind of rel-
ativity, i.e., about a correspondence between the two systems, which would express itself
in equations between their spacetime parameters  and  Indeed the differ-
ential equations between   and   which contain the Lorentz-transforma-
tion in the infinitesimally small, are, as Mr. Einstein observes, not integrable.39

Abraham thus drew from the same mathematical fact a consequence that is diametri-
cally opposed to that drawn by Einstein. Instead of calling for an extension of the rel-
ativity principle, as Einstein did, Abraham called for a complete rejection of this
principle. He therefore continued:

But in this inherently correct observation I cannot find any justification for the claim that
“my conception of time and space cannot be maintained even from the purely mathemat-
ically formal point of view.” However, any relativistic spacetime conception which
would find its expression in relations between spacetime parameters of  and 
becomes untenable. Such a relativistic spacetime conception is, on the other hand,

38 “Mir scheint das Raum-Zeitproblem wie folgt zu liegen. Beschränkt man sich auf ein Gebiet von kon-
stantem Gravitationspotential, so werden die Naturgesetze von ausgezeichnet einfacher und invarian-
ter Form, wenn man sie auf ein Raum-Zeitsystem derjenigen Mannigfaltigkeit bezieht, welche durch
die Lorentztransformationen mit konstantem  miteinander verknüpft sind. Beschränkt man sich
nicht auf Gebiete von konstantem  so wird die Mannigfaltigkeit der äquivalenten Systeme, sowie
die Mannigfaltigkeit der die Naturgesetze ungeändert lassenden Transformationen eine größere wer-
den, aber es werden dafür die Gesetze komplizierter werden.” (Einstein 1912, 368–369)
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entirely far fetched to me. As I have already mentioned elsewhere [Abraham 1912g], to
me, the interpretation in the sense of an absolute theory seems rather the appropriate one.
If among all reference frames that one is privileged in which the gravitational field is
static, or quasi static, then it is permissible to refer to a motion related to this system as
‘absolute’.40

He proceeds by explaining the relation of his conception to traditional physical ideas
about preferred systems of reference, such as that identified by Neumann’s “body

” and concludes with the remark:

Who wishes to do so, may interpret this conception as an argument for the ‘existence of
the aether’.41

Abraham became ever more skeptical about Einstein’s attempts to extend the
principle of relativity, as his later publications show. Although he actively contributed
to developing tools and concepts of a relativistic theory of gravitation, such as expres-
sions for stresses and energy in a gravitational field, he never dealt in detail with the
revisions of the concept of time implied by his own theory, let alone those of the con-
cepts of space and time associated with Einstein’s rival theories.42 In a paper submit-
ted in July 1912, Abraham pointed to Einstein’s difficulties with implementing the
equivalence hypothesis in his own theory of gravitation, but merely restricted himself
to the following brief remark on the subject:

Here I would therefore prefer to develop the new gravitation theory without entering the
spacetime problem.43

39 “Ich hatte den Ausdrücken des Gravitationstensors, sowie den Bewegungsgleichungen des materiellen
Punktes im Schwerefelde eine Form gegeben, die im unendlich kleinen gegenüber Lorentztransfor-
mationen invariant ist. In der Beschränkung auf das unendlich kleine liegt schon implicite enthalten,
daß im endlichen diese Invarianz nicht bestehen soll. In der Tat, wenn das Gravitationsfeld die Licht-
geschwindigkeit beeinflußt, so ist es von vornherein klar, daß ein wesentlicher Unterschied zwischen
einem Bezugssystem  besteht, in welchem das Schwerkraftfeld ein statisches ist, und einem
gegen dieses gleichförmig bewegten Bezugssystem  in welchem das Schwerkraftfeld,
und mithin auch die Lichtgeschwindigkeit, sich zeitlich verändert. Es kann von irgend einer Art von
Relativität, d. h. von einer Korrespondenz der beiden Systeme, die sich in Gleichungen zwischen
ihren Raum-Zeit-Parametern  uns  ausdrücken würde, keine Rede sein. In der Tat sind,
wie Hr. Einstein bemerkt, die Differenzialgleichungen zwischen   und   welche die
Lorentztransformation im unendlich kleinen enthalten, nicht integrabel.” (Abraham 1912f, 1057)

40 “In dieser an sich zutreffenden Bemerkung kann ich freilich keine Rechtfertigung für die Behauptung
finden, daß “meine Auffassung von Zeit und Raum sich schon vom rein mathematisch formalen
Standpunkt aus nicht aufrecht erhalten läßt”. Unhaltbar wird allerdings jede relativistische Raum-
Zeit-Auffassung, die in Beziehungen zwischen den Raum-Zeit-Parametern von  und  ihren Aus-
druck finden würde. Eine solche relativistische Raum-Zeit-Auffassung liegt mir indessen ganz fern.
Mir scheint vielmehr, wie ich bereits an anderem Orte erwähnt habe [Abraham 1912g], die Deutung
im Sinne einer Absoluttheorie die passende zu sein. Wenn unter allen Bezugssystemen dasjenige aus-
gezeichnet ist, in welchem das Schwerefeld statisch, oder quasi-statisch ist, so ist es erlaubt, eine auf
dieses System bezogene Bewegung “absolut” zu nennen.” (Abraham 1912f, 1057)

41 “Wer will, mag diese Vorstellung als Argument für die ‘Existenz des Äthers’ deuten. (Abraham 1912f,
1058)
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Abraham did not just ignore the consequences of the new gravitation theories for the
concepts of space and time, he actually rejected them, with no lesser consequence
than that with which Einstein pursued them. In short, the same challenging task of
creating a gravitation theory compatible with relativity theory found complementary
responses in Abraham and Einstein. While both not only acknowledged the difficul-
ties of making them compatible, but also returned to a revision of special relativity,
Einstein did so in order to complete the relativity revolution, and Abraham to undo it.
Commenting on Einstein’s later attempts at a relativistic theory of gravitation, Abra-
ham wrote in a popular review of 1914:

Hence, at the cliff of gravitation every theory of relativity fails, the special one of 1905,
as well as the general one of 1913. The relativistic ideas are obviously not sufficiently
advanced to serve as a framework for a complete worldview.

But historical merit does remain for the theory of relativity with regard to its critique of
the concepts of space and time. It has taught us that these concepts depend on the ideas
we form concerning the behavior of the measurement rods and clocks that we use for the
measurement of lengths and intervals of time, and which are subject to change with them
[the measurement instruments]. This will secure an honorable funeral for the theory of
relativity.44

Although Abraham did not accept the new concepts of space and time introduced
by Einstein, he remained an acute critic of the latter’s ongoing search for a relativistic

42 In March 1911 Abraham submitted a paper (Abraham 1912c) in which he used the distinction
between proper time and coordinate time in order to draw far-reaching cosmological consequences
from his theory. In this paper Abraham explained his definition of time coordinates:
“  denotes the ‘proper time’ of the moved point, which is related to the time  measured in the refer-
ence system as follows:

(  magnitude of velocity of the material point).
Clearly, Abraham’s explanation of the relation between proper time and coordinate time, although for-
mally analogous to Minkowski’s formalism, can neither be based on this formalism, as the speed of
light is assumed to be variable, nor be brought into harmony with Einstein’s physical motivation for
these two notions of time. Contrary to Einstein it appears from the remainder of this paper that Abra-
ham considered only the coordinate time  to have any physical meaning.

43 “Ich möchte es daher hier vorziehen, die neue Gravitationstheorie zu entwickeln, ohne auf das Raum-
Zeit-Problem einzugehen.” (Abraham 1912b, 794)

44 “An der Klippe der Schwerkraft scheitert also jede Relativitätstheorie, sowohl die spezielle von 1905,
wie die allgemeine von 1913. Die relativistischen Ideen sind offenbar nicht weit genug, um einem
vollständigen Weltbilde als Rahmen zu dienen. Doch bleibt der Relativitätstheorie ein historisches
Verdienst um die Kritik der Begriffe von Raum und Zeit. Sie hat uns gehehrt, dass diese Begriffe von
den Vorstellungen abhängen, die wir uns von dem Verhalten der zur Messung von Längen und Zeitin-
tervallen dienenden Massstäbe und Uhren bilden, und die mit ihnen dem Wandel unterworfen sind.
Dies sichert der Relativitätstheorie ein ehrenvolles Begräbnis.” (Abraham 1914, 26)
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theory of gravitation, which, apart from Abraham’s reaction, found only little reso-
nance in the contemporary physics community. In a letter to his friend Michele
Besso, Einstein wrote:

Physicists have such a passive attitude toward my work on gravitation. Abraham is still
the one who shows the most comprehension. It is true that he complaints violently in
‘Scientia’ against anything to do with relativity, but with understanding.45

In spite, and occasionally perhaps because of his intellectual distance, Abraham
noticed problematic features of Einstein’s attempts, which eventually became impor-
tant issues in the development of general relativity, such as the question of the sense
in which Einstein’s mathematical requirement of a generalized covariance actually
also realizes a generalization of the relativity principle as he claimed. In a review
paper of 1915, Abraham expressed his doubts concerning Einstein’s claim that his
Entwurf theory of 1913, which is covariant with regard to general linear transforma-
tions, actually represents a generalization of the relativity principle of the special the-
ory of 1905:

The significance of this transformation group lies in the fact that it contains the Lorentz
transformations; in the earlier theory of relativity the covariance with respect to this
group gave expression to the equivalence of systems of reference in translatory motion
with respect to each other. Is this presently also the case in the “generalized theory of rel-
ativity”? Does the covariance of the field equations with respect to linear orthogonal
transformations imply that in a finite system of mutually gravitating bodies the course of
the relative motions is not altered by a uniform translation of the entire system? That this
is so has so far not been proven.46

Abraham thus pinpoints a distinction that is today considered as being crucial for
understanding the covariance properties of a gravitational field equation, the distinc-
tion between general covariance as a property of the mathematical formulation of
such a field equation, and the symmetry group under which the theory remains invari-
ant, as is the case for the Lorentz group of special relativity. He thus anticipates a
conceptual clarification that is usually attributed to Kretschmann.47 But in spite of
this significant insight, Abraham’s further explanation of his skeptical attitude shows
signs of a still immature understanding of the kinematics within a generic four-

45 “Zur Gravitationsarbeit verhält sich die physikalische Menschheit ziemlich passiv. Das meiste Ver-
ständnis hat wohl Abraham dafür. Er schimpft zwar in der “Scienza” kräftig über alle Relativität, aber
mit Verstand.” Einstein to Michele Besso after 1 January 1914, (CPAE 4, Doc. 499). See (Cattani and
De Maria 1989, 171).

46 “Die Bedeutung dieser Transformationsgruppe beruht darauf, daß sie die Lorentzschen Transforma-
tionen enthält; die Kovarianz ihnen gegenüber brachte in der früheren Relativitätstheorie die Gleich-
berechtigung translatorisch gegeneinander bewegter Bezugssysteme zum Ausdruck. Ist dies nun auch
in der “verallgemeinerten Relativitätstheorie” der Fall? Bedingt es die Kovarianz der Feldgleichungen
gegenüber linearen orthogonalen Transformationen, daß in einem endlichen Systeme gegeneinander
gravitierender Körper der Ablauf der relativen Bewegungen durch eine gleichförmige Translation des
ganzen Systems nicht geändert wird? Daß dem so sei, ist bisher nicht bewiesen worden.” (Abraham
1915, 515)

47 See (Kretschmann 1917) and, for historical discussion, (Norton 1992, 1993; Rynasiewicz 1999).
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dimensional spacetime manifold, in particular, concerning his lack of understanding
of the relation between different coordinate representations of one and the same
physical magnitude:

Such a proof may already be impossible to conduct for the reason that the concept of
“uniform motion” of a finite system is completely up in the air in the new theory of rela-
tivity. Since the “natural” space and time measurement is influenced by the values of the
space and time potential, observers at different locations in the gravitational field will
ascribe different velocities to the same material point. Only for an infinitesimally small
region of four-dimensional space—i.e. for one in which the potentials  can be con-
sidered a constant—is “velocity” defined at all.48

Abraham then returns to the problem of interpreting the covariance property of the
field equations in terms of a relativity principle:

Presumably, only within such an infinitesimal region may the covariance of the gravita-
tional equations with respect to linear orthogonal transformations be interpreted in the
sense of an equivalence of systems of reference moving with respect to each other. But if
relativity of motion no longer exists for finite systems of gravitating masses in Einstein’s
theory, with what right does he then assign such great importance to the formal connec-
tion to the earlier theory of relativity?49

Abraham’s criticism was evidently colored by his growing hostility toward any
theory of relativity, and motivated, without doubt, by his own failure to successfully
establish a relativistic theory of gravitation. But because it raised such crucial issues
as the physical significance of the unfamiliar mathematical objects introduced in the
course of Einstein’s search for such a theory, it nevertheless represents an important
intellectual context of the emergence of general relativity. Abraham’s sometimes
ardent polemics reveal not only the challenging difficulties with which Einstein con-
fronted his contemporaries, but also contributed, at the time, to anchoring his high-
flying mathematical artifices in the shared knowledge of contemporary physics, a
process made particularly ungainly by the hesitant and cool reaction to Einstein’s
labors of other contemporary scientists.

48 “Ein solcher Beweis dürfte auch schon aus dem Grunde sich nicht führen lassen, weil der Begriff der
“gleichförmigen Bewegung” eines endlichen Systems in der neuen Relativitätstheorie völlig in der
Luft schwebt. Denn da die “natürliche” Raum- und Zeitmessung durch die lokalen Potentialwerte
beeinflußt wird, so werden Beobachter an verschiedenen Orten im Schwerefelde demselben materiel-
len Punkte verschiedene Geschwindigkeiten zuschreiben. Nur für ein unendlich kleines Gebiet des
vierdimensionalen Raumes—d. h. für ein solches, in welchem die Potentiale  als konstant gelten
könne—ist die “Geschwindigkeit überhaupt definiert.” (Abraham 1915, 515)

49 “Vermutlich dürfte nur innerhalb eines solchen infinitesimalen Gebietes die Kovarianz der Gravitati-
onsgleichungen gegenüber orthogonalen linearen Transformationen im Sinne einer Gleichberechti-
gung gegeneinander bewegter Bezugssysteme zu deuten sein. Wenn aber in Einsteins Theorie für
endliche Systeme gravitierender Massen keine Bewegungsrelativität mehr besteht, mit welchem
Rechte legt er dann dem formalen Anschluß an die frühere Relativitätstheorie eine so große Wichtig-
keit bei?” (Abraham 1915, 515–516)
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2. VISTAS FROM JUST BELOW THE SUMMIT

2.1 A New Theory of Gravitation Meets the Shared Knowledge

Abraham’s insights into the nature and effects of the gravitational field conceived in a
relativistic context are today even less well known than his theoretical approach. It
may seem that they have been rightly forgotten because of their apparent lack of
impact on the further development of the theory. It was, however, precisely Abra-
ham’s untiring efforts to elaborate his theoretical approach and to draw physical con-
sequences from it that turned his theory into a valuable touchstone and standard of
comparison for other contemporary attempts at a relativistic theory of gravitation.
Some of the insights that Abraham achieved in the course of his research, such as the
possibility and essential properties of gravitational waves remain to this day a stan-
dard for a relativistic theory of gravitation.

In the first paper on his theory, Abraham did not go into much detail about the
physical consequences of his new theory of gravitation. But he did, of course, have to
confront the shared physical knowledge of his time. This ranged from the knowledge
embodied in Newton’s theory of gravitation—including the deviations from it—via
energy and momentum conservation to some of the unusual insights attained by Ein-
stein on the basis of the equivalence principle, such as the deflection of light, which
possibly had to be incorporated in this new theory of gravitation as well. 

In his paper, Abraham first discusses the equations of motion in a gravitational
field which he formulates, as we have seen above, in analogy to Newtonian dynam-
ics. From equations (6) and (7) he obtains:

(15)

These three equations he interpreted as representing momentum conservation. He
then added:

In contrast, the last of the equations (3) [i.e. eq. (7)]:

(16)

expresses the law of conservation of vis viva in Minkowskian mechanics.50

Abraham had thus dealt with one of the inescapable requirements imposed on a new
theory by the accumulated knowledge of classical and special relativistic physics. He
also went into some detail about the energy balance of physical processes in a gravi-
tational field.

Concerning the observable consequences of his theory, he did not even mention
the gravitational redshift predicted by Einstein, probably because at that point he

50 See (Abraham 1912h, 2).
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could not or did not want to follow Einstein’s introduction of two notions of time in a
gravitational field.51 But he did take up Einstein’s prediction of a gravitational light
deflection, which he compared to that predicted by the emission theory of light.
Abraham had, after all, developed his theory of gravitation in reaction to Einstein’s
1911 paper and, in particular, to the introduction of a variable speed of light which
this paper emphasized. Commenting on equations (10) and (11) he wrote (as partly
quoted above):

It is instructive to compare the relation obtained with the emission theory of light. Let us
imagine that the particles emitted from the light source move according to the laws of
Galilean mechanics and that they are subject to the gravitational force. They would then
experience an increase of vis viva (kinetic energy) which is equal to the decrease of
potential energy. The increase of vis viva (kinetic energy) of the light particles calculated
according to (6) [i.e. eq. (10)] is, by contrast, equal to the increase of their potential
energy, i.e., of the same amount but of opposite sign as that following from the emission
theory. But as far as the bending of light rays in the gravitational field is concerned,
which can be derived from (6) [i.e. eq. (10)] with the aid of Huygens’ principle,1) it is
identical with the bending of the trajectory of those light particles. This is one of the
numerous incomplete analogies between the modern theory of radiation and the emission
theory of light.52

To this passage, after “with the aid of Huygens’ principle,” Abraham appended the
following footnote in which he refers to Einstein:

A. Einstein has shown that a light ray passing the surface of the Sun is deflected towards
the Sun and has drawn the attention of the astronomers to this consequence of the theory
which can perhaps serve as its verification.53

Apart from this footnote Abraham did not discuss specific observational conse-
quences of his theory. This, however, does not imply that he was not interested in
them. On the contrary, at about the same time as Einstein, he independently and
actively pursued the astronomical consequences of a relativistic theory of gravitation
as is evident from a letter he wrote to Schwarzschild.54

51 Gravitational redshift is mentioned for the first time with reference to Einstein, in (Abraham 1913,
197).

52 “Es ist lehrreich, die erhaltene Beziehung der Emissionstheorie des Lichts gegenüberzustellen. Wir
wollen uns vorstellen, daß die von der Lichtquelle emittierten Teilchen sich gemäß den Gesetzen der
Galileischen Mechanik bewegen, und daß sie der Schwerkraft unterworfen seien. Dann würden sie
einen Zuwachs an lebendiger Kraft erfahren, welcher gleich der Abnahme der potentiellen Energie ist.
Dagegen ist der nach (6) [eq. 10] berechnete Zuwachs der Lichtteilehen an lebendiger Kraft gleich der
Zunahme ihrer potentiellen Energie, d. h. von gleichem Betrage, aber von entgegengesetztem Vorzei-
chen, wie der aus der Emissionstheorie folgende. Was aber die Krümmung der Lichtstrahlen im
Schwerkraftfelde anbelangt, die aus (6) [eq. 10] mit Hilfe des Huygensschen Prinzips sich ableiten
läßt, so ist sie identisch mit der Krümmung der Bahnkurve jener Lichtteilchen. Es ist dies eine der
zahlreichen unvollständigen Analogien zwischen der modernen Strahlungstheorie und der Emissions-
theorie des Lichtes.” (Abraham 1912h, 2)

53 “A. Einstein hat gezeigt, daß ein die Sonnenoberfläche passierender Lichtstrahl nach der Sonne hin
abgelenkt wird, und hat die Aufmerksamkeit der Astronomen auf diese Konsequenz der Theorie
gelenkt, die vielleicht zu ihrer Prüfung dienen kann.” (Abraham 1912h, 2, fn.1)
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In a publication following immediately, “The Elementary Law of Gravitation,”55

which was also submitted in December 1911, Abraham returned to the question of
the relation of his theory to experience. The principal aim of this paper is the deriva-
tion from the theory published in the preceding paper of an expression of the gravita-
tional force between two “world points”  and  “an elementary law of
gravitation,” as Abraham called it. For this purpose he integrated the field equation of
his theory, equation (2), using the Cauchy method of residues and following a proce-
dure by Herglotz.56 Such an elementary law allowed for a comparison not only with
Newton’s law of gravitation but also with earlier adaptations of action-at-a-distance
laws to a relativistic framework. Furthermore, it allowed Abraham, at least in princi-
ple, to address the astronomical consequences of his theory and to explore deviations
from classical predictions.

He concluded his publication with the following summary:

According to this elementary law the moving force exerted by  on  is represented as
a sum of two four-vectors, of which one is parallel to the radius  drawn from the
world point  to  the other to the velocity vector  of  This corresponds to the
approaches of Poincaré and Minkowski. But our elementary law is simpler, insofar as it
does not involve the velocity of the attracted point, and more general, because it also
takes into account the acceleration of the attracting point. Its comparison with astronom-
ical observation could serve for the examination of the theory of gravitation developed in
the previous note.57

Abraham, however, did not specify which astronomical phenomena might be com-
pared to the consequences of his elementary law. But modifications of Newton’s ele-
mentary law had earlier been referred to the perihelion anomaly of Mercury58 so that
this may well have been one of the astronomical consequences Abraham had in mind.
In other words, the deviation of planetary motion from the implications of Newtonian
mechanics was also part of the generally shared knowledge that a new gravitation
theory had to confront. On the basis of estimating the order of magnitude of devia-
tions from Newton’s law, Abraham himself later remarked:

54 Abraham to Schwarzschild, see “The Continuity between Classical and Relativistic Cosmology in the
Work of Karl Schwarzschild,” p. 165, (in this volume).

55 See (Abraham 1912a).
56 See (Herglotz 1904), and also (Sommerfeld 1910, 665; 1911, 51) where according to Abraham the

analogous electrical problem is treated.
57 “Diesem Elementargesetz zufolge stellt sich die von  auf  ausgeübte bewegende Kraft als

Summe zweier Vierervektoren dar, von denen der eine dem vom Weltpunkte  nach  gezogenen
Fahrstrahl  der andere dem Geschwindigkeitsvektor  von  parallel ist. Dieses entspricht den
Ansätzen von Poincaré und von Minkowski. Doch unser Elementargesetz einfacher, insofern als die
Geschwindigkeit des angezogenen Punkts nicht eingeht, und allgemeiner, weil es auch die Beschleu-
nigung des anziehenden Punkts berücksichtigt. Seine Vergleichung mit der astronomischen Beobach-
tung könnte zur Prüfung der in der vorigen Note entwickelten Theorie der Schwerkraft deinen.”
(Abraham 1912a, 5)

58 See (Zenneck 1903), compare also (Poincaré 1906 and Minkowski 1909).
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The correction of Newton’s law introduced in (16)59 is hence likely to be too small for
noticeably influencing the planetary motion. (Abraham 1912b, 797)

Nevertheless, in the same year 1912, G. Pavanini calculated the perihelion shift of
Mercury according to Abraham’s theory, finding a value of  that is, approxi-
mately one third of the observed value.60 Abraham’s theory thus made a more accu-
rate prediction than the much more elaborate theory of gravitation Einstein and
Grossmann published in 1913.61

2.2 Audacious Outlooks

The empirical consequences of Abraham’s theory of gravitation were by no means
limited to those already envisaged by Einstein, or to those immediately obvious from
the body of knowledge covered by the Newtonian theory. Abraham was a master of
classical electrodynamics, and, for this reason, was not only used to elaborating in
depth and detail the consequences of a complex theory, but also had a specific model
that suggested where to look for analogies and differences between the two field the-
ories—electromagnetic and gravitational. In the following, we will briefly look at
two of the outstanding achievements that resulted from Abraham’s efforts to draw far-
reaching physical consequences from his theory. Both concern subjects of great inter-
est to present research in general relativity, spacetime singularities and gravitational
waves. Until now, the name Max Abraham has played no role in the history of these
subjects, although his contributions are unlikely to have gone entirely unnoticed by
those who continued the search for a relativistic theory of gravitation at the time he
gave up.

In a paper submitted in March 1912, “The Free Fall” (Abraham 1912c), Abraham
considered the motion of free fall in a homogeneous gravitational field, i.e., in exactly
the same kind of gravitational field that was used in the formulation of Einstein’s
equivalence principle, and drew some far-reaching cosmological consequences from
his calculations. These consequences essentially depend on equations (10), relating
the speed of light and the gravitational potential, and on the relation between coordi-
nate time and proper time. From the law of fall, which Abraham derived from his
equations of motion in a gravitational field, he first concluded that there is a point in
(coordinate) time, corresponding to a certain distance of fall, at which the speed of
light becomes zero. This point corresponds to a singularity in the relation between
proper time and coordinate time. From the condition that the speed of light must
always remain larger than zero, he then concluded, with the help of (10), that:62

59 A law of the form 

60 See (Pavanini 1912). See also the brief discussion of these results in (Abraham 1915, 488). For the
corresponding calculation in Nordström’s theory, see (Behacker 1913, 989).

61 See (Einstein and Grossmann 1913). See also “What Did Einstein Know …” (in vol. 2 of this series).
62 See (Abraham 1912c, 311).
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(17)

As a first step, he interpreted this relation as implying that the existence of a homoge-
neous gravitational field of infinite extension is excluded and then turned to further,
as he called them, “cosmogonic” consequences of this relation.
He considered a star of mass  with the potential:

(18)

and compared the potential difference between an infinite distance and the surface of
the star at distance 

(19)

From equation (17) he then inferred that there is a maximum for the quotient of mass
and radius:

Therefore

(20)

must hold. For the Sun one has in cgs units

(21)

Thus, the quotient of mass and radius for an arbitrary star must satisfy the inequality

(22)

For stars whose mean density is equal to that of the Sun, the quotients  are propor-
tional to the squares of the radii. Hence, the following must hold

(23)

and thus

(24)

That is, the mass of a star whose mean density is equal to that of the Sun cannot become
larger than one hundred million times the mass of the Sun.

Since this limit is rather high, no difficulties arise from this for our theory.63

Abraham, in March 1912, was hence the first to hit upon a singularity in a field
theory of gravitation and to calculate what was later called the “Schwarzschild
radius.” Although his understanding of the relation between proper time and coordi-
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nate time does not correspond to the modern one, his consideration of their relation
for a freely falling object in the field of a point mass corresponds to a procedure still
applied in modern general relativity. From his introductory reference to the “cosmog-
onic” implications of his theory one may further infer that he did not consider this
singularity to be fictitious, contrary to the first explorers of the Schwarzschild singu-
larity within general relativity, Eddington and Lemaitre.64 Abraham did not, however,
directly relate his result to light deflection, although the vanishing of the speed of
light at the singularity clearly implies that light cannot escape from it. But Abraham
did not make this consequence explicit and rather limited himself to interpreting the
singularity in terms of limits on the size of stars.

In a lecture presented in October 1912 and published the following year (Abra-
ham 1913) Abraham was also the first to discuss the possibility of gravitational waves
in a relativistic field theory of gravitation. There he wrote:

According to our theory, light and gravitation have the same speed of propagation; but
whereas light waves are transverse, gravitational waves are longitudinal. Incidentally, the
problem of the oscillating particle can be treated in a similar manner as that of the oscil-
lating electron; the strength of the emitted gravitational waves depends on the product of
gravitational mass and the acceleration of the particle. Is it possible to detect these gravi-
tational waves?

This hope is futile. Indeed, to impart an acceleration to one particle, another particle is
necessary which, according to the law of action and reaction, is driven in the opposite
side. But now, the strength of the emitted gravitational waves depends on the sum of the
products of the gravitational mass and the acceleration of the two particles, while,
according to the reaction principle, the sum of the products of inertial mass and accelera-
tion is equal to zero.65 Therefore, although the existence of gravitational waves is com-
patible with the assumed field mechanism, through the equality of gravitational and
inertial mass the possibility of its production is practically excluded. It follows from this
that the planetary system does not lose its mechanical energy through radiation, whereas
an analogous system consisting of negative electrons circling around a positive nucleus
gradually radiates its energy away. The life of the planetary system is thus not threatened
by such a danger.66

Abraham’s argument amounts to showing that, because of momentum conservation,
there can be no dipole moment in gravitational waves; it is an argument still used in

63 Es muß also sein: [(eq. 20)]. Für die Sonne hat man, in C.G.S.Einheiten [(eq. 21)]. Daher muß der
Quotient aus Masse und Radius für einen beliebigen Stern der Ungleichung genügen [(eq. 22)]. Für
Sterne, deren mittlere Dichte derjenigen der Sonne gleich ist, stehen die Quotienten  im Verhält-
nis der Quadrate der Radien; es muß dann sein [(eq. 23)] und somit [(eq. 24)]. D h. die Masse eines
Sternes, dessen mittlere Dichte derjenigen der Sonne gleich ist, kann nicht größer werden als das
Hundertmillionenfache der Masse der Sonne. Da diese Grenze recht hoch ist, so entsteht hieraus
keine Schwierigkeit für unsere Theorie.” (Abraham 1912c, 311)

64 See (Eisenstaedt 1989).
65 Abraham’s footnote: Here the momentum of the gravitational field has, however, been neglected; but

this [momentum] practically comes as little into consideration as the energy of the field. (“Hierbei ist
allerdings der Impuls des Schwerefeldes unberücksichtigt geblieben; aber dieser kommt ebensowenig
wie die Energie des Feldes praktisch in Betracht.”) 

m a⁄
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modern textbooks on general relativity.67 His allusion to an electrical analogue is
clearly a reference to a Bohr-like atomic model, which classically would, of course,
be unstable.

Abraham nevertheless took the idea of gravitational waves so seriously that he
published another detailed study comparing electromagnetic and gravitational waves,
including quantitative comparisons.68 In a later review he took up this earlier study
and discussed the possibility that gravitational waves are emitted during the emission
of  particles by radioactive atoms:

One could now surmise that during the emission of  particles by radioactive atoms, in
which very large accelerations occur, the hypothetical gravitational waves are excited in
noticeable strength. But at the same time there are electrical waves which are excited
and, as the quantitative discussion shows, the force which is exerted by the gravitational
waves emitted by an  particle upon another  particle amounts to maximally  of
the electrical force.69

If, or rather when, gravitational waves are one day directly verified, Abraham’s
papers will certainly not constitute a relevant theoretical reference point. From the
point of view of a history of knowledge, however, they do represent a reference point
for gauging the possibilities open to the development of a theory of gravitation
around 1912.70 While Abraham’s efforts are hardly suited to detracting from Ein-
stein’s triumph of late 1915, they do make evident the extent to which this solitary tri-

66 “Nach unserer Theorie haben Licht und Schwere die gleiche Fortpflanzungsgeschwindigkeit; aber
während die Lichtwellen transversal sind, sind die Schwerewellen longitudinal. Übrigens kann das
Problem des schwingenden Massenteilchens in ähnlicher Weise behandelt werden wie dasjenige des
schwingenden Elektrons; die Stärke der ausgesandten Gravitationswellen hängt von dem Produkt aus
schwerer Masse und Beschleunigung des Teilchens ab. Ist es möglich, diese Schwerewellen zu ent-
decken?
Diese Hoffnung ist vergeblich. In der Tat, um einem Teilchen eine Beschleunigung zu erteilen, bedarf
es eines anderen Teilchens, welches, vermöge des Gesetzes von Wirkung und Gegenwirkung, nach
der entgegengesetzten Seite getrieben wird. Nun hängt aber die Stärke der ausgesandten Schwere-
welle von der Summe der Produkte aus schwerer Masse und Beschleunigung der beiden Teilchen ab,
während nach dem Gegenwirkungsprinzip die Summe der Produkte aus träger Masse und Beschleuni-
gung gleich null ist.1) [see previous note] Es ist also zwar die Existenz der Gravitationswellen mit dem
angenommenen Feldmechanismus verträglich, aber durch die Identität von schwerer und träger
Masse wird die Möglichkeit ihrer Erzeugung praktisch ausgeschlossen. Hieraus geht hervor, daß das
Planetensystem nicht seine mechanische Energie durch Strahlung verliert, während ein analoges
System, bestehend aus negativen Elektronen, die um einen positiven Kern kreisen, allmählich seine
Energie ausstrahlt. Das Leben des Plantensystems ist also nicht durch eine solche Gefahr bedroht.”
(Abraham 1913, 208–209)

67 See, e.g., (Wald 1984, 83).
68 See (Abraham 1912g).
69 “Man könnte nun vermuten, daß während der Emission von -Strahlen durch radioaktive Atome, bei

der sehr große Beschleunigungen auftreten, die hypothetischen Schwerkraftwellen in merklicher
Stärke erregt werden. Indessen werden dabei gleichzeitig elektrische Wellen erregt und, wie die quan-
titative Diskussion zeigt, beträgt die Kraft, welche die von einem -Teilchen entsandten Schwere-
wellen auf ein zweites -Teilchen ausüben, höchstens 10-36 der elektrischen Kraft.” (Abraham 1915,
487)
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umph merely realized a potential inherent in the shared knowledge of the time. After
all, even if considered in hindsight, Abraham’s thoughts on maximal sizes of stars
and gravitational waves represent the grandiose vistas offered by an outlook from
considerable heights, even if it is also clear in hindsight that Abraham was not the one
who reached the highest summit.
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In a recently published paper A. Einstein

 

1

 

 proposed the hypothesis that the speed of
light  depends on the gravitational potential  In the following note, I develop
a theory of the gravitational force which satisfies the principle of relativity and derive
from it a relation between  and  which in first approximation is equivalent to
Einstein’s. This theory attributes values to the densities of the energy and the energy
flux of the gravitational field which differ from those hitherto assumed.

Following Minkowski’s
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 presentation, we consider

as the coordinates of a four-dimensional space. Let the “rest density”  as well as
the gravitational potential  be scalars in this space, and let them be linked through
the differential equation:
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According to eqs. (1) and (2), the gravitational force propagates with the speed of
light as required by the principle of relativity; whereas, however, light waves are
transverse, the 

 

gravitational waves are longitudinal

 

.
We write  for the first derivatives of the coordinates of a material “world

point” with respect to its “proper time”  i.e., for the components of the “velocity”
four-vector  and  for the second derivatives, i.e., for the components of
the “acceleration” four-vector  Then the 

 

equations of motion

 

3

 

 are:

(3)

Between the first derivatives exist the identity: |

(4)

or

Therefore, if one sets

 (4a)

it follows that

(4b)

Now, by differentiating eq. (4) with respect to proper time, Minkowski obtains the
condition of the “orthogonality” of the velocity and acceleration four-vectors. How-
ever, if  is considered to be variable, the place of that condition is taken by the fol-
lowing:

(5)

as the differentiation of eq. (4) shows. By introducing here, instead of the accelera-
tion, the accelerating force according to (3) and (2), we obtain

 

3 As I have shown, when energy of a non-mechanical nature is supplied to matter, the Minkowskian
equations of motion require modification. See this journal 10, 737, 1909; 11, 527, 1910. But, now, we
are dealing with purely mechanical effects so that this modification need not be considered.
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ẋ ẋ̇ ẏ ẏ̇ ż ż̇ u̇ u̇̇+ + + c
dc
dτ
------,–=

ẋ
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or

The integration yields

(6)

where  and  represent the speed of light and the gravitational potential at the
origin of coordinates. Equation (6) implies: The increase of half the square of the
speed of light is equal to the increase of the gravitational potential. 

Instead of this relation, which is exactly valid according to our theory, one can,
neglecting the square of the quotient of  and  take Einstein’s formula (loc. cit.
p. 906):

However, eq. (6) better serves to manifest the independence from the arbitrarily
chosen origin of coordinates.

It is instructive to compare the relation obtained with the emission theory of light.
Let us imagine that the particles emitted from the light source move according to the
laws of Galilean mechanics and that they are subject to the gravitational force. They
would then experience an increase of vis viva [lebendiger Kraft] equal to the decrease
of potential energy. The increase of vis viva of the light particles calculated according
to (6) is, by contrast, equal to the increase of their potential energy, i.e., of the same
amount but of opposite sign as that following from the emission theory. But as far as
the bending of light rays in the gravitational field is concerned, which can be derived
from (6) with the aid of Huygens’ principle,4 it is identical with the bending of the
trajectories of those light particles. This is one of the numerous incomplete analogies
between the modern theory of radiation and the emission theory of light.

We consider the motion of a material point of mass  in a gravitational field. The
first three equations of motion yield:

(7)

they contain the law of conservation of momentum [Impulssatz]. In contrast, the last
of the eqs. (3):

4 A. Einstein has shown that a light ray passing the surface of the Sun is deflected towards the Sun and
has drawn the attention of the astronomers to this consequence of the theory which can perhaps serve
as its verification.
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(8)

expresses the law of conservation of vis viva in Minkowskian mechanics. In particu-
lar, if the gravitational field depends on the position but not on the time, then one
obtains, multiplying (8) by  and taking (4b) into consideration:

(9)

Now, by considering  as constant, Minkowski interprets  as the
kinetic energy of the material point. In contrast, in the theory developed here, which
takes  to be variable, this would not be permissible. It also seems impossible in this
case to give a general expression for the energy of the material point whose decrease
would be precisely equal to the energy extracted from the gravitational field.

However, we can convince ourselves that, at least for small velocities, the theorem
of conservation of energy, which is confirmed by experience in this realm, follows
from (9). From (9) one obtains

(9a)

| By neglecting squares and products of  and  according to (4a) we write:

and, according to (6):

Then, we obtain

Therefore, if we multiply (9a) by  it follows that

(9b)

i.e., the law of the conservation of energy in the usual form. Thus, in the limiting case
of small velocities, the new mechanics coincides with the old. As a consequence of
the relation (6) between the velocity of light  and the gravitational potential  it
also now emerges clearly that not only the “kinetic” energy  but also the
potential energy  are associated with the material point.
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We now consider two material points of masses  and  moving with small
velocities in a stationary gravitational field. Each of the two points possesses a poten-
tial energy, of which the part depending upon the mutual distance  is:

Therefore, the total of this variable part of the potential energy for the two points
amounts to  Hence, if, under their mutual attraction, the two points approach
one another, then the increase in their total vis viva is equal to half of the decrease of
their total potential energy.

Where now does the other half reside? Obviously in the gravitational field.
Indeed, as we shall see, in this case, our theory ascribes to the field energy the value

 which is equal and opposite to the one previously assumed. In this way, the diffi-
culty emphasized by Maxwell5—that the energy density in a gravitational field, when
set to zero for vanishing forces, would become negative elsewhere—disappears. The
expression (13) for the energy density in a gravitational field at which we will arrive
is strictly positive. But, besides the field energy  the total energy of the system also
contains the energy of the matter whose potential part in the stationary field is 

The credit for having extended the concept of energy flux to the gravitational field
goes to V. Volterra.6 However, his expression for the energy flux is based on Max-
well’s assumption concerning the energy distribution in the field. Accordingly, the
theory developed here will thus lead to different results also with respect to energy
flux.

The fictitious stresses, the energy flux as well as the densities of energy and
momentum for a field depend on a “four-dimensional tensor”.7 We write for the ten
components of the gravitational tensor:

5 [J.] Clerk Maxwell, Scientific papers 1, 570.
6 V. Volterra, Nuovo Cimento 337, 1899, 1.
7 Regarding these “world tensors” or “ten-tensors” see M. Abraham, Rendiconti del circolo matematico

di Palermo 1910, 1; A. Sommerfeld, Ann. d. Phys. 32, 749, 1910; M. Laue, “Das Relativitätsprinzip”,
Braunschweig 1911, p. 73.
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(10)

(10a)

(10b)

Here,  and

(10c)

are four-dimensional scalars. Thus, it becomes immediately clear that the compo-
nents (10), (10a), (10b) of the ten-tensor indeed transform like the squares and prod-
ucts of the coordinates  From them, | the components of the accelerating
force per unit volume are derived as follows:
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(11)

By substituting the above expressions for the components of the ten-tensor and by
taking into consideration the differential equation (1), one arrives at the value 

(12)

for the accelerating force per unit volume, in agreement with (2). 
We discuss the formulae for the components of the gravitational tensor. The first

six components (10) determine the “fictitious stresses” in the gravitational field. In
the stationary field there exist the normal stresses:

(12a)

and the shear stresses

(12b)

They correspond to a pressure along the lines of force and to a pull perpendicular to
the lines of force, and their total value is proportional to the field strength and, for a
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stationary field, is equal to the energy density  (see eq. (13)). For a temporally
varying field there is still a hydrostatic pressure to be added:

(12c)

which has to be subtracted from the normal stress (12a).
The energy density in the gravitational field is:

(13)

This turns out to be strictly positive and, in particular, to be proportional to the
square of the gravitational force  in the stationary field.

The energy flux has the components:8

with which, from (10a), follows:

(14)

i.e. the energy flux has the direction of the gravitational force; its magnitude is pro-
portional to the product of the magnitude of gravitational force and the temporal
increase of the potential.

If one multiplies the last of the eqs. (11) by  then it becomes:8

(14a)

Therefore

(14b)

yields the energy, which, per unit volume and time, is extracted from the field and is
supplied to the matter.

Since, furthermore, as can be seen from (11),8

8 Here, the speed of light  is considered as constant, and therefore the influence of the potential on the
speed of light discussed above is neglected.
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are the components of the momentum density  of the gravitational field, it follows
from (10a) that:

(15)

The symmetry of the ten-tensor implies this relation between the energy flux and the
momentum density.9

CORRECTION

In lines 8 and 9 [lines 16 and 17 in the original] of my note “On the Theory of Gravi-
tation” an oversight has to be corrected which was brought to my attention by a
friendly note from Mr. A. Einstein. Hence one should read there “we consider

 and  as components of a displacement  in four-
dimensional space.”

Hence:

is the square of the four-dimensional line element, where the speed of light  is
determined by eq. (6).

9 M. Planck, this journal, 9, 828, 1908, has put forth the claim that also a mechanical energy flux always
implies a corresponding momentum.
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In a recently published communication1 I have developed a new theory of gravitation.
In this theory, the speed of light  is linked to the gravitational potential  through
the relation:

(1)

The equations of motion of a material point in a gravitational �eld are:

(2)

(2a)

 denotes the “proper time” of the moving point and is related to the time  mea-
sured in the reference frame as follows:

(3)

(4)

(  is the magnitude of the velocity of the material point).
In the static �eld, the last (2a) of the equations of motion

1 This journal, 13, 1, 1912.
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assumes the form

(5)

it corresponds to the law of conservation of energy.
In the following, the

 

 free fall in empty space

 

 shall be treated on the basis of this
theory. The gravitational field is assumed to be homogeneous and parallel to the

axis. Therefore

Then, eqs. (2) yield:

(6)

These equations of motion differ from those of Galilean mechanics merely by the
proper time  of the falling point taking the place of  From these it follows
immediately that 

 

the trajectory of the point is a parabola also in the new theory

 

. 
We want to restrict ourselves to the consideration of motion parallel to the axis,

i.e. along the field, and, in particular, with the following initial conditions:

(7)

The gravitational potential may be referred to the plane 

then, according to (1), one has to set:

(8)

where  denotes the speed of light for  Since we assume the initial speed of
the falling point to be equal to zero, initially, we have, according to (4), 
Therefore eq. (5) reads:
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From this and from (3) follows the relation
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which connects the time  with the proper time  as a consequence of (8) it can be
written as:

(11)

By integrating the first of the equations of motion (6), subject to the initial condi-
tions (7), we obtain

(12)

(13)

 

i.e. the free fall velocity is proportional to the proper time, the free fall distance to
half its square

 

.
The task is now to replace the proper time  by introducing the time  measured

in the coordinate system. In order to determine  as a function of  we use eq. (11);
taking into account (13) yields

(14)

and thus

(15)

By taking the inverse of this functional relation we express  through  |
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On the other hand, since according to (10):

(17a)

we then have:

(18)

for the quotient of the velocity of fall and of the speed of light at the point in question.
Finally, the distance of fall follows from (13) and (16):

(19)

It is understood that all of these relations are valid only for

(20)

Indeed, for  one would have

and therefore

However, for this value of  the speed of light  would, according to (1), become
zero which is inadmissible.

It is obvious that, by imposing the condition

(21)

on the gravitational potential, the fundamental relation (1) excludes the existence of a
homogeneous gravitational field of infinite extent

From the condition (21) one can derive similar consequences of the new theory of
gravitation which are of interest for cosmogony.

The potential of a star of mass  is
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(  gravitational constant). Thus, the potential difference between infinite distance
 and the surface of the star  is:

Therefore,

(23)

must hold. For the Sun one has in cgs units

Thus, the quotient of mass and radius for an arbitrary star must satisfy the inequality

(24)

For stars whose mean density is equal to that of the Sun, the quotients  are
proportional to the squares of the radii. Hence, the following must hold

(24a)

and thus

(24b)

That is, the mass of a star whose mean density is equal to that of the Sun cannot
become larger than one hundred million times the mass of the Sun.

Since this limit is rather high, no difficulties arise from this for our theory.
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Modern physics does not allow forces that propagate with an in�nite speed. It does
not hold that Newton’s law is the true fundamental law of gravitation; rather, it
endeavors to obtain this action-at-a-distance law from differential equations attribut-
ing a �nite speed of propagation to the gravitational force.

A model of such a theory of local action is provided to us by Maxwell’s theory of
the electromagnetic �eld. Its fundamental laws are differential equations connecting
the electric vector to the magnetic vector. The electromagnetic energy is, according to
this theory, distributed throughout the �eld. When the �eld changes in time, an
energy �ow determined by the Poynting vector obtains. If, for example, an electron
starts to oscillate, it sends out electromagnetic waves. With the waves the electromag-
netic energy �ows from the neighborhood of the electron to the initially undisturbed
regions of space; this radiation of energy results in the damping of the oscillations of
the electron.

The analogy between Coulomb’s and Newton’s law suggests a similar interpreta-
tion of the gravitational force. It was Maxwell himself who developed a theory of grav-
itation, modelled on electrostatics, and emphasized the dif�culties of such a theory.1

The different signs of the forces—attraction of masses compared to repulsion of
charges of equal sign—entails that the energy density of the gravitational �eld
becomes negative as soon as one assumes that when the �eld vanishes so does the
energy. One would need to drop this last assumption and imagine | that if there were no
gravitational �eld, a certain amount of energy resides in the aether, which decreases
upon excitation of the �eld. But even so, one still does not avoid all objections.

Let us consider for example a material particle which is initially at rest and then is
set into oscillation. In theories of the electromagnetic type it emits waves similar to
light waves, i.e. transverse waves propagating with the speed of light. With the waves,
the gravitational �eld enters into previously undisturbed regions of space. Hence, the

1 J. Cl. Maxwell, Scienti�c papers I, p. 570.

[194]
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energy density of the aether decreases in these regions; i.e. the energy flows towards
the oscillating particle whose energy increases at the expense of the aether energy.
This influx of energy results in an increase of the oscillation of the particle; its equi-
librium is therefore unstable.

Similar difficulties arise in this way for all gravitational theories of Maxwellian
type; among these, especially the theory of H. A. Lorentz

 

2

 

 and R. Gans

 

3

 

 has found
followers among physicists. Starting from the hypothesis that matter consists of posi-
tive and negative electrons and that the attraction between electrons of opposite
charge is slightly greater than the repulsion between those of like charge, it arrives at
field equations of Maxwellian character connecting the gravitational vector, which
corresponds to the electric vector, to a second one analogous to the magnetic vector.
In this theory, the energy flux of the gravitational field is expressed by a vector corre-
sponding to the Poynting vector but with opposite sign.

 

4

 

 Here, the above mentioned
difficulty appears; indeed, R. Gans found that the radiation reaction force has the
opposite sign as in the dynamics of the electron. Thus, as a result of the emitted radi-
ation, the acceleration of a neutral particle would increase rather than decrease as for
electrons. Hence, the equilibrium of the particle would not be stable.

Therefore, we have to dispense with the close analogy between gravitation and
electromagnetism without thereby relinquishing the essential notions of Maxwell’s
theory, namely: 

 

The fundamental laws must be differential equations describing the
excitation and propagation of the gravitational field; associated with this field is a
positive energy density as well as an energy flux

 

. |
The problem of gravitation is even more urgent, as modern physics has discov-

ered interesting relations between mass  and energy  According to the the-
ory of relativity one should have

(1)

Since we still lack a satisfactory theory of gravitation, one has been able to derive this
relation only for the inertial mass. Is it valid also for the gravitational mass?

We displace a body in a gravitational field. Its potential energy, and consequently
the first term in equation (1), changes with the gravitational potential. It follows that
one of the factors on the right-hand side, or even both, must depend on the gravita-
tional potential. We want to consider the hypothesis that  

 

the speed of light,
depends on the gravitational potential

 

. This hypothesis was first enunciated by
A. Einstein.

 

5

 

 Taking it as a starting point, I undertook to develop a theory of the grav-
itational field

 

6

 

 which I then, in constructive competition with Mr. A. Einstein,

 

7

 

 gave a

 

2 H. A. Lorentz, 

 

Verlag. Akad. v. Wetensch. te Amsterdam

 

 8, 1900, p. 603.
3 R. Gans. 

 

Physik. Zeitschrift

 

 1905, p. 803.
4 R. Gans, 

 

H. Weber-Festschrift

 

 1912, p. 75.
5 A. Einstein, 

 

Ann. d. Physik

 

 35, (1911), p. 898.
6 M. Abraham, 

 

Physik. Zeitschrift

 

 1912, p. 1 and p. 311.
7 A. Einstein, 

 

Ann. d. Physik

 

 38 (1912), p. 355 and p. 433.
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more satisfactory form.

 

8

 

 In the following, I want to present the essential features of
the new theory of gravitation.

 

Postulate I. The surfaces  coincide with the equipotential surfaces
of the gravitational field.

 

 Or, in other words: 

 

The negative gradient of  gives the
direction of the gravitational force

 

.

If the speed of light varies in the gravitational field, then, according to Huygens’
principle, a light ray in this field will be refracted as in an inhomogeneous medium.
This consequence was derived by A. Einstein; he showed that a light ray passing the
surface of the Sun must be deflected, in fact, just as if it were attracted by the Sun.
However, this deflection, only observable at a total eclipse of the Sun, lies at the limit
of observability.

For bodies at rest in the gravitational field we apply the usual geometry; hence,
we assume that the unit of length, the meter, is independent of  and can thus serve to
measure length in arbitrary regions of the gravitational field. We now want to con-
sider two regions in which  may have different values,  and  We bring an
antenna having a length of one meter from the | first region into the second. Since the
length of the antenna remains constant, obviously the periods of its electromagnetic
normal modes change in inverse proportion to the speed of light 

(2)

If one could construct a clock whose rate were independent of  then one could
determine the change in period by transporting the clock, with the antenna, from one
region into the other. However, we rule out the possibility of such a clock by putting
forward the following postulate:

 

Postulate II. An observer belonging to a material system is unable to perceive that
he, together with the system, is brought into a region in which  has a different value.

 

From this postulate,

 

9

 

 it follows that the duration of an arbitrary process changes in
the same proportion to  as does the period of the normal modes of the antenna;
because otherwise the observer would be able to determine the latter change. Hence,
from the second postulate follows the general theorem: The duration of an arbitrary
process in a system changes in inverse proportion to  if the system’s location in a
gravitational field changes. Or more briefly:

 

“The times are of degree ”

 

Within this theory the unit of time has only a local significance, whereas a univer-
sal validity will be attributed to the unit of length, at least for the state of rest.

 

8 M. Abraham, 

 

Physik. Zeitschrift

 

 1912, p. 793.
9 It is understood that this postulate refers only to the value of  itself, and not to its derivative; the

value of  has no influence on the events in the system which present themselves to an observer
belonging to that system. The gradient of  however, i.e. the gravitational force, of course influences
these events.

c constant=
c

c

c c1 c2.
[196]

c:

τ1 : τ2 c2 : c1.=

c,

c

c
c

c ,

c

c

c 1– .



 

350 M

 

AX

 

 A

 

BRAHAM

 

According to postulate II, there exists a certain relativity. Let us imagine that the
Earth reaches locations in space in which the gravitational potential, and therefore
also  has a different value. According to the latter postulate it would not be possible
for us to determine this fact through any terrestrial measurement. All measurements,
and hence also all the constants of physics, would remain unchanged; also the mea-
surement of the speed of light, e.g. according to the method of Fizeau, would produce
the same result as before since with respect to a terrestrial clock its changes are com-
pensated for by the changes of the angular velocity of the gear wheel. Obviously, all
velocities change generally in proportion to the light | velocities, i.e. they are of
degree  because the lengths are of degree  and the times of degree 

It is, however, in no way ruled out that an observer not belonging to the system
discovers this particular influence of the gravitational potential on the periods. For
example, a terrestrial observer measuring the Fraunhofer lines of the Sun and com-
paring them to the corresponding lines of terrestrial sources, should find that their fre-
quencies behave as

From this would follow a relative shift of the Sun’s lines:

namely towards the red end of the spectrum, because the gravitational potential on
the Sun, and hence also  has a smaller value than on Earth. For this relative dis-
placement of the Sun’s lines Einstein found the value  which according to
Doppler’s principle would correspond to a speed of 0.6 kilometers per second. Astro-
physicists are now well able to measure shifts of this order, and indeed they have
found such shifts, and precisely in the sense required by our theory. However, they
interpret the shift partially as the Doppler effect of descending flows of absorbing
gases, and partially as pressure effects. But perhaps the totality of the phenomena on
the surface of the Sun can be better interpreted if one takes the predicted gravitational
shifts of the lines into account.

We now turn from kinematics to dynamics. The second postulate implies that 

 

all
mechanical quantities of the same class are of the same degree in 

 

 For example, a
system of forces which maintain themselves in equilibrium in a region, where  has
the value  must still do so when the system is brought into a region of the field in
which  is equal to  Therefore, all forces must change in the same proportion with

 All forms of energy must be of the same degree in  as well, because if two forms
of energy, e.g. the kinetic and the potential, were of different degree, the conversion of
energy from one form into the other would give rise to a periodic process whose fre-
quency is not of the correct degree, i.e. that of  Similar considerations apply for
other dynamical quantities. Since all these quantities are constituted from mass,
length and time, it is sufficient to know the

 

 degree of the mass

 

 to determine all | their
degrees since we already know the degree of the lengths  and of the times 

c,
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I raised the question earlier whether, as for the inertial mass, the gravitational
mass is proportional to the energy. What would take place during the transformation
of radioactive elements if their continual loss of energy as heat would cause a
decrease in their inertial mass, but not in their weight? Obviously, uranium and its
daughter element radium suspended from strings of equal lengths would result in
pendulums with unequal periods of oscillations. Even the equilibrium position of
such pendulums would be different since the attraction of the Earth acts on the gravi-
tational, whereas the centrifugal force acts on the inertial mass. This contradicts
experience. Either one must give up any relation between mass and energy, or assume
that the weight too, like the inertia, is proportional to energy. The first alternative
would mean the collapse of the new mechanics. We prefer the second and hence pro-
pose the following postulate.

 

Postulate III. The forces which are acting on two bodies at the same location of
the gravitational field are in proportion to their energy.

 

Here, one has to take into consideration not only the potential and kinetic energy
of the molar and molecular motion, but also the chemical and electromagnetic
energy. For example, the electrons in a metal carry electromagnetic energy; hence
they are subject to gravitation.

 

10

 

 Similarly, the thermal radiation in the interior of a
cavity will also acquire weight. If one interprets the third postulate in this manner,
then

 

 the laws of the conservation of energy and of the conservation of weight merge
into one

 

.
Proceeding with the mathematical presentation, we start with the expression for

the 

 

Lagrangian function

 

, which for the dynamics of the electron is:

(3)

 denotes the velocity, and  the rest mass of the electron.

 

11

 

 From | the 

 

Lagrangian
function

 

 we derive in the well known manner the values for the momentum and
energy as follows:

(3a)

(3b)

while the

 

 equations of motion

 

 are:

 

10 This is also supported by comments of J. Koenigsberger (

 

Verh. d. D. physik. Ges. XIV

 

 (1912), p. 185).

11 In order for  to have this meaning, we must have  (this holds for example in

the theory of relativity, where ); or else, an insignificant numerical factor

becomes associated with  in equation

 

 

 

(3).

L  mc2 f
v
c
--⎝ ⎠

⎛ ⎞ ;–=
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(4)

The new mechanics has, in the discussion of these equations, so far restricted itself to
the case of constant  in this case the Lagrangian function depends only on the
velocity but not on the location. Hence, only the first terms containing the time deriv-
atives of the momentum components enter into the equations of motion:

(4a)

In our theory of gravitation however, through the speed of light  the Lagrangian
function also depends on the coordinates; hence one must retain the second terms in
Lagrange’s equations:

(4b)

They represent the components of a force proportional to the gradient of  Accord-
ing to postulate I, this force is now precisely the gravitational force. In vector form,
the equations of motion (4) are:

(5)

One recognizes that the Lagrangian equations are nothing else but the analytic
expression of our first postulate. (They hold exactly for the free motion of material
points in the gravitational field, but can also be applied to systems whose extensions
are so small that they can be considered equivalent to a material point.) Especially
now, while the world of mathematics prepares for the centennial celebration of the
great founder of analytical mechanics, we do not want to omit drawing attention to
the significance of his work for the new mechanics. 

Now we want to introduce the third postulate, which for a given location in the
field, sets the gravitational force proportional to the energy of the | moving point; in
order to fulfill it we must write:

(6)

where  depends only on  but not on  Then the second term of (5), i.e. the grav-
itational force, becomes:

(6a)
Setting

(6b)

d
dt
----- ∂L

∂ ẋ
------⎝ ⎠

⎛ ⎞ ∂L
∂x
------– 0 etc.=
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d
dt
----- ∂L

∂v
------ ẋ

v
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⎛ ⎞ d
dt
----- G

ẋ
v
--⋅⎝ ⎠

⎛ ⎞ dGx

dt
---------- etc.= =

c,

∂L
∂x
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∂L
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it follows from (6) that

(6c)

This and (3b) yields

(7)

On the basis of a well known theorem of Euler we infer: the Lagrangian function is a
homogeneous linear function of  and  We wish to write it in the form:

(7a)

 denotes a constant (mass constant) belonging to the material mass point in ques-
tion that is independent of  and hence of  The comparison with the expression (3)
yields:

 (7b)

From this follows the value for the rest mass 

(8)

Therefore, the rest mass is of degree 
Since we now know the degree of the lengths  times  and masses

 we are in a position to derive the degree of each class of dynamical quantities.
For example, energies are of degree  likewise forces are of degree  actions (hav-
ing dimension of energy times time) of degree 

From (6b) and (7b) it follows that

so that the expression (6a) for the gravitational force becomes:

(9)

| As one sees, the first postulate is satisfied because the force is proportional to the
negative gradient of  as well as the third, because it is proportional to the energy. 

A potential energy is associated with a material point resting in a gravitational
field; one obtains it from (3b) and (3) by setting  equal to zero:

therefore, according to (8):

E
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(9a)

From this expression for the energy of a resting point follows, according to (9), the
value for the gravitational force for the case of rest:

(9b)

The work done by this force is, as it must be, equal to the decrease of the potential
energy (9a).

We are now in a position to determine for a given gravitational field, i.e. for a
given field of the scalar  the force acting on a material point. But, we still have not
solved the problem initially posed, to find the gravitational field which corresponds to
a given distribution of matter. Now, the interrelation between action and reaction sug-
gests we assume that like the attracted, so also the attracting mass is proportional to
the energy, and hence that we consider the energy as the source of the gravitational
field. However, the question arises: Besides the energy of the matter, is the energy of
the gravitational field itself to be taken into account? If we knew the energy of the
field, then, through the application of the principle of virtual work, without further
ado, at least the statics of the gravitational field can be derived. Consequently, we pre-
fer to start from reasonable assumptions [Ansätze] for the field energy and the energy
flux, and to obtain from these the relations connecting the gravitational vector with
the density of matter and energy, respectively.

The simplest assumption would be that the energy density of the static field is
proportional to the square of the gradient of  on which, according to (9b), the field
strength depends. However, as we have seen, the energy and hence also the density is
of degree  while the square of the gradient of  is obviously of degree  This
consideration leads to the introduction of the auxiliary variable

(10)

| and to assign to the energy density of the gravitational field the value:

(11)

 denotes a universal constant of degree 
In our theory, this expression is valid also for the dynamical field; it is supple-

mented by the ansatz for the energy flux in the gravitational field 

(12)

Since according to (11) the field energy is always positive, and vanishes only
when the field vanishes, one sees that the energy always flows with the wave by
which the disturbance is propagated. Let us imagine for example that such a distur-

E M c.⋅=

K Mgradc.–=

c,

c,
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bance, for which  enters a region in which initially  Then, the gradi-
ent is pointing from  towards the undisturbed region, whereas, during the passing of
the wave, the time derivative of  has a negative sign. Hence, the expression (12) for
the energy flux has the correct sign. It retains it when  for the disturbance,
because then the gradient as well as the time derivative change sign. In the theory
presented here, the energy flux always corresponds to an emission of energy from the
disturbed region; thus the above mentioned objection is not raised against it. The
radiation reaction always implies a decrease of the acceleration of the material parti-
cle; its equilibrium is hence not unstable.

We now want to consider a field containing matter at rest. As we are dealing with
a continuous distribution of matter over a volume  we set

(13)

and call

the “specific density” of the matter. Since  does not depend on  then for an
incompressible fluid, whose particles do not change in volume,  too is independent
of the location in the gravitational field.

The rest energy of matter with respect to the unit volume is according to (9a),

or, according to (10)

(14)

| Since  is constant for the case of rest, from this follows:

(14a)

as the temporal increase of the rest energy per unit volume, caused by a temporal
variation of the gravitational field.

Now we apply the energy equation which demands that the convergence of the
energy flux is equal to the sum of the increases of the energy densities of the field 
and of the matter 

(15)

From the expressions (11) and (12) we derive
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(15a)

(15b)

with

(15c)

If, in addition, we set 

(16)

then from (15), taking into account (15a, b) and (14a), it follows that

(17)

Here, the second term relates to matter at rest. According to the previous discussion,
for the case of motion one has to introduce its energy density, and replace (17) by the
more general formulation:

(17a)

This is the fundamental equation relating the gravitational field to the energy of the
matter. It can function as the analytic expression of the fourth postulate of our theory,
which relates the attracting mass of a body to its energy. For a static field, according
to (16), the fundamental equation takes the form:

(17b)

Therefore, in this case the divergence of the gradient of  is proportional to
the energy density of matter.

Now, what about the energy of the gravitational field itself? At least for the static
field (17b), it is easy to put the basic equation | into a form in which the energy den-
sity of the field appears on the right-hand side. One has

thus,

according to (11), the energy density of the static field is now:
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Therefore, we can write (17b) as

(18)

Hence, in the static field, the divergence of the gravitational vector, i.e. of the gradi-
ent of  is proportional to the density of the total energy. Integrating (18) over a vol-
ume  bounded by the surface  we obtain

(19)

i.e. in the static gravitational field, the flux of the gravitational vector through a
closed surface is proportional to the enclosed energy.

To highlight the significance of these statements, we consider a special case: a
sphere at rest (e.g. the Sun), which is composed of homogeneous concentric layers.
The basic equation (17b) yields:

(20)

i.e. for the interior of the sphere,

(20a)

i.e. for the exterior of the sphere.
This last equation is Laplace’s differential equation; its symmetric integral

(21)

determines the gravitational field outside the attracting sphere (where  denotes the
value of  for   a different constant).
From (21) follows

(21a)

Thus, the radial gradient of  becomes:

(22)

| Now, according to (9b) the gravitational force is proportional to this gradient. It fol-
lows from this that Newton’s law is not strictly valid in our theory. The center of the
Sun attracts the planet (considered as a material point) with a force which contains
besides the term with  also a term with 
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According to the theorem (eq. (19)) just developed, the flux of the gradient of  pass-
ing through a sphere of radius  is proportional to the total energy enclosed by the
sphere:

(23)

A sphere of infinite radius encloses the total energy  of the sphere and of its
gravitational field; hence, from (22) and (23) it follows 

(23a)

In contrast, the sphere of radius  contains only the internal energy of the
sphere; therefore,

(23b)

Hence, the energy of the external field has the value

(23c)

We write

(24)

This quantity  i.e. the ratio of the external to the total energy, enters into expres-
sion (22) for the value of the gravitational force outside of the sphere:

(24a)

We can therefore say: The deviation from Newton’s law is caused by the energy of the
external gravitational field.

To determine the quotient  one must integrate equation (20), which is valid for
the interior of the sphere. We want to compare this differential equation with Pois-
son’s; in Poisson’s equation, the right-hand side depends only on the density of the
attracting masses, whereas on the right of (20), the potential  itself enters as a fac-
tor. This implies that in our theory the contributions of the individual mass elements
do not superimpose; rather, along with the value of  at a specific location, the con-
tribution of the | masses at the same location decreases as well. Since now the neigh-
boring masses cause a decrease of the potential, it is apparent that large
accumulations of matter produce here a smaller attraction than they would according
to the usual theory. However, as we will see, the difference is, even for the Sun, still
not noticeable.
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Taking into account the symmetry of the field, the differential equation (20)
yields:

or

(25)

To integrate the equation, one must know the distribution of the specific density 
along a radius. We want to restrict ourselves to the specific case of a sphere consisting
of an incompressible fluid  = constant). By setting

(25a)

we find  expressed through the hyperbolic sine

(26)

The integral of (25) remains finite for  The constant  is determined by the
condition that for  the values of  and of

(26a)

agree with those valid outside the sphere, which are given by (21) and (21a) respec-
tively:

(26b)

In addition, these two equations still determine the value of the quotient  (cf. 24);
only this is of interest to us here. We find
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The gravitational force (24a) which will be exerted by the incompressible sphere on
an external point depends on this quantity, which determines the ratio of the external
to the total energy of the sphere. |

We first want to evaluate  for the realistic case:
I.  small: One has

and thus

(27a)

Since in this case  is very small, then so also is the proportion of the external field
energy to the total energy of the sphere; ignoring it, we find from (24a) and (27a) the
force acting on a resting material point 

Going over to the usual units, we set

and neglect the difference between ,  and  The force then becomes

where  is the usual gravitational constant. Therefore, one has

and hence, according to (27a):

(27b)

which for the Sun gives the value:

This is thus, indeed, still the limiting case of a small , or rather, . For the pur-
poses of astronomy, the deviation from Newton’s law due to the external field energy
is to be neglected, and the Sun is to be replaced by a mass point.12 |
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II. Although it is apparent from what has been said that the converse limiting case
does not correspond to reality, it shall be briefly considered:

 

Here, according to (27)

(27c)

becomes only slightly less than one, i.e. nearly the entire energy resides in the exter-
nal gravitational field. In the interior resides only the small fraction

For the gravitational force, from (24a) it follows that

Thus, at large distances the gravitational force is not proportional to the volume of the
sphere, but to its radius. Here, the above mentioned screening effect of large accumu-
lations of masses becomes apparent (i.e., of a very large value of the radius  or of
the density 

We want to return to the basic equation (17a):

From it one derives the disturbance in the gravitational field caused by the motion of
matter. Outside the matter, it indicates a propagation of the disturbance with the
speed of light  However, a rigorous treatment of the problem of propagation is
made more difficult because the disturbance of the field itself influences the value of

 and thereby the value of the speed of propagation,  The same difficulty appears
as well with the propagation of sound, whose speed depends on pressure, and thereby
varies upon the passing of the sound wave. But in all practical cases, the variation of

 is so minute that one can consider the speed of propagation of gravitation to be
constant. 

12 With reference to the principle of action and reaction, one also obtains from this a clue as to the range
of the domain of validity of the above considerations based on Lagrange’s equations, wherein the
object was replaced by a material point, and where, upon the calculation of the mass, only the self
energy, and not the energy of the gravitational field produced by the body, was taken into consider-
ation. As one can now see, this procedure is still permissible for objects of the order of the fixed stars.
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According to our theory, light and gravitation have the same speed of propaga-
tion; but whereas light waves are transverse, gravitational waves are longitudinal.
Incidentally, the problem of the oscillating particle can be treated in a similar manner
as that of the oscillating electron; the strength of the emitted gravitational waves
depends on the product of the gravitational mass and the acceleration of the particle.
Is it possible to detect these gravitational waves? |

This hope is futile. Indeed, to impart an acceleration to one particle, another parti-
cle is necessary which, according to the law of action and reaction, is driven in the
opposite direction. But now, the strength of the emitted gravitational wave depends
on the sum of the products of the gravitational mass and the acceleration of the two
particles, while, according to the reaction principle, the sum of the products of iner-
tial mass and acceleration is equal to zero.13 Therefore, although the existence of
gravitational waves is compatible with the assumed field mechanism, through the
equality of gravitational and inertial mass the possibility of its production is practi-
cally excluded. It follows from this that the planetary system does not lose its
mechanical energy through radiation, whereas an analogous system consisting of
negative electrons circling around a positive nucleus gradually radiates its energy
away. The life of the planetary system is thus not threatened by such a danger.

Our theory of gravitation based on the assumption of a variable  contradicts
from the outset the second axiom of the theory of relativity. However, in a vacuum,
the invariance with respect to the Lorentz transformations is preserved as is shown by
the form of the fundamental equation (17a) which applies there:

Hence, outside of matter, the Lorentz group still applies in the infinitesimally small. It
is the matter which breaks the invariance under the Lorentz group, because in the
equation

the first term is an invariant of the group, whereas the second term, proportional to
the energy density, is not. It is precisely the very plausible hypothesis that the attract-
ing mass is proportional to the energy that forces us to abandon the Lorentz group in
the infinitesimally small as well.

Thus, Einstein’s relativity theory of 1905 turns to dust. Will there, like the Phoe-
nix rising out of the ashes, emerge a new, more general principle of relativity? Or,
will one return to absolute space, and beckon back the much scorned aether, so that it
can support, in addition to the electromagnetic, also the gravitational field?

13 Here however, the momentum of the gravitational field has not been taken into consideration; but this
is of just as little practical importance as the energy of the field.
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I. INTRODUCTION

A. The Vector Theory of Gravitation

Since I. Newton postulated his action-at-a-distance law of attraction of masses, theo-
retical physics has endeavored to reduce this law to one of local interactions. In this
attempt the older theories of gravitation1 were based on concepts derived from the
theory of elasticity, hydrodynamics and the kinetic theory of gases. Electromagnetic
theories of the gravitational �eld appeared only at the end of the nineteenth century,
encouraged by Maxwell’s local �eld theory of electrodynamics. The best received
theory was probably one developed by H. A. Lorentz2 which adapted a hypothesis

1 P. Drude, Wied. Ann. 62, 1, 1897 and J. Zenneck, Enzyklopädie d. math. Wissensch. V, 1, article 2 [in
this volume], give overviews of the state of the theory of gravitation at the end of the last century.

2 H. A. Lorentz, Verslag. Akad. v. Wetenschapen te Amsterdam, 8, 603, 1900.

[473]

© 2007 Springer. 



 

364 M

 

AX

 

 A

 

BRAHAM

 

already pursued by Aepinus, Mosotti and Zöllner to the framework of electron theory.
According to this hypothesis, the attraction of unlike electric charges should be some-
what larger than the repulsion of like ones. For electrically neutral matter, whose
atoms are supposed to consist of positive and negative electrons, Newton’s law for
the attraction of masses at rest follows from Coulomb’s law of electrostatic forces.
The force  acting on a unit of mass of the stationary matter arises thus as the
resultant of two electric forces of opposite direction and nearly equal magnitude, act-
ing on the | positive and negative electrons. However, if the matter moves, then a
magnetic force is associated with each of these two electric forces, related to them by
the electromagnetic field equations. The two magnetic forces act on the convection
current of the positive and the negative electrons, respectively. The resultant  of
the two magnetic vectors, likewise opposite in direction and of nearly equal magni-
tude, determines a mechanical force acting on the moving matter. All in all, it follows
that if  denotes the velocity vector and  the speed of light, then the expression for
the gravitational force [

 

Schwerkraft

 

] per unit mass is

(1)

This expression corresponds precisely to the one which represents the force  per
unit charge in the electron theory. The results of the Lorentzian theory of gravitation
thus can be summarized as follows: with the electromagnetic vector pair  is
associated a second pair,  characterizing the gravitational field, which
determines the gravitational force in accordance with (1). This pair is linked to the
density and velocity of matter by differential equations that agree with the field equa-
tions of the electron theory, except for the signs of the charge and mass density
respectively.

We will call a theory that represents the gravitational field by means of two elec-
tromagnetically interrelated vectors simply a “

 

vector theory of gravitation

 

.” As is
apparent from eq. (1), in such a theory the force acting on a body at a given point in
the gravitational field depends not only on its mass, but also on its velocity; a moving
material point acts on another point just like as one moving charge on another. How-
ever, since such an influence of the state of motion on the gravitational force has been
discovered neither in physics nor astronomy, the vector  plays a merely hypotheti-
cal role. In order to explain the absence of the force arising from  and represented
by the second term in (1), the vector theory appeals to the smallness of the velocity of
the bodies in comparison to the speed of light  Indeed, for celestial bodies the quo-
tient  is of the order of  In addition, the quotient of the magnitudes of the
vectors  and  is itself of the same order, so that even according to the vector
theory the planetary system | satisfies the Newtonian law up to terms of order 
deviations of this order are of course permissible astronomically as well.

According to the vector theory, the precise law of interaction of two moving mass
points should agree up to sign with the fundamental law of electrodynamics. There-
fore, a counterpart to the “forces of induction” of electrodynamics ought to exist in
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mechanics. In the same way as the acceleration of an electric charge produces forces
which act on a neighboring charge in a sense to oppose the acceleration, so should the
acceleration of a body generate induced gravitational forces which, because of the
different signs, act to accelerate neighboring bodies. Accordingly, it seems possible
that a system of masses set in motion by a small force further accelerates by itself
through internal forces. Thus, the equilibrium of a gravitating system of masses
would not be stable.

This instability is related to a difficulty which arises in the vector theory of gravi-
tation, already noted by Maxwell.

 

3

 

 The differential equations of the static gravita-
tional field are here:

(2)

(3)

where  denotes the mass density and  the gravitational potential in suitably cho-
sen units.

Now, the expression for the potential energy of a system of gravitating masses in
the action-at-a-distance theory is:

(4)

If, as in electrostatics, one transforms this equation, through integrating by parts,
into the following form:

(4a)

then one sees that the interpretation in the sense of the local field theory, leads to a
distribution of energy in the field with a density 

(4b)

Hence, in contrast to electrostatics, and due to | the opposite sign in eq. (2), 

 

in the
vector theory the energy density of the gravitational field turns out to be negative.

 

The same applies for a changing gravitational field whose energy density, according
to the vector theory, should be

(4c)

Accordingly, a region of space, if it does contain a gravitational field, ought to con-
tain less energy than if it were without a field. And when the gravitational field—
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spreading, say, in the nature of a wave—enters into a previously field-free region,
energy ought to flow in a direction opposite to that of the propagation of the waves.
This paradoxical conclusion is peculiar to the vector theory of the gravitational field.

The so-called “

 

theory of relativity

 

” arose from the Lorentzian electrodynamics of
moving bodies. This theory demands, that in empty space all forces propagate with
the same speed as light. Therefore, according to the theory of relativity, the gravita-
tional force as well must propagate with the speed of light. H. Poincaré

 

(2)

 

 raised the
question as to how this requirement can be brought into agreement with the view of
Laplace, that the speed of propagation of gravitation, if at all finite, must be far
greater than that of light  He remarked, that this view applies only, if quantities
of first order (with respect to the quotient  enter into the fundamental law of
attraction of two masses. But if one formulates the fundamental law so that it fits into
a relativistic scheme, yet deviates only in terms of second order and higher from
Newton’s, then Laplace’s reservations lose their significance. Poincaré gives such
formulations of the fundamental law of gravitation. These approaches contain also
the force term of H. Minkowski,

 

(3)

 

 which, by the way, can be obtained by transferring
the fundamental law of the theory of electrons to gravitation.

 

(4)

 

 The interaction laws
for the attraction of masses developed by these pioneers of the theory of relativity are
accordingly quite readily compatible with the vector theory of gravitation sketched
above. On the other hand, that vector theory gave also an account of those processes
in the field through whose mediation one mass transfers energy and momentum to the
other; these fundamental relativistic laws, however, lack the derivation from the field
equations. Thus the difficulties associated with the vector theory were not resolved
but only concealed. What remained unresolved was the problem of developing field |
equations of the gravitational field that yield a propagation of the gravitational force
with the speed of light and also ascribe to the field a positive energy, transferred via
an energy flux, and a momentum transferred by means of fictitious stresses.

 

B. Conservation Laws of Momentum and Energy: World Tensors

 

The above mentioned work by H. Poincaré

 

(2)

 

 already contains the beginnings of the
four-dimensional vector calculus, which was then further developed by
H. Minkowski

 

(3)

 

 In our notation, we will mainly follow the presentation of
A. Sommerfeld.

 

(4)

 

 The four-dimensional formulation of the theory of relativity, as is
well known, interprets the group of Lorentz transformations as a rotation group of a
four-dimensional space, whose coordinates are the Cartesian coordinates  of
ordinary space and  these transformations leave the expression

invariant. Poincaré had already dealt with four-vectors whose components transform
like the coordinates  H. Minkowski introduced the concept of the six-vec-
tor, and characterized the electromagnetic field  in a vacuum through such a
vector. The six-vector  is derived from the four-potential  whose 4
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components are given by the electromagnetic vector- and scalar potential. The vector
theory of the gravitational force sketched above, which, of course, is formally identi-
cal with the electromagnetic field theory, accordingly also derives the six-vector of
the gravitational field  from a four-potential. Also in this four-dimensional
sense—namely insofar as the gravitational potentials form a four-vector—one will
accordingly have to denote that theory of gravitation as a “vector theory.”

Besides the two kinds of “world vectors,” the “

 

world tensors

 

” are important for
the theory of relativity.

 

4

 

 The ten components of such a symmetric tensor  transform
like the squares and products of the four coordinates  From it one derives a
four-vector which we want to call “the divergence of the ten-tensor  and whose
components are to be formed according to the following scheme: |

(5)

In the Maxwell-Lorentz electrodynamics, the electromagnetic force acting on a
unit volume is determined by the four-vector

(6)

where  designates the “

 

electromagnetic ten-tensor

 

.” Its components

represent the fictitious normal stresses, and

(6a)

represent the shear stresses; the symmetry relations (6a) imply the vanishing of the
torques of these fictitious surface forces [

 

Flächenkräfte

 

]. The three remaining sym-
metry conditions of the ten-tensor 

(6b)

 

4 M. Abraham, 

 

Rendiconti del circolo matematico di Palermo, XXVIII2, 17, 1909. M. Laue, Das Rela-
tivitätsprinzip, p. 4 of the 2nd ed. (1913).
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have the following significance:

(6c)

determine the components of the momentum density  of the electromagnetic
field,

(6d)

determine those of the electromagnetic energy flux  the eqs. (6b) contain there-
fore the “theorem of the momentum of electromagnetic energy flux”:

(6e)

Since according to (6c)

the first three of the equations (6), to be formed according to the scheme (5), express
the law of conservation of momentum for the electromagnetic field, as they derive
from the stresses and the momentum density of the field the momentum given by the
field to the unit of volume of matter. | The last of the eqs. (6), however, contains the
law of conservation of energy. Indeed, if one equates the last tensor component to the
electromagnetic energy density:

(6f)

and furthermore

(6g)

where  is the work done on a unit volume, then the last of eqs. (6) reads, taking
into consideration (6d):

(6h)

It therefore expresses the law of conservation of energy for the electromagnetic field,
because it relates the energy transferred from the field to a unit volume of matter to
the energy flux and the energy density of the field.

One would now wish to retain the validity of the conservation laws of momentum
and energy, and of the theorem of the momentum of energy flux for the gravitational
field by deriving the gravitational force per unit volume of matter as a four-vector
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(7)

from a symmetric “gravitational tensor  The vector theory of gravitation satis-
fies this demand by expressing the tensor  through the vectors  in the same
way in which  is determined through the electromagnetic vectors   We
have shown above that precisely the difference in sign causes difficulties for the vec-
tor theory. In the following, we will become acquainted with other possibilities for
representing the gravitational tensor 

C. Inertia and Gravity[1]

If the theorem of the momentum of energy flux is valid, then a momentum, and thus
an inertial mass, is associated with a convectively moving quantity of energy. A well-
known example is the “electromagnetic mass” of the electron which, in the dynamics
of the electron, is derived from the momentum of the energy flux flowing in the elec-
tromagnetic field of the moving electron. If one considers the theorem of the momen-
tum of energy flux as valid for arbitrary kinds of energy flows, then it follows that the
momentum of a uniformly moving body isolated from external effects is |

(8)

To this corresponds an inertial rest-mass of value

(8a)

Here,  denotes the “rest-energy” of the body, i.e. its energy with respect to a coor-
dinate system  in which the body is at rest;  measures the inertia of the body
accelerated from rest. Equation (8a) expresses “the theorem of the inertia of energy.”

If all forces in nature can be fitted into the scheme of a symmetric world tensor,
then the theorem of the momentum of energy flux and that which is derived from it,
the theorem of the inertia of energy, gain general validity. The inertial mass of a body
is then proportional to its energy content; it can be increased by the gain of energy, or
decreased through the loss of energy. However, the denominator  in (8a) entails
that the changes in energy that occur in the usual chemical reactions are too minute to
cause measurable changes in mass. However, the radioactive transformations, in view
of their enormous heat production, should be accompanied by a noticeable decrease
in mass. Such changes in mass—still quite small at any rate—could, however, be
determined only with a scale. The scale, however, does not measure inertia but
weight [Schwere]. Hence, the question arises: Is there also gravitational mass associ-
ated with energy? Is there, as a counterpart to the theorem of the inertia of energy, a
theorem of the weight of energy? This question leads us back to the problem of grav-
itation.
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Experience teaches us that all bodies fall with equal acceleration in a vacuum and
that the period of a pendulum is independent of its chemical composition. Therefore,
the gravitational mass is proportional to the inertial mass. The most precise test of
the law of proportionality is due to B. Eötvös;5 with the aid of a torsion balance, this
researcher investigated whether the gravitational force acts on all bodies on the sur-
face of the Earth in the same direction. Since the gravitational force is the resultant of
the Earth’s attraction of masses [Massenanziehung] and of the centrifugal force, this
resultant, i.e. the vertical, would have a different direction for different bodies if strict
proportionality between the two masses did not hold. This is because | the attraction
of masses is determined by the gravitational mass and the centrifugal force by the
inertial mass. Although Eötvös recently refined his measurements so that deviations
of the order  would not have escaped him, he nevertheless could not find such.
With the corresponding accuracy, the law of proportionality of gravitational and iner-
tial mass has been shown to be valid.

For the time being, the investigations of Eötvös do not cover radioactive bodies. If
at all, one should most likely expect a departure in the behavior of gravitational and
inertial mass in radioactive transmutations, namely in the case that the former
remains constant while the latter decreases because of the emission of energy. Ura-
nium oxide for example transmutes by radioactive decay into lead oxide, while emit-
ting 8 -particles per atom, during which the fraction  of the energy is
emitted.6 According to the theorem of the equivalence of inertia and energy, the iner-
tial mass should decrease by the same fraction; if the gravitational mass did not
remain constant, or if it changed in a different ratio, then the proportionality between
gravitational and inertial mass could not be maintained under radioactive transforma-
tions. However, L. Southerns,7 using pendulum observations to which he ascribed an
accuracy of  discovered no difference with respect to the mass ratio between
uranium oxide and lead oxide. Thus, here too, the law of proportionality is valid.

Classical mechanics introduces the proportionality of gravitational mass and iner-
tia as an empirical law without deeper justification. The theorem of the inertia of
energy suggests that, in the new mechanics, the equivalence of the two masses be
explained by the gravitational mass also being proportional to the energy. Then fur-
thermore, the law of conservation of (gravitational) mass, which takes an isolated
position in the traditional physics and chemistry, would merge with the law of conser-
vation of energy into a single one. However, if not the energy itself, but another quan-
tity were the determining factor for the gravitational mass of a body, then still, in all
practical cases, this quantity should be proportional to the inertial mass with the
above stated accuracy. It is the merit of the newer theories of gravitation, on which
we want to report in the following, to have put the discussion of the relation between

5 B. Eötvös, Mathem. u. naturwiss. Ber. aus Ungarn, 8, 65, 1890.
6 See also R. Swinne, Physik. Zeitschr., 14, 145, 1913.
7 L. Southerns, Proc. Roy. Soc. London, 84, 325, 1910.
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inertia, gravitation and energy on a rational foundation and, in so doing, to have pre-
pared the way for the exploration of these relations. |

II. SCALAR THEORIES

A. Energy Density and Energy Flux in the Gravitational Field

In the vector theory of gravitation, the expression (4b) gave the energy density of the
static gravitational field. If one assumes that a similar expression is also valid for time
varying fields, when only the static force  is replaced by the dynamic gravitational
force  then

(9)

In a remarkable paper on the energy flux in a gravitational field, V. Volterra(1)[2]

takes this expression as the basis for the energy density. He divides the energy flux
into two parts:

(10)

of which the first

(10a)

is caused by the variation of the gravitational field with respect to time, whereas the
second

(10b)

represents the energy transport by moving matter. The mass density  is related via

(11)

with the gravitational force per unit mass, which, by virtue of

(11a)

is derived from the scalar gravitational potential  Insofar as the existence of a sca-
lar potential is also assumed in a dynamic gravitational field, Volterra’s theory is to be
counted among the “scalar theories of gravitation” (in a three-dimensional sense).

We want to convince ourselves that Volterra’s approaches satisfy the energy equa-
tion. According to (9) one has

whereas from (10), (10a), and (10b) it follows that
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and taking into consideration (11), (11a) and the equation of continuity of matter | 

Therefore, one obtains

(11b)

Here, on the left hand side, is the work done by the gravitational force per unit vol-
ume and time; on the right-hand side, is the energy gain caused by the influx of
energy and by the temporal decrease of the energy density. The law of conservation
of energy is indeed satisfied.

However, it is not possible, by means of constructing a corresponding world ten-
sor  to reconcile the approaches of Volterra with the first three of the eqs. (7),
which formulate the laws of conservation of momentum. It is also remarkable that in
(10b) an energy transport by moving matter is introduced, without a corresponding
energy density of the matter. If one takes account of such an energy density 

(12)

then one obtains the correct value for the total energy of a system of masses at rest

if one sets

(12a)

for the energy density of the gravitational field.
Indeed, according to (11) and (11a), the identity

holds, and it follows that
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The value (12a) for the energy density is positive. Hence, the difficulty appearing
in the vector theory of gravitation is eliminated if one succeeds in pairing that energy
density with an energy flow.

We equate6) the energy flux in a gravitational field to the gravitational force per
unit mass multiplied by the time derivative of the gravitational potential:

(13)

| whereas, for the energy flux of matter, we retain the expression (10b). Then the total
energy flux becomes

(14)

whereas the total energy density, is according to (12, 12a)

(14a)

One can easily convince oneself that the energy equation is satisfied. One has

and from this, taking into consideration (11, 11a) and the equation of continuity, the
law of conservation of energy follows

(14b)

As we will see immediately, the expressions (12a) and (13) for the energy density
and the energy flux in a gravitational field, fit readily into the scheme of a symmetric
gravitational tensor.8
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B. Abraham’s First Theory 

So far we have been talking about “scalar theories” of gravitation merely in the con-
text of a three-dimensional vector calculus, and taking them to be theories which
derive the gravitational force from a scalar potential  also for a dynamic field. In the
four-dimensional context, a theory of gravitation is to be designated as a scalar the-
ory, in which the gravitational potential is a scalar, i.e. an invariant with respect to
rotation of the four-dimensional space of the  The gravitational force with
respect to a unit volume, considered as a four-vector, shall have the components |

(15)

 is an, for now, undetermined scalar factor. As the comparison with (6g) teaches,

(15a)

represents the energy that is transferred per unit space and time from the gravitational
field to the matter. In the symbolism of the four-dimensional vector analysis(4), the
eqs. (15) are written as

(15b)

Now, corresponding to the scheme (7), the gravitational force should be derived
from a symmetric gravitational tensor  such that the expressions (12a, 13) for the
energy density and the energy flux correspond to the appropriate tensor components.
M. Abraham(6) defines the ten-tensor  in the following manner:

8 Here, I have presented the train of thought which I pursued in the development of my first theory of
gravitation(6) in such detail, because G. Jaumann (Physik. Zeitschr., 15, 159, 1914) formulated an
inappropriate hypothesis concerning the psychological origin of this theory. Jaumann’s theory (Wien.
Ber., 121, 95, 1912), of which I became aware only after that first publication, is so far removed from
the conceptual realm of the investigations summarized in this report, that it appears to me that this is
not the place for its discussion.
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(16)

As the comparison with (6c, d, e, f) shows, the appropriate expressions for the
momentum density, energy flux and energy density are accordingly | 

(16a)

(16b)

Equation (16a) agrees with (13) and, in addition, contains the theorem of the
momentum of energy flux. Equation (16b) becomes (12a) for static fields; but also for
the dynamic field the energy density calculated according to (16b), is always positive.
The fictitious stresses contained in  agree for the static field, apart from signs, with
the Maxwellian electrostatic stresses. Let us write the system (16), which derives a
ten-tensor  from the scalar  symbolically as

(16c)
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We now apply the scheme (5), and obtain for the divergence of the gravitational
tensor:

(17)

using the abbreviation

(17a)

The laws of conservation of momentum and energy summarized in (7) thus yield

(17b)

In order to obtain agreement with (15b), the gravitational potential is required to
satisfy the field equation

(18)

which is to be taken as a generalization of Poisson’s equation.
The theory of relativity demands that  be a scalar in the four-dimensional sense,

like the gravitational potential  and the operator ; the “rest-mass density” is such a
scalar. For this reason, in his first communication,(6) Abraham used this for  By inte-
grating (18), he calculates the gravitational potential of a moving mass point and thus
obtains the “fundamental law of gravitation.”(7) This law is simpler than the funda-
mental law of electrodynamics, insofar as the direction of the attracting force is inde-
pendent of the state of motion of the attracted point. This is a peculiarity of the scalar
theories, which determine the gravitational force by means of a single vector 

In the vacuum,  is equal to zero and the gravitational potential therefore satisfies
the differential equation |

(18a)

the so-called “wave equation.” This results in the possibility of gravitational waves,
which propagate with the speed of light. However, in the scalar theories the gravita-
tional waves are longitudinal, whereas in the vector theory they are considered as
transverse, in analogy with the electromagnetic waves. According to both theories,
the factor determining the amplitude of the gravitational wave emitted by an oscillat-
ing mass particle is the product of gravitational mass and acceleration. One could
now surmise that during the emission of -rays from radioactive atoms, where very
large accelerations occur, the hypothetical gravitational waves will be excited in
noticeable strength. However, electric waves are simultaneously excited and, as the
quantitative discussion(10) shows, the force excited by gravitational waves from one
emitted -particle on a second -particle is at most  of the electric force. That
the gravitational waves play no role in the balance of nature has however still a
deeper reason. If one mass particle imparts an acceleration to another through colli-

divT g div tenϕ ϕ gradϕ,⋅–= =

ϕ div gradϕ ∂2ϕ
∂x2
--------- ∂2ϕ

∂y2
--------- ∂2ϕ

∂z2
---------

∂2ϕ
∂u2
---------.+ + += =

μF
g ϕ gradϕ.⋅–=

ϕ ν,=

ν
ϕ

ν.

F
g.

ν

[487] ϕ ∂2ϕ
∂x2
--------- ∂2ϕ

∂y2
--------- ∂2ϕ

∂z2
---------

1
c
--- ∂

∂t
----- 1

c
---∂ϕ

∂t
------⎝ ⎠

⎛ ⎞–+ + 0,= =

α

α α 10 36–



RECENT THEORIES OF GRAVITATION 377

sion or long range forces, then the second particle also acts to accelerate the first in
such a way that the vector sum of the products of inertial mass and acceleration is
equal to zero. What determines the amplitude of the gravitational wave emitted from
the system of the two particles is the vector sum of the products of gravitational mass
and acceleration. Due to the proportionality of inertial and gravitational mass, this
sum is also equal to zero. Thus, even theoretically, one cannot provide a means to
excite gravitational waves of noticeable strength.

One aspect of Abraham’s first theory has so far not been mentioned. Following an
hypothesis already proposed by A. Einstein,(5) one considers the gravitational poten-
tial  to be a function of the speed of light  and, in particular, the following rela-
tion between the two quantities results from the assumed form of the equation of
motion of material points:

(19)

Since, according to this,  is variable in a gravitational field, Einstein and Abra-
ham thus give up the postulate of the constancy of the speed of light, which was a
fundamental requirement of Einstein’s theory of relativity | of 1905. The covariance
of the physical laws with respect to the Lorentz transformations demanded by that
theory exists then only in infinitesimally small spacetime regions in which  can be
considered to be constant. Only with regard to the processes in an infinitesimal region
are two uniformly moving systems of reference to be considered as equivalent. But if
one regards finite systems of gravitating masses, then there exists no equivalence
whatsoever between such systems of reference. Indeed, G. Pavanini(18) was able to
show that, according to Abraham’s theory, secular perturbations of the Keplerian
motion occur in a two-body system, which depend on the “absolute” state of motion
of the system. If the center of mass of the system is at rest, then only a secular motion
of the perihelion occurs; for Mercury it would amount to  in a hundred years,
that is only about one third of the actual motion of the perihelion.

Our planetary system moves within the gravitational field of the other celestial
bodies. The particular system of reference in which the external gravitational field
can be taken as static, plays a distinguished role according to Abraham(10) (13) and is
to coincide with the “absolute” system of reference, which, at least in the case of
rotational motion, makes itself felt through centrifugal and Coriolis forces, and which
the action-at-a-distance theory of C. Neumann anchors in a hypothetical “body 
This view, however, did not meet with the approval of Einstein. He attempted to sal-
vage the principle of relativity of 1905(14), wherein, however, he had to restrict the
equivalence between systems of reference in uniform translatory motion with respect
to each other to processes in “isolated systems,” and to the “limiting case of constant
gravitational potential.” As Abraham remarked,(15) to the contrary, it is not possible to
shield a system against the gravitational force, and the limiting case of constant grav-
itational potential corresponds to the absence of gravitational force. If, on the other
hand, those theoreticians who define the gravitational potential through  consider
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gravitation as an essential property of matter, then they must abandon “yesterday’s
theory of relativity.”

On the occasion of that dispute, Einstein,(14) incidentally, revealed the prospect of
a more general “tomorrow’s principle of relativity,” encompassing accelerated and
rotational motion. To what extent the “generalized theory of relativity,” published by
him in association with M. Grossmann the following year (1913), fulfills that promise
is to be discussed in detail later in (III B). |

C. Abraham’s Second Theory

In that discussion there emerged at least this much agreement, that in the develop-
ment of the theory of gravitation attention has to be paid to the relation between
weight and energy. In a lecture(16) at the international congress of mathematics at
Cambridge (August 1912), M. Abraham gave the highest priority to the postulate of
the weight of energy. He proved that the gravitational force on a moving point mass
can be strictly proportional to its energy only if its Lagrangian function is a linear
homogeneous function of the velocity and of the gravitational potential. The
Lagrangian of the earlier theory of relativity

(20)

is to be adapted to this demand by interpreting the speed of light  itself as a poten-
tial and considering

(20a)

as independent of  and  Then the Lagrangian of the mass-point becomes

(21)

and the rest-energy

(21a)

Hence, the rest-energy decreases with decreasing  whereas the rest-mass

increases with decreasing 
Now one must demand that all mechanical quantities of the same class possess

the same degree in  thus all energies possess the degree  all masses the degree
 Later the author derives this requirement(17) from the following postulate:[3]

“An observer belonging to a mechanical system must not perceive that he, together
with the system, is brought into a region in which  has a different value” Since
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lengths should not depend on  time intervals are of degree  The energy density
as well as the remaining components of the ten-tensor  are of degree  but since
they are of the second degree in the derivative of  with respect to the coordinates
(cf. 16), so  is to be replaced not by  but by  Correspondingly, Abraham
chooses the gravitational tensor  according to the scheme (16, 16c):

(22)

| Then from (5) one obtains, similar to (17),

(22a)

where we have set

(22b)

In order for the postulate of the weight of energy to be valid, the field equation is
to be formulated as follows

(23)

Then, according to (22a), the laws of conservation of momentum and energy, summa-
rized in (7), yield

(23a)

for the gravitational force per unit volume. Integration over a body of sufficiently
small volume yields the gravitational force

(24)

Therefore, the weight of a body is proportional to its energy; by the way, in (24),
the gravitational field determined by the gradient of  has been assumed to be homo-
geneous over the extension of the body, and correspondingly the gravitational field
produced by the body itself and its energy has been neglected.

In a lecture(17) presented at the congress of the “Società italiana per il progresso
delle scienze,” the author treats the role of the self-excited field and its energy for the
case of rest. Since here  denotes the density of rest-energy of matter, it is useful to
define  as the mass constant with respect to the unit volume, and correspondingly to
write (21a) as
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(24b)

denotes the gravitational force per unit of mass as measured by  For incompress-
ible fluids, for example,  is a constant also independent of 

For the static gravitational field, the differential eq. (23) is written as

(25)

Since, according to (16b), the energy density of the static field is

| and since the identity

applies, one can write (25) as

(25a)

Thus, the divergence of the gradient of  is proportional to the density of the total
energy, i.e., according to Gauss’ theorem: The flux of the gravitational force vector

 (cf. 24b) through a closed surface is equal to four times the enclosed energy.
For a stationary homogeneous sphere of radius  we have, according to (25),

(26)
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The integration is not difficult to perform.(17) According to (26), the gradient of
 decreases outside the sphere as  the gradient of  the determining factor for

the gravitational force per unit mass according to (24b), is obtained as
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denotes the quotient of the energy  of the external gravitational field and the total
energy  of the sphere and of its gravitational field. This result is in agreement with
the above theorem concerning the flux of the vector  The energy of the gravita-
tional field outside the sphere is responsible for the deviation from Newton’s law
because it causes the difference in the force flux through two concentric spheres. Inci-
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dentally, eq. (26b) applies also to a mass distribution homogeneous within concentric
layers.

The integration of (26a) for the interior of a homogeneous sphere leads to hyper-
bolic functions. For a body with the mass and the radius of the Sun the quantity 
given in (26c), turns out to be of the order of  This provides an idea of the order
of magnitude of the quotient of the external and of the total energy, as well as of the
order of magnitude of the deviation from the Newtonian law determined by it. A
celestial body may be considered as a material point if that quotient can be neglected
under the given circumstances. 

We return to the Lagrangian function (21) of the material point; it implies the val-
ues for momentum and energy | 

(27)

(27a)

Lagrange’s equations for the free motion of a point mass

can be written

(28)

They contain the inertial force as well as the gravitational force, which is

(28a)

or, according to (27a),

(28b)

For a given material point in a gravitational field, the gravitational force is, also in
the case of motion, thus proportional to its energy; this corresponds to the primary
postulate of the weight of energy.

The substitution of (27) and (28a) in (28) yields, upon the cancellation of the con-
stant  the equation of motion of free material points in a gravitational field
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The energy equation, which connects the temporal increase of the energy  of the
material point with the local temporal differential quotient of  with respect to time,
is, by the way, joined to the momentum eq. (28) as a fourth equation. In a static field,
where  depends only on position,  remains constant; in this case, according to
(27a), the energy equation is

(29a)

If one divides the equation of motion (29) by this constant expression, which then
can be moved under the derivative, one obtains

(29b)

| as the differential equation of motion of free material points in a static gravitational
field. The equations of motion (29) and (29b), incidentally, have been given first by
A. Einstein,(11) and the energy eq. (29a) previously by M. Abraham.(8)

From it [eq, (29b)] one can derive the theory of the free fall. If  is the initial
velocity, and  the speed of light appropriate to the initial location, then

(30)

and, in particular, if the initial velocity  is equal to zero

(30a)

While  decreases from the initial value  the velocity of the fall  increases at
first, reaches a maximum

(30b)

and finally tends towards the limit  as  continues to decrease.
In order to determine the distance of fall as a function of time,  must be given as

a function of  In his note about the free fall,(9) M. Abraham puts
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(31a), (31b)

If one integrates the velocity of fall

(31c)

with respect to time, then the distance of fall becomes

(31d)

which also satisfies (31). At the time  i.e. for the distance of fall
  and  would both become zero. Of course, one cannot produce homoge-

neous fields of such extension. Practically, only times of fall have to be considered
that are small | compared to the limiting time; then the above laws of fall become the
Galilean ones.

B. Caldonazzo(23) has concerned himself with the trajectories of freely point
masses in homogeneous gravitational fields. He compares them to light rays whose
paths follow from Fermat’s principle of minimum light travel time, 

(32)

if  is given as a function of position. The differential equation for a light ray trajec-
tory is, with  denoting a tangential unit vector

(32a)

On the other hand, the equation of motion (29b) implies the equation for the tra-
jectories of a material points in a static gravitational field

(32b)

An examination of the two differential equations (32a, b) shows that the second
goes over into the first if one replaces  by  From this remark follows an interest-
ing relation between the trajectories of material points and those of light-points. Let
us follow a material point  and a light-point  which both emerge from  in the
direction defined by the unit vector  The initial speed of  is the speed of light 
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associated with the point  whereas we let that of  be equal to  The trajectory
of  is then uniquely determined by (32a), the one of  by (32b), where for  one
has to use the function of position given by the energy eq. (30). Different initial
speeds  of  correspond to different trajectories; this set of trajectories has as the
limiting curve the one corresponding to the initial speed  But for 
eq. (30) implies  whence (32b) goes over into (32a). Thus, the set of trajecto-
ries of material points shot from a point  in a given direction with different initial
speed  and moving in a static gravitational field, contain as a limiting curve

 the light path that emerges from  in the same direction.
Caldonazzo treats in more detail the case of the homogeneous gravitational field,

where the equipotential surfaces, , are horizontal | planes. If the initial
velocity was horizontal, it follows from (29b) that

(33)

for the horizontal velocity component, and, hence, on account of (30), the vertical
velocity component of the material points becomes

(33a)

The velocity components of the light-point are, according to the theorem just
proved, obtained from this by setting :

(33b)

(33c)

It follows that

(34)

Therefore, all the material points shot horizontally with different initial speeds 
have the same velocity of fall as the light-point, whereas the horizontal velocities are
in the same ratio as the initial velocities. Thus all these points fall by equal distances
during equal times; the horizontal projections of paths at equal time are, however,
related to that of the light path as the initial velocities  and  Thus the trajecto-
ries of material points are obtained from the light curve to which they are tangent at
the vertex by a contraction in the horizontal direction. Based on this result, Caldon-
azzo constructs, in a suitably chosen coordinate scale, the trajectories for the follow-
ing three cases:
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(I)

This corresponds to a homogeneous mass-free field in Abraham’s first theory,
where  should satisfy the Laplace equation (cf. (18a)). The light curves are
cycloids. The trajectories resulting from them by contraction in the horizontal direc-
tion are so called “Fermat cycloids.”

(II)

Here,  itself satisfies Laplace’s equation. According to the Einstein’s equiva-
lence hypothesis (III A), this should be the case in mass-free fields. | The light curves
are circles, hence the trajectories of material points are ellipses.

(III)

 satisfies Laplace’s equation as demanded by the postulate of the weight of
energy. The light-curves are elastic curves [elastische Kurven], the trajectories of
material points are affine to them. 

If one considers  as variable in the gravitational field, how are the electromag-
netic field equations to be formulated? According to I. Ishiwara,(19) as follows:

(35)

By retaining the usual expressions for the components of the electromagnetic ten-
sor , he obtains for its divergence, i.e., for the energy-momentum transfer of the
electromagnetic field, the expression:

(35a)

The first term represents the electromagnetic four-force per unit volume; it corre-
sponds to a transfer of momentum and energy from the electromagnetic field to the
electrically charged matter. The second term, however, shows a transfer of momen-
tum and energy from the electromagnetic field to the gravitational field, which should
take place everywhere where there exists electromagnetic energy. This conception
corresponds to the postulate of the weight of energy; and, according to it, the electro-
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magnetic energy, just like the energy of matter, must generate a gravitational field, so
that the field equation (23) is written as

(36)

Then, (cf. (23a)) the momentum and energy transferred from the gravitational field
per unit volume and time becomes

(36a)

| Here, the term containing  shows the transfer of momentum and energy to
matter, the term containing  the transfer to the electromagnetic field; the latter is
equal and opposite to the corresponding term appearing in (35a), justifying the above
interpretation. Upon adding of the divergences of the tensors  and  it [ ] can-
cels. The total four-force acting on the unit volume of matter is[4]

(36b)

It is composed of the electromagnetic force acting on the charge, and of the gravita-
tional force acting on the energy of matter.

The field equations (35) thus agree with the postulate of the weight of energy, and
so fit into the theory presented here. The coupling of the two fields is, by the way, not
a simple one. For, according to (35) the gravitational potential  influences the
electromagnetic field; on the other hand, according to (36), the gravitational potential
depends on the distribution of energy within the electromagnetic field.

D. Theories of Nordström and Mie

In Abraham’s first theory (II B), the postulate of the constancy of the speed of light is
renounced, and thus the validity of the theory of relativity is restricted to infinitely
small spacetime regions. Abraham’s second theory gives up the validity of the princi-
ple of relativity even in this restricted sense, because the two sides of its field
equation (23) exhibit different behavior under Lorentz transformation.

The theories of gravitation of G. Nordström and G. Mie, however, view the speed
of light as constant; their equations are invariant with respect to Lorentz transforma-
tions.

Following Abraham’s first theory, G. Nordström(20) derives the gravitational ten-
sor  from a scalar gravitational potential  according to the scheme (16). This
[potential] satisfies the field equation (18), in which  denotes the “rest-mass den-
sity” of matter. Then, as in (II B, eq. (17), (17b)), on the basis of the conservation
laws of momentum and energy there results, 

(37)

c c( ) 2 ηm ηe+( ).=

ηm ηe+
c

-------------------⎝ ⎠
⎛ ⎞ gradc– divT g.=

[497] ηm

ηe

T e T g ηe

ρF
e ηm

c
------gradc– div T e T g+( ).=

c

T g ϕ
ν

μF
g νgradϕ–=



RECENT THEORIES OF GRAVITATION 387

as the gravitational force per unit of volume.
We integrate over the volume of a moving body. Since | its volume elements expe-

rience a Lorentz contraction as a result of the motion, we have

(38)

If, furthermore, one takes the rest-mass of the body to be

(38a)

then, in case the body is so small that the gravitational field is considered to be homo-
geneous over its extent, one obtains the expression

(39)

for the resultant gravitational force. It becomes readily apparent that the appearance
of the square root as a factor in the expression for the gravitational force is a neces-
sary consequence following from the theory of relativity, because that theory cannot
avoid assigning to the scalar  by means of (18), a  invariant under Lorentz trans-
formations. In the theory of relativity the gravitational force of a moving body is
therefore not proportional to its energy, but to its Lagrangian function (cf. (20)):

(40)

At low speeds this means that not the sum but the difference of the potential and
kinetic energy should be the determining factor for the weight of a body.

As  is constant, the gravitational potential  can enter the Lagrangian function
(40) only through the multiplicative constant  This must take place in such a way
that in the law of conservation of momentum formulated in the Lagrangian manner
(see (28)),

(40a)

the right-hand side, i.e., the gravitational force

(40b)

agrees with (39). Therefore, for the rest-mass, the differential equation

(40c)

must apply, whose integral is
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(41)

|  denotes a “mass-constant” which is independent of  Thus, the gravitational
potential enters exponentially into the Lagrangian function of the first theory of Nor-
dström, 

(41a)

and enters similarly into the expressions for momentum and energy

(41b)

(41c)

and into the expression for the gravitational force (40b)

(41d)

The equation of motion of material points, or equivalent bodies, in a gravitational
field

(42)

takes, according to (41b, d), the form

(42a)

In a static field we have the energy integral (cf. (41c)) 

(42b)

so that in Nordström’s theory, the equation of motion of material points in a static
field is:(22)

(42c)
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It is apparent that in a homogeneous gravitational field—in contrast with (II C)—the
greater the velocity of horizontally projected bodies, the slower they fall. The light-
curve is, however, here too to be considered as a limiting curve of the family of tra-
jectories; because for  the acceleration is zero, thus the motion is uniform and
rectilinear, like that of a light-point under the presupposition of the constancy of the
speed of light.

For free fall in a homogeneous mass-free field, the equation of motion

(42d)

applies. | It agrees with the differential equation that one uses in classical mechanics
for the fall in air under the assumption of a law of friction proportional to the square
[of the speed]; therefore its integration poses no difficulties and becomes, if one sets
the initial velocity equal to zero,

(42e)

If the field extended sufficiently far, the speed would asymptotically approach the
speed of light.

M. Behacker(25) has treated horizontal projection [of bodies] and planetary
motion on the basis of Nordström’s first theory. The deviations from the laws of clas-
sical mechanics are here too of second order in 

The theory of G. Mie,(21) though developed independently, is closely related to
Nordström’s first theory. It forms part of an extensive investigation of the “founda-
tions of a theory of matter,” for whose presentation this is not the appropriate place.
Within matter, Mie differentiates between two gravitational four-vectors, which,
however, coincide in the case of an “ideal vacuum.” Here, as with Abraham, the dif-
ferential equations of longitudinal waves apply. The gravitational waves emitted by
an oscillating mass-particle are treated in more detail by Mie. He further emphasizes
that, from the point of view of the theory of relativity, one necessarily arrives at the
notion that the weight of a body is not to be set proportional to its energy, but to its
Lagrangian function. Accordingly, the kinetic energy of the thermal motion of the
molecules makes a negative contribution to the weight. Since, on the other hand, in
the theory of relativity the theorem of the inertia of energy is valid, the gravitational
mass of a warm body is thus not precisely proportional to its inertial mass, but with
increasing temperature the quotient of gravitational and inertial mass decreases.
However, the proof of the decrease demanded by Mie’s theory would require pendu-
lum measurements with an accuracy of the order of  this theoretical deviation
from the proportionality law is not subjectable to experiment.

Greater difficulties arise for the Mie-Nordström theory from observations by
Southerns, which demonstrate the constancy of the quotient of inertial and gravita-
tional mass during radioactive transformations (I C). These observations can only be
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brought into agreement with that theory through rather artificial assumptions. One
could for example imagine that the entire energy loss during the transformation |
takes place at the expense of only the electric potential energy, so that the kinetic
(magnetic) energy has the same value before and after the transformation of the ura-
nium atom. Or, one can assume with Kretschmann(36) that the total energy emitted
from the uranium atom in the form of heat, - and -particles does not come from
those particles that later form the lead atom, but from the eight escaped helium atoms.
Then, however, helium would have to show a correspondingly greater deviation from
the proportionality law.

G. Mie also investigated the relation between the gravitational potential and elec-
tromagnetic processes. An electromagnetic field possesses a gravitational mass,
which is proportional to its Lagrangian function, i.e. proportional to the difference of
its electric and magnetic energy. A plane electromagnetic wave, in which the electric
and the magnetic energy density is known to have the same value, accordingly has no
weight in this theory (corresponding to the rectilinear propagation of light). An elec-
trostatic field, however, possesses a positive weight and a magnetostatic field a nega-
tive weight. On the other hand, the gravitational potential enters exponentially into
the electromagnetic quantities, as well as into the mechanical ones. Nevertheless, the
value of the potential in a system escapes detection by observers belonging to that
system. This is expressed by Mie’s theorem of the “relativity of the gravitational
potential”: If two physical systems differ merely by the value of the gravitational
potential, then this does not have the least effect on the size and the form of the elec-
trons and of the other material elementary particles, on their charge, their laws of
oscillation and motion, and on the velocity of light, indeed on all physical relations
and processes.

E. Nordström’s Second Theory

With the intention of satisfying the law of the proportionality of the gravitational and
inertial mass, as far as it is possible within the framework of the theory of relativity,
G. Nordström(26) later made a change in his theory. Before we turn to a discussion of
this change, we must briefly return to the properties of the world tensors (I B), and
mention several theorems of von Laue regarding “complete static systems.”

We form the “diagonal sum” of a world tensor 

(43)

| since the components entering this sum transform like the square of the four coordi-
nates, the diagonal sum is an invariant; it is frequently called the “Laue scalar.”

The diagonal sum of the electromagnetic world tensor  is identically equal to zero:

(43a)
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In contrast, our gravitational tensor  yields, according to (16), a diagonal sum
different from zero:

(43b)

The matter is the carrier of a third world tensor  its last component is the
energy density of matter. For a body consisting of discrete and freely movable mass
particles, the momentum density and the kinetic stresses determine the remaining
components of the “material tensor”  In a continuously connected body, elastic
stresses enter in addition into the consideration, as they also cause an energy flux and
thus a momentum density. It appears useful to include in  the “stress tensor.” The
diagonal sum of the material tensor

(43c)

then equals the sum of the three (kinetic and elastic) principal stresses plus the total
energy density  of the matter.

Now, if

(44)

is the total ten-tensor, resultant of the material, the electromagnetic and of the gravi-
tational tensor, then the laws of conservation of momentum and energy can be sum-
marized as (cf. (5))

(44a)

Namely the momentum and energy extracted from the electromagnetic field and from
the gravitational field are transformed into momentum and energy of matter.

By a “complete static system,” one understands, according to M. Laue, an isolated
physical system that is in equilibrium in an appropriately chosen system of reference

 Therefore, in  the components

| of the resultant tensor, which determine the energy flux and the momentum density,
are all zero; one can derive from this9 that in  the volume integrals of the resulting
normal stresses are equal to zero:

(45)

If one is only concerned about the temporal mean values, then a system in static
equilibrium can also be taken as a completely static system. It suffices that the tempo-

9 M. Laue, Das Relativitätsprinzip, 2nd. ed., p. 209.
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ral mean value of the resultant energy flux vanish everywhere. Thus, for example, a
hot gas in static equilibrium, together with its container, forms a complete static sys-
tem. For the measurable stresses, the eqs. (45) apply; the negative contributions aris-
ing from the kinetic pressure of the gas, and the positive, arising from the stresses in
the walls of the container, cancel each other in the integrals extended over the entire
system.

Because it is an invariant, the diagonal sum (43) of the resultant world tensor does
not depend on the choice of the system of reference. Its value in a complete static sys-
tem can thus be determined by referring it to 

(45a)

In view of (45), the volume integral yields 

(45b)

where  denotes the total rest-energy of the system.
After these preparations, we turn to Nordström’s second theory of gravitation. It

too is based on the tensor-scheme of (16); however, the following takes the place of
the field equation (18), 

(46)

Since the diagonal sum  of the material tensor, as well as  and the operator 
are four-dimensional scalars, this approach corresponds to the relativistic scheme.
The gravitational force per unit volume now follows from (17b):

(46a)

The integration over the volume of a body moving with respect to  taking into
account the Lorentz contraction (38), yields the gravitational force acting on the
body. | 

(46b)

where

(46c)

denotes the gravitational mass of the body for the case of rest  Indeed, on the
one hand, according to (46b), the gravitational force on the resting body is equal to
the negative gradient of the potential  multiplied by  On the other hand, when
rest reigns in  it follows from (46) that
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Therefore, according to Gauss’ law, the force flux through a surface  enclosing the
body, which determines the attracting mass, becomes:

(46d)

The gravitating mass  and thus also  is considered to be a constant, i.e. as
independent of  in Nordström’s second theory.

Now, what relation exists between the gravitational mass and the rest-energy for a
complete static system? Equation (45b) yields:

(47)

Taking into consideration (43a, b), one obtains for the diagonal sum of the result-
ant world tensor, since equilibrium reigns in 

(47a)

And since, furthermore,

is an identity, the field equation (46) can then be brought into the form

(47b)

and from (47) it follows, on the basis of Gauss’ theorem, that

(47c)

where the integration is to be carried out over a surface wholly enclosing the com-
plete static system and its gravitational field. However, on such a surface, far removed
from the system, one has to set for  the potential  of the external masses not
belonging to the system, | which is constant there. Namely, if  were not constant
on  the external field would superpose on the system’s own; the energy of its own
field could then not be separated from the external field, and the system could thus
not be considered isolated (i.e., enclosed by the surface  Now, it follows from
(47c) and (46d) that

(48)

ϕ0Δ div gradϕ0

D0
m

ϕ0
-------.= =

f 0

f 0

∂ϕ0

∂n
---------d∫ V 0D0

md

ϕ0
-----------------∫ Mc.= =

Mc, M ,
ϕ,

E0 V 0D0.d∫=

Σ0,

D0 D0
m gradϕ0( )2.+=

ϕ0 ϕ0 gradϕ0( )2+Δ div ϕ0gradϕ0( )=

div ϕ0gradϕ0( ) D0=

E0 V 0D0d∫ f 0ϕ0

∂ϕ0

∂n
---------,d∫= =

ϕ0, ϕa
[505]ϕa

f 0,

f 0).

E0 ϕa f 0

∂ϕ0

∂n
---------d∫ ϕaMc.= =



394 MAX ABRAHAM

Accordingly, the total rest-energy of the complete static system is equal to its
gravitational mass multiplied by the external gravitational potential. On the other
hand, according to the theorem of the inertia of energy (8a),

(48a)

is the inertial rest-mass.
In Nordström’s second theory, the law of proportionality between inertial and

gravitational mass applies for a complete static system, at least for the rest-masses.
Of course, for moving bodies, the postulate of the weight of energy is not satisfied in
Nordström’s second theory any more than in his first, since, in the expression (46b)
for the gravitational force, the root factor characteristic of the theory of relativity, and
entering into the denominator of the expression for the energy, appears again in the
numerator. However, admittedly one cannot determine the weight of a moving body
with a scale; thus, as far as weighing is concerned, the theorem of the weight of
energy therefore applies in Nordström’s theory, and accordingly also the theorem that
weight is conserved. However, the strict validity of these theorems, and thus also that
of the law of proportionality of inertial and gravitational mass, fails when the masses
are in motion. For example, in pendulum measurements, one would expect deviations
of the order of  which are however unmeasurable of course.

But what is now the situation in an isolated system in a state of statistical equilib-
rium, e.g., in a hot gas? The thermal motion of the molecules causes here, too, a
reduction of weight corresponding to the negative kinetic stresses entering into 
and thus also into the expression for the gravitational mass (cf. (46d)). This, however,
is compensated by the positive contributions which the stresses in the wall of the ves-
sel contribute to  and thus to the weight. Thus, for Nordström, the proportionality
of weight and energy comes about merely through a compensation of the contribu-
tions of the individual parts of the complete static system. | It is in no way based on a
fundamental property of matter or energy.

A complete system of sufficiently small dimensions can be considered as equiva-
lent to a material point. The motion in a given gravitational field is then obtained
from Lagrange’s equations (40a)

(49)

As a comparison with (46b) reveals, one has to set for the Lagrangian function

(49a)

This Lagrangian of Nordström’s second theory turns into the one (41a) of his first

theory, if  is replaced by the exponential function  However, through this sub-
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stitution, the field equation (46) does not change into agreeing with (18) of the first
theory; therefore, the two theories are not equivalent.

The momentum and energy can be derived from the Lagrangian function (49a) in
the usual manner:

(49b)

(49c)

Through substitution of (49b) into (49) one obtains the equations of motion of
material points and of the equivalent complete systems

(50)

In a static gravitational field, the energy (49c) is constant:

(50a)

Therefore, the equation of motion can be brought into the form(31)

(50b)

For a homogeneous mass-free gravitational field, whose lines of force are parallel
to the negative -axis, one must set, corresponding to the field equation (46),

(50c)

| The free fall from the rest position  in this field can be treated on the basis of
the energy equation (50a), which yields

(50d)

It is satisfied by

(51)

because according to (50c)

(51a)

and, on the other hand, the velocity of fall is 
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(51b)

so that (50d) is indeed satisfied.
G. Nordström,(31) incidentally, also treats oblique projection [of bodies] and plan-

etary motion; the area law proves to be valid. The deviations from the laws of classi-
cal mechanics are minute.

In Nordström’s theory, the rest-energy is proportional to the external gravitational
potential (cf. (48)). In Abraham’s theory, a similar behavior was found; the rest-
energy (cf. (21a)) was proportional to the speed of light, which there played the role
of the gravitational potential. Thus, in either theory, the rest-energy of a body
decreases as a result of the approach of external masses. The rest-mass, in contrast,
exhibits a different behavior in the two theories; for Abraham (cf. (21b)) the rest-
mass is inversely proportional to  for Nordström (cf. (48a)) it is proportional to

 Hence, for Abraham, the inertial mass of a body increases upon the approach of
an external body, while, for Nordström, it decreases.

Incidentally, according to Nordström, the units of time  and length  should
depend in the following way on the gravitational potential:

(52)

(52a)

i.e., the rate of a portable clock and the length of a portable measuring rod should be
inversely proportional to the gravitational potential. Thus, local spatial and temporal
measurements do not allow the construction of the universal system of reference in
which light should propagate rectilinearly. This conception of space and time can
hardly be made compatible with the theory of relativity of Minkowski. | However, it
can be readily fitted into the Einstein-Grossmann “generalized theory of relativity,” as
has been shown by A. Einstein and A. D. Fokker.(34)

We must refrain here from entering into Nordström’s five-dimensional interpreta-
tion of his theory.(33) (37)

F. Kretschmann’s Theory

Among the newest relativistic theories of gravitation, the one by E. Kretschmann(36)

deserves to be mentioned even if only briefly. This theory is to be counted among the
scalar theories, as its assumes that the gravitational force is determined by the gradi-
ent of an “aether pressure”  which, in a vacuum, satisfies the equation

Matter is assumed to consist of elementary drops, which obey the equations of state
of “ideal fluids of smallest compressibility and least expendability” developed by
E. Lamla in his inaugural dissertation “Über die Hydrodynamik des Relativitätsprin-
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zips.” These drops are assumed to move irrotationally and each to carry a positive
electric elementary charge. The divergence of the gradient of  in the interior of the
drops, which determines the attracting mass, turns out to be proportional to the
square of their acceleration. On the other hand, the attracted mass of a body is pro-
portional to the sum over the volume of its elementary drops. In order to obtain the
proportionality of the attracted, the attracting and of the inertial mass, the author
assumes not only that the drops are all of the same kind, but that they also move with
the same mean velocity and acceleration; then, of course, all three masses simply
become proportional to the number of the particles. Following A. Korn and H. A.
Lorentz, the author explains, that such an energy equilibrium of the elementary drops
is produced by means of a universal radiation state, or state of oscillation, which is
supposed to immediately smooth out disturbances in the energy equilibrium.

The contrast between this theory and the other theories of gravitation discussed
here is strikingly clear. The latter introduce merely mechanical and energetic quanti-
ties, since the speed of light, too, is a quantity of relativistic mechanics.
Kretschmann’s theory, in contrast, is based on quite particular concepts, which are
virtually without significance for the final result; for not the particular properties, but
only the number of | particles is to be considered in the derivation of the proportional-
ity of inertial and gravitational mass.

III. TENSOR THEORIES

A. Einstein’s Theory of the Static Gravitational Field

In I C we discussed the relation between gravity,[2] inertia, and energy, and the neces-
sity of assigning to them a place in the worldview of modern physics. These relations
also formed the starting point of the investigations of A. Einstein.

His first paper(5) is based on the so called equivalence hypothesis: “Equivalence
exists between two systems of reference of which one is at rest in a homogeneous
gravitational field and the other is uniformly accelerated in a field free of gravitation.”
Indeed, in classical mechanics, such an equality exists because the inertial force
under uniform acceleration is equivalent to a constant gravitational force; the equiva-
lence hypothesis results here in the identity of inertial and gravitational mass. But it is
questionable whether the equivalence hypothesis can be maintained for other physi-
cal processes, namely for those that satisfy the principle of relativity of 1905; if this
were the case, then from this and from the theorem of the inertia of energy, valid in
that theory, the theorem of the weight of energy would follow immediately. Without a
critical examination of whether his earlier principle of relativity is compatible with
the new equivalence hypothesis, Einstein connects these two trains of thought and
arrives thus at the following remarkable result: 

The gravitational potential influences the speed of light; if the values of the speeds
of light,  and  correspond to the potentials,  and  then

p
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(53)

By application of Huygens’ principle this implies a curvature of the light rays grazing
the surface of the Sun; the total deviation of such a ray would amount to  sec-
onds of arc, by which the angular distance of a star appears to be increased with
respect to the center of the Sun. Einstein considers it possible to observe this devia-
tion on the occasion of an eclipse of the Sun. | 

Furthermore, the gravitational potential changes the frequency of periodic pro-
cesses as determined by the following formula

(53a)

If  refers to the surface of the Sun and  to the Earth, then the right-hand side is
equal to  Thus, the frequency  of the oscillations of light should be some-
what smaller on the surface of the Sun than the frequency  of the corresponding
spectral line of a terrestrial light source: i.e., compared to the terrestrial lines, the
solar ones should be displaced to the right-hand side of the spectrum. Astrophysicists
have indeed found displacements of the Fraunhofer lines in this sense, but have
mostly ascribed them to pressure effects.

In that first study, Einstein had investigated the effect of the gravitational field on
radiation phenomena without, however, making use of the connection found between
the gravitational potential and the speed of light for the theory of the gravitational
field itself. Only after the first publication by Abraham did Einstein also turn to the
problem of gravitation.(11) There, again, he started from the equivalence hypothesis
and derived the equations of motion ((29), (29b)) of material points in static gravita-
tional fields. He also concluded from that hypothesis that the speed of light  in
mass-free static fields must satisfy Laplace’s equation. Shortly thereafter,(12) how-
ever, he convinced himself that in order to avoid contradictions with the law of con-
servation of momentum, one has to begin from Laplace’s equation for  rather than
for  and that, hence, the equivalence hypothesis does not form a firm foundation
for the theory of the gravitational field. This led to the necessity for a new foundation
for the theory. M. Abraham (II C) made the theorem of the weight of energy the start-
ing point of his second theory, and derived from it the field equations and the equa-
tions of motion. For static fields, this theory coincides with Einstein’s. The essential
difference appears only upon the extension to time varying fields. Abraham’s theory
considers such fields as still being determined solely by the four derivatives of the
velocity of light, whereas Einstein’s theory derives the dynamic field from a tensor
potential.
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B. The Generalized Theory of Relativity of A. Einstein and M. Grossmann

The basic idea of the tensor theory of the gravitational field can | be understood as
follows. The energy density, which in a static field is determined by the divergence of
the gradient of the gravitational potential, plays in the theory of relativity merely the
role of one component of the resulting world tensor  it is joined by nine other ten-
sor components which characterize the energy flux and the stresses. The tensor theory
assumes that, like the energy density  the remaining nine components 

 generate gravitational fields whose potentials  form a ten-ten-
sor themselves. With the introduction of such a tensor potential it aims to give the dif-
ferential equations of the gravitational field a form satisfying the scheme of the
principle of relativity. That it appears possible to fit tensor theories of gravitation into
the framework of Minkowski’s conception of spacetime has been shown by
G. Mie.(28) However, the theory of gravitation sketched by A. Einstein and
M. Grossmann(24) supersedes the framework of the earlier theory of relativity by
closely relating these tensor potentials  to a generalized relativistic spacetime
doctrine.

In Minkowski’s four-dimensional representation of the theory of relativity, the
square of the four-dimensional distance between two neighboring spacetime points
was given by the following quadratic differential form:

(54)

in which  the speed of light, was constant. In a static gravitational field, the very
expression (54) should, according to Einstein, express the “natural distance”  of
two neighboring world points, but where  is now a function of  Its applica-
tion to the general case of a dynamic gravitational field would, however, imply a pref-
erential treatment of the time coordinate  over the spatial coordinates

  which would not be reconcilable with the relativistic
ideas about space and time. It appears natural to replace the special quadratic form
(54) by the most general homogeneous function of second degree in the coordinate
differentials:

(55)

This form was used by E. and G. for the natural distance between two neighboring
world points. The system of the ten coefficients  in the form (55) form a world
tensor, and it is said to be identical to the tensor potential of the dynamic gravitational
field, similar to the way  determines the gravitational potential in the static case. | 

According to (55) the natural length of a portable, infinitely small measuring rod
is not determined solely by the coordinate differentials  of its end
points; rather, the six potentials

[511]

T ;

T 44( ), T μν
μ ν, 1 2 3 4, , ,=( ) gμν

gμν

ds2 dx2 dy2 dz2 c2dt2,–+ +=

c,
ds

c x y z., ,

x4 t=( )
x( 1 x, x2 y,= = x3 z ),=

ds2 gμνdxμdxν
μν
∑= μ ν, 1 2 3 4, , ,=( ).

gμν

c [512]

dx1 dx2 dx3, ,

g11, g22, g33, g12 g21,= g23 g32,= g31 g13=



400 MAX ABRAHAM

enter into it, and, in particular, in a way that depends on the direction of the measur-
ing rod. That means that apparently rigid bodies are stretched and twisted in a gravi-
tational field. The measure of time too is influenced by the gravitational potential 
(this occurs already in the static field) in such a way that the natural distance of two
neighboring points in time, measured with the aid of a portable clock, is different
from the differential  of the time coordinate. Thus, the coordinates 
have no direct physical meaning. In order to determine from their differentials the
natural distance between neighboring spacetime points, the values of the ten gravita-
tional potentials  must be known. Regarding, by the way, the three potentials,

they arise, for example, if the system of reference rotates in a static gravitational field,
and then determine the velocity of the point in question. The complete system of the

 characterizes the state of deformation of four-dimensional space.
In the same way as the invariant differential form (54) is related to the group of

rotations in four dimensions (Lorentz transformations), and hence to the vector calcu-
lus of Minkowski’s theory of relativity, so the invariance of the more general differen-
tial form (55) is related to a more general group of transformations. The study of the
behavior of the different geometric objects (vectors, tensors) with respect to these
transformations forms the mathematical basis of the “generalized theory of relativ-
ity.” The authors of the Entwurf found the required mathematical tools already fully
developed in the “absolute differential calculus” of G. Ricci and T. Levi-Civita.
Based on this, in the second part of the Entwurf, M. Grossmann outlines the funda-
mental concepts of the four-dimensional vector calculus, which corresponds to that
general group of transformations. This is not the place to enter into the mathematical
aspects of the Entwurf. It may, however, be noted that Grossmann designates the
“four-vectors” of the usual theory of relativity as “first rank tensors,” whereas by
“second rank tensors” he understands the quantities which by us are called simply
“tensors.” | 

In the first, physical, part of the Entwurf, written by A. Einstein, the equations of
motion of material points are derived in a generally covariant form from Hamilton’s
principle

(56)

The gravitational force appears as dependent on the forty derivatives of the ten poten-
tials  here, however, the so called “fictitious forces of relative motion” are
counted among the gravitational forces.

Just like the equations of motion, the differential equations of the electromagnetic
field are also brought to a generally covariant form. Yet, the attempt to develop gener-
ally covariant equations for the gravitational field fails. The field equations put down
by Einstein read as follows:

g44

dx4 x1 x2 x3 x4, , ,

gμν

g14 g41,= g24 g42,= g34 g43,=

gμν

[513]

δ sd∫ 0.=

gμν;



RECENT THEORIES OF GRAVITATION 401

(57)

Here,  is the determinant of the   is the cofactor (adjungierte Unterdetermi-
nante) of  divided by . On the right-hand side are quantities that are linear func-
tions of the components of the material tensor  and of the gravitational tensor 

(57a)

(57b)

If one places the quantities 

(57c)

(in which one has to set  for   for  on the left hand
side of (57), then there arise ten second order partial differential equations for the ten
quantities  respectively  in the right-hand side of which the components of
the material tensor  enter as field generating quantities. If an electromagnetic field
is present, then the components of the electromagnetic tensor  are of course to be
introduced in the same manner.

With regard to the invariance properties of his gravitational field equations, Ein-
stein still appears to have hoped, during the writing of the Entwurf, to obtain covari-
ance, if not for the more general group of transformations associated with the form
(55), but at least for a group encompassing acceleration transformations; thereby, his
earlier | “equivalence hypothesis” was to be supported mathematically. In his Vienna
lecture,(27) however, he states that it is probable, and later(29) that it is certain, that
these field equations are only covariant with respect to linear transformations. Lately
however, with the aid of M. Grossmann, he was able to prove(35) that only the laws of
conservation of momentum and energy are responsible for restricting the diversity of
“allowed” transformations. These conservation laws, which we expressed symboli-
cally by

become in the generalized theory of relativity, upon the introduction of the quantities
(57a, b):

(58)

Those four equations, together with the field equations (57), yield four third order
partial differential equation
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(58a)

Only such coordinate systems are allowed that are characterized by  satisfying
this system of equations; only transformations that transform such “adapted” systems
of reference into each other are “allowed.” For all allowed transformations, the field
equations (57) now turn out(35) to be covariant. A covariance in a further sense can
hardly be demanded.

Although from a mathematical point of view the question appears to have been
settled, the physicist still wishes to obtain an insight into the extent of the group of
“allowed” transformations. Do these contain, besides the linear ones, still other real
transformations? And do these have a physical significance, perhaps as transforma-
tions describing acceleration or rotation? Only in this case would one be justified in
speaking of a “generalized theory of relativity” in the sense that the equivalence of
different systems of reference, which the principle of relativity of 1905 postulates for
systems in translatory motion with respect to each other, is now extended to such sys-
tems that are in accelerated or rotational motion with respect to one another. Such an
extension of the relativity of motion does not appear to be achievable.

Also, the physical significance of covariance with respect to linear transforma-
tions is not sufficiently discussed in the Entwurf. | According to G. Mie,(28) it
expresses the following theorem: “The observable laws of nature do not depend on
the absolute values of the gravitational potentials  at the location of the observer.”
G. Mie showed already earlier(21) that this “theorem of the relativity of the gravita-
tional potential” is valid in his own theory (II D). However, in Mie’s theory, based on
the spacetime doctrine of Minkowski, the space and time measurements as well as the
dimensions and periods of oscillation of elementary particles remain unchanged,
even in a gravitational field. Einstein, in contrast, and also Nordström (II E), achieve
the independence of the physical processes from the values of the potentials only
because, together with the units of length and time, the dimensions and the periods of
oscillation of the atoms and electrons depend on the gravitational potentials 

A. Einstein places such an importance on the circumstance that his gravitational
equations are invariant with respect to linear orthogonal substitutions that, in his
Vienna lecture,(27) he believed he was allowed to leave theories unmentioned whose
field equations do not have such a covariance. The significance of this transformation
group rests on the fact that it contains the transformations; in the early theory of rela-
tivity the covariance with respect to this group gave expression to the equivalence of
systems of reference in translatory motion with respect to each other. Is this presently
also the case in the “generalized theory of relativity”? Does the covariance of the field
equations with respect to linear orthogonal transformations imply that in a finite sys-
tem of mutually gravitating bodies the course of the relative motions is not altered by
a uniform translation of the entire system? That this is so has so far not been proven.
Such a proof may already be impossible to construct for the reason that the concept
of “uniform motion” of a finite system is completely up in the air in the new theory of
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relativity. Since the “natural” space and time measurement is influenced by the values
of the local potential, observers at different locations in the gravitational field will
ascribe different velocities to the same material point. Only for an infinitesimally
small region of four-dimensional space, i.e. for one in which the potentials  can
be considered a constant—is “velocity” defined at all. Presumably, only within such
an infinitesimal region may the covariance of the gravitational equations with respect
to linear orthogonal transformations be interpreted in the sense of an | equivalence of
systems of reference moving with respect to each other. But if relativity of motion no
longer exists for finite systems of gravitating masses in Einstein’s theory, with what
right does he assign such great importance to the formal connection to the earlier the-
ory of relativity?

As one can see, the new theory of relativity indeed generalizes the concept of
space and time, but thereby restricts the relativity of motion to infinitesimally small
spacetime regions. Therefore, its endeavors to achieve relativity with respect to rota-
tional or accelerated motion also do not appear to be promising. Since the velocities
of the system of reference enter into the  a spacetime region is only to be consid-
ered as infinitesimally small, if the velocity is spatially and temporally constant in it.
Therefore it makes no sense to speak of a rotational or accelerated motion of an
“infinitesimally small region,” and, for instance, to claim that the “equivalence
hypothesis is valid in the infinitesimally small.”

To what extent is the theorem of the weight of energy valid in the Einstein-Gross-
mann theory of gravitation? The field equations (57) make it apparent that the quanti-
ties  according to (57a, b) linear functions of the components  of the
resultant world tensor, are the ones that generate the gravitational field. The gravita-
tional forces, which a body exerts and experiences, are accordingly defined by the
volume integral of these tensor components:

(59)

Therefore, when dealing with a moving and stressed body, one generally has to dif-
ferentiate between ten “masses”  There also exist ten “gravitational forces,”
which are derived from the ten potentials  If one transports bodies with differing
stress states and different states of motion to the same world point of a variable grav-
itational field, then the resultant gravitational forces acting on them have in general
different directions, and their magnitudes do not depend solely on the energy of the
bodies, but also on all the ten 

This intricate mechanism fortunately simplifies since, in relation to the gravita-
tional force derived from  the other nine gravitational forces are very small as all
the remaining nine masses in relation to the mass  determined by the energy.
Especially for “static complete systems” (II E), all | masses (59) except for  are
equal to zero, and only the gravitational force acting on it remains effective. Thus, the
total energy alone is the factor determining the gravitational mass of complete static
systems. Similarly as in Nordström’s second theory, this result is caused by the com-
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pensation of the forces that act on the different parts of the system, and as there it can
be applied to closed systems in static equilibrium.

Let us consider for example a hot gas which is enclosed in a cylinder. Forces act
on the individual molecules of the gas, whose magnitudes are neither proportional to
the energy of the molecules, nor have directions agreeing exactly with the vertical.
Nevertheless, the gravitational forces acting on the molecules and on the volume ele-
ments of the cylinder sum to a resultant, whose temporal mean value is proportional
to the total energy and has a vertical direction. The relation between gravity[2] and
energy (respectively, inertia) are accordingly represented in Einstein’s tensor theory
to the same degree as in Nordström’s scalar theory. However, one will have to agree
with G. Mie,(28) when he denies that these theories manifest an “physical unity of
essence” of gravitational and inertial mass.

In his detailed critique of Einstein’s theory, G. Mie(28) attempts to prove that the
proportionality of gravitational mass and energy for complete static systems occurs
there only as the result of certain specific assumptions, which, incidentally, are said to
contradict one another. In his reply,(29) Einstein states the belief—without refuting
Mie’s objections one by one—that he can trace those contradictions to Mie’s demand
of covariance only with respect to Lorentz transformations, thereby introducing “pre-
ferred systems of reference.” That “special assumptions of any kind are not used” in
the establishment of his theory, as Einstein asserts there, does not appear credible. In
his just-published summary presentation(38) of the “general theory of relativity” Ein-
stein derives the differential equations expressing his theory of gravitation from a
variational principle, on the basis of certain specializations whose physical signifi-
cance is however not elucidated.

The integration of the field equations (57) is extraordinarily difficult. Only the
method of successive approximations promises success. In this one will usually take
as a first approximation the solution that treats the field | as static. Here, Einstein’s
theory becomes identical with Abraham’s theory; therefore the solution of the prob-
lem of the sphere, for example, given in (II C), remains valid here as well.

In his Vienna lecture,(27) A. Einstein takes the normal values of the  as the
first approximation:

he considers the deviations  from these normal values as quantities of first order,
and arrives, by neglecting quantities of second order, at the following differential
equations:

(60)

For incoherent motions of masses, the last  among the components of the mate-
rial tensor  is the most important; it determines the potential  Then fol-
low the components  which are of first order in  these determine
the potentials  which can be viewed as the components of a space vec-
tor  The remaining components of  are of second order in  If one
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neglects quantities of this order, then one only needs to consider those four potentials,
and obtains for them the differential equations

(60a)

(60b)

where  is the mass density.
Here the analogy to electrodynamics catches one’s eye. Except for the sign, the

field equations (60a, b) agree with those that must be satisfied in the theory of elec-
trons by the “electromagnetic potentials”, the scalar one  and the vectorial one

 In this approximation, the Einstein-Grossmann tensor theory of the gravita-
tional field leads to the same results as the vector theory sketched in (I A). Also con-
cerning the expression for the gravitational force per unit mass, there exists a far
reaching analogy. Einstein obtains:

(61)

This expression agrees with the one (1) from the vector theory:

(61a)

| if one writes:

(61b)

(61c)

Apart from the factor  in the gradient of  the formulas (61b, c) are identical
with the well known formulas which derive the two vectors of the electromagnetic
field from the electromagnetic potentials. 

The Einstein-Grossmann theory of gravitation is related to the vector theory to the
extent that the approximation applied is satisfactory. As in the vector theory, induced
gravitational forces are generated on neighboring bodies by the acceleration of a
body, forces that act in the direction of the acceleration. Einstein attaches great
importance to the existence of these induced gravitational forces in connection with
the so called “hypothesis of the relativity of inertia.”

This hypothesis, already advocated by E. Mach, states that the inertia of a body is
only a consequence of the relative acceleration with respect to the totality of the
remaining bodies. If this hypothesis applies, then the inertial mass of a body will
depend on its position with respect to the remaining bodies. This is now the case in
the Einstein’s theory because the rest-mass
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is inversely proportional to the speed of light  whose value in a static gravitational
field is reduced upon the approach of external masses. The inertia of a body is thus
increased by the accumulation of mass in its vicinity; through this circumstance, Ein-
stein believes himself justified in considering inertia as a consequence of the presence
of the remaining masses in the context of that relativity hypothesis.

This consideration looses cogency however, if one calculates by how much  is
decreased, and hence  increased, by the masses of celestial objects. The mass of
the Sun, at its surface, engenders a relative change in  of the order of  which
then decreases approximately inversely proportional to the distance from the center
of the Sun. But in order for the mass of a material point to be considered as being a
consequence of the presence of the remaining matter, it mass should vanish upon the
removal of that matter. The mass to be removed from the vicinity of that point for that
purpose would now be a millionfold larger than the | mass of the Sun. Accordingly,
the hypothesis of the relativity of inertia can only be justified from the point of view
of Einstein’s theory, if, in addition to the masses of the visible bodies, one assumes
also hidden masses. But with this, that hypothesis looses all concrete physical mean-
ing. In the end it does not matter if one anchors the system of reference in “hidden
masses,” in the “aether” or in a “body 

Upon the mutual approach of two bodies  and  their inertial masses grow.
But according to the hypothesis of the relativity of inertia, this increase in mass
should not occur if  and  are accelerated in unison. Indeed, according to the theo-
rem of the inertia of energy, the inertial resistance of the system of the two bodies
should even be smaller than the sum of the inertial masses of the two bodies while
separated, because the energy of the system decreases upon the approach of the two
bodies. Here, the gravitational forces, induced by the temporal variation of the vector
potential  now come into play, forces that the bodies  and  exert on each other
as a result of their acceleration. Through them, the additional inertial forces are over-
compensated, so that the inertial mass of the system  becomes smaller than the
sum of the inertial masses of the bodies  and  

Einstein sees a significant advantage of this tensor theory over the scalar theories
in that the hypothesis of the relativity of inertia fits into his theory, because the scalar
theories lack the vector potential  from which the induced forces are derived.
However, we saw that the theory of Einstein and Grossmann also fails to provide a
satisfactory quantitative basis for Mach’s bold hypothesis, unless one appeals to hid-
den masses. In view of the enormous complication engendered by the ten-fold multi-
plication of the gravitational potentials and by the distortion of the four-dimensional
world, one is likely, for reasons of the Machian “economy of thought,” to prefer the
scalar theories, as long as the supposition, that there exist ten gravitational forces
instead of one, is not supported by experience.

m0
M
c
-----= M   mass constant( )
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c
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APPENDIX

 Notation:

 time,  the speed of light.

 the coordinates of four-dimensional space.

 velocity,  its magnitude.

 electric and magnetic vector.

 force per unit charge.

 charge density.

 mass density,  rest-mass density.

 mass constant,  rest-mass.

 volume.

 gravitational vectors in the vector theory.

 gravitational force per unit mass.

 gravitational force,  gravitational potential.

 Lagrangian function. |

 momentum. 

 energy,  rest-energy.

 energy of matter, of the electromagnetic and of the gravitational field.

 world tensors of matter, of the electromagnetic and of the gravitational
field.

 sum of their diagonal components.

 resultant of world tensors and of diagonal sums respectively.

 energy density of matter, of the electromagnetic and of the gravitational
field.

 the momentum density of matter, of the electromagnetic and of the gravi-
tational field.

 the energy flux of matter, of the electromagnetic and of the gravitational
field.

 Einstein’s gravitational potentials.
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EDITORIAL NOTES

[1] Here “Schwere” has been translated as “gravity,” but elsewhere it has been trans-
lated as “weight,” since in these other occurrences Abraham apparently uses
“Schwere” and “Gewicht” interchangeably.

[2] Raised numbers in parentheses refer to the numbers of the above chronological
list of references.

[3] Note that the wording Abraham uses here differs slightly from that of the earlier
work to which he refers.

[4] The superscript  in  in eq. (36b) is missing in the original. g T g
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1. INTRODUCTION

The advent of the special theory of relativity in 1905 brought many problems for the
physics community. One, it seemed, would not be a great source of trouble. It was the
problem of reconciling Newtonian gravitation theory with the new theory of space
and time. Indeed it seemed that Newtonian theory could be rendered compatible with
special relativity by any number of small modifications, each of which would be
unlikely to lead to any significant deviations from the empirically testable conse-
quences of Newtonian theory.1 Einstein’s response to this problem is now legend. He
decided almost immediately to abandon the search for a Lorentz covariant gravitation
theory, for he had failed to construct such a theory that was compatible with the
equality of inertial and gravitational mass. Positing what he later called the principle
of equivalence, he decided that gravitation theory held the key to repairing what he
perceived as the defect of the special theory of relativity—its relativity principle
failed to apply to accelerated motion. He advanced a novel gravitation theory in
which the gravitational potential was the now variable speed of light and in which
special relativity held only as a limiting case.

It is almost impossible for modern readers to view this story with their vision
unclouded by the knowledge that Einstein’s fantastic 1907 speculations would lead to
his greatest scientific success, the general theory of relativity. Yet, as we shall see, in

1 In the historical period under consideration, there was no single label for a gravitation theory compat-
ible with special relativity. The Einstein of 1907 would have talked of the compatibility of gravitation
and the principle of relativity, since he then tended to use the term “principle of relativity” where we
would now use “theory of relativity”. See (CPAE 2, 254). Minkowski (1908, 90) however, talked of
reform “in accordance with the world postulate.” Nordström (1912, 1126), like Einstein, spoke of
“adapting ... the theory of gravitation to the principle of relativity” or (Nordström 1913, 872) of “treat-
ing gravitational phenomena from the standpoint of the theory of relativity,” emphasizing in both
cases that he planned to do so retaining the constancy of the speed of light in order to distinguish his
work from Einstein’s and Abraham’s. For clarity I shall describe gravitation theories compatible with
special relativity by the old-fashioned but still anachronistic label “Lorentz covariant.” It describes
exactly the goal of research, a gravitation theory whose equations are covariant under Lorentz trans-
formation. For a simplified presentation of the material in this chapter, see also (Norton 1993).

© 2007 Springer. 
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1907 Einstein had only the slenderest of grounds for judging all Lorentz covariant
gravitation theories unacceptable. His 1907 judgement was clearly overly hasty. It
was found quite soon that one could construct Lorentz covariant gravitation theories
satisfying the equality of inertial and gravitational mass without great difficulty.
Nonetheless we now do believe that Einstein was right in so far as a thorough pursuit
of Lorentz covariant gravitation theories does lead us inexorably to abandon special
relativity. In the picturesque wording of Misner et al. (1973, Ch.7) “gravity bursts out
of special relativity.”

These facts raise some interesting questions. As Einstein sped towards his general
theory of relativity in the period 1907–1915 did he reassess his original, hasty 1907
judgement of the inadequacy of Lorentz covariant gravitation theories? In particular,
what of the most naturally suggested Lorentz covariant gravitation theory, one in
which the gravitational field was represented by a scalar field and the differential
operators of the Newtonian theory were replaced by their Lorentz covariant counter-
parts? Where does this theory lead? Did the Einstein of the early 1910s have good
reason to expect that developing this theory would lead outside special relativity?

This paper provides the answers to these questions. They arise in circumstances
surrounding a gravitation theory, developed in 1912–1914, by the Finnish physicist
Gunnar Nordström. It was one of a number of more conservative gravitation theories
advanced during this period. Nordström advanced this most conservative scalar,
Lorentz covariant gravitation theory and developed it so that it incorporated the
equality of inertial and gravitation mass. It turned out that even in this most conserva-
tive approach, odd things happened to space and time. In particular, the lengths of
rods and the rates of clocks turn out to be affected by the gravitational field, so that
the spaces and times of the theory’s background Minkowski spacetime ceased to be
directly measurable. The 

 

dénouement

 

 of the story came in early 1914. It was shown
that this conservative path led to the same sort of gravitation theory as did Einstein’s
more extravagant speculations on generalizing the principle of relativity. It lead to a
theory, akin to general relativity, in which gravitation was incorporated into a dynam-
ical spacetime background. If one abandoned the inaccessible background of
Minkowski spacetime and simply assumed that the spacetime of the theory was the
one revealed by idealized rod and clock measurements, then it turned out that the
gravitation theory was actually the theory of a spacetime that was only conformally
flat—gravitation had burst out of special relativity. Most strikingly the theory’s gravi-
tational field equation was an equation strongly reminiscent to modern readers of the
field equations of general relativity:

where  is the Riemann curvature scalar and  the trace of the stress-energy tensor.
This equation was revealed before Einstein had advanced the generally covariant field
equations of general relativity, at a time in which he believed that no such field equa-
tions could be physically acceptable.

What makes the story especially interesting are the two leading players other than
Nordström. The first was Einstein himself. He was in continued contact with Nord-
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ström during the period in which the Nordström theory was developed. We shall see
that the theory actually evolved through a continued exchange between them, with
Einstein often supplying ideas decisive to the development of the theory. Thus the
theory might more accurately be called the “Einstein-Nordström theory.” Again it
was Einstein in collaboration with Adriaan Fokker who revealed in early 1914 the
connection between the theory and conformally flat spacetimes.

The second leading player other than Nordström was not a person but a branch of
special relativity, the relativistic mechanics of stressed bodies. This study was under
intensive development at this time and had proven to be a locus of remarkably non-
classical results. For example it turned out that a moving body would acquire addi-
tional energy, inertia and momentum simply by being subjected to stresses, even if
the stresses did not elastically deform the body. The latest results of these studies—
most notably those of Laue—provided Einstein and Nordström with the means of
incorporating the equality of inertial and gravitational mass into their theory. It was
also the analysis of stressed bodies within the theory that led directly to the conclu-
sion that even idealized rods and clocks could not measure the background
Minkowski spacetime directly but must be affected by the gravitational field. For Ein-
stein and Nordström concluded that a body would also acquire a gravitational mass if
subjected to non-deforming stresses and that one had to assume that such a body
would alter its size in moving through the gravitational field on pain of violating the
law of conservation of energy.

Finally we shall see that the requirement of equality of inertial and gravitational
mass is a persistent theme of Einstein’s and Nordström’s work. However the require-
ment proves somewhat elastic with both Einstein and Nordström drifting between
conflicting versions of it. It will be convenient to prepare the reader by collecting and
stating the relevant versions here. On the observational level, the equality could be
taken as requiring:

• Uniqueness of free fall:

 

2

 

 The trajectories of free fall of all bodies are independent
of their internal constitution.

Einstein preferred a more restrictive version:

• Independence of vertical acceleration: The vertical acceleration of bodies in free
fall is independent of their constitutions and horizontal velocities.

In attempting to devise theories compatible with these observational requirements,
Einstein and Nordström considered requiring equality of gravitational mass with

• inertial rest mass

• the inertial mass of closed systems

• the inertial mass of complete static systems

• the inertial mass of a a complete stationary systems

 

3

 

2 This name is drawn from (Misner et al. 1973, 1050).
3 The notions of complete static and complete stationary systems arise in the context of the mechanics

of stressed bodies and are discussed in Sections 9 and 12 below.
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More often than not these theoretical requirements failed to bring about the desired
observational consequences. Unfortunately it is often unclear precisely which
requirement is intended when the equality of inertial and gravitational mass was
invoked.

2. THE PROBLEM OF GRAVITATION IMMEDIATELY AFTER 1905

In the years immediately following 1905 it was hard to see that there would be any
special problem in modifying Newtonian gravitation theory in order to bring it into
accord with the special theory of relativity. The problem was not whether it could be
done, but how to choose the best of the many possibilities perceived, given the expec-
tation that relativistic corrections to Newtonian theory might not have measurable
consequences even in the very sensitive domain of planetary astronomy. Poincaré
(1905, 1507–1508;1906, 166–75), for example, had addressed the problem in his cel-
ebrated papers on the dynamics of the electron. He limited himself to seeking an
expression for the gravitational force of attraction between two masses that would be
Lorentz covariant

 

4

 

 and would yield the Newtonian limit for bodies at rest. Since this
failed to specify a unique result he applied further constraints including the require-
ment

 

5

 

 of minimal deviations from Newtonian theory for bodies with small velocities,
in order to preserve the Newtonian successes in astronomy. The resulting law,
Poincaré noted, was not unique and he indicated how variants consistent with its con-
straints could be derived by modifying the terms of the original law.

Minkowski (1908, 401–404; 1909, 443–4) also sought a relativistic generalization
of the Newtonian expression for the gravitational force acting between two bodies. His
analysis was simpler than Poincaré’s since merely stating his law in terms of the geo-
metric structures of his four dimensional spacetime was sufficient to guarantee auto-
matic compatibility with special relativity. Where Poincaré (1905, 1508; 1906, 175)
had merely noted his expectation that the deviations from Newtonian astronomical
prediction introduced by relativistic corrections would be small, Minkowski (1908,
404) computed the deviations due to his law for planetary motions and concluded that
they were so small that they allowed no decision to be made concerning the law.

Presumably neither Poincaré nor Minkowski were seeking a fundamental theory
of gravitation, for they both considered action-at-a-distance laws at a time when field
theories were dominant. Rather the point was to make

 

 plausible

 

6

 

 the idea that some
slight modification of Newtonian gravitational law was all that was necessary to bring
it into accord with special relativity, even if precise determination of that modifica-
tion was beyond the reach of the current state of observational astronomy.

 

4 More precisely he required that the law governing propagation of gravitational action be Lorentz
covariant and that the gravitational forces transform in the same way as electromagnetic forces.

5 Also he required that gravitational action propagate forward in time from a given body.
6 The word is Minkowski’s. He introduced his treatment of gravitation (Minkowski 1908, 401) with the

remark “I would not like to fail to make it plausible that nothing in the phenomena of gravitation can
be expected to contradict the assumption of the postulate of relativity.”
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3. EINSTEIN’S 1907 REJECTION OF LORENTZ
COVARIANT GRAVITATION THEORIES

In 1907 Einstein’s attention was focussed on the problem of gravitation and relativity
theory when he agreed to write a review article on relativity theory for Johannes Stark’s

 

Jahrbuch der Radioaktivität und Elektronik

 

. The relevant parts of the review article
(Einstein 1907a, 414; Section V, 454–62) say nothing of the possibility of a Lorentz
covariant gravitation theory. Rather Einstein speculates immediately on the possibility
of extending the principle of relativity to accelerated motion. He suggests the relevance
of gravitation to this possibility and posits what is later called the principle of equiva-
lence as the first step towards the complete extension of the principle of relativity.

It is only through later reminiscences that we know something of the circum-
stances leading to these conclusions. The most informative are given over 25 years
later in 1933 when Einstein gave a sketch of his pathway to general relativity.

 

7

 

 In it
he wrote (Einstein 1933, 286–87):

 

I came a step nearer to the solution of the problem [of extending the principle of relativ-
ity] when I attempted to deal with law of gravity within the framework of the special the-
ory of relativity. Like most writers at the time, I tried to frame a 

 

field-law

 

 for gravitation,
since it was no longer possible, at least in any natural way, to introduce direct action at a
distance owing to the abolition of the notion of absolute simultaneity.

The simplest thing was, of course, to retain the Laplacian scalar potential of gravity, and
to complete the equation of Poisson in an obvious way by a term differentiated with
respect to time in such a way that the special theory of relativity was satisfied. The law of
motion of the mass point in a gravitational field had also to be adapted to the special the-
ory of relativity. The path was not so unmistakably marked out here, since the inert mass
of a body might depend on the gravitational potential. In fact this was to be expected on
account of the principle of the inertia of energy.

 

While Einstein’s verbal description is brief, the type of gravitation theory he alludes
to is not too hard to reconstruct. In Newtonian gravitation theory, with a scalar poten-
tial  mass density  and  the gravitation constant, the gravitational field equa-
tion—the “equation of Poisson”— is
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(1)

The force 

 

f

 

, with components  on a point mass  is given by  so
that 

(2)

 

7 A similar account is given more briefly in (Einstein 1949, 58–63).
8  are the usual spatial Cartesian coordinates. The index  ranges over 1, 2, 3.

Here and henceforth, summation over repeated indices is implied.
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is the law of motion of a point mass  with velocity  in the gravitational
field 

The adaptation of (1) to special relativity is most straightforward. The added term,
differentiated with respect to the time coordinate, converts the Laplacian operator 
into a Lorentz covariant d’ Alembertian  so that the field equation alluded to by
Einstein would be

(3)

For consistency  is assumed to be Lorentz invariant and the mass density  must be
replaced with a Lorentz invariant, such as the rest mass density  used here.

The modification to the law of motion of a point mass is less clear. The natural
Lorentz covariant extension of (2) is most obvious if we adopt the four dimensional
spacetime methods introduced by Minkowski (1908). Einstein could not have been
using these methods in 1907. However I shall write the natural extension here since
Einstein gives us little other guide to the form of the equation he considered, since the
properties of this equation fit exactly with Einstein’s further remarks and since this
equation will lead us directly to Nordström’s work. The extension of (2) is

(4)

where  is the four force on a point mass with rest mass  is its
four velocity,

 

 

 

 is the proper time and 

 

9

 

 Following the practice of
Nordström’s papers, the coordinates are  for 
the speed of light.

Simple as this extension is, it turns out to be incompatible with the kinematics of
a Minkowski spacetime. In a Minkowski spacetime, the constancy of  entails that
the four velocity  along a world line is orthogonal to the four acceleration

 For we have  so that  and the orthogonal-
ity now follows from the constancy of 

(5)

(4) and (5) together entail

so that the law (4) can only obtain in a Minkowski spacetime in the extremely narrow
case in which the field  is constant along the world line of the particle, i.e.

 

9 Throughout this paper, Latin indices  range over 1, 2, 3 and Greek indices
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(6)

We shall see below that one escape from this problem published by Nordström
involves allowing the rest mass  to be a function of the potential  Perhaps this is
what Einstein referred to above when he noted of the law of motion that the “path
was not so unmistakably marked out here, since the inert mass of a body might
depend on the gravitational potential.”

Whatever the precise form of the modifications Einstein made, he was clearly
unhappy with the outcome. Continuing his recollections, he noted:

These investigations, however, led to a result which raised my strong suspicions. Accord-
ing to classical mechanics, the vertical acceleration of a body in the vertical gravitational
field is independent of the horizontal component of its velocity. Hence in such a gravita-
tional field the vertical acceleration of a mechanical system or of its center of gravity
works out independently of its internal kinetic energy. But in the theory I advanced, the
acceleration of a falling body was not independent of its horizontal velocity or the inter-
nal energy of the system.

The result Einstein mentions here is readily recoverable from the law of motion (4) in
a special case in which it is compatible with the identity (5). The result has more gen-
eral applicability, however. The modifications introduced by Nordström to render (4)
compatible with (5) vanish in this special case, as would, presumably, other natural
modifications that Einstein may have entertained. So this special case is also a special
case of these more generally applicable laws.

We consider a coordinate system in which:

(i) the field is time independent  at some event and

(ii) the motion of a point mass m in free fall at that event is such that the “vertical”
direction of the field, as given by the acceleration three vector , is perpen-
dicular to the three velocity  so that

(7)

and the point’s motion is momentarily “horizontal.”

Condition (7) greatly simplifies the analysis, since it entails that the  derivative of
any function of  vanishes, so that we have

(8)

Notice also that in this case (7) entails that  so that
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and (6) and then also (5) are satisfied for this special case. Finally an expression for
the acceleration of the point mass now follows directly from (4) and is10

(9)

According to (9), the greater the horizontal velocity  the less the vertical acceleration,
so that this acceleration is dependent on the horizontal velocity as Einstein claimed.

Einstein also claims in his remarks that the vertical acceleration would not be
independent of the internal energy of the falling system. This result is suggested by
equation (9), which tells us that the vertical acceleration of a point mass diminishes
with its kinetic energy if the velocity generating that kinetic energy is horizontally
directed. If we apply this result to the particles of a kinetic gas, we infer that in general
each individual particle will fall slower the greater its velocity. Presumably this result
applies to the whole system of a kinetic gas so that the gas falls slower the greater the
kinetic energy of its particles, that is, the greater its internal energy. This example of a
kinetic gas was precisely the one given by Einstein in an informal lecture on
April 14, 1954 in Princeton according to lecture notes taken by J. A. Wheeler.11

Einstein continued his recollections by explaining that he felt these results so con-
tradicted experience that he abandoned the search for a Lorentz covariant gravitation
theory.

This did not fit with the old experimental fact that all bodies have the same acceleration
in a gravitational field. This law, which may also be formulated as the law of the equality
of inertial and gravitational mass, was now brought home to me in all its significance. I
was in the highest degree amazed at its existence and guessed that in it must lie the key to
a deeper understanding of inertia and gravitation. I had no serious doubts about its strict
validity even without knowing the results of the admirable experiments of Eötvös,
which—if my memory is right—I only came to know later. I now abandoned as inade-
quate the attempt to treat the problem of gravitation, in the manner outlined above,
within the framework of the special theory of relativity. It clearly failed to do justice to
the most fundamental property of gravitation.

Einstein then recounted briefly the introduction of the principle of equivalence, upon
which would be based his continued work on gravitation and relativity, and concluded

10 Since  (9) follows directly from (4) using (8).

11 Wheeler’s notes read “I had to write a paper about the content of special relativity. Then I came to the
question how to handle gravity. The object falls with a different acceleration if it is moving than if it is
not moving. ... Thus a gas falls with another acceleration if heated than if not heated. I felt this is not
true ...” (Wheeler 1979, 188).
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Such reflections kept me busy from 1908 to 1911, and I attempted to draw special con-
clusions from them, of which I do not propose to speak here. For the moment the one
important thing was the discovery that a reasonable theory of gravitation could only be
hoped for from an extension of the principle of relativity.

Our sources concerning Einstein’s 1907 renunciation of Lorentz covariant gravi-
tation theories are largely later recollections so we should be somewhat wary of them.
Nonetheless they all agree in the essential details:12 Einstein began his attempts to
discover a Lorentz covariant theory of gravitation as a part of his work on his 1907
Jahrbuch review article. He found an inconsistency between these attempts and the
exact equality of inertial and gravitational mass, which he found sufficiently disturb-
ing to lead him to abandon the search for such theories.

We shall see shortly that Einstein’s 1907 evaluation and dismissal of the prospects
of a Lorentz covariant gravitation theory—as reconstructed above—was far too hasty.
Within a few years Einstein himself would play a role in showing that one could con-
struct a Lorentz covariant gravitation theory that was fully compatible with the exact
equality of inertial and gravitational mass. We can understand why Einstein’s 1907
analysis would be hurried, however, once we realize that the he could have devoted
very little time to contemplation of the prospects of a Lorentz covariant gravitation
theory. He accepted the commission of the Jahrbuch’s editor, Stark, to write the
review in a letter of September 25, 1907 (EA 22 333) and the lengthy and completed
article was submitted to the journal on December 4, 1907, a little over two months
later. This period must have been a very busy one for Einstein. As he explained to
Stark in the September 25 letter, he was not well read in the current literature perti-
nent to relativity theory, since the library was closed during his free time. He asked
Stark to send him relevant publications that he might not have seen.13 During this
period, whatever time Einstein could have spent privately contemplating the pros-
pects of a Lorentz covariant gravitation theory would have been multiply diluted.
There were the attractions of the principle of equivalence, whose advent so dazzled
him that he called it the “happiest thought of [his] life”.14 Its exploitation attracted all
the pages of the review article which concern gravitation and in which the prospects
of a Lorentz covariant gravitation theory are not even mentioned. Further diluting his
time would be the demands of the remaining sections of the review article. The sec-
tion devoted to gravitation filled only nine of the article’s fifty two pages. Finally, of

12 See also the 1920 recollections of Einstein on p. 23, “Grundgedanken und Methoden der Relativitäts-
theorie in ihrer Entwicklung dargestellt,” unpublished manuscript, control number 2 070, Duplicate
Einstein Archive, Mudd Manuscript Library, Princeton, NJ. (Henceforth “EA 2 070”.) Einstein
recalls:
“When, in the year 1907, I was working on a summary essay concerning the special theory of relativ-
ity for the Jahrbuch für Radioaktivität und Elektronik [sic], I had to try to modify Newton’s theory of
gravitation in such a way that it would fit into the theory [of relativity]. Attempts in this direction
showed the possibility of carrying out this enterprise, but they did not satisfy me because they had to
be supported by hypotheses without physical basis.” Translation from (Holton 1975, 369–71).

13 Einstein thanked him for sending papers in a letter of October 4, 1907 (EA, 22 320).
14 In Einstein’s 1920 manuscript (EA 2 070, 23–25).
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course, there were the obligations of his job at the patent office. It is no wonder that
he lamented to Stark in a letter of November 1, 1907, that he worked on the article in
his “unfortunately truly meagerly measured free time” (EA, 22 335).

4. EINSTEIN’S ARGUMENT OF JULY 1912

If the Einstein of 1907 had not probed deeply the prospects of Lorentz covariant
gravitation theories, we might well wonder if he returned to give the problem more
thorough treatment in the years following. We have good reason to believe that as late
as July 1912, Einstein had made no significant advance on his deliberations of
1907.15 Our source is an acrimonious dispute raging at this time between Einstein
and Max Abraham. In language that rarely appeared in the unpolluted pages of Anna-
len der Physik, Abraham (1912c, 1056) accused Einstein’s theory of relativity of hav-
ing “exerted an hypnotic influence especially on the youngest mathematical
physicists which threatened to hamper the healthy development of theoretical phys-
ics.” He rejoiced especially in what he saw as major retractions in Einstein’s latest
papers on relativity and gravitation. Einstein (1911) involved a theory of gravitation
which gave up the constancy of the velocity of light and Einstein (1912a, 1912b) even
dispensed with the requirement of the invariance of the equations of motion under
Lorentz transformation. These concessions, concluded Abraham triumphantly, were
the “death blow” for relativity theory.

Einstein took this attack very seriously. His correspondence from this time, a sim-
ple gauge of the focus of his thoughts, was filled with remarks on Abraham. He
repeatedly condemned Abraham’s (1912a,1912b) new theory of gravitation, which
had adopted Einstein’s idea of a variable speed of light as the gravitational potential.
“A stately beast that lacks three legs,” he wrote scathingly of the theory to Ludwig
Hopf.16 He anticipated the dispute with Abraham with some relish, writing to Hopf
earlier of the coming “difficult ink duel.”17 The public dispute ended fairly quickly,
however, with Einstein publishing a measured and detailed reply (Einstein 1912d)
and then refusing to reply to Abraham’s rejoinder (Abraham 1912d). Instead Einstein
published a short note (Einstein 1912e) indicating that both parties had stated their
views and asking readers not to interpret Einstein’s silence as agreement. Nonethe-
less Einstein continued to hold a high opinion of Abraham as a physicist, lamenting
in a letter to Hopf that Abraham’s theory was “truly superficial, contrary to his [Abra-
ham’s] usual practice.”18

15 This is a little surprising. Einstein had neglected gravitation in 1908–1911, possibly because of his
preoccupation with the problem of quanta. (See Pais (1983, 187–90.)) However he had returned to
gravitation with vigor with his June 1911 submission of Einstein (1911) and by July 1912, the time of
his dispute with Abraham, he had completed at least two more novel papers on the subject, (Einstein
1912a, 1912b), and possibly a third, (Einstein 1912c).

16 Einstein to Ludwig Hopf, 16 August 1912, (EA 13 288).
17 Einstein to Ludwig Hopf, December 1911 (?), (EA 13 282).
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Under these circumstances, Einstein had every incentive to make the best case for
his new work on gravitation. In particular, we would expect Einstein to advance the
best arguments available to him to justify his 1907 judgement of the untenability of
Lorentz covariant gravitation theories, for it was this conclusion that necessitated the
consideration of gravitation theories that went beyond special relativity. What he
included in his response shows us that as late as July 4, 1912—the date of submission
of his response (Einstein 1912d)—his grounds for this judgement had advanced very
little beyond those he recalled having in 1907. He wrote (pp. 1062–63)

One of the most important results of the theory of relativity is the realization that every
energy  possesses an inertia  proportional to it. Since each inertial mass is at the
same time a gravitational mass, as far as our experience goes, we cannot help but ascribe to
each energy  a gravitational mass 19 From this it follows immediately that gravi-
tation acts more strongly on a moving body than on the same body in case it is at rest.

If the gravitational field is to be interpreted in the sense of our current theory of relativity,
this can happen only in two ways. One can conceive of the gravitation vector either as a
four-vector or a six-vector. For each of these two cases there are transformation formulae
for the transition to a uniformly moving reference system. By means of these transforma-
tion formulae and the transformation formulae for ponderomotive forces one can find for
both cases the forces acting on moving material points in a static gravitational field. How-
ever from this one arrives at results which conflict with the consequences mentioned of the
law of the gravitational mass of energy. Therefore it seems that the gravitation vector can-
not be incorporated without contradiction in the scheme of the current theory of relativity.

Einstein’s argument is a fairly minor embellishment of the reflections summarized in
Section 3 above. Einstein has replaced a single theory, embodied in equations such as
(3) and (4), with two general classes of gravitation theory, the four-vector and six-
vector theory. In both classes of gravitation theory, in the case of moving masses,
Einstein claims that the gravitational field fails to act on them in proportion to their
total energy, in effect violating the requirement of equality of inertial and gravita-
tional mass.

18 Einstein to Ludwig Hopf, 12 June 1912, (EA 13 286). Einstein retained his high opinion of Abraham
as a physicist. Late the following year, after his work had advanced into the first sketch of the general
theory of relativity, Einstein conceded to his confidant Besso that “Abraham has the most understand-
ing [of the new theory].” Einstein to Michele Besso, end of 1913, in (Speziali 1972, 50). For further
mention of Abraham in correspondence from this period see Einstein to Heinrich Zangger, 27 January
1912, (EA 39 644); Einstein to Wilhelm Wien, 27 January 1912, (EA 23 548); Einstein to Heinrich
Zangger, 29 February 1912, (EA 39 653); Einstein to Wilhelm Wien, 24 February 1912, (EA 23 550);
Einstein to Heinrich Zangger, 20 May 1912, (EA 39 655); Einstein to Michele Besso, 26 March 1912,
(EA 7 066); Einstein to Heinrich Zangger, summer 1912, (EA 39 657); Einstein to Arnold Sommer-
feld, 29 October 1912, (EA 21 380). See also (Pais 1982, 231–32).

19 At this point, Einstein inserts the footnote:
Hr. Langevin has orally called my attention to the fact that one comes to a contradiction with experi-
ence if one does not make this assumption. That is, in radioactive decay large quantities of energy are
given off, so that the inertial mass of the matter must diminish. If the gravitational mass were not to
diminish proportionally, then the gravitational acceleration of bodies made out of different elements
would have to be demonstrably different in the same gravitational field.

E E c2⁄( )
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Einstein does not give a full derivation of the result claimed. However we can
reconstruct what he intended from the derivation sketch given. The two types of force
fields correspond to the “spacetime vectors type I and II” introduced by Minkowski
(1908, §5), which soon came to be known as four- and six-vector fields, respectively
(Sommerfeld 1910, 750). They represented the two types of force fields then examined
routinely in physics. The four-vector corresponds to the modern vector of a four-
dimensional manifold. The gravitational four-force  acting on a body with rest mass

 in a four-vector theory is
(10a)

An example of such a theory is given by (4) above in which the gravitation four-vec-
tor  is set equal to  The six-vector corresponds to our modern antisym-
metric second rank tensor which has six independent components. The classic
example of a six-vector is what Sommerfeld called “the six-vector ... of the electro-
magnetic field” (Sommerfeld 1910, 754). We would now identify it as the Maxwell
field tensor. Presumably Einstein intended a six-vector gravitation theory to be mod-
elled after electrodynamics, so that the gravitational four-force  acting on a body
with rest mass  and four-velocity  in such a theory would be given by

(11a)

The gravitation six-vector,  satisfies the antisymmetry condition 
This antisymmetry guarantees compatibility with the identity (5) since it forces

Einstein claims that one needs only the transformation formulae for four and six-
vectors and for ponderomotive forces. to arrive at the results. However, since both
(10a) and (11a) are Lorentz covariant, application of the transformation formulae to
these equations simply returns equations of identical form—an uninformative out-
come. We do recover results of the type Einstein claims, however, if we apply these
transformation formulae to non-covariant specializations of (10a) and (11a).

We consider arbitrary four and six-vector gravitational fields and  In
each there is a body of mass  in free fall. In each case, select and orient a coordi-
nate system  in such a way that each mass is instantaneously at
rest and is accelerating only in  direction. For these coordinate systems, the
three spatial components of the four-force, , are equal to the three components of
the three force,  acting on the masses. In particular the  component 
of the three force is given in each case by

(10b)

(11b)

since  If we now transform from  to a reference system
 moving at velocity  in the  direction  then the rele-

vant Lorentz transformation formulae are
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Thus far we have not restricted the choice of four or six-vector fields  and 
The considerations that follow are simplified if we consider a special case of the six-
vector field  in which 20 Substituting with these transformation formu-
lae for  and  in this special in (10b) and (11b), we recover

(10c)

(11c)

These two equations describe the component of gravitational three-force,  in the
“vertical”  direction on a mass  moving with velocity  in the “horizontal”

 direction. In his 1912 argument, Einstein noted that the inertia of energy and
the equality of inertial and gravitational mass leads us to expect that “gravitation acts
more strongly on a moving body than on the same body in case it is at rest.” We read
directly from equations (10c) and (11c) that both four and six-vector theories fail to
satisfy this condition. The gravitational force is independent of velocity in the six-
vector case and actually decreases with velocity in the four-vector case. To meet Ein-
stein’s requirements, the gravitational force would need to increase with velocity, in
direct proportion to the mass’s energy 

We can also confirm that (10c) and (11c) lead to the result that the vertical accel-
eration of the masses is not independent of their horizontal velocities. To see this,
note that, were the masses of (10c) and (11c) instantaneously at rest, the vertical
forces exerted by the two fields would be respectively

In all cases, the three velocity and three-accelerations are perpendicular, so that con-
dition (8) holds. Therefore we have

20 This restriction does not compromise the generality of Einstein’s claim. If a Lorentz covariant theory
proves inadequate in a special case, that is sufficient to demonstrate its general inadequacy. A natural
instance of a six-vector field  in which  is easy to construct. Following the model of
electromagnetism, we assume that  is generated by a vector potential  according to

We choose a “gravito-static” field in  that is, one that is analogous to the electrostatic
field, by setting  Since  and  are everywhere vanishing,  Finally
note that Einstein does explicitly restrict his 1912 claim to static gravitational fields. Perhaps he also
considered simplifying special examples of this type.
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Combining these results with (10c) and (11c) we recover expressions for the vertical
acceleration  of the masses in terms of the acceleration  they
would have had if they had no horizontal velocity

(10d)

(11d)

We see that in both four and six-vector cases the vertical acceleration decreases with
horizontal velocity, with equation (10d) generalizing the result in equation (9).

5. A GRAVITATION THEORY MODELLED AFTER MAXWELL’S 
ELECTROMAGNETISM?

Einstein’s mention of a six-vector theory of gravitation in his 1912 response to Abra-
ham raises the question of Einstein’s attitude to a very obvious strategy of relativiza-
tion of Newtonian gravitation theory. With hindsight one can view the transition from
the theory of Coulomb electrostatic fields to full Maxwell electromagnetism as the
first successful relativization of a field theory. Now Newtonian gravitation theory is
formally identical to the theory of electrostatic fields excepting a change of sign
needed to ensure that gravitational masses attract where like electric charges repel.
This suggests that one can relativize Newtonian gravitation theory by augmenting it
to a theory formally identical to Maxwell theory excepting this same change of sign.

While it is only with hindsight that one sees the transition from electrostatics to
electromagnetism as a relativization, Einstein had certainly developed this hindsight
by 1913. In his (Einstein 1913, 1250) he noted that Newtonian theory has sufficed so
far for celestial mechanics because of the smallness of the speeds and accelerations of
the heavenly bodies. Were these motions to be governed instead by electric forces of
similar magnitude, one would need only Coulomb’ s law to calculate these motions
with great accuracy. Maxwell’s theory would not be required. The problem of relativ-
izing gravitation theory, Einstein continued, corresponded exactly to this problem: if
we knew only experimentally of electrostatics but that electrical action could not
propagate faster than light, would we be able to develop Maxwell electromagnetics?
In the same paper Einstein proceeded to show (p. 1261) that his early 1913 version of
general relativity reduced in suitable weak field approximation to a theory with a
four-vector field potential that was formally analogous to electrodynamics. It was this
approximation that yielded the weak field effects we now label as “Machian.” The
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previous year, when seeking similar effects in his 1912 theory of static gravitational
fields, Einstein demonstrated that he then expected a relativized gravitation theory to
be formally analogous to electrodynamics at some level. For then he wrote a paper
with the revealing title “Is there a gravitational effect that is analogous to electrody-
namic induction?” (Einstein 1912c).

The celebrated defect of a theory of gravitation modelled after Maxwell electro-
magnetism was first pointed out by Maxwell himself (Maxwell 1864, 571). In such a
theory, due to the change of signs, the energy density of the gravitational field is neg-
ative and becomes more negative as the field becomes stronger. In order not to intro-
duce net negative energies into the theory, one must then suppose that space, in the
absence of gravitational forces, must contain a positive energy density sufficiently
great to offset the negative energy of any possible field strength. Maxwell professed
himself baffled by the question of how a medium could possess such properties and
renounced further work on the problem. As it turns out it was Einstein’s foe, Abra-
ham, shortly after his exchange with Einstein, who refined Maxwell’s concern into a
more telling objection. In a lecture of October 19, 1912, he reviewed his own gravita-
tion theory based on Einstein’s idea of using the speed of light as a gravitational
potential. (Abraham 1912e) He first reflected (pp. 193–94), however, on a gravitation
theory modelled after Maxwell electromagnetism. In such a theory, a mass, set into
oscillation, would emit waves analogous to light waves. However, because of the
change of sign, the energy flow would not be away from the mass but towards it, so
that the energy of oscillation would increase. In other words such an oscillating mass
would have no stable equilibrium. Similar difficulties were reported by him for gravi-
tation theories of Maxwellian form due to H.A. Lorentz and R. Gans.

What was Einstein’s attitude to such a theory of gravitation? He was clearly aware
of the formal possibility of such a theory in 1912 and 1913. From his failure to
exploit such a theory, we can only assume that he did not think it an adequate means
of relativizing gravitation.21 Unfortunately I know of no source from that period
through which Einstein states a definite view on the matter beyond the brief remarks
in his exchange with Abraham. We shall see that Einstein is about to renounce the
conclusion of his reply to Abraham, that a Lorentz covariant theory cannot capture
the equality of inertial and gravitational mass, at least for the case of Nordström’s
theory of gravitation. Did Einstein have other reservations about six-vector theories
of gravitation? How seriously, for example, did he regard the negative field energy
problem in such a theory?

The idea of an analogy between a relativized gravitation theory and electrody-
namics seems to play no significant role in the methods Einstein used to generate rel-
ativized gravitation theories. The effect analogous to electrodynamic induction of

21 Notice these reservations must have amounted to more than the observation that such a theory fails to
extend the relativity of motion to acceleration. In (Einstein 1913), immediately after his remarks on
the similarity between the problems of relativizing gravitation and electrostatics, he considers Lorentz
covariant gravitation theories. The only theory taken seriously in this category is a version of Nord-
ström’s theory of gravitation.
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(Einstein 1912c), for example, was derived fully within Einstein’s 1912 theory of
static gravitational fields and the analogy to electrodynamics appeared only in the
description of the final result. In general, the mention of an analogy to electrodynam-
ics seems intended solely to aid Einstein’s readers in understanding the enterprise and
physical effects appearing in the relativized theories of gravitation by relating them to
an example familiar to his readers. That we have any surviving, written remarks by
Einstein directly on this matter we owe to J.W. Killian. Some thirty years later, in a
letter of June 9, 1943 (EA 14 261) to Einstein, Killian proposed a gravitation theory
modelled after Maxwell electromagnetism.22 Einstein’s reply of June 28, 1943, gives
a fairly thorough statement of his attitude at that time to this theory.23

Because there was no question of experimental support for the theory, Einstein
proposed to speak only to its formal properties. To begin, he noted, Maxwell’s equa-
tions only form a complete theory for parts of space free of source charges, for the
theory cannot determine the velocity field of the charge distribution without further
assumption. After Lorentz, to form a complete theory, it was assumed that charges
were carried by ponderable masses whose motions followed from Newton’s laws.
What Einstein called “real difficulties” arise only in explaining inertia. These difficul-
ties result from the negative gravitational field energy density in the theory. Assum-
ing, apparently, that the energy of a mass in the theory would reside in its
gravitational field, Einstein pointed out that the kinetic energy of a moving mass
point would be negative. This negativity would have to be overcome by a device
entirely arbitrary from the perspective of the theory’s equations, the introduction of a
compensating positive energy density located within the masses. This difficulty is
more serious for the gravitational version of the theory, for, in the electromagnetic
theory, the positivity of electromagnetic field energy density allows one to locate all
the energy of a charge in its electromagnetic field.

Calling the preceding difficulty “the fundamental problem of the wrong sign,”
Einstein closed his letter with brief treatment of two further and, by suggestion, lesser
difficulties. The proposed theory could not account, Einstein continued, for the pro-
portionality of inertial and gravitational mass. Here we finally see the concern that
drove Einstein’s work on Lorentz covariant gravitation theory in the decade following
1907. Yet Einstein does not use the transformation arguments of this early period to
establish the failure of the proposed theory to yield this proportionality. Instead he
continues to imagine that the energy and therefore inertia of a mass resides in its
gravitational field. Some fixed quantity of gravitational mass could be configured in
many different ways. Thus it follows that the one quantity of gravitational mass could
be associated with many different gravitational fields and thus many different inertial
masses, in contradiction with the proportionality sought.24 Finally Einstein remarked

22 Einstein addresses his reply to “Mr. J.W. Killian, Dept. of Physics, Rockerfeller Hall, Ithaca N.Y.”
23 EA 14 265 is an autograph draft of the letter in German. EA 14 264 is an unsigned typescript of the

English translation. There are some significant differences of content between the two, indicating fur-
ther editing of content presumably by Einstein between the draft and typescript.
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that the proposed theory allows no interaction between electromagnetic and gravita-
tional fields other than through charged, ponderable masses. Thus it could not explain
the bending of starlight in a gravitational field.

6. NORDSTRÖM’S FIRST THEORY OF GRAVITATION

The dispute between Einstein and Abraham was observed with interest by a Finnish
physicist, Gunnar Nordström.25 In a paper submitted to Physikalische Zeitschrift in
October 1912 (Nordström 1912), he explained that Einstein’s hypothesis that the
speed of light c depends on the gravitational potential led to considerable problems
such as revealed in the Einstein-Abraham dispute. Nordström announced (p. 1126)
that he believed he had found an alternative to Einstein’s hypothesis which would

... leave  constant and still adapt the theory of gravitation to the relativity principle in
such a way that gravitational and inertial masses are equal.

The theory of gravitation which Nordström developed was a slight modification of
the theory embodied in equations (3) and (4) above. Selecting the commonly used
coordinates  Nordström gave his version of the field equation (3):

(12)

where  is the gravitational potential,  the rest density of matter and  the gravita-
tional constant. As he noted, this field equation was identical to the one advanced by
Abraham (1912a, equation (1)) in the latter’s gravitation theory.

Where Nordström differed from Abraham, however, was in the treatment of the
force equation (4). This equation, as Nordström pointed out, is incompatible with the
constancy of  We saw above that force equation (4), in conjunction with the con-
stancy of c in equation (5) entails the unphysical condition (6). Abraham had resolved
the problem by invoking Einstein’s hypothesis that  not be constant but vary with
gravitational potential so that condition (5) no longer obtains. Thus Abraham’s gravi-
tation theory was no longer a special relativistic theory. Nordström, determined to
preserve special relativity and the constancy of  offered a choice of two modified
versions of (4).

First, one could allow the rest mass  of a body in a gravitational field to vary
with gravitational potential. Defining

24 In the German autograph draft (EA 14 265), Einstein imagines some fixed quantity of gravitational
mass distributed between two bodies. The field strength they generate, and therefore their energy and
inertial mass, would increase as the bodies were concentrated into smaller regions of space. (We may
conjecture here that Einstein is ignoring the fact the field energy becomes more negative as the field
strength increases.) The translated typescript (EA 14 264) simplifies the example by imagining that
the gravitational mass is located in a single corpuscle, whose field and thence inertia varies with the
radius of the corpuscle.

25 For a brief account of Nordström’s life and his contribution to gravitation theory see (Isaksson 1985).
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the four force on a body of mass  is

(13)

where  is the mass’ four velocity and  proper time.26 The dependence of  on

 introduces the additional, final term in  which prevents the derivation of

the disastrous condition (6). In its place, by contracting (13) with  and not-

ing that  Nordström recovered the condition

(14)

which yields an expression for the  dependence of  upon integration

(15)

where  is the value of  when  Using (14) to substitute  in (13), Nor-

dström then recovered an equation of motion for a mass point independent of 

(16)

26 Note on notation: The notation used in the sequence of papers discussed here varies. I shall follow the
notation of the original papers as it changes, with one exception for brevity. Where the components of
an equation such as (13) were written out explicitly as four equations

I silently introduce the coordinates  and corresponding
index notation as in equation (13) above.
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Nordström’s second alternative to force equation (4) preserved the independence

of  from the potential. The quantity  could not be set equal to the

gravitational four-force on a mass  for that would be incompatible with

the orthogonality (5) of four velocity and four acceleration. However one can retain
compatibility with this orthogonality if one selects as the four force only that part of

 which is orthogonal to the four-velocity  This yields the second alternative

for the force equation

(17)

Nordström somewhat casually noted that he would use the first alternative, since it
corresponded to “the position of most researchers in the domain of relativity theory.”
(p. 1126) Indeed Nordström proceeded to show that both force equations lead to
exactly the same equation of motion (16) for a point mass, planting the suggestion
that the choice between alternatives could be made arbitrarily.

Regular readers of Physikalische Zeitschrift, however, would know that Nord-
ström’s decision between the two alternatives could not have been made so casually
by him. For in late 1909 and early 1910, Nordström had engaged in a lively public
dispute with none other than Abraham on a problem in relativistic electrodynamics
that was in formal terms virtually the twin of the choice between the force laws (13)
and (17). (Nordström 1909, 1910; Abraham 1909, 1910.) The problem centered on
the correct expression for the four force density on a matter distribution in the case of
Joule heating. The usual formula for the four force density  on a mass distribution
with rest mass density is, in the notation of Abraham (1910),

with  proper time and coordinates  In the case of Joule heat-

ing, it turns out that this expression leads to a contradiction with the orthogonality
condition (5). The two escapes from this problem at issue in the dispute are formally
the same as the two alternative gravitational force laws. Nordström defended

Minkowski’s approach, which took the four force density to be that part of 

orthogonal to the matter four velocity —the counterpart of force law (17).

Abraham concluded that the rest mass density  would increases in response to
the energy of Joule heat generated. He showed a consistent system could be achieved
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if one now imported this variable  into the scope of the  operator in the
expression for —an escape that is the counterpart of (13). Abraham’s escape was
judged the only tenable one when he was able to show that it yielded the then stan-
dard Lorentz transformation formula for heat whereas the Nordström-Minkowski for-
mula did not.27

The connection between Nordström’s 1912 gravitation theory and this earlier dis-
pute surfaced only in extremely abbreviated form in Nordström (1912). In a brief sen-
tence in the body of the paper, Nordström noted gingerly that (p. 1127)

the latter way of thinking [alternative (17)] corresponds to Minkowski’s original, that
treated first [alternative (13)] to that held by Laue and Abraham.

That Nordström had any stake in the differing viewpoints is only revealed in a foot-
note to this sentence in which the reader is invited to consult “the discussion between
Abraham and the author,” followed by a citation to the four papers forming the dis-
pute. Nordström then closes with the remark28

I now take the position then taken up by Abraham.

Nordström now continued his treatment of gravitation by extending the discus-
sion from isolated point masses to the case of continuous matter distributions—an
area in which he had some interest and expertise (Nordström 1911). He derived a
series of results in a straightforward manner. They included expressions for gravita-
tional four force density on a continuous mass distributions and the corresponding
equations of motion, expressions for the energy density and flux due to both gravita-
tional field and matter distribution, the gravitational field stress-energy tensor and the
laws of conservation of energy and momentum.

The last result Nordström derives concerns point masses. He notes that the field
equation (12) admits the familiar retarded potential as a solution for a matter distribu-
tion with rest density 

where  is  evaluated at time  the integration extends over all of three
dimensional space and  It follows from the
factor of  in the integral that the potential  at a true point mass would be 
Allowing for the dependence of mass on potential given in (15), it follows that the
mass of such a point would have to be zero so that true point masses cannot exist.

27 Thus the authoritative judgement of Pauli’s Teubner Encyklopädie article (Pauli 1921, 108) is that
“Nordström’s objections cannot be upheld.” For a lengthy discussion of this debate and an indication
that the issues were not so simple, see (Liu 1991).

28 His earlier work (Nordström 1911) had explicitly employed Abraham’s “force concept,” although
Nordström had then noted very evasively that, in using it, he “wish[es] to assert no definite opinion on
the correctness of one or other of the two concepts” (p. 854).
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Nordström concluded with confidence, however, that he could see no contradictions
arising from this result.

We may wonder at Nordström’s lack of concern over this result. It would be thor-
oughly intelligible, however, if Nordström were to agree—as Nordström’s later (Nor-
dström 1913a, 856) suggests —with Laue’s view on the relation between the theory
of point masses and of continua. Laue had urged that the former ought to be derived
from the latter (Laue 1911a, 525). Under this view, the properties of extended masses
are derived from consideration of discrete volumes in a continuous matter distribu-
tion, not from the accumulated behavior of many point masses. So the impossibility
of point masses in Nordström’s theory would present no obstacle in his generation of
the behavior of extended bodies.

7. EINSTEIN REPLIES

In advancing his theory, Nordström had claimed to do precisely what Einstein had
claimed impossible: the construction of a Lorentz covariant theory of gravitation in
which the equality of inertial and gravitational mass held. We need not guess whether
Einstein communicated his displeasure to Nordström, for Einstein’s missive was suf-
ficiently swift for Nordström to acknowledge it in an addendum (p. 1129) to his paper
which read

Addendum to proofs. From a letter from Herr Prof. Dr. A. Einstein I learn that he had
already earlier concerned himself with the possibility used above by me for treating grav-
itational phenomena in a simple way. He however came to the conviction that the conse-
quences of such a theory cannot correspond with reality. In a simple example he shows
that, according to this theory, a rotating system in a gravitational field will acquire a
smaller acceleration than a non-rotating system.

Einstein’s objection to Nordström is clearly an instance of his then standard objection
to Lorentz covariant theories of gravitation: in such theories the acceleration of fall is
not independent of a body’s energy so that the equality of inertial and gravitational
mass is violated. It is not hard to guess how Einstein would establish this result for a
spinning body in Nordström’s theory. It would seem to follow directly from the
familiar equation (9) which holds in Nordström’s theory and which says, loosely
speaking, that a body falls slower if it has a greater horizontal velocity. Indeed, as we
shall see below, this is precisely how Nordström shortly establishes the result in his
next paper on gravitation theory.

Nordström continued and completed his addendum with a somewhat casual dis-
missal of Einstein’s objection.

I do not find this result dubious in itself, for the difference is too small to yield a contra-
diction with experience. Of course, the result under discussion shows that my theory is
not compatible with Einstein’s principle of equivalence, according to which an unaccel-
erated reference system in a homogeneous gravitational field is equivalent to an acceler-
ated reference system in a gravitation free space.

In this circumstance, however, I do not see a sufficient reason to reject the theory. For,
even though Einstein’s hypothesis is extraordinarily ingenious, on the other hand it still
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provides great difficulties. Therefore other attempts at treating gravitation are also desir-
able and I want to provide a contribution to them with my communication.

Nordström’s reply is thoroughly reasonable. The requirement of exact equality of
inertial and gravitational mass was clearly an obsession of Einstein’s thinking at this
time and not shared by Einstein’s contemporaries. The now celebrated Eötvös experi-
ment had not yet been mentioned in the publications cited up to this point. We can
also see from equation (9) that the failure of the equality of inertial and gravitational
mass implied by Nordström’s theory would reside in a second order effect in 
Nordström clearly believed it to be beyond recovery from then available experiments.

Finally we should note that Einstein and Nordström are using quite different ver-
sions of the requirement of the equality of inertial and gravitational mass. At this
time, Einstein presumed that the total inertial mass would enter into the equality with
the expectation that it would yield the independence of the vertical acceleration of a
body in free fall from its horizontal velocity. We can only conjecture the precise sense
Nordström had in mind, when he promised his theory would satisfy the equality, for
he does not explain how the equality is expressed in his theory. My guess is that he
took the rest mass to represent the body’s inertial mass in the equality, for Nord-
ström’s equation (16) clearly shows that the motion of a massive particle in free fall is
independent of its rest mass  Under this reading Nordström’s version of the equal-
ity entails the weaker observational requirement of the “uniqueness of free fall”
defined above in Section 1.29 

8. NORDSTRÖM’S FIRST THEORY ELABORATED

Nordström’s first paper on his gravitation theory was followed fairly quickly by
another (Nordström 1913a), submitted to Annalen der Physik in January 1913. This
new paper largely ignored Einstein’s objection although the paper bore the title “Iner-
tial and gravitational mass in relativistic mechanics.” The closing sections of this paper
recapitulated the basic results of (Nordström 1912) with essentially notational differ-
ences only. In Section 6, Nordström’s original field equation (12) was rewritten as

(12’)

As before,  was the gravitational potential. The rest density of matter was now rep-
resented by  and Nordström explicitly named the new constant  the “gravitation
factor.” The force equation was presented as a density in terms of the gravitational
force per unit volume of matter  

29 The equality of inertial and gravitational mass and the uniqueness of free fall are distinct from the
principle of equivalence. Einstein’s version of the principle has been routinely misrepresented since
about 1920 in virtually all literatures. See (Norton 1985). It is stated correctly, however, in Nord-
ström’s addendum.
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(18)

The only difference between this expression and the analogous one offered in the pre-
vious paper was the presence of the gravitation factor  Since this factor was a con-
stant and thus did not materially alter the physical content of either of the basic
equations, Nordström might well have anticipated his readers’ puzzlement over its
use. He hastened to explain that, while  was a constant here, nothing ruled out the
assumption that  might vary with the inner constitution of matter. The paper contin-
ued to derive the  dependence of rest mass  of equation (15). The new version of
the relation now contained the gravitation factor  and read

Nordström no longer even mentioned the possibility of avoiding this dependence of
 on  by positing the alternative force equation (17). The section continued with a

brief treatment of the gravitational field stress-energy tensor and related quantities. It
closed with a statement of the retarded potential solution of the field equation.

The final section 7 of the paper analyzed the motion of a point mass in free fall in
an arbitrary static gravitational field. The analysis was qualified by repetition of his
earlier observation that true point masses are impossible in his theory (Nordström
1912, 1129). In addition he noted that the particle’s own field must be assumed to be
vanishingly weak in relation to the external field. The bulk of the section is given over
to a tedious but straightforward derivation of the analog of equation (9). Nordström
considered a static field, that is one in which  where  is the time coor-
dinate of the coordinate system  He assumed the field homoge-
neous and acting only in the direction of the coordinate system. A point mass in
free fall moves according to

(19)

where  and  are the components of the mass’ velocity 30At this point in the
paper, readers of (Nordström 1912) might well suspect that the entire purpose of
developing equation (19) was to enable statement of the objection of Einstein
reported in that last paper’s addendum. For, after observing that this result (19) tells
us that a body with horizontal velocity falls slower than one without, he concluded
immediately that a rotating body must fall slower than a non-rotating body.

30 Notice that this result is more general than result (9), since it is not restricted to masses with vanishing
vertical velocity, that is, masses whose motion satisfies the condition (7). Curiously Nordström’s con-
dition that the field be homogeneous, so that  is invoked nowhere in the deriva-
tion or discussion of the result.
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Because this example will be reappraised shortly, it is worth inserting the steps
that Nordström must have assumed to arrive at this conclusion. In the simplest case,
the axis of rotation of the body is aligned vertically in the static field. Each small ele-
ment of the spinning body has a horizontal motion, due to the rotation. If each such
element were independent, then the vertical acceleration of each would be given by
the equation (19), so that each element would fall slower because of the horizontal
velocity imparted by the rotation. If this result holds for each element, it seems
unproblematic to conclude that it obtains for the whole, so that the vertical accelera-
tion of fall of the body is diminished by its rotation.

While Nordström urged that this effect is much too small to be accessible to
observation, he was more sanguine about the analogous effect on the acceleration of
fall of a body by the independent motions of its molecules. Its possibility could not be
denied, he said. However, in the penultimate paragraph of the paper, he anticipated
that such an effect could be incorporated into his theory by allowing the gravitation
factor  to depend on the molecular motion of the body. He pointed out that the rest
energy of a body would also be influenced by this molecular motion.

The results Nordström recapitulated in Section 6 and 7 were not the major novel-
ties of the paper. In fact the paper was intended to address a quite precise problem. The
field equation (12’) contained a density term  Nordström’s problem was to identify
what this term should be. The term—or, more precisely, —represented the gravita-
tional field source density. According to Nordström’s understanding of the equality of
inertial and gravitational mass,  must also represent the inertial properties of the
source matter. The selection of such a term was not straightforward. For, drawing upon
his own work and that of Laue and others, he knew that stressed bodies would exhibit
inertial properties that were not reducible to the inertial properties of any individual
masses that may compose them. Thus Nordström recognized that his gravitation the-
ory must be developed by means of the theory of relativistic continua, in which
stresses were treated. This had clearly been his program from the start. In a footnote to
the first paragraph of his first paper on gravitation, Nordström (1912), at the mention
of the equality inertial and gravitational mass, he foreshadowed his next paper

By the equality of inertial and gravitational mass, I do not understand, however, that
every inertial phenomenon is caused by an inertial and gravitational mass. For elastically
stressed bodies, according to Laue ..., one recovers a quantity of motion [momentum]
that cannot at all be reduced back to a mass. I will return to this question in a future com-
munication.

The special behavior of stressed bodies proved to be of decisive importance for the
development of Nordström’s theory. Therefore, in the following section, I review the
understanding of this behavior at the time of Nordström’s work on gravitation. I will
then return to (Nordström 1913a).

g
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9. LAUE AND THE BEHAVIOR OF STRESSED BODIES

By 1911 it was apparent that a range of problems in the theory of relativity had a
common core—they all involved the behavior of stressed bodies—and that a general
theory of stressed bodies should be able to handle all of these problems in a unified
format. The development of this general theory was largely the work of Laue and
came from a synthesis and generalization of the work of many of his predecessors,
including Einstein, Lorentz, Minkowski and Planck. The fullest expression of this
general theory came in Laue (1911a) and was also incorporated into Laue (1911b),
the first text book published on the new theory of relativity.31 Three problems treated
in Laue’ s work give us a sense of the range of problems that Laue’s work addressed.

9.1 Three Problems for Relativity Theory

In 1909, in a remarkably prescient paper, Lewis and Tolman (1909) set out to develop
relativistic mechanics in a manner that was independent of electromagnetic theory
using simple and vivid arguments. At this time relativity theory was almost invariably
coupled with Lorentzian electrodynamics and its content was accessible essentially
only to those with significant expertise in electrodynamics. Their exposition was
marred, however, by an error in its closing pages (pp. 520–21). By this point, they
had established the Lorentz transformation for forces transverse to the direction of
motion. Specifically, if the force is  in the rest frame, then the force 
measured in a frame moving at a fraction  of the speed of light is

(20)

To recover the transformation formula for forces parallel to the direction of motion,
the “longitudinal” direction, they considered the rigid, right angled lever of Fig. 1.
The arms  and  are of equal length and pivot about point  In its rest frame
two equal forces  act at points  and  the first in direction  the second in
direction  The level will not turn since there is no net turning couple about its
pivot  They then imagined the whole system in motion in the direction  They
conclude—presumably directly from the principle of relativity—that the system must
remain in equilibrium. Therefore the net turning couple about  must continue to
vanish for the moving system, so that

Now, according to (20), the transverse force at  is diminished by the factor
 The length of its lever arm  is also contracted by the same factor,

31 Presumably the two works were prepared together. (Laue 1911a) was submitted on 30 April, 1911.
The introduction to (Laue 1911b) is dated May, 1911.
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whereas the arm  being transverse to the motion, is uncontracted. Lewis and Tol-
man now concluded that equilibrium can only be maintained if the longitudinal force

 at  transforms according to

(21)

This conclusion comes from an argument so simple that one would hardly suspect it.
What they did not point out, however, was that its conclusion (21) contradicted the
then standard expositions of relativity theory (e.g. Einstein 1907a, 448) according to
which (20) is correct but (21) should be replaced by

(22)

We now see the problem in its starkest form. If we apply the standard transformation
formulae (20) and (22) to the case of Lewis and Tolman’s bent lever we seem driven
to a curious conclusion. We have a system at equilibrium in its rest frame which now
forfeits that equilibrium in a moving frame through the appearance of a non-vanish-
ing turning couple. Indeed we seem to have a violation of the principle of relativity,
for the presence of this turning couple should yield an experimental indication of the
motion of the system.

Figure 1: Lewis and Tolman’s Bent Lever

The second problem is, at first glance, quite unrelated to the Lewis and Tolman
bent lever. Under a classical analysis, one expects that a charged, parallel plate con-
denser can experience a net turning couple if it is set in motion through the aether. In
a classic experiment, Trouton and Noble (1903) sought to detect the turning couple
acting on a charged condenser due to its motion with the Earth. Their null result is
celebrated. Just as in the case of the Lewis and Tolman bent lever, the problem is to
see how relativity theory allows one to predict this null result, which otherwise would
contradict the principle of relativity. In fact, as Laue (1911c, 517) and others soon
pointed out, the two problems were closely connected. In its rest frame, the Trouton-
Noble condenser was simply a rigid system of two parallel plates with an electric
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force acting on each plate in such a way that the entire system was in equilibrium. If
that equilibrium system was set into motion, under either a classical or relativistic
analysis, the electric forces would transform according to the Lorentz transformation
(20) and (22). Unless the direction of motion imparted was parallel or exactly perpen-
dicular to the plates, the net effect would be exactly the same as the Lewis and Tol-
man bent lever. A non-vanishing turning couple is predicted which deprives the
system of equilibrium. The couple ought to be detectable in violation of the principle
of relativity.32

The third problem concerns the theory of electrons. The decade preceding 1911
had seen considerable work on the problem of providing a model for the electron.
Best known of these were the models of Lorentz and Abraham, which depicted elec-
trons as electrically charged spheres with varying properties. The general problem
was to show that the relativistic dynamics of an acceptable model of the electron
would coincide with the relativistic dynamics of a point mass. There were a range of
difficulties to be addressed here. In introducing his (Laue 1911a, 524–25), Laue
recalled a brief exchange between Ehrenfest and Einstein. In a short note, Ehrenfest
(1907) had drawn on work of Abraham that raised the possibility of troubling behav-
ior by an electron of non-spherical or non-ellipsoidal shape when at rest. It was sug-
gested that such an electron cannot persist in uniform translational motion unless
forces are applied to it.33 We might note that such a result would violate not only the
principle of inertia in the dynamics of point masses but also the principle of relativity.
Einstein’s reply (1907b) was more a promise than resolution, although he ultimately
proved correct. He pointed out that Ehrenfest’s model of the electron was incomplete.
One must also posit that the electron’s charge was carried by a rigid frame, stressed to
counteract the forces of self repulsion of the charge distribution. Ehrenfest’s problem
could not be solved until a theory of such frames was developed.

Finally another aspect of the problem of the relativistic dynamics of electrons was
the notorious question of electromagnetic mass. If one computed the total momentum
and energy of the electromagnetic field of an electron, the result universally accepted
at this time was the one reported in (Laue 1911b, 98):

(23)

The conflict with the relativistic dynamics of point masses arose if one now posited
that all the energy and momentum of the electron resides in its electromagnetic field.

For one must then identify  the electromagnetic mass of the electron,

32 For further extensive discussion of the Trouton-Noble experiment and its aether theoretic treatment by
Lorentz, see (Janssen 1995).

33 In a footnote, Ehrenfest pointed out the analogy to the turning couple induced on a charged condenser
and reviewed the then current explanation of it absence in terms of molecular forces.
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as the total inertial mass of the electron, so that equation (23) tells us that the momen-
tum of an electron is  the product of its mass and velocity. The canonical resolu-
tion of this difficulty, as stated for example in (Pauli 1921, 185–86), is that such a
purely electromagnetic account of the dynamics of the electron is inadmissible. As
Einstein (1907b) urged, there must be also stresses of a non-electromagnetic charac-

ter within the electron.34 The puzzle Laue addressed in 1911 was to find very general
circumstances under which the dynamics of such an electron would agree with the
relativistic dynamics of point masses.

9.2 The General-Stress Energy Tensor

The focus of Laue’s treatment of stressed bodies in his (1911a) and (1911b) lay in a
general stress-energy tensor.35 While Minkowski (1908, §13) had introduced the four
dimensional stress-energy tensor at the birth of four dimensional methods in relativ-
ity theory, his use of the tensor was restricted to the special case of the electromag-
netic field. Laue’s 1911 work concentrated on extending the use of this tensor to the
most general domain. The properties of this tensor and its behavior under Lorentz
transformation summarized a great deal of the then current knowledge of the behav-
ior of stressed bodies. Laue (1911a) uses a coordinate system  so that
the components of the stress energy tensor  have the following interpretations:

The three dimensional tensor  is the familiar stress tensor. The vec-
tor  represents the momentum density. The vector

 is the energy flux.  is the energy density.
The most fundamental result of relativistic dynamics is Einstein’s celebrated iner-

tia of energy according to which every quantity of energy  is associated with an
inertial mass  The symmetry of Laue’s tensor entails a result closely con-

34 While these stresses are needed to preserve the mechanical equilibrium of the electron, Rohrlich
(1960) showed that they were not needed to eliminate the extraneous factor of 4/3 in equation (23). He
showed that the standard derivation of (23) was erroneous and that the correct derivation did not yield
the troubling factor of 4/3.

35 The label “stress-energy tensor” is anachronistic. Laue had no special name for the tensor other than
the generic “world tensor,” which, according to the text book exposition of Laue (1911b, §13)
described any structure which transformed as what we would now call a second rank, symmetric ten-
sor. Notice that the term “tensor” was still restricted at this time to what we would now call second
rank tensors and even then usually to symmetric, second rank tensors. See (Norton 1992a, Appendix).
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nected with Einstein’s inertia of energy and attributed to Planck by Laue (1911a,
530). We have  which immediately leads to

(24)

This tells us that whenever there is an energy flux  present in a body then there is
an associated momentum density 

As emphasized in (Laue 1911c), this result is already sufficient to resolve the first
of the three problems described above in Section 9.1, the Lewis and Tolman bent
lever. Notice first that Fig. 1 does not display all the forces present. There must be
reaction forces present at the pivot point  to preserve equilibrium in the rest frame.
See Fig. 2, which also includes the effect of the motion of the system at velocity  in
the direction  When the lever moves in the direction  then work is done by the
force  at point  which acts in the direction  The energy of this work is transmit-
ted along the arm  as an energy current of magnitude  and is lost at the pivot
point  as work done against the reaction force that acts in the direction  This
energy current  in the arm  must be associated with a momentum 
according to (24) when integrated over the volume of the arm  and this momen-
tum will be directed from  towards  As Laue (1911c) showed, a short calculation
reveals that this momentum provides precisely the additional turning couple needed to
return the moving system to equilibrium. Notice that the force at  and its associated
reaction force at  are directed transverse to the motion so no work is done by them.36

The essential and entirely non-classical part of the analysis resides in the result
that the there is an additional momentum present in the moving arm  because it is
under the influence of a shear stress due to the force  at  and the corresponding
reaction force at  As Laue (1911c, 517) and Pauli (1921, 128–29) point out,
exactly this same relativistic effect explains the absence of net turning couple in the
Trouton-Noble condenser. The condenser’s dielectric must be stressed in reaction to
the attractive forces between the oppositely charged plates. The additional momen-
tum associated with these non-electromagnetic stresses provides the additional turn-
ing couple required to preserve the equilibrium of the moving condenser.

36 Assume that the level arms are of unit length at rest so that the arm  contracts to length
 when the system moves at velocity  in direction  The turning couple about a point

 at rest and instantaneously coincident with the moving pivot point  due to the applied forces
alone is  where a positive couple is in the clockwise direction. The
relativistic momentum  generates angular momentum about the point  Since the distance
of the arm  from  is growing at the rate of  this angular momentum is increasing at a rate

 which is exactly the turning couple needed to balance the couple due to the
applied forces.
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Figure 2: Lewis and Tolman’s Bent Lever Showing Reaction Forces
and Effects of Motion

While this analysis satisfactorily resolves at least the case of the Lewis and Tol-
man lever, more complicated cases will require a clearer statement of the relation-
ship between the stresses in a moving body and the momentum associated with it.
These results were derived directly by Laue (1911a, 531–32) from the Lorentz trans-
formation of the components of the stress-energy tensor. In the rest frame of the
stressed matter distribution, the matter has energy density  and a stress tensor

 for  The momentum density  and energy flux  vanish. Trans-
forming to a frame of reference moving at velocity  in the  direction, from a
direct application of the Lorentz transformation formula for a tensor, Laue recovered
results that included

(25)

The first two equations show that, in a moving body, there is a momentum density
associated with both normal stresses  and with shear stresses  The Lewis
and Tolman lever is a case in which a momentum density is associated with shear
stresses in a moving body in accord with (25). The third equation shows that there is
an energy density associated with normal stresses in moving body.

This last result, in a form integrated over a whole stressed body, had already been
investigated and clearly stated by Einstein (1907c, §1), as a part of his continuing
analysis of the inertia of energy. He gave the result a very plausible, intuitive basis,
relating it directly to the relativity of simultaneity. He imagined a rigid body in uni-
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form translational motion. At some single instant in the body’s rest frame, an equilib-
rium state of stress appears in the body. Since it appears at a single instant, the new
forces do not alter the state of motion of the body. However in the frame in which the
body moves, because of the relativity of simultaneity, these new forces do not appear
simultaneously over the entire body. Thus there is a brief period of disequilibrium of
forces during which net work is done on the body. This new work is exactly the
energy associated with the stresses  in the equation (25). Einstein (1907a, §2)
continued with an example similar in structure to the Trouton-Noble condenser—a
rigid body, in uniform motion, carrying an electric charge distribution. The forces
between the charges carried stress the rigid body, so that there is an energy associated
with these stresses. Einstein showed that this latter energy was essential. Otherwise
the energy of the moving body would depend on the direction of its motion which
would lead to a contradiction.37

Laue (1911, §2) continued his treatment of the transformation formulae (25) by
restating them for an extended body. In particular, integration of (25) over such a body
revealed relationships between the rest energy  of the body and its energy  and
momentum  in the frame of reference in which the body moves at velocity  Writ-
ing the three components of the body’s ordinary velocity as  he recov-
ered38

(26)

The expression for momentum had an immediate and important consequence. In gen-
eral, whenever the body was stressed so that the stress tensor  does not vanish, the
momentum  of the body will not be in the same direction as its velocity  This
was exemplified in the Lewis and Tolman lever. Although it was set in motion in the
direction  the presence of stresses in the arm  led to a momentum in that arm

37 Specifically, in the body’s rest frame, the body can rotate infinitely slowly without application of any
forces. By the principle of relativity, this same motion will be possible if the body is in uniform trans-
lational motion as well. However in this latter case the kinetic energy of the body would alter accord-
ing to its orientation as it rotates. Since no forces were applied, this would violate the “energy
principle,” the law of conservation of energy. Notice that the rotation is infinitely slow, so that it does
not contribute to the body’s kinetic energy.

38  is the rest volume of the body and  I have simplified Laue’s opaque notation by
introducing an index notation, where Laue used round and square brackets to represent various prod-
ucts. For example, where I would write , he would write “ .”
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directed transverse to the motion. If this momentum is added vectorially to the
momentum of the inertial mass of the lever, the resultant total momentum vector will
not be parallel to the direction of motion.

Laue was now in a position to restate the analysis given for the Lewis and Tolman
lever in a way that would apply to general systems. This was the principle of burden
of (Laue 1911a, §3 and §4). To begin, Laue introduced a new three dimensional stress
tensor. In a body at rest, the time rate of change of momentum density  is
given by the negative divergence of the tensor 

However if one wishes to investigate the time rate of change of momentum density in

a moving body, one must replace the partial time derivative  with a total time

derivative coordinated to the motion,  Laue was able

to show that the relevant time rate of change of momentum was given as the negative
divergence of a new tensor 

where this “tensor of elastic stresses” was defined by

Note in particular that  will not in general be symmetric since the momentum den-
sity  will not in general be parallel to the velocity 

The lack of symmetry of  is a cause of momentary concern, for it is exactly the
symmetry of  that enables recovery, in effect, of the law of conservation of angu-
lar momentum. More precisely, the symmetry of the stress tensor is needed for the
standard derivation of the result that the time rate of change of angular momentum of
a body is equal to the total turning couple impressed on its surface. Laue proceeds to
show, however, that this asymmetry does not threaten recovery of this law and is, in
fact essential for it.39 He writes the time rate of change of total angular momentum

 of a moving body as40

39 Laue calls §4, which contains this discussion, “the area law.” I presume this is a reference to Kepler’s
second law of planetary motion, which amount to a statement of the conservation of angular momen-
tum for planetary motion.

40   is a volume element of the body. I make no apology at this point for shielding the reader from
Laue’s notation, which has become more than opaque. Laue now uses square brackets to represent
vector products, where earlier they represented an inner product of vector and tensor.  is the fully
antisymmetric Levi-Civita tensor, so that  is the vector product of two vectors  and 
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(27)

Were the tensor  symmetric, then the integration of the first term alone could be
carried out using a version of Gauss’ theorem. One could then arrive at the result that
the total rate of change of momentum of the body is given by the turning couple
applied to its surface. Thus if there is no applied couple, angular momentum would
be conserved. However the tensor  is not symmetric, and so an integral over the
first term leaves a residual rate of change of angular momentum even when no turn-
ing couple is applied to the body. Fortunately there is a second term in the integrals of
(27) that results from allowing for the use of the total time derivative. It is the vector
product of the velocity  and momentum density  This term would not be present
in a classical analysis since these two vectors would then be parallel so that their vec-
tor product would vanish. In the relativistic context, this is not the case. This term
corresponds exactly to the stress induced momentum in the arm  of the Lewis and
Tolman lever. This extra term exactly cancels the residual rate of change of angular
momentum of the first term, restoring the desired result, the rate of change of angular
momentum equals the externally applied turning couple.

9.3 Laue’s “Complete Static Systems”

The last of the group of results developed in (Laue 1911a, §5) proved to be the most
important for the longer term development of Nordström’s theory of gravitation.
Laue had shown clearly just how different the behavior of stressed and unstressed
bodies in relativity theory could be. He now sought to delineate circumstances in
which the presence of stresses within a body would not affect its overall dynamics.
Such was the case of a “complete static system,” which Laue defined as follows:

We understand by this term such a system which is in static equilibrium in any justified
reference system  without sustaining an interaction with other bodies.

This definition is somewhat elusive and the corresponding definition in (Laue 1911b,
168–69) is similar but even briefer. In both cases, however, Laue immediately gave
the same example of such a system, “an electrostatic field including all its charge car-
riers.” This example and the definition leaves open the question of whether a body
spinning at constant speed and not interacting with any other bodies is a complete
static system. Such a body is in equilibrium and static in the sense that its properties
are not changing with time, especially if the body spins around an axis of rotational
symmetry. Tolman (1934, 81) gave a clearer definition:

And in general we shall understand by a complete static system, an entire structure
which can remain in a permanent state of rest with respect to a set of proper coordinates

 without the necessity for any forces from the outside.

He clearly understood this definition to rule out rotating bodies, for he noted a few
lines later “the velocity of all parts of the system is zero in these coordinates ”.
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Tolman used this to justify the condition that the momentum density in the rest frame
vanishes at every point

(28)

Presumably Laue agreed for he also invoked this condition. From it, both Laue and
Tolman derived the fundamental result characteristic of complete static systems:

(29)

where the integral extends over the rest volume  of the whole body. Laue allowed,
in effect, that his conception of a complete static system could be relaxed without com-
promising the recovery of (29). For in a footnote (Laue 1911a, 540) to the example of
an electrostatic field with its charge carriers, he noted that one could also consider the
case of electrostatic-magnetostatic fields. Even though (28) failed to obtain for this
case, the time derivative of  did vanish which still allowed the derivation of (29).

This fundamental property (29) of complete static systems greatly simplified the
expression (26) for the energy and momentum of a stressed body. Through (29) all
the terms explicitly dependent on stresses vanish so that

(30)

As Laue pointed out, these expressions coincide precisely with those of a point mass
with rest mass  Moreover under quasi-stationary acceleration—that
is acceleration in which “the inner state  is not noticeably changed”—a com-
plete static system will behave exactly like a point mass.

Laue could now offer a full resolution of the remaining problems described above
in Section 9.1. An electron together with its field is a complete static system, he
noted, no matter how it may be formed. As a result it will behave like a point mass, as
long as its acceleration is quasi-stationary. In particular it will sustain inertial motion
without the need for impressed forces. While Laue did not explicitly mention the
problem of relating the electron’s total field momentum to its inertial mass, Laue’s
result (30) resolves whatever difficulty might arise for the overall behavior of an elec-
tron. For however the electron may be constructed, as long as it forms a complete
static system, equation (30) shows that the extraneous factor of 4/3 in equation (23)
cannot appear. Finally, the Trouton-Noble condenser is a complete static system.
While neither the momentum of its electromagnetic field or of its stressed mechanical
structure will lie in the direction of its motion, equation (30) shows that the combined
momentum  will lie parallel to the velocity  so that there is no net turning cou-
ple acting on the condenser.41
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10. THE DEFINITION OF INERTIAL MASS IN
NORDSTRÖM’S FIRST THEORY

What had emerged clearly from Laue’s work was that the inertial properties of bodies
could not be explained solely in terms of their rest masses and velocities, if the bodies
were stressed. For Laue’s equation (26) showed that the momentum of a moving
body would be changed merely by the imposition of a stress, even though that stress
need not deform the body or perform net work on it. Nordström clearly had results
such as these in mind when he laid out the project of his (Nordström 1913a, 856–57).
Laue and Herglotz, he reported, had constructed the entire mechanics of extended
bodies without exploiting the concept of inertial mass. That concept, he continued,
was neither necessary nor sufficient to represent the inertial properties of stressed
matter. This now seems to overstate the difficulty, for Laue’s entire system depended
upon Einstein’s result of the inertia of energy. Nonetheless nowhere did Laue’s
mechanics of stressed bodies provide a single quantity that represented the inertial
mass of a stressed body.

It was to this last omission that Nordström planned to direct his paper. It was
important, he urged, to develop a notion of the inertial mass of matter for the develop-
ment of a gravitation theory. Such a theory must be based on the “unity of essence”42

of inertia and gravity. He promised to treat the relativistic mechanics of deformable
bodies in such a way that it would reveal a concept of inertial mass suitable for use in
a theory of gravitation.

Nordström’s analysis was embedded in a lengthy treatment of the mechanics of
deformable bodies whose details will not be recapitulated here. Its basic supposition,
however, was that the stress energy tensor  of a body with an arbitrary state of
motion and stress would be given as the sum of two symmetric tensors (p. 858)

(31)

The second tensor,  he called the “material tensor.” It represented the contri-
bution to the total stress tensor from a matter distribution with rest mass density 
and four velocity  The first tensor,  he called the “elastic stress tensor.” It
represented the stresses in the matter distribution. In the rest frame of the matter dis-
tribution, Nordström wrote the elastic stress tensor as (p. 863)

41 However this result did not end Laue’s analysis of the Trouton-Noble experiment. See (Laue 1912).
42 Wesenseinheit. The term is sufficiently strong and idiosyncratic for it to be noteworthy that, so far as I

know, Einstein was the only other figure from this period who used even a related term in connection
with inertia and gravitation. In a paper cited earlier in (Nordström 1912, 1126), Einstein (1912d,
1063) had talked of the “equality of essence” (Wesensgleichheit) of inertial and gravitational mass.
Einstein used the term again twice in later discussion. See (Norton 1985, 233).
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The six zero-valued components in this matrix represent the momentum density and
energy current due to the presence of stresses. They must vanish, Nordström pointed
out, since stresses cannot be responsible for a momentum or energy current in the
rest frame.43 In particular, Nordström identified the component  as a Lorentz
invariant.44 

In the crucial Section 4, “Definition of Inertial Mass,” Nordström turned his atten-
tion to the  component of equation (31) in the rest frame. This equation gave an
expression for the Lorentz invariant rest energy density  in terms of the sum of two
invariant quantities45

(32)

This equation gave simplest expression to the quantity of fundamental interest to
Nordström’s whole paper, the density  which would provide the source for the
gravitational field equation. This density would be determined once  and  were
fixed. However, while the rest energy density  was a “defined quantity,” it was not
so clear how  was to be determined. It represented an energy density associated
with the stresses. Clearly if there were no stresses in the material, then this energy
would have to be zero. But what if there were stresses?

To proceed Nordström considered a special case, a body in which there is an iso-
tropic, normal pressure. In this case, Nordström continued, it is possible to fix the
value of  in such a way that the density  can be determined. The elastic stress
tensor could be generated out of a single scalar invariant, which I will write here as

 so that the elastic stress tensor in the rest frame is given by

43 In Section 5, Nordström augmented his analysis by considering the effect of heat conduction. This
was represented by a third symmetric tensor,  whose only non-zero components in the rest frame
were exactly these six components. Thus heat conduction was represented by an energy current and
associated momentum density which did not arise from stresses and which had no associated energy
density in the rest frame.

44 This followed easily from the fact that the tensor  twice contracted with the four velocity 
yields a Lorentz invariant,  which can be evaluated in the rest frame, where

 and turns out to be 
45 The presence of the negative sign follows from the use of a coordinate system in which the fourth
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(33)

With this particular choice of stress tensor, Nordström pointed out, there is no
momentum density associated with the stresses when the body is in motion. We can
confirm this conclusion merely by inspecting the matrix (33). Since  is an invariant,
the matrix will transform back into itself under Lorentz transformation. Therefore in
all frames of reference, the six components  and 
will remain zero. But these six components between them represent the momentum
density and energy current due the stresses. Thus any momentum density present in
the body will be due to the density 46 

At this point, the reader might expect Nordström to recommend that one set 
in the general case in such a way that there are no momentum densities associated
with stresses. Nordström informs us, however, that he could find no natural way of
doing this. As a result, he urged that the “simplest and most expedient definition” lies
in setting

(34)

so that  To quell any concern that this choice had been made with undue
haste, Nordström continued by asserting that the factual content of relativistic
mechanics is unaffected by the choice of quantity that represents inertial mass. It is
only when weight is assigned to inertial masses, such as in his gravitation theory, that
the choice becomes important.

The reader who has followed the development of Nordström’s argument up to this
point cannot fail to be perplexed at the indirectness of what is the core of the entire
paper! There are three problems. First, the choice of  as given in (34) seems unchal-
lengeable as the correct expression for the rest density of inertial mass. It merely sets
this density equal to  times the rest energy density—exactly as one would
expect from Einstein’s celebrated result of the inertia of energy. Indeed, any other
division of total rest energy  between the two terms of (32) would force us to say
that  does not represent the total inertial rest mass density, for there would be
another part of the body’s energy it does not embrace. Second, no argument is given
for the claim that the choice of  has no effect on the factual content of relativistic
mechanics.47 Finally, even if this second point is correct, it hardly seems worth much
attention since the choice of expression for  does significantly affect the factual
content of gravitation theory.

The clue that explains the vagaries of Nordström’s analysis lies in his citation of
his own (Nordström 1911). There one finds an elaborate analysis of the relativistic

46 Unless, of course, heat conduction is present.
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mechanics of the special case of a body with isotropic normal stresses—exactly the
special case considered above. The analysis began by representing the stresses
through a tensor of form (33). Nordström then showed the effect of arbitrarily reset-
ting the value of  Reverting to the notation of (Nordström 1911), Nordström
imagined that the  term of (33) is replaced by some arbitrary  He showed that
the effect of this substitution is simply to replace the rest mass density  (the analog
of  in the 1913 paper) in the equations of the theory with an augmented

without otherwise altering the theory’s relations. He was able to conclude that setting
 “is not a specialization of the theory, but only a specialization of concepts.”

In the introduction to (Nordström 1911), he had announced his plan to extend this
analysis to the more general case with tangential stresses in another paper. Presum-
ably the discussion of Section 4 in (Nordström 1913a) was intended to inform his
readers that he was now unable to make good on his earlier plan. Indeed the remarks
that seemed puzzling are merely a synopsis of some of the major points of (Nord-
ström 1911). That the choice of (34) does not affect the factual content of relativistic
mechanics is merely an extension of the result developed in detail in (Nordström
1911). It had become something of a moot point, however, in the context of gravita-
tion theory.

To sum up, Nordström’s choice of source density  was given by equation (34)
and it was this result that gave meaning to the quantity  in the final sections of the
paper in which his gravitation theory was recapitulated. We can give this quantity
more transparent form by writing it in a manifestly covariant manner48

(35)

Natural as this choice seemed to Nordström, it was Einstein who shortly proclaimed
that another term derived from the stress energy tensor was the only viable candidate
and that this unique candidate led to disastrous results.

47 On reflection, however, I think the result not surprising. Barring special routes such as might be pro-
vided through gravitation theory, we have no independent access to the energy represented by the term

 For example, in so far as this energy is able to generate inertial effects, such as through genera-
tion of a momentum density, it is only through its contribution to the sum  The
momentum density follows from the Lorentz transformation of the tensor  How we envisage the
energy divided between the two terms of this sum will be immaterial to the final density yielded.

48 While  is the trace of the material tensor  this quantity  is not the trace of the full
tensor  as given in (31). This latter trace would contain terms in  etc.
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11. EINSTEIN OBJECTS AGAIN

By early 1913, Einstein’s work on his own gravitation theory had taken a dramatic
turn. With his return to Zurich in August 1912, he had begun a collaboration with his
old friend Marcel Grossmann. It culminated in the first sketch of his general theory of
relativity, (Einstein and Grossmann 1913), the so-called “Entwurf” paper. This work
furnished his colleagues all the essential elements of the completed theory of 1915,
excepting generally covariant gravitational field equations.49 While we now know
that this work would soon be Einstein’ s most celebrated achievement, the Einstein of
1913 could not count on such a jubilant reception for his new theory. He had already
survived a bitter dispute with Abraham over the variability of the speed of light in his
earlier theory of gravitation. And Einstein sensed that the lack of general covariance
of his gravitational field equations was a serious defect of the theory which would
attract justifiable criticism.

There was one aspect of the theory which dogged it for many years, its very great
complexity compared with other gravitation theories. In particular, in representing
gravitation by a metric tensor, Einstein had, in effect, decided to replace the single
scalar potential of gravitation theories such as Newton’s and Nordström’s, with ten
gravitational potentials, the components of the metric tensor. This concern was
addressed squarely by Einstein in Section 7 of his part of the Entwurf paper. It was
entitled “Can the gravitational field be reduced to a scalar?” Einstein believed he
could answer this question decisively in the negative, thereby, of course, ruling out
not just Nordström’s theory of gravitation, but any relativistic gravitation theory
which represented the gravitational field by a scalar potential.

Einstein’s analysis revealed that he agreed with Nordström’s assessment of the
importance of Laue’s work for gravitation theory. However he felt that Laue’s work,
in conjunction with the requirement of the equality of inertial and gravitational mass,
pointed unambiguously to a different quantity as the gravitational source density.
That was the trace of the stress-energy tensor. He proposed that a scalar theory would
be based on the equation of motion for a point mass

(36)

where  is the gravitational potential,  is the spacetime line element of special
relativity and  represents a variation of the mass’ world line. He continued, tacitly
comparing the scalar theory with his new Entwurf theory:

Here also material processes of arbitrary kind are characterized by a stress-energy tensor
 However in this approach a scalar determines the interaction between the gravita-

tional field and material processes. This scalar, as Herr Laue has made me aware, can
only be

49 For an account of this episode, see (Norton 1984).
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I want to call it “Laue’s scalar.” Then one can do justice to the law of the equivalence of
inertial and gravitational mass here also up to a certain degree. That is, Herr Laue has
pointed my attention to the fact that, for a closed system,

From this one sees that the weight of a closed system is determined by its total energy
according to this approach as well.

Recall that Einstein’s version of the requirement of the equality of inertial and gravi-
tational mass seeks to use the total energy of a system as a measure of it as a gravita-
tional source. The selection of  the trace of the stress energy tensor, does this for
the special case of one of Laue’s complete static systems. For such a system, the inte-
gral of the trace  over the spatial volume  of the system is equal to the negative
value of the total energy of the system50  since

(37)

The three terms in   and  in the integral vanish because of the fundamen-
tal property (29) of complete static systems. Notice that Einstein can only say he does
justice to the equality of inertial and gravitational mass “up to a certain degree,” since
this result is known to hold only for complete static systems and then only in their
rest frames.

Einstein’s wording indicates direct personal communication from Laue. concern-
ing the stress-energy tensor and complete static systems. Such personal communica-
tion is entirely compatible with the fact that both Einstein and Laue were then in
Zurich, with Einstein at the ETH and Laue at the University of Zurich. Below, in Sec-
tion 15, I will argue that there is evidence that, prior to his move to Zurich, Einstein
was unaware of the particular application of Laue’s work discussed here by him.

Einstein continued his analysis by arguing that this choice of gravitational source
density was disastrous. It leads to a violation of the law of conservation of energy. He
wrote:

The weight of a system that is not closed would depend however on the orthogonal
stresses  etc. to which the system is subjected. From this there arise consequences
which seem to me unacceptable as will be shown in the example of cavity radiation.51

50 Presumably Einstein’s “ ” is a misprint and should read  In a coordinate system in which
 so that  is the negative value of the total energy.

51 [JDN] One might well think that only Einstein could seriously ask after the gravitational mass of such
an oddity in gravitation theory as radiation enclosed in a massless, mirrored chamber. Yet Planck
(1908, 4) had already asked exactly this question.
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For radiation in a vacuum it is well known that the scalar  vanishes. If the radiation is
enclosed in a massless, mirrored box, then its walls experience tensile stresses that cause
the system, taken as a whole, to be accorded a gravitational mass  which corre-
sponds with the energy  of the radiation.

Now instead of the radiation being enclosed in an empty box, I imagine it bounded
1. by the mirrored walls of a fixed shaft 
2. by two vertically moveable, mirrored walls  and  which are firmly fixed to
one another by a rod. (See Fig. 3.)

In this case the gravitational mass  of the moving system amounts to only a third
part of the value which arises for a box moving as a whole. Therefore, in raising the
radiation against a gravitational field, one would have to expend only a third part of the
work as in the case considered before, in which the radiation is enclosed in a box. This
seems unacceptable to me.

Einstein’s objection bears a little expansion. He has devised two means of raising and
lowering some fixed quantity of radiation in a gravitational field. Notice that in either
case the radiation by itself has no gravitational mass, since the trace of the stress-
energy tensor of pure electromagnetic radiation vanishes. What introduces such a
mass is the fact that the radiation is held within an enclosure upon which it exerts a
pressure, so that the enclosure is stressed. Even though the members of the enclosure
are assumed massless, it turns out that a gravitational mass must still be ascribed to
them simply because they are stressed. The beauty of Einstein’s argument is that the
gravitational masses ascribed in each of the two cases can be inferred essentially
without calculation.

Figure 3: Rendering of Figure in Einstein’s Text

In the first case, the radiation is moved in a mirrored box. The radiation and enclosing
box form a complete static system. Therefore the gravitational mass of the box
together with the radiation is given by the total energy of the radiation,  in
its rest frame, where I now write the stress-energy tensor of the electromagnetic radi-
ation as  For ease of transition to the second case, it is convenient to imagine
that each of the three pairs of opposing wall of the box is held in place only by a con-
necting rod, that the faces of the box are aligned with the  and  axes and that the
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disposition of the system is identical in these three directions. Each connecting rod
will be stressed in reaction to the radiation pressure. I write  for the stress-energy
tensor of the rod aligned in the  direction and the two stressed walls that this rod
connects.  and  represent the other two corresponding systems. We can then
infer directly from (37) that the gravitational mass of the entire system in its rest
frame is proportional to

The second equality follows from  and from the symmetry of the three axes,
which entails

In Einstein’s second case the radiation is trapped between sliding, mirrored baffles
in a mirrored shaft aligned, let us say, in the  direction. The only component of the
moveable system carrying a gravitation mass in this case will be the stressed rod and
the stressed baffles it connects. Its gravitational mass in its rest frame will simply be
proportional to the volume integral of the trace of its stress energy tensor. This integral

is equal to  and is one third of the corresponding integral for the first case, as
Einstein claimed.

We now combine the two cases into a cycle. We lower the radiation inside the cube
into the gravitational field, recovering some work, since the system has a gravitational
mass. We then transfer the radiation into the baffle system and raise it. Only one third
of the work released in the first step is needed to elevate the radiation because of the
baffle system’s reduced gravitational mass.52 The mirrored cube and baffles are
weightless once they are unstressed by the release of the radiation so they can be
returned to their original positions. The cycle is complete with a net gain of energy.

That a theory should violate the conservation of energy is one of the most serious
objections that Einstein could raise against it. Notice that he did not mention another
possible objection that would derive directly from the vanishing of the trace of the
stress-energy tensor of pure radiation. This vanishing entails that light cannot be
deflected by a gravitational field. However, in 1913, prior to the experimental deter-
mination of this effect, Einstein could hardly have expected this last objection to have
any force.

As devastating and spectacular as Einstein’s objection was, he had at this time
developed the unfortunate habit of advancing devastating arguments to prove conclu-
sion he later wished to retract, see (Norton 1984, §5). This objection to all theories of

52 Since the estimates of gravitational mass are made in the system’s rest frames, these motions would
have to be carried out infinitely slowly.
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gravitation with a scalar potential proved to be another instance of his habit. Within a
few months Einstein had endorsed (if not initiated) a most interesting escape.

12. NORDSTRÖM’S SECOND THEORY

On July 24, 1913, Nordström submitted another version of his gravitation theory to
Annalen der Physik, (Nordström 1913b). This version of the theory finally took
proper notice of what Einstein had presented as obvious in his Entwurf paper. The
only possible scalar that can represent gravitational source density is the trace of the
stress-energy tensor and this choice, in conjunction with Laue’s work on complete
static systems, enables satisfaction of the requirement of equality of inertial and grav-
itational mass. Moreover the version of the requirement satisfied is an Einsteinian
version in which the quantity of gravitational source is proportional to the total
energy. This differs from the version embodied in Nordström’s equation (16) in
which the motion of a body in free fall is merely independent of its rest mass. Finally
the theory offered an ingenious escape from Einstein’s Entwurf objection. It turned
out that the objection failed if one assumed that the proper length of a body would
vary with the gravitational potential. This new version of this theory is sufficiently
changed that it is now customarily known as Nordström’s second theory.

There is room for interesting speculation on the circumstances under which Nord-
ström came to modify his theory. In the introduction (p. 533) he thanked Laue and
Einstein for identifying the correct gravitational source density. As we shall see, at two
places in the paper (p. 544, 554), he also attributed arguments and results directly to
Einstein without citation. Since I know of no place in which Einstein published these
results, it seems a reasonable conjecture that Nordström learned of them either by cor-
respondence or personal contact. That it was personal contact during a visit to Zurich
at this time is strongly suggested by the penultimate line of the paper, which, in stan-
dard Annalen der Physik style, gives a place and date. It reads “Zurich, July 1913.”53

Since Nordström does thank both Laue and Einstein directly and in that order and
since the wording of Einstein’s Entwurf suggests a personal communication directly
from Laue, we might conjecture also that there was similar direct contact between
Laue and Nordström. Laue was also in Zurich at this time at the University of Zurich.

One cannot help but sense a somewhat sheepish tone in the introduction to (Nord-
ström 1913b, 533), when he announced that this earlier presentation (Nordström
1913a) was “not completely unique” and that “the rest density of matter was defined
in a fairly arbitrary way.” In effect he was conceding that he had bungled the basic
idea of his earlier (Nordström 1913a), that one had to take notice of the mechanics of
stressed bodies in defining the gravitational source density and that this ought to be

53 An entry in Ehrenfest’s Diary (“I”, NeLR, Ehrenfest Archive, Scientific Correspondence, ENB: 4–15)
reveals a visit to Zurich by Nordström in late June. See (CPAE 4, 294–301), “Einstein on Gravitation
and Relativity: the Collaboration with Marcel Grossmann.”
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done in a way that preserved the equality of inertial and gravitational mass. Laue and
Einstein were now telling him how he ought to have written that paper.

12.1 The Identification of the Gravitational Source

The first task of Nordström (1913b) was to incorporate the new source density into
his theory and this was tackled in its first section. The final result would be to define
this density in terms of what he called the “elastic-material tensor”  which corre-
sponded to the sum of Nordström’s (1913a) material tensor and elastic stress tensor
as given above in (31). Following Einstein and Laue, he ended up selecting 
times the negative54 trace  of  as his source density 

(38)

However unlike Laue and Einstein, that selection came at the conclusion of a fairly
lengthy derivation. Nordström would show that the requirement of equality of inertial
and gravitational mass in the case of a complete static system would force this choice
of source density.

To begin, Nordström chose essentially the same field equation for the potential 
and gravitational force density equations as in (Nordström 1913a):

(12’’)

(18’)

Here  remained the as yet undetermined gravitational source density. The important
innovation was that the gravitation factor  was now allowed to vary as a function of
the potential  In an attempt to bring some continuity to the development of (Nord-
ström 1913b) from (1913a), he recalled that in the former paper (p. 873, 878) he had
foreshadowed the possibility that  might be a function of the inner constitution of
bodies. Indeed the paper had closed with the speculation that such a dependence might
enable the molecular motions of a falling body to influence its acceleration of fall, pre-
sumably as part of a possible escape from Einstein’s original objection to his theory.

As it happened, however, the  dependence of  was introduced for an entirely
different purpose in (Nordström 1913b). Einstein’s version of the equality of inertial
and gravitational mass required that the total energy of a system would be the mea-
sure of its gravitational source strength. This total energy would include the energy of
the gravitational field itself. This requirement, familiar to us from Einstein’s treat-

54 Since he retained his standard coordinate system of  the negative sign is needed to
preserve the positive sign of 
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ment of general relativity, leads to non-linearity of field equations. In Nordström’s
theory, this non-linearity would be expressed as a  dependence of 

Nordström now turned to complete static systems, whose properties would yield
not just the relation (38) but also a quite specific function for  At this point
Nordström seemed able to give Laue a little taste of his own medicine. As I pointed
out above, Laue’s 1911 definition of a complete static system had excluded such sys-
tems as bodies rotating uniformly about their axis of symmetry. Nordström now
made the obvious extension, defining what he called a “complete stationary” system.
Curiously he made no explicit statement that his was a more general concept. Read-
ers simply had to guess that his replacement of Laue’s “static” by his “stationary”
was no accident. Or perhaps they had to wait until Laue’s (1917, 273) own conces-
sion that Nordström was first to point out the extension.

Nordström’s complete stationary system had the following defining characteris-
tics: it was a system of finite bodies for which a “justified”55 reference system existed
in which the gravitational field was static, that is,  In particular in the
relevant reference system, instead of Laue’ s condition (28) which required the van-
ishing everywhere of the momentum density  Nordström required merely that the
total momentum  vanished,

where  is the volume of the body in its rest frame. The two illustrations Nordström
gave—surely not coincidentally—were exactly two systems that Laue’s earlier defi-
nition did not admit: a body rotating about its axis of symmetry and a fluid in station-
ary flow. Of course the first example was one of great importance to Nordström. It
was precisely the example discussed in the final paragraphs of both (Nordström 1912
and 1913a). That such a system would fall more slowly than a non-rotating system
was the substance of Einstein’s original objection. Now able to apply the machinery
of Laue’s complete static systems to this example, Nordström could try to show that
these rotating bodies did not fall slower in the new theory.

Nordström proceeded to identify the three stress-energy tensors which could con-
tribute to the total energy of a complete stationary system. They were the “elastic-
material tensor”  mentioned above; the “electromagnetic tensor”  which we
would otherwise know as the stress-energy tensor of the electromagnetic field; and
finally the “gravitation tensor”  This last tensor was the stress-energy tensor of
the gravitational field itself. It had been identified routinely in (Nordström (1912,
1128; 1913a, 875). It was given by56

(39)

55 In this context I read this to mean “inertial”.
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where  is the gravitational potential. Invoking Laue’s basic result (29), which was
also used by Einstein for the same end, Nordström could represent the total energy

 of a complete stationary system in its rest frame as the integral over all space of
the sum of the traces of these three tensors

However we have  and have written  Finally the integral of the trace
 could be written in greatly simplified fashion if one assumed special properties for

the complete stationary system. In particular, the gravitational potential  must
approach the limiting constant value  at spatial infinity. From this and an applica-
tion of Gauss’ theorem, Nordström inferred that57

(40)

Combining and noting that the inertial rest mass  of the system is  we have

However we also have the total gravitational mass  of the system is

(41)

Nordström was now finally able to invoke what he calls “Einstein’s law of equiva-
lence,” the equality of inertial and gravitational mass. Presumably viewing the com-
pletely stationary system from a great distance, one sees that it is a system with
inertial mass  lying within a potential  so that we must be able to write

56 I continue to compress Nordström’s notation. He did not use the Kronecker delta  and wrote indi-
vidual expressions for  etc. The derivation of (39) is brief and entirely standard. Writing 
for  we have, from substituting (12'') into (18')

57 Nordström’s derivation of (40) seems to require the additional assumption that  is non-zero only in

some finite part of space. For a completely stationary system, the field equation reduces to the Newto-

nian  If  satisfies this additional assumption one can recover from it Nordström’s

result (his equation (5)), that  at large distances  from the sys-

tem. This result seems to be needed to complete the derivation of (40).
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These last three equations form an integral equation which can only be satisfied iden-
tically if

Finally Nordström required that this relation between  and  be independent of
 from which the two major result of the analysis followed: first,  is given by

(42)

where  is a universal constant; second, he recovered the anticipated identity of the
source density 

(38)

The constant  in equation (42) is taken by Nordström to be an arbitrary additive
gauge factor, corresponding to the freedom in Newtonian gravitation theory of setting
an arbitrary zero point for the gravitational potential. However, in contrast with the
Newtonian case, there is a natural gauge of  in which the equations are greatly
simplified. Writing the potential that corresponds to the choice of  as  the
expression for  is

(43)

and in this gauge one recovers a beautifully simple expression for the relationship
between the total rest energy  inertial rest mass  and gravitational mass  of
a completely stationary system

(44)

In particular, it contains exactly the Newtonian result that the energy of a system with
gravitational mass  in a gravitational field with potential  is  This was
an improvement over Nordström’s first theory were the closest corresponding result
was (15), a dependence of mass on an exponential function of the potential.

12.2 Dependence of Lengths and Times on the Gravitational Potential

Satisfactory as these results were, Nordström had not yet answered the objection of
Einstein’s Entwurf paper. Indeed it is nowhere directly mentioned in Nordström’s
paper, although Nordström (1913b, 544) does cite the relevant part of the Entwurf
paper to acknowledge Einstein’s priority concerning the expression for the gravita-
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tional source density in equation (38). However at least the second, third and fourth
parts of Nordström (1913b) are devoted implicitly to escaping from Einstein’s objec-
tion. Nordström there developed a model of a spherical electron within his theory and
showed that its size must vary inversely with the gravitational potential  It only
becomes apparent towards the middle of Section 3 that this result must hold for the
dimensions of all bodies and that this general result provides the escape from Ein-
stein’s objection. The general result is demonstrated by an argument attributed with-
out any citation to Einstein. Since I know of no place where this argument was
published by Einstein and since we know that Nordström was visiting Einstein at the
time of submission of his paper, it is a reasonable supposition that he had the argu-
ment directly from Einstein in person. Since the general result appears only in the
context of this argument, it is a plausible conjecture that the result, as well as its
proof, is due to Einstein. Of course the successful recourse to an unusual kinematical
effect of this type is almost uniquely characteristic of Einstein’s work.

Einstein’s argument takes the Entwurf objection and reduces it to its barest essen-
tials. The violation of energy conservation inferred there depended solely on the
behavior of the massless members of the systems that were oriented transverse to the
direction of the field in which they moved. The transverse members lowered were
stressed and thus were endowed with a gravitational mass so that work was recov-
ered. The transverse members elevated were unstressed so that they had no gravita-
tional mass and no work was required to elevate them. The outcome was a net gain in
energy. Einstein’s new argument considered this effect in a greatly simplified physi-
cal system. Instead of using radiation pressure to stress the transverse members, Ein-
stein now just imagined a single transverse member—a non-deformable rod—
tensioned between vertical rails. The gravitational mass of the rod is increased by the
presence of these stresses. Since the rod expands on falling into the gravitational
field, the rails must diverge and work must be done by the forces that maintain the
tension in the rod. It turns out that this work done exactly matches the work released
by the fall of the extra gravitational mass of the rod due to its stressed state. The out-
come is that no net work is released. In recounting Einstein’s argument, Nordström
makes no mention of Einstein’s Entwurf objection. This is puzzling. It is hard to
imagine that he wished to avoid publicly correcting Einstein when the history of the
whole theory had been a fruitful sequence of objections and correction and this cor-
rection was endorsed and even possibly invented by Einstein. In any case it should
have been clear to a contemporary reader who understood the mechanism of Ein-
stein’s objection that the objection would be blocked by an analogous expansion of
the systems as they fell into the gravitational field. Certainly Einstein (1913, 1253), a
few months later, reported that his Entwurf objection failed because of the tacit
assumption of the constancy of dimensions of the systems as they move to regions of
different potential.58

Einstein’s argument actually establishes that the requirement of energy conserva-
tion for such cycles necessitates a presumed isotropic expansion of linear dimensions

Φ′.
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to be in inverse proportion to the gravitational potential  Nordström’s report of
the argument reads:

Herr Einstein has proved that the dependence in the theory developed here of the length
dimensions of a body on the gravitational potential must be a general property of matter.
He has shown that otherwise it would be possible to construct an apparatus with which
one could pump energy out of the gravitational field. In Einstein’s example one considers
a non-deformable rod that can be tensioned moveably between two vertical rails. One
could let the rod fall stressed, then relax it and raise it again. The rod has a greater weight
when stressed than unstressed, and therefore it would provide greater work than would
be consumed in raising the unstressed rod. However because of the lengthening of the
rod in falling, the rails must diverge and the excess work in falling will be consumed
again as the work of the tensioning forces on the ends of the rod.

Let  be the total stress (stress times cross-sectional area) of the rod and  its length.
Because of the stress, the gravitational mass of the rod is increased by59

In falling [an infinitesimal distance in which the potential changes by  and the
length of the rod by  this gravitational mass provides the extra work

However at the same time at the ends of the rod the work is lost [to forces stressing the
rod]. Setting equal these two expressions provides

which yields on integration

[(45)]

This, however, corresponds with [Nordström’s] equation (25a) [the potential dependence
of the radius of the electron].60

This result (45) was just one of a series of dependencies of basic physical quantities
on gravitational potential. In preparation in Section 2 for his analysis of the electron,

58 He gives no further analysis. It is clear, however, that as the mirrored box is lowered into the field and
expands, work would be done by the radiation pressure on its walls. It will be clear from the ensuing
analysis that this work would reduce the total energy of the radiation by exactly the work released by
the lowering of the gravitational mass of the system. Thus when the radiation is elevated in the mir-
rored shaft the radiation energy recovered would be diminished by exactly the amount needed to pre-
serve conservation of energy in the entire cycle.

59 [JDN] To see this, align the  axis of the rest frame with the rod. The only non-vanishing component
of  is  which is the stress (per unit area) in the rod. Therefore, from (38) and (41), the gravi-
tational mass
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Nordström had already demonstrated that the inertial mass  of a complete station-
ary system varied in proportion to the external gravitational potential 

(46)

whereas the gravitational mass of the system  was independent of  The proof
considered the special case of a complete stationary system for which the external
field  would be uniform over some sphere at sufficient distance from the system
and directed perpendicular to the sphere. We might note that a complete stationary
system of finite size within a constant potential field would have this property. He
then imagined that the external field  is altered by a slow displacement of yet
more distant masses. He could read directly from the expression for the stress energy
tensor of the gravitational field what was the resulting energy flow through the sphere
enclosing the system and from this infer the alteration in total energy and therefore
mass of the system. The result (46) followed immediately and from it the constancy
of  through (44).61 Calling on (45), (46) and other specific results in his analysis
of the electron, Nordström was able to infer dependencies on gravitational potential
for the stress  in the electron’s surface, the gravitational source density  and the
stress tensor 

Finally, after these results had been established, the entire Section 5 was given to
establishing that the time of a process  would depend on the potential  according
to

(47)

In particular it followed from this result that the wave lengths of spectral lines
depends on the gravitational potential. Nordström reported that the wavelength of
light from the Sun’s surface would be increased by one part in two million. He con-
tinued to report that “The same—possibly even observable—shift is given by several
other new theories of gravitation.” (p. 549) While he gave no citation, modern readers
need hardly be told that all of Einstein’s theories of gravitation from this period give
this effect, including his 1907–1912 scalar theory of static fields, his Entwurf form of

60 A footnote here considers a complication that need not concern us. It reads:
“If the rod is deformable, in stressing it, some work will be expended and the rest energy of the rod will
be correspondingly increased. Thereby the weight also experiences an increase, which provides the
added work  in falling. However, since in falling the rest energy diminishes, the work recovered in
relaxing the rod is smaller than that consumed at the stressing and the difference amounts to exactly

.”
61 On pp. 545–46, he showed that, for a complete stationary system, the external potential  varied in

direct proportion to the potential  at some arbitrary point within the system, so that  and 
could be used interchangeably in expressing the proportionalities of the form of (45), (46) and (47).

dA

dA

m
Φ′:

m
Φ′
------ const.=

Mg Φ′.

Φ′a

Φ′a

Mg

Φ′a
Φ′ Φ′ Φ′a

S v
pab:

S
Φ′3
-------- const.  ν

Φ′4
-------- const.  

Pab

Φ′4
-------- const.===

T Φ′

TΦ′ const.=



EINSTEIN, NORDSTRÖM AND THE EARLY DEMISE ... 463

general relativity and the final 1915 generally covariant version of the theory. The
very numerical value that Nordström reported—one part in two million—was first
reported in Einstein’s earliest publication on gravitation, (Einstein 1907a, 459).

Nordström devoted some effort to the proof of (47). He noted that it followed
immediately from (45) and the constancy of the velocity of light for the time taken by
a light signal traversing a a rod. Anxious to show that it held for other systems, he
considered a small mass orbiting another larger mass  in a circular orbit of radius

 within an external potential field  The analysis proved very simple since the
speed of the small mass, its inertial mass and the potential along its trajectory were all
constant with time. He showed that its orbital period  satisfied

(48)

As the potential  varies,  remains constant according to (45). Therefore the
equality requires that  vary in direct proportion to  from which it follows that 
satisfies (47). Again he showed the same effect for the period of a simple harmonic
oscillator of small amplitude.

12.3 Applications of Nordström’s Second Theory:
The Spherical Electron and Free Fall

So far we have seen the content of Nordström’s second theory and how he established
its coherence. The paper also contained two interesting applications of the theory. The
first was an analysis of a spherical electron given in his Section 3. It turned out to yield
an especially pretty illustration of the result that a gravitational mass is associated with
a stress. For the entire gravitational mass of Nordström’s electron proves to be due to
an internal stress. The electron was modelled as a massless shell carrying a charge dis-
tributed on its surface. (See Appendix for details.) The shell must be stressed to pre-
vent mechanical disintegration of the electron due to repulsive forces between parts of
the charge distribution. The electric field does not contribute to the electron’s gravita-
tional mass since the trace of its stress-energy tensor vanishes. Since the shell itself is
massless it also does not contribute to the gravitational mass when unstressed. How-
ever, when stressed in reaction to the repulsive electric forces, it acquires a gravita-
tional mass which comprises the entire gravitational mass of the electron.

Nordström’s model of the electron was not self contained in the sense that it
required only known theories of electricity and gravitation. Like other theories of the
electron at this time, it had to posit that the stability of the electron depended on the
presence of a stress bearing shell whose properties were largely unknown. While one
might hope that the attractive forces of gravitation would replace this stabilizing
shell, that was not the case in Nordström’s electron. Rather he was superimposing the
effects of gravitation on a standard model of the electron.62

The second illustration was an analysis in his final Section 7 of the motion in free
fall of a complete stationary system. In particular, Nordström was concerned to deter-
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mine just how close this motion was to the corresponding motion of a point mass.
The results were not entirely satisfactory. He was able to show that complete station-
ary systems fell like point masses only for the case of a homogeneous external gravi-
tational field, that is, one whose potential was a linear function of all four coordinates

 He showed that a complete stationary system of mass  falling with
four velocity  in a homogeneous external field  obeys equations of motion

(49)

which corresponded to the equations (13) for a point mass in his first theory, except-
ing the added factor  Allowing that the mass  varies inversely with 
through equation (46), it follows that explicit mention of the mass  can be elimi-
nated from these equations of motion which become63

Nordström’s concern was clearly still Einstein’s original objection to this first theory
recounted above in Section 7. A body rotating about its axis of symmetry could form
a complete stationary system. He could now conclude that such a body would fall
exactly as if it had no rotation, contrary, as he noted, to the result of his earlier theory.
Also, he concluded without further discussion that molecular motions would have no
influence on free fall. However, the vertical acceleration of free fall would continue to
be slowed by its initial velocity according to (19) of his first theory.

We might observe that stresses would play a key role in the cases of the rotating
body and the kinetic gas. The rotating body would be stressed to balance centrifugal
forces and the walls containing a kinetic gas of molecules would be stressed by the
forces of the gas pressure. These stresses would add to the gravitational mass of the
spinning body and the contained gas allowing them to fall independently of their
internal motions. No such compensating stresses would be present in the case of a
point mass or a complete stationary system projected horizontally, so they would fall
slower due to their horizontal velocity.

Thus, while Nordström’s theory finally satisfied the requirement of equality of
inertial and gravitational mass in Einstein’s sense, it still did not satisfy the require-
ment that all bodies fall alike in a gravitational field. This Einstein (1911, §1) called
“Galileo’s principle,” elsewhere (1913, 1251) citing it as the fact of experience sup-
porting the equality of inertial and gravitational mass. Galileo’s principle held only
under rather restricted conditions: the system must be in vertical fall and in a homo-

62 We can see the Nordström had no real hope of eliminating this shell with gravitational attraction. For
the electric field by itself generates no gravitational field in his theory. Another element must be
present in the structure of the electron if gravitational forces are to arise.

63 I have corrected Nordström’s incorrect “+” to “–” on the right-hand side.
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geneous field.64 At least, however, he could report that Einstein had extended the
result to systems that were not complete stationary systems. He had shown that the
average acceleration of an elastically oscillating system accorded with (19). Since
this last result is nowhere reported in Einstein’s publications, we must assume that he
had it directly from Einstein.

Finally, in the course of his exposition, Nordström could note that the mass depen-
dence on  of relation (46) now replaces the corresponding condition (15) of his first

theory. The new variable factor of  in the in the equation of motion

(49) causes (14) to be replaced by  which integrates to yield (46).

13. EINSTEIN FINALLY APPROVES:
THE VIENNA LECTURE OF SEPTEMBER 1913

In September 1913, Einstein attended the 85th Congress of the German Natural Sci-
entists and Physicians. There he spoke on the subject of the current state of the prob-
lem of gravitation, giving a presentation of his new Entwurf theory and engaging in
fairly sharp dispute in discussion. A text for this lecture with ensuing discussion was
published in the December issue of Physikalische Zeitschrift (Einstein 1913). Ein-
stein made clear (p. 1250) his preference for Nordström’s theory over other gravita-
tion theories, including Abraham’s and Mie’s. Nordström’s latest version of his
gravitation theory was the only competitor to Einstein’s own new Entwurf theory sat-
isfying four requirements that could be asked of such gravitation theories:

1. “Satisfaction of the conservation law of momentum and energy;”

2. “Equality of inertial and gravitational masses of closed systems;”

3. Reduction to special relativity as a limiting case;

4. Independence of observable natural laws from the absolute value of the gravitational
potential.

What Einstein did not say was that the satisfaction of 1. and 2. by Nordström’s theory
was due in significant measure to Einstein’s pressure on Nordström and Einstein’s
own suggestions.

Einstein devoted a sizeable part of his lecture to Nordström’s theory, giving a self-
contained exposition of it in his Section 3. That exposition was a beautiful illustration
of Einstein’s ability to reduce the complex to its barest essentials and beyond. He
simplified Nordström’s development in many ways, most notably:

64 One might think that this would give Einstein grounds for rejecting the competing Nordström theory
in favor of his own Entwurf theory. At the appropriate place, however, Einstein (1913, 1254) did not
attack Nordström on these grounds. Perhaps that was for the better since it eventually turned out that
general relativity fared no better. In general relativity, for example, a rotating body falls differently, in
general, from a non-rotating body. See (Papapetrou 1951; Corinaldesi and Papapetrou 1951).
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• Einstein selected the natural gauge (43) for the potential  writing the resulting
potential without the prime as 

• Einstein eradicated the implicit potential dependence of the mass  in (46), using
a new mass  which did not vary with potential. This meant that Einstein’s 
coincided with the gravitational mass, not the inertial mass of a body.

To begin, Einstein used as the starting point the “Hamiltonian” equation of motion (36)
which he had first recommended in Section 7 of his Entwurf paper. Using coordinates

 he wrote this equation of motion of a mass  as

(50)

where

Here  is the coordinate three-speed and  is the Minkowski interval given by

(51)

Since Einstein varied the three spatial coordinates of the particle trajectory  the

resulting equation of motion governed the three-velocity 

It also followed that the momentum (increased by a multiplicative factor   and
the conserved energy  were given by

In particular, one could read directly from these formulae that the inertial mass of a
body of mass  at rest is given by  and that its energy is 

Einstein then introduced the notion that had rescued Nordström’s theory from his
own recent attack: directly measured lengths and times might not coincide with those
given by the Minkowski line element (51). He called the former quantities “natural”
and indicated them with a subscript 0. He called the latter “coordinate” quantities.
The magnitude of the effect was represented by a factor  which would be a function
of  and was defined by

(52)

Allowing for the dependence of energy on  and the effects of the factor  Einstein
developed an expression for the stress-energy tensor  of “flowing, incoherent
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matter”—we would now say “pressureless dust”—in terms of its natural mass density
 and the corresponding gravitational force density 

The two quantities were related by the familiar conservation law

The next task was to re-express this conservation law in terms of the trace  of the
stress-energy tensor. Mentioning Laue’s work, Einstein remarked that this quantity
was the only choice for the quantity measuring the gravitational source density. For
the special case of incoherent matter,  so that the conservation law
took on a form independent of the special quantities involved in the case of incoher-
ent matter flow

(53)

Einstein announced what was really an assumption: this form of the law governed
arbitrary types of matter as well.

This general form of the conservation law allowed Einstein to display the satisfac-
tion by the theory of the second requirement he had listed. That was the equality of
inertial and gravitational masses of closed systems. His purpose in including the
additional words “closed systems” now became clear. In effect he meant by them
Laue’s complete static systems. His demonstration of the satisfaction of this result
was admirably brief but damnably imprecise, compared to the careful attention Nord-
ström had lavished on the same point. Einstein simply assumed that he had a system

over whose spatial extension there was little variation in the  term 

on the right-hand side of (53). An integration of (53) over the spatial volume  of
such a system revealed that the four-force acting on the body is

where the terms in   and  were eliminated by Laue’s basic result (29).
Since  is the negative of the total energy of the system, Einstein felt justified
to conclude: “Thereby is proven that the weight of a closed system is determined by
its total measure [of energy].” Einstein’s readers might well doubt this conclusion and
suspect that the case of constant  considered was a special case that may not be rep-
resentative of the general case. Fortunately such readers could consult (Nordström
1913b) for a more precise treatment.
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In his lecture, Einstein was seeking to give an exposition of both Nordström’s and
his new theory of gravitation and reasons for deciding between them. Thus we might
anticipate that he had to cut corners somewhere. And that place turned out to be the
singular novelty of Nordström’s theory in 1913, the potential dependence of lengths
and times. His introduction of this effect and concomitant retraction of his Entwurf
objection was so brief that only someone who had followed the story closely and read
the report of Einstein’s argument in (Nordström 1913b) could follow it. Virtually all
he had to say lay in a short paragraph (p. 1253):

Further, equation [(53)] allows us to determine the function [ω] of ϕ left undetermined
from the physical assumption that no work can be gained from a static gravitational field
through a cyclical process. In §7 of my jointly published work on gravitation with Herr
Grossmann I generated a contradiction between the scalar theory and the fundamental
law mentioned. But I was there proceeding from the tacit assumption that ω = const[ant].
The contradiction is resolved, however, as is easy to show, if one sets65

or

[(54)]

We will give yet a second substantiation for this stipulation later.

That second substantiation followed shortly, immediately after Einstein had given the
field equation of Nordström’s theory. He considered two clocks. The first was a “light
clock,” a rod of length  with mirrors at either end and a light signal propagating in
a vacuum and reflected between them. The second was a “gravitation clock,” two
gravitationally bound masses orbiting about one another at constant distance  He
gave no explicit analysis of these clocks. His only remark on their behavior was that
their relative speed is independent of the absolute value of the gravitational potential,
in accord with the fourth of the requirements he had laid out earlier for gravitation
theories. This, he concluded, “is an indirect confirmation of the expression for 
given in equation [(54)].”

Einstein’s readers would have had to fill in quite a few details here. Clearly the
dependence of  on the potential would cause the period of the light clock also to
vary according to (47). But readers would also need to know of the analysis of the
gravitation clock given by (Nordström 1913b) which led to (48) above and the same
dependence on potential for the clock’s period. Thus the dependence of both periods
is the same so that the relative rate of the two clocks remains the same as the external
potential changes. Had this result been otherwise, the fourth requirement would have
been violated. That it was not presumably displays the coherence of the theory and
thereby provides the “indirect confirmation.” Curiously Einstein seems not to be

65   is defined earlier as the length of a body. This retraction is also mentioned more briefly (p. 261) in
the addendum to the later printing of (Einstein and Grossmann 1913) in the Zeitschrift.
l
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making the obvious point that his equations (52) and (54) together yield the same
potential dependence for periodic processes as follows from the behavior of these
two clocks—or perhaps he deemed that point too obvious to mention.

The final component of the theory was its field equation. Recalling that “Laue’s
scalar” must enter into this equation, Einstein simply announced it to be

(55)

It became apparent that the additional factor of  on the right-hand side was
included to ensure compatibility with the conservation of energy and momentum.66

To display this compatibility he noted that stress-energy tensor  of the gravita-
tional field is 

This tensor satisfies the equalities

The first depends on substitution of  by the field equation and the second holds
identically. Substituting into the conservation law (53) yields an expression for the
joint conservation of gravitational and non-gravitational energy momentum,67

All that remained for Einstein was to give his reasons for not accepting Nordström’s
theory. In our time, of course, the theory is deemed an empirical failure because it
does not predict any deflection of a light ray by a gravitational field and does not
explain the anomalous motion of Mercury. However in late 1913, there had been no
celebrated eclipse expeditions and Einstein’s own Entwurf theory also did not explain
the anomalous motion of Mercury. Thus Einstein’s sole objection to the theory was
not decisive, although we should not underestimate its importance to Einstein.

66 Although Einstein does not make this point, it is helpful to divide both sides by  and look upon
 as the gravitational source density. The trace  represents the mass-energy density and

division by  cancels out this density’s  dependence to return the gravitational mass density.
67 As Michel Janssen has repeatedly emphasized to me, Einstein’s analysis is a minor variant of the

method he described and used to generate the field equations of his Entwurf theory. Had Einstein
begun with the identity mentioned, the expression for  and the conservation law (53), a reversal of
the steps of Einstein’s argument would generate the field equation. For further discussion of Einstein’s
method, see (Norton 1995).
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According to Nordström’s theory, the inertia of a body with mass  was 
Therefore, as the gravitational field in the neighborhood of the body was intensified
by, for example, bringing other masses closer, the inertia of the body would actually
decrease. This was incompatible with Einstein’s idea of the “relativity of inertia”
according to which the inertia of a body was caused by the remaining bodies of the
universe, the precursor of what he later called “Mach’s Principle.” This deficiency
enabled Einstein to ask after the possibility of extending the principle of relativity to
accelerated motion, to see the real significance of the equality of inertial and gravita-
tional mass in his principle of equivalence (which was not satisfied by Nordström’s
theory) and to develop his Entwurf theory.

14. EINSTEIN AND FOKKER: GRAVITATION IN NORDSTRÖM’S
THEORY AS SPACETIME CURVATURE

It was clear by the time of Einstein’s Vienna lecture that Nordström’s most conserva-
tive of approaches to gravitation had led to a something more than a conservative
Lorentz covariant theory of gravitation, for it had become a theory with kinematical
effects very similar to those of Einstein’s general theory of relativity. Gravitational
fields would slow clocks and alter the lengths of rods. All that remained was the task
of showing just how close Nordström’s theory had come to Einstein’s theory. This
task was carried out by Einstein in collaboration with a student of Lorentz’, Adriaan
D. Fokker, who visited Einstein in Zurich in the winter semester of 1913–1914 (Pais
1982, 487). Their joint (Einstein and Fokker 1914), submitted on February 19, 1914,
was devoted to establishing essentially one result, namely, in modern language, Nor-
dström’s theory was actually the theory of a spacetime that was only conformal to a
Minkowski spacetime with the gravitational potential the conformal factor, so that the
presence of a gravitational field coincided with deviations of the spacetime from flat-
ness. That, of course, was not how Einstein and Fokker described the result. Their
purpose, as they explained in the title and introduction of the paper, was to apply the
new mathematical methods of Einstein’s Entwurf theory to Nordström’s theory.
These methods were the “absolute differential calculus” of Ricci and Levi-Civita
(1901). They enabled a dramatic simplification of Nordström’s theory. It will be con-
venient here to summarize the content of the theory from this new perspective as
residing in three basic assumptions:

I. Spacetime admits preferred coordinate systems 
in which the spacetime interval is given by

(56)

and in which the trajectory of point masses in free fall is given by
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That such a characterization of the spacetime of Nordström’s theory is possible is
implicit in Einstein’s Vienna lecture. In fact, once one knows the proportionality of

 and  the characterization can be read without calculation from Einstein’s
expression (52) for the natural proper time and the equation of motion (50). Einstein
and Fokker emphasized that the preferred coordinate systems are ones in which the
postulate of the constancy of the velocity of light obtains. For, along a light beam

 so that

We see here in simplest form the failure of the theory to yield a deflection of a light
beam in a gravitational field. This failure is already evident, of course, from the fact
that a light beam has no gravitational mass since the trace of its stress-energy tensor
vanishes.

II. The conservation of gravitational and non-gravitational energy momentum is
given by the requirement of the vanishing of the covariant divergence of the
stress-energy tensor  for non-gravitational matter. At this time, Einstein pre-
ferred to write this condition as68

since they could interpret the term on the right-hand side as representing the grav-
itational force density.

Noting, as Einstein and Fokker did on pp. 322–23, that the  of the Vienna lecture
corresponds to the tensor density  of the new development, they evaluated this
conservation law in the preferred coordinate systems of I. It yielded the form of the
conservation law (53) of the Vienna lecture.

Finally Einstein and Fokker turned to the field equation which was to have the
form

where  is a constant. The quantity  had to be a scalar representing material pro-
cesses. In the light of the earlier discussion, we know there was only one viable

choice, the trace of the stress-energy tensor  For the quantity 

which must be constructed from the metric tensor and its derivatives, they reported
that the researches of mathematicians allowed only one quantity to be considered, the

68 Here Einstein had not yet begun to use modern notational conventions. Summation over repeated indi-
ces is not implied. All indices are written as subscript so that  is the fully contravariant form of the
metric, which we would now write as   is the mixed tensor density which we could now
write as 
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full contraction of the Riemann-Christoffel tensor  of the fourth rank, where

they allowed  and  to vary over 1, 2, 3 and 4. This assumed that the second

derivative of  enters linearly into the equation. Therefore we have:

III. The gravitational field satisfies the field equation which asserts the proportion-
ality of the fully contracted Riemann-Christoffel tensor and the trace of the stress
energy tensor

Evaluation of this field equation in the preferred coordinate systems of I. yields the
field equation (55) of the Vienna lecture.

Einstein and Fokker were clearly and justifiably very pleased at the ease with
which the methods of the Entwurf theory had allowed generation of Nordström’s the-
ory. In the paper’s introduction they had promised to show that (p. 321)

... one arrives at Nordström’s theory instead of the Einstein-Grossmann theory if one
makes the single assumption that it is possible to choose preferred reference systems in
such a way that the principle of the constancy of the velocity of light obtains.

Their concluding remarks shine with the glow of their success when they boast that
(p. 328)

... one can arrive at Nordström’s theory from the foundation of the principle of the con-
stancy of the velocity of light through purely formal considerations, i.e. without assis-
tance of further physical hypotheses. Therefore it seems to us that this theory earns
preference over all other gravitation theories that retain this principle. From the physical
stand point, this is all the more the case, as this theory achieves strict satisfaction of the
equality of inertial and gravitational mass.

Of course Einstein retained his objection that Nordström’s theory violates the
requirement of the relativity of inertia.69 The new formulation gives us vivid demon-
stration of this failure: the disposition of the preferred coordinate systems of I. will be
entirely unaffected by the distribution of matter in spacetime. Einstein must then
surely have been unaware that it would prove possible to give a generally covariant
formulation of Nordström’s theory on the basis of Weyl’s work (Weyl 1918). The
requirement that the preferred coordinate systems of I. exist could be replaced by the
generally covariant requirement of the vanishing of the conformal curvature tensor.
This formal trick, however, does not alter the theory’s violation of the relativity of
inertia and the presence of preferred coordinate systems in it.

69 As we know from lecture notes taken by a student, Walter Dallenbach, (EA 4 008, 41-42), Einstein in
his teaching at the ETH in Zurich at this time included the claim that one arrives at the Nordström the-
ory merely by assuming there are specialized coordinate system in which the speed of light is con-
stant.There he remarks that this theory violates the relativity of inertia.
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There remained a great irony in Einstein and Fokker’s paper, which their readers
would discover within two short years. While the existence of preferred coordinate
systems was held against the Nordström theory, Einstein’s own Entwurf theory was
not itself generally covariant and would not be until November 1915, when Einstein
would disclose the modern field equations to the Prussian Academy. Einstein and
Grossmann (1913) had settled upon gravitational field equations which were not gen-
erally covariant. We now know that the generally covariant field equations of the
completed general theory of relativity can be derived by means of the Riemann-
Christoffel tensor through an argument very similar to the one used to arrive at the
generally covariant form of the field equation of the Nordström theory. Einstein and
Grossmann had considered and rejected this possibility in §4.2 of Grossmann’s part
of their joint paper. The obvious ease with which consideration of the Riemann-
Christoffel tensor led to the field equation of Nordström’s theory clearly gave Ein-
stein an occasion to rethink that rejection. For Einstein and Fokker’s paper concluded
with the tantalizing remark that the reasons given in Grossmann’s §4 of their joint
paper against such a connection did not withstand further examination. Whatever
doubt this raised in Einstein’s mind seem to have subsided by March 1914, at which
time he reported in a letter to this confidant Michele Besso that the “general theory of
invariants functioned only as a hindrance” in construction of his system
(Speziali 1972, 53).

Thus the conservative path struck by Nordström and Einstein led not just to the
connection between gravitation and spacetime curvature but to the first successful
field equation which set an expression in the Riemann-Christoffel curvature tensor
proportional to one in the stress-energy tensor of matter.

15. WHAT EINSTEIN KNEW IN 1912

Einstein and Fokker’s characterization in 1914 of the Nordström theory gives us a
convenient vantage point from which to view Einstein’s theory of 1912 for static grav-
itational fields. In particular we can see clearly that this theory already contained
many of the components that would be assembled to form Nordström’s theory. Indeed
we shall see that Einstein’s theory came very close to Nordström’s theory. However
we shall also see that a vital component was missing—the use of the stress-energy
tensor and Laue’s work on complete static systems. This component enables a scalar
Lorentz covariant theory of gravitation to satisfy some version of the requirement of
the equality of inertial and gravitational mass. We must already suspect that Einstein
was unaware of this possibility prior to his August 1912 move to Zurich for his July
1912 response to Abraham (Einstein 1912d), quoted in Section 4 above, purports to
show that no Lorentz covariant theory of gravitation could satisfy this requirement.

Einstein (1912a, 1912b) was the fullest development of a relativistic theory of
static gravitational fields based on the principle of equivalence and in which the grav-
itational potential was the speed of light  By Einstein’s own account the followingc.
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year (Einstein and Grossmann 1913, I, §1, §2), the theory was actually a theory of a
spacetime with the line element

(57)

where  is now a function of  and  and behaves as a gravitational potential.
Einstein (1912a, 360) offered the field equation

(58)

where  is a constant and  the rest density of matter.70 What Einstein did not men-
tion in his Entwurf reformulation of the 1912 theory was that this field equation cor-
responded to the generally covariant field equation

where  is the fully contracted Riemann-Christoffel tensor and  the trace of the
stress–energy tensor, in the case of an unstressed, static matter distribution. This is
exactly the field equation of Nordström’s theory!

This field equation (58) had an extremely short life, for in (Einstein 1912b, §4), a
paper submitted to Annalen der Physik on March 23, 1912, just a month after Febru-
ary 26, when he had submitted (Einstein 1912a), he revealed the disaster that had
befallen his theory and would lead him to retract this field equation. Within the theory
the force density  on a matter distribution  at rest is

Einstein conjoined this innocuous result with the field equation (58) and applied it to
a system of masses at rest held together in a rigid massless frame within a space in
which  approached a constant value at spatial infinity. He concluded that the total
gravitational force on the frame

in general does not vanish. That is, the resultant of the gravitational forces exerted by
the bodies on one another does not vanish. Therefore the system will set itself into
motion, a violation of the equality of action and reaction, as Einstein pointed out. In
effect the difficulty lay in the theory’s failure to admit a gravitational field stress ten-
sor, for the gravitational force density  is equal to the divergence of this tensor. Were
the tensor to be definable in Einstein’s theory, that fact alone, through a standard appli-
cation of Gauss’ theorem, would make the net resultant force on the system vanish.71

70 The factor of  on the right-hand side of this otherwise entirely classical equation is introduced in
order to leave  undetermined by a multiplicative gauge factor rather than an additive one.
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Einstein then proceeded to consider a number of escapes from this disaster. The
second and third escapes involved modifications to the force law and the field equa-
tion. The former failed but the latter proved workable. Einstein augmented the source
density  of (58) with a term in 

The extra term was constructed to allow the formation of a gravitational field stress
tensor and the conclusion that there would be no net force on the system of masses.
Einstein was especially pleased to find that this extra term proved to represent the
gravitational field energy density so that the source term of the field equation was
now the total energy density of the system, gravitational and non-gravitational.72

For our purposes what is most interesting is the first escape that Einstein consid-
ered and rejected. Mentioning vaguely “results of the old theory of relativity,” he con-
sidered the possibility that the stressed frame of the system might have a gravitational
mass. That possibility was dismissed however with an argument that is surprising to
those familiar with his work of the following year: that possibility would violate the
equality of inertial and gravitational mass! Einstein considered a box with mirrored
walls containing radiation of energy  He concluded from his theory that, if the box
were sufficiently small, the radiation would exert a net force on the walls of the box
of –  He continued (Einstein 1912b, 453):

This sum of forces must be equal to the resultant of forces which the gravitational field
exerts on the whole system (box together with radiation), if the box is massless and if the
circumstance that the box walls are subject to stresses as a result of the radiation pressure
does not have the consequence that the gravitational field acts on the box walls. Were the

71 Writing  for the quantity that comes closest to the stress tensor,

we have the following in place of the standard derivation of the stress tensor (analogous to the deriva-

tion of (39)). Substituting field equation (58) into the expression for  we recover:

The first term of the final sum is a divergence which would vanish by Gauss’ theorem when integrated
over the space containing the masses of the frame, leaving no net force. The problem comes from the

second term, which is present only because of the factor of  on the source side of the field equation

(58). In this integration it will not vanish in general, leaving the residual force on the masses. The
need to eliminate this second term also dictates the precise form of the modification to the field equa-

tion that Einstein ultimately adopted. When the field equation source  was augmented to become

 this second term no longer arose in the above expression for 

72 However Einstein was disturbed to find that the new field equation only allowed his principle of
equivalence to apply to infinitesimally small parts of space. See (Norton 1985, §4.2, §4.3).
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latter the case, then the resultant of the forces exerted by the gravitational field on the box
(together with its contents) would be different from the value –  i.e. the gravita-
tional mass of the system would be different from 

Einstein could not have written this were he aware of the relevant properties of
“Laue’s scalar”  As Einstein himself showed the following year, the use of  as
the gravitational source density in exactly this example of radiation enclosed in a mir-
rored cavity allowed one to infer both that the walls of the cavity acquired a gravita-
tional mass because of their stressed state and that the gravitational mass of the entire
system was given by its total energy. We must then take Einstein at his word and con-
clude that he learned of these properties of  from Laue. Presumably this means
after his move to Zurich in August 1912 where Laue also was, and after completion
of his work on his scalar theory of static gravitational fields in 1912.

Had Einstein been aware of these results earlier in 1912, they would probably not
have pleased him in the long run. To begin, he did believe at the time of writing the
Entwurf paper that the selection of  as the gravitational source density in a scalar
theory of gravitation led to a contradiction with the conservation of energy. Had he
seen past this to its resolution in the gravitational potential dependence of lengths he
would have arrived at a most remarkable outcome: his theory of 1912 would have
become exactly Nordström’s final theory! As we saw above, his first field equation of
1912 was already equivalent to Nordström’s final field equation in covariant terms.
His equation of motion for a mass point was already the geodesic equation for a
spacetime with the line element (57). This line element already entailed a dependence
of times on the gravitational potential. The consistent use of Laue’s scalar  as a
source density would finally have led to a similar dependence for spatial length so
that the line element (57) would be replaced by Nordström’s (56). Since the
expressed purpose of Einstein’s 1912 theory was to extend the principle of relativity,
this out come would not have been a happy one for Einstein. For his path would have
led him to a theory which entailed the existence of coordinate systems in which the
speed of light was globally constant. That is, the theory had resurrected the special
coordinate systems of special relativity.

16. THE FALL OF NORDSTRÖM’S THEORY OF GRAVITATION

Revealing as Einstein and Fokker’s formulation of the theory had been, Nordström
himself clearly did not see it as figuring in the future development of his theory.
Rather, Nordström embedded his 1913 formulation of his gravitation theory in his
rather short lived attempts to generate a unified theory of electricity and gravitation
within a five dimensional spacetime (Nordström 1914c, 1914d, 1915). Other work on
the theory in this period was devoted to developing a clearer picture of the behavior
of bodies in free fall and planetary motion according to the theory. Behacker (1913)
had computed this behavior for Nordström’s first theory and (Nordström 1914a) per-
formed the same service for his second theory. In both cases the behavior demanded
by the theories was judged to be in complete agreement with experience.
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Nordström also had to defend his theory from an attack by Gustav Mie. Mie had
made painfully clear in the discussion following Einstein’s Vienna lecture of 1913
(published in Physikalische Zeitschrift, 14, 1262–66) that he was outraged over Ein-
stein’s failure even to discuss Mie’s own theory of gravitation in the lecture. Einstein
explained that this omission derived from the failure of Mie’s theory to satisfy the
requirement of the equality of inertial and gravitational mass. Mie counterattacked
with a two part assault (Mie 1914) on Einstein’s theory. In an appendix (§10) Mie
turned his fire upon Nordström’s theory, claiming that it violated the principle of
energy conservation. Nordström’s (1914b) response was that Mie had erroneously
inferred the contradiction within Nordström’s theory by improperly importing a
result from Mie’s own theory into the derivation. Laue (1917, 310–13) pointed to
errors on both sides of this dispute.

However it was not Mie’s theory that led to the demise of Nordström’s theory.
Rather it was the rising fortunes of Einstein’s general theory of relativity. Einstein
completed the theory in a series of papers submitted to the Prussian Academy in
November 1915. Within a few years, with the success of Eddington’s eclipse expedi-
tion, Einstein had become a celebrity and his theory of gravitation eclipsed all others.
One of the papers from that November 1915 (Einstein 1915) reported the bewitching
success of the new theory in explaining the anomalous motion of Mercury. This suc-
cess set new standards of empirical adequacy for gravitation theories. Prior to this
paper, the pronouncements of a gravitation theory on the minutia of planetary orbits
were not deemed the ultimate test of a new theory of gravitation. Einstein’s own Ent-
wurf theory failed to account for the anomalous motion of Mercury. Yet this failure is
not mentioned in Einstein’s publications from this period and one cannot even tell
from these publications whether he was then aware of it. Thus the treatment in (Nor-
dström 1914a) of the empirical adequacy of his theory to observed planetary motions
was entirely appropriate by the standards of 1914. He showed that his theory pre-
dicted a very slow retardation of the major axis of a planet’s elliptical orbit. Comput-
ing this effect for the Earth’s motion he found it to be 0.0065 seconds of arc per year,
which could be dismissed as “very small in relation to the astronomical perturbations
[due to other planets]” (p.1109) Thus he could proceed to the overall conclusion (p.
1109) that

... the laws derived for [free] fall and planetary motion are in the best agreement with
experience [my emphasis]

Standards had changed so much by the time of Laue’s (1917) review article on the
Nordström theory that even motions much smaller than the planetary perturbations
were decisive in the evaluation of a gravitation theory. Einstein’s celebrated 43 sec-
onds of arc per century advance of Mercury’s perihelion is less than a tenth of the
perihelion motion due to perturbations from the other planets. Laue (p. 305) derived a
formula for the predicted retardation—not advance—of a planet’s perihelion. With-
out even bothering to substitute values into the formula he lamented
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Therefore the perihelion moves opposite to the sense of rotation of the orbit. In the case
of Mercury, the impossibility of explaining its perihelion motion with this calculation
lies already in this difference of sign concerning the perihelion motion.

Through this period, Nordström’s theory had its sympathizers and the most nota-
ble of these was Laue himself.73 He clearly retained this sympathy when he wrote the
lengthy review article, (Laue 1917). Einstein’s theory had become so influential by
this time that Laue introduced the review with over four pages of discussion of Ein-
stein’s theory (pp. 266–70). That discussion conceded that Einstein’s theory had
attracted the most adherents of any relativistic gravitation theory. It also contained
almost two pages of continuous and direct quotation from Einstein himself, as well as
discussion of the epistemological and empirical foundations of Einstein’ s theory. His
discussion was not the most up-to-date, for he reported Einstein’s Entwurf 0.84 sec-
onds of arc deflection for a ray of starlight grazing the Sun, rather than the figure of
1.7 of the final theory of 1915. All this drove to the conclusion that there were no
decisive grounds for accepting Einstein’s theory and provided Laue with the opportu-
nity to review a gravitation theory based on special relativity, Nordström’s theory,
which he felt had received less attention than it deserved.

The fall of Nordström’s theory was complete by 1921. By this time even Laue had
defected. In that year he published a second volume on general relativity to accom-
pany his text on special relativity (Laue 1921). On p.17, he gave a kind appraisal of
the virtues and vices of his old love, Nordström’s theory. However he was firm in his
concluding the superiority of Einstein’s theory because of the failure of Nordström’s
theory to yield any gravitational light deflection—a defect, he urged, that must trou-
ble any Lorentz covariant gravitation theory. Laue never lost his affection for the the-
ory and years later took the occasion of Einstein’s 70th birthday to recall the virtues
of Nordström’s theory (Laue 1949). The theory’s obituary appeared in Pauli’s ency-
clopedic distillation of all that was worth knowing in relativity theory (Pauli 1921,
144). He pronounced authoritatively

The theory solves in a logically quite unexceptionable way the problem sketched out
above, of how to bring the Poisson equation and the equation of motion of a particle into
a Lorentz-covariant form. Also, the energy-momentum law and the theorem of the equal-
ity of inertial and gravitational mass are satisfied. If, in spite of this, Nordström’s theory
is not acceptable, this is due, in the first place, to the fact that it does not satisfy the prin-
ciple of general relativity (or at least not in a simple and natural way ...). Secondly, it is
in contradiction with experiment: it does not predict the bending of light rays and gives
the displacement of the perihelion of Mercury with the wrong sign. (It is in agreement
with Einstein’s theory with regard to the red shift.)

He thereby rehearsed generations of physicists to come in the received view of Nord-
ström’s theory and relieved them of the need to investigate its content any further.

73 In a letter of October 10, 1915, to Wien, Mie had identified Laue as an adherent of Nordström’s the-
ory, explaining it through Laue’s supposed failure to read anything else! I am grateful to John Stachel
for this information.
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17. CONCLUSION

The advent of the general theory of relativity was so entirely the work of just one per-
son— Albert Einstein—that we cannot but wonder how long it would have taken
without him for the connection between gravitation and spacetime curvature to be
discovered. What would have happened if there were no Einstein? Few doubt that a
theory much like special relativity would have emerged one way or another from the
researches of Lorentz, Poincaré and others. But where would the problem of relativ-
izing gravitation have led? The saga told here shows how even the most conservative
approach to relativizing gravitation theory still did lead out of Minkowski spacetime
to connect gravitation to a curved spacetime. Unfortunately we still cannot know if
this conclusion would have been drawn rapidly without Einstein’s contribution. For
what led Nordström to the gravitational field dependence of lengths and times was a
very Einsteinian insistence on just the right version of the equality of inertial and
gravitational mass. Unceasingly in Nordström’s ear was the persistent and uncompro-
mising voice of Einstein himself demanding that Nordström see the most distant con-
sequences of his own theory.

APPENDIX: NORDSTRÖM’S MODEL OF THE ELECTRON

Nordström’s (1913b) development of his second theory contains (§3) a model of the
electron which accounts for the effect of gravitation. The electron is modelled as a
massless spherical shell of radius  carrying charge  distributed uniformly over its
surface.74 Three types of matter are present: an electric charge and its field; the shell
stressed to balance the repulsive electric forces between different parts of the charge
distribution; and the gravitational field generated by all three types of matter. See
Fig. 4. Taking each in turn, we have

74 “Rational” units of charge are used, which means, in effect, that the electrostatic field equation is
 for charge density 

a e

ΨΔ ρ ,–= ρ .
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Figure 4: Nordström’s Model of the Electron

Electric Charge and its Field

Using familiar results of electrostatics in the rational system of units, the electric
charge  generates an electric potential  at radius  from the center of the shell,
for the case of  which satisfies

The latter value is all that is required to compute the Maxwell stress tensor at an arbi-
trary point on the shell which is representative of all its points due the rotational sym-
metry of the shell. We choose convenient coordinates  for this
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point. We set the origin at the center of the shell, align the  axis with a radial arm
and consider a point on the surface of the shell at which  Writ-
ing  for  we have that the Maxwell stress tensor is75

We read directly from the coefficients of this tensor that the charges of the shell (at
position  are subject to an outwardly directed pressure of magnitude

 which seeks to cause the shell to explode radially outwards. That is, these
charges are subject to a net electric force density given by the negative divergence of
this stress tensor,  With  this force density is of magnitude

 directed radially outward.

Gravitational Field

The stresses in the shell will generate a gravitational field. For the moment, we shall
write the total gravitational mass as  and note that it must be distributed uniformly
over the shell. Since the source gravitational mass is all located in the shell over
which the gravitational potential is constant, the field equation and stress tensor of the
gravitational field reduce to the analogous equations of electrostatics, excepting a
sign change. Thus the gravitational potential for  satisfies

where  is the external gravitational potential. Choosing the same point and coordi-
nate system as in the analysis of the electric field, we find that the gravitational field
stress tensor, as given by the spatial parts of the gravitational stress-energy tensor
(39) is

75 The nonstandard minus sign follows the convention Nordström used in paper of requiring that (force
density) =—(divergence of stress tensor). See (Nordström 1913b, 535, eq. 7).
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This reveals an inwardly directed pressure  which seeks to implode
the shell. That is, the shell is subject to a net gravitational force density given by the
negative divergence of this stress tensor,  With  this force density is of
magnitude  directed radially inwards.

Stressed Shell

The combined effect of both electric and gravitational forces is a net outward pres-
sure on the shell of magnitude

(59)

Mechanical stability is maintained by a tensile stress  in the shell. At the point con-
sidered above in the same coordinate systems, this stress will correspond to a stress
tensor  given by

where  will have a negative value. If this tensile stress is integrated across the thick-
ness of the shell, we recover the tensile force  per unit length active in the shell

The condition for mechanical stability is76

(60)

76 This standard result from the theory of statics can be derived most easily, as Nordström points out, by
considering the pressure forces due to  acting on a hemisphere of the shell. A simple integration
shows this force is  This force must be balanced exactly by the tensile force  along the rim of
the hemisphere. That rim is of length  so the total force is  Setting 
entails the result claimed.
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Computation of gravitational mass  and inertial mass  of the electron

The as yet undetermined gravitational mass  of the electron is now recovered by
combining the results for the three forms of matter. The source density  is deter-
mined by the stress-energy tensor  through equation (38). By assumption, there
is no energy associated with the tensile stress in the shell in its rest frame. Thus in a
rest frame  The spatial components of  are given by the stress tensor

 above. Therefore

We can now recover the gravitational mass  from (41) by integrating over the
shell

We now substitute  in this expression with the condition (60) for mechanical stabil-
ity and thence for  with the condition (59). By means of (42), we can also express

 in terms of  using

After some algebraic manipulation, we recover an implicit expression for 

Since this gravitational mass  of this complete stationary system resides in an
external potential  the total mass of the system satisfies  so that we
have for the rest mass  and rest energy  of the electron

(61)

As Nordström points out of this final result of §3 of his paper is an extremely satisfac-
tory one. The total energy of his electron is made up solely of the sum of an electric
component  and a gravitational component  These two compo-
nents agree exactly with the corresponding classical values. This agreement is not a
foregone conclusion since the gravitational mass of the electron arises in an entirely
non-classical way: it derives from the fact that the electron shell is stressed. Presum-
ably this agreement justifies Nordström’s closing remark in his §3, “Thus the expres-
sion found for m contains a verification of the theory.”
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In his §4, Nordström proceeded to use his expression (61) for the mass  of an
electron to introduce the dependence of length on gravitational potential. In accor-
dance with (46), derived in his §2, the mass  must vary in proportion to the external
field  in the appropriate gauge. However it was not clear how one could recover
this same variability from the quantities in the expression (61) for  He had found
in §2 that  is independent of the gravitational potential and he asserted that the
same held for  according to the basic equations of electrodynamics. Thus he con-
cluded that the radius  of the electron must vary with gravitational potential accord-
ing to (45). He then turned to Einstein’ s more general argument for (45).
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Einstein’s hypothesis that the speed of light  depends upon the gravitational
potential1 leads to considerable dif�culties for the principle of relativity, as the dis-
cussion between Einstein and Abraham shows us.2 Hence, one is led to ask if it would
not be possible to replace Einstein’s hypothesis with a different one, which leaves 
constant and still adapts the theory of gravitation to the principle of relativity in such
a way that gravitational and inertial mass are equal.3 I believe that I have found such
a hypothesis, and I will present it in the following.

Let  be the four coordinates, with

Like Abraham,4 I set

(1)

designating the rest density of matter by  and the gravitational potential by  
as well as  are four-dimensional quantities;  is the gravitational constant. In a grav-
itational �eld we have a four-vector

1 A. Einstein, Ann. d. Phys. 35, 898, 1911
2 See Ann. d. Phys. 38, 355, 1056, 1059; 39, 444, 1912
3 By the equality of inertial and gravitational mass, I do not mean, however, that every inertial phenom-

enon is caused by the inertial and gravitational mass. For elastically stressed bodies, according to
Laue (see below), one obtains a momentum that cannot at all be traced back to a mass. I will return to
these questions in a future communication.

4 M. Abraham, this journal, 13, 1, 1912.
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(2)

which must be the cause of the acceleration of a mass point located in the field. How-
ever, if one considers the four-vector  as the 

 

accelerating force 

 

[

 

bewegende Kraft

 

]
acting on an unchanging unit mass, then the constancy of the speed of light cannot be
maintained. In this case, namely,  would be equal to the four-dimensional accelera-
tion vector of a mass point and could not remain perpendicular to the velocity vector 
for arbitrary directions of motion, as demanded by the constancy of the speed of light.

 

5

 

Keeping the speed of light constant, one can nevertheless still eliminate the diffi-
culty in two ways. Either one takes not  itself but only its component perpendicular
to the velocity vector as the 

 

accelerating force

 

,

 

6

 

 or one takes the mass of a mass point
to be not constant but dependent on the gravitational potential. On each of these two
assumptions, the four-vectors  and  do not remain parallel: in the first case due to
an extra force [

 

Zusatzkraft

 

] added to  in the second case due to the variability of the
mass. As we shall see, the two methods lead to the same laws for the motion of a mass
point, but they correspond to two different interpretations of the concept of force.

In accordance with the position of most researchers in the domain of relativity
theory, I will first use the second method. Thus, we treat

as the components of an 

 

accelerating

 

 force acting on a mass point, but view the rest
mass of that point as variable. If the components of the velocity vector are

 and  is the proper time, the equations of motion of the mass point are

(3)

 

5 M. Abraham, loc. cit., eq. (5).
6 Minkowski treats the electrodynamic force in a similar way. Compare 

 

Gött. Nachr

 

., 1908, p. 98,
eq. (98).
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| We multiply the equations in turn by  and add them. Since

we obtain

(4)

Integration yields

or

(5)

This equation shows that the mass  depends on the gravitational potential accord-
ing to a simple law.

Using (4) the equations of motion (3) can also be written in the following form:

(6)

As one can see, the mass  drops out of these equations. The laws according to
which a mass point moves in a gravitational field are thus completely independent of
the mass of the point.

The considerations so far are based on the assumption that  is the accelerating
force. Now, for the moment, we wish to assume that the component of  perpen-
dicular to the velocity vector  rather than  itself, is the accelerating force. This
part of  is a four-vector having an -component7
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The second term is the -component of an extra force added to  According to (2)
the expression can be changed to

Since we now view  as constant, the first of the equations of motion of a mass point is

But this is just the first of the equations of motion (6).
From the two alternative assumptions we obtain precisely the same laws describ-

ing the motion of a mass point in a gravitational field, only the force and the mass are
conceptualized differently in the two cases. The latter way of thinking corresponds to
Minkowski’s original, the way treated first corresponds to that held by Laue and
Abraham.8

So far we have considered an isolated point mass. Now we would like to investi-
gate the motion of arbitrary bodies in a gravitational field and develop the law of con-
servation of energy for this process. We assume only that the mass of each particle of
the bodies actually is something real, so that we can speak of the rest density  of the
spacetime points. This is certainly the case when no tangential stresses are present in
the body.9 The rest density  is of course a function of the four coordinates

We again view mass as variable and accept the concept of force equation (3) is
based on. Then the components of the force exerted by gravitation on a unit volume
of matter are10

(7)

7 Cf. H. Minkowski, loc. cit.
8 Cf. the discussion between Abraham and the author, this journal 10, 681, 737, 1909; 11, 440, 527,

1910. I now take the position then taken up by Abraham.
9 Cf. M. Laue, Das Relativitätsprinzip, Braunschweig 1911, p. 151 f.; G. Nordström, this journal 12,

854, 1911.
10 If the four-vector  is taken to be the accelerating force, then it should be designated as the “acceler-

ating force per unit rest volume.”
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For the sake of generality, we assume that besides gravitation an “external” force
 with components

acts on the unit volume of matter. We can then write the equations of motion of mat-
ter in the following general form11|

(8)

If we wish to introduce the ordinary three-dimensional velocity  and the ordi-
nary mass density  we have to set

where  has been substituted for reasons of simplicity. We multiply the last of
the equations (8) by  and insert the expressions above into its right-hand side.
Continuing to use the notation of three-dimensional vector analysis, the equation
becomes

(9)

We wish to transform the first term. Equation (1) yields

and thus

11 G. Nordström, this journal 11, 441, eq.  1910.
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We insert this expression into equation (9) and obtain the following equation, which
expresses the law of conservation of energy:

(10)

The quantity  represents the energy influx caused by the external force
 per unit volume and per unit time. Of the terms on the right-hand side, the first

two terms relate to the gravitational field, the last two to the matter of the bodies. We
set

(11)

(12)

(13)

(14)

 is the energy density of the gravitational field,  is the energy flux of this field,
 and  are the energy density and the convective energy flux of matter. For

these quantities, we have found the expressions (13) and (14) already known earlier.12

We note that according to (12) the energy density of the field is always positive.
Finally, the energy equation is written as

12 G. Nordström, 1oc. cit., eqs. (11) and (12); M. Laue, loc. cit., § 24.

γ
∂Φ
∂t
------- 1

4πf
--------- ∂Φ

∂t
-------div∇Φ

1
c2
-----∂Φ

∂t
------- ∂

∂t
----- ∂Φ

∂t
-------⎝ ⎠

⎛ ⎞–
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

1
4πf
--------- div

∂Φ
∂t
-------∇Φ⎝ ⎠

⎛ ⎞ ∇Φ
∂
∂t
-----∇Φ

1
2c2
-------- ∂

∂t
----- ∂Φ

∂t
-------⎝ ⎠

⎛ ⎞
2

–⋅–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

γ
∂Φ
∂t
------- 1

4πf
---------div

∂Φ
∂t
-------∇Φ⎝ ⎠

⎛ ⎞ 1
8πf
--------- ∂

∂t
----- ∇Φ( )2 1

c2
----- ∂Φ

∂t
-------⎝ ⎠

⎛ ⎞
2

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

.–=

icKu′–
1

4πf
---------div

∂Φ
∂t
-------∇Φ⎝ ⎠

⎛ ⎞–
1

8πf
--------- ∂

∂t
----- ∇Φ( )2 1

c2
----- ∂Φ

∂t
-------⎝ ⎠

⎛ ⎞
2

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

+=

 c2div
ρv

1 q2–
------------------ c2 ∂

∂t
----- ρ

1 q2–
------------------.+ +

⎭
⎪
⎪
⎬
⎪
⎪
⎫

 icKu′–
K′

S
g 1

4πf
---------∂Φ

∂t
-------∇Φ.–=

ψg 1
8πf
--------- ∇Φ( )2 1

c2
----- ∂Φ

∂t
-------⎝ ⎠

⎛ ⎞
2

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

S
m c2ρv

1 q2–
------------------,=

ψm c2ρ

1 q2–
------------------.=

ψg
S

g

ψm
S

m



THE PRINCIPLE OF RELATIVITY AND GRAVITATION 495

(15)

We see that the law of conservation of energy is satisfied.
The quantities  and  depend on a four-dimensional tensor, which also

yields fictitious stresses for the gravitational force  This tensor is precisely the
same as that which Abraham obtained using different assumptions.13 The ten compo-
nents of the gravitation tensor are

(16)

where  is the following four-dimensional scalar |

(16a)

It can be easily shown that in fact

13 M. Abraham, loc. cit., p. 3.
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Because the gravitation tensor is symmetric, the momentum density is equal to the
energy flux divided by 

Equation (4), which expresses the variability of the mass of a mass point, can be
easily generalized to extended masses. For this purpose, we have to treat the system
of equations (8) in the same way as we treated the system of equations (3) earlier. We
multiply the equations (8) in turn by  and add them. If no causes other
than the gravitational field lead to a variability of mass, the external force  is per-
pendicular to  and after some rearranging one obtains

(17)

or

(18)

or still

(18a)

 is the volume element). These three equivalent equations express in general the
law of the dependence of mass on the gravitational field.

Equation (1) can be integrated in a well-known manner. One obtains the well-
known expression for the retarded potential

(19)

where .

The integration is over three-dimensional space, and  is evaluated at the time .

From equations (5) and (19) it becomes apparent that point masses cannot really
exist because within such a mass point  and hence the mass would be zero. If
a body contracts, its mass decreases and with vanishing volume its mass would also van-
ish. As far as I can see, these consequences of the theory do not lead to contradictions.

Obviously, the theory developed here has much in common with the one which
Abraham presented in this journal 13, 1, 1912, but later refuted.14 The theory devel-
oped here, however, is free from all the maladies which are brought about by the vari-
ability of the speed of light in the theories of Einstein and Abraham.

Addendum to proofs: From a letter from Herr Prof. Dr. A. Einstein I learn that ear-
lier he had already concerned himself with the possibility I used above for treating
gravitational phenomena in a simple way. However, he became convinced that the

14 M. Abraham, this journal 13, 793, 1912.
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consequences of such a theory cannot correspond with reality. In a simple example he
shows that, according to this theory, a rotating system in a gravitational field will
acquire a smaller acceleration than a non-rotating system.

I do not find this result dubious in itself, for the difference is too small to yield a
contradiction with experience. Of course, the result under discussion shows that my
theory is not compatible with Einstein’s hypothesis of equivalence, according to
which an unaccelerated reference system in a homogeneous gravitational field is
equivalent to an accelerated reference system in a gravitation free space.

In this circumstance, however, I do not see a sufficient reason to reject the theory.
For, even though Einstein’s hypothesis is extraordinarily ingenious, on the other hand it
still provides great difficulties. Therefore other attempts at treating gravitation are also
desirable and I want to provide a contribution to them with my communication.



Jürgen Renn (ed.). The Genesis of General Relativity, Vol. 3
Gravitation in the Twilight of Classical Physics: Between Mechanics, Field Theory, and Astronomy.

GUNNAR NORDSTRÖM

INERTIAL AND GRAVITATIONAL MASS
IN RELATIVISTIC MECHANICS

Originally published as “Träge und schwere Masse in der Relativitätsmechanik” in
Annalen der Physik, 40, 1913, pp. 856–878. Received 21. January 1913. Author’s
date: Helsingfors, January 1913.

In several recent papers in the field of relativistic mechanics, the concept of the mass
of bodies plays a very subordinate role. The reason is easy to understand. As Laue1

and Herglotz2 have shown, one can develop the entire mechanics of extended bodies
without exploiting the concept of inertial mass in any way. Thus the concept of mass
is not absolutely essential for mechanics, and on the other hand, if one considers bod-
ies subject to arbitrary elastic stresses, this concept is also not sufficient to describe
all inertial phenomena of matter.

But the question of the mass of matter is nevertheless of considerable importance
for the theory of relativity, especially for the assessment of the way in which the the-
ory of gravitation is to be integrated into the theory of relativity. In any case inertia
and gravity [Schwere] of matter must stand in close relation to each other, and it
would be easiest to account for this unity of essence [Wesenseinheit] via the mass
underlying these two phenomena. One would attempt to retain such a concept of
mass, even though it is known that according to relativity theory there exist inertial
phenomena which cannot be traced back to mass in any way. In such cases, one must
make use of a specially defined momentum, which depends, for example, upon the
state of elastic stress of a body | rather than upon its mass.

In the present paper, I will treat the relativistic mechanics of deformable bodies in
such a way that the possibility of generally maintaining the concept of mass is clearly
emphasized. On this occasion, I will also investigate the influence of the heat conduc-
tion on mechanical processes. Finally, I will consider gravitation by also ascribing
gravity to the inertial mass.

1 M. Laue, Das Relativitätsprinzip, Braunschweig 1911, VII; Ann. d. Phys., 35, p. 524, 1911.
2 G. Herglotz, Ann. d. Phys., 36, p. 493, 1911.
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1. THE FOUNDATIONS OF THE RELATIVISTIC MECHANICS OF 
DEFORMABLE BODIES

We consider a body in an arbitrary state of motion and arbitrary state of stress. In
addition to the elastic forces, a spatially distributed ponderomotive force  of any
kind may act on the bodies.  is a four-vector which is to be designated the “exter-
nal” ponderomotive force per unit volume, or the “external” accelerating force
[

 

bewegende Kraft

 

] per unit of rest volume.

 

3

 

According to Laue,

 

4

 

 there is a symmetric four-dimensional tensor  whose
components give the spatial stresses as well as the mechanical energy-momentum
density. Accordingly, we can write the equations of motion of the body in the follow-
ing form:

(1)

where  are the four coordinates; the speed of light  is supposed to be
a universal constant. |

We want to assign to each spacetime point of matter a certain 

 

rest-mass density

 

 This quantity is to be a four-dimensional scalar, but otherwise for the time being
we leave it completely undetermined, so that we still have the freedom to further
specify the concept of mass. From the rest density, the usual mass density  is deter-
mined by the equation

(2)

where  represents the (three-dimensional) velocity of the point in question. For sim-
plicity we set

and therefore have

 

3 H. Minkowski, 

 

Gött. Nachr

 

., 1908, p. 107 and 108 [excerpts from this article are contained in this vol-
ume]; compare also eqs. (6) and (9) below.

4 M. Laue, 

 

Das Relativiätsprinzip

 

, p. 149.
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Now we take the four-dimensional tensor  to be the sum of two such tensors by
setting

(3)

where  represents the four-dimensional velocity vector, which, as is well known, is
related to the velocity  by the equations

(4)

We call the four-dimensional tensor  introduced in eq. (3)

 

[1]

 

 the 

 

elastic stress ten-

sor

 

. Like  it is symmetric, since  etc. The second part of the tensor 

can be called the 

 

material

 

 tensor. |
We set

(5)

and call the vector  the 

 

elastic

 

 ponderomotive force. Our equations of motion (1)
are now
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(6)

In order to understand the meaning of the right-hand sides, we transform them.
We denote the volume of a material particle of the body by  and the rest volume
of the same by  where

(7)

Furthermore, if  denotes the proper time

(8)

then by introducing  and using a well known formula5 one obtains |

(9)

Changing the index  to  respectively, one obtains the corresponding equa-
tions. Inserting these expressions into (6), one obtains the equations of motion in a
similar form, appropriate for a material point.

As usual, the first three of the equations of motion are supposed to express the law
of conservation of momentum, the fourth that of conservation of energy. In order to
study the first law more closely, we set

(10)

5

where  is an arbitrary function of  and the integration on the left extends over any particu-
lar part of the matter. The vector symbols in this essay are those explained in Abraham’s Theorie der 
Elektrizität, Vol. I; they always refer to three-dimensional vectors.
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and call the three-dimensional vector  the elastic momentum density. The vector
 constructed in a similar way from the material tensor, with the components

shall be called the material momentum density. One finds

(11)

We furthermore introduce the relative stresses 6 through the following equation

(12)

or by (10),

(12a)

| The relative stresses form a three-dimensional asymmetric tensor. Clearly, the calcu-
lation of these stresses is similar to that of the pressure on a moving surface in elec-
trodynamics. Furthermore, it should be noted that writing  instead of  in (12)
yields the same relative stresses, because the second (material) tensor into which we
partitioned  contributes zero relative stress. For this reason, the relative stresses
defined by eq. (12) are identical with those introduced by Laue (loc. cit.).

We can now transform the expressions for the spatial components of  We
obtain from (10) and (12a)

(13)

and the corresponding expressions for  and 

6 M. Abraham, “Zur Elektrodynamik bewegter Körper,” Rend. Circ. Matem. Palermo, eq. (10) 1909;
M. Laue, loc. cit. p. 151.
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We multiply eq. (13) by  and integrate over a (three-dimensional) space 
filled with mass. The integral of the expression in the first bracket can be converted
into a surface integral by Gauss’s theorem. Also, applying the formula in footnote 5
[p. 859 in the original] to the final bracketed expression, we obtain

(14)

Here,  are the components of an area element of the surface bounding the
region  under consideration, with  taken as a vector in the direction of the exter-
nal normal. The symbol  denotes the temporal change in a bounded region of
the matter.

Corresponding expressions hold for the remaining spatial axis directions, and it is
clear that the elastic force is partially determined by the relative elastic stresses acting
as area forces [Flächenkräfte], and partially by the change of the elastic momentum.

According to (6), (9) and (14), we can now write the first of the equations of
motion in the following integral form: |

(15)

These equations and the two analogous ones for the remaining axis directions express
the law of conservation of momentum for a bounded region of the matter.

The asymmetry of the relative stress tensor implies that the elastic forces in gen-
eral apply a torque7 to each part of the body. According to the theory of elasticity, the
torque acting on the unit volume about an axis parallel to the -axis is

Hence, expressed vectorially one has for the torque  per unit volume

(16)

Thus this torque must always appear when the momentum density has a component
perpendicular to the velocity. The torque is thus necessary also to retain the uniform
translatory motion of the elastically stressed body. As is well known, this is a signifi-
cant difference between classical and relativistic mechanics, the reason for which
becomes clear when establishing the area law.8 However, we do not want to discuss
this here.

7 M. Laue, loc. cit., p. 168.
8 M.Laue, Ann. d. Phys., 35, p. 536, 1911.
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Whereas the first three equations of motion express the law of conservation of
momentum, the last equation expresses the law of conservation of energy. We set

(17)

(18)

hence

(17a)

(18a)

| and furthermore

(19)

(20)

Equation (5) yields an expression for  which is, written in vector form,

(21)

We can now write the last of the equations of motion (6), multiplied by  as

(22)

This is the equation expressing the conservation of energy. We recognize that the
vectors  and  express the elastic and the material energy flux respectively and
that the quantities  and  are the corresponding energy densities. The quantity

 gives the energy influx per unit volume and time produced by the action of the
external force  The meaning of the right-hand side is obvious. By integrating over
an arbitrary volume and applying Gauss’s theorem, one obtains the law of conserva-
tion of energy, expressed for a spatial region, fixed in the  reference frame
employed.

2. DETAILED INVESTIGATION OF THE ELASTIC STATE VARIABLES

In order to gain a clear conception of the elastic variables, we transform the stress
tensor  to rest at the spacetime point under consideration. Then the components of
the tensor take the form
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(23)

because in the case of rest the elastic state of stress can produce no energy flux and
thus also no momentum.9 |

We note incidentally that for the case of rest the usual laws of the theory of elas-
ticity apply. We can thus relate the six spatial stress components  to the
deformation quantities at rest.10 However, we do not want to discuss this in more
detail.

One easily sees that  must be a four-dimensional scalar. It is

since the right-hand side is invariant under Lorentz transformations, and upon trans-
formation to rest, nine of the ten terms disappear, whereby one obtains the identity

Furthermore, by (19) and (20)

(24)

is the rest-energy density of the matter, which is also a four-dimensional scalar. Since
 is still undetermined, one could define this quantity in such a way that 

However, for the time being we do not want to impose such a condition.
By means of this transformation to rest, one also recognizes the validity of the fol-

lowing system of equations:

(25)

9 If heat flow occurs, its influence is to be included in the action of the external force  Compare sec-
tion 5 below.

10 Cf. Herglotz, loc. cit.
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From the first three of these equations we obtain the expressions for the compo-
nents of the elastic energy flux and the momentum density. Namely, using eqs. (4) we
find that

hence

(26)

| We can also express these vector components in terms of the relative stresses, by
using (12a) to eliminate  We obtain

(26a)

and the corresponding expressions for the two remaining components.
The following expression for the elastic energy density arises from the last of

eqs. (25): 

(27)

3. THE CHANGES OF THE MASS AND OF THE REST-ENERGY

In order to obtain the law describing the variability of mass, we multiply the eqs. (6)
in turn by  and add them, where we take into account that

Since furthermore, according to the principles of the theory of relativity,

(28)

we obtain
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(29)

This equation gives the variability of mass with respect to time, because if 
designates the rest volume of a material particle, then (compare eq. (9))

(30)

where  is the mass of the particle.
Therefore, if the sum of the external and elastic forces are perpendicular to the

velocity vector  the mass of the matter is constant in time, but otherwise it is not. |
Further, we want to develop a formula for the elastic force, and for this purpose

differentiate the equations (25) with respect to  and add. Simply converting
terms, taking (5) into consideration, we thus obtain

(31)

Subtracting (29) from (31), taking (24) into account, one obtains
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(32)

This equation expresses the law of conservation of energy for a rest volume car-
ried along by the matter, in contrast to eq. (22), which refers to a unit volume fixed in
the spatial coordinate system used. Equation (32) is completely symmetric with
respect to   that it really expresses the law of conservation of energy is eas-
ily seen by transforming to rest.

4. THE DEFINITION OF INERTIAL MASS

Until now, we have taken the rest-mass density to be a completely arbitrary function
of the four coordinates of the spacetime points of matter. Now we want to end this
indeterminacy, | and for that reason we will focus on various possibilities for the
moment. 

In eq. (24), 

the rest-energy density  is a defined quantity, one of the quantities  and 
however, can be freely specified. We demand that  becomes zero if no elastic
stresses exist in the body under consideration, because the tensor  should represent
the elastic state of stress and only that state. Therefore, if all spatial components of 
are zero when transformed to the state of rest (schema (23)), then  should also be
zero. But this can be achieved in various ways.

If one restricts attention to bodies in which there is a normal pressure from all
sides, one can easily define the rest density  in such a way that (if no heat conduc-
tion takes place) the total inertia of the body will be determined by its mass. To do so,
one only has to set 

in the schema of (23),11 from which  is determined according to (24).

∂
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Then the stress tensor  has degenerated into a scalar and the elastic momentum
density  becomes equal to zero, independent of the state of motion.

However, as far as I am aware, this conception of mass cannot be naturally
extended to the general case of bodies in which (relative) tangential stresses also
exist. For the general case, it appears to me that the simplest and most expedient def-
inition lies in the stipulation

(33)

The rest-mass density is thus set proportional to the rest-energy density. Then,
according to (24)

(34)

| and several of our previous equations become simpler as a result.
Of course, the factual content of relativistic mechanics remains completely unaf-

fected by the way in which we define inertial mass. Our definition gains more than a
merely formal meaning only later, in section §6, when we also attribute weight to the
inertial mass.

Having now fixed the concept of mass through the definition (33), we have to note
that each moving and elastically stressed body possesses a momentum  that is
determined not by the mass but by the state of elastic stress of the body. According to
(26) and (26a) we obtain 

(35)

This momentum also appears when there is a normal pressure from all sides in the
body under consideration. In this case,  can be derived from a virtual inertial mass
which is added to that defined by eq. (33).

5. THE INFLUENCE OF HEAT CONDUCTION

All the equations developed above are also valid if heat conduction takes place in the
bodies considered, because the effects of the heat conduction can be attributed to a
ponderomotive force  appearing in the heat conduction field, and this force can be
included in the external force  Of the heat conduction force  the energy compo-
nent  plays the essential role. According to our fundamental assumptions, like all
ponderomotive forces,  should also be derivable from a symmetric four-dimen-
sional tensor. We denote the heat conductivity tensor by  and thus have

11 G. Nordström, Physik. Zeitschr., 12. p. 854, 1911; M. Laue, Das Relativitätsprinzip, p. 151.
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(36) |

where, e. g.,

For the case of rest, the tensor  takes the following schema:

(37)

because in the state of rest, all the spatial stresses are given by the tensor  (schema
23) and the total energy density of the matter is given by  Therefore, the
real components of  must be zero for the state of rest.

If we take heat conduction into account, then we have three four-dimensional ten-
sors pertaining to matter: the thermal conductivity tensor, the elastic tensor, and the
material tensor. For the case of rest, all three can be combined in the following com-
mon schema:

(38)

Because we made the stipulation (33), the decomposition of the total tensor into
the three parts is unambiguous.

We can introduce a four-vector  by the system of equations
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(39)

As we are going to show, this vector is to be designated the rest heat flow. The law of
energy conservation for heat conduction (compare equation 21) is expressed by the
equation

| and for the case of rest one obtains from (39)

from which the asserted meaning of the vector  becomes clear.
From the last equations one also sees that the four-vector  is orthogonal to the

velocity vector  so that

(40)

since the left hand side of this equation is invariant under Lorentz transformations,
and it equals zero when transformed to rest.

The tensor  can also be expressed as the “tensor product”12 of the two four-vec-
tors  and  Transforming to the state of rest, one finds the following expressions
for the components of 

12 Cf. W. Voigt, Gött. Nachr., p. 500, 1904.
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(41)

For the energy density  and for the energy flux  of the heat conduction
field one has of course

(42)

(43)

These quantities can also be expressed using the vector  First, we find from (40)

(44)

| where the right-hand side is the scalar product of two three-dimensional vectors.
Furthermore, from (41) we obtain

(42a)

(43a)

The energy flux  corresponds, of course, to the momentum density
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which can be inserted into the energy eq. (22). If  is the only “external” force act-
ing, naturally one has to set  in all the equations of the previous sections, and
thus specifically in (22) 

We further wish to develop a few formulas for  Inserting the expressions (41)
into the system of equations (36), we obtain after simple transformations13

(46)

and corresponding expressions for the remaining components of  Multiplying
these expressions by  | and adding them, we obtain further, in light of
(40) and (28),

(47)

This equation makes it possible to take heat conduction into account in the formu-
lae (29) and (32).

13 If  is an arbitrary function of the four coordinates, then
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6. GRAVITATION

Various approaches to treat the phenomena of gravitation from the standpoint of rela-
tivity theory have been attempted. The theories of Einstein14 and Abraham15 are espe-
cially noteworthy. According to these two theories, however, the speed of light  would
depend on the gravitational field rather than being constant, and this would require at
least a complete revolution of the foundations of the present theory of relativity.

However, through a modification of the theory of Abraham one can, as I have
shown elsewhere,16 maintain the constancy of the speed of light, and develop a the-
ory of gravitation which is compatible with the theory of relativity in its present form.
Since I want to generalize this theory in one respect, its foundations are briefly
recounted here.

I introduce the gravitational potential  and set, using rational units,

(48)

Here,  is the rest density of matter as defined in eq. (33). The gravitational potential
 and the quantity  are also four-dimensional scalars; we call  the gravitational

factor. |
The gravitational field exerts forces on the bodies present within the field. For the

ponderomotive gravitational force  per unit volume, I set

(49)

The equations (48) and (49), along with the principle of constant  

(50)

constitute the complete basis of my theory of gravitation. These equations also deter-
mine the rational units of  and  For the time being, we consider the gravitational
factor  to be a universal constant, but here I would like to remark that since 
occurs only as a factor of  nothing prevents us from assuming that  depends upon
the internal state of matter.

The fundamental equations (48), (49) and (50) demand that the mass of a material
particle depends on the gravitational potential at its location. In order to obtain the
law of this dependence, accordingly we consider the motion of a mass point of mass

 in an arbitrary gravitational field. We assume that no forces except gravitation act
on the mass point. Then we can write the equations of motion of the mass point in the
following way (compare eq. (6) and (9))

14 A. Einstein, Ann. d. Phys., 35, p. 898, 1911.
15 M. Abraham, Physik. Zeitschr., 13, p. 1, 1912 [in this volume].
16 G. Nordström, Physik. Zeitschr., 13, p. 1126, 1912 [in this volume].
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(51)

We multiply the equations in turn by  and add them. Taking (28)
into account, due to

we obtain

| or

(52)

If  is assumed to be constant, integration yields

(53)

and this equation gives the dependence of the mass on the gravitational potential.
The equations of motion can also be written in the following form, from (52):
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whereby the mass  cancels out of the equations of motion.
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The reason for the variability of the mass  is that the gravitational force  is
not orthogonal to the velocity vector  (compare p. 507 [p. 865 in original]). Multi-
plying the equations (49) by  and adding them, we obtain

(55)

We can insert this expression into the eq. (29) for the change of the mass; the gravita-
tional force  is, of course, part of the “external” force 

The gravitational force  is derived from a symmetric four-dimensional tensor
 in that

(56)

One obtains equations of this form by inserting the expression (48) for  into (49),
and then performing a further | transformation. Then one also finds the following
expressions for the tensor components:17

(57)

17 Abraham obtains precisely the same expression in his theory mentioned above; M. Abraham, loc. cit. p. 3.
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These quantities give the fictitious gravitational stresses (pressure taken as positive),
as well as momentum density, energy flux and energy density in the gravitational
field. For the energy flux  and for the momentum density  one has

and for the energy density 

Hence, according to (57), in the notation of vector analysis

(58)

(59)

One sees that  is always positive.
The last of the equations (56), multiplied by  is now

(60)

which is the equation expressing the law of conservation of energy for the gravita-
tional field. For regions outside of the material bodies, we have, | of course,

 For regions within the bodies, eq. (60) is to be combined with eq. (22).

Equation (48) can obviously be viewed as a four-dimensional Poisson equation,
and its integration can be performed accordingly.18 However, the form of the eq. (48)
also shows that one can calculate  according to the well-known formula for the
retarded potential. Taking into account the possibility that  might be variable, one
has

(61)

where

18 M. Abraham, Physik. Zeitschr. 13, p. 5, 1912; A. Sommerfeld, Ann. d. Phys., 33, p. 665, 1910.
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(61a)

The integration is to be carried out over three-dimensional space.

7. FREE-FALL MOTION

We first wish to establish an equation for the motion of a mass point in an arbitrary
static gravitational field. On this occasion we should make two comments. First, our
theory does not allow real point-like masses, because at such a point by (61) we
would have  and hence, by (53), the mass of the point would be zero. Thus
a “mass point” must always have a certain extension. Second, it should be noted that
in order to allow one to treat the field as static, the particle moving in the field must
be constituted such that its own field is weak in comparison to the external field, even
in its immediate vicinity. |

In the static field one has

We multiply the first three of the equations (54) by  and add them. On the
left hand side we obtain  Furthermore, one has generally

(62)

and hence

Since furthermore in our case

we obtain

and finally

(63)

Now we wish to assume more specifically that the gravitational field is homoge-
neous and parallel to the -axis, and hence that
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and investigate the motion of a mass point in this field. The third of the equations (54)
gives

taking (63) into account we find that the last two terms cancel one another and we
obtain

The first of the equations (54) yields in a similar manner

Here too, the last two terms cancel one another, and the equation becomes
 Since the same must be true for  | for a mass-point in a homo-

geneous gravitational field we obtain the equations of motion

(64)

These equations state the following: The velocity component perpendicular to the
field direction is uniform. Gravitational acceleration becomes smaller as the velocity
increases, but this is independent of the direction of the velocity. A body projected hor-
izontally falls slower than one without initial velocity falling vertically. One also sees
that a rotating body must fall slower than a non-rotating one. Of course, for attainable
rotational speeds the difference is much too small to be amenable to observation.

These results raise the question of whether the molecular motions within a falling
body also have an influence on the gravitational acceleration. At least one cannot
deny the possibility that this is the case. The theory of gravitation is then simply to be
modified by considering the gravitational factor  as dependent on the molecular
motions within the body rather than as a constant. For this reason we have left this
possibility open in the foregoing treatment. In this context, it should be pointed out
that also the mass density of a body depends upon the molecular motions, since the
rest-energy density, which determines  according to eq. (33), is influenced by these
motions.
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However, those questions of the theory of gravitation which are related to the
atomic structure of matter lie beyond the scope of this essay.

EDITORIAL NOTE

[1] In the original, Nordström mistakenly refers to eq. (4) rather than eq. (3).
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In the present communication, I wish to develop further several aspects of the theory
of gravitation whose fundamentals I published in two previous essays and discuss it.

 

1

 

The theory presented in the last essay is not completely unambiguous. First—as
emphasized on p. 509 [p. 867 in the original]—the rest density of matter was defined
in a fairly arbitrary way; though a different definition of the concept of mass would
not change the general laws of mechanics, it would modify the laws of gravitation.
Second, in the theory of gravitation, the possibility has been left open that the gravita-
tional factor  is not a constant, but could depend on various circumstances. One can
think of this scalar quantity as being dependent on the internal state of the object as
well as on the gravitational potential at the location in question. A dependence of the
gravitational factor on the state of stress of the body is equivalent to a change in the
definition of mass, but a dependence on the gravitational potential will have a deeper
significance for the theory.

1. DEFINITE FORMULATION OF THE THEORY

All the aforementioned ambiguities of the theory can be removed by a very plausible
stipulation which I owe to Mr. Laue and Mr. Einstein. Mr. Laue has shown that one
can maintain Einstein’s theorem of equivalence—though not in its full scope—by
defining | the rest density of matter in an appropriate manner,
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 namely by means of
the sum

(1)
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 13, p. 1126, 1912;

 

 Ann. d. Phys

 

.

 

,

 

 40, p. 856, 1913 [both in this vol-
ume]. The present communication is a continuation of the latter, and the symbol loc. cit. in the text
refers to the same.

2 See A. Einstein, “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravita-
tion.” 

 

Zeitschr. f. Math. Phys
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,

 

 62, p. 21, 1913.
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of the diagonal components of the tensor 

 

 

 

which represents the state of the matter.
 is the dynamical tensor introduced by Laue,

 

3

 

 and it is equal to the sum of the two
tensors which I earlier called the elastic stress tensor and the material tensor.

 

4

 

 Fol-
lowing Einstein, we will call the invariant  defined by eq. (1) Laue’s scalar, and we
will find that when divided by  it represents the rest density.

Furthermore, it will turn out that Einstein’s theorem of equivalence demands a
very particular dependence of the gravitational factor  on the gravitational potential

 we put

If we furthermore denote the rest density of matter by  the fundamental equa-
tions for the gravitational field are

 

5

 

(2)

(3)

Equation (2) determines the gravitational field produced by a given distribution of
masses. The system of eqs. (3) determines the ponderomotive force  which the
field exerts on matter.

The task now is to define the rest density  and to determine the function 
in such a way that the theorem of equivalence is valid in the widest possible sense.

For this purpose, we consider a system of finite bodies such that an appropriate
reference system exists, | in which the gravitational field is static so that we have
everywhere  However, bodies rotating about their symmetry axis and
stationary flows of fluids may occur. In any case, in the reference system under con-
sideration, the total momentum is equal to zero,

 

6

 

 

and the system as a whole is at rest. A system which satisfies these conditions is to be
called a complete stationary system.

 

3 M. Laue, 

 

Das Relativitätsprinzip

 

, 2nd. Ed., p. 182.
4 G. Nordström, 

 

Ann. d. Phys

 

.

 

,

 

 loc. cit., p. 858.
5 G. Nordström, loc. cit., eqs. (48) and (49).
6 We must exclude heat transport, since otherwise the total momentum is not zero. Besides, heat trans-

port would change with time the energy distribution, and thus also the mass distribution, and therefore
make the gravitational field time-dependent.
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As the state does not change with time, eq. (2) yields, according to the usual
potential theory

(4)

where the integral extends over all of -space.  is the value of  at infinity and
has its origin in other systems of masses, which we assume to be far away. For large
distances  one has

(5)

and the direction of  is away from the system of masses.
In the most general case, we have in the system three different world-tensors,

which give the spatial stresses, the energy flux, and the energy-momentum density:
the elastic-material tensor  the gravitation tensor  and the electromagnetic ten-
sor  For the components of the gravitation tensor, the eqs. (57) apply, loc. cit.

(6)

and we have

(7)

| We want to form the sum of the diagonal components for the 

 

total tensor

 

 and to integrate over all of three-dimensional space in our system of refer-
ence. Since  the trace of the gravitation tensor is equal to  the
trace of  has been denoted by  and the trace of the electromagnetic tensor is
equal to zero. Hence, we form the integral

extended over all of space. But since, according to a theorem of Laue
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 we have

and two corresponding equations for the  and components hold, we obtain

 

7 M. Laue, loc. cit., p. 209.
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where  denotes the energy of the whole system in the frame of reference used (the
rest energy). 

Since  eq. (2) yields

The integration of  over a ball of infinitely large radius, taking (5) into
account, yields

Therefore, for  one obtains

(8)

Since the total momentum in the system of reference under consideration is zero, in a
different system of reference, in which our system of masses is moving with the speed

 one has the following expressions for the energy  and for the momentum 8

where we have set  The inertial mass of the system is thus:

(9)

From eqs. (4), (5) and (3), one sees that the quantity |

(10)

determines the gravitational effects that the system exerts and experiences.  will
be called the gravitational mass of the system. Einstein’s equivalence theorem
implies that for various systems  and  are proportional to each other. Then

 can only be a function of  and this function can be none but  so
that one has

8 M. Laue, 1oc. cit., p. 209.
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(11)

Now the task is to define the rest density  and to determine the function 
by means of this stipulation. We equate the expressions obtained for  from (9) and
(11) and obtain

In order to satisfy this equation identically, we set

(12)

Since furthermore, the potential  of the external field must drop out of the equa-
tion, we set

(13)

where  signifies a universal constant.
From (12), one now obtains 

(14)

whereby the rest density of the matter is defined.9

It is to be noted that the value of the constant  is unknown, since the absolute
value of the potential  cannot be calculated at any point. Denoting the gravitational
potential at a point accessible to investigation by  | and that part of  which arises
from masses external to our solar system by  then only the difference 
can be determined by means of any kind of observations concerning the quantities 
and . Let  be denoted by  If we eliminate the quantity  from the equa-
tions

we obtain for the function 

9 In addition it should be noted that one can also express  by means of the relative stress  and the
rest energy density  of matter. One finds

g Φa( )m g Φ( )ν v.d∫=

ν g Φ( )
m

1
c2
----- D vd∫ 1

c2
----- g Φ( )ν Φ Φa– c2

g Φa( )
---------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

v.d∫=

D g Φ( )ν Φ Φa– c2

g Φa( )
---------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

Φa

c2

g Φ( )
------------ Φ– A,= g Φ( )

c2

A Φ+
--------------,=

A

ν
1
c2
-----D

1
c2
----- Txx Tyy Tzz Tuu+ + +( ),–= =

ν t
Ψ

ν
1
c2
----- Ψ txx– tyy– tzz–{ } .=

A
Φ

Φ, [p. 538]Φ
Φ0, Φ Φ0–

Φ
Φ0 g Φ0( ) g0. A

g Φ( )
c2

A Φ+
--------------  and  g0

c2

A Φ0+
-----------------,==

g Φ( ):



528 GUNNAR NORDSTRÖM

(15)

Only experimentally accessible quantities appear in this equation. Naturally, one
could also fix the initial potential  in a different way, since for two arbitrary values
of  one has

(15a)

The eqs. (14) and (15) for  and  uniquely determine the theory of gravitation.
If we set

(16)

then the new gravitational potential  is not afflicted with the ambiguity of  We
obtain from (13) and (11)

(17)

(18)

and if one inserts  into the fundamental eqs. (2), (3), they become

(19)

(20)

If they are written in this way, no universal constant corresponding to the gravita-
tional constant appears in the fundamental equations.10 | In eq. (19) one can, to a cer-
tain approximation, take  in front of the brackets as a constant equal to  By
integration one then obtains the usual formula for the retarded potential.

10 But in §6 it is to be shown that such a universal constant plays a role in the definition of the fundamen-
tal units.
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2. DEPENDENCE OF A BODY’S MASS ON THE GRAVITATIONAL 
POTENTIAL

We wish to prove that the inertial mass of a system depends on the properties of the
gravitational potential  of the external field outlined in §1. We examine the state of
affairs from the system of reference in which the bodies produce a static gravitational
field and construct about the bodies a spherical surface of very large radius  At the
points on this surface,  is directed vertically outwards and has, according to (5),
the magnitude

We imagine that the gravitational potential  of the external field is produced by
masses which lie very far away from our system of bodies and outside the spherical
surface. For the time being,  is spatially and temporally constant inside this sur-
face. Then we imagine  being changed by  due to a slow displacement of the
distant masses. This change engenders a certain flow of energy through the spherical
surface, which we want to calculate. The energy flux  in the gravitational field is
according to eq. (58), loc. cit., as well as by (6)

By integrating over the spherical surface, we find that the change  of the external
potential results in energy transport through the spherical surface to the interior, hav-
ing the magnitude 

Hence, the amount by which the rest energy  of our system has been increased is:

| If we insert here  from (9) and  from (11), we obtain the
equation

(a)

which agrees with the eq. (52), loc. cit., found by a different method. According to
(17), we have further

and obtain finally through integration
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The inertial mass of a body is thus directly proportional to the gravitational poten-
tial  of the external field. According to (16), we can also write this dependence in
the following form

(21a)

where  is the inertial mass associated with the gravitational potential 
11

According to (21) and (18) we have 

(22)

Thus, in contrast to the inertial mass, the gravitational mass is a characteristic con-
stant for each body that does not depend upon the external gravitational potential.

3. INERTIAL AND GRAVITATIONAL MASS OF A SPHERICAL ELECTRON

As an example of the theory, we want to establish the formulas for the inertial and
gravitational mass of a spherical electron with uniform surface charge. Let the elec-
tric charge of the electron expressed in rational units be  and the radius  In order
to prevent the unlimited expansion of the electron as a result of the force of repulsion
between equal electric charges, certain elastic stresses must act within the electron.
Most conveniently, we assume that these stresses are concentrated on the surface of
the electron as well. | According to eq. (14), the elastic stresses give the electron a
mass, which also produces gravitational effects. The gravitational field is superim-
posed on the electric field and both fields act back on the electron. The electron is at
rest. We have to think of the surface of the electron as an infinitely thin shell, in which
the elastic tensor  is different from zero. We assume that the component 
equals zero, so that, for the case of rest, the tensor  does not contribute to the
energy of the electron. Hence, the tensor  reduces (for the case of rest) to a spatial
stress tensor, which for reasons of symmetry must have one principal axis in the
direction of the radius. Since we should have a tensile stress [Zugspannung] parallel
to the shell only, the principal component of  in the direction of the radius equals
zero; the two other principal components are equal to each other and will be called

 The trace of  is thus  and the rest density  becomes

The tensile stress  in the surface is equal to the line integral

11 The eqs. (21) and (21a) take the place of (53), loc. cit., which presupposes a constant  and thus has
now lost its validity.
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integrated across the shell.
We now form the integral  extended over the whole shell and obtain

Since for reasons of symmetry,  must have the same value at all points of the
surface, we obtain for the gravitational mass  of the electron

On the surface of the electron, the gravitational potential has the value

where  is the potential of the external field (not produced by the electron). Hence,
according to (15a), we can substitute the expression |

(23)

for  and thus obtain the equation

(a)

The task is now to calculate  from the forces the electric field and the gravita-
tional field exert on the surface of the electron. On each element of the electron’s sur-
face, the electric field exerts a force perpendicular to and directed outwards from the
surface, whose magnitude per unit of surface area is given by the Maxwellian
stresses. One finds for this outward-directed force per unit area the expression

In a similar manner, the gravitational field exerts a force on each surface element of
the electron’s surface, which is perpendicular but directed inwards. Outside of the
electron one has
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The fictitious gravitational stress on the surface is perpendicular to the surface, and
by (6) it has the magnitude

This force is exerted by the gravitational field on the electron’s surface per unit of
surface area. The combined force which the two fields exert on a unit of surface area
is thus

(b)

where positive is outward-directed. The force  and the elastic stress  in the elec-
tron’s surface should now maintain equilibrium. It is easy to find that the condition
for equilibrium is 

(c)

To derive this relation, one can for example think of the spherical electron surface as
divided into two equal halves. | The normal force  attempts to drive the two halves
apart with a total force of  whereas the stress  holds the two halves together
with a total force of  By equating the two expressions for the force, one
obtains the relation (c).

The eqs. (a), (b), (c) yield

We thus have a quadratic equation for 

From this we obtain

(23)

and since according to (11)  we obtain for the inertial mass  of the
electron the expression
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(24)

The rest energy  is composed of two parts: the energy of the electric field and that
of the gravitational field. These two parts of  are

Thus the expression found for  contains a confirmation of the theory.

4. DEPENDENCE OF THE DIMENSIONS OF LENGTH ON THE 
GRAVITATIONAL POTENTIAL

An important conclusion can furthermore be drawn from the expression (24) for the
inertial mass of an electron. If the gravitational potential  of the external field (not
stemming from the electron) is changed, then  changes according to eq. (21). How-
ever, by (22),  remains constant, and the same applies for  according to the fun-
damental equations of electrodynamics. Therefore, the radius  must vary inversely
with  and one obtains from (21)

(25)

| Since on the electron surface

one also has
(25a)

The elastic tension  in the electron surface varies also with  From (a), p. 531
[p. 542 in the original], we find the law for this if we take into account that according
to (17) and (25)  remains constant. We see that  must be constant, and that
therefore

Mr. Einstein has proved that the dependence in the theory developed here of the
length dimensions of a body on the gravitational potential must be a general property
of matter. He has shown that otherwise it would be possible to construct an apparatus
with which one could pump energy out of the gravitational field. In Einstein’s exam-
ple one considers a non-deformable rod that can be constrained to move between two
vertical rails. One could let the rod fall while stressed, then remove the stress and
raise it back up. The rod has a greater weight when stressed than when unstressed,
and therefore it would do more work than would be consumed in raising the
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unstressed rod. However, because the rod lengthens while falling, the rails must
diverge, and the excess work from the fall will be consumed again as the work done
by the tensioning forces on the ends of the rod.

Let  be the total stress (stress times cross-sectional area) of the rod and  its
length. Because of the stress, the gravitational mass of the rod is increased by

In falling, this gravitational mass provides the extra work

| However at the same time at the ends of the rod the work

is lost. Equating these two expressions yields

which, on integration, gives

But this corresponds precisely to eq. (25a).12

The result found for the stressed rod, as well as other examples, shows that the
eqs. (25) and (25a) possess a general validity for a material body’s dimensions of
length. Of course it is the real gravitational potential  existing at a point, and not
that of the external field, which influences the length; however, we can easily see that
we may also generally use the potential  of the external field when calculating
changes in length, since  and  are proportional to one another. For a system of
the kind considered in §1 at rest, we have from (4) and (17)

(a)

According to the results found earlier, the gravitational mass of the system does not
change when the gravitational potential  of the external field is changed. There-
fore, upon such a change we have

12 If the rod is deformable, some work will be expended in stressing it, and the rest energy of the rod will
be correspondingly increased. In this way too, the weight experiences an increase, which provides an
added work  in falling. However, since in falling the rest energy diminishes, the work recovered in
relaxing the rod is smaller than that consumed in stressing and the difference amounts to exactly 

S l

g Φ( )
c2

------------Sl
1

Φ′
------Sl.=

1
Φ′
------sldΦ′.–

[p. 545]

Sdl

1
Φ′
------dΦ′–

1
l
---dl,=

lΦ′ const.=

dA
dA .

Φ′

Φa′
Φ′ Φa′

Φ′ Φa′
c2

4π
------  

ν vd
Φ′r
---------.∫–=

Φa′



ON THE THEORY OF GRAVITATION ... 535

The quantities  and  do change in a certain way with  but in such a way that
 remains constant for each particular element of the system. If on the left in

eq. (a)  denotes the potential at a certain point of the material system, | the integral
on the right varies inversely with the length  We obtain

that is, at each point of the system,  changes in proportion to 
For these reasons, the dependence of a body’s linear dimensions  (at rest) on the

gravitational potential is given generally by the two equivalent equations

(26)

and further, corresponding to (21a)

(26a)

For the volume  of a particle of a body transformed to rest, one has, of course,
from (26) 

Since above we found  it follows that

(27)

Since according to (14)  is the sum of the diagonal components of the tensor

 the components of  and thus in particular the elastic stresses  depend on

 in the same way as 

(28)

The result found earlier (p. 533) [p. 544 in the original] for the electron’s surface ten-
sion  is thus in agreement with the above since  is a stress times a length.
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5. THE DEPENDENCE OF A PROCESS’S TIME DEVELOPMENT
ON THE GRAVITATIONAL POTENTIAL

The dependence of a body’s linear dimensions on  raises the question of whether a
physical process’s time development is also influenced by the gravitational potential.
For a simple case we can answer the question | without difficulty. Due to the con-
stancy of the speed of light, it is clear that the time during which a light signal propa-
gates from one end of a rod to the other grows in the same proportion as the rod
lengthens. This time is thus inversely proportional to the gravitational potential.

Another process that can be treated without difficulty is circular motion under the
influence of the gravitational attraction of a central body. Let a mass point with grav-
itational mass  move in a circular orbit around another mass point with gravita-
tional mass  with  much smaller than  Let  be so large in relation to

 that we may consider the former as being at rest. In §7 we will further investigate
the question of when a body may be viewed as a mass point, and derive the laws of its
motion. Here, we only need to know that for a mass point the equations of motion
(51), loc. cit. apply, where  denotes the gravitational potential of the field not pro-
duced by the mass point itself. This potential is

where  is the constant external potential and  is the distance from the mass .
Because  has the same value at all points on the circular orbit, the inertial mass of
the moving point remains unchanged, and the equations of motion (51), loc. cit.
yield:

According to (17), we can also write the equation as

etc. Of course,

Furthermore, since the moving mass point has no tangential acceleration, we have

etc. (e.g., compare eq. (62), loc. cit.). For the absolute value of the acceleration, |
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applies, where  is the radius of the circular orbit. By using all of these equations we
obtain the following equation of motion

A transformation yields

or, if we introduce the period of rotation 

(a)

This equation connects the three quantities   and  with one another. Setting
 according to (17), we obtain precisely the equation which classical

mechanics would give.
We now imagine the two mass points  and  and also the measuring rods,

with which we measure length, transferred to another location with a different exter-
nal gravitational potential  Then all lengths have changed in inverse proportion
to  and if we wish to re-establish the previous process, we measure the distance

 such that  has the same value in both cases. Therefore, according to (a),
 also has the same value, which means that the time of revolution changes in

proportion to the bodies’ linear dimensions. Therefore according to (26) one has,

(29)

We further want to investigate the behavior of the period of oscillation of a mate-
rial point, oscillating about a fixed equilibrium position as a result of an elastic (or a
“quasi-elastic”) force. For a sufficiently small amplitude of oscillation we can use the
usual harmonic oscillator equation:

where  is the inertial mass of the material point,  the | displacement from equilib-
rium, and  an elastic constant. For the period of oscillation  one obtains the well
known expression (the easiest way to obtain this is by substituting 
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Upon a change of the gravitational potential one has from (21)

Since  is the elastic force, it is to be treated like a pull on a stretched string. Thus
upon a change of  it behaves like a stress times an area (the cross-section of the
string), and according to (28) and (26)

Since  is a length, one has

Hence for the period of oscillation

precisely in agreement with the two earlier results. It may be supposed that the course
of all physical processes is influenced in a corresponding manner.

From the last example, it follows that the wavelength of a spectral line depends
upon the gravitational potential. A numerical calculation shows that the wavelengths
on the surface of the Sun must be greater by about one part in two million than those
of terrestrial light sources. Several other recent theories of gravitation also give the
same—perhaps even observable—displacement.

6. REMARKS ON THE DEFINITION OF FUNDAMENTAL UNITS

From the dependence of the linear dimensions and masses of the bodies as well as of
the time development of phenomena on the gravitational potential, it follows that in
defining the fundamental units, the gravitational potential has to be taken | into
account. By a centimeter, we thus understand the length of a reference rod at a certain
temperature and at a certain gravitational potential. For the latter, one takes of course
the potential present on the surface of the Earth. The same applies for the definition
of the unit of time and the unit of inertial mass.

If the units of length and time have been established for a location with a certain
gravitational potential, from this location one can in principle measure all lengths and
times in the world by means of a telescope and the exchange of light signals, because
light signals propagate in straight lines with a constant speed  Hence, no transport
of measuring rods and clocks from one place to another is necessary to compare
lengths and times at different locations.

The gravitational potential  in terms of which the fundamental units have
been defined, is to be considered a universal constant, and the same applies to

 Thus the universal constant of the theory of gravitation developed here does
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not appear in the field eqs. (19), (20), but plays a part in the definition of the funda-
mental units.

7. THE EQUATIONS OF MOTION OF A BODY WHICH MAY BE TREATED
AS A MASS POINT

In order to obtain the equations of motion of a material point, and additionally to gain
clear insight into the conditions under which a body may be viewed as a material
point, we consider a body that has the properties of the complete stationary system
discussed in §1, moving freely in an external homogeneous gravitational field. We
have

where

The gravitational potential  of the external field does not need to be constant in
time as long as  is constant. | We thus have

where the coefficients  are constant in space and time.
According to the general foundations of relativistic mechanics, one has (compare

§ 1)

(a)

and another three equations obtained by interchanging the first index  with 
We integrate the expression (a) over all of -space, and for the time being deal
with the gravitation tensor  separately. According to (7) and (3) we have:

(b)

We wish to transform the first integral on the right. Since the second derivatives of
 are all zero, in the eq. (2) on the left we can set  instead of  If we insert the

expression so obtained for  we obtain, after a transformation similar to the
one that leads from eq. (3) to (7),
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Here,  etc. are the expressions one obtains by writing  instead of  in the
eqs. (6). We can transform the first integral on the right in the last equation into a sur-
face integral over an infinitely large spherical surface using Gauss’ theorem, and this
integral becomes zero because expressions corresponding to eq. (5) apply for the first
derivatives of  Therefore, we obtain

(c)

| Upon integration of (a) the two remaining world tensors  and  give the result

since the remaining terms can also be transformed into a surface integral that
becomes zero. Therefore the integration of (a) over all of space yields the following
result, taking (b) and (c) into account,

(d)

Of course

is the -component of the total momentum of the moving body. If the motion is
quasi-stationary,13 which we must now assume, we can calculate  using the same
formula that applies to uniform motion of the body, that is (compare p. 536)

 is the inertial mass of the body. If the body rotates or if stationary motions occur in
its interior, then the three-dimensional velocity  and the four-dimensional velocity
vector  relate to the body as a whole, according to §1, and therefore give the center
of mass’s change of position. We must assume further that the body is of such moder-

13 Compare M. Abraham, Theorie der Elektrizität II. Leipzig 1905, p. 183.
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ate dimensions that one can view  as spatially constant within the body, which
is practically always the case. We then have from (11)

because eq. (11) relates to a system of reference in which the velocity  is momen-
tarily zero, and for | a volume element  in this system of reference we have

Since furthermore

where  denotes the proper time of the body, we finally obtain from (d)

This is the first of the equations of motion for the body; naturally one obtains the
remaining three by exchanging  for 

We have assumed that the external field is homogeneous. If this is not the case,
then the equations are only valid to the degree of accuracy to which  and

 are spatially constant within the body. (The field outside of the body can
not, of course, act on the body itself.) To this degree of accuracy, we can consider the
body as a material point, and thus the following equations of motion apply to it,
according to the above considerations: 

(30)

where the gravitational potential of the external field is denoted by  This system
of equations are equivalent to the eqs. (51), loc. cit.

If we multiply the eqs. (30) by  and add them, we find the law for
the change of the inertial mass in exactly the same manner as on p. 516, loc. cit.
[p. 873 in the original], and we arrive at the formulas already derived in §2. Using
these formulas, we can bring the equations of motion (30) into the following form: |
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(31)

One sees from this that the motion of a body in a gravitational field is completely
independent of the constitution of the body, if only it may be treated as a material
point.

In a static, homogeneous field in particular, every quasi-stationarily moving body
that satisfies the conditions in §1 may be treated as a material point, and thus all such
bodies fall in the same manner. In the case of free fall, eqs. (64), loc. cit. apply; it is
only to be noted that  depends on  and that  denotes the potential of the exter-
nal field. Since a body rotating about its axis of symmetry satisfies the conditions in
§1, it must fall exactly like a non-rotating body. Therefore the assertion about rotating
bodies made on p. 520, loc. cit. [p. 878 in the original] does not apply in our present
theory; furthermore, molecular motions have no influence on the falling motion. In
contrast, a body thrown horizontally falls slower than one which does not have an ini-
tial velocity, as demanded by eqs. (64), loc. cit.

Systems in an external field that do not satisfy the conditions in §1 generally
move approximately according to the equations of motion (30), (31). For example,
Mr. Einstein has shown that according to the theory developed here, an elastically
oscillating system’s gravitational acceleration must change with the phase of the
oscillation, but that the mean acceleration is given by (64), loc. cit.
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1. GENERAL FORMULATION OF THE PROBLEM

The first domain of physical phenomena where a successful theoretical elucidation
was achieved was that of the general attraction of masses. The laws of weight and of
the motions of celestial bodies were reduced by Newton to a simple law of motion for
a mass point and to a law of interaction for two gravitating mass points. These laws
have proved to hold so exactly that, from an empirical point of view, there is no deci-
sive reason to doubt their strict validity. If, despite this, one can scarcely find a physi-
cist today who believes in the exact validity of these laws, this is due to the
transformative influence of the development of our knowledge of electromagnetic
processes over the last few decades.

Before Maxwell, electromagnetic processes were attributed to elementary laws
built as closely as possible on the model of Newton’s force law. According to these
laws, electrical masses, magnetic masses, current elements, and so on, are supposed
to exert actions-at-a-distance on each other, which require no time for propagation
through space. Then 25 years ago, Hertz showed with his brilliant experimental
investigation of the propagation of electrical force that electrical effects require time
for their propagation. By doing so he contributed to the victory of Maxwell’s theory,
which replaced unmediated action-at-a-distance with partial differential equations.
Following this demonstration of the untenability of action-at-a-distance theory in the
area of electrodynamics, confidence in the correctness of Newton’s action-at-a-dis-
tance gravitational theory was also | shaken. The conviction that Newton’s law of
gravitation encompasses as little of the totality of gravitational phenomena as Cou-
lomb’s law of electrostatics and magnetostatics captures of the totality of electromag-
netic phenomena had to come to light. Newton’s law previously sufficed for
calculating the motions of the celestial bodies due to the small velocities and acceler-
ations of those motions. In fact, it is easy to demonstrate that the motion of celestial

[1250]
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bodies determined by electrical forces acting on electrical charges they bear would
not reveal Maxwell’s laws of electrodynamics to us if their velocities and accelera-
tions were of the same order of magnitude as in the motions of the celestial bodies
with which we are familiar. One would be able to describe such motions with great
accuracy on the basis of Coulumb’s law.

Even though confidence in the comprehensiveness of Newton’s action-at-a-dis-
tance law was thus shaken, there were still no direct reasons to force an extension of
Newton’s theory. However, today there is such a direct reason for those who adhere to
the correctness of relativity theory. According to relativity theory, in nature there is no
means that would permit us to send signals with a velocity greater than that of light.
Yet on the other hand, it is clear that if Newton’s law were strictly valid, we would be
able to use gravitation to send instantaneous signals from a place  to a distant place

 since the motion of a gravitating mass at  would lead to simultaneous changes
of the gravitational field,  in contradiction to relativity theory.

The theory of relativity not only forces us to modify Newton’s theory, but fortu-
nately it also strongly constrains the possibilities for such a modification. If this were
not the case, the attempt to generalize Newton’s theory would be a hopeless undertak-
ing. To see this clearly, one need only imagine being in the following analogous situ-
ation: suppose that of all electromagnetic phenomena, only those of electrostatics are
known experimentally. Yet one knows that electrical effects cannot propagate with
superluminal velocity. Who would have been able to develop Maxwell’s theory of
electromagnetic processes on the basis of these data? Our knowledge of gravitation
corresponds precisely to this hypothetical case: we only know the interaction
between masses at rest, and probably only in the first approximation. Relativity the-
ory limits the bewildering manifold of possible generalizations of the theory, because
according to it in every system of equations the time coordinate appears in the same
manner as the three spatial coordinate, up to a difference in sign.   This formal insight
of Minkowski’s, which is here only roughly foreshadowed, has been a tool of utmost
importance in the search for equations compatible with relativity theory. 

2. PLAUSIBLE PHYSICAL HYPOTHESES CONCERNING THE 
GRAVITATIONAL FIELD

In what follows we shall specify several general postulates, which can be employed
by a gravitational theory, although it need not employ all of them:

1. Satisfaction of the laws of energy and momentum conservation.

2. Equality of the 

 

inertial

 

 and the 

 

gravitational

 

 mass for isolated systems.

3. Validity of the theory of relativity (in the restricted sense); i.e., the systems of
equations are covariant with respect to linear orthogonal substitutions (general-
ized Lorentz transformations).

4. The observable laws of nature do not depend on the absolute magnitude of the
gravitational potential (or gravitational potentials). Physically, this means the fol-
lowing: The embodiment of relations between observable quantities that one can
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determine in a laboratory is not changed if I bring the whole laboratory into a
region with a different (spatially and temporally constant) gravitational potential.

We note the following regarding these postulates. All theorists agree with one
another that postulate 1 must be upheld. There is not such a general consensus regard-
ing adherence to postulate 3. Thus, M. Abraham has developed a gravitational theory
that does not comply with postulate 3. I could subscribe to this point of view, if Abra-
ham’s system were covariant with respect to transformations that turn into linear
orthogonal transformations in regions of constant gravitational potential, but this
does not appear to be the case with Abraham’s theory. | Therefore this theory does not
contain relativity theory, as previously developed without connection with gravita-
tion, as a special case. All of the arguments that have been put forward in favor of rel-
ativity theory in its current form militate against such a theory. In my opinion, it is
absolutely necessary to hold fast to postulate 3 as long as there are no compelling rea-
sons against doing so; the moment we give up this postulate, the manifold of possibil-
ities will become impossible to survey.

Postulate 2 calls for a more precise examination, and, in my opinion, we must
hold on to it unconditionally until there is proof to the contrary. The postulate is ini-
tially based on the fact of experience that all bodies fall with the same acceleration in
a gravitational field; we will have direct our attention to this important point again
later on. Here it should only be said that the equality (proportionality) of gravitational
and inertial mass was proved with great accuracy by Eötvös’s investigation,

 

1

 

 which is
of highest significance to us; he proved this proportionality by establishing experi-
mentally that the resultant of weight and of the centrifugal force due to the Earth’s
rotation is independent of the nature of the material (the relative difference between
the two masses is  In combination with one of the main results of the ordi-
nary relativity theory, postulate 2 leads to a consequence that can already be drawn at
this point. According to relativity theory, the inertial mass of a closed system (treated
as a whole) is determined by its energy. From postulate 2, the same must also hold for

 

gravitational

 

 mass. Therefore, if the state of the system undergoes an arbitrary
change without altering its total energy, then the gravitational action-at-a-distance
does not change, even if a part of the system’s energy is converted into gravitational
energy. The gravitational mass of a system is fixed by its total energy, including grav-
itational energy.

Finally, postulate 4 arguably cannot be grounded on experience. It is only justified
by our confidence in the simplicity of the laws of nature, and we cannot have as much
right to depend on it as we do with the three axioms named above.

I am fully aware that the postulates 2–4 resemble a scientific profession of faith
more than a firm foundation. I am also far from claiming that the two generalizations
of Newton’s theory presented in the following are the only ones possible, but I dare
say that given the current state of our knowledge they must be the 

 

most natural

 

 ones. 

 

1 B. Eötvös, 

 

Mathem. und naturw. Ber. aus Ungarn

 

 8, 1890; Supplement 15: 688, 1891.
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3. NORDSTRÖM’S THEORY OF GRAVITATION

According to the familiar relativity theory in connection with gravitational theory, an
isolated material point moves uniformly in a straight line in accord with Hamilton’s
equation

(1)

where we have set, in the usual way,

(2)

We can also write equation (1) as 

(1a)

is the Lagrangian function of the moving point, and  is a constant characteristic of
it, its “mass.” The momentum  and the energy  of the point follows
directly from this, as Planck has shown, in the familiar way.

 

2

 

From here it is easy to arrive at Nordström’s theory if we make the following
assumptions. The covariance of the equation with respect to linear orthogonal substi-
tutions still stands, as is the case in the familiar relativity theory. The gravitational
field can be described as a scalar. The motion of a material point in the gravitational
field can be represented with an equation of Hamiltonian form. In that case one
obtains the following equation for the motion for a mass point:

 

3

 

 |

 

2 These expressions differ from the customary ones only by the constant factor 
3 Taking into consideration the fact that the Hamiltonian integral must be an invariant.
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(1')

such that (2) with constant  remains valid and  is the scalar fixed by the gravita-
tional field. For the propagation of this light ray we have  and so 
i.e., the speed of light propagation is equal to the constant  The light rays are not
bent by the gravitational field.

In the place of equations (1a) we have

(1a')

The Lagrangian equations of motion read:

 

[1]

 

From this it follows that the expressions for the impulse, energy, and the force 
exerted by the gravitational field at a point are:

(2a)

Thus  is a constant characteristic of the mass point, independent of  and  The
expression for  shows that  plays the role of the gravitational potential. Further-
more, the expressions for  and  show that according to Nordström’s theory the
inertia of a mass point is determined by the product  the smaller  is, i.e., the
more mass we pile up in the region of the mass point, the smaller the inertial resis-
tance the body exerts in response to a change in its velocity becomes. This is one of
the most important physical consequences of the scalar theory of gravitation, to
which we must return later.

In this theory, as well as in the theory explained below, the coordinate differences
do not have as simple a physical meaning as they do in the usual relativity theory. Let
us consider a given moveable unit measuring rod and a moveable clock, which ticks

[1252]δ ϕ τd∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

0,=

c ϕ
td 0,= q c;=

c.

δ H τd∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

0,=

whereupon

H mϕ
dτ
dt
-----– mϕ c2 q2– .–= =

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

d
dt
----- mϕ

ẋ
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such that in a vacuum light traverses a distance equal to one unit measuring rod4 dur-
ing one unit of time, as measured by the clock. We will call the four-dimensional
interval between two infinitely close spacetime points, which can be measured with
these measuring tools in the same way as in the usual relativity theory, the “natural”
four-dimensional interval  of the spacetime point. By definition this is an invari-
ant, and hence in the case of the usual relativity theory it is equal to  We call the
latter quantity the “coordinate interval,” in contrast to the natural interval and accord-
ing to its definition, or also briefly as the “interval” of the spacetime point. In our case
it is possible, however, that the natural interval  differs from the coordinate inter-
val  by a factor that is a function of  Thus we set

(3)

We can further speak of the natural length  and the natural volume  of a body.
These are the length and volume, respectively, that are measured using comoving unit
measuring rods. The lengths  and volumes  measured in coordinates also play a
role. It follows that the relation between the coordinate volume  and the natural vol-
ume  is:

(4)

In addition, by a unit mass we understand the mass of water enclosed in a natural vol-
ume of magnitude unity. The mass of a body is the ratio of its inertia to that of a unit
mass, which is thus a scalar.We understand the natural density  to be relative to the
density of water or the mass in a natural volume with magnitude 1;  is thus a scalar
by definition. 

We can derive further consequences from the results obtained above if we pass
from material points to the continuum. We achieve this by treating the material point
as a continuum of coordinate volume  and natural volume  One multiplies the
expressions for   and  given above in (2a) by  using (4), so that one
obtains the impulse  etc., the energy  and the pondermotive force  etc., per
unit volume for an incoherent mass stream. Taking the relation 

 

into account, one obtains |

4 We will make the assumption that this is achievable at all locations and at all times; this is a special
case of postulate (4).
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(2b)

In the first equations  denotes the unit imaginary number. We now recall the expres-
sions for the law of energy-momentum conservation in relativity theory. If  and
etc. are the generalized pressure-stresses, and  etc. are the components of the
energy flux density, then the quantities

form a symmetric tensor, that we will write  (  and  are indices running from
1 to 4). Furthermore, denoting the work transferred by external forces to the material
per unit volume with  then

is a four vector, with its components referred to by  The law of energy-momentum
conservation is then expressed by the equation

(5)

As equations (2b) illustrate, this schema can find direct application in our case of an
incoherent flow of matter in a gravitational field, insofar as one sets

(5a)

So far we have treated only the question of how the gravitational field acts on matter,
but not the question of by which law, in turn, the matter determines the gravitational
field. According to Nordström’s theory, the latter is given by a scalar  thus, what
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enters into the differential equation for  we are seeking must also be a scalar associ-
ated with the field generating process. This scalar can only be the scalar

whose existence and meaning was notably highlighted by von Laue. Setting up this
scalar for the case of a case of an incoherent mass stream, we obtain with the help of
(5a)

Thus instead of (5) we have

(5b)

This equation is particularly important in that there is nothing in it to remind us of the
case of an incoherent mass stream discussed so far. According to Nordström’s theory,
equation (5b) expresses the energy balance of an arbitrary material process, if the
stress-energy tensor corresponding to this process is substituted for 

From equation (5b) it follows that Nordström’s theory satisfies postulate 2. If one
were to observe a system on such a small scale that one could regard the 
as clearly constant for the spatial extent of the system, then one obtains for the total
force exerted on the system by the gravitational field in the -direction:

where  is the three-dimensional volume element. This reformulation is based on
Laue’s theorem, that for a closed system 

This proves that what determines the gravity of a closed system is its total quantity.
Equation (5b) further allows us to determine the function  which has been left

undetermined so far, on the basis of the physical assumption that no work can be
extracted from a static gravitational field via cyclic processes. In section 7 of my
paper on gravitation published jointly with Mr. Grossmann, I obtained a contradiction
between a scalar theory and this basic principle, based, however, on the tacit assump-
tion that  But it is easy to show that the contradiction vanishes if one
sets
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or
(6)

| Later we will give yet another justification for this stipulation.
Now it is simple to establish the general equation for the gravitational field, which

is to be regarded as a generalization of Poisson’s equation for the gravitational field.
That is, one has to set Laue’s scalar equal to a scalar differential expression of the
quantity  such that the conservation laws hold for the material process and the grav-
itational field taken together. One achieves this by setting,

(7)

where  is a universal constant (the gravitational constant), and denotes the oper-
ator

 (  from 1 to 4).

The fact that the conservation laws are satisfied follows from the equations (5b) and
(7), by virtue of the identity which follows from (7)

where we set

(8)

 denotes 1 respectively 0, depending on whether  or  The compo-
nent of the stress-energy tensor of the gravitational field is  then it follows from
the penultimate equation and (5b) that

(9)

Thus postulate 1 is satisfied. It can also be shown that, in accord with postulate 2, the
number of gravitational lines emanating from a closed stationary system to infinity
depends on the total energy of the system.

Furthermore, the following is in conformity with postulate 4. If one places two
mirrors at the ends of a natural length  facing each other, and allows a light ray to
go back and forth between them in a vacuum, then this system represents a clock
(light clock). If two masses  and  circle each other at the natural distance 
under the influence of their gravitational interaction, then this system also represents
a clock (gravitational clock). With the help of the equations derived above, one can
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easily show that the relative rate of these two clocks, supposing that they are found in
the same gravitational potential, is independent of the absolute value of the potential.
This is an indirect confirmation of the expression given for  in equation (6).

In conclusion we can say that Nordström’s scalar theory, which holds firmly onto
the postulate of the constancy of the speed of light, satisfies all the requirements for a
theory of gravitation that can be imposed on the basis of current experience. Only one
unsatisfactory circumstance remains, namely that according to this theory the inertia
of bodies seems to not be caused by other bodies, even though it is influenced by
them, because the inertia of a body is greater the farther other bodies are from it.

4. IS THE ATTEMPT TO EXTEND RELATIVITY THEORY JUSTIFIED?5

If we wish to show a neophyte the extent to which the formulation of relativity theory
is empirically justifiable, we can point out the following to him. For a person located
in a railway car travelling uniformly in a straight line with its windows covered it is
not even possible to decide what direction and at what speed the car travels; if we
abstract from the inevitable shaking of the car, it is not even possible to decide
whether the car is moving or not. Expressed abstractly: the laws of events described
with respect to the system moving uniformly with respect to the original coordinate
system (the Earth’s surface) are the same as with respect to the original coordinate
system (the Earth’s surface). We call this proposition the relativity principle for uni-
form motion. 

Yet one might be apt to add: it is surely different if the railway car moves non-uni-
formly; if the car changes its velocity, the passenger gets a jolt through which he
detects the acceleration of the car. Speaking abstractly, there is no relativity principle
for nonuniform motion. But concluding in this way is not irreproachable, because it
is, after all, not certain whether the occupant of the car must necessarily ascribe the
jolt he felt to the acceleration of the wagon. From the following example one sees that
this conclusion is premature.

Two physicists, A and B, wake from a drug-induced slumber and discover that
they are in a closed box with opaque walls, equipped with | all of their instruments.
The have no idea how the box is situated, and how and whether it is moving. Now
they determine that all bodies that they bring to the middle of the box and release fall
in the same direction—let’s say downward—with the same acceleration  What can
the physicists conclude from this? A concludes that the box sits still on a celestial
body, and that the downward direction must be towards the center of the celestial
body, if it is taken to be spherical. But B adopts the point of view that the box could
be moving with constant acceleration upward with the acceleration  due to an
externally applied force, and there need not be a celestial body nearby. Is there a cri-
terion that the two physicists could use to determine who is correct? We do not know
of any such criterion, but we also do not know whether there is no criterion. In any

5 Cf. A. Einstein, Ann. d. Phys. (4) 35: 898, 1911.
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case, Eötvös’s exact experimental result regarding the equality of inertial and gravi-
tational mass supports the view that there is no such criterion. One sees that, in this
regard, Eötvös’s experiment plays a similar role to that of Michelson’s experiment
with respect to the physical verifiability of uniform motion.

If it is really in principle impossible for the two physicists to decide which of the
two views is correct, then acceleration has as little absolute physical meaning as
velocity.6 The same reference system can be taken to be accelerating or non-acceler-
ating with equal justice, but then, according to the view chosen, one must postulate
the presence of a gravitational field that determines the motion of freely moving bod-
ies with respect to the reference system together with the possible acceleration of the
system.

The circumstance that bodies behave in exactly the same in what is, according to
our view, a nonaccelerated reference system in the presence of a gravitational field, as
in an accelerating reference system, forces us to seek an extension of the principle of
relativity to the case of accelerating reference systems.

From a mathematical standpoint, this amounts to demanding covariance of the
equations expressing laws of nature not only under linear orthogonal substitutions,
but also with respect to other, in particular non-linear, transformation; for only the
non-linear substitutions correspond to a transformation between relatively acceler-
ated systems. But then we face the difficulty that our scant empirical knowledge of
the gravitational field permits no reliable deduction of the substitutions for which the
covariance of the equations must be demanded. In an investigation undertaken with
my friend Grossmann,7 it turned out that it is possible and expedient to initially
demand covariance with respect to arbitrary substitutions.

One further comment before proceeding to dispel a natural misunderstanding. An
adherent of current relativity theory has some right to call the velocity of a point mass
“apparent.” In fact he can choose a coordinate system, such that the velocity is zero at
the instant in question. But if he is dealing with a system of points whose mass points
have different velocities, he cannot introduce a reference system such that all of the
velocities of the mass points vanish with respect to it. Analogously, a physicist shar-
ing our point of view can call the gravitational field “apparent,” for by a suitable
choice of the state of acceleration he can achieve the result that there is no gravita-
tional field present at a given spacetime point. But it is clear that for extended gravita-
tional fields this elimination of the gravitational field by a transformation cannot be
achieved, in general. For example, it would not be possible to make the Earth’s gravi-
tational field vanish by choosing an appropriate reference system.

6 This point of view will be modified in section 6; but for the time being we will stick with it firmly.
7 Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation, Leipzig:

B. G. Teubner, 1913.
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5. CHARACTERIZATION OF THE GRAVITATIONAL FIELD;
ITS EFFECT ON PHYSICAL PROCESSES

Since we are uncertain about the class of admissible spacetime substitutions, the most
natural thing, as already mentioned above, is to consider arbitrary substitutions of the
spacetime variables  which we can more conveniently write as

 It turns out to be pointless to introduce an imaginary time coordinate
in the case of the generalization considered below.

First we consider a spacetime region, in which there is no gravitational field in an
appropriately chosen coordinate system. | We are then faced with the case that is
familiar from the usual relativity theory. A free mass point moves uniformly and in a
straight line according to the equation

Introducing new coordinates  through an arbitrary substitution, it then
follows that the motion of the point relative to the new system obeys the equation

(1b)

From this we can also assume that

(1b')

 is the Hamiltonian function.
In the new system the quantities  determine the motion of the mass point,

which according to the general observations of the foregoing section can be con-
ceived of as the components of the gravitational field, as long as we treat the new sys-
tem as “at rest.” In general each gravitational field is defined by the ten components

 which are functions of  The motion of material points will always
be determined by equations of the given form. Given its physical meaning, the ele-
ment  must be an invariant with respect to all substitutions. Through this the trans-
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formation laws for the components  is established if the coordinate
transformation is given.  is the only invariant associated with the four-dimensional
line element  We call it the value or magnitude of the line ele-
ment. If there is no gravitational field, then given a suitable choice of variables the
system of ’s reduces to the system 

Thus we have come back to the case of the usual relativity theory.
The following equation determines the law for the velocity of light:

With this one recognizes that in general the velocity of light depends not only on the
spacetime point but also on the direction. The reason why we do not notice anything
like this is that in the region of spacetime accessible to us the  are almost con-
stant, and we can choose the reference system such that, up to small deviations, the

 will have the constant values given above.
We can speak here of the natural length of a four-dimensional element exactly as

in Nordström’s theory. This is the element’s length as measured by a moveable unit
measuring rod and moveable clock. By definition this natural length is a scalar, and
must therefore be equal to the magnitude  up to a constant, which we set to 1. This
gives the relation between coordinate differentials, on one hand, and measurable
lengths and times, on the other; since they have this dependence on the quantities

 the coordinates by themselves have no physical meaning. The stipulations
regarding mass and natural density remain applicable without modification

Now we can set up the Lagrangian equations of motion for a material point, just
as in our analysis of Nordström’s theory, starting with equations (1b) and (1b'). From
them we borrow the expressions for the momentum  and the energy  of a mass
point, and the force  exerted by a gravitational field on the mass point. Just as
above, we can derive the corresponding expressions for the unit volume, and we
obtain

gμν
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(2c)

From this we obtain, as above, the law of energy-momentum conservation for the
incoherent mass stream:

(5b)

Here  denotes the determinant of the  The first three equations of (5b) express
the law of momentum conservation, and the last states the law of energy conserva-
tion. We can give this system of equations a somewhat more perspicuous form if we
introduce the quantities |

(5c)

where  denotes the subdeterminant of  divided by  The physical meaning
of the quantities  emerges from the following schema:

where the relations given on the right-hand side have the same meaning as in section
3. The right-hand side of (5c) expresses the momentum  and energy

 given off by the gravitational field per unit volume and time.
The equations (5b) and (5c), without a doubt, have a meaning that extends far

beyond the case of incoherent mass streams we have considered; they probably
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express the energy-momentum balance between a physical process and the gravita-
tional field in general. But for each particular physical domain the quantities  and

 must be expressed in a specific manner.

6. COMMENTS ON THE MATHEMATICAL METHOD

In the theory we have just sketched the conventional theory of vectors and tensors
cannot be applied, since according to it  is not an invariant. The fundamental
invariant, which we have called the magnitude of the line element, is rather

The theory of covariance of a four-dimensional manifold defined by its line element
has already been developed under the name “absolute differential calculus,” by Ricci
and Levi-Civita8 in particular, who based their work primarily on a fundamental
paper by Christoffel.9 One can find a concise account of the most important theorems
in the part of our work cited above penned by Mr. Grossmann.

In this theory one distinguishes several kinds of tensors, namely covariant, contra-
variant, and mixed, which are governed by algebraic rules similar to the well-known
case characterized by the Euclidean line element. Differential operators that, when
applied to tensors, produce tensors again have also been worked out, so that one can
specify algebraic and differential relations for the general line element corresponding
to those of the conventional theory of vectors and tensors.

It should be noted that  is the  component of a contravariant tensor of the
first rank (i.e., with one index).  and  respectively, are components of a cova-
riant and a contravariant tensor of the second rank, which we call the “fundamental
tensor” based on its significance for the line element.  is a second rank contravar-
iant tensor, and  is a second rank mixed tensor.

Equation (5b) expresses the vanishing of the “divergence” of the tensor 
From this it follows that equation (5b) is covariant with respect to arbitrary substitu-
tions, which naturally must also be demanded from a physical point of view.

By replacing the equations of relativity theory with the corresponding equations
by means of the absolute differential calculus, one obtains a system of equations that
account for the effect of the gravitational field on the domain of phenomena under
consideration. This problem has already been solved by Köttler for the case of elec-
tromagnetic processes in a vacuum.10

From what has been said it follows that the question of the influence of the gravi-
tational field on physical processes has been satisfactorily solved in principle, and in

8 Ricci and Levi-Civita, “Méthodes de calcul différentiel absolu et leurs applications,” Math. Ann. 54:
125, 1900.

9 Christoffel, “Über Transformation der homogenen Differentialausdrücke zweiten Ranges,” Journ. f.
Math. 70: 46, 1869.

10 Köttler, “Über die Raumzeitlinien der Minkowskischen Welt,” Wien. Ber. 121, 1912.
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such a way that the equations are covariant under arbitrary substitutions. With that the
spacetime variables are reduced to intrinsically meaningless, auxiliary variables that
can be chosen arbitrarily. The whole problem of gravitation would thus be satisfacto-
rily solved if one could find equations covariant under arbitrary substitutions that are
satisfied by the quantities  fixed by the gravitational field itself. However, we
have not succeeded in solving the problem in this manner.11 We have obtained a solu-
tion by instead subsequently restricting the reference system. One is led to this
method naturally by the following considerations. It is clear that for any | material
process by itself (i.e., without its gravitational field) the conservation theorems for
momentum and energy cannot be satisfied. This situation corresponds to the appear-
ance of the term on the right-hand side of (5c). On the other hand, we certainly must
demand that the conservation theorems are satisfied for the material process and the
gravitational field together. From this it follows that we must demand the existence of
an expression  for the stress, momentum, and energy flux and energy density of
the gravitational field that, together with the corresponding quantity  for the
material process, fulfills the relation

If  should have the same character as  according to the theory of invariants,
then the left-hand side of this equation cannot be covariant under arbitrary transfor-
mations; it is probably so only with respect to arbitrary linear transformations. 

Therefore by demanding the validity of the conservation theorems, we restrict the
reference systems to a great extent, and thereby relinquish the construction of gravita-
tional equations in generally covariant form.

Thus, here is where the limit of applicability of the arguments given in section 4
lies. If one begins with a reference system with respect to which the conservations
laws in the form given above hold and introduces a new reference system through an
acceleration transformation, then with respect to the latter the conservation theorems
are no longer satisfied. Nevertheless, I believe that the equations derived on the basis
of the considerations in section 1 do not lose their footing because of this. On the one
hand, it is certainly possible to describe the processes with respect to arbitrary refer-
ence systems; on the other hand, I do not see how the specialization of the reference
system introduced here could bring about the specialization of the equations.

11 A short time ago I found a proof to the effect that such a generally covariant solution cannot exist at
all.

gμν
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7. SYSTEM OF EQUATIONS FOR THE GRAVITATIONAL FIELD

The sought-after system of equations should be a generalization of Poisson’s equa-
tion

Since in our theory the gravitational field is determined by the 10 quantities  in
place of  we will obtain 10 equations in place of this one. By the same token, 
appears on the right-hand side of the field equations as the field source instead of 
so that the sought-after equation will be of the form

 is a differential expression built up from the quantities  from which we
know that it must be covariant with respect to linear transformations. I further assume
that  does not contain anything higher than second derivatives. Furthermore, the
conservation theorem necessitates the following: if we replace the second term of
(5b)  with  then we must allow this term to be transformed such that,
like the first term of (5b), it can be written as a sum of derivatives. So far as I can see,
these considerations gave me a unique way of identifying the  and hence the
sought-after equations. These read:

(7a)

where we set 

and

 [2]

The energy-momentum equation for material process and the gravitational field
together assume the form

(9a)

From (9a) one sees that  plays the same role for the gravitational field that 
plays for material processes.  is a covariant tensor with respect to linear transfor-
mations, and we will call it the stress-energy tensor of the gravitational field. In
accord with postulate 2,  appears like  as a field-generating cause.

The equations become simpler when one introduces the stress components them-
selves in the equations:
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and

The equations then take the form: |

(7b)

Then the conservation theorem assumes the form

(9b)

Equation (7b) allows us to conclude that the equations obtained above satisfy postu-
late 2.12

8. THE NEWTONIAN GRAVITATIONAL FIELD

The gravitational equations we have established are certainly very complicated. But
several important consequences can be easily derived from them based on the follow-
ing considerations. If the usual relativity theory in its familiar form were exactly cor-
rect, the components of  respectively  would be given by the following tables:

The gravitational field equations do not allow that the components of the funda-
mental tensor could actually have these values in a finite region, if some physical pro-
cess occurs in it. However, it appears that the departures of the tensor components
from the given constant values can be taken to be very small quantities for the region

12 Because from equation (7b) one can see, for example, that the quantities  of the gravitational field,
which play the same role for this field that the quantities  do for the material process, have the
same field-inducing effect as the quantities  in conformity with postulate (2).
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of the world accessible to us. We obtain a far-reaching approximation if we take these
deviations, which we will write with  and respectively  along with their
derivatives into consideration only when they enter linearly, and disregard all terms in
which two such quantities are multiplied together. Then the equations (7a) and (7b)
assume the form:

(7c)

where the  gives an incoherent mass flow according to the schema

(8)

We obtain the Newtonian system insofar as we introduce the following approxi-
mations:

1. Only the mass flow is regarded as the field source.

2. The influence of the velocity of the field-generating masses is neglected, and
hence the field is treated as static.

3. The velocity and acceleration components in the equations of motion of a mate-
rial point are treated as small quantities, and only quantities of the lowest order
are retained. 

Finally, we also have to assume that at infinity the  vanish.
It then follows from (7c) and (8) that, if we write the Laplacian operator as  

(7d)

From this, as is well known, it follows that
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ρ0c2

c2 q2–
---------------- ẋ–
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where the integration extends over three-dimensional space, and  is the distance
from  to the origin. It follows from (1b) and (1b'), taking the approximation postu-
lated above taken into account, that

(1c)

Equations (9) and (1c) contain Newton’s gravitational theory, where our constant 
is connected to the usual gravitational constant  by the relation

(11)

from which it follows that 

 |

In the approximation considered here, for the “natural” four-dimensional volume
element  we have

whereby

One can recognize that the coordinate length is identical to the natural length
 hence measuring rods undergo no distortion in a “Newtonian” gravita-

tional field. By contrast, the rate of a clock depends upon the gravitational potential.
For  gives a measure of the clock’s rate, if one sets  One
obtains:

Thus, the greater the mass placed in its vicinity, the slower the clock ticks.13 It is
interesting that the theory has this result in common with Nordström’s theory.

For the propagation of light  one obtains the velocity 

Thus according to the foregoing theory, and in contradiction with Nordström’s
theory, light rays are bent by the gravitational field. This is the only consequence of
the theory find so far that is accessible to experience.

13 According to postulate (4), this result holds for the rate of any process whatsoever.
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Without continuing this consideration of the use of approximations in field calcu-
lations, we will give the exact equations of motion for a point in the field considered
here. From the general equations of motion (1b') we obtain

(1b'')

For the special case of the Newtonian field this yields

(1c')

9. ON THE RELATIVITY OF INERTIA

From (1c') it follows that the momentum  and the energy  of a mass point moving
slowly in the Newtonian gravitational field are given by the equations:

(12)

Thus, although the energy of a point mass at rest decreases with the accumulation
of masses in its vicinity, as the first term of the expression for  shows, the same
accumulation leads to an increase of the inertia of the point mass under consider-
ation. This result is of great theoretical interest. For if the inertia of a body can
increase due to the piling up of mass in its vicinity, then we have no choice but to
regard the inertia of a point as being caused by the presence of the other masses.Thus,
inertia appears to be caused by a kind of interaction between the point mass to be
accelerated and all of the other point masses.

This result appears quite satisfactory if one reflects on the following. It makes no
sense to speak of the motion, and hence also the acceleration, of a body  by itself.
One can only speak of the motion or acceleration of a body  relative to other bodies

  etc. Whatever holds true kinematically regarding acceleration must also hold
true for the inertial resistance with which bodies oppose acceleration; it is to be
expected a priori, if not exactly necessarily,14 that inertial resistance is nothing but a
resistance of the designated body  to relative acceleration with respect to the totality
of all other bodies   etc. It is well known that E. Mach first defended this point
of view, with perfect acuity and clarity, in his history of mechanics, so that here I can
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simply refer to his arguments. Let me also refer to a witty brochure by the Viennese
mathematician W. Hoffman that independently argues for the same position. I will
call the | conception sketched here the “hypothesis of the relativity of inertia.”

To avoid misunderstandings, let me say once more that, like Mach, I do not think
that the relativity of inertia is a logical necessity. But a theory which grants the rela-
tivity of inertia is more satisfactory than our current theory, because in the latter the-
ory, inertial systems are introduced which, on the one hand, have a state of motion
that does not depend on the states of observable objects, and thus is not caused by
anything accessible to observation, but, on the other hand, are supposed to determine
the behavior of material points.

The concept of the relativity of inertia requires, however, not only that the inertia
of a mass  increases when masses at rest pile up in its surroundings, but also that
this increase of inertial resistance will not take place if the masses  are acceler-
ated with the mass  One can express this point as follows: the acceleration of the
masses  must induce an accelerative force on  that is in the same direction as
the acceleration. With this one can see that this accelerating force must overcompen-
sate for the increase of inertia produced by the mere presence of  for accord-
ing to the relation between the inertia and energy of systems, the system  as a
whole must have less inertia the smaller its gravitational energy.

In order to see that our theory fulfills this requirement, we must take into account
the terms on the right-hand side of the system of equations (7c), which are propor-
tional to the first power of the velocity of the field-producing masses. We then obtain
the following instead of the system of equations (7d):

(7e)

The equations of motion of the material point (1b'') differ from (1c'), in that now 
also differ from zero. They read in full:

14 One typically avoids the consequences of such arguments by introducing reference systems (inertial
systems) with respect to which freely moving mass points are in rectilinear uniform motion. What is
unsatisfactory is that it remains unexplained how the inertial systems can be privileged with respect to
other systems.
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For a slowly moving point one can write these equation as follows in the usual three-
dimensional vector notation:

(1d)

Here

If we denote the velocity of the field-producing masses  with 
then we can write (7e) in more concisely:

(7e')

The equations (7e') and (1d) show how slowly moving masses influence each
other according to the new gravitational theory. To a great extent, the equations corre-
spond to those in electrodynamics,  corresponds to the scalar potential of electri-
cal masses up to the sign and up to the circumstance that the factor  appears in
the first term of the right-hand side of (1d).  corresponds to the vector potential of
electric currents; the second term on the right-hand side of (1d), which corresponds to
an electric field strength resulting from a temporal change of the vector potential,
yields precisely those induction effects, directed like the acceleration, that we must
expect based on our ideas regarding the inertia of energy. The vector  corresponds
to the magnetic field strength (curl of the vector potential), so the last term in (1d)
corresponds to the Lorentz force.

It should further be remembered that a term of the form  occurs in the the-
ory of relative motion in mechanics, and is known as the Coriolis force. One can
show from (7e') that a field with vector  exists on the inside of a rotating spherical
shell, which leads to the result that the plane of oscillation of a pendulum set up
inside the spherical shell does not stay fixed in space, but rather, due to the sphere’s
rotation, must take part in a precessional motion in the same direction as this rotation.
This result is also to be expected from the meaning of the concept of the relativity of
inertia, and has long been anticipated. It is noteworthy that the theory also agrees
with the above conception with regard to this point, but unfortunately | the expected
effect is so slight that we cannot hope to confirm it via terrestrial experiments or
astronomy.
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10. CONCLUDING REMARKS

In the foregoing discussion we have sketched the most natural paths that a gravita-
tional theory can follow. One either stands by the usual relativity theory, i.e., one
assumes that the equations expressing laws of nature remain covariant only under lin-
ear orthogonal substitutions. Then one can develop a scalar theory of gravitation
(Nordström’s theory), which is fairly simple and sufficiently satisfies the most impor-
tant requirements to be imposed on a gravitational theory, although it does not
include the relativity of inertia as a consequence. Or one augments the relativity the-
ory in the way sketched above. One certainly attains equations of considerable com-
plexity, but, in exchange, the sought after equations follow from the basic principles
with the help of surprisingly few hypotheses, and the conception of the relativity of
inertia is satisfied. 

Whether the first or the second way corresponds essentially to nature must be
decided by observations of stars appearing near the Sun during solar eclipses. Hope-
fully the solar eclipse of 1914 will already resolve this important decision.

EDITORIAL NOTES

[1] In the original, the following equation was mistakenly given the equation
number (2), which appeared already on p. 546 [p. 1251 in the original].

[2] In the original, the first  and  are misprinted as  and  respectively. γ τρ γ αβ yτρ γ βν
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INTRODUCTION

Einstein’s attempt to realize Machian ideas in the construction of general relativity
was undoubtedly a very major stimulus to the creation of that theory. Indeed, the very
name of the theory derives from Einstein’s conviction that a theory which does justice
to Mach’s critique of Newton’s notion of absolute space must be generally relativis-
tic, or covariant with respect to the most extensive possible transformations of the
spacetime coordinates.

The extent to which general relativity is actually Machian is, however, the subject
of great controversy. During the last six months, I have been examining closely all of
Einstein’s papers that concern the special and general theory of relativity together
with a substantial proportion of his correspondence related to relativity. There were
several things that I wished to establish: 1) What precisely was the defect (or defects)
in the Newtonian scheme that Einstein sought to rectify in his general theory of rela-
tivity? 2) How did Einstein propose to rectify the perceived defect(s)? 3) What rela-
tion does Einstein’s work on his Machian ideas bear to the other ideas and work of his
predecessors and contemporaries on the problem of absolute and relative motion? 4)
Finally, to what extent did general relativity solve that great and ancient problem of
the connection between and status of absolute and relative motion?

In this paper, which addresses the first three issues and gives my main conclusions
(which are being presented in more detail together with my attempt at an answer to
the fourth question in a forthcoming book (Barbour, in preparation)), I begin by
reviewing the most important contributions to the discussion of absolute and relative
motion made by Einstein’s predecessors and contemporaries. As we shall see, this
work identified certain key problems and went some way to providing the solutions
to them. In particular, in 1902 Poincaré (1902; 1905, 75–78 and 118) provided a very
valuable criterion for when a theory could be said to be Machian. Moreover, Mach
(1883, 1960), Hofmann (1904), and Reissner (1914, 1915) made definite proposals of
non-relativistic models of particle mechanics that meet this criterion. The examina-
tion of Einstein’s entire relativity opus shows that this work made virtually no impact
on him. Moreover, there is rather strong evidence which indicates a surprising lack of
awareness on Einstein’s part of the central problem with which the absolute-relative
debate is concerned—

 

the problem of defining velocity

 

, i.e., change of position (and,
more generally, 

 

change

 

 of any kind). For reasons that can be at least partly under-
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stood, Einstein saw this as a relatively trivial matter and regarded 

 

acceleration

 

 as
more problematic.

In fact, Einstein associated with Mach’s name two specific problems.
The first may be called the 

 

absolute-space problem

 

, but it could equally well be
called the problem of the 

 

distinguished frames of reference

 

. Einstein initially pre-
sented it as the great mystery of why there seem to exist distinguished frames of ref-
erence for the expression of the laws of nature, though later he often spoke of the
unacceptability of there being a thing (absolute space) that could influence the behav-
ior of matter without itself being affected by matter.

The second may be called the 

 

inertial-mass problem

 

. This problem was first
mentioned explicitly by Einstein in 1912, when he asserted that Mach had sought to
explain the 

 

inertial mass

 

 of bodies through a kind of interaction with all the masses
of the universe.

In the years up to the definitive formulation of general relativity in 1915 and a lit-
tle beyond, Einstein repeatedly mentioned these two problems. However, in 1918,
following a critique by Kretschmann (Kretschmann 1917), Einstein (Einstein 1918a)
said that he had not hitherto distinguished properly between these two problems (and
between the means by which he proposed to resolve them). He then gave a formal
definition of what he called 

 

Mach’s Principle

 

, which took the form of the require-
ment that all the local inertial properties of matter should be completely determined
by the distribution of mass-energy throughout the universe. He said that this was “a
generalization of Mach’s requirement that inertia should be derived from an interac-
tion of bodies.” At the same time, Einstein gave a definition of the relativity principle
that took from it all the specific empirical content it had previously seemed to possess
in Einstein’s work and transformed it into a very general necessary condition on the
very possibility of stating any laws of nature: “The laws of nature are merely state-
ments about spacetime coincidences; they therefore find their only natural expression
in generally covariant equations.”

Towards the end of his life, Einstein admitted (not very publicly but explicitly in a
letter to Felix Pirani)

 

1

 

 that his 1918 formulation of Mach’s Principle made no sense
mathematically and from the physical point of view had been made obsolete by the
development of physical notions that had displaced material bodies from the pre-emi-
nence they had possessed in Newtonian theory. However, to the end of his life he
retained the 1918 formulation of the relativity principle, which he admitted carried
little real physical content. However, he asserted that in conjunction with a require-
ment of simplicity it possessed great heuristic value, namely that, in a choice between
rival theories, preference should be given to those theories that, when expressed in
generally covariant form, took a simple and harmonious form.

This faith in 

 

simplicity

 

 as a criterion for selecting physical theories is extremely
characteristic of Einstein and gives expression to his deep faith in the ultimate ratio-
nality of physics. It is, however, a notoriously slippery criterion. It is also a fact that

 

1 Einstein to Felix Pirani, 1954 (EA 17-447).



 

E

 

INSTEIN

 

 

 

AND

 

 M

 

ACH

 

’

 

S

 

 P

 

RINCIPLE

 

571

when, in the years up to and including 1916, Einstein said that a satisfactory theory of
gravity and inertia must be generally covariant he undoubtedly thought that this
requirement had a deep physical significance going far beyond the bland 1918 formu-
lation of the relativity principle.

Mach made the comment that the creators of great theories are seldom the best
people to present those theories in a logically concise and consistent form. In this
book devoted to alternative strategies that could have been adopted (and in some
cases were) to the development of relativity theory, I hope that the following attempt
to establish what Einstein was trying to do, actually did, and might have done will
help to cast light on the extremely tangled story of the creation of one of the wonders
of theoretical physics: the general theory of relativity. In particular, I hope this paper
will complement the articles by Jürgen Renn and John Norton

 

2

 

 (both of which I
found very useful in my own work) by looking at Einstein’s work closely from the
perspective of the specific problem of absolute 

 

vs

 

 relative motion. John Norton has
done a splendid technical and conceptual job in comparing Einstein’s approach with
the more conventional ‘Lorentz-invariant field theoretical’ approach (to use Norton’s
useful anachronism) that virtually all his contemporaries adopted to the finding of a
relativistic field theory of gravitation. Jürgen Renn, for his part, has emphasized the
vital importance of Einstein’s more wide-ranging approach and the inclusion of epis-
temological problems from the foundations of mechanics in the set of issues to be
resolved in a satisfactory theory of gravitation. He brings out the value of Einstein’s
philosophical and integrative outlook. Examination of Einstein’s work from the spe-
cific absolute 

 

vs

 

 relative perspective brings to light some further issues and aspects of
Einstein’s work that are not so readily revealed in their approaches.

I hope and believe that nearly all the articles in this book will have not only histor-
ical and philosophical interest but also serve a useful purpose for current research. It
is widely agreed that the greatest current problem that has to be solved in theoretical
physics is that of the relationship between quantum theory and the general theory of
relativity. It is my conviction (Barbour 1994, 1995, in preparation) that general rela-
tivity is deeply Machian in a sense that unfortunately Einstein never managed to pin-
point accurately and that precisely this very Machian nature of general relativity is
the main cause of the difficulties that stand in the way of its quantization. I therefore
hope that the present article will have not only historical relevance but also help to
clarify some central issues of current research.

In this article, it will not be possible to give a comprehensive account. I aim
merely to identify some of the most important issues and ask the reader to consult my
forthcoming monograph for a more detailed account. See also the 

 

Notes Added in
Proof

 

 at the end of this article.

 

2 See 

 

The Third Way to General Relativity

 

 and 

 

Einstein, Nordström, and the Early Demise of Scalar,
Lorentz Covariant Theories of Gravitation 

 

(both in this volume).
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1. THE ORIGIN AND EARLY HISTORY OF
THE ABSOLUTE 

 

VS

 

 RELATIVE DEBATE

The whole absolute 

 

vs

 

 relative debate arose from Descartes’s claim in his 

 

Principles
of Philosophy

 

 (1644) that 

 

motion is relative

 

 (Barbour 1989). Descartes argued that
position can only be defined relative to definite reference bodies. Since there is evi-
dently no criterion for choosing certain reference bodies in preference to others, Des-
cartes argued that there can be no unique definition of motion—a given body has as
many different motions as there are reference bodies (which, in general, will, of
course, be moving relative to each other) with which it can be compared.

Despite this rather cogent argument, Descartes then proceeded, in a manifest 

 

non
sequitur

 

, to formulate definite laws of motion, the first two of which were identical in
their content to the law that Newton subsequently adopted as his first law: Any body
free of disturbing forces will either remain at rest or move in a straight line with uni-
form speed. It is evident that such a law presupposes a definite frame of reference—a
reference space—and an independent time (an external clock) if it is to make any
sense. About this mysterious reference space Descartes said not a word.

We know from Newton’s tract 

 

De Gravitatione

 

 (Hall and Hall 1962), written
around 1670 but published only in 1962, that Newton was intensely aware of the fla-
grant contradiction between Descartes’s espousal of relativism and the vortex theory,
on the one hand, and his anticipation and formulation of the law of inertia, on the
other. In a world in which all matter is in ceaseless relative motion (as it is in accor-
dance with Cartesian vortex theory or the atomistic theories so prevalent in the 17th
century), Cartesian relativism seems to make it utterly impossible to define a definite
motion; in particular, it would appear to be impossible to say that any given body is
moving in a straight line. Commenting sarcastically on Descartes’s law, Newton said:
“That the absurdity of this position may be disclosed in full measure, I say that thence
it follows that a moving body has no determinate velocity and no definite line in
which it moves.” This may truly be called the 

 

fundamental problem of motion

 

: If all
motion is relative and everything in the universe is in motion, how can one ever set up
a determinate theory of motion?

The entire story of the absolute 

 

vs

 

 relative debate flows from this dilemma that
Newton posed so clearly in around 1670. For completeness, one should also add the
temporal part of the story: Motion can never be measured by 

 

time

 

 in the abstract but
only by a definite comparison motion. For scientific purposes, the comparison motion
was for millennia the rotation of the Earth, though more recently a global network of
atomic clocks has been introduced as the official standard of time. Thus, statements
in physics involving time are really statements about physical clocks, for which a the-
ory based on first principles is needed (given the fundamental importance of time).

Having formed the deep conviction that no sensible mathematically well-defined
dynamics could be based upon Cartesian relativism, Newton insisted on the introduc-
tion of a rigidly fixed absolute space and a uniformly flowing external absolute time
as the kinematic framework for the definition of motion. However, he was still very
conscious of the cogency of Descartes’s relativism and in the famous Scholium in the
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Principia

 

 on absolute and relative motion admitted freely the need to show how abso-
lute motions, which cannot be observed directly (“because the parts of that immov-
able space, in which those motions are performed, do by no means come under the
observation of the senses”), could be deduced from the observed relative motions.
This task may be appropriately called the 

 

Scholium problem

 

: Given observed relative
motions, find the corresponding absolute motions. Although Newton actually claimed
at the end of the Scholium that he wrote the 

 

Principia

 

 specifically in order to show
how that problem is to be solved, he never spelled out the solution explicitly and in
the Scholium merely advanced some first qualitative arguments designed to show that
absolute space must exist. Even less effort was made to demonstrate the existence of
absolute time.

Despite eloquent criticism of the notions of absolute space and time by Newton’s
contemporaries Huygens, Leibniz, and Berkeley, the absolute 

 

vs

 

 relative problem
remained effectively in a state of limbo for very nearly 200 years until it was taken up
again by the mathematician Carl Neumann in 1870 (Neumann 1870) and by Ernst
Mach in 1872 (Mach 1872, 25; 1911) at the end of an extended essay on the conser-
vation of energy and then again in his famous book on mechanics in 1883 (Mach
1883, 1960). Parallel but less influential work was done in Britain (Scotland to be
precise) by William Thomson (later Lord Kelvin) and Tait (Thomson and Tait 1867,
§§208ff.; Tait 1883) and also Lord Kelvin’s brother James Thomson (Thomson
1883). The interventions of Neumann and Mach brought two issues to the fore.

The first was essentially the Scholium problem: under the assumption that New-
ton’s scheme is in essence correct, how can one make correct epistemological sense
of his notions of absolute space and time? Important and significant contributions to
the resolution of this problem were made by Neumann (Neumann 1870), Tait (in an
unfortunately little noted elegant piece of work (Tait 1883)), Ludwig Lange (Lange
1884, 1885, 1886), the logician Frege (Frege 1891), and above all Poincaré (Poincaré
1898 and 1902; 1905, 75–78 and 118). This work will be considered in Sec. 3.

The second issue brought to the fore was Mach’s proposal, made already in 1872
and then repeated (though not quite so clearly or unambiguously as one might wish) in
his 1883 

 

Mechanik

 

 and all its subsequent editions, to the effect that Newton’s mechan-
ics might actually be 

 

physically incorrect

 

 and should be replaced by a dynamics of a
different form in which only relative separations of bodies occur. The physical
cogency of this proposal was made much more impressive by Mach’s ability to
counter Newton’s bucket argument from the undoubted existence of centrifugal force
to the need for an absolute space to explain it. Mach observed that the distant masses
of the universe rather than some absolute space could be the ultimate origin of the cen-
trifugal forces and that if this were the case local material bodies, such as the wall of
Newton’s bucket, could be expected to have only a minuscule and unobservable effect.
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2. DIRECT ATTEMPTS TO IMPLEMENT MACH’S PROPOSAL
AND THEIR LACK OF IMPACT ON EINSTEIN

Although they have attracted very little notice, attempts at a direct implementation of
Mach’s proposal were made throughout the twentieth century. The first such attempts
were made early enough for them to have influenced Einstein in his work on general
relativity. In this section, this work and its very marginal impact on Einstein will be
considered. 

A proposal for a new, non-Newtonian mechanics was already advanced by Mach,
in a very tentative and mathematically rather unsatisfactory form, in the 

 

Mechanik

 

 in
1883.

 

3

 

 His ideas were advanced in several interesting ways by the Friedlaender
brothers in a rather obscure booklet published in 1896 (Friedlaender and Friedlaender
1896). In a simple and beautiful example,

 

4

 

 Benedict Friedlaender showed how dis-
tant rotating masses (the ‘stars’ as seen from someone rotating with Newton’s bucket)
could very well generate centrifugal forces away from the axis of rotation and thus
make absolute space unnecessary. In his contribution to this volume, Renn discusses
the various interesting points and also anticipations of Einstein’s later work that can
be found in the Friedlaenders’ booklet.

A rather general way of generating (nonrelativistic) relational theories of the kind
envisaged by Mach was found by a certain Wenzel Hofmann of Vienna, who in 1904
(Hofmann 1904) published an even more obscure booklet

 

5

 

 than the Friedlaenders’
which would surely have been lost forever had it not been for fleeting references to it
by Mach in the 5th and 6th editions of the 

 

Mechanik

 

 and by Einstein in 1913 (Ein-
stein 1913a). In modern terms, the essence of Hofmann’s proposal was to replace the
Newtonian kinetic energy  which occurs in the Lagrange function  of the
classical mechanics of  point particles and consists of a sum over individual masses
of the form

(1)

where  is the mass of particle  is its position vector in absolute space, and the
dot denotes the time derivative, by a sum over all pairs of the  particles of the form

(2)

where  is the (Euclidean) separation of particles  and  is some function
of this separation, and the dot has the same meaning as in (1).

Hofmann was able to show qualitatively that in a realistic cosmological model, in
which there are many stars distributed more or less uniformly over a large area,

 

3 See (Mach 1960, §VI.7, 286–7) and the discussion of this section by Norton (who questions whether
it is a proposal for a new mechanics) and myself in (Barbour and Pfister 1995).

4 Translated in part in (Barbour and Pfister 1995).
5 Mach’s proposal reduced essentially to the special case  of Hofmann’s general proposal (2).f 1=

T , T V–
n
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masses such as those in the solar system would behave in accordance with laws that
approximated quite well Newton’s laws but in an effective space determined explic-
itly by the matter distribution in the universe.

Hofmann’s idea has since been independently rediscovered many times. The first
person to do that was Reissner in 1914 and 1915 (Reissner 1914, 1915), when he
chose the particular form  for  in (2). This choice is physically plausible
and has some remarkably interesting consequences as was shown in part by Reissner
himself and also Schrödinger (Schrödinger 1925) in a very beautiful paper at least
partly inspired by Reissner’s work.

More recently, Bertotti and I (Barbour and Bertotti 1977, 1982) considered a very
general framework for constructing relational theories of this kind, including a rela-
tional treatment of time. The basic idea is taken straight from Mach. One assumes
that dynamics must be formulated for the universe as a whole

 

6

 

 and, in a variational
formulation, insists that only the relative quantities  and their rates of change may
appear on the Lagrangian that describes the dynamics of the universe. Time is treated
relationally by insisting that all changes are measured, not by comparison with some
abstract external time  but always by comparison with other actual changes in the
universe. This has the effect that Newton’s abstract time is replaced by an appropriate
average of the totality of changes in the universe.

It turns out that within this large class of possible Machian theories there exist at
least two distinct subclasses. One is essentially the class discovered by Hofmann, but
it has the disadvantage that it leads to an effective inertial mass that is anisotropic in
the presence of nearby accumulations of mass. Schrödinger, in particular, was well
aware of this anisotropy and knew that it could lead to an experimental refutation of
such theories. He attempted to investigate the effect of the Galaxy and found it to be
just below the then existing observational accuracy. He was however using a much
too low value for the mass of the Galaxy, and modern data rule out such a theory
completely. Such theories are therefore of interest mainly as examples of what
Machian theories might look like. In contrast, in the theories of the second class,
which Bertotti and I base on a notion called the intrinsic derivative (or 

 

best matching

 

),
mass anisotropy is completely absent. Indeed, one can construct intrinsic models of
Machian mechanics that in their locally (but not globally) observable consequences
are completely indistinguishable from Newtonian mechanics. I shall return to this
briefly at the end of the next section.

The fact that the basic idea of relational mechanics was rediscovered many times

 

7

 

indicates that it is a very natural and direct way of realizing Mach’s ideas and thereby
eliminating absolute motions (and with them absolute space and time) from the foun-
dations of physics. Given Einstein’s passionate desire to implement Mach’s ideas, it

 

6 This is implicit in the proposal of Mach and is made explicit by the appearance of the crucial summa-
tion in Hofmann’s expression (2).

7 Apart from Hofmann, Reissner, and Schrödinger in the early part of this century, at least five other
people besides Bertotti and myself hit on the same basic idea in the period 1960–1990, as noted in the
articles by myself and Assis in (Barbour and Pfister 1995).
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has always seemed to me most surprising that the basic idea—the insistence that only
relative quantities should appear in the laws of nature—never seems to have been
considered seriously by Einstein. All of Einstein’s work on relativity—from 1905
right through to his death in 1955—has a quite different ‘flavour.’ In fact, it is quite
difficult to find evidence that Einstein was even aware of the possibility.

Unless more evidence comes to light in the as yet unpublished correspondence,
the only really clear statement of Einstein which does show that he was aware of
what might be done along these lines comes from a paper published in 1918 (Einstein
1918b) with the title “Dialogue on objections to the theory of relativity,” which
includes the following:

 

We want to distinguish more clearly between quantities that belong to a physical system
as such (are independent of the choice of the coordinate system) and quantities that
depend on the coordinate system. Ones initial reaction would be to require that physics
should introduce in its laws only the quantities of the first kind. However, it has been
found that this approach cannot be realized in practice, as the development of classical
mechanics has already clearly shown. One could, for example, think—and this was actu-
ally attempted—of introducing in the laws of classical mechanics only the distances of
material points from each other instead of coordinates;

 

 a priori

 

 one could expect that in
this manner the aim of the theory of relativity should be most readily achieved. However,
the scientific development has not confirmed this conjecture. It cannot dispense with
coordinate systems and must therefore make use in the coordinates of quantities that can-
not be regarded as the results of definable measurements

 

In the absence of definite references, it is impossible to know for sure whose work
Einstein had in mind with his “this was actually attempted” but it is plausible to sup-
pose that he was referring to Mach’s original proposal of 1883, Hofmann’s 1904
booklet, which he had mentioned briefly in 1913 (Einstein 1913a), describing it as
“ingenious,” and also perhaps Reissner’s two papers.

 

8

 

 It must also be said that, if he
was thinking of the work of Hofmann and Reissner, Einstein had clearly failed to
grasp what had been achieved in that work. Both authors had in fact succeeded in
finding a genuine alternative to Newtonian inertia governed by absolute space. More-
over, the alleged difficulty to which Einstein refers, that of dispensing with coordi-
nate systems, is simply nonexistent. Both Hofmann and Reissner 

 

did

 

 dispense with
coordinate systems in the formulation of their proposed law and worked directly with
“only the distances of material points from each other instead of coordinates.”

Since these last cited words of Einstein do perfectly encapsulate what Mach had
advocated, and since also Einstein repeatedly expressed the greatest admiration for
Mach’s critique of Newtonian mechanics, his remarks in 1918 present something of a

 

8 No correspondence from Einstein to Reissner survives. There is one letter from Reissner to Einstein in
the Einstein Archives. It dates from 1915 but concerns Reissner’s work on general relativity. Reissner
makes no mention of his Machian papers. In September 1925, Einstein (Einstein to Schrödinger, Sep-
tember 26, 1925 (EA 22-003) thanked Schrödinger for sending him a copy of his 1925 paper on the
relativity principle. Einstein merely said it was “interesting.” Had the work of Hofmann and Reissner
truly made any impact on him, one might have expected Einstein to point out to Schrödinger that his
work had been anticipated by them.
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puzzle, as I noted a little earlier: Why did Einstein take so little interest in a serious
and direct attempt to implement Mach’s proposal? To this query one may add the
observation that Einstein’s frequent references to Mach in his papers in the period
1912 to 1923 seldom reflect accurately what Mach actually said and sometimes even
represent a serious distortion. The most serious distortion concerns a straight confu-
sion between two quite distinct meanings of the word 

 

inertia

 

. It is worth saying
something about this.

Both in Mach’s time and now, the word inertia meant two things: first, as
expressed in Newton’s first law, the law of inertia, namely the tendency of a body to
continue in rest or in uniform motion in a straight line unless acted upon by some
force; second, the quantitative measure of resistance to acceleration as expressed by
the presence of  the inertial mass, in Newton’s second law  Mach
(Mach 1872, 25; 1883) pointed out that Newton had failed to give a meaningful defi-
nition of inertial mass and proceeded to supply one himself. He believed that his def-
inition removed all difficulty surrounding the use of the concept of inertial mass in
Newtonian dynamics. In contrast, he felt that Newton’s formulation of the law of
inertia was very seriously deficient and probably incapable of being given adequate
expression without some actual change in its physical content. Mach insisted that
genuine content must be given to expressions like “uniform motion in a straight line”:
uniform with respect to what and straight with respect to what? He considered it
absolutely impermissible to invoke invisible time and space to answer these ques-
tions, and his discussion of these issues takes us straight back to the problems with
which Newton grappled in De Gravitatione.

Very careful examination of all of Einstein’s numerous comments on issues
related to Mach have led me to a very surprising conclusion. Einstein never once even
mentioned this problem—the fundamental problem of motion—at the heart of
dynamics. He seems to have been more or less completely blind to its existence. He
very often used the word inertia but never once made the distinction between the two
meanings of it. When he was most explicit about Mach and inertia, he incorrectly
attributed to Mach the idea that the inertial mass should arise in some manner from a
kind of interaction of all the bodies in the universe (Einstein 1912, 1917). Now it is
true that the  that appear in Hofmann’s proposal (2) are best interpreted as iner-
tial charges. In the theory to which (2) and other similar proposals give rise, one then
obtains effective inertial masses, which are indeed determined by interaction with all
the bodies in the universe. This was clearly demonstrated by both Reissner and
Schrödinger, but it was already qualitatively clear to Hofmann.

Einstein may very well have had a correct intuitive appreciation that some such
effect could come out of a Machian theory of motion, but his repeated assertions that
this was what Mach had called for are unfortunate on several counts: 1) They are his-
torically inaccurate. 2) The effect arises in a certain class of Machian theories—the
class considered by Hofmann, Reissner and Schrödinger—but not in another, which
Bertotti and I discovered (Barbour and Bertotti 1982). This second class of theories is
impeccably Machian and actually includes general relativity as a special and remark-

m, F ma.=
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ably interesting example (Barbour 1995, see also the Notes Added in Proof). 3) Ein-
stein’s concentration on the inertial mass deflects attention away from the true and
profound problem that underlies the absolute vs relative debate: How are time and
motion to be defined?

This is the fundamental question that, very surprisingly, Einstein never addressed
directly. In the final section of this paper, I shall try to establish why this was so.
However, before then, in the following section, I want to complete the review of the
work of Einstein’s predecessors and contemporaries. As noted earlier, the critique of
Neumann and Mach raised two issues: 1) Can Newtonian theory be recast in an epis-
temologically satisfactory manner without change of its essential physical content? 2)
Can Newtonian theory be replaced by a physically different theory based on Machian
ideas?

This section has essentially considered the answer to the second question. In the
next section, we shall consider the answer to the first.

3. THE EPISTEMOLOGICAL WORK OF NEUMANN, LANGE,
AND POINCARÉ AND ITS IMPACT ON EINSTEIN

In his habilitation lecture of 1870, Neumann posed a general problem and provided a
partial solution to a small part of it. The general problem was this: As formulated by
Newton, the laws of mechanics simply cannot be tested because absolute space and
time are invisible and inaccessible to experimentalists. The question then was: Is it
nevertheless possible to make epistemological sense of Newton’s laws by identifying
operational surrogates of absolute space and time?

To begin to make progress in this direction, Neumann assumed that particles mov-
ing freely of all forces (force-free particles) exist and could be identified as such and
that also by some means absolute space (or a suitable surrogate of it) could be
observed directly. If the second assumption is satisfied, one can then observe the
motion of some chosen force-free particle. Neumann pointed out that, in the absence
of an external clock, it is meaningless to say that such a particle is moving uniformly
(though, if absolute space has been ‘made visible’, one can verify that it is moving in
a straight line). However, what one can do is observe further force-free particles and
see how they behave relative to the original particle, which is taken as a reference
body. One can use the distance traversed by this reference body as a measure of time
(inertial clock) and see if, relative to this inertial clock, a second force-free body
moves uniformly. In this way, Neumann was able to give genuine operational content
to the part of Newton’s first law which asserts the uniformity of the motion of a force-
free body. However, Neumann admitted that he was unable to solve the problem of
making absolute space ‘visible.’

This problem was taken up by the youthful Ludwig Lange (he was only 21) in
1884. He proceeded very much in the spirit of Neumann and assumed the existence of
force-free particles that could be identified as such. His basic idea was to use three
such particles to define a spatial frame of reference. Just as in the case of Neumann’s
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inertial clock, for which it is meaningless to say that the clock itself is moving uni-
formly, Lange noted that it would be meaningless to say that his three reference bodies
are moving rectilinearly. Instead, they define a frame of reference, with respect to
which one can then verify that other bodies are moving rectilinearly. Moreover, using
any one of the three chosen reference bodies as a Neumann inertial clock, one can
simultaneously verify that further bodies are moving uniformly as well as rectilinearly.

Lange’s actual construction of the spatial frame of reference using three force-
free bodies is in fact rather awkward and clumsy, so I shall not attempt to describe it
here, especially since I shall shortly describe a much neater construction due to Tait
(Tait 1883). However, it is worth emphasizing the crucial point of the construction,
which Lange was the first to recognize clearly and for which he deserves great credit.
It will be recalled that Newton criticized Cartesian relativism because it made the
motion of a considered body dependent on the choice of the reference bodies used to
determine its motion. Since the choice of reference bodies is entirely arbitrary, it
would appear that motion itself cannot be defined in any unique way. However, the
situation is radically altered if one insists that the reference bodies—no matter which
are chosen—are themselves moving in accordance with Newton’s laws. This is the
crucial stipulation that takes the seemingly fatal arbitrariness out of a relational defi-
nition of motion. Once this basic fact has been recognized, precise definitions merely
reduce to a working out of details.

One severe problem with the Neumann-Lange approach—Lange never succeeded
in overcoming it—was that of recognizing when bodies are free of forces. The con-
struction depends crucially on the existence of unambiguously identifiable force-free
bodies. This raises two problems: 1) How can one tell if a body is free of forces? 2)
What can one do if nature fails to provide any force-free bodies? In fact, this is
exactly the case with gravity, to which all bodies are subject. These serious difficul-
ties were pointed out clearly by the logician Frege (Frege 1891) in an otherwise posi-
tive review of Lange’s work. Frege correctly emphasized that the axioms of dynamics
form a closed system and can only be tested in their totality. Since forces are an inte-
gral part of dynamics, their existence must be taken into account in the foundations of
any method used to determine the distinguished frames of reference that play such an
important role in Newtonian dynamics.

As it happens, the requirement that Frege raised was (in its essentials) met in three
studies that unfortunately received very little attention. The first was actually the
work of Tait in 1883 that I already mentioned. The other two were published in 1898
and 1902 by Poincaré.

Tait did not solve the problem of finding the dynamical frame of reference in full
generality in the case when no force-free bodies are available. He did, however, give
a solution to the problem for purely inertial motion that yields the Newtonian frames
of reference given purely relative data and simultaneously confirms that all the con-
sidered bodies are actually free of all forces.

Tait solved the following problem, which had been posed by James Thomson
(Thomson 1883). Suppose that at certain unknown instants of time we are given all
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the relative separations  between a set of  point particles. Thus, we are, as it
were, given ‘snapshots’ of the relative configurations of the particles. Using these
snapshots and nothing else, can we verify if there exist a frame of reference and a
measure of time, both of which must be deduced from the snapshots, in which all the
particles are moving in accordance with Newton’s first law?

To solve this problem, Tait supposed that the answer is yes. I shall consider the
solution he gave for the case of three particles, since it fully illustrates the underlying
principle. If all the particles are moving in accordance with Newton’s first law, then
one can certainly always choose the frame of reference in such a way that one of the
particles is permanently at rest at the origin of the frame. If we exclude the special
cases in which there are collisions of the particles, then if we consider some second
particle there must exist a time at which it passes the first one at a distance  of clos-
est approach. We can then choose  and  axes of the frame of reference in such a
way that at  this second particle is at the point  and at time  is at the
point  Thus, we choose the unit of time such that particle 2 has unit velocity.
It becomes a Neumann inertial clock. The spatiotemporal framework is then uniquely
defined (up to reflections). At  the third particle will have some initial position

 and initial velocity  Thus, this three-body problem will have
seven essential unknowns. The problem of inertial motion is more or less trivial and
one can find an analytical solution for the observable separations  in terms of these
seven unknowns. Given observed values of  these can be compared with the ana-
lytical solution and the seven unknowns determined.

As Tait noted, the most interesting point concerns the number of snapshots
needed to find the seven unknowns. Each snapshot yields three independent data—
the three sides of the triangle—but each snapshot is taken at an unknown time, so that
only two useful data are supplied with each. It is thus clear that to determine the spa-
tiotemporal framework and test whether all three particles are moving inertially in
accordance with Newton’s first law one needs at least four snapshots, since they give
eight data, from which the seven unknowns can be determined and one verification
made of the conjecture. Each extra snapshot yields a further two verifications.

Several important points emerge from Tait’s analysis. First, contrary to a very
widespread opinion engendered by Lange’s work, three particles are already suffi-
cient to establish the spatiotemporal framework and to test whether Newton’s first
law is satisfied. Lange, and many of his followers, believed three particles were
needed to define the framework and that only a fourth would permit a nontrivial veri-
fication of Newton’s law. Second, attention should be drawn to the central importance
of the complete configurations of the three particles, which, in a sense, define the
instants of time, and to the fact that both time and the spatial reference frame are best
and mostly effectively determined together from the raw observational data—the rel-
ative separations. Third, knowledge of the spatial frame of reference is a vital prereq-
uisite for determination of all quantities of primary concern in dynamics, above all
time, which in the Tait procedure is read off from distance traversed in the spatial
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rij
rij,



EINSTEIN AND MACH’S PRINCIPLE 581

inertial frame of reference, and velocity and momentum, both of which can only be
found once the complete spatiotemporal framework has been determined.

Two further points should be made here. In analytical mechanics, great emphasis
is placed on the possibility of representing dynamics in completely arbitrary frames of
reference. However, this does not alter the fact that somehow or other the primary
dynamical quantities such as momentum and energy must be found in an inertial spa-
tiotemporal framework. It is only then that a transformation to an arbitrary framework
can be performed. Many people, even experts, are quite unaware of this fact. The sec-
ond remark concerns the definition of a clock. It is widely believed that the essential
basis of a clock is a strictly periodic process, the ‘ticks’ of which measure time. This
belief is wrong on two scores. First, the Neumann-Lange-Tait procedure shows that
linear distance traversed in an inertial frame of reference by a force-free particle is a
perfectly good measure of time. Thus, a periodic process is not needed. Second, the
inertial frame of reference and distance traversed in it are (in mechanics at least)
always the ultimate source of a scientifically meaningful definition of time. Ironically,
a pendulum clock, the rate of which depends upon the strength of the gravitational
field in which it is set up, is not really a good clock, since its rate is not exclusively
determined by its local inertial frame of reference. Thus, a pendulum clock goes faster
near sea level than on the top of a mountain, but (as Einstein’s general theory of rela-
tivity established) clocks that measure proper time go slower at sea level. This high-
lights the salient point: A clock, to function properly, must ‘lock onto’ or ‘tap’
processes directly and exclusively governed by the local inertial frame of reference.

We still have to consider the realistic general case in which no force-free particles
are available at all. How is the inertial spatiotemporal framework to be determined in
that case? As preparation to the answer to this question, it is worth noting that in the
case of Tait’s problem in the general case of  point particles, the number of
unknowns to be determined is  (giving our 7 for  On
the other hand, each snapshot of  particles yields  independent mutual sepa-
rations or  useful bits of information (since the time of the snapshot is
unknown). Thus, two snapshots can only yield  data, while  are
needed to determine the inertial spatiotemporal framework and, from it, the dynami-
cally relevant quantities. Two snapshots are therefore never enough information but,
if  is large, three are comfortably more than enough. The reason why two snapshots
always fail to yield enough information is that, in Newtonian terms, they contain no
data at all on the change of the orientation of the system of  particles as a whole in
absolute space.

This fundamental fact was made the point of departure of a very interesting anal-
ysis of the problem of absolute vs relative motion made by Poincaré in his La Science
et l’Hypothèse in 1902 (Poincaré 1902; 1905, 75–78 and 118). Before considering
this, it is worth mentioning that unfortunately Poincaré never, so far as I know, pub-
lished a single comprehensive study of the problem of determining the complete spa-
tiotemporal framework of dynamics from observable relative quantities. He
considered the temporal and spatial problems separately (the former in his “Mèsure
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du temps” in (Poincaré 1898) and the latter in 1902). Both studies were rather qualita-
tive in nature, and both attracted much less attention than they might otherwise have
done on account of the creation in 1905 of the special theory of relativity. This then
attracted most of the serious attention of scientists concerned with foundational prob-
lems and also introduced a host of new issues. This was unfortunate, since a solid
authoritative study by Poincaré, of which he was undoubtedly capable, would have
become an important landmark in the absolute vs relative debate. As it is, his work
has very largely passed unnoticed (in part, at least, because Einstein did not notice it,
as we shall see).

In his La Science et l’Hypothèse, Poincaré asked what if anything was ‘wrong’
with Newton’s use of absolute rather than relative quantities in the foundations of
dynamics. Instead of asking the epistemological question—how do we find the abso-
lute quantities given the relative quantities?—Poincaré posed a very interesting ques-
tion, which was this: If, in the case of the body problem of celestial dynamics, one
has access to only relational initial data (which will be the mutual separations  of
bodies and their various derivatives  with respect to the time  (Poincaré
assumed  known for the purposes of his discussion)), what initial data must be spec-
ified if one is to be able to predict the observable future evolution of the system
uniquely? Since the ability to predict the future is the acid test of dynamical theory,
Poincaré’s question could not be better designed to cast much needed light on the role
of absolute and relative quantities in dynamics.

Poincaré then noted that if, like the relationists, one believed the relative quanti-
ties were truly fundamental and all that counted, one might then suppose that (given
known masses of the bodies and under the assumption that they were moving in
accordance with Newton’s laws, including the law of universal gravitation) knowl-
edge of the  at one instant together with the rates of change of these  i.e., the

 would be sufficient to determine the future uniquely. However, he then drew
attention to the fact with which we are already familiar from Tait’s analysis of the
inertial case, namely, that even in that simplest of cases two snapshots are not suffi-
cient to determine the absolute quantities, which, as Poincaré pointed out, are needed
to make dynamical calculations. (The initial-value problem of celestial mechanics is
well posed if, in addition to the masses and specification of the law of interaction, one
is given initial positions and initial velocities in absolute space.) The situation is no
different if interactions occur. In Poincaré’s view, this failure of the initial-value prob-
lem if one is given only relative quantities is the clearest indication that dynamics
involves something more than just relations of bodies among themselves—and that
‘something more’ is what Newton called absolute space.

It is important to realize, as Poincaré was careful to emphasize, that it is perfectly
possible to express the entire content of Newtonian mechanics in purely relational
terms. However, the resulting equations, unlike Newton’s equations, which contain at
the highest second derivatives with respect to the time, must contain at least some
third derivatives. Although he did not explicitly mention him by name, Poincaré
almost certainly had in mind here Lagrange’s famous study of the three-body prob-
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lem of celestial mechanics made in 1772 (Lagrange 1772). Lagrange (1772) had
assumed the validity of Newton’s equations in absolute space and, in an outstanding
piece of work, had then proceeded to find equations that govern the variation in time
of the sides of the triangle formed by the three particles, i.e., precisely the  for
this problem. Lagrange had found three equations, each containing the  and their
derivatives symmetrically and all containing first, second, and third derivatives of the

 with respect to the time. He was also able to show that two of the equations could
be integrated once, giving two equations of the form

(3)

(4)

where  is the total energy of the system and  is the square of the total angular
momentum of the system (both in the center-of-mass system). These equations show
very graphically that whereas the fundamental dynamical quantities such as energy
and angular momentum are functions of the coordinates and their first time deriva-
tives in absolute space, the expressions for the same quantities in relative quantities
also necessarily contain the second derivatives.

Poincaré considered this a decidedly mysterious and unsatisfying feature of New-
tonian mechanics and felt that it was the only thing one could fault in the Newtonian
scheme. He felt, repugnant though this state of affairs was to a philosophically
minded person, that one still had to accept it as a fact. He was however prepared to
speculate as to how things might be in an ideal world, and this led him to a very inter-
esting speculation as to the form that the relativity principle might have taken.

He noted that the ordinary Galilean relativity principle of classical mechanics had
very interesting consequences for the initial data that had to be specified in mechanics.
An particle system requires formally the specification of  initial positions and

 initial velocities in absolute space. However, because of the fundamental symme-
tries of classical mechanics, it is sufficient to specify these quantities with respect to
the center of mass of the system. This reduces the number of data that need to be
given by 6. In addition, the initial orientation of the system in absolute space has no
physical significance, so three more data are redundant. However, essentially that is as
far as the reduction to relative quantities can go. It remains crucially important to
know at the initial instant how the orientation of the system as a whole in absolute
space is changing. This cannot be obtained from purely relative quantities and is the
reason why third derivatives of the  occur in one of Lagrange’s equations.

Such considerations then led Poincaré to comment that “for the mind to be fully
satisfied” the law of relativity would have to be formulated in such a way that the ini-
tial-value problem of dynamics would hold for a completely relational specification
of the initial data. One should not be left with the curious absolute-relative mixture
just described.

This analysis and suggestion of Poincaré are both extremely valuable. They show
that the problem with Newtonian dynamics is not that it cannot be cast into relational

rij′s
rij′s

rij
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form—Lagrange’s work is the clearest demonstration of the incorrectness of that
belief (which is actually quite widely held).9 The problem is that when Newtonian
theory is recast in a relational (or generally covariant) form it turns out to be less pre-
dictive than one would like it to be. In addition, Poincaré’s analysis also shows what a
Machian theory, expressed solely in relative quantities as Mach required, must
achieve if it is to represent any improvement on Newtonian theory: It must be able to
predict the future uniquely given only  and  at an initial instant. Mach’s critique
of Newtonian mechanics was unfortunately couched in rather vague terms and the
same goes for his proposal for a relational alternative. Poincaré’s analysis provides a
most welcome clarification and sharpening of the issues involved.

It should be mentioned that all the Machian models of the Hofmann-Reissner-
Schrödinger type together with the alternative (intrinsic) type considered by Bertotti
and myself meet the requirement of the relativity principle in the stronger form as
formulated by Poincaré. It is also the case that the special set of Newtonian solutions
of an body universe for which the total angular momentum in the center-of-mass
system vanishes are described by equations of a form different from those that hold in
the general case. In this special case, the constants  and  disappear from the
right-hand sides of Eqs. (3) and (4) and the third derivative also disappears from
Lagrange’s third equation. Therefore, the corresponding set of equations for this spe-
cial case satisfy Poincaré’s requirement. Indeed, it is a very interesting fact that when
Newton’s equations are expressed in a generally covariant form (as Lagrange in
effect did, using quantities completely independent of all coordinate systems), the
complete set of possible solutions breaks up into distinct classes corresponding to the
general case with both  and the various special cases with either one or
both of  and  equal to zero. The most interesting special case

(5)

arises very naturally from the intrinsic Machian dynamics developed by Bertotti and
myself and referred to in the previous section.

In fact, such a situation was foreseen to quite an extent by Poincaré, who pointed
out that, when one is considering the complete universe, it is appropriate to consider

9 Lagrange’s work does in fact represent the complete solution (for the three-body case) of the problem
that Newton posed in the Scholium: Given relative observations, how can one find the absolute quan-
tities? First, Lagrange found equations that govern the evolution of the sides of the triangle. Second,
he showed how, once these equations for the sides of the triangle had been solved, one could find the
position of the triangle in absolute space (the position of its center of mass and—a much greater prob-
lem—its orientation) by quadrature (i.e., by straightforward integration of functions known from the
solution of the problem for the sides). A good account of all this is given by Dziobek (Dziobek 1888,
1892). It is somewhat ironic that Lagrange was evidently much more interested in practical problems
of celestial mechanics than Newton’s Scholium problem and did his work at a time when absolute
space had ceased to be a problematic issue. Its importance for the Scholium problem was not noted
and escaped Neumann, Lange, and Mach. It is truly a great pity that Poincaré did not flesh out his very
perceptive remarks in La Science et l’Hypothèse and draw explicit attention to Lagrange’s work and
its bearing on the Scholium problem.
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these various different cases as actually corresponding to fundamentally different
dynamical laws of the universe. An important point to note is that if an body uni-
verse as a whole does satisfy the condition (5) isolated subsystems of it can still per-
fectly well have nonvanishing values of their energy and angular momentum. They
would then appear to be governed by perfectly standard Newtonian dynamics, even
though the universe as a whole is governed by a more powerful and more predictive
dynamics. This is the reason why Bertotti and I were able to recover Newtonian
behavior exactly for local observations. It may also be mentioned that the formalism
of intrinsic dynamics is completely general and is not restricted to nonrelativistic
mechanics. Unlike the Hofmann-Reissner-Schrödinger approach, it can readily be
applied to field theory and even to dynamic geometry. Indeed, it turns out that general
relativity is itself of the general type of intrinsic theories, and this is the reason why
Bertotti and I have concluded that it is actually perfectly Machian (Barbour 1995).

Let me now go back to Poincaré’s earlier paper of 1898 on the topic of time. This
paper has received significantly more attention than the analysis of the absolute vs
relative question in La Science et l’Hypothèse, but its Machian implications have nev-
ertheless been completely missed.

Poincaré noted that in recent years there had been considerable discussion of the
problem of measuring time. What does it mean to say that a second today has the same
duration as a second tomorrow? What criterion is to be used to choose the unit of time
and identify clocks? Poincaré noted that these questions had become especially topical
and acute for the astronomers, who had been finding anomalies in the observed
motion of the Moon, one possible explanation of which could be irregularities in the
rotation rate of the Earth. (This has since been confirmed. It is due to tidal effects of
the Moon.) Since for millennia the rotation of the Earth had constituted the sole reli-
able clock for use in astronomy, this placed the astronomers in a serious quandary.

Poincaré then proceeded to outline the solution to which the astronomers were
moving. Their point of departure was that Newtonian theory was in fact correct,
namely, that there did exist a frame of reference and time for which Newton’s laws
were correct. The entire problem consisted of finding the invisible frame of reference
and time from things that could actually be observed. The only material on which
they could work was the motions of the bodies making up the solar system. Fortu-
nately, this could, on account of the immense distance of the stars, be treated as an
effectively isolated dynamical system. However, in contrast to the gedanken experi-
ments considered by Lange and Tait, the bodies of the solar system were certainly not
free of forces, since they all interacted with one another through universal gravitation.
The astronomers were therefore confronted with the task that Frege a few years ear-
lier had said needed to be solved by Lange.

The solution proposed by the astronomers, and endorsed in principle by Poincaré,
was to seek a frame of reference and time in such a way that the observed motions did
indeed accord with Newton’s laws when referred to the obtained frame of reference
and time. This is a rather obvious generalization of the method initiated by Neumann,
Lange, and Tait, but, of course, entailed much greater mathematical difficulties on
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account of the need to take into account interactions. Fortunately for the astronomers,
they did not have to start completely from scratch, since excellent approximations to
the conjectured Newtonian frame of reference and time already existed.

A very significant difference of this astronomical procedure from the Tait-Lange
procedure is that in the latter time and the frame of reference can in principle be
found from just three bodies, but the astronomical procedure entails consideration of
all the dynamically significant bodies in the solar system. If accuracy adequate for
astronomical purposes is to be achieved, it is in principle necessary to take into
account even relatively small asteroids. This means that effectively the only clock
available to the astronomers is the complete solar system.

About forty years after Poincaré wrote his 1898 paper, the astronomers did indeed
go over to such a definition of time (which by then had to take into account small rel-
ativistic corrections as well). It was initially called Newtonian time, but is now known
as ephemeris time (Clemence 1957). A rather beautiful feature of ephemeris time is
that it is actually a weighted average of all the dynamically significant motions of the
bodies in the solar system in its center-of-mass inertial frame. Were the solar system
to consist of a system of point particles, the expression for the infinitesimal increment
of ephemeris time would be given as follows. Let the position of particle

 at one instant of time be given by  and at a slightly later instant by
 the positions being measured in the inertial frame of reference. Then the

increment  of ephemeris time is given by

where  is the total energy of the system,  is the instantaneous potential energy,
and  is a constant.

Note also that but for the fortunate fact that the solar system is almost perfectly
isolated an accurate determination of time would require the summation in the above
expression to be extended to the complete universe. Ultimately, the only reliable
clock is the complete universe!

I have gone into this detail about ephemeris time (the theory of which was out-
lined rather more sketchily by Poincaré in his 1898 paper) because, first, it rectifies
the shortcoming of Newton’s treatment in the Scholium, and, second, it has passed
almost without notice for over a century. This remarkable state of affairs has arisen
because a quite different aspect of time—the problem of defining simultaneity at spa-
tially separated points—came to dominate discussions once Einstein had created the
special theory of relativity.

As it happens, Poincaré also mentioned this problem of simultaneity in his 1898
paper and noted that in some respects it was a more immediate problem than that of
defining duration but that hitherto it had hardly been noted. It is on account of this
remarkable early anticipation of the key problem of special relativity that Poincaré’s
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1898 paper is mentioned relatively often today, but I am not aware of any discussion
of the duration problem even though it is certainly very fundamental.

The reason for this lack of notice is, I suspect, to be traced to the immense influ-
ence of Einstein, and this is an appropriate point at which to consider how his own
work on special and, more particularly, general relativity relates to the topics dis-
cussed in this and the previous section. At the end of the previous section, I noted that
Einstein seems to have had not much accurate knowledge of the work done by Hof-
mann and Reissner and to have taken little interest in it. The same comment is true of
the epistemological work reported in this section. So far as I can judge from his pub-
lished papers and the correspondence I have examined, none of the work described in
this section made any significant impact on him. In the remainder of this section, I
shall substantiate this claim; in the following section, I shall try to establish why Ein-
stein seems to have been remarkable insensitive to what might be called the classical
issues in the absolute vs relative debate.

Let me start with the topic last discussed—the definition of duration and a clock.
To the best of my knowledge, this question was never once discussed by Einstein (in
striking contrast to his numerous discussions of the definition of simultaneity).
Throughout his entire work on relativity, Einstein simply assumed, as a phenomeno-
logical fact, that clocks (like rods to measure distance) exist and can be used to mea-
sure the fundamental interval  of relativity theory.

Already in the 1920s (Einstein 1923) and then again in the Autobiographical
Notes (Einstein 1949) written towards the end of his life, Einstein noted that his con-
sistently phenomenological treatment of rods and clocks, which made it necessary to
introduce them formally as separate entities in the framework of his theory, was a
logical defect of the theory that ought to be eliminated. Rods and clocks should be
constructed explicitly from the truly fundamental physical quantities in the theory—
preferably fields alone, but, if particles could not be eliminated as fundamental enti-
ties, then from fields and particles together.

From the way Einstein wrote about this, I get the strong impression that he did not
think anything particularly interesting would come out of this exercise. However, I
think it can be argued that he was actually insensitive to a fundamental issue. This is
reflected in the fact that he invariably described a clock as being realized through
some strictly periodic process. However, this immediately begs the question that
Neumann set out to answer with his inertial clock: How can one say of a single
motion that it is uniform? I have not seen anything in Einstein’s writings which shows
an awareness of the fact that a measure of time can be extracted only from the totality
of the motions within a dynamically isolated system and that, if it is to give true read-
ings, a clock must somehow ‘lock onto’ and reflect the inertial spatiotemporal frame-
work. I shall return to this.

A similar rather perfunctory attitude characterizes Einstein’s references to the
determination of inertial frames of reference. In his published papers, he never once
referred to the procedures of Lange or Tait or drew attention to the difficulties that
Newton 250 years earlier had already recognized so clearly. Generally, he simply
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says that an inertial frame of reference is one in which a force-free particle moves
rectilinearly and uniformly, giving no indication at all how such a frame of reference
is to be found. Very characteristic of his approach is the following passage written in
the early 1920s (Einstein 1923):

In classical mechanics, an inertial system and time are best determined together by
means of a suitable formulation of the law of inertia: It is possible to establish a time and
give the coordinate system a state of motion (inertial system) such that relative to it mate-
rial points not subject to the action of forces do not undergo acceleration.

A little later, Einstein noted that such a definition had a logical weakness “since we
have no criterion to establish whether a material point is free of forces or not; there-
fore the concept of an ‘inertial system’ remains to a certain degree problematic” This
passage (with its incorrect conclusion) suggests to me that Einstein never gave much
serious thought to the issue of the determination of inertial frames of reference.

Confirmation that this is the case can be found in some remarkably interesting late
correspondence between Einstein and his old friend Max von Laue. Among the lead-
ing relativists, von Laue is the only one who mentions the work of Lange. In 1948
(von Laue 1948), he wrote an appreciation of Lange and his work, in which he stated:
“Ludwig Lange progressed so far in the solution of the problem of the physical frame
of reference, which Copernicus, Kepler, and Newton did not completely solve, that
only Einstein’s theory of relativity added something new.” In 1951, he published a
new edition of his book on the theory of relativity (von Laue 1955), which opens with
the definition of the inertial time scale and inertial system as given by Lange, calling
it a great achievement. Not surprisingly, he sent Einstein a copy of the new edition. In
response,10 Einstein commented:

I was surprised that you find Lange’s treatment of the inertial system significant. It
merely says that there exists a coordinate system (with time) in which ‘uninfluenced’
material points move rectilinearly and uniformly. This is Newton’s ‘absolute space.’ It is
not absolute because no transformations exist that conserve the law of inertia but because
it must be prescribed in order to give the concept of acceleration a clear meaning.

In the same letter, Einstein remarked: “Provided one considers action-at-a-dis-
tance forces that decrease with  sufficiently rapidly, the word ‘uninfluenced’ has a
direct meaning.” This comment implies, like the one made in the 1920s, that inertial
frames of reference can only be determined if force-free bodies are available. As we
have noted earlier, this is simply not true, though unfortunately the correct state of
affairs had never been clearly stated in the literature (see footnote 9). However, I am
convinced that had Einstein really made a serious effect to find out the truth he would
certainly have succeeded. What we must try to establish (in the next section) is why
he was insensitive to the issue.

To conclude this section, it is worth mentioning a connection between Einstein’s
lack of concern about the definition of the inertial frame of reference and his belief

10 Einstein to Max von Laue, 17 January 1952 (EA 16–168).
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that a Machian theory of motion should provide some kind of cosmic derivation of
inertial mass (rather than a cosmic derivation of the law of inertia). It is a very strik-
ing fact that the expressions ‘relativity of position’ and especially ‘relativity of veloc-
ity’ (the truly fundamental problem of the absolute vs relative question) hardly ever
occur in Einstein’s writings, whereas he frequently mentions the relativity of acceler-
ation. In fact, almost the only case in which relativity of velocity occurs is in the fol-
lowing passage (Einstein 1913b), in which Einstein is discussing his first attempt at a
general theory of relativity undertaken with Grossmann in 1913:

The theory sketched here overcomes an epistemological defect that attaches not only to
the original theory of relativity, but also to Galilean mechanics, and that was especially
stressed by E. Mach. It is obvious that one cannot ascribe an absolute meaning to the
concept of acceleration of a material point, no more so than one can ascribe it to the con-
cept of velocity. Acceleration can only be defined as relative acceleration of a point with
respect to other bodies. This circumstance makes it seem senseless to simply ascribe to a
body a resistance to an acceleration (inertial resistance of the body in the sense of classi-
cal mechanics); instead, it will have to be demanded that the occurrence of an inertial
resistance be linked to the relative acceleration of the body under consideration with
respect to other bodies. It must be demanded that the inertial resistance of a body could
be increased by having unaccelerated inertial masses arranged in its vicinity; and this
increase of the inertial resistance must disappear again if these masses accelerate along
with the body.

Einstein then proceeds to claim that the 1913 theory does indeed contain an effect of
the desired kind.

The above passage is remarkable on two scores. First, there is the already noted
incorrect claim that Mach was concerned about the definition of inertial resistance.
Second, Einstein states that both velocity and acceleration are relative and presents
this as a major problem. However, he never once in his papers attempted to show how
general relativity attacked the fundamental kinematic problem of the relativity of
velocity. The idea that inertial resistance, like acceleration, must be relative, is
expressed very prominently in Einstein’s writings from 1912 through to about 1922.
However, Einstein never once attempted to show how such an idea (and still less the
even more fundamental relativity of motion alluded to above) was implemented in
the basic kinematic and dynamic structure of the theory he was constructing.

This is in very striking contrast to the epistemological work of Neumann, Tait,
Lange, and Poincaré and the manifestly relational proposals of Hofmann and Reiss-
ner. All of these authors attacked the relativity of motion head on. What are the rea-
sons for Einstein’s conspicuous failure to follow their example?

4. EINSTEIN’S PRIORITIES WHEN CREATING GENERAL RELATIVITY

Let me now attempt to begin to answer the question with which the previous section
ended by considering the evidence that can be gleaned from Einstein’s early papers
and correspondence. It is quite clear that by the time he had left school and com-
menced university studies Einstein had set himself a supremely ambitious task. He
was going to attack and make an extremely serious attempt to solve the great topical
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problems of physics. In later years, he may have liked to cultivate the image of a
somewhat indolent student, but a very different picture emerges from his correspon-
dence. There were certain fundamental issues that he followed avidly, above all any-
thing related to Maxwellian field theory and also anything that could provide
evidence for the existence of atoms. These were the burning topics of the time, and he
followed them closely.

It seems to me that with regard to the absolute vs relative debate, the situation was
somewhat different. There is no doubt that it was a topic of genuine widespread inter-
est; Poincaré’s inclusion of it in La Science et l’Hypothèse is clear evidence of that.
However, it was a topic with relatively few (but by no means none at all) opportuni-
ties for decisive experimental tests;11 both Mach and Poincaré tended to treat the
topic in a rather passive manner, drawing attention to problems but without proposing
an energetic programme for their resolution. For an ambitious young man like Ein-
stein, with a strong awareness of the importance of experiment and clearly deter-
mined to make a name for himself as quickly as he could, the problems of
electromagnetism and atomism must surely have appeared to offer far better pros-
pects. This could well explain why Einstein’s imagination was clearly caught,
through his reading of Mach’s Mechanik around 1898 (CPAE 1), by the great issue of
absolute space without this leading him on to a more detailed consideration of the
details. Whatever the reason, in the period 1898 to 1905 (and, indeed, up to the end of
his life) Einstein had the opportunity to go into the details and really come to grips
with the central problems of defining time, clocks, and motion. He did not or, at least,
not directly (except, of course, with regard to simultaneity).

There are, I believe, at least three clearly identifiable reasons for Einstein’s indi-
rect attack on the problem of absolute space. All three are important and interrelated
and already played a decisive role in his creation of the special theory of relativity.

The first, and surely the most important, is that the principle of Galilean relativity
suggested to Einstein an indirect but extremely effective way of making absolute
space redundant in physics. He saw the success of special relativity as an important
first step in that direction and then attempted, with great consistency, to generalize the
relativity principle to the maximum extent possible. He believed that this would make
absolute space completely redundant as a concept in physics.

The second reason for Einstein’s indirect strategy is to be found in the phenome-
nological concept of the rigid body and the important work done by Helmholtz on the
empirical foundations of geometry. The phenomenological rigid body played a
vitally important role in both special and general relativity but, as we shall see, made
it extremely difficult to address directly the relativity of motion in any obviously
Machian manner.

The third reason for Einstein’s indirect approach may seem somewhat surprising
at the first glance—it was Planck’s discovery of the quantum of action in 1900. We
shall see that this discovery greatly diminished Einstein’s confidence in the possibil-

11 For a discussion of early experiments, see (Norton 1995).
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ity of finding quickly any explicit and detailed dynamical equations that could be
taken to describe the behavior of particles and fields at the fundamental microscopic
level. Instead, he consciously sought general principles such as those established in
phenomenological thermodynamics by means of which he could obtain constraints
on the behavior of matter. This strengthened his faith in the value of the relativity
principle and his indirect approach to implementation of Mach’s ideas. It also per-
suaded him that it would be useless to attempt to construct a microscopic theory of
rods and clocks.

Let me now expand on these three points in more detail.
It seems to me entirely possible that an overall strategy for eliminating absolute

space from physics started to take shape in Einstein’s mind very soon after he had
read Mach’s Mechanik around 1898. The basic idea arose from consideration of a
problem that Mach had not considered at all: electrodynamics. Much of the later
development of relativity theory is clearly prefigured in a comment of Einstein to his
future wife in a letter written in August 1899 (CPAE 1):

I am more and more convinced that the electrodynamics of moving bodies, as presented
today, is not correct, and that it should be possible to present it in a simpler way. The
introduction of the term “aether” into the theories of electricity led to the notion of a
medium of whose motion one can speak without being able, I believe, to associate a
physical meaning with this statement.

This train of thought then led on to the clear formulation in 1905 of the relativity
principle, in accordance with which uniform motion relative to the supposed aether is
completely undetectable. As Einstein (Einstein 1905) famously remarked, this then
meant that “the introduction of a ‘luminiferous aether’ will prove to be superfluous”.
Moreover, by the end of the 19th century, the aether had more or less come to be
identified with absolute space, a rigid substrate that besides being the carrier of elec-
tromagnetic excitations also served as the ultimate standard of rest for all bodies in
the universe. In his famous 1895 paper on electrodynamics with which Einstein was
certainly familiar, Lorentz said of the aether (Lorentz 1895, 4): “When for brevity I
say that the aether is at rest this means merely that no part of this medium is displaced
relative to any other part and that all observable motions of the heavenly bodies are
relative motions with respect to the aether.”12

Having banished the aether from the foundations of physics, Einstein felt that he
had made an important first step on the way to the complete elimination of the notion
of absolute space. Einstein felt that a thing could only be said to exist if it had observ-
able effects. The 1905 relativity principle showed that uniform motion relative to the
putative aether (or absolute space) had no observable consequences. If the relativity
principle could be extended further, to all accelerated motions, then all residual argu-
ments for the existence of absolute space would be eliminated. Einstein’s 1933 Gib-
son lecture (Einstein 1933) suggests rather strongly that this train of thought had

12 It is worth noting that this is a remarkably naive concept of motion compared with the subtlety of
Lange’s construction.
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taken shape in Einstein’s mind already by 1905, but that at that stage he was unable to
take the idea any further. It was only in autumn 1907 (Einstein 1907) that the poten-
tial of what he later called the equivalence principle struck him; for it suggested that
the restricted principle of relativity could be extended from uniform motions to uni-
formly accelerated motions as well. This then opened up the prospect of extension of
the relativity principle even further—to all motions whatsoever.

This logic is spelled out very clearly in the Gibson lecture, from which the follow-
ing quotation is taken:

After the special theory of relativity had shown the equivalence for formulating the laws
of nature of all so-called inertial systems (1905) the question of whether a more general
equivalence of coordinate systems existed was an obvious one. In other words, if one can
only attach a relative meaning to the concept of velocity, should one nevertheless main-
tain the concept of acceleration as an absolute one? From the purely kinematic point of
view the relativity of any and every sort of motion was indubitable; from the physical
point of view, however, the inertial system seemed to have a special importance which
made the use of other moving systems of coordinates appear artificial.

I was, of course, familiar with Mach’s idea that inertia might not represent a resistance to
acceleration as such, so much as a resistance to acceleration relative to the mass of all the
other bodies in the world. This idea fascinated me; but it did not provide a basis for a new
theory.

Note how Einstein insists that the idea of a more general equivalence of coordi-
nate systems “was an obvious one”. It certainly was not so to his contemporaries. If
there is one aspect of Einstein’s work on gravitation that most clearly distinguished
him from them all, it was his insistence on the need to generalize the relativity princi-
ple and on the equivalence principle as the means to do so. All of the truly original
steps which eventually led Einstein to the general theory of relativity sprang from this
conviction. It is certainly the case that Mach’s vehement opposition to Newton’s
absolute space as a nonexistent monstrosity was completely shared by Einstein and
served as the main stimulus to the creation of general relativity.

However, it is important to note that the two men disliked absolute space for rather
different reasons. Mach tended very much to concentrate on the things in the world
that could be directly observed—bodies—and on the relationships between them,
which were expressed in the first place by the mutual separations between them. This
gut instinct is expressed very clearly in Mach’s famous comment (Mach 1960): “The
world is not twice given, with an earth at rest and an earth in motion, but only once,
with its relative motions, along determinable.” Given Einstein’s great enthusiasm for
Mach, it is remarkably difficult to find evidence which shows unambiguously that
Einstein understood what Mach really wanted to do: base mechanics solely on the rel-
ative separations of bodies. As I have already noted, many of Einstein’s remarks about
Mach actually represent a distortion of the older man’s thought. The passage from
1918 quoted earlier is a clear expression of what Mach wanted to do (“introducing in
the laws of classical mechanics only distances of material points from each other”),
but there is no direct attribution to Mach. The solitary direct attribution I have found is
in a very late letter to Pirani,13 in which Einstein says [my translation]:
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There is much talk of Mach’s Principle. It is, however, not easy to associate a clear
notion with it. Mach’s stimulus was this. It is unbearable [unerträglich] that space (or the
inertial system) influences all ponderable things by determining the inertial behaviour
without the ponderable things exerting a determining reaction back on space. Mach
rediscovered what Leibniz and Huygens had correctly faulted in Newton’s theory. He
sought to eliminate this evil by attempting to abolish space and replace it by the relative
inertia of the ponderable bodies with respect to each other. Space should be replaced by
the distances between the bodies taken in pairs (with these distances as independent con-
cepts). This evidently did not work, quite apart from the fact that the time with its abso-
lute nature remained.

Several comments can be made about this opening paragraph of Einstein’s letter.
First, there is Einstein’s admission that it is not easy to associate a clear notion

with Mach’s Principle. This, however, is what the criterion of Poincaré considered
earlier does do.

Second, the idea that something should not be able to influence another thing
without suffering a back reaction on itself is not, so far as I know, to be found any-
where in Mach’s writings. It is, however, an idea that Einstein himself frequently
advanced from around 1914, mainly I think as a result of his work on Nordström’s
theory, in which the propagation of light is governed by an absolute structure and is
not subject to the influence of gravitation. For example, in 1914 (Einstein 1914) he
wrote: “It seems to me unbelievable that the course of any process (e.g., that of the
propagation of light in a vacuum) could be conceived of as independent of all other
events in the world.”

Next, it should be noted that even the account of what Mach proposed is not
strictly correct, since Mach did not propose to eliminate the relations of Euclidean
space and regard the distances between bodies as completely independent. It should
be noted that for  bodies in Euclidean space there are  mutual separa-
tions, of which only  are independent (for  In his proposal for a new
law of inertia, Mach did not include any suggestion that this basic fact of three-
dimensional Euclidean geometry should be relaxed. However, in a very early paper
he had speculated (Mach 1872, 25; 1911, 51–53) that such a relaxation might occur
in the interior of atoms and play an important role in the formation of spectral lines.
He later explicitly withdrew (Mach 1911, 94) this theoretical speculation, which
hinged on a putative representation of atoms and molecules in Euclidean spaces of
more than three dimensions. Einstein read Mach’s booklet on the Conservation of
Energy, where the idea is discussed, in 1909,14 so it is possible that in his old age he
muddled it up with Mach’s proposals for inertia.

Finally, we note in Einstein’s “this evidently did not work” an echo of the com-
ment in 1918 that the proposal to found mechanics solely on relative separations had
not proved feasible. However, the papers of Hofmann, Reissner, and Schrödinger had
shown the approach to be perfectly feasible. With the possible exception of Reiss-

13 Einstein to Felix Pirani, 1954 (EA 17–447).
14 As we know from a letter Einstein wrote to Mach in August 1909 (CPAE 5E, Doc. 174).
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ner’s work, Einstein had read these papers. It therefore seems that they made very lit-
tle impression on him; he was certainly confused about their content, since all
demonstrated the Machian approach was feasible. Had Einstein from the beginning
shared Mach’s gut instinct that only relative separations count and that the central
problem was to reflect this in the foundations of mechanics, then surely he might
have been expected to have taken more notice of what had been achieved.

The fact that he did not suggests that Einstein’s objection to absolute space had a
somewhat different psychological origin. For this conclusion, there is much evidence.
Rather than consider objects in space, Einstein was evidently wont to contemplate the
notion of empty space by itself. Evidence for this can be found, for example, in (Ein-
stein 1921). Given the perfect uniformity of space, Einstein then found it an affront to
the principle of sufficient reason that such a featureless thing should contain within it
distinguished frames of reference for the formulation of the laws of nature. Numerous
arguments on such lines can be found in Einstein’s papers from 1913 up to the Auto-
biographical Notes. They always invoke the point mentioned in the 1933 Gibson lec-
ture—that “from the purely kinematic point of view the relativity of any and every
sort of motion [in space] was undubitable.” Thus, the only way to create a theory per-
fectly in accord with the principle of sufficient reason was through generalization of
the relativity principle to the absolutely greatest extent possible.

The difference between Mach and Einstein can be summarized very simply: Mach
wanted to eliminate coordinate systems entirely, Einstein wanted to show that all coor-
dinate systems were equally valid. Given the tremendous success of the special theory
of relativity, which established the equivalence of all coordinate systems in uniform
motion relative to each other, and the promise offered by the equivalence principle for
extension to accelerated motion, it is very easy to see why Einstein became so totally
committed to his approach and took virtually no notice of the alternative.

The question of whether one (and then which one) or both of these two
approaches are valid is very complex. It is a subject that I cannot follow further in this
paper, in which I have set myself the more modest task of identifying some character-
istic differences between the approaches of Mach (and his contemporaries) and Ein-
stein, finding the reasons for Einstein’s choices, and placing his work in the
perspective of other work on the absolute vs relative debate. Let me just say that, in
my opinion, Mach’s approach (augmented by Poincaré’s analysis) is deeper and more
consistent than Einstein’s but that nevertheless Einstein’s theory, when properly ana-
lyzed as a dynamical theory, does perfectly implement Mach’s ideas. However, the
reason for this has more to do with deep intrinsic properties of the absolute differen-
tial calculus, which Einstein took over ‘ready made’ from the mathematicians, than
with Einstein’s covariance arguments. All this will be spelled out in my forthcoming
monograph (Barbour, in preparation). See also my Notes Added in Proof at the end of
this article.

Because it ties in very well with Einstein’s conception of space that we have just
been considering, let me now turn to the role played by the rigid body and Helm-
holtz’s work on the empirical foundation of geometry (Helmholtz 1868) in Einstein’s
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development of both special and general relativity. Helmholtz’s study was made
about a decade after Riemann’s famous habilitation lecture of 1854 (Riemann 1867).
Initially Helmholtz was unaware of Riemann’s work, which was not published until
1867, and found that he had largely rediscovered already known results. However,
there was one respect in which Helmholtz went significantly beyond Riemann. This
concerned the hypothesis that Riemann had made for the form of the line element.

Riemann had assumed, more or less on grounds of simplicity and to match
Pythagoras’s theorem, that the fundamental line element  of his generalized geom-
etry should be the square of a quadratic form in the coordinate differences. He noted,
however, that a priori one could not rule out, say, taking the fourth root of a quartic
form. In contrast, Helmholtz considered the empirical realization of geometry by
rigid bodies and congruence relations between them. If such bodies are to be brought
to congruence, they must satisfy certain conditions of mobility and remain congruent
in different positions and different orientations. Their congruence must also be inde-
pendent of the paths by which they are brought to congruence. Helmholtz was able to
show that if these conditions are to be met then the quadratic form of the line element
adopted by Riemann as a simplicity hypothesis is indeed uniquely distinguished. This
established a very beautiful connection between empirical geometry based on physi-
cal measuring rods and a particular mathematical formalism. Helmholtz concluded
his important paper with the following words:

the whole possibility of the system of our space measurements ... depends on the exist-
ence of natural bodies that correspond sufficiently closely to the concept of rigid bodies
that we have set up. The fact that congruence is independent of position, of the direction
of the objects brought to congruence, and of the way in which they have been brought to
each other—that is the basis of the measurability of space.

The influence of Helmholtz’s study is manifest throughout Einstein’s entire rela-
tivity opus. In a newspaper article published in 1926, Einstein (Einstein 1926)
described the practical geometry of the experimental physicist in which “rigid bodies
with marks made on them realize, provided certain precautions are taken, the geomet-
rical concept of interval” and said [my italics]:

Then the geometrical “interval” corresponds to a definite object of nature, and thus all the
propositions of geometry acquire the nature of assertions about real bodies. This point of
view was particularly clearly expressed by Helmholtz; one may add that without this
viewpoint it would have been practically impossible to arrive at the theory of relativity.

The Helmholtzian conception was crucial for two reasons in particular: It pro-
vided a definite framework in which Einstein could comprehend length contraction
and simultaneously gave a method for position determination. It also gave Einstein a
way of ‘making space visible’ that perhaps made him less concerned than Mach
about the problems of position determination. Taken together, these factors led Ein-
stein to a method of position determination that appears to be decidedly un-Machian.

Indeed, a complete method of position coordination appeared already in the
famous Kinematical Part of his 1905 paper (Einstein 1905). Einstein opens that sec-
tion as follows: “Let us take a system of coordinates in which the equations of New-

ds
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tonian mechanics hold good.” Thus, he simply presupposes the outcome of a Tait-
Lange procedure for finding an inertial frame of reference. He then continues:

If a material point is at rest relatively to this system of coordinates, its position can be
defined relatively thereto by the employment of rigid standards of measurement and the
methods of Euclidean geometry, and can be expressed in Cartesian coordinates.

The standards of measurement (Helmholtz’s rigid bodies) serve two supremely
important purposes. First, they can be imagined to “fill” the whole space of the iner-
tial system; since one can also suppose that the bodies carry marks permanently
scratched on them, other bodies can be unambiguously located by means of these
marks. Space has been made visible. Then, second, comes the really great conve-
nience of such rigid bodies—intervals defined by the marks on them satisfy the con-
gruence conditions required in Helmholtz’s phenomenological foundation of
geometry. Thus, the coordinates can be associated with the marks on the rigid bodies
in such a way that they simultaneously give physical distances directly.

Convenient as all this is, it still does not contain anything that goes beyond Helm-
holtz’s scheme. However, the scheme turned out to be wonderfully adapted to the exi-
gencies of relativity theory and length contraction. Here the important thing is the
underlying conception Einstein had of what might be called the true physical nature
of rigid bodies (and therefore of measuring rods). He certainly did not think of them
as ultimate elements incapable of further explication. On the contrary, Einstein was a
convinced atomist and he conceived of a measuring rod as being made up of a defi-
nite number of atoms governed by quite definite laws of nature. Provided external cir-
cumstances (pressure, temperature, etc.) remained the same, such a system of atoms
could be expected to ‘settle into’ a unique equilibrium configuration. Two such sys-
tems constituted by identical collections of atoms would settle into the same configu-
ration and therefore be congruent to each other. Thus, Helmholtz’s phenomenological
foundation of geometry would have a theoretical underpinning in atomism and the
laws governing it.

A vital part in this overall picture was played by the notion of an inertial system
coupled with Einstein’s formulation of the (restricted) relativity principle, in accor-
dance with which the laws of physics must have the identical form in all inertial sys-
tems obtained from each other by a uniform translational motion. Coupled with
Einstein’s (long tacit but later explicit (Einstein 1923)) atomistic conception, the rela-
tivity principle ensured that the identical phenomenological Helmholtzian geometry
must be realized in each inertial system. However, it left open the connection
between the geometries (and chronometry, which I have not considered here) in dif-
ferent inertial systems. The Helmholtzian scheme had just enough flexibility to allow
and accommodate those marvellous bombes surprises of relativity: length contraction
and time dilation. Moreover, the underlying atomistic conception meant that one
could still talk about ‘the same measuring rod’ in two different inertial systems. One
merely had to suppose two rods constituted of the same atoms and subject to the
same external conditions. Then in their respective inertial systems they would settle
into identical configurations, and comparison of these configurations between inertial
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systems would become epistemologically valid. One would be talking about the
‘same things.’

Another extraordinary convenience of this whole conception was that it could be
generalized almost unchanged to the framework of the general theory of relativity. It
was merely necessary to repeat the entire exercise, not globally, but ‘in the small.’
Very important here was the presumed existence of local approximations to inertial
systems in the neighborhood of every point of spacetime; for the distinguished ‘equi-
librium’ configurations into which rods could be assumed to ‘settle’ exist only in an
inertial system.

Einstein’s attitude to his phenomenological treatment of rods and clocks is sum-
marized very clearly in his Autobiographical Notes:15

One is struck [by the fact] that the theory (except for the four-dimensional space) intro-
duces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other
things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is
inconsistent; strictly speaking measuring rods and clocks would have to be represented
as solutions of the basic equations (objects consisting of moving atomic configurations),
not, as it were, as theoretically self-sufficient entities. However, the procedure justifies
itself because it was clear from the very beginning that the postulates of the theory are
not strong enough to deduce from them sufficiently complete equations for physical
events sufficiently free from arbitrariness, in order to base upon such a foundation a the-
ory of measuring rods and clocks. If one did not wish to forego a physical interpretation
of the coordinates in general (something which, in itself, would be possible), it was better
to permit such inconsistency—with the obligation, however, of eliminating it at a later
stage of the theory. But one must not legalize the mentioned sin so far as to imagine that
intervals are physical entities of a special type, intrinsically different from other physical
variables (“reducing physics to geometry,” etc.).

Before commenting on this passage and its bearing on the central issues of the
absolute vs relative question, let us consider the third factor that I identified as shap-
ing Einstein’s overall strategy in the creation of both relativity theories: the quantum.
In the above passage, Einstein merely says “it was clear from the very beginning that
the postulates of the theory are not strong enough to deduce ... a theory of measuring
rods and clocks.” However, while this statement is obviously true it is at the same
time something of an inversion of the actual historical development. The fact is that
Einstein deliberately, already in the period 1904/5, chose to develop his ideas on the
basis of very general postulates. His reasons for doing so are very well known and
were explained by Einstein himself in the Autobiographical Notes.

The truth is that Planck’s discovery of the quantum of action in 1900 made a tre-
mendous impression on Einstein and quickly persuaded him that some very strange
things indeed must be happening at the microscopic level. In particular, he was cer-
tain that Maxwell’s equations (for which he had the very greatest respect) could not
be valid in their totality for microscopic phenomena. This comes out graphically in a
letter that Einstein wrote to von Laue in January 1951:16

15 He had already made very similar comments in (Einstein 1923).
16 Einstein to Max von Laue, January 1951 (EA 16-154).
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If one goes through your collection of the verifications of the special theory of relativity,
one gets the impression that Maxwell’s theory is secure enough to be grasped. But in
1905 I already knew for certain that it yields false fluctuations of the radiation pressure
and thus an incorrect Brownian motion of a mirror in a Planck radiation cavity.

It is well known that Einstein’s complete conviction that Maxwell’s theory could
be at best partly right was a decisive factor in his selection, as a postulate in the foun-
dations of his special theory of relativity, of the one minimal part of Maxwellian the-
ory in which he did retain confidence: the light propagation postulate.

More generally, it led him at the same time to formulate consciously the idea of a
theory based on principles that wide experience had demonstrated had universal
validity. The classic paradigms of such principles were the denials of the possibility
of construction of perpetual motion machines of the first and second kind, which
played such a fruitful role in the phenomenological thermodynamics that had been
created around the middle of the 19th century. The great strength of such theories was
that they enabled one to make many important predictions without attempting to find
a detailed theory at a fundamental microscopic level. Such a theory Einstein called a
constructive theory, in contrast to a theory based on principles. In a very clear
account of the distinction between the two kinds of theory that he included in a piece
that he wrote for The Times (Einstein 1919), Einstein said that the theory of relativity
was one of the latter kind, which he called fundamental.

Let me now conclude by considering some of the consequences of these three
aspects of Einstein’s overall strategy—the programme to eliminate absolute space by
generalization of the relativity principle, the use of Helmholtzian rigid bodies to
define position, and the eschewal of constructive theories. Both together and sepa-
rately, they had the consequence that virtually all the issues that one might have
expected to feature prominently in a frontal attack on the absolute vs relative ques-
tion—and that was certainly a very major part of Einstein’s undertaking—were actu-
ally missing as explicit elements in Einstein’s work. It is almost a case of Hamlet
without the Prince of Denmark.

One of the biggest problems with Einstein’s approach is that distinguished frames
of reference figured crucially in his work, but he never explicitly considered their sta-
tus and origin. For example, in his work on special relativity he would invariably start
by assuming the existence of inertial frames of reference and then postulate the exist-
ence of laws of nature that had to be expressed relative to these frames of reference.
Once this step had been taken, the relativity principle could come into play—the laws
of nature must take the same form in all frames of reference related by Lorentz trans-
formations. It is however legitimate to ask what determines the frames of reference:
Are there laws of nature that determine them? The whole logic of Einstein’s approach
made it impossible for him to pose, let alone answer, this question, since the frames
of reference had to be there before he could formulate the laws of nature. Einstein
bequeathed us an unresolved vicious circle at the heart of his theory.

It should not be thought that the transition to general relativity, in which all
frames of reference are purportedly allowed, eliminates this problem. The fact is that
the local existence of distinguished frames of reference (locally inertial frames) is an
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absolute prerequisite of the theory, since it is only when such frames exist that Ein-
stein’s phenomenological treatment of rods and clocks can be taken over from special
relativity. But Einstein never once seems to have considered seriously how the local
frames of reference and his rods and clocks could arise from first principles.

Of course, we know that he was at least partly aware of this issue, since he more
than once said that one should elaborate a theory of rods and clocks. However, I sus-
pect that Einstein did not quite appreciate the true nature of the problem, which is
already evident from Neumann’s theory of the inertial clock. This showed clearly that
there is a twofold problem. First, one must have access to an inertial system; second,
one must track some physical object or process whose behavior stands in a known one-
to-one relationship to the framework defined by the inertial system. In the simplest case
of Neumann’s inertial clock, this is done directly by the motion of a force-free particle.
Of these two problems, the first is by far the most difficult; indeed, the second problem
is effectively solved together with the first, the very posing of which is a decidedly sub-
tle matter (as the long and painful elaboration of the problem demonstrates).

If we now examine Einstein’s relatively terse comments about rods and clocks,
rather strong evidence emerges that his understanding of the issue never really
advanced beyond the level of Neumann’s inertial clock defined in a known inertial
system. For example, in the same Autobiographical Notes from which the earlier
quotation about rods and clocks was taken, Einstein refers to a clock as an ‘in itself
determined periodic process realized by a system of sufficiently small spatial exten-
sion’ and then shortly afterwards comments:

The presupposition of the existence (in principle) of (ideal, viz, perfect) measuring rods
and clocks is not independent of each other; since a light signal, which is reflected back
and forth between the ends of a rigid rod, constitutes an ideal clock, provided that the
postulate of the constancy of the light-velocity in vacuum does not lead to contradictions.

From this it is clear that Einstein already presupposed knowledge of the positions
of objects constituting his model clocks in an inertial frame of reference—for if the
rigid rod is not moving strictly inertially, Einstein’s ideal light clock is useless. All the
evidence I have examined is consistent with my conclusion that Einstein never
grasped this fact and that he did not properly understand the problem posed by deter-
mination of the inertial frames of reference. His disparaging remarks to von Laue
about Lange’s work are strong support for this view.

This is not deny the correctness of Einstein’s supposition that the quantum prob-
lems made it premature to try and make truly realistic microscopic models of rods
and clocks. But what Einstein had in mind was the theory of such things in a known
inertial frame of reference, whereas the more fundamental problem concerned the
origin of the frame. And to address that problem he did not really need such advanced
physics. The quantum bogey gave Einstein a valid excuse for not constructing micro-
scopic theories of actual physical clocks, but may have misled him by seeming to
locate the problem in the wrong place.

Mention should also be made here of the rather vague way in which Einstein for-
mulated the relativity principle. He invariably simply said that the laws of nature, the
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form of which he deliberately left vague, must take the same form in all frames of ref-
erence. He never attempted anything like the subtly refined formulation proposed by
Poincaré based on identification of the kind of initial data needed to predict the future
uniquely. A strength of Poincaré’s approach is that it avoids the vicious circle inherent
in Einstein’s approach whereby the status and origin of the necessary distinguished
frames (the local existence of which is still needed in general relativity despite the
general covariance of that theory) is left open. In Poincaré’s approach, the question of
the distinguished frames of reference does not arise, since he formulated the initial-
value problem deliberately in such a way that they do not enter into it at all. For some
reason or other, Einstein never seems to have thought of general relativity as a dynam-
ical theory and Poincaré’s comments seem to have made no impression on him.

Finally, we must consider the effect of Einstein’s Helmholtzian method of posi-
tion determination. It was this above all that precluded any directly Machian imple-
mentation of relativity of position and velocity after the manner of Hofmann and
Reissner. For them, like Mach, position and velocity were determined by the set of
distances to all other bodies in the universe. But Einstein was completely and irrevo-
cably tied to local position determination by means of Helmholtzian rigid bodies that
‘filled’ the space of inertial systems, which Mach insisted must be understood as aris-
ing from relations to other matter in the universe, whereas Einstein simply took them
as given. Thus, Einstein’s technique was doubly un-Machian. In the 1918 paper
quoted in Sec. 2, Einstein said that “the historical development” had shown that it
was not possible to “dispense with coordinate systems.” For ‘historical development’
we must here understand the foundations of Einstein’s own work: coordination by
Helmholtzian rigid bodies and relativity transformations between such coordinates.
Note also that in the passage cited earlier from his 1913 paper Einstein said:

It is obvious that one cannot ascribe an absolute meaning to the concept of acceleration
of a material point, no more so than one can ascribe it to the concept of velocity. Acceler-
ation can only be defined as relative acceleration of a point with respect to other bodies.

In this passage, Einstein is quite clearly saying that position and velocity are
defined relative to other bodies in exactly the same sense as did Mach (and all the
other relationists). Yet he did not give any indication how that requirement was imple-
mented in his own theory. He merely pinned his hopes on a resistance to acceleration
induced by distant matter. These hopes came to nothing—and meanwhile the
Machian issues were never directly addressed.

However, general relativity is an immensely rich and sophisticated theory, and the
same can be said of the veritable odyssey of its discovery by Einstein. One can find
ironies, serendipity, and utter brilliance throughout the entire saga. Just because Ein-
stein’s chosen route to the creation of general relativity did not directly address cer-
tain central issues of the absolute vs relative debate, this does not necessarily mean
that his wonderful theory fails to solve them. After all, Newton posed some critical
problems in the Scholium at the time he wrote the Principia, but some two hundred
years passed before they were more or less completely resolved within the framework
of Newtonian theory. As already indicated, I am convinced that the problems consid-
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ered in this paper, which has considered alternative issues that Einstein might have
addressed (and his contemporaries, above all Poincaré, did address), are actually
resolved within the heart of general relativity by virtue of the exquisite mathematics
on which it is based. However, that is quite a long story too and will have to be con-
sidered elsewhere (Barbour, in preparation).

NOTES ADDED IN PROOF

Since writing this article, I have continued to research and write about Mach’s princi-
ple and related issues. This activity has generated much material that relates to the
topics discussed in this article and envisaged for (Barbour, in preparation). First,
there is my book The End of Time (Barbour 1999a), which considers the quantum
cosmological implications of a relational treatment of time and motion. Second, the
three review papers (Barbour 1997, 1999b, 2001) complement the present paper.
Third, collaboration with Edward Anderson, Brendan Foster, Bryan Kelleher and
Niall Ó Murchadha has resulted in the publication of about ten research papers, of
which I mention (Barbour, Foster and Ó Murchadha 2002, Anderson and Barbour
2002, Barbour 2003a, Anderson, Barbour, Foster and Ó Murchadha 2003, Barbour
2003b). 

These research papers take very much further the approach to Mach’s principle
initiated Hofmann, Reissner and Schrödinger as modified in (Barbour and Bertotti
1982) through the use of best matching (Sec. 2) to avoid anisotropy of inertial mass.
The relational treatment of time, implemented through reparametrization invariance,
also plays a central role. If one assumes that space is Riemannian and that all interac-
tions are local, the two principles of best matching and reparametrization invariance
lead almost uniquely to Einstein’s general theory of relativity. Quite unexpectedly,
they also enforce the existence of a universal lightcone and gauge theory. One starts
with the notion of Riemannian space (not pseudo-Riemannian spacetime) and three-
dimensional fields (scalar, spinor and vector) defined on it. Then implementation of
the Machian principles of the relativity of motion (through best matching) and time
(through reparametrization) creates a four-dimensional spacetime with all the basic
features of modern physics. I believe that my claim that general relativity is perfectly
Machian (as regards the relativity of time and motion) is strongly vindicated.17

Another issue that we have investigated is relativity of scale (Barbour 2003a,
Anderson, Barbour, Foster and Ó Murchadha 2003). The same intuitive convictions
that lead one to require relativity of time and motion suggest that physics ought to be
scale invariant too. In the two cited papers, we have extended the notion of best
matching to scale transformations. We have shown that general relativity is almost
scale invariant but not quite perfectly so. Specifically, in the case of a spatially closed
universe one can change the (spatial) scale arbitrarily at all points. However, this
must be done subject to the solitary requirement that these local transformations do

17 See, especially (Barbour, Foster and Ó Murchadha 2002).
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not change the spatial volume of the universe. This remarkably weak restriction is, in
fact, what permits expansion of the universe to be a meaningful concept. Modern cos-
mology depends crucially on this single residual ‘Machian defect.’ Work on this topic
and our general approach, which we call the 3-space approach, is continuing. My per-
sonal feeling is that we are close to a definitive formulation of the principles and main
conclusions of the 3-space approach. I may at last be in the position to complete (Bar-
bour, in preparation)! In fact, I put aside work on it because I felt that it would not be
complete without a proper Machian treatment of the relativity of scale.
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ALBERT EINSTEIN

ON THE RELATIVITY PROBLEM

Originally published as “Zum Relativitätsproblem” in Scientia 15, 1914, pp. 337–
348. Reprinted in “The Collected Papers of Albert Einstein,” Vol. 4, Doc. 31: An
English translation is given in its companion volume.

After two eminent specialists have presented their objections to relativity theory in
this journal, it must be not undesirable for the readers if an adherent of this new theo-
retical direction expounds his view. This shall be done as concisely as possible in the
following.

Currently we have to distinguish two theoretical systems, both of which fall under
the name “relativity theory.” The �rst of these, which we will call “relativity theory in
the narrower sense,” is based on a considerable body of experience and is accepted by
the majority of theoretical physicists to be one of the simplest theoretical expressions
of these experiences. The second, which we will call “relativity theory in the broader
sense,” is as yet by no means established on the basis of physical experience. The
majority of my colleagues regard this second system either sceptically or dismiss-
ively. It should be said immediately that one can certainly be an adherent of the rela-
tivity theory in the narrow sense without admitting the validity of relativity theory in
the wider sense. For that reason we will discuss the two theories separately.

I. RELATIVITY THEORY IN THE NARROWER SENSE

It is well known that the equations of the mechanics established by Galileo and New-
ton are not valid with respect to an arbitrarily moving coordinate system, if one
adheres to the requirement that the description of motion admits only central forces
satisfying the | law of equality of action and reaction. But if the motion is referred to
a coordinate system  such that Newton’s equations are valid in the indicated sense,
then that coordinate system is not the only one with respect to which those laws of
mechanics hold. Rather, all of the coordinate systems  with arbitrary spatial orien-
tation that have uniform translational motion with respect to  have the property that
relative to them the laws of motion hold. We call the assumption of the equal value of
all these coordinate systems   etc. for the formulation of the laws of motion,
actually for the general laws of physics, the “relativity principle” (in the narrow
sense). 
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As long as one believed that classical mechanics lies at the foundation of the theo-
retical representation of all processes, one could not doubt the validity of this relativ-
ity principle. But even abstaining from that, it is difficult from an empirical standpoint
to doubt the validity of that principle. In fact if it did not hold, then the processes of
nature referred to a reference system at rest with respect to the Earth would appear to
be influenced by the motion (velocity) of the Earth’s yearly orbital motion around the
Sun; the terrestrial space of observations would have to behave physically in an aniso-
tropic manner due to the existence of this motion. But despite the most arduous
searching, physicists have never observed such an apparent anisotropy.

The relativity principle is hence as old as mechanics, and no one could ever have
questioned its validity from an empirical standpoint. That it has been nonetheless
doubted, and is again doubted today, is due to the fact that it seemed to be incompati-
ble with Maxwell-Lorentz electrodynamics. Whoever is in a position to judge this
theory, in light of its inclusiveness, the small number of its fundamental assumptions,
and its successful representation of phenomena in the domain of electrodynamics and
optics, will find it difficult to dispel the impression that the main features of this the-
ory are as definitively established as are the equations of mechanics. It has also not
been accomplished to set another theory against this one that could even tolerably
compete with it. |

It is easy to specify wherein lies the apparent contradiction between Maxwell-
Lorentz electrodynamics and the relativity principle. Suppose that the equations of
that theory hold relative to the coordinate system  This means that every light ray
propagates in vacuo with a definite velocity  with respect to  which is indepen-
dent of direction and of the state of motion of the light source; this proposition will be
called the “principle of the constancy of the speed of light” in the following. Now if
one such light ray were to be observed by an observer moving relative to  then the
propagation speed of this light ray, as estimated from the standpoint of this observer,
in general seems to be different than  For example, if the light ray propagates in the
direction of the positive axis of  with speed  and our observer moves in the
same direction with the temporally constant speed  then one would believe that
one can immediately conclude that the light ray’s propagation speed must be 
according to the moving observer. Relative to the observer, that is, relative to a coor-
dinate system  moving with the same velocity, the principle of the constancy of the
speed of light does not appear to hold. Hence, here is an apparent contradiction with
the principle of relativity.

However, an exact analysis of the physical content of our spatial and temporal
determinations leads to the well-known result that the implied contradiction is only
apparent, since it depends on both of the following arbitrary assumptions:

1. The assertion that whether two events occurring in different places occur simulta-
neously has content independently of the choice of a reference system.

2. The spatial distance between the places in which two simultaneous events occur is
independent of the choice of a reference system.
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Given that the Maxwell-Lorentz theory as well as the relativity principle are
empirically supported to such a large degree, one must therefore decide to drop both
the aforementioned arbitrary assumptions, the apparent evidence for which rests
solely on the facts that light gives us information about distant events 

 

apparently
instantaneously

 

, and that the objects | we deal with in daily life have velocities that
are small compared to the velocity of light  

By abandoning these arbitrary assumptions, one achieves compatibility between
the principle of the constancy of the speed of light, which results from Maxwell-
Lorentz electrodynamics, and the relativity principle. One can retain the assumption
that one and the same light ray propagates with velocity  relative to all reference
systems  in uniform translational motion with respect to a system  rather than
only relative to  One only has to choose the transformation equations, which exist
between the spacetime coordinates  with respect to  and those

 with respect to  in an appropriate way; one will thereby be led to the
system of transformation equations called the “Lorentz transformation.” This Lorentz
transformation supercedes the corresponding transformations that until the develop-
ment of relativity theory were regarded as the only conceivable ones, which, however,
were based on the assumptions (1) and (2) given above. 

The heuristic value of relativity theory consists in the fact that it provides a con-
straint that all of the systems of equations that express general laws of nature must
satisfy. All such systems of equations must be constructed such that with the applica-
tion of a Lorentz transformation they go into a system of equations of the same form
(covariance with respect to the Lorentz transformations). Minkowski presented a
simple mathematical schema to which equation systems must be reducible if they are
to behave covariantly with respect to Lorentz transformations; thereby he achieved
the advantage, that for the accommodation of the system of equations with the con-
straint mentioned above it is certainly not necessary to in fact carry out a Lorentz
transformation on those systems.

From what has been said it clearly follows that relativity theory by no means
gives us a tool for deducing previously unknown laws of nature from nothing. It only
provides an always applicable criterion that constrains the possibilities; in this respect
| it is comparable to the law of energy conservation or the second law of thermody-
namics. 

It follows from a close examination of the most general laws of theoretical phys-
ics that Newtonian mechanics must be modified to satisfy the criterion of relativity
theory. These altered mechanical equations have proven to be applicable to cathode
rays and rays (motion of free electrical particles). Moreover, the implementation
of relativity theory has lead to neither a logical contradiction nor a conflict with
empirical results.

Only one result of relativity theory will be given here in particular, because it is of
importance for the following analyses. According to Newtonian mechanics the inertia
of a system constituted by a collection of material points (that is, the inertial resis-
tance against acceleration of the system’s center of gravity) is independent of the
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state of the system. By contrast, according to relativity theory the inertia of an iso-
lated system (floating in a vacuum) depends upon the state of the system, such that
the inertia increases with the energy content of the system. Thus according to relativ-
ity theory, it is ultimately 

 

energy

 

 that inertia can be attributed to. The energy, rather
than the inertial mass of a material point, is what we have ascribed indestructibility
to; hence the theorem of the conservation of mass is incorporated into the theorem of
the conservation of energy. 

It was remarked above that it would be a great mistake to regard relativity theory
as a universal method that allows one to develop an unequivocally appropriate theory
for a domain of phenomena regardless of how little this has been explored empiri-
cally. Relativity theory only 

 

reduces

 

 by a significant amount the empirical conclu-
sions necessary for the development of a theory. There is only one domain of
fundamental importance where we have such poor empirical knowledge that this
knowledge, in combination with relativity theory, is not sufficient, by a wide margin,
for a clear determination of the general theory. This is the domain of gravitational
phenomena. Here we can only reach our goal by complementing what is empirically
known with physical hypotheses in order to complete the basis | of the theory. The
following considerations are firstly to show how one arrives at what are, in my opin-
ion, the most natural such hypotheses.

When we speak of a body’s 

 

mass

 

, we associate with this word two definitions that
are logically completely independent. By 

 

mass

 

 we understand, first, a constant inher-
ent to a body, which measures its resistance to acceleration (“inertial mass”), and sec-
ond, the constant of a body that determines the magnitude of the force that it
experiences in a gravitational field (“gravitational mass”). 

It is in no way self-evident 

 

a priori

 

 that the inertial and gravitational mass of a
body must agree; we are simply 

 

accustomed

 

 to assume their agreement. The belief in
this agreement stems from the empirical fact that the acceleration that various bodies
experience in a gravitational field is independent of their material constitution.
Eötvös has shown that, in any case, inertial and gravitational mass agree with very
great precision, in that, through his experiments with a torsion balance, he ruled out
the existence a relative deviation of the two masses from each other on the order of
magnitude of 

 

1

 

Enormous quantities of energy in the form of heat are discharged into the environ-
ment by radioactive processes. According to the result regarding the inertia of energy
presented above, the decay products generated by the reaction taken together must
have a smaller inertial mass than that of the material existing before the radioactive
decay. This change of inertial mass is, for the kind of reaction with known heat effect,

 

1 Eötvös’ experimental method is based on the following. The Earth’s gravity and the centrifugal force
influence a body found on the Earth’s surface. For the first the body’s gravitational mass, and for the
second the inertial mass, is the determining factor. If the two were not identical, then the direction of
the resultant of the two (the apparent weight) would depend on the material of the body. With his tor-
sion balance experiments, Eötvös proved with great precision the non-existence of such a depen-
dence.
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of the order  If the gravitational mass did not change simultaneously with the
inertial mass of the system, then the inertial mass would have to differ from the grav-
itational mass for various elements far more than Eötvös’s | experiments would allow.
Langevin was the first to call attention to this important point.

From what has been said the identity of the inertial and gravitational mass of
closed systems (at rest) follows with great probability; I think that based on the
present state of empirical knowledge we should adhere to the assumption of this iden-
tity unconditionally. We have thereby attained one of the most important physical
demands that, from my point of view, must be imposed on any gravitational theory.

This demand involves a far-reaching constraint on gravitational theories, which
one recognizes especially in conjunction with the theorem of the inertia of energy. All
energy corresponds to inertial mass, and all inertial mass corresponds to gravitational
mass; the gravitational mass of a closed system must therefore be determined by its
energy. The energy of its gravitational field also belongs to the energy of a closed sys-
tem; hence the gravitational field energy itself contributes to the system’s gravita-
tional mass rather than only its inertial mass. 

Abraham and Mie have proposed gravitational theories. Abraham’s theory contra-
dicts the relativity principle, and Mie’s theory contradicts the demand of the equality
of the inertial and gravitational mass of a closed system. According to the latter the-
ory, were a body to be heated the

 

 inertial

 

 mass 

 

grows 

 

in proportion to the energy
gain, but not the gravitational mass; the latter would actually decrease for a gas with
rising temperature.

 

2

 

By way of contrast, a gravitational theory recently proposed by Nordström com-
plies with both the relativity principle and the requirement of the gravity of energy of
closed systems, with one restriction to be indicated in the following. Abraham’s claim
to the contrary made in a paper appearing in this journal is not | correct. In fact, I
believe that a cogent argument against Nordström’s theory cannot be drawn from
experience.

According to Nordström’s theory the principle of the gravity of energy of closed
systems at rest holds as a statistical principle. The gravitational mass of a closed sys-
tem (with the whole system at rest) is in general an oscillating quantity, whose tem-
poral average is determined by the total energy of the system. As a consequence of
the oscillatory character of mass, such a system must emit standing longitudinal grav-
itational waves. Yet the energy loss expected according to the theory is so small that it
must escape our notice. 

After a more detailed study of Nordström’s theory, everyone will have to admit
that this theory, when regarded from an empirical standpoint, is an unobjectionable
integration of gravitation into the framework of relativity theory (in the narrower

 

2 Due to their smallness, these effects are certainly not accessible to experiments. But it seems to me
that there is much to be said for taking the connection between inertial and gravitational mass to be
warranted in principle, regardless of what forms of energy are taken into account. According to Mie,
one can account for the fact that the equality of inertial and gravitational mass holds for radioactive
transformations only with assumptions regarding the special nature of energy in the interior of atoms.
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sense). Even though I am of the opinion that we cannot be satisfied with this solution,
my reasons for this have an epistemological character that will be described in the
following.

II. RELATIVITY THEORY IN THE BROADER SENSE

Classical mechanics, as well as relativity theory in the narrow sense briefly described
above, suffer from a fundamental defect, which no one can deny, that is accessible to
epistemological arguments. The weaknesses of our physical world picture to be dis-
cussed below were already uncovered with full clarity by E. Mach in his deeply pen-
etrating investigations of the foundations of Newtonian mechanics, so that what I will
assert in this respect can have no claim to novelty. I will explain the essential point
with an example, which is chosen to be quite elementary, in order to allow what is
essential to stand out. 

Two masses float in space at a great distance from all celestial bodies. Suppose
that these two are close enough together that they can exert an influence on each
other. Now an observer watches the motion of both bodies, such that he continually
looks along the direction of the line | connecting the two masses toward the sphere of
fixed stars. He will observe that the line of sight traces out a closed line on the visible
sphere of fixed stars, which does not change its position with respect to the visible
sphere of fixed stars. If the observer has any natural intelligence, but has learned nei-
ther geometry nor mechanics, he would conclude: “My masses carry out a motion,
which is at least in part causally determined by the fixed stars. The law by which
masses in my surroundings move is co-determined by the fixed stars.” A man who has
been schooled in the sciences would smile at the simple-mindedness of our observer
and say to him: “The motion of your masses has nothing to do with the heaven of
fixed stars; it is rather fully determined by the laws of mechanics entirely indepen-
dently of the remaining masses. There is a space  in which these laws hold. These
laws are such that the masses remain continually in a plane in this space. However,
the system of fixed stars cannot rotate in this space, because otherwise it would be
disrupted by powerful centrifugal forces. Thus it necessarily must be at rest (at least
almost!), if it is to exist permanently; this is the reason that the plane in which your
masses move always goes through the same fixed stars.” But our intrepid observer
would say: “You may be incomparably learned. But just as I could never be brought
to believe in ghosts, so I cannot believe in this gigantic thing that you speak of and
call space. I can neither see something like that nor conceive of it. Or should I think
of your space  as a subtle net of bodies that the remaining things are all referred to?
Then I can imagine a second such net  in addition to  that is moving in an arbi-
trary manner relative to  (for example, rotating). Do your equations also hold at the
same time with respect to  The learned man denies this with certainty. In reply
to which the ignoramus: “But how do the masses know which “space”   etc.
with respect to which they should move according to your equations, how do they
recognize the space or spaces they orient themselves with respect to?” Now our
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learned man is in a quite embarrassing position. He certainly insists that there must
be such privileged spaces, but he knows no reason to give for why such spaces could
be distinguished from | other spaces. The ignoramus’s reply: “Then I will take, for the
time being, your privileged spaces as an idle fabrication, and stay with my concep-
tion, that the sphere of fixed stars co-determines the mechanical behavior of my test
masses.” 

I will explain the violation of the most elementary postulate of epistemology of
which our physics is guilty in yet another way. One would try in vain to explain what
one understands by the simple acceleration of a body. One would only succeed in
defining 

 

relative

 

 acceleration of bodies with respect to each other. However, having
said that, we base our mechanics on the premise that a force (cause) is necessary for
the generation of a body’s acceleration, ignoring the fact that we cannot explain what
it is that we understand by “acceleration,” exactly because only 

 

relative

 

 accelerations
can be an object of perception. 

The dubious aspect of proceeding in this vein is very nicely illustrated by a com-
parison, which I owe to my friend Besso. Suppose we think back to an earlier time,
when it was assumed that the surface of the Earth must be approximately 

 

flat

 

. Imag-
ine that the following conception exists among the learned. In the world there is a
physically distinguished direction, the vertical. All objects fall in this direction if they
are not supported. Because of this the surface of the Earth is essentially perpendicular
to this direction, and this is why it tends towards the form of a plane. While in this
case, the mistake lies in privileging one direction over all others without good reason
(fictitious cause), rather than simply regarding the Earth as the cause of falling, the
mistake in our physics lies in the introduction without good reason of privileged ref-
erence systems as fictitious causes; both cases are characterized by forgoing the
establishment of a sufficient reason.

Since relativity theory in the narrower sense, rather than only classical mechanics,
exhibits the fundamental deficiency explained above, I set myself the goal of general-
izing relativity theory in such a way that this imperfection will be avoided. First of
all, I recognized that gravitation in general | must be assigned a fundamental role in
any such theory. Then from what was explained earlier it already follows that every
physical process must also produce a gravitational field, because of the quantity of
energy corresponding to it. On the other hand, the empirical fact that all bodies fall
with the same speed in a gravitational field suggests the idea that physical processes
happen in a gravitational field exactly as they do relative to an accelerated reference
system (equivalence hypothesis). In taking this idea as a foundation, I came to the
conclusion that the velocity of light is not to be regarded as independent of the gravi-
tational potential. Thus the principle of the constancy of the speed of light is incom-
patible with the equivalence hypothesis; that is why relativity theory in the narrower
sense cannot be made consistent with the equivalence hypothesis. This led me to take
relativity theory in the narrow sense to be applicable only in regions within which no
noticeable differences in the gravitational potential occur. Relativity theory (in the
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narrower sense) has to be replaced by a general theory, which contains the former as
a limiting case.

The path leading to this theory can only be very incompletely described in
words.

 

3

 

 The equations of motion for material points in a gravitational field that fol-
low from the equivalence hypothesis can be easily written in a form such that these
laws are completely independent of the choice of variables determining place and
time. By leaving the choice of these variables as 

 

a priori

 

 completely arbitrary, and
thus not privileging any spacetime system, one averts the epistemological objection
discussed above. A quantity

appears in that law of motion, and it is invariant, i.e., it is a quantity that is indepen-
dent of the choice of reference system (i.e., of the choice of four spacetime coordi-
nates). The quantities  are functions of  and represent the gravitational
field. |

With the help of the absolute differential calculus, which has been developed by
Ricci and Levi-Civita based on Christoffel’s mathematical investigations, one can
succeed, based on the existence of the invariant above, in replacing the well-known
systems of equations of physics with equivalent systems (when all  are constant),
which are valid independent of a choice of the spacetime coordinate system  All
such systems of equations include the quantities  i.e., the quantities that deter-
mine the gravitational field. Thus the latter influence all physical processes. 

Conversely, physical processes must also determine the gravitational field, i.e.,
the quantities  One arrives at the differential equations that determine these
quantities by means of the hypothesis that the conservation of momentum and energy
must hold for material events and the gravitational field taken together. This hypothe-
sis subsequently constrains the choice of spacetime variables  without thereby
evoking again the epistemological doubts analyzed above. Because according to this
generalized relativity theory there are no longer privileged spaces with peculiar phys-
ical qualities. The quantities  control the course of all processes, which for their
part are determined by the physical events in all the rest of the universe.

The principle of the inertia and gravitation of energy is completely satisfied in this
theory. Furthermore, the equations of motion for gravitational masses are such that it
is, as one must demand based on the considerations above, acceleration with respect
to other bodies rather than absolute acceleration (acceleration with respect to
“space”) that appears as that which is decisive for the appearance of inertial resis-
tance.

Relativity theory in the broader sense signifies a further development of the ear-
lier relativity theory, rather than an abandonment of it, that seems necessary to me for
the epistemological reasons I cited.

 

3 Cf. A. Einstein and M. Grossmann, 
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ALBERT EINSTEIN

ETHER AND THE THEORY OF RELATIVITY

Originally published in 1920 as “Äther und Relativitätstheorie” at Springer, Berlin,
on the basis of an address delivered on May 5th, 1920, at the University of Leyden.
The English version reproduced here first appeared in 1922 in Albert Einstein:
“Sidelights of Relativity” at Methuen, London, pp. 3–24. The page numbers given
here refer to the latter edition.

How does it come about that alongside of the idea of ponderable matter, which is
derived by abstraction from everyday life, the physicists set the idea of the existence
of another kind of matter, the ether? The explanation is probably to be sought in those
phenomena which have given rise to the theory of action at a distance, and in the
properties of light which have led to the undulatory theory. Let us devote a little while
to the consideration of these two subjects.

Outside of physics we know nothing of action at a distance. When we try to con-
nect cause and effect in the experiences which natural objects afford us, it seems at
first as if there were no other | mutual actions than those of immediate contact, e.g.
the communication of motion by impact, push and pull, heating or inducing combus-
tion by means of a flame, etc. It is true that even in everyday experience weight,
which is in a sense action at a distance, plays a very important part. But since in daily
experience the weight of bodies meets us as something constant, something not
linked to any cause which is variable in time or place, we do not in everyday life
speculate as to the cause of gravity, and therefore do not become conscious of its
character as action at a distance. It was Newton’s theory of gravitation that first
assigned a cause for gravity by interpreting it as action at a distance, proceeding from
masses. Newton’s theory is probably the greatest stride ever made in the effort
towards the causal nexus of natural phenomena. And yet this theory evoked a lively
sense of discomfort among Newton’s contemporaries, because it seemed to be in con-
flict with the principle springing from the rest of experience, that there can be recip-
rocal | action only through contact, and not through immediate action at a distance.

It is only with reluctance that man’s desire for knowledge endures a dualism of
this kind. How was unity to be preserved in his comprehension of the forces of
nature? Either by trying to look upon contact forces as being themselves distant
forces which admittedly are observable only at a very small distance—and this was
the road which Newton’s followers, who were entirely under the spell of his doctrine,
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mostly preferred to take; or by assuming that the Newtonian action at a distance is
only apparently immediate action at a distance, but in truth is conveyed by a medium
permeating space, whether by movements or by elastic deformation of this medium.
Thus the endeavour toward a unified view of the nature of forces leads to the hypoth-
esis of an ether. This hypothesis, to be sure, did not at first bring with it any advance
in the theory of gravitation or in physics generally, so that it became customary to
treat Newton’s law of force as an axiom | not further reducible. But the ether hypoth-
esis was bound always to play some part in physical science, even if at first only a
latent part.

When in the first half of the nineteenth century the far-reaching similarity was
revealed which subsists between the properties of light and those of elastic waves in
ponderable bodies, the ether hypothesis found fresh support. It appeared beyond
question that light must be interpreted as a vibratory process in an elastic, inert
medium filling up universal space. It also seemed to be a necessary consequence of
the fact that light is capable of polarisation that this medium, the ether, must be of the
nature of a solid body, because transverse waves are not possible in a fluid, but only
in a solid. Thus the physicists were bound to arrive at the theory of the “quasi-rigid”
luminiferous ether, the parts of which can carry out no movements relatively to one
another except the small movements of deformation which correspond to light-
waves.

This theory—also called the theory of | the stationary luminiferous ether—more-
over found a strong support in an experiment which is also of fundamental importance
in the special theory of relativity, the experiment of Fizeau, from which one was
obliged to infer that the luminiferous ether does not take part in the movements of bod-
ies. The phenomenon of aberration also favoured the theory of the quasi-rigid ether.

The development of the theory of electricity along the path opened up by Max-
well and Lorentz gave the development of our ideas concerning the ether quite a
peculiar and unexpected turn. For Maxwell himself the ether indeed still had proper-
ties which were purely mechanical, although of a much more complicated kind than
the mechanical properties of tangible solid bodies. But neither Maxwell nor his fol-
lowers succeeded in elaborating a mechanical model for the ether which might fur-
nish a satisfactory mechanical interpretation of Maxwell’s laws of the
electromagnetic field. The laws were clear and simple, the mechanical
interpretations | clumsy and contradictory. Almost imperceptibly the theoretical phys-
icists adapted themselves to a situation which, from the standpoint of their mechani-
cal programme, was very depressing. They were particularly influenced by the
electrodynamical investigations of Heinrich Hertz. For whereas they previously had
required of a conclusive theory that it should content itself with the fundamental con-
cepts which belong exclusively to mechanics (e.g. densities, velocities, deformations,
stresses) they gradually accustomed themselves to admitting electric and magnetic
force as fundamental concepts side by side with those of mechanics, without requir-
ing a mechanical interpretation for them. Thus the purely mechanical view of nature
was gradually abandoned. But this change led to a fundamental dualism which in the
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long-run was insupportable. A way of escape was now sought in the reverse direction,
by reducing the principles of mechanics to those of electricity, and this especially as
confidence in the strict validity of the equations of Newton’s | mechanics was shaken
by the experiments with rays and rapid cathode rays.

This dualism still confronts us in unextenuated form in the theory of Hertz, where
matter appears not only as the bearer of velocities, kinetic energy, and mechanical
pressures, but also as the bearer of electromagnetic fields. Since such fields also occur
in vacuo—i.e. in free ether—the ether also appears as bearer of electromagnetic
fields. The ether appears indistinguishable in its functions from ordinary matter.
Within matter it takes part in the motion of matter and in empty space it has every-
where a velocity; so that the ether has a definitely assigned velocity throughout the
whole of space. There is no fundamental difference between Hertz’s ether and pon-
derable matter (which in part subsists in the ether).

The Hertz theory suffered not only from the defect of ascribing to matter and
ether, on the one hand mechanical states, and on the other hand electrical states,
which do not stand in any conceivable | relation to each other; it was also at variance
with the result of Fizeau’s important experiment on the velocity of the propagation of
light in moving fluids, and with other established experimental results.

Such was the state of things when H. A. Lorentz entered upon the scene. He
brought theory into harmony with experience by means of a wonderful simplification
of theoretical principles. He achieved this, the most important advance in the theory
of electricity since Maxwell, by taking from ether its mechanical, and from matter its
electromagnetic qualities. As in empty space, so too in the interior of material bodies,
the ether, and not matter viewed atomistically, was exclusively the seat of electro-
magnetic fields. According to Lorentz the elementary particles of matter alone are
capable of carrying out movements; their electromagnetic activity is entirely confined
to the carrying of electric charges. Thus Lorentz succeeded in reducing all electro-
magnetic happenings to Maxwell’s equations for free space.

As to the mechanical nature of the | Lorentzian ether, it may be said of it, in a
somewhat playful spirit, that immobility is the only mechanical property of which it
has not been deprived by H. A. Lorentz. It may be added that the whole change in the
conception of the ether which the special theory of relativity brought about, consisted
in taking away from the ether its last mechanical quality, namely, its immobility. How
this is to be understood will forthwith be expounded.

The spacetime theory and the kinematics of the special theory of relativity were
modelled on the Maxwell-Lorentz theory of the electromagnetic field. This theory
therefore satisfies the conditions of the special theory of relativity, but when viewed
from the latter it acquires a novel aspect. For if  be a system of co-ordinates rela-
tively to which the Lorentzian ether is at rest, the Maxwell-Lorentz equations are
valid primarily with reference to  But by the special theory of relativity the same
equations without any change of meaning also hold in relation to any new system of
co-ordinates |  which is moving in uniform translation relatively to  Now comes
the anxious question:—Why must I in the theory distinguish the  system above all
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 systems, which are physically equivalent to it in all respects, by assuming that the
ether is at rest relatively to the  system? For the theoretician such an asymmetry in
the theoretical structure, with no corresponding asymmetry in the system of experi-
ence, is intolerable. If we assume the ether to be at rest relatively to  but in motion
relatively to  the physical equivalence of  and  seems to me from the logical
standpoint, not indeed downright incorrect, but nevertheless inacceptable.

The next position which it was possible to take up in face of this state of things
appeared to be the following. The ether does not exist at all. The electromagnetic
fields are not states of a medium, and are not bound down to any bearer, but they are
independent realities which are not reducible to anything else, exactly like the atoms
of ponderable matter. This | conception suggests itself the more readily as, according
to Lorentz’s theory, electromagnetic radiation, like ponderable matter, brings impulse
and energy with it, and as, according to the special theory of relativity, both matter
and radiation are but special forms of distributed energy, ponderable mass losing its
isolation and appearing as a special form of energy.

More careful reflection teaches us, however, that the special theory of relativity
does not compel us to deny ether. We may assume the existence of an ether; only we
must give up ascribing a definite state of motion to it, i.e. we must by abstraction take
from it the last mechanical characteristic which Lorentz had still left it. We shall see
later that this point of view, the conceivability of which I shall at once endeavour to
make more intelligible by a somewhat halting comparison, is justified by the results
of the general theory of relativity.

Think of waves on the surface of water. Here we can describe two entirely differ-
ent things. Either we may observe how | the undulatory surface forming the boundary
between water and air alters in the course of time; or else—with the help of small
floats, for instance—we can observe how the position of the separate particles of
water alters in the course of time. If the existence of such floats for tracking the
motion of the particles of a fluid were a fundamental impossibility in physics—if, in
fact, nothing else whatever were observable than the shape of the space occupied by
the water as it varies in time, we should have no ground for the assumption that water
consists of movable particles. But all the same we could characterize it as a medium.

We have something like this in the electromagnetic field. For we may picture the
field to ourselves as consisting of lines of force. If we wish to interpret these lines of
force to ourselves as something material in the ordinary sense, we are tempted to
interpret the dynamic processes as motions of these lines of force, such that each sep-
arate line of | force is tracked through the course of time. It is well known, however,
that this way of regarding the electromagnetic field leads to contradictions.

Generalizing we must say this:—There may be supposed to be extended physical
objects to which the idea of motion cannot be applied. They may not be thought of as
consisting of particles which allow themselves to be separately tracked through time.
In Minkowski’s idiom this is expressed as follows:—Not every extended conforma-
tion in the four-dimensional world can be regarded as composed of worldthreads. The
special theory of relativity forbids us to assume the ether to consist of particles
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observable through time, but the hypothesis of ether in itself is not in conflict with the
special theory of relativity. Only we must be on our guard against ascribing a state of
motion to the ether.

Certainly, from the standpoint of the special theory of relativity, the ether hypoth-
esis appears at first to be an empty hypothesis. In the equations of the | electromag-
netic field there occur, in addition to the densities of the electric charge, only the
intensities of the field. The career of electromagnetic processes in vacuo appears to be
completely determined by these equations, uninfluenced by other physical quantities.
The electromagnetic fields appear as ultimate, irreducible realities, and at first it
seems superfluous to postulate a homogeneous, isotropic ether-medium, and to envis-
age electromagnetic fields as states of this medium.

But on the other hand there is a weighty argument to be adduced in favour of the
ether hypothesis. To deny the ether is ultimately to assume that empty space has no
physical qualities whatever. The fundamental facts of mechanics do not harmonize
with this view. For the mechanical behavior of a corporeal system hovering freely in
empty space depends not only on relative positions (distances) and relative velocities,
but also on its state of rotation, which physically may be taken as a characteristic not
appertaining to the system in itself. In order | to be able to look upon the rotation of
the system, at least formally, as something real, Newton objectivizes space. Since he
classes his absolute space together with real things, for him rotation relative to an
absolute space is also something real. Newton might no less well have called his
absolute space “ether”; what is essential is merely that besides observable objects,
another thing, which is not perceptible, must be looked upon as real, to enable accel-
eration or rotation to be looked upon as something real.

It is true that Mach tried to avoid having to accept as real something which is not
observable by endeavouring to substitute in mechanics a mean acceleration with ref-
erence to the totality of the masses in the universe in place of an acceleration with ref-
erence to absolute space. But inertial resistance opposed to relative acceleration of
distant masses presupposes action at a distance; and as the modern physicist does not
believe that he may accept this action at a distance, he comes back once more, if he |
follows Mach, to the ether, which has to serve as medium for the effects of inertia.
But this conception of the ether to which we are led by Mach’s way of thinking dif-
fers essentially from the ether as conceived by Newton, by Fresnel, and by Lorentz.
Mach’s ether not only 

 

conditions

 

 the behavior of inert masses, but 

 

is also conditioned

 

in its state by them.
Mach’s idea finds its full development in the ether of the general theory of relativ-

ity. According to this theory the metrical qualities of the continuum of spacetime dif-
fer in the environment of different points of spacetime, and are partly conditioned by
the matter existing outside of the territory under consideration. This spacetime vari-
ability of the reciprocal relations of the standards of space and time, or, perhaps, the
recognition of the fact that empty space in its physical relation is neither homoge-
neous nor isotropic, compelling us to describe its state by ten functions (the gravita-
tion potentials  has, I think, finally disposed of the view that | space is
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physically empty. But therewith the conception of the ether has again acquired an
intelligible content, although this content differs widely from that of the ether of the
mechanical undulatory theory of light. The ether of the general theory of relativity is
a medium which is itself devoid of

 

 all 

 

mechanical and kinematical qualities, but helps
to determine mechanical (and electromagnetic) events.

What is fundamentally new in the ether of the general theory of relativity as
opposed to the ether of Lorentz consists in this, that the state of the former is at every
place determined by connections with the matter and the state of the ether in neigh-
boring places, which are amenable to law in the form of differential equations;
whereas the state of the Lorentzian ether in the absence of electromagnetic fields is
conditioned by nothing outside itself, and is everywhere the same. The ether of the
general theory of relativity is transmuted conceptually into the ether of Lorentz if we
substitute constants for the functions of space which describe the | former, disregard-
ing the causes which condition its state. Thus we may also say, I think, that the ether
of the general theory of relativity is the outcome of the Lorentzian ether, through rel-
ativation.

As to the part which the new ether is to play in the physics of the future we are not
yet clear. We know that it determines the metrical relations in the spacetime contin-
uum, e.g. the configurative possibilities of solid bodies as well as the gravitational
fields; but we do not know whether it has an essential share in the structure of the
electrical elementary particles constituting matter. Nor do we know whether it is only
in the proximity of ponderable masses that its structure differs essentially from that of
the Lorentzian ether; whether the geometry of spaces of cosmic extent is approxi-
mately Euclidean. But we can assert by reason of the relativistic equations of gravita-
tion that there must be a departure from Euclidean relations, with spaces of cosmic
order of magnitude, if there exists a positive mean density, no matter how small, of
the matter in the universe. | In this case the universe must of necessity be spatially
unbounded and of finite magnitude, its magnitude being determined by the value of
that mean density.

If we consider the gravitational field and the electromagnetic field from the stand-
point of the ether hypothesis, we find a remarkable difference between the two. There
can be no space nor any part of space without gravitational potentials; for these con-
fer upon space its metrical qualities, without which it cannot be imagined at all. The
existence of the gravitational field is inseparably bound up with the existence of
space. On the other hand a part of space may very well be imagined without an elec-
tromagnetic field; thus in contrast with the gravitational field, the electromagnetic
field seems to be only secondarily linked to the ether, the formal nature of the electro-
magnetic field being as yet in no way determined by that of gravitational ether. From
the present state of theory it looks as if the electromagnetic field, as opposed to the
gravitational field, rests upon an entirely new formal 

 

motif

 

, as though | nature might
just as well have endowed the gravitational ether with fields of quite another type, for
example, with fields of a scalar potential, instead of fields of the electromagnetic
type.

[20]

[21]
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Since according to our present conceptions the elementary particles of matter are
also, in their essence, nothing else than condensations of the electromagnetic field,
our present view of the universe presents two realities which are completely sepa-
rated from each other conceptually, although connected causally, namely, gravita-
tional ether and electromagnetic field, or—as they might also be called—space and
matter.

Of course it would be a great advance if we could succeed in comprehending the
gravitational field and the electromagnetic field together as one unified conformation.
Then for the first time the epoch of theoretical physics founded by Faraday and Max-
well would reach a satisfactory conclusion. The contrast between ether and matter
would fade away, and, through the general theory of relativity, the whole of | physics
would become a complete system of thought, like geometry, kinematics, and the the-
ory of gravitation. An exceedingly ingenious attempt in this direction has been made
by the mathematician H. Weyl; but I do not believe that his theory will hold its
ground in relation to reality. Further, in contemplating the immediate future of theo-
retical physics we ought not unconditionally to reject the possibility that the facts
comprised in the quantum theory may set bounds to the field theory beyond which it
cannot pass.

Recapitulating, we may say that according to the general theory of relativity space
is endowed with physical qualities; in this sense, therefore, there exists an ether.
According to the general theory of relativity space without ether is unthinkable; for in
such space there not only would be no propagation of light, but also no possibility of
existence for standards of space and time (measuring-rods and clocks), nor therefore
any spacetime intervals in the physical sense. But this ether may not be thought of as
endowed with the quality characteristic | of ponderable media, as consisting of parts
which may be tracked through time. The idea of motion may not be applied to it.

[23]

[24]
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MIE’S THEORIES OF MATTER AND GRAVITATION

Unifying physics by describing a variety of interactions—or even all interactions—
within a common framework has long been an alluring goal for physicists. One of the
most ambitious attempts at unification was made in the 1910s by Gustav Mie. Mie
aimed to derive electromagnetism, gravitation, and aspects of the emerging quantum
theory from a single variational principle and a well-chosen world function (Hamilto-
nian). Mie’s main innovation was to consider nonlinear field equations to allow for
stable particle-like solutions (now called solitons); furthermore he clarified the use of
variational principles in the context of special relativity. The following brief introduc-
tion to Mie’s work has three main objectives.1 The first is to explain how Mie’s
project fit into the contemporary development of the electromagnetic worldview. Part
of Mie’s project was to develop a relativistic theory of gravitation as a consequence
of his generalized electromagnetic theory, and our second goal is to briefly assess this
work, which reflects the conceptual resources available for developing a new account
of gravitation by analogy with electromagnetism. Finally, Mie was a vocal critic of
other approaches to the problem of gravitation. Mie’s criticisms of Einstein, in partic-
ular, bring out the subtlety and novelty of the ideas that Einstein used to guide his
development of general relativity.

In September 1913 Einstein presented a lecture on the current status of the prob-
lem of gravitation at the 85th Naturforscherversammlung in Vienna. Einstein’s lec-
ture and the ensuing heated discussion, both published later that year in the
Physikalische Zeitschrift, reflect the options available for those who took on the task
of developing a new theory of gravitation. The conflict between Newtonian gravita-
tional theory and special relativity provided a strong motivation for developing a new
gravitational theory, but it was not clear whether a fairly straightforward modification
of Newton’s theory based on classical field theory would lead to a successful replace-
ment. Einstein clearly aimed to convince his audience that success would require the
more radical step of extending the principle of relativity. For Einstein the develop-
ment of a new gravitational theory was intricately connected with foundational prob-

1 There are several recent, more comprehensive discussions of Mie’s work, which we draw on here:
(Kohl 2002; Vizgin 1994; 26–38; Corry 1999, 2004, chaps. 6 and 7). Born (1914) gives an insightful,
influential reformulation of Mie’s framework, and (Pauli 1921, §64, 188–192 in the English transla-
tion) and (Weyl 1918, §25, 206–217 (§26) in the English translation of the fourth edition) both give
clear contemporary reviews.
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lems in classical mechanics, and in the Vienna lecture he motivated the need to
extend the principle of relativity with an appeal to Mach’s analysis of inertia. Accord-
ing to Einstein Mach had accurately identified an “epistemological defect” in classi-
cal mechanics, namely the introduction of a distinction between inertial and non-
inertial reference frames without an appropriate observational basis.

 

2

 

 The special the-
ory of relativity had replaced Galilean transformations between reference frames
with Lorentz transformations, but the principle of relativity still did not apply to
accelerated motion. Extending the principle of relativity to accelerated motion
depended on an idea Einstein later called “the most fortunate thought of my life,” the
principle of equivalence. This idea received many different formulations over the
years, but in 1913 Einstein gave one version of this principle as a postulate: his sec-
ond postulate requires the exact equality of inertial and gravitational mass. He further
argued that this equality undermines the ability to observationally distinguish
between a state of uniform acceleration and the presence of a gravitational field. The
principle of equivalence gave Einstein a valuable link between acceleration and grav-
itation, tying together the problem of gravitation and the problem of extending the
principle of relativity. At the time of the Vienna lecture Einstein was in the midst of
an ongoing struggle to clarify the connections among Mach’s insight, a generalized
principle of relativity, and the formal requirement of general covariance, a struggle
that would continue for several more years. Although he also drew heavily on classi-
cal field theory in his work, he was convinced that this cluster of ideas would provide
the key to a new theory of gravitation.

Gustav Mie’s approach to the problem of gravitation stands in sharp contrast to
Einstein’s. In the discussion following the Vienna lecture, Mie pointedly criticized
Einstein’s requirement of general covariance and complained that Einstein had over-
looked other approaches to gravitation, including his own work and that of Max Abra-
ham.
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 Mie commented that Einstein might have missed his theory of gravitation since
it was “tucked away in a work on a comprehensive theory of matter” (CPAE 5, Doc.
18, 1262). This remark aptly characterizes where Mie placed the problem of gravita-
tion conceptually; in Mie’s approach the problem of gravitation would be solved as a
by-product of an extension of classical field theory. The problem of gravitation was
one of the issues, among many, that a “comprehensive theory of matter” would
resolve. The pressing issue for Mie was to develop a unified field theory that would
succeed where earlier attempts at a reduction of mechanics to electromagnetic theory
had failed. By way of contrast with Einstein, Mie’s project did not lead out of special

 

2 Einstein discusses these issues in §4 and §9 of the Vienna lecture (Einstein 1913), as well as in part II
of (Einstein 1914), both included in this volume. For a thorough discussion of the role of Machian
ideas in Einstein’s discovery of general relativity, see “The Third Way to General Relativity” (in vol. 3
of this series).

3 In the published version of the lecture Einstein does briefly mention Abraham’s theory only to remark
that it fails to satisfy his third postulate, namely the requirement of Lorentz covariance. Mie later
noted (Mie 1914, note 13, 175) that the reference to Abraham was only added in the published version
of the lecture.
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relativity, and Mie was not convinced by Einstein’s attempt to link issues in the foun-
dations of mechanics to the problem of gravitation. In Vienna, Einstein justified his
sin of omission by pointing out that Mie’s theory violated one of his starting assump-
tions, namely the principle of equivalence. But this clearly did not sway Mie, who
expressed doubts that the principle could serve as the basis for a theory and whether it
even held in Einstein’s own 

 

Entwurf

 

 theory.

 

4

 

 Mie was also a forceful critic of Ein-
stein’s search for a generalized principle of relativity. In the discussion following the
Vienna talk and in subsequent articles (Mie 1914, 1915), Mie argued that Einstein had
failed to establish a clear link between a principle of general relativity and accelerated
motion and questioned the physical content of the principle. Mie had put his finger on
the ambiguity of Einstein’s guiding principles and the slippage between these ideas
and the formal requirement of general covariance. More generally, Mie’s criticisms
illustrate that Einstein’s idiosyncratic path to developing a new gravitational theory
seemed to lead into the wilderness in 1913, and that Einstein had not provided entirely
convincing reasons to abandon a more conservative path toward a new theory.

Mie’s comprehensive theory of matter was presented in a series of three ambitious
papers in 1912–13. Mie was eleven years older than Einstein and had held a position
as a theoretical physicist in Greifswald since 1902. He was well known for work in
applied optics and electromagnetism, including an insightful treatment of the scatter-
ing of electromagnetic radiation by spherical particles (Mie 1908) and a widely used
textbook (Mie 1910). Mie’s textbook endorsed the electromagnetic worldview promi-
nently advocated in the previous decade by Wilhelm Wien and Max Abraham. This
worldview amounted to the claim that electromagnetic theory had replaced mechanics
as the foundation of physical theory, and Mie characterized electromagnetic theory as
“aether physics.” Mie emphasized the appeal of reducing physics to a simple set of
equations governing the state of the aether and its dynamical evolution, and conceiv-
ing of elementary particles as stable “knots” in the aether rather than independent
entities (Mie 1912a, 512–13). The aim of the trilogy on matter theory was to develop
a unified theory able to account for the existence and properties of electrons (as well
as atoms or molecules), explain recent observations of atomic spectra, and yield field
equations for gravitation. Although Mie ultimately failed to achieve these grand
goals, the approach and formalism he developed influenced later work in unified field
theory.

Mie’s program differed in important ways from electron theories from the previ-
ous decade.

 

5

 

 The main obstacle to earlier attempts to realize the electromagnetic
worldview was the difficulty of explaining the nature and structure of the electron
itself in purely electromagnetic terms. Electron theory was an active research area in
the first decade of the twentieth century, drawing the attention of many of the best

 

4 In the discussion, Mie announced that he would soon publish a proof that equality does not hold in the

 

Entwurf

 

 theory, which appeared in §3 of (Mie 1914).
5 Here we draw primarily on the insightful analysis of the transition from electron theory to relativistic

electrodynamics in (Janssen and Mecklenburg 2005); see also the essays collected in (Buchwald and
Warwick 2001)
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physicists of that generation, such as Lorentz, Abraham, and Sommerfeld. By the
time of Mie’s work the aim of determining the internal structure of the electron,
treated as an extended particle with a definite shape and charge distribution, had been
largely abandoned and interest in electron theory had begun to wane. With the advent
of special relativity came the realization that the velocity dependence of the elec-
tron’s mass, a quantity that had been touted as a sensitive experimental test of the
internal structure of the electron, was instead a direct consequence of the principle of
relativity (Pauli 1921, 185; Pais 1972).
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 Developments in electron theory also threat-
ened the goal of replacing Newtonian mechanics with electromagnetism. Poincaré
(1906) proved that an electron treated as a distribution of charge over a spherical shell
is not a stable configuration if only the electromagnetic forces are included—the
repulsive Coulomb forces would cause it to break apart. Thus it was necessary to
introduce the so-called “Poincaré stress,” an attractive force needed to maintain the
stability of the electron.

One way of responding to these results was to temper the reductive ambitions of
the electromagnetic worldview, and to follow Lorentz in admitting charged particles or
non-electromagnetic forces as basic elements of the theory. Mie took a different route,
and chose instead to alter the field equations of electromagnetism so that there are
solutions corresponding to stable particles. A successful theory along these lines
would describe the fundamental particles as stable solutions to a set of field equations
(with laws of motion derived directly from the field equations) without introducing
particles as independent entities, and in this sense reduce mechanics to (generalized)
electrodynamics. In effect, Mie treated Maxwell’s equations as a weak-field limit of
more general field equations. In order to allow for stable charge configurations such as
an electron Mie considered non-linear field equations. The fundamental desideratum
for the theory was to find generalized field equations that admitted stable solutions rep-
resenting elementary particles and also reduced to Maxwell’s equations in an appropri-
ate limit for regions far from the particles.
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 Mie further aimed to show that gravitation
would naturally emerge as a consequence of the generalized field equations.

The key to Mie’s theory was the “world function” (Hamiltonian), which he used
to derive the field equations via Hamilton’s principle.
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 Maxwell’s field equations in
empty space follow from a Lagrangian  where  is the Max-
well tensor and the repeated indices (with  are summed over. Mie’s pro-

 

6 Lorentz put the point as follows in 1922, “the formula for momentum is a general consequence of the
principle of relativity, and a verification of that formula is a verification of the principle and tells us
nothing about the nature of mass or of the structure of the electron,” quoted in (Janssen and Mecklen-
burg 2005).

7 Mie was not the first to consider this way of extending classical electromagnetism. Prior to Mie’s
work Einstein considered replacing Maxwell’s field equations with non-linear, inhomogeneous, and/
or higher order equations, as reflected in correspondence with Lorentz and Besso in 1908–1910 (see
(McCormach 1970) and (Vizgin 1994), 19–26). Einstein, however, was much more keenly aware than
Mie of the deep challenges posed by the quantum structure of radiation.

8 Although Mie formulated his theory within a generalized Hamiltonian framework, in the following
we focus on the Lagrangian for his field theory (following Born 1914) for ease of exposition.
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gram was to find the terms added to  that would yield the desired generalized
field equations. Mie introduced two fundamental assumptions regarding  at the out-
set of the “Grundlagen” (Mie 1912a). First, electrons and other charged particles
should be regarded as “states of the aether” rather than independent entities. Mie
insisted that the states of the aether should suffice for a complete physical description
of matter, although he admitted that failure of his program might force one to enlarge
the allowed fundamental variables. Mie distinguished two different types of funda-
mental variables, the “intensive quantities” and “extensive quantities,” treating the
latter as analogous to conjugate momenta in Hamiltonian mechanics (see Mie 1915,
254). To enforce the first assumption Mie required that the world function depends
only on the field variables (including the electric charge density, the convection cur-
rent, the magnetic field strength, and the electric displacement). As Born emphasized
(1914, 32), this ruled out treating charged particles with trajectories given by inde-
pendent equations of motion as the source of the field, since including a coupling to a
background current in the Lagrangian (i.e., adding a term proportional to 
would explicitly introduce dependence on spacetime coordinates. The second
assumption was the validity of special relativity, with the consequence that  must
be Lorentz covariant. The Lagrangian could only include functions of Lorentz invari-
ant terms constructed from  and  the four-vector potential.
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 Mie argued that
functions of only two of these invariants, namely  and  should appear in

 For the general field equations to reduce to Maxwell’s equations, the  term
could have non-zero values only in regions occupied by particles.

Mie failed to flesh out his formalism with a specific world function satisfying
these constraints that led to a reasonable physical theory. Instead he was limited to
illustrating his approach with simple examples, such as a Lagrangian

 where  is an arbitrary constant. Solutions to the field
equations that follow from this Lagrangian could be taken to represent elementary
particles, and Mie calculated the charge and mass of the particles. However, these
solutions had a number of undesirable features. The arbitrary coefficient appearing in
the Lagrangian implied that these solutions placed no constraints on the charge and
mass of the “particles,” rather than leading to the distinctive values of charge and mass
for known particles such as the electron. Mie was further forced to admit (1912b, 38)
that his simple world function did not lead to reasonable solutions for interacting
charged particles; instead the solutions described a world that eventually separated
into two lumps of opposite charge moving away from each other. The simple world

 

9 Since the Lagrangian depends on and its first derivatives. The list of invariants

included the following quantities:

One invariant was missing from Mie’s original list, as Pauli (1921) noted: the quantity 
where  is the dual of  is an invariant of the restricted Lorentz group, and its square is an
invariant of the full Lorentz group.

ΦEM
Φ

Jμφμ)

Φ

Fμν φμ ,

Fμν

φν∂

xμ∂
---------

φμ∂

xν∂
-------- ,= φν

1
2
---Fμν;  φνφν

;  Fμνφν
F

μρφρ;  Fμνφρ Fνρφμ Fρμφν )2
+ +(

1
4
---F*

μν F
μν

,
F*

μν Fμν ,

FμνFμν φνφν

Φ. φνφν

Φ 1
4
---FμνFμν+α φνφν( )

3
,–= α



 

628 C

 

HRISTOPHER

 

 S

 

MEENK

 

 

 

AND

 

 C

 

HRISTOPHER

 

 M

 

ARTIN

 

functions considered by Mie were not viable candidates for a comprehensive descrip-
tion of matter, but he clearly hoped that these problems could be blamed on his lack of
ingenuity rather than on his formal framework. However, Pauli (1921, 192) high-
lighted a problem that went deeper than the failure to find a suitable world function.
Mie’s world function and the resulting equations of motion both include functions of

 As a result, a stable solution with some value of  is in general not also a solution
for  and the world function also fails to be gauge invariant.

 

10

 

Mie hoped that the appropriate world function (supposing one could be found)
would incorporate gravity without needing to put it in by hand. At the outset of the

 

Grundlagen,

 

 Mie announced his goal of deriving gravity from his matter theory with-
out introducing new dynamical variables and sketched a fanciful picture according to
which gravity was a consequence of a cohesive shell or atmosphere binding particles
together within an atom (Mie 1912a, 512–514). Mie’s description of his project may
have raised hopes that the third paper would introduce a truly novel approach to grav-
itation based on non-linear electrodynamics. But like his other grand goals, this one
also eluded Mie’s grasp.

Mie’s gravitational theory has a great deal in common with competing theories
due to Abraham and Nordström. Like Nordström, Mie retained an invariant speed of
light and upheld the strict validity of the principle of relativity. This sets his approach
apart from Abraham’s work; Abraham renounced the constancy of the speed of light
and retained the validity of the principle of relativity, restricted to infinitesimal space-
time regions, in his first theory, and renounced the principle of relativity all together
in his second theory.
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 But like Abraham and Nordström, Mie treated both the source
of the gravitational field and the gravitational potential as four-dimensional (Lorentz)
scalars, and these were introduced as independent quantities in the world function
with no connection to the electromagnetic field. The source of the gravitational field,

 the density of gravitational mass in Mie’s theory, is identical to the Hamiltonian
density. It is then a short step to derive field equations for the gravitational field
appealing to Hamilton’s principle. As Mie emphasized, the resulting field equations
would be identical to those given by (Abraham 1912) except for the introduction of
another variable in the world function.
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 By analogy with his matter theory, Mie
introduced an extensive quantity (the excitation of the gravitational field, analogous
to electric displacement) conjugate to the gravitational field strength, and argued that
the two are identical in an “ideal vacuum” but have an unspecified functional relation
in regions occupied by matter.

 

10 Mie recognized this problem and argued that the resulting dependence on the absolute value of the
potential would not lead to conflicts with experimental results (Mie 1912b, 24; Mie 1913, 62). Born
and Infeld (1934) revived Mie’s idea of using a more general Lagrangian, but they excluded additional
terms that depended on  to preserve gauge invariance.

11 For discussions of Abraham’s and Nordström’s theories, see “The Summit Almost Scaled …” and
“Einstein, Nordström, and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation,”
(both in this volume).

12 See (Mie 1913, 28–29) and the discussion following the Vienna lecture (CPAE 5, Doc. 18).
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Mie’s failure to achieve a substantial unification illustrates the obstacles to treat-
ing gravitation by analogy with electromagnetism. Mie (1915) clearly explained the
necessity of introducing the gravitational potential as a dynamical variable in order to
resolve the negative energy problem, the most important disanalogy. This problem
arises if energy is attributed to the gravitational field itself (as with the electromag-
netic field), since the gravitational field strength of, for example, two gravitating
masses increases as two masses approach each other, releasing energy in the form of
work extracted from the system. One way to save energy conservation in light of this
feature of gravitation was to attribute negative energy to the gravitational field, as is
suggested by treating Newtonian gravitation in close formal analogy to electrostatics.
However, a field with negative energy cannot maintain a stable equilibrium since any
small perturbation of the field would in general grow without limit. Following Abra-
ham, Mie argued that the way out of this dilemma was instead to include the gravita-
tional potential in the world function. With this, the internal energy of two
approaching masses can be shown to decrease with the decrease of the gravitational
potential, thereby compensating for the increase in the field energy.

Including the gravitational potential as a dynamical variable has the consequence
that, unlike in electromagnetism, the equations governing physical phenomena
depend upon the absolute value of the potential rather than on just potential differ-
ences. However, no such dependence had been empirically detected. It remains,
moreover, to specify exactly how the field energy depends on the gravitational poten-
tial. As (Mie 1915) noted, different choices for this dependence correspond to differ-
ent gravitational theories. Given the lack of empirical guidance to settle the issue,
Mie argued in favor of introducing a principle that would dictate this dependence
rather than making what he regarded as arbitrary assumptions. Mie hoped to recon-
cile his theory’s explicit dependence on the absolute value of the gravitational poten-
tial with the failure to experimentally detect any such dependence via the theorem
(later called a principle) of the relativity of the gravitational potential. The principle
plays a central role in the development of Mie’s theory, and in elucidating this idea
Mie drew a sharp contrast between his approach and Einstein’s insistence on general-
izing the principle of relativity.

Mie (1915) formulated the principle of the relativity of the gravitational potential
as follows:

In two regions of different gravitational potential exactly the same processes can run
according to exactly the same laws if one only thinks of the units of measurement as
changing in a suitable way with the value of the gravitational potential. (Mie 1915, 257)

In order to understand the content of this principle, it is perhaps helpful to consider
that the principle is equivalent to the requirement that the world function be a homog-
enous function of the dynamical variables, including the gravitational potential (Mie
1915, 258). From this it immediately follows that in regions of constant gravitational
potential, one can transform the potential away, or into any other constant potential,
through a rescaling of the remaining dynamical variables and, in general, the space-
time coordinates. Thus, for an observer using correspondingly rescaled measuring
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units to measure the dynamical variables, the gravitational potential will be undetect-
able. Thinking of Mie’s principle of relativity of the gravitational potential along these
lines as an invariance of the theory under rescaling, we see the gravitational potential
and rescalings in Mie’s theory as analogous, respectively, to the metric tensor and
general linear transformations in Einstein’s tensor theory.13 Simply put, Mie intro-
duces the gravitational potential into the world function to solve the negative energy
problem, and introduces an invariance principle, the principle of the relativity of the
gravitational potential, to remove any dependence of physical laws on the potential.

By contrast with Einstein, Mie’s introduction of this invariance principle for the
gravitational field had no connection with foundational problems in mechanics or
with extending the principle of relativity. Mie was clearly quite skeptical of the heu-
ristic value of Einstein’s guiding ideas. In the discussion following the Vienna lec-
ture, Mie pointedly criticized the idea of extending the principle of relativity to
arbitrary states of motion. Mie pressed Einstein to clarify what would be gained by
treating a complicated non-uniform motion, such as a bumpy train ride, as physically
equivalent to the gravitational field produced by some array of fictitious planets
(CPAE 5, Doc. 18). The underlying problem stemmed from Einstein’s failure to dis-
tinguish between two claims. In the familiar cases of relativity of uniform motion, the
two systems in relative motion are entirely physically equivalent. But Einstein’s
extension of relativity to non-uniform motion involves a very different claim; as he
would later clarify, what is relative in the case of non-uniform motion is how the met-
ric field is split into inertial and gravitational components. This does not, however,
imply that two observers in non-uniform motion with respect to each other are physi-
cally equivalent. In 1913 Einstein did not answer Mie by drawing this distinction;
instead, he replied that his theory did not satisfy an entirely general principle of rela-
tivity due to a restriction on allowed coordinate transformations (needed, Einstein
thought, to insure energy-momentum conservation). Mie (1914) further argued that
since the Entwurf theory admits only general linear transformations, it does not real-
ize a general principle of relativity, but in fact satisfies precisely Mie’s principle of
the relativity of the gravitational potential.

Einstein’s equivalence principle was also a target of Mie’s criticisms. This is not
surprising, since Mie’s commitment to retaining the framework of special relativity
implied that in his theory inertial and gravitational mass would not be exactly equal.
Mie (1915, §§5, 6) calculated the effect of the thermal motions of the constituents of
bodies on the relation between inertial and gravitational mass, and argued that depar-
tures from exact equality would be well within experimental bounds. Exact equiva-
lence could be had at the price of various auxiliary assumptions, according to Mie,
but he did not see the need for such extra assumptions, given that his theory fit exper-
imental constraints. He further claimed that Einstein’s theory can only guarantee

13 Our understanding here was guided by (CPAE 8, Doc. 346, fn. 3). Note that in his earlier work, Mie
(1912, 61) refers to this as the theorem of the relativity of the gravitational potential. Even at this early
juncture, though, Mie is quick to elevate this theorem, immediately dubbing it a principle.
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exact equivalence by making inconsistent assumptions (Mie 1914, 176). This attitude
toward the equivalence principle marks another contrast with Einstein, who took the
“unity of essence” of inertia and gravitation to be one of the central foundational
insights to be respected by his new theory.

In summary, Mie’s work illustrates the potential and limitations of approaching
the problem of gravitation within the framework of relativistic field theory. Mie’s
main innovation in the Grundlagen was to consider nonlinear field equations, which
opened up the possibility of reducing physics to an electromagnetic matter theory. The
appeal of this idea has to be balanced against the theory’s glaring deficiency, namely
the failure to find a particular world function describing even a simple physical system
such as two interacting particles. To paraphrase Einstein, although Mie’s theory pro-
vided a fine formal framework, it was not clear how to fill it with physical content.14

Even those sympathetic to Mie’s program had to admit doubts that this innovation
would lead to a successful matter theory, especially given the recent discoveries of
quantum phenomena. But whatever the prospects for matter theory based on general-
ized electrodynamics, Mie’s innovations in the Grundlagen turned out to provide few
insights for developing a gravitational theory. His own gravitational theory shared the
insights and limitations of other Lorentz-covariant theories of gravitation.

In terms of the further development of gravitational theories, Mie’s influence on
David Hilbert is more significant than his own theory. This influence was mediated
by Born’s clear reformulation of Mie’s theory (Born 1914), which showed how Mie’s
theory fit into the more general framework of (four-dimensional) Lagrangian contin-
uum mechanics as a special case. Mie’s project of unification and his mathematical
framework, as refined by Born, shaped Hilbert’s distinctive path to a new gravita-
tional theory.15 But this influence depended on Mie’s matter theory and not his gravi-
tational theory, which Born and Hilbert both set aside. Furthermore, Hilbert differed
from Mie sharply with regard to the status of special relativity. Mie was a persistent
critic of Einstein’s move to a metric theory of gravitation and saw no reason to leave
the framework of special relativity. Hilbert, on the other hand, took Einstein’s Ent-
wurf theory as one of his starting points, and his synthesis of Mie’s matter theory with
Einstein’s gravitational theory involved replacing the fixed Minkowski metric of spe-
cial relativity with Einstein’s metric tensor. The fertility of Mie’s matter theory for
Hilbert depended upon setting aside Mie’s own gravitational theory as well as his
criticisms of Einstein’s extension of special relativity.

14 In a 1922 letter to Weyl regarding Eddington’s later attempt at a unified field theory, quoted in (Vizgin
1994, 37), Einstein commented that “I find the Eddington argument to have this in common with
Mie’s theory: it is a fine frame, but one cannot see how it can be filled”; see also his negative assess-
ments of Mie’s theory (directly or as it was used by Hilbert) in letters to Freundlich (CPAE 5, Doc.
468), Ehrenfest (CPAE 8, Doc. 220) and Weyl (CPAE 8, Doc. 278). Weyl gave a similar assessment of
Mie’s theory; see §25 of (Weyl 1918); pp. 214–216 of the English translation.

15 This is explored in great detail in “Hilbert’s Foundation of Physics …” (in this volume). See also
(Sauer 1999) and (Corry 1999, 2004) for assessments of Hilbert’s project and the influence of Mie’s
theory.
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INTRODUCTION

1. The significance of the recently acquired empirical facts about the nature of the
atoms ultimately amounts to something essentially only negative, namely that in the
atoms’ interior the laws of mechanics and Maxwell’s equations cannot be valid. But
regarding what should replace these equations in order to encompass from a single
standpoint the profusion of remarkable facts associated with the notion of quantum of
action, and in addition the laws of atomic spectra and so forth, the experimental evi-
dence is silent. In fact, I believe that one must not expect anything like that from
experiment alone. Experiment and theory must work hand in hand, and that is not
possible as long as the theory has no foundation on which it can be based.

Thus it seems to me absolutely necessary for further progress of our understand-
ing to supply a new foundation for the theory of matter. With this work, I have tried in
the following to make a start, but in view of the difficulty of the matter one should not
right away expect results accessible to experiment. The immediate goals that I set
myself are: to explain the existence of the indivisible electron and: to view the actual-
ity of gravitation as in a necessary connection with the existence of matter. I believe
one must start with this, for electric and gravitational effects are surely the most
direct expression of those forces upon which rests the very existence of matter. It
would be senseless to imagine matter whose | smallest parts did not possess electric
charges, equally senseless however matter without gravitation. Only when the two
goals I mentioned are reached will we be able to consider making the connection
between the theory and the complex phenomena mentioned above. But achieving
both of these goals is still a long way off, and below I can publish only preliminary
work, which will perhaps help us to find the way.

 The basic assumption of my theory is 

 

that electric and magnetic fields occur also
in the interior of electrons.

 

 According to this view, electrons and accordingly the
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smallest particles of matter in general are not different in nature from the world
aether; they are not foreign bodies in the aether, as was thought maybe 20 years ago,
but 

 

they are only locations where the aether has taken on a particular state, which we
designate by the term electric charge

 

. However, the enormous intensity of the field-
and charge-states at the location itself that we designate as the electron implies that
here the usual Maxwell equations are no longer valid. The behavior of the electro-
magnetic field inside the electron presumably will be very strange when compared to
the laws of the “pure aether.” But if we can speak at all of an electromagnetic field in
the interior of the electron, then it would not be reasonable that there should not be a
continuous transition between the behavior of “pure” aether and that of aether in the
electron’s interior. Therefore, in my theory the electron is not a particle in the aether
with a sharp boundary, but consists of a nucleus with a continuous transition into an
atmosphere of electric charge that extends to infinity, but which becomes so extraor-
dinarily dilute already quite close to the nucleus that it cannot be experimentally
detected in any way. An atom is an agglomeration of a larger number of electrons
glued together by a relatively dilute charge of opposite sign. Atoms are probably sur-
rounded by more substantial atmospheres, which however are still so dilute that they
do not cause noticeable | electric fields, but which presumably are asserted in gravita-
tional effects.

It may seem that there is not much to be gained from the basic assumption just
formulated. Still, it leads to a general form for the basic equations of the physics of
the aether when combined with two further assumptions. The first is 

 

that the princi-
ple of relativity shall be valid generally

 

 and the second 

 

that the presently known
states of the aether (that is electric field, magnetic field, electric charge, charge cur-
rent) suffice completely to describe all phenomena of the material world

 

. The justifi-
cation of the first assumption should be beyond doubt. Whether the second holds
cannot be said 

 

a priori

 

. An attempt has to be made. If it can produce a theory that
mirrors the material world correctly, then it is thereby vindicated. In the opposite case
one will have to ask how the system of fundamental quantities is to be enlarged.

In the following I will present in some detail the reasoning that led me from the
three assumptions to a general form of the equations of the aether, in order perhaps to
stimulate discussion whether the form I assume is the only possible one, or whether
there may not also be other basic equations of aether physics consistent with the three
assumptions. I admit that I did not succeed in finding other possibilities. That I pre-
suppose the principle of energy conservation as correct, and assume energy to be a
localizable quantity, should go without saying.

 FIRST CHAPTER: THE FIELD EQUATIONS

 

General Form of the Field Equations

 

2. If one considers Maxwell’s equations, preferably in the form given to them by
Minkowski, one sees immediately that the four-dimensional six-vector “electromag-
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netic field strength” in itself does | not suffice to describe the phenomena in space and
time completely. For in addition Maxwell’s equations contain an independent four-
vector, the “four-current”; which at least therefore has to be included to make the
description complete.

In our view, the time component of the four-current, the charge density  repre-
sents a peculiar condition of the world aether, which it assumes to a noticeable extent
only at isolated places, and which entail that at these places the lines of the electric
field  simply die out, so that  differs from zero. Therefore we can take the
value of  as a measure of this new state of the aether:

Similarly the space component of the four-current, the current of charge 
describes a peculiar behavior of the aether, which gains noticeable strength only at
particular locations; it entails locations of non-vanishing curl of the magnetic field 
that are not compensated by a time rate of change of the electric field  Therefore
we can use the difference  as a measure of the new state of the aether:

3. Now we use the basic assumptions mentioned in 1. If all of the material world’s
processes are to be described by the “electromagnetic field” and the “four-current”
together, then by the principle of causality there must be ten differential equations for
the ten components of the variables of state  whose left side is always a first-
order time derivative of one of the ten quantities, or of a function of them, while on
the right-hand side there is a function of the quantities and of their space derivatives.
Only such a system of equations can determine from the distribution of the states of
the aether at 

 

one

 

 moment the distribution that occurs in the next moment, after pas-
sage of an infinitesimal | time  thus satisfying the principle of causality.

Further, if the principle of relativity is to be valid, then it must be possible to write
the derivatives in these equations as vectorial differential operators of four-dimen-
sional quantities. This reduces the number of possibilities enormously. For example,
one sees immediately that also with respect to the coordinates only first derivatives
can occur; that all derivatives enter only in the first power, etc.

Finally, one must also demand that the equations for the “pure” aether go over
into Maxwell’s equations, since a continuous transition is assumed between pure
aether and matter. Also, the existence of true magnetic charges must be excluded,
therefore it must be possible to use a quantity  to characterize the magnetic field that
everywhere has the property:  Thus we arrive at the equations:

(1)

(2)

[514]
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d div d
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and here in pure aether  must become identical to  and  identical to  whereas in
the interior of matter  and  can be complicated functions of  Equations
(1) and (2) then have only a very superficial resemblance to Maxwell’s equations.
Since at least half of them are no longer linear, the laws of the field in the interior of
atoms are quite different from those in pure aether; for example, electromagnetic
waves whose existence presupposes linear equations are excluded there, and further
such differences.

Thus in the following we will strictly differentiate between the two “intensive
quantities”: electric field strength  and magnetic induction  and the “extensive
quantities”: electric displacement  and magnetic field strength  Only in pure
aether does the principle of superposition of electromagnetic fields hold, which we
will express through the equations  |

In terms of symbols of the four-dimensional vector analysis

 

1

 

 the two equations
(1) and (2) take the following form:

(1a)

(2a)

Now the four equations corresponding to the four-vector  must still be
dealt with. For a four-vector there are two kinds of four-dimensional first-order dif-
ferential operator, namely the operators  and 

 

2

 

 In the first operator the time
component, and in the second the three space components, are differentiated with
respect to  So we have to use these two operators to obtain the four differential
equations that are still missing. The operator  occurs in the well-known equation:

(3)

for this equation becomes in four-dimensional notation:

(3a)

The missing equations must be contained in a formula:

where  is a four-vector related to  in a similar way as the six-vector
 is related to  Initially we know only this, that  and  are some

functions of all state variables, which taken together form a four-vector. The right
side of the equation  is some six-vector, also a function of the state variables, of
which we know only this, that it must satisfy the condition

 

3

 

1 M. Laue, 

 

Das Relativitätsprinzip

 

, p. 70. Friedr. Vieweg & Sohn, 1911.
2 M. Laue, loc. cit. p. 70.
3 M. Laue, loc. cit. p. 71.
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because otherwise it could not be obtained from a four-vector by the Curl

 

 operator.
But now, this | condition must further be identical with equation (2a) unless we
assume  in which case it would admittedly be an identity. For, if this
were not the case, then we would have three supernumerary equations, besides the
ten differential equations that are necessary for the ten state variables by the principle
of causality. The time development of the processes in the aether would then be over-
determined, which is of course impossible. Therefore we must necessarily have:
either  or:  where  is an arbitrary constant factor. We
can bring this factor to the other side of our equation  and absorb it
in  by simply putting  The three equations containing a time
derivative therefore have this general form:

where  is either zero or one, and  denotes a vector that is constant in the entire
spacetime region. In a region of pure aether, where  as well as  it would
follow that:  Although all state variables are constant and zero here, 
which is to be a function of the state variables, would have a non-vanishing gradient,
so it would not be constant. This is impossible, therefore we must have:  On
the other hand it is easy to show that  must be different from zero. If all states of the
aether are in equilibrium in the neighborhood of an electron moving with constant
velocity, then all time derivatives must be zero. The equation then reads:

Now if  then we would also have  hence  Then the
quantity  would not depend on the field quantities at all, the same conclusion would
hold by the principle of relativity also for  and the equation we found would then
reduce to an identity. Therefore it must be that  Accordingly, the last three
equations of aether dynamics are:

(4)

| or, written in four-dimensional symbols:

(4a)

The expression (4a) contains also the following three equations, which contain no
time derivative:

(4b)

It is easily seen that the equations (4b) can be derived from (4) with the aid of (2), so
they contain nothing new.

ΔtvF* 0,=
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If everything is in equilibrium in the vicinity of an electron at rest or in uniform
motion, then equation (4) becomes:

We may denote this as the equilibrium condition for the field in the vicinity of the
electron. It can be interpreted intuitively as saying that the two forces  and  shall
be equal and opposite to each other. The electric field strength  tends to pull the
electron’s charge outward and to spread it over as large a region as possible, so it rep-
resents the force of expansion inherent in matter. It is balanced by the force of cohe-
sion  computed as the gradient of a pressure of cohesion  peculiar to the
electric charge in itself.4 Forces of expansion and cohesion are the two effects upon
which any existence of matter is based, so they must occur in every possible theory of
matter.

Equation (4) can be characterized as the equation of motion of the charge current.
The vector  is the momentum [Bewegungsgröße] related to the charge current  In
the usual mechanics we know the momentum to be mass times velocity and measure
it by the impact necessary to produce that velocity. Since momentum and pressure are
to be characterized as “intensive quantities”, that is, quantities to be measured
through | action of forces, we will also contrast  and  as “intensive quantities” with
their corresponding “extensive quantities”  and 

Thus we can describe the state of the aether either by ten extensive quantities
( ) or by ten intensive quantities ( ).

4. The six differential equations (4) and (4b), which are combined in (4a) into one
formula, are exactly the same as the differential equations for the so-called four-
potential, which is composed of the scalar potential  and the vector potential 
Therefore it could be said with some justification that the theory developed here con-
sists simply in attributing to the two potentials  and  the meaning of physical
states of the world aether, namely as cohesion pressure and momentum.

Here we must add an important remark. One knows that the solution of equations
(4a) for a given six-vector ( ) is undetermined unless one makes a further
assumption about  In the theory of electricity one defines the two poten-
tials by simply putting  But this equation does not hold for the states
of the aether assumed in our theory, and therefore they are in general not identical
with the potentials as usually calculated. Namely, the equation of electricity written
above is replaced in our aether dynamics by equation (3):  This can-
not coexist with the other equation because then the temporal evolution of the aether
processes would be governed by eleven equations, and would hence be overdeter-
mined, which is impossible. Therefore in general we have  In a later
section (p.  651 [p. 534 in the original]) we will find a simple interpretation for the
quantity 

4 As is well known, such a pressure was first assumed by H. Poincaré; (Compt. rend. 140, p. 1504,
1905. Cf. also H. Th. Wolff, Ann. d. Phys. 36, p. 1066, 1911.

∇ϕ e+ 0.=

e ∇ϕ
e

∇ϕ, ϕ

f v.
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In the case of rest  the quantity  is indeed identical with the
electrostatic potential, because we then have the equation:

| 5. When associating  with pressure and  with a density one could easily
believe that it is advantageous always to associate positive values with these quanti-
ties, similar to the way it is done in the physics of gases.

We would then ascribe a constant positive value  the normal density, to the
pure aether when entirely free from fields; for an arbitrary choice of spacetime coor-
dinate system it would of course have to be a four-vector  that would be con-
stant in the entire spacetime region. Electric and magnetic fields would appear only
where  and  take on values different from  and , and equations (1) and (3)
would therefore have to be:

Now, one could of course choose  so that the quantity  occurring in these equa-
tions, the “density of aether”, would always be positive. But one cannot see what
advantage this would bring. In the following I will therefore always again write sim-
ply  and  instead of  and  that is, I will calculate with positive and
negative densities by putting the density of pure aether equal to zero.

The same applies to the cohesive pressure  Since  and  occur only differen-
tiated with respect to time or space in the fundamental equations of aether physics,
one can add to them a quite arbitrary time- and space-independent quantity 
without changing the description of the processes in any essential way. For example,
one could choose a large enough value  so that  always remains positive.
The equilibrium condition would then be:

In pure aether we would now have the large positive pressure  in an electron we
would have the smaller pressure  and  would keep the pressure gradient

 which the aether exerts on the electron, in balance. Indeed H. Poincaré
(loc. cit.) speaks of a pressure exerted on the electron from the outside. But I believe
that for a description it is easier if | we put the zero point of the pressure in the pure
aether, and therefore in my calculations I will always put  equal to zero at infinite
distance from an electron.

Similarly for energy, which we know can always be augmented by an arbitrary
additive constant, let us fix the zero point in such a way that the energy density in
pure, field-free aether equals zero. Similar to  and  the energy density  will
then admittedly be allowed to assume negative as well as positive values; but after all
there is not the slightest reason that would force us to always make  positive.

v 0,   = h 0=( ) ϕ
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With these standardizations,  are now to be regarded as completely deter-
mined quantities without any additive arbitrariness.

The Energy

6. I presuppose that not only the principle of energy conservation, but also the princi-
ple of energy localization and energy transfer5 is valid. That is: if we denote the
energy density by  and the energy flux by  then from the field equations (1) to
(4), the following relation must follow:

where the scalar  as well as the vector  are universal functions of the state prevail-
ing at the spacetime point concerned. From the field equations one can arrive at this
energy equation in only one way: one must determine factors  which are
universal functions of the state variables, multiply the equations (1) to (4) by them,
and then add the equations. So it must then be possible to pick the factors  in
such a way that the left side then becomes a complete time derivative, and the right
side becomes a divergence. | Let us now examine the conditions under which this is
possible.

First we see that the two terms  and  which are pure universal functions
of the state variables, must cancel, because  can consist only of terms contain-
ing derivatives with respect to the coordinates. Therefore we must have:

where  is again a universal function of the state variables. A small manipulation
yields for the right side of the equation:

This expression can in general be a divergence only if the last four terms are
annulled, that is if:

5 G. Mie, Wiener Sitzungsber. 107, sec. IIa, p. 1117 and 1126, 1898.
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The first of these equations implies  and specifically the value of this
constant is determined by the demand that in pure aether the energy flux should
become the well-known Poynting expression  From this it follows
that:

Thus we have found for the energy equation:

Accordingly the expression for the energy flux in the general aether dynamics is:

(5)

| 7. The energy principle further demands that the expression on the left side of the
energy equation be a complete differential. So we must formulate the condition that:

(6)

be a complete differential, so that  can be determined as a function of 
Just as well as  we can examine a quantity  determined by the following equa-
tion:

(7)

If  is a function of  then so is  and vice versa. From (6) and (7) we
obtain the following expression for the differential of 

(8)

where  are functions of  For brevity a vector whose components
are

will be called simply  and analogously in similar cases. Then it follows
directly from (8) that:

(9)

The condition that the energy principle be valid is that all intensive quantities
 can be calculated by means of a single function of the extensive quantities

∇u 0,=

u h l–⋅ 0,=

m u ϕ⋅+ 0.=

u const.,=

d h⋅[ ] e h⋅[ ].=

u 1,   k e,   l h,   m ϕ,   n– v.–= = = = =

e
∂d

∂t
----- h

∂b

∂t
----- ϕ ∂ρ

∂t
------ v

∂f

∂t
-----⋅–⋅–⋅+⋅ div e h⋅[ ] ϕ v⋅–( ).–=

s e h⋅[ ] ϕ v.⋅–=

[523]

e dd h db ϕ dρ v df⋅–⋅–⋅+⋅ dW=

W d h ρ v, , ,( ).
W H ,

W H h b v f.⋅–⋅+=

W d h ρ v, , ,( ), H ,
H :

dH e dd b dh ϕ dρ f dv,⋅+⋅–⋅–⋅=

e b ϕ f, , , d h ρ v, , ,( ).

∂H
∂dx
-------    

∂H
∂dy
-------    

∂H
∂dz
-------,,

∂H ∂d⁄ ,

e
∂H
∂d
-------,   b ∂H

∂h
-------– ,   ϕ ∂H

∂ρ
-------– ,   f

∂H
∂v
-------.====

e b ϕ f, , ,



642 GUSTAV MIE

 which we will call the Hamiltonian function. Specifically, every inten-
sive quantity is to be obtained as the derivative of  with respect to the correspond-
ing extensive quantity, in two cases (  and ) with a negative sign.

The energy density  can now also be found from the Hamiltonian function
alone. For (7) together with (9) result in:

(10)

The form of the basic equations (1) to (4) of aether dynamics, with equations (9)
taken into account, leads immediately to the following theorem: |

The relativity principle is valid for all physical processes, provided the Hamilto-
nian function  is invariant under Lorentz transformations.

Now we would have the complete formulation of the equations of aether dynam-
ics, if we only knew the form of the universal function  To find this form is an
extremely difficult task indeed.

The problem of a theory of matter is reduced to the problem of finding the univer-
sal function 

So far we know only one thing about  in pure aether the superposition princi-
ple for electromagnetic fields holds with great precision; so if one takes an additive
term  out of 

then the remainder  must be quite vanishingly small compared to the first term at
places where  is very small. However, in contrast, in the interior of atoms, where 
is large,  will dominate by far, so that here the laws of the field are quite different
than those in pure aether.

8. For calculations it is in general much more convenient to choose the intensive
variables  as the independent variables that describe the state of the aether,
and to view the extensive quantities  as functions of the former.

Let us now form the following function :

(11)

by first solving equations (9) for  as functions of  and then substitut-
ing the expressions so found on the right side of equation (11). Using (8) we get for
the differential of  the following expression:

(12)
From this follows:

(13)

| The extensive quantities  can all be calculated with the aid of a single
function of the intensive quantities  by differentiating the latter with

H d h ρ v, , ,( ),
H

b ϕ
W

W H
∂H
∂h
------- h

∂H
∂v
------- v.⋅–⋅–=

[524]

H d h ρ v, , ,( )

H .

H d h ρ v, , ,( ).
H :

d2 h2–( ) 2⁄ H :

H
1
2
--- d2 h2–( ) H1,+=

H1
ρ ρ

H1

e b ϕ f, , ,( )
d h ρ v, , ,( )

Φ

Φ e b ϕ f, , ,( ) H e d b h⋅–⋅( )– ϕ ρ f v⋅–⋅( ),+=

d h ρ v, , , e b ϕ f, , ,

Φ

dΦ d de h db ρ dϕ v df.⋅–⋅+⋅+⋅–=

d
∂Φ
∂e
-------,   h

∂Φ
∂b
-------,   ρ

∂Φ
∂ϕ
-------,   v

∂Φ
∂f

-------.–===–=

[525] d h ρ v, , ,
Φ e b ϕ f, , ,( )
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respect to the corresponding intensive quantities. In two cases (  and ) one has to
give the derivative a negative sign.

The energy density  results from  as follows:

(14)

The Hamiltonian function  is calculated according to (11):

(15)

Instead of looking for the universal function  one can as well search
for the universal function 

I will often designate  as the world function for short.
Under Lorentz transformations  as well as  must be an invariant.

Similar to  one can divide  in two parts:

 the first of which dominates in pure aether, and the second in the interior of atoms.
9. With the aid of the world function one can form a four by four matrix6 that con-

tains the energy flux and Maxwell’s aether stresses for our general aether dynamics:

(16)

| If the operation

is applied to the lowest row of the matrix one obtains the energy equation by putting
the expression so obtained equal to zero:

6 H. Minkowski, Zwei Abhandlungen. B. G. Teubner 1910, p. 36.

d v

W Φ

W Φ e d ϕ ρ⋅–⋅+ Φ
∂Φ
∂e
------- e

∂Φ
∂ϕ
------- ϕ.⋅–⋅–= =

H

H Φ
∂Φ
∂e
------- e

∂Φ
∂b
------- b

∂Φ
∂ϕ
------- ϕ

∂Φ
∂f

------- f.⋅–⋅–⋅–⋅–=

H d h ρ v, , ,( )
Φ e b ϕ f, , ,( ).
Φ

Φ H
H , Φ

Φ
1
2
--- b2 e2–( ) Φ1,+=

S

Φ bh exdx hxbx fxvx,   exdy hxby fxvy,+ ++ + +–

exdz hxbz fxvz,   i dybz dzby– ρfx–( ),⋅–+ +

eydx hybx fy vx,   Φ bh eydy hyby fyvy,+ + +–⋅+ +

eydz hybz fyvz,   i dzbx dxbz– ρfy–( ),⋅–+ +

ezdx hzbx fzvx,   ezdy hzby fzvy, + ++ +

Φ bh– ezdz hzbz fzvz,   i dxby dybx– ρ fz⋅–( ),⋅–+ + +

i eyhz ezhy– ϕ vx⋅–( ),   i ez hx⋅ ex hz⋅– ϕ vy⋅–( ),–⋅–

i exhy eyhx– ϕ vz⋅–( ),   Φ ed ϕ ρ⋅–+⋅–

=

[526]

Δtv
∂

∂x
------ ∂

∂y
----- ∂

∂z
----- ∂

i ∂t⋅
-----------+ + +=
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because according to (14) we have  From the principle of rela-
tivity it then follows directly that:

(17)

Incidentally, it is also not much effort to obtain the first three rows of  directly from
the field equations (1) to (4).

Whether the matrix (16) is symmetric about its diagonal is a question to which we
will return again later (p. 650) [p. 533 in original].

Hamilton’s Principle

10. Whether the above is an unobjectionable proof that only the form of the field
equations as formulated by me is possible, may still be open to discussion. Therefore
it seems to me to be valuable to show that the field equations can be obtained by quite
simple mathematical operations, assuming the validity of Hamilton’s principle.

So I make only the following two assumptions: First, the state of the aether is
completely characterized by the quantities  where the last two are defined
by the constraints:

second, the aether processes satisfy Hamilton’s principle formulated as follows.
Hamilton’s Principle. There exists a function  whose integral over

any spacetime region with determined boundary is an extremum | for all actual pro-
cesses if the state variables are varied at all points in the interior of the region, but
not on the boundary of the region:

(18)

On the boundary of the region  we have:

It can be shown that the principle of relativity is valid if  is invariant under
Lorentz transformations. Let us assume that this is the case and replace the quantities

 by the well-known expressions in terms of  that are to take their
place upon a transformation of the coordinate system  to another

 then we must obtain a function  that is built out of
the new variables  in exactly the same way as  is built out of the old
variables  We express this by setting:   be the region in the
new coordinate system  into which  transforms. We then have:

div e h⋅[ ]( ϕ v )
∂
∂t
----- Φ e d ϕ ρ⋅–⋅+( )+⋅– 0,=

Φ e d ϕ ρ⋅–⋅+ W .=

ΔtvS 0.=

S

d h ρ v,, , ,

ρ div d,   v curl h ḋ;–= =

H d h ρ v, , ,( ),
[527]

δH d h ρ v, , ,( ) xd yd zd td⋅ ⋅ ⋅ ⋅
G
∫ 0.=

G

δd δh δρ δv 0.= = = =

H

d h ρ v, , , d′ h′ ρ′ v′,, , ,
x y z t, , ,( )

x′ y′ z′ t′, , ,( ); H′ d′ h′ ρ′ v′, , ,( ),
d′ h′ ρ′ v′, , ,( ) H

d h ρ v, , ,( ). H′ H .= G′
x′ y′ z′ t′,,,( ) G
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It follows from this equation that if Hamilton’s principle holds for the coordinate sys-
tem  then it also holds for every other arbitrary system  And
here the Hamiltonian function is in all coordinate system the same function 

Accordingly the laws of nature, that is the differential equations resulting from
Hamilton’s principle, are the same in all coordinate systems that can be obtained by
Lorentz transformations. That is the principle of relativity.

Now we want to derive the field equations from Hamilton’s principle. To this end
we form the variation

Now we want to introduce the following abbreviations:

(19)

| The variation of  is then:
(20)

To transform this expression further we use a formula from four-dimensional vector
calculus, which we want briefly to derive: The product of the four-vector

 and the six-vector  is taken to be the following four-vec-
tor:7

We form the Div of this vector:

But we have:

and therefore:

7 M. Laue, Das Relativitätsprinzip, p. 67.

H d′ h′ ρ′ v′, , ,( ) x′d y′d z′d t′d⋅ ⋅ ⋅ ⋅
G ′
∫ H d h ρ v, , ,( ) xd yd zd t .d⋅ ⋅ ⋅ ⋅

G
∫=

x y z t, , ,( ), x′ y′ z′ t′, , ,( ).
H .

δH
∂H
∂d
------- δd

∂H
∂h
------- δh

∂H
∂ρ
------- δρ

∂H
∂v
------- δv.⋅+⋅+⋅+⋅=

∂H
∂d
------- e,   

∂H
∂h
------- b– ,   

∂H
∂ρ
------- ϕ,   

∂H
∂v
-------– f.= = = =

[528]H

δH e δd b δh ϕ δρ f δv.⋅+⋅–⋅–⋅=

P f iϕ,( )= F h id–,( )=

P F⋅[ ] f h⋅[ ] ϕ d i f d⋅( )⋅,⋅+( ).=

Div P F⋅[ ] div f h⋅[ ] ϕ d⋅+{ }
∂ f d⋅( )

∂t
----------------.+=

div f h⋅[ ] h curl f f curl h,⋅–⋅=

div ϕ d⋅( ) d ∇ϕ ϕ div d,⋅+⋅=

∂ f d⋅( )
∂t

---------------- d
∂f

∂t
----- f

∂d

∂t
-----.⋅+⋅=
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(21)

In four-dimensional symbols this formula becomes:

(22)

Now we want to apply this formula to our problem, noting that:

Therefore we have:

Replacing  and  by the variation  and  we find:

| Now, the integral:

can, just like the volume integral over a three dimensional divergence, be converted
into an integral over the boundary of  But since Hamilton’s principle prescribes
that the variations of all state variables, including  vanish on the boundary, we
have:

Consequently, use of formula (20) for  results in:

div f h⋅[ ] ϕ d⋅+{ } ∂ f d⋅( )
∂t

----------------+ h curl f d ∇ϕ ∂f

∂t
-----+⎝ ⎠

⎛ ⎞⋅+⋅=

f curl h ∂d

∂t
-----–⎝ ⎠

⎛ ⎞ ϕ div d.⋅+⋅–

Div P F⋅[ ] F Curl P⋅( )– P ΔtvF⋅( ).–=

curl h ∂d

∂t
-----– v,   div d ρ.= =

Div P F⋅[ ] h curl f d ∇ϕ ∂f

∂t
-----+⎝ ⎠

⎛ ⎞ f v ϕ ρ.⋅+⋅–⋅+⋅=

d h δd δh

f δv ϕ δρ⋅–⋅ curl f δh ∇ϕ ∂f

∂t
-----+⎝ ⎠

⎛ ⎞ δd Div P δF⋅[ ].–⋅+⋅=

[529]

Div P δF⋅[ ] x y z t ,d⋅d⋅d⋅d⋅
G
∫

G.
δF,

Div P δF⋅[ ] x y z td⋅d⋅d⋅d⋅
G
∫ 0.=

δH

δH x y z td⋅d⋅d⋅d⋅
G
∫

e ∇ϕ ∂f

∂t
-----+ +⎝ ⎠

⎛ ⎞ δd curl f b–( ) δh⋅+⋅⎝ ⎠
⎛ ⎞ x y z t .dddd⋅

G
∫=
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Since there are no longer any constraints between  and  so that  and  are
quite independent of each other, Hamilton’s principle can be satisfied only if the fol-
lowing two differential equations hold:

These two equations furthermore lead to:

Since the equations of definition (19) for  agree completely with equations
(9), these equations are identical with the field equations (2) and (4); and equations
(1) and (3) we assumed a priori as equations of definition.

Hereby it has been proved that the form of the field equations I assumed is the
only form in accordance with Hamilton’s principle. |

Finally let us remark that equation (21) can be given yet another interesting form
by noting that:

Taking into account equation (11) we thus find:

(23)

The Invariants

11. In order that the function  be invariant under Lorentz transforma-
tions, i.e. be a four-dimensional scalar, it must be a function of nothing but four-
dimensional scalars that can be formed from  There are four such quantities
that are independent of each other.

1. The absolute value of the four-vector  It is:

2. The absolute value of the six-vector  We will take its square:

3. The scalar product of the six-vector  and its dual vector
 We will multiply this product by  to obtain the quantity

d h, δh δd

e ∇ϕ ∂f

∂t
-----+ + 0,=

curl f b– 0.=

∂b

∂t
----- curl e+ 0.=

e b ϕ f, , ,

[530]

curl f b,   ∇ϕ ∂f

∂t
-----+ e,   curl h ∂d

∂t
-----–– v,   div d ρ.== = =

∂ f d⋅( )
∂t

---------------- div f h⋅[ ] ϕ d⋅+{ }+ Φ H .–=

H d h ρ v, , ,( )

d h ρ v., , ,

P v iρ,( ).=

σ ρ2 v2– ρ 1 β2– ,   β⋅
v

ρ
---.= = =

F h id–,( ).=

p d2 h2.–=

F h id–,( )=
F* id h,–( ).= i 2⁄
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4. By multiplying the four-vector  by the six-vector  and its dual  one finds
two new four-vectors 

The square of their absolute values are:

| These two quantities are no longer independent of each other, for we can easily see
that:

In the same way the scalar product of the two yields nothing new:

So we get only one fourth scalar, for which we will choose the quantity 

From the theory of four-dimensional vectors one can prove that there can be no
further independent scalars, but I will omit the proof here.

Accordingly we have found as possibilities four independent variables,

(24)

12. The intensive quantities  are calculated as follows:

q h d⋅( ).=

P F F*

A P F  ⋅ ρ d v h⋅[ ]+⋅( ),   i v d⋅( )⋅–( ),= =

B P F*⋅ i ρ h v d⋅[ ]–⋅( ),   v h⋅( )( ).= =

A2 ρ d v h⋅[ ]+⋅( )2 v d⋅( )2,–=

B2 ρ h v d⋅[ ]–⋅( )2– v h⋅( )2.+=

[531]

A2 B2+ h2 d2–( ) v2 ρ2–( )⋅ σ2 p.⋅= =

A B⋅( ) i ρ d v h⋅[ ]+⋅( ) ρ h v d⋅[ ]–⋅( ) v d⋅( ) v h⋅( )⋅–( )=

= i– h d⋅( ) v2 ρ2–( )⋅ ⋅ i σ2 q.⋅ ⋅=

s B2:–=

s ρ h v d⋅[ ]–⋅( )2 v h⋅( )2.–=

σ ρ2 v2– ρ 1 v2

ρ2
-----– ,⋅= =

p d2 h2,–=

q d h⋅( ),=

s ρ h v d⋅[ ]–⋅( )2 v h⋅( )2.–=⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

e ϕ b f, , ,
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(25)

By noting that:

| we recognize immediately that the factor  vanishes in the four expressions
(25) if:

If we assume further that  in the field of an electron at rest, then 
must contain either the factor  or the factor  because otherwise it would not van-
ish for  but now

Accordingly  vanishes under the same conditions as the factor 
namely if:

But now one can obtain the quantity  by applying a
Lorentz transformation to the states of the aether for which one of the coordinate sys-
tems moves with respect to the other with a velocity  If  is constant in
space and time one can transform to rest, so that  that is: for a stationary
motion the condition just written down is satisfied.

If we assume that in the field of an electron at rest not only  and  but also 
and  are everywhere zero, then for stationary motion all terms due to the invariants

 and  drop out of the intensive quantities.
Since all experiences with electrons and matter in general to date refer only to

quasistationary motions, and there is no point in burdening the investigations by
keeping quantities that presumably will have no influence on the results, we will in
the following make the simplifying assumption, that  and  do not occur in  at
all.

13. Hypothesis. The Hamiltonian function  depends only on the two invariants
 and 

e 2
∂H
∂p
------- d

∂H
∂q
------- h 2

∂H
∂s
------- v ρh v d⋅[ ]–( )⋅[ ],⋅ ⋅+⋅+⋅ ⋅=

ϕ ∂H
∂σ
-------– ρ

σ
--- 2

∂H
∂s
------- ρ h⋅ v d⋅[ ]–( ) h,⋅ ⋅ ⋅–⋅=

b 2
∂H
∂p
------- h

∂H
∂q
------- d 2

∂H
∂s
------- ρ ρ h⋅ v d⋅[ ]–( ) v v h⋅( )⋅–⋅( ),⋅ ⋅–⋅–⋅ ⋅=

f
∂H
∂σ
------- v

σ
--- 2

∂H
∂s
------- d ρh v d⋅[ ]–( )⋅[ ] h v h⋅( )⋅+( ).⋅ ⋅–⋅=

⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

v h⋅( )
1
ρ
--- v ρh v d⋅[ ]–( )⋅( ),⋅=

[532]∂H ∂s⁄

ρh v d⋅[ ]– 0.=

b 0= ∂H ∂q⁄
q s,

v 0  h, 0;= =

q d h⋅( )
1
ρ
--- d ρh vd[ ]–( )⋅( ).⋅= =

∂H ∂q⁄ ∂H ∂s,⁄

ρ h v d⋅[ ]–⋅ 0.=

ρ′ h′⋅ ρ h v d⋅[ ]–⋅=

q v ρ.⁄= q

h′ 0,=

v h, b

f

q s

q s H

H
σ p.
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Then we have the following very simple expressions for the intensive quantities:

(26)

| Each of the intensive vectors  is parallel to its corresponding extensive vec-
tor  and in addition they are related by the two proportions:

From this follows directly the theorem: The world matrix (16) is symmetric about
its diagonal.

Like  so also  of course depends only on two variables; for these we will
take the following two quantities:

(27)

If we put

we can also write:

(27a)

Finally let us remark that one can find an interesting interpretation for the quan-
tity:

I will use the abbreviation:

Then we have:

therefore:

Now,

e 2
∂H
∂p
------- d,   b 2

∂H
∂p
------- h,⋅ ⋅=⋅ ⋅=

ϕ ∂H
∂σ
-------–

ρ
σ
---,   f

∂H
∂σ
-------–

v

σ
---.⋅=⋅=⎩

⎪
⎨
⎪
⎧

[533] e b f, ,
d h v,,,

f : v ϕ : ρ,   b : h e : d.==

H , Φ

χ ϕ2 f2– ,=

η e2 b2– .=⎩
⎨
⎧

v

ρ
--- f

ϕ
--- q,= =

χ ϕ 1 q2.–⋅=

Div f iϕ,( ) div f
∂ϕ
∂t
------.+=

1
σ
--- ∂H

∂σ
-------⋅– ψ.=

ϕ ψ ρ,   f⋅ ψ v,⋅= =

div f ∂ϕ
∂t
------+ ψ div v ∂ρ

∂t
------+⎝ ⎠

⎛ ⎞ v ∇ψ⋅( ) ρ
∂ψ
∂t
-------.⋅+ +⋅=

div v ∂ρ
∂t
------+ 0=
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and further we can put:  where we can interpret  as the velocity with
which the charge is being displaced at that place and time. Then we have:

Let us think of the several volume elements having charges as individualized, similar
to the way we are used to do it with material volume elements, | and consider  as a
property of the moving element of charge. Then the time rate of change of  is:

So we arrive at the equation:

(28)

This last equation is of particular interest in view of a theory of gravitation8 pub-
lished recently by Abraham. Namely, in a region where the electric field vanishes the
quantities that I denote by  obey the same equations as the quantities
called  by Abraham, with the only difference that Abraham puts:

where  denotes the gravitational constant,  the mass density, whereas my vector
satisfies the equation just derived:

Thus my ansatz would lead to Abraham’s theory of gravitation if one wanted to
make the assumption that wherever there is material mass, there is a constant increase
of the quantity  in time. The flux  that therefore streams out of the mass particle
would be the gravitational field. But since such an assumption is physically absurd, it
is excluded to arrive at a gravitational theory in such a simple way from my ansatz.
How this probably has to happen has been indicated in the introduction (pp. 633 and
634 [pp. 512 and 513 in the original]).

In the next chapter I will first need to examine whether the existence of indivisible
electrons is compatible with my ansatz.

[…]

8 M. Abraham, Physik. Zeitschr. 13, p. 1, 1912.

v ρ q,⋅= q

v ∇ψ⋅( ) ρ
∂ψ
∂t
-------⋅+ ρ ∂ψ

∂t
-------

∂ψ
∂x
------- qx

∂ψ
∂y
------- qy

∂ψ
∂z
------- qz⋅+⋅+⋅+⎝ ⎠

⎛ ⎞ .⋅=

[534]ψ
ψ

Dψ
Dt
-------- ∂ψ

∂t
-------

∂ψ
∂x
------- qx

∂ψ
∂y
------- qy

∂ψ
∂z
------- qz.⋅+⋅+⋅+=

div f ∂ϕ
∂t
------+ ρ

Dψ
Dt
--------.⋅=

fx fy fz iϕ, , ,
Fx Fy Fz Fu, , ,

Div F 4πγ ν,⋅–=

γ ν

Div f iϕ,( ) ρ
Dψ
Dt
--------.⋅=

ψ f
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THIRD CHAPTER: FORCE AND INERTIAL MASS9

Calculation of the Force Acting on a Mass Particle

25. To calculate the force we use the world matrix (16), written down in I. p. 525. In
doing so we presuppose no restrictions concerning the invariants that enter into the
world function, but assume quite generally that all four of the variables (24) enumer-
ated in I. p. 531 occur in  An easy calculation shows that the theorem established
on p. 533 under a restrictive assumption is valid quite generally:

The world matrix is symmetric about its diagonal.
Namely, by applying the multiplication rule

and the formula that results therefrom

one easily finds from the general formula (25) in I. p. 531 the following two equa-
tions:

(54)

(55)

| and hence, by writing out the components of these expressions,

The theorem is thereby proved.
26. Let us now imagine a material particle, that is either a location of an electric

node or a more complicated structure composed of similar singularities, which moves
in an electromagnetic field of large extent. Let s denote the energy flux that is con-
nected with the progressive motion of the states of the aether, as in I. (5) p. 522. Then
we have

(56)

9 Continuation of the two articles: Ann. d. Phys. 37, p.  511, is quoted as I.; Ann. d. Phys. 39, p. 1, is
cited as II.

[1]

H .

a b⋅[ ] c⋅[ ] a c⋅( ) b b c⋅( ) a⋅–⋅=

a b⋅[ ] c⋅[ ] b c⋅[ ] a⋅[ ] c a⋅[ ] b⋅[ ]+ + 0,=

e d⋅[ ] h b⋅[ ] f v⋅[ ]+ + 0,=

e h⋅[ ] b d⋅[ ] ρ f ϕ v⋅–⋅( )+ + 0,=

[2]

ex dy hx by fx vy⋅+⋅+⋅ dx ey bx hy vx fy   etc.,⋅+⋅+⋅=

dy bz dz by ρ fx⋅–⋅–⋅ ey hz ez hy ϕ vx      etc.⋅–⋅–⋅=

sx ey hz ez hy ϕ vx⋅–⋅–⋅ dy bz dz by ρ fx,⋅–⋅–⋅= =

sy ez hx ex hz ϕ vy⋅–⋅–⋅ dz bx dx bz ρ fy,⋅–⋅–⋅= =

sz ex hy ey hx ϕ vz⋅–⋅–⋅ dx by dy bx ρ fz.⋅–⋅–⋅= =⎩
⎪
⎨
⎪
⎧



FOUNDATIONS OF A THEORY OF MATTER (EXCERPTS) 653

We will further define the three-dimensional vectors  by the following
equations:

(57)

As we saw in I. on p. 526 eq. (17), the first three rows of the world matrix provide
three differential equations, which in consideration of (56) and (57) are to be written
as follows:

(58)

| Let us now imagine the energy as a fluid, flowing with a certain speed  If  is
the density of energy, then  is determined by the definition

(59)

If we further denote by  the amount of energy occupying at some moment the
volume element  then  and we can as well write
equations (58) as follows:

p1 p2 p3, ,

Φ b h ex dx hx bx fx vx⋅+⋅+⋅+⋅– p1x,=

ey dx hy bx fy vx⋅+⋅+⋅ p1y,=

ez dx hz bx fz vx⋅+⋅+⋅ p1z,=

ex dy hx by fx vy⋅+⋅+⋅ p2x,=

Φ b h ey dy hy by fy vy⋅+⋅+⋅+⋅– p2y,=

ez dy hz by fz vy⋅+⋅+⋅ p2z,=

ex dz hx bz fx vz⋅+⋅+⋅ p3x,=

ey dz hy bz fy vz⋅+⋅+⋅ p3y,=

Φ b h ez dz hz bz fz vz⋅+⋅+⋅+⋅– p3z.=⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
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Let us integrate these equations over a volume  Let

be the total energy contained in the volume  at the moment we are considering, let
 be the velocity of the “center of mass” in  defined by the equation:

(60)

further, let the surface enclosing the volume  be denoted by  and let  be the
outward pointing normal at a point in  and finally let  be a three dimensional
vector defined by the equation:

(61)

So the components of  are computed as follows:

Integration over  then yields the following result:

(62)

| Now let us choose the volume  so that it is infinitely small within the extended
field in which the material particle moves, but infinitely large in comparison to the
enclosed particle. The latter condition is meant to convey, first that the energy of the
singularities that constitute the material particle is as good as completely contained in
the volume, so that only a quite vanishingly small fraction of the total particle energy
resides outside the surface  and second that on the surface  the vacuum laws
already hold as good as exactly, so that  and  can be taken to be zero, and 

 For this choice of the volume  is  the momentum of the particle, its
inertial mass is identical with its energy  and the right side of equations (62)
yields the accelerating force [bewegende Kraft] acting on the particle. In view of the
second condition, and except for vanishingly small correction terms,  is identical
with the component of the Maxwell stress tensor on the corresponding surface ele-
ment of  therefore the result for the accelerating force is a value that is independent
of the choice of the volume  provided that the two conditions mentioned above are
satisfied; and the value is perfectly identical with what electron theory would yield
for a material particle that would be surrounded by the same electric and magnetic
field as the particle under consideration. Exactly as in electron theory the accelerating
force does not depend on the specific arrangement of the electric charges and the

V .
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electric and magnetic dipoles in the interior of the material particle, as long as the
particle’s own exterior field is the same; in addition it does not depend on the laws of
the cohesive forces that hold the particle together, nor on the laws for the electromag-
netic field that take the place of Maxwell’s equations in the interior of the particle.
Exactly the same theorem, which we here have first encountered for the linear motion

 of the particle, can also be shown directly for its rotational motion. Here the
moments of inertia are calculated as in the | usual mechanics, by always putting the
energy in place of the inertial mass. It is essential for the proof that we have, accord-
ing to (54),  

The ponderomotive forces that cause linear or rotational motion in a material
particle as a whole are calculated from the electric and magnetic field in which the
particle is located according to exactly the same rules as in the usual theory of elec-
tricity. The existence of a special four-vector  in the interior of the particle,
and the deviation of the laws of the electromagnetic field from Maxwell’s equations in
the interior of the particle have no perceptible influence on the exterior ponderomo-
tive forces.

For example, an electron of total charge  moving with velocity  in an electro-
magnetic field feels the force, according to our theory:

(63)

This expression agrees exactly with that taken as the basis of electron theory.
By contrast, the effects of forces in the interior of the elementary particles of mat-

ter, which may cause delicate changes in the structure of these particles themselves,
are something entirely different than the ponderomotive forces of the ordinary theory
of relativity. But they cannot be calculated without knowing the world function.

Among the exterior forces acting on the material particle there is also gravity. The
theorem just proved implies that the basic equations of aether dynamics I. (1) to (4),
on which we based the theory so far, do not suffice to explain gravity. Thus the expec-
tation that I expressed at the beginning of my work (I, top of p. 513) has not been ful-
filled. In a later chapter we will examine how the basic equations have to be enlarged
in order to include gravity as well.

The Inertial Mass of a Material Particle

27. We understand a material particle quite generally to be a small region in the
aether where the state | variables take on enormously large values. In the following
we will frequently have to evaluate integrals of some state variables over the whole
volume of the particle. This is to be understood as a volume whose exterior boundary
is sufficiently distant from the center of the particle that the state variables may be
treated as infinitely small. Thus, if the outer boundary of the volume is chosen arbi-
trarily, only such that the particle is “completely” contained by it, as defined here,
then this choice cannot have any appreciable effect on the value of the integral.

q

[5]

p1y p2x p1z p3x,=,= p2z p3y.=

v iρ,( )

e, q

P e e q b⋅[ ]+( ).⋅=

[6]
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When saying that a particle is at rest and unchanging we will mean either that all
state variables in the volume occupied by the particle are constant, or that the average
value of every state variable at every point in the volume is constant when averaged
over a time that is infinitely small as far as the experiment is concerned.

For example, let  be the value of a state variable at a point  of the parti-
cle. Further let  be a time that is infinitely small for the experiment. Then the aver-
age value we are talking about is

It is well known10 that the equations

are valid here.
Therefore the conditions that the particle be unchanging and at rest are:

Now the basic equations I (1) to (4) entail the two relations:

| Inside a particle at rest we therefore have:

If we now integrate over a volume that completely encloses the particle, and note
that we may set  and  equal to zero on the surface of the volume, we find for
a material particle at rest:

(64)

10 H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegte Kör-
pern, p.13
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ϕ d⋅ h f⋅
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(65)

According to I (7) and (14) on p. 523 and p. 525 the energy density is calculated
to be:

So the result for the energy  of a material particle at rest is according to (64) and
(65):

(66)

Let  be some unbounded11 surface that cuts through to particle, and let  be the
surface normal at some point. Since on either side of the surface there must occur no
permanent energy changes provided the particle is at rest, we must have

(67)

where  is the average value of the component of the vector  normal to 
According to (56) this vector is given by

Laue12 has shown that as long as equation (67) is valid—and this is the case for
any material particle—the following theorem is also valid:

Theorem of Laue. The integral of each component of the world matrix over the
volume of a static material | particle is zero, except for only the component with the
index 4,4, which yields the energy of the particle.

In general we here have to take the average of each component over a short time,
as in equation (67).

As M. Laue has shown, this theorem can be used to calculate the energy of a mov-
ing particle. I will carry out this calculation for the theory being advanced here. Let
all the field quantities at a point  of the static particle be characterized by the
index 0. From these, according to the theory of relativity, one can find the values at a
point  of a moving particle, having speed  in the direction of the  and
if this point  has at time  the position given by the following equations:

according to the following transformation formulas:

11 i.e. either closed or extending to infinity
12 M. Laue, Das Relativitätsprinzip, p. 168 ff.
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Exactly the same relations as those between  and  also hold between
 and  and the same as those between  and  also hold

between  and 
The application of these formulas leads through some quite elementary calcula-

tions to the following equation:

Now we form the time average and integrate over the volume occupied by the
material particle. By applying the equations (64), (65), (67) | and noting the relation,
in consequence of the definition of the point 

or

we reach the result:

(68)

If we denote the value of the quantity  at the point  of the static parti-
cle by  we can regard

as a function of  Further, let  be the point of the moving particle
that is obtained at time  by the Lorentz transformation from  Since  is

dx

dx0 q hy0⋅+
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---------------------------,   dy
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an invariant under Lorentz transformations, its value at the point  of the mov-
ing particle at time  is to be calculated as:

where  denotes exactly the same function as above. From this it follows that:

(69)

Now the energy  of the moving particle results from adding (68) and (69):

This result can be simplified further with the aid of Laue’s theorem. Namely, if we
apply this theorem | to the term of the world matrix (16) with index 3,3 we get:

Thus, since according to (66):

The result is what M. Laue has already shown in general (Das Relativitätsprinzip
p. 170):

(70)

28. Another interesting consequence can be derived from Laue’s theorem. By
applying it to the three terms of the diagonal of the world matrix with the indices 1,1,
as well as 2,2 and 3,3 one obtains:
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t
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By addition of these equations one gets:

or, taking into account (64) and (65):

(71)

In addition it is immediately seen from the three equations just written down that:

(72)

| These equations become particularly interesting when  as is the
case for an electron.

In the field of an electron we have:

(73)

and besides:

(74)

29. For the special case discussed thoroughly in II. on pp. 18 ff. the relation (73)
can easily be verified. When we substitute into the world function
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the values for the static field,  the result is:

But furthermore:

and so we may write:

When (64) is applied to this, the result is (73).
Had we given the wave function the more general form:

quite an analogous calculation would yield:

so that relation (73) could not possibly be satisfied except when  This
implies:

For all wave functions of the form:

| only the case  can lead to isolated nodes of electric charge.
If one takes some different value for  then all integrals of equation (34) in II.

p. 15 must have essential singularities, either a singularity at the origin, or at infinity,
or both. Then there is no single integral that could represent an electron.

From this one sees that equation (73) can be used on occasion as a criterion
whether or not a particular form of the wave function is consistent with the existence
of isolated nodes (electrons).

30. From formula (73) it follows that the energy of a node is negative in the exam-
ple discussed in II. So in this case the negative energy attributed to the cohesive effect
of the charges exceeds the positive energy of the electric field. Since in the Hamilto-
nian function:
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 and  occur quite separate from each other, the two amounts of energy can also
be calculated separately. For the energy of the electric field one gets:

and for the energy of the cohesive forces:

But if now the energy of a particle is negative, the same must be true for its iner-
tial mass. The nodes mentioned in II. on p. 37 thus have a negative inertial mass; in
fields of force they must accordingly assume accelerations that are exactly opposite
to the accelerating forces. This explains the behavior that at first seems absurd, to
which we were led in II. p. 38 by general reasoning, namely that equal nodes tend to
congregate, and opposite | nodes tend to separate, although the ponderomotive forces
of the electric fields act in precisely the opposite direction.

Another general conclusion can be drawn from (73):
The necessary and sufficient condition that the inertial mass of an electron be

positive is:

or equally well:

At a large distance from the electron we have  so that  is certainly
positive. This implies:

In the interior of the electron the two vectors  and  must have opposite sign.
It is seen from this that it is quite impossible that Maxwell’s equations continue to

be valid in the interior of an electron.
Similarly  being equal to the electric potential, has the same sign as  in the

outer spheres of the electron. In particular,  reaches its maximum at the place where
 crosses zero as it assumes the opposite direction in the interior of the electron. Far-

ther in the interior  must then decrease sufficiently also eventually to change its
sign and make  so large and negative that the volume integral of  must
be negative.

In the very interior of the electron  must attain the opposite sign to 
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FIFTH CHAPTER: GRAVITATION

The Extended Basic Equation of the Dynamics of the Aether

37. We saw on p. 655 [p. 5 in the original] that the assumed cohesive pressure of elec-
tric charges together with the electromagnetic field still is not sufficient to explain all
actions of force in the world of matter. Gravitation is missing, and we are now forced
to enlarge the system of fundamental quantities, into which at first we accepted as
few quantities as at all possible (I, p. 634 [p. 513 in the original]), namely only the
six-vector  and the four-vector 

It would be most straightforward to conceive of gravity as a cohesive action that
resides in the energy itself. But if we want to maintain the validity of the principle of
relativity, we cannot allow energy by itself to enter into the extended basic equations,
for in relativity theory the energy density is the last entry of the world matrix (cf. I,
p. 643, equation (16) [p. 525 in the original]), so the whole matrix as such would
have to appear in the equations. One runs into insuperable difficulties if one tries to
connect this matrix with some other four-dimensional quantity by means of four-
dimensional differential operators, and thus to obtain equations that obey both the
causality principle (I. p. 635 [p. 514 in the original]) and the energy principle (I.
p. 640 [p. 521 in the original). | I have struggled for a long time with such attempts,
which always led to quite cumbersome systems of equations, and I am convinced that
it is quite impossible to attain in this way a theory of gravitation that obeys both the
relativity principle and the energy principle.

By contrast it is extraordinarily easy and simple to reach the goal if the cohesive
tendency is ascribed not to the quantity  but to the quantity  which is defined
as  by the equation (7) in I. on p. 641 [p. 523 in the original]. As
long as the velocities of the material elementary particles are small compared to the
speed of light, it will be experimentally undecidable whether  or  control the
gravitational effects. To wit, according to equations (69) and (70) we have for a mov-
ing massive particle:

where the integrals are to be extended over the volume occupied by the particle, and
where  denotes the energy of the particle when at rest, and  the ratio of its veloc-
ity to the speed of light. So we see that practically there is no appreciable difference
between the two integrals.

But the quantity  is a four-dimensional scalar, and to it the differential operator
can be applied in only a single way; this produces a four-vector, the gradient of the
scalar. Conversely the four-vector can also be associated with a scalar by applying to
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it the “divergence” operation. By contrast a six-vector cannot be related to a scalar
through a four-dimensional differential operation of first order. This implies:

The gravitational field must necessarily be represented by a four-vector, not by a
six-vector.

This theorem is however based on the supposition that the gravitating mass is to
be numerically represented by a four-dimensional scalar, | namely the quantity  It
would be different if the density of the gravitating mass were the fourth component of
a four-vector, such as the density of electric charge. Then the gravitational field would
require a six-vector, similar to the electromagnetic field. But as far as I can see it is
impossible to find a four-vector whose fourth component would approximately equal
the energy density, and the theories of gravitation that treat the gravitational field in
the same way as the electromagnetic field, such as those of O. Heaviside,13 H. A.
Lorentz,14 R. Gans,15 therefore either cannot be in accord with the principle of rela-
tivity, or the gravitational mass cannot be equal to the inertial mass in these theories.

To establish the equations of the gravitational field we proceed in the same way as
we did when setting up the basic electromagnetic equation in I, sections 2. to 5. We
assume that for a complete description of the material world we need, in addition to
the six-vector  and the four-vector  yet another four-vector 
and a scalar  This system of quantities is paralleled by a second, which is com-
pletely determined if all the quantities of the first system are given. Of the second
system we already know the six-vector  and the four-vector  which
however now depend not only on  and  but also on  and  To
this we must further add a four-vector  and a scalar  which correspond to

 and  The scalar  shall be essentially identical to the quantity defined in I,
p. 523. However, like the energy density  it depends not only on  and

 but also on the quantities of the gravitational field, that is  and  and
the relation (7) will accordingly have to be subjected to a minor alteration. Now we
apply one of the two possible four-dimensional vector operations to  and 
and we apply the other operation to  and  In this way we obtain the only
possible form for the | laws of gravitation that is in accord with the principle of rela-
tivity:

13 O. Heaviside, Electromagnetic Theory 1, p. 455, 1894.
14 H. A. Lorentz, Versl. Kon. Ak. Wet. Amsterdam 8. p. 603, 1900.
15 R. Gans, Physik. Zeitschr. 6. p. 803, 1905.

[27] H .

h id–,( ) v iρ,( ), g iu,( )
ω.

b ie–,( ) f iϕ,( ),
h id–,( ) v iρ,( ) g iu,( ) ω.

k iw,( ) H ,
g iu,( ) ω. H

W , h id–,( )
v iρ,( ) g iu,( ) ω,

g iu,( ) ω,
k iw,( ) H .

[28]
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(85)

(86)

Here  shall denote a universal constant. The equations (85) are equivalent to the fol-
lowing:

(87)

(88)

Equations (86), (87), and (88) together form a system of five mutually indepen-
dent equations, each containing a first derivative with respect to time of one of the
five new state variables. Consequently the causality principle is satisfied.

The complete system of basic equations of the physics of the aether, including the
effects of gravitation [Gravitationswirkungen], is given by the equations: (1), (2), (3),
(4), (86), (87), (88).

In terms of the symbols of four-dimensional vector analysis the equations (85) to
(88) can also be written as follows:

| The system of equations (85) and (86) would formally agree with that upon
which M. Abraham16 bases his theory of gravitation, if one would put the two vectors

 and  equal to each other. M. Abraham proceeds in his theory from the

16 M. Abraham, Physik. Zeitschr. 13. p. 1. 1912.

gx
∂ω
∂x
-------,  =
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∂ω
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-------,=
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∂ω
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-------,=

u 
∂ω
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-------,–= ⎭

⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

∂kx

∂x
-------

∂ky

∂y
-------

∂kz

∂z
------- ∂w

∂t
-------+ + + γH .–=

γ

∂gx

∂t
-------- ∂u

∂x
------+ 0,=

∂gy

∂t
------- ∂u

∂y
------+ 0,=

∂gz

∂t
------- ∂u

∂z
------+ 0,=

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

∂ω
∂t
------- u.–=

g iu,( ) Γραδ ω,=

Div k iw,( ) γ H⋅ ,–=

Curl g iu,( ) 0.=

[29]

g iu,( ) k iw,( )
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presupposition that the density of gravitating mass (which he calls  is a four-
dimensional scalar, and since moreover he makes use of the theory of relativity in the
cited paper, he had to arrive at this system of equations, the only one that the theory
of relativity can produce.

38. The primary question is now whether the energy principle is still valid after
including equations (86), (87), (88). So we will multiply equation (87) by the compo-
nents of a three dimensional vector, say  similarly equation (86) by a three-dimen-
sional scalar  and add both equations. The terms containing derivatives with
respect to the coordinates are then:

For this expression to represent a divergence,   must hold. Thus we
have found for the last part of the energy equation:

where in the last term  was substituted for  according to equation (88).
So including the effects of gravitation results in the total energy current (instead

of I, equation (5) on p. 641 [p. 522 in the original]):

(89)

and the total change of the energy density:

(90)

The function  must now be defined by the following equation, instead of equa-
tion (7) of I on p. 641, [p. 523 in the original]:

(91)

| It then follows from (90):

(92)

Because  is a function of the following variables:  we have:

(93)

From the last equation of (93) it follows that:

(94)

If we now define:

ν)

a,
s,

ax
∂u
∂x
------⋅ ay

∂u
∂y
------ az

∂u
∂z
------ s

∂kx

∂x
-------

∂ky

∂y
-------

∂kz

∂z
-------+ +⎝ ⎠

⎛ ⎞⋅ .+⋅+⋅+

a k,= s u=

div uk( ) k
∂g

∂t
----- u ∂w

∂t
-------⋅ γ H

∂ω
∂t
-------⋅ ⋅–+⋅+ 0,=

∂w ∂t⁄ u,

s e h⋅[ ] ϕ v⋅ u k⋅+–=

dW e dd h db ϕdρ v df k dg⋅ udw γHdω.–+ +⋅––⋅+⋅=

H

W H h b v f uw.+⋅–⋅+=

[30]

dH e dd b dh ϕdρ f dv k dg wdu–⋅+⋅+–⋅–⋅ γHdω.–=

H d h ρ v g u ω, , , , , ,( ),

e
∂H
∂d
-------=   b ∂H

∂h
-------–=   ϕ ∂H

∂ρ
-------–=   f ∂H

∂v
-------=   k

∂H
∂g
-------   w ∂H

∂u
-------–=,=    

∂H
∂ω
------- γH .–=, , , , ,

H e γω– H′ d h ρ v g u, , , , ,( ).=
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(95)

where all the primed quantities depend only on  but not on  then
we have:

(96)

If equations (93) are satisfied, then the energy principle is valid also for the
extended basic equations, and if all variables occur in  only in combinations that
are invariant under Lorentz transformations, then the principle of relativity is also
valid.

Thus we succeeded in devising a theory of gravitation in which both the energy
principle and the principle of relativity are valid.

I want to stress particularly the last, because in the theory of matter here proposed
an ansatz contradicting the principle of relativity should be rejected outright. In his
papers on gravitation M. Abraham advocates the view17 that gravitation and | relativ-
ity theory are not compatible with each other. If this were the case one would have to
conclude that gravitation is so to speak a purely external force, which plays no part in
the existence of matter itself. For if it belonged, as I assume here, to the forces that
determine in an essential way the form of the material elementary particles and the
whole internal structure of the atoms, and if it did not obey the principle of relativity,
then it would be unthinkable that the elementary particles of matter and the action of
forces that bind them into atoms, molecules, and tangible bodies should, when the
matter moves through space, quite generally be subjected to precisely those changes
that lead to the contraction of matter, which was proved by Michelson’s experiment.
On the other hand, however, I also believe that one would encounter great difficulties
if one wanted to treat gravitation as an action that did not play any appreciable role in
the internal processes of atoms, and hence I believe that one must abandon M. Abra-
ham’s point of view as soon as one treats the theory of gravitation not detached from
the theory of matter. Therefore it seems to me very important that gravitation and rel-
ativity theory can be joined together in such a simple way as we have just done.

Let me add the remark that in the dynamics of the aether when extended by equa-
tions (86), (87), (88), Hamilton’s principle is valid in the form that we encountered in
I, section 10. The proof offers no difficulties whatsoever.

The Invariants

39. The number of invariants is considerably increased by including the gravitational
quantities. Besides the gravitational potential  four further quantities join the four
quantities found in (24) of I. on p. 648 [p. 531 in the original], so the function  in

17 M. Abraham, Ann. d. Phys. 38. p. 1056. 1912.

e′ ∂H′
∂d

---------=   b′ ∂H′
∂h

---------–=   ϕ′ ∂H′
∂ρ
---------–=   f′ ∂H′

∂v
---------=   k′

∂H′
∂g

---------   w′
∂H′
∂u

---------,–=,=, , , ,

d h ρ v g u, , , , ,( ) ω,

e e γω–
e′=   b e γω–

b′=   ϕ e γω– ϕ′=   f e γω–
f′=   k e γω–

k′=   w e γω– w′.=, , , , ,

H

[31]

ω,
H′
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(94) can possibly depend on eight independent variables. These can be taken as the
following combinations of the variables of state: |

(97)

It can be proved by means of four-dimensional vector analysis that all other
invariants can be computed from these eight quantities. But I do not want to repro-
duce that proof here.

Similarly I do not wish to write down here the formulas that now lead to the cal-
culation of the quantities  from the function  analogous to the
formulae (25) in I, p. 649 [p. 531 in the original], since they can be derived quite eas-
ily.

The Differential Equation of the Electron

40. The following quantities are of course also invariants under Lorentz transforma-
tions:

For many purposes it is more convenient to use other functions instead of 
which differ from the latter only by an additional term formed from the quantities just
written down. Let us define exactly as in I, p. 642 [p. 524 in the original]:

(98)

We can also set:

(99)

where accordingly  is a quantity depending only on the variables 
and not on  Since  | can be calculated from the variables

[32]
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e′ b′ ϕ′ f′ w′ k′,,,,, H′,

e d b h⋅–⋅ e γω– e′ d b′ h⋅–⋅( ),=

ϕρ f v⋅– e γω– ϕ′ρ f′ v⋅–( ),=

k g wu–⋅ e γω– k′ g w′u–⋅( ).=

H ,

Φ H e d b h⋅–⋅( )– ϕρ f v⋅–( ).+=

Φ e γω– Φ′,=

Φ′ H′ e′ d b′ h⋅–⋅( )– ϕ′ρ f′ v⋅–( ),+= ⎭
⎬
⎫

Φ′ d h ρ v g u, , , , ,
ω. e′ b′ ϕ′ f′,,,( )[33]
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 one can also, conversely, calculate  from
 and so one may consider  as a function of this new system of

variables:

(100)

Now it follows from (99) and (95):

therefore:

(101)

In the case of an electron at rest the quantities  are to be set to constant
zero, and the three remaining ones depend only on the distance  from the center. I
set:

(102)

Thus we have a function  that depends only on three variables:

But because also:

we really have in  only two unknown variables  and  and the derivative
 of one of them.

For these two unknown variables  and  we then have the following two differ-
ential equations:

or:

d h ρ v g u, , , , ,( ), d h ρ v, , ,( )
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(103)

| These two equations should replace equation (34) of II, p. 15 when one wants to
discuss the problem of the electron with gravitation taken into account. Incidentally,
the unknown  and its derivatives can also be eliminated from both equations
according to the usual procedure of differential calculus. This yields an equation of
third order for the unknown  whereas (34) was an equation of second
order for 

The World Matrix

41. As before (I, p. 643 [p. 525 in the original], we can use the world function 
defined in the previous section to construct the world matrix. Namely, from equation
(98) and (91):

(104)

The world matrix can now be constructed according to exactly the same scheme as in
equation (16), simply by including the four-vector of gravitation:

(105)

When the operation  is applied to this matrix, the fourth row yields the
energy principle; the first three rows will lead to the equations of motion of a material
particle. |

1
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i dybz dz by fxρ gxw+–⋅–( ),–

eydx hybx fyvx gykx,–+ +

Φ b h eydy hyby fyvy gyky,–+ + +⋅–

  eydz hybz fyvz gykz,   i dzbx dxbz fyρ gyw+––( ),  ––+ +

ezdx hzbx fzvx gzkx,   ezdy hzby fzvy gzky–++ ,–+ +
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For the most general case that all variables (97) occur in  and by quite elemen-
tary calculational steps, of hardly greater complexity than those mentioned in section
25, one can prove the equations:

(106)

(107)

which are the generalizations of equations (54) and (55), so that

The world matrix (105) is symmetric across the diagonal.

Calculation of the Force Acting on a Mass Particle

42. To calculate the ponderomotive force on a mass particle we proceed exactly as in
26. We consider a volume  containing the mass particle that on the one hand is
large enough that the law of superposition, valid in vacuo, is already satisfied on its
surface  but which is on the other hand small enough that the largely extended
field, which causes the force action, can be well approximated as homogeneous in the
interior, if the particle is imagined to be absent.

For the actions of gravity, the principle of superposition states that the differential
equations (86) and (87) are linear in  and  Therefore this condition must be ful-
filled:

In vacuo  and  differ only by a constant factor.
The factor of proportionality depends only on how we define the units.18 We will

make the convention that in vacuo:

(108)

| Accordingly the world function  must be representable on the surface  of the
volume  in the form:

(109)

where  can be neglected as vanishingly small, and with an error that decreases as
 is taken to be increasingly large.

Let  be the energy current, then the value of the momentum of motion  con-
tained in  is given by:

18 So that we can disregard the factor  we assume that the gravitational potential  is so small that
 cannot be distinguished from 1. We will see in 47. that this assumption does not restrict the gen-

eral validity of the proofs.
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The inertial mass  contained in the volume  amounts to:

where  denotes the density of energy. Therefore the velocity  of the considered
particle is:

Then the force  acting on the particle is calculated to be:

Here the first term on the right side signifies the change in time of the momentum
of motion in the stationary volume  in which the particle moves so that  changes;
and the second term means the change in momentum calculated for a volume  in
which the particle remains at rest and  is unchanged, but where  is displaced with
velocity  The two together yield the change in time of  in a co-moving volume

 rigidly attached to the particle.
We now substitute for  the values calculated from equation (58) and obtain:

 

by a single integration (cf. equation (62)). |
Since the principle of superposition is valid on  the components of  as well

as those of  are expressions of second degree in the state variables; that is,  is
composed additively of an expression that contains only the electromagnetic field
quantities (the force of the electromagnetic field), and of an expression that contains
only the gravitational quantities  and  (the gravitational force acting on the parti-
cle). Since we already know the first expression we are interested here only in the
second. So we calculate with the expressions:
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which result from the matrix (105) if one sets  and the value (109) for
 and furthermore omits all terms in  and 
Further, according to the principle of superposition we can now think of the sev-

eral components of the variables of state composed additively of two quantities each;
one which corresponds to the particle’s proper field, to be denoted by the index 
and a quantity belonging to the largely extended field in which the particle moves,
denoted by the index 1:

For the tensor components  and the components of  we obtain sums of three
expressions each, the first of which is composed only of quantities with index  the
second of quantities with mixed indices, and the third of quantities with index 1:

| Correspondingly,  decomposes into three terms as well, which one could
denote by   would be obtained by annulling the extended field in
which the particle is moving  But because the particle’s proper field
is in internal equilibrium with itself, the particle can move only with constant velocity
in a field-free space  therefore  In exactly the same way
we find  So to calculate  there remain only the terms that we have charac-
terized as  For example, the result for the -component of the force is:
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Here the assumption was used that the extended field  may be treated as
constant in the interior of the volume  Further we have set for brevity:

From the property of the vector  that (from equation (87)):

it follows:

So this eliminates the third and fourth term in the sum for  written above. I again |
change the remaining terms into volume integrals, making simultaneously multiple
use of  which are valid on 

But we have:

and:

so that the result is:
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The second term is vanishingly small compared to the first. For since  and  are
vanishingly small compared to  and  in the interior of the volume  that sec-
ond term is negligible compared to the term:

which occurs in another formula for  namely:

and so that term must be negligible compared to the value of  in general. Thus we
have:

In the following I again omit the indices and put according to (86):

| where  now denotes the Hamiltonian function of the particle’s proper field. I also
put  that is by  I mean the field strength of the extended field in which the
particle is moving. Then:

 (110)

We have to define the gravitational mass  of the particle as:

 (111)

and then:
(112)

We can therefore state the following proposition:
In a gravitational field there is only one type of action of force, the action of grav-

ity, and there is nothing that would be related to it as the magnetic action of force is
related to the electric one. But the gravitational mass of a material particle depends
on its state of motion, in contrast to the constancy of the electric charge.
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For, we have seen on p. 663 [p. 26 in the original] that:

(113)

if we understand  to be the gravitational mass of the particle at rest. Moreover it is
straightforward to verify the validity of the following proposition:

For a massive particle at rest the gravitational mass and the inertial mass are
identical.

Both are  To what extent they differ in a moving body will be seen in a
later section (45.).

Now I consider two particles at rest or in slow motion, having masses  and
 In the surrounding empty space the field strength of gravitation is calculated to

be, due to  and, in vacuo, 

| where  and  shall denote the radius vectors from the particles, and where the
field lines point toward the particle generating the field. If the two are at a distance

 from each other they accordingly attract each other with a force of
equal magnitude:

(114)

In our theory of gravitation the law of equality of action and reaction as well as
Newton’s law of attraction are valid.

Both laws are a necessary consequence of the principle of superposition that
holds in vacuo.

Because the superposition principle also implies that the gravitational fields of
very many mass particles, which merely represent the sinks of the vector  simply
add together, it follows that the attractive effect of a body in the universe is altered in
no way by interposing another body; rather the effect of the second body superposes
unchanged; in other words, gravity cannot be shielded.

The energy density, calculated according to the formula:

becomes the following in vacuo, where 
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The energy density of the gravitational field in vacuo is a positive quantity.
This theorem, which is remarkable considering the attractive nature of the gravita-

tional field, has already been derived by M. Abraham from his ansatz for the equa-
tions of gravitation.

Finally we want to calculate the numerical value of the universal constant  from
the above Newtonian law of attraction (114). In formula (114) the two gravitational
masses  and  are to be expressed in ergs. | First let us give them in the usual
fashion in grams by putting:

where  is the speed of light  The law of attraction then takes the form:

(114a)

We denote what is usually called the gravitational constant by  so we have:

(115)

Therefore:

When we substitute:

we obtain:

The Inertial Mass of a Material Particle

43. If  is the energy of a particle at rest, then the energy of the same particle in
motion with speed  follows from Laue’s theorem:19

According to (91) and (98) the energy density is:

19 M. Laue, Das Relativitätsprinzip, p. 170.
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hence, considering (64) and (65):

(116)

These formulas now take the place of the formulas (66). |
The following formula can be easily derived from equations (85), (86):

This implies for a material particle at rest, by integration over the whole volume 
it occupies:

(117)

In place of the three equations on p. 659 [p. 10 in the original] we obtain the fol-
lowing equations from Laue’s theorem, taking into account the gravitational terms:

Addition, taking note of (65), results in:

(118)

in place of (71).
In the field of an electron we have  consequently:

(119)

and here we have, from (64) and (115):

(120)

(121)
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By formula (119) the proofs that we gave on p. 662 [p. 13 in the original] can no
longer be carried through rigorously. Nevertheless it should be rather likely that the
peculiar statements about the signs of  and  in the interior of the electron can in
fact be maintained. |

Gravity of Moving Massive Particles

44. Let  be the gravitational field of a material particle, whose gravita-
tional mass shall be  when it is at rest. By (85),  can always be derived from a
gravitational potential 

 [1]

and here  is a four-dimensional scalar, that is, an invariant under Lorentz transfor-
mations. Let the particle move with speed  in the direction of the positive -axis.
We want to transform to rest, that is, we want to associate with the point  at
time  a point  according to the following equations:

Let the center of the material particle be the point associated with
 which therefore has the coordinates 

The distance of the point  from the center of the mass particle is:

and the distance of the associated point  from the center  of the par-
ticle in its rest frame is:

. 

We can also calculate this quantity as a function of 

(122)

If we denote by  the angle between the positive -axis and the radius vector 
then:

 
and thus we have:

e ϕ

[44]
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| Let us introduce the following abbreviation:

(123)

Now the gravitational potential  for a particle at rest is easily calculated, namely:

Since  is invariant under Lorentz transformations it follows using (122) and (123)
that the potential for a moving particle is given at the point  by the formula:

(124)

This gives immediately the gravitational field of the moving particle:

(125)

or, when we denote by  the component of the field normal to the direction of
motion 

(126)

where the value of  is to be substituted from formula (123).
The formulas (126) clearly imply the following:
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The gravitational field lines in the vicinity of a material body, which extend from it
in a straight | radial direction when it is at rest, acquire a curved form when the body
is in motion; in addition the field acquires sources and sinks in the vicinity of the
moving particle.

The last part is easily seen: in empty space we have  and  since
here  and also  differ from zero, this is also true of  for:

The order of magnitude of  is that of  as one can easily check.
The strange distortion of the gravitational field becomes noticeable only when 

takes on quite significant values. The equation for a line of force is:

Figure 1: Shape of the gravitational field lines of a rapidly moving particle 

| therefore:

[46]
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where  is a parameter labeling the line of force. One sees immediately that for
lesser values of  the line of force hardly deviates from the radius vector, then  is
given by  But if  for example, then the lines of force have already
become parabolas. Then the gravitational field has the appearance shown in the draw-
ing above (Fig. 1). As  approaches the speed of light (the value 1), the curves open
up more and more, so that the gravitational field is increasingly concentrated about
the equatorial plane. Simultaneously the field strength decreases steadily toward zero,
so that  converges to zero as  and  and  as 

45. Let us consider a body whose elementary particles are all completely at rest
relative to each other, as it may be at absolute zero temperature. For this body the
inertial mass is identical with the gravitational mass, let us denote it as rest mass 

Now let the elementary particles in this body start to vibrate, due to an increase in
temperature, for example. Let the average speed of a particle be  then:

is the average energy of a moving particle, if  is its rest energy. The gravitational
mass of the particle is given by (113):

So the gravitational mass  of the whole body being considered decreases as the
internal motion of its elementary particles increases. In fact we can estimate the
change in gravitational mass if we know the magnitude of the internal motion. Let it
be  ergs, then:

| if the mass is specified in ergs, or:

if the mass is calculated in grams. If we impart our body a motion of velocity  then
the total velocity  of an elementary particle, moving with velocity  relative to the
body in a direction at angle  with respect to the direction of  becomes by the
addition theorem of velocities:20

The energy of this particle can be calculated:

20 M. Laue, Das Relativitätsprinzip. p. 43.
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We assume that the particles in the body oscillate at random, so that each direction of
 occurs equally often. Then for a large number  of particles at each moment a

fraction:

moves such that the direction of motion  of these  particles makes an angle with
respect to the direction of  lying between  and  We obtain the energy of
all of the  particles by multiplying the energy value of a particle, just calculated, by
the number  and integrating over  from 0 to  Since:

the total energy of the  particles is obtained as:

| Thus the inertial mass  of a body, as is well known, simply equals its total energy
content, even when its elementary particles are in vibration

Let us again call the energy of internal motion  then:

 erg

or:

 grams.

Inertial mass and gravitational mass of a body are completely identical only if the
body’s elementary particles execute no internal motion. Hidden motion of the ele-
mentary particles cause an increase of the inertial mass and a decrease of the gravi-
tational mass.

Since hidden motion is certainly always present in any matter, increasing with
increasing temperature, it further follows:

For any substance, the ratio of gravitational to inertial mass, and therefore also
the so-called gravitational constant, is a function of the temperature, which decreases
with increasing temperature.
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For not excessively large thermal motion we can use the approximate values for
 and  that we just calculated:

if  and  are both calculated in ergs, or:

if  is in ergs and  in grams;  is that part of the heat contents of a unit of
mass of the body that represents the kinetic energy of the molecular motion.

The change of the gravitational constant with temperature is of different amounts
in different materials, such that it is larger the larger the part of the material’s spe-
cific heat that corresponds to the kinetic energy of molecular motion. |

In general the specific heat of bodies is larger the smaller the atomic weights of its
constituents. Therefore the propositions that follow from our theory of gravity might
be tested experimentally by determining the acceleration of gravity once with a pen-
dulum whose bob consists of Lithium, and again under exactly the same conditions
with a pendulum whose bob consists of Lead. The second pendulum should give a
larger value for the acceleration of gravity than the first. To assess the feasibility of
the experiment let us calculate the variation of the ratio  for that substance
which must exhibit it to the greatest extent, namely hydrogen gas. It has a specific
heat  of 2.5 cal per gram and per degree Celsius, that is converted into erg

 This implies:

where  is the absolute temperature at which the measurement is performed. This
yields at:

Thus it would have to be possible to determine the acceleration of gravity accu-
rately to a fraction  or  in order to find differences for different pendulum
bob materials, when observing at room temperature. Similar accuracy would be
required when searching for a variability of the gravitational constant, say by astro-
nomical means. For even though the higher temperatures of many celestial bodies
could play a role here, one must also note the greater atomic weights of the materials
that constitute most celestial bodies.

Gravitational mass and inertial mass are indistinguishable in practice.
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Longitudinal Waves in the Aether

46. It seems that the most interesting consequence of the theory of gravitation devel-
oped here, which incidentally was also pointed out already by | M. Abraham21 when
he set up his ansatz, is the prediction of longitudinal waves in the aether. This can be
immediately seen from the form of the equations (85) and (86). The equations (85)
are absolutely identical with the equations of motion of a compressible and perfectly
elastic fluid that executes infinitesimal, non-vortical motions, if one views  as the
velocity potential; and equation (86) is the so-called continuity equation if one can set

 which is permitted, at least in vacuo. Here it must be supposed that 
and  are proportional to each other, which by the superposition principle is
the case in vacuo. Then, for  the wave equation results:

from which it can be seen that the speed of longitudinal waves in the aether is 1, that
is equal to the speed of light waves.

The analogy to longitudinal waves in a compressible fluid suggests that longitudi-
nal waves in the aether must radiate from oscillating material particles. For, when a
material particle oscillates, then (1) the sinks of the vector  move back and forth
periodically and (2) the amount of the sink varies periodically, since the particle’s
gravitational mass reaches a minimum at the time of greatest motion, and a maximum
at the moment when our particle is at rest. Thus two different longitudinal spherical
waves originate around an oscillating material particle, and one can already note that
the second type has twice the frequency of the first.

We see from this that light waves, if emitted by oscillating electrons, and -rays,
which originate upon sudden deceleration of moving electrons, must always be
accompanied by radiation of longitudinal waves. However, the same cannot be imme-
diately said of such light waves that consist of exploded | dipoles (as in section 32).
Let us now calculate how great the intensity of gravitational waves emitted by an
oscillating material particle is.

For simplicity we will assume that the vectors  and  are zero in the whole sur-
rounding of the particle when it is at rest, and also that  Then the energy of
the particle at rest is always:

If this particle is at an equilibrium position, then in particular:

21 M. Abraham, Physik. Zeitschr. 13. p. 1. 1912.

[51]

ω

H 0,= g iu,( )
k iw,( )

ω

∂2ω
∂x2
--------- ∂2ω

∂y2
--------- ∂2ω

∂z2
--------- ∂2ω

∂t2
---------–+ + 0=

g

x

[52]

h v

u 0.=

E H V .d∫=

E0 H0 V .d∫=



686 GUSTAV MIE

At other positions we have  and to calculate  we may have to take into
account the further surroundings of the particle.

As the particle moves through its equilibrium position with speed  its energy is:

but from (69):

If  is the total energy of oscillation, which stays constant during the oscillation
(apart from radiation damping), then at the moment of maximum amplitude, when

and at the moment of crossing the equilibrium position, when  reaches its maxi-
mum:

We will now make use of the following abbreviations:

(127)

| If we think of  as the massive particle, we can visualize the whole oscillation pro-
cess thus: (1) the center of mass of  moves with a periodic velocity, which we will
call  and (2) concurrently the mass of the particle  changes periodically; we can
calculate to sufficient accuracy:

(128)

where  is the value for  For the intensity of the emitted waves it will be
inessential whether, in doing this, the particle also undergoes any kind of change of
shape.

In the following let us confine attention to the case of linear oscillation of the par-
ticle, where therefore  does not change direction. We will put:

(129)
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In place of the vector of gravity  and  we first calculate quantities defined
somewhat differently, which we will call  and  and which shall satisfy the fol-
lowing equations:

(130)

In vacuo, where  and  and  and  are identical to each other, the definition
of  and  as well as  agrees with that of  and  but not in the interior of
the material particle, because there  and  and  and  may not be regarded as
identical. From (130) one derives the well-known differential equation for 

(131)

which agrees completely with the differential equation obeyed by the scalar potential
of the electric field about a moving charged particle, if  is taken as the density of
electric charge. But this equation can be easily integrated by the method given by
E. Wiechert22 if one confines attention to | regions of space whose distances from the
center of mass of the moving particle are infinitely large compared to the particle’s
dimensions. Namely:

(132)

where:

Here  denotes that point on the orbit described by the particle’s center of
mass from which a light wave would just arrive at the point in space  under
consideration at the time , and  is the moment at which the particle’s center of
mass is just passing   is the connecting segment from  to

 Since we have put the speed of light equal to unity we have:

Let  be the angle between the radius vector  directed from  to
 and the direction of motion  According to (129)  is given as a function

of    now has a different meaning). If we take the direction of
motion of the oscillating particle as the direction of the -axis, then  are con-
stants and  is a function of 

22 E. Wiechert, Ann. d. Phys. 4. p. 682. 1901.
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According to (129) we have to set:

The equation:

with the constant values for  and  and  substituted, determines the
quantity  implicitly as function of  and the differential quotients

| can be calculated without effort. Since  and therefore also  are functions of 
they can also be differentiated with respect to  where we will use the abbre-
viation:

Finally one can also perform the differentiation of  and  and
calculate now the vector  and 

The calculations have been carried through exactly by M. Abraham in his Theorie der
Elektrizität vol. II in § 13 p. 92ff, therefore I need only write down the results.
Because everything is symmetric about the -axis I will give only two components of

 namely  and 

z1 f t1( ),   
dz1

dt1
-------- q f′ t1( ).= = =

z1
a

2πn
---------- 2πnt1,   

dz1

dt1
--------cos– q a 2πnt1.sin= = =

t1 t r– t x x1–( )2 y y1–( )2 z z1–( )2+ + ,–= =

x1 y1 z1 f t1( )=
t1 x y z t, , ,( ),

∂t1

∂x
-------,   

∂t1

∂y
-------,   

∂t1

∂z
-------,   

∂t1
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[55] q μ t1,
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dq
dt1
------- q̇,   

dμ
dt1
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r r q ϑ z z1–( )q=cos
g′ u′:

gx′
∂ω′
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∂ω′
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z
g′: gz′ gρ′ gz′:⊥



FOUNDATIONS OF A THEORY OF MATTER (EXCERPTS) 689

(133)

These expressions decompose into two parts, the first being proportional to 
and the second to  The two summands of the second part contain as a factor
either:

or:

| The second part of the expressions is related to the first in order of magnitude as
 where  is the wavelength of light corresponding to the wave number 

Let us confine attention to those wave numbers  whose wavelength of light  is
infinitely large in comparison with the dimensions of the particle, in the sense that
there are distances  from the particle that are infinitely small compared to  but
still infinitely large compared to the dimensions of the particle.

By this assumption there are values of  for which the formulas (133) are still
valid, although r is infinitesimal compared to  For these small values of  we can
calculate to good approximation:

(134)

gρ′
γμ

4πr2 1 q ϑcos–( )3
-------------------------------------------- 1 q2–( ) ϑsin–

γμ

 4πr 1 q ϑcos–( )3 
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γ
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It is easy to show that these formulas agree completely with the formulas (123),
which represent the field of a massive particle moving with speed 

To see this we have to note that  stands for the distance of the point 
from the position of the particle at the time  If we denote the distance
between  and the position of the particle at time  by  and the angle
between  and the -axis by  we see immediately from Fig. 2 that:

An elementary calculation leads to the formula:

or:

| Noting that:

and putting as before (121):

we readily derive from (134) the formulas (125) where:

in agreement with formula (113).
At distances that are large compared to the dimensions of the particle, but which

still belong to its closer vicinity (  small compared to ) the vector  and 
agrees completely with the vector of gravity  and  of the moving massive particle.

Hence it follows that this is valid for all distances that are large compared to 
Only in the interior of the particle and in the nearest vicinity can  be distin-
guished from  But since these regions do not interest us I will simply omit the
primes in the following and put:

q.
r x y z, ,( )

t1 t r .–=
x y z, ,( ) t r′,

r′ z ϑ′,

r ϑsin r ′ ϑ′,sin=
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Figure 2

| At large distances, where  is infinitely large compared to  we have the pure
longitudinal spherical waves that we desire. We need to take into account only the
second part of the expressions (133):

by noting that:

A minor transformation yields:

If we transform  and  similarly, we finally obtain the following expressions for
the variables of state in the longitudinal wave at large distances from the oscillating
particle:

x y z, ,( )

r
r ′

tt1

ϑ′ϑ
g. t t1)–(

[58]r λ,

gρ
γμ

4πr
--------- q̇

1 q ϑcos–( )3
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qq̇
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------------------------------------------------------------- q̇ ϑ qq̇–cos( ) ϑ.sin–=

gz u
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(135)

This shows that  is always oriented radially toward the particle, regarding the
norm  Furthermore the two waves mentioned above are clearly recognizable;
the term  is due to the back and forth motion of the sink of the vector  and
the term  is due to the change of the particle’s gravitational mass as it is moving.
Since:

the second wave has twice the frequency of the first. If the particle’s displacements
are very large, so that  is not much less than 1, then the factor before the parenthesis
causes the emitted radiation to consist of oscillations that are not pure sine waves.
There is little interest for us to discuss this complication more precisely here, because
motions of material particles with velocity not far below 1 are well known to be
extremely rare. | Therefore we want to discuss exclusively the case that  is very
small. Then  can also be dropped compared to  and we retain only the
first wave:

(136)

Here  is simply the mass of the particle, since for small velocities inertial and
gravitational mass are identical. We substitute in (136):

and calculate the energy current of the wave in direction  to be:

from which one obtains the intensity by integration over a unit of time:

(137)
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Let us now consider a very large number  of oscillating particles, which are ori-
ented quite at random in space, but which all oscillate linearly with amplitude 
Since in the spherical zone between  and  their number is:

we obtain the whole intensity by multiplying (137) by this value of  and integrat-
ing over  with the result obtained in this way:

(138)

Let us compare this value with the corresponding value of the intensity of the
emitted light. We consider a material particle with charge  whose direction of oscil-
lation makes an angle  with the ray direction, and which oscillates with speed

 | The intensity of the light emitted by this particle is, in the system
of units used by us:23

(139)

and:

(140)

Accordingly the ratio of the intensities for the electric and gravitational waves
radiated by the same particle is:

(141)

In this formula  means the amount of charge of the particle, calculated in a unit that
is the  part of the usual electrostatic unit, so that:

if  is the charge calculated in the ordinary electrostatic unit. Further,  means the
mass calculated in ergs, that is:

where  denotes the speed of light and  the mass in grams. Finally, if we denote
the charge in electromagnetic units by  then:

23 Cf. E. Wiechert, Ann. d. Phys. 4. p. 688. 1901.
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Thus we obtain:

or, since by (113) the ordinarily so-called gravitational constant  has the value:

we have:

(142)

| so the result for the radiation emitted by oscillating electrons is:

To appreciate this number properly let us take the square root,  Then we
see the following: the intensity of gravity radiation emitted by a radiating point at a
distance of 1 cm is just as intense as the radiation of light emitted by it at the distance
of  cm, that is a distance a hundred million times the diameter of the Earth’s
orbit, or about 3000 light years. Here this ratio is the same for all wavelengths.

The gravitational radiation emitted by oscillating electrons (or by any oscillating
mass particle) is so extraordinarily weak that it is unthinkable ever to detect it by any
means whatsoever.

This makes it transparent why the longitudinal radiation of the aether apparently
plays no role whatsoever in the balance of nature. It would probably be very impru-
dent to claim that the longitudinal waves, which certainly as such are possible at any
amplitude, could not arise in appreciable intensity for other than oscillatory processes
of material particles. We can only claim this much with certainty, that these processes
would have to be of a highly peculiar type. So if one could ever prove the existence of
gravitational waves, the processes responsible for their generation would probably be
much more curious and interesting than even the waves themselves.

The Theorem on the Relativity of the Gravitational Potential

47. The theory advocated in this work differs from the theory generally adopted to
date mainly because it must put the real vacua in contrast with yet another, ideal vac-
uum, as in the theory of gases the real gases vs. the ideal gas. For in real vacua, due to

εs
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the proximity of material bodies, traces of the states  are always present and  is
not absolutely zero; therefore the law of superposition of | the states of the aether,
which characterizes the absolute vacuum, is always valid only as a good approxima-
tion, admittedly to such a good approximation that one can hardly hope very easily to
substantiate deviations from this law. However it may nevertheless be possible, in
very strong electric fields where  and  are large,24 or in very strong magnetic
fields, to make observations which contradict our present-day ideas about the vac-
uum, and such observations should be viewed as the greatest encouragement on the
path followed by me.

Such observations would concern a vacuum that already deviates rather strongly
from the ideal vacuum. But among the state variables is one which appears to influ-
ence processes even in a vacuum that otherwise deserves to be called almost ideal,
and that is the gravitational potential . If the quantities  and  as well as  are
so small that one can no longer speak of any noticeable influence on physical laws,
but if in this good vacuum  still has a large value, then we do not have

 but, as shown by (93) and (94):

From this it is evident that the dielectric constant of the vacuum is no longer 1 in a
region where the gravitational potential  is present, instead  similarly
the permeability of the vacuum is no longer 1, but  But the product of the
two is again  that is the speed of light in a region at gravitational poten-
tial  is the same as in a region with zero gravitational potential.

But we can go much further. Let the mean value of the gravitational potential in
our region be  an arbitrarily large but constant value. Then we can decompose the
gravitational potential, which | is not constant due to the presence of matter and of
gravitational fields, into two parts:

The second, variable term takes on large values at most in the interior of material
bodies present in the region, in vacuo itself  is small. If we define:

24 Cf. II. p. 24 [in chap. 4 of the original, which is not included in this translation].
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then in the region at gravitational potential  exactly the same equations hold for
the quantities denoted with the index 1 as in a region at gravitational potential 0 for
the quantities without index. From this it follows directly:

If two empty regions differ only in this, that the gravitational potential in one of
them has a very large average value , and in the other one it has the average value
zero, then this does not have the least influence on the size and form of the electrons
and other material elementary particles, on their charges, their laws of oscillation
and other laws of motion, on the speed of light, and in general on all physical rela-
tions and processes.

Through this theorem, which could be called the principle of the relativity of the
gravitational potential, the theory of gravitation developed by me differs in principle
and most sharply from the theories of A. Einstein and M. Abraham. I share the view
of the latter that if this theorem were not valid, it would mean the demise of the entire
principle of relativity. On the other hand I believe to have shown that the postulates I
assumed lead nowhere to contradictions with experience, that in particular according
to my theory only imperceptibly small deviations are to be expected from the law of
proportionality of gravitational mass and inertial mass. |

Concluding Remarks

48. Above I believe to have pursued the general theory of matter as far as is possible
today. The next progress must occur through experiments, and therefore I want to dis-
cuss briefly what possibilities offer themselves to experiment.

Gravity, the preparation of whose experimental investigation was the main goal
that was on my mind in this research, shows itself as obstinate as ever. It was possible
to implement the theory of gravitation completely so that it is in accord with the prin-
ciple of relativity as well as with all empirical facts known about gravity, and it also
yields two new results that seem extremely interesting on first sight. But a closer look
shows that these theoretical results provide no prospects for a successful experiment.
The first result is that the ratio of gravitational to inertial mass depends on tempera-
ture, and that the dependence on temperature is much stronger for bodies of small
atomic weight than for bodies of large atomic weight. Because the differences to be
expected from theory for the acceleration of gravity of different substances is of the
order  to  it is experimentally useless. The second result is that there
must be longitudinal waves in the aether, for which it may be worth searching. Of the
processes known to us, the oscillations of atoms and electrons are relevant, which
must produce longitudinal gravitational waves as they produce light. However, for
electron oscillations the intensity of gravitational waves is to that of the light waves
of any frequency as  and we must therefore deem the existence of any
reagent that would react to them as totally ruled out. Thus no way can be given to
search for these longitudinal waves, which by themselves are certainly highly inter-
esting.

ω0

ω0

[64]
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The next thing immediately suggested by the theory would be an investigation
whether there are to be found, in very strong electric or magnetic | fields or in field-
free regions at a very high potential, any deviations from the laws of Maxwell that are
valid in the ideal vacuum. These would be high precision measurements, to be per-
formed according to a theoretically well thought-out plan. Of course it is doubtful
whether this will lead to success; but if there were positive results, they would give
important hints to the theory how the next steps should be taken.

In somewhat loose connection with the remaining theory is the conception laid
out by me in the sections 31 to 36 about the quanta of action and the light of band
spectra. The conception is very vague and full of hypotheses, nevertheless I believe
that one could draw some conclusions from it which should give rise to new spectro-
scopic investigations.

EDITORIAL NOTE

[1] In the original, the second equation is misprinted as 

[65]

gy
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∂x
-------.=
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1. INTRODUCTION

In his interesting paper 

 

Outline of a Generalized Theory of Relativity

 

 etc.

 

1

 

Mr. Einstein says that by introducing a variable speed of light he has broken out of
“the confines of the theory known at present as the theory of relativity,” and also on
other occasions he frequently contrasts his theory with the “old theory of relativity.”
To someone who immerses himself sufficiently deeply in the development it may
become clear in what respect Mr. Einstein can speak of a new relativity; nevertheless,
one may suppose that the cited passages may lead a more cursory reader to the wrong
view, that one is really dealing here with a break with the theory of relativity as pres-
ently known. It is therefore certainly not without interest to present below, using

 

1 A. Einstein and M. Grossmann, 

 

Entwurf einer verallgemeinerten Relativitätstheorie und einer Theo-
rie der Gravitation

 

. Published as an offprint by B. G. Teubner, 1913.
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methods recently developed by me in a larger work about the theory of matter,

 

2

 

which strictly followed Minkowski’s concept of the principle of relativity, a general
theory of gravitation with a tensor potential, which includes Einstein’s theory as a
special case. Contrary to the rather inscrutable formulas of Einstein, the methods I
use have the advantage that they yield clearly transparent expressions. In this fashion,
it then becomes possible to comprehend the nature of Einstein’s theory better, and in
particular to clarify the so-called generalization of the principle of relativity, and fur-
thermore to compare it with the theory of gravitation suggested by myself

 

3

 

 and with
that | of Nordström,

 

4

 

 which deviates only slightly from mine.

2. GENERAL THEORY OF GRAVITATION WITH A TENSOR POTENTIAL

The essential difference between Einstein’s theory of gravitation and my own is that
in the former the gravitational field is described not by means of a four-vector, but by
means of a spacetime quantity of third rank, which is related to a tensor (that is, a
quantity of rank two) in the same way as a four-vector (a quantity of rank one) is
related to a scalar (a quantity of rank zero). Because a tensor has 10 components, the
gravitational field of Einstein has 40 components, which can be easily surveyed if
each quadruple is associated with one component of a tensor, similar to associating
the four components of a four-vector with a scalar. To make it intuitive I take the lib-
erty of calling such a quantity a vector of tensors. I shall denote all the spatial compo-
nents of this vector of tensors by  and the temporal components by  (cf. 

 

Theory
of Matter

 

 III, p. 28). The four components that belong to the tensor component num-
bered by  are therefore: The indices  have to run over
the values 1 to 4, where we have  In addition to the vector of
tensors  I introduce a second one, which I will denote by the letters  and 
(loc. cit. III, p. 28), that is  This second vector of tensors shall describe
the gravitational field equally well as the first; the two shall be related to each other in
a similar way as the electric field strength is to the electric displacement, or the elastic
stress is to the elastic strain. In an ideal vacuum, that is, at infinite distance from mat-
ter, they shall be equal,  In addition to the vector of ten-
sors, for which we may choose any one of the two just named, the complete
description of the state of the aether in a gravitational field requires another four
dimensional tensor quantity, which I will denote by  and which one may call the
gravitational potential. The denseness

 

[1]

 

 

 

of gravitational mass must be a tensor quan-
tity as well in this theory, I will call its components  and for now make no further
assumptions about how they are calculated from the state variables characterizing the

 

2 G. Mie, 

 

Ann. d. Phys.

 

, Abhandlung I: 37, 511, 1912; Abhandlung II: 39, 1, 1912; Abhandlung III: 40,
1, 1913 [selections from I and III are included in this volume].

3 G. Mie, 1. c. III, p. 25 ff.
4 G. Nordström, 

 

Physik. Zeitschr.

 

 13, 1126, 1912; 

 

Ann. d. Phys.

 

 40, 856, 1913. In the meantime
Mr. Nordström has put up a second, quite different theory, which I shall briefly discuss at the end of
the present paper.

[116]
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material body. I now put down the following 50 equations for the 50 quantities
 by which the gravitational field is completely described (cf.

1. c. III, p. 28):

(1)

(2)

The quantity  is a universal constant, which is denoted in the same way by Ein-
stein, whereas I have used the letter  for it in the 

 

Theory of Matter

 

. Because eqs. (1)
and (2) admit Lorentz transformations, the principle of relativity is satisfied in this
theory. Incidentally, the eqs. (1) are equivalent to the following:

(3)

(4)

Multiplying eqs. (2) by  and eqs. (3) by  and then adding it
all, using (4), we have:

The summation symbols here are to be interpreted as summing over  and  from 1 to 4,
as if the quantities numbered by  were different from those numbered by 
The sum  yields an ordinary three dimensional vector that may be regarded
as the energy flux (cf. loc. cit. III, p. 29). It is then easy to show that the energy prin-
ciple is satisfied if there is a four dimensional scalar  a function of all the quanti-
ties that determine the state of the aether, including also the quantities 

gμν, i uμν, ωμν,⋅

gμνx

∂ωμν

∂x
------------=

gμνy

∂ωμν

∂y
------------=

gμνz

∂ωμν

∂z
------------=

uμν  

∂ωμν

∂t
------------–=

⎭
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎫

∂�μνx

∂x
------------

∂�μνy

∂y
------------

∂�μνz

∂z
------------

∂wμν

∂t
------------+ + + κ hμν.⋅–=

κ
γ

∂gμνx

∂t
-------------

∂uμν

∂x
-----------+ 0=

∂gμνy

∂t
-------------

∂uμν

∂y
-----------+ 0=

∂gμνz

∂t
------------

∂uμν

∂z
-----------+ 0=

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

∂ωμν

∂t
------------ uμν+ 0.=

uμν, �μνx �μνy �μνz,, ,

div uμν �μν⋅∑ �μν

∂gμν  

∂t
------------ uμν

∂wμν

∂t
------------⋅∑+⋅∑ κ hμν

∂ωμν

∂t
------------⋅∑⋅–+ 0.=

μ ν
μ ν, ν μ.,

Σuμν �μν⋅

H ,
gμν uμν ωμν,, ,
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from which the other vector of tensors  for the gravitational field can be
derived as follows: |

(5)

and which in addition satisfies the differential equation

(6)

The proof of this assertion is extraordinarily simple; it proceeds in the same way
as that for the corresponding theorem in the theory of gravitation with a scalar poten-
tial (loc. cit. III, p. 29, 30) and therefore there is no need to write it down here once
again.

Incidentally, in all differentiations in (5) and (6) the quantities with the index
 should be regarded as formally different from those with the index 

The quantity  is nothing other than the rest density of energy (or, equivalently,
the rest density of inertial mass); in the general theory of matter it plays the role of
the Hamiltonian function per unit volume, thus, for brevity, I usually call it the
Hamiltonian function.

Now we want to calculate the force experienced by a mass particle in an external
gravitational field  The calculation for the gravitational field with tensor
potential proceeds in exactly the same way as for the gravitational field with scalar
potential (loc. cit. III, p. 35–40). For the calculation we presuppose that in the space
surrounding the volume occupied by the mass particle the ratio of the vector

 to the vector  may be regarded as constant. For the gravita-
tional mass of the particle the calculation yields a quantity with the following 10
components:

(7)

The integral should range over the entire volume  occupied by the mass particle.
The force acting on the particle is calculated from the double sum:

(8)

3. IMPOSSIBILITY OF THE IDENTITY
OF GRAVITATIONAL AND INERTIAL MASS

The density of inertial mass is identical with the density of energy, which is the (4,4)
component of a symmetric tensor that I will, for brevity, call the energy tensor; there-

�μν iwμν,( )
[117]

�μνx
∂H

∂gμνx
------------- ,= �μνy

∂H
∂gμνy
------------- ,= �μνz

∂H
∂gμνz
------------ ,= wμν

∂H
∂uμν
-----------–=

∂H
∂ωμν
------------ κ hμν.⋅–=

μ ν,( ) ν μ,( ).
H

gμν iuμν,( ).

�μν iwμν,( ) gμν iuμν,( )

mμν
g hμν V .d

V
∫=

V

� κ gμνmμν
g .

μ 1=

4

∑
ν 1=

4

∑=
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fore one can speak about identity or unity of essence[2] of the two masses only if the
gravitational mass also occurs in the form of a tensor, a tensor that would have to be
completely identical to the energy tensor. We have just learned in general terms the
form of the basic equations for a theory in which the denseness of gravitational mass
is a tensor:  If we now denote the components of the energy tensor by 
then the principle of the identity of gravitational and inertial mass is:

(9)

If this principle were satisfied, then according to Laue’s theorem5 all components
 of the gravitational mass of a material body at rest (a completely stationary sys-

tem) would vanish, except for  and, if I call the inertial mass of the body 
(inertia), we would have  The gravitational force acting on the body in the
gravitational field  would then be:

According to this, in one and the same gravitational field the forces of gravity act-
ing on different bodies, which are in the same state of motion, would be strictly pro-
portional to their inertial masses.

However, it is easy to show that the identity  required by the principle
as discussed is impossible. I will show that no function  of  can be found that
satisfies the differential eqs. (6) in the form required by the principle of identity of the
two masses:

(10)

If eq. (10) were satisfied, then the following would also be valid:

(11)

Now I have shown in my paper on the theory of matter (Part III, p. 34, eq. (105))
that one can very simply write down the energy tensor by means of a quantity 
which like  is a function of the state of the aether at the spacetime point under con-
sideration. Of course, when calculating with  one has to choose different quantities
to describe the state of the aether than when calculating with  Without regard to
their physical meaning, the correctly chosen quantities will be ordered simply
according to their association with the four coordinate axes and denoted | by

 etc. The components of the energy tensor
can then be represented by the following schema:

5 M. v. Laue, Das Relativitätsprinzip, 2. ed., p. 209. Published by Vieweg & Sohn. Braunschweig 1913.

hμν( ). T μν,

hμν T μν.=

mμν
g

m44
g , mi

m44
g mi.=

gμν iuμν,( )

� κg44mi.=

hμν T μν=
H ωμν

∂H
∂ωμν
------------ κT μν.–=

∂T μν

∂ωκλ
------------  

∂T κλ

∂ωμν
------------ .=

Φ,
H

Φ
H .

[118]

x1 x2 x3 x4;  y1 y2 y3 y4;  z1 z2 z3 z4, , ,, , ,, , ,
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(12)

If we denote the state variables used in the calculation with  by 
 etc., then the following differential equation follows

from the definition of  (Theory of Matter, Part III, formulas (98) and (93) on page
32 and 30):

Accordingly, by differentiating (12) and using (10) we obtain:

But it is easy to see that

Therefore eq. (10) also leads to:

(13)

Equation (11) and eq. (13) can be simultaneously satisfied only if 
Exactly the same proof applies for any arbitrary   So the principle of
identity of the two masses leads to the conclusion that all off-diagonal components of
the energy tensor are equal to zero. But that would only be possible if the energy ten-
sor were in reality a scalar. This proves the impossibility of the identity of the two
masses.

The principle of identity of gravitational and inertial mass is impossible also in a
theory in which the gravitational potential and the density of gravitational mass are
four-dimensional tensors. 

Indeed a glance at the formulas (15), (18) as well as (19) on p. 16 and 17 of Ein-
stein’s treatise shows that also in Einstein’s theory the tensor for the denseness of
gravitational mass found in formulas (15) and (18) is quite different from the energy
tensor given by (19). It is therefore an error when Mr. Einstein speaks in the cited

T 11 Φ
∂Φ
∂x1
--------x1–

∂Φ
∂y1
--------y1– …–=

T 21
∂Φ
∂x1
--------x2–

∂Φ
∂y1
--------y2– … .–=

⎭
⎪
⎪
⎬
⎪
⎪
⎫

H ξ1, ξ2, ξ3, ξ4;
η1, η2, η3, η4; ζ1 ζ2 ζ3 ζ4, , ,

Φ

∂
∂ωμν
------------H ξ1 ξ2 … ω11 ω12 …, , , , ,( )

∂
∂ωμν
------------Φ x1 x2 … ω11 ω12 …, , , , ,( ).=

1
κ
---

∂T 11

∂ω21
----------- T 21–

∂T 21

∂x1
-----------+ x1

∂T 21

∂y1
-----------y1 …+ +=

1
κ
---

∂T 21

∂ω11
-----------

∂T 11

∂x1
-----------x2

∂T 11

∂y1
-----------y2 … .+ +=

∂T 11

∂x1
-----------x2

∂T 11

∂y1
-----------y2 …++

∂T 21

∂x1
-----------x1

∂T 21

∂y1
-----------y1 … .++=

∂T 11

∂ω21
----------- κT 21+

∂T 21

∂ω11
----------- .=

T 21 0.=
T μν μ ν≠( ).
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treatise of a “physical unity of essence of gravitational and inertial mass” in his the-
ory, and of the validity of the “equivalence hypothesis,” according to which “the iden-
tity of gravitational and inertial mass is satisfied exactly.” 

Nevertheless, there still remains the possibility that the gravitational and inertial
mass in large bodies consisting of molecules can be made strictly proportional to
each other by means of a series of auxiliary assumptions leading to a compensation
of the deviations in the separate elementary particles when integrating over the whole
volume. Indeed it seems to me that Mr. Einstein had only this remaining possibility in
mind in his Vienna lecture,6 when he postulated the equality of inertial and gravita-
tional mass for “closed systems” (§ 2, postulate 2).

By itself it is probably rather immaterial whether one can, in such a somewhat
artificial way, get the two masses to be mathematically exactly equal in closed sys-
tems, or whether they are only approximately equal, once one has abandoned the
identity of the two masses in principle; whereby then, after all, the thoughts about
general relativity of motion, of which Mr. Einstein spoke in such detail in his lecture,
are abandoned as well.

Since Mr. Einstein puts so much weight on the validity of the theorem of the
equality of the two masses in his theory, at least for closed systems, we are forced to
go into the details of this theorem when discussing his theory.

4. SPECIAL ASSUMPTIONS OF EINSTEIN’S THEORY

In the cited paper Mr. Einstein uses the notation  for the components of the grav-
itational potential. The quantities that we denoted in eq. (1) by  differ from the

 only by a constant factor:
(14)

In a region infinitely distant from all matter, that is, in an ideal vacuum, the tensor
 is supposed to degenerate into the scalar  so that its several components

take the following values: |

Following Minkowski I always put the speed of light in an ideal vacuum equal to 1.
In order to arrive at the special theory of Einstein one must make the following
assumptions:

1. The Hamiltonian function  can be split into two terms,  both
of which depend on the components of the gravitational potential, that is, on the

6 Physik. Zeitschr. 14, 1249, 1913 [in this volume].

gμν
ωμν

gμν

gμν 2κ ωμν.⋅–=

gμν( ) 1,–

1– 0 0 0

0 1– 0 0

0 0 1– 0

0 0 0 1–

[119]

H H He Hg,+=
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quantities  but additionally, the second one,  contains only the components
of the vector of tensors of the gravitational field  and the first one, 
contains only the remaining state variables, e.g., the electromagnetic field quantities
etc.

2. The dependence of the quantity  on the  shall take the form of the fol-
lowing expression:

 (15)

where the  no longer contain the  but only the other state variables of the
aether. The  form the components of a four-dimensional tensor,  is then a
four-dimensional scalar.

3. In the case that the material particle we consider is at rest, the tensor 
reduces to a tensor all of whose components are zero except  Following Einstein
we shall denote this value  by 

So the quantity  is a four-dimensional scalar. If the particle moves with velocity 
then we define in the usual way the following quantity  as the velocity four vector:

It then follows directly from the principle of relativity that the components of the ten-
sor  take the following values in the case that the particle we consider is in
motion:

(16)

Accordingly, the first term of the Hamiltonian function has the value:

(17)

 and  are four-dimensional scalars as is the square root term in eq. (17),[3] so that
we have:

gμν; Hg,
gμν iuμν,( ), He,

He gμν

He g11X11 g22X22
.. 2g12X12

..+ + + +=

He gμνXμν
ν
∑

μ
∑  ,=

⎭
⎪
⎬
⎪
⎫

Xμν gμν,
Xμν He

Xμν( )
X44.

X44
0 ρ2:–

X44
0 ρ2.–=

ρ q,
V

V1

qx

1 q2–
------------------ ,= V2

qy

1 q2–
------------------ ,= V3

qz

1 q2–
------------------ ,=

V4
i

1 q2–
------------------ ,= V1

2
V2

2
V3

2
V4

2+ + + 1.–=

Xμν( )

Xμν +ρ2VμVν.=

He  =  ρ g11V1
2 g22V2

2 .. 2g12V1V2
..++ + +( ) 

He  =  ρ gμνVμVν  
ν
∑

μ
∑ ,

⎭
⎪
⎬
⎪
⎫

He ρ
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(18)

4. The second term of the Hamiltonian function  is a homogeneous function of
second degree in the components of the vector of tensors  If we write for
simplicity the letters:  for the quantities 
this means that  is an expression of the following form

(19)

where each of the six indices is to be summed over separately from 1 to 4. The coeffi-
cients  are functions of the gravitational potential, that is of the quantities

 about which we have to make certain stipulations in order to come to Einstein’s
theory.

5. The tensor  defined by the following equations:

(20)

is called the inverse tensor [reziproker Tensor] of  Furthermore, let:

(21)

Then  can be calculated as the cofactor [adjungierte Unterdeterminante] of 
divided by 7 Let us now put:

(22)

5. THE FUNDAMENTAL EQUATIONS OF EINSTEIN’S THEORY

Before we substitute the expression, that results according to the above stipulations
for  into the general eqs. (1) and (2) in accordance with (5) and (6), we want to put
down a few simple formulas which result directly from the eqs. (20) defining 
and which are very convenient for the following calculations. Differentiation of (20)
with respect to any coordinate  yields:[4]

7 I take the sign of  as positive. Einstein has some signs different from me, because he puts 
whereas I put 

gμνVμVν  
ν
∑

μ
∑ g44

0 .–=

Hg
gμν iuμν,( ).

gμν1 gμν2 gμν3 gμν4, , , gμνx gμνy gμνz iuμν,, , ,
Hg

Hg
1
2
--- Gκμλναβgκλαgμνβ,

κ μ λ ν α β, , , , ,
∑⋅=

Gκμλναβ
gμν,

γ μν( )

g1νγ 1ν g2νγ 2ν g3νγ 3ν g4νγ 4ν+ + + 1=

g1μγ 1ν g2μγ 2ν g3μγ 3ν g4μγ 4ν+ + + 0,= μ ν≠ ⎭
⎬
⎫

gμν( ).

g

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

.=

γ μν gμν
g.

g x4 t=
x4 it .=

Gκμλναβ 2κ gγ κμγ λνγ αβ.=

H ,
γ μν,

xβ
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(23)

for  as well as for  |
Now we write down the 4 eqs. (23) for a particular value  putting sequentially

 we multiply each equation by  where  is another constant
number which may be different from or equal to  and then we add, with the result:

(24)

By differentiating (20) with respect to any  treating  and  as different
variables, we obtain:[5]

(25)

For fixed  we multiply the four equations for  by  and add to
obtain:

(26)

Finally let us differentiate the determinant  with respect to  where again
 and  are treated as different variables:

(27)

From (27) it follows that:

(28)

After these preparations we now calculate first the vector of tensors 
and then the tensor of gravitational mass 

I will call the four quantities  for simplicity
 From (5) and (19) one then has:

g1λ

∂γ 1ν

∂xβ
----------- g2λ

∂γ 2ν

∂xβ
----------- g3λ

∂γ 3ν

∂xβ
----------- g4λ

∂γ 4ν

∂xβ
-----------+ + +  =

γ 1ν

∂g1λ

∂xβ
----------- γ 2ν

∂g2λ

∂xβ
----------- γ 3ν

∂g3λ

∂xβ
----------- γ 4ν

∂g4λ

∂xβ
-----------+ + +⎝ ⎠

⎛ ⎞–

λ ν= λ ν.≠
[120] ν,

λ 1 2 3 4,, , ,= γ μλ, μ
ν,

∂γ μν

∂xβ
----------- γ μλγ κν
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-----------.

λ
∑

κ
∑–=

gmn, gmn gnm

gκλ

∂γ κν

∂gmn
------------

κ 1=

4

∑ 0   λ n≠,=

gκn

∂γ κν

∂gmn
------------

κ 1=

4

∑ γ mν+ 0.=
⎭
⎪
⎪
⎬
⎪
⎪
⎫

ν, λ 1 2 3 4, , ,= γ μλ

∂γ μν

∂gmn
------------ + γ mνγ μn 0.=

g gmn,
gmn gnm

∂g
∂gmn
------------ g γ mn.⋅=

∂ g
∂gmn
------------

1
2
--- gγ mn.=

�mn iwmn,( )
hmn.

�mnx �mny �mnz iwmn, , ,
�mn1 �mn2 �mn3 �mn4., , ,

�mnα
∂H

∂gmnα
-------------- Gmμnναβgμνβ.

μ ν β, ,
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Here again the  and  as well as the  and  are regarded as different
variables, but after the differentiation we set  If we write, from
(1) and (14),

then we find, using formulas (22) and (24),

(29)

This is the same vector of tensors appearing in Einstein’s paper in the differential
equation for the gravitational field, (15) and (18) on p. 16 and 17. It is easily seen that

 can be written in the following form:

(30)

Now we turn to the calculation of  From (6) and (14) we have:

(31)

Since   also splits into a sum:  From (16) and
(17) we have

(32)

So  has the form  where  is a four-dimen-
sional scalar. To compare (32) with Einstein’s expression for  I put (Einstein,
eq.  p. 6):

if furthermore  is the volume element at the spacetime point under consideration,
then the rest volume  of the mass particle occupying  is

�mn �nm gmn gnm
Gmμnναβ Gμmνnβα.=

gmnβ
1

2κ
------

∂gmn

∂xβ
------------,–=

�mnα gγ αβ
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∂xβ
-----------.
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Hg
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1
2
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m n α, ,
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H He Hg,+= hmn hmn hmn
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e ρVmVn
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-----------------------------------=
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--------------VmVn.=

⎭
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1″( ),

gμνdxμdxν
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dV′ dV
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and I define:

Further, following Einstein (p. 10), I put

and

We then have:

or, as in Einstein (p. 10),8 putting

| we have:

(33)

in agreement with Einstein’s eqs. (15) and (18).
Now I calculate the second term of  From (19) and (31) we have

where

When differentiating,  and  are to be treated as different. The formulas (26)
and (28) yield:

8 I choose the negative sign to make  positive.

dm ρdV′ ρ
dV

1 q2–
------------------.= =

dV 0 g
 dV  
ds
dt
-----

-----------,⋅=

ρ
0

dm
dV 0
---------

ρ

g 1 q2–
-------------------------ds

dt
-----.= =

hmn
e ρ0 g

dxm
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---------

dxn
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-------- ,=
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Θmn ρ0

dxm
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[121]
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If one further puts

and notes that  then, with the aid of formula (24), one finds:

(34)

or from formula (23)

This last form is used by Einstein; he collects together the first two terms calling
their sum  (Einstein, p. 15, formula (13)), and writes:

(35)

Written in Einstein’s notation, the density of the gravitational mass is then, taken
together:

(36)

Taking into account formula (29),

one sees immediately that Einstein’s fundamental eq. (15) and (18) on p. 16 and p. 17
is nothing other than our eq. (2):

Einstein’s theory of gravitation is a special case of the general theory of gravita-
tion with a tensor potential described in section 2. Thus it fits perfectly into the
framework of the ordinary theory of relativity.
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6. THE ENERGY TENSOR

In order to set up the energy tensor, Einstein adds another auxiliary assumption to
those enumerated in Section 4, which will become particularly important in the
course of our investigation. Let us define a new four-vector  as follows:

(37)

The new auxiliary assumption of Einstein is:

(38)

Einstein calls this auxiliary assumption the law of energy-momentum conserva-
tion. It is found as eq. (10) on p. 10 in his treatise, and there takes the form

 |

Noting that as a consequence of our eqs. (32) and (33):

and that according to (31) and (33)

one sees immediately that this equation is identical with (38).
Assuming (38) to be correct, one easily finds that the components of a tensor

defined as follows:

(39)
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satisfy the differential equations

(40)

for the proof one uses eqs. (38), (1), (2), (5), (6). So the tensor (39) is the energy ten-
sor, the eqs. (40) are the energy-momentum equations. A bit of calculation shows that
the eqs. (40) are identical with the eqs. (19) on p. 17 of Einstein:

In a gravitation-free space, where  the compo-
nents of the energy tensor take on the following values:

Thus, according to eqs. (16), the tensor  introduced on p. 17 differs from the
energy tensor  in gravitation free space only by the factor 

By decomposing the components of the energy tensor into two terms in the same
way as 

where

and

or

one notes directly that (16) and (37) imply the theorem:

(41)

The auxiliary assumptions (16) and (38) of Einstein’s theory imply that that part
of the Hamiltonian function  which does not contain the field strength of gravity
becomes identical to the sum of the diagonal terms of the part of the energy tensor
that is devoid of gravitational field strength. 
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7. THEOREM OF THE RELATIVITY OF THE GRAVITATIONAL POTENTIAL

The assumptions of Einstein’s theory are perhaps in part of rather secondary impor-
tance, but they are all made according to one principle, namely that the resulting
equations admit other linear transformations in addition to the Lorentz transforma-
tions. I believe one may characterize the two propositions:

1. that the gravitational potential is a four-dimensional tensor,

2. that the general equations of the aether dynamics admit other linear transforma-
tions in addition to those of Lorentz,

as the two essential or main assumptions of Einstein’s theory, compared to which the
other assumptions play a subsidiary role as auxiliary assumptions.

To grasp the true nature of the second proposition, which Einstein regards as a
generalization of the principle of relativity, it will be necessary to go into it rather
precisely, although in doing so repetition of several calculations of Messrs.
A. Einstein and M. Grossmann will be unavoidable.

Let us imagine a material system located in empty space, far distant from all other
matter, that is at a place where the gravitational potential has the scalar value  and
that we have complete knowledge of the processes and their laws in this system. Fur-
ther, we imagine this same material system transported into the vicinity of a very
large body, the Earth for example, where the gravitational potential is no longer equal
to  but instead is represented by a tensor. Because the gravitational potential
enters into the function  and thereby also into the equations of the aether dynamics,
presumably all processes in the material system are influenced by the mere presence
of a gravitational potential that differs from  Now the question is, what is the
nature of this influence of the gravitational potential. This question is one that I, too,
have already asked in my theory of the scalar gravitational potential, and I have given
an answer for the case of that theory (loc. cit. III, p. 61ff). 

At the second location the field strength of gravitation shall also be so small that
the changes of the gravitational potential do not reach any appreciable values at the
boundaries of a region containing the material system and extending infinitely far in
comparison with that system; that is, the gravitational potential may be considered
constant on the boundary. Let us denote by  this constant value of the gravita-
tional potential at infinite distance from the material system being considered. By the
following equations we will then define 16 transformation coefficients  which
together form a four dimensional and in general asymmetric | matrix 

(42)

Since these are only 10 equations, 6 of the coefficients  can of course be chosen
arbitrarily. I will denote the inverse matrix of the matrix  by  so the ele-
ments  are defined as follows:

[169]

1,–

1,–
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1.–

gμν
1( )

aμν,
[170] aμν aνμ≠( ):
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(43)

Now I introduce in place of the components of the gravitational potential  in
the interior and in the closer vicinity of said material system the following linear
functions of the  which I will call 

(44)

The ten quantities  taken together again form a four-dimensional tensor, which
originated from the tensor  by deformation and rotation, as it were; at infinity,
where  reaches   becomes, by formulas (42) and (43), the scalar

 Further I calculate  the inverse tensor to  defined by:

It is easily seen that the  can be represented as linear functions of the compo-
nents  of the inverse tensor to 

(45)

Using formulas (43) one can easily verify the equations of definition of the 
Conversely, if one wants to calculate the  from the  and the  from the

 one has:

(46)

In place of the rectangular coordinate system  we introduce further
an oblique-angled one  which moreover has different units of
lengths on the different coordinate axes, by making the following substitutions:

(47)

We then have:
(48)

Further we denote by  the determinant of the  as in eq. (21) above, simi-
larly by  and  the determinants of the and the  Then it follows directly
from (42) and (46) that:
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We further define:

(50)

and by analogy to (30):

(51)

By a simple calculation it can then be shown that:

(52)

If we regard  as a function of the transformed quantities  and  then
(51) implies:

(53)

Next we introduce a new velocity vector  obtained from  by the following
transformation equations:

(54)

or:
(55)

where  is to denote the following quantity:

(56)

By squaring and adding the eqs. (55) one finds, taking note of (42):

(57)
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Let us next define:

(58)

| (59)

then we have:

(60)

and from (52):

(61)

Now we define, by analogy to (37):

(62)

then a simple calculation shows that:

(63)

After these preliminaries we now quickly come to the conclusion. From the defi-
nition (53) of the  it follows that:

Substituting according to (2), (6), (14):

by virtue of (46) and (61) results in:
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From this equation a small calculation according to (38) gives:

(65)

We have now obtained each and every equation of Einstein’s theory of gravitation in
terms of the transformed quantities; and it turned out that in terms of the latter they
have exactly the same form as the original equations in the non-transformed quanti-
ties. Considering that the transformed gravitational potential  has the scalar
value  at infinity, whereas the non-transformed  becomes  at infinity,
we see that the transformation property just proved signifies the same as the follow-
ing theorem:

The Theorem of the Relativity of the Gravitational Potential. If two empty spaces
differ only in that the gravitational potential in one of them has the scalar value 
but in the other an arbitrary tensor value  then all physical processes in the two
spaces proceed in exactly the same fashion, provided that space and time in the first
space is specified by means of an ordinary orthogonal system of coordinates

 whereas in the second they are specified by means of a certain oblique
system of coordinates  defined by the eqs. (42) and (48).

From this it is clearly seen that the “generalized theorem of relativity” plays
exactly the same role in Einstein’s theory as what I call the “theorem of the relativity
of the gravitational potential” (loc. cit. III, p. 61) does in my theory. However, the
transformations in Einstein’s theory are much more complicated than the extremely
simple transformation that is valid in my theory, which is represented by the formulas
on p. 63 of my treatise III. This is obvious because calculation with tensors is gener-
ally more complicated than with scalars. However, in one respect the difference of
Einstein’s relativity theorem as opposed to mine is really significant. Whereas only
the quantities that specify the state of the aether are transformed in my theory, while
the coordinates remain unchanged, in Einstein’s theory the coordinates are trans-
formed as well. Therefore the transformations of the two theorems of relativity, that
of motion and that of gravitational potential, are very similar to each other in Ein-
stein’s theory, and that is probably the reason why Einstein could initially regard his
theorem as a generalization of the principle of relativity of motion.9 From the point of
| view of a physicist the main distinction between the two theories is that by my rela-
tivity theorem the laws of nature are not affected at all by the gravitational potential,
whereas by Einstein’s relativity theorem they are affected as if the units of length and
time are changed by the presence of a gravitational potential that differs from  So,
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according to Einstein’s theory the speed of light, the frequencies of spectral lines, the
dimensions of atoms and of bodies composed of them, are supposed to change with
the gravitational potential, whereas according to my theory nothing of all this should
be observable.

8. EQUALITY OF INERTIAL AND GRAVITATIONAL MASS OF CLOSED 
SYSTEMS IN THE THEORIES OF EINSTEIN AND MIE

Einstein has shown in the report on his lecture held at the Vienna Naturforscherver-
sammlung how one can prove that the two masses of closed systems are equal.10 If
one substitutes the values (32) for  and (34) for  into the fundamental eqs. (2)
and simultaneously notes (29), these equations become:

Now take the four equations that correspond to a fixed value of  as  ranges
over the sequence of numbers  multiply each equations by  and add.
This yields, with the use of (20):

or from (39):

Similarly by multiplying the four equations one after the other by  and adding
one obtains:

9 In the introduction to the treatise Outline of a Generalized Theory of Relativity etc., Mr. Einstein
states the hypothesis “that a homogeneous gravitational field can physically be completely replaced
by a state of acceleration of the reference system.”[6] Apparently he has the mistaken notion, that this
hypothesis (the equivalence hypothesis) is the foundation of the theory developed by him. That would
indeed be a more general relativity of motion. In his Vienna lecture Mr. Einstein only demands of the
theory of gravitation that the “observable laws of nature do not depend on the absolute magnitude of
the gravitational potential” (postulate 4, this journal 14, 1250, 1913) [in this volume]. That is the rela-
tivity principle of the gravitational potential, which is what Einstein’s theory really satisfies.

10 This journal, 14, 1258, eq. (7b), 1913 [in this volume].
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So the following holds in general:

(66)

By integrating the eqs. (66) over the volume occupied by the closed system and over
a time during which the components of the gravitational as well as the inertial mass
of the system do not change, one obtains:

(67)

Here  the  component of the inertial mass, denotes the following integral:

(68)

and further  denote the components of the gravitational potential on the boundary
of the volume occupied be the closed system. As in Section 7 (p. 169), we assume
that the potential  can be regarded as constant on the entire boundary surface.

The following equations are easily derived from (67):

(69)

Let us for brevity call the component  the inertial mass  of the system:

(70)

If the system moves through space with velocity  it is easy to derive from Laue’s
theorem that

(71)

And it follows from (69) that:

(72)

The weights of two material bodies that are moving in the same gravitational field
with the same velocities are mathematically exactly proportional to their inertial
masses.

So we have the theorem to which Einstein still attaches such great importance,
once the principle of the identity of the two masses had to be dropped. But from the
procedure of the proof it is easy to recognize that this theorem has nothing to do with
the actual main assumptions of Einstein’s theory, which I mentioned on p. 714
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[p. 169 in the original]; that rather it is based mainly on the inessential assumptions
that Einstein introduced as supplements into the theory. Most of all, | to prove the the-
orem one absolutely must adopt the assumption (41):

and the assumption (19) or (30):

as correct.
The role played in the proof by these two assumptions is recognized most clearly

if they are also introduced into the theory of gravitation that I have suggested. In for-
mulating this theory I followed the principle of making no arbitrary auxiliary
assumptions if possible, but developing the consequences purely from a single main
assumption. This is the assumption that the gravitational mass is completely identical
with the rest mass. Certain quite definite reasons speak against introducing the auxil-
iary assumptions under discussion, as we shall see. Let us, however, temporarily
ignore these reasons and adopt both assumptions as correct. So we put:

In the theory of the scalar potential we then have (loc. cit. III, p. 34, eq. (105)):

A quite simple calculation yields, using the eq. (85) of my treatise III, p. 28:

But we have:

where  means the density of gravitational mass (eq. (86) loc. cit. III, p. 28) and fur-
ther (eq. (93) loc. cit. III, p. 30):

If we also split  into two terms  where:
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then it is easily seen that

But since:

it follows from this:

(73)

an equation that is the exact analogue of eq. (38) of Einstein’s theory. We can regard
(73) as the equation of motion of a particle having the inertial mass

(74)

under the influence of the gravitational force in addition to the forces that correspond
to the state variables of the aether occurring in the  The gravitational mass of a
particle is to be reckoned as:

(75)

Now I introduce the main assumption on which my theory is based:
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Following eq. (41) I put:

so that, if for simplicity we assume the body to be at rest, Laue’s theorem implies:
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That is because Laue’s theorem is separately applicable to each of the two terms
in the energy tensor  and  since in the interior of a complete stationary sys-
tem each of the two components of the energy current  and  must vanish sep-
arately.

If Einstein’s auxiliary assumptions  and 
were to be introduced into the theory of gravitation suggested by me, then also in this
theory the weights of two bodies that move with the same velocity in the same gravi-
tational field would be proportional to their inertial masses.

The theorem about the equality of the two inertial masses of closed systems is not
at all a consequence of the two main assumptions of Einstein’s theory of gravitation,
the assumption of a tensor potential and the assumption of a peculiar transformation
property of the basic equations; but it follows | from the inessential, incidental auxil-
iary assumptions of the theory.

9. INTERNAL CONTRADICTION IN EINSTEIN’S AUXILIARY ASSUMPTIONS

Because the trace  is a four-dimensional scalar, transformation
to a coordinate system, in which the closed material system under consideration is at
rest, yields:

where  denotes the velocity with which the material system moves in the original
coordinate system. Because  equals the denseness of the rest energy, that is  it
follows that:

(78)

But by assumption (41):

it follows from (78) that:
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Equation (79) is in direct contradiction with the auxiliary assumption (19). Namely, if
one writes this auxiliary assumption in the form (30) then (39) results in:
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The two auxiliary assumptions (19) and (41) of Einstein’s theory are mutually
contradictory.

It is remarkable that these two assumptions are necessary precisely for the proof
of the theorem of the equality of the two masses. It should probably not be difficult to
eliminate the internal contradiction from Einstein’s theory. However one may well
suppose that the removal of the internal contradiction will be accompanied by the
failure of the theorem of the equality of the two masses.

From the general theoretical investigations that I made concerning the nature of
matter one can discern that assumption (41) is by itself untenable, even apart from the
contradiction with assumption (19). I can say that this realization was indeed the rea-
son for me to abandon ab initio the theorem about the equality of the two masses of a
closed system; or else considerations such as those presented in Section 8 would
rather quickly have come to mind.

APPENDIX

10. NORDSTRÖM’S TWO THEORIES OF GRAVITATION

Mr. Gunnar Nordström has published two different theories of gravitation, both of
which he obtained by suitable modifications of Abraham’s equations of gravitation
(which are not in accord with the principle of relativity). The first of these was first
published by him toward the end of the year 1912.11 There the rest density of energy
is decomposed into three terms:

of which the second depends only on the elastic tensions of matter, the third only on
the field strength of gravitation, and the first on all the remaining state variables.
Mr. Nordström calls  in particular the rest density of the matter’s inertial mass and
puts:

Accordingly in this theory of Nordström’s we have:

where  as well as  and  no longer depend on the gravitational potential 
Evidently this theory is rather similar to the one suggested by me. I have:

11 This journal 13, 1126, 1912; Ann. d. Phys. 40, 856, 1913 [both in this volume].
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where  no longer depends on  so I have avoided the somewhat artificial decom-
position of  into three terms.

Nordström’s notation deviates strongly from mine, one has to put:

in order to obtain Nordström’s equations, in addition one must note that I have set the
speed of light in an ideal vacuum equal to  which Nordström calls 

Nordström’s second theory12 appeared only recently. Incidentally, this is the the-
ory about which Mr. Einstein spoke in his Vienna lecture,13 whereas in the | discus-
sion I meant the older theory, the only one published to that date. The second theory
contains the two assumptions, that  is to be split into two terms:

of which only the second depends on the field strength of gravity  and that:

The gravitational potential  shall reside only in  as in Nordström’s first the-
ory. A further assumption is made about the density of inertial mass  (loc. cit.
eqs. (1), (2), (14), (15)):

Finally (loc. cit. eq. (27)) the quantity:

shall not depend on 
However, these assumptions incorporate a grave internal contradiction. Namely,

by noting, as I proved in my treatise III on p. 30, that the energy principle can be sat-
isfied only if

12 Ann. d. Phys. 42, 533, 1913 [in this volume].
13 In his lecture On the Present State of the Problem of Gravitation, Mr. Einstein mentioned of all theo-

ries other than his own only this second theory of Nordström’s. The comments on Abraham’s theory
found in the report in this journal 14, 1250, 1913 [in this volume] did not come up in the lecture itself.
I want to mention this here in order to explain my remarks at the beginning of the discussion (this
journal 14, 1262, 1913).
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or, since Nordström’s  is independent of 

one sees that Nordström’s assumptions imply:

where  is to denote an -independent quantity. Integration results in:

We therefore have:

where the integral is to be taken over the volume of a closed system.
But according to Laue’s theorem we must have:

Accordingly the assumptions made by Mr. Nordström must somehow lead to con-
tradictions with the energy principle, which of course must not happen. I have not
further explored whether and how this error can be eliminated from Nordström’s
ansatz, and therefore I do not want to discuss this theory here any further, although I
believe that it would be quite interesting when consistently developed.

The notation is the same as in Nordström’s older papers. In some formulas  is
replaced by  for example:

and further he sets:

as well as:

Hg ω:
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11. CONCLUSION: SUMMARY

In his Vienna lecture Mr. Einstein was very articulate about the ultimate goal of his
investigations.

1. In his research an attempt is made to enlarge the theory of relativity; in particu-
lar the principle of relativity, which at first is valid only for uniform motion, is to be
extended to accelerated motion, at least to uniform acceleration. As Mr. Einstein him-
self emphasized, this amounts to demanding covariance of the laws of nature not only
with respect to linear substitutions, but also with respect to nonlinear substitutions.

2. The generalization of the principle of relativity is to be achieved by allowing
the complete replacement of the accelerated motion of a material system by a gravita-
tional field. As Mr. Einstein puts it, a physicist from his standpoint can characterize
the gravitational field as “fictitious,” because a suitable transformation of the basic
equations of physics can always make the gravitational field disappear at the location
in question, by replacing it with an equivalent state of acceleration. Conversely one
can of course equally well designate an acceleration of the system as fictitious. This
hypothesis of the equivalence of gravitational field and acceleration is of course real-
izable only if inertial and gravitational mass are identical in their nature.

Even acknowledging the extremely ingenious and painstaking workmanship that
Mr. Einstein has devoted to the achievement of the stated goal, one can nevertheless
say nothing more than that his attempt has had only a negative result. |

1. The degree of generalization of the relativity principle achieved in Einstein’s
work concerns only linear transformations, so it has nothing whatever to do with
accelerated motion. In the present analysis I have demonstrated that this “generaliza-
tion” means nothing more than that besides the relativity of motion there exists a rel-
ativity of the gravitational potential. This second relativity is valid in my theory as
well, and there it is in fact achieved by extremely simple means.

2. The equivalence hypothesis seems to me untenable already for this reason, that
there is no such thing as the identity of inertial and gravitational mass in Einstein’s
theory. Certainly, introducing several auxiliary assumptions produces the proposition
that the gravitational and inertial mass of closed systems are strictly proportional to
each other. But this proposition is by no means a consequence of the transformation
properties of the fundamental equations, as it ought to be according to the equiva-
lence hypothesis, it would be equally valid in my theory if the auxiliary assumptions
just mentioned were to be imported also into it. Further, it has turned out that these
auxiliary assumptions contain an internal contradiction, and thereby the proposition
of the equality of the two masses becomes untenable even in the modest form it even-
tually assumed.

As a positive result of the present investigation I count the demonstration that in
any theory in which gravitational mass is a four-dimensional tensor, an identity of the
tensor of inertial mass with the tensor of gravitational mass is impossible, come what
may. As far as I can see this surely establishes quite generally that a principle of the
identity of the two masses cannot be valid. Whether one can attain from this a general

[176]
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demonstration of the impossibility of Einstein’s equivalence hypothesis cannot be
said without more detailed investigation, but to me it seems quite possible. In any
event I am inclined to believe that the failure of Einstein’s attempt is to be explained
by the impossibility of success. In the discussion at Einstein’s lecture I have pointed
out that a generalization of the relativity principle as intended by Einstein will proba-
bly always lead to contradictions with the general principles of inquiry in physics
(this journal 14, 1264). Now it would be interesting if the impossibility of generaliza-
tion could be demonstrated from a different point of view by rigorous mathematics.
In this context a proposition announced by Mr. Einstein (this journal 14, 1257) seems
to me significant: according to it no system of fundamental equations can be devised
that would be covariant in their entirety for arbitrary substitutions.

EDITORIAL NOTES

[1] Dichtigkeit is translated as “denseness,” in order to respect the distinction Mie
draws between the tensor quantity Dichtigkeit and the scalar Dichte (“density”).

[2] Mie uses the term Wesensgleichheit, translated as “unity of essence,” alluding to
Einstein’s use of this term to describe the relation between inertia and gravita-
tion.

[3] In the original, Mie mistakenly refers to eq. (16) rather than eq. (17).

[4] In eq. (23), the subscript  of the first occurrence of  is missing in the origi-
nal.

[5] In the original text the summation in the second line in the following equations
runs over λ; here it has been corrected to κ.

[6] Here, Mie leaves out Einstein’s qualification that the gravitational field is infini-
tesimally extended.
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1. Gravity has long eluded theoretical investigation, and, apart from the meager
knowledge gained by experience, the main reason is that the gravitational field exhib-
its the peculiarity that the field itself is amplified when it performs external work. It is
therefore difficult to design the theory so that it does not conflict with the energy prin-
ciple. Admittedly the magnetic field of two current-carrying conductors shows the
same peculiarity. However, in that case one readily recognizes in the apparatus that
provides the current the source of energy both for the energy increase of the magnetic
field and for the energy carried off as work. For the gravitational field such an exter-
nal energy source is absent, and therefore one formerly used to assume in gravita-
tional theories that the energy of the field is negative, so that upon amplification of
the field a positive energy is released and is manifested as work gained. Every theory
of gravitation that is built upon the scheme of Maxwell

 

’

 

s equations must make the
assumption of a negative energy. But this assumption is untenable, because a field
whose energy is negative cannot be in stable equilibrium, but is always unstable.
Namely, whereas an electrostatic field, for example, exhibits that distribution of lines
of force for which the energy has the smallest possible value, a field that is similarly
constituted but with negative energy has of course precisely the largest possible value
at equilibrium. It is therefore to be expected that when the equilibrium is slightly per-
turbed, the field will continually release energy to the exterior | while simultaneously
moving further and further away from its equilibrium state. So in this way one does
not attain a satisfactory theory of gravity.

A simple, feasible way leading out of this difficulty was first indicated by M.
Abraham.

 

1

 

 This way consists of including in the state variables, upon which the

 

1 M. Abraham, 

 

Ann. d. Phys

 

. 38, 1056 (1912).
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amount of energy per cubic centimeter depends, the

 

 potential

 

 of the field, formerly
taken to be only a “mathematical construct”, rather than only the 

 

field strength 

 

of the
gravitational field, formerly considered exclusively. Now, when two gravitating
masses approach each other, there is on the one hand an increase in the energy of the
field, counted as positive exactly like that of an electric field of similar appearance,
but at the same time there is a change, a decrease to be exact, in the internal energy of
the approaching material bodies, because in them the potential of the gravitational
field becomes different. So the two gravitating masses release a part of their internal
energy as a consequence of the change in their gravitational potentials, and thus pro-
vide the source for the work gained due to the attraction as well rather than only the
increase in energy of the gravitational field. Thus, in the case of the gravitational
field, matter under the influence of a changed potential performs the same task as the
current source in the case of the magnetic field between current-carrying conductors
mentioned above.

However, it is important to note that this procedure cannot be carried through for
a field whose potential is a four vector, like that of the electromagnetic field. There-
fore M. Abraham has derived the gravitational field from a potential that is invariant
under Lorentz transformations, so it is a four dimensional scalar. This results in a the-
ory without further difficulties. From the investigations of Messrs. A. Einstein and M.
Grossmann,

 

2

 

 it follows that one can achieve the same by deriving the gravitational
field from a potential that is a four dimensional tensor. However, the theory of the
tensorial gravitational potential is significantly more complicated than the scalar one,
and since in spite of its complications it does not exhibit any advantages whatever
over the theory of a scalar potential, I prefer to stay with the scalar potential. |

Thus the potential plays a very important role in the theory of gravitation. It may
be concluded from my investigations on the theory of matter

 

3

 

 that the four potential
of the electromagnetic field, no less than the scalar potential of the gravitational field,
has to be counted among the state variables on which the energy depends. But this
dependence must be such that when the electromagnetic potential is changed in the
region where a material particle is located, the 

 

net 

 

change in energy of the particle is
either nil or an infinitely small amount of higher order. For the work due to the action
of electromagnetic forces is obtained with great accuracy as equal to the sum of the
energy change experienced by the field due to displacement of the bodies that gener-
ate the field and the energy provided by the sources of electricity used in doing this.
Therefore the energy of the material particles is to be regarded as constant, indepen-
dent of the field strength and the potential prevailing in their vicinity. So it has been
possible to develop a theory of the electromagnetic phenomena, adequate for a large
class of empirical facts, in which the four potential does not occur except as a purely
mathematical construct. It is different in the case of gravity. The total energy of the

 

2 A. Einstein und M. Grossmann, 

 

Entwurf einer verallgemeinerten Relativitätstheorie und einer Theo-
rie der Gravitation

 

. Leipzig, B. G. Teubner, 1913.
3 G. Mie, 

 

Ann. d. Phys., Abhandl

 

. I, 37, 511 (1912); II, 39, 1 (1912); III, 40, 1 (1913).
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material particles depends on the gravitational potential prevailing in their surround-
ings to such an extent that the sign of the action of the force is thereby reversed.
Accordingly it seems that in order to set up a theory of gravitation one must also
specify how the gravitational potential enters into the physics of the aether. For this
reason—in contrast to the potential-free theory of electromagnetism—countless theo-
ries of gravitation are possible, which all show the same form of the basic equations
and differ only in the way that the gravitational potential enters into the expression
for the energy. Indeed several theories of that kind have already been proposed, but
one could of course add to them any number of others. But this procedure is hardly
satisfactory because following it one can never completely avoid pulling quite arbi-
trary assumptions out of thin air. And this without knowing anything empirical about
how the gravitational potential enters into the expression for the energy! Thus the
consequences | derived from the theories so obtained will also be given little credibil-
ity. Therefore in the following I want to investigate how far one can get without arbi-
trary specializations, presupposing as correct only a few quite general principles,
which have a certain inherent probability due to their simplicity.

2. The first principle upon which I base the theory is 

 

the principle of relativity

 

. By
this I mean the proposition that all basic equations of the physics of the aether admit
the Lorentz transformation. This principle has been accepted in all newer gravita-
tional theories except that of Abraham. Why Mr. Abraham considers his special
assumptions more important than the principle of relativity is something I cannot
fathom.

3. Secondly I presuppose 

 

Hamilton’s principle

 

. The basic equations of the physics
of the aether, whatever their detailed appearance, can at any rate always be divided
into two groups, so that exactly as many state variables occur in each of the two
groups of equations as are necessary and sufficient for a complete description of the
state of the aether. So, for this description one can choose at will either the variables
of the first group of equations or equally well those of the second group. In my papers
I have differentiated between the two types of state variables as intensive and exten-
sive quantities [

 

Intensitätsgrößen

 

 and 

 

Quantitätsgrößen

 

]. The variables of the two
groups can be coordinated with each other into pairs of conjugate [

 

entsprechende

 

]
variables. Hamilton

 

’

 

s principle amounts in essence to the proposition that the state
variables of one group can be calculated from those of the other group if one knows
only a single function of them, the Hamiltonian. To calculate a desired state variable
from given variables of the other group one has to take the partial derivative of the
Hamiltonian with respect to the conjugate state variable; this partial derivative is the
desired quantity. In most cases it turns out to be advantageous to consider the inten-
sive quantities as the primary state variables. I have always denoted the Hamiltonian
function of the intensive quantities by  and have called it “the world function.”

If Hamilton’s principle is valid, the equations of motion of mechanics and the
energy principle can easily be derived from it as consequences. If one prefers not to
presuppose it, then it | is at least highly questionable whether the energy principle can
be maintained. In the gravitational theory of G. Nordström

 

4

 

 the special assumptions
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are chosen in such a way that Hamilton’s principle is not valid, so that no world func-
tion exists. It is incomprehensible why Mr. Nordström prefers his special assump-
tions over Hamilton’s extraordinarily clear and simple principle.

 

5

 

Concerning the variables that are supposed to determine the world aether, and on
which the world function  will accordingly depend, we shall assume the guiding
principle that we shall try to get by with as few variables as possible. We can safely
leave the question of whether it will prove necessary as science progresses to increase
the number of state variables undecided; probably the propositions that we can derive
from our general principles will not be significantly modified by this. At the present
state of science the following mutually independent variables of state (intensive
quantities) suffice: 1. electric field strength  2. magnetic induction 

 

 

 

3.

 

 

 

electro-
magnetic four potential  4. four vector of the field strength of gravity  5.
gravitational potential  The world function is therefore: 

The corresponding extensive quantities are: 1. electric displacement  2. mag-
netic field strength  3. electric charge and electric current  4. four vector of
excitation of the gravitational field  5. density of gravitational mass 

Hamilton’s principle leads to the following equations:

 (1)

| Here I generally use the same notation as in my earlier papers (cf. Theory of
Matter III, p. 30). Except that previously I chose the less practical notation  in
place of the letters  further instead of  I previously used  or (Physik.
Zeitschr. 15, 175 (1914))  where  resp.  means the gravitational constant

 Let us denote the gravitational mass of the particle by  that is:

(2)

where the integral is to be taken over the entire volume occupied by the particle (cf.
Theory of Matter III p. 6); then the force  acting on it in a field  is:

(3)

4. My third assumption is 

 

the principle of the relativity of the gravitational potential.

 

4 G. Nordström, 

 

Ann. d. Phys

 

. 42, 533 (1913).
5 In answer to the objection I raised (

 

Physik. Zeitschr.

 

 15, 175 (1914)), that then the energy principle
must also fail, Mr. G. Nordström has recently tried to show (

 

Physik. Zeitschr.

 

 15, 375 (1914)) that in
spite of the disagreement with Hamilton’s principle his theory does not have to conflict with the
energy principle. However, the proof of this has not yet really been established, because Mr. Nord-
ström has not actually put down the basic equations of the theory, but he has only indicated how one
might set them up. It seems to me by no means certain that one can proceed according to his indica-
tions without using Hamilton’s principle, for Mr. Herglotz, who sets up basic equations in his
Mechanics of Continuous Media (

 

Ann. d. Phys

 

. 36, 493 (1911)) of the type indicated by Mr. Nord-
ström, has certainly considered it necessary to base his investigations on Hamilton’s principle.

Φ

e; b;
ϕ f;, g γ ;,

ω. Φ e b ϕ f g γ ω, , , , , ,( ).
d;

h; ρ v;,
� χ;, h.

d
∂Φ
∂e
-------, h–

∂Φ
∂b
-------, ρ

∂Φ
∂ϕ
-------, v ∂Φ

∂f
-------– , k

∂Φ
∂g
-------, χ

∂Φ
∂γ
-------, h– ∂Φ

∂ω
-------– .= == = = = =

[256]

u w,
γ χ;, h γH

κh, γ κ
1 016 10 24– .⋅, mg,

mg h V ,d∫=

P g

P mgg  .=



 

T

 

HE

 

 P

 

RINCIPLE

 

 

 

OF

 

 

 

THE

 

 R

 

ELATIVITY

 

 

 

OF

 

 

 

THE

 

 G

 

RAVITATIONAL

 

 P

 

OTENTIAL

 

733

Introducing the potentials as independent state quantities leads to a peculiar diffi-
culty. It forces us to assume that the properties of matter and the laws of material pro-
cesses depend on the potentials that prevail at the location where these properties and
processes are observed. On the other hand no one has ever been aware of such an
influence of the potentials, and if it exists at all it must at least be quite insignificant.
Otherwise, although it may have seldom been looked for,

 

6

 

 one should think that it
would already have been noticed on other occasions. So we are confronted with the
dilemma that on the one hand the theory absolutely demands an influence of the
potentials on physical processes, and that on the other hand experience negates this
influence to such an extent that it has become second nature to regard the potentials
as purely mathematical, calculational constructs.

This dilemma can be eliminated, initially for the gravitational potential, using the
principle at hand in a way that is as simple as it is perfect. The principle declares: |

 

In two regions of different gravitational potential exactly the same processes can
run according to exactly the same laws if one only thinks of the units of measurement
as changing in a suitable way with the value of the gravitational potential.

 

I shall show that this principle can be realized even as I obtain its mathematical
formulation. We assume that the gravitational potential  has a value  that 

 

differs
from zero

 

 in an ideal vacuum, at an infinite distance from any matter.  is a universal
constant of the aether, like the speed of light, the constant of gravity etc.; a Lorentz
transformation does not change its value because  is a four dimensional scalar. I
note incidentally that by contrast the four potential of the electromagnetic field 
must be zero in a vacuum. For, if it had a non-zero value there, this would change
upon any Lorentz transformation. One would then have universal constants that
would depend on the choice of the spacetime coordinate system, in other words the
principle of relativity would not be strictly valid. In the same way the field strengths

 and  must of course also vanish in a pure vacuum. Let us now trans-
form all quantities of state in such a way that each is multiplied by a constant factor:

(4)

The primed and unprimed quantities then differ only by the measurement units. If the
same equations are to hold in the primed quantities as in the unprimed ones, then it is
absolutely necessary that the world function  also experiences no changes through
the introduction of new measurement units other than a constant factoring out:

. (5)

 

6 Some time ago with Prof J. Herweg I have used a good echelon grating to observe the spectrum of a
mercury arc lamp, in which quite large values of the magnetic vector potential could be produced by
means of nearby electric ring magnets, without generating a magnetic field in the lamp. No trace of an
influence of the vector potential on the spectral lines was revealed.
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For then, but only then, is it true for the state variables of the other set that they are
transformed in the same way:

(6)

| If one now also puts:

(7)

and if the condition:

(8)

is satisfied, then, as one can prove easily, the basic equations of the physics of the
aether are equally as valid in the primed quantities as in the unprimed ones. If we
choose the value  then we have thereby completely reduced all physical
problems in a region of gravitational potential  to the corresponding
problems in an ideal vacuum where the gravitational potential is  that is, the pro-
cesses in the two regions differ only in the difference of the units of measurement.

This shows that the principle of relativity formulated above is valid if and only if
the world function  has the property demanded by equation (5). But equation (5) is
the condition that  is a homogeneous function of the variables.

We can state quite generally that the principle of the relativity of the gravitational
potential is identical with the demand that the world function  is a homogeneous
function of the variables:

where  denote arbitrary positive or negative, integral or fractional numbers.
I will call the degree of this homogeneous function  In the equations (4) and (5)

we then have to put:
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If we further put (taking note of 8):
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As an example of a theory in which this relativity principle is valid I mention | the
theory of gravitation developed by me on a previous occasion (Theory of Matter III,
p. 25ff). To obtain this, one has to specialize by setting:

and further:

where  signifies the gravitational constant. Because  becomes
zero at infinity in the notation chosen previously by me, one has to substitute

 everywhere in place of  in the formulae of my treatise III, in order to
adjust them to my current notation. On then obtains the equations of treatise III, if
one makes  infinite. Namely:

If we want to transform to a space having  then we have to put:

and we have:

from which the transformation equations presented in treatise III on p. 63 follow
directly.

Finally, equation (10) implies:  so the units of length and time
measurements are not changed by the transformation.

Accordingly the theory I developed previously is indeed a special case, or rather a
limiting case, of theories in which the principle of relativity of the gravitational
potential holds.

5. The only empirical fact that we know about gravitation to date is the propor-
tionality of the gravitational and inertial mass of a body. It is interesting that this fact
can also be obtained theoretically, as I will now show, by assuming the principle of
relativity of the gravitational potential to be correct. |

I focus on a material body that is a complete system in the sense of Laue’s theo-
rem.7 For the sake of generality I assume that the elementary particles of the body
execute arbitrary random motion, whereas the body as a whole is at rest. I will mark

7 M. v. Laue, Das Relativitätsprinzip, 2nd Ed. p. 208. Braunschweig 1913. In the following I use the
formulas developed in Theory of Matter III, section 27 and 28 (p. 5–11) and 43 (p. 42, 43) [in this vol-
ume].
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the time average of state variables by horizontal bars above the respective mathemat-
ical symbols, as in my earlier investigations. The principle of relativity of the gravita-
tional potential, according to which  is a homogeneous function of the state
variables (cf. p. 257) yields

or, using the relations (1):

(12)

Let the inertial mass of the body be  the gravitational mass  then we have
by equation (2) and according to the Theory of Matter III, equation (116) on p. 42:

(13)

(14)

In addition we need the following equations from the Theory of Matter III, p. 7:
equations (64) and (65), as well as p. 43: equation (117) and (118):

(15)

(16)

(17)

(18)

I have everywhere substituted  and  for the letters  and used previously,
also  in place of  finally I substituted  for  |

If one now notes equation (10):

by a simple calculation one finds from equations (12) to (18):
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(19)

In an ideal vacuum, where  we have:

(20)

To begin with, focus on the case that the elementary particles of the body are all at
rest:

Therefore, we have in a region of gravitational potential 

(21)

and in an ideal vacuum:
(22)

Thus the ratio  is a universal constant.
For a material body whose elementary particles are motionless, the law of the

proportionality of inertial and gravitational mass holds with mathematical precision.
If one wished to regard the law of the proportionality of the two masses as a kind

of axiom, which must also be satisfied with mathematical precision when the elemen-
tary particles of the body execute hidden motions, then one would have to assume, in
addition to the principle of the relativity of the gravitational potential, the validity of
the relation:

But this law certainly states only an empirical fact, and even if it is true to very high
accuracy according to the experiments of Eötvös, there is no sensible reason why one
should accord it a character other than an empirical, approximate one. Even Newton’s
laws of motion, though treated almost as axioms for hundreds of years, are only
approximate propositions according to the theory of relativity. These laws, it is true,
are valid to such accuracy that usually one cannot experimentally substantiate any
deviations from them. They approach the truth so closely only because the experi-
mentally attainable speeds of material bodies can be characterized as infinitesimal
compared | to the speed of light. It would be quite possible that the whole validity of
the law of proportionality of the two masses has a quite similar reason; namely, that
the speeds of the hidden motions of the elementary particles of a material body are in
general infinitely small compared to the speed of light. In an earlier paper I have tried
to estimate what the order of magnitude of the deviation from proportionality of the
two masses, due to the thermal motion of the molecules, might be; and I found that
even at temperatures of several thousands of degrees Celsius the deviation lies below
an experimentally detectable magnitude (Theory of Matter III, p. 50). But there are

ν 3α+( ) m⋅ ν 4α+( ) γ χ⋅ Vd⋅∫⋅– ω∞ mg.⋅–=
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γ ∂ω
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-------– 0.= =
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ν 3α+( ) m⋅ ω∞ m⋅ g,–=

ν 3α+( ) m⋅ Ω mg.⋅–=

mg m⁄

ν 4α+ 0.=
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no cogent reasons to assume, for example, that more intense motion takes place in the
interior of atoms themselves. Occasionally it is strongly emphasized8 that, according
to research by L. Southerns to a fractional accuracy of  the quotient of the
two masses has the same value for radioactive uranium oxide as for lead oxide. To be
sure, this fact would be of great importance if it were known that in the interior of
radioactive atoms intense motions already prevail, such as those exhibited by the
emitted α- and β-particles upon explosion. If this were the case, one could not be sat-
isfied with the proposition of proportionality of the two masses as just derived, one
would have to demand that it should also be valid for material bodies with intense
hidden motion, for example, in such a way that  But to me the hypothe-
sis of violent inner motions in radioactive atoms seems unlikely, especially because it
would be hard to understand why it did not produce any radiation of electromagnetic
waves. At any rate what is simpler is the notion that also in the interior of radioactive
atoms, generally only motions which are to be called very slow compared to the
speed of light prevail, but that in this process an atom occasionally reaches an unsta-
ble equilibrium state and explodes, and that now its fragments gain the enormous
speeds with which they fly apart. But then the result of L. Southerns is explained
without further ado.

If one assumes that the hidden motions of the molecules, the atoms, and the ele-
mentary particles in the interior of the atoms that constitute a material body | are
very slow compared to the speed of light, then the principle of the relativity of the
gravitational potential yields the law of proportionality of the two masses as an
approximate theorem of great accuracy.

Should the presence of very rapid motions in the interior of atoms really be
proved at some time, then there would still be time to examine the theory, as to
whether and how it correctly reproduces the action of gravity on these atoms.

Equation (22) allows us to make certain statements about the value of the univer-
sal constant  Namely, the ratio

can be specified once one has fixed some system of units (cf. Theory of Matter III, p.
42, where instead of κ I used the letter γ). Choosing the erg as unit of energy and
mass, the centimeter as unit of length,  seconds as unit of time, so that the
speed of light equals 1, and choosing further the units of the gravitational field such
that  in an ideal vacuum, results in:

and therefore

(23)

8 M. Abraham, Jahrb. d. Radioakt. u. Elektronik 11, 470 (1915).

5 10 6– ,⋅
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Unless  happens to be very small, Ω is very large, and the only relevant
fact is that it is very large also compared to all changes that the gravitational potential
may experience due to the vicinity of large gravitational masses.

For example, let  be the gravitational potential at the surface of the Earth, and
let  be the gravitational mass and R the radius of the Earth, then:

Substitution for these values in our chosen units

yields:

| So if  is of the order of magnitude 1, then  is of the order
 Likewise the potential  on the surface of the Sun yields

that is, about  if  is of the order of magnitude 1.
Let the potential on the surface of any celestial object be  then the quantity 

with which the transformation from (4) to (9) is to be executed, is:

(24)

so  deviates from 1 only by a very small amount. The change of the distances and
times under the influence of the changed potential occurs in the ratio:

(25)

and the change of the density of energy or of the inertial mass in the ratio:

(26)

The total inertial mass of a material body changes by the ratio:

(27)

and its total gravitational mass by the ratio:
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(28)

Thus all units change by very small amounts “of the first order” under the influ-
ence of the gravitational potential.

6. The theorem of the proportionality of the two masses can be derived in a more
intuitive way from the principle of the relativity of the gravitational potential as fol-
lows.

Let a material body be located in a region where a gravitational potential 
exists. By changing masses of material at large distances from the body let the poten-
tial be brought to  and let this change of potential occur uniformly during a
time  so that during Δt the constant gravitational state 
exists at the place considered. I will denote by  a surface that surrounds the body,
but at a sufficient distance from its molecules that | on it the superposition principle is
valid for the fields, and so that at points on  the value of the gravitational field
caused by the body is constant in time, uninfluenced by the hidden motions of its ele-
mentary particles. The surface integral of the field excitation  over the surface 
then yields the gravitational mass of the body 

Further, during the time  and through every element  of the surface there flows
a constant energy current of density  (Theory of Matter III, p. 29). Before and
after this time,  on the surface, and therefore also no energy enters or leaves.
Thus, as  is changed to  the body gains the net amount of energy:

(29)

This is the energy change that was discussed in detail in the introduction as the
cause for the attractive effect of gravity in spite of the positive field energy. If we put

 and  we can also write equation (29) as fol-
lows:

or

(30)

If the principle of the relativity of the gravitational potential is valid, then  can
be calculated in yet another way. If we denote the density of energy in an arbitrary
element of volume  of the body by , then:

aν 3α 1–+ 1 1 1
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ω∞
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(31)

where  is a homogeneous function of degree  of the variables given on p. 257. If
the body were now to experience no change due to the change of the gravitational
potential other than the change in measurement units, then during the time Δt one
would have to regard the expression (31) as a function of a single variable  and the
change in  would be: 

(32)

| If the elementary particles of the body remain at rest in their equilibrium posi-
tions, then the supposition just made is certainly satisfied. For the occurrence of the
quantity  during the time  does not cause any motion, so the elementary particles
are still at rest in the equilibrium positions after  has passed, and the body has
experienced no other changes than those subject to the changes of a. In this case we
can put  and the combination of equation (31) with (32) yields:

Thus for a body with motionless elementary particles we have found equation (21) in
a second way.

However, if the elementary particles execute hidden motions, then it is to be
expected that the occurrence of the quantity  during the time  influences these
motions, particularly because the superposition principle is not valid in the interior of
matter, and because therefore all state variables are influenced by the value of 
After the time  has passed, the average value of the hidden motion of the elemen-
tary particles will therefore have become different than before  due to the action of

 We can express this intuitively by saying that a change in the gravitational poten-
tial is to be associated with a small adiabatic temperature change of the body. That is,
not only is there a change in the temperature as such, which is a measure of the ran-
dom motion of the molecules, but there is also a change in that quantity which we
may characterize as the temperature of motion of the elementary particles inside the
atom. The temperature inside the atom does not have to be associated with the body
temperature proper. I will denote by  the small amount of energy that one would
have to transfer to the body in order to reduce the temperature of the hidden motion
of its elementary particles to the values they had before  so that the net change in
the body’s energy would be  This is the latent or bound energy gained by the

m W V ,d⋅∫=

W ν

a,
m

Δam
∂W
∂a
--------∫ dV W∫ ∂ Vd

∂a
----------⋅ ⋅ ⋅⎝ ⎠

⎛ ⎞= Δa⋅

Δam ν 3α+( ) W∫ dV
Δa
a

-------⋅ ⋅ ⋅=

Δam ν 3α+( ) m
Δa
a

-------  .⋅ ⋅=

[266]

γ Δt
Δt

Δm Δam,=

ω∞ mg⋅– ν 3α+( ) m.⋅=

γ Δt

γ .
Δt

Δt
γ .

ΔQ

Δt ,
Δam.



742 GUSTAV MIE

body during an “isothermal” change of  Its energy change upon an “adiabatic”
change is therefore:

(33)

Now I denote by  the increase of the latent energy of the body during an
“isothermal” change of the gravitational potential in comparison with the increase in
the potential, then we have:

(34)

| If we substitute the expressions of equation (30), (32), (34) into equation (33) then
the result is:

(35)

The statement on proportionality of the two masses is approximately valid if the
“latent” energy  is vanishingly small in comparison with the “free” energy 

Comparing equation (19), found from Laue’s theorem, with (35) we find:

(36)

RESULTS AND PROSPECTS

1. The principle of the relativity of the gravitational potential is established as the
simplest expression of the fact that the gravitational potential in general has no per-
ceptible influence on material processes, although it occurs as an independent quan-
tity of state in the basic equations of the physics of the aether. We succeeded in
formulating the principle in a quite general fashion, without making special assump-
tions about the form in which the gravitational potential enters into the basic equa-
tions of aether physics.

2. From the principle of the relativity of the gravitational potential one can derive
theoretically the well-known empirical law of the proportionality of the gravitational
and inertial mass of all material bodies. It is true that this law may have only approx-
imate validity for bodies whose elementary particles execute random hidden motions.
But if the speeds of the hidden motions are very small compared to the speed of light,
the accuracy to which the law is valid can be so great that one cannot find deviations
experimentally. If one wanted the law to be valid in general and with mathematical
precision, one would have to supplement the principle of the relativity of the gravita-
tional potential with an extra assumption.

3. The additional term that implies deviation from the mathematically exact valid-
ity of the proportionality of the two masses can be given an interesting interpretation.
If the gravitational potential experiences a change at the place where a material body

ω.
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is located, maybe due to displacement of a distant large and heavy mass, then simul-
taneously with this there is a change not only of the body’s energy | content, but also
in general of its temperature of the molecular random motion as well as of the inter-
atomic motion. If the body should change strictly isothermally with the gravitational
potential, so that the temperatures of the hidden motions of its elementary particles
all remain constant, then the change of its free energy due to the potential change
must be supplemented by a a change of its latent energy, for example by radiation.
This supplied or removed latent energy provides the measure of our additional term.
If it is very small compared to the change of the free energy, the deviation from pro-
portionality of the two masses is small; if this latent energy vanishes, the theorem of
the proportionality is mathematically exact.

4. As the next goal of the theory of matter, the task of setting up a principle for the
electromagnetic four potential that is analogous to the principle of the relativity of the
gravitational potential, and thereby providing an explanation for the lack of percepti-
ble influence of the four potential on material processes presents itself.

[268]
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INTRODUCTION: THE MATHEMATICAL FORM OF MIE’S 
ELECTRODYNAMIC CONCEPTION OF THE WORLD

Whereas the electron theory developed by H. A. Lorentz requires certain hypotheses
about the structure of the electron (e.g. the hypothesis regarding the rigidity in the
usual sense, or in the context of the theory of relativity), Gustav Mie

 

1

 

 set himself the
task of trying to modify Maxwell’s equations in such a way that the existence of elec-
trons (“nodes” of the field) and, even more generally, the existence of material atoms
and molecules follows necessarily from the new equations. The fact that without the
addition of new forces, stable accumulations of charge, as represented by electrons,
are incompatible with the usual differential equations of the magnetic field is closely
linked to the linearity of these equations. Therefore, it was first of all necessary to
relinquish linearity. Mie carried out this idea in the most general and elegant manner
which can be imagined in the framework of today’s physics borne from Lagrange’s
analytical mechanics. To illustrate the type of generalization of the fundamental
equations, it is perhaps | best to start with the equation of motion of a system of
masses with one degree of freedom  If

represents the Lagrangian (difference between kinetic and potential energy), then it is
well known that from the variation of the Hamiltonian integral
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(1)

one obtains the equations of motion in the form

(2)

The transition from the usual equations of the electromagnetic field to Mie’s funda-
mental equations can then be considered to be parallel to the transition from a quasi-

elastic system where  has the form  to a system where  is a com-

pletely arbitrary function of  and 

 

q

 

. In this process, the form of the differential
equation (2) remains completely preserved. Indeed, in the final analysis, Mie’s theory
aims to show that the field equations of electron theory are variational derivatives of a
variational principle completely analogous to (1), except that there are 4 functions of
4 variables, where  is a certain quadratic form of the field quantities, and that then,
as in the mechanical example shown above, the form of the fundamental equations
remains completely preserved if  becomes an arbitrary function of the field quanti-
ties. Therefore, one can say that the equations of Mie achieve the same for electrody-
namics as the Lagrange equations of the second kind achieve for the mechanics of
systems of point particles [

 

Punktsysteme

 

]. They offer a formal scheme which,
through an appropriate choice of the function  can be adjusted to the specific prop-
erties of the system. As the aim of the mechanistic explanation of nature in the past
was to derive a Lagrangian function  for the interaction of atoms and to derive all
physical and chemical properties of matter, so Mie now sets for himself the task of
selecting his “world-function”  in such a way that on the basis of its differential
equations the existence of the electron and the atoms, as well as the totality of their
interactions follows. I would like to view this requirement of Mie as the mathematical
content of that | program which considers the aim of physics to be the construction of
an “electromagnetic worldview.”

In the following, I would like to make a contribution to the clarification of the
mathematical structure of Mie’s fundamental equations. The variational problem of
Mie is still not the most general one can devise for the four-dimensional continuum,
and one is well advised to compare it with the most general, in order to determine
what are the properties which have to be attributed to the four-dimensional contin-
uum (the aether), in order to obtain specifically Mie’s laws. It will turn out that these
are 

 

not

 

 the properties of an 

 

elastic

 

 body. The four-dimensional theory of elasticity
compatible with the principle of relativity has been exhaustively treated by Herglotz

 

2

 

and is obtained through a different specialization of our variational principle. Mie’s
four-dimensional continuum corresponds rather to the three-dimensional aether of
MacCullagh,
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 who, from the assumption that the vortices of the aether and not its
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deformations store energy, obtains equations identical with Maxwell’s equations for
stationary electrodynamic processes. The analogy of Mie’s theory with Lagrangian
mechanics is manifested most clearly by considering the law of conservation of
energy. It is known that for a variational problem of the form (1), there always exists
an integral of the differential equations (2), expressing conservation of energy, if the
independent variable  does not appear explicitly in  (

 

t

 

 is then a “cyclic coordi-
nate”). Because then one has

and if one adds to this equation (2) multiplied by  one obtains

(3)

If one introduces as “energy” the Legendre transform of 

then one can write equation (3) in the form

(3') |

which represents the law of conservation of energy.
In Mie’s electrodynamics there also exists a momentum-energy conservation law

which plays a significant role in all the new dynamical theories based on the principle
of relativity. The law consists of 4 equations, the first three express the conservation
of momentum, the last the conservation of energy. Mie obtains the last of these equa-
tions by calculation and the others on the basis of symmetry requirements demanded
by the principle of relativity. I will show in the following that these 4 equations are
precise generalizations of equation (3) for the case of 4 variables. The requirement
for them to be valid is, as before, that the function  does not contain the 4 indepen-
dent variables explicitly, and the proof follows along the same lines of reasoning we
used when deriving equation (3). In this process, the structure of Mie’s formulae for
the energy quantities will emerge which, at first sight, is not readily apparent.
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1. THE VARIATIONAL PRINCIPLE OF STATICS FOR
A FOUR-DIMENSIONAL CONTINUUM

One will be able to describe the deformation of a four-dimensional continuum by giv-
ing the projections  of the deformations of its points with respect to 4
orthogonal axes as functions of the coordinates 

(4)

We further use the abbreviation

(5)

All properties of the continuum should now be determined through the function  of
the displacements  and their derivatives  and the resulting deformations
should be determined by the requirement that variations of the four-dimensional inte-
gral over the four-dimensional space

(6)

vanish. |
If we now use the abbreviation

 

4

 

(7)

then this requirement yields the 4 differential equations:

(8)

which express the requirement for equilibrium and correspond to equation (2) in the
introduction.

2. FIRST SPECIAL CASE OF THE PRINCIPLE:
HERGLOTZ’ THEORY OF ELASTICITY

In the theory of relativity,  represent the space coordinates and  is the
time multiplied by the imaginary unit  and the speed of light. The statics of the four-
dimensional continuum is then nothing other than the dynamics of the three-dimen-
sional one.

Therefore, the theory of elasticity, which has been adapted by Herglotz to satisfy
the principle of relativity, must appear as a special case of our principle (6).

 

4 In the following all indices shall run through the values 1, 2, 3, 4, and all sums should extend over
these values.
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I will briefly outline how the quantities appearing in this process are to be inter-
preted and how the function  must be specified. The independent variables

 have to be considered as parameters  which at a given instant fix
the position of the points of the body;  is set to  where  is a “time-like”
parameter which otherwise is totally arbitrary.  are the coordinates 
of the points of the body at an arbitrary time  Then, the quantities 
for  are obviously determined by the strain in the body, whereas

 are the velocity components. The function  is now
specified through the requirement that the integral (6) neither changes its value under
a Lorentz transformation of the variables  (rotation of the four-dimen-
sional space) nor under a change of the time | parameter . Consequently,  is not a
function of all 16 quantities  but depends only on a combination of 6 of them,
the “rest-deformations”  These quantities, which I intro-
duced first,5 are a measure of the deformation of the volume element as measured by
a co-moving observer. Most remarkable in this formulation is the absence of the
kinetic energy. Instead, the velocities appear in the rest-deformations  Herglotz
extensively examined the laws of motion that arise from the interpretation of these
quantities, equation (8), and showed that the ordinary mechanics of elastic bodies is a
limiting case of this theory.

3. SECOND SPECIAL CASE OF THE PRINCIPLE:
MIE’S ELECTRODYNAMICS

The theory of Mie is quite a different special case of the variational principle (6).
Before we interpret the electrodynamic significance of the quantities, we want to
present the characteristic specification of the function  which shapes the entire
theory:  shall only be a function of the differences

(9)

This formulation applied to three-dimensional space leads exactly to the theory of
MacCullagh mentioned in the introduction. Therefore, one can interpret the formulae
here in the same manner as is done there. The quantities (9) are namely the compo-
nents of the infinitesimal rotation of the volume elements of the continuum, the “rota-
tion components.” In the theory of MacCullagh, the energy of the aether depends only
on these rotations, but not on the deformation of the aether. It is clear that we can con-
ceptualize Mie’s theory in the same way if instead of aether we say “four-dimensional
world.” We leave it open whether a mechanistic interpretation in the usual sense of this
formulation is possible and we restrict ourself to the assertion that it contains the entire
electrodynamics of Mie (and, as a special case, also the classical electron theory).

5 Ann. d. Phys. (4), vol. 30, 1909, p. 1.

Φ
x1 x2 x3,, , ξ η ζ,, ,

x4 icτ, τ
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a14 a44⁄ a24 a44⁄ a34 a44⁄, , Φ

u1 u2 u3 u4, , ,
[28]τ Φ
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eαβ.
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Φ

aαβ aβα–
∂uα

∂xβ
---------

∂uβ
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---------–=
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Let us now turn to the physical interpretation and description of the quantities
appearing here. In Mie’s theory,  are | nothing but the coordinates and
the time  Furthermore, Mie writes for

(10)

These primary quantities6 characterizing the aether correspond to the components of
the four-potential in the theory of electrons.

The components of rotation (9) appear in Mie’s theory as components of the 6-
vector  where  represents the magnetic induction and  the electric field
strength according to the scheme

(11)

This can also be written as
(11')

or as

(11'')

With these symbols,  is seen to be a function of the components of the vectors
 and of the scalar 

(6')

where the fundamental assumption, that  depends only on the rotations 
is manifested. But at the same time, this also implies that the vectors  satisfy the
one quadruple of | Maxwell’s equations, namely:

(12)

6 In this presentation,  should be designated as “extensive quantities” [Quantitätsgrößen]
since they have the character of displacement components of the four-dimensional continuum. The

 to be defined momentarily, would then be introduced as “intensive quantities”
[Intensitätsgrößen]. That Mie proceeds here, as with the division of field-vectors into extensive and
intensive quantities, in exactly the opposite way has its origin in the fact that the formulation of his
expressions is closer to the physical conceptualization of electric density, displacement, field strength
etc. In addition, Mie uses a different variational principle, which arises from ours via a Legendre
transformation, and which readily suggests his choice of division of the quantities. Since Mie’s varia-
tional principle requires additional conditions which cannot be readily incorporated into the formula-
tion of the statics of the four-dimensional continuum, I have preferred the approach presented here.

x1 x2 x3 x4, , ,[29]

x y z ict., , ,
u1 u2 u3 u4, , ,

f x f y f z iϕ., , ,

f x f y f z ϕ ,, , ,

vx vy vz ,, ,

b ie–,( ), b e

aαβ aβα–( )

0 bz– by iex

bz 0 bx– iey

by– bx 0 iez

iex– i– ey iez– 0

.=

b ie–,( ) Curl f iϕ,( )=

b curl f ,= e gradϕ–
∂f
∂t
-----.–=

Φ
b e f ,, , ϕ:

Φ bx by bz  ex ey ez  f x f y f z ϕ, , ,;, , , , ,( ),

Φ aαβ aβα ,–
e b,

[30]

Div b ie–,( ) 0=
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or

(12')

since these equations follow directly from  and  respectively. The differ-
ential equations (8), however, are nothing but the second quadruple of Maxwell’s
equations. To show this we set, like Mie:[1]

(13)

Then, the 4 quantities  of the general theory become identified with the quan-
tities  and the 16 quantities  with the components of the vec-
tors  and  as illustrated in the matrix equation

(14)

With this notation the equations (8) turn into

(15)
or

(15')

From these, one recognizes that  is the electric charge density,  the convection
current (charge times velocity),  the magnetic field strength and  the electric dis-
placement. We also see that these quantities, according to equation (14), in terms of
the picture of the | statics of the four-dimensional continuum, correspond to stresses
and forces.

The equation of continuity for the electric current follows from equation (15)

(16)
or

curle +
∂b

∂t
----- 0,= divb 0;=

11′( ) 11″( )

∂Φ
∂bx
------- hx,= ∂Φ

∂ex
------- dx,–=

∂Φ
∂by
------- hy,= ∂Φ

∂ey
------- dy,–=

∂Φ
∂bz
------- hz,= ∂Φ

∂ez
------- dz,–=

∂Φ
∂ f x
-------- v– x,=         ∂Φ

∂ f y
-------- v– y,=         ∂Φ

∂ f z
-------- v– z,= ∂Φ

∂ϕ
------- ρ.=

Xα
vx vy vz iρ,–,–,–,– Xαβ

h d

Xαβ( )

0 hz– hy idx

hz 0 hx– idy

hy– hx 0 idz

idx– i– dy idz– 0

=

Div h id–,( ) v iρ,( )=

curlh ∂d

∂t
-----– v,= divd ρ.=

ρ v

h d

[31]

Div v iρ,( ) 0=
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(16')

However,  is still an arbitrary function of its 10 arguments. We see that Max-
well’s equations (12) and (15) are formally valid for any function 

However, if one wants to maintain the validity of the principle of relativity, the
choice of  has to be restricted. Obviously,  is then not allowed to depend explic-
itly on all of the 10 arguments, but only on such combinations of them as are invariant
under Lorentz transformations. Mie has shown that there exist four such invariants
which are independent of one another. In our representation we could for instance
choose the following 4 invariants:

1. The length of the four-vectors 

2. The absolute magnitude of the six-vector 

3. The scalar product of the six-vector  with its dual vector 

4. As the simultaneous invariant of the four-vector and of the six-vector one can take
the square of the length of the four-vector obtained from the multiplication of the
two original vectors:

 can still be chosen as an arbitrary function of these 4 | arguments.
The aim of physical research then, as suggested by the theory of Mie, is to

account, through an appropriate choice of the function  for all the elec-
tromagnetic properties7 of electrons and atoms. 

In this, we have exactly the continuation of Lagrange’s magnificent program.
The classical theory of electrons is formally a special case of Mie’s theory, but not

in the strict sense. Indeed one obtains its field equations by simply setting:

(17)

where  and  are considered to be given functions of space and time which
describe the motion of the electrons.

But then  is no longer a function of only the 4 invariants  but in addi-
tion depends explicitly on  which however, is excluded in Mie’s theory on

7 We are excluding gravitation here.

divv
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∂t
------+ 0.=

Φ
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principle. In Mie’s theory, the forces that hold electrons and atoms together should
arise naturally from the formulation of  whereas in the classical theory of elec-
trons the forces have to be specifically added.

4. THE MOMENTUM-ENERGY LAW FOR THE GENERAL CASE
OF THE FOUR-DIMENSIONAL CONTINUUM

The assumption of Mie just emphasized, that the function  is independent of
 is also the real mathematical reason for the validity of the momentum-

energy-law.
In order to show that, we first consider, as in section 1, a general four-dimensional

continuum whose equilibrium is determined by equation (8). We assert that for these
differential equations, a law, analogous to the energy law  of Lagrangian
mechanics, is always valid as soon as one of the 4 coordinates  does not appear
explicitly in 

Then one obtains by differentiation of  with respect to 

and if one now adds equations (8) multiplied by the quantities  to the above
equation one obtains: |

(18)

This is the formula corresponding to the energy conservation law in mechanics. If 
is independent of all 4 coordinates  then (18) is valid for  These 4
equations are to be designated the momentum-energy theorem. They can also be
summarized by the symbolic equation

(18')

if the 16 components  of the matrix  are defined as

(19)

where

In the matrix calculus, (19) can be written as:

(19')

Φ,

Φ
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∂
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where  is the transpose of the matrix 8

5. SPECIAL FORM OF THE MOMENTUM-ENERGY EQUATION
FOR THE CASE OF MIE’S ELECTRODYNAMICS.

The equations described by Mie as the momentum-energy equations are essentially
nothing but the general equations (18) and  respectively. A minor mathematical
transformation leads to the formulae of Mie. In order to see why the transformation is
necessary, it is best to consider the stress-energy tensor in the succinct symbolic form

 Keeping in mind the electrodynamic significance of the quantities  and
 (equations (11) and (14)), we see that although the quantities  can be

expressed directly through the components of the field vectors, the  cannot;
rather, only the combinations  whose matrix is to be denoted by  have
a physical meaning. Therefore, we will have to transform equation  in such a
manner that it contains the difference-matrix  |

Naturally, we may not simply add  to  because then  would cease to
be valid. Nevertheless, one can try to define a matrix  in such a way that the diver-
gence equations  remains valid for the matrix

(20)

If we denote the added matrix  by  so that  then we also
require that

(21)

We now show that (21) is satisfied by the matrix 

(22)

provided that the matrix  is skew-symmetric:

(23)

Then, because of (8), we have

8 The product of two matrices is that matrix whose element with the subscripts  arises from multi-
plying the row  by the column 

a aβα( )= a aαβ( ).=

α β,
α β .
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and by using (23) again

i.e. equation (21) is satisfied.
As a glance at the scheme (14) shows, the condition (23) is met in Mie’s theory

precisely because of the requirement that  is only a function of the differences
 Hence, one can write the energy-momentum equation in the form

(24)

where  is defined by (20) and (22).
The mathematical structure of the law is especially transparent in this form. |
If we introduce the electromagnetic notation, then the matrix equation (20)

becomes

(20')

or carrying out the multiplication:

(20'')

This is precisely the stress-energy matrix presented by Mie.
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Mie then showed that this matrix is symmetric provided  depends only on the 4
invariants  This proof, which is carried out by simple calculation, cannot
be significantly simplified by our method of presentation. 

It is perhaps not superfluous to emphasize that the energy-momentum equation of
the classical electron theory does not arise as a special case by using  in  as
formulated in (17), because then  is not independent of  since  and 
depend on position and time and thus, our line of proof becomes invalid. One can
also easily see, by substituting in (24) for  as formulated in (17), that the result is at
variance with the energy-momentum law of the classical electron theory. However, if
one adds to (24) the terms that arise by differentiating (17) with respect to 
which arise because of their dependence on  and  and which cannot be written in
the form of a four-dimensional | divergence, then one obtains the energy-momentum
law of the electron theory in its usual form. With respect to the corresponding ques-
tion in the electrodynamic theory of moving material bodies the same is to be said.
None of the available formulations for the stress-energy-matrix, neither Minkowski’s
unsymmetric one, nor Abraham and Laue’s symmetric one, fall directly under Mie’s
scheme, yet the same method can be employed here as well.

EDITORIAL NOTE

[1] In the last line of eqs. (13),  is misprinted in the original as 

Φ
χ η κ λ., , ,

Φ 20″( )
Φ x y z t ,, , , v ρ

Φ

x y z t ,, , ,
v ρ,

[36]

∂ f x ∂bx.
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LEO CORRY

 

THE ORIGIN OF HILBERT’S AXIOMATIC METHOD

 

1

 

1. AXIOMATICS, GEOMETRY AND PHYSICS IN 
HILBERT’S EARLY LECTURES

This chapter examines how Hilbert’s axiomatic approach gradually consolidated over
the last decade of the nineteenth century. It goes on to explore the way this approach
was actually manifest in its earlier implementations.

Although geometry was not Hilbert’s main area of interest before 1900, he did
teach several courses on this topic back in Königsberg and then in Göttingen. His lec-
ture notes allow an illuminating foray into the development of Hilbert’s ideas and
they cast light on how his axiomatic views developed.

 

2

 

1.1 Geometry in Königsberg

 

Hilbert taught projective geometry for the first time in 1891 (Hilbert 1891). What
already characterizes Hilbert’s presentation of geometry in 1891, and will remain true
later on, is his clearly stated conception of this science as a natural one in which, at
variance with other mathematical domains, sensorial intuition— 

 

Anschauung

 

—plays
a fundamental role that cannot be relinquished. In the introduction to the course, Hil-
bert formulated it in the following words:

 

Geometry is the science that deals with the properties of space. It differs essentially from
pure mathematical domains such as the theory of numbers, algebra, or the theory of func-
tions. The results of the latter are obtained through pure thinking... The situation is com-
pletely different in the case of geometry. I can never penetrate the properties of space by
pure reflection, much as I can never recognize the basic laws of mechanics, the law of
gravitation or any other physical law in this way. Space is not a product of my reflections.
Rather, it is given to me through the senses. I thus need my senses in order to fathom its
properties. I need intuition and experiment, just as I need them in order to figure out
physical laws, where also matter is added as given through the senses.

 

3

 

1 This chapter is based on extracts from (Corry 2004), in particular on chapters 2, 3, and 5.
2 An exhaustive analysis of the origins of 

 

Grundlagen der Geometrie

 

 based on these lecture notes and
other relevant documents was first published in (Toepell 1986). Here we draw directly from this
source.

3 The German original is quoted in (Toepell 1986, 21). Similar testimonies can be found in many other
manuscripts of Hilbert’s lectures. Cf., e.g., (Toepell 1986, 58). 
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The most basic propositions related to this intuition concern the properties of inci-
dence, and in order to express them conveniently it is necessary to introduce “ideal
elements.” Hilbert stressed that these are to be used here only as a shorthand with no
metaphysical connotations.

In the closing passage of his lecture, Hilbert briefly discussed the connections
between analytic and projective geometry. While the theorems and proofs of the
former are more general than those of the latter, he said, the methods of the latter are
much purer, self-contained, and necessary.

 

4

 

 By combining synthetic and axiomatic
approaches, Hilbert hinted, it should be possible, perhaps, to establish a clear connec-
tion between these two branches of the discipline. 

In September of that year, Hilbert attended the 

 

Deutsche Mathematiker-Vereini-
gung 

 

meeting in Halle, where Hermann Wiener (1857–1939) lectured on the founda-
tions of geometry.

 

5

 

 The lecture could not fail to attract Hilbert’s attention given his
current teaching interests. Blumenthal reported in 1935 that Hilbert came out greatly
excited by what he had just heard, and made his famous declaration that it must be
possible to replace “point, line, and plane” with “table, chair, and beer mug” without
thereby changing the validity of the theorems of geometry (Blumenthal 1935, 402–
403). Seen from the point of view of later developments and what came to be consid-
ered the innovative character of 

 

Grundlagen der Geometrie,

 

 this may have been
indeed a reason for Hilbert’s enthusiasm following the lecture. If we also recall the
main points of interest in his 1891 lectures, however, we can assume that Wiener’s
claim about the possibility of proving central theorems of projective geometry without
continuity considerations exerted no lesser impact, and perhaps even a greater one, on
Hilbert at the time. Moreover, the idea of changing names of the central concepts
while leaving the deductive structure intact was an idea that Hilbert already knew, if
not from other, earlier mathematical sources, then at least from his attentive reading of
the relevant passages in Dedekind’s 

 

Was sind und was sollen die Zahlen?

 

,

 

6

 

 where he
may not have failed to see the introductory remarks on the role of continuity in geom-
etry. If Hilbert’s famous declaration was actually pronounced for the first time after
this lecture, as Blumenthal reported, one can then perhaps conclude that Wiener’s
ideas were more than just a revelation for Hilbert, but acted as a catalyst binding
together several threads that may have already been present in his mind for a while.

Roughly at the time when Hilbert’s research efforts started to focus on the theory
of algebraic number fields, from 1893 on, his interest regarding the foundations of
geometry also became more intensive, at least at the level of teaching. In preparing a
course on non-Euclidean geometry to be taught that year, Hilbert was already adopt-
ing a more axiomatic perspective. The original manuscript of the course clearly
reveals that Hilbert had decided to follow more closely the model put forward by
Pasch. As for the latter, using the axiomatic approach was a direct expression of a nat-

 

4 Cf. (Toepell 1986, 37).
5 He may have also attended Wiener’s second lecture in 1893. Cf. (Rowe 1999, 556).
6 As we know from a letter to Paul du Bois-Reymond of March-April, 1888. Cf. (Dugac 1976, 203). 
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uralistic approach to geometry, rather than a formalistic one: the axioms of geome-
try—Hilbert wrote—express observations of facts of experience, which are so simple
that they need no additional confirmation by physicists in the laboratory.

 

7

 

 From his
correspondence with Felix Klein (1849–1925),

 

8

 

 however, we learn that Hilbert soon
realized certain shortcomings in Pasch’s treatment, and in particular, certain redun-
dancies that affected it. Hilbert explicitly stipulated at this early stage that a success-
ful axiomatic analysis should aim to establish the 

 

minimal

 

 set of presuppositions
from which the whole of geometry could be deduced. Such a task had not been fully
accomplished by Pasch himself, Hilbert pointed out, since his Archimedean axiom,
could be derived from others in his system.

Hilbert’s correspondence also reveals that he kept thinking about the correct way
to implement an axiomatic analysis of geometry. In a further letter to Klein, on
15 November while criticizing Lie’s approach to the foundations of geometry, he for-
mulated additional tasks to be accomplished by such an analysis. He thus wrote:

 

It seems to me that Lie always introduces into the issue a preconceived one-sidedly ana-
lytic viewpoint and forgets completely the principal task of non-Euclidean geometry,
namely, that of constructing the various possible geometries by the successive introduc-
tion of elementary axioms, up until the final construction of the only remaining one,
Euclidean geometry.

 

9

 

The course on non-Euclidean geometry was not taught as planned in 1893, since
only one student registered for it.

 

10

 

 It did take place the following year, announced as
“Foundations of Geometry.” Hilbert had meanwhile considerably broadened his read-
ing in the field, as indicated by the list of almost forty references mentioned in the
notes. This list included most of the recent, relevant foundational works. A clear pref-
erence for works that followed an empiricist approach is evident, but also articles pre-
senting the ideas of Grassmann were included.

 

11

 

 It is not absolutely clear to what
extent Hilbert read Italian, but none of the current Italian works were included in his
list, except for a translated text of Peano (being the only one by a non-German
author).

 

12

 

 It seems quite certain, at any rate, that Hilbert was unaware of the recent
works of Fano, Veronese, and others, works that could have been of great interest for
him in the direction he was now following.

 

7 “Das Axiom entspricht einer Beobachtung, wie sich leicht durch Kugeln, Lineal und Pappdeckel zei-
gen lässt. Doch sind diese Erfahrungsthatsachen so einfach, von Jedem so oft beobachtet und daher so
bekannt, dass der Physiker sie nicht extra im Laboratorium bestätigen darf.” (Hilbert 1893–1894, 10)

8 Hilbert to Klein, 23 May 1893. Quoted in (Frei 1985, 89–90).
9 Hilbert to Klein, 15 November 1893. Quoted in (Frei 1985, 101). On 11 November, he wrote an

almost identical letter to Lindemann. Cf. (Toepell 1986, 47). 
10 Cf. (Toepell 1986, 51). 
11 The full bibliographical list appears in (Toepell 1986, 53–55). 
12 At the 1893 annual meeting of the 

 

Deutsche Mathematiker- Vereinigung 

 

in Lübeck (16–20 Septem-
ber), Frege discussed Peano’s conceptual language. If not earlier than that, Hilbert certainly heard
about Peano’s ideas at this opportunity, when he and Minkowski also presented the plans for their
expected reports on the theory of numbers. Cf. 

 

Jahresbericht der Deutschen Mathematiker-Vereini-
gung,

 

 Vol. 4 (1894–1895), p. 8. 
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Hilbert became acquainted with Hertz’s book on the foundations of mechanics,
though it was not mentioned in the list. This book seems to have provided a final, sig-
nificant catalyst for the wholehearted adoption of the axiomatic perspective for
geometry. Simultaneously the book established, in Hilbert’s view, a direct connection
between the latter and the axiomatization of physics in general. Moreover, Hilbert
adopted Hertz’s more specific, methodological ideas about what is actually involved
in axiomatizing a theory. The very fact that Hilbert came to hear about Hertz is not
surprising; he would probably have read Hertz’s book sooner or later. But that he read
it so early was undoubtedly due to Minkowski. During his Bonn years, Minkowski
felt closer to Hertz and to his work than to anyone else, and according to Hilbert, his
friend had explicitly declared that, had it not been for Hertz’s untimely death, he
would have dedicated himself exclusively to physics.

 

13

 

Just as with many other aspects of Hilbert’s early work, there is every reason to
believe that Minkowski’s enthusiasm for Hertz was transmitted to his friend. When
revising the lecture notes for his course, Hilbert added the following comment:

 

Nevertheless the origin [of geometrical knowledge] is in experience. The axioms are, as
Hertz would say, pictures or symbols in our mind, such that consequents of the images
are again images of the consequences, i.e., what we can logically deduce from the
images is itself valid in nature.

 

14

 

Hilbert defined the task to be pursued as part of the axiomatic analysis, including
the need to establish the independence of the axioms of geometry. In doing so, how-
ever, he stressed once again the objective and factual character of this science. Hilbert
wrote:

 

The problem can be formulated as follows: What are the necessary, sufficient, and mutu-
ally independent conditions that must be postulated for a system of things, in order that
any of their properties correspond to a geometrical fact and, conversely, in order that a
complete description and arrangement of all the geometrical facts be possible by means
of this system of things.

 

15

 

But already at this point it is absolutely clear that, for Hilbert, such questions were
not just abstract tasks. Rather, he was directly focused on important, open problems
of the discipline, and in particular, on the role of the axiom of continuity in the ques-
tions of coordinatization and metrization in projective geometry, as well as in the
proof of the fundamental theorems. In a passage that was eventually crossed out, Hil-
bert expressed his doubts about the prospects of actually proving Wiener’s assertion
that continuity considerations could be circumvented in projective geometry (Toepell

 

13 See (Hilbert 1932–1935, 3: 355). Unfortunately, there seems to be no independent confirmation of
Minkowski’s own statement to this effect.

14 “Dennoch der Ursprung aus der Erfahrung. Die Axiome sind, wie Herz [sic] sagen würde, Bilde[r]
oder Symbole in unserem Geiste, so dass Folgen der Bilder wieder Bilder der Folgen sind d.h. was
wir aus den Bildern logisch ableiten, stimmt wieder in der Natur.” It is worth noting that Hilbert’s
quotation of Hertz, drawn from memory, was somewhat inaccurate. I am indebted to Ulrich Majer for
calling my attention to this passage. (Hilbert 1893–1894, 10)

15 Quoted from the original in (Toepell 1986, 58–59). 
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1986, 78). Eventually, however, a main achievement of 

 

Grundlagen der Geometrie

 

would be a detailed realization of this possibility and its consequences, but Hilbert
probably decided to follow this direction only after hearing about the result of
Friedrich Schur (1856–1932) in 1898. I return to this matter in the next section.

Concerning the validity of the parallel axiom, Hilbert adopted in 1893–1894 a
thoroughly empirical approach that reminds us very much of Riemann’s 

 

Habilitati-
onsschrift

 

. Hilbert referred also directly to Gauss’s experimental measurement of the
sum of angles of the triangle described by three Hannoverian mountain peaks.

 

16

 

Although Gauss’s measurements were convincing enough for Hilbert to indicate the
correctness of Euclidean geometry as a true description of physical space, he still saw
an open possibility that future measurements would show it to be otherwise. Hilbert
also indicated that existing astronomical observations are not decisive in this respect,
and therefore the parallel axiom must be taken at least as a limiting case. In his later
lectures on physics, Hilbert would return to this example very often to illustrate the
use of axiomatics in physics. In the case of geometry, this particular axiom alone
might be susceptible to change following possible new experimental discoveries.
Thus, what makes geometry especially amenable to a full axiomatic analysis is the
very advanced stage of development it has attained, rather than any other specific,
essential trait concerning its nature. In all other respects, geometry is like any other
natural science. Hilbert thus stated:

 

Among the appearances or facts of experience manifest to us in the observation of
nature, there is a peculiar type, namely, those facts concerning the outer shape of things.
Geometry deals with these facts. ... Geometry is a science whose essentials are developed
to such a degree, that all its facts can already be logically deduced from earlier ones.
Much different is the case with the theory of electricity or with optics, in which still
many new facts are being discovered. Nevertheless, with regards to its origins, geometry
is a natural science.

 

17

 

It is the very process of axiomatization that transforms the natural science of
geometry, with its factual, empirical content, into a pure mathematical science. There
is no apparent reason why a similar process might not be applied to any other natural
science. And in fact, from very early on Hilbert made it clear that this should be done.
In the manuscript of his lectures we read that “all other sciences—above all mechan-
ics, but subsequently also optics, the theory of electricity, etc.—should be treated
according to the model set forth in geometry.”

 

18

 

16 The view that Gauss considered his measurement as related to the question of the parallel axiom has
been questioned in (Breitenberger 1984) and (Miller 1972). They have argued that this measurement
came strictly as a part of Gauss’s geodetic investigations. For replies to this argument, see (Scholz
1993, 642–644), and a more recent and comprehensive discussion in (Scholz 2004). Hilbert, at any
rate, certainly believed that this had been Gauss’s actual intention, and he repeated this opinion on
many occasions.

17 Quoted in (Toepell 1986, 58).
18 Quoted in (Toepell 1986, 94).
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By 1894, then, Hilbert’s interest in foundational issues of geometry had increased
considerably, and he had embarked more clearly in an axiomatic direction. His
acquaintance with Hertz’s ideas helped him conceive the axiomatic treatment of
geometry as part of a larger enterprise, relevant also for other physical theories. It
also offered methodological guidelines for actually implementing this analysis. How-
ever, many of the most important foundational problems remained unsettled for him,
and in this sense, even the axiomatic approach did not seem to him to be of great
help. At this stage he saw in the axiomatic method no more than an exercise in adding
or deleting basic propositions and guessing the consequences that would follow, but
certainly not a tool for achieving real new results.

 

19

 

1.2 Geometry in Göttingen

 

Hilbert moved to Göttingen in 1895 and thereafter he dedicated himself almost exclu-
sively to number theory both in his research and in his teaching. It is worth pointing
out, that some of the ideas he developed in this discipline would prove to be essential
some years later for his treatment of geometry as presented in 

 

Grundlagen der Geo-
metrie

 

. In particular, Hilbert’s work on the representation of algebraic forms as sums
of squares, which had a deep influence on the subsequent development of the theory
of real fields,

 

20

 

 also became essential for Hilbert’s own ideas on geometrical con-
structivity as manifest in 

 

Grundlagen der Geometrie

 

.
In the summer semester of 1899, Hilbert once again taught a course on the ele-

ments of Euclidean geometry. The elaboration of these lectures would soon turn into
the famous 

 

Grundlagen der Geometrie

 

. The very announcement of the course came
as a surprise to many in Göttingen, since it signified, on the face of it, a sharp depar-
ture from the two fields in which he had excelled since completing his dissertation in
1885: the theory of algebraic invariants and the theory of algebraic number fields. As
Blumenthal recalled many years later:

 

[The announcement] aroused great excitement among the students, since even the vet-
eran participants of the ‘number theoretical walks’ (

 

Zahlkörpersspaziergängen

 

) had
never noticed that Hilbert occupied himself with geometrical questions. He spoke to us
only about fields of numbers. (Blumenthal 1935, 402)

 

Also Hermann Weyl (1855–1955) repeated this view in his 1944 obituary:

 

[T]here could not have been a more complete break than the one dividing Hilbert’s last
paper on the theory of number fields from his classical book 

 

Grundlagen der Geometrie.

 

(Weyl 1944, 635)

 

As already suggested, however, the break may have been less sharp than it
appeared in retrospect to Hilbert’s two distinguished students. Not only because of the
strong connections of certain, central results of 

 

Grundlagen der Geometrie

 

 to Hil-

 

19 As expressed in a letter to Hurwitz, 6 June 1894. See (Toepell 1986, 100).
20 Cf. (Sinaceur 1984, 271–274; 1991, 199–254).
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bert’s number-theoretical works, or because of Hilbert’s earlier geometry courses in
Königsberg, but also because Hilbert became actively and intensely involved in cur-
rent discussions on the foundations of projective geometry starting in early 1898. In
fact, at that time Hilbert had attended a lecture in Göttingen given by Schoenflies who
discussed a result recently communicated by Schur to Klein, according to which Pap-
pus’s theorem could be proven starting from the axioms of congruence alone, and
therefore without relying on continuity considerations.

 

21

 

 Encouraged by this result,
and returning to questions that had been raised when he taught the topic several years
earlier, Hilbert began to elaborate on this idea in various possible alternative direc-
tions. At some point, he even thought, erroneously as it turned out, to have proved that
it would suffice to assume Desargues’s theorem in order to prove Pappus’s theorem.

 

22

 

Schur’s result provided the definitive motivation that led Hilbert to embark on an
effort to elucidate in detail the fine structure of the logical interdependence of the var-
ious fundamental theorems of projective and Euclidean geometry and, more gener-
ally, of the structure of the various kinds of geometries that can be produced under
various sets of assumptions. The axiomatic method, whose tasks and basic tools Hil-
bert had been steadily pondering, would now emerge as a powerful and effective
instrument for properly addressing these important issues.

The course of 1899 contains much of what will appear in 

 

Grundlagen der Geome-
trie

 

. It is worth pointing out here that in the opening lecture Hilbert stated once again
the main achievement he expected to obtain from an axiomatic analysis of the foun-
dations of geometry: a complete description, by means of independent statements, of
the basic facts from which all known theorems of geometry can be derived. This time
he also mentioned the precise source from which this formulation had been taken: the
introduction to Hertz’s 

 

Principles of Mechanics

 

.

 

23

 

 In Hilbert’s view, this kind of task
was not limited to geometry, and of course also applied, above all, to mechanics. Hil-
bert had taught seminars on mechanics jointly with Klein in 1897–1898. In the winter
semester 1898–1899, he also taught his first full course on a physical topic in Göttin-
gen: mechanics.

 

24

 

 In the introduction to this course, he explicitly stressed the essen-
tial affinity between geometry and the natural sciences, and also explained the role
that axiomatization should play in the mathematization of the latter. He compared the
two domains in the following terms:

 

Geometry also [like mechanics] emerges from the observation of nature, from experi-
ence. To this extent, it is an 

 

experimental science

 

. ... But its experimental foundations are

 

21 Later published as (Schur 1898). 
22 Cf. (Toepell 1986, 114–122). Hessenberg (1905) proves that, in fact, it is Pappus’s theorem that

implies Desargues’s, and not the other way round.
23 Cf. (Toepell 1986, 204).
24 According to the 

 

Nachlass 

 

David Hilbert (Niedersächsische Staats- und Universitätsbibliothek Göt-
tingen, Abteilung Handschriften und Seltene Drucke), (Cod. Ms. D. Hilbert, 520), which contains a
list of Hilbert’s lectures between 1886 and 1932 (handwritten by Hilbert himself up until 1917–1918),
among the earliest courses taught by Hilbert in Königsberg was one in hydrodynamics (summer
semester, 1887). 
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so irrefutably and so 

 

generally acknowledged

 

, they have been confirmed to such a
degree, that no further proof of them is deemed necessary. Moreover, all that is needed is
to derive these foundations from a minimal set of 

 

independent axioms

 

 and thus to con-
struct the whole edifice of geometry by 

 

purely logical means

 

. In this way [i.e., by means
of the axiomatic treatment] geometry is turned into a pure mathematical science. In
mechanics it is also the case that all physicists recognize its most 

 

basic facts

 

. But the

 

arrangement

 

 of the basic concepts is still subject to a change in perception... and there-
fore mechanics cannot yet be described today as a 

 

pure mathematical

 

 discipline, at least
to the same extent that geometry is. We must strive that it becomes one. We must ever
stretch the limits of pure mathematics wider, on behalf not only of our mathematical
interest, but rather of the interest of science in general.

 

25

 

This is perhaps the first explicit presentation of Hilbert’s program for axiomatiz-
ing natural science in general. The more definitive status of the results of geometry, as
compared to the relatively uncertain one of our knowledge of mechanics, clearly
recalls similar claims made by Hertz. The difference between geometry and other
physical sciences—mechanics in this case—was not for Hilbert one of essence, but
rather one of historical stage of development. He saw no reason in principle why an
axiomatic analysis of the kind he was then developing for geometry could not eventu-
ally be applied to mechanics with similar, useful consequences. Eventually, that is to
say, when mechanics would attain a degree of development equal to geometry, in
terms of the quantity and certainty of known results, and in terms of an appreciation
of what really are the “basic facts” on which the theory is based.

2. GRUNDLAGEN DER GEOMETRIE

When Hilbert published his 1899 

 

Festschrift

 

 (Hilbert 1899) he was actually contribut-
ing a further link to a long chain of developments in the foundations of geometry that
spanned several decades over the nineteenth century. His works on invariant theory
and number theory can be described in similar terms, each within its own field of rel-
evance. In these two fields, as in the foundations of geometry, Hilbert’s contribution
can be characterized as the “critical” phase in the development of the discipline: a
phase in which the basic assumptions and their specific roles are meticulously
inspected in order to revamp the whole structure of the theory on a logically sound

 

25 “Auch die Geometrie ist aus der Betrachtung der Natur, aus der Erfahrung hervorgegangen und inso-
fern eine 

 

Experimentalwissenschaft

 

. ... Aber diese experimentellen Grundlagen sind so unumstösslich
und so 

 

allgemein anerkannt,

 

 haben sich so überall bewährt, dass es einer weiteren experimentellen
Prüfung nicht mehr bedarf und vielmehr alles darauf ankommt diese Grundlagen auf ein geringstes
Mass 

 

unabhängiger Axiome 

 

zurückzuführen und hierauf 

 

rein logisch

 

 den ganzen Bau der Geometrie
aufzuführen. Also Geometrie ist dadurch eine rein 

 

mathematische

 

 Wiss. geworden. Auch in der
Mechanik werden die

 

 Grundthatsachen

 

 von allen Physikern zwar anerkannt. Aber die 

 

Anordnung

 

 der
Grundbegriffe ist dennoch dem Wechsel der Auffassungen unterworfen... so dass die Mechanik auch
heute noch nicht, jedenfalls nicht in dem Masse wie die Geometrie als eine 

 

rein mathematische

 

 Disci-
plin zu bezeichnen ist. Wir müssen streben, dass sie es wird. Wir müssen die Grenzen echter Math.
immer weiter ziehen nicht nur in unserem math. Interesse sondern im Interesse der Wissenschaft
überhaupt.” (Hilbert 1898–1899, 1–3)



 

T

 

HE

 

 O

 

RIGIN

 

 

 

OF

 

 H

 

ILBERT

 

’

 

S

 

 A

 

XIOMATIC

 

 M

 

ETHOD

 

767

basis and within a logically transparent deductive structure. This time, however, Hil-
bert had consolidated the critical point of view into an elaborate approach with
clearly formulated aims, and affording the proper tools to achieve those aims, at least
partly. This was the axiomatic approach that characterizes 

 

Grundlagen der Geometrie

 

and much of his work thereafter, particularly his research on the foundations of phys-
ical theories. However, 

 

Grundlagen der Geometrie

 

 was innovative not only at the
methodological level. It was, in fact, a seminal contribution to the discipline, based
on a purely synthetic, completely new approach to arithmetizing the various kinds of
geometries. And again, as in his two previous fields of research, Hilbert’s in-depth
acquaintance with the arithmetic of fields of algebraic numbers played a fundamental
role in his achievement.

It is important to bear in mind that, in spite of the rigor required for the axiomatic
analysis underlying 

 

Grundlagen der Geometrie

 

, many additions, corrections and
improvements—by Hilbert himself, by some of his collaborators and by other mathe-
maticians as well— were still needed over the following years before the goals of this
demanding project could be fully attained. Still most of these changes, however
important, concerned only the details. The basic structure, the groups of axioms, the
theorems considered, and above all, the innovative methodological approach implied
by the treatment, all these remained unchanged through the many editions of 

 

Grund-
lagen der Geometrie

 

.
The motto of the book was a quotation taken from Kant’s 

 

Critique of Pure Rea-
son

 

: “All human knowledge thus begins with intuitions, proceeds thence to concepts
and ends with ideas.” If he had to make a choice, Kant appears an almost obvious one
for Hilbert in this context. It is hard to state precisely, however, to what extent he had
had the patience to become really acquainted with the details of Kant’s exacting
works. Beyond the well-deserved tribute to his most distinguished fellow Königs-
berger, this quotation does not seem to offer a reference point for better understand-
ing Hilbert’s ideas on geometry.

Hilbert described the aim of his 

 

Festschrift

 

 as an attempt to lay down a “simple”
and “complete” system of “mutually independent” axioms, from which all known
theorems of geometry might be deduced. His axioms are formulated for three sys-
tems of undefined objects named “points,” “lines,” and “planes,” and they establish
mutual relations that these objects must satisfy. The axioms are divided into five
groups: axioms of incidence, of order, of congruence, of parallels, and of continuity.
From a purely logical point of view, the groups have no real significance in them-
selves. However, from the geometrical point of view they are highly significant, for
they reflect Hilbert’s actual conception of the axioms as an expression of spatial intu-
ition: each group expresses a particular way that these intuitions manifest themselves
in our understanding.
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2.1 Independence, Simplicity, Completeness, Consistency

 

Hilbert’s first requirement, that the axioms be independent, is the direct manifestation
of the foundational concerns that directed his research. When analyzing indepen-
dence, his interest focused mainly on the axioms of congruence, continuity and of
parallels, since this independence would specifically explain how the various basic
theorems of Euclidean and projective geometry are logically interrelated. But as we
have seen, this requirement had already appeared—albeit more vaguely formulated—
in Hilbert’s early lectures on geometry, as a direct echo of Hertz’s demand for appro-
priateness. In 

 

Grundlagen der Geometrie, the requirement of independence not only
appeared more clearly formulated, but Hilbert also provided the tools to prove sys-
tematically the mutual independence among the individual axioms within the groups
and among the various groups of axioms in the system. He did so by introducing the
method that has since become standard: he constructed models of geometries that fail
to satisfy a given axiom of the system but satisfy all the others. However, this was not
for Hilbert an exercise in analyzing abstract relations among systems of axioms and
their possible models. The motivation for enquiring about the mutual independence
of the axioms remained, essentially, a geometrical one. For this reason, Hilbert’s orig-
inal system of axioms was not the most economical one from the logical point of
view. Indeed, several mathematicians noticed quite soon that Hilbert’s system of axi-
oms, seen as a single collection rather than as a collection of five groups, contained a
certain degree of redundancy.26 Hilbert’s own aim was to establish the interrelations
among the groups of axioms, embodying the various manifestations of special intu-
ition, rather than among individual axioms belonging to different groups.

The second requirement, simplicity, complements that of independence. It means,
roughly, that an axiom should contain “no more than a single idea.” This is a require-
ment that Hertz also had explicitly formulated, and Hilbert seemed to be repeating it
in the introduction to his own book. Nevertheless, it was neither formally defined nor
otherwise realized in any clearly identifiable way within Grundlagen der Geometrie.
The ideal of formulating “simple” axioms as part of this system was present implic-
itly as an aesthetic desideratum that was not transformed into a mathematically con-
trollable feature.27

The “completeness” that Hilbert demanded for his system of axioms should not
be confused with the later, model-theoretical notion that bears the same name, a

26 Cf., for instance, (Schur 1901). For a more detailed analysis of this issue, see (Schmidt 1933, 406–
408). It is worth pointing out that in the first edition of Grundlagen der Geometrie Hilbert stated that
he intended to provide an independent system of axioms for geometry. In the second edition, however,
this statement no longer appeared, following a correction by E. H. Moore (1902) who showed that one
of the axioms might be derived from the others. See also (Corry 2003, §3.5; Torretti 1978, 239 ff.).

27 In a series of articles published in the USA over the first decade of the twentieth century under the
influence of Grundlagen der Geometrie, see (Corry 2003, §3.5), a workable criterion for simplicity of
axioms was systematically sought after. For instance, Edward Huntington (1904, p. 290) included
simplicity among his requirements for axiomatic systems, yet he warned that “the idea of a simple
statement is a very elusive one which has not been satisfactorily defined, much less attained.”
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notion that is totally foreign to Hilbert’s axiomatic approach at this early stage.
Rather it is an idea that runs parallel to Hertz’s demand for “correctness.” Thus, Hil-
bert demanded from any adequate axiomatization that it should allow for a derivation
of all the known theorems of the discipline in question. The axioms formulated in
Grundlagen der Geometrie, Hilbert claimed, would indeed yield all the known
results of Euclidean geometry or of the so-called absolute geometry, namely that
valid independently of the parallel postulate, if the corresponding group of axioms is
ignored. Thus, reconstructing the very ideas that had given rise to his own concep-
tion, Hilbert discussed in great detail the role of each of the groups of axioms in the
proofs of two crucial results: the theorem of Desargues and the theorem of Pappus.
Unlike independence, however, the completeness of the system of axioms is not a
property that Hilbert knew how to verify formally, except to the extent that, starting
from the given axioms, he could prove all the theorems he was interested in.

The question of consistency of the various kinds of geometries was an additional
concern of Hilbert’s analysis, though, perhaps somewhat surprisingly, one that was
not even explicitly mentioned in the introduction to Grundlagen der Geometrie. He
addressed this issue in the Festschrift right after introducing all the groups of axioms
and after discussing their immediate consequences. Seen from the point of view of
Hilbert’s later metamathematical research and the developments that followed it, the
question of consistency might appear as the most important one undertaken back in
1899; but in the historical context of the evolution of his ideas it certainly was not. In
fact, consistency of the axioms is discussed in barely two pages, and it is not immedi-
ately obvious why Hilbert addressed it at all. It doesn’t seem likely that in 1899 Hil-
bert would have envisaged the possibility that the body of theorems traditionally
associated with Euclidean geometry might contain contradictions. After all, he con-
ceived Euclidean geometry as an empirically motivated discipline, turned into a
purely mathematical science after a long, historical process of evolution and depura-
tion. Moreover, and more importantly, Hilbert had presented a model of Euclidean
geometry over certain, special types of algebraic number fields. If with the real num-
bers the issue of continuity might be thought to raise difficulties that called for partic-
ular care, in this case Hilbert would have no real reason to call into question the
possible consistency of these fields of numbers. Thus, to the extent that Hilbert
referred here to the problem of consistency, he seems in fact to be echoing here
Hertz’s demand for the permissibility of images. As seen above, a main motivation
leading Hertz to introduce this requirement was the concern about possible contradic-
tions brought about over time by the gradual addition of ever new hypotheses to a
given theory. Although this was not likely to be the case for the well-established dis-
cipline of geometry, it might still have happened that the particular way in which the
axioms had been formulated in order to account for the theorems of this science
would have led to statements that contradict each other. The recent development of
non-Euclidean geometries made this possibility only more patent. Thus, Hilbert
believed that, although contradictions might in principle possibly occur within his
own system, he could also easily show that this was actually not the case.
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The relatively minor importance conceded by Hilbert in 1899 to the problem of
the consistency of his system of axioms for Euclidean geometry is manifest not only
in the fact that he devoted just two pages to it. Of course, Hilbert could not have in
mind a direct proof of consistency here, but rather an indirect one, namely, a proof
that any contradiction existing in Euclidean geometry must manifest itself in the
arithmetic system of real numbers. This would still leave open the question of the
consistency of the latter, a problem difficult enough in itself. However, even an indi-
rect proof of this kind does not appear in explicit form in Grundlagen der Geometrie.
Hilbert only suggested that it would suffice to show that the specific kind of synthetic
geometry derivable from his axioms could be translated into the standard Cartesian
geometry, taking the axes as representing the whole field of real numbers.28 More
generally stated, in this first edition of Grundlagen der Geometrie, Hilbert preferred
to bypass a systematic treatment of the questions related to the structure of the system
of real numbers. Rather, he contented himself with constructing a model of his sys-
tem based on a countable, proper sub-field—of whose consistency he may have been
confident—and not the whole field of real numbers (Hilbert 1899, 21). It was only in
the second edition of Grundlagen der Geometrie, published in 1903, that he added an
additional axiom, the so-called “axiom of completeness” (Vollständigkeitsaxiom),
meant to ensure that, although infinitely many incomplete models satisfy all the other
axioms, there is only one complete model that satisfies this last axiom as well,
namely, the usual Cartesian geometry, obtained when the whole field of real numbers
is used in the model (Hilbert 1903a, 22–24). As Hilbert took pains to stress, this
axiom cannot be derived from the Archimedean axiom, which was the only one
included in the continuity group in the first edition.29 It is important to notice, how-
ever, that the property referred to by this axiom bears no relation whatsoever to Hil-
bert’s general requirement of “completeness” for any system of axioms. Thus his
choice of the term “Vollständigkeit” in this context seems somewhat unfortunate.

3. THE 1900 LIST OF PROBLEMS

Soon after the publication of Grundlagen der Geometrie, Hilbert had a unique oppor-
tunity to present his views on mathematics in general and on axiomatics in particular,
when he was invited to address the Second International Congress of Mathematicians

28 And the same is true for Hilbert’s treatment of “completeness” (in his current terminology) at that
time.

29 The axiom is formulated in (Hilbert 1903a, 16). Toepell (1986, 254–256) briefly describes the rela-
tionship between Hilbert’s Vollständigkeitsaxiom and related works of other mathematicians. The
axiom underwent several changes throughout the various later editions of the Grundlagen, but it
remained central to this part of the argument. Cf. (Peckhaus 1990, 29–35). The role of this particular
axiom within Hilbert’s axiomatics and its importance for later developments in mathematical logic is
discussed in (Moore 1987, 109–122). In 1904 Oswald Veblen introduced the term “categorical”
(Veblen 1904, 346) to denote a system to which no irredundant axioms may be added. He believed
that Hilbert had checked this property in his own system of axioms. See (Scanlan 1991, 994).



THE ORIGIN OF HILBERT’S AXIOMATIC METHOD 771

held in Paris in August of 1900. The invitation was a definite sign of the reputation
that Hilbert had acquired by then within the international mathematics community.
Following a suggestion of Minkowski, Hilbert decided to use the opportunity to pro-
vide a glimpse into what, in his view, the new century would bring for mathematics.
Thus he posed a list of problems that he considered significant challenges that could
lead to fruitful research and to new and illuminating ideas for mathematicians
involved in solving them.

In many ways, Hilbert’s talk embodied his overall vision of mathematics and sci-
ence, and he built the list of problems to a large extent according to his own mathe-
matical horizons.30 Some of the problems belonged to number theory and the theory
of invariants, the domains that his published work had placed him in among the lead-
ing world experts. Some others belonged to domains with which he was closely
acquainted, even though he had not by then published anything of the same level of
importance, such as variational calculus. It further included topics that Hilbert simply
considered should be given a significant push within contemporary research, such as
Cantorian set theory. The list reflected Hilbert’s mathematical horizon also in the
sense that a very significant portion of the works he cited in reference to the various
problems had been published in either of the two main Göttingen mathematical ven-
ues: the Mathematische Annalen and the Proceedings of the Göttingen Academy of
Sciences. And although Hilbert’s mathematical horizons were unusually broad, they
were nonetheless clearly delimited and thus, naturally, several important, contempo-
rary fields of research were left out of the list.31 Likewise, important contemporary
Italian works on geometry, and the problems related to them, were not referred to at
all in the geometrical topics that Hilbert did consider in his list. Moreover, two major
contemporary open problems, Fermat’s theorem and Poincaré’s three-body problem,
though mentioned in the introduction, were not counted among the twenty-three
problems.

The talk also reflected three other important aspects of Hilbert’s scientific person-
ality. Above all is his incurable scientific optimism, embodied in the celebrated and
often quoted statement that every mathematical problem can indeed be solved:
“There is the problem. Seek its solution. You can find it by pure reason, for in mathe-
matics there is no ignorabimus.” This was meant primarily as a reaction to a well-
known pronouncement of the physiologist Emil du Bois-Reymond (1818–1896) on
the inherent limitations of science as a system able to provide us with knowledge
about the world.32 Second, is the centrality of challenging problems in mathematics
as a main, necessary condition for the healthy development of any branch of the dis-
cipline and, more generally, of that living organism that Hilbert took mathematics to
be. And third, is the central role accorded to empirical motivations as a fundamental
source of nourishment for that organism, in which mathematics and the physical sci-

30 Several versions of the talk appeared in print and they were all longer and more detailed than the
actual talk. Cf. (Grattan-Guinness 2000).

31 Cf. (Gray 2000, 78–88).
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ences appear tightly interrelated. But stressing the empirical motivations underlying
mathematical ideas should by no means be taken as opposed to rigor. On the contrary,
contrasting an “opinion occasionally advocated by eminent men,” Hilbert insisted
that the contemporary quest for rigor in analysis and arithmetic should in fact be
extended to both geometry and the physical sciences. He was alluding here, most
probably, to Kronecker and Weierstrass, and the Berlin purist tendencies that kept
geometry and applications out of their scope of interest. Rigorous methods are often
simpler and easier to understand, Hilbert said, and therefore, a more rigorous treat-
ment would only perfect our understanding of these topics, and at the same time
would provide mathematics with ever new and fruitful ideas. Explaining why rigor
should not be sought only within analysis, Hilbert actually implied that this rigor
should actually be pursued in axiomatic terms. He thus wrote:

Such a one-sided interpretation of the requirement of rigor would soon lead to the ignor-
ing of all concepts arising form geometry, mechanics and physics, to a stoppage of the
flow of new material from the outside world, and finally, indeed, as a last consequence, to
the rejection of the ideas of the continuum and of irrational numbers. But what an impor-
tant nerve, vital to mathematical science, would be cut by rooting out geometry and
mathematical physics! On the contrary I think that wherever mathematical ideas come
up, whether from the side of the theory of knowledge or in geometry, or from the theories
of natural or physical science, the problem arises for mathematics to investigate the prin-
ciples underlying these ideas and to establish them upon a simple and complete system
of axioms, so that the exactness of the new ideas and their applicability to deduction shall
be in no respect inferior to those of the old arithmetical concepts.33

Using rhetoric reminiscent of Paul Volkmann’s 1900 book, Hilbert described the
development of mathematical ideas as an ongoing, dialectical interplay between the
two poles of thought and experience, an interplay that brings to light a “pre-estab-
lished harmony” between nature and mathematics.34 The “edifice metaphor” was
invoked to help stress the importance of investigating the foundations of mathematics
not as an isolated concern, but rather as an organic part of the manifold growth of the
discipline in several directions. Hilbert thus said:

Indeed, the study of the foundations of a science is always particularly attractive, and the
testing of these foundations will always be among the foremost problems of the investi-

32 See (Du Bois-Reymond 1872). Hilbert would repeat this claim several times later in his career, nota-
bly in (Hilbert 1930). Although the basic idea behind the pronouncement was the same on all occa-
sions, and it always reflected his optimistic approach to the capabilities of mathematics, it would
nevertheless be important to consider the specific, historical framework in which the pronouncement
came and the specific meaning that the situation conveys in one and the same sentence. If in 1900 it
came, partly at least, as a reaction to Du Bois-Reymond’s sweeping claim about the limitation of sci-
ence, in 1930 it came after the intense debate against constructivist views about the foundations of
arithmetic.

33 The classical locus for the English version of the talk is (Hilbert 1902a). Here I have preferred to
quote, where different, from the updated translation appearing in (Gray 2000, 240–282). This passage
appears there on p. 245. 

34 The issue of the “pre-established harmony” between mathematics and nature was a very central one
among Göttingen scientists. This point has been discussed in (Pyenson 1982).
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gator ... [But] a thorough understanding of its special theories is necessary for the suc-
cessful treatment of the foundations of the science. Only that architect is in the position
to lay a sure foundation for a structure who knows its purpose thoroughly and in detail.35

Speaking more specifically about the importance of problems for the healthy
growth of mathematics, Hilbert characterized an interesting problem as one that is
“difficult in order to entice us, yet not completely inaccessible, lest it mock our
efforts.” But perhaps more important was the criterion he formulated for the solution
of one such problem: it must be possible “to establish the correctness of the solution
by a finite number of steps based upon a finite number of hypotheses which are
implied in the statement of the problem and which must always be exactly formu-
lated.”

3.1 Foundational Problems

This is not the place to discuss in detail the list of problems and their historical back-
ground and development.36 Our main concern here is with the sixth problem— Hil-
bert’s call for the axiomatization of physical sciences—and those other problems on
the list more directly connected with it. The sixth problem is indeed the last of a well-
defined group within the list, to which other “foundational” problems also belong.
Beyond this group, the list can be said roughly to contain three other main areas of
interest: number theory, algebraic-geometrical problems, and analysis (mainly varia-
tional calculus) and its applications in physics.

The first two foundational problems, appearing at the head of Hilbert’s list, are
Cantor’s continuum hypothesis and the compatibility of the axioms of arithmetic. In
formulating the second problem on his list, Hilbert stated more explicitly than ever
before, that among the tasks related to investigating an axiomatic system, proving its
consistency would be the most important one. Eventually this turned into a main
motto of his later program for the foundations of arithmetic beginning in the 1920s,
but many years and important developments still separated this early declaration,
diluted among a long list of other important mathematical tasks for the new century,
from an understanding of the actual implications of such an attempt and from an
actual implementation of a program to pursue it. In the years to come, as we will see
below, Hilbert did many things with axiomatic systems other than attempting a proof
of consistency for arithmetic.

Hilbert stated that proving the consistency of geometry could be reduced to prov-
ing that of arithmetic, and that the axioms of the latter were those presented by him in
“Über den Zahlbegriff” several months prior to this talk. Yet, Hilbert was still confi-
dent that this would be a rather straightforward task, easily achievable “by means of a
careful study and suitable modification of the known methods of reasoning in the the-
ory of irrational numbers” (Hilbert 1902a, 448).Hilbert did not specify the exact

35 Quoted from (Gray 2000, 258).
36 Cf. (Rowe 1996), and a more detailed, recent, discussion in (Gray 2000). 
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meaning of this latter statement, but its wording would seem to indicate that in the
system of axioms proposed for arithmetic, the difficulty in dealing with consistency
would come from the assumption of continuity. Thus the consistency of Euclidean
geometry would depend on proving the consistency of arithmetic as defined by Hil-
bert through his system of axioms. This would, moreover, provide a proof for the
very existence of the continuum of real numbers as well. Clearly Hilbert meant his
remarks in this regard to serve as an argument against Kronecker’s negative reactions
to unrestricted use of infinite collections in mathematics, and therefore he explicitly
asserted that a consistent system of axioms could prove the existence of higher Can-
torian cardinals and ordinals.37 He thus established a clear connection between the
two first problems on his list through the axiomatic approach. Still, Hilbert was evi-
dently unaware of the difficulties involved in realizing this point of view, and, more
generally, he most likely had no precise idea of what an elaborate theory of systems
of axioms would involve. On reading the first draft of the Paris talk, several weeks
earlier, Minkowski understood at once the challenging implications of Hilbert’s view,
and he hastened to write to his friend:

In any case, it is highly original to proclaim as a problem for the future, one that mathe-
maticians would think they had already completely possessed for a long time, such as the
axioms for arithmetic. What might the many laymen in the auditorium say? Will their
respect for us grow? And you will also have a though fight on your hands with the philos-
ophers.38

Minkowski turned out to be right to a large extent, and among the ideas that pro-
duced the strongest reactions were those related with the status of axioms as implicit
definitions, such as Hilbert introduced in formulating the second problem. He thus
wrote:

When we are engaged in investigating the foundations of a science, we must set up a sys-
tem of axioms which contains an exact and complete description of the relations subsist-
ing between the elementary ideas of the science. The axioms so set up are at the same
time the definitions of those elementary ideas, and no statement within the realm of the
science whose foundation we are testing is held to be correct unless it can be derived
from those axioms by means of a finite number of logical steps. (Hilbert 1902a,447)39

The next three problems in the list are directly related with geometry and, although
not explicitly formulated in axiomatic terms, they address the question of finding the
correct relationship between specific assumptions and specific, significant geometri-
cal facts. Of particular interest for the present account is the fifth. The question of the
foundations of geometry had evolved over the last third of the nineteenth century
along two parallel paths. First was the age-old tradition of elementary synthetic

37 Hilbert also pointed out that no consistent set of axioms could be similarly set up for all cardinals and
all alephs. Commenting on this, Ferreirós (1999, 301), has remarked: “This is actually the first pub-
lished mention of the paradoxes of Cantorian set theory — without making any fuss of it.” See also
(Peckhaus and Kahle 2002).

38 On 17 July 1900, (Rüdenberg and Zassenhaus 1973, 129). 
39 And also quoted in (Gray 2000, 250).



THE ORIGIN OF HILBERT’S AXIOMATIC METHOD 775

geometry, where the question of foundations more naturally arises in axiomatic
terms. A second, alternative, path, that came to be associated with the Helmholtz-Lie
problem, had derived directly from the work of Riemann and it had a more physi-
cally-grounded orientation connected with the question of spaces that admit the free
mobility of rigid bodies. Whereas Helmholtz had only assumed continuity as under-
lying the motion of rigid bodies, in applying his theory of group of transformations to
this problem, Lie was also assuming the differentiability of the functions involved.
Hilbert’s work on the foundations of geometry, especially in the context that led to
Grundlagen der Geometrie, had so far been connected with the first of these two
approaches, while devoting much less attention to the second one. Now in his fifth
problem, he asked whether Lie’s conditions, rather than assumed, could actually be
deduced from the group concept together with other geometrical axioms.

As a mathematical problem, the fifth one led to interesting, subsequent develop-
ments. Not long after his talk, on 18 November 1901, Hilbert himself proved that, in
the plane, the answer is positive, and he did so with the help of a then innovative,
essentially topological, approach (Hilbert 1902b). That the answer is positive in the
general case was satisfactorily proved only in 1952.40 What concerns us here more
directly, however, is that the inclusion of this problem in the list underscores the
actual scope of Hilbert’s views over the question of the foundations of geometry and
over the role of axiomatics. Hilbert suggested here the pursuit of an intricate kind of
conceptual clarification involving our assumptions about motion, differentiability and
symmetry, such as they appear intimately interrelated in the framework of a well-
elaborate mathematical theory, namely, that of Lie. This quest is typical of the spirit
of Hilbert’s axiomatic involvement with physical theories. At this point, it also clearly
suggests that his foundational views on geometry were much broader and open-ended
than an exclusive focusing on Grundlagen der Geometrie— with a possible overem-
phasizing of certain, formalist aspects—might seem to imply. In particular, the fifth
problem emphasizes, once again and from a different perspective, the prominent role
that Hilbert assigned to physicalist considerations in his approach to geometry. In the
long run, one can also see this aspect of Hilbert’s view resurfacing at the time of his
involvement with general theory of relativity. In its more immediate context, how-
ever, it makes the passage from geometry to the sixth problem appear as a natural one
within the list.

Indeed, if the first two problems in the list show how the ideas deployed in
Grundlagen der Geometrie led in one direction towards foundational questions in
arithmetic, then the fifth problem suggests how they also naturally led, in a different
direction, to Hilbert’s call for the axiomatization of physical science in the sixth prob-
lem. The problem was thus formulated as follows:

The investigations on the foundations of geometry suggest the problem: To treat in the
same manner, by means of axioms, those physical sciences in which mathematics plays

40 This was done, simultaneously, in (Gleason 1952) and (Montgomery and Zippin 1952). 
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an important part; in the first rank are the theory of probabilities and mechanics. (Hilbert
1902a, 454)41

As examples of what he had in mind Hilbert mentioned several existing and well-
known works: the fourth edition of Mach’s Die Mechanik in ihrer Entwicklung,
Hertz’s Principles, Boltzmann’s 1897 Vorlesungen Über die Principien der Mecha-
nik, and also Volkmann’s 1900 Einführung in das Studium der theoretischen Physik.
Boltzmann’s work offered a good example of what axiomatization would offer, as he
had indicated, though only schematically, that limiting processes could be applied,
starting from an atomistic model, to obtain the laws of motion of continua. Hilbert
thought it convenient to go in the opposite direction also, i.e., to derive the laws of
motions of rigid bodies by limiting processes, starting from a system of axioms that
describe space as filled with continuous matter in varying conditions. Thus one could
investigate the equivalence of different systems of axioms, an investigation that Hil-
bert considered to be of the highest theoretical importance.

This is one of the few places where Hilbert emphasized Boltzmann’s work over
Hertz’s in this regard, and this may give us the clue to the most immediate trigger that
was in the back of Hilbert’s mind when he decided to include this problem in the list.
Hilbert had met Boltzmann several months earlier in Munich, where he heard his talk
on recent developments in physics. Boltzmann had not only discussed ideas con-
nected to the task that Hilbert was now calling for, but he also adopted a rhetoric that
Hilbert seems to have found very much to the point. In fact, Boltzmann had sug-
gested that one could follow up the recent history of physics with a look at future
developments. Nevertheless, he said, “I will not be so rash as to lift the veil that con-
ceals the future” (Boltzmann 1899, 79). Hilbert, on the contrary, opened the lecture
by asking precisely, “who among us would not be glad to lift the veil behind which
the future lies hidden” and the whole trust of his talk implied that he, the optimistic
Hilbert, was helping the mathematical community to do so.

Together with the well-known works on mechanics referred to above, Hilbert also
mentioned a recent work by the Göttingen actuarial mathematician Georg Bohlmann
(1869–1928) on the foundations of the calculus of probabilities.42 The latter was
important for physics, Hilbert said, for its application to the method of mean values
and to the kinetic theory of gases. Hilbert’s inclusion of the theory of probabilities
among the main physical theories whose axiomatization should be pursued has often
puzzled readers of this passage. It is also remarkable that Hilbert did not mention
electrodynamics among the physical disciplines to be axiomatized, even though the
second half of the Gauss-Weber Festschrift, where Hilbert’s Grundlagen der Geome-
trie was published, contained a parallel essay by Emil Wiechert (1861–1956) on the
foundations of electrodynamics (Wiechert 1899). At any rate, Wiechert’s presentation

41 Quoted in (Gray 2000, 257).
42 This article reproduced a series of lectures delivered by Bohlmann in a Ferienkurs in Göttingen (Bohl-

mann 1900). In his article Bohlmann referred the readers, for more details, to the chapter he had writ-
ten for the Encyklopädie on insurance mathematics.
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was by no means axiomatic, in any sense of the term. On the other hand, the topics
addressed by him would start attracting Hilbert’s attention over the next years, at least
since 1905.

Modelling this research on what had already been done for geometry meant that
not only theories considered to be closer to “describing reality” should be investi-
gated, but also other, logically possible ones. The mathematician undertaking the axi-
omatization of physical theories should obtain a complete survey of all the results
derivable from the accepted premises. Moreover, echoing the concern already found
in Hertz and later to appear also in Hilbert’s letters to Frege, a main task of the axi-
omatization would be to avoid that recurrent situation in physical research, in which
new axioms are added to existing theories without properly checking to what extent
the former are compatible with the latter. This proof of compatibility, concluded Hil-
bert, is important not only in itself, but also because it compels us to search for ever
more precise formulations of the axioms.

3.2 A Context for the Sixth Problem

The sixth problem of the list deals with the axiomatization of physics. It was sug-
gested to Hilbert by his own recent research on the foundations of geometry. He thus
proposed “to treat in the same manner, by means of axioms, those physical sciences
in which mathematics plays an important part.” This sixth problem is not really a
problem in the strict sense of the word, but rather a general task for whose complete
fulfilment Hilbert set no clear criteria. Thus, Hilbert’s detailed account in the opening
remarks of his talk as to what a meaningful problem in mathematics is, and his stress
on the fact that a solution to a problem should be attained in a finite number of steps,
does not apply in any sense to the sixth one. On the other hand, the sixth problem has
important connections with three other problems on Hilbert’s list: the nineteenth
(“Are all the solutions of the Lagrangian equations that arise in the context of certain
typical variational problems necessarily analytic?”), the twentieth (dealing with the
existence of solutions to partial differential equations with given boundary condi-
tions), closely related to the nineteenth and at the same time to Hilbert’s long-stand-
ing interest in the Dirichlet principle,43 and, finally, the twenty-third (an appeal to
extend and refine the existing methods of variational calculus). Like the sixth prob-
lem, the latter two are general tasks rather than specific mathematical problems with
a clearly identifiable, possible solution.44 All these three problems are also strongly
connected to physics, though unlike the sixth, they are also part of mainstream, tradi-

43 On 11 October 1899, Hilbert had lectured in Göttingen on the Dirichlet principle, stressing the impor-
tance of its application to the theory of surfaces and also to mathematical physics. Cf. Jahresbericht
der Deutschen Mathematiker-Vereinigung 8 (1900), 22.

44 A similar kind of “general task” problem that Hilbert had perhaps considered adding as the twenty-
fourth problem in his list is hinted at in an undated manuscript found in Nachlass David Hilbert (Cod.
Ms. D. Hilbert, 600). It concerns the definition of criteria for finding simplest proofs in mathematics
in general. Cf. a note in (Grattan-Guinness 2001, 167), and a more detailed account in (Thiele 2003). 
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tional research concerns in mathematics.45 In fact, their connections to Hilbert’s own
interests are much more perspicuous and, in this respect, they do not raise the same
kind of historical questions that Hilbert’s interest in the axiomatization of physics
does. Below, I will explain in greater detail how Hilbert conceived the role of varia-
tional principles in his program for axiomatizing physics.

Another central issue to be discussed below in some detail is the role the sixth
problem played in subsequent developments in mathematics and in physics. At this
stage, however, a general point must be stressed about the whole list in this regard. A
balanced assessment of the influence of the problems on the development of mathe-
matics throughout the century must take into account not only the intrinsic impor-
tance of the problems,46 but also the privileged institutional role of Göttingen in the
mathematical world with the direct and indirect implications of its special status. If
Hilbert wished to influence the course of mathematics over the coming century with
his list, then his own career was only very partially shaped by it. Part of the topics
covered by the list belonged to his previous domains of research, while others
belonged to domains where he never became active. On the contrary, domains that he
devoted much effort to over the next years, such as the theory of integral equations,
were not contemplated in the list. In spite of the enormous influence Hilbert had on
his students, the list did not become a necessary point of reference of preferred topics
for dissertations. To be sure, some young mathematicians, both in Göttingen and
around the world, did address problems on the list and sometimes came up with
important mathematical achievements that helped launch their own international
careers. But this was far from the only way for talented young mathematicians to
reach prominence in or around Göttingen. But, ironically, the sixth problem, although
seldom counted among the most influential of the list, will be shown here to count
among those that received a greater attention from Hilbert himself and from his col-
laborators and students over the following years.

For all its differences and similarities with other problems on the list, the impor-
tant point that emerges from the above account is that the sixth problem was in no
sense disconnected from the evolution of Hilbert’s early axiomatic conception. Nor
was it artificially added in 1900 as an afterthought about the possible extensions of an
idea successfully applied in 1899 to the case of geometry. Rather, Hilbert’s ideas con-
cerning the axiomatization of physical science arose simultaneously with his increas-
ing enthusiasm for the axiomatic method and they fitted naturally into his overall
view of pure mathematics, geometry and physical science—and the relationship
among them—by that time. Moreover, as will be seen in the next chapter in some
detail, Hilbert’s 1905 lectures on axiomatization provide a very clear and comprehen-
sive conception of how the project suggested in the sixth problem should be realized.
In fact, it is very likely that this conception was not essentially different from what
Hilbert had in mind when formulating his problem in 1900.47 Interestingly, the devel-

45 For a detailed account of the place of variational principles in Hilbert’s work, see (Blum 1994). 
46 As treated in (Alexandrov 1979; Browder 1976).
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opment of physics from the beginning of the century, and especially 

 

after

 

 1905,
brought many surprises that Hilbert could not have envisaged in 1900 or even when
he lectured at Göttingen on the axioms of physics; yet, over the following years Hil-
bert was indeed able to accommodate these new developments to the larger picture of
physics afforded by his program for axiomatization. In fact, some of his later contri-
butions to mathematical physics came by way of realizing the vision embodied in this
program, as will be seen in detail in later chapters.

4. FOUNDATIONAL CONCERNS – EMPIRICIST STANDPOINT

Following the publication of

 

 Grundlagen der Geometrie

 

, Hilbert was occupied for a
while with research on the foundations of geometry. Several of his students, such as
Max Dehn (1878–1952), Georg Hamel (1877–1954) and Anne Lucy Bosworth
(1868–1907), worked in this field as well, including on problems relating to Hilbert’s
1900 list. Also many meetings of the 

 

Göttinger Mathematische Gesellschaft

 

 during
this time were devoted to discussing related topics. On the other hand, questions
relating to the foundations of arithmetic and set theory also received attention in the
Hilbert circle. Ernst Zermelo (1871–1953) had already arrived in Göttingen in 1897
in order to complete his 

 

Habilitation

 

, and his own focus of interest changed soon
from mathematical physics to set theory and logic. Around 1899–1900 he had already
found an important antinomy in set theory, following an idea of Hilbert’s.

 

48

 

 Later on,
in the winter semester of 1900–1901, Zermelo was teaching set theory in Göttingen
(Peckhaus 1990, 48–49).

Interest in the foundations of arithmetic became a much more pressing issue in
1903, after Bertrand Russell (1872–1970) published his famous paradox arising from
Frege’s logical system. Although Hilbert hastened to indicate to Frege that similar
arguments had been known in Göttingen for several years,

 

49

 

 it seems that Russell’s
publication, coupled with the ensuing reaction by Frege,

 

50

 

 did have an exceptional
impact. Probably this had to do with the high esteem that Hilbert professed towards
Frege’s command of these topics (which Hilbert may have come to appreciate even
more following the sharp criticism recently raised by the latter towards his own
ideas). The simplicity of the sets involved in Russell’s argument was no doubt a fur-
ther factor that explains its strong impact on the Göttingen mathematicians. If Hilbert
had initially expected that the difficulty in completing the full picture of his approach
to the foundations of geometry would lie on dealing with more complex assumptions
such as the 

 

Vollständigkeitsaxiom

 

, now it turned out that the problems perhaps started
with the arithmetic itself and even with logic. He soon realized that greater attention

 

47 Cf. (Hochkirchen 1999), especially chap. 1.
48 See (Peckhaus and Kahle 2002).
49 Hilbert to Frege, 7 November 1903. Quoted in (Gabriel et al. 1980, 51–52). 
50 As published in (Frege 1903, 253). See (Ferreirós 1999, 308–311). 
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should be paid to these topics, and in particular to the possible use of the axiomatic
method in establishing the consistency of arithmetic (Peckhaus 1990, 56–57).

Hilbert himself gradually reduced his direct involvement with all questions of this
kind, and after 1905 he completely abandoned them for many years to come. Two
instances of his involvement with foundational issues during this period deserve some
attention here. The first is his address to the Third International Congress of Mathe-
maticians, held in 1904 in Heidelberg. In this talk, later published under the title of
“On the Foundations of Logic and Arithmetic,” Hilbert presented a program for
attacking the problem of consistency as currently conceived. The basic idea was to
develop simultaneously the laws of logic and arithmetic, rather than reducing one to
the other or to set theory. The starting point was the basic notion of thought-object that
would be designated by a sign, which offered the possibility of treating mathematical
proofs, in principle, as formulae. This could be seen to constitute an interesting antici-
pation of what later developed as part of Hilbert’s proof theory, but here he only out-
lined the idea in a very sketchy way. Actually, Hilbert did not go much beyond the
mere declaration that this approach would help achieve the desired proof. Hilbert cur-
sorily reviewed several prior approaches to the foundations of arithmetic, only to dis-
card them all. Instead, he declared that the solution for this problem would finally be
found in the correct application of the axiomatic method (Hilbert 1905c, 131).

Upon returning to Göttingen from Heidelberg, Hilbert devoted some time to
working out the ideas outlined at the International Congress of Mathematicians. The
next time he presented them was in an introductory course devoted to “The Logical
Principles of Mathematical Thinking,” which contains the second instance of Hil-
bert’s involvement with the foundation of arithmetic in this period. This course is
extremely important for my account here because it contains the first detailed attempt
to implement the program for the axiomatization of physics.51 I will examine it in
some detail below. At this point I just want to briefly describe the other parts of the
course, containing some further foundational ideas for logic and arithmetic, and some
further thoughts on the axiomatization of geometry.

Hilbert discussed in this course the “logical foundations” of mathematics by
introducing a formalized calculus for propositional logic. This was a rather rudimen-
tary calculus, which did not even account for quantifiers. As a strategy for proving
consistency of axiomatic systems, it could only be applied to very elementary
cases.52 Prior to defining this calculus Hilbert gave an overview of the basic princi-
ples of the axiomatic method, including a more detailed account of its application to
arithmetic, geometry and the natural sciences. What needs to be stressed concerning
this text is that, in spite of his having devoted increased attention over the previous
years to foundational questions in arithmetic, Hilbert’s fundamentally empiricist

51 There are two extant sets of notes for this course: (Hilbert 1905a and 1905b). Quotations below are
taken from (Hilbert 1905a). As these important manuscripts remain unpublished, I transcribe in the
footnotes some relevant passages at length. Texts are underlined or crossed-out as in the original.
Later additions by Hilbert appear between < > signs.

52 For a discussion of this part of the course, see (Peckhaus 1990, 61–75). 
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approach to issues in the foundations of geometry was by no means weakened, but
rather the opposite. In fact, in his 1905 course, Hilbert actually discussed the role of
an axiomatic analysis of the foundations of arithmetic in similar, empiricist terms. 

Once again, Hilbert contrasted the axiomatic method with the genetic approach in
mathematics, this time making explicit reference to the contributions of Kronecker
and Weierstrass to the theory of functions. Yet Hilbert clearly separated the purely
logical aspects of the application of the axiomatic method from the “genetic” origin
of the axioms themselves: the latter is firmly grounded on empirical experience.
Thus, Hilbert asserted, it is not the case that the system of numbers is given to us
through the network of concepts (Fachwerk von Begriffen) involved in the eighteen
axioms. On the contrary, it is our direct intuition of the concept of natural number and
of its successive extensions, well known to us by means of the genetic method, which
has guided our construction of the axioms:

The aim of every science is, first of all, to set up a network of concepts based on axioms
to whose very conception we are naturally led by intuition and experience. Ideally, all the
phenomena of the given domain will indeed appear as part of the network and all the the-
orems that can be derived from the axioms will find their expression there.53

What this means for the axiomatization of geometry, then, is that its starting point
must be given by the intuitive facts of that discipline,54 and that the latter must be in
agreement with the network of concepts created by means of the axiomatic system.
The concepts involved in the network itself, Hilbert nevertheless stressed, are totally
detached from experience and intuition.55 This procedure is rather obvious in the
case of arithmetic, and to a certain extent the genetic method has attained similar
results for this discipline. In the case of geometry, although the need to apply the pro-

53 “Uns war das Zahlensystem schließlich nichts als ein Fachwerk von Begriffen, das durch 18 Axiome
definiert war. Bei der Aufstellung dieser leitete uns allerdings die Anschauung, die wir von dem
Begriff der Anzahl und seiner genetischen Ausdehnung haben. ... So ist in jeder Wissenschaft die Auf-
gabe, in den Axiomen zunächst ein Fachwerk von Begriffen zu errichten, bei dessen Aufstellung wir
uns natürlich durch die Anschauung und Erfahrung leiten lassen; das Ideal ist dann, daß in diesem
Fachwerk alle Erscheinungen des betr. Gebietes Platz finden, und daß jeder aus den Axiomen fol-
gende Satz dabei Verwertung findet.
Wollen wir nun für die Geometrie ein Axiomensystem aufstellen, so heißt das, daß wir uns den Anlaß
dazu durch die anschaulichen Thatsachen der Geometrie geben lassen, und diesen das aufzurichtende
Fachwerk entsprechen lassen; die Begriffe, die wir so erhalten, sind aber als gänzlich losgelöst von
jeder Erfahrung und Anschauung zu betrachten. Bei der Arithmetik ist diese Forderung verhältnismä-
ßig naheliegend, sie wird in gewissem Umfange auch schon bei der genetischen Methode angestrebt.
Bei der Geometrie jedoch wurde die Notwendigkeit dieses Vorgehens viel später erkannt; dann aber
wurde eine axiomatische Behandlung eher versucht, als in der Arithmetik, wo noch immer die geneti-
sche Betrachtung herrschte. Doch ist die Aufstellung eines vollständigen Axiomensystemes ziemlich
schwierig, noch viel schwerer wird sie in der Mechanik, Physik etc. sein, wo das Material an Erschei-
nungen noch viel größer ist.” (Hilbert 1905a, 36–37)

54 “... den Anlaß dazu durch die anschaulischen Thatsachen der Geometrie geben lassen...” (Hilbert
1905a, 37)

55 “... die Begriffe, die wir so erhalten, sind aber als gänzlich losgelöst von jeder Erfahrung und
Anschauung zu betrachten.” (Hilbert 1905a, 37)
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cess truly systematically was recognized much later, the axiomatic presentation has
traditionally been the accepted one. And if setting up a full axiomatic system has
proven to be a truly difficult task for geometry, then, Hilbert concluded, it will be
much more difficult in the case of mechanics or physics, where the range of observed
phenomena is even broader.56

Hilbert’s axioms for geometry in 1905 were based on the system of Grundlagen
der Geometrie, including all the corrections and additions introduced to it since 1900.
Here too he started by choosing three basic kinds of undefined elements: points, lines
and planes. This choice, he said, is somewhat “arbitrary” and it is dictated by consid-
eration of simplicity. But the arbitrariness to which Hilbert referred here has little to
do with the arbitrary choice of axioms sometimes associated with twentieth-century
formalistic conceptions of mathematics; it is not an absolute arbitrariness constrained
only by the requirement of consistency. On the contrary, it is limited by the need to
remain close to the “intuitive facts of geometry.” Thus, Hilbert said, instead of the
three chosen, basic kinds of elements, one could likewise start with [no... not with
“chairs, tables, and beer-mugs,” but rather with] circles and spheres, and formulate
the adequate axioms that are still in agreement with the usual, intuitive geometry.57

Hilbert plainly declared that Euclidean geometry—as defined by his systems of
axioms—is the one and only geometry that fits our spatial experience,58 though in his
opinion, it would not be the role of mathematics or logic to explain why this is so. But
if that is the case, then what is the status of the non-Euclidean or non-Archimedean
geometries? Is it proper at all to use the term “geometry” in relation to them? Hilbert
thought it unnecessary to break with accepted usage and restrict the meaning of the
term to cover only the first type. It has been unproblematic, he argued, to extend the
meaning of the term “number” to include also the complex numbers, although the lat-
ter certainly do not satisfy all the axioms of arithmetic. Moreover, it would be unten-
able from the logical point of view to apply the restriction: although it is not highly
probable, it may nevertheless be the case that some changes would still be introduced
in the future to the system of axioms that describes intuitive geometry. In fact, Hilbert
knew very well that this “improbable” situation had repeatedly arisen in relation to
the original system he had put forward in 1900 in Grundlagen der Geometrie. To
conclude, he compared once again the respective situations in geometry and in phys-
ics: in the theory of electricity, for instance, new theories are continually formulated
that transform many of the basic facts of the discipline, but no one thinks that the
name of the discipline needs to be changed accordingly.

56 “... das Material an Erscheinungen noch viel größer ist.” (Hilbert 1905a, 37)
57 “Daß wir gerade diese zu Elementardingen des begrifflichen Fachwerkes nehmen, ist willkürlich und

geschieht nur wegen ihrer augenscheinlichen Einfachheit; im Princip könnte man die ersten Dinge
auch Kreise und Kugeln nennen, und die Festsetzungen über sie so treffen, daß sie diesen Dingen der
anschaulichen Geometrie entsprechen.” (Hilbert 1905a, 39)

58 “Die Frage, wieso man in der Natur nur gerade die durch alle diese Axiome festgelegte Euklidische
Geometrie braucht, bezw. warum unsere Erfahrung gerade in dieses Axiomsystem sich einfügt, gehört
nicht in unsere mathematisch-logichen Untersuchungen.” (Hilbert 1905a, 67)



THE ORIGIN OF HILBERT’S AXIOMATIC METHOD 783

Hilbert also referred explicitly to the status of those theories that, like non-Euclid-
ean and non-Archimedean geometries, are created arbitrarily through the purely logi-
cal procedure of setting down a system of independent and consistent axioms. These
theories, he said, can be applied to any objects that satisfy the axioms. For instance,
non-Euclidean geometries are useful to describe the paths of light in the atmosphere
under the influence of varying densities and diffraction coefficients. If we assume that
the speed of light is proportional to the vertical distance from a horizontal plane, then
one obtains light-paths that are circles orthogonal to the planes, and light-times equal
to the non-Euclidean distance from them.59 Thus, the most advantageous way to
study the relations prevailing in this situation is to apply the conceptual schemes pro-
vided by non-Euclidean geometry.60

A further point of interest in Hilbert’s discussion of the axioms of geometry in
1905 concerns his remarks about what he called the philosophical implications of the
use of the axiomatic method. These implications only reinforced Hilbert’s empiricist
view of geometry. Geometry, Hilbert said, arises from reality through intuition and
observation, but it works with idealizations: for instance, it considers very small bod-
ies as points. The axioms in the first three groups of his system are meant to express
idealizations of a series of facts that are easily recognizable as independent from one
other; the assertion that a straight line is determined by two points, for instance, never
gave rise to the question of whether or not it follows from other, basic axioms of
geometry. But establishing the status of the assertion that the sum of the angles in a
triangle equals two right angles requires a more elaborate axiomatic analysis. This
analysis shows that such an assertion is a separate piece of knowledge, which—we
now know for certain—cannot be deduced from earlier facts (or from their idealiza-
tions, as embodied in the three first groups of axioms). This knowledge can only be
gathered from new, independent empirical observation. This was Gauss’s aim,
according to Hilbert, when he confirmed the theorem for the first time, by measuring
the angles of the large triangle formed by the three mountain peaks.61 The network of
concepts that constitute geometry, Hilbert concluded, has been proved consistent, and
therefore it exists mathematically, independently of any observation. Whether or not

59 As in many other places in his lectures, Hilbert gave no direct reference to the specific physical theory
he had in mind here, and in this particular case I have not been able to find it.

60 “Ich schließe hier noch die Bemerkung an, daß man jedes solches Begriffschema, das wir so rein
logisch aus irgend welchen Axiomen aufbauen, anwenden kann auf beliebige gegenständliche Dinge,
wenn sie nur diesen Axiomen genügen. ... Ein solches Beispiel für die Anwendung des Begriffsche-
mas der nichteuklidischen Geometrie bildet das System der Lichtwege in unserer Atmosphäre unter
dem Einfluß deren variabler Dichte und Brechungsexponenten; machen wir nämlich die einfachste
mögliche Annahme, daß die Lichtgeschwindigkeit proportional ist dem vertikalen Abstande  von
einer Horizontalebene, so ergeben sich als Lichtwege gerade die Orthogonalkreise jener Ebene, als
Lichtzeit gerade die nichteuklidiche Entfernung auf ihnen. Um die hier obwaltenden Verhältnisse also
genauer zu untersuchen, können wir gerade mit Vorteil das Begriffschema der nichteuklidischen Geo-
metrie anwenden.” (Hilbert 1905a, 69–70)

61 “In diesem Sinne und zu diesem Zwecke hat zuerst Gauß durch Messung an großen Dreiecken den
Satz bestätigt.” (Hilbert 1905a, 98)

y
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it corresponds to reality is a question that can be decided only by observation, and our
analysis of the independence of the axioms allows determining very precisely the
minimal set of observations needed in order to do so.62 Later on, he added, the same
kind of perspective must be adopted concerning physical theories, although there its
application will turn out to be much more difficult than in geometry.

In concluding his treatment of geometry, and before proceeding to discuss the spe-
cific axiomatization of individual physical theories, Hilbert summarized the role of
the axiomatic method in a passage which encapsulates his view of science and of
mathematics as living organisms whose development involves both an expansion in
scope and an ongoing clarification of the logical structure of their existing parts.63 The
axiomatic treatment of a discipline concerns the latter; it is an important part of this
growth but—Hilbert emphasized—only one part of it. The passage, reads as follows:

The edifice of science is not raised like a dwelling, in which the foundations are first
firmly laid and only then one proceeds to construct and to enlarge the rooms. Science
prefers to secure as soon as possible comfortable spaces to wander around and only sub-
sequently, when signs appear here and there that the loose foundations are not able to
sustain the expansion of the rooms, it sets about supporting and fortifying them. This is
not a weakness, but rather the right and healthy path of development.64

This metaphor provides the ideal background for understanding what Hilbert
went on to realize at this point in his lectures, namely, to present his first detailed
account of how the general idea of axiomatization of physical theories would be actu-
ally implemented in each case. But before we can really discuss that detailed account,
it is necessary to broaden its context by briefly describing some relevant develop-
ments in physics just before 1905, and how they were manifest in Göttingen.

5. HILBERT AND PHYSICS IN GÖTTINGEN CIRCA 1905

The previous section described Hilbert’s foundational activities in mathematics
between 1900 and 1905. Those activities constituted the natural outgrowth of the
seeds planted in Grundlagen der Geometrie and the developments that immediately

62 “Das Begriffsfachwerk der Geometrie selbst ist nach Erweisung seiner Widerspruchslosigkeit natür-
lich auch unabhängig von jeder Beobachtung mathematisch existent; der Nachweis seiner Überein-
stimmung mit der Wirklichkeit kann nur durch Beobachtungen geführt werden, und die kleinste
notwendige solche wird durch die Unabhängigkeitsuntersuchungen gegeben.” (Hilbert 1905a, 98)

63 Elsewhere Hilbert called these two aspects of mathematics the “progressive” and “regressive” func-
tions of mathematics, respectively (both terms not intended as value judgments, of course). See (Hil-
bert 1992, 17–18).

64 “Das Gebäude der Wissenschaft wird nicht aufgerichtet wie ein Wohnhaus, wo zuerst die Grundmau-
ern fest fundiert werden und man dann erst zum Auf- und Ausbau der Wohnräume schreitet; die Wis-
senschaft zieht es vor, sich möglichst schnell wohnliche Räume zu verschaffen, in denen sie schalten
kann, und erst nachträglich, wenn es sich zeigt, dass hier und da die locker gefügten Fundamente den
Ausbau der Wohnräume nicht zu tragen vermögen, geht sie daran, dieselben zu stützen und zu befesti-
gen. Das ist kein Mangel, sondern die richtige und gesunde Entwicklung.” (Hilbert 1905a, 102.) Other
places where Hilbert uses a similar metaphor are (Hilbert 1897, 67; Hilbert 1918, 148). 
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followed it. My account is not meant to imply, however, that Hilbert’s focus of inter-
est was limited to, or even particularly focused around, this kind of enquiry during
those years. On 18 September 1901, for instance, Hilbert’s keynote address at the
commemoration of the 150th anniversary of the Göttingen Scientific Society (Gesell-
schaft der Wissenschaften zu Göttingen) was devoted to analyzing the conditions of
validity of the Dirichlet principle (Hilbert 1904, 1905d). Although thus far he had
published very little in this field, Hilbert’s best efforts from then on would be given to
analysis, and in particular, the theory of linear integral equations. His first publication
in this field appeared in 1902, and others followed, up until 1912. But at the same
time, he sustained his interest in physics, which is directly connected with analysis
and related fields to begin with, and this interest in physics became only more diverse
throughout this period. His increased interest in analysis had a natural affinity with
the courses on potential theory (winter semester, 1901–1902; summer semester,
1902) and on continuum mechanics (winter semester, 1902–1903; summer semester,
1903) that he taught at that time. Perhaps worthy of greater attention, however, is Hil-
bert’s systematic involvement around 1905 with the theories of the electron, on which
I will elaborate in the present section.

Still, a brief remark on Hilbert’s courses on continuum mechanics: The lecture
notes of these two semesters (Hilbert 1902–1903, 1903b) are remarkable for the thor-
oughness with which the subject was surveyed. The presentation was probably the
most systematic and detailed among all physical topics taught by Hilbert so far, and it
comprised detailed examinations of the various existing approaches (particularly
those of Lagrange, Euler and Helmholtz). Back in 1898–1899, in the final part of a
course on mechanics, Hilbert had briefly dealt with the mechanics of systems of an
infinite number of mass-points while stressing that the detailed analysis of such sys-
tems would actually belong to a different part of physics. This was precisely the sub-
ject he would consider in 1902. In that earlier course Hilbert had also discussed some
variational principles of mechanics, without however presenting the theory in any-
thing like a truly axiomatic perspective. Soon thereafter, in 1900 in Paris, Hilbert
publicly presented his call for the axiomatization of physics. But in 1902–1903, in
spite of the high level of detail with which he systematically discussed the physical
discipline of continuum mechanics, the axiomatic presentation was not yet the guid-
ing principle. Hilbert did state that a main task to be pursued was the axiomatic
description of physical theories65 and throughout the text he specifically accorded the
status of axioms to some central statements.66 Still, the notes convey the distinct
impression that Hilbert did not believe that the time was ripe for the fully axiomatic

65 The manuscript shows an interesting hesitation on how this claim was stated: “Das <Als ein wichti-
ges> Ziel der Vorlesung ist <denke ich mir> die mathematische Beschreibung der Axiome der Physik.
Vergl. Archiv der Mathematik und Physik, meine Rede: ‘Probleme der Mathematik’.” However, it is
not clear if this amendment of the text reflects a hesitation on the side of Hilbert, or on the side of
Berkowski, who wrote down the notes. (Hilbert 1902–1903, 2)

66 Thus for instance in (Hilbert 1902–1903).
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treatment of mechanics, or at least of continuum mechanics, in axiomatic terms simi-
lar to those previously deployed in full for geometry.

On the other hand, it is worth stressing that in many places Hilbert set out to
develop a possible unified conception of mechanics, thermodynamics (Hilbert 1903b,
47–91) and electrodynamics (Hilbert 1903b, 91–164) by using formal analogies with
the underlying ideas of his presentation of the mechanics of continua. These ideas,
which were treated in greater detail from an axiomatic point of view in the 1905 lec-
tures, are described more fully below; therefore, at this point I will not give a com-
plete account of them. Suffice it to say that Hilbert considered the material in these
courses to be original and important, and not merely a simple repetition of existing
presentations. In fact, the only two talks he delivered in 1903 at the meetings of the
Göttinger Mathematische Gesellschaft were dedicated to reporting on their con-
tents.67

Still in 1903, Hilbert gave a joint seminar with Minkowski on stability theory.68

He also presented a lecture on the same topic at the yearly meeting of the Gesell-
schaft Deutscher Naturforscher und Ärzte at Kassel,69 sparking a lively discussion
with Boltzmann.70 In the winter semester of 1904–1905 Hilbert taught an exercise
course on mechanics and later gave a seminar on the same topic. The course “Logical
Principles of Mathematical Thinking,” containing the lectures on axiomatization of
physics, was taught in the summer semester of 1905. He then lectured again on
mechanics (winter semester, 1905–1906) and two additional semesters on continuum
mechanics.

The renewed encounter with Minkowski signified a major source of intellectual
stimulation for these two old friends, and it particularly offered a noteworthy impulse
to the expansion of Hilbert’s horizon in physics. As usual, their walks were an oppor-
tunity to discuss a wide variety of mathematical topics, but now physics became a
more prominent, common interest than it had been in the past. Teaching in Zürich
since 1894, Minkowski had kept alive his interest in mathematical physics, and in
particular in analytical mechanics and thermodynamics (Rüdenberg and Zassenhaus
1973, 110–114). Now at Göttingen, he further developed these interests. In 1906
Minkowski published an article on capillarity (Minkowski 1906), commissioned for

67 See the announcements in Jahresbericht der Deutschen Mathematiker-Vereinigung 12 (1903), 226
and 445. Earlier volumes of the Jahresbericht der Deutschen Mathematiker-Vereinigung do not con-
tain announcements of the activities of the Göttinger Mathematische Gesellschaft, and therefore it is
not known whether he also discussed his earlier courses there. 

68 Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 570/1) contains a somewhat random collection of
handwritten notes related to many different courses and seminars of Hilbert. Notes of this seminar on
stability theory appear on pp. 18–24. Additional, related notes appear in (Cod. Ms. D. Hilbert, 696).

69 Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 593) contains what appear to be the handwritten notes
of this talk, with the title “Vortrag über Stabilität einer Flüssigkeit in einem Gefässe,” and includes
some related bibliography.

70 As reported in Naturwissenschaftliche Rundschau, vol. 18, (1903), 553–556 (cf. Schirrmacher 2003,
318, note 63). The reporter of this meeting, however, considered that Hilbert was addressing a sub-
tlety, rather than a truly important physical problem.
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the physics volume of the 

 

Encyklopädie

 

, edited by Sommerfeld. At several meetings
of the 

 

Göttinger Mathematische Gesellschaft

 

, Minkowski lectured on this as well as
other physical issues, such as Euler’s equations of hydrodynamics and recent work on
thermodynamics by Walter Nernst (1864–1941), (Nernst 1906), who by that time had
already left Göttingen. Minkowski also taught advanced seminars on physical topics
and more basic courses on mechanics, continuum mechanics, and exercises on
mechanics and heat radiation.

 

71

 

 In 1905 Hilbert and Minkowski organized, together
with other Göttingen professors, an advanced seminar that studied recent progress in
the theories of the electron.

 

72

 

 In December 1906, Minkowski reported to the 

 

Göttin-
ger Mathematische Gesellschaft 

 

on recent developments in radiation theory, and dis-
cussed the works of Hendrik Antoon Lorentz (1853–1928), Max Planck (1858–
1947), Wilhelm Wien (1864–1928) and Lord Rayleigh (1842–1919), (Minkowski
1907, 78). Yet again in 1907, the two conducted a joint seminar on the equations of
electrodynamics, and that semester Minkowski taught a course on heat radiation,
after having studied with Hilbert Planck’s recent book on this topic (Planck 1906).

 

73

 

Finally, as it is well known, during the last years of his life, 1907 to 1909,
Minkowski’s efforts were intensively dedicated to electrodynamics and the principle
of relativity.

The 1905 electron theory seminar exemplifies the kind of unique scientific event
that could be staged only at Göttingen at that time, in which leading mathematicians
and physicists would meet on a weekly basis in order to intensively discuss current
open issues of the discipline. In fact, over the preceding few years the 

 

Göttinger
Mathematische Gesellschaft

 

 had dedicated many of its regular meetings to discussing
recent works on electron theory and related topics, so that this seminar was a natural
continuation of a more sustained, general interest for the local scientific community.

 

71  Cf. 

 

Jahresbericht der Deutschen Mathematikervereinigung

 

 13 (1904), 492; 16 (1907), 171; 17
(1908), 116. See also the 

 

Vorlesungsverzeichnisse

 

, Universität Göttingen, winter semester, 1903–
1904, 14; summer semester, 1904, 14–16. A relatively large collection of documents and manuscripts
from Minkowski’s 

 

Nachlass

 

 has recently been made available at the Jewish National Library, at the
Hebrew University, Jerusalem. These documents are yet to be thoroughly studied and analyzed. They
contain scattered notes of courses taught at Königsberg, Bonn, Zurich and Göttingen. The notes of a
Göttingen course on mechanics, winter semester, 1903–1904, are found in Box IX (folder 4) of that
collection. One noteworthy aspect of these notes is that Minkowski’s recommended reading list is
very similar to that of Hilbert’s earlier courses and comprises mainly texts then available at the

 

 Lese-
zimmer

 

. It included classics such as Lagrange, Kirchhoff, Helmholtz, Mach, and Thomson-Tait,
together with more recent, standard items such as the textbooks by Voigt, Appell, Petersen, Budde and
Routh. Like Hilbert’s list it also included the lesser known (Rausenberg 1888), but it also comprised
two items absent from Hilbert’s list: (Duhamel 1853–1854) and (Föppl 1901). Further, it recom-
mended Voss’s 

 

Encyklopädie

 

 article as a good summary of the field.
72 Pyenson (1979) contains a detailed and painstaking reconstruction of the ideas discussed in this semi-

nar and the contributions of its participants. This reconstruction is based mainly on 

 

Nachlass

 

 David
Hilbert, (Cod. Ms. D. Hilbert, 570/9). I strongly relied on this article as a starting point for my account
of the seminar in the next several paragraphs. Still, my account departs from Pyenson’s views in some
respects.

73 The notes of the course appear in (Minkowski 1907).
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Besides Minkowski and Hilbert, the seminar was led by Wiechert and Gustav Her-
glotz (1881–1953). Herglotz had recently joined the Göttingen faculty and received
his Habilitation for mathematics and astronomy in 1904. Alongside Wiechert, he con-
tributed important new ideas to the electron theory and the two would later become
the leading geophysicists of their time. The list of students who attended the seminar
includes, in retrospect, no less impressive names: two future Nobel laureates, Max
von Laue (1879–1960) and Max Born (1882–1970), as well as Paul Heinrich Blasius
(1883–1970) who would later distinguish himself in fluid mechanics, and Arnold
Kohlschütter (1883–1969), a student of Schwarzschild who became a leading astron-
omer himself. Parallel to this seminar, a second one on electrotechnology was held
with the participation of Felix Klein, Carl Runge (1856–1914), Ludwig Prandtl
(1875–1953) and Hermann Theodor Simon (1870–1918), then head of the Göttingen
Institute for Applied Electricity.74

The modern theory of the electron had developed through the 1890s, primarily
with the contributions of Lorentz working in Leiden, but also through the efforts of
Wiechert at Göttingen and—following a somewhat different outlook—of Joseph Lar-
mor (1857–1942) at Cambridge.75 Lorentz had attempted to account for the interac-
tion between aether and matter in terms of rigid, negatively charged, particles: the
electrons. His article of 1895 dealing with concepts such as stationary aether and
local time, while postulating the existence of electrons, became especially influential
(Lorentz 1895). The views embodied in Lorentz’s and Larmor’s theories received fur-
ther impetus from contemporary experimental work, such as that of Pieter Zeeman
(1865–1943) on the effect associated with his name, work by J. J. Thomson (1856–
1940) especially concerning the cathode ray phenomena and their interpretation in
terms of particles, and also work by Wiechert himself, Wien and Walter Kaufmann
(1871–1947). Gradually, the particles postulated by the theories and the particle-
laden explanations stemming from the experiments came to be identified with one
another.76

Lorentz’s theory comprised elements from both Newtonian mechanics and Max-
well’s electrodynamics. While the properties of matter are governed by Newton’s
laws, Maxwell’s equations describe the electric and magnetic fields, conceived as
states of the stationary aether. The electron postulated by the theory provided the con-
necting link between matter and aether. Electrons moving in the aether generate elec-
tric and magnetic fields, and the latter exert forces on material bodies through the
electrons themselves. The fact that Newton’s laws are invariant under Galilean trans-
formations and Maxwell’s are invariant under what came to be known as Lorentz
transformations was from the outset a source of potential problems and difficulties
for the theory, and in a sense, these and other difficulties would be dispelled only with
the formulation of Einstein’s special theory of relativity in 1905. In Lorentz’s theory

74 Cf. (Pyenson 1979, 102). 
75 Cf. (Warwick 1991).
76 Cf. (Arabatzis 1996).
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the conflict with experimental evidence led to the introduction of the famous contrac-
tion hypothesis and in fact, of a deformable electron.77 But in addition it turned out
that, in this theory, some of the laws governing the behavior of matter would be
Lorentz invariant, rather than Galilean, invariant. The question thus arose whether
this formal, common underlying property does not actually indicate a more essential
affinity between what seemed to be separate realms, and, in fact, whether it would not
be possible to reduce all physical phenomena to electrodynamics.78

Initially, Lorentz himself attempted to expand the scope of his theory, as a possi-
ble foundational perspective for the whole of physics, and in particular as a way to
explain molecular forces in terms of electrical ones. He very soon foresaw a major
difficulty in subsuming also gravitation within this explanatory scope. Still, he
believed that such a difficulty could be overcome, and in 1900 he actually published a
possible account of gravitation in terms of his theory. The main difficulty in this
explanation was that, according to existing astronomical data, the velocity of gravita-
tional effects would seem to have to expand much faster than electromagnetic ones,
contrary to the requirements of the theory (Lorentz 1900). This and other related dif-
ficulties are in the background of Lorentz’s gradual abandonment of a more commit-
ted foundational stance in connection with electron theory and the electromagnetic
worldview. But the approach he had suggested in order to address gravitational phe-
nomena in electromagnetic terms was taken over and further developed that same
year by Wilhelm Wien, who had a much wider aim. Wien explicitly declared that his
goal was to unify currently “isolated areas of mechanical and electromagnetic phe-
nomena,” and in fact, to do so in terms of the theory of the electron while assuming
that all mass was electromagnetic in nature, and that Newton’s laws of mechanics
should be reinterpreted in electromagnetic terms.79

One particular event that highlighted the centrality of the study of the connection
and interaction between aether and matter in motion among physicists in the German-
speaking world was the 1898 meeting of the Gesellschaft Deutscher Naturforscher
und Ärzte, held at Düsseldorf jointly with the annual meeting of the Deutsche Mathe-
matiker- Vereinigung. Most likely both Hilbert and Minkowski had the opportunity to
attend Lorentz’s talk, which was the focus of interest. Lorentz described the main
problem facing current research in electrodynamics in the following terms: 

Ether, ponderable matter, and, we may add, electricity are the building stones from
which we compose the material world, and if we could know whether matter, when it
moves, carries the ether with it or not, then the way would be opened before us by which

77 In Larmor’s theory the situation was slightly different, and so were the theoretical reasons for adopt-
ing the contraction hypothesis, due also to George FitzGerald (1851–1901). For details, see (Warwick
2003, 367–376). 

78 For a more detailed explanation, cf. (Janssen 2002).
79 See (Wien 1900). This is the article to which Voss referred in his survey of 1901, and that he took to

be representative of the new foundationalist trends in physics. Cf. (Jungnickel and McCormmach
1986, 2: 236–240).
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we could further penetrate into the nature of these building stones and their mutual rela-
tions. (Lorentz 1898, 101)80 

This formulation was to surface again in Hilbert’s and Minkowski’s lectures and sem-
inars on electrodynamics after 1905.

The theory of the electron itself was significantly developed in Göttingen after
1900, with contributions to both its experimental and theoretical aspects. The experi-
mental side came up in the work of Walter Kaufmann, who had arrived from Berlin in
1899. Kaufmann experimented with Becquerel rays, which produced high-speed
electrons. Lorentz’s theory stipulated a dependence of the mass of the electron on its
velocity  in terms of a second order relation on  (  being, of course, the speed
of light). In order to confirm this relation it was necessary to observe electrons mov-
ing at speeds as close as possible to  and this was precisely what Kaufmann’s
experiments could afford, by measuring the deflection of electrons in electric and
magnetic fields. He was confident of the possibility of a purely electromagnetic phys-
ics, including the solution of open issues such as the apparent character of mass, and
the gravitation theory of the electron. In 1902 he claimed that his results, combined
with the recent developments of the theory, had definitely confirmed that the mass of
the electrons is of “purely electromagnetic nature.”81

The recent developments of the theory referred to by Kaufmann were those of his
colleague at Göttingen, the brilliant Privatdozent Max Abraham (1875–1922). In a
series of publications, Abraham introduced concepts such as “transverse inertia,” and
“longitudinal mass,” on the basis of which he explained where the dynamics of the
electron differed from that of macroscopic bodies. He also developed the idea of a
rigid electron, as opposed to Lorentz’s deformable one. He argued that explaining the
deformation of the electron as required in Lorentz’s theory would imply the need to
introduce inner forces of non-electromagnetic origin, thus contradicting the most fun-
damental idea of a purely electromagnetic worldview. In Abraham’s theory, the kine-
matic equations of a rigid body become fundamental, and he introduced variational
principles to derive them. Thus, for instance, using a Lagrangian equal to the differ-
ence between the magnetic and the electrical energy, Abraham described the transla-
tional motion of the electron and showed that the principle of least action also holds
for what he called “quasi-stationary” translational motion (namely, motion in which
the velocity of the electron undergoes a small variation over the time required for
light to traverse its diameter). Abraham attributed special epistemological signifi-
cance to the fact that the dynamics of the electron could be expressed by means of a
Lagrangian (Abraham 1903, 168),82 a point that will surface interestingly in Hilbert’s
1905 lectures on axiomatization, as we will see in the next section. Beyond the tech-
nical level, Abraham was a staunch promoter of the electromagnetic worldview and
his theory of the electron was explicitly conceived to “shake the foundations of the

80 Translation quoted from (Hirosige 1976, 35). 
81 Cf. (Hon 1995; Miller 1997, 44–51, 57–62).
82 On Abraham’s electron theory, see (Goldberg 1970; Miller 1997, 51–57).
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mechanical view of nature.” Still, in 1905 he conceded that “the electromagnetic
world picture is so far only a program.”83

Among the organizers of the 1905 electron theory seminar, it was Wiechert who
had been more directly involved in research of closely related issues. Early in his
career he became fascinated by the unification of optics and electromagnetism
offered by Maxwell’s theory, and was convinced of the centrality of the aether for
explaining all physical phenomena. In the 1890s, still unaware of Lorentz’s work, he
published the outlines of his own theory of “atoms of electricity,” a theory which he
judged to be still rather hypothetical, however. This work contained interesting theo-
retical and experimental aspects that supported his view that cathode ray particles
were indeed the electric atoms of his theory. After his arrival in Göttingen in 1897,
Wiechert learnt about Lorentz’s theory, and quickly acknowledged the latter’s prior-
ity in developing an electrodynamics based on the concept of the “electron,” the term
that he now also adopted. Like Lorentz, Wiechert also adopted a less committed and
more skeptical approach towards the possibility of a purely electromagnetic founda-
tion of physics.84 Obviously Hilbert was in close, continued contact with Wiechert
and his ideas, but one rather remarkable opportunity to inspect these ideas more
closely came up once again in 1899, when Wiechert published an article on the foun-
dations of electrodynamics as the second half of the Gauss-Weber Festschrift
(Wiechert 1899).

Not surprisingly, Abraham’s works on electron theory were accorded particular
attention by his Göttingen colleagues in the 1905 seminar, yet Abraham himself
seems not to have attended the meetings in person. He was infamous for his
extremely antagonistic and aggressive personality,85 and this background may partly
explain his absence. But one wonders if also his insistence on the foundational impli-
cations of electron theory, and a completely different attitude of the seminar leaders
to this question may provide an additional, partial explanation for this odd situation. I
already mentioned Wiechert’s basic skepticism, or at least caution, in this regard. As
we will see, also Hilbert and Minkowski were far from wholeheartedly supporting a
purely electromagnetic worldview. Kaufmann was closest to Abraham in this point,
and he had anyway left Göttingen in 1903. It is interesting to notice, at any rate, that
Göttingen physicists and mathematicians held different, and very often conflicting,
views on this as well as other basic issues, and it would be misleading to speak of a
“Göttingen approach” to any specific topic. The situation around the electron theory
seminar sheds interesting light on this fact. 

Be that as it may, the organizers relied not on Abraham’s, but on other, different
works as the seminar’s main texts. The texts included, in the first place, Lorentz’s
1895 presentation of the theory, and also his more recently published Encyklopädie

83 Quoted in (Jungnickel and McCormmach 1986, 2: 241). For a recent summary account of the electro-
magnetic worldview and the fate of its program, see (Kragh 1999, 105–199).

84 Cf. (Darrigol 2000, 344–347). 
85 Cf., e.g., (Born 1978, 91 and 134–137).
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article (Lorentz 1904a), which was to become the standard reference in the field for
many years to come. Like most other surveys published in the Encyklopädie,
Lorentz’s article presented an exhaustive and systematic examination of the known
results and existing literature in the field, including the most recent. The third basic
text used in the seminar was Poincaré’s treatise on electricity and optics (Poincaré
1901), based on his Sorbonne lectures of 1888, 1890 and 1891. This text discussed
the various existing theories of the electrodynamics of moving bodies and criticized
certain aspects of Lorentz’s theory, and in particular a possible violation of the reac-
tion principle due to its separation of matter and aether.86

Alongside the texts of Lorentz, Poincaré and Abraham, additional relevant works
by Göttingen scientists were also studied. In fact, the main ideas of Abraham’s theory
had been recently elaborated by Schwarzschild and by Paul Hertz (1881–1940). The
latter wrote a doctoral dissertation under the effective direction of Abraham, and this
dissertation was studied at the seminar together with Schwarzschild’s paper (Hertz
1904; Schwarzschild 1903). So were several recent papers by Sommerfeld (1904a,
1904b, 1905) who was now at Aachen, but who kept his strong ties to Göttingen
always alive. Naturally, the ideas presented in the relevant works of Herglotz and
Wiechert were also studied in the seminar (Herglotz 1903; Wiechert 1901).

The participants in this seminar discussed the current state of the theory, the rele-
vant experimental work connected with it, and some of its most pressing open prob-
lems. The latter included the nature of the mass of the electron, problems related to
rotation, vibration and acceleration in electron motion and their effects on the electro-
magnetic field, and the problem of faster-than-light motion. More briefly, they also
studied the theory of dispersion and the Zeeman effect. From the point of view of the
immediate development of the theory of relativity, it is indeed puzzling, as Lewis
Pyenson has rightly stressed in his study of the seminar, that the participants were
nowhere close to achieving the surprising breakthrough that Albert Einstein (1879–
1956) had achieved at roughly the same time, and was about to publish (Pyenson 1979,
129–131).87 Nevertheless, from the broader point of view of the development of math-

86 Cf. (Darrigol 2000, 351–366). 
87 According to Pyenson, whereas Einstein “sought above all to address the most essential properties of

nature,” the Göttingen seminarists “sought to subdue nature, as it were, by the use of pure mathemat-
ics. They were not much interested in calculating with experimentally observable phenomena. They
avoided studying electrons in metal conductors or at very low or high temperatures, and they did not
spend much time elaborating the role of electrons in atomic spectra, a field of experimental physics
then attracting the interest of scores of young physicists in their doctoral dissertations.” Pyenson
stresses the fact that Ritz’s experiment was totally ignored at the seminar and adds: “For the seminar
Dozenten it did not matter that accelerating an electron to velocities greater than that of light and even
to infinite velocities made little physical sense. They pursued the problem because of its intrinsic,
abstract interest.” Noteworthy as these points are, it seems to me that by overstressing the question of
why the Göttingen group achieved less than Einstein did, the main point is obscured in Pyenson’s arti-
cle, namely, what and why were Hilbert, Minkowski and their friends doing what they were doing,
and how is this connected to the broader picture of their individual works and of the whole Göttingen
mathematical culture.
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ematics and physics at the turn of the century, and particularly of the account pursued
here, it is all the more surprising to notice the level of detail and close acquaintance
with physical theory and also, to a lesser degree, with experiment, that mathematicians
such as Hilbert and Minkowski had attained by that time. All this, of course, while they
were simultaneously active and highly productive in their own main fields of current,
purely mathematical investigations: analysis, number theory, foundations, etc. Hil-
bert’s involvement in the electron theory seminar clarifies the breadth and depth of the
physical background that underlie his lectures on the axiomatization of physics in
1905, and that had considerably expanded in comparison with the one that prompted
him to formulate, in the first place, his sixth problem back in 1900.

6. AXIOMS FOR PHYSICAL THEORIES: HILBERT’S 1905 LECTURES

Having described in some detail the relevant background, I now proceed to examine
the contents of Hilbert’s 1905 lectures on the “Axiomatization of Physical Theories,”
which devote separate sections to the following topics:

• Mechanics

• Thermodynamics

• Probability Calculus

• Kinetic Theory of Gases

• Insurance Mathematics

• Electrodynamics

• Psychophysics

Here I shall limit myself to discussing the sections on mechanics, the kinetic theory
of gases, and electrodynamics.

6.1 Mechanics

Clearly, the main source of inspiration for this section is Aurel Voss’s 1901 Encyklo-
pädie article (Voss 1901). This is evident in the topics discussed, the authors quoted,
the characterization of the possible kinds of axioms for physics, the specific axioms
discussed, and sometimes even the order of exposition. Hilbert does not copy Voss, of
course, and he introduces many ideas and formulations of his own, and yet the influ-
ence is clearly recognizable.

Though at this time Hilbert considered the axiomatization of physics and of natu-
ral science in general to be a task whose realization was still very distant,88 we can
mention one particular topic for which the axiomatic treatment had been almost com-

88 “Von einer durchgeführten axiomatischen Behandlung der Physik und der Naturwissenschaften ist
man noch weit entfernt; nur auf einzelnen Teilgebieten finden sich Ansätze dazu, die nur in ganz
wenigen Fällen durchgeführt sind. <Die Durchführung ist ein ganzes—grosses—Arbeitsprogramm,
Vgl. Dissertation von Schimmack sowie Schur>.” (Hilbert 1905a, 121)
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pletely attained (and only very recently, for that matter). This is the “law of the paral-
lelogram” or, what amounts to the same thing, the laws of vector-addition. Hilbert
based his own axiomatic presentation of this topic on works by Darboux, by Hamel,
and by one of his own students, Rudolf Schimmack (1881–1912).89

Hilbert defined a force as a three-component vector, and made no additional,
explicit assumptions here about the nature of the vectors themselves, but it is implic-
itly clear that he had in mind the collection of all ordered triples of real numbers.
Thus, as in his axiomatization of geometry, Hilbert was not referring to an arbitrary
collection of abstract objects, but to a very concrete mathematical entity; in this case,
one that had been increasingly adopted after 1890 in the treatment of physical theo-
ries, following the work of Oliver Heaviside (1850–1925) and Josiah Willard Gibbs
(1839–1903).90 In fact, in Schimmack’s article of 1903—based on his doctoral dis-
sertation—a vector was explicitly defined as a directed, real segment of line in the
Euclidean space. Moreover, Schimmack defined two vectors as equal when their
lengths as well as their directions coincide (Schimmack 1903, 318).

The axioms presented here were thus meant to define the addition of two such
given vectors, as the sums of the components of the given vectors. At first sight, this
very formulation could be taken as the single axiom needed to define the sum. But the
task of axiomatic analysis is precisely to separate this single idea into a system of
several, mutually independent, simpler notions that express the basic intuitions
involved in it. Otherwise, it would be like taking the linearity of the equation repre-
senting the straight line as the starting point of geometry.91 Hilbert had shown in his
previous discussion on geometry that this latter result could be derived using all his
axioms of geometry.

Hilbert thus formulated six axioms to define the addition of vectors: the first three
assert the existence of a well-defined sum for any two given vectors (without stating
what its value is), and the commutativity and associativity of this operation. The
fourth axiom connects the resultant vector with the directions of the summed vectors
as follows:

4. Let  denote the vector  having the same direction as  Then
every real number  defines the sum:

i.e., the addition of two vectors having the same direction is defined as the algebraic
addition of the extensions along the straight line on which both vectors lie.92

89 The works referred to by Hilbert are (Darboux 1875; Hamel 1905; Schimmack 1903). Schimmak’s
paper was presented to the Königliche Gesellschaft der Wissenschaften zu Göttingen by Hilbert him-
self. An additional related work, also mentioned by Hilbert in the manuscript, is (Schur 1903).

90 Cf. (Crowe 1967, 150 ff.; Yavetz 1995).
91 “... das andere wäre genau dasselbe, wie wenn man in der Geometrie die Linearität der Geraden als

einziges Axiom an die Spitze stellen wollte (vgl. S. 118).” (Hilbert 1905a, 123)
92 “Addition zweier Vektoren derselben Richtung geschieht durch algebraische Addition der Strecken

auf der gemeinsamen Geraden.” (Hilbert 1905a, 123)
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The fifth one connects addition with rotation:

5. If  denotes a rotation of space around the common origin of two forces  and 
then the rotation of the sum of the vectors equals the sum of the two rotated vectors:

i.e., the relative position of sum and components is invariant with respect to rotation.93

The sixth axiom concerns continuity:

6. Addition is a continuous operation, i.e., given a sufficiently small domain  around
the end-point of  one can always find domains  and  around the endpoints
of  and  respectively, such that the endpoint of the sum of any two vectors belonging
to each of these domains will always fall inside 94

These are all simple axioms—Hilbert continued, without having really explained
what a “simple” axiom is—and if we think of the vectors as representing forces, they
also seem rather plausible. The axioms thus correspond to the basic known facts of
experience, i.e., that the action of two forces on a point may always be replaced by a
single one; that the order and the way in which they are added do not change the
result; that two forces having one and the same direction can be replaced by a single
force having the same direction; and, finally, that the relative position of the compo-
nents and the resultant is independent of rotations of the coordinates. Finally, the
demand for continuity in this system is similar and is formulated similarly to that of
geometry.

That these six axioms are in fact necessary to define the law of the parallelogram
was first claimed by Darboux, and later proven by Hamel. The main difficulties for
this proof arose from the sixth axiom. Schimmack proved in 1903 the independence
of the six axioms (in a somewhat different formulation), using the usual technique of
models that satisfy all but one of the axioms. Hilbert also mentioned some possible
modifications of this system. Thus, Darboux himself had showed that the continuity
axiom may be abandoned, and in its place, it may be postulated that the resultant lies
on the same plane as, and within the internal angle between, the two added vectors.
Hamel, on the other hand, following a conjecture of Friedrich Schur, proved that the
fifth axiom is superfluous if we assume that the locations of the endpoints of the
resultants, seen as functions of the two added vectors, have a continuous derivative.
In fact—Hilbert concluded—if we assume that all functions appearing in the natural
sciences have at least one continuous derivative, and take this assumption as an even

93 “Nimmt man eine Drehung  des Zahlenraumes um den gemeinsamen Anfangspunkt vor, so entsteht
aus  die Summe der aus  und  durch  entstehenden Vektoren: 
d.h. die relative Lage von Summe und Komponenten ist gegenüber allen Drehungen invariant.”
(Hilbert 1905a, 124)

94 “Zu einem genügend kleinen Gebiete  um den Endpunkt von  kann man stets um die End-
punkte von  und  solche Gebiete  abgrenzen, daß der Endpunkt der Summe jedes in 
u.  endigenden Vectorpaares nach  fällt.” (Hilbert 1905a, 124)
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more basic axiom, then vector addition is defined by reference to only the four first
axioms in the system.95

The sixth axiom, the axiom of continuity, plays a very central role in Hilbert’s
overall conception of the axiomatization of natural science—geometry, of course,
included. It is part of the essence of things—Hilbert said in his lecture—that the
axiom of continuity should appear in every geometrical or physical system. Therefore
it can be formulated not just with reference to a specific domain, as was the case here
for vector addition, but in a much more general way. A very similar opinion had been
advanced by Hertz, as we saw, who described continuity as “an experience of the
most general kind,” and who saw it as a very basic assumption of all physical science.
Boltzmann, in his 1897 textbook, had also pointed out the continuity of motion as the
first basic assumption of mechanics, which in turn should provide the basis for all of
physical science.96 Hilbert advanced in his lectures the following general formulation
of the principle of continuity:

If a sufficiently small degree of accuracy is prescribed in advance as our condition for the
fulfillment of a certain statement, then an adequate domain may be determined, within
which one can freely choose the arguments [of the function defining the statement], with-
out however deviating from the statement, more than allowed by the prescribed degree.97

Experiment—Hilbert continued—compels us to place this axiom at the top of
every natural science, since it allows us to assert the validity of our assumptions and
claims.98 In every special case, this general axiom must be given the appropriate ver-
sion, as Hilbert had shown for geometry in an earlier part of the lectures and here for
vector addition. Of course there are many important differences between the
Archimedean axiom, and the one formulated here for physical theories, but Hilbert
seems to have preferred stressing the similarity rather than sharpening these differ-
ences. In fact, he suggested that from a strictly mathematical point of view, it would
be possible to conceive interesting systems of physical axioms that do without conti-
nuity, that is, axioms that define a kind of “non-Archimedean physics.” He did not
consider such systems here, however, since the task was to see how the ideas and
methods of axiomatics could be fruitfully applied to physics.99 Nevertheless, this is
an extremely important topic in Hilbert’s axiomatic treatment of physical theories.
When speaking of applying axiomatic ideas and methods to these theories, Hilbert

95 “Nimmt man nun von vornherein als Grundaxiom aller Naturwissenschaft an, daß alle auftretenden
Funktionen einmal stetig differenzierbar sind, so kommt man hier mit den ersten 4 Axiomen aus.”
(Hilbert 1905a, 127)

96 Quoted in (Boltzmann 1974, 228–229). 
97 “Schreibt man für die Erfüllung der Behauptung einen gewissen genügend kleinen Genaugikeitsgrad

vor, so läßt sich ein Bereich angeben, innerhalb dessen man die Voraussetzungen frei wählen kann,
ohne daß die Abweichung der Behauptung jenen vorgeschriebenen Grad überschreitet.” (Hilbert
1905a, 125)

98 “Das Experiment zwingt uns geradezu dazu, ein solches Axiom an die Spitze aller Naturwissenschaft
zu setzen, denn wir können bei ihm stets nur das Ein<Zu>treffen von Voraussetzung und Behauptung
mit einer gewissen beschränkten Genauigkeit feststellen.” (Hilbert 1905a, 125–126)
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meant in this case existing physical theories. But the possibility suggested here, of
examining models of theories that preserve the basic logical structure of classical
physics, except for a particular feature, opens the way to the introduction and system-
atic analysis of alternative theories, close enough to the existing ones in relevant
respects. Hilbert’s future works on physics, and in particular his work on general rel-
ativity, would rely on the actualization of this possibility.

An additional point that should be stressed in relation to Hilbert’s treatment of
vector addition has to do with his disciplinary conceptions. The idea of a vector
space, and the operations with vectors as part of it, has been considered an integral
part of algebra at least since the 1920s.100 This was not the case for Hilbert, who did
not bother here to make any connection between his axioms for vector addition and,
say, the already well-known axiomatic definition of an abstract group. For Hilbert, as
for the other mathematicians he cites in this section, this topic was part of physics
rather than of algebra.101 In fact, the articles by Hamel and by Schur were published
in the Zeitschrift für Mathematik und Physik—a journal that bore the explicit sub-
title: Organ für angewandte Mathematik. It had been established by Oscar Xavier
Schlömilch (1823–1901) and by the turn of the century its editor was Carl Runge, the
leading applied mathematician at Göttingen.

After the addition of vectors, Hilbert went on to discuss a second domain related
to mechanics: statics. Specifically, he considered the axioms that describe the equilib-
rium conditions of a rigid body. The main concept here is that of a force, which can
be described as a vector with an application point. The state of equilibrium is defined
by the following axioms:

I. Forces with a common application point are equivalent to their sum.

II. Given two forces,  with different application points,  if they have the
same direction, and the latter coincides with the straight line connecting  and  then
these forces are equivalent.

III. A rigid body is in a state of equilibrium if all the forces applied to it taken together
are equivalent to 0.102

99 “Rein mathematisch werden natürlich auch <physikalische> Axiomensysteme, die auf <diese> Ste-
tigkeit Verzicht leisten, also eine ‘nicht-Archimedische Physik’ in erweitertem Sinne definieren, von
hohem Interesse sein können; wir werden jedoch zunächst noch von ihrer Betrachtung absehen kön-
nen, da es sich vorerst überhaupt nur darum handelt, die fruchtbaren Ideen und Methoden der Axio-
matik in die Physik einzuführen.” (Hilbert 1905a, 126)

100 Cf. (Dorier 1995; Moore 1995).
101 This point, which helps understanding Hilbert’s conception of algebra, is discussed in detail in (Corry

2003, §3.4). 
102 “1., Kräfte mit demselben Angriffspunkt sind ihrer Summe (im obigen Sinne) ‘aequivalent.’ 2., 2

Kräfte  mit verschiedenen Angriffspunkten  und dem gleichen (auch gleichgerichteten)
Vektor, deren Richtung in die Verbindung  fällt, heißen gleichfalls aequivalent. … Ein starrer
Körper befindet sich im Gleichgewicht, wenn die an ihm angreifenden Kräfte zusammengenommen
der Null aequivalent sind.” (Hilbert 1905a, 127–128)
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From these axioms, Hilbert asserted, the known formulae of equilibrium of forces
lying on the same plane (e.g., for the case of a lever and or an inclined plane) can be
deduced. As in the case of vector addition, Hilbert’s main aim in formulating the axi-
oms was to uncover the basic, empirical facts that underlie our perception of the phe-
nomenon of equilibrium.

In the following lectures Hilbert analyzed in more detail the principles of
mechanics and, in particular, the laws of motion. In order to study motion, one starts
by assuming space and adds time to it. Since geometry provides the axiomatic study
of space, the axiomatic study of motion will call for a similar analysis of time.

According to Hilbert, two basic properties define time: (1) its uniform passage and
(2) its unidimensionality.
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 A consistent application of Hilbert’s axiomatic approach
to this characterization immediately leads to the question: Are these two independent
facts given by intuition,
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 or are they derivable the one from the other? Since this
question had very seldom been pursued, he said, one could only give a brief sketch of
tentative answers to it. The unidimensionality of time is manifest in the fact, that,
whereas to determine a point in space one needs three parameters, for time one needs
only the single parameter  This parameter  could obviously be transformed, by
changing the marks that appear on our clocks,
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 which is perhaps impractical but
certainly makes no logical difference. One can even take a discontinuous function for

 provided it is invertible and one-to-one,
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 though in general one does not want to
deviate from the continuity principle, desirable for all the natural sciences. Hilbert’s
brief characterization of time would seem to allude to Carl Neumann’s (Neumann
1870), in his attempt to reduce the principle of inertia into simpler ones.

Whereas time and space are alike in that, for both, arbitrarily large values of the
parameters are materially inaccessible, a further basic difference between them is that
time can be experimentally investigated in only one direction, namely, that of its
increase.
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 While this limitation is closely connected to the unidimensionality of
time,
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 the issue of the uniform passage of time is an experimental fact, which has to
be deduced, according to Hilbert, from mechanics alone.
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 This claim was elabo-
rated into a rather obscure discussion of the uniform passage for which, as usual, Hil-
bert gave no direct references, but which clearly harks back to Hertz’s and Larmor’s

 

103 “... ihr 

 

gleichmäßiger Verlauf

 

 und ihre 

 

Eindimensionalität

 

.” (Hilbert 1905a, 128)
104 “... anschauliche unabhängige Tatsachen.” (Hilbert 1905a, 129)
105 “Es ist ohne weiteres klar, daß dieser Parameter  durch eine beliebige Funktion von sich ersetzt wer-

den kann; das würde etwa nur auf eine andere Benennung der Ziffern der Uhr oder einen unregelmä-
ßigen Gang des Zeigers hinauskommen.” (Hilbert 1905a, 129)

106 One is reminded here of a similar explanation, though in a more general context, found in Hilbert’s
letter to Frege, on 29 December 1899. See (Gabriel et al. 1980, 41). 

107 “Der <Ein> wesentlicher Unterschied von Zeit und Raum ist nur der, daß wir in der Zeit nur in einem
Sinne, dem des 

 

wachsenden Parameters

 

 experimentieren können, während Raum und Zeit darin über-
einstimmen, daß uns 

 

beliebig große Parameterwerte

 

 unzugänglich sind.” (Hilbert 1905a, 129)
108 Here Hilbert adds with his own handwriting (p. 130): <Astronomie! Wie wichtig wäre Beobachtun-

gen in ferner Vergangenheit u. Zukunft!>.”
109 “... eine experimentelle nur aus der Mechanik zu entnehmende Tatsache.” (Hilbert 1905a, 130)
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discussions and referred to by Voss as well, as mentioned earlier. I try to reproduce
Hilbert’s account here without really claiming to understand it. In short, Hilbert
argued that if the flow of time were non-uniform then an essential difference between
organic and inorganic matter would be reflected in the laws of mechanics, which is
not actually the case. He drew attention to the fact that the differential expression

 characterizes a specific physical situation only when it vanishes,
namely, in the case of inertial motion. From a logical point of view, however, there is
no apparent reason why the same situation might not be represented in terms of a
more complicated expression, e.g., an expression of the form

The magnitudes  and  may depend not only on time, but also on the kind of
matter involved,
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 e.g., on whether organic or inorganic matter is involved. By
means of a suitable change of variables,  this latter expression could in turn
be transformed into  which would also depend on the kind of matter
involved. Thus different kinds of substances would yield, under a suitable change of
variables, different values of “time,” values that nevertheless still satisfy the standard
equations of mechanics. One could then use the most common kind of matter in order
to measure time,
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 and when small variations of organic matter occurred along large
changes in inorganic matter, clearly distinguishable non-uniformities in the passage
of time would arise.
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 However, it is an intuitive (

 

anschauliche

 

) fact, indeed a
mechanical axiom, Hilbert said, that the expression  always appears in
the equations with 

 

one and the same

 

 parameter  independently of the kind of sub-
stance involved, contrary to what the above discussion would seem to imply. This lat-
ter fact, to which Hilbert wanted to accord the status of axiom, is then the one that
establishes the uniform character of the passage of time. Whatever the meaning and
the validity of this strange argument, one source where Hilbert was likely to have
found it is Aurel Voss’s 1901 

 

Encyklopädie

 

 article, which quotes, in this regard, simi-
lar passages of Larmor and Hertz.
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Following this analysis of the basic ideas behind the concept of time, Hilbert
repeated the same kind of reasoning he had used in an earlier lecture concerning the
role of continuity in physics. He suggested the possibility of elaborating a non-
Galilean mechanics, i.e., a mechanics in which the measurement of time would
depend on the kind of matter involved, in contrast to the characterization presented
earlier in his lecture. This mechanics would, in most respects, be in accordance with

 

110 “... die  von der Zeit, vor allem aber von dem Stoffe abhängig sein können.” (Hilbert 1905a,
130)

111 “... der häufigste Stoff etwa kann dann zu Zeitmessungen verwandt werden.” (Hilbert 1905a, 130–
131)

112 “... für uns leicht große scheinbare Unstetigkeiten der Zeit auftreten.” (Hilbert 1905a, 131)
113 See (Voss 1901, 14). Voss quoted (Larmor 1900, 288) and (Hertz 1894, 165).
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the usual one, and thus one would be able to recognize which parts of mechanics
depend essentially on the peculiar properties of time, and which parts do not. It is
only in this way that the essence of the uniform passage of time can be elucidated, he
thought, and one may thus at last understand the exact scope of the connection
between this property and the other axioms of mechanics.

So much for the properties of space and time. Hilbert went on to discuss the prop-
erties of motion, while concentrating on a single material point. This is clearly the
simplest case and therefore it is convenient for Hilbert’s axiomatic analysis. How-
ever, it must be stressed that Hilbert was thereby distancing himself from Hertz’s pre-
sentation of mechanics, in which the dynamics of single points is not contemplated.
One of the axioms of statics formulated earlier in the course stated that a point is in
equilibrium when the forces acting on it are equivalent to the null force. From this
axiom, Hilbert derived the Newtonian law of motion:

Newton himself, said Hilbert, had attempted to formulate a system of axioms for
his mechanics, but his system was not very sharply elaborated and several objections
could be raised against it. A detailed criticism, said Hilbert, was advanced by Mach in
his Mechanik.114

The above axiom of motion holds for a free particle. If there are constraints, e.g.,
that the point be on a plane  then one must introduce an additional
axiom, namely, Gauss’s principle of minimal constraint. Gauss’s principle establishes
that a particle in nature moves along the path that minimizes the following magni-
tude:

Here  and  denote the components of the acceleration of the particle,
and  the components of the moving force. Clearly, although Hilbert did not
say it in his manuscript, if the particle is free from constraints, the above magnitude
can actually become zero and we simply obtain the Newtonian law of motion. If there
are constraints, however, the magnitude can still be minimized, thus yielding the
motion of the particle.115

114 A detailed account of the kind of criticism advanced by Mach, and before him by Carl Neumann and
Ludwig Lange, appears in (Barbour 1989, chap. 12).

115 For more detail on Gauss’s principle, see (Lanczos 1962, 106–110). Interestingly, Lanczos points out
that “Gauss was much attached to this principle because it represents a perfect physical analogy to the
‘method of least squares’ (discovered by him and independently by Legendre) in the adjustment of
errors.” Hilbert also discussed this latter method in subsequent lectures, but did not explicitly make
any connection between Gauss’s two contributions. 
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In his lectures, Hilbert explained in some detail how the Lagrangian equations of
motion could be derived from this principle. But he also stressed that the Lagrangian
equations could themselves be taken as axioms and set at the top of the whole of
mechanics. In this case, the Newtonian and Galilean principles would no longer be
considered as necessary assumptions of mechanics. Rather, they would be logical
consequences of a distinct principle. Although this is a convenient approach that is
often adopted by physicists, Hilbert remarked, it has the same kinds of disadvantages
as deriving the whole of geometry from the demand of linearity for the equations of
the straight line: many results can be derived from it, but it does not indicate what the
simplest assumptions underlying the considered discipline may be. All the discussion
up to this point, said Hilbert, concerns the simplest and oldest systems of axioms for
the mechanics of systems of points. Beside them there is a long list of other possible
systems of axioms for mechanics. The first of these is connected to the principle of
conservation of energy, which Hilbert associated with the law of the impossibility of
a perpetuum mobile and formulated as follows: “If a system is at rest and no forces
are applied, then the system will remain at rest.”116

Now the interesting question arises, how far can we develop the whole of
mechanics by putting this law at the top? One should follow a process similar to the
one applied in earlier lectures: to take a certain result that can be logically derived
from the axioms and try to find out if, and to what extent, it can simply replace the
basic axioms. In this case, it turns out that the law of conservation alone, as formu-
lated above, is sufficient, though not necessary, for the derivation of the conditions of
equilibrium in mechanics.117 In order to account for the necessary conditions as well,
the following axiom must be added: “A mechanical system can only be in equilibrium
if, in accordance with the axiom of the impossibility of a perpetuum mobile, it is at
rest.”118 The basic idea of deriving all of mechanics from this law, said Hilbert, was
first introduced by Simon Stevin, in his law of equilibrium for objects in a slanted
plane, but it was not clear to Stevin that what was actually involved was the reduction
of the law to simpler axioms. The axiom was so absolutely obvious to Stevin, claimed
Hilbert, that he had thought that a proof of it could be found without starting from
any simpler assumptions.

From Hilbert’s principle of conservation of energy, one can also derive the virtual
velocities of the system, by adding a new axiom, namely, the principle of d’Alembert.
This is done by placing in the equilibrium conditions, instead of the components

116 “Ist ein System in Ruhe und die Kräftefunction konstant (wirken keine Kräfte), so bleibt es in Ruhe.”
(Hilbert 1905a, 137)

117 “Es lässt sich zeigen, daß unter allen den Bedingungen, die die Gleichgewichtssätze der Mechanik lie-
fern, wirklich Gleichgewicht eintritt.” (Hilbert 1905a, 138)

118 “Es folgt jedoch nicht, daß diese Bedingungen auch notwendig für das Gleichgewicht sind, daß nicht
etwa auch unter andern Umständen ein mechanisches System im Gleichgewicht sein kann. Es muß
also noch ein Axiom hinzugenommen werden, des Inhaltes etwa: Ein mechanisches System kann nur
dann im Gleichgewicht sein, wenn es dem Axiom von <der Unmöglichkeit des> Perpetuum mobile
gemäß in Ruhe ist.” (Hilbert 1905a, 138)
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 of a given force-field acting on every mass point, the expressions
. In other words, the principle establishes that motion

takes place in such a way that at every instant of time, equilibrium obtains between
the force and the acceleration. In this case we obtain a very systematic and simple
derivation of the Lagrangian equations, and therefore of the whole of mechanics,
from three axioms: the two connected with the principle of conservation of energy (as
sufficient and necessary conditions) and d’Alembert’s principle, added now.

A third way to derive mechanics is based on the concept of impulse. Instead of
seeing the force field  as a continuous function of  we consider  as first null, or
of a very small value; then, suddenly, as increasing considerably in a very short inter-
val, from  and finally decreasing again suddenly. If one considers this kind
of process at the limit, namely, when  one then obtains an impulse, which does
not directly influence the acceleration, like a force, but rather creates a sudden veloc-
ity-change. The impulse is a time-independent vector, which however acts at a given
point in time: at different points in time, different impulses may take place. The law
that determines the action of an impulse is expressed by Bertrand’s principle. This
principle imposes certain conditions on the kinetic energy, so that it directly yields
the velocity. It states that:

The kinetic energy of a system set in motion as a consequence of an impulse must be
maximal, as compared to the energies produced by all motions admissible under the prin-
ciple of conservation of energy.119

The law of conservation is invoked here in order to establish that the total energy
of the system is the same before and after the action of the impulse.

Bertrand’s principle, like the others, could also be deduced from the elaborated
body of mechanics by applying a limiting process. To illustrate this idea, Hilbert
resorted to an analogy with optics: the impulse corresponds to the discontinuous
change of the refraction coefficients affecting the velocity of light when it passes
through the surface of contact between two media. But, again, as with the other alter-
native principles of mechanics, we could also begin with the concept of impulse as
the basic one, in order to derive the whole of mechanics from it. This alternative
assumes the possibility of constructing mechanics without having to start from the
concept of force. Such a construction is based on considering a sequence of succes-
sive small impulses in arbitrarily small time-intervals, and in recovering, by a limit-
ing process, the continuous action of a force. This process, however, necessitates the
introduction of the continuity axiom discussed above. In this way, finally, the whole
of mechanics is reconstructed using only two axioms: Bertrand’s principle and the
said axiom of continuity. In fact, this assertion of Hilbert is somewhat misleading,
since his very formulation of Bertrand’s principle presupposes the acceptance of the
law of conservation of energy. In any case, Hilbert believed that also in this case, a

119 “Nach einem Impuls muß die kinetische Energie des Systems bei der <wirklich> eintretenden Bewe-
gung ein Maximum sein gegenüber allen mit dem Satze von der Erhaltung der Energie verträglichen
Bewegungen.” (Hilbert 1905a, 141)
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completely analogous process could be found in the construction of geometric optics:
first one considers the process of sudden change of optical density that takes place in
the surface that separates two media; then, one goes in the opposite direction, and
considers, by means of a limiting process, the passage of a light ray through a
medium with continuously varying optical density, seeing it as a succession of many
infinitely small, sudden changes of density.

Another standard approach to the foundations of mechanics that Hilbert discussed
is the one based on the use of the Hamiltonian principle as the only axiom. Consider
a force field  and a potential scalar function  such that  is the gradient of  If

 is the kinetic energy of the system, then Hamilton’s principle requires that the
motion of the system from a given starting point, at time , and an endpoint, at time

 takes place along the path that makes the integral

an extremum among all possible paths between those two points. The Lagrangian
equations can be derived from this principle, and the principle is valid for continuous
as well as for discrete masses. The principle is also valid for the case of additional
constraints, insofar as these constraints do not contain differential quotients that
depend on the velocity or on the direction of motion (non-holonomic conditions).
Hilbert added that Gauss’s principle was valid for this exception.

Hilbert’s presentation of mechanics so far focused on approaches that had specifi-
cally been criticized by Hertz: the traditional one, based on the concepts of time,
space, mass and force, and the energetic one, based on the use of Hamilton’s princi-
ple. To conclude this section, Hilbert proceeded to discuss the approaches to the
foundations of mechanics introduced in the textbooks of Hertz and Boltzmann
respectively. Hilbert claimed that both intended to simplify mechanics, but each from
an opposite perspective.

Expressing once again his admiration for the perfect Euclidean structure of
Hertz’s construction of mechanics,120 Hilbert explained that for Hertz, all the effects
of forces were to be explained by means of rigid connections between bodies; but he
added that this explanation did not make clear whether one should take into account
the atomistic structure of matter or not. Hertz’s only axiom, as described by Hilbert,
was the principle of the straightest path (Das Prinzip von der geradesten Bahn),
which is a special case of the Gaussian principle of minimal constraint, for the force-
free case. According to Hilbert, Hertz’s principle is obtained from Gauss’s by substi-
tuting in the place of the parameter  the arc lengths  of the curve. The curvature

120 “Er liefert jedenfalls von dieser Grundlage aus in abstrakter und präcisester Weise einen wunderbaren
Aufbau der Mechanik, indem er ganz nach Euklidischem Ideale ein vollständiges System von Axio-
men und Definitionen aufstellt.” (Hilbert 1905a, 146)
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of the path is to be minimized, in each of its points, when compared with all the other
possible paths in the same direction that satisfy the constraint. On this path, the body
moves uniformly if one also assumes Newton’s first law.121 In fact, this requirement
had been pointed out by Hertz himself in the introduction to the Principles. As one of
the advantages of his mathematical formulation, Hertz mentioned the fact that he does
not need to assume, with Gauss, that nature intentionally keeps a certain quantity (the
constraint) as small as possible. Hertz felt uncomfortable with such assumptions.

Boltzmann, contrary to Hertz, intended to explain the constraints and the rigid
connections through the effects of forces, and in particular, of central forces between
any two mass points. Boltzmann’s presentation of mechanics, according to Hilbert,
was less perfect and less fully elaborated than that of Hertz.

In discussing the principles of mechanics in 1905, Hilbert did not explicitly sepa-
rate differential and integral principles. Nor did he comment on the fundamental dif-
ferences between the two kinds. He did so, however, in the next winter semester, in a
course devoted exclusively to mechanics (Hilbert 1905–6, §3.1.2).122

Hilbert closed his discussion on the axiomatics of mechanics with a very interest-
ing, though rather speculative, discussion involving Newtonian astronomy and con-
tinuum mechanics, in which methodological and formal considerations led him to
ponder the possibility of unifying mechanics and electrodynamics. It should be
remarked that neither Einstein’s nor Poincaré’s 1905 articles on the electrodynamics
of moving bodies is mentioned in any of Hilbert’s 1905 lectures; most likely, Hilbert
was not aware of these works at the time.123 Hilbert’s brief remarks here, on the other
hand, strongly bring to mind the kind of argument, and even the notation, used by
Minkowski in his first public lectures on these topics in 1907 in Göttingen.

Earlier presentations of mechanics, Hilbert said, considered the force—expressed
in terms of a vector field—as given, and then investigated its effect on motion. In
Boltzmann’s and Hertz’s presentations, for the first time, force and motion were con-

121 “Die Bewegung eines jeden Systemes erfolgt gleichförmig in einer ‘geradesten Bahn’, d.h. für einen
Punkt: die Krümmung

der Bahnkurve soll ein Minimum sein, in jedem Orte, verglichen mit allen andern den Zwangsbedin-
gungen gehorchenden Bahnen derselben Richtung, und auf dieser Bahn bewegt sich der Punkt gleich-
förmig.” (Hilbert 1905a, 146–147)

122 The contents of this course are analyzed in some detail in (Blum 1994).
123 This particular lecture of Hilbert is dated in the manuscript 26 July 1905, whereas Poincaré’s article

was submitted for publication on 23 July 1905, and Einstein’s paper three weeks later. Poincaré had
published a short announcement on 5 June 1905, in the Comptes rendus of the Paris Academy of Sci-
ences. 
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sidered not as separate, but rather as closely interconnected and mutually interacting,
concepts. Astronomy is the best domain in which to understand this interaction, since
Newtonian gravitation is the only force acting on the system of celestial bodies. In
this system, however, the force acting on a mass point depends not only on its own
position but also on the positions and on the motions of the other points. Thus, the
motions of the points and the acting forces can only be determined simultaneously.
The potential energy in a Newtonian system composed of two points  and

 equals, as it is well-known,  the denominator of this fraction being

the distance between the two points. This is a symmetric function of the two points,
and thus it conforms to Newton’s law of the equality of action and reaction. Starting
from these general remarks, Hilbert went on to discuss some ideas that, he said, came
from an earlier work of Boltzmann and which might lead to interesting results. Which
of Boltzmann’s works Hilbert was referring to here is not stated in the manuscript.
However, from the ensuing discussion it is evident that Hilbert had in mind a short
article by Boltzmann concerning the application of Hertz’s perspective to continuum
mechanics (Boltzmann 1900).

Hertz himself had already anticipated the possibility of extending his point of
view from particles to continua. In 1900 Richard Reiff (1855–1908) published an
article that developed this direction (Reiff 1900), and soon Boltzmann published a
reply pointing out an error. Boltzmann indicated, however, that Hertz’s point of view
could be correctly extended to include continua, the possibility seemed to arise of
constructing a detailed account of the whole world of observable phenomena.124

Boltzmann meant by this that one could conceivably follow an idea developed by
Lord Kelvin, J.J. Thomson and others, that considered atoms as vortices or other sim-
ilar stationary motion phenomena in incompressible fluids; this would offer a con-
crete representation of Hertz’s concealed motions and could provide the basis for
explaining all natural phenomena. Such a perspective, however, would require the
addition of many new hypotheses which would be no less artificial than the hypothe-
sis of action at a distance between atoms, and therefore—at least given the current
state of physical knowledge—little would be gained by pursuing it.

Boltzmann’s article also contained a more positive suggestion, related to the study
of the mechanics of continua in the spirit of Hertz. Following a suggestion of Brill,
Boltzmann proposed to modify the accepted Eulerian approach to this issue. The lat-
ter consisted in taking a fixed point in space and deriving the equations of motion of
the fluid by studying the behavior of the latter at the given point. Instead of this
Boltzmann suggested a Lagrangian approach, deducing the equations by looking at
an element of the fluid as it moves through space. This approach seemed to Boltz-
mann to be the natural way to extend Hertz’s point of view from particles to continua,

124 “... ein detailliertes Bild der gesamten Erscheinungswelt zu erhalten.” (Boltzmann 1900, 668)
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and he was confident that it would lead to the equations of motion of an incompress-
ible fluid as well as to those of a rigid body submerged in such a fluid.125 In 1903
Boltzmann repeated these ideas in a seminar taught in Vienna, and one of his students
decided to take the problem as the topic of his doctoral dissertation of 1904: this was
Paul Ehrenfest (1880–1993). Starting from Boltzmann’s suggestion, Ehrenfest stud-
ied various aspects of the mechanics of continua using a Lagrangian approach. In
fact, Ehrenfest in his dissertation used the terms Eulerian and Lagrangian with the
meaning intended here, as Boltzmann in his 1900 article had not (Ehrenfest 1904, 4–
5). The results obtained in the dissertation helped to clarify the relations between the
differential and the integral variational principles for non-holonomic systems, but
they offered no real contribution to an understanding of all physical phenomena in
terms of concealed motions and masses, as Boltzmann and Ehrenfest may have
hoped.126

Ehrenfest studied in Göttingen between 1901 and 1903, and returned there in
1906 for one year, before moving with his mathematician wife Tatyana to St. Peters-
burg. We don’t know the details of Ehrenfest’s attendance at Hilbert’s lectures during
his first stay in Göttingen. Hilbert taught courses on the mechanics of continua in the
winter semester of 1902–1903 and in the following summer semester of 1903, which
Ehrenfest may well have attended. Nor do we know whether Hilbert knew anything
about Ehrenfest’s dissertation when he taught his course in 1905. But be that as it
may, at this point in his lectures, Hilbert connected his consideration of Newtonian
astronomy to the equations of continuum mechanics, while referring to the dichot-
omy between the Lagrangian and the Eulerian approach, and using precisely those
terms. Interestingly enough, the idea that Hilbert pursued in response to Boltzmann’s
article was not that the Lagrangian approach would be the natural one for studying
mechanics of continua, but rather the opposite, namely, that a study of the continua
following the Eulerian approach, and assuming an atomistic worldview, could lead to
a unified explanation of all natural phenomena.

Consider a free system subject only to central forces acting between its mass-
points —and in particular only forces that satisfy Newton’s law, as described above.
An axiomatic description of this system would include the usual axioms of mechan-
ics, together with the Newtonian law as an additional one. We want to express this
system, said Hilbert, as concisely as possible by means of differential equations. In
the most general case we assume the existence of a continuous mass distribution in
space, In special cases we have  within a well-delimited region;
the case of astronomy, in which the planets are considered mass-points, can be
derived from this special case by a process of passage to the limit. Hilbert explained
what the Lagrangian approach to this problem would entail. That approach, he added,
is the most appropriate one for discrete systems, but often it is also conveniently used
in the mechanics of continua. Here, however, he would follow the Eulerian approach

125 For more details, cf. (Klein 1970, 64–66).
126 For details on Ehrenfest’s dissertation, see (Klein 1970, 66–74).
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to derive equations of the motion of a unit mass-particle in a continuum. The ideas
discussed in this section, as well as in many other parts of this course, hark back to
those he developed in somewhat greater technical detail in his 1902–1903 course on
continuum mechanics, but here a greater conceptual clarity and a better understand-
ing of the possible, underlying connections across disciplines is attained, thanks to
the systematic use of an axiomatic approach in the discussion.

Let  denote the velocity of the particle at time  and at coordinates  in
the continuum.  has three components  The acceleration
vector for the unit particle is given by  which Hilbert wrote as follows:127

Since the only force acting on the system is Newtonian attraction, the potential
energy at a point  is given by

where  is the mass density at the point  The gradient of this potential
equals the force acting on the particle, and therefore we obtain three equations of
motion that can succinctly be expressed as follows:

One can add two additional equations to these three. First, the Poisson equation,
which Hilbert calls “potential equation of Laplace”:

where  denotes the Laplacian operator (currently written as  Second, the con-
stancy of the mass in the system is established by means of the continuity equa-
tion:128

We have thus obtained five differential equations involving five functions (the
components  of the four variables  The equations are

127 In the manuscript the formula in the leftmost side of the equation appears twice, having a “-” sign in
front of  This is obviously a misprint, as a straightforward calculation readily shows.

128 In his article mentioned above, Reiff had tried to derive the pressure forces in a fluid starting only
from the conservation of mass (Reiff 1900). Boltzmann pointed out that Reiff had obtained a correct
result because of a compensation error in his mathematics. See (Klein 1970, 65).
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completely determined when we know their initial values and other boundary condi-
tions, such as the values of the functions at infinity. Hilbert called the five equations
so obtained the “Newtonian world-functions,” since they account in the most general
way and in an axiomatic fashion for the motion of the system in question: a system
that satisfies the laws of mechanics and the Newtonian gravitational law. It is interest-
ing that Hilbert used the term “world-function” in this context, since the similar ones
“world-point” and “world-postulate,” were introduced in 1908 by Minkowski in the
context of his work on electrodynamics and the postulate of relativity. Unlike most of
the mathematical tools and terms introduced by Minkowski, this particular aspect of
his work was not favorably received, and is hardly found in later sources (with the
exception of “world-line”). Hilbert, however, used the term “world-function” not
only in his 1905 lectures, but also again in his 1915 work on general relativity, where
he again referred to the Lagrangian function used in the variational derivation of the
gravitational field equations as a “world-function.”

Besides the more purely physical background to the issues raised here, it is easy to
detect that Hilbert was excited about the advantages and the insights afforded by the
vectorial formulation of the Eulerian equations. Vectorial analysis as a systematic way
of dealing with physical phenomena was a fairly recent development that had crystal-
lized towards the turn of the century, mainly through its application by Heaviside in
the context of electromagnetism and through the more mathematical discussion of the
alternative systems by Gibbs.129 The possibility of extending its use to disciplines like
hydrodynamics had arisen even more recently, especially in the context of the Ger-
man-speaking world. Thus, for instance, the Encyklopädie article on hydrodynamics,
written in 1901, still used the pre-vectorial notation (Love 1901, 62–63).130 Only one
year before Hilbert’s course, speaking at the International Congress of Mathemati-
cians in Heidelberg, the Göttingen applied mathematician Ludwig Prandtl still had to
explain to his audience how to write the basic equations of hydrodynamics “following
Gibbs’s notation” (Prandtl 1904, 489). Among German textbooks on vectorial analy-
sis of the turn of the century,131 formulations of the Eulerian equations like that
quoted above appear in Alfred Heinrich Bucherer’s textbook of 1903 (Bucherer 1903,
77–84) and in Richard Gans’s book of 1905 (Gans 1905, 66–67). Whether he learnt
about the usefulness of the vectorial notation in this context from his colleague
Prandtl or from one of these textbooks, Hilbert was certainly impressed by the unified
perspective it afforded from the formal point of view. Moreover, he seems also to have
wanted to deduce far-reaching physical conclusions from this formal similarity. Hil-
bert pointed out in his lectures the strong analogy between this formulation of the
equations and Maxwell’s equations of electrodynamics, though in the latter we have
two vectors  and  the electric and the magnetic fields, against only one here, 

129 Cf. (Crowe 1967, 182–224). 
130 The same is the case for (Lamb 1895, 7). This classical textbook, however, saw many later editions in

which the vectorial formulation was indeed adopted.
131 Cf. (Crowe 1967, 226–233).
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He also raised the following question: can one obtain the whole of mechanics starting
from these five partial equations as a single axiom, or, if that is not the case, how far
can its derivation in fact be carried? In other words: if we want to derive the whole of
mechanics, to what extent can we limit ourselves to assuming only Newtonian attrac-
tion or the corresponding field equations?132 It would also be interesting, he said, to
address the question of how far the analogy of gravitation with electrodynamics can
be extended. Perhaps, he said, one can expect to find a formula that simultaneously
encompasses these five equations and the Maxwellian ones together. This discussion
of a possible unification of mechanics and electrodynamics also echoed, of course,
the current foundational discussion that I have described in the preceding sections. It
also anticipates what will turn out to be one of the pillars of Hilbert’s involvement
with general relativity in 1915.

Hilbert’s reference to Hertz and Boltzmann in this context, and his silence con-
cerning recent works of Lorentz, Wien, and others, is the only hint he gave in his
1905 lectures as to his own position on the foundational questions of physics. In fact,
throughout these lectures Hilbert showed little inclination to take a stand on physical
issues of this kind. Thus, his suggestion of unifying the equations of gravitation and
electrodynamics was advanced here mainly on methodological grounds, rather than
expressing, at this stage at least, any specific commitment to an underlying unified
vision of nature. At the same time, however, his suggestion is quite characteristic of
the kind of mathematical reasoning that would allow him in later years to entertain
the possibility of unification and to develop the mathematical and physical conse-
quences that could be derived from it.

6.2 Kinetic Theory of Gases

A main application of the calculus of probabilities that Hilbert considered is in the
kinetic theory of gases. He opened this section by expressing his admiration for the
remarkable way this theory combined the postulation of far-reaching assumptions
about the structure of matter with the use of probability calculus, a combination that
had been applied in a very illuminating way, leading to new physical results. Several
works that appeared by end of the nineteenth century had changed the whole field of
the study of gases, thus leading to a more widespread appreciation of the value of the
statistical approach. The work of Planck, Gibbs and Einstein attracted a greater inter-
est in and contributed to an understanding of Boltzmann’s statistical interpretation of
entropy.133

132 “Es wäre nun die Frage, ob man mit einem diesen 5 partiellen Gleichungen als einzigem Axiom nicht
auch überhaupt in der Mechanik auskommt, oder wie weit das geht, d.h. wie weit man sich auf New-
tonsche Attraktion bezw. auf die entsprechenden Feldgleichungen beschränken kann.” (Hilbert 1905a,
154)

133 Kuhn (1978, 21) quotes in this respect the well-known textbook, (Gibbs 1902), and an “almost forgot-
ten” work, (Einstein 1902).
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It is easy to see, then, why Hilbert would have wished to undertake an axiomatic
treatment of the kinetic theory of gases: not only because it combined physical
hypotheses with probabilistic reasoning in a scientifically fruitful way, as Hilbert said
in these lectures, but also because the kinetic theory was a good example of a physi-
cal theory where, historically speaking, additional assumptions had been gradually
added to existing knowledge without properly checking the possible logical difficul-
ties that would arise from this addition. The question of the role of probability argu-
ments in physics was not settled in this context. In Hilbert’s view, the axiomatic
treatment was the proper way to restore order to this whole system of knowledge, so
crucial to the contemporary conception of physical science.

In stating the aim of the theory as the description of the macroscopic states of a
gas, based on statistical considerations about the molecules that compose it, Hilbert
assumed without any further comment the atomistic conception of matter. From this
picture, he said, one obtains, for instance, the pressure of the gas as the number of
impacts of the gas molecules against the walls of its container, and the temperature as
the square of the sum of the mean velocities. In the same way, entropy becomes a
magnitude with a more concrete physical meaning than is the case outside the theory.
Using Maxwell’s velocity distribution function, Boltzmann’s logarithmic definition
of entropy, and the calculus of probabilities, one obtains the law of constant increase
in entropy. Hilbert immediately pointed out the difficulty of combining this latter
result with the reversibility of the laws of mechanics. He characterized this difficulty
as a paradox, or at least as a result not yet completely well established.134 In fact, he
stressed that the theory had not yet provided a solid justification for its assumptions,
and ever new ideas and stimuli were constantly still being added.

Even if we knew the exact position and velocities of the particles of a gas— Hil-
bert explained—it is impossible in practice to integrate all the differential equations
describing the motions of these particles and their interactions. We know nothing of
the motion of individual particles, but rather consider only the average magnitudes
that are dealt with by the probabilistic kinetic theory of gases. In an oblique reference
to Boltzmann’s replies, Hilbert stated that the combined use of probabilities and
infinitesimal calculus in this context is a very original mathematical contribution,
which may lead to deep and interesting consequences, but which at this stage has in
no sense been fully justified. Take, for instance, one of the well-known results of the
theory, namely, the equations of vis viva. In the probabilistic version of the theory,
Hilbert said, the solution of the corresponding differential equation does not emerge
solely from the differential calculus, and yet it is correctly determined. It might con-
ceivably be the case, however, that the probability calculus could have contradicted
well-known results of the theory, in which case, using that calculus would clearly
yield what would be considered unacceptable conclusions. Hilbert explained this

134 “Hier können wir aber bereits ein paradoxes, zum mindesten nicht recht befriedigendes Resultat fest-
stellen.” (Hilbert 1905a, 176)
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warning by showing how a fallacious probabilistic argument could lead to contradic-
tion in the theory of numbers.

Take the five classes of congruence module 5 in the natural numbers, and consider
how the prime numbers are distributed among these classes. For any integer  let

 be the number of prime numbers which are less than  and let
 be the corresponding values of the same function, when only the

numbers in each of the five classes are considered. Using the calculus of probabilities
in a similar way to that used in the integration of the equations of motion of gas parti-
cles, one could reason as follows: The distribution of prime numbers is very irregular,
but according to the laws of probability, this irregularity is compensated if we just
take a large enough quantity of events. In particular, the limits at infinity of the quo-
tients  are all equal for  and therefore equal to  But it is
clear, on the other hand, that in the class of numbers of the form  there are no
prime numbers, and therefore  One could perhaps correct the argu-
ment by limiting its validity to the other four classes, and thus conclude that:

Although this latter result is actually correct, Hilbert said, one cannot speak here
of a real proof. The latter could only be obtained through deep research in the theory
of numbers. Had we not used here the obvious number-theoretical fact that  can
never be a prime number, we might have been misled by the probabilistic proof.
Something similar happens in the kinetic theory of gases, concerning the integration
of the vis viva. One assumes that Maxwell’s distribution of velocities obeys a certain
differential equation of mechanics, and in this way a contradiction with the known
value of the integral of the vis viva is avoided. Moreover, according to the theory,
because additional properties of the motion of the gas particles, which are prescribed
by the differential equations, lie very deep and are only subtly distinguishable, they
do not affect relatively larger values, such as the averages used in the Maxwell
laws.135 As in the case of the prime numbers, however, Hilbert did not consider this
kind of reasoning to be a real proof.

All this discussion, which Hilbert elaborated in further detail, led him to formu-
late his view concerning the role of probabilistic arguments in mathematical and
physical theories. In this view, surprisingly empiricist and straightforwardly formu-

135 “Genau so ist es nun hier in der kinetischen Gastheorie. Indem wir behaupten, daß die Maxwellsche
Geschwindigkeitsverteilung den mechanischen Differentialgleichnungen genügt, vermeiden wir wohl
einen Verstoß gegen das sofort bekannte Integral der lebendigen Kraft; weiterhin aber wird die
Annahme gemacht, daß die durch die Differentialgleichungen geforderten weiteren Eigenschaften der
Gaspartikelbewegung liegen soviel tiefer und sind so feine Unterscheidungen, daß sie so grobe Aus-
sagen über mittlere Werte, wie die des Maxwellschen Gesetzes, nicht berühren.” (Hilbert 1905a, 180–
181)
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lated, the calculus of probability is not an exact mathematical theory, but one that
may appropriately be used as a first approximation, provided we are dealing with
immediately apparent mathematical facts. Otherwise it may lead to significant con-
tradictions. The use of the calculus of probabilities is justified—Hilbert concluded—
insofar as it leads to results that are correct and in accordance with the facts of expe-
rience or with the accepted mathematical theories.136

Beginning in 1910 Hilbert taught courses on the kinetic theory of gases and on
related issues, and also published original contributions to this domain. In particular,
as part of his research on the theory of integral equations, which began around 1902,
he solved in 1912 the so-called Boltzmann equation.137

6.3 Electrodynamics

The manuscript of the lecturer indicates that Hilbert did not discuss electrodynamics
before 14 July 1905. By that time Hilbert must have been deeply involved with the
issues studied in the electron-theory seminar. These issues must surely have appeared
in the lectures as well, although the rather elementary level of discussion in the lec-
tures differed enormously from the very advanced mathematical sophistication char-
acteristic of the seminar. As mentioned above, at the end of his lectures on mechanics
Hilbert had addressed the question of a possible unification of the equations of gravi-
tation and electrodynamics, mainly based on methodological considerations. Now he
stressed once more the similarities underlying the treatment of different physical
domains. In order to provide an axiomatic treatment of electrodynamics similar to
those of the domains discussed above—Hilbert opened this part of his lectures—one
needs to account for the motion of an electron by describing it as a small electrified
sphere and by applying a process of passage to the limit.

One starts therefore by considering a material point  in the classical presenta-
tion of mechanics. The kinetic energy of a mass-point is expressed as 

The derivatives of this expression with respect to the components  of the veloc-
ity  define the respective components of the momentum

136 “… sie ist keine exakte mathematische Theorie, aber zu einer ersten Orientierung, wenn man nur alle
unmittelbar leicht ersichtlichen mathematischen Tatsachen benutzt, häufig sehr geeignet; sonst führt
sie sofort zu groben Verstößen. Am besten kann man wohl immer nachträglich sagen, daß die Anwen-
dung der Wahrscheinlichkeitsrechnung immer dann berechtigt und erlaubt ist, wo sie zu richtigen, mit
der Erfahrung bezw. der sonstigen mathematischen Theorie übereinstimmenden Resultaten führt.”
(Hilbert 1905a, 182–183)

137  In (Hilbert 1912a, chap. XXII).
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If one equates the derivative of the latter with respect to time to the components of
the forces—seen as the negative of the partial derivatives of the potential energy—
one gets the equations of motion:

As was seen earlier in the lectures on mechanics, an alternative way to attain these
equations is to use the functions  and the variational equation characteristic of
the Hamiltonian principle:

This principle can be applied, as Laplace did in his Celestial Mechanics, even
without knowing anything about  except that it is a function of the velocity. In
order to determine the actual form of one must then introduce additional axioms.
Hilbert explained that in the context of classical mechanics, Laplace had done this
simply by asserting what for him was an obvious, intuitive notion concerning relative
motion, namely, that we are not able to perceive any uniform motion of the whole
universe.138 From this assumption Laplace was able to derive the actual value

 This was for Hilbert a classical instance of the main task of the
axiomatization of a physical science, as he himself had been doing throughout his
lectures for the cases of the addition of vectors, thermodynamics, insurance mathe-
matics, etc.: namely, to formulate the specific axiom or axioms underlying a particu-
lar physical theory, from which the specific form of its central, defining function may
be derived. In this case, Laplace’s axiom is nothing but the expression of the Galilean
invariance of the Newtonian laws of motion although Hilbert did not use this termi-
nology here.

In the case of the electron, as Hilbert had perhaps recently learnt in the electron-
theory seminar, this axiom of Galilean invariance, is no longer valid, nor is the spe-
cific form of the Lagrangian function. Yet—and this is what Hilbert stressed as a
remarkable fact—the equation of motion of the electron can nevertheless be derived
following considerations similar to those applied in Laplace’s case. One need only
find the appropriate axiom to effect the derivation. Without further explanation, Hil-

138 “Zur Festlegung von  muß man nun natürlich noch Axiome hinzunehmen, und Laplace kommt da
mit einer allgemeinen, ihm unmittelbar anschaulichen Vorstellung über Relativbewegung aus, daß wir
nämlich eine gleichförmige Bewegung des ganzen Weltalls nicht merken würden. Alsdann läßt sich
die Form  von  bestimmen, und das ist wieder die ganz analoge Aufgabe zu denen, die
das Fundament der Vektoraddition, der Thermodynamik, der Lebensversicherungsmathematik u.a.
bildeten.” (Hilbert 1905a, 187)
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bert wrote down the Lagrangian that describes the motion of the electron. This may
be expressed as

where  denotes the ratio between the velocity of the electron and the speed of light,
and  is a constant, characteristic of the electron and dependent on its charge. This
Lagrangian appears, for instance, in Abraham’s first article on the dynamics of the
electron, and a similar one appears in the article on Lorentz’s Encyklopädie article.139

If not earlier than that, Hilbert had studied these articles in detail in the seminar,
where Lorentz’s article was used as a main text.

If, as in the case of classical mechanics, one again chooses to consider the differ-
ential equation or the corresponding variational equation as the single, central axiom
of electron theory, taking  as an undetermined function of  whose exact expres-
sion one seeks to derive, then—Hilbert said—in order to do so, one must introduce a
specific axiom, characteristic of the theory and as simple and plausible as possible.
Clearly—he said concluding this section—this theory will require more, or more
complicated, axioms than the one introduced by Laplace in the case of classical
mechanics.140 The electron-theory seminar had been discussing many recent contri-
butions, by people such as Poincaré, Lorentz, Abraham and Schwarzschild, who held
conflicting views on many important issues. It was thus clear to Hilbert that, at that
point in time at least, it would be too early to advance any definite opinion as to the
specific axiom or axioms that should be placed at the basis of the theory. This fact,
however, should not affect in principle his argument as to how the axiomatic
approach should be applied to the theory.

It is noteworthy that in 1905 Hilbert did not mention the Lorentz transformations,
which were to receive very much attention in his later lectures on physics. Lorentz
published the transformations in an article of 1904 (Lorentz 1904b), but this article
was not listed in the bibliography of the electron theory seminar,141and it is likely
that Hilbert was not aware of it by the time of his lectures.

6.4 A post-1909 addendum

To conclude this account of the 1905 lectures, it is interesting to notice that several
years after having taught the course, Hilbert returned to the manuscript and added

139 Respectively, (Abraham 1902, 37; Lorentz 1904a, 184). Lorentz’s Lagrangian is somewhat different,
since it contains two additional terms, involving the inverse of 

140 “Nimmt man nun wieder die Differentialgleichungen bzw. das zugehörige Variationsproblem als
Axiom und läßt  zunächst als noch unbestimmte Funktion von  stehen, so handelt es sich darum,
dafür möglichst einfache und plausible Axiome so zu konstruiren, daß sie gerade jene Form von 
bestimmen. Natürlich werden wir mehr oder kompliciertere Axiome brauchen, als in dem einfachen
Falle der Mechanik bei Laplace.” (Hilbert 1905a, 188)

141 Cf. (Pyenson 1979, 103).
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some remarks on the front page in his own handwriting. He mentioned two more
recent works he thought relevant to understanding the use of the axiomatic method in
physics. First, he referred to a new article by Hamel on the principles of mechanics.
Hamel’s article, published in 1909, contained philosophical and critical remarks con-
cerning the issues discussed in his own earlier article of 1905 (the one mentioned by
Hilbert with reference to the axiomatization of vector addition). In particular, it dis-
cussed the concepts of absolute space, absolute time and force, as a priori concepts of
mechanics. The contents of this article are beyond the scope of our discussion here.
Hilbert’s interest in it may have stemmed from a brief passage where Hamel dis-
cussed the significance of Hilbert’s axiomatic method (Hamel 1909, 358). More
importantly perhaps, it also contained an account of a new system of axioms for
mechanics.142

Second, in a formulation that condenses in a very few sentences his understanding
of the principles and goals of axiomatization, as they apply to geometry and to vari-
ous domains of physics, Hilbert also directed attention to what he saw as Planck’s
application of the axiomatic method in the latter’s recent research on quantum theory.
Hilbert thus wrote:

It is of special interest to notice how the axiomatic method is put to use by Planck—in a
more or less consistent and in a more or less conscious manner—even in modern quan-
tum theory, where the basic concepts have been so scantily clarified. In doing this, he sets
aside electrodynamics in order to avoid contradiction, much as, in geometry, continuity
is set aside in order to remove the contradiction in non-Pascalian geometry, or like, in the
theory of gases, mechanics is set aside in favor of the axiom of probability (maximal
entropy), thus applying only the Stossformel or the Liouville theorem, in order to avoid
the objections involved in the reversibility and recurrence paradoxes.143

From this remark we learn not only that Hilbert was aware of the latest advances
in quantum theory (though, most probably, not in great detail) but also that he had a
good knowledge of recent writings of Paul and Tatyana Ehrenfest. Beginning in 1906
the Ehrenfests had made important contributions to clarifying Boltzmann’s ideas in a
series of publications on the conceptual foundations of statistical mechanics. The two
last terms used by Hilbert in his hand-written remark (Umkehr- oder Wiederkehrein-
wand) were introduced only in 1907 by them, and were made widely known only

142 According to Clifford Truesdell (1968, 336), this article of Hamel, together with the much later (Noll
1959), are the “only two significant attempts to solve the part of Hilbert’s sixth problem that concern
mechanics [that] have been published.” One should add to this list at least another long article (Hamel
1927) that appeared in vol. 5 of the Handbuch der Physik.

143 Hilbert (1905a), added “<Besonders interessant ist es zu sehen, wie die axiomatische Methode von
Planck sogar bei der modernen Quantentheorie, wo die Grundbegriffe noch so wenig geklärt sind, in
mehr oder weniger konsequenter und in mehr oder weniger bewusster Weise zur Anwendung gebracht
werden: dabei Ausschaltung der Elektrodynamik, um Widerspruch zu vermeiden—gerade wie in der
Geometrie Ausschaltung der Stetigkeit, um den Widerspruch gegen die Nichtpaskalsche Geometrie zu
beseitigen, oder in der Gastheorie Ausschaltung der Mechanik (Benutzung allein der Stossformel oder
des Liouvilleschen Satzes) dafür Axiom der Wahrscheinlichkeit—(Entropie Maximum), um den
Widerspruch gegen den Umkehr- oder Wiederkehreinwand zu beseitigen.>”
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through their Encyklopädie article that appeared in 1912. Hilbert may have known
the term earlier from their personal contact with them, or through some other col-
league.144 Also, the Stossformel that Hilbert mentioned here referred probably to the
Stossanzahlansatz, whose specific role in the kinetic theory, together with that of the
Liouville theorem (that is the physicists’ Liouville theorem), the Ehrenfests’ article
definitely contributed to clarify.145 Moreover, the clarification of the conceptual inter-
relation between Planck’s quantum theory and electrodynamics—alluded to by Hil-
bert in his added remark—was also one of Paul Ehrenfest’s central contributions to
contemporary physics.146

7. THE AXIOMATIZATION PROGRAM BY 1905 – PARTIAL SUMMARY

Hilbert’s 1905 cycle of lectures on the axiomatization of physics represents the cul-
mination of a very central thread in Hilbert’s early scientific career. This thread com-
prises a highly visible part of his published work, namely that associated with
Grundlagen der Geometrie, but also additional elements that, though perhaps much
less evident, were nevertheless prominent within his general view of mathematics, as
we have seen. Hilbert’s call in 1900 for the axiomatization of physical theories was a
natural outgrowth of the background from which his axiomatic approach to geometry
first developed. Although in elaborating the point of view put forward in the Grundla-
gen der Geometrie Hilbert was mainly driven by the need to solve certain, open foun-
dational questions of geometry, his attention was also attracted in this context by
recent debates on the role of axioms, or first principles in physics. Hertz’s textbook
on mechanics provided an elaborate example of a physical theory presented in strict
axiomatic terms, and—perhaps more important for Hilbert—it also discussed in
detail the kind of requirements that a satisfactory system of axioms for a physical the-
ory must fulfill. Carl Neumann’s analysis of the “Galilean principle of inertia”—ech-
oes of which we find in Hilbert’s own treatment of mechanics— provided a further
example of the kind of conceptual clarity that one could expect to gain from this kind
of treatment. The writings of Hilbert’s senior colleague at Königsberg, Paul Volk-
mann, show that towards the end of the century questions of this kind were also dis-
cussed in the circles he moved in. Also the works of both Boltzmann and Voss
provided Hilbert with important sources of information and inspiration. From his ear-
liest attempts to treat geometry in an axiomatic fashion in order to solve the founda-
tional questions he wanted to address in this field, Hilbert already had in mind the
axiomatization of other physical disciplines as a task that could and should be pur-
sued in similar terms.

144 Hilbert was most likely present when, on 13 November 1906, Paul Ehrenfest gave a lecture at the Göt-
tinger Mathematische Gesellschaft on Boltzmann’s H-theorem and some of the objections
(Einwände) commonly raised against it. This lecture is reported in Jahresbericht der Deutschen
Mathematiker-Vereinigung, Vol. 15 (1906), 593.

145 Cf. (Klein 1970, 119–140).
146 Cf. (Klein 1970, 230–257).
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Between 1900 and 1905 Hilbert had the opportunity to learn much new physics.
The lecture notes of his course provide the earliest encompassing evidence of Hil-
bert’s own picture of physical science in general and, in particular, of how he thought
the axiomatic analysis of individual theories should be carried out. Hilbert’s physical
interests now covered a broad range of issues, and he seems to have been well aware
of the main open questions being investigated in most of the domains addressed. His
unusual mathematical abilities allowed him to gain a quick grasp of existing knowl-
edge, and at the same time to consider the various disciplines from his own idiosyn-
cratic perspective, suggesting new interpretations and improved mathematical
treatments. However, one must exercise great care when interpreting the contents of
these notes. It is difficult to determine with exactitude the extent to which he had
studied thoroughly and comprehensively all the existing literature on a topic he was
pursuing. The relatively long bibliographical lists that we find in the introductions to
many of his early courses do not necessarily mean that he studied all the works men-
tioned there. Even from his repeated, enthusiastic reference to Hertz’s textbook we
cannot safely infer to what extent he had read that book thoroughly. Very often
throughout his career he was content when some colleague or student communicated
to him the main ideas of a recent book or a new piece of research. In fact, the official
assignment of many of his assistants—especially in the years to come—was precisely
that: to keep him abreast of recent advances by studying in detail the research litera-
ture of a specific field. Hilbert would then, if he were actually interested, study the
topic more thoroughly and develop his own ideas.

It is also important to qualify properly the extent to which Hilbert carried out a
full axiomatic analysis of the physical theories he discussed. As we saw in the pre-
ceding sections, there is a considerable difference between what he did for geometry
and what he did for other physical theories. In these lectures, Hilbert never actually
proved the independence, consistency or completeness of the axiomatic systems he
introduced. In certain cases, like vector addition, he quoted works in which such
proofs could be found (significantly, works of his students or collaborators). In other
cases there were no such works to mention, and—as in the case of thermodynam-
ics—Hilbert simply stated that his axioms are indeed independent. In still other
cases, he barely mentioned anything about independence or other properties of his
axioms. Also, his derivations of the basic laws of the various disciplines from the axi-
oms are rather sketchy, when they appear at all. Often, Hilbert simply declared that
such a derivation was possible. What is clear is that Hilbert considered that an axiom-
atization along the lines he suggested was plausible and could eventually be fully per-
formed following the standards established in Grundlagen der Geometrie.

Yet for all these qualifications, the lecture notes of 1905 present an intriguing pic-
ture of Hilbert’s knowledge of physics, notable both for its breadth and its incisive-
ness. They afford a glimpse into a much less known side of his Göttingen teaching
activity, which must certainly be taken into account in trying to understand the atmo-
sphere that dominated this world center of science, as well as its widespread influ-
ence. More specifically, these notes illustrate in detail how Hilbert envisaged that
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axiomatic analysis of physical theories could not only contribute to conceptual clari-
fication but also prepare the way for the improvement of theories, in the eventuality
of future experimental evidence that conflicted with current predictions. If one knew
in detail the logical structure of a given theory and the specific role of each of its
basic assumptions, one could clear away possible contradictions and superfluous
additional premises that may have accumulated in the building of the theory. At the
same time, one would be prepared to implement, in an efficient and scientifically
appropriate way, the local changes necessary to readapt the theory to meet the impli-
cations of newly discovered empirical data, in the eventuality of such discoveries.
Indeed, Hilbert’s own future research in physics, and in particular his incursion into
general relativity, will be increasingly guided by this conception.

The nature and use of axioms in physical theories was discussed by many of Hil-
bert’s contemporaries, as we have seen. Each had his own way of classifying the var-
ious kinds of axioms that are actually used or should be used. Hilbert himself did not
discuss any possible such classification in detail but in his lectures we do find three
different kinds of axioms actually implemented. This de facto classification is remi-
niscent, above all, of the one previously found in the writings of Volkmann. In the
first place, every theory is assumed to be governed by specific axioms that character-
ize it and only it. These axioms usually express mathematical properties establishing
relations among the basic magnitudes involved in the theory. Secondly, there are cer-
tain general mathematical principles that Hilbert saw as being valid for all physical
theories. In the lectures he stressed above all the “continuity axiom,” providing both a
general formulation and more specific ones for each theory. As an additional general
principle of this kind he suggested the assumption that all functions appearing in the
natural sciences should have at least one continuous derivative. Furthermore, the uni-
versal validity of variational principles as the key to deriving the main equations of
physics was a central underlying assumption of all of Hilbert’s work on physics, and
that kind of reasoning appears throughout these lectures as well. In each of the theo-
ries he considered in his 1905 lectures, Hilbert attempted to show how the exact ana-
lytic expression of a particular function that condenses the contents of the theory in
question could be effectively derived from the specific axioms of the theory, together
with more general principles. On some occasions he elaborated this idea more thor-
oughly, while on others he simply declared that such a derivation should be possible.

There is yet a third type of axiom for physical theories that Hilbert, however,
avoided addressing in his 1905 lectures. That type comprises claims about the ulti-
mate nature of physical phenomena, an issue that was particularly controversial dur-
ing the years preceding these lectures. Although Hilbert’s sympathy for the
mechanical worldview is apparent throughout the manuscript of the lectures, his axi-
omatic analyses of physical theories contain no direct reference to it. The logical
structure of the theories is thus intended to be fully understood independently of any
particular position in this debate. Hilbert himself would later adopt a different stance.
His work on general relativity will be based directly on his adoption of the electro-
magnetic worldview and, beginning in 1913, a quite specific version of it, namely,
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Gustav Mie’s electromagnetic theory of matter. On the other hand, Hermann
Minkowski’s work on electrodynamics, with its seminal reinterpretation of Einstein’s
special theory of relativity in terms of spacetime geometry, should be understood as
an instance of the kind of axiomatic analysis that Hilbert advanced in his 1905 lec-
tures in which, at the same time, the debate between the mechanical and the electro-
magnetic worldviews is avoided.

When reading the manuscript of these lectures, one cannot help speculating about
the reaction of the students who attended them. This was, after all, a regular course
offered in Göttingen, rather than an advanced seminar. Before the astonished students
stood the great Hilbert, rapidly surveying so many different physical theories,
together with arithmetic, geometry and even logic, all in the framework of a single
course. Hilbert moved from one theory to the other, and from one discipline to the
next, without providing motivations or explaining the historical background to the
specific topics addressed, without giving explicit references to the sources, without
stopping to work out any particular idea, without proving any assertion in detail, but
claiming all the while to possess a unified view of all these matters. The impression
must have been thrilling, but perhaps the understanding he imparted to the students
did not run very deep. Hermann Weyl’s account of his experience as a young student
attending Hilbert’s course upon his arrival in Göttingen offers direct evidence to sup-
port this impression. Thus, in his obituary of Hilbert, Weyl wrote:

In the fullness of my innocence and ignorance I made bold to take the course Hilbert had
announced for that term, on the notion of number and the quadrature of the circle. Most
of it went straight over my head. But the doors of a new world swung open for me, and I
had not sat long at Hilbert’s feet before the resolution formed itself in my young heart
that I must by all means read and study what this man had written. (Weyl 1944, 614)

But the influence of the ideas discussed in Hilbert’s course went certainly beyond
the kind of general inspiration described here so vividly by Weyl; they had an actual
influence on later contributions to physics. Besides the works of Born and Car-
athéodory on thermodynamics, and of Minkowski on electrodynamics, there were
many dissertations written under Hilbert, as well as the articles written under the
influence of his lectures and seminars. Ehrenfest’s style of conceptual clarification of
existing theories, especially as manifest in the famous Encyklopädie on statistical
mechanics, also bears the imprint of Hilbert’s approach. Still, one can safely say that
little work on physical theories was actually published along the specific lines of axi-
omatic analysis suggested by Hilbert in Grundlagen der Geometrie. It seems, in fact,
that such techniques were never fully applied by Hilbert or by his students and col-
laborators to yield detailed analyses of axiomatic systems defining physical theories.
Thus, for instance, in 1927 Georg Hamel wrote a long article on the axiomatization of
mechanics for the Handbuch der Physik (Hamel 1927). Hamel did mention Hilbert’s
work on geometry as the model on which any modern axiomatic analysis should be
based. However, his own detailed account of the axioms needed for defining mechan-
ics as known at that time was not followed by an analysis of the independence of the
axioms, based on the construction of partial models, such as Hilbert had carried out
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for geometry. Similarly, the question of consistency was discussed only summarily.
Nevertheless, as Hamel said, his analysis allowed for a clearer comprehension of the
logical structure of all the assumptions and their interdependence.

If the 1905 lectures represent the culmination of a thread in Hilbert’s early career,
they likewise constitute the beginning of the next stage of his association with phys-
ics. In the next years, Hilbert himself became increasingly involved in actual research
in mathematical physics and he taught many courses on various topics thus far not
included within his scientific horizons.

8. LECTURES ON MECHANICS AND CONTINUUM MECHANICS

In his early courses on mechanics or continuum mechanics, Hilbert’s support for the
atomistic hypothesis, as the possible basis for a reductionistic, mechanical foundation
of the whole of physics, was often qualified by referring to the fact that the actual
attempts to provide a detailed account of how such a reduction would work in specific
cases for the various physical disciplines had not been fully and successfully realized
by then. Thus for instance, in his 1906 course on continuum mechanics, Hilbert
described the theory of elasticity as a discipline whose subject-matter is the deforma-
tion produced on solid bodies by interaction and displacement of molecules. On first
sight this would seem to be a classical case in which one might expect a direct expla-
nation based on atomistic considerations. Nevertheless Hilbert suggested that, for lack
of detailed knowledge, a different approach should be followed in this case:

We will have to give up going here into a detailed description of these molecular pro-
cesses. Rather, we will only look for those parameters on which the measurable deforma-
tion state of the body depends at each location. The form of the dependence of the
Lagrangian function on these parameters will then be determined, which is actually com-
posed by the kinetic and potential energy of the individual molecules. Similarly, in ther-
modynamics we will not go into the vibrations of the molecules, but we will rather
introduce temperature itself as a general parameter and we will investigate the depen-
dence of energy on it.147

The task of deducing the exact form of the Lagrangian under specific require-
ments postulated as part of the theory was the approach followed in the many exam-
ples already discussed above. This tension between reductionistic and
phenomenological explanations in physics is found in Hilbert’s physical ideas
throughout the years and it eventually led to his abandonment of mechanical reduc-

147 “Wir werden hier auf eine eingehende Beschreibung dieser molekularen Vorgänge zu verzichten
haben und dafür nur die Parameter aufsuchen, von denen der meßbare Verzerrungszustand der Körper
an jeder Stelle abhängt. Alsdann wird festzustellen sein, wie die Form der Abhängigkeit der Lagran-
schen Funktion von diesen Parametern ist, die sich ja eigentlich aus kinetischer und potentieller Ener-
gie der einzelnen Molekel zusammensetzen wird. Ähnlich wird man in der Thermodynamik nicht auf
die Schwingungen der Molekel eingehen, sondern die Temperatur selbst als allgemeinen Parameter
einführen, und die Abhängigkeit der Energie von ihr untersuchen.” (Hilbert 1906, 8–9)
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tionism. The process becomes gradually manifest after 1910, though Hilbert still
stuck to his original conceptions until around 1913.

The course on mechanics in the winter semester of 1910–1911 opened with an
unambiguous statement about the essential role of mechanics as the foundation of
natural science in general (Hilbert 1910–1911, 6). Hilbert praised the textbooks of
Hertz and Boltzmann for their successful attempts to present in similar methodologi-
cal terms, albeit starting from somewhat different premises, a fully axiomatic deriva-
tion of mechanics. This kind of presentation, Hilbert added, was currently being
disputed. The course itself covered the standard topics of classical mechanics.
Towards the end, however, Hilbert spoke about the “new mechanics.” In this context
he neither used the word “relativity” nor mentioned Einstein. Rather, he mentioned
only Lorentz and spoke of invariance under the Lorentz transformations of all differ-
ential equations that describe natural phenomena as the main feature of this new
mechanics. Hilbert stressed that the Newtonian equations of the “old” mechanics do
not satisfy this basic principle, which, like Minkowski, he called the Weltpostulat.
These equations must therefore be transformed, he said, so that they become Lorentz-
invariant.148 Hilbert showed that if the Lorentz transformations are used instead of
the “Newton transformations,” then the velocity of light is the same for every non-
accelerated, moving system of reference.

Hilbert also mentioned the unsettled question of the status of gravitation in the
framework of this new mechanics. He connected his presentation directly to
Minkowski’s sketchy treatment of this topic in 1909, and, like his friend, Hilbert does
not seem to have been really bothered by the difficulties related with it. One should
attempt to modify the Newtonian law in order to make it comply to the world-postu-
late, Hilbert said, but we must exercise special care when doing this since the Newto-
nian law has proved to be in the closest accordance with experience. As Hilbert knew
from Minkowski’s work, an adaptation of gravitation to the new mechanics would
imply that its effects must propagate at the speed of light. This latter conclusion contra-
dicts the “old theory,” while in the framework of the “new mechanics,” on the contrary,
it finds a natural place. In order to adapt the Newtonian equations to the new mechan-
ics, concluded Hilbert, we proceed, “as Minkowski did, via electromagnetism.”149

The manuscript of the course does not record whether in the classroom Hilbert
showed how, by proceeding “as Minkowski did, via electromagnetism,” the adapta-
tion of Newton’s law should actually be realized. Perhaps at that time he still believed
that Minkowski’s early sketch could be further elaborated. Be that as it may, the con-
cerns expressed here by Hilbert are not unlike those of other, contemporary physicists
involved in investigating the actual place of the postulate of relativity in the general

148 “Alle grundlegenden Naturgesetzen entsprechenden Systeme von Differentialgleichungen sollen
gegenüber der Lorentz-Transformation kovariant sein. ... Wir können durch Beobachtung von irgend
welchen Naturvorgängen niemals entscheiden, ob wir ruhen, oder uns gleichförmig bewegen. Diesem
Weltpostulate genügen die Newtonschen Gleichungen der älteren Mechanik nicht, wenn wir die Lor-
entz Transformation zugrunde legen: wir stehen daher vor der Aufgabe, sie dementsprechend umzu-
gestalten.” (Hilbert 1910–1911, 292)
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picture of physics. It is relevant to recall at this stage, however, that Einstein himself
published nothing on this topic between 1907 and June 1911.

9. KINETIC THEORY

After another standard course on continuum mechanics in the summer of 1911, Hil-
bert taught a course specifically devoted to kinetic theory of gases for the first time in
the winter of 1911–1912. This course marked the starting point of Hilbert’s definitive
involvement with a broader range of physical theories. Hilbert opened the course by
referring once again to three possible, alternative treatments of any physical theory.
First, is the “phenomenological perspective,”150 often applied to study the mechanics
of continua. Under this perspective, the whole of physics is divided into various chap-
ters, each of which can be approached using different, specific assumptions, from
which different mathematical consequences can be derived. The main mathematical
tool used in this approach is the theory of partial differential equations. In fact, much
of what Hilbert had done in his 1905 lectures on the axiomatization of physics, and
then in 1906 on mechanics of continua, could be said to fall within this approach.

The second approach that Hilbert mentioned assumes the validity of the “theory of
atoms.” In this case a “much deeper understanding is reached. ... We attempt to put
forward a system of axioms which is valid for the whole of physics, and which
enables all physical phenomena to be explained from a unified point of view.”151 The
mathematical methods used here are obviously quite different from those of the phe-
nomenological approach: they can be subsumed, generally speaking, under the meth-
ods of the theory of probabilities. The most salient examples of this approach are
found in the theory of gases and in radiation theory. From the point of view of this
approach, the phenomenological one is a palliative, indispensable as a primitive stage
on the way to knowledge, which must however be abandoned “as soon as possible, in
order to penetrate the real sanctuary of theoretical physics.”152 Unfortunately, Hilbert

149 “Wir können nun an die Umgestaltung des Newtonsches Gesetzes gehen, dabei müssen wir aber Vor-
sicht verfahren, denn das Newtonsche Gesetz ist das desjenige Naturgesetz, das durch die Erfahrung
in Einklang bleiben wollen. Dieses wird uns gelingen, ja noch mehr, wir können verlangen, dass die
Gravitation sich mit Lichtgeschwindigkeit fortpflanzt. Die alte Theorie kann das nicht, eine Fortpflan-
zung der Gravitation mit Lichtgeschwindigkeit widerspricht hier der Erfahrung: Die neue Theorie
kann es, und man ist berechtigt, das als eine Vorzug derselben anzusehen, den eine momentane Fort-
pflanzung der Gravitation passt sehr wenig zu der modernen Physik. Um die Newtonschen Gleichun-
gen für die neue Mechanik zu erhalten, gehen wir ähnlich vor wie Minkowski in der
Elektromagnetik.” (Hilbert 1910–1911, 295)

150 Boltzmann had used the term in this context in his 1899 Munich talk that Hilbert had attended. Cf.
(Boltzmann 1899, 92–96).

151 “Hier ist das Bestreben, ein Axiomensystem zu schaffen, welches für die ganze Physik gilt, und aus
diesem einheitlichen Gesichtspunkt alle Erscheinungen zu erklären. ... Jedenfalls gibt sie unvergleich-
lich tieferen Laufschuhes über Wesen und Zusammenhang der physikalischen Begriffe, ausserdem
auch neue Aufklärung über physikalische Tatsachen, welche weit über die bei ) erhaltene hinaus-
geht.” (Hilbert 1911–1912, 2)

A
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said, mathematical analysis is not yet developed sufficiently to provide for all the
demands of the second approach. One must therefore do without rigorous logical
deductions and be temporarily satisfied with rather vague mathematical formulae.153

Hilbert considered it remarkable that by using this method one nevertheless obtains
ever new results that are in accordance with experience. He thus declared that the
“main task of physics,” embodied in the third possible approach, would be “the molec-
ular theory of matter” itself, standing above the kinetic theory, as far as its degree of
mathematical sophistication and exactitude is concerned. In the present course, Hil-
bert intended to concentrate on kinetic theory, yet he promised to consider the molec-
ular theory of matter in the following semester. He did so, indeed, a year later.

Many of the important innovations implied by Hilbert’s solution of the Boltzmann
equation are already contained in this course of 1911–1912.154 It was Maxwell in
1860 who first formulated an equation describing the distribution of the number of
molecules of a gas, with given energy at a given point in time. Maxwell, however,
was able to find only a partial solution which was valid only for a very special
case.155 In 1872 Boltzmann reformulated Maxwell’s equation in terms of a single,
rather complex, integro-differential equation, that has remained associated with his
name ever since. The only exact solution Boltzmann had been able to find, however,
was still valid for the same particular case that Maxwell had treated in his own model
(Boltzmann 1872). By 1911, some progress had been made on the solution of the
Boltzmann equation. The laws obtained from the partial knowledge concerning those
solutions, which described the macroscopic movement and thermal processes in
gases, seemed to be qualitatively correct. However, the mathematical methods used in
the derivations seemed inconclusive and sometimes arbitrary. It was quite usual to
rely on average magnitudes and thus the calculated values of the coefficients of heat
conduction and friction appeared to be dubious. A more accurate estimation of these
values remained a main concern of the theory, and the techniques developed by Hil-
bert apparently offered the means to deal with it.156

Very much as he had done with other theories in the past, Hilbert wanted to show
how the whole kinetic theory could be developed starting from one basic formula,
which in this case would be precisely the Boltzmann equation. His presentation
would depart from the phenomenological approach by making some specific assump-
tions about the molecules, namely that they are spheres identical to one another in

152 “Wenn man auf diesem Standpunkt steht, so wird man den früheren nur als einer Notbehelf bezeich-
nen, der nötig ist als eine erste Stufe der Erkenntnis, über die man aber eilig hinwegschreiten muss,
um in die eigentlichen Heiligtümer der theoretischen Physik einzudringen.” (Hilbert 1911–1912, 2)

153 “... sich mit etwas verschwommenen mathematischen Formulierungen zufrieden geben muss.”
(Hilbert 1911–1912, 2)

154  In fact, in December 1911 Hilbert presented to the Göttinger Mathematische Gesellschaft an over-
view of his recent investigations on the theory, stating that he intended to publish them soon. Cf. Jah-
resbericht der Deutschen Mathematiker-Vereinigung 21 (1912), 58. 

155 Cf. (Brush 1976, 432–446).
156 Cf. (Born 1922, 587–589).
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size. In addition he would focus, not on the velocity of any individual such molecule,
but rather on their velocity distribution  over a small element of volume.

In the opening lectures of the course, a rather straightforward discussion of the
elementary physical properties of a gas led Hilbert to formulate a quite complicated
equation involving  Hilbert asserted that a general solution of this equation was
impossible, and it was thus necessary to limit the discussion to certain specific cases
(Hilbert 1911–1912, 21). In the following lectures he added some specific, physical
assumptions concerning the initial and boundary conditions for the velocity distribu-
tion in order to be able to derive more directly solvable equations. These assump-
tions, which he formulated as axioms of the theory, restricted the generality of the
problem to a certain extent, but allowed for representing the distribution function as a
series of powers of a certain parameter. In a first approximation, the relations between
the velocity distributions yielded the Boltzmann distribution. In a second approxima-
tion, they yielded the propagation of the average velocities in space and time. Under
this representation the equation appeared as a linear symmetric equation of the sec-
ond type, where the velocity distribution  is the unknown function, thus allowing
the application of Hilbert’s newly developed techniques. Still, he did not prove in
detail the convergence of the power series so defined, nor did he complete the evalua-
tion of the transport coefficient appearing in the distribution formula.

Hilbert was evidently satisfied with his achievement in kinetic theory. He was
very explicit in claiming that without a direct application of the techniques he had
developed in the theory of integral equations, and without having formulated the
physical theory in terms of such integral equations, it would be impossible to provide
a solid and systematic foundation for the theory of gases as currently known (Hilbert
1912a, 268; 1912b, 562). And very much as with his more purely mathematical
works, also here Hilbert was after a larger picture, searching for the underlying con-
nections among apparently distant fields. Particularly interesting for him were the
multiple connections with radiation theory, which he explicitly mentioned at the end
of his 1912 article, thus opening the way for his forthcoming courses and publica-
tions. In his first publication on radiation theory he explained in greater detail and
with unconcealed effusiveness the nature of this underlying connection. He thus said: 

In my treatise on the “Foundations of the kinetic theory of gases,” I have shown, using
the theory of linear integral equations, that starting alone from the Maxwell-Boltzmann
fundamental formula —the so-called collision formula— it is possible to construct sys-
tematically the kinetic theory of gases. This construction is such, that it requires only a
consistent implementation of the methods of certain mathematical operations prescribed
in advance, in order to obtain the proof of the second law of thermodynamics, of Boltz-
mann’s expression for the entropy of a gas, of the equations of motion that take into
account both the internal friction and the heat conduction, and of the theory of diffusion
of several gases. Likewise, by further developing the theory, we obtain the precise condi-
tions under which the law of equipartition of energies over the intermolecular parameter
is valid. Concerning the motion of compound molecules, a new law is also obtained
according to which the continuity equation of hydrodynamics has a much more general
meaning than the usual one. ...

ϕ

ϕ.

ϕ
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Meanwhile, there is a second physical domain whose principles have not yet been inves-
tigated at all from the mathematical point of view, and for the establishment of whose
foundations—as I have recently discovered—the same mathematical tools provided by
the integral equations are absolutely necessary. I mean by this the elementary theory of
radiation, understanding by it the phenomenological aspect of the theory, which at the
most immediate level concerns the phenomena of emission and absorption, and on top of
which stand Kirchhoff’s laws concerning the relations between emission and absorption.
(Hilbert 1912b, 217–218)

Hilbert could boast now two powerful mathematical tools that allowed him to
address the study of a broad spectrum of physical theories. On the one hand, the axi-
omatic method would help dispel conceptual difficulties affecting established theo-
ries—thus fostering their continued development—and also open the way for a
healthy establishment of new ones. In his earlier courses he had already explored
examples of the value of the method for a wide variety of disciplines, but
Minkowski’s contributions to electrodynamics and his analysis of the role of the prin-
ciple of relativity offered perhaps, from Hilbert’s point of view, the most significant
example so far of the actual realization of its potential contribution. On the other
hand, the theory of linear integral equations had just proven its value in the solution
of such a central, open problem of physics. As far as he could see from his own, idio-
syncratic perspective, the program for closing the gap between physical theories and
mathematics had been more successful so far than he may have actually conceived
when posing his sixth problem back in 1900. Hilbert was now prepared to attack yet
another central field of physics and he would do so by combining once again the two
mathematical components of his approach. The actual realization of this plan, how-
ever, was less smooth than one could guess from the above-quoted, somewhat pomp-
ous, declaration. As will be seen in the next section, although Hilbert’s next incursion
into the physicists’ camp led to some local successes, as a whole they were less
impressive in their overall significance than Hilbert would have hoped.

But even though Hilbert was satisfied with what his mastery of integral equations
had allowed him to do thus far, and with what his usual optimism promised to achieve
in other physical domains in the near future, there was an underlying fundamental
uneasiness that he was not able to conceal behind the complex integral formulas and
he preferred to explicitly share this uneasiness with his students. It concerned the
possible justification of using probabilistic methods in physics in general and in
kinetic theory in particular. Hilbert’s qualms are worth quoting in some detail:

If Boltzmann proves … that the Maxwell distribution … is the most probable one from
among all distributions for a given amount of energy, this theorem possesses in itself a
certain degree of interest, but it does not allow even a minimal inference concerning the
velocity distribution that actually occurs in any given gas. In order to lay bare the core of
this question, I want to recount the following example: in a raffle with one winner out of
1000 tickets, we distribute 998 tickets among 998 persons and the remaining two we give
to a single person. This person thus has the greatest chance to win, compared to all other
participants. His probability of winning is the greatest, and yet it is highly improbable
that he will win. The probability of this is close to zero. In the same fashion, the probabil-
ity of occurrence of the Maxwell velocity distribution is greater than that of any other
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distribution, but equally close to zero, and it is therefore almost absolutely certain that
the Maxwell distribution will not occur.

What is needed for the theory of gases is much more than that. We would like to prove
that for a specified distribution, there is a probability very close to 1 that distribution is
asymptotically approached as the number of molecules becomes infinitely large. And in
order to achieve that, it is necessary to modify the concept of “velocity distribution” in
order to obtain some margin for looseness. We should formulate the question in terms
such as these: What is the probability for the occurrence of a velocity distribution that
deviates from Maxwell’s by no more than a given amount? And moreover: what allowed
deviation must we choose in order to obtain the probability 1 in the limit?157

Hilbert discussed in some detail additional difficulties that arise in applying prob-
abilistic reasoning within kinetic theory. He also gave a rough sketch of the kind of
mathematical considerations that could in principle provide a way out to the dilem-
mas indicated. Yet he made clear that he could not give final answers in this
regard.158 This problem would continue to bother him in the near future. In any case,
after this brief excursus, Hilbert continued with the discussion he had started in the
first part of his lectures and went on to generalize the solutions already obtained to
the cases of mixtures of gases or of polyatomic gases.

In spite of its very high level of technical sophistication of his approach to kinetic
theory, it is clear that Hilbert did not want his contribution to be seen as a purely
mathematical, if major, addition to the solution of just one central, open problem of

157 “Wenn z.B. Boltzmann beweist—übrigens auch mit einigen Vernachlässigungen—dass die Maxwell-
sche Verteilung (die nach dem Exponentialgesetz) unter allen Verteilungen von gegebener Gesamten-
ergie die wahrscheinlichste ist, so besitzt dieser Satz ja an und für sich ein gewisses Interesse, aber er
gestattet auch nicht der geringsten Schluss auf die Geschwindigkeitsverteilung, welche in einem
bestimmten Gase wirklich eintritt. Um den Kernpunkt der Frage klar zu legen, will ich an folgendes
Beispiel erinnern: In einer Lotterie mit einem Gewinn und von 1000 Losen seien 998 Losen auf 998
Personen verteilt, die zwei übrigen Lose möge eine andere Person erhalten. Dann hat diese Person im
Vergleich zu jeder einzelnen andern die grössten Gewinnchancen. Die Wahrscheinlichkeit des Gewin-
nen ist für sie am grössten, aber es ist immer noch höchst unwahrscheinlich, dass sie gewinnt. Denn
die Wahrscheinlichkeit ist so gut wie Null.
Ganz ebenso ist die Wahrscheinlichkeit für den Eintritt der Maxwellschen Geschwindigkeitsvertei-
lung zwar grösser als die für das Eintreten einer jeden bestimmten andern, aber doch noch so gut wie
Null, und es ist daher fast mit absoluter Gewissheit sicher, dass die Maxwellsche Verteilung nicht ein-
tritt.
Was wir für die Gastheorie brauchen, ist sehr viel mehr. Wir wünschen zu beweisen, dass für eine
gewisse ausgezeichnete Verteilung eine Wahrscheinlichkeit sehr nahe an 1 besteht, derart, dass sie
sich mit Unendliche wachsende Molekülzahl der 1 asymptotisch annähert. Und um das zu erreichen,
müssen wir den Begriff der „Geschwindigkeitsverteilung” etwas modifizieren, indem wir einen
gewissen Spielraum zulassen. Wir hätten die Frage etwa so zu formulieren: Wie gross ist die Wahr-
scheinlichkeit dafür, dass eine Geschwindigkeitsverteilung eintritt, welche von der Maxwellschen nur
um höchstens einen bestimmten Betrag abweicht—und weiter: wie gross müssen wir die zugelasse-
nen Abweichungen wählen, damit wir im limes die Wahrscheinlichkeit eins erhalten?” (Hilbert 1911–
1912, 75–76)

158 “Ich will Ihnen nun auseinandersetzen, wie ich mir etwa die Behandlung dieser Frage denke. Es sind
da sicher noch grosse Schwierigkeiten zu überwinden, aber die Idee nach wird man wohl in folgender
Weise vorgehen müssen: ... ” (Hilbert 1911–1912, 77)
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this theory. Rather, his aim was to be directly in touch with the physical core of this
and other, related domains. The actual scope of his physical interests at the time
becomes more clearly evident in a seminar that he organized in collaboration with
Erich Hecke (1887–1947), shortly after the publication of his article on kinetic the-
ory.159 The seminar was also attended by the Göttingen docents Max Born, Paul
Hertz, Theodor von Kármán (1881–1963), and Erwin Madelung (1881–1972), and
the issues discussed included the following:160

• the ergodic hypothesis and its consequences;

• on Brownian motion and its theories;

• electron theory of metals in analogy to Hilbert’s theory of gases;

• report on Hilbert’s theory of gases;

• on dilute gases;

• theory of dilute gases using Hilbert’s theory;

• on the theory of chemical equilibrium, including a reference to the

• related work of Sackur;

• dilute solutions.

The names of the participants and younger colleagues indicate that these deep
physical issues, related indeed with kinetic theory but mostly not with its purely
mathematical aspects, could not have been discussed only superficially. Especially
indicative of Hilbert’s surprisingly broad spectrum of interests is the reference to the
work of Otto Sackur (1880–1914). Sackur was a physical chemist from Breslau
whose work dealt mainly with the laws of chemical equilibrium in ideal gases and on
Nernst law of heat. He also wrote a widely used textbook on thermochemistry and
thermodynamics (Sackur 1912). His experimental work was also of considerable sig-
nificance and, more generally, his work was far from the typical kind of purely tech-
nical, formal mathematical physics that is sometimes associated with Hilbert and the
Göttingen school.161

10. RADIATION THEORY

Already in his 1911–1912 lectures on kinetic theory, Hilbert had made clear his inter-
est in investigating, together with this domain and following a similar approach, the

159  Hecke had also taken the notes of the 1911–1912 course. 
160 References to this seminar appear in (Lorey 1916, 129). Lorey took this information from the German

student’s journal Semesterberichte des Mathematischen Verereins. The exact date of the seminar, how-
ever, is not explicitly stated.

161 See Sackur’s obituary in Physikalische Zeitschrift 16 (1915), 113–115. According to Reid’s account
(1970, 129), Ewald succinctly described Hilbert’s scientific program at the time of his arrival in Göt-
tingen with the following, alleged quotation of the latter: “We have reformed mathematics, the next
thing to reform is physics, and then we’ll go on to chemistry.” Interest in Sackur’s work, as instanti-
ated in this seminar would be an example of an intended, prospective attack on this field. There are
not, however, many documented, further instances of this kind.
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theory of radiation.162 Kirchhoff’s laws of emission and absorption had traditionally
stood as the focus of interest of this theory. These laws, originally formulated in late
1859, describe the energetic relations of radiation in a state of thermal equilib-
rium.163 They assert that in the case of purely thermal radiation (i.e., radiation pro-
duced by thermal excitation of the molecules) the ratio between the emission and
absorption capacities of matter,  and  respectively, is a universal function of the
temperature  and the wavelength ,

and is therefore independent of the substance and of any other characteristics of the
body in question. One special case that Kirchhoff considered in his investigations is
the case  which defines a “black body,” namely, a hypothetical entity that com-
pletely absorbs all wavelengths of thermal radiation incident in it.164

In the original conception of Kirchhoff’s theory the study of black-body radiation
may not have appeared as its most important open problem, but in retrospect it turned
out to have the farthest-reaching implications for the development of physics at large.
In its initial phases, several physicists attempted to determine over the last decades of
the century the exact form of the spectral distribution of the radiation  for a
black body. Prominent among them was Wilhelm Wien, who approached the problem
by treating this kind of radiation as loosely analogous to gas molecules. In 1896 he
formulated a law of radiation that predicted very accurately recent existing measure-
ments. Planck, however, was dissatisfied with the lack of a theoretical justification for
what seemed to be an empirically correct law. In searching for such a justification
within classical electromagnetism and thermodynamics, he modeled the atoms at the
inside walls of a black-body cavity as a collection of electrical oscillators which
absorbed and emitted energy at all frequencies. In 1899 he came forward with an
expression for the entropy of an ideal oscillator, built on an analogy with Boltz-
mann’s kinetic theory of gases, that provided the desired theoretical justification of
Wien’s law (Planck 1899). Later on, however, additional experiments produced val-
ues for the spectrum at very low temperatures and at long wavelengths that were not
anymore in agreement with this law.

Another classical attempt was advanced by John William Strutt, Lord Rayleigh
(1842–1919), and James Jeans (1877–1946), also at the beginning of the century.165

Considering the radiation within the black-body cavity to be made up of a series of
standing waves, they derived a law that, contrary to Wien’s, approximated experimen-

162 Minkowski and Hilbert even had planned to have a seminar on the theory of heat radiation as early as
1907 (Minkowski 1907).

163 Cf., e.g., (Kirchhoff 1860). 
164 Cf. (Kuhn 1978, 3–10).
165 Cf. (Kuhn 1978, 144–152). 
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tal data very well at long wavelengths but failed at short ones. In the latter case, it pre-
dicted that the spectrum would rise to infinity as the wavelength decreased to zero.166

In a seminal paper of 1900, Planck formulated an improved law that approxi-
mated Wien’s formula in the case of short wavelengths and the Rayleigh-Jeans law in
the case of long wavelengths. The law assumed that the resonator entropy is calcu-
lated by counting the number of distributions of a given number of finite, equal
“energy elements” over a set of resonators, according to the formula:

where  is an integer,  is the oscillators’ frequency, and  is the now famous Planck
constant, h = 6.55 x 10 -27 erg-sec. (Planck 1900). Based on this introduction of
energy elements, assuming thermal equilibrium and applying statistical methods of
kinetic theory, Planck derived the law that he had previously obtained empirically and
that described the radiant energy distribution of the oscillators:

Planck saw his assumption of energy elements as a convenient mathematical
hypothesis, and not as a truly physical claim about the way in which matter and radi-
ation actually interchange energy. In particular, he did not stress the significance of
the finite energy elements that entered his calculation and he continued to think about
the resonators in terms of a continuous dynamics. He considered his assumption to be
very important since it led with high accuracy to a law that had been repeatedly con-
firmed at the experimental level, but at the same time he considered it to be a provi-
sional one that would be removed in future formulations of the theory. In spite of its
eventual revolutionary implications on the developments of physics, Planck did not
realize before 1908 that his assumptions entailed any significant departure from the
fundamental conceptions embodied in classical physics. As a matter of fact, he did
not publish any further research on black-body radiation between 1901 and 1906.167

The fundamental idea of the quantum discontinuity was only slowly absorbed into
physics, first through the works of younger physicists such as Einstein, Laue and
Ehrenfest, then by leading ones such as Planck, Wien and Lorentz, and finally by
their readers and followers. The details pertaining to this complex process are well
beyond the scope of my account here. Nonetheless, it is worth mentioning that a very
significant factor influencing Planck’s own views in this regard was his correspon-
dence with Lorentz in 1908. Lorentz had followed with interest since 1901 the
debates around black-body radiation, and he made some effort to connect them with
his own theory of the electron. At the International Congress of Mathematicians held

166 Much later Ehrenfest (1911) dubbed this phenomenon “ultraviolet catastrophe.”
167 This is the main claim developed in detail in the now classic (Kuhn 1978). For a more recent, sum-

mary account of the rise of quantum theory, see (Kragh 1999, chap. 5).
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in Rome in 1908, Lorentz was invited to deliver one of the plenary talks, which he
devoted to this topic. This lecture was widely circulated and read thereafter and it
represented one of the last attempts at interpreting cavity radiation in terms of a clas-
sical approach (Lorentz 1909). But then, following critical remarks by several col-
leagues, Lorentz added a note to the printed version of his talk where he
acknowledged that his attempt to derive the old Rayleigh-Jeans radiation law from
electron theory was impracticable unless the foundations of the latter would be
deeply modified. A letter to Lorentz sent by Planck in the aftermath of the publication
contains what may be the latter’s first acknowledgment of the need to introduce dis-
continuity as a fundamental assumption. Lorentz himself, at any rate, now unambigu-
ously adopted the idea of energy quanta and he stressed it explicitly in his lectures of
early 1909 in Utrecht.168 Later, in his 1910 Wolfskehl cycle in Göttingen, Lorentz
devoted one of the lectures to explaining why the classical Hamilton principle would
not work for radiation theory. An “entirely new hypothesis,” he said, needed to be
introduced. The new hypothesis he had in mind was “the introduction of the energy
elements invented by Planck” (Lorentz 1910, 1248). Hilbert was of course in the
audience and he must have attentively listened to his guest explaining the innovation
implied by this fundamental assertion.

Starting in 1911 research on black-body radiation became less and less prominent
and at the same time the quantum discontinuity hypothesis became a central issue in
other domains such as thermodynamics, specific heats, x-rays, and atomic models.
The apparent conflicts between classical physics and the consequences of the hypoth-
esis stood at the focus of discussions in the first Solvay conference organized in Brus-
sels in 1911.169 These discussion prompted Poincaré, who until then was reticent to
adopt the discontinuity hypothesis, to elaborate a mathematical proof that Planck’s
radiation law necessarily required the introduction of quanta (Poincaré 1912). His
proof also succeeded in convincing Jeans in 1913, who thus became one of the latest
prominent physicists to abandon the classical conception in favor of discontinuity
(Jeans 1914).170

The notes of Hilbert’s course on radiation theory in the summer semester of 1912,
starting in late April, evince a clear understanding and a very broad knowledge of all
the main issues of the discipline. In his previous course on kinetic theory, Hilbert had
promised to address “the main task of physics,” namely, the molecular theory of mat-
ter itself, a theory he described as having a greater degree of mathematical sophistica-
tion and exactitude than kinetic theory. To a certain extent, teaching this course meant
fulfilling that promise. Hilbert declared that he intended to address now the “domain
of physics properly said,” which is based on the point of view of the atomic theory.
Hilbert was clearly very much impressed by recent developments in quantum theory.
“Never has there been a more proper and challenging time than now,” he said, “to

168 Cf. (Kuhn 1978, 189–197). 
169 Cf. (Barkan 1993). 
170 Cf. (Kuhn 1978, 206–232).



THE ORIGIN OF HILBERT’S AXIOMATIC METHOD 831

undertake the research of the foundations of physics.” What seems to have impressed
Hilbert more than anything else were the deep interconnections recently discovered
in physics, “of which formerly no one could have even dreamed, namely, that optics
is nothing but a chapter within the theory of electricity, that electrodynamics and
thermodynamics are one and the same, that energy also possesses inertial properties,
that physical methods have been introduced into chemistry as well.”171 And above
all, the “atomic theory,” the “principle of discontinuity,” which was not a hypothesis
anymore, but rather, “like Copernicus’s theory, a fact confirmed by experiment.”172

Hilbert opened with a summary account of four-vector analysis173 and of Special
Theory of Relativity. Taking the relativity postulate to stand “on top” of physics as a
whole, he then formulated the basics of electrodynamics as currently conceived,
including Born’s concept of a rigid body. This is perhaps Hilbert’s first systematic
discussion of Special Theory of Relativity in his lecture courses. As in the case of
kinetic theory, Hilbert already raised here some of the ideas that he would later
develop in his related, published works. But again, the course was far from being just
an exercise in applying integral equations techniques to a particularly interesting,
physical case. Rather, Hilbert covered most of the core, directly relevant, physical
questions. Thus, among the topics discussed in the course we find the energy distribu-
tion of black-body radiation (including a discussion of Wien’s and Rayleigh’s laws)
and Planck’s theory of resonators under the effect of radiation. Hilbert particularly
stressed the significance of recent works by Ehrenfest and Poincaré, as having shown
the necessity of a discontinuous form of energy distribution (Hilbert 1912c, 94).174

Hilbert also made special efforts to have Sommerfeld invited to give the last two lec-
tures in the course, in which important, recent topics in the theory were discussed.175

However, as with all other physical theories, what Hilbert considered to be the
main issue of the theory of radiation as a whole was the determination of the precise
form of a specific law that stood at its core. In this case the law in question was
Kirchhoff’s law of emission and absorption, to which Hilbert devoted several lec-
tures. Of particular interest for him was the possibility of using the techniques of the

171 “Nun kommen wir aber zu eigentlicher Physik, welche sich auf der Standpunkt der Atomistik stellt
und da kann man sagen, dass keine Zeit günstiger ist und keine mehr dazu herausfordert, die Grundla-
gen dieser Disziplin zu untersuchen, wie die heutige. Zunächst wegen der Zusammenhänge, die man
heute in der Physik entdeckt hat, wovon man sich früher nichts hätte träumen lassen, dass die Optik
nur ein Kapitel der Elektrizitätslehre ist, dass Elektrodynamik und Thermodynamik dasselbe sind,
dass auch die Energie Trägheit besitzt, dann dass auch in der Chemie (Metalchemie, Radioaktivität)
physikalische Methoden in der Vordergrund haben.” (Hilbert 1912c, 2)

172 “... wie die Lehre des Kopernikus, eine durch das Experimente bewiesene Tatsache.” (Hilbert
1912c, 2)

173 A hand-written addition to the typescript (Hilbert 1912c, 4) gives here a cross-reference to Hilbert’s
later course, (Hilbert 1916, 45–56), where the same topic is discussed in greater detail. 

174 He referred to (Ehrenfest 1911) and (Poincaré 1912). Hilbert had recently asked Poincaré for a reprint
of his article. See Hilbert to Poincaré, 6 May 1912. (Hilbert 1932–1935, 546)

175 Cf. Hilbert to Sommerfeld, 5 April 1912 (Nachlass Arnold Sommerfeld, Deutsches Museum, Munich.
HS1977–28/A, 141). 
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theory of integral equations for studying the foundations of the law and providing a
complete mathematical justification for it. This would also become the main task pur-
sued in his published articles on the topic, which I discuss in detail in the next four
sections. In fact, just as his summer semester course was coming to a conclusion, Hil-
bert submitted for publication his first paper on the “Foundations of the Elementary
Theory of Radiation.”

11. STRUCTURE OF MATTER AND RELATIVITY: 1912–1914

After this account of Hilbert’s involvement with kinetic theory and radiation theory, I
return to 1912 in order to examine his courses in physics during the next two
years.176 The structure of matter was the focus of attention here, and Hilbert now
finally came to adopt electromagnetism as the fundamental kind of phenomenon to
which all others should be reduced. The atomistic hypothesis was a main physical
assumption underlying all of Hilbert’s work from very early on, and also in the period
that started in 1910. This hypothesis, however, was for him secondary to more basic,
mathematical considerations of simplicity and precision. A main justification for the
belief in the validity of the hypothesis was the prospect that it would provide a more
accurate and detailed explanation of natural phenomena once the tools were devel-
oped for a comprehensive mathematical treatment of theories based on it. Already in
his 1905 lectures on the axiomatization of physics, Hilbert had stressed the problems
implied by the combined application of analysis and the calculus of probabilities as
the basis for the kinetic theory, an application that is not fully justified on mathemati-
cal grounds. In his physical courses after 1910, as we have seen, he again expressed
similar concerns. The more Hilbert became involved with the study of kinetic theory
itself, and at the same time with the deep mathematical intricacies of the theory of
linear integral equations, the more these concerns increased. This situation, together
with his growing mastery of specific physical issues from diverse disciplines, helps to
explain Hilbert’s mounting interest in questions related to the structure of matter that
occupied him in the period I discuss now. The courses described below cover a wide
range of interesting physical questions. In this account, for reasons of space, I will
comment only on those aspects that are more directly connected with the questions of
axiomatization, reductionism and the structure of matter.

11.1 Molecular Theory of Matter - 1912–1913

Hilbert’s physics course in the winter semester of 1912–1913 was devoted to describ-
ing the current state of development of the molecular theory of matter (Hilbert 1912–

176  The printed version of the Verzeichnis der Vorlesungen an der Georg-August-Universität zu Göttin-
gen registers several courses for which no notes or similar documents are extant, and about which I
can say nothing here: summer semester, 1912 - Mathematical Foundations of Physics; winter semes-
ter, 1912–1913 - Mathematical Foundations of Physics.
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1913),177 and particularly the behavior of systems of huge quantities of particles
moving in space, and affecting each other through collisions and other kinds of inter-
acting forces.178 The first of the course’s three parts deals with the equation of state,
including a section on the principles of statistical mechanics. The second part is char-
acterized as “phenomenological” and the third part as “kinetic,” in which entropy and
the quantum hypothesis are discussed. This third part also includes a list of axioms
for the molecular theory of matter. Hilbert was thus closing a circle initiated with the
course on kinetic theory taught one year earlier.

Hilbert suggested that the correct way to come to terms with the increasingly deep
mathematical difficulties implied by the atomistic hypothesis would be to adopt a
“physical point of view.” This means that one should make clear, through the use of
the axiomatic method, those places in which physics intervenes into mathematical
deduction. This would allow separating three different components in any specific
physical domain considered: first, what is arbitrarily adopted as definition or taken as
an assumption of experience; second, what a-priori expectations follow from these
assumptions, which the current state of mathematics does not yet allow us to con-
clude with certainty; and third, what is truly proven from a mathematical point of
view.179 This separation interestingly brings to mind Minkowski’s earlier discussion
on the status of the principle of relativity. It also reflects to a large extent the various
levels of discussion evident in Hilbert’s articles on radiation theory, and it will resur-
face in his reconsideration of the view of mechanics as the ultimate explanation of
physical phenomena.

In the first part of the course, Hilbert deduced the relations between pressure, vol-
ume and temperature for a completely homogenous body. He considered the body as
a mechanical system composed of molecules, and applied to it the standard laws of
mechanics. This is a relatively simple case, he said, that can be easily and thoroughly
elucidated. However, deriving the state equation and explaining the phenomenon of
condensation covers only a very reduced portion of the empirically manifest proper-
ties of matter. Thus the second part of the lectures was devoted to presenting certain,
more complex physical and chemical phenomena, the kinetic significance of which
would then be explained in the third part of the course.180 The underlying approach

177 A second copy of the typed notes in found in Nachlass Max Born, Staatsbibliothek Berlin, Preussi-
scher Kulturbesitz #1817.

178 “Das Ziel der Vorlesung ist es, die Molekulartheorie der Materie nach dem heutigen Stande unseres
Wissens zu entwickeln. Diese Theorie betrachtet die physikalischen Körper und ihre Veränderungen
unter dem Scheinbilde eines Systems ungeheuer vieler im Raum bewegter Massen, die durch die
Stösse oder durch andere zwischen ihnen wirkenden Kräfte einander beeinflussen.” (Hilbert 1912–
1913, 1)

179 “Dabei werden wir aber streng axiomatisch die Stellen, in denen die Physik in die mathematische
Deduktion eingreift, deutlich hervorheben, und das voneinander trennen, was erstens als logisch will-
kürliche Definition oder Annahme der Erfahrung entnommen wird, zweitens das, was a priori sich aus
diesen Annahmen folgern liesse, aber wegen mathematischer Schwierigkeiten zur Zeit noch nicht
sicher gefolgert werden kann, und dritten, das, was bewiesene mathematische Folgerung ist.” (Hilbert
1912–1913, 1)
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was to express the basic facts of experience in mathematical language, taking them as
axioms in need of no further justification. Starting from these axioms one would then
deduce as many results as possible, and the logical interdependence of these axioms
would also be investigated. In this way, Hilbert declared, the axiomatic method, long
applied in mathematics with great success, can also be introduced into physics.181

A main task that Hilbert had pursued in his 1905 lectures on axiomatization was
to derive, from general physical and mathematical principles in conjunction with the
specific axioms of the domain in question, an equation that stands at the center of
each discipline and that accounts for the special properties of the particular system
under study. Hilbert explicitly stated this as a main task for his system of axioms also
in the present case.182 A first, general axiom he introduced was the “principle of equi-
librium,” which reads as follows:

In a state of equilibrium, the masses of the independent components are so distributed
with respect to the individual interactions and with respect to the phases, that the charac-
teristic function that expresses the properties of the system attains a minimum value.183

Hilbert declared that such an axiom had not been explicitly formulated before and
claimed that its derivation from mechanical principles should be done in terms of
purely kinetic considerations, such as would be addressed in the third part of the
course.184 At the same time he stated that, in principle, this axiom is equivalent to the
second law of thermodynamics, which Hilbert had usually formulated in the past as 

180 “Wir haben bisher das Problem behandelt, die Beziehung zwischen  und  an einem chemisch
völlig homogenen Körper zu ermitteln. Unser Ziel war dabei, diese Beziehung nach den Gesetzen der
Mechanik aus der Vorstellung abzuleiten, dass der Körper ein mechanisches System seiner Molekele
ist. In dem bisher behandelten, besonders einfache Falle, in dem wir es mit einer einzigen Molekel zu
tun hatten, liess sich dies Ziel mit einer gewissen Vollständigkeit erreichen. Eine in einem bestimmten
Temperaturintervall mit der Erfahrung übereinstimmende Zustandsgleichung geht nämlich aus der
Kinetischen Betrachtung hervor. Mit der Kenntnis der Zustandsgleichung und der Kondensationser-
scheinungen ist aber nur ein sehr kleiner Teil, der sich empirisch darbietenden Eigenschaften der
Stoffe erledigt. Wir werden daher in diesem zweiten Teile diejenigen Ergebnisse der Physik und Che-
mie zusammenstellen, deren kinetische Deutung wir uns später zur Aufgabe machen wollen.” (Hilbert
1912–1913, 50)

181 “Die reinen Erfahrungstatsachen werden dabei in mathematischer Sprache erscheinen und als Axiome
auftreten, die hier keiner weiteren Begründung bedürfen. Aus diesen Axiomen werden wir soviel als
möglich, rein mathematische Folgerungen ziehen, und dabei untersuchen, welche unter den Axiomen
voneinander unabhängig sind und welche zum Teil auseinander abgeleitet werden können. Wir wer-
den also den axiomatischen Standpunkt, der in der modernen Mathematik schon zur Geltung gebracht
ist, auf die Physik anwenden.” (Hilbert 1912–1913, 50)

182 “Um im einzelnen Falle die charakteristische Funktion in ihrer Abhängigkeit von der eigentlichen
Veränderlichen und den Massen der unabhängigen Bestandteile zu ermitteln, müssen verschiedenen
neue Axiome hinzugezogen werden.” (Hilbert 1912–1913, 60)

183 “Im Gleichgewicht verteilen sich die Massen der unabhängigen Bestandteile so auf die einzelnen Ver-
bindungen und Phasen, dass die charakteristische Funktion, die den Bedingungen des Systems ent-
spricht, ein Minimum wird.” (Hilbert 1912–1913, 60)

184 “Es muss kinetischen Betrachtung überlassen bleiben, es aus den Prinzipien der Mechanik abzuleiten
und wir werden im dritten Teil der Vorlesung die erste Ansätze an solchen kinetischen Theorie kennen
lernen.” (Hilbert 1912–1913, 61)

p v ,, ϑ
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the impossibility of the existence of a “perpetuum mobile.”
The topics for which Hilbert carried out an axiomatic analysis included the equa-

tion of state and the third law of thermodynamics. Hilbert’s three axioms for the
former allowed him a derivation of the expression for the thermodynamical potential
of a mixture of gases that was followed by a discussion of the specific role of each of
the axioms involved.185 Concerning the third law of thermodynamics, Hilbert intro-
duced five axioms meant to account for the relationship between the absolute zero
temperature, specific heats and entropy. Also in this case he devoted some time to dis-
cussing the logical and physical interdependence of these axioms. Hilbert explained
that the axiomatic reduction of the most important theorems into independent compo-
nents (the axioms) is nevertheless not yet complete. The relevant literature, he said, is
also full of mistakes, and the real reason for this lies at a much deeper layer. The basic
concepts seem to be defined unclearly even in the best of books. The problematic use
of the basic concepts of thermodynamics went back in some cases even as far as
Helmholtz.186

The third part of the course contained, as promised, a “kinetic” section especially
focusing on a discussion of rigid bodies. Hilbert explained that the results obtained in
the previous sections had been derived from experience and then generalized by
means of mathematical formulae. In order to derive them a-priori from purely
mechanical considerations, however, one should have recourse to the “fundamental
principle of statistical mechanics,”187 presumably referring to the assumption that all
accessible states of a system are equally probable. Hilbert thought that the task of the
course would be satisfactorily achieved if those results that he had set out to derive
were indeed reduced to the theorems of mechanics together with this principle.188 At
any rate, the issues he discussed in this section included entropy, thermodynamics
laws and the quantum hypothesis.

185 “Die drei gegebenen Axiome reichen also hin, um das thermodynamische Potential der Mischung zu
berechnen. Aber sind nicht in vollem Umfange dazu Notwendig. Nimmt man z.B. das dritte Axiom
für eine bestimmte Temperatur gültig an, so folgt es für jede beliebige Temperatur aus den beiden
ersten Axiomen. Ebensowenig ist das erste und zweite Axiom vollständig voneinander unabhängig.”
(Hilbert 1912–1913, 66)

186 “Die axiomatische Reduktion der vorstehenden Sätze auf ihre unabhängigen Bestandteile ist demnach
noch nicht vollständig durchgeführt, und es finden sich auch in der Literatur hierüber verschiedene
Ungenauigkeiten. Was den eigentlichen Kern solcher Missverständnisse anlangt, so glaube ich, dass
er tiefer liegt. Die Grundbegriffe scheinen mir selbst in den besten Lehrbüchern nicht genügend klar
dargestellt zu sein, ja, in einem gleich zu erörternden Punkte geht die nicht ganz einwandfreie Anwen-
dung der thermodynamischen Grundbegriffe sogar auch Helmholtz zurück.” (Hilbert 1912–1913, 80)

187 “Um die empirisch gegebenen und zu mathematischen Formeln verallgemeinerten Ergebnisse des
vorigen Teiles a priori und zwar auf rein mechanischem Wege abzuleiten, greifen wir wieder auf des
Grundprinzip des statistischen Mechanik zurück, von der wir bereits im ersten Teil ausgegangen
waren.” (Hilbert 1912–1913, 88)

188 “Auf die Kritik dieses Grundprinzipes und die Grenzen, die seiner Anwendbarkeit gesteckt sind, kön-
nen wir hier nicht eingehen. Wir betrachten vielmehr unser Ziel als erreicht, wenn die Ergebnisse, die
abzuleiten wir uns zur Aufgabe stellen, auf die Sätze der Mechanik und auf jenes Prinzip zurückge-
führt sind.” (Hilbert 1912–1913, 88)
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It is noteworthy that, although in December 1912, Born himself lectured on Mie’s
theory of matter at the Göttinger Mathematische Gesellschaft,189 and that this theory
touched upon many of the issues taught by Hilbert in this course, neither Mie’s name
nor his theory are mentioned in the notes. Nor was the theory of relativity mentioned
in any way.

11.2 Electron Theory: 1913

In April of 1913 Hilbert organized a new series of Wolfskehl lectures on the current
state of research in kinetic theory, to which he invited the leading physicists of the
time. Planck lectured on the significance of the quantum hypothesis for kinetic the-
ory. Peter Debye (1884–1966), who would become professor of physics in Göttingen
the next year, dealt with the equation of state, the quantum hypothesis and heat con-
duction. Nernst, whose work on thermodynamics Hilbert had been following with
interest,190 spoke about the kinetic theory of rigid bodies. Von Smoluchowski came
from Krakow and lectured on the limits of validity of the second law of thermody-
namics, a topic he had already addressed at the Münster meeting of the Gesellschaft
Deutscher Naturforscher und Ärzte. Sommerfeld came from Munich to talk about
problems of free trajectories. Lorentz was invited from Leiden; he spoke on the appli-
cations of kinetic theory to the study of the motion of the electron. Einstein was also
invited, but he could not attend.191 Evidently this was for Hilbert a major event and
he took pains to announce it very prominently on the pages of the Physikalische
Zeitschrift, including rather lengthy and detailed abstracts of the expected lectures for
the convenience of those who intended to attend.192 After the meeting Hilbert also
wrote a detailed report on the lectures in the Jahresbericht der Deutschen Mathemati-
ker-Vereiningung193as well as the introduction to the published collection (Planck et
al. 1914). Hilbert expressed the hope that the meeting would stimulate further inter-
est, especially among mathematicians, and lead to additional involvement with the
exciting world of ideas created by the new physics of matter.

That semester Hilbert also taught two courses on physical issues, one on the the-
ory of the electron and another on the principles of mathematics, quite similar to his
1905 course on the axiomatic method and including a long section on the axiomatiza-
tion of physics as well. Hilbert’s lectures on electron theory emphasized throughout
the importance of the Lorentz transformations and of Lorentz covariance, and contin-
ually referred back to the works of Minkowski and Born. Hilbert stressed the need to

189 Jahresbericht der Deutschen Mathematikervereinigung 22 (1913), 27.
190 In January 1913, Hilbert had lectured on Nernst’s law of heat at the Göttingen Physical Society

(Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 590). See also a remark added in Hilbert’s handwrit-
ing in (Hilbert 1905a, 167).

191 Cf. Einstein to Hilbert, 4 October 1912 (CPAE  5, Doc. 417).
192 Physikalische Zeitschrift 14 (1913), 258–264. Cf. also (Born 1913). 
193 Jahresbericht der Deutschen Mathematiker-Vereinigung 22 (1913), 53–68, which includes abstract of

all the lectures. Cf. also Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (1914), 41. 
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formulate unified theories in physics, and to explain all physical processes in terms of
motion of points in space and time.194 From this reductionistic point of view, the the-
ory of the electron would appear as the most appropriate foundation of all of phys-
ics.195 However, given the difficulty of explicitly describing the motion of, and the
interactions among, several electrons, Hilbert indicated that the model provided by
kinetic theory had to be brought to bear here. He thus underscored the formal similar-
ities between mechanics, electrodynamics and the kinetic theory of gases. In order to
describe the conduction of electricity in metals, he developed a mechanical picture
derived from the theory of gases, which he then later wanted to substitute by an elec-
trodynamical one.196 Hilbert stressed the methodological motivation behind his quest
after a unified view of nature, and the centrality of the demand for universal validity
of the Lorentz covariance, in the following words:

But if the relativity principle [i.e., invariance under Lorentz transformations] is valid,
then it is so not only for electrodynamics, but for the whole of physics. We would like to
consider the possibility of reconstructing the whole of physics in terms of as few basic
concepts as possible. The most important concepts are the concept of force and of rigid-
ity. From this point of view the electrodynamics would appear as the foundation of all of
physics. But the attempt to develop this idea systematically must be postponed for a later
opportunity. In fact, it has to start from the motion of one, of two, etc. electrons, and
there are serious difficulties on the way to such an undertaking. The corresponding prob-
lem for Newtonian physics is still unsolved for more than two bodies.197

When looking at the kind of issues raised by Hilbert in this course, one can hardly
be surprised to discover that somewhat later Gustav Mie’s theory of matter eventually
attracted his attention. Thus, for instance, Hilbert explained that in the existing theory
of electrical conductivity in metals, only the conduction of electricity—which itself
depends on the motion of electrons—has been considered, while assuming that the
electron satisfies both Newton’s second law,  and the law of collision as a
perfectly elastic spherical body (as in the theory of gases).198 This approach assumes
that the magnetic and electric interactions among electrons are described correctly
enough in these mechanical terms as a first approximation.199 However, if we wish to
investigate with greater exactitude the motion of the electron, while at the same time

194 “Alle physikalischen Vorgänge, die wir einer axiomatischen Behandlung zugängig machen wollen,
suchen wir auf Bewegungsvorgänge an Punktsystem in Zeit und Raum zu reduzieren.” (Hilbert
1913b, 1)

195 “Die Elektronentheorie würde daher von diesem Gesichtpunkt aus das Fundament der gesamten Phy-
sik sein.” (Hilbert 1913b, 13)

196 “Unser nächstes Ziel ist, eine Erklärung der Elektrizitätsleitung in Metallen zu gewinnen. Zu diesem
Zwecke machen wir uns von der Elektronen zunächst folgendes der Gastheorie entnommene mecha-
nische Bild, das wir später durch ein elektrodynamisches ersetzen werden.” (Hilbert 1913b, 14)

197 “Die wichtigsten Begriffe sind die der Kraft und der Starrheit. Die Elektronentheorie würde daher
von diesem Gesichtspunkt aus das Fundament der gesamten Physik sein. Den Versuch ihres systema-
tischen Aufbaues verschieben wir jedoch auf später; er hätte von der Bewegung eines, zweier Elektro-
nen u.s.w. auszugehen, und ihm stellen sich bedeutende Schwierigkeiten in der Weg, da schon die
entsprechenden Probleme der Newtonschen Mechanik für mehr als zwei Körper ungelöst sind.”
(Hilbert 1913a, 1913c)

F ma,=
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preserving the basic conception of the kinetic theory based on colliding spheres, then
we should also take into account the field surrounding the electron and the radiation
that is produced with each collision. We are thus led to investigate the influence of the
motion of the electron on the distribution of energy in the free aether, or in other
words, to study the theory of radiation from the point of view of the mechanism of
the motion of the electron. In his 1912 lectures on the theory of radiation, Hilbert had
already considered this issue, but only from a “phenomenological” point of view.
This time he referred to Lorentz’s work as the most relevant one.200 From Lorentz’s
theory, he said, we can obtain the electrical force induced on the aether by an electron
moving on the x-axis of a given coordinate system.

Later on, Hilbert returned once again to the mathematical difficulties implied by
the basic assumptions of the kinetic model. When speaking of clouds of electrons, he
said, one assumes the axioms of the theory of gases and of the theory of radiation.
The n-electron problem, he said, is even more difficult than that of the n-bodies, and
in any case, we can only speak here of averages. Hilbert thus found it more conve-
nient to open his course by describing the motion of a single electron, and, only later
on, to deal with the problem of two electrons.

In discussing the behavior of the single electron, Hilbert referred to the possibility
of an electromagnetic reduction of all physical phenomena, freely associating ideas
developed earlier in works by Mie and by Max Abraham. The Maxwell equations and
the concept of energy, Hilbert said, do not suffice to provide a foundation of electro-
dynamics; the concept of rigidity has to be added to them. Electricity has to be
attached to a steady scaffold, and this scaffold is what we denote as an electron. The
electron, he explained to his students, embodies the concept of a rigid connection of
Hertz’s mechanics. In principle at least it should be possible to derive all the forces of
physics, and in particular the molecular forces, from these three ideas: Maxwell’s
equations, the concept of energy, and rigidity. However, he stressed, one phenomenon
has so far evaded every attempt at an electrodynamic explanation: the phenomenon of

198 “In der bisherigen Theoire der Elektricitätsleitung in Metallen haben wir nur den Elektrizitätstrans-
port, der durch die Bewegung der Elektronen selbst bedingt wird, in Betracht gezogen; unter der
Annahme, dass die Elektronen erstens dem Kraftgesetz  gehorchen und zweitens dasselbe
Stossgesetz wie vollkommen harten elastischen Kugeln befolgen (wie in der Gastheorie).” (Hilbert
1913b, 14)

199 “Auf die elektrischen und magnetische Wirkung der Elektronen aufeinander und auf die Atome sind
wir dabei nicht genauer eingegangen, vielmehr haben wir angenommen, dass die gegenseitige Beein-
flussung durch das Stossgesetz in erster Annäherung hinreichend genau dargestellt würde.” (Hilbert
1913b, 14)

200 “Wollte man die Wirkung der Elektronenbewegung genauer verfolgen—jedoch immer noch unter
Beibehaltung des der Gastheorie entlehnten Bildes stossender Kugeln—so müsste man das umge-
bende Feld der Elektronen und die Strahlung in Rechnung setzen, die sie bei jedem Zusammenstoß
aussenden. Man wird daher naturgemäß darauf geführt, den Einfluss der Elektronenbewegung auf die
Energieverteilung im freien aether zu untersuchen. Ich gehe daher dazu über, die Strahlungstheorie,
die wir früher vom phänomenologischen Standpunkt aus kennen gelernt haben, aus dem Mechanis-
mus der Elektronenbewegung verständlich zu machen. Eine diesbezügliche Theorie hat H. A. Lorentz
aufgestellt.” (Hilbert 1913b, 14)

K mb=
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gravitation.201 Still, in spite of the mathematical and physical difficulties that he con-
sidered to be associated with a conception of nature based on the model underlying
kinetic theory, Hilbert did not fully abandon at this stage the mechanistic approach as
a possible one, and in fact he asserted that the latter is a necessary consequence of the
principle of relativity.202

11.3 Axiomatization of Physics: 1913

In 1913 Hilbert gave a course very similar to the one taught back in 1905, and bearing
the same name: “Elements and Principles of Mathematics.”203 The opening page of
the manuscript mentions three main parts that the lectures intended to cover:

A. Axiomatic Method.
B. The Problem of the Quadrature of the Circle.
C. Mathematical Logic.

In the actual manuscript, however, one finds only two pages dealing with the problem
of the quadrature of the circle. Hilbert explained that, for lack of time, this section
would be omitted in the course. Only a short sketch appears, indicating the stages
involved in dealing with the problem. The third part of the course, “Das mathema-
tisch Denken und die Logik,” discussed various issues such as the paradoxes of set
theory, false and deceptive reasoning, propositional calculus (Logikkalkül), the con-
cept of number and its axioms, and impossibility proofs. The details of the contents
of this last part, though interesting, are beyond our present concern here. In the first
part Hilbert discussed in detail, like in 1905, the axiomatization of several physical
theories.

Like in 1905, Hilbert divided his discussion of the axiomatic method into three
parts: the axioms of algebra, the axioms of geometry, and the axioms of physics. In
his first lecture Hilbert repeated the definition of the axiomatic method:

201 “Auf die Maxwellschen Gleichungen und den Energiebegriff allein kann man die Elektrodynamik
nicht gründen. Es muss noch der Begriff der Starrheit hinzukommen; die Elektrizität muss an ein
festes Gerüst angeheftet sein. Dies Gerüst bezeichnen wir als Elektron. In ihm ist der Begriff der star-
rer Verbindung der Hertzschen Mechanik verwirklicht. Aus den Maxwellschen Gleichungen, dem
Energiebegriff und dem Starrheitsbegriff lassen sich, im Prinzip wenigstens, die vollständigen Sätze
der Mechanik entnehmen, auf sie lassen sich die gesamten Kräfte der Physik, im Besonderen die
Molekularkräfte zurückzuführen. Nur die Gravitation hat sich bisher dem Versuch einer elektrodyna-
mischen Erklärung widersetzt.” (Hilbert 1913b, 61–62)

202 “Es sind somit die zum Aufbau der Physik unentbehrlichen starren Körper nur in den kleinsten Teilen
möglich; man könnte sagen: das Relativitätsprinzip ergibt also als notwendige Folge die Atomistik.”
(Hilbert 1913b, 65)

203 The lecture notes of this course, (Hilbert 1913c), are not found in the Göttingen collections. Peter
Damerow kindly allowed me to consult the copy of the handwritten notes in his possession. The notes
do not specify who wrote them. In Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 520, 5), Hilbert
wrote that notes of the course were taken by Bernhard Baule.
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The axiomatic method consists in choosing a domain and putting certain facts on top of
it; the proof of these facts does not occupy us anymore. The classical example of this is
provided by geometry.204

Hilbert also repeated the major questions that should be addressed when studying a
given system of axioms for a determined domain: Are the axioms consistent? Are they
mutually independent? Are they complete?205 The axiomatic method, Hilbert declared,
is not a new one; rather it is deeply ingrained in the human way of thinking.206

Hilbert’s treatment of the axioms of physical theories repeats much of what he
presented in 1905 (the axioms of mechanics, the principle of conservation of energy,
thermodynamics, calculus of probabilities, and psychophysics), but at the same time
it contains some new sections: one on the axioms of radiation theory, containing Hil-
bert’s recently published ideas on this domain, and one on space and time, containing
an exposition of relativity. I comment first on one point of special interest appearing
in the section on mechanics.

In his 1905 course Hilbert had considered the possibility of introducing alterna-
tive systems of mechanics defined by alternative sets of axioms. As already said, one
of the intended aims of Hilbert’s axiomatic analysis of physical theories was to allow
for changes in the existing body of certain theories in the eventuality of new empiri-
cal discoveries that contradict the former. But if back in 1905, Hilbert saw the possi-
bility of alternative systems of mechanics more as a mathematical exercise than as a
physically interesting task, obviously the situation was considerably different in
1913. This time Hilbert seriously discussed this possibility in the framework of his
presentation of the axioms of Newtonian mechanics. As in geometry, Hilbert said,
one could imagine for mechanics a set of premises different from the usual ones and,
from a logical point of view, one could think of developing a “non-Newtonian
Mechanics.”207 More specifically, he used this point of view to stress the similarities
between mechanics and electrodynamics. He had already done something similar in
1905, but now his remarks had a much more immediate significance. I quote them
here in some extent:

One can now drop or partially modify particular axioms; one would then be practicing a
non-Newtonian, non-Galileian, or non-Lagrangian mechanics.

204 “Die axiomatische Methode besteht darin, daß man ein Gebiet herausgreift und bestimmte Tatsachen
an die Spitze stellt u. nun den Beweis dieser Tatsachen sich nicht weiter besorgt. Das Musterbeispiel
hierfür ist die Geometrie.” (Hilbert 1913c, 1)

205 Again, Hilbert is not referring here to the model-theoretical notion of completeness. See § 2.1. 
206 “Die axiomatische Methode ist nicht neu, sondern in der menschlichen Denkweise tief begründet.”

(Hilbert 1913c, 5)
207 “Logisch wäre es natürlich auch möglich andere Def. zu Grunde zu liegen und so eine ‘Nicht-New-

tonsche Mechanik’ zu begründen.” An elaborate formulation of a non-Newtonian mechanics had been
advanced in 1909 by Gilbert N. Lewis (1875–1946) and Richard C. Tolman (1881–1948), in the
framework of an attempt to develop relativistic mechanics independently of electromagnetic theory
(Lewis and Tolman 1909). Hilbert did not give here a direct reference to that work but it is likely that
he was aware of it, perhaps through the mediation of one of his younger colleagues. (Hilbert
1913c, 91)
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This has a very special significance: electrodynamics has compelled us to adopt the view
that our mechanics is only a limiting-case of a more general one. Should anyone in the
past have thought by chance of defining the kinetic energy as:

 

he would have then obtained the [equation of] motion of the electron, where  is con-
stant and depends on the electron’s mass. If one ascribes to all of them [i.e., to the elec-
trons] kinetic energy, then one obtains the theory of the electron, i.e., an essential part of
electrodynamics. One can then formulate the Newtonian formula:

 

But now the mass depends essentially on the velocity and it is therefore no more a physi-
cal constant. In the limit case, when the velocity is very small, we return to the classical
physics....

Lagrange’s equations show how a point moves when the conditions and the forces are
known. How these forces are created and what is their nature, however, this is a question
which is not addressed.

Boltzmann attempted to build the whole of physics starting from the forces; he investi-
gated them, and formulated axioms. His idea was to reduce everything to the mere exist-
ence of central forces of repulsion or of attraction. According to Boltzmann there are
only mass-points, mutually acting on each other, either attracting or repelling, over the
straight line connecting them. Hertz was of precisely of the opposite opinion. For him
there exist no forces at all; rigid bonds exist among the individual mass-points. Neither
of these two conceptions has taken root, and this is for the simple reason that electrody-
namics dominates all.

The foundations of mechanics, and especially its goal, are not yet well established.
Therefore it has no definitive value to construct and develop these foundations in detail,
as has been done for the foundations of geometry. Nevertheless, this kind of foundational
research has its value, if only because it is mathematically very interesting and of an
inestimably high value.208

This passage illuminates Hilbert’s conceptions by 1913. At the basis of his
approach to physics stands, as always, the axiomatic method as the most appropriate
way to examine the logical structure of a theory and to decide what are the individual
assumptions from which all the main laws of the theory can be deduced. This deduc-
tion, however, as in the case of Lagrange’s equation, is independent of questions con-
cerning the ultimate nature of physical phenomena. Hilbert mentions again the
mechanistic approach promoted by Hertz and Boltzmann, yet he admits explicitly,
perhaps for the first time, that it is electromagnetism that pervades all physical phe-
nomena. Finally, the introduction of Lagrangian functions from which laws of motion
may be derived that are more general than the usual ones of classical mechanics was
an idea that in the past might have been considered only as a pure mathematical exer-
cise; now—Hilbert cared to stress—it has become a central issue in mechanics, given
the latest advances in electrodynamics.

The last section of Hilbert’s discussion of the axiomatization of physics addressed
the issue of space and time, and in fact it was a discussion of the principle of relativ-
ity.209 What Hilbert did in this section provides the most detailed evidence of his con-
ceptions concerning the principle of relativity, mechanics and electrodynamics before
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his 1915 paper on the foundations of physics. His presentation did not really incorpo-
rate any major innovations, yet Hilbert attempted to make the “new mechanics”
appear as organically integrated into the general picture of physics that he was so
eager to put forward at every occasion, and in which all physical theories appear as in
principle axiomatized (or at least axiomatizable). Back in 1905, Hilbert had sug-
gested, among the possible ways to axiomatize classical dynamics, defining space
axiomatically by means of the already established axioms of geometry, and then
expanding this definition with some additional axioms that define time. He suggested
that something similar should be done now for the new conception of space and time,
but that the axioms defining time would clearly have to change. He thus assumed the
axioms of Euclidean geometry and proceeded to redefine the concept of time using a
“light pendulum.” Hilbert then connected the axiomatically constructed theory with
the additional empirical consideration it was meant to account for, namely, the out-
come of the Michelson-Morley experiment when the values  are mea-
sured in the formula describing the velocity of the ray-light in the pendulum:

208 “Man kann nun gewisse Teile der Axiome fallen lassen oder modifizieren; dann würde man also
“Nicht-Newtonsche,” od. “Nicht-Galileische”, od. “Nicht-Lagrangesche” Mechanik treiben.
Das hat ganz besondere Bedeutung: Durch die Elektrodynamik sind wir zu der Auffassung gezwun-
gen worden, daß unsere Mechanik nur eine Grenzfall einer viel allgemeineren Mechanik ist. Wäre
jemand früher zufällig darauf gekommen die kinetisch Energie zu definieren als:

so hatte er die Bewegung eines Elektrons, wo  eine Constante der elektr. Masse ist. Spricht man
ihnen allen kinetisch Energie zu, dann hat man die Elektronentheorie d.h. einen wesentlichen Teil der
Elektrodynamik. Dann kann man die Newtonschen Gleichungen aufstellen:

Nun hängt aber die Masse ganz wesentlich von der Geschwindigkeit ab und ist keine physikalische
Constante mehr. Im Grenzfall, daß die Geschwindigkeit sehr klein ist, kommt man zu der alten
Mechanik zurück. (Cf. H. Stark “Experimentelle Elektrizitätslehre,” S. 630).
Die Lagrangesche Gleichungen geben die Antwort wie sich ein Punkt bewegt, wenn man die Bedin-
gungen kennt und die Kräfte. Wie diese Kräfte aber beschaffen sind und auf die Natur die Kräfte
selbst gehen sie nicht ein.
Boltzmann hat versucht die Physik aufzubauen indem er von der Kräften ausging; er untersuchte
diese, stellte Axiome auf u. seine Idee war, alles auf das bloße Vorhandensein von Kräften, die zentral
abstoßend oder anziehend wirken sollten, zurückzuführen. Nach Boltzman gibt es nur Massenpunkte
die zentral gradlinig auf einander anzieh. od. abstoßend wirkend.
Hertz hat gerade den entgegengesetzten Standpunkt. Für ihn gibt es überhaupt keine Kräfte; starre
Verbindungen sind zwischen den einzelnen Massenpunkten.
Beide Auffassungen haben sich nicht eingebürgert, schon aus dem einfachen Grunde, weil die Elek-
trodynamik alles beherrscht.
Die Grundlagen der Mechanik und besonders die Ziele stehen noch nicht fest, so daß es auch noch
nicht definitiven Wert hat die Grundlagen in den einzelnen Details so auf- und ausbauen wie die
Grundlagen der Geometrie. Dennoch behalten die axiomatischen Untersuchungen ihren Wert, schon
deshalb, weil sie mathematisch sehr interessant und von unschätzbar hohen Werte sind.” (Hilbert
1913c, 105–108)
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Hilbert stressed the similarities between the situation in this case, and in the case
in geometry, when one invokes Gauss’s measurement of angles in the mountain trian-
gle for determining the validity of Euclidean geometry in reality. In his earlier lec-
tures, Hilbert had repeatedly mentioned this experiment as embodying the empirical
side of geometry. The early development of relativity theory had brought about a
deep change in the conception of time, but Hilbert of course could not imagine that
the really significant change was still ahead. To the empirical discovery that triggered
the reformulation of the concept of time, Hilbert opposed the unchanged conception
of space instantiated in Gauss’s experiment. He thus said:

Michelson set out to test the correctness of these relations, which were obtained working
within the old conception of time and space. The [outcome of his] great experiment is
that these formulas do not work, whereas Gauss had experimentally confirmed (i.e., by
measuring the Hoher Hagen, the Brocken, and the Inselsberg) that in Euclidean geome-
try, the sum of the angles of a triangle equals two right angles.210

Although he spoke here of an old conception of space and time, Hilbert was refer-
ring to a change that actually affected only time. From the negative result of Michel-
son’s experiment, one could conclude that the assumption implied by the old
conception—according to which, the velocity of light measured in a moving system
has different values in different directions—leads to contradiction. The opposite
assumption was thus adopted, namely that the velocity of light behaves with respect
to moving systems as it had been already postulated for stationary ones. Hilbert
expresses this as a further axiom:

209  The following bibliographical list appears in the first page of this section (Hilbert 1913c, 119):
M. Laue Das Relativitätsprinzip 205 S.
M. Planck 8 Vorlesungen über theoretische Physik 8. Vorlesung S. 110–127
A. Brill Das Relativitätsprinzip: eine Einführung in die Theorie 28 S.
H. Minkowski Raum und Zeit XIV Seiten
Beyond this list, together with the manuscript of the course, in the same binding, we find some addi-
tions, namely, (1) a manuscript version of Minkowski’s famous work (83 pages in the same handwrit-
ing as the course itself), (2) the usual preface of A. Gutzmer, appearing as an appendix, and (3) two
pages containing a passage copied form Planck’s Vorlesungen.

210 “Diese aus der alten Auffassung von Raum und Zeit entspringende Beziehung hat Michelson auf ihre
Richtigkeit geprüft. Das große Experiment ist nun das, daß diese Formel nicht stimmt, während bei
der Euklidischen Geometrie Gauss durch die bestimmte Messung Hoher Hagen, Brocken, Inselsberg
bestätigte, daß die Winkelsumme im Dreieck 2 Rechte ist.”
On p. 128 Hilbert explained the details of Michelson’s calculations, namely, the comparison of veloc-
ities at different angles via the formula:

where the remaining terms are of higher orders. (Hilbert 1913c, 124)
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Also in a moving system, the velocity of light is identical in all directions, and in fact,
identical to that in a stationary system. The moving system has no priority over the first
one.211

Now the question naturally arises: what is then the true relation between time as mea-
sured in the stationary system and in the moving one,  and  respectively? Hilbert
answered this question by introducing the Lorentz transformations, which he dis-
cussed in some detail, including the limiting properties of the velocity of light,212 and
the relations with a third system, moving with yet a different uniform velocity.

11.4 Electromagnetic Oscillations: 1913–1914

In the winter semester of 1913–1914, Hilbert lectured on electromagnetic oscilla-
tions. As he had done many times in the past, Hilbert opened by referring to the
example of geometry as a model of an experimental science that has been trans-
formed into a purely mathematical, and therefore a “theoretical science,” thanks to
our thorough knowledge of it. Foreshadowing the wording he would use later in his
axiomatic formulation of the general theory of relativity, Hilbert said:

From antiquity the discipline of geometry is a part of mathematics. The experimental
grounds necessary to build it are so suggestive and generally acknowledged, that from
the outset it has immediately appeared as a theoretical science. I believe that the highest
glory that such a science can attain is to be assimilated by mathematics, and that theoret-
ical physics is presently on the verge of attaining this glory. This is valid, in the first place
for the relativistic mechanics, or four-dimensional electrodynamics, which belong to
mathematics, as I have been already convinced for a long time.213

Hilbert’s intensive involvement with various physical disciplines over the last
years had only helped to strengthen an empirical approach to geometry rather than
promoting some kind of formalist views. But as for his conceptions about physics
itself, by the end of 1913 his new understanding of the foundational role of electrody-
namics was becoming only more strongly established in his mind, at the expense of
his old mechanistic conceptions. The manuscript of this course contains the first doc-

211 “Es zeigt sich also, daß unsere Folgerung der alten Auffassung, daß die Lichtgeschwindigkeit im
bewegtem System nach verschiedenen Richtungen verschieden ist, auf Widerspruch führt. Wir neh-
men deshalb an: Auch im bewegtem System ist die Lichtgeschwindigkeit nach allem Seiten gleich
groß, und zwar gleich der im ruhenden. Das bewegte System hat vor dem alten nicht voraus.” (Hilbert
1913c, 128–129)

212 “Eine größen Geschwindigkeit als die Lichtgeschwindigkeit kann nicht vorkommen.” (Hilbert 1913c,
132)

213 “Seit Alters her ist die Geometrie eine Teildisziplin der Mathematik; die experimentelle Grundlagen,
die sie benutzen muss, sind so naheliegend und allgemein anerkannt, dass sie von vornherein und
unmittelbar als theoretische Wissenschaft auftrat. Nun glaube ich aber, dass es der höchste Ruhm
einer jeden Wissenschaft ist, von der Mathematik assimiliert zu werden, und dass auch die theoreti-
sche Physik jetzt im Begriff steht, sich diesen Ruhm zu erwerben. In erster Linie gilt dies von der
Relativitätsmechanik oder vierdimensionalen Elektrodynamik, von deren Zuhörigkeit zur Mathema-
tik ich seit langem überzeugt bin.” (Hilbert 1913–1914, 1)

t τ
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umented instance where Hilbert seems to allude to Mie’s ideas and, indeed, it is
among the earliest explicit instances of a more decided adoption of electrodynamics,
rather than mechanics, as the possible foundation for all physical theories. At the
same time, the whole picture of mathematics was becoming ever more hierarchical
and organized into an organic, comprehensive edifice, of which theoretical physics is
also an essential part. Hilbert thus stated:

In the meantime it looks as if, finally, theoretical physics completely arises from electro-
dynamics, to the extent that every individual question must be solved, in the last instance,
by appealing to electrodynamics. According to what method each mathematical disci-
pline more predominantly uses, one could divide mathematics (concerning contents
rather than form) into one-dimensional mathematics, i.e., arithmetic; then function the-
ory, which essentially limits itself to two dimensions; then geometry, and finally four-
dimensional mechanics.214

In the course itself, however, Hilbert did not actually address in any concrete way
the kind of electromagnetic reduction suggested in its introduction, but rather, it con-
tinued, to a certain extent, his previous course on electron theory. In the first part Hil-
bert dealt with the theory of dispersion of electrons, seen as a means to address the n-
electron problem. Hilbert explained that the role of this problem in the theory of rela-
tivity is similar to that of the n-body problem in mechanics. In the previous course he
had shown that the search for the equations of motion for a system of electrons leads
to a very complicated system of integro-differential equations. A possibly fruitful
way to address this complicated problem would be to integrate a certain simplified
version of these equations and then work on generalizing the solutions thus obtained.
In classical mechanics the parallel simplification of the n-body problem is embodied
in the theory of small oscillations, based on the idea that bodies cannot really attain a
state of complete rest. This idea offers a good example of a possible way forward in
electrodynamics, and Hilbert explained that, indeed, the elementary theory of disper-
sion was meant as the implementation of that idea in this field. Thus, this first part of
the course would deal with it.215

214 “Es scheint indessen, als ob die theoretische Physik schliesslich ganz und gar in der Elektrodynamik
aufgeht, insofern jede einzelne noch so spezielle Frage in letzter Instanz an die Elektrodynamik appel-
lieren muss. Nach den Methoden, die die einzelnen mathematischen Disziplinen vorwiegend benut-
zen, könnte man alsdann – mehr inthaltlich als formell – die Mathematik einteilen in die
eindimensionale Mathematik, die Arithmetik, ferner in die Funktionentheorie, die sich im wesentli-
chen auf zwei Dimensionen beschränkt, in die Geometrie, und schliesslich in die vierdimensionale
Mechanik.” (Hilbert 1913–1914, 1)

215 “So wenig man schon mit dem n-Körperproblem arbeiten kann, so wäre es noch fruchtloser, auf die
Behandlung des n-Elektronenproblemes einzugehen. Es handelt sich vielmehr für uns darum, das n-
Elektronenproblem zu verstümmeln, die vereinfachte Gleichungen zu integrieren und von ihren
Lösungen durch Korrekturen zu allgemeineren Lösungen aufzusteigen. Die gewöhnliche Mechanik
liefert uns hierfür ein ausgezeichnetes Vorbild in der Theorie der kleinen Schwingungen; die Vereinfa-
chung des n-Körperproblems besteht dabei darin, dass die Körper sich nur wenig aus festen Ruhela-
gen entfernen dürfen. In der Elektrodynamik gibt es ein entsprechendes Problem, und zwar würde ich
die Theorie der Dispersion als das dem Problem der kleinen Schwingungen analoge Problem anspre-
chen.” (Hilbert 1913–1914, 2)
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In the second part of the course Hilbert dealt with the magnetized electron. He did
not fail to notice the difficulties currently affecting his reductionist program. At the
same time he stressed the value of an axiomatic way of thinking in dealing with such
difficulties. He thus said:

We are really still very distant from a full realization of our leading idea of reducing all
physical phenomena to the n-electron problem. Instead of a mathematical foundation
based on the equations of motion of the electrons, we still need to adopt partly arbitrary
assumptions, partly temporary hypothesis, that perhaps one day in the future might be
confirmed. We also must adopt, however, certain very fundamental assumptions that we
later need to modify. This inconvenience will remain insurmountable for a long time.
What sets our presentation apart from that of others, however, is the insistence in making
truly explicit all its assumptions and never mixing the latter with the conclusions that fol-
low from them.216

Hilbert did not specify what assumptions he meant to include under each of the
three kinds mentioned above.Yet it would seem quite plausible to infer that the “very
fundamental assumptions,” that must be later modified, referred in some way or
another to physical, rather than purely mathematical, assumptions, and more specifi-
cally, to the atomistic hypothesis, on which much of his own physical conceptions
had hitherto been based. An axiomatic analysis of the kind he deemed necessary for
physical theories could indeed compel him to modify even his most fundamental
assumptions if necessary. The leading principle should remain, in any case, to sepa-
rate as clearly as possible the assumptions of any particular theory from the theorems
that can be derived in it. Thus, the above quotation suggests that if by this time Hil-
bert had not yet decided to abandon his commitment to the mechanistic reductionism
and its concomitant atomistic view, he was certainly preparing the way for that possi-
bility, should the axiomatic analysis convince him of its necessity.

In the subsequent lectures in this course, Hilbert referred more clearly to ideas of
the kind developed in Mie’s theory, without however explicitly mentioning his name
(at least according to the record of the manuscript). Outside ponderable bodies,
which are composed of molecules, Hilbert explained, the Maxwell equations are
valid. He formulated them as follows:

216 “Von der Verwirklichung unseres leitenden Gedankens, alle physikalischen Vorgänge auf das n-Elek-
tronenproblem zurückzuführen, sind wir freilich noch sehr weit entfernt. An Stelle einer mathemati-
schen Begründung aus den Bewegungsgleichungen der Elektronen müssen vielmehr noch teils
willkürliche Annahmen treten, teils vorläufige Hypothesen, die später einmal begründet werden dürf-
ten, teils aber auch Annahmen ganz prinzipieller Natur, die sicher später modifiziert werden müssen.
Dieser Übelstand wird noch auf lange Zeit hinaus unvermeidlich sein. Unsere Darstellung soll sich
aber gerade dadurch auszeichnen, dass die wirklich nötigen Annahmen alle ausdrücklich aufgeführt
und nicht mit ihren Folgerungen vermischt werden.” (Hilbert 1913–1914, 87–88)
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This is also how the equations are formulated in Born’s article of 1910, the text on
which Hilbert was basing this presentation. But Hilbert asserted here for the first time
that the equations are valid also inside the body. And he added:

Inside the body, however, the vectors e and M are very different, since the energy density
is always different from zero inside the sphere of the electron, and these spheres undergo
swift oscillations. It would not help us to know the exact value of the vector fields inside
the bodies, since we can only observe mean values.217

Hilbert thus simply stated that the Maxwell equations inside the body should be
rewritten as:

where overstrike variables indicate an average value over a space region.
Hilbert went on to discuss separately and in detail specific properties of the con-

duction-, polarization- and magnetization-electrons. He mentioned Lorentz as the
source for the assumption that these three kinds of electrons exist. This assumption,
he said, is an “assumption of principle” that should rather be substituted by a less
arbitrary one.218 By saying this, he was thus not only abiding by his self-imposed
rules that every particular assumption must be explicitly formulated, but he was also
implicitly stressing once again that physical assumptions about the structure of matter
are of a different kind than merely mathematical axioms, that they should be avoided
whenever possible, and that they should eventually be suppressed altogether.

In a later section of his lecture, dealing with diffuse radiation and molecular
forces, Hilbert addressed the problem of gravitation from an interesting point of view
that, once again, would seem to allude to the themes discussed by Mie, without how-
ever explicitly mentioning his name. Hilbert explained that the problem that had orig-
inally motivated the consideration of what he called “diffuse electron oscillations” (a
term he did not explain) was the attempt to account for gravitation. In fact, he added,
it would be highly desirable—from the point of view pursued in the course—to
explain gravitation based on the assumption of the electromagnetic field and the Max-
well equations, together with some auxiliary hypotheses, such as the existence of rigid
bodies. The idea of explaining gravitation in terms of “diffuse radiation of a given
wavelength” was, according to Hilbert, closely related to an older idea first raised by

217 “Diese Gleichungen gelten sowohl innerhalb wie ausserhalb des Körpers. Im innern des Körpers wer-
den aber die Vektoren  und  sich räumlich und zeitlich sehr stark ändern, da die Dichte der Elek-
trizität immer nur innerhalb der Elektronenkugeln von Null verschieden ist und diese Kugeln rasche
Schwingungen ausführen. Es würde uns auch nicht helfen, wenn wir innerhalb des Körpers die
genauen Werte der Feldvektoren kennen würden; denn zur Beobachtung gelangen doch nur Mittel-
werte.” (Hilbert 1913–1914, 89)

218 “Wir machen nur eine reihe von Annahmen, die zu den prinzipiellen gehören und später wohl durch
weniger willkürlich scheinende ersetzt werden können.” (Hilbert 1913–1914, 90)
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Georges-Louis Le Sage (1724–1803). The latter was based on the assumption that a
great number of particles move in space with a very high speed, and that their impact
with ponderable bodies produces the phenomenon of weight.219 However, Hilbert
explained, more recent research has shown that an explanation of gravitation along
these lines is impossible.220 Hilbert was referring to an article published by Lorentz in
1900, showing that no force of the form  is created by “diffuse radiation”
between two electrical charges, if the distance between them is large enough when
compared to the wavelength of the radiation in question (Lorentz 1900).221

And yet in 1912, Erwin Madelung had readopted Lorentz’s ideas in order to cal-
culate the force produced by radiation over short distances and, eventually, to account
for the molecular forces in terms of radiation phenomena (Madelung 1912). Made-
lung taught physics at that time in Göttingen and, as we saw, he had attended Hil-
bert’s 1912 advanced seminar on kinetic theory. Hilbert considered that the
mathematical results obtained by him were very interesting, even though their conse-
quences could not be completely confirmed empirically. Starting from the Maxwell
equations and some simple, additional hypotheses, Madelung determined the value of
an attraction force that alternatively attains positive and negative values as a function
of the distance.222

As a second application of diffuse radiation, Hilbert mentioned the possibility of
deriving Planck’s radiation formula without recourse to quantum theory. Such a deri-
vation, he indicated, could be found in two recent articles of Einstein, one of them
(1910) with Ludwig Hopf (1884–1939) and the second one (1913) with Otto Stern
(1888–1969).

Hilbert’s last two courses on physics, before he began developing his unified the-
ory and became involved with general relativity, were taught in the summer semester

219 LeSage’s corpuscular theory of gravitation, originally formulated in 1784, was reconsidered in the
late nineteenth century by J.J. Thomson. On the Le Sage-Thomson theory see (North 1965, 38–40;
Roseaveare 1982, 108–112). For more recent discussions, cf. also (Edwards 2002). 

220 “Das Problem, das zunächst die Betrachtung diffuser Elektronenschwingungen anregte, war die
Erklärung der Gravitation. In der Tat muss es ja nach unserem leitenden Gesichtspunkte höchst wün-
schenswert erscheinen, die Gravitation allein aus der Annahme eines elektromagnetischen Feldes
sowie er Maxwellschen Gleichungen und gewisser einfacher Zusatzhypothesen, wie z.B. die Existenz
starrer Körper eine ist, zu erklären. Der Gedanke, den Grund für die Erscheinung der Gravitation in
einer diffusen Strahlung von gewisser Wellelänge zu suchen, ähnelt entfernt einer Theorie von Le
Sage, nach der unzählige kleine Partikel sich mit grosser Geschwindigkeit im Raume bewegen sollen
und durch ihren Anprall gegen die ponderablen Körper die Schwere hervorbringen. Wie in dieser
theorie ein Druck durch bewegte Partikel auf die Körper ausgeübt wird, hat man jetzt den modernen
Versuch unternommen, den Strahlungsdruck für die Erklärung der Gravitation dienstbar zu machen.”
(Hilbert 1913–1914, 107–108)

221 On this theory, see (McCormmach 1970, 476–477).
222 “Die mathematischen Ergebnisse dieser Arbeit sind von grossem Interesse, auch wenn sich die Folge-

rungen nicht sämtlich bewähren sollten. Es ergibt sich nämlich allein aus den Maxwellschen Glei-
chungen und einfachen Zusatzhypothese eine ganz bestimmte Attraktionskraft, die als Funktion der
Entfernung periodisch positiv und negativ wird.” (Hilbert 1913–1914, 108)

1 r2⁄
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of 1914 (statistical mechanics) and the following winter semester, 1914–1915 (lec-
tures on the structure of matter).223

12. BROADENING PHYSICAL HORIZONS - CONCLUDING REMARKS

The present chapter has described Hilbert’s intense and wide-ranging involvement
with physical issues between 1910 and 1914. His activities comprised both published
work and courses and seminars. In the published works, particular stress was laid on
considerably detailed axiomatic analysis of theories, together with the application of
the techniques developed by Hilbert himself in the theory of linear integral equations.
The courses and seminars, however, show very clearly that Hilbert was not just look-
ing for visible venues in which to display the applicability of these mathematical
tools. Rather, they render evident the breadth and depth of his understanding of, and
interest in, the actual physical problems involved.

Understanding the mixture of these two components—the mathematical and the
physical—helps us to understand how the passage from mechanical to electromag-
netic reductionism was also the basis of Hilbert’s overall approach to physics, and
particularly of his fundamental interest in the question of the structure of matter. In
spite of the technical possibilities offered by the theory of integral equations in the
way to solving specific, open problems in particular theories, Hilbert continued to be
concerned about the possible justification of introducing probabilistic methods in
physical theories at large. If the phenomenological treatment of theories was only a
preliminary stage on the way to a full understanding of physical processes, it turned
out that also those treatments based on the atomistic hypothesis, even where they
helped reach solutions to individual problems, raised serious foundational questions
that required further investigation into the theory of matter as such. Such consider-
ations were no doubt a main cause behind Hilbert’s gradual abandonment of mechan-
ical reductionism as a basic foundational assumption.

This background should suffice to show the extent to which his unified theory of
1915 and the concomitant incursion into general theory of relativity were organically
connected to the life-long evolution of his scientific horizon, and were thus anything
but isolated events. In addition to this background, there are two main domains of
ideas that constitute the main pillars of Hilbert’s theory and the immediate catalysts
for its formulation. These are the electromagnetic theory of matter developed by
Gustav Mie starting in 1912, on the one hand, and the efforts of Albert Einstein to
generalize the principle of relativity, starting roughly at the same time.

223 The winter semester, 1914–1915 course is registered in the printed version of the Verzeichnis der Vor-
lesungen an der Georg-August-Universität zu Göttingen (1914–1915, on p. 17) but no notes seem to
be extant.
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HILBERT’S FOUNDATION OF PHYSICS:
FROM A THEORY OF EVERYTHING TO A 

CONSTITUENT OF GENERAL RELATIVITY

1. ON THE COMING INTO BEING AND FADING AWAY
OF AN ALTERNATIVE POINT OF VIEW

1.1 The Legend of a Royal Road to General Relativity

Hilbert is commonly seen as having publicly presented the derivation of the field
equations of general relativity on 20 November 1915, five days before Einstein and
after only half a year’s work on the subject in contrast to Einstein’s eight years of
hardship from 1907 to 1915.1 We thus read in Kip Thorne’s fascinating account of
recent developments in general relativity (Thorne 1994, 117):

Remarkably, Einstein was not the first to discover the correct form of the law of warpage
[of space-time, i.e. the gravitational field equations], the form that obeys his relativity
principle. Recognition for the first discovery must go to Hilbert. In autumn 1915, even as
Einstein was struggling toward the right law, making mathematical mistake after mis-
take, Hilbert was mulling over the things he had learned from Einstein’s summer visit to
Göttingen. While he was on an autumn vacation on the island of Rugen in the Baltic the
key idea came to him, and within a few weeks he had the right law–derived not by the
arduous trial-and-error path of Einstein, but by an elegant, succinct mathematical route.
Hilbert presented his derivation and the resulting law at a meeting of the Royal Academy
of Sciences in Göttingen on 20 November 1915, just five days before Einstein’s presenta-
tion of the same law at the Prussian Academy meeting in Berlin.2

Hilbert himself emphasized that he had two separate starting points for his
approach: Mie’s electromagnetic theory of matter as well as Einstein’s attempt to base
a theory of gravitation on the metric tensor. Hilbert’s superior mastery of mathematics
apparently allowed him to arrive quickly and independently at combined field equa-

1 For discussions of Einstein’s path to general relativity see (Norton 1984; Renn and Sauer 1999;
Stachel 2002), “The First Two Acts”, “Pathways out of Classical Physics …”, and “Untying the
Knot …”, (in vols. 1 and 2 of this series). For historical reviews of Hilbert’s contribution, see (Guth
1970; Mehra 1974; Earman and Glymour 1978; Pais 1982, 257–261; Corry 1997; 1999a; 1999b;
1999c; Corry, Renn, and Stachel 1997; Stachel 1989; 2002; Sauer 1999; 2002), “The Origin of Hil-
bert’s Axiomatic Method …” and “Einstein Equations and Hilbert Action” (both in this volume).

2 For a similar account see (Fölsing 1997, 375–376).
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tions for the electromagnetic and gravitational fields. Although his use of Mie’s ideas
initially led Hilbert to a theory that was, from the point of view of the subsequent gen-
eral theory of relativity, restricted to a particular source for the gravitational field—
the electromagnetic field—he is nevertheless regarded by many historians of science
and physicists as the first to have established a mathematical framework for general
relativity that provides both essential results of the theory, such as the field equations,
and a clarification of previously obscure conceptual issues, such as the nature of cau-
sality in generally-covariant field theories.

 

3

 

 His contributions to general relativity,
although initially inspired by Mie and Einstein, hence appear as a unique and inde-
pendent achievement. In addition, Hilbert is seen by some historians of science as ini-
tiating the subsequent search for unified field theories of gravitation and
electromagnetism.

 

4

 

 In view of all these results, established within a very short time, it
appears that Hilbert indeed had found an independent “royal road” to general relativ-
ity and beyond.

In a recent paper with Leo Corry, we have shown that Hilbert actually did not
anticipate Einstein in presenting the field equations (Corry, Renn, and Stachel 1997).

 

5

 

Our argument is based on the analysis of a set of proofs of Hilbert’s first paper,

 

6

 

 here-
after referred to as the “Proofs”. These Proofs not only do not include the explicit
form of the field equations of general relativity, but they also show the original ver-
sion of Hilbert’s theory to be in many ways closer to the earlier, non-covariant ver-
sions of Einstein’s theory of gravitation than to general relativity. It was only 

 

after

 

 the
publication on 2 December 1915 of Einstein’s definitive paper that Hilbert modified
his theory in such a way that his results were in accord with those of Einstein.

 

7

 

 The
final version of his first paper, which was not published until March 1916, now
includes the explicit field equations and has no restriction on general covariance (Hil-
bert 1916).

 

8

 

 Hilbert’s second paper, a sequel to his first communication, in which he
first discussed causality, apparently also underwent a major revision before eventu-
ally being published in 1917 (Hilbert 1917).

 

9

 

3 See (Howard and Norton 1993). 
4 See, for example, (Vizgin 1989), who refers to “Hilbert’s 1915 unified field theory, in which the

attempt was first made to unite gravitation and electromagnetism on the basis of the general theory of
relativity” (see p. 301).

5 See also (Stachel 1999), reprinted in (Stachel 2002).
6 A copy of the proofs of Hilbert’s first paper is preserved at Göttingen, in SUB Cod. Ms. 634. They

comprise 13 pages and are virtually complete, apart from the fact that roughly the upper quarter of
two pages (7 and 8) is cut off. The Proofs are dated “submitted on 20 November 1915.” The Göttingen
copy bears a printer’s stamp dated 6 December 1915 and is marked in Hilbert’s own hand “First
proofs of my first note.” In addition, they carry several marginal notes in Hilbert’s hand, which are
discussed below. A complete translation of the Proofs is given in this volume.

7 The conclusive paper is (Einstein 1915e), which Hilbert lists in the references in (Hilbert 1916).
8 In the following referred to as Paper 1.
9 In the following referred to as Paper 2.
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1.2 The Transformation of the Meaning of Hilbert’s Work 

 

Hilbert presented his contribution as emerging from a research program that was
entirely his own—the search for an axiomatization of physics as a whole—creating a
synthesis of electromagnetism and gravitation. This view of his achievement was
shared by Felix Klein, who took the distinctiveness of Hilbert’s approach as an argu-
ment against seeing it from the perspective of a priority competition with Einstein:

 

There can be no talk of a priority question in this connection, since both authors are pur-
suing quite different trains of thought (and indeed, so that initially the compatibility of
their results did not even seem certain). Einstein proceeds 

 

inductively

 

 and immediately
considers arbitrary material systems. Hilbert 

 

deduces

 

 from previously postulated basic
variational principles, while he additionally allows the restriction to electrodynamics. In
this connection, Hilbert was particularly close to Mie.

 

10

 

It is clear that, even if one disregards the non-covariant version of his theory as
presented in the proofs version of his first paper, both Hilbert’s original programmatic
aims as well as the interpretation he gave of his own results do not fit into the frame-
work of general relativity as we understand it today. To give one example, which we
shall discuss in detail below: In the context of Hilbert’s attempt at a synthesis of elec-
tromagnetism and gravitation theory, he interpreted the contracted Bianchi identities
as a substitute for the fundamental equations of electromagnetism, an interpretation
that was soon recognized to be problematic by Hilbert himself.

With hindsight, however, there can be little doubt that a number of important con-
tributions to the development of general relativity do have roots in Hilbert’s work:
For instance, not so much the variational formulation of the gravitational field equa-
tions, an idea which had already been introduced by Einstein

 

11

 

; but the choice of the
Ricci scalar as the gravitational term in this Lagrangian; and the first hints of Noet-
her’s theorem. 

The intrinsic plausibility of each of these two perspectives: viewing Hilbert’s
work as either aiming at a theory differing from general relativity, or as a contribution
to general relativity, represents a puzzle. How can Hilbert’s contributions be inter-
preted as making sense only within an independent research program, different in
essence from that of Einstein, if ultimately they came to be seen, at least by most
physicists, as constituents of general relativity? This puzzle raises a profound histori-
cal question concerning the nature of scientific development: how were Hilbert’s
results, produced within a research program originally aiming at an electrodynamic

 

10 “Von einer Prioritätsfrage kann dabei keine Rede sein, weil beide Autoren ganz verschiedene Gedan-
kengänge verfolgen (und zwar so, daß die Verträglichkeit der Resultate zunächst nicht einmal sicher
schien). Einstein geht 

 

induktiv

 

 vor und denkt gleich an beliebige materielle Systeme. Hilbert 

 

dedu-
ziert

 

, indem er übrigens die [...] Beschränkung auf Elektrodynamik eintreten läßt, aus voraufgestellten
obersten Variationsprinzipien. Hilbert hat dabei insbesondere auch an Mie angeknüpft.” (Klein 1921,
566). The text was originally published in 1917; see (Klein 1917). The quote is from a footnote to
remarks added to the 1921 republication. For a recent reconstruction of Hilbert’s perspective, see
(Sauer 1999).

11 See “Untying the Knot …” (in vol. 2 of this series).
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foundation for 

 

all

 

 of physics, eventually transformed into constituents of general rel-
ativity, a theory of gravitation? The pursuit of this question promises insights into the
processes by which scientific results acquire and change their meaning and, in partic-
ular, into the process by which a viewpoint that is different from the one eventually
accepted as mainstream emerges and eventually fades away.

 

12

 

Hilbert’s work on the foundations of physics turns out to be especially suited for
such an analysis, not only because the proofs version of his first paper provides us with
a previously unknown point of departure for following his development, but also
because he came back time and again to these papers, rewriting them in terms of the
insights he had meanwhile acquired and in the light of the developments of Einstein’s
“mainstream” program. In this paper we shall interpret Hilbert’s revisions as indica-
tions of the conceptual transformation that his original approach underwent as a conse-
quence of the establishment and further development of general relativity by Einstein,
Schwarzschild, Klein, Weyl, and others, including Hilbert himself. We will also show
that Hilbert’s own understanding of scientific progress induced him to perceive this
transformation as merely an elimination of errors and the introduction of improve-
ments and elaborations of a program he had been following from the beginning. 

 

1.3 Structure of the Paper

 

In the 

 

second section

 

 of this paper (“The origins of Hilbert’s program in the ‘nostrifi-
cation’ of two speculative physical theories”), we shall analyze the emergence of Hil-
bert’s program for the foundations of physics from his attempt to synthesize, in the
form of an axiomatic system, techniques and results of Einstein’s 1913/14 non-cova-
riant theory of gravitation and Mie’s electromagnetic theory of matter. It will become
clear that Hilbert’s research agenda was shaped in large part by his understanding of
the axiomatic formulation of physical theories, by the technical problems of achiev-
ing the synthesis of these two theories, and by open problems in Einstein’s theory. 

In the 

 

third section

 

 (“Hilbert’s attempt at a theory of everything: the proofs of his
first paper”), we shall interpret the proofs version of Hilbert’s first paper as an attempt
to realize the research program reconstructed in the second section. In particular, we
shall show that, in the course of pursuing this program, he abandoned his original
goal of founding all of physics on electrodynamics, now treating the gravitational
field as more fundamental. We shall argue that this reversal was induced by mathe-
matical results, to which Hilbert gave a problematic physical interpretation suggested
by his research program; and that the mathematical result at the core of Hilbert’s
attempt to establish a connection between gravitation and electromagnetism origi-
nated in Einstein’s claim of 1913/14 that generally-covariant field equations are not
compatible with physical causality, a claim supported by Einstein’s well-known
“hole-argument.” Hilbert thus turned Einstein’s argument against general covariance
into support for Hilbert’s own attempt at a unified theory of gravitation and electro-

 

12 Cf. (Stachel 1994).
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magnetism. Hilbert also followed Einstein’s 1913/14 attempt to relate the existence
of a preferred class of coordinate systems to the requirement of energy conservation.
Hilbert’s definition of energy, however, was not guided by Einstein’s but rather by the
goal of establishing a link with Mie’s theory. Hilbert’s unified theory thus emerges as
an extension of Einstein’s non-covariant theory of gravitation, in which Mie’s specu-
lative theory of matter plays the role of a touchstone, a role played for Einstein by the
principle of energy-momentum conservation in classical and special relativistic phys-
ics and in Newton’s theory of gravitation.

In the 

 

fourth section

 

 (“Hilbert’s physics and Einstein’s mathematics: the exchange
of late 1915”) we shall examine Hilbert’s and Einstein’s exchange of letters at the end
of 1915, focussing on the ways in which they mutually influenced each other. We
show that Hilbert’s attempt at combining a theory of gravitation with a theory of mat-
ter had an important impact on the final phase of Einstein’s work. Hilbert’s vision,
which Einstein temporarily adopted, provided the latter with a rather exotic perspec-
tive but allowed him to obtain a crucial result, the calculation of Mercury’s perihelion
precession. This, in turn, guided his completion of the general theory of relativity, but
at the same time rendered obsolete its grounding in a specific theory of matter. For
Hilbert’s theory, on the other hand, Einstein’s conclusive paper on general relativity
represented a major challenge. It undermined the entire architecture; in particular, the
connections Hilbert saw between energy conservation, causality, and the need for a
restriction of general covariance.

In the 

 

fifth section 

 

(“Hilbert’s adaptation of his theory to Einstein’s results: the
published versions of his first paper”) we shall first discuss how, under the impact of
Einstein’s results in November 1915, Hilbert modified essential elements of his the-
ory before its publication in March 1916. He abandoned the attempt to develop a non-
covariant theory, without as yet having found a satisfactory solution to the causality
problem that Einstein had previously raised for generally-covariant theories. He
replaced his original, non-covariant notion of energy by a new formulation, still dif-
fering from that of Einstein and mainly intended to strengthen the link between his
own theory and Mie’s electrodynamics. In fact, Hilbert did not abandon his aim of
providing a foundation for all of physics. He still hoped to construct a field-theoreti-
cal model of the electron and derive its laws of motion in the atom, without, however,
getting far enough to include any results in his paper. His first paper was republished
twice, in 1924 and 1933, each time with significant revisions. We shall show that Hil-
bert eventually adopted the understanding of energy-momentum conservation devel-
oped in general relativity, thus transforming his ambitious program into an
application of general relativity to a special kind of source, matter as described by
Mie’s theory.

In the 

 

sixth section

 

 (“Hilbert’s adoption of Einstein’s program: the second paper
and its revisions”) we shall show that Hilbert’s second paper, published in 1917, is
the outcome of his attempt to tackle the unsolved problems of his theory in the light
of Einstein’s results, in particular the causality problem; and at the same time to keep
up with the rapid progress of general relativity. In fact, instead of pursuing the conse-
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quences of his approach for microphysics, as he originally intended, he now turned to
solutions of the gravitational field equations, relating them to the mathematical tradi-
tion inaugurated by Gauss and Riemann of exploring the applicability of Euclidean
geometry to the physical world. In this way, he effectively worked within the program
of general relativity and contributed to solving such problems as the uniqueness of
the Minkowski solution and the derivation of the Schwarzschild solution; but he was
less successful in dealing with the problem of causality in a generally-covariant the-
ory. Although he followed Einstein in focussing on the invariant features of such a
theory, he attempted to develop his own solution to the causality problem, different
from that of Einstein. Whereas Einstein resolved the ambiguities he had earlier
encountered in the hole argument by the insight that in general relativity coordinate
systems have no physical significance apart from the metric, Hilbert attempted to find
a purely “mathematical response” to this problem, formulating the causality condi-
tion in terms of the Cauchy or initial-value problem for the generally-covariant field
equations. While it initiated an important line of research in general relativity, this
first attempt not only failed to incorporate Einstein’s insights into the physical inter-
pretation of general relativity but also suffered from Hilbert’s inadequate treatment of
the Cauchy problem for such a theory, a treatment that was finally corrected by the
editors of the revised version published in 1933. 

In the 

 

seventh section

 

 (“The fading away of Hilbert’s point of view in the physics
and mathematics communities”) we shall analyze the reception of Hilbert’s work in
contemporary literature on general relativity and unified field theories, as well as its
later fate in the textbook tradition. We show that, in spite of Hilbert’s emphasis on the
distinctiveness of his approach, his work was perceived almost exclusively as a con-
tribution to general relativity. It will become clear that this reception was shaped
largely by the treatment of Hilbert’s work in the publications of Einstein and Weyl,
although, by revising his own contributions in the light of the progress of general rel-
ativity, Hilbert was not far behind in contributing to the complete disappearance of
his original, distinctive point of view. This disappearance had two remarkable conse-
quences: First, deviations of Hilbert’s theory from general relativity, such as his inter-
pretation of the contracted Bianchi identities as the coupling between gravitation and
electromagnetism, went practically unremarked. Second, in spite of his attempt to
depict himself as the founding father of unified field theories, the early workers in
this field tended to ignore his contribution, denying him a prominent place in their
intellectual ancestry. Instead, Hilbert was assigned a prominent place in the history of
general relativity, even ascribing to him achievements that were not his, such as the
first formulation of the field equations or the complete clarification of the question of
causality. The ease with which his work could be assimilated to general relativity pro-
vides further evidence of a different kind for the tenuous and unstable character of his
own framework.

In the 

 

eighth and final section

 

 (“At the end of a royal road”) we shall compare
Hilbert’s and Einstein’s approaches in an effort to understand Hilbert’s gradual rap-
prochement with general relativity. Einstein had followed a double strategy in creat-
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ing general relativity: trying to explore the mathematical consequences of physical
principles on the one hand; and systematically checking the physical interpretation of
mathematical results, on the other. Hilbert’s initial approach encompassed a much
narrower physical basis. Starting from a few problematic physical assumptions, Hil-
bert elaborated a mathematically complex framework, but never succeeded in finding
any concrete physical consequences of this framework other than those that had been
or could be found within Einstein’s theory of general relativity. Nevertheless, Hil-
bert’s assimilation of specific results from the mainstream tradition of general relativ-
ity into his framework eventually changed the character of this framework,
transforming his results into contributions to general relativity. Thus, in a sense, Hil-
bert’s assimilation of insights from general relativity served as a substitute for the
physical component of Einstein’s double strategy that was originally lacking in Hil-
bert’s own approach. So this double strategy emerges not only as a successful heuris-
tic characterizing Einstein’s individual pathway, but as a particular aspect of the more
general process by which additional knowledge was integrated into the further devel-
opment of general relativity. 

2. THE ORIGINS OF HILBERT’S PROGRAM IN THE “NOSTRIFICATION”
OF TWO SPECULATIVE PHYSICAL THEORIES

Leo Corry has explored in depth the roots and the history of Hilbert’s program of axi-
omatization of physics and, in particular, its impact on his 1916 paper 

 

Foundations of
Physics

 

.

 

13

 

 We can therefore limit ourselves to recapitulating briefly some essential
elements of this program. Hilbert conceived of the axiomation of physics not as a def-
inite foundation that has to 

 

precede

 

 empirical research and theory formation, but as a

 

post-hoc

 

 reflection on the results of such investigations with the aim of clarifying the
logical and epistemological structure of the assumptions, definitions, etc., on which
they are built.

 

14

 

 Nevertheless, Hilbert expected that a proper axiomatic foundation of
physics would not be shaken every time a new empirical fact is discovered; but rather
that new, significant facts could be incorporated into the existing body of knowledge
without changing its logical structure. Furthermore, Hilbert expected that, rather than
emerging from the reorganization of the existing body of knowledge, the concepts
used in an axiomatic foundation of physics should be those already familiar from the
history of physics. Finally, Hilbert was convinced that one can distinguish sharply
between the particular, empirical and the universal ingredients of a physical theory.

Accordingly, the task that Hilbert set for himself was not to find new concepts
serving to integrate the existing body of physical knowledge into a coherent concep-
tual whole, but rather to formulate appropriate axioms involving the already-existing

 

13 See (Corry 1997; 1999a; 1999b; 1999c; see also Sauer 1999, section 1) and “The Origin of Hilbert’s
Axiomatic Method …” (in this volume).

14 For evidence of the following claims, see, in particular, Hilbert’s lecture notes (Hilbert 1905; 1913),
extensively discussed in Corry’s papers.
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physical concepts; axioms which allow the reconstruction of available physical
knowledge by deduction from these axioms. Consequently, his interest in the axioma-
tization of physics was oriented toward the reductionist attempts to found all of phys-
ics on the basis of either mechanics or electrodynamics (the mechanical or
electromagnetic worldview). Indeed, in his discussions of the foundations of physics
before 1905, the axiomatization of mechanics was central; while, at some point after
the advent of the special theory of relativity, Hilbert now placed his hopes in an axi-
omatization of all physics based on electrodynamics.

 

15

 

 In spite of the conceptual rev-
olution brought about by special relativity, involving not only the revision of the
concepts of space and time but also the autonomy of the field concept from that of the
aether, Hilbert nevertheless continued to rely on traditional concepts such as force
and rigidity as the building blocks for his axiomatization program.

 

16

 

 
An axiomatic synthesis of existing knowledge such as that pursued by Hilbert in

physics apparently also had a strategic significance for Göttingen mathematicians
making it possible for them to leave their distinctive mark on a broad array of
domains, which were thus “appropriated,” not only intellectually but also in the sense
of professional responsibility for them. Minkowski’s attempt to present his work on
special relativity as a decisive mathematical synthesis of the work of his predecessors
may serve as an example.

 

17

 

 Discussing an accusation that Emmy Noether had
neglected to acknowledge her intellectual debt to British and American algebraists,
Garrett Birkhoff wrote:

 

This seems like an example of German ‘nostrification:’ reformulating other people’s best
ideas with increased sharpness and generality, and from then on citing the local reformu-
lation.

 

18

 

2.1 Mie’s Theory of Matter

 

By 1913, Hilbert expected that the electron theory of matter would provide the foun-
dation for all of physics. It is therefore not surprising to find him shortly afterwards
attracted to Mie’s theory of matter, a non-linear generalization of Maxwell’s electro-
dynamics that aimed at the overcoming of the dualism between “aether” and “pon-
derable matter.” Indeed, Mie had introduced a generalized Hamiltonian formalism for
electrodynamics, allowing for non-linear couplings between the field variables, in the
hope of deriving the electromagnetic properties of the “aether” as well as the particu-
late structure of matter from one and the same variational principle.

 

19

 

 Mie’s theory
thus not only corresponded to Hilbert’s hope to found all of physics on the concepts

 

15 For a discussion of Hilbert’s turn from mechanical to electromagnetic monism, see (Corry 1999a,
511–517).

16 See (Hilbert 1913, 13).
17 This attempt is extensively discussed in (Walter 1999). See also (Rowe 1989).
18 Garrett Birkhoff to Bartel Leendert van der Waerden, 1 November 1973 (Eidgenössische Technische

Hochschule Zürich, Handschriftenabteilung, Hs 652:1056); quoted from (Siegmund-Schultze 1998,
270). We thank Leo Corry for drawing our attention to this letter.
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of electrodynamics; but it must also have been attractive to him because it was based
upon the variational calculus, a tool, with the usefulness of which for the axiomatiza-
tion of physical theories Hilbert was quite familiar.

 

20

 

 However, Mie’s theory was far
from able to provide specific results concerning the electromagnetic properties of
matter, results which could be confronted with empirical data. Rather, the theory pro-
vides only a framework; a suitable “world function” (Lagrangian) must still be found,
from which such concrete predictions may then be derived. Mie gave examples of
such world functions that, however, were meant to be no more than illustrations of
certain features of his framework. In fact, Mie could not have considered these exam-
ples as the basis of a specific physical theory since they are not even compatible with
basic features of physical reality such as the existence of an elementary quantum of
electricity. Concerning his principal example, later taken up by Hilbert, Mie himself
remarked:

 

A world that is governed by the world function

(1)

must ultimately agglomerate into two large lumps of electric charges, one positive and
one negative, and both these lumps must continually tend to separate further and further
from each other.

 

21

 

Mie drew the obvious conclusion that the unknown world function he eventually
hoped to find must be more complicated than this and the other examples he had con-
sidered.

 

22

 

Hilbert based his work on a formulation of Mie’s framework actually due to Max
Born.

 

23

 

 In a paper of 1914, Born showed that Mie’s variational principle can be con-
sidered as a special case of a four-dimensional variational principle for the deforma-
tion of a four-dimensional continuum involving the integral:

 

24

 

(2)

 

19 Mie’s theory was published in three installments: (Mie 1912a; 1912b; 1913). For a concise account of
Mie’s theory, see (Corry 1999b), see also the Editorial Note in this volume. In the recent literature on
Mie’s theory, the problematic physical content of this theory (and hence of its adaptation by Hilbert)
plays only a minor role; see the discussion below.

20 See, in particular, (Hilbert 1905). 
21 “Eine Welt, die durch die Weltfunktion (1) regiert würde, müßte sich also schließlich zu zwei großen

Klumpen elektrischer Ladungen zusammenballen, einem positiven und einem negativen, und diese
beiden Klumpen müßten immer weiter und weiter voneinander wegstreben.” (Mie 1912b, 38) For the
meaning of Mie’s formula and its ingredients in Hilbert’s version, see (33) below.

22 See (Mie 1912b, 40).
23 For a discussion of Born’s role as Hilbert’s informant about both Mie’s and Einstein’s theories, see

(Sauer 1999, 538–539).
24 See (Born 1914).
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Here  is a Lorentz scalar, and:
(3)

are the projections onto four orthogonal axes of the displacements of the points of the
four-dimensional continuum from their equilibrium positions regarded as functions
of the quasi-Cartesian coordinates  along these axes, and 

(4)

are their derivatives. Furthermore, Born showed that the characteristic feature of
Mie’s theory lies in the ansatz that the function  depends only on the antisymmetric
part of 

(5)

Mie’s four-dimensional continuum could thus be regarded as a four-dimensional
spacetime generalization of MacCullagh’s three-dimensional aether. MacCullagh had
derived equations corresponding to Maxwell’s equations for stationary electrody-
namic processes from the assumption that the vortices of the aether, rather than its
deformations, store its energy.25

What role does gravitation play in Mie’s theory? Mie opened the series of papers
on his theory with a programmatic formulation of his goals, among them to establish
a link between the existence of matter and gravitation:

The immediate goals that I set myself are: to explain the existence of the indivisible elec-
tron and: to view the actuality of gravitation as in a necessary connection with the exist-
ence of matter. I believe one must start with this, for electric and gravitational effects are
surely the most direct expression of those forces upon which rests the very existence of
matter. It would be senseless to imagine matter whose smallest parts did not possess
electric charges, equally senseless however matter without gravitation.26

Initially Mie hoped that he could explain gravitation on the basis of his non-linear
electrodynamics alone, without introducing further variables. His search for a new the-
ory of gravitation was guided by a simple model, according to which gravitation is a
kind of “atmosphere,” arising from the electromagnetic interactions inside the atom:

An atom is an agglomeration of a larger number of electrons glued together by a rela-
tively dilute charge of opposite sign. Atoms are probably surrounded by more substantial

25 See (Whittaker 1951, 142–145, Schaffner 1972, 59–68).
26 “Die nächsten Ziele, die ich mir gesteckt habe, sind: die Existenz des unteilbaren Elektrons zu erklä-

ren und: die Tatsache der Gravitation mit der Existenz der Materie in einem notwendigen Zusammen-
hang zu sehen. Ich glaube, daß man hiermit beginnen muß, denn die elektrischen und die
Gravitationswirkungen sind sicher die unmittelbarsten Äußerungen der Kräfte, auf denen die Existenz
der Materie überhaupt beruht. Es wäre sinnlos, Materie zu denken, deren kleinste Teilchen nicht elek-
trische Ladungen haben, ebenso sinnlos aber Materie ohne Gravitation.” See (Mie 1912a, 511–512).
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atmospheres, which however are still so dilute that they do not cause noticeable electric
fields, but which presumably are asserted in gravitational effects.27

In his third and conclusive paper, however, he explicitly withdrew this model and
was forced to introduce the gravitational potential as an additional variable.28 There
is thus no intrinsic connection between gravitation and the other fields in Mie’s the-
ory. By representing gravitation as an additional term in his Lagrangian giving rise to
a four-vector representation of the gravitational field, he effectively returned to Abra-
ham’s gravitation theory which he had earlier rejected.29 As a consequence, his treat-
ment of gravitation suffers from the same objections that were raised in
contemporary discussions of Abraham’s theory. In summary, Mie’s theory of gravita-
tion was far from reaching the goals he had earlier set for it.

2.2 Einstein’s Non-Covariant “Entwurf” Theory of Gravitation

In 1915, Hilbert became interested in Einstein’s theory of gravitation after a series of
talks on this topic by Einstein between 28 June and 5 July of that year in Göttingen.30

Hilbert’s attraction to Einstein’s approach may have stemmed from his dissatisfaction
with the contrast between Mie’s programmatic statements about the need for a unifi-
cation of gravitation and electromagnetism and the unsatisfactory treatment of gravi-
tation in Mie’s actual theory. This may well have motivated Hilbert to look at other
theories of gravitation and perhaps even to invite Einstein. But apart from the short-
comings of Mie’s theory, Hilbert’s fascination with Einstein’s approach to gravitation
probably is rooted in the remarkable relations that Hilbert must have perceived
between the structure of Mie’s theory of electromagnetism and Einstein’s theory of
gravitation, as the latter was presented in his 1913/1914 publications and (presum-
ably) also in the Göttingen lectures. 

Like Mie’s theory, Einstein’s Entwurf theory was based on a variational principle
for a Lagrangian H, here considered to be a function of the gravitational potentials
(represented by the components of the metric tensor field ) and their first deriva-
tives. In contrast to Mie, however, Einstein had specified a particular Lagrangian,
from which he then derived the gravitational field equations:31

27 “Ein Atom ist eine Zusammenballung einer größeren Zahl von Elektronen, die durch eine verhältnis-
mäßig dünne Ladung von entgegengesetztem Vorzeichen verkittet sind. Die Atome sind wahrschein-
lich von kräftigeren Atmosphären umgeben, die allerdings immer noch so dünn sind, daß sie keine
bemerkbaren elektrischen Felder veranlassen, die sich aber vermutlich in den Gravitationswirkungen
geltend machen.” See (Mie 1912a, 512–513).

28 See (Mie 1913, 5).
29 Compare (Mie 1912a, 534) with (Mie 1913, 29).
30 For notes on a part of Einstein’s lectures, see “Nachschrift of Einstein’s Wolfskehl Lectures” in

(CPAE 6, 586–590). For a discussion of Einstein’s Göttingen visit and its possible impact on Hilbert,
see (Corry 1999a, 514–517).

31 Our presentation follows Einstein’s major review paper, (Einstein 1914b).

gαβ
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(6)

To be more precise, Einstein was able to derive the empty-space field equations from
this Lagrangian. The left-hand side of the gravitational field equations is given by the
Lagrangian derivative of (6):32

(7)

where  In the presence of matter, the right-hand side of the field equa-

tions is given by the energy-momentum tensor  of matter, so that Einstein’s field

equations become:

(8)

with the universal gravitational constant  In Einstein’s Entwurf theory, the role of
matter as an external source of the gravitational field is not determined by the theory,
but rather to be prescribed independently. In the Lagrangian, matter thus appears sim-
ply “black-boxed,” in the form of a term involving its energy-momentum tensor,
rather than as an expression explicitly involving some set of variables describing the
constitution of matter:

(9)

Here was a possible point of contact between Mie’s and Einstein’s theories: Was it
possible to conceive of Mie’s electromagnetic matter as the source of Einstein’s grav-
itational field? In order to answer this question, evidently one had to study how the
energy-momentum tensor  can be derived from terms of Mie’s Lagrangian; in
particular, what happens if Mie’s matter is placed in a four-dimensional spacetime
described by an arbitrary metric tensor  This naturally presupposed a reformula-
tion of Mie’s theory in generally-covariant form, with an arbitrary metric tensor 
replacing the flat one of Minkowski spacetime.

Although most other expressions in his theory are generally-covariant, such as
the geodesic equations of motion for a particle in the -field and the expression of
energy-momentum conservation in the form of the vanishing covariant divergence of
the energy tensor of matter, the field equations of Einstein’s 1913/14 theory of grav-
itation are not. While this lack of general covariance had initially seemed to him to
be a blemish on his theory, in late 1913 Einstein convinced himself that he could

32 Magnitudes in Gothic script represent tensor densities with respect to linear transformations.
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even demonstrate—by means of the well-known “hole-argument”—that generally-
covariant field equations are physically inadmissible because they cannot provide a
unique solution for the metric tensor  describing the gravitational field produced
by a given matter distribution. The hole argument involves a specific boundary value
problem (whether this problem is well posed mathematically is a question that Ein-
stein never considered) for a set of generally-covariant field equations with given
sources outside of and boundary values on a “hole” (i.e. a region of spacetime with-
out any sources in it), Einstein showed how to construct infinitely many apparently
inequivalent solutions starting from any given solution. From the perspective of the
hole argument, as Hilbert realized, if one considers generally-covariant field equa-
tions, then in order to pick out a unique solution these equations must be supple-
mented by four additional non-covariant equations. From the perspective of the 1915
theory of general relativity, however, the hole argument no longer represents an
objection against generally-covariant field equations because the class of mathemat-
ically distinct solutions generated from an initial solution are not regarded as physi-
cally distinct, but merely as different mathematical representations of a single
physical situation.33

Even in 1913/14 Einstein believed that it might be possible to formulate gener-
ally-covariant equations, from which equations (8) would follow by introducing a
suitable coordinate restriction.34 While he actually never found such equations corre-
sponding to (8), he did find four non-covariant coordinate restrictions that he believed
characteristic for his theory. He obtained these coordinate restrictions from an analy-
sis of the behavior under coordinate transformations of the variational principle, on
which his theory was based. Expressed in terms of the Lagrangian H, these four coor-
dinate restrictions are:

(10)

Einstein regarded these restrictions as making evident the non-general covariance of
his theory; indeed he believed them just restrictive enough to avoid the hole-argu-
ment. Einstein also required the existence of a gravitational energy-momentum com-
plex (non-tensorial) guaranteeing validity of four energy-momentum conservation
equations for the combined matter and gravitational fields. His theory thus involved
10 field equations, 4 coordinate restrictions, and 4 conservation equations — in all 18
equations for the 10 gravitational potentials 

Einstein used the consistency of this overdetermined system as a criterion for the
choice of a Lagrangian, imposing the condition that the field equations together with
the energy-momentum conservation equations should yield the coordinate restric-

33 See (Stachel 1989; 71–81, sections 3 and 4).
34 See, e.g., (Einstein 1914a, 177–178). It is unclear whether Einstein expected the unknown generally-

covariant equations to be of higher order than second.
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tions (10). For this purpose, he assumed a general Lagrangian  depending on 
and  and then examined the four equations implied by the assumption of
energy-momentum conservation for the field equations resulting from this
Lagrangian. Formulating energy-momentum conservation as the requirement that the
covariant divergence of the energy-momentum tensor density  has to vanish, and
using the field equations (8), he first obtained:

(11)

and then:

(12)

with  given by (10) and:

(13)

By requiring that:

(14)

an equation that indeed is satisfied for the Lagrangian (6), it follows that (12) entails
no new conditions beyond (10). In other words, for the “right” Lagrangian, the coor-
dinate restrictions required by the hole-argument follow from energy-momentum
conservation. In late 1915 Einstein found that his argument for the uniqueness of the
Lagrangian, and thus for the uniqueness of the field equations, is fallacious;35 and
this insight helped to motivate him to return to generally-covariant field equations.

If one disregards the wealth of successful predictions of Newtonian gravitation
theory that also buttressed Einstein’s theory of 1913/14, that theory might appear
almost as speculative as Mie’s theory of matter. On the one hand, Einstein had been
able to make several predictions based on his theory, such as the perihelion shift of
Mercury, the deflection of light in a gravitational field, and gravitational redshift, that,
at least in principle, could be empirically checked. On the other hand, none of these
conclusions had actually received such support by the time Hilbert turned to Ein-
stein’s work: indeed, the calculated perihelion shift was in disaccord with observation. 

35 For a historical discussion, see (Norton 1984) and “Untying the Knot …” (in vol. 2 of this series).
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2.3 Hilbert’s Research Program

To a mathematician of Hilbert’s competence, Einstein’s 1913/1914 theory must have
appeared somewhat clumsy. In particular, it left several specifically mathematical
questions open, such as the putative existence of the corresponding generally-covariant
equations mentioned above; how the field equations (8) result from these generally-
covariant equations by means of the coordinate restrictions (10); whether the hole
argument for generally-covariant equations is better applied to boundary values on an
open space-like hypersurface (the Cauchy problem) or a closed hypersurface (Ein-
stein’s formulation); and the closely–related question of the number of independent
equations for the gravitational potentials in Einstein’s system. Such questions presum-
ably suggested to Hilbert a rather well-circumscribed research program that, taken
together with his interest in Mie’s theory of matter, amounted to the search for an “axi-
omatic synthesis” of the two speculative physical theories.

In consequence, Hilbert’s initial program presumably comprised:36

1. a generally-covariant reformulation of both Mie’s and Einstein’s theories with the
intention of deriving both from a single variational principle for a Lagrangian that
depends on both Mie’s electrodynamical and Einstein’s gravitational variables; 

2. an examination of the possibility of replacing Einstein’s unspecified energy-
momentum tensor for matter by one following from Mie’s Lagrangian;

3. a further examination of the non-uniqueness of solutions to generally-covariant
equations, involving a study of the question of the number of independent equa-
tions, and finally 

4. the identification of coordinate restrictions appropriate to delimit a unique solu-
tion and an examination of their relation to energy-momentum conservation. 

Even prior to looking at Hilbert’s attempt to realize such a synthesis of Mie’s and
Einstein’s approaches, it is clear that such a program would fit perfectly into Hilbert’s
axiomatic approach to physics. Indeed, the realization of this suggested initial pro-
gram would: constitute a clarification of the logical and mathematical foundations of
already existing physical theories in their own terms; represent the synthesis of differ-
ent theories by combination of logically independent elements within one and the
same formalism (in this case incorporation of Mie’s variables and Einstein’s variables
in the same Lagrangian); replace the unspecified character of the material sources
entering Einstein’s theory with a daring theory of their electromagnetic nature, for-
mulated in mathematical terms, thus shifting the boundary between experience and
mathematical deduction in favor of the latter. 

Unfortunately, there is no direct evidence that Hilbert developed and pursued
some such research program in the course of his work in the second half of 1915 on
Mie’s and Einstein’s theories. We have no “Göttingen notebook” that would be equiv-
alent to Einstein’s “Zurich Notebook,” documenting in detail the heuristics that Hil-

36 For a similar attempt to reconstruct Hilbert’s research program, see (Sauer 1999, 557–559).
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bert followed.37 However, now we have the first proofs of Hilbert’s first
communication that (as we have argued)38 provide a glimpse into his thinking prior to
his assimilation of Einstein’s definitive paper on general relativity. In the next section
we shall argue that the proofs version of Hilbert’s theory can be interpreted as the
result of pursuing just such a research program as that sketched above. 

3. HILBERT’S ATTEMPT AT A THEORY OF EVERYTHING: 
THE PROOFS OF HIS FIRST PAPER 

In this section we shall attempt to reconstruct Hilbert’s heuristics from the Proofs and
published versions of his first paper (Hilbert 1916), hereafter, Proofs and Paper 1. We
will begin by reconstructing from the Proofs and other contemporary documents, the
first step in the realization of Hilbert’s program. This crucial step, an attempt to
explore the first two points of the program, was the establishment of a relation
between Mie’s energy-momentum tensor and the variational derivative with respect
to the metric of Mie’s Lagrangian.39 Next, we attempt to reconstruct Hilbert’s calcu-
lation of Mie’s energy-momentum tensor from the Born-Mie Lagrangian. We then
examine the consequences of this derivation for the concept of energy, and thus for
the further exploration of the second point of his program. We then discuss how these
results suggest a new perspective on the relation between Mie’s and Einstein’s theo-
ries, from which gravitation appears more fundamental than electrodynamics. Seen
from this perspective, the third point of Hilbert’s program, the question of uniqueness
of solutions to generally-covariant equations, took on a new significance: Hilbert
turned Einstein’s argument that only a non-covariant theory can make physical sense
into an instrument for the synthesis of electromagnetism and gravitation. Coming to
the fourth point of Hilbert’s program, we show how he united his energy concept with
the requirement of restricting general covariance. Finally, after examining Hilbert’s
attempt to derive the electromagnetic field equations from the gravitational ones, we
discuss Hilbert’s rearrangement of his results in the form of an axiomatically con-
structed theory, which he presented in the Proofs of Paper 1.

3.1 The First Result

At some point in late summer or fall of 1915, Hilbert must have discovered a relation
between the energy-momentum tensor following from Mie’s theory of matter, the
Born-Mie Lagrangian L, and the metric tensor representing the gravitational poten-

37 Einstein’s search for gravitational field equations in the winter of 1912/13 is documented in the so-
called Zurich Notebook, partially published as Doc. 10 of (CPAE 4). Einstein’s research project has
been reconstructed in volumes 1 and 2 of this series. See, in particular, “Pathways out of Classical
Physics …” (in vol. 1 of this series).

38 In (Corry, Renn, and Stachel 1997).
39 Henceforth, mention of the variational derivative of a Lagrangian, without further indication, always

means with respect to the metric tensor.
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tials in Einstein’s theory of gravitation. In the Proofs and the published version of
Paper 1, as well as in his contemporary correspondence, Hilbert emphasized the sig-
nificance of this discovery for his understanding of the relation between Mie’s and
Einstein’s theories. In the Proofs he wrote:

Mie’s electromagnetic energy tensor is nothing but the generally invariant tensor that
results from differentiation of the invariant  with respect to the gravitational potentials

 in the limit (25) [i.e. the equation — a circumstance that gave me the
first hint of the necessary close connection between Einstein’s general relativity theory
and Mie’s electrodynamics, and which convinced me of the correctness of the theory
here developed.40

Hilbert expressed himself similarly in a letter of 13 November 1915 to Einstein:

I derived most pleasure in the discovery, already discussed with Sommerfeld, that the
usual electrical energy results when a certain absolute invariant is differentiated with
respect to the gravitation potentials and then  is set = 0,1.41

On the basis of our suggested reconstruction of Hilbert’s research program, it is pos-
sible to suggest what might have led him to this relation. We assume that he
attempted to realize the first two steps, that is to reformulate Mie’s Lagrangian in a
generally-covariant setting and replace the energy-momentum tensor term in Ein-
stein’s variational principle by a term corresponding to Mie’s theory. Considering (9),
this would imply an expression such as  under the integral, where  corre-
sponds to Einstein’s original Lagrangian and  to a generally-covariant form of
Mie’s Lagrangian. If the variation of Mie’s Lagrangian is regarded as representing the
energy-momentum tensor term, one obtains:

(15)

where  should now be the energy-momentum tensor of Mie’s theory. It may well
have been an equation of this form, following from the attempt to replace the unspec-
ified source-term in Einstein’s field equations by a term depending on the generally-
covariant form of Mie’s Lagrangian, that first suggested to Hilbert that the energy-
momentum tensor of Mie’s theory could be the variational derivative of Mie’s
Lagrangian. 

40 “der Mie’sche elektromagnetische Energietensor ist also nichts anderes als der durch Differentiation
der Invariante  nach den Gravitationspotentialen  entstehende allgemein invariante Tensor beim
Übergang zum Grenzfall (25) [i.e. the equation  — ein Umstand, der mich zum ersten
Mal auf den notwendigen engen Zusammenhang zwischen der Einsteinschen allgemeinen Relativi-
tätstheorie und der Mie’schen Elektrodynamik hingewiesen und mir die Überzeugung von der Rich-
tigkeit der hier entwickelten Theorie gegeben hat.” (Proofs, 10)

41 “Hauptvergnügen war für mich die schon mit Sommerfeld besprochene Entdeckung, dass die
gewöhnliche elektrische Energie herauskommt, wenn man eine gewisse absolute Invariante mit den
Gravitationspotentialen differenziert und [d]ann  setzt.” David Hilbert to Einstein, 13
November 1915, (CPAE 8, 195). Unless otherwise noted, all translations are based on those in the
companion volumes to the Einstein edition, but often modified.
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If he followed the program outlined above, Hilbert would have assumed that the
Lagrangian has the form:

(16)

where  represents the gravitational part and  the electromagnetic. Indeed, this
form of the Lagrangian is used both in the Proofs and the published version of
Paper 1.42

In Paper 1, Hilbert derived a relation of the form:

(17)

where  stands for the energy-momentum tensor density of Mie’s theory.43 This
relation, which is exactly what one would expect on the basis of (15), could have sug-
gested to Hilbert that a deep connection must exist between the nature of spacetime
as represented by the metric tensor and the structure of matter as represented by
Mie’s theory. 

3.2 Mie’s Energy-Momentum Tensor as a Consequence of Generally-Covariant 
Field Equations

The strategy Hilbert followed to derive (17) can be reconstructed from the two ver-
sions of his paper. It consisted in following as closely as possible the standard varia-
tional techniques applied, for instance, to derive Lagrange’s equations from a
variational principle.44 In Hilbert’s paper, a similar variational problem forms the
core of his theory. He describes his basic assumptions in two axioms:45

Axiom I (Mie’s axiom of the world function): The law governing physical processes is
determined through a world function  that contains the following arguments:

(18)

where the variation of the integral

42 In the Proofs it was presumably introduced on the upper part of p. 8, which unfortunately is cut off.
43 See (Proofs, 10; Hilbert 1916, 404). Note that Hilbert uses an imaginary fourth coordinate, so that the

minus sign emerges automatically in the determinant of the metric; he does not explicitly introduce
the energy-momentum tensor  

44 See, for example, (Caratheodory 1935).
45 See also (Hilbert 1916, 396).
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(19)

must vanish for each of the fourteen potentials 46

[The  are Hilbert’s notation for an arbitrary system of coordinates.]

Axiom II (axiom of general invariance): The world function  is invariant with respect
to an arbitrary transformation of the world parameters 47

Starting from an arbitrary invariant  Hilbert formed a differential expression
from it depending on  which in the published version of his
paper he called  He defined the operator  as follows:48

(20)

where  and  are arbitrary variations of the metric tensor and the electromag-
netic four-potentials, respectively. Thus:

(21)

In the mathematical terminology of the time,  is a “polarization” of 49

As we shall see, it is possible to derive from  identities that realize Hilbert’s
goal, the derivation of (17). His procedure is described more explicitly in the pub-
lished version of Paper 1, and since we assume that on this point there was no signif-
icant development of Hilbert’s thinking after the Proofs, our reconstruction will make
use of the published version. 

In modern terminology, if  and  are those special variations generated by
dragging the metric and the electromagnetic potentials over the manifold with some
vector field  i.e., if they are the Lie derivatives of the metric and the electromag-
netic potentials with respect to 50 then  must be the Lie derivative of  with

46 “Axiom I (Mie’s Axiom von der Weltfunktion): Das Gesetz des physikalischen Geschehens bestimmt
sich durch eine Weltfunktion H, die folgende Argumente enthält: [(18); (1) and (2) in the original text]
und zwar muß die Variation des Integrals [(19)] für jedes der 14 Potentiale  verschwinden.”
(Proofs, 2) The  are the electromagnetic four potentials.

47 “Axiom II  (Axiom von der allgemeinen Invarianz): Die Weltfunktion  ist eine Invariante gegen-
über einer beliebigen Transformation der Weltparameter ” (Proofs, 2)

48 See (Hilbert 1916, 398–399). Compare (Proofs, 4 and 7).
49 See, e.g., (Kerschensteiner 1887, §2).
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respect to  On the other hand, since  is a scalar invariant, the Lie derivative of
this scalar with respect to  can be written directly, so that: 

(22)

With a little work,51 equation (22) can be rewritten in the form of equation (23)
below. This is the content of Hilbert’s Theorem II, both in the Proofs and in Paper 1: 

T h e o r e m   II.  If  is an invariant depending on      then the
following is always identically true in all its arguments and for every arbitrary contravar-
iant vector 

(23)

where

(24)

52

Hilbert next applies Theorem II to the electromagnetic part  of his Lagrangian
 with the assumption that  only depends on the metric  the elec-

50 Here  corresponds, in modern terms, to the Lie derivative of the contravariant form of the metric
tensor with respect to the arbitrary vector  Hilbert writes:

and similarly for the Lie derivatives of the electromagnetic potentials. While the term “Lie derivative”
was only introduced in 1933 by W. Slebodzinski (see Slebodzinski 1931), it was well known in Hil-
bert’s time that the basic idea came from Lie; see for example (Klein 1917, 471): “For this purpose
one naturally determines, as Lie in particular has done in his numerous relevant publications, the for-
mal changes that result from an arbitrary infinitesimal transformation.” (“Zu diesem Zwecke
bestimmt man natürlich, wie dies insbesondere Lie in seinen zahlreichen einschlägigen Veröffentli-
chungen getan hat, die formellen Änderungen, welche sich bei einer beliebigen infinitesimalen Trans-
formation ... ergeben ... .”) According to Schouten, the name “Lie differential” was proposed by D.
Van Dantzig; see (Schouten and Struik 1935, 142).
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tromagnetic potentials  and their derivatives  but not on the derivatives of the
metric tensor. This gives the identity:53

(25)

Since the vector field  is arbitrary, its coefficients as well as the coefficients of its
first and second derivatives must vanish identically. Hilbert drew two conclusions,
which he interpreted as strong links between a generally-covariant variational princi-
ple and Mie’s theory of matter. The first concerns the form in which the electromag-

51 See (Proofs, 7–8; Hilbert 1916, 398). The equivalence of (22) and (23) is shown as follows: Since  
depends on  through     and  it follows that:

On the other hand,  is the Lie derivative of  through its dependence on    and 
so:

where     and  stand for the Lie derivatives with respect to the vector field 

of     and  respectively (Hilbert’s notation). Rewriting (24) in terms of the def-

inition of the Lie derivatives of     and  we easily get:

Inserting these expressions into (23), and using the equations for  and  at the beginning of this
note, one sees that (23) reduces to:

which is equivalent to (22).

J
ws gμν , gm

μν , gmk
μν , qm qmk

ws∂
∂J

g
μν∂

∂J
gs

μν⋅
gm

μν∂

∂J
gsm

μν⋅
gmk

μν∂

∂J
gsmk

μν⋅
qm∂

∂J
qms⋅

qmk∂
∂J

qmks .⋅+ + + +=

PJ J g
μν

, gm
μν

qm qmk ,

PJ
g

μν∂

∂J
p

μν⋅
gm

μν∂

∂J
pm

μν⋅
gmk

μν∂

∂J
pmk

μν⋅
qm∂

∂J
pm⋅

qmk∂
∂J

pmk⋅+ + + +=

pμν pm
μν , pmk

μν , pm pmk pk

gμν , gm
μν , gmk

μν , qm qmk

gμν , gm
μν , gmk

μν , qm qmk ,

Δgμν gm
μν

pm p
μν

– ,
m
∑=

Δg
l
μν g

ml
μν pm pl

μν
,–

m
∑=

Δg
lk
μν g

mlk
μν pm plk

μν
,–

m
∑=

Δqs qsm pm ps ,–
m
∑=

Δqsk qsmk pm psk .–
m
∑=

ws∂
∂J

PJ

ws∂
∂J

p
s⋅ PJ– 0,=

qs qsk,

∂L
∂gμν
----------- gμm pm

ν gνm pm
μ+( )

∂L
∂qs
--------qm ps

m

s m,
∑–

μ ν m, ,
∑

 
∂L

∂qsk
---------- qsm pk

m qmk ps
m qm psk

m+ +( )
s k m, ,
∑– 0.=

ps



878 JÜRGEN RENN AND JOHN STACHEL

netic potentials enter the Lagrangian, the second concerns the relation between this
Lagrangian and Mie’s energy-momentum tensor.

From Hilbert’s requirements on —that it be a generally-invariant scalar that
does not depend on the derivatives of the metric tensor—he was able to show that the
derivatives of the electromagnetic potentials can only enter it in the form characteris-
tic of Mie’s theory (see (5)). Setting the coefficients of  in (25) equal to zero, and
remembering that  one obtains:

(26)

Since  cannot vanish identically, it follows that:

(27)

which mean that the  only enter  in the antisymmetric combination familiar
from Mie’s theory:

(28)

Thus, apart from the potentials themselves,  depends only on the components of the
tensor 

(29)

the familiar electromagnetic “six vector.” Hilbert emphasized:

This result here derives essentially as a consequence of the general invariance, that is,
on the basis of axiom II.54

In order to explicitly establish the relation between his theory and Mie’s, Hilbert
points out that  must be a function of four invariants.55 Hilbert only gave what he
considered to be the “two simplest” of the generally-covariant generalizations of
these invariants:

(30)

52 “Theorem II. Wenn  eine von  abhängige Invariante ist, so gilt stets identisch
in allen Argumenten und für jeden willkürlichen kontravarianten Vektor  [(23)] dabei ist: [(24)].”

53 See (Proofs, 9; Hilbert 1916, 403).
54 “Dieses Resultat ergibt sich hier wesentlich als Folge der allgemeinen Invarianz, also auf Grund von

Axiom II.” (Proofs, 10) In the published version this passage reads: “This result, which determines the
character of Maxwell’s equations in the first place, here derives essentially as a consequence of the
general invariance, that is, on the basis of axiom II.” (“Dieses Resultat, durch welches erst der Cha-
rakter der Maxwellschen Gleichungen bedingt ist, ergibt sich hier wesentlich als Folge der allgemei-
nen Invarianz, also auf Grund von Axiom II.”) See (Hilbert 1916, 403).

55 See (Proofs, 13, and Hilbert 1916, 407). Here Hilbert followed the papers of Mie and Born; see, in
particular, (Born 1914).
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and:

(31)

According to Hilbert, the simplest expression that can be formed by analogy to the
gravitational part of the Lagrangian  is:56

(32)

where  is any function of  and  a constant. In order to recover Mie’s main
example (see (1)) from this more general result, Hilbert considers the following spe-
cific functional dependence:

(33)

which corresponds to the Lagrangian given by Mie. In contrast to Mie, Hilbert does
not even allude to the physical problems associated with this Lagrangian. And in con-
trast to Einstein, at no point does Hilbert introduce the Newtonian coupling constant
into his equations, so that his treatment of gravitation remains as “formalistic” as that
of electromagnetism.

The second consequence Hilbert drew from (25), which corresponds to what we
have called above “Hilbert’s first results” (see (17)), concerns Mie’s energy-momen-
tum tensor. Setting the coefficient of  equal to zero and using (27), he obtained:57

(34)

Noting that:

(35)

(34) can be rewritten:

(36)

The right-hand side of this equation is the generally-covariant generalization of Mie’s
energy-momentum tensor. It is this equation that inspired Hilbert’s remark about the

56 Note that  is the term that gives rise to Maxwell’s equations and that  cannot be used if the result-
ing theory is to be gauge invariant. See (Born and Infeld 1934).

57 See (Proofs, 10; Hilbert 1916, 404). 
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“Umstand, der mich zum ersten Mal auf den notwendigen engen Zusammenhang
zwischen der Einsteinschen allgemeinen Relativitätstheorie und der Mie’schen Elek-
trodynamik hingewiesen ... hat”, quoted above (p. 873). Hilbert had shown that char-
acteristic properties of Mie’s Lagrangian follow from its generally-covariant
generalization, a result he interpreted as indicating that gravitation must be conceived
as being more fundamental than electromagnetism, as his later work indicates.

3.3 The Definition of Energy

While (36) shows a strong link between a generally-covariant  and Mie’s energy
momentum tensor, it does not answer the question of how energy-momentum conser-
vation is to be conceived in Hilbert’s theory. Hilbert’s theory does not allow the inter-
pretation of an energy-momentum tensor for matter as an external source, as does that
of Einstein; so Hilbert could not start from a conservation law for matter in
Minkowski spacetime and simply generalize it to the case in which a gravitational
field is present. Such a procedure would have conflicted with Hilbert’s heuristic,
according to which matter itself is conceived in terms of electromagnetic fields that,
in turn, arise in conjunction with, or even as an effect of, gravitational fields.

Hilbert’s heuristic for finding an appropriate definition of energy seems to be gov-
erned by a formal criterion related to his understanding of energy conservation in
classical physics, as well as by a criterion with a more specific physical meaning
related to the results he expected from Mie’s theory. Hilbert’s formal criterion is well
described in a passage in his summer-semester 1916 lectures on the foundations of
physics, a passage which occurs in a discussion of energy-momentum conservation in
Mie’s theory:

The energy concept comes from just writing Lagrange’s equations in the form of a diver-
gence, and defining as energy what is represented as divergent.58

As for Hilbert’s physical criterion, any definition of the energy must be compatible
with his insight that the variational derivative of Mie’s Lagrangian yields the electro-
magnetic energy-momentum tensor. 

Hilbert’s treatment of energy conservation in the Proofs and in Paper 1 is not easy
to follow. This difficulty was felt by Hilbert’s contemporaries; both Einstein and
Klein had their problems with it.59 Nevertheless, as will become clear in what fol-
lows, Hilbert’s discussion was guided by the heuristic criteria mentioned above. He
proceeded in three steps:

• he first identified an energy expression consisting of a sum of divergence terms
(Satz 1 in the Proofs):

58 “Der Energiebegriff kommt eben daher, dass man die Lagrangeschen Gleichungen in Divergenzform
schreibt, und das, was unter der Divergenz steht, als Energie definiert.” Die Grundlagen der Physik I,
Ms. Vorlesung SS 1916, 98 (D. Hilbert, Bibliothek des Mathematischen Seminars, Universität Göttin-
gen); from here on “SS 1916 Lectures.”

L
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• he then formulated a divergence equation for his energy expression in analogy to
classical and special-relativistic results (Satz 2 in the Proofs), and imposed this
equation as a requirement implying coordinate restrictions (Axiom III):

• finally, he showed that his energy expression can be related to Mie’s energy-
momentum tensor (the real justification of his choice).

Here we focus on the first and last of these points, deferring the issue of coordinate
restrictions to a subsequent section (“Energy-momentum conservation and coordi-
nate restrictions”).

As in his derivation of the connection between Mie’s energy-momentum tensor
and the variational derivative of the Lagrangian, Hilbert’s starting point was his gen-
erally-covariant variational principle. However, he now proceeded somewhat differ-
ently. Instead of focussing on the electromagnetic part , he considered the entire
Lagrangian , but now neglected the derivatives with respect to the electromagnetic
potentials, i.e. the contribution of the term  to  (see (20)). Accordingly, Hilbert
forms the expression:60

(37)

where  corresponds, as we have seen, to the Lie derivative of the metric tensor
with respect to the arbitrary vector  By partial integration, Hilbert transforms this
expression into:

(38)

with:

59 In (Klein 1917, 475), Klein quotes from a letter he had written to Hilbert concerning the latter’s
energy expression in Paper 1: “But I find your equations so complicated that I have not attempted to
redo your calculations.” (“Ich finde aber Ihre Formeln so kompliziert, daß ich die Nachrechnung nicht
unternommen habe.”) In a letter, in which Einstein asked Hilbert for a clarification of the latter’s
energy theorem, he wrote: “Why do you make it so hard for poor mortals by withholding the tech-
nique behind your ideas? It surely does not suffice for the thoughtful reader if, although able to verify
the correctness of your equations, he cannot get a clear view of the overall plan of the analysis.”
(“Warum machen Sie es dem armen Sterblichen so schwer, indem Sie ihm die Technik Ihres Denkens
vorenthalten? Es genügt doch dem denkenden Leser nicht, wenn er zwar die Richtigkeit Ihrer Glei-
chungen verifizieren aber den Plan der ganzen Untersuchung nicht überschauen kann.”) See Einstein
to David Hilbert, 30 May 1916, (CPAE 8, 293). In a letter to Paul Ehrenfest, Einstein expressed him-
self even more drastically with respect to what he perceived as the obscurity of Hilbert’s heuristic:
“Hilbert’s description doesn’t appeal to me. It is unnecessarily specialized as concerns “matter,”
unnecessarily complicated, and not above-board (=Gauss-like) in structure (feigning the super-human
through camouflaging the methods).” (“Hilbert’s Darstellung gefällt mir nicht. Sie ist unnötig speziell,
was die ‘Materie’ anbelangt, unnötig kompliziert, nicht ehrlich (=Gaussisch) im Aufbau (Vorspiege-
lung des Übermenschen durch Verschleierung der Methoden).”) See Einstein to Paul Ehrenfest, 24
May 1916, (CPAE 8, 288).

60 See (Proofs, 5ff.).
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(39)

and:

(40)

Hilbert had thus succeeded in splitting off a divergence term  from the original
expression  By integrating over some region,  could be converted into a
surface term, and thus eliminated by demanding that  and its derivatives vanish on
the boundary of that region.61 So it would be possible to extract an energy expression
from the remainder of  if a way could be found to deal with the first term

Ultimately, the justification for choosing  as the energy expression depends, of
course, on the possibility of a physical interpretation of this expression. As we shall
see, for Hilbert this meant an interpretation in terms of Mie’s theory. But, first of all,
he had to show that  can be represented as a sum of divergences. For this purpose,
Hilbert introduced yet another decomposition of  derived from a generalization
of (37). As we have indicated earlier, this equation may be identified as a special case
of a “polarization” of the Lagrangian  with respect to the contravariant form of the
metric  If one takes an arbitrary contravariant tensor  one obtains for the
“first polar” of 

(41)

Applying integration by parts to this expression, Hilbert obtained:

61 Die Grundlagen der Physik II, Ms. Vorlesung WS 1916/17, 186 ff. (D. Hilbert, Bibliothek des Mathe-
matischen Seminars, Universität Göttingen); from here on “WS 1916/17 Lectures.” 
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(42)

here

(43)

is the Lagrangian variational derivative of  the vanishing of which is the set of
gravitational field equations; and:

(44)

i.e. another divergence expression. Obviously,  turns into  if one sets 
equal to  thus yielding the desired alternative decomposition:

(45)

Comparing (45) with (38), it becomes clear that  indeed can be written as a diver-
gence, and thus represents a candidate for the energy expression. In the Proofs this
conclusion is presented as one of two properties justifying this designation:

Call the expression  the energy form. To justify this designation, I prove two properties
that the energy form enjoys.

If we substitute the tensor  for  in identity (6) [i.e. (42)] then, taken together
with (9) [i.e. (39)] it follows, provided the gravitational equations (8) [i.e. (51) below] are
satisfied:

(46)

or

(47)

that is, we have the proposition:

Proposition 1: In virtue of the gravitational equations the energy form  becomes a sum
of differential quotients with respect to  that is, it acquires the character of a diver-
gence.62
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Whereas (47) for an arbitrary  involves an arbitrary combination of electromag-
netic and gravitational contributions, Hilbert makes an ansatz  that
allows him to separate these two contributions; in particular, to relate  to his result
concerning the energy-momentum tensor of Mie’s theory. Accordingly, at this point,
he presumably introduces in a missing part of the Proofs (as he does in the corre-
sponding part of Paper 1) the splitting of the Lagrangian (16), and introduces the con-
dition that  not depend on 63 Finally, he writes down explicitly the
electromagnetic part of the energy:

Because  depends only on  therefore in ansatz (17) [i.e. (16)], due to
(13) [i.e. (47)], the energy  can be expressed solely as a function of the gravitational
potentials  and their derivatives, provided  is assumed to depend not on  but
only on  On this assumption, which we shall always make in the following,
the definition of the energy (10) [i.e. (39)] yields the expression

(48)

where the “gravitational energy”  depends only on  and their derivatives, and
the “electrodynamic energy”  takes the form

(49)

which proves to be a general invariant multiplied by 64

(The term in parentheses in equation (49) is  the Lie derivative of the contravari-
ant metric with respect to the vector  

Hilbert’s final expression (49) satisfies what we called his “physical criterion” for

finding a definition of the energy since the term  corresponds—apart from

the factor —to the left-hand side of (36), and thus to Mie’s energy momentum ten-

62 “Der Ausdruck  heiße die Energieform. Um diese Bezeichnung zu rechtfertigen, beweise ich zwei
Eigenschaften, die der Energieform zukommen.
Setzen wir in der Identität (6) [i.e. (42)] für  den Tensor  ein, so folgt daraus zusammen mit
(9) [(39)], sobald die Gravitationsgleichungen (8) erfüllt sind: [(46); (12) in the original text] or [(47);
(13) in the original text] d. h. es gilt der Satz:
Satz 1. Die Energieform  wird vermöge der Gravitationsgleichungen einer Summe von Differenti-
alquotienten nach  gleich, d. h. sie erhält Divergenzcharakter.” See (Proofs, 6).

63 Compare (Hilbert 1916, 402) with (Proofs, 8), and see the discussion in “Einstein Equations and Hil-
bert Action …” (in this volume).

64 “Da  nur von  abhängt, so läßt sich beim Ansatz (17) die Energie  wegen (13)
lediglich als Funktion der Gravitationspotentiale  und deren Ableitungen ausdrücken, sobald wir

 nicht von  sondern nur von  abhängig annehmen. Unter dieser Annahme, die wir
im Folgenden stets machen, liefert die Definition der Energie (10) den Ausdruck [(48); (18) in the ori-
ginal text] wo die “Gravitationsenergie”  nur von  und deren Ableitungen abhängt und die
“elektrodynamische Energie”  die Gestalt erhält [(49); (19) in the original text] in der sie sich als
eine mit  multiplizierte allgemeine Invariante erweist.” (Proofs, 8)
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sor. Hilbert’s definition of energy had thus been given a “physical justification” in
terms of Mie’s theory. But—apart from merely formal similarities—its relation to
energy-momentum conservation in classical and special-relativistic theories remains
entirely unclear. In the Proofs, as we shall see below, Hilbert’s energy expression
served still another and even more important function, that of determining admissible
coordinate systems.

3.4 Hilbert’s Revision of Mie’s Program and the Roots
of his Leitmotiv in Einstein’s Work

Apparently Hilbert was convinced that the relation he established between the varia-
tional derivative of the Lagrangian and the energy-momentum tensor (see (36)) sin-
gled out Mie’s theory as having a special relation to the theory of gravitation.65 In
fact, as we have seen, this conclusion is only justified insofar as one imposes on the
electrodynamic term in the Lagrangian the condition that it does not depend on .
Nevertheless, this result apparently suggested to Hilbert that gravitation may be the
more fundamental physical process and that it might be possible to conceive of elec-
tromagnetic phenomena as “effects of gravitation.”66 Such an interpretation, which
was in line with the reductionist perspective implied by his understanding of the axi-
omatization of physics, led to a revision of Mie’s original aim of basing all of physics
on electromagnetism. 

In the light of this possibility, the third point of Hilbert’s initial research program,
the question of the number of independent equations in a generally-covariant theory,
must have taken on a new and increased significance. Einstein’s hole argument, when
applied to Hilbert’s formalism, suggests that the fourteen generally-covariant field
equations for the 14 gravitational and electromagnetic potentials do not have a unique
solution for given boundary values. Consequently, 4 identities must exist between the
14 field equations; and 4 additional, non-covariant equations would be required in
order to assure a unique solution; and if these 4 identities were somehow equivalent
to the 4 equations for the electromagnetic potentials, then the latter could be consid-
ered as a consequence of the 10 gravitational equations by virtue of the unique prop-
erties of a generally-covariant variational principle, and Hilbert would indeed be
entitled to claim that electromagnetism is an effect of gravitation.

As we have seen, the non-uniqueness of solutions to generally-covariant field
equations and the conclusion that such field equations must obey 4 identities, are both
issues raised by Einstein in his publications of 1913/14. These writings and his 1915
Göttingen lectures, which Hilbert attended, offered rich sources of information about
Einstein’s theory. In addition the physicist Paul Hertz, then a participant in the group

65 In fact, this relation between the special-relativistic stress-energy tensor and the variational derivative
of the general-relativistic generalization of a Lagrangian giving rise to this stress-energy tensor is
quite general, as was pointed out many years later in (Rosenfeld 1940, 1–30; and Belinfante
1939, 887). See also (Vizgin 1989, 304; 1994).

66 See (Proofs, 3) and (Hilbert 1916, 397).

gs
μν



886 JÜRGEN RENN AND JOHN STACHEL

centered around Hilbert in Göttingen, may also have kept Hilbert informed about
Einstein’s thinking on these issues. For example, in a letter to Hertz of August 1915,
Einstein raised the problem of solving hyperbolic partial differential equations for
arbitrary boundary values and discussed the necessity of introducing four additional
equations to restore causality for a set of generally-covariant field equations.67 

Einstein’s treatment of these issues thus forms the background to the crucial theo-
rem, on which Hilbert’s entire approach is based, his Leitmotiv, labelled “Theorem I”
in the Proofs:

The guiding motive for setting up the theory is given by the following theorem, the proof
of which I shall present elsewhere.

Theorem I. If  is an invariant under arbitrary transformations of the four world parame-
ters, containing  quantities and their derivatives, and if one forms from

(50)

the  variational equations of Lagrange with respect to each of the  quantities, then in
this invariant system of  differential equations for the  quantities there are always
four that are a consequence of the remaining  —in the sense that, among the  dif-
ferential equations and their total derivatives, there are always four linear and mutually
independent combinations that are satisfied identically.68

For a Lagrangian  depending on the gravitational and the electrodynamic potentials
and their derivatives, Hilbert derived 10 field equations for the gravitational potentials

 and 4 for the electrodynamic potentials  from such a variational principle (50):

(51)

(52)

67 Einstein to Paul Hertz, 22 August 1915, (CPAE 8, 163–164). See (Howard and Norton 1993) for an
extensive historical discussion.

68 “Das Leitmotiv für den Aufbau der Theorie liefert der folgende mathematische Satz, dessen Beweis
ich an einer anderen Stelle darlegen werde.
Theorem I. Ist  eine Invariante bei beliebiger Transformation der vier Weltparameter, welche 
Größen und ihre Ableitungen enthält, und man bildet dann aus [(50)] in Bezug auf jene  Größen die

 Lagrangeschen Variationsgleichungen, so sind in diesem invarianten System von  Differential-
gleichungen für die  Größen stets vier eine Folge der  übrigen — in dem Sinne, daß zwischen
den  Differentialgleichungen und ihren totalen Ableitungen stets vier lineare, von einander unab-
hängige Kombinationen identisch erfüllt sind.” (Proofs, 2–3) See (Hilbert 1916, 396–397). See (Rowe
1999) for a discussion of the debate on Hilbert’s Theorem I among Göttingen mathematicians.
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In both the Proofs and Paper 1, Hilbert erroneously claimed that one can consider the
last four equations to be a consequence of the 4 identities that must hold, according to
his Theorem I, between the 14 differential equations:

Let us call equations (4) [i.e. (51)] the fundamental equations of gravitation, and equa-
tions (5) [i.e. (52)] the fundamental electrodynamic equations, or generalized Maxwell
equations. Due to the theorem stated above, the four equations (5) [i.e. (52)] can be
viewed as a consequence of equations (4) [i.e. (51)]; that is, because of that mathematical
theorem we can immediately assert the claim that in the sense explained above electro-
dynamic phenomena are effects of gravitation. I regard this insight as the simple and very
surprising solution of the problem of Riemann, who was the first to search for a theoreti-
cal connection between gravitation and light.69

We shall come back to this claim later, in connection with Hilbert’s proof of a special
case of Theorem I.

The fact that Hilbert did not give a proof of this theorem makes it difficult to
assess its heuristic roots. No doubt, of course, some of these roots lay in Hilbert’s
extensive mathematical knowledge, in particular, of the theory of invariants. But the
lack of a proof in Paper 1, as well as the peculiar interpretation of it in the Proofs,
make it plausible that the theorem also had roots in Einstein’s hole argument on the
ambiguity of solutions to generally-covariant field equations. 

In fact, in the Proofs, Hilbert placed the implications of Theorem I for his field
theory in the context of the problem of causality, as Einstein had done for the hole
argument. But while the hole argument was formulated in terms of a boundary value
problem for a closed hypersurface, Hilbert posed the question of causality in terms of
an initial value problem for an open one, thus adapting it to Cauchy’s theory of sys-
tems of partial differential equations:

Since our mathematical theorem shows that the axioms I and II [essentially amounting to
the variational principle (50), see the discussion below] considered so far can produce
only ten essentially independent equations; and since, on the other hand, if general
invariance is maintained, more than ten essentially independent equations for the 14
potentials  are not at all possible; therefore—provided that we want to retain the
determinate character of the basic equation of physics corresponding to Cauchy’s theory
of differential equations— the demand for four further non-invariant equations in addi-
tion to (4) [i.e. (51)] and (5) [i.e. (52)] is imperative.70

Hilbert’s counting of needed equations closely parallels Einstein’s: the number of
field equations (10 in Einstein’s case and 14 in Hilbert’s) plus 4 coordinate restric-
tions to make sure that causality is preserved. Since Hilbert, in contrast to Einstein,

69 “Die Gleichungen (4) mögen die Grundgleichungen der Gravitation, die Gleichungen (5) die elektro-
dynamischen Grundgleichungen oder die verallgemeinerten Maxwellschen Gleichungen heißen.
Infolge des oben aufgestellten Theorems können die vier Gleichungen (5) als eine Folge der Glei-
chungen (4) angesehen werden, d. h. wir können unmittelbar wegen jenes mathematischen Satzes die
Behauptung aussprechen, daß in dem bezeichneten Sinne die elektrodynamischen Erscheinungen Wir-
kungen der Gravitation sind. In dieser Erkenntnis erblicke ich die einfache und sehr überraschende
Lösung des Problems von Riemann, der als der Erste theoretisch nach dem Zusammenhang zwischen
Gravitation und Licht gesucht hat.” (Proofs, 3; Hilbert 1916, 397–398)
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had started from a generally-covariant variational principle, he obtained, in addition,
4 identities that, he claimed, imply the electrodynamic equations (52). 

Additional evidence for our conjecture that Einstein’s hole argument was one of
the roots of Hilbert’s theorem (and thus of its later elaboration by Emmy Noether) is
provided by other contemporary writings of Hilbert, which will be discussed below in
connection with Hilbert’s second paper, in which the problem of causality is
addressed explicitly.71

3.5 Energy-Momentum Conservation and Coordinate Restrictions

As we shall see in this section, the Proofs show that Hilbert was convinced that cau-
sality requires four supplementary non-covariant equations to fix the admissible coor-
dinate systems. In identifying these coordinate restrictions, he again followed closely
in Einstein’s tracks. As did the latter, Hilbert invoked energy-momentum conserva-
tion in order to justify physically the choice of a preferred reference frame. After for-
mulating his version of energy-momentum conservation, he introduced the following
axiom:

Axiom III (axiom of space and time). The spacetime coordinates are those special world
parameters for which the energy theorem (15) [i.e. (57) below] is valid.

According to this axiom, space and time in reality provide a special labeling of the
world’s points such that the energy theorem holds.

Axiom III implies the existence of equations (16) [ ]: these four dif-
ferential equations (16) complete the gravitational equations (4) [i.e. (51)] to give a sys-
tem of 14 equations for the 14 potentials  the system of fundamental equations of
physics. Because of the agreement in number between equations and potentials to be
determined, the principle of causality for physical processes is also guaranteed, revealing
to us the closest connection between the energy theorem and the principle of causality,
since each presupposes the other.72

The strategy Hilbert followed to extract these coordinate restrictions from the
requirement of energy conservation closely followed that of Einstein’s Entwurf the-
ory of 1913/14. Even before he developed the hole argument, energy-momentum
conservation played a crucial role in justifying the lack of general covariance of his

70 “Indem unser mathematisches Theorem lehrt, daß die bisherigen Axiome I und II für die 14 Potentiale
nur zehn wesentlich von einander unabhängige Gleichungen liefern können, andererseits bei Auf-
rechterhaltung der allgemeinen Invarianz mehr als zehn wesentlich unabhängige Gleichungen für die
14 Potentiale  garnicht möglich sind, so ist, wofern wir der Cauchyschen Theorie der Diffe-
rentialgleichungen entsprechend den Grundgleichungen der Physik den Charakter der Bestimmtheit
bewahren wollen, die Forderung von vier weiteren zu (4) und (5) hinzutretenden nicht invarianten
Gleichungen unerläßlich.” (Proofs, 3–4)

71 See, e.g., his SS 1916 Lectures, in particular p. 108, as well as an undated typescript preserved at Göt-
tingen, in SUB Cod. Ms. 642, entitled Das Kausalitätsprinzip in der Physik, henceforth cited as the
“Causality Lecture.” Page 4 of this typescript, describing a construction equivalent to Einstein’s hole
argument, is discussed below.
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gravitational field equations. He was convinced that energy-momentum conservation
actually required a restriction of the covariance group.73 An the beginning of 1914,
after having formulated the hole argument, he described the connection between
coordinate restrictions and energy-momentum conservation in the Entwurf theory as
follows:

Once we have realized that an acceptable theory of gravitation necessarily implies a spe-
cialization of the coordinate system, it is also easily seen that the gravitational equations
given by us are based upon a special coordinate system. Differentiation of equations (II)
with respect to  [the field equations in the form

and summation over  and taking into account equations (III), [the conservations equa-
tions in the form

] (53)

yields the relations (IV)

(54)

that is, four differential conditions for the quantities  which we write in the abbrevi-
ated form

(55)

These quantities  do not form a generally-covariant vector, as will be shown in §5.
From this one can conclude that the equations  represent a real restriction on the
choice of coordinate system.74

In a later 1914 paper, Einstein discussed the physical significance and the transforma-
tion properties of the gravitational energy-momentum term 

According to the considerations of §10, the equations (42 c) [i.e. (53)] represent the con-
servation laws of momentum and energy for matter and gravitational field combined. The

 are those quantities, related to the gravitational field, which are analogies in physical

72 “Axiom III (Axiom von Raum und Zeit). Die Raum-Zeitkoordinaten sind solche besonderen Weltpa-
rameter, für die der Energiesatz (15) gültig ist.
Nach diesem Axiom liefern in Wirklichkeit Raum und Zeit eine solche besondere Benennung der
Weltpunkte, daß der Energiesatz gültig ist.
Das Axiom III hat das Bestehen der Gleichungen (16) zur Folge: diese vier Differentialgleichungen
(16) vervollständigen die Gravitationsgleichungen (4) zu einem System von 14 Gleichungen für die
14 Potentiale  dem System der Grundgleichungen der Physik. Wegen der Gleichzahl der Glei-
chungen und der zu bestimmenden Potentiale ist für das physikalische Geschehen auch das Kausali-
tätsprinzip gewährleistet, und es enthüllt sich uns damit der engste Zusammenhang zwischen dem
Energiesatz und dem Kausalitätsprinzip, indem beide sich einander bedingen.” (Proofs, 7)

73 See, e.g., (Einstein 1913, 1258).
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interpretation to the components  of the energy tensor (V-Tensor) [i.e. tensor den-
sity]. It is to be emphasized that the  do not have tensorial covariance under arbitrary
admissible [coordinate] transformations but only under linear transformations. Neverthe-
less, we call ( ) the energy tensor of the gravitational field.75

Similarly, Hilbert notes that his energy-form is invariant with respect to linear trans-
formations; he shows that  can be decomposed with respect to the vector  as fol-
lows (Proofs, 6):

(56)

where  and  are independent of  If one compares this expression with Ein-
stein’s (53), then the analogy between the two suggests that the two-index object 
should play the same role in Hilbert’s theory as does the total energy-momentum ten-
sor in Einstein’s theory, satisfying a divergence equation of the form:

(57)

Hilbert shows that this equation holds only if  vanishes, in which case:

(58)

This equation can be related to energy conservation; Hilbert calls this the “normal
form” of the energy. The fact that the last two equations imply each other was, for Hil-
bert, apparently a decisive reason for calling  the energy form. Indeed, this equiva-
lence is the subject of his second theorem about the energy-form. Although the relevant
part of the Proofs is missing,76 Hilbert’s theorem and its proof can be reconstructed: 

74 “Nachdem wir so eingesehen haben, daß eine brauchbare Gravitationstheorie notwendig einer Spezia-
lisierung des Koordinatensystems bedarf, erkennen wir auch leicht, daß bei den von uns angegebenen
Gravitationsgleichungen ein spezielles Koordinatensystem zugrunde liegt. Aus den Gleichungen (II)
folgen nämlich durch Differentiation nach  und Summation über  unter Berücksichtigung der
Gleichungen (III) die Beziehungen (IV) also vier Differentialbedingungen für die Größen  wel-
che wir abgekürzt  schreiben wollen.
Diese Größen  bilden, wie in §5 gezeigt ist, keinen allgemein-kovarianten Vektor. Hieraus kann
geschlossen werden, daß die Gleichungen  eine wirkliche Bedingung für die Wahl des Koor-
dinatensystems darstellen.” (Einstein and Grossmann 1914, 218–219)

75 “Die Gleichungen (42 c) drücken nach den in §10 gegebenen Überlegungen die Erhaltungssätze des
Impulses und der Energie für Materie und Gravitationsfeld zusammen aus.  sind diejenigen auf das
Gravitationsfeld bezüglichen Größen, welche den Komponenten  des Energietensors (V-Tensors)
[i.e. tensor density] der physikalischen Bedeutung nach analog sind. Es sei hervorgehoben, daß die

 nicht beliebigen berechtigten, sondern nur linearen Transformationen gegenüber Tensorkovarianz
besitzen; trotzdem nennen wir ( ) den Energietensor des Gravitationsfeldes.” (Einstein 1914b,
1077)

76 The top portion of the Proofs, p. 7, is missing.

xν v
gμν ,

Bσ 0=
Bσ

Bσ 0=

Tσ
ν

tσ
ν

tσ
ν

tσ
ν

Tσ
ν

tσ
ν

tσ
ν

E p j

E es ps es
l pl

s

s l,
∑+

s
∑=

es es
l p j.

es
l

∂es
l

∂wl
--------

l
∑ 0.=

es

E es
l pl

s.
s l,
∑=

E



HILBERT’S FOUNDATION OF PHYSICS 891

Theorem 2 must have asserted that:

(59)

This assertion is easily proven by following the lines indicated in the surviving por-
tion of Hilbert’s argument. From (38) and (56) it follows that:

(60)

which can be rewritten as:

(61)

where  is still a divergence. If now the integral over a region  on the boundary
of which  and its first derivative vanish, is taken on both sides, then the surface
terms vanish. Thus one obtains in view of (42):

(62)

But the left-hand side vanishes when the gravitational field equations hold, and  is
an arbitrary vector field, from which (59) follows.

Theorem 2 provides Hilbert with the desired coordinate restrictions:

This theorem shows that the divergence equation corresponding to the energy theorem of
the old theory

(63)

holds if and only if the four quantities  vanish ... .77

After these preparations, Hilbert introduces Axiom III, quoted at the beginning of
this section, which establishes a distinction between the arbitrary world parameters

 and the restricted class of coordinates that constitute “a spacetime reference sys-
tem.” In fact, the latter are those world parameters satisfying the coordinate restric-
tions  following from Hilbert’s energy condition. In analogy to the “justified
coordinate transformations” of Einstein’s 1913/14 theory leading from one “adapted

77 “Dieser Satz zeigt, daß die dem Energiesatz der alten Theorie entsprechende Divergenzgleichung
[(63); (15) in the original text] dann und nur dann gelten kann, wenn die vier Größen  verschwin-
den ...” (Proofs, 7).
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coordinate system” to another, Hilbert introduced spacetime transformations that lead
from one “normal form” of the energy to another:

To the transition from one spacetime reference system to another one corresponds the
transformation of the energy form from one so-called “normal form”

(64)

to another normal form.78

The claim that Hilbert’s introduction of coordinate restrictions was guided by the
goal of recovering the ordinary divergence form of energy-momentum conservation
is supported by his later use of this argument in a discussion with Felix Klein. In a
letter to Hilbert, Klein recounted how, at a meeting of the Göttingen Academy, he had
argued that, for the energy balance of a field, one should take into account only the
energy tensor of matter (including that of the electromagnetic field) without ascribing
a separate energy-momentum tensor to the gravitational field.79 This suggestion was
taken up by Carl Runge, who had given an expression for energy-momentum conser-
vation that, in his letter to Hilbert, Klein called “regular” and found similar to what
happens in the “elementary theory.”80 Starting from an expression for the covariant
divergence of the stress-energy tensor:

(65)

Runge obtained his “regular” expression by imposing the four equations:

(66)

thus specifying a preferred class of coordinate systems. In his response, Hilbert
sent Klein three pages of the Proofs to show that he had anticipated Runge’s line of
reasoning:

I send you herewith my first proofs [footnote: Please kindly return these to me as I have
no other record of them.] (3 pages) of my first communication, in which I also imple-
mented Runge’s ideas; in particular with theorem 1, p. 6, in which the divergence charac-
ter of the energy is proven. I later omitted the whole thing as the thing did not seem to me
to be fully mature. I would be very pleased if progress could now be made. For this it is
necessary to retrieve the old energy conservation laws in the limiting case of Newtonian
theory.81

78 “Dem Übergang von einem Raum-Zeit-Bezugssystem zu einem anderen entspricht die Transforma-
tion der Energieform von einer sogenannten “Normalform” [(64)] auf eine andere Normalform.”
(Proofs, 7)

79 Felix Klein to David Hilbert, 5 March 1918, (Frei 1985, 142–143).
80 For a discussion of Runge’s work, see (Rowe 1999).
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Hilbert’s final sentence confirms that the recovery of the familiar form of energy con-
servation was his goal. However, at the time of the Proofs, it was clearly not his aim
to eliminate the energy-momentum expression of the gravitational field from the
energy balance, as the above reference to Runge might suggest. On the contrary, as
we have seen above (see (48)), Hilbert followed Einstein in attempting to treat the
contributions to the total energy from the electromagnetic and the gravitational parts
on an equal footing. 

In summary, Hilbert’s first steps in the realization of his research program were the
derivation of what he regarded as the unique relation between the variational deriva-
tive of Mie’s Lagrangian and Mie’s energy momentum tensor, and the formulation of
a theorem, by means of which he hoped to show that the electromagnetic field equa-
tions follow from the gravitational ones. Albeit problematic from a modern perspec-
tive, these steps become understandable in the context of Hilbert’s application of his
axiomatic approach to Einstein’s non-covariant theory of gravitation and Mie’s theory
of matter. These first steps in turn shaped Hilbert’s further research. They effected a
change of perspective from viewing electrodynamics and gravitation on an equal foot-
ing to his vision of deriving electromagnetism from gravitation. As a consequence, the
structure of Hilbert’s original, non-covariant theory, in spite of the covariance of Hil-
bert’s gravitational equations and the different physical interpretation that he gave to
his equations, is strikingly similar to that of Einstein’s 1913/14 Entwurf theory of
gravitation. 

3.6 Electromagnetism as an Effect of Gravitation: The Core of Hilbert’s Theory

Now we come to the part of Hilbert’s program that today is often considered to con-
tain his most important contributions to general relativity: the contracted Bianchi
identities and a special case of Noether’s theorem. We shall show that, in the original
version of Hilbert’s theory, these mathematical results actually constituted part of a
different physical framework that also affected their interpretation. In a later section,
we shall see how these results were transformed, primarily due to the work of Hen-
drik Antoon Lorentz and Felix Klein, into constituents of general relativity. In the
hindsight of general relativity, it appears as if Hilbert first derived the contracted
Bianchi identities, applied them to the gravitational field equations with an electro-
magnetic source-term, and then showed that the electrodynamic variables necessarily
satisfy the Maxwell equations. This last result, however, is valid only under addi-

81 “Anbei schicke ich Ihnen meine erste Korrektur [footnote: Bitte dieselbe mir wieder freundlichst
zustellen zu wollen, da ich sonst keine Aufzeichnungen habe.] (3 Blätter) meiner ersten Mitteilung, in
der ich gerade die Ideen von Runge auch ausgeführt hatte; insbesondere auch mit Satz l, S. 6, in dem
der Divergenzcharakter der Energie bewiesen wird. Ich habe aber die ganze Sache später unterdrückt,
weil die Sache mir nicht reif erschien. Ich würde mich sehr freuen, wenn jetzt der Fortschritt gelänge.
Dazu ist aber nötig im Grenzfalle zur Newtonschen Theorie die alten Energiesätze wiederzufinden.”
Tilman Sauer suggested that the pages sent to Klein were the three sheets of the Proofs bearing
Roman numbers I, II, and III, see (Sauer 1999, 544).
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tional assumptions that run counter to Mie’s program. From the point of view of gen-
eral relativity, Hilbert obtained Maxwell’s equations as a consequence of the
integrability conditions for the gravitational field equations with electromagnetic
source term, as if he had treated a special case of Einstein’s equations and expressed
certain of their general properties in terms of this special case. From Hilbert’s point
of view, however, he had derived the electrodynamic equations as a consequence of
the gravitational ones; his derivation was closely interwoven with other results of his
theory that pointed to electromagnetism as an effect of gravitation. For him, the equa-
tion, on the basis of which he argued that electrodynamics is a consequence of gravi-
tation, was a result of four ingredients, two of which are other links between
gravitation and electrodynamics, and all of which are based on his generally-covari-
ant variational principle: 

• a general theorem corresponding to the contracted Bianchi identities,

• the field equations following from the variational principle,

• the relation between Mie’s energy-momentum tensor and the variational deriva-
tive of the Lagrangian, and 

• the way in which the derivatives of the electrodynamic potentials enter Mie’s
Lagrangian.

In the Proofs, the general theorem is:

Theorem III. If  is an invariant depending only on the  and their derivatives and if,
as above, the variational derivatives of  with respect to  are denoted by

 then the expression — in which  is understood to be any contravariant
tensor —

(67)

represents an invariant; if in this sum we substitute in place of  the particular tensor
 and write

(68)

where then the expressions

(69)

depend only on the  and their derivatives, then we have

(70)

in the sense, that this equation is identically fulfilled for all arguments, that is for the 
and their derivatives.82
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Here, (68) follows from an explicit calculation taking into account the definition of
 the identity (70) follows if in analogy to (61) one rewrites (68) as:

(71)

and, as in the earlier derivation, carries out a surface integration. Theorem III, in the
form of (70), thus corresponds to the contracted Bianchi identities.

Hilbert next applies Theorem III to the Lagrangian  using his knowl-
edge about its electrodynamic part (see the last two “ingredients” listed above) in
order to extract the electrodynamic equations from the identity for  that corre-
sponds to (70). From a modern point of view, it is remarkable that Hilbert did not
consider the physical significance of this identity for the gravitational part  of the
Lagrangian, but only for the electrodynamic part. For Hilbert, however, this was nat-
ural; presumably he was convinced, on the basis of Theorem I, that generally-covari-
ant equations for gravitation are impossible as a “stand-alone” theory. Consequently,
it simply made no sense to interpret the gravitational part of these equations by itself.

Assuming the split of the Lagrangian into  the gravitational and electrody-
namic parts as in (16), he rewrites (51) as:83

(72)

He next applies (69) to the invariant 

(73)

and

(74)

From the modern point of view, it would be natural to invoke the identity (70) in
order to derive its implications for the source term of the gravitational field equations,
i.e., the second term of (72) in Hilbert’s notation. In this way, one would obtain an
integrability condition for the gravitational field equations that can be interpreted as
representing energy-momentum conservation. 

82 “Theorem III. Wenn  eine nur von den  und deren Ableitungen abhängige Invariante ist, und,
wie oben, die Variationsableitungen von  bezüglich  mit  bezeichnet werden, so
stellt der Ausdruck — unter  irgend einen kontravarianten Tensor verstanden — [(67)] eine Inva-
riante dar; setzen wir in dieser Summe an Stelle von  den besonderen Tensor  ein und schrei-
ben [(68)] wo alsdann die Ausdrücke [(69)] lediglich von den  und deren Ableitungen abhängen,
so ist [(70)] in der Weise, daß diese Gleichung identisch für alle Argumente, nämlich die  und
deren Ableitungen, erfüllt ist.” (Proofs, 9; Hilbert 1916, 399)

83 See (Proofs, 11; Hilbert 1916, 405).
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Hilbert proceeded differently, using Theorem III to further elaborate what he con-
sidered his crucial insight into the relation between Mie’s energy-momentum tensor
and the variational derivative of  Consequently he focussed on (36), from which he
attempted to extract the equations for the electromagnetic field. In fact, the left-hand
side of this equation can (in view of (72) and (74)) be rewritten as  Conse-
quently, differentiating the right-hand side of (36) with respect to  and summing
over  Theorem III yields: 

(75)

where use has been made of:

(76)

and 

(77)

Here  denotes the Lagrangian derivative of  with respect to the electro-
dynamic potentials 

(78)

the vanishing of which constitutes the electromagnetic field equations. At this point
Hilbert makes use of the last ingredient, the special way in which the derivatives of
the potentials enter Mie’s Lagrangian. Taking into account (27), one obtains:

(79)

so that (75) can be rewritten as:
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(80)

While the right-hand side of this equation only involves the electrodynamic part of
the Lagrangian, in view of (73) this is not the case for the left-hand side. Therefore,
Hilbert once more uses the field equations, in the form of (72), for  to obtain an
expression entirely in terms of the electrodynamic part of the Lagrangian. For this
purpose, he first writes:

(81)

and then uses (72) and (73) to identify the first term on the right-hand side as  Hil-
bert thus reaches his goal of transforming the identity following from Theorem III
into an equation involving only the electromagnetic potentials. A further simplifica-
tion results from noting that the last term on the right-hand side of (81) is, apart from
its sign, identical to the last term of (80). (This is because:

(82)

which follows from the definition (28) of  
Finally, using (80), Hilbert obtains:

(83)

Summarizing what he had achieved, Hilbert claimed:

... from the gravitational equations (4) [i.e. (51)] there follow indeed the four linearly
independent combinations (32) [i.e. (83)] of the basic electrodynamic equations (5) [i.e.
(52)] and their first derivatives. This is the entire mathematical expression of the general
claim made above about the character of electrodynamics as an epiphenomenon of grav-
itation.84

On closer inspection, Hilbert’s claim turns out to be problematic. One might try to
interpret it in either of two ways: the electromagnetic field equations follow either
differentially or algebraically from (83). 

84 “... aus den Gravitationsgleichungen (4) folgen in der Tat die vier von einander unabhängigen linearen
Kombinationen (32) der elektrodynamischen Grundgleichungen (5) und ihrer ersten Ableitungen.
Dies ist der ganze mathematische Ausdruck der oben allgemein ausgesprochenen Behauptung über
den Charakter der Elektrodynamik als einer Folgeerscheinung der Gravitation.” (Proofs, 12) In (Hil-
bert 1916, 406), “ganze” [entire] is corrected to “genaue” [exact] in the last sentence.
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In the first case one would have to show that, if these equations hold on an initial
hypersurface  then they hold everywhere off that hypersurface by virtue
of the identities (83). Indeed it follows from these identities that, if these equations
hold on 

(84)

so that, by iteration,  holds everywhere provided that it holds initially
and that the other three field equations hold everywhere. But the time derivatives of
the other three field equations,

(85)

remain unrestricted by the identity so that one cannot simply give the electromagnetic
field equations on an initial hypersurface and have them continue to hold automati-
cally off it as a consequence of (83). 

In the second case, it is clear that the field equations can only hold algebraically
by virtue of (83) if the second term vanishes; this implies that the theory is gauge
invariant, i.e. that the potentials themselves do not enter the field equations. In that
case one indeed obtains an additional identity from gauge invariance:

(86)

(In the usual Maxwell theory this is the identity that guarantees conservation of the
charge-current vector.) However, this cannot have been the argument Hilbert had in
mind when stating his claim. First of all, he did not introduce the additional assump-
tions required—and could not have introduced them because they violated his physi-
cal assumptions;85 and second he did not derive the identity for gauge-invariant
electromagnetic Lagrangians that makes this argument work. As illustrated by
Klein’s later work, the derivation of these identities is closely related to a different
perspective on Hilbert’s results, a perspective in which electromagnetism is no
longer, as in Hilbert’s Proofs, treated as an epiphenomenon of gravitation, but in
which both are treated in parallel.86 

In summary, Hilbert’s claim that the electromagnetic equations are a consequence
of the gravitational ones turns out to be an interpretation forced upon his mathemati-
cal results by his overall program rather than being implied by them. In any case, this

85 Mie’s original theory is in fact not gauge invariant, and in the version adopted by Hilbert one of the
invariants involves a function of the electromagnetic potential vector, see (33).

86 Compare Klein’s attempt to derive analogous equations for the gravitational and the electromagnetic
potentials, from which the Maxwell equations then are derived, (Klein 1917, 472–473).
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interpretation is different from that given to the corresponding results in general rela-
tivity and usually associated with Hilbert’s work.

3.7 The Deductive Structure of the Proofs Version

Having attempted to reconstruct the line of reasoning Hilbert followed while devel-
oping the original version of his theory, we now summarize the way in which he pre-
sented these results in the Proofs. This serves as a review of the deductive structure of
his theory, indicating which results were emphasized by Hilbert, and facilitating a
comparison between the Proofs and the published versions. 

We begin by recalling the elements of this deductive structure that Hilbert intro-
duced explicitly:

• Axiom I “Mie’s Axiom von der Weltfunktion,” (see (19)) 

• Axiom II “Axiom von der allgemeinen Invarianz,” (see the passage below (19))

• Axiom III “Axiom von Raum und Zeit,” (see the passage above (55))

• Theorem I, Hilbert’s Leitmotiv, (see (50)) 

• Theorem II, Lie derivative of the Lagrangian, (see (23))

• Theorem III, contracted Bianchi identities, (see (70))

• Proposition 1, divergence character of the energy expression, (see (47))

• Proposition 2, identity obeyed by the components of the energy expression, (see
(59)).

He also used the following assumptions, introduced as part of his deductive structure
without being explicitly stated:

• vanishing of the divergence of the energy expression (see (63))

• splitting of the Lagrangian into gravitational and electrodynamical terms (see
(16))

• the assumption that the electrodynamical term does not depend on the derivatives
of the metric tensor (see (25)).

There are, furthermore, the following physical results, not labelled as theorems:

• the field equations (see (51) and (52))

• the energy expression (see (39)) and the related coordinate restrictions (see (63))

• the form of Mie’s Lagrangian (see (27))

• the relation between Mie’s energy tensor and Lagrangian (see (36))

• the relation between the electromagnetic and gravitational field equations (see
(83)).

The exposition of Hilbert’s theory in the Proofs can be subdivided into four sections,
to which we give short titles and list under each the relevant elements of his theory:

1. Basic Framework (Proofs, 1–3)

Axioms I and II, Theorem I, and the field equations for gravitation and electro-
magnetism 



900 JÜRGEN RENN AND JOHN STACHEL

2. Causality and the Energy Expression (Proofs, 3–8)

the energy expression, Propositions 1 and 2, the divergence character of the
energy expression, Axiom III, the coordinate restrictions, the split of the
Lagrangian into gravitational and electrodynamical terms, and the structure of the
electrodynamical term

3. Basic Theorems (Proofs, 8–9)

Theorems II and III

4. Implications for Electromagnetism (Proofs, 9–13)

the form of Mie’s Lagrangian, its relation to his energy tensor, and the relation
between electromagnetic and gravitational field equations.

The sequence in which Hilbert presented these elements suggests that he consid-
ered its implications for electromagnetism as the central results of his theory. Indeed,
the gravitational field equations are never explicitly given and only briefly considered
at the beginning as part of the general framework, whereas the presentation concludes
with three results concerning Mie’s theory. The centrality of these electromagnetic
implications for him is also clear from his introductory and concluding remarks. Hil-
bert’s initial discussion mentions Mie’s electrodynamics first, and closes with the
promise of further elaboration of the consequences of his theory for electrodynamics:

The far reaching ideas and the formation of novel concepts by means of which Mie con-
structs his electrodynamics, and the prodigious problems raised by Einstein, as well as
his ingeniously conceived methods of solution, have opened new paths for the investiga-
tion into the foundations of physics.

In the following—in the sense of the axiomatic method—I would like to develop from
three simple axioms a new system of basic equations of physics, of ideal beauty, contain-
ing, I believe, the solution of the problems presented. I reserve for later communications
the detailed development and particularly the special application of my basic equations
to the fundamental questions of the theory of electricity.87

In his conclusion, Hilbert makes clear what he had in mind here: a solution of the rid-
dles of atomic physics:

As one can see, the few simple assumptions expressed in axioms I, II, III suffice with
appropriate interpretation to establish the theory: through it not only are our views of
space, time, and motion fundamentally reshaped in the sense called for by Einstein,
but I am also convinced that through the basic equations established here the most

87 “Die tiefgreifenden Gedanken und originellen Begriffsbildungen vermöge derer Mie seine Elektrody-
namik aufbaut, und die gewaltigen Problemstellungen von Einstein sowie dessen scharfsinnige zu
ihrer Lösung ersonnenen Methoden haben der Untersuchung über die Grundlagen der Physik neue
Wege eröffnet.
Ich möchte im Folgenden—im Sinne der axiomatischen Methode—aus drei einfachen Axiomen ein
neues System von Grundgleichungen der Physik aufstellen, die von idealer Schönheit sind, und in
denen, wie ich glaube, die Lösung der gestellten Probleme enthalten ist. Die genauere Ausführung
sowie vor allem die spezielle Anwendung meiner Grundgleichungen auf die fundamentalen Fragen
der Elektrizitätslehre behalte ich späteren Mitteilungen vor.” (Proofs, 1)
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intimate, hitherto hidden processes in the interior of atoms will receive an explana-
tion; and in particular that generally a reduction of all physical constants to mathemat-
ical constants must be possible—whereby the possibility approaches that physics in
principle becomes a science of the type of geometry: surely the highest glory of the
axiomatic method, which, as we have seen, here takes into its service the powerful
instruments of analysis, namely the calculus of variations and the theory of invari-
ants.88

Hilbert’s final remarks about the status of his theory vis à vis Einstein’s work on
gravitation strikingly parallel Minkowski’s assessment of the relation of his four-
dimensional formulation to Einstein’s special theory; not just providing a mathemati-
cal framework for existing results, but developing a genuinely novel physical theory,
which, properly understood, turns out to be a part of mathematics.89 

Fig. 1 provides a graphical survey of the deductive structure of Hilbert’s theory.
The main elements listed above are connected by arrows; mathematical implications
are represented by straight arrows and inferences based on heuristic reasoning by
curved arrows. As the figure shows, apart from the field equations, Hilbert’s results
can be divided into two fairly distinct clusters: one comprises the implications for
electromagnetism (right-hand side of the diagram); the other, the implications for the
understanding of energy conservation (left-hand side of the diagram). While the
assertions concerning energy conservation are not essential for deriving the other
results, they depend on practically all the other parts of this theory. The main link
between the two clusters is clearly Theorem I. Although no assertion of Hilbert’s the-
ory is derived directly from Theorem I, it motivates both the relation between energy
conservation and coordinate restrictions and the link between electromagnetism and
gravitation. 

The analysis of the deductive structure of Hilbert’s theory thus confirms that The-
orem I is indeed the Leitmotiv of the theory. The two clusters of results obviously are
also related to what he considered the two main physical touchstones of his theory:
Mie’s theory of electromagnetism and energy conservation. On the other hand, nei-
ther Newton’s theory of gravitation nor any other parts of mechanics are mentioned
by Hilbert. Einstein’s imprint on Hilbert’s theory was more of a mathematical or
structural nature than a physical one. 

88 “Wie man sieht, genügen bei sinngemäßer Deutung die wenigen einfachen in den Axiomen I, II, III
ausgesprochenen Annahmen zum Aufbau der Theorie: durch dieselbe werden nicht nur unsere Vor-
stellungen über Raum, Zeit und Bewegung von Grund aus in dem von Einstein geforderten Sinne
umgestaltet, sondern ich bin auch der Überzeugung, daß durch die hier aufgestellten Grundgleichun-
gen die intimsten, bisher verborgenen Vorgänge innerhalb des Atoms Aufklärung erhalten werden und
insbesondere allgemein eine Zurückführung aller physikalischen Konstanten auf mathematische Kon-
stanten möglich sein muß—wie denn überhaupt damit die Möglichkeit naherückt, daß aus der Physik
im Prinzip eine Wissenschaft von der Art der Geometrie werde: gewiß der herrlichste Ruhm der axio-
matischen Methode, die hier wie wir sehen die mächtigen Instrumente der Analysis nämlich, Variati-
onsrechnung und Invariantentheorie, in ihre Dienste nimmt.” (Proofs, 13)

89 For Minkowski, see (Walter 1999).
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Figure 1: Deductive Structure of the Proofs (1915)
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4. HILBERT’S PHYSICS AND EINSTEIN’S MATHEMATICS: 
THE EXCHANGE OF LATE 1915

4.1 What Einstein Could Learn From Hilbert

The Hilbert-Einstein correspondence begins with Einstein’s letter of 7 November
1915.90 That November was the month during which Einstein’s theory of gravitation
underwent several dramatic changes documented by four papers he presented to the
Prussian Academy, culminating in the definitive version of the field equations in the
paper submitted 25 November.91 On 4 November Einstein submitted his first note, in
which he abandoned the Entwurf field equations and replaced them with equations
derived from the Riemann tensor (Einstein 1915a); he included the proofs of this
paper in his letter to Hilbert. In spite of this radical modification of the field equa-
tions, the structure of Einstein’s theory remained essentially unchanged from that of
the non-covariant 1913 Entwurf theory. In both, the requirement of energy-momen-
tum conservation is linked to a restriction to adapted coordinate systems. In Ein-
stein’s 4 November paper, this restriction implies the following equation (Einstein
1915a, 785):

(87)

Einstein pointed out one immediate consequence for the choice of an adapted coordi-
nate system:

Equation (21a) [i.e. (87)] shows the impossibility of so choosing the coordinate system
that  equals 1, because the scalar of the energy tensor cannot be set to zero.92

That the scalar [i.e. the trace] of the energy-momentum tensor cannot vanish is obvi-
ous if one takes Einstein’s standard example (a swarm of non-interacting particles or
incoherent “dust”) as the source of the gravitational field: the trace of its energy-
momentum tensor equals the mass density of the dust. However, the physical mean-
ing of condition (87) was entirely obscure. It was therefore incumbent upon Einstein
to find a physical interpretation of it or to modify his theory once more in order to get
rid of it. He soon succeeded in doing both, and formulated his new view in an adden-
dum to the first note, published on 11 November (Einstein 1915b).

On 12 November 1915 he reported his success to Hilbert:

For the time being, I just thank you cordially for your kind letter. Meanwhile, the prob-
lem has made new progress. Namely, it is possible to compel general covariance by
means of the postulate  Riemann’s tensor then furnishes the gravitational

90 Einstein to David Hilbert, 7 November 1915, (CPAE 8, 191).
91 See (Einstein 1915e).
92 “Aus Gleichung (21a) [i.e. (87)] geht hervor, daß es unmöglich ist, das Koordinatensystem so zu wäh-

len, daß  gleich 1 wird; denn der Skalar des Energietensors kann nicht zu null gemacht werden.”
(Einstein 1915a, 785)
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equations directly. If my present modification (which does not change the equations) is
legitimate, then gravitation must play a fundamental role in the structure of matter. My
own curiosity is impeding my work!93

What had happened? Einstein had noticed that the condition  which 

follows from setting  in (87), can be related to an electromagnetic theory of
matter: in Maxwell’s theory, the vanishing of its trace is a characteristic property of
the electromagnetic energy-momentum tensor. Thus, if one assumes all matter to be
of electromagnetic origin, the vanishing of its trace becomes a fundamental property
of the energy-momentum tensor. This has two important consequences: Condition
(87) is no longer an inexplicable restriction on the admissible coordinate systems,
and the 4 November field equations can be seen as a particular form of generally-
covariant field equations based on the Ricci tensor. From the perspective of the 11
November revision, the condition  turns out to be nothing more than an
arbitrary but convenient choice of coordinate systems. 

The core of Einstein’s new theory is strikingly simple. The left-hand side of the
gravitational field equations is now simply the Ricci tensor and the right-hand side an
energy-momentum tensor, the trace of which has to vanish:94

(88)

What distinguishes these field equations from the final equations presented on 25
November is an additional term on the right-hand side of the equations involving the
trace of the energy-momentum tensor, which now need not vanish:95 

(89)

Remarkably enough, in the winter of 1912/13 Einstein had considered the linear-
ized form of these field equations, but discarded them because they were not compat-
ible with his expectation of how the Newtonian limit should result.96 He had also
then considered and rejected field equations of the form (88), just because they imply

93 “Ich danke einstweilen herzlich für Ihren freundlichen Brief. [Das] Problem hat unterdessen einen
neuen Fortschritt gemacht. Es lässt sich nämlich durch das Postulat  die allgemeine Kovari-
anz erzwingen; der Riemann’sche Tensor liefert dann direkt die Gravitationsgleichungen. Wenn
meine jetzige Modifikation (die die Gleichungen nicht ändert) berechtigt ist, dann muss die Gravita-
tion im Aufbau der Materie eine fundamentale Rolle spielen. Die Neugier erschwert mir die Arbeit!”
Einstein to David Hilbert, 12 November 1915, (CPAE 8, 194).

94 See (Einstein 1915b, 801 and 800).
95 See (Einstein 1915e, 845).
96 See Doc. 10 of (CPAE 4), “Pathways out of Classical Physics …”, “Einstein’s Zurich Notebook”,

(both in vol. 1 of this series), and the “Commentary” (in vol. 2).
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the condition  At that time, this condition seemed unacceptable because

the trace of the energy-momentum tensor of ordinary matter does not vanish. 
The prehistory of Einstein’s 11 November paper thus confronts us with a puzzle:

Why did he consider it to be such a decisive advance beyond his 4 November paper
and not just a possible alternative interpretation of his previous results; and why did

he now so readily accept the trace-condition  that earlier had led him to

reject this very theory? What impelled Einstein’s change of perspective in November
1915?

The answer seems to lie in the changed context, within which Einstein formulated
his new approach: in particular, his interaction with Hilbert. As will become evident,
it would have been quite uncharacteristic of him to adopt the new approach so readily
had it not been for current discussions of the electrodynamic worldview and his feel-
ing that he was now in competition with Hilbert.97 

In his addendum, Einstein directly referred to the supporters of the electrody-
namic worldview:

One now has to remember that, in accord with our knowledge, “matter” is not to be con-
ceived as something primitively given, or physically simple. There even are those, and
not just a few, who hope to be able to reduce matter to purely electrodynamic processes,
which of course would have to be done in a theory more complete than Maxwell’s elec-
trodynamics.98

Only this context explains Einstein’s highly speculative and fragmentary comments
on an electromagnetic model of matter. That, in November 1915, Einstein conceived
of a field theory of matter as a goal in its own right is also supported by his correspon-
dence, which makes it clear that this perspective was shaped by his rivalry with Hil-
bert. We have already cited Einstein’s letter to Hilbert, in which he wrote:

If my present modification (which does not change the equations) is legitimate, then
gravitation must play a fundamental role in the structure of matter. My own curiosity is
impeding my work!99

And when, in a letter of 14 November, Hilbert claimed to have achieved the unifica-
tion of gravitation and electromagnetism, Einstein responded:

97 For a discussion of Hilbert’s reaction to what he must have seen as an intrusion by Einstein into his
domain, see (Sauer 1999, 542–543).

98 “Es ist nun daran zu erinnern, daß nach unseren Kenntnissen die “Materie” nicht als ein primitiv
Gegebenes, physikalisch Einfaches aufzufassen ist. Es gibt sogar nicht wenige, die hoffen, die Mate-
rie auf rein elektromagnetische Vorgänge reduzieren zu können, die allerdings einer gegenüber Max-
wells Elektrodynamik vervollständigten Theorie gemäß vor sich gehen würden.” (Einstein 1915b,
799)

99 “Wenn meine jetzige Modifikation (die die Gleichungen nicht ändert) berechtigt ist, dann muss die
Gravitation im Aufbau der Materie eine fundamentale Rolle spielen. Die Neugier erschwert mir die
Arbeit!” Einstein to David Hilbert, 12 November 1915, (CPAE 8, 194).
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Your investigation interests me tremendously, especially since I often racked my brain to
construct a bridge between gravitation and electromagnetics.100

A few days later (after calculating the perihelion shift on the basis of the new theory),
he expressed himself similarly:

In these last months I had great success in my work. Generally covariant gravitation
equations. Perihelion motions explained quantitatively. The role of gravitation in the
structure of matter. You will be astonished. I worked dreadfully hard; it is remarkable that
one can sustain it.101

When one examines Einstein’s previous writings on gravitation, published and
unpublished, one finds no trace of an attempt to unify gravitation and electromagnet-
ism. He had never advocated the electromagnetic worldview. On the contrary, he was
apparently disinterested in Mie’s attempt at a unification of gravitation and electrody-
namics, not finding it worth mentioning in his 1913 review of contemporary gravita-
tion theories.102 

And soon after completion of the final version of general relativity, Einstein
reverted to his earlier view that general relativity could make no assertions about the
structure of matter:

From what I know of Hilbert’s theory, it makes use of an assumption about electrody-
namic processes that—apart from the treatment of the gravitational field—is closely con-
nected to Mie’s. Such a specialized approach is not in accordance with the point of view
of general relativity. The latter actually only provides the gravitational field law, and
quite unambiguously so when general covariance is required.103

Einstein’s mid-November 1915 pursuit of a relation between gravitation and elec-
tromagnetism was, then, merely a short-lived episode in his search for a relativistic
theory of gravitation. Its novelty is confirmed by a footnote in the addendum:

In writing the earlier paper, I had not yet realized that the hypothesis  is, in
principle, admissible.104

100 “Ihre Untersuchung interessiert mich gewaltig, zumal ich mir schon oft das Gehirn zermartert habe,
um eine Brücke zwischen Gravitation und Elektromagnetik zu schlagen.” Einstein to David Hilbert,
15 November 1915, (CPAE 8, 199).

101 “Ich habe mit grossem Erfolg gearbeitet in diesen Monaten. Allgemein kovariante Gravitationsglei-
chungen. Perihelbewegungen quantitativ erklärt. Rolle der Gravitation im Bau der Materie. Du wirst
staunen. Gearbeitet habe ich schauderhaft angestrengt; sonderbar, dass man es aushält.” Einstein to
Michele Besso, 17 November 1915, (CPAE 8, 201).

102 See (Einstein 1913).
103 “Soviel ich von Hilbert’s Theorie weiss, bedient sie sich eines Ansatzes für das elektrodynamische

Geschehen, der sich [— a]bgesehen von der Behandlung des Gravitationsfeldes — eng an Mie
anschliesst. Ein derartiger spezieller Ansatz lässt sich aus dem Gesichtspunkte der allgemeinen Rela-
tivität nicht begründen. Letzterer liefert eigentlich nur das Gesetz des Gravitationsfeldes, und zwar
ganz eindeutig, wenn man allgemeine Kovarianz fordert.” Einstein to Arnold Sommerfeld, 9 Decem-
ber 1915, (CPAE 8, 216).

104 “Bei Niederschrift der früheren Mitteilung war mir die prinzipielle Zulässigkeit der Hypothese
 noch nicht zu Bewußtsein gekommen.” (Einstein 1915b, 800)
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It thus seems quite clear that Einstein’s temporary adherence to an electromagnetic
theory of matter was triggered by Hilbert’s work, which he attempted to use in order
to solve a problem that had arisen in his own theory, and that he dropped it when he
solved this problem in a different way. 

So this whole episode might appear to be a bizarre and unnecessary detour. A
closer analysis of the last steps of Einstein’s path to general relativity shows, how-
ever, that the solution depended crucially on this detour, and hence indirectly on Hil-
bert’s work. In fact, Einstein successfully calculated the perihelion shift of Mercury
on the basis of his 11 November theory.105 The condition  implied by the
assumption of an electromagnetic origin of matter (see (87)), was essential for this
calculation, which Einstein considered a striking confirmation of his audacious
hypothesis on the constitution of matter, definitely favoring this theory over that of 4
November.106 The 11 November theory also turned out to be the basis for a new
understanding of the Newtonian limit, which allowed Einstein to accept the field
equations of general relativity as the definitive solution to the problem of gravitation.
Ironically, Hilbert’s most important contribution to general relativity may have been
enhancing the credibility of a speculative and ultimately untenable physical hypoth-
esis that guided Einstein’s final mathematical steps towards the completion of his
theory. 

Einstein submitted his perihelion paper on 18 November 1915. In a footnote,
appended after its completion, Einstein observed that, in fact, the hypothesis of an
electromagnetic origin of matter is unnecessary for the perihelion shift calculation.
He announced a further modification of his field equations, finally reaching the defin-
itive version of his theory.107 On the same day, Einstein wrote to Hilbert, acknowl-
edging receipt of Hilbert’s work, including a system of field equations:

The system [of field equations] you give agrees—as far as I can see—exactly with that
which I found in the last few weeks and have presented to the Academy.108

105 See (Einstein 1915c).
106 See (Einstein 1915d): the abstract of this paper, probably by Einstein, summarizes the issue: “Es wird

gezeigt, daß die allgemeine Relativitätstheorie die von Leverrier entdeckte Perihelbewegung des Mer-
kurs qualitativ und quantitativ erklärt. Dadurch wird die Hypothese vom Verschwinden des Skalars
des Energietensors der “Materie” bestätigt. Ferner wird gezeigt, daß die Untersuchung der Lichtstrah-
lenkrümmung durch das Gravitationsfeld ebenfalls eine Möglichkeit der Prüfung dieser wichtigen
Hypothese bietet.” (“It will be shown that the theory of general relativity explains qualitatively and
quantitatively the perihelion motion of Mercury, which was discovered by Leverrier. Thus the hypoth-
esis of the vanishing of the scalar of the energy tensor of “matter” is confirmed. Furthermore, it is
shown that the analysis of the bending of light by the gravitational field also offers a way of testing
this important hypothesis.”)

107 See (Einstein 1915c, 831).
108 “Das von Ihnen gegebene System [of field equations] stimmt - soweit ich sehe - genau mit dem über-

ein, was ich in den letzten Wochen gefunden und der Akademie überreicht habe.” Einstein to David
Hilbert, 18 November 1915, (CPAE 8, 201–202). For discussion of what Einstein may have received
from Hilbert, see below.
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Einstein emphasized that the real difficulty had not been the formulation of generally-
covariant field equations, but in showing their agreement with a physical require-
ment: the existence of the Newtonian limit. Stressing his priority, he mentioned that
he had considered such equations three years earlier:

… it was hard to recognize that these equations form a generalisation, and indeed a sim-
ple and natural generalisation, of Newton’s law. It has just been in the last few weeks that
I succeeded in this (I sent you my first communication), whereas 3 years ago with my
friend Grossmann I had already taken into consideration the only possible generally
covariant equations, which have now been shown to be the correct ones. We had only
heavy-heartedly distanced ourselves from it, because it seemed to me that the physical
discussion had shown their incompatibility with Newton’s law.109

Einstein’s statement not only characterized his own approach, but indirectly clarified
his ambivalent position with regard to Hilbert’s theory. While evidently fascinated by
the perspective of unifying gravitation and electromagnetism, he now recognized
that, at least in Hilbert’s case, this involved the risk of neglecting the sound founda-
tion of the new theory of gravitation in the classical theory. 

4.2 What Hilbert Could Learn from Einstein

Hilbert must have seen Einstein’s letter of 12 November, announcing publication of
new insights into a fundamental role of gravitation in the constitution of matter, as a
threat to his priority.110 At any rate, Hilbert hastened public presentation of his
results. His response of 13 November gave a brief sketch of his theory and announced
a 16th November seminar on it:

Actually, I wanted first to think of a quite palpable application for physicists, namely
valid relations between physical constants, before obliging with my axiomatic solution to
your great problem. But since you are so interested, I would like to develop my th[eory]
in very complete detail on the coming Tuesday, that is, the day after the day after tomor-
row (the 16th of this mo.). I find it ideally beautiful math[ematically], and also insofar as
calculations that are not completely transparent do not occur at all, and absolutely com-
pelling in accordance with the axiom[atic] meth[od] and therefore rely on its reality. As a
result of a gen. math. theorem, the (generalized Maxwellian) electrody. eqs. appear as a
math. consequence of the gravitation eqs., so that gravitation and electrodynamics are
actually not at all different. Furthermore, my energy concept forms the basis:

 [the  corresponds to  in Hilbert’s papers, etc.] which is like-
wise a general invariant [see (56)], and from this then also follow from a very simple

109 “schwer war es, zu erkennen, dass diese Gleichungen eine Verallgemeinerung, und zwar eine einfache
und natürliche Verallgemeinerung des Newton’schen Gesetzes bilden. Dies gelang mir erst in den
letzten Wochen (meine erste Mitteilung habe ich Ihnen geschickt), während ich die einzig möglichen
allgemein kovarianten Gleichungen, [die] sich jetzt als die richtigen erweisen, schon vor 3 Jahren mit
meinem Freunde Grossmann in Erwägung gezogen hatte. Nur schweren Herzens trennten wir uns
davon, weil mir die physikalische Diskussion scheinbar ihre Unvereinbarkeit mit Newtons Gesetz
ergeben hatte.”

110 This aspect of the Hilbert-Einstein relationship was first discussed in (Sauer 1999), where the chro-
nology of events is carefully reconstructed. 
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axiom the 4 still-missing “spacetime equations”  I derived most pleasure in the
discovery already discussed with Sommerfeld that the usual electrical energy results
when a certain absolute invariant is differentiated with respect to the gravitation poten-
tials and then  are set = 0,1.111

This letter presents the essential elements of Hilbert’s theory as presented in the
Proofs. His reference to “the missing spacetime equations” suggests that he saw these
equations and their relation to the energy concept as an issue common to his theory
and Einstein’s. 

Einstein responded on 15 November 1915, declining the invitation to come to
Göttingen on grounds of health.112 Instead, he asked Hilbert for the proofs of his
paper. As mentioned above, by 18 November Hilbert had fulfilled Einstein’s request.
He could not have sent the typeset Proofs, which are dated 6 December, so he must
have sent a manuscript on 20 November, presumably corresponding to his talk. Since
the Proofs are also dated 20 November, this manuscript may well have presented
practically the same version of his theory. On 19 November, a day after Einstein
announced his successful perihelion calculation to Hilbert, the latter sent his congrat-
ulations, making clear once more that the physical problems facing Hilbert’s theory
were of a rather different nature:

Many thanks for your postcard and cordial congratulations on conquering perihelion
motion. If I could calculate as rapidly as you, in my equations the electron would corre-
spondingly have to capitulate, and simultaneously the hydrogen atom would have to pro-
duce its note of apology about why it does not radiate.
I would be grateful if you were to continue to keep me up-to-date on your latest
advances.113

111 “Ich wollte eigentlich erst nur für die Physiker eine ganz handgreifliche Anwendung nämlich treue
Beziehungen zwischen den physikalischen Konstanten überlegen, ehe ich meine axiomatische
Lösung ihres grossen Problems zum Besten gebe. Da Sie aber so interessiert sind, so möchte ich am
kommenden Dienstag also über-über morgen (d. 16 d. M.) meine Th. ganz ausführlich entwickeln. Ich
halte sie für math. ideal schön auch insofern, als Rechnungen, die nicht ganz durchsichtig sind, gar-
nicht vorkommen. und absolut zwingend nach axiom. Meth., und baue deshalb auf ihre Wirklichkeit.
In Folge eines allgem. math. Satzes erscheinen die elektrody. Gl. (verallgemeinerte Maxwellsche) als
math. Folge der Gravitationsgl., so dass Gravitation u. Elektrodynamik eigentlich garnichts verschie-
denes sind. Desweiteren bildet mein Energiebegriff die Grundlage:  die eben-
falls eine allgemeine Invariante ist, und daraus folgen dann aus einem sehr einfachen Axiom die noch
fehlenden 4 “Raum-Zeitgleichungen”  Hauptvergnügen war für mich die schon mit Sommer-
feld besprochene Entdeckung, dass die gewöhnliche elektrische Energie herauskommt, wenn man
eine gewisse absolute Invariante mit den Gravitationspotentialen differenziert und dann 
setzt.” David Hilbert to Einstein, 13 November 1915, (CPAE 8, 195).

112 Einstein to David Hilbert, 15 November 1915, (CPAE 8, 199).
113 “Vielen Dank für Ihre Karte und herzlichste Gratulation zu der Ueberwältigung der Perihelbewegung.

Wenn ich so rasch rechnen könnte, wie Sie, müsste bei meinen Gleichg entsprechend das Elektron
kapituliren und zugleich das Wasserstoffatom sein Entschuldigungszettel aufzeigen, warum es nicht
strahlt. Ich werde Ihnen auch ferner dankbar sein, wenn Sie mich über Ihre neuesten Fortschritte auf
dem Laufenden halten.” David Hilbert to Einstein, 19 November 1915, (CPAE 8, 202).
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No doubt Einstein fulfilled this request to keep Hilbert up to date. His definitive paper
on the field equations, submitted 25 November and published 2 December, must have
been on Hilbert’s desk within a day or two. In contrast to all earlier versions of his
theory, Einstein now showed that energy-momentum conservation does not imply
additional coordinate restrictions on the field equations (89). He also made clear that
these field equations fulfill the requirement of having a Newtonian limit and allow
derivation of the perihelion shift of Mercury. 

Our analysis of the Proofs suggests that neither the astronomical implications of
Einstein’s theory nor the latter’s treatment of the Newtonian limit directly affected
Hilbert’s theory since they lay outside its scope, as Hilbert then perceived it. But Ein-
stein’s insight that energy-momentum conservation does not lead to a restriction on
admissible coordinate systems was of crucial significance for Hilbert. As we have
seen, in Hilbert’s theory the entire complex of results on energy-momentum conser-
vation was structured by a logic paralleling that of Einstein’s earlier non-covariant
theory. Moreover, Theorem I, Hilbert’s Leitmotiv, was motivated by Einstein’s hole
argument that generally-covariant field equations cannot have unique solutions. His
definitive paper of 25 November did not explicitly mention the hole argument, but
simply took it for granted that his new generally-covariant field equations avoid such
difficulties.114 Hilbert may well have checked that Einstein’s definitive field equa-
tions were actually compatible115 with the equations that follow from Hilbert’s varia-
tional principle, which he had not explicitly calculated—or at least not included in
the Proofs, and this compatibility would certainly have been reassuring for Hilbert.
But the fact that the hole argument evidently no longer troubled Einstein must have
led Hilbert to question his Leitmotiv, with its double role of motivating coordinate
restrictions and providing the link between gravitation and electromagnetism. 

Thus, Einstein’s paper of 25 November 1915 represented a major challenge for
Hilbert’s theory. As we shall see when discussing the published version of Hilbert’s
paper, while Einstein temporarily took over Hilbert’s physical perspective, Hilbert
appears to have accepted the mathematical implications of Einstein’s rejection of the
hole argument.

4.3 Cooperation in the Form of Competition

In a situation such as we have described, in which the interaction between two people
working on closely related problems changes the way in which each of them pro-
ceeds, it is not easy for the individuals to assess their own contributions. While Ein-
stein was happy to have found in Hilbert one of the few colleagues, if not the only
one, who appreciated and understood the nature of his work on gravitation, he also

114 The fact that these equations were supported by Einstein’s successful calculation of the perihelion
shift made it impossible for Hilbert simply to disregard them. 

115 Compatible, but not the same, because of the trace term, and because of the different treatment of the
stress-energy tensor, as discussed elsewhere in this paper.
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resented the way in which Hilbert took over some of his results without, as Einstein
saw it, giving him due credit. Einstein wrote to his friend Heinrich Zangger on 26
November 1915 with regard to his newly-completed theory:

The theory is beautiful beyond comparison. However, only one colleague has really
understood it, and he is seeking to “partake” [nostrifizieren] in it (Abraham’s expression)
in a clever way. In my personal experience I have hardly come to know the wretchedness
of mankind better than as a result of this theory and everything connected to it. But it
does not bother me.116

Einstein’s reaction becomes particularly understandable in the light of his prior
positive experience of collaboration with his friend, the mathematician Marcel Gross-
mann. Grossmann had restricted himself to putting his superior mathematical compe-
tence at Einstein’s service.117 What Hilbert offered was not cooperation but
competition. Hilbert may well have been upset by Einstein’s anticipation in print, in
his paper of 11 November, of what Hilbert felt to be his idea of a close link between
gravitation and the structure of matter. Even more disturbing may have been the fact
that, contrary to Hilbert’s assertion in the Proofs, Einstein’s final formulation of his
theory required no restriction on general covariance. But it is not clear exactly when
Hilbert abandoned all non-covariant elements of his program, in particular his
approach to the energy problem and consequent restriction to a preferred class of
coordinate systems.118

Hilbert evidently learned of Einstein’s resentment over lack of recognition by Hil-
bert, possibly as a result of Einstein’s letter of 18 November pointing out his priority
in setting up generally-covariant field equations. In any case, he began to introduce
changes in his Proofs on or after 6 December, documented by handwritten margina-
lia, changes which not only acknowledge Einstein’s priority but attempt to placate
him. Hilbert’s revision also provides an indication of the content of Einstein’s com-
plaints. He revised the programmatic statement in the introduction of his paper (his
insertion is rendered in italics):

In the following — in the sense of the axiomatic method — I would like to develop,
essentially from three simple axioms a new system of basic equations of physics, of ideal
beauty, containing, I believe, the solution of the problems presented.119

116 “Die Theorie ist von unvergleichlicher Schönheit. Aber nur ein Kollege hat sie wirklich verstanden
und der eine sucht sie auf geschickte Weise zu “nostrifizieren” (Abraham’scher Ausdruck). Ich habe
in meinen persönlichen Erfahrungen kaum je die Jämmerlichkeit der Menschen besser kennen gelernt
wie gelegentlich dieser Theorie und was damit zusammenhängt. Es ficht mich aber nicht an.” Einstein
to Heinrich Zangger, 26 November 1915, (CPAE 8, 205). See the discussion of “nostrification” above.

117 See the editorial note “Einstein on Gravitation and Relativity: The Collaboration with Marcel Gross-
mann” in (CPAE 4, 294–301).

118 According to (Sauer 1999, 562), Hilbert had found the new energy expression by 25 January 1916.
119 “Ich möchte im Folgenden - im Sinne der axiomatischen Methode - wesentlich aus drei einfachen

Axiomen ein neues System von Grundgleichungen der Physik aufstellen, die von idealer Schönheit
sind, und in denen, wie ich glaube, die Lösung der gestellten Probleme enthalten ist.” (Proofs, 1)
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The insertion “wesentlich” was presumably motivated by Hilbert’s recognition that
his theory actually presupposed additional assumptions of substantial content, such
as the assumption of a split of the Lagrangian into gravitational and electromagnetic
parts and the assumption that the latter does not depend on derivatives of the metric
(see section 3). A further assumption was the requirement that the gravitational part
of the Lagrangian not involve derivatives of the metric higher than second order. Ein-
stein had justified this requirement by the necessity for the theory to have a Newton-
ian limit, and it may have been Einstein’s argument that drew Hilbert’s attention to
the fact that his theory was actually based on a much wider array of assumptions than
his axiomatic presentation had indicated. More remarkably, in characterizing his sys-
tem of equations, Hilbert deleted the word “neu,” a clear indication that he had read
Einstein’s 25 November paper and recognized that the equations implied by his own
variational principle are formally equivalent (because of where the trace term occurs)
to Einstein’s if Hilbert’s electrodynamic stress-energy tensor is substituted for the
unspecified one on the right-hand side of Einstein’s field equations.

Hilbert’s next change was presumably related to a complaint by Einstein about
the lack of proper acknowledgement for what he considered to be one of his funda-
mental contributions, the introduction of the metric tensor as the mathematical repre-
sentation of the gravitational potentials. Hilbert had indeed given the impression that
Einstein’s merit was confined to asking the right questions, while Hilbert provided
the answers. 

Hilbert’s revised description of these gravitational potentials reads (his insertion
is again rendered in italics):

The quantities characterizing the events at  shall be:

1) The ten gravitational potentials first introduced by Einstein, 
having the character of a symmetric tensor with respect to arbitrary transformation of the
world parameter 

2) The four electrodynamic potentials  having the character of a vector in the same
sense.120

The next change represents an even more far-going recognition that Hilbert could not
simply claim the results in his paper as parts of “his theory,” as if it had nothing sub-
stantial in common with that of Einstein:

The guiding motive for setting up my the theory is given by the following theorem, the
proof of which I will present elsewhere.121

120 “Die das Geschehen in  charakterisierenden Größen seien:
1) die zehn von Einstein zuerst eingeführten Gravitationspotentiale  mit sym-
metrischem Tensorcharakter gegenüber einer beliebigen Transformation der Weltparameter 
2) die vier elektrodynamischen Potentiale  mit Vektorcharakter im selben Sinne.” (Proofs, 1)

121 “Das Leitmotiv für den Aufbau meiner der Theorie liefert der folgende mathematische Satz, dessen
Beweis ich an einer anderen Stelle darlegen werde.” (Proofs, 2)
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Hilbert’s final marginal notation consists of just an exclamation mark next to a
minor correction of the energy expression (39)—perhaps evidence that he had identi-
fied this expression as the central problem in the Proofs. While Hilbert’s first annota-
tions were presumably intended as revisions of a text that was going to remain
basically unchanged, this exclamation mark signals the abandonment of such an
attempt at revision. At this point, perhaps it dawned upon Hilbert that Einstein’s
results forced him to rethink his entire approach. 

Hilbert’s recognition of the problematic character of his treatment of energy-
momentum conservation appears to have been solely in reaction to Einstein’s results
and not as a consequence of any internal dynamics (see section 3) of the development
of his theory.122 Indeed, as our analysis of the deductive structure of Hilbert’s theory
showed, this treatment is well anchored in the remainder of his theory without in turn
having much effect on the remainder. Hence, there was no “internal friction” that
could have driven a further development of Hilbert’s theory. On the contrary, since
the link between energy-momentum conservation and coordinate restrictions was
motivated by Hilbert’s Theorem I, Einstein’s abandonment of this link left Hilbert at
a loss, as we have argued above. But the way in which energy-momentum conserva-
tion was connected to other results of his theory also suggested how to modify it in
the direction indicated by Einstein: Hilbert had to find a new energy expression that
does not imply a coordinate restriction but is still connected with Mie’s energy-
momentum tensor. Precisely the decoupling of his energy expression from the physi-
cal consequences of Hilbert’s theory made such a modification possible. Hilbert gave
up immediate publication and began to rework his theory. By early 1916 had he
arrived at results that made possible this rewriting of his paper and its submission for
publication; by mid-February 1916, Paper 1, which we will discuss in the following
section, was in press.123

Meanwhile, having emerged triumphant from the exchange of November 1915,
Einstein offered a reconciliation to Hilbert:

There has been a certain ill-feeling between us, the cause of which I do not want to ana-
lyze. I have struggled against the feeling of bitterness attached to it, and this with com-
plete success. I think of you again with unmarred friendliness and ask you to try to do the
same with me. Objectively it is a shame when two real fellows who have extricated them-
selves somewhat from this shabby world do not afford each other mutual pleasure.124

122 For a different view, see (Sauer 1999, 570).
123 For a detailed chronology, see the reconstruction in (Sauer 1999, 560–565).
124 “Es ist zwischen uns eine gewisse Verstimmung gewesen, deren Ursache ich nicht analysieren will.

Gegen das damit verbundene Gefühl der Bitterkeit habe ich gekämpft, und zwar mit vollständigem
Erfolge. Ich gedenke Ihrer wieder in ungetrübter Freundlichkeit, und bitte Sie, dasselbe bei mir zu
versuchen. Es ist objektiv schade, wenn sich zwei wirkliche Kerle, die sich aus dieser schäbigen Welt
etwas herausgearbeitet haben, nicht gegenseitig zur Freude gereichen.” Einstein to David Hilbert, 20
December 1915, (CPAE 8, 222). The “schäbige [.] Welt” probably refers to World War I—given Ein-
stein and Hilbert’s critical attitude to the war.
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5. HILBERT’S ASSIMILATION OF EINSTEIN’S RESULTS: 
THE THREE PUBLISHED VERSIONS OF HIS FIRST PAPER

5.1 The New Energy Concept—An Intermediary Solution

As we have seen, modification of Hilbert’s treatment of energy-momentum conserva-
tion was the most urgent step necessitated by Einstein’s results of 25 November 1915.
First of all, the energy-momentum conservation law should not involve coordinate
restrictions but be an invariant equation. Second, the modified energy expression
should still involve Mie’s energy-momentum tensor; otherwise the link between grav-
itation and electromagnetism, fundamental to Hilbert’s program, would be endan-
gered. Third, to accord with Hilbert’s understanding of energy-momentum
conservation, the new energy concept must still satisfy a divergence equation. As we
shall show, Hilbert’s modification of his energy expression was guided by these crite-
ria, but its relation to a physical interpretation remained as tenuous as ever.125 The
next section concerns the effect of the new energy concept on the deductive structure
of Hilbert’s theory.

In the introductory discussion of energy, Paper 1 emphasizes that only axioms I
and II are required:

The most important aim is now the formulation of the concept of energy, and the deriva-
tion of the energy theorem solely on the basis of the two axioms I and II.126

This emphasis is in contrast with the treatment in the Proofs, in which the energy
concept is closely related to axiom III, which was dropped in Paper 1. Hilbert then
proceeds exactly as in the Proofs, introducing a polarization of the Lagrangian with
respect to the gravitational variables (see the definition of  (20)):

(90)

In contrast to (37), however, Hilbert polarizes  instead of  Clearly, his aim
was to formulate an equation analogous to (45), but with only a divergence term on
the right-hand side. Indeed, since:

(91)

use of  eliminates the first term of the right-hand side of (45), giving:

125 For a discussion of Hilbert’s concept of energy, see also (Sauer 1999, 548–550), which stresses the
mathematical roots of this concept.

126 “Das wichtigste Ziel ist nunmehr die Aufstellung des Begriffes der Energie und die Herleitung des
Energiesatzes allein auf Grund der beiden Axiome I und II.” (Hilbert 1916, 400)
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(92)

Since the right-hand side vanishes due to the field equations, this equation is of just
the desired form.

The way in which Hilbert obtained (92) closely parallels that used in the Proofs,
i.e. by splitting off divergence terms. He starts out by noting that:

(93)

where  is the covariant derivative of  is a contravariant vector.
Then he observes that:

(94)

no longer contains the second derivatives of  and hence can be written:

(95)

where  is a tensor. Finally, Hilbert forms the vector:

(96)

obtaining (92).
He next forms the expression for the electromagnetic variables analogous to (92)

(see the definition of  (20) above):

(97)

with:

(98)

Adding (92) and (97), and taking account of the field equations, Hilbert could thus
write:

(99)

The final step consists in also rewriting the left-hand side of this equation as a diver-
gence, using (91), which is expanded as:
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(100)

using Theorem II (see (22)),127 he then obtained:

(101)

and, in view of (99),

(102)

This equation could have been interpreted as giving the energy expression since,
being an invariant divergence, it satisfies two of the three criteria mentioned above.
But it is not related to Mie’s energy-momentum tensor. So Hilbert adds yet another
term  to the expression in the parenthesis in (102):

(103)

which does not alter its character since  is a contravariant vector (because:

(104)

is an antisymmetric tensor) that satisfies the identity:

(105)

Hilbert concluded:

Let us now define

(106)

as the energy vector, then the energy vector is a contravariant vector, which moreover
depends linearly on the arbitrarily chosen vector  and satisfies identically for that
choice of this vector  the invariant energy equation

128 (107)

127 In Paper 1, this is the only purpose for which this form of Theorem II is explicitly introduced. How-
ever, (23) presumably already had been derived from it.
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While Hilbert did not explicitly introduce the condition that his energy vector be
related to Mie’s energy-momentum tensor, it seems to be the guiding principle of his
calculation. Apparently, he wanted this connection to appear to be the result of an
independently-justified definition of this vector. 

In effect, starting from (106) and taking into account definitions (98) and (103),
Hilbert obtained for the contribution to the energy originating from the electromag-
netic term  in the Lagrangian:

(108)

Using the field equations and (27), this can be rewritten as:

(109)

which corresponds to the right-hand side of (36), the generally-covariant generaliza-
tion of Mie’s electromagnetic energy-momentum tensor, contracted with 

In contradistinction to the Proofs, Theorem II and (36) no longer explicitly enter
this demonstration. Theorem II enters implicitly by determining the form in which
the electromagnetic variables enter the Lagrangian (see (27)). Hilbert still needed
Theorem II to derive his “first result,” that is, to show that this energy-momentum can
be written as the variational derivative of  with respect to the gravitational
potentials. Furthermore, (36) allows Hilbert to argue that, due to the field equations
(see (72)), the electromagnetic energy and energy-vector  can be expressed exclu-
sively in terms of K, the gravitational part of the Lagrangian; so that they depend only
on the metric tensor and not on the electromagnetic potentials and their derivatives.
Whereas, in the Proofs, this result had been an immediate consequence of the defini-
tion of the energy and of the field equations (see (49)), now it follows only with the
help of Theorem II. 

While Hilbert had succeeded in satisfying his heuristic criteria as well as the new
challenge of deriving an invariant energy equation, the status of this equation within
his theory had become more precarious. An analysis of the deductive structure of Hil-
bert’s theory in Paper 1 (see Fig. 2) shows that it still comprises two main clusters of
results: those concerning the implications of gravitation for electromagnetism and
those concerning energy conservation. But the latter cluster is now even more isolated

128 “Definieren wir nunmehr [(106); (14) in the original text] als den Energievektor, so ist der Energievek-
tor ein kontravarianter Vektor, der noch von dem willkürlichen Vektor  linear abhängt und iden-
tisch für jene Wahl dieses Vektors  die invariante Energiegleichung [(107)] erfüllt.” (Hilbert 1916,
402)
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Figure 2: Deductive Structure of Paper 1 (1916)
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from the rest of his theory than in the Proofs. Indeed, the new energy concept is no
longer motivated by Hilbert’s powerful Theorem I, but only by arguments concerning
the formal properties of energy-momentum conservation and the link with Mie’s
energy-momentum tensor. It plays no role in deriving any other results of Hilbert’s
theory, nor does it serve to integrate this theory with other physical theories, a key
function of the energy concept since its formulation in the 19th century. Therefore, it
is not surprising that this concept only played a transitional role and was eventually
replaced by the understanding of energy-momentum conservation developed by Ein-
stein, Klein, Noether, and others.129

In fact, neither the physical significance nor the mathematical status of Hilbert’s
new energy concept was entirely clear. Physically Hilbert had failed to show that his
energy equation (107) gave rise to a familiar expression for energy-momentum con-
servation in the special-relativistic limit, or to demonstrate that his equation was com-
patible with the form of energy-momentum conservation in a gravitational field that
Einstein had established in 1913 (see (11)). Eventually, Felix Klein succeeded in clar-
ifying the relation between Hilbert’s and Einstein’s expressions. He decomposed
(107) into 140 equations and showed that 136 of these actually have nothing to do
with energy-momentum conservation, while the remaining 4 correspond to those
given by Einstein.130 Mathematically, in 1917 Emmy Noether and Felix Klein found
that equation (107) actually is an identity, and not a consequence of the field equa-
tions, as is the case for conservation equations in classical physics.131 Similar identi-
ties follow for the Lagrangian of any generally-covariant variational problem. As a
consequence, Hilbert’s counting of equations no longer works: he assumed that his
variational principle gives rise to 10 gravitational field equations plus 4 identities,
which he identified with the electromagnetic equations; and that energy-momentum
conservation is represented by additional equations, originally linked to coordinate
restrictions. Einstein’s abandonment of coordinate restrictions together with the
deeper investigation of energy-momentum conservation by Noether, Klein, Einstein,
and others, confronted Hilbert’s approach with a severe challenge: They questioned
the organization of his theory into two more-or-less independent domains, energy-
momentum conservation and the implications of gravitation for electromagnetism.
We shall argue that Hilbert responded to this challenge by further adapting his theory
to the framework provided by general relativity. 

5.2 Hilbert’s Reorganization of His Theory in Paper 1

The challenge presented by Einstein’s abandonment of coordinate restrictions and
adoption of generally-covariant field equations forced Hilbert to reorganize his the-

129 For discussion, see (Rowe, 1999).
130 See (Klein 1918a, 179–185).
131 See (Klein 1917; 1918a) and also (Noether 1918). For a thorough discussion of the contemporary

research on energy-momentum conservation, see (Rowe, 1999).
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ory. As we have seen, he had to demonstrate the compatibility between his variational
principle and Einstein’s field equations (from which he had succeeded strikingly in
deriving Mercury’s perihelion shift), and completely rework his treatment of energy
conservation. Hilbert treated both issues at the end of Paper 1. Energy conservation
was no longer tied to Theorem I and its heuristic consequences as in the Proofs, but
was treated along with other results of Hilbert’s theory. The structure of Paper 1 is
thus:132 

1. Basic Framework (Hilbert 1916, 395–398)

Axioms I and II, Theorem I, and the combined field equations of gravitation and
electromagnetism for an arbitrary Lagrangian

2. Basic Theorems (Hilbert 1916, 398–400)

Theorems II and III

3. New Energy Expression and Derivation of the New Energy Equation
(Hilbert 1915, 400–402)

4. Implications for the Relation between Electromagnetism and Gravitation
(Hilbert 1915, 402–407)

the split of the Lagrangian into gravitational and the electrodynamical terms, the
form of Mie’s Lagrangian, its relation to his energy tensor, the explicit form of the
gravitational field equations, and the relation between electromagnetic and gravi-
tational field equations.
Apart from the technical and structural revisions necessitated by the new energy

expression, practically all other changes concern the relation of his theory to Ein-
stein’s. Throughout Paper 1, Hilbert followed the tendency, already manifest in the
marginal additions to the Proofs, to put greater emphasis on Einstein’s contributions
while maintaining his claim to have developed an independent approach. In the open-
ing paragraph, Hilbert changed the order in which he mentioned Mie and Einstein. In
the Proofs he wrote:

The far reaching ideas and the formation of novel concepts by means of which Mie con-
structs his electrodynamics, and the prodigious problems raised by Einstein, as well as
his ingeniously conceived methods of solution, have opened new paths for the investiga-
tion into the foundations of physics.133

In Paper 1 we read instead:

The vast problems posed by Einstein as well as his ingeniously conceived methods of
solution, and the far-reaching ideas and formation of novel concepts by means of which

132 For a sketch of Hilbert’s revisions of Paper 1, see also (Corry 1999a, 517–522).
133 “Die tiefgreifenden Gedanken und originellen Begriffsbildungen vermöge derer Mie seine Elektrody-

namik aufbaut, und die gewaltigen Problemstellungen von Einstein sowie dessen scharfsinnige zu
ihrer Lösung ersonnenen Methoden haben der Untersuchung über die Grundlagen der Physik neue
Wege eröffnet.” (Proofs, 1)
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Mie constructs his electrodynamics, have opened new paths for the investigation into the
foundations of physics.134

A footnote lists all of Einstein’s publications on general relativity starting with his
major 1914 review, and including the definitive paper submitted on 25 November.
Although this makes clear that Hilbert must have revised his paper after that date, he
failed to change the dateline of his contribution (as did Felix Klein and Emmy Noe-
ther in their contributions to the discussion of Hilbert’s work in the same journal135).
It remained “Vorgelegt in der Sitzung vom 20. November 1915,” which creates the
erroneous impression that there were no subsequent substantial changes in Paper 1. 

The next sentence, while combining this claim with a more explicit recognition of
what he considered the achievements of his predecessors, shows that Hilbert had not
renounced his claim to having solved the problems posed by Mie and Einstein. In the
corrected Proofs this sentence reads:

In the following—in the sense of the axiomatic method — I would like to develop, /essen-

tially from three simple axioms a new system of basic equations of physics, of ideal
beauty, containing, I believe, the solution of the problems presented.136

In Paper 1, it reads:

In the following — in the sense of the axiomatic method — I would like to develop,
essentially from two simple axioms, a new system of basic equations of physics, of ideal
beauty and containing, I believe, simultaneously the solution to the problems of Einstein
and of Mie. I reserve for later communications the detailed development and particularly
the special application of my basic equations to the fundamental questions of the theory of
electricity.137

Although in a marginal note in the proofs version he had changed “his theory” to “the
theory,” he now returned to the original version:

The guiding motive for constructing my theory is provided by the following theorem, the
proof of which I shall present elsewhere.138

134 “Die gewaltigen Problemstellungen von Einstein sowie dessen scharfsinnige zu ihrer Lösung ersonne-
nen Methoden und die tiefgreifenden Gedanken und originellen Begriffsbildungen vermöge derer Mie
seine Elektrodynamik aufbaut, haben der Untersuchung über die Grundlagen der Physik neue Wege
eröffnet.” (Hilbert 1916, 395)

135 See (Klein 1918a; Noether 1918).
136 “Ich möchte im Folgenden — im Sinne der axiomatischen Methode —/wesentlich aus drei einfachen

Axiomen ein neues System von Grundgleichungen der Physik aufstellen, die von idealer Schönheit
sind, und in denen, wie ich glaube, die Lösung der gestellten Probleme enthalten ist.” (Proofs, 1)

137 “Ich möchte im Folgenden - im Sinne der axiomatischen Methode - wesentlich aus zwei einfachen
Axiomen ein neues System von Grundgleichungen der Physik aufstellen, die von idealer Schönheit
sind, und in denen, wie ich glaube, die Lösung der Probleme von Einstein und Mie gleichzeitig ent-
halten ist. Die genauere Ausführung sowie vor Allem die spezielle Anwendung meiner Grundglei-
chungen auf die fundamentalen Fragen der Elektrizitätslehre behalte ich späteren Mitteilungen vor.”
(Hilbert 1916, 395)

138 “Das Leitmotiv für den Aufbau meiner Theorie liefert der folgende mathematische Satz, dessen
Beweis ich an einer anderen Stelle darlegen werde.” (Hilbert 1916, 396)
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Although Hilbert had earlier argued that his Leitmotiv suggested the need for four
additional non-covariant equations to ensure a unique solution, he now dropped all
mention of the subject of coordinate restrictions. He simply did not address the ques-
tion of why, in spite of Einstein’s hole argument against this possibility, it is possible
to use generally-covariant field equations unsupplemented by coordinate restrictions.
The only remnant in Paper 1 of the entire problem is his newly-introduced designa-
tion of the world-parameters as “allgemeinste Raum-Zeit-Koordinaten.”

The significant result that Hilbert’s variational principle gives rise to gravitational
field equations formally equivalent to those of Einstein’s 25 November theory is
rather hidden in Hilbert’s presentation, only appearing as an intermediate step in his
demonstration that the electromagnetic field equations are a consequence of the grav-
itational ones. The newly-introduced passage reads:

Using the notation introduced earlier for the variational derivatives with respect to the
 the gravitational equations, because of (20) [i.e. (16)], take the form

(110)

The first term on the left hand side becomes

(111)

as follows easily without calculation from the fact that  apart from  is the only
tensor of second rank and  the only invariant, that can be formed using only the 
and their first and second differential quotients,  

The resulting differential equations of gravitation appear to me to be in agreement with
the grand concept of the theory of general relativity established by Einstein in his later
treatises.139

Hilbert’s argument for avoiding explicit calculation of  which he later
withdrew (see below), is indeed untenable; there are many invariants and tensors of
second rank that can be constructed from the Riemann tensor. Even if one further
requires such tensors and invariants to be linear in the Riemann tensor, the crucial
coefficient of the trace term still remains undetermined. The explicit form of the field
equations given in Paper 1 and not found in the Proofs, appears to be a direct
response to Einstein’s publication of 25 November; but a footnote appended to this

139 “Unter Verwendung der vorhin eingeführten Bezeichungsweise für die Variationsableitungen bezüg-
lich der  erhalten die Gravitationsgleichungen wegen (20) [i.e. (16)] die Gestalt [(110); (21) in the
original text]. Das erste Glied linker Hand wird [(111)] wie leicht ohne Rechnung aus der Tatsache
folgt, daß  außer  der einzige Tensor zweiter Ordnung und  die einzige Invariante ist, die
nur mit den  und deren ersten und zweiten Differentialquotienten  gebildet werden
kann.
Die so zu Stande kommenden Differentialgleichungen der Gravitation sind, wie mir scheint, mit der
von Einstein in seinen späteren Abhandlungen aufgestellten großzügigen Theorie der allgemeinen
Relativität im Einklang.” (Hilbert 1916, 404–405)
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passage gives a generic reference to all four of Einstein’s 1915 Academy publica-
tions. His cautious reference to the apparent agreement between his results and Ein-
stein’s, presumably motivated by their different frameworks, adds to the impression
that Hilbert actually arrived independently at the explicit form of the gravitational
field equations.

The concluding paragraph of Paper 1 acknowledges Hilbert’s debt to Einstein in a
more indirect way. The beginning of this paragraph of the Proofs had given the
impression that Einstein posed the problems while Hilbert offered the solutions:

As one can see, the few simple assumptions expressed in axioms I, II, III suffice with
appropriate interpretation to establish the theory: through it not only are our views of
space, time, and motion fundamentally reshaped in the sense called for by Einstein ...140

In Paper 1, Hilbert deleted the reference to axiom III and replaced “in dem von Ein-
stein geforderten Sinne” by “in dem von Einstein dargelegten Sinne”:

As one can see, the few simple assumptions expressed in axioms I and II suffice with
appropriate interpretation to establish the theory: through it not only are our views of
space, time, and motion fundamentally reshaped in the sense explained by Einstein ...141

5.3 Einstein’s Energy in Hilbert’s 1924 Theory

In 1924 Hilbert published revised versions of Papers 1 and 2 (Hilbert 1924).142

Meanwhile important developments had taken place, such as the rapid progress of
quantum physics, which changed the scientific context of Hilbert’s results. But it was
undoubtedly the further clarifications of the significance of energy-momentum con-
servation in general relativity, already mentioned in the preceding sections, that
affected his theory most directly. In correspondence between Hilbert and Klein (pub-
lished in part in 1918),143 this topic played a central role without, however, leading to
an explicit reformulation of Hilbert’s theory. Without going into detail about this
important strand in the history of general relativity, we shall focus on its effect on
Hilbert’s 1924 revisions. In spite of the reassertion of his goal of providing founda-
tions for all of physics, his theory was, in effect, transformed into a variation on the
themes of general relativity.

140 “Wie man sieht, genügen bei sinngemäßer Deutung die wenigen einfachen in den Axiomen I, II, III
ausgesprochenen Annahmen zum Aufbau der Theorie: durch dieselbe werden nicht nur unsere Vor-
stellungen über Raum, Zeit und Bewegung von Grund aus in dem von Einstein geforderten Sinne
umgestaltet ...” (Proofs, 13).

141 “Wie man sieht, genügen bei sinngemäßer Deutung die wenigen einfachen in den Axiomen I und II
ausgesprochenen Annahmen zum Aufbau der Theorie: durch dieselbe werden nicht nur unsere Vor-
stellungen über Raum, Zeit und Bewegung von Grund aus in dem von Einstein dargelegten Sinne
umgestaltet ...” (Hilbert 1916, 407).

142 In the following, we will refer to the 1924 revision of Paper 1 as “Part 1” and to that of Paper 2 as
“Part 2,” designations which correspond to Hilbert’s own division of his 1924 paper into “Teil 1”
(pp. 2–11) and “Teil 2” (pp. 11–32).

143 See (Klein 1917).
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On a purely technical level, Hilbert’s revisions of Paper 1 appear to be rather
modest; the most important one concerns Theorem III (the contracted Bianchi identi-
ties), now labelled Theorem 2. Following a suggestion by Klein (Klein 1917, 471–
472), Hilbert extended this theorem to include the electromagnetic variables:

Theorem 2. Let  as in Theorem 1, be an invariant depending on    
 and as above, let  denote the variational derivatives of  with respect

to  and  the variational derivative with respect to  Introduce, further-
more, the abbreviations [(112)]:

(112)

then the [following] identities hold

144 (113)

He revised its proof accordingly.
A second, small, but significant change concerns the gravitational field equations.

Hilbert now tacitly withdrew his previous claim that no derivation was needed, instead
sketching a derivation and writing them, like Einstein, with the energy-momentum ten-
sor as source. As in the earlier versions, he derived (72) but now in the form:145

(114)

After writing down the electromagnetic field equations, Hilbert proceeded to sketch
the following evaluation of the terms in (114):

To determine the expression for  first specialize the coordinate system so that
at the world point under consideration all the  vanish. In this way one finds:

(115)

If, for the tensor

(116)

we introduce the symbol  then the gravitational field equations can be written as

144 “Theorem 2. Wenn  wie im Theorem 1, eine von      abhängige Invariante
ist, und, wie oben, die Variationsableitungen von  bez.  mit  bez.  mit 
bezeichnet werden, und wenn ferner zur Abkürzung: [(112)] gesetzt wird, so gelten die Identitäten
[(113); (7) in the original text].” (Hilbert 1924, 5)

145 See (Hilbert 1924, 7).
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146 (117)

Although the introduction of Einstein’s notation for the energy-momentum tensor
may appear as no more than an adaptation of Hilbert’s notation to the by-then stan-
dard usage, it actually effected a major revision in the structure of his theory. The
energy-momentum tensor became the central knot binding together the physical
implications of Hilbert’s theory. 

First of all, it served, as Hilbert’s energy expressions had previously done, to
relate the derivative of Mie’s Lagrangian (see (34) or (36)) to Mie’s energy-momen-
tum tensor. But, in contrast to Paper 1, Mie’s energy-momentum tensor no longer
served as a criterion for choosing the energy-expression. The new energy expression,
which Hilbert now took over from Einstein, was supported by much more than just
this single result. It had emerged from the development of special-relativistic contin-
uum physics by Minkowski, Abraham, Planck, Laue,147 and others; and been vali-
dated by numerous applications to various areas of physics, including general
relativity. 

By introducing the equation:

(118)

Hilbert had returned, in a sense, to the approach of the Proofs, establishing a relation
between the energy concept and the derivative of the electromagnetic Lagrangian (see
(49)). He still did not make clear that this relation does not single out Mie’s theory,
but actually holds more generally. Introducing the notations:

(119)

and:

(120)

As in the proofs version, Hilbert again used (35), which he now rewrites as:

(121)

146 “Um den Ausdruck von  zu bestimmen, spezialisiere man zunächst das Koordinatensystem
so, daß für den betrachteten Weltpunkt die  sämtlich verschwinden. Man findet auf diese Weise:
[(115)]. Führen wir noch für den Tensor [(116)] die Bezeichnung  ein, so lauten die Gravitations-
gleichungen [(117)].” See (Hilbert 1924, 7–8).

147 For the first systematic development of relativistic continuum mechanics, see (Laue 1911a; 1911b).
For further discussion, see Einstein’s “Manuscript on the Special Theory of Relativity” (CPAE 4,
Doc. 1, 91–98; Janssen and Mecklenburg 2006).
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(see (36)). On the basis of this equation, Hilbert claims, in almost exactly the same
words as in the earlier versions, that there is a necessary connection between the the-
ories of Mie and Einstein:

Hence the [following] representation of  results:

(122)

The expression on the right agrees with Mie’s electromagnetic energy tensor, and thus
we find that Mie’s electromagnetic energy tensor is nothing but the generally-invariant
tensor resulting from differentiation of the invariant  with respect to the gravitational
potentials  — a circumstance which gave me the first hint of the necessary close con-
nection between Einstein’s theory of general relativity and Mie’s electrodynamics, and
which convinced me of the correctness of the theory developed here.148

While Hilbert’s claim remained unchanged, what he had done actually was to spe-
cialize the source term left arbitrary in Einstein’s field equations. The nature of this
source term can be specified on the level of the Lagrangian or of the energy-momen-
tum tensor, and these two ways are obviously equivalent if a Lagrangian exists—but
this relation is in no way peculiar to Mie’s theory. The fact that the energy expression
in Paper 1 was specifically chosen to produce Mie’s energy-momentum tensor had
obscured this circumstance, now made rather obvious by the introduction of Einstein’s
arbitrary energy-momentum tensor. It was no doubt difficult for Hilbert to draw this
conclusion because it contradicted his program, according to which electromagnetism
should arise as an effect of gravitation. 

The situation was similar for Hilbert’s second important application of Einstein’s
energy-momentum tensor, the derivation of a relation between the gravitational and
electromagnetic field equations. After recognition of the close relation between the
contracted Bianchi identities and energy-momentum conservation in general relativ-
ity, it was necessary for Hilbert to reconsider the link he believed he had established
between the two groups of field equations. Energy-momentum conservation now
played a central role in his approach, turning the link between gravitation and electro-
magnetism into a mere by-product. It existed, not because of any deep intrinsic con-
nection between these two areas of physics, but due to the introduction of
electromagnetic potentials into the variational principle. With the same logic, one

148 “Demnach ergibt sich für  die Darstellung: [(122)]. Der Ausdruck rechts stimmt überein mit dem
Mie’schen elektromagnetischen Energietensor, und wir finden also, daß der Mie’sche elektromagneti-
sche Energietensor ist nichts anderes als der durch Differentiation der Invariante  nach den Gravita-
tionspotentialen  entstehende allgemein invariante Tensor—ein Umstand, der mich zum ersten
Mal auf den notwendigen engen Zusammenhang zwischen der Einsteinschen allgemeinen Relativi-
tätstheorie und der Mie’schen Elektrodynamik hingewiesen und mir die Überzeugung von der Rich-
tigkeit der hier entwickelten Theorie gegeben hat.” (Hilbert 1924, 9)
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could argue that any form of matter giving rise to a stress-energy tensor derivable
from a Lagrangian involving the metric tensor is an effect of gravitation. 

This weakened link is reflected in Hilbert’s new way of obtaining the desired link
between gravitation and electromagnetism. Following Klein’s suggestion, in Part 1
Hilbert treated the contracted Bianchi identities in parallel for both the gravitational
and the electromagnetic terms in the Lagrangian:

The application of Theorem 2 to the invariant  yields:

(123)

Its application to  yields:149

(124)

Previously, he had derived only the first set of identities and made use of them in
order to derive (83). Now Hilbert showed that both sets of identities yield the equa-
tions for energy-momentum conservation that had been central to Einstein’s work
since 1912. Following the work of Einstein and others, Hilbert also made clear that
these equations are related to the equations of motion for the sources of the stress-
energy tensor,150 and represent a generalization of energy-momentum conservation
laws in special relativity:

As a consequence of the basic equations of electrodynamics, we obtain from this:

(125)

These equations also result as a consequence of the gravitational equations due to (15a)
[i.e. (123)]. Their interpretation is that they are the basic equations of mechanics. In the
case of special relativity, when the  are constants, they reduce to the equations

(126)

which express the conservation of energy and momentum.151

149 “Die Anwendung des Theorems 2 auf die Invariante  liefert: [(123); (15a) in the original text.]
Die Anwendung auf  ergibt: [(124); (15b) in the original text.]” (Hilbert 1924, 9–10)

150 See (Havas 1989, Klein 1917; 1918a; 1918b).
151 “Als Folge der elektrodynamischen Grundgleichungen erhalten wir hieraus: [(125); (16) in the origi-

nal text.] Diese Gleichungen ergeben sich auch als Folge der Gravitationsgleichungen, auf Grund von
(15a) [i.e. (123)]. Sie haben die Bedeutung der mechanischen Grundgleichungen. Im Falle der spezi-
ellen Relativität, wenn die  Konstante sind, gehen sie über in die Gleichungen [(126)] welche die
Erhaltung von Energie und Impuls ausdrücken.” (Hilbert 1924, 10)
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Hilbert thus anchored his theory in the same physical foundation that had provided
Einstein’s search for general relativity with a stable point of reference. Only after
having done this did Hilbert turn to his original goal, the link between gravitation and
electromagnetism, the problematic character of which we have discussed above: 

From the identities (15b) [i.e. (124)], there follow from the equations (16) [i.e. (125)]:

(127)

or

(128)

i.e., four independent linear relations between the basic equations of electrodynamics (5)
and their first derivations follow from the gravitational equations (4). This is the precise
mathematical expression of the connection between gravitation and electrodynamics,
which dominates the entire theory.152

The deductive structure of Part 1 shows the fundamental changes with respect to
Paper 1 (see Fig. 3) and the central role of Einstein’s energy-momentum tensor in this
reorganization. In fact, this tensor suggested the particular form in which Hilbert
rewrote the gravitational field equations, established the link between gravitation and
electromagnetism (in terms of the choice of a specific source), and, of course, was
fundamental to Hilbert’s new formulation of energy-momentum conservation.

This revised deductive structure has a kernel, consisting of the variational princi-
ple, field equations, and energy-momentum conservation, that is—both from a formal
and a physical perspective —fully equivalent to the kernel of Einstein’s formulation
of general relativity. Clearly, Hilbert’s deductive presentation places greater emphasis
on a variational principle than does Einstein; and the mathematically more elegant
formulation of the variational principle, based on the Ricci scalar, contributes to this
emphasis. Therefore, this variational formulation of general relativity is today rightly
associated with Hilbert’s name. On the other hand, Hilbert’s original aim, the deriva-
tion of electromagnetism as an effect of gravitation, plays only a marginal role in
Part 1 and still suffers from the problems indicated above. The links between the
main components that had substantiated Hilbert’s claim of a special relation between
Mie’s theory and Einstein’s have been weakened, being held together only by the
choice of a specific source. This link is thus no longer central to an approach present-
ing an alternative to that of Einstein, being little more than an attempt to supplement

152 “Aus den Gleichungen (16) [i.e. (125)] folgt auf Grund der Identitäten (15b) [i.e. (124)]: [(127)] oder
[(128); (17) in the original text] d.h. aus den Gravitationsgleichungen (4) folgen vier voneinander
unabhängige lineare Relationen zwischen den elektrodynamischen Grundgleichungen (5) und ihren
ersten Ableitungen. Dies ist der genaue mathematische Ausdruck für den Zusammenhang zwischen
Gravitation und Elektrodynamik, der die ganze Theorie beherrscht.” See the comments on (83), (Hil-
bert 1924, 10).
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Einstein’s general framework with a specific physical content, Mie’s electrodynam-
ics—an attempt that is now based on the firm foundations of general relativity.

Figure 3: Deductive Structure of Part 1 (1924)
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5.4 A Scientist’s History

Scientists rarely investigate carefully the often only small and gradual conceptual
transformations that their insights undergo in the course of historical development,
often at the hands of others. Instead of undertaking such a demanding enterprise with
little promise of new scientific results, they rather tend to hold onto their insights,
reinterpreting them in the light of their present and prospective uses rather than in the
light of past achievements, let alone failures. As we shall see, this tendency was ines-
capable for Hilbert, who understood the progress of physics in terms of an elabora-
tion of the apparently universal and immutable concepts of classical physics. 

Indeed, Hilbert described the 1924 Part 1 version of his theory not as a revision of
his 1916 Paper 1 version, including major conceptual adjustments and a reorganiza-
tion of its deductive structure, but essentially as a reprint of his earlier work:

What follows is essentially a reprint of both of my earlier communications on the Grund-
lagen der Physik, and my comments on them, which were published by F. Klein in his
communication Zu Hilberts erster Note über die Grundlagen der Physik, with only
minor editorial differences and transpositions in order to facilitate their understand-
ing.153

Indeed, the organization of Part 1 has not undergone major changes as compared to
Paper 1, but seems to represent simply a tightening up; it can be subdivided into the
following sections:

1. General Introduction (Hilbert 1924, 1–2)

2. Basic Setting (Hilbert 1924, 2–4)

Axioms I and II, field equations of electromagnetism and gravitation

3. Basic Theorems (Hilbert 1924, 4–7)

Theorems 1 (previously II) and 2 (previously III), the theorem earlier designated
as Theorem I (now without numbering)

4. Implications for Electromagnetism, Gravitational Field Equations, and Energy-
momentum Conservation (Hilbert 1924, 7–11)

The character of the gravitational part of the Lagrangian, Axiom III (the split of
the Lagrangian and the character of the electrodynamical part of the Lagrangian),
the gravitational field equations, the form of Mie’s Lagrangian, the relation
between Mie’s energy tensor and Mie’s Lagrangian, energy-momentum conserva-
tion, and the relation between electromagnetic and gravitational field equations.

The most noteworthy changes in the order of presentation are: a new introductory
section and the integration of the treatment of energy-momentum conservation with
other results of Hilbert’s theory towards the end. Another conspicuous change is that

153 “Das Nachfolgende ist im wesentlichen ein Abdruck der beiden älteren Mitteilungen von mir über die
Grundlagen der Physik und meiner Bemerkungen dazu, die F. Klein in seiner Mitteilung Zu Hilberts
erster Note über die Grundlagen der Physik veröffentlicht hat—mit nur geringfügigen redaktionellen
Abweichungen und Umstellungen, die das Verständnis erleichtern sollen.” (Hilbert 1924, 1)
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Hilbert’s Leitmotiv, Theorem I of Paper 1, has now lost its central place despite mean-
while having been proven by Emmy Noether. As we have seen, even in Paper 1 it no
longer played the key heuristic role for Hilbert that it had originally in the Proofs. As
the preceding discussion made clear, the rather unchanged form of its presentation
hides major changes in the substance of his theory.

These changes are reflected in the introductory section, in a way that again down-
plays them.

While earlier Hilbert had introduced his own contribution as a solution to the
problems raised by Mie and Einstein (Proofs) or Einstein and Mie (Paper 1), he now
characterized his results as providing a simple and natural representation of Einstein’s
general theory of relativity, completed in formal aspects: 

The vast complex of problems and conceptual structures of Einstein’s general theory of
relativity now find, as I explained in my first communication, their simplest and most
natural expression and, in its formal aspect, a systematic supplementation and comple-
tion by following the route trodden by Mie.154

In view of the overwhelming contemporary impact of Einstein’s theory, Mie’s role
was downplayed in Hilbert’s new version. Mie is no longer portrayed as posing prob-
lems of a similar profundity to those of Einstein, but as inspiring Hilbert’s “simplest
and most natural” presentation of general relativity, as well as “a systematic supple-
mentation and completion in its formal aspect.” 

Instead of attributing a specific role in contemporary scientific discussions to Mie,
Hilbert elevates him to the role of one of the founding fathers of a unified-field theo-
retical worldview:

The mechanistic ideal of unity in physics, as created by the great researchers of the previ-
ous generation and still adhered to during the reign of classical electrodynamics, now
must be definitively abandoned. Through the creation and development of the field con-
cept, a new possibility for the comprehension of the physical world has gradually taken
shape. Mie was the first to show a way that makes accessible to general mathematical
treatment this newly risen ‘field theoretical ideal of unity’ as I would like to call it.155

Curiously neither Einstein nor Minkowski are mentioned in Hilbert’s discussion of
the spacetime continuum as the “foundation” of “the new field-theoretical ideal”:

154 “Die gewaltigen Problemstellungen und Gedankenbildungen der allgemeinen Relativitätstheorie von
Einstein finden nun, wie ich in meiner ersten Mitteilung ausgeführt habe, auf dem von Mie betretenen
Wege ihren einfachsten und natürlichsten Ausdruck und zugleich in formaler Hinsicht eine systemati-
sche Ergänzung und Abrundung.” (Hilbert 1924, 1–2) The changes in Hilbert’s theory were accompa-
nied by a change in his attitude to Einstein’s achievement, by which he was increasingly impressed:
see (Corry 1999a, 522–525).

155 “Das mechanistische Einheitsideal in der Physik, wie es von den großen Forschern der vorangegange-
nen Generation geschaffen und noch während der Herrschaft der klassischen Elektrodynamik festge-
halten worden war, muß heute endgültig aufgegeben werden. Durch die Aufstellung und
Entwickelung des Feldbegriffes bildete sich allmählich eine neue Möglichkeit für die Auffassung der
physkalischen Welt aus. Mie zeigte als der erste einen Weg, auf dem dieses neuenstandene “feldtheo-
retische Einheitsideal”, wie ich es nennen möchte, der allgemeinen mathematischen Behandlung
zugänglich gemacht werden kann.” (Hilbert 1924, 1)
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While the old mechanistic conception takes matter itself as a direct starting point and
assumes it to be determined by a finite range of discrete parameters; a physical contin-
uum, the so-called spacetime manifold, rather serves as the foundation of the new field-
theoretical ideal. While previously universal laws took the form of [ordinary] differential
equations with one independent variable, now partial differential equations are their nec-
essary form of expression.156

Mie was exalted to the otherwise rather empty heaven of the founding fathers, leaving
room for Hilbert’s attempts at a unified theory of gravitation and electromagnetism.
He generously mentioned other contemporary efforts as off-springs of his own contri-
bution, a view hardly shared by his contemporaries (see below):

Since the publication of my first communication, significant papers on this subject have
appeared: I mention only Weyl’s magnificent and profound investigations, and Einstein’s
communications, filled with ever new approaches and ideas. In the meantime, even Weyl
took a turn in his development that led him too to arrive at just the equations I formu-
lated; and on the other hand Einstein also, although starting repeatedly from divergent
approaches, differing among themselves, ultimately returns, in his latest publication, to
precisely the equations of my theory.157

This passage from Hilbert leaves unspecified to which of his equations he is referring.
Given his references to Weyl and Einstein, he must mean the two sets of field equations
(51) and (52), which are rather obvious ingredients of any attempted unification of
gravitation and electromagnetism. The unique feature of his approach, the specific con-
nection he introduced between these two sets of equations (see (83)) constituting the
mathematical expression of electrodynamics as a phenomenon following from gravita-
tion, had become highly problematic and was not adopted by either Weyl or Einstein. 

Indeed, it was already problematic whether Weyl’s and Einstein’s attempts at uni-
fication were any more fortunate than Hilbert’s. In his concluding paragraph, Hilbert
himself expressed his doubts, which were based on the rapid progress of quantum
physics, on the one hand, and the lack of any concrete physical results of such theo-
ries, on the other:

Whether the pure field theoretical ideal of unity is indeed definitive, and what possible
supplements and modifications of it are necessary to enable in particular the theoretical
foundation for the existence of negative and positive electrons, as well as the consistent

156 “Während die alte mechanistische Auffassung unmittelbar die Materie selbst als Ausgang nimmt und
diese durch eine endliche Auswahl diskreter Parameter bestimmt ansetzt, dient vielmehr dem neuen
feldtheoretischen Ideal das physikalische Kontinuum, die sogenannte Raum-Zeit-Mannigfaltigkeit,
als Fundament. Waren früher Differenzialgleichungen mit einer unabhängigen Variablen die Form der
Weltgesetze, so sind jetzt notwendig partielle Differenzialgleichungen ihre Ausdrucksform.”
(Hilbert 1924, 1)

157 “Seit der Veröffentlichung meiner ersten Mitteilung sind bedeutsame Abhandlungen über diesen
Gegenstand erschienen: ich erwähne nur die glänzenden und tiefsinnigen Untersuchungen von Weyl
und die an immer neuen Ansätzen und Gedanken reichen Mitteilungen von Einstein. Indes sowohl
Weyl gibt späterhin seinem Entwicklungsgange eine solche Wendung, daß er auf die von mir aufge-
stellten Gleichungen ebenfalls gelangt, und andererseits auch Einstein, obwohl wiederholt von abwei-
chenden und unter sich verschiedenen Ansätzen ausgehend, kehrt schließlich in seinen letzten
Publikationen geradewegs zu den Gleichungen meiner Theorie zurück.” (Hilbert 1924, 2)
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development of the laws holding in the interior of the atom—to answer this is the task for
the future.158

In spite of his doubts, Hilbert was convinced that “his theory” would endure, (see
the preceding paragraph), expressing the belief that it was of programmatic signifi-
cance for future developments. Even if not, at least philosophical benefit could be
drawn from it:

I am convinced that the theory I have developed here contains an enduring core and cre-
ates a framework within which there is sufficient scope for the future development of
physics in the sense of a field theoretical ideal of unity. In any case, it is also of epistemo-
logical interest to see how the few, simple assumptions I put forth in Axioms I, II, III, and
IV suffice for the construction of the entire theory.159

The fact that his theory is not based exclusively on these axioms, but also depends
rather crucially on other physical concepts, such as energy, and that his theory might
change in content as well structure if these concepts changes their meaning,—all of
this evidently remained outside of Hilbert’s epistemological scope.

6. HILBERT’S ADOPTION OF EINSTEIN’S PROGRAM: 
THE SECOND PAPER AND ITS REVISIONS

6.1 From Paper 1 to Paper 2

When Hilbert published his Paper 1 in early 1916, he still hoped that his unification
of electromagnetism and gravitation would provide the basis for solving the riddles
of microphysics. He opened his paper announcing:

I reserve for later communications the detailed development and particularly the special
application of my basic equations to the fundamental questions of the theory of electric-
ity.160

and concluding:

... I am also convinced that through the basic equations established here the most inti-
mate, presently hidden processes in the interior of the atom will receive an explanation,

158 “Ob freilich das reine feldtheoretische Einheitsideal ein definitives ist, evtl. welche Ergänzungen und
Modifikationen desselben nötig sind, um insbesondere die theoretische Begründung für die Existenz
des negativen und des positiven Elektrons, sowie den widerspruchsfreien Aufbau der im Atominneren
geltenden Gesetze zu ermöglichen,—dies zu beantworten, ist die Aufgabe der Zukunft.” (Hilbert
1924, 2)

159 “Ich glaube sicher, daß die hier von mir entwickelte Theorie einen bleibenden Kern enthält und einen
Rahmen schafft, innerhalb dessen für den künftigen Aufbau der Physik im Sinne eines feldtheoreti-
schen Einheitsideals genügender Spielraum da ist. Auch ist es auf jeden Fall von erkenntnistheoreti-
schem Interesse, zu sehen, wie die wenigen einfachen in den Axiomen I, II, III, IV von mir
ausgesprochenen Annahmen zum Aufbau der ganzen Theorie genügend sind.” (Hilbert 1924, 2)

160 “Die genauere Ausführung sowie vor Allem die spezielle Anwendung meiner Grundgleichungen auf
die fundamentalen Fragen der Elektrizitätslehre behalte ich späteren Mitteilungen vor.” (Hilbert 1916,
395)
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and in particular that generally a reduction of all physical constants to mathematical con-
stants must be possible ...161

Clearly, he intended to dedicate a second communication to the physical conse-
quences of his theory. By March 1916 he had submitted a second installment, which
was then withdrawn, no trace remaining.162 What does remain are the notes of Hil-
bert’s SS 1916 and WS 1916/17 Lectures, and his related Causality Lecture. The WS
1916/17 Lectures offer hints of how his theory would lead to a modification of Max-
well’s equations near the sources. While this part is clearly still related to Hilbert’s
original project, the bulk of these notes testify to his careful study of current work by
Einstein and others on general relativity, as well as containing original contributions
to that project. In the second communication to the Göttingen Academy submitted at
the end of December 1916 (hereafter referred to as “Paper 2”), work on general rela-
tivity occupied the entire paper (Hilbert 1917). Hilbert’s lecture notes are important
for understanding the transition from his original aims to Paper 2, as well as the con-
tents of this paper.163 One of the most remarkable features of these notes is the open-
ness and informality with which Hilbert shares unsolved problems with his students,
later explicitly stating that this was a central goal of his lectures:

In lectures, and above all in seminars, my guiding principle was not to present material in
a standard and as smooth as possible way, just to help the students to maintain ordered
notebooks. Above all, I tried to illuminate the problems and difficulties and offer a bridge
leading to currently open questions. It often happened that in the course of a semester the
program of an advanced lecture was completely changed because I wanted to discuss
issues in which I was currently involved as a researcher and which had not yet by any
means attained their definite formulation.164

6.2 The Causality Quandary

The lecture notes make it clear that Hilbert was still in a quandary over the treatment
of causality because his Proofs argument against general covariance seemed to
remain valid. The bulk of the typescript notes of his SS 1916 Lectures deal with spe-
cial relativity (which he calls “die kleine Relativität”): kinematics, and vector and

161 “... ich bin auch der Überzeugung, daß durch die hier aufgestellten Grundgleichungen die intimsten,
bisher verborgenen Vorgänge innerhalb des Atoms Aufklärung erhalten werden und insbesondere all-
gemein eine Zurückführung aller physikalischen Konstanten auf mathematische Konstanten möglich
sein muß ...” (Hilbert 1916, 407)

162 See the discussion in (Sauer 1999, 560 n. 129).
163 The importance of Hilbert’s lectures has been emphasized by Leo Corry. See (Corry 2004).
164  “Es war mein Grundsatz, in den Vorlesungen und erst recht in den Seminaren nicht einen eingefahre-

nen und so glatt wie möglich polierten Wissensstoff, der den Studenten das Führen sauberer Kolleg-
hefte erleichtert, vorzutragen. Ich habe vielmehr immer versucht, die Probleme und Schwierigkeiten
zu beleuchten und die Brücke zu den aktuellen Fragen zu schlagen. Nicht selten kam es vor, daß im
Verlauf eines Semesters das stoffliche Programm einer höheren Vorlesung wesentlich abgeändert
wurde, weil ich Dinge behandeln wollte, die mich gerade als Forscher beschäftigten und die noch kei-
neswegs eine endgültige Gestalt gewonnen hatten.” (Reidemeister 1971, 79) Translation by Leo Corry.
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tensor analysis (pp. 1–66); dynamics (pp. 66–70 and 76–82); and Maxwell’s electro-
dynamics (pp. 70–76 and 84–89). Hilbert then discusses Mie’s theory in its original,
special-relativistic form (pp. 90–102), and the need to combine it with “Einstein’s
concept of the general relativity of events” (“des Einstein’schen Gedankens von der
allgemeinen Relativität des Geschehens,” p. 103). After introducing the metric tensor,
he develops the field equations for gravitation and electromagnetism (pp. 103–111).
Discussing these equations, he notes that the causality problem remains unsolved:

These are 14 equations for the 14 unknown functions  and  ( ). The
causality principle may or may not be satisfied (the theory has not yet clarified this
point). In any event, unlike the case of Mie’s theory, the validity of this principle cannot
be inferred from simple considerations. Of these 14 equations, 4 (e.g., the 4 Maxwell
equations) are a consequence of the remaining 10 (e.g., the gravitational equations).
Indeed, the remarkable theorem holds that the number of equations following from
Hamilton’s principle always corresponds to the number of unknown functions, except in
the case occurring here, that the integral is an [“a general” added by hand] invariant.165

He still had not resolved the causality problem when he continued the lectures during
the winter semester. Among other things, the WS 1916/17 Lecture notes contain
much raw material for Paper 2. For example, the discussion of causal relations
between events in a given spacetime very much resembles the treatment in that
paper.166 Yet the notes do not discuss the causality question for the field equations.

The same answer to this problem presented in Paper 2 is given in the typescript
(unfortunately undated) of his Causality Lecture. From its contents, it is reasonable to
conjecture that this is Hilbert’s first exposition of his newly-found solution. After dis-
cussing the problem for his generally-covariant system of equations and constructing
an example to illustrate its nature (pp. 1–5), he comments: 

Einstein’s old theory now amounts to the addition of 4 non-invariant equations. But this
too is mathematically incorrect. Causality cannot be saved in this way.167

165 “Dies sind 14 Gleichungen für die 14 unbekannten Funktionen  und  ( ). Das
Kausalitätsprinzip kann erfüllt sein, oder nicht (Die Theorie hat diesen Punkt noch nicht aufgeklärt).
Jedenfalls lässt sich auf die Gültigkeit dieses Prinzips nicht wie im Falle der Mie’schen Theorie durch
einfache Ueberlegungen schliessen. Von diesen 14 Gleichungen sind nämlich 4 (z.B. die 4 Maxwell-
schen) eine Folge der 10 übrigen (z.B. der Gravitationsgleichungen). Es gilt nämlich der merkwür-
dige Satz, dass die Zahl der aus dem Hamiltonschen Prinzip fliessenden Gleichungen immer mit der
Zahl der unbekannten Funktionen übereinstimmt, ausser in dem hier eintretenden Fall, das unter dem
Integral [“eine allgemeine” added by hand] Invariante steht.” (SS 1916 Lectures, 110)

166  See Chapter XIII of the notes, Einiges über das Kausalitätsprinzip in der Physik, 97–103, and
pp. 57–59 of Paper 2, both of which are discussed below.

167 “Die alte Theorie von Einstein läuft nun darauf hinaus, 4 nicht invariante Gleichungen hinzuzufügen.
Aber auch dies ist mathematisch falsch. Auf diesem Wege kann die Kausalität nicht gerettet werden”
(p. 5). As discussed above, in his Entwurf theory Einstein did not first set up a system of generally-
covariant equations and then supplement them by non-invariant conditions; but started from non-gen-
erally-covariant field equations. But he had considered the possibility described by Hilbert that these
equations have a generally-covariant counterpart, from which they could be obtained by imposing
non-invariant conditions.
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A similar comment appears in Paper 2: 

In his original theory, now abandoned, A. Einstein (Sitzungsberichte der Akad. zu Berlin,
1914, p. 1067) had indeed postulated certain 4 non-invariant equations for the  in
order to save the causality principle in its old form.168

Neither here nor in any later publication does Hilbert repeat the claim in the lecture
notes that this procedure (which he himself had followed in the Proofs) is
“mathematisch falsch,” which strongly suggests that the notes precede Paper 2. 

This suggested temporal sequence is confirmed by another pair of passages: In his
lecture, Hilbert compares the problem created by general covariance of a system of
partial differential equations and that created by parameter invariance in the calculus
of variations:

The difficulty of having to distinguish between a meaningful and a meaningless assertion
is also encountered in Weierstrass’s calculus of variations. There the curve to be varied is
assumed to be given in parametric form, and one then obtains a differential equation for
two unknown functions. One then considers only those assertions that remain invariant
when the parameter  is replaced by an arbitrary function of 169

This comparison may well have played a significant role in his solution of the causal-
ity problem. The corresponding passage in Paper 2 generalizes this comparison: 

In the theory of curves and surfaces, where a statement in a chosen parametrization of the
curve or surface has no geometrical meaning for the curve or surface itself, if this state-
ment does not remain invariant under an arbitrary transformation of the parameters or
cannot be brought to invariant form; so also in physics we must characterize a statement
that does not remain invariant under any arbitrary transformation of the coordinate sys-
tem as physically meaningless.170

This argument is so much more general that it is hard to believe that, once he had hit
upon it, Hilbert would have reverted to its restricted application to extremalization of
curves. So we shall assume the priority of the Causality Lecture notes.

In these notes, Hilbert asserts that the causality quandary can be resolved by an
appropriate understanding of physically meaningful statements:

168 “In seiner ursprünglichen, nunmehr verlassenen Theorie hatte A. Einstein (Sitzungsberichte der Akad.
zu Berlin. 1914 S. 1067) in der Tat, um das Kausalitätsprinzip in der alten Fassung zu retten, gewisse
4 nicht invariante Gleichungen für die  besonders postuliert.” (Hilbert 1917, 61)

169 “Auf die Schwierigkeit, zwischen einer sinnvollen und einer sinnlosen Behauptung unterscheiden zu
müssen, stösst man übrigens auch in der Weierstrass’schen Variationsrechnung. Dort wird die zu vari-
ierende Kurve als in Parametergestalt gegeben angenommen, und man erhält dann eine Differential-
gleichung für zwei unbekannte Funktionen. Man betrachtet dann nur solche Aussagen, die invariant
bleiben, wenn man den Parameter  durch eine willkürliche Funktion von  ersetzt.” (Causality Lec-
ture, 8)

170 “Gerade so wie in der Kurven- und Flächentheorie eine Aussage, für die die Parameterdarstellung der
Kurve oder Fläche gewählt ist, für die Kurve oder Fläche selbst keinen geometrischen Sinn hat, wenn
nicht die Aussage gegenüber einer beliebigen Transformation der Parameter invariant bleibt oder sich
in eine invariante Form bringen läßt, so müssen wir auch in der Physik eine Aussage, die nicht gegen-
über jeder beliebigen Transformation des Koordinatensystems invariant bleibt, als physikalisch sinn-
los bezeichnen.” (Hilbert 1917, 61)
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We obtain the explanation of this paradox by attempting to more rigorously grasp the
concept of relativity. It does not suffice to say that the laws of the world are independent
of the frame of reference, but rather every single assertion about an event or a concur-
rence of events only then takes on a physical meaning if it is independent of its designa-
tion, i.e. when it is invariant.171

In the last clause, one hears distant echoes of Einstein’s assertion in his expository
paper Die Grundlage der allgemeinen Relativitätstheorie:

We allot to the universe four spacetime variables  in such a way that for
every point-event there is a corresponding system of values of the variables  To
two coincident point-events there corresponds one system of values of the variables

 i.e. coincidence is characterized by the identity of the co-ordinates. ... As all
our physical experience can be ultimately reduced to such coincidences, there is no
immediate reason for preferring certain systems of coordinates to others, that is to say,
we arrive at the requirement of general co-variance.172

Perusal of this paper, published on 11 May 1916 and cited in Hilbert’s WS 1916/17
Lectures,173 may well have contributed to his new understanding of the causality
problem. 

However, Hilbert’s interpretation of a physically meaningful statement actually
differs from that of Einstein. Einstein had turned the uniqueness problem for solu-
tions of generally-covariant field equations into an argument against the physical sig-
nificance of coordinate systems. Hilbert attempted to turn the problem into its own
solution by defining physically meaningful statements as those for which no such
ambiguities arise, whether such statements employ coordinate systems or not. In his
Causality Lecture, Hilbert claims to demonstrate the validity of the “causality princi-
ple,” formulated in terms of physically meaningful statements:

We would like to prove that the causality principle formulated as follows: “All meaning-
ful assertions are a necessary consequence of the preceding ones [see the citation
above]” is valid. Only this theorem is logically necessary and, for physics, also com-
pletely sufficient.174

To establish this principle, he considers an arbitrary set of generally-covariant
field equations (which he calls “ein System invarianter Gleichungen”) involving the

171 “Die Aufklärung dieses Paradoxons erhalten wir, wenn wir nun den Begriff der Relativität schärfer zu
erfassen suchen. Man muss nämlich nicht nur sagen, dass die Weltgesetze vom Bezugssystem unab-
hängig sind, es hat vielmehr jede einzelne Behauptung über eine Begebenheit oder ein Zusammen-
treffen von Begebenheiten physikalisch nur dann einen Sinn, wenn sie von der Benennung
unabhängig, d.h. wenn sie invariant ist.” (Causality Lecture, 5–6)

172 “Man ordnet der Welt vier zeiträumliche Variable  zu, derart, dass jedem Punktereignis
ein Wertsystem der Variablen  entspricht. Zwei koinzidierenden Punktereignissen entspricht
dasselbe Wertsystem der Variablen  d. h. die Koinzidenz ist durch die Übereinstimmung der
Koordinaten charakterisiert.  .... Da sich alle unsere physikalischen Erfahrungen letzten Endes auf sol-
che Koinzidenzen zurückführen lassen, ist zunächst kein Grund vorhanden, gewisse Koordinatensy-
steme vor anderen zu bevorzugen, d.h. wir gelangen zu der Forderung der allgemeinen Kovarianz.”
(Einstein 1916a, 776–777)

173 See (WS 1916/17 Lectures, 112).
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metric tensor, the electromagnetic potentials, and their derivatives.175 He specifies
the values of these fields and their derivatives on the space-like hypersurface 
which he calls “the present” (“die Gegenwart”); and considers coordinate transforma-
tions that do not change the coordinates on this hypersurface, but are otherwise arbi-
trary (except for continuity and differentiability) off the hypersurface (“die
Transformation soll die Gegenwart ungeändert lassen”). He then defines a physically
meaningful statement as one that is uniquely determined by Cauchy data, intending
to thus establish, at the same time, his principle of causality in terms of what one
might call “a mathematical response” to the problem of uniqueness in a generally-
covariant field theory:

Only such a [meaningful assertion] is unequivocally determined by the initial values of
  and their derivatives, and in fact these initial values are to be understood as

Cauchy boundary-value conditions. It must be accepted that one can prescribe these
boundary values arbitrarily, or that one can proceed to a place in the world at the moment
in time when the state characterized by these values prevails. The observer of nature is
also considered as standing outside these physical laws; otherwise one would arrive at
the antinomies of free will.176

As this passage makes clear, Hilbert’s proposed definition of physically meaningful
statements and clarification of the problem of causality is flawed by the still-unrecog-
nized intricacies of the Cauchy problem in general relativity. He evidently failed to
realize that the classical notion of freely-choosable initial values no longer works for
generally-covariant field equations since some of them function as constraints on the
data that can be given on an initial hypersurface, rather than as evolution equations
for that data off this surface. The next section discusses Hilbert’s treatment of the
problem of causality in Paper 2, including further evidence of his failure to fully
grasp Einstein’s insight that, in general relativity, coordinate systems have no physi-
cal significance of their own.

174 “Wir wollen beweisen, dass das so formulierte Kausalitätsprinzip: “Alle sinnvollen Behauptungen
sind eine notwendige Folge der vorangegangenen [see the citation above]” gültig ist. Dieser Satz
allein ist logisch notwendig und er ist auch für die Physik vollkommen ausreichend.” (Causality Lec-
ture, 5–6)

175 The original typescript had specified first and second derivatives of the metric and first derivatives of
the electromagnetic potentials, but by hand Hilbert added “beliebig hohen” in the first case and
deleted “ersten” in the second.

176 “Nur eine solche [sinnvolle Behauptung] ist durch die Anfangswerte der   und ihrer Ableitun-
gen eindeutig festgelegt und zwar sind diese Anfangswerte als Cauchy’sche Randbedingungen zu ver-
stehen. Dass man diese Randwerte beliebig vorgeben kann, oder dass man sich an eine Stelle der Welt
hinbegeben kann, wo der durch diese Werte charakterisierte Zustand in diesem Zeitmoment herrscht,
muss hingenommen werden. Der die Natur beobachtende Mensch wird eben als ausserhalb dieser
physikalischen Gesetze stehend betrachtet; sonst käme man zu den Antinomien der Willensfreiheit.”
(Causality Lecture, 6–7)
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6.3 Hilbert at Work on General Relativity

Paper 2 shows that Hilbert’s original goal of developing a unified gravito-electromag-
netic theory, with the aim of explaining the structure of the electron and the Bohr
atom, has been modified in the light of the successes of Einstein’s purely gravita-
tional program. Hilbert’s shift of emphasis in Paper 1 to the primacy of the gravita-
tional field equations must have facilitated his shift to the consideration of the
“empty-space” field equations. From Hilbert’s perspective, they are just that subclass
of solutions to his fourteen “unified” field equations, for which the electromagnetic
potentials vanish. This makes them formally equivalent to the sub-class of solutions
to Einstein’s field equations with a stress-energy tensor that either vanishes every-
where, or at least outside of some finite world-tube containing the sources of the
field. This formal equivalence no doubt contributed to the ease with which contempo-
rary mathematicians and physicists assimilated Hilbert’s program to Einstein’s, treat-
ing Paper 2 as a contribution to the development of the general theory of relativity.
This is how Hilbert’s contribution came to be assimilated to the relativistic tradition,
as we shall discuss in more detail below.

Let us now take a look at the six major topics Hilbert treated in Paper 2:

1. measurement of the components of the metric tensor (Hilbert 1917, 53–55);

2. characteristics and bicharacteristics of the Hamilton-Jacobi equation correspond-
ing to the metric tensor (Hilbert 1917, 56–57);

3. causal relation between events in a spacetime with given metric (Hilbert 1917,
57–59);

4. the causality problem for the field equations determining the metric tensor (Hil-
bert 1917, 59–63);

5. Euclidean geometry as a solution to the field equations—in particular, the investi-
gation of conditions that characterize it as a unique solution (Hilbert 1917, 63–66
and 70); and 

6. the Schwarzschild solution, its derivation (Hilbert 1917, 67–70), and determina-
tion of the paths of (freely-falling) particles and light rays in it (Hilbert 1917, 70–
76).

1) The metric tensor and its measurement: First of all, Hilbert dropped his previ-
ous use of one imaginary coordinate, perhaps influenced by Einstein’s use of real
coordinates, and emphasized that the  now all real, provide the
“Massbestimmung einer Pseudogeometrie” (Hilbert 1917, 54). He classified the ele-
ments (“Stücke”) of all curves: time-like elements measure proper time; space-like
elements measure length; and null elements are segments of a light path. He intro-
duced two ideal measuring instruments: a measuring tape (“Maßfaden”) for lengths,
and a light clock (“Lichtuhr”) for proper times. He makes a comment that suggests, in
spite of his remarks in Paper 1 and the Causality Lecture (see above), a lingering

gμν,
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belief in some objective significance to the choice of a coordinate system, indepen-
dently of the metric tensor:

First we show that each of the two instruments suffices to compute with its aid the values
of the  as functions of  just as soon as a definite spacetime coordinate system 
has been introduced.177

He ends with some comments on a possible axiomatic construction (“Aufbau”) of the
pseudogeometry, suggesting the need for two axioms:

first an axiom should be established, from which it follows that length resp. proper time
must be integrals whose integrand is only a function of the  and their first derivatives
with respect to the parameter [  where  is the parametric representation of
a curve]; ...

Secondly an axiom is needed whereby the theorems of the pseudo-Euclidean geometry,
that is the old principle of relativity, shall be valid in infinitesimal regions;178

2) Characteristics and bicharacteristics: Hilbert defined the null cone at each
point, and pointed out that the Monge differential equation (Hilbert 1917, 56):

(129)

and the corresponding Hamilton-Jacobi partial differential equation:

(130)

determine the resulting null cone field, the geodesic null lines being the characteris-
tics of the first and the bicharacteristics of the second of these equations. The null
geodesics emanating from any world point form the null conoid (“Zeitscheide;”
many current texts apply the term “null cone” to non flat spacetimes, but we prefer
the term “conoid”) emanating from that point. He points out that the equation for
these conoids are integral surfaces of the Hamilton-Jacobi equation; and that all time-
like world lines emanating from a world point lie inside its conoid, which forms their
boundary.

These topics, rather briefly discussed in Paper 2, are treated much more exten-
sively in Hilbert’s WS 1916/17 Lectures. In many ways Hilbert’s discussion in

177 “Zunächst zeigen wir, daß jedes der beiden Instrumente ausreicht, um mit seiner Hülfe die Werte der
 als Funktion von  zu berechnen, sobald nur ein bestimmtes Raum-Zeit-Koordinatensystem 

eingeführt worden ist.” (Hilbert 1917, 55)
178 “erstens ist ein Axiom aufzustellen, auf Grund dessen folgt, daß Länge bez. Eigenzeit Integrale sein

müssen, deren Integrand lediglich eine Funktion der  und ihrer ersten Ableitungen nach dem Para-
meter ist; ...
Zweitens ist ein Axiom erforderlich, wonach die Sätze der pseudo-Euklidischen Geometrie d.h. das
alte Relativitätsprinzip im Unendlichkleinen gelten soll;” (Hilbert 1917, 56)
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Paper 2 reads like a précis of these notes; it becomes much more intelligible if they
are consulted. Chapter IX (pp. 69–80) entitled “Die Monge’sche Differentialglei-
chung” also treats the Hamilton-Jacobi equation and the theory of characteristics,
emphasizing their relation to the Cauchy problem, and the reciprocal relation
between integral surfaces of the Hamilton-Jacobi equation (the null conoids are
called “transzendentale Kegelfläche”) and null curves. Chapters X (pp. 80–82, “Die
vierdimensionale eigentliche u. Pseudogeometrie”) and XI (pp. 82–97,
“Zusammenhang mit der Wirklichkeit”) cover the material in the first section of
Paper 2: the measuring tape (“Massfaden”) is discussed in section 38 (pp. 85–86 and
pp. 91–92), and the light clock, already introduced in the context of special relativity
(see the SS 1916 Lectures, 6–10), is reintroduced in section 44 (pp. 93–94,
“Axiomatische Definition der Lichtuhr”). Both instruments are used to determine the
components of the metric tensor as functions of the coordinates, “sobald nur ein
bestimmtes Raum-Zeit Koordinatensystem  eingeführt worden ist” (p. 95).

3) Causal relation between events: 179 In accord with the implicit requirement that
three of the coordinates be space-like and one time-like, Hilbert imposes correspond-
ing conditions on the components of the metric tensor. But he has a unique way of
motivating them:

Up to now all coordinate systems  that result from any one by arbitrary transformation
have been regarded as equally valid. This arbitrariness must be restricted when we want
to realize the concept that two world points on the same time line can be related as cause
and effect, and that it should then no longer be possible to transform such world points to
be simultaneous. In declaring  as the true time coordinate we adopt the following def-
inition:

...

So we see that the concepts of cause and effect, which underlie the principle of causality,
also do not lead to any inner contradictions whatever in the new physics, if we only take
the inequalities (31) always to be part of our basic equations, that is if we confine our-
selves to using true spacetime coordinates.180

Again, he seems to believe that there is some residual physical significance in the
choice of a coordinate system: it must reflect the relations of cause and effect
between events on the same time-like world line. He defines a proper (“eigentliches”)
coordinate system as one, in which (in effect) the first three coordinates are space-like
and the fourth time-like in nature; transformations between such proper coordinate
systems are also called proper. Given Hilbert’s stated goal of restricting the choice of
coordinates to those that reflect the causal order on all time-like world lines, his con-

179 This section also includes material from Hilbert’s WS 1916/17 Lectures: Chapter XII, Einiges über
das Kausalitätsprinzip in der Physik, (pp. 97–104) covers the same ground as, but in no more detail
than, the text of Paper 2.
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ditions are sufficient but not necessary since they exclude retarded null coordinates,
which also preserve this causal order.

4) Causality problem for the field equations: As noted, Hilbert’s analysis follows
his Causality Lecture. In Paper 2 he writes:

Concerning the principle of causality, let the physical quantities and their time deriva-
tives be known at the present in some given coordinate system: then a statement will only
have physical meaning if it is invariant under all those transformations, for which the
coordinates just used for the present remain unchanged; I maintain that statements of this
type for the future are all uniquely determined, that is, the principle of causality holds in
this form:

From present knowledge of the 14 physical potentials   all statements about them
for the future follow necessarily and uniquely provided they are physically meaning-
ful.181

A hasty reading might suggest that Hilbert is asserting the independence of all physi-
cally meaningful statements from the choice of a coordinate system, and he has often
been so interpreted; but this is not what he actually says. His very definition of physi-
cally meaningful (“physikalisch Sinn haben”) involves the class of coordinate systems
that leave the coordinates on the initial hypersurface (“die Gegenwart”) unchanged.
Secondly, Hilbert uses a Gaussian coordinate system, introduced earlier,182 in order to
prove his assertion about the causality principle.183 Finally, if his words were so inter-
preted, they would stand in flagrant contradiction to his earlier statements (cited above)

180 “Bisher haben wir alle Koordinatensysteme  die aus irgend einem durch eine willkürliche Transfor-
mation hervorgehen, als gleichberechtigt angesehen. Diese Willkür muß eingeschränkt werden,
sobald wir die Auffassung zur Geltung bringen wollen, daß zwei auf der nämlichen Zeitlinie gelegene
Weltpunkte im Verhältnis von Ursache und Wirkung zu einander stehen können und daß es daher
nicht möglich sein soll, solche Weltpunkte auf gleichzeitig zu transformieren.
...
So sehen wir, daß die dem Kausalitätsprinzip zu Grunde liegenden Begriffe von Ursache und Wirkung
auch in der neuen Physik zu keinerlei inneren Widersprüche führen, sobald wir nur stets die Unglei-
chungen (31) [the conditions Hilbert imposes on the metric tensor] zu unseren Grundgleichungen hin-
zunehmen d.h. uns auf den Gebrauch eigentlicher Raum-zeitkoordinaten beschränken.” (Hilbert 1917,
57 and 58)

181 “Was nun das Kausalitätsprinzip betrifft, so mögen für die Gegenwart in irgend einem gegebenen
Koordinatensystem die physikalischen Größen und ihre zeitlichen Ableitungen bekannt sein: dann
wird eine Aussage nur physikalisch Sinn haben, wenn sie gegenüber allen denjenigen Transformatio-
nen invariant ist, bei denen eben die für die Gegenwart benutzten Koordinaten unverändert bleiben;
ich behaupte, daß die Aussagen dieser Art für die Zukunft sämtlich eindeutig bestimmt sind d.h. das
Kausalitätsprinzip gilt in dieser Fassung:
Aus der Kenntnis der 14 physikalischen Potentiale   in der Gegenwart folgen alle Aussagen
über dieselben für die Zukunft notwendig und eindeutig, sofern sie physikalischen Sinn haben.” (Hil-
bert 1917, 61)

182 See (Hilbert 1917, 58–59).
183 See (Hilbert 1917, 61–62).
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about the measurement of the metric and the causal relation between events which pre-
suppose attaching some residual physical meaning to the choice of coordinates.

His proof consists of a brief discussion of the Cauchy problem for the field equa-
tions in a Gaussian coordinate system. One of us has discussed this aspect of his work
elsewhere (Stachel 1992), so we shall be brief here. He only considers the ten gravita-
tional field equations (51) since he interprets Theorem I of Paper 1 as showing that
the other four (52) follow from them. Gaussian coordinates eliminate four of the 14
field quantities, the  leaving only ten (the six   and the four

), so he concludes that the resulting system of equations is in Cauchy normal form.
This treatment is erroneous on several counts, but we postpone discussion of this
question until the next section. More relevant to the present topic is Hilbert’s state-
ment:

Since the Gaussian coordinate system itself is uniquely determined, therefore also all
statements about those potentials (34) [the ten potentials mentioned above] with respect
to these coordinates are of invariant character.184

He never discusses the behavior of the initial data under coordinate transformations
on the initial hypersurface (three-dimensional hypersurface diffeomorphisms in mod-
ern terminology), confirming that his treatment is still tied to the use of particular
coordinate systems rather than being based on coordinate-invariant quantities.

Finally, his discussion of how to implement the requirement of physically mean-
ingful assertions depends heavily on the choice of a coordinate system. He remarks:

The forms, in which physically meaningful, i.e. invariant, statements can be expressed
mathematically are of great variety.185

and proceeds to discuss three ways:

First. This can be done by means of an invariant coordinate system. ...

Second. The statement, according to which a coordinate system can be found in which
the 14 potentials   have certain definite values in the future, or fulfill certain defi-
nite conditions, is always an invariant and therefore a physically meaningful one. ...

Third. A statement is also invariant and thus has physical meaning if it is supposed to be
valid in any arbitrary coordinate system.186

184 “Da das Gaußische Koordinatsystem selbst eindeutig festgelegt ist, so sind auch alle auf dieses Koor-
dinatensystem bezogenen Aussagen über jene Potentiale (34) von invariantem Charakter.” (Hilbert
1917, 62)

185 “Die Formen in denen physikalisch sinnvolle d.h. invariante Aussagen mathematisch zum Ausdruck
gebracht werden können, sind sehr mannigfaltig.” (Hilbert 1917, 62)

186 “Erstens. Dies kann mittelst eines invarianten Koordinatensystem geschehen. ...
Zweitens. Die Aussage, wonach sich ein Koordinatensystem finden läßt, in welchem die 14 Potentiale

  für die Zukunft gewisse bestimmte Werte haben oder gewisse Beziehungen erfüllen, ist stets
eine invariante und daher physikalisch sinnvoll. ...
Drittens. Auch ist eine Aussage invariant und hat daher stets physikalisch Sinn, wenn sie für jedes
beliebige Koordinatensystem gültig sein soll.” (Hilbert 1917, 62–63)
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The first two ways explicitly depend on the choice of a coordinate system, which is
not necessarily unique. As examples of the first way, he cites Gaussian and Rieman-
nian coordinates. It is true that, discussing the second, he notes:

The mathematically invariant expression for such a statement is obtained by eliminating
the coordinates from those relations.187

But he does not give an example, nor does he suggest the most obvious way of realiz-
ing his goal, if indeed it was a coordinate-independent solution to the problem: the
use of invariants as coordinates. As Kretschmann noted a few years later, in matter-
and field-free regions the four non-vanishing invariants of the Riemann tensor may be
used as coordinates. If the metric is then expressed as a function of these coordinates,
its components themselves become invariants.188 The use of such coordinates was
taken up again by Arthur Komar in the 1960s, and today they are often called
Kretschmann-Komar coordinates.189

One might think that Hilbert had in mind something like this in his third sug-
gested way. However, the example he cites makes it clear that he meant something
else:

An example of this are Einstein’s energy-momentum equations having divergence char-
acter. For, although Einstein’s energy [that is, the gravitational energy-momentum
pseudotensor] does not have the property of invariance, and the differential equations he
put down for its components are by no means covariant as a system of equations, never-
theless the assertion contained in them, that they shall be satisfied in any coordinate sys-
tem, is an invariant demand and therefore it carries physical meaning.190

Rather than invariant quantities, evidently he had in mind non-tensorial entities and
sets of equations, which nevertheless take the same form in every coordinate system.

In summary, Hilbert’s treatment in Paper 2 of the problem of causality in general
relativity still suffers from many of the flaws in his original approach. In particular,
physical significance is still ascribed to coordinate systems, and the claim is main-
tained that the identities following from Theorem I represent a coupling between the
two sets of field equations. On the other hand, his efforts to explore the solutions of
the gravitational field equations from the perspective of a mathematician produced
significant contributions to general relativity, to be discussed later.

187 “Der mathematische invariante Ausdruck für eine solche Aussage wird durch Elimination der Koordi-
naten aus jenen Beziehungen erhalten.” (Hilbert 1917, 62–63)

188 See (Kretschmann 1917).
189 See (Komar 1958).
190 “Ein Beispiel dafür sind die Einsteinschen Impuls-Energiegleichungen vom Divergenz Character.

Obwohl nämlich die Einsteinsche Energie die Invarianteneigenschaft nicht besitzt und die von ihm
aufgestellten Differentialgleichungen für ihre Komponenten auch als Gleichungssystem keineswegs
kovariant sind, so ist doch die in ihnen enthaltene Aussage, daß sie für jedes beliebige Koordinatensy-
stem erfüllt sein sollen, eine invariante Forderung und hat demnach einen physikalischen Sinn.” (Hil-
bert 1917, 63)
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5) Euclidean geometry: This section opens with some extremely interesting general
comments contrasting the role of geometry in what Hilbert calls the old and the new
physics:

The old physics with the concept of absolute time took over the theorems of Euclidean
geometry and without question put them at the basis of every physical theory. ...

The new physics of Einstein’s principle of general relativity takes a totally different posi-
tion vis-à-vis geometry. It takes neither Euclid’s nor any other particular geometry a pri-
ori as basic, in order to deduce from it the proper laws of physics, but, as I showed in my
first communication, the new physics provides at one fell swoop through one and the
same Hamilton’s principle the geometrical and the physical laws, namely the basic equa-
tions (4) and (5) [the ten gravitational and four electromagnetic field equations], which
tell us how the metric —at the same time the mathematical expression of the phe-
nomenon of gravitation—is connected with the values  of the electrodynamic poten-
tials.191

Hilbert declares:

With this understanding, an old geometrical question becomes ripe for solution, namely
whether and in what sense Euclidean geometry—about which we know from mathemat-
ics only that it is a logical structure free from contradictions—also possesses validity in
the real world.192

He later formulates this question more precisely:

The geometrical question mentioned above amounts to the investigation, whether and
under what conditions the four-dimensional Euclidean pseudo-geometry [i.e., the Min-
kowski metric] ... is a solution, or even the only regular solution, of the basic physical
equations.193

Hilbert thus takes up a problem that emerged with the development of non-Euclid-
ean geometry in the 19th century and considered by such eminent mathematicians as
Gauss and Riemann: the question of the relation between geometry and physical real-

191 “Die alte Physik mit dem absoluten Zeitbegriff übernahm die Sätze der Euklidische Geometrie und
legte sie vorweg einer jeden speziellen physikalischen Theorie zugrunde. ...
Die neue Physik des Einsteinschen allgemeinen Relativitätsprinzips nimmt gegenüber der Geometrie
eine völlig andere Stellung ein. Sie legt weder die Euklidische noch irgend eine andere bestimmte
Geometrie vorweg zu Grunde, um daraus die eigentlichen physikalischen Gesetze zu deduzieren, son-
dern die neue Theorie der Physik liefert, wie ich in meiner ersten Mitteilung gezeigt habe, mit einem
Schlage durch ein und dasselbe Hamiltonsche Prinzip die geometrischen und die physikalischen
Gesetze nämlich die Grundgleichungen (4) und (5), welche lehren, wie die Maßbestimmungen 
— zugleich der mathematischen Ausdruck der physikalischen Erscheinung der Gravitation — mit den
Werten  der elektrodynamischen Potentiale verkettet ist.” (Hilbert 1917, 63–64)

192 “Mit dieser Erkenntnis wird nun eine alte geometrische Frage zur Lösung reif, die Frage nämlich, ob
und in welchem Sinne die Euklidische Geometrie — von der wir aus der Mathematik nur wissen, daß
sie ein logisch widerspruchsfreier Bau ist — auch in der Wirklichkeit Gültigkeit besitzt.” (Hilbert
1917, 63)

193 “Die oben genannte geometrische Frage läuft darauf hinaus, zu untersuchen, ob und unter welchen
Voraussetzungen die vierdimensionale Euklidische Pseudogeometrie ... eine Lösung der physikali-
schen Grundgleichungen bez. die einzige reguläre Lösung derselben ist.” (Hilbert 1917, 64)
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ity. For a number of reasons, this question was not central to Einstein’s heuristic. He
had never addressed the question posed by Hilbert: the conditions under which
Minkowski spacetime is a unique solution to the gravitational field equations. To Ein-
stein, the question of the Newtonian limit, and hence the incorporation of Newton’s
theory into his new theory of gravitation, was much more important than the question
of the existence of matter-free solutions to his equations. Indeed, this question was a
rather embarrassing one for Einstein since such solutions display inertial properties of
test particles even in the absence of matter, a feature that he had difficulty in accept-
ing because of his Machian conviction that all inertial effects must be due to interac-
tion of masses.194 By establishing a connection between general relativity and the
mathematical tradition questioning the geometry of physical space, Hilbert made a
significant contribution to the foundations of general relativity.

In attempting to answer the question of the relation between Minkowski space-
time and his equations, Hilbert first of all notes that, if the electrodynamic potentials
vanish, then the Minkowski metric is a solution of the resulting equations, i.e., of the
vanishing of what we now call the Einstein tensor.195 He then poses the converse
question: under what conditions is the Minkowski metric the only regular solution to
these equations? He considers small perturbations of the Minkowski metric (a tech-
nique that Einstein had already introduced) and shows that, if these perturbations are
time independent (curiously, here reverting to use of an imaginary time coordinate)
and fall off sufficiently rapidly and regularly at infinity, then they must vanish every-
where. In the next section of the paper, he proves another relevant result, which we
shall discuss below.

This section of Paper 2 is a condensation of material covered in his WS 1916/17
Lectures:

• in the table of contents (p. 197), pp. 104–106 are entitled: “Der Sinn der Frage:
Gilt die Euklidische Geometrie?” 

• pp. 109–111 are headed “Gilt die Euklidische Geometrie in der Physik?” in the
typescript, with the handwritten title “Die Grundgleichungen beim Fehlen von
Materie” added in the margin, and entitled “Aufstellung der Grundgleichungen
beim Fehlen der Materie” in the table of contents; and 

• pp. 111–112, bear the handwritten title “Zwei Sätze über die Gültigkeit der Eukli-
dischen Geometrie” in the margin, and “Zwei noch unbewiesene Sätze über die
Gültigkeit der Pseudoeuklidischen Geometrie in der Physik” in the table of con-
tents. 
The lecture notes make much clearer than Paper 2 Hilbert’s motivation for a dis-

cussion of the empty-space field equations in general, and of the Schwarzschild metric
in particular. In the notes, Hilbert introduces the field equations in section 51 (WS

194 For a historical discussion, see (Renn 1994).
195 “wenn alle Elektrizität entfernt ist, so ist die pseudo-Euklidische Geometrie möglich” See (Hilbert

1917, 64).
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1916/17 Lectures, 106–109),196 sandwiched between discussions of his motivation
for raising the question of the validity of Euclidean geometry and his attempts to
answer it. At the end of the previous section he points out:

We would like to anticipate the results of our calculation: in general our basic physical
equations have no solutions at all. In my opinion, this is a positive result of the theory:
since in no way are we able to impose Euclidean geometry on nature through a different
interpretation of experiments. Assuming namely that my basic physical equations to be
developed are really correct, then no other physics is possible, i.e., reality cannot be
understood in a different way.197

Hilbert evidently thought he had found a powerful argument against geometric con-
ventionalism—presumably, he had Poincaré in mind here. He continues:

On the other hand we shall see that under certain very specialized assumptions—perhaps
the absence of matter throughout space is sufficient for this—the only solution to the dif-
ferential equations are  [the Minkowski metric].198

At this point, the problem of the status of geometry is broadened from three-dimen-
sional geometry to four dimensional pseudo-geometry—and in particular the ques-
tion of the status of Euclidean geometry is broadened to that of four-dimensional
Minkowski pseudo-geometry. In this form, it plays a central role in Hilbert’s thinking
about his program. This problem, rooted as it was in a mathematical tradition going
back to Gauss, led him naturally to consider what we call the empty-space Einstein
field equations. He hoped that the absence of matter and non-gravitational fields
might suffice to uniquely single out the Minkowski metric as a solution to his field
equations (which are identical to Einstein’s in this case):

It is possible that the following theorem is correct:
Theorem: If one removes all electricity from the world (i.e.  and demands abso-
lute regularity—i.e. the possibility of expansion in a power series—of the gravitational
potentials  (a requirement that in our opinion must always be fulfilled, even in the
general case), then Euclidean geometry prevails in the world, i.e. the 10 equations (3)
[equation number in the original; the vanishing of the Einstein tensor] have 
as their only solution.199

(He explains what he means by “regular” in his discussion of the Schwarzschild met-
ric, considered below.) Of course, Hilbert was not able to establish this theorem,
since it is not true, as Einstein’s work on gravitational waves might already have sug-

196 Page 107 is missing from the typescript.
197 “Wir wollen das Resultat unserer Rechnung vorwegnehmen: unsere physikalischen Grundgleichun-

gen haben im allgemeinen keineswegs Lösungen. Dies ist meiner Meinung nach ein positives Resultat
der Theorie: denn wir können der Natur die Euklidischen Geometrie durch andere Deutung der Expe-
rimente durchaus nicht aufzwingen. Vorausgesetzt nämlich, dass meine zu entwickelnden physikali-
schen Grundgleichungen wirklich richtig sind, so ist auch keine andere Physik möglich, d.h., die
Wirklichkeit kann nicht anders aufgefasst werden.” (WS 1916/17 Lectures, 106)

198 “Andererseits werden wir sehen, dass unter gewissen sehr spezialisierenden Voraussetzungen—viel-
leicht ist das Fehlen von Materie im ganzen Raum dazu schon hinreichend—die einzige Lösungen der
Diffentialgleichungen  [the Minkowski metric] sind.” 
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gested (Einstein 1916c). Nor was he able to find any other set of necessary and suffi-
cient conditions for the uniqueness of the Minkowski metric; but he did almost
establish one set of sufficient conditions and proved another:

I consider the following theorem to be very probably correct: If one removes all electric-
ity from the world and demands for the gravitational potential, apart from the self-evi-
dent requirement of regularity, that  is independent of  i.e. that gravitation is static,
and finally [one demands] also regular behavior at infinity, then  are the only
solutions to the gravitation equations (3)[equation number in the original].
I can now already prove this much of the theorem, that in the neighborhood of Euclidean
geometry there are certainly no solutions to these equations.200

This is, of course, the result that he did prove in Paper 2 (see above). The proof of
this result for the full, non-linear field equations hung fire for a long time with several
proofs for the case of static metrics being given over the years; the proof for station-
ary metrics was finally given by André Lichnerowicz in 1946.201

6) The Schwarzschild solution: The Schwarzschild solution had already been pub-
lished (Schwarzschild 1916) and Hilbert dedicates considerable space to it, both in
his lecture notes and in Paper 2. He uses it in the course of his effort to exploit the
new tools of general relativity for addressing the foundational questions of geometry
raised in the mathematical tradition. In his lecture notes, he introduces a number of
assumptions on the metric tensor in order to prove a theorem on the uniqueness of
Euclidean geometry:

1) Let  again be independent of 

2) Let  [interpolated by hand: “i.e. Gaussian coordinate system,
which can always be introduced by a transformation”] (Orthogonality of the  axis to
the -space, the so-called metric space.)

3) There is a distinguished point in the world, with respect to which central symmetry
holds, i.e. the rotation of the coordinate system around this point is a transformation of
the world onto itself.

199 “Es ist möglich, dass folgender Satz richtig ist:
Satz: Nimmt man alle Elektrizität aus der Welt hinweg (d.h. ) und verlangt man absolute Regu-
larität—d.h. Möglichkeit der Entwicklung in eine Potenzreihe—der Gravitationspotentiale  (eine
Forderung, die nach unserer Auffassung auch im allgemeinen Fall immer erfüllt sein muss), so
herrscht in der Welt die Euklidische Geometrie, d.h. die 10 Gleichungen (3) haben  als
einzige Lösung.” (WS 1916/17 Lectures, 111–112)

200 “Für sehr wahrscheinlich richtig halte ich folgenden Satz: 
Nimmt man alle Elektrizität aus der Welt fort und verlangt von den Gravitationspotentialen ausser der
selbstverständlichen Forderung der Regularität noch, dass  von  unabhängig ist, d.h. dass die
Gravitation stille steht, und schliesslich noch reguläres Verhalten im Unendlichen, so sind 
die einzigen Lösungen der Gravitationsgleichungen (3).
Von diesem Satz kann ich schon jetzt so viel beweisen, dass in der Nachbarschaft der Euklidischen
Geometrie sicher keine Lösung dieser Gleichungen vorhanden sind.” (WS 1916/17 Lectures, 112)

201 See (Lichnerowicz 1946).
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Now the following theorem holds: If the gravitational potentials fulfill conditions 1–3,
then Euclidean geometry is the only solution to the basic physical equations.202

The proof of this theorem leads him to consider the problem of spherically-sym-
metric solutions to the empty-space Einstein field equations, a problem that Hilbert
notes had previously been treated by Einstein (in the linear approximation) and
Schwarzschild (exactly). He claims for his own calculations only that, compared to
those of others, they are “auf ein Minimum reduziert” (WS 1916/17 Lectures, 113)
by working from his variational principle for the field equations (see above). Her-
mann Weyl gave a similar variational derivation in 1917 (Weyl 1917); the section of
his book Raum-Zeit-Materie on the Schwarzschild metric includes a reference to Hil-
bert’s Paper 2, which reproduces Hilbert’s variational derivation, (Weyl 1918a;
1918b, 230 n.9; 1923, 250 n.19). But Pauli’s magisterial survey of the theory of rela-
tivity mentions only Weyl’s paper, this probably contributing to the neglect of Hil-
bert’s contribution in most later discussions (Pauli 1921).

In Paper 2, Hilbert derives the Schwarzschild metric from the same three assump-
tions as in the lecture notes, emphasizing that:

In the following I present for this case a procedure that makes no assumptions about the
gravitational potentials  at infinity, and which moreover offers advantages for my
later investigations.203

In spite of this, many later derivations of the Schwarzschild metric still continue to
impose unnecessary boundary conditions. But Hilbert did not show that the assump-
tion of time-independence is also unnecessary, as proved by Birkhoff in 1923. (The
assertion that the Schwarzschild solution is the only spherically symmetric solution
to the empty-space Einstein equations is known as Birkhoff’s theorem.)204

Hilbert’s discussion of the Schwarzschild solution also raises the problem of its
singularities and their relation to Hilbert’s theory of matter. In his lecture notes, after
establishing the Schwarzschild metric, he writes:

202 “1) Es sei wieder  unabhängig von 
2) Es sei  [interpolated by hand: “d.h. Gauss’sches Koordinatensystem,
das durch Transformation immer eingeführt werden kann”] (Orthogonalität der t-Achse auf dem

-Raum, dem sogenannten Streckenraum.)
3) Es gebe einen ausgezeichneten Punkt in der Welt, in Bezug auf welchen zentrische Symmetrie vor-
handen sein soll, d.h. die Drehung des Koordinatensystems um diesen Punkt ist eine Transformation
der Welt in sich.
Nun gilt folgender Satz:
Erfüllen die Gravitationspotentiale die Bedingungen 1–3, so ist die Euklidische Geometrie die einzige
Lösung der physikalischen Grundgleichungen.” (WS 1916/17 Lectures, 113)

203 “Ich gebe im Folgenden für diesen Fall einen Weg an, der über die Gravitationspotentiale  im
Unendlichen keinerlei Voraussetzungen macht und ausserdem für meine späteren Untersuchungen
Vorteile bietet.” (Hilbert 1917, 67) For the derivation, see pp. 67–70.

204 See (Birkhoff 1923, 253–256).
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According to our conception of the nature of matter, we can only consider those  to
be physically viable solutions to the differential equations  [the Einstein equa-
tions] that are regular and singularity free.
We call a gravitational field or a metric “regular”—this definition had to be added—
when it is possible to introduce a coordinate system, such that the functions  are reg-
ular and have a non-zero determinant at every point in the world. Furthermore, we
describe a single function as being regular if it and all its derivatives are finite and contin-
uous. This is incidentally always the definition of regularity in physics, whereas in math-
ematics a regular function is required to be analytic.205

It is curious that Hilbert identifies physical regularity with infinite differentiability
and continuity of all derivatives. Either of these requirements is much too strong:
each precludes gravitational radiation carrying new information, for example gravita-
tional shock waves.206 But at least Hilbert attempted to define a singularity of the
gravitational field. In his understanding, the Schwarzschild solution has singularities
at  and at the Schwarzschild radius. But we now know the first singularity is
real, while the second can be removed by a coordinate transformation. He remarks:

When we consider that these singularities are due to the presence of a mass, then it also
seems plausible that they cannot be eliminated by coordinate transformations. However,
we will give a rigorous proof of this later by examining the behavior of geodesic lines in
the vicinity of this point.207

Hilbert then returns to his original motif: the Schwarzschild solution as a tool for dis-
cussing foundational problems of geometry:

In order to obtain singularity-free solutions, we must assume that a [i.e., the mass param-
eter] = 0. [This leads to the Minkowski metric.] ... This proves the ... theorem: In the
absence of matter, under the stated assumptions 1–3 [see above], the pseudo-Euclidean
geometry of the little relativity principle [i.e., special relativity] actually holds in physics;
and for t = const Euclidean geometry is in fact realized in the world.208

205 “Nach unserer Auffassung vom Wesen der Materie können wir als physikalisch realisierbare Lösun-
gen  der Differentialgleichungen  [the Einstein equations] nur diejenigen ansehen, wel-
che regulär und singularitätenfrei sind.
“Regulär” nennen wir ein Gravitationsfeld oder eine Massbestimmung,— diese Definition war noch
nachzutragen—wenn es möglich ist, ein solches Koordinatensystem einzuführen, dass die Funktionen

 an jeder Stelle der Welt regulär sind und eine von null verschiedenen Determinante haben. Wir
bezeichnen ferner eine einzelne Funktion als regulär, wenn sie mit allen ihren Ableitungen endlich
und stetig ist. Dies ist übrigens immer die Definition der Regularität in der Physik, während in der
Mathematik von einer regulären Funktion verlangt wird, dass sie analytisch ist.” (WS 1916/17 Lec-
tures, 118)

206 See, e.g., (Papapetrou 1974, 169–177).
207 “Wenn wir bedenken, dass diese Singularitäten von der Anwesenheit einer Masse herrühren, so

erscheint es auch plausibel, dass dieselben durch Koordinatentransformation nicht zu beseitigen sind.
Einen strengen Beweis dafür werden wir aber erst weiter unten geben, indem wir den Verlauf der geo-
dätischen Linien in der Umgebung dieser Punkt untersuchen.” (WS 1916/17 Lectures, 118–119)

208 “Wir müssen also, um singularitätenfreie Lösungen zu erhalten, a [i.e., the mass parameter] = 0
annehmen. Wir haben damit den ... Satz bewiesen: Bei Abwesenheit von Materie ( ) existiert
unter den ... genannten Voraussetzungen 1–3 [see above] die pseudoeuklidischen Geometrie des klei-
nen Relativitätsprinzips in der Physik tatsächlich, und für t = const ist in der Welt die Euklidische
Geometrie wirklich realisiert.” (WS 1916/17 Lectures, 119)
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In the sequel, Hilbert explores its physical significance for describing the behavior of
matter in space and time. His conception of matter, based on Mie’s theory, plays no
significant role in this discussion, its role being taken instead by assumptions that
Hilbert assimilated from Einstein’s work, such as the geodesic postulate for the
motion of free particles. 

He then turns to the justification for considering the case 

Then we are acting against our own prescription that we shall regard only singularity-
free gravitational fields as realizable in nature. Hence we must justify the assumption

209

He emphasizes the extraordinary difficulty of integrating the 14 field equations,
even for “the simple special case when they go over to ”:

Mathematical difficulties already hinder us, for example, from constructing a single neu-
tral mass point. If we were able to construct such a neutral mass, and if its behavior in the
neighborhood of this point were known, then, if we let the neutral mass degenerate
increasingly to a mass point, the  at this point would display a singularity. Such a
singularity we would have to regard as being allowed in the sense that the  outside
the immediate neighborhood of the singularity correctly describes the course actually
realized in nature. In [the Schwarzschild line element] we must now have this kind of
singularity at hand. Incidentally, we can now state that the construction of a neutral mass
point, even if this is possible later, will prove to be so complicated that for purposes, in
which one does not look at the immediate neighborhood of the mass point, one will be
able to calculate the approximately correct gravitational potentials containing a singular-
ity with sufficient precision.

We now maintain the following: If we could actually carry out the mathematical expan-
sion leading to construction of a neutral massive particle, we would probably find laws
that, for the time being, still must be formulated axiomatically; but which later will
emerge as consequences of our general theory, consequences that admittedly only can be
proven categorically by means of a broad-ranging theory and complex calculations.
These axioms, which thus have only provisional significance, we formulate as follows:

Axiom I.: The motion of a mass point in the gravitational field is represented by a geode-
sic line that is a time-like.

Axiom II: The motion of light in the gravitational field is represented by a null geodesic
curve.

Axiom III.: A singular point of the metric is equivalent to a gravitational center.210

Hilbert calls the first two axioms, taken from Einstein’s work, a “rational general-
ization” of the behavior of massive particles and light rays in the “old physics,” in
which the metric tensor takes the limiting Minkowski values. He states that the New-
tonian law of gravitational attraction and the resulting Keplerian laws of planetary

209 “Dann handeln wir zwar entgegen unserer eigenen Vorschrift, dass wir nur singularitätenfreie Gravita-
tionsfelder als in der Natur realisierbar ansehen wollen. Daher müssen wir die Annahme  recht-
fertigen.” (WS 1916/17 Lectures, 120)
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motion follow from these axioms “in the first approximation.” In this way, Hilbert
integrated into his theory the essential physical elements, on which Einstein’s path to
general relativity was based. Even his epistemological justification for the superiority
of the new theory now makes use of an argument for the integration of knowledge.
Remarkably, from Hilbert’s perspective, this integration not only involves knowledge
of classical physics such as Newton’s law of gravitation, but also of Euclidean geom-
etry as a physical interpretation of space:

In principle, however, this new Einsteinian law has no similarity to the Newtonian. It is
infinitely more complicated than the latter. If we nevertheless prefer it to the Newtonian,
this is because this law satisfies a profound philosophical principle—that of general invari-
ance—and that it contains as special cases two such heterogeneous things as on the one
hand, Newton’s law and on the other, the actual validity of Euclidian geometry in physics
under certain simple conditions; so that we do not have to, as was the case until now, first
assume the validity of Euclidian geometry and then put together a law of attraction.211

Thus we see that Hilbert considers his results on the conditions of validity of Euclid-
ean geometry on a par in importance with, and logically prior to, Einstein’s and
Schwarzschild’s results on the Newtonian limit of general relativity. 

In accord with the physical interpretation they are given in Axioms I and II, Hil-
bert then goes on to study the time-like and null geodesics of the Schwarzschild met-
ric, leading to discussions of two general-relativistic effects that Einstein had already
considered: the planetary perihelion precession and the deflection of light due to the
Sun’s gravitational field. This discussion occupies almost all of the rest of this chapter
of his lecture notes (WS 1916/17 Lectures, 122–156). After a short discussion of the

210  “Die mathematischen Schwierigkeiten hindern uns z.B. schon an der Konstruktion eines einzigen
neutralen Massenpunktes. Könnten wir eine solche neutrale Masse konstruieren, und würden wir den
Verlauf in der Umgebung dieser Stelle kennen, so würden die  wenn wir die neutrale Masse
immer mehr gegen einen Massenpunkt hin degenerieren lassen, in diesem Punkte eine Singularität
aufweisen. Eine solche müssten wir als erlaubt ansehen in dem Sinne, dass die  ausserhalb der
nächsten Umgebung der Singularität den in der Natur wirklich realisierten Verlauf richtig wiederge-
ben. Eine solche Singularität müssen wir nun in [the Schwarzschild line element] vor uns haben. Im
übrigen können wir schon jetzt sagen, dass die Konstruktion eines neutralen Massenpunktes, auch
wenn sie später möglich sein wird, sich als so kompliziert erweisen wird, dass man für die Zwecke, in
denen man nicht die nächste Umgebung des Massenpunktes betrachtet, mit ausreichender Genauig-
keit mit den mit einer Singularität behafteten, angenähert richtigen Gravitationspotentialen wird rech-
nen können.
Wir behaupten nun Folgendes: Wenn wir die mathematische Entwicklung, die zur Konstruktion eines
neutralen Massenteilchens führt, wirklich durchführen können, so werden wir dabei vermutlich auf
Gesetze stossen, die wir einstweilen noch axiomatisch formulieren müssen, die aber später sich als
Folgen unserer allgemeinen Theorie ergeben werden, als Folgen freilich, die bestimmt nur durch eine
weitsichtige Theorie und komplizierte Rechnung zu begründen sein werden. Diese Axiome, die also
nur provisorische Geltung haben sollen, fassen wir folgendermassen:
Axiom I: Die Bewegung eines Massenpunktes im Gravitationsfeld wird durch eine geodätische Linie
dargestellt, welche eine Zeitlinie ist.
Axiom II: Die Lichtbewegung im Gravitationsfeld wird durch eine geodätische Nulllinie dargestellt.
Axiom III: Eine singuläre Stelle der Massbestimmung ist äquivalent einem Gravitationszentrum.”
(WS 1916/17 Lectures, 120–121)
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dimensions of various physical quantities (WS 1916/17 Lectures, 156–158), he dis-
cusses the behavior of measuring threads and clocks in the Schwarzschild gravita-
tional field (WS 1916/17 Lectures, 159–163), and concludes the chapter with a
discussion of the third general-relativistic effect treated by Einstein, the gravitational
redshift of spectral lines (WS 1916/17 Lectures, 163–166).

In Paper 2, these topics are treated more briefly if at all: Axioms I and II and their
motivations, are discussed on pp. 70–71. The discussion of time-like geodesics occu-
pies pp. 71–75, and the paper closes with a discussion of null geodesics on pp. 75–76.
In summary, this paper must be considered a singular hybrid between the blossoming
of a rich mathematical tradition that Hilbert brings to bear on the problems of general
relativity, and the agony of facing the collapse of his own research program. 

6.4 Revisions of Paper 2

Paper 2, like Paper 1, was republished twice: Indeed, the two were combined in the
1924 version, Paper 2 becoming Part 2 of Die Grundlagen der Physik (Hilbert 1924,
11–32). We shall refer to this version as “Part 2.” The reprint of Hilbert 1924 in the
Gesammelte Abhandlungen was edited by others, presumably under Hilbert’s super-
vision (Hilbert 1935, 268–289). We shall refer to this version as “Part 2–GA.” Com-
pared to Paper 1, Hilbert’s additions and corrections to Paper 2 are less substantial,
as is to be expected since Paper 2 was written largely within the context of general
relativity. Most changes are minor improvements, e.g. in connection with recent lit-
erature on the theory. There are three significant changes however. One, introduced
by Hilbert at the beginning of Part 2, concerns Hilbert’s view of the relation between
Papers 1 and 2, the other two by the editors of the Gesammelte Abhandlungen in Part
2–GA. The second concerns the Cauchy problem, and the third concerns his under-
standing of invariant assertions. We shall discuss these revisions, both major and
minor.

The first significant change concerns the paper’s goal: Paper 2 states that “it
seems necessary to discuss some more general questions of a logical as well as phys-
ical nature” (“erscheint es nötig, einige allgemeinere Fragen sowohl logischer wie
physikalischer Natur zu erörtern” Hilbert 1917, 53). Part 2 states: “now the relation
of the theory with experience shall be discussed more closely” (“Es soll nun der
Zusammenhang der Theorie mit der Erfahrung näher erörtert werden” Hilbert 1924,
11). This revision confirms our interpretation of Paper 2 as resulting, in its original

211 “Prinzipiell aber hat dieses neue Einsteinsche Gesetz gar keine Ähnlichkeit mit dem Newtonschen. Es
ist unmöglich komplizierter als das letztere. Wenn wir es trotzdem dem Newtonschen vorziehen, so ist
dies darin begründet, dass dieses Gesetz einem tiefliegenden philosophischen Prinzip — dem der all-
gemeinen Invarianz — genüge leistet, und dass es zwei so heterogene Dinge, wie das Newtonsche
Gesetz einerseits und die tatsächliche Gültigkeit der Euklidischen Geometrie in der Physik unter
gewissen einfachen Voraussetzungen andererseits als Spezialfälle enthält, sodass wir also nicht, wie
dies bis jetzt der Fall war, zuerst die Gültigkeit der Euklidischen Geometrie voraussetzen, und dann
ein Attraktionsgesetz anflicken müssen.” (WS 1916/17 Lectures, 122)
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version, from the tension between Hilbert’s concern about the unsolved problems of
his theory, in particular the problem of causality, and his immersion in the challeng-
ing applications of general relativity, in particular to astronomy. Since Hilbert’s revi-
sion of Paper 1 had effectively transformed his theory into a version of general
relativity, the revision of Paper 2 could now be presented as relating this theory to its
empirical basis, the astronomical problems being addressed by contemporary general
relativity.

We shall now discuss the changes, which occur in four of the six topics discussed
(see above):

1. The metric tensor and its measurement: Part 2 drops all reference to “Messfaden.”
The discussion of measurement is based entirely on the “Lichtuhr,” but is other-
wise parallel to that in Paper 2 (Hilbert 1924, 11–13).

2. The causality problem for the field equations (Hilbert 1924, 16–19): There are
several changes in the discussion. The wording, with which Hilbert introduces the
problem now reads: 

Our basic equations of physics [the gravitational and the electromagnetic field equations]
in no way take the form characterized above [Cauchy normal form]: rather four of them
are, as I have shown, a consequence of the rest ...212

Note that “wie ich gezeigt habe” replaces “nach Theorem I” (see p. 59 of
Paper 2). Hilbert says that, if there were 4 additional invariant equations, then the
system of equations in Gaussian normal coordinates “ein überbestimmtes System
bilden würde” (see p. 16 of Part 2) replacing “untereinander in Widerspruch stän-
den” (see p. 60 of Paper 2).

In the discussion of the first way, in which “physically meaningful, i.e., invariant
assertions can be expressed mathematically” (Hilbert 1917, 62; 1924, 18), he cor-
rects a number of the equations in his example. His discussion of the third way is
shortened considerably, now reading: 

An assertion is also invariant and is therefore always physically meaningful if it is valid
for any arbitrary coordinate system, without the need for the expressions occurring in it
to possess a formally invariant character.213

In Paper 2, this sentence had ended with “...gültig sein soll,” and the paragraph
had given the example of Einstein’s gravitational energy-momentum complex.

3. Euclidean geometry: His discussion is the same, except that the discussion of
gravitational perturbations drops the use of an imaginary time coordinate and
Euclidean metric (Hilbert 1924, 19–23, 26).

212 “Unsere Grundgleichungen der Physik sind nun keineswegs von der oben charakterisierten Art; viel-
mehr sind, wie ich gezeigt habe, vier von ihnen eine Folge der übrigen ...” (Hilbert 1924, 16)

213 “Auch ist eine Aussage invariant und hat daher stets physikalischen Sinn, wenn sie für jedes beliebige
Koordinatensystem gültig ist, ohne daß dabei die auftretenden Ausdrücke formal invarianten Charak-
ter zu besitzen brauchen.” (Hilbert 1924, 19)
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4. The Schwarzschild solution (Hilbert 1924, 23–32): He adds a footnote to the light
ray axiom: 

Laue has shown for the special case  [i.e., for the usual Maxwell Lagrangian]
how this theorem can be derived from the electrodynamic equations by considering the
limiting case of zero wavelength.214

followed by a reference to Laue’s 1920 paper (Laue 1920) showing that Hilbert
kept up with the relativity literature. He also dropped a rather trivial footnote to
Axiom I (massive particles follow time-like world lines):

This last restrictive addition [i.e., “Zeitlinie”] is to be found neither in Einstein nor in
Schwarzschild.215

He adds a more careful discussion of circular geodesics, the radius of which
equals the Schwarzschild radius (Hilbert 1924, 30, compared to 1917, 75), but
otherwise the discussion of geodesics remains the same.

When the 1924 version of his two papers was republished in 1935 in his Gesam-
melte Abhandlungen, the editors introduced two extremely significant changes, as
well as more trivial ones that we shall not discuss, that retract the last elements of
Hilbert’s attempt to provide a solution to the causality problem for his theory. These
changes in Part 2–GA are footnotes marked “Anm[erkung] d[er] H[erausgeber]”. The
first occurs in the discussion of the causality principle for generally-covariant field
equations (Hilbert 1924, 18–19; 1935, 275–277). The sentence: 

Since the Gaussian coordinate system itself is uniquely determined, therefore also all
assertions with respect to these coordinates about those potentials (24) [equation number
in the original] are of invariant character.216

is dropped; and a lengthy footnote is added (Hilbert 1935, 275–277). This footnote
shows that the editors217 correctly understood the nature of the fourteen field equa-
tions. Six of the ten gravitational and three of the four electromagnetic equations
contain second time derivatives of the six spatial components of the metric tensor
and three spatial components of the electromagnetic potentials. Thus, their values
together with those of their first time derivatives on the initial hypersurface deter-
mine their evolution off that hypersurface. But these initial values are subject to con-
straints, set by the remaining four gravitational and one electromagnetic equation,
which contain no second time derivative. Due to the differential identities satisfied

214 “Laue hat für den Spezialfall  [i.e., for the usual Maxwell Lagrangian] gezeigt, wie man die-
sen Satz aus den elektrodynamischen Gleichungen durch Grenzübergang zur Wellenlänge Null ablei-
ten kann.” (Hilbert 1924, 27).

215 “Dieser letzte einschränkende Zusatz findet sich weder bei Einstein noch bei Schwarzschild.” (Hilbert
1917, 71)

216 “Da das Gaußische Koordinatensystem selbst eindeutig festgelegt ist, so sind auch alle auf dieses
Koordinatensystem bezogenen Aussagen über jene Potentiale (24) von invariantem Charakter.” (Hil-
bert 1924, 18)

217 Paul Bernays, Otto Blumenthal, Ernst Hellinger, Adolf Kratzer, Arnold Schmidt, and Helmut Ulm.
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by the field equations, if these constraint equations hold initially, they will continue
to hold by virtue of the remaining field equations. This footnote culminates in the
statement:

Thus causal lawfulness does not express the full content of the basic equations; rather, in
addition to this lawfulness, these equations also yield restrictive conditions on the
respective initial state.218

The editors also explain that, in the gauge-invariant electromagnetic case, it is only
the fields and not the potentials that are determined by the field equations. The edi-
tors’ addition thus presents a lucid account of the Cauchy problem in general relativ-
ity, and shows that Hilbert’s attempt to formulate a principle of causality for his
theory in terms of the classical notion of initial data (i.e. values that can be freely cho-
sen at any given moment in time, which then determine their future evolution) had
not taken into account the existence of constraints on the initial data.

The second footnote occurs in the discussion of how to satisfy the requirement
that physically meaningful assertions be invariant by use of an invariant coordinate
system (Hilbert 1924, 18–19). The footnote, which actually undermines claims in
Hilbert’s paper, reads:

In the case of each of the three types of preferred coordinate systems named here, there is
only a partial fixation of the coordinates. The Gaussian nature of a coordinate system is
preserved by arbitrary transformations of the space coordinates and by Lorentz transfor-
mations, and a coordinate system in which the vector  has the components

 is transformed into another such system by an arbitrary transformation of
the spatial coordinates together with a spatially varying shift of the temporal origin.

The characterization of a Gaussian coordinate system by conditions (23) [equation num-
ber in the original] and likewise that of the third-named preferred coordinate system
through the conditions for  is in fact not completely invariant insofar as the specifica-
tion of the fourth coordinate—introduced through conditions (21) [equation number in
the original; the conditions for a “proper” coordinate system]—plays a role in it.219

218 “Somit bringt die kausale Gesetzlichkeit nicht den vollen Inhalt der Grundgleichungen zum Aus-
druck, diese liefern vielmehr außer jener Gesetzlichkeit noch einschränkende Bedingungen für den
jeweiligen Anfangszustand.” (Hilbert 1935, 277)

219 “Bei den drei hier genannten Arten von ausgezeichneten Koordinatensystemen handelt es sich jedes-
mal nur um eine partielle Festlegung der Koordinaten. Die Eigenschaft des Gaußischen Koordinaten-
systems bleibt erhalten bei beliebigen Transformationen der Raumkoordinaten und bei
Lorentztransformationen, und ein Koordinatensystem, in welchem der Vektor  die Komponenten

 hat, geht wieder in ein solches über bei einer beliebigen Transformation der Raumkoordi-
naten nebst einer örtlich variablen Verlegung des zeitlichen Nullpunktes.
Die Charakterisierung des Gaußischen Koordinatensystems durch die Bedingungen (23) und ebenso
die des drittgenannten ausgezeichneten Koordinatensystems durch die Bedingungen für  ist übri-
gens insofern nicht völlig invariant, als darin die Auszeichnung der vierten Koordinate zur Geltung
kommt, die mit der Aufstellung der Bedingungen (21) eingeführt wurde.” (Hilbert 1935, 277)
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The editors of Hilbert’s papers corrected two major mathematical errors that survived
his own revision of Paper 2, and since he was still active when this edition of his
papers was published, it can be assumed that these changes were made with his con-
sent, if not participation. 

7. THE FADING AWAY OF HILBERT’S POINT OF VIEW 
AND ITS SUBSUMPTION BY EINSTEIN’S PROGRAM

Early on, Einstein and Weyl set the tone for the way in which Hilbert’s papers on the
Foundations of Physics were integrated into the mainstream of research in physics
and mathematics. Not only did the articles by Einstein and Weyl receive immediate
attention when first published in the Sitzungsberichte of the Prussian Academy of
Sciences, but they were soon incorporated into successive editions of Das Relativi-
tätsprinzip, then the standard collection of original works on the development of rela-
tivity.220 Three out of four of Einstein’s works added to the third edition mention
Hilbert, as does Weyl’s contribution to the fourth edition—although, as we shall see,
the latter’s omissions are as significant as his attributions. Translated into French,
English and other languages, and in print to this day, countless scholars had their
impression of the scope and history of relativity shaped by this book. 

First we shall discuss Einstein’s two mentions of Hilbert in 1916. (His third in
1919 is related to Weyl’s 1918 paper, so we shall discuss it afterwards.) In contrast
with Hilbert’s need to reorganize his theory in reaction to Einstein’s work, Einstein
could assimilate Hilbert’s results into the framework of general relativity without
being bothered by the latter’s differing interpretation of them. This assimilation, in
turn, assigned Hilbert a place in the history of general relativity.

Einstein’s 1916 review paper on general relativity mentions Hilbert in a discus-
sion of the relation between the conservation identities for the gravitational field
equations and the field equations for matter:

Thus the field equations of gravitation contain four conditions [the conservation equa-
tions for the energy-momentum tensor of matter] which govern the course of material
phenomena. They give the equations of material processes completely of the latter are
capable of being characterized by four independent differential equations.221

220  See (Blumenthal 1913; 1919; 1923; 1974). All editions were edited by the mathematician Otto Blu-
menthal. The first edition appeared as the second volume of his series Fortschritte der Mathemati-
schen Wissenschaften in Monographien (the first being a collection of Minkowski’s papers on
electrodynamics), “als eine Sammlung von Urkunden zur Geschichte des Relativitätsprinzips” (“Vor-
wort” [n.p.]). The third edition in 1919 included additional papers by Einstein on general relativity,
the fourth edition added Weyl’s first paper on his unified theory of gravitation and electromagnetism.
The fifth edition in 1923 is the basis of the editions currently in print, and of the translations into other
languages. It would be interesting to know how Blumenthal chose the papers to include in what
became the canonical source book on relativity.
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A footnote adds a reference to Paper 1.222 Thus, Einstein subsumed into the general
theory of relativity, as a particular case of an important general result, what Hilbert
regarded as an outstanding achievement of his theory. Hilbert’s interpretation of this
result as embodying a unique coupling between gravitation and electromagnetism, is
not even mentioned.

In the same year, Einstein published his own derivation of the generally-covariant
gravitational field equations from a variational principle. While in the 1916 review
paper he had given a non-invariant “Hamiltonian” (= Lagrangian) for the field equa-
tions modulo the coordinate condition  he now proceeded in a manner remi-
niscent of Hilbert’s in Paper 1. He uses the same gravitational variables (the  and
their first and second derivatives), but Einstein’s  “describe matter (including the
electromagnetic field” (“beschreiben die Materie (inklusive elektromagnetisches
Feld)”) and hence are arbitrary in number and have unspecified tensorial transforma-
tion properties. By his straightforward generalization, Einstein transformed Hilbert’s
variational derivation into a contribution to general relativity, without adopting the
latter’s perspective on this derivation as providing a synthesis between gravitation
and a specific theory of matter. Rather, Einstein’s generalization made it possible to
regard Hilbert’s theory as no more than a special case.

Einstein prefaced his calculations with some observations placing his work in
context:

H. A. Lorentz and D. Hilbert have recently succeeded [footnoted references to Lorentz’s
four papers of 1915–1916 and Hilbert’s Paper 1] in presenting the theory of general rela-
tivity in a particularly comprehensive form by deriving its equations from a single varia-
tional principle. The same shall be done in this paper. My aim here is to present the
fundamental connections as transparently and comprehensively as the principle of gen-
eral relativity allows. In contrast to Hilbert’s presentation, I shall make as few assump-
tions about the constitution of matter as possible.223

221 “The Foundation of the General Theory of Relativity” p. 810, in (CPAE 6E, Doc. 30, 187). “Die Feld-
gleichungen der Gravitation enthalten also gleichzeitig vier Bedingungen [the conservation equations
for the energy-momentum tensor of matter], welchen der materielle Vorgang zu genügen hat. Sie lie-
fern die Gleichungen des materiellen Vorganges vollständig, wenn letzterer durch vier voneinander
unabhängige Differentialgleichungen charakterisierbar ist.” (Einstein 1916a, 810)

222 The reference to “p. 3,” is probably to a separately paginated off-print; see the discussion in
(Sauer 1999). 

223 Einstein, “Hamilton’s Principle and the General Theory of Relativity” Sitzungsberichte 1916, 1111–
1116, citation from p. 1111, in (CPAE 6E, Doc. 41, 240). “In letzter Zeit ist es H. A. Lorentz und D.
Hilbert gelungen [footnoted references to Lorentz’s four papers of 1915–1916 and Hilbert’s Paper 1],
der allgemeinen Relativitätstheorie dadurch eine besonders übersichtliche Gestalt zu geben, daß sie
deren Gleichungen aus einem einzigen Variationsprinzipe ableiteten. Dies soll auch in der nachfol-
genden Abhandlung geschehen. Dabei ist es mein Ziel, die fundamentalen Zusammenhänge mög-
lichst durchsichtig und so allgemein darzustellen, als es der Gesichtspunkt der allgemeinen Relativität
zuläßt. Insbesondere sollen über die Konstitution der Materie möglichst wenig spezialisierende
Annahmen gemacht werden, im Gegensatz besonders zur Hilbertschen Darstellung.” (Einstein 1916b,
1111)
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Thus Einstein both gave Hilbert credit for his accomplishments and circumscribed
their nature: Like Lorentz, Hilbert was supposedly looking for a variational deriva-
tion of the general-relativistic field equations, but included assumptions about the
constitution of matter that were too special. In an earlier, unpublished draft, Ein-
stein’s tone was even sharper:

Hilbert, following the assumption introduced by Mie that the  function depends on the
components of a four-vector and their first derivatives, I do not consider very promis-
ing.224

In private correspondence, he was still more harsh, but also gave his reasons for disre-
garding Hilbert’s point of view:

Hilbert’s assumption about matter appears childish to me, in the sense of a child who
knows none of the perfidy of the world outside. [...] At all events, mixing the solid con-
siderations originating from the relativity postulate with such bold, unfounded hypothe-
ses about the structure of the electron or matter cannot be sanctioned. I gladly admit that
the search for a suitable hypothesis, or Hamilton function, for the construction of the
electron, is one of the most important tasks of theory today. The “axiomatic method” can
be of little use here, though.225

Evidently, Einstein clearly perceived the diverse status of the physical assump-
tions underlying general relativity, on the one hand, and Hilbert’s theory, on the other.
From Einstein’s point of view, Hilbert’s detailed results, such as his variational deri-
vation of the Schwarschild metric could be—and were—acknowledged as contribu-
tions to the development of general relativity, without any need to refer to the
grandiose program, within which Hilbert had originally placed them.

In view of his own claims in this regard, one might expect Hilbert’s work to have
played a prominent role in the developing search for a unified field theory.226 But his
fate was that of a transitional figure, eclipsed by both his predecessors and his succes-
sors. His achievements were perceived as individual contributions to general relativ-
ity rather than as genuine milestones on the way towards a unified field theory.
Evidently, this “mixed score” was the price Hilbert had to pay for being made one of
the founding fathers of general relativity. 

In his first contribution to unified field theory, Weyl assigned a definite place to
Hilbert, if largely by omission. After presenting his generalization of Riemannian

224  “Die von Hilbert im Anschluss an Mie eingeführte Voraussetzung, dass sich die Funktion  durch
die Komponenten eines Vierervektors  und dessen erste Ableitungen darstellen lasse, halte ich für
wenig aussichtsvoll.” See note 3 to Doc. 31 in (CPAE 6, 346).

225 “Der Hilbertsche Ansatz für die Materie erscheint mir kindlich, im Sinne des Kindes, das keine Tük-
ken der Aussenwelt kennt. [...] Jedenfalls ist es nicht zu billigen, wenn die soliden Überlegungen, die
aus dem Relativitätspostulat stammen, mit so gewagten, unbegründeten Hypothesen über den Bau des
Elektrons bezw. der Materie verquickt werden. Gerne gestehe ich, dass das Aufsuchen der geeigneten
Hypothese bezw. Hamilton’schen Funktion für die Konstruktion des Elektrons eine der wichtigsten
heutigen Aufgaben der Theorie bildet. Aber die “axiomatische Methode” kann dabei wenig nützen.”
Einstein to Hermann Weyl, 23 November 1916, (CPAE 8, 365–366).

226 For a historical discussion, see (Majer and Sauer 2005; Goenner 2004).
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geometry to include what he called “gauge invariance” (Eichinvarianz),227 Weyl
turned to unified field theory:

Making the transition from geometry to physics, we must assume, in accord with the
example of Mie’s theory [references to Mie’s papers of 1912/13 and Weyl’s recently-
published Raum-Zeit-Materie], that the entire lawfulness of nature is based upon a cer-
tain integral invariant, the action

in such a way that the actual world is distinguished from all possible four-dimensional
metric spaces, by the fact that the action contained in every region of the world takes an
extremal value with respect to those variations of the potentials  that vanish at the
boundaries of the region in question.228

In spite of its obvious relevance, there is no mention here of Hilbert. The sole men-
tion comes in what we shall refer to as “the litany” since this or a similar list occurs
so frequently in the subsequent literature:

We shall show in fact, in the same way that, according to the investigations of Hilbert,
Lorentz, Einstein, Klein and the author [reference follows to Paper 1 for Hilbert], the
four conservation laws of matter (of the energy-momentum-tensor) are connected with
the invariance of the action under coordinate transformations containing four arbitrary
functions; the charge conservation law is linked to a newly introduced “scale-invariance”
depending on a fifth arbitrary function.229

This passage, (incorrectly) attributing to Hilbert a clarification of energy-momentum
conservation in general relativity and disregarding his attempt to create a unified field
theory, makes his “mixed score” particularly evident. In a footnote added to the
republication of his paper in Das Relativitätsprinzip, Weyl notes that:

The problem of defining all invariants  admissible as actions, while requiring that they
contain the derivatives of  up to second order at most, and those of  only up to first
order, was solved by R. Weitzenböck [Weitzenböck 1920], 230

227 This generalization was named a Weyl space by J.A. Schouten (see Schouten 1924).
228 “Von der Geometrie zur Physik übergehend, haben wir nach dem Vorbild der Mieschen Theorie anzu-

nehmen, daß die gesamte Gesetzmäßigkeit der Natur auf einer bestimmten Integralinvariante, der
Wirkungsgröße  beruht, derart, daß die wirkliche Welt unter
allen möglichen vierdimensionalen metrischen Räumen dadurch ausgezeichnet ist, daß für sie die in
jedem Weltgebiet enthaltene Wirkungsgröße einen extremalen Wert annimmt gegenüber solchen
Variationen der Potentiale  welche an den Grenzen des betreffenden Weltgebiets verschwin-
den.” (Weyl 1918c, 475)

229 “Wir werden nämlich zeigen: in der gleichen Weise, wie nach Untersuchungen von Hilbert, Lorentz,
Einstein, Klein und dem Verf. [reference follows to Paper 1 for Hilbert] die vier Erhaltungsätze der
Materie (des Energie-Impuls-Tensors) mit der, vier willkürliche Funktionen enthaltenden Invarianz
der Wirkungsgröße gegen Koordinatentransformationen zusammenhängen, ist mit der hier neu hinzu-
tretenden, eine fünfte willkürliche Funktion hereinbringenden “Maßstab-Invarianz” [...] das Gesetz
von der Erhaltung der Elektrizität verbunden.” (Weyl 1918c, 475)
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without mentioning that this is the solution to the problem raised by Hilbert’s ansatz
for the invariant Lagrangian, first introduced in Paper 1. Little wonder that those
whose knowledge of the history of relativity came from Das Relativitätsprinzip had
no idea of Hilbert’s original aims and little more of his achievements.

Hilbert fared a little better in Weyl’s Raum-Zeit-Materie, the first treatise on gen-
eral relativity (Weyl 1918a; 1918b; 1919; 1921; 1923).231 The discussion of the
energy-momentum tensor in the first edition (section 27) credits Hilbert with having
shown that (Weyl 1918a; 1918b, 184):

[...] Mie’s electrodynamics can be generalized from the assumptions of the special to
those of the general theory of relativity. This was done by Hilbert.232

Footnote 5 cites Paper 1 and adds (Weyl 1918a; 1918b, 230):

The connection between Hamilton’s function and the energy-momentum tensor is estab-
lished here, and the gravitational equations articulated almost simultaneously with Ein-
stein, if only within the confines of Mie’s theory,233

Hilbert’s work has already been subsumed under general relativity. Curiously, both
textual reference and footnote disappear from all later editions (but see the discussion
below of the fifth edition). Presumably because Weyl had already mentioned Hilbert,
the latter’s name does not appear in the litany in the first edition (footnote 6), listing
those who had worked on the derivation of the energy-momentum conservation laws.
By the third edition, Hilbert has been added to the litany (Weyl 1919, 266 n. 8), and
remained there. In his discussion of causality for generally-covariant field equations in
the first edition, Weyl credits Papers I and II (Weyl 1918a; 1918b, 190 and 230, n. 9);
again, this note disappears from all later editions. Paper 2 is also cited in the first edi-
tion in connection with the Schwarzschild solution (Weyl 1918a; 1918b, 230, n. 15),
and the introduction of geodesic normal coordinates (Weyl 1918a; 1918b, 230, n. 21).

The third edition carries over these references to Paper 2 and adds one in connec-
tion with linearized gravitational waves (Weyl 1919, 266, n. 14); and the fourth edi-
tion includes all these footnotes. Perhaps questions had been raised concerning

230 “Die Aufgabe, alle als Wirkungsgrößen zulässigen invarianten W zu bestimmen, wenn gefordert ist,
daß sie die Ableitungen der  höchstens bis zur 2., die der  nur bis zur 1. Ordnung enthalten dür-
fen, wurde von R. Weitzenböck [Weitzenböck 1920] gelöst.” (Blumenthal 1974, 159; translation from
Lorentz et al. 1923.) This seventh edition from 1974 is an unchanged reprint of the fifth edition of
1923, 159, n. 2. Weitzenböck has his own version of the litany: “Die obersten physikalischen Gesetze:
Feldgesetze und Erhaltungsätze werden nach den klassischen Arbeiten von Mie, Hilbert, Einstein,
Klein und Weyl aus einem Variationsprinzip [...] hergeleitet”(p. 683). It is not clear why Lorentz is
omitted from the litany; perhaps he was too much of a physicist for Weitzenböck.

231 The second edition of 1918 was unchanged, the fourth of 1921 was translated into English and
French; the fifth of 1923, being thereafter reprinted without change.

232 “[...] die Miesche Elektrodynamik von den Voraussetzungen der speziellen auf die der allgemeinen
Relativitätstheorie übertragen werden [kann]. Dies ist von Hilbert durchgeführt worden.”

233 “Hier ist auch der Zusammenhang zwischen Hamiltonscher Funktion and Energie-Impuls-Tensor auf-
gestellt und wurden, etwa gleichzeitig mit Einstein, wenn auch nur im Rahmen der Mieschen Theorie,
die Gravitationsgleichungen ausgesprochen.”

gik φi
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Weyl’s treatment of Hilbert in the book; at any rate, the footnote to the litany citing
Hilbert in the fifth edition again credits him with a contribution to general relativity,
rather than to unified field theories:

In the first communication, Hilbert established the invariant field equations simulta-
neously with and independently of Einstein, but within the framework of Mie’s hypothet-
ical theory of matter.234

In short, in none of the editions is Hilbert mentioned in connection with unified field
theories.

Pauli’s standard 1921 review article on relativity is another major source, still
consulted mainly in the English translation of 1958 (with additional notes) by physi-
cists and mathematicians for historical and technical information about relativity and
unified field theories (Pauli 1921; 1958). Pauli adopted what we may call the Ein-
stein-Weyl line on Hilbert, considering him a somewhat unfortunate founding father
of general relativity. After describing Einstein’s work on general relativity culminat-
ing in the November 1915 breakthrough, Pauli adds in a footnote (Pauli 1921):235

At the same time as Einstein, and independently, Hilbert formulated the generally covari-
ant field equations [reference to Paper 1]. His presentation, though, would not seem to be
acceptable to physicists, for two reasons. First, the existence of a variational principle is
introduced as an axiom. Secondly, of more importance, the field equations are not
derived for an arbitrary system of matter, but are specifically based on Mie’s theory of
matter ... . 

His discussion of invariant variational principles in section 23 cites the litany: “inves-
tigations by Lorentz, Hilbert, Einstein, Weyl and Klein236 on the role of Hamilton’s
Principle in the general theory of relativity” (Pauli 1921).237

Later (section 56), he discusses the question of causality in “a generally relativis-
tic [i.e, generally-covariant] theory,” arguing from general covariance to the existence
of 4 identities between the 10 field equations, and concluding (Pauli 1921):238 

The contradiction with the causality principle is only apparent, since the many possible
solutions of the field equations are only formally different. Physically they are com-
pletely equivalent. The situation described here was first recognized by Hilbert.

This passage represents a striking example of erroneously crediting Hilbert with a
contribution to general relativity while neglecting his actual achievements. To make
matters worse, Pauli’s footnote cites Paper 1, rather than Paper 2; after also crediting
Mach with a version of this insight, he adds (Pauli 1921):239

234 “In der 1. Mitteilung stellte Hilbert gleichzeitig und unabhängig von Einstein die invarianten Feldglei-
chungen auf, aber im Rahmen der hypothetischen Mieschen Theorie der Materie.” (Weyl 1923, 329,
n. 10)

235 Section 50, cited from translation in (Pauli 1958, 145 n. 277).
236 See Felix Klein to Wolfgang Pauli, 8 May 1921 in (Pauli 1979, 31).
237 Cited from translation in (Pauli 1958, 68).
238 Cited from translation in (Pauli 1958, 160).
239 Cited from translation in (Pauli 1958, 160, n. 315).
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Furthermore it deserves mentioning that Einstein had, for a time, held the erroneous view
that one could deduce from the non-uniqueness of the solution that the gravitational
equations could not be generally-covariant [reference to (Einstein 1914b)].

Pauli does acknowledge various contributions to general relativity in Paper 2.240 But
his discussion of unified field theories (Part V), like Weyl’s, jumps from Mie (section
64) to Weyl (section 65) without mention of Hilbert.

By examining a couple of early treatises on relativity by non-German authors, we
can get some idea of the propagation of the Einstein-Weyl line as canonized by Pauli.
Jean Becquerel’s Le Principe de la Relativité et la Théorie de la Gravitation was the
first French treatise on general relativity. In Chapter 16 on “Le Principe d’Action Sta-
tionnaire,” Becquerel asserts:

Lorentz and Hilbert [references to Papers 1 and 2], and then Einstein succeeded in pre-
senting the general equations of the theory of gravitation as consequences of a unique
stationary action principle, …241

followed by section 103 on “Méthode de Lorentz et d’Hilbert” (Becquerel 1922,
257–262). Paper 2 is cited in connection with linearized gravitational waves (Bec-
querel 1922, 216), but there is no mention of Hilbert in Chapter 18 on “Union du
Champ de Gravitation et du Champ Électromagnétique. Géometries de Weyl et
d’Eddington” (Becquerel 1922, 309–335).

Until recently Eddington’s treatise, The Mathematical Theory of Relativity, was
widely read, cited and studied by students; and was translated into French and Ger-
man (Eddington 1923; 1924). The two English editions cite Papers 1 and 2 in the bib-
liography, with a reference to section 61 on “A Property of Invariants,”242 which
demonstrates the theorem:243

The Hamiltonian [i.e, Lagrangian] derivative of any fundamental invariant is a tensor
whose divergence vanishes.

Outside the Bibliography, few references are given in the English editions; but
Eddington added material to the German translation, including several references to
Hilbert (Eddington 1925). On p. 114, footnote 1 credits Hilbert (Paper 2) with realiz-
ing that the assumption of asymptotic flatness is not needed in the derivation of the
Schwarzschild metric. On p. 116, he credits Paper 2 for an “elegante Methode” for
deducing the Christoffel symbols from the geodesic equation; and on p. 183, he cred-
its the same paper for the first strict proof that one can always satisfy the linearized

240 See (Pauli 1921), section 13 for Axiom II; section 22 for discussion of the restrictions on coordinate
systems if three coordinates are to be space-like and one time-like; and section 60 for the proof that
linearized harmonic coordinate conditions may always be imposed.

241 “Lorentz et Hilbert [references to Papers 1 and 2], puis Einstein, ont réussi à presenter les équations
générales de la theorie de la gravitation comme des conséquences d’un unique principe d’action sta-
tionnaire,” (Becquerel 1922, 256).

242 See (Eddington 1924, 264): “wherever possible the subject matter is indicated by references to the
sections in this book chiefly concerned.”

243 See (Eddington 1924, 140–141).
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harmonic coordinate conditions by an infinitesimal coordinate transformation. And
that is it.

We see that, by the mid-1920s, and with minor variations within the accepted lim-
its, the Einstein-Weyl line on Hilbert’s role was already becoming standard in the lit-
erature on relativity.

8. AT THE END OF A ROYAL ROAD

The preceding discussion has shown that Hilbert did not discover a royal road to the
field equations of general relativity. In fact, he did not formulate these equations at all
but, at the end of 1915, developed a theory of gravitation and electromagnetism that
is incompatible with Einstein’s general relativity. Nevertheless, this theory can hardly
be considered an achievement parallel to that of Einstein’s creation of general relativ-
ity, to be judged by criteria independent of it. Not only is the dependence of Hilbert’s
theory on and similarity to Einstein’s earlier, non-covariant Entwurf theory of gravi-
tation too striking; but its contemporary reception as a contribution to general relativ-
ity and regardless of the extent to which Hilbert accepted the transformation of his
theory into such a contribution, this is evidence of the theory’s evanescent and heter-
onomous character. It could thus appear as if our account, in the end, describes a race
for the formulation of a relativistic theory of gravitation with a clear winner—Ein-
stein—and a clear loser—Hilbert. In contrast to the legend of Hilbert’s royal road,
such an account would bring us essentially back to Pauli’s sober assessment of Hil-
bert’s work as coming close to the formulation of general relativity but being faulted
by its dependence on a specific theory of matter. However, as we have shown, this
interpretation ascribes to Hilbert results in general relativity that he neither intended
nor achieved, and ignores contributions that lay outside the scope of general relativity
but were nevertheless crucial for its development. In view of such conundrums, we
therefore propose not to consider the Einstein-Hilbert race as the competition
between two individuals and their theories but as an event within a larger, collective
process of knowledge integration.

As formulated by Einstein in 1915, general relativity incorporates elements of
classical mechanics, electrodynamics, the special theory of relativity, and planetary
astronomy, as well as such mathematical traditions as non-Euclidean geometry and
the absolute differential calculus. It integrates these elements into a single, coherent
conceptual framework centered around new concepts of space, time, inertia and grav-
itation. Without this enormous body of knowledge as its underpinning, it would be
hard to explain the theory’s impressive stability and powerful role even in today’s
physics. This integration was the result of an extended and conflict-laden process, to
which not only Einstein but many other scientists contributed. From the point of view
of historical epistemology, it was a collective process in an even deeper sense.244 It
involved a substantial, shared knowledge base, structured by fundamental concepts,
models, heuristic etc., which were transmitted by social institutions, utilizing mate-
rial representations, such as textbooks, and appropriated by individual learning pro-
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cesses. While individual thinking is governed to a large degree by these shared
resources, it also affects and amplifies them, occasionally even changing these
epistemic structures. On the basis of such an epistemology, which takes into account
the interplay between shared knowledge resources and individual thinking, the emer-
gence and fading away of a theory such as Hilbert’s can be understood as an aspect of
the process of integration of knowledge that produced general relativity. 

To answer the question of from where alternative solutions (or attempted solu-
tions) to the same problem come, we shall look at some of the shared knowledge of
the time available for formulating theories such as those of Einstein and Hilbert. To
explain the fading-away of Hilbert’s theory, we then discuss the interplay between
individual thinking and the knowledge resources that led to the formulation of gen-
eral relativity and the transformation of Hilbert’s theory into a contribution to it. It
will become clear that, in both cases, the same mechanism was at work. In the case of
general relativity, it integrated the various components of shared knowledge and
resulted in the creation of a stable epistemic structure, which represents that inte-
grated knowledge. In the case of Hilbert’s theory, the same process disaggregated the
various components of shared knowledge that had been brought together in a tempo-
rary structure, and rearranged and integrated them into a more stable structure.

The available knowledge offered a limited number of approaches to the problem
that occupied both Einstein and Hilbert in late 1915: the formulation of differential
equations governing the inertio-gravitational potential represented by the metric ten-
sor. Two fundamentally different models underlying contemporary field theories of
electrodynamics embodied the principal alternatives. One, the “monistic model,”
conceived all physical phenomena, including matter, in terms of fields. The other
“fields-with-matter-as-source model” (or “Lorentz model”) was based on a dualism
of fields and matter. The first model was the basis for attempts to formulate an “elec-
tromagnetic world picture,” which remained fragmentary and never succeeded in
accounting for most contemporary physical knowledge. The second model was the
basis for Lorentz’s formulation of electron theory, the epitome of classical electrody-
namics, in which matter acts as source for electrodynamic fields that, in turn, affect
the motion of material bodies. Rather than attempting to reduce classical mechanical
concepts to electrodynamic field concepts, the task associated with the electrody-
namic world picture, Lorentz’s electron theory successfully integrated electromag-

244 See (Csikszentmihalyi 1988): “All of the definitions [of creativity] ... of which I am aware assume that
the phenomenon exists... either inside the person or in the work produced... After studying creativity
for almost a quarter of a century, I have come to the reluctant conclusion that this is not the case. We
cannot study creativity by isolating individuals and their works from the social and historical milieu in
which their actions are carried out. This is because what we call creative is never the result of individ-
ual actions alone; it is the product of three main shaping forces: a set of social institutions or field, that
selects from the variations produced by individuals those that are worth preserving; a stable cultural
domain that will preserve and transmit the selected new ideas or forms to the following generations;
and finally the individual, who brings about some change in the domain, a change that the field will
consider to be creative.” This concept is further discussed in (Stachel 1994).
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netic and classical mechanical phenomena. The first model became the core of
Hilbert’s approach in an attempt to create a unified field theory, while Einstein’s
search for gravitational field equations was guided by the second. To a large extent,
the difference between the two models accounts for the differences between Hilbert’s
and Einstein’s approaches, including their differing capacity to incorporate available
physical knowledge into their theories. The information about matter compatible with
Hilbert’s theory was essentially only Mie’s speculative theory: The source-term in
Einstein’s gravitational field equations could embody the vast amount of information
contained in special-relativistic continuum theory, including energy-momentum con-
servation, as well as Maxwell’s theory.

The information available for solving the problem of gravitation was not
exhausted by the two different physical models of the interaction between fields and
matter. Contemporary mathematics also provided a reservoir of useful tools. The
series of attempts between 1912 and 1915 to formulate a theory of gravitation, includ-
ing contributions by Abraham, Nordström, and Mie, as well as Einstein and Hilbert,
illustrates the range of mathematical formalisms available, from partial differential
equations for a scalar field to the absolute differential calculus applied to the metric
tensor. As did the physical models, different mathematical formalisms showed vary-
ing capacities for integrating the available knowledge about matter and gravitation,
such as that embodied in Newtonian gravitation theory or in the observational results
on Mercury’s perihelion shift. To explore its capacity to integrate knowledge, a for-
malism needs to be elaborated and its consequences interpreted, if possible, as repre-
sentations of that knowledge. The degree of such successful elaboration and
interpretation, the “exploration depth” of a given formalism, determines its accept-
ability as a possible solution to the physical problem at hand. In early 1913, believing
that the Newtonian limit could not be recovered from generally-covariant field equa-
tions, Einstein proposed the non-covariant Entwurf theory, from which it could be. At
the end of 1915, on the basis of an increased “exploration depth” of the formalism, he
decided in favor of generally-covariant equations. 

Which physical models and mathematical formalisms are favored in a given his-
torical situation depends on many factors, among them their accessibility and specific
epistemological preferences that make some of them appear more attractive to certain
groups than others. It was natural for a mathematician of Hilbert’s caliber to start
from a generally-covariant variational principle based on the metric tensor, while
Einstein, ignorant of the appropriate mathematical resources, initially tried to develop
his own, “pedestrian” calculus for dealing with the metric tensor.245 It is clear that the
monistic field theory model must have appealed more to Hilbert, a mathematician in
search for an axiomatic foundation for all of physics, than the conceptually more
clumsy dualistic model. The latter, on the other hand, was a more natural starting
point for physicists such as Abraham, Einstein, and Nordström, who were familiar

245 See his calculations in “Einstein’s Zurich Notebook,” e.g. on p. 08L (in vol. 1 of this series). See also
the “Commentary” (in vol. 2). 
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with the extraordinary successes of this model in the domain of electromagnetism.
Images of knowledge also determine decisions on the depth and direction of explora-
tion of a given formalism. While the question of the Newtonian limit was crucial to
the physicist Einstein, Hilbert did not deal at all with this problem.

Constructs formulated by individual scientists, such as Hilbert’s proposal for an axi-
omatic foundation of physics, are largely contingent; but their building blocks (con-
cepts, models, techniques) are taken from the reservoir of the socially available
knowledge characteristic of a given historical situation. This reservoir of shared back-
ground knowledge accounts for more than just the intercommunicability of individual
contributions such as those of Hilbert and Einstein. Given that such contributions are
integrated into already-shared knowledge by various processes of intellectual commu-
nication and assimilation, an equilibration process must take place between the individ-
ual constructs and the shared knowledge-reservoir. It is the outcome of this process that
decides on whether a research program is progressive or degenerating in the sense of
Lakatos but also the fate of an individual contribution, its longevity (the case of general
relativity), its mutation, or its rapid fading-away (the case of Hilbert’s contribution).

Whatever is individually constructed will be brought into contact with other ele-
ments of the shared knowledge-base, and thus integrated into it in multiple ways that,
of course, are shaped by the social structures of scientific communication. The fate of
an individual construct depends on the establishment of such connections. If individ-
ual constructs are not embedded, for whatever reasons, within the structures of
socially available knowledge, they effectively disappear; if they are so embedded,
they will be transmitted as part of shared knowledge. Usually, individual contribu-
tions are not assimilated wholesale to shared knowledge but only in a piecemeal fash-
ion. One finds Hilbert’s name associated, for instance, with the variational derivation
of the field-equations but not with the program of an axiomatic foundation of physics.
The “packaging” of individual contributions as they are eventually transmitted and
received by a scientific community is not governed by the individual perspectives of
their authors but by the more stable cognitive structures of the shared knowledge. The
reception of Hilbert’s contribution is thus not different from that of most scientific
contributions that become assimilated into the great banquet of shared knowledge. It
rarely happens that its basic epistemic structures, such as the concepts of space and
time in classical physics, are themselves challenged by the growth of knowledge.
Usually, these fundamental structures simply overpower any impact of individual
contributions by the sheer mass of integrated knowledge they reflect. Only when indi-
vidual constructs come with their own power of integrating large chunks of shared
knowledge do they have a chance of altering these structures. This, in turn, only hap-
pens when the individual contributions themselves result from a process of knowl-
edge integration and its reflection in terms of new epistemic structures. 

Einstein’s theory of general relativity is the result of such an integration process.
Over a period of several years, he had attempted not only to reconcile classical phys-
ical knowledge about gravitation with the special-relativistic requirement of the finite
propagation speed of physical interactions; but also with insights into the inseparabil-
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ity of gravitation and inertia, and with the special-relativistic generalization of
energy-momentum conservation. Each of these building blocks: Newtonian theory,
metric structure of space and time, the equivalence principle, and energy-momentum
conservation, was associated with a set of possible mathematical representations,
more or less well defined by physical requirements. In the case of energy-momentum
conservation, for instance, Einstein had quickly arrived at an appropriate mathemati-
cal formulation, which stayed fixed throughout his search for the gravitational field
equations. The inseparability of gravitation and inertia as expressed by the equiva-
lence principle, on the other hand, could be given various mathematical representa-
tions; for Einstein the most natural at the time seemed to be the role of the metric
tensor as the potentials for the inertio-gravitational field. The available mathematical
representations of Einstein’s building blocks were not obviously compatible with
each other. In order to develop a theory comprising as much as possible of the knowl-
edge incorporated in these building blocks, Einstein followed a double strategy.246

On the one hand, he started from those physical principles that embody the vast store
of knowledge in classical and special-relativistic physics and explored the conse-
quences of their mathematical representations in terms of the direction of his other
building blocks (his “physical strategy”). On the other hand, he started from those
building blocks that had not yet been integrated into a physical theory, such as his
equivalence principle, chose a mathematical representation, and explored its conse-
quences, in the hope of being able to find a physical interpretation that also would
integrate his other building blocks (his “mathematical strategy”). Eventually, he suc-
ceeded in formulating a theory that complies with these heterogeneous requirements;
but only at the price of having to modify, in a process of reflection on his own pre-
mises, some of the original building blocks themselves, with far-going consequences
for the structuring of the physical knowledge embodied in these building blocks, e.g.
about the meaning of coordinate systems in a physical theory. That such modifica-
tions eventually became more than just personal idiosyncrasies and have had a lasting
effect on the epistemic structures of physical knowledge is due to the fact that they
were stabilized by the knowledge they helped to integrate into general relativity. 

Hilbert’s theory was clearly not based on a comparable process of knowledge inte-
gration and hence shared the fate of most scientific contribution: dissolution and
assimilation to the structures of shared knowledge. Even if, in 1915, he had derived
the field equations of general relativity, his theory would not have had the same
“exploration depth” as that of Einstein’s 1915 version, and hence not covered a simi-
larly large domain of knowledge. Hilbert’s theory is rather comparable to one of Ein-
stein’s early intermediate versions, for instance to that involving the (linearized)
Einstein tensor, briefly considered in the Zurich Notebook in the winter of 1912/13.
Einstein quickly rejected this candidate because it appeared to him impossible to
derive the Newtonian limit from it, while Hilbert intended to publish his version in
late 1915, although he had not checked its compatibility with the Newtonian limit.

246 See “Pathways out of Classical Physics …” (in vol. 1 of this series).
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This difference in reacting to a similar candidates for solving the problem of the grav-
itational field equations obviously does not reveal any difference in the epistemic sta-
tus of Hilbert’s theory compared to Einstein’s intermediate version but only by a
different attitude with regard to a given exploration depth, motivated by the different
image of knowledge that Hilbert associated with his endeavor. Such motivations make
little difference to the fate of a theory in the life of the scientific community. In fact,
the subsequent elaborations, revisions, and transformations of Hilbert’s result testify
to an equilibration process similar to that also undergone by Einstein’s intermediate
versions, in which ever new elements of shared knowledge found their way into Hil-
bert’s construct. In the end, as we have seen, his theory comprises the same major
building blocks of physical knowledge as those, on which general relativity is based.
The exchange with Einstein and others had effectively compensated for Hilbert’s
original neglect of the need to consider his results in the light of physical knowledge,
and thus substituted, in a way, for the “physical strategy” of Einstein’s heuristics, con-
stituting a “collective process of reflection.” The fact that the equilibration process
leading to general relativity essentially went on in private exchanges between Einstein
and a few collaborators, while the equilibration process transforming Hilbert’s theory
of everything into a constituent of general relativity went on in public, as a contest
between Einstein and Hilbert, Berlin and Göttingen, physics and mathematics com-
munities, plays an astonishingly small role in the history of knowledge. 
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TILMAN SAUER

EINSTEIN EQUATIONS AND HILBERT ACTION:
WHAT IS MISSING ON PAGE 8 OF THE PROOFS FOR 

HILBERT’S FIRST COMMUNICATION ON THE 
FOUNDATIONS OF PHYSICS?1

1. INTRODUCTION

In contrast to Einstein’s discovery of special relativity in 1905, his path towards the
theory of general relativity is documented by a rich historical record. Not only did
Einstein publish quite a few papers on earlier versions of a generalized theory of rela-
tivity, we also have a number of research manuscripts from crucial periods of his
search, and we have an extensive correspondence from the relevant years. Hilbert’s
involvement in the discovery of general relativity is less abundantly documented but
also here we have a few key documents that shed light on his work. Compared to
other episodes in the history of science, the history of general relativity is very well
written, and specifically the competition between Einstein and Hilbert in the final
weeks before the publication of generally covariant field equations of gravitation in
late 1915 has been commented on extensively.2 Nevertheless, much of the historical
literature on the Einstein-Hilbert competition took sides in what was perceived as a
priority debate and it still seems worthwhile to come to a succinct and balanced
assessment of the respective contributions of both authors in the final establishment
of the general theory of relativity. In this respect, a set of proofs of Hilbert’s relevant
paper are of some significance and with those proofs the fact that a piece of them is
missing. Although the fact that a piece of those proofs is missing is well known and
was briefly commented on by several authors, the question naturally arises as to
whether that missing part could have contained information that would compel us to
reassess the historical account?

1 This paper was first published in Archive for History of Exact Sciences 59 (2005) 577–590, and is
reprinted here with their kind permission.

2 See (Corry 2004; Corry, Renn, and Stachel 1997; Earman and Glymour 1978; Logunov, Mestvirish-
vili and Petrov 2004; Mehra 1974; Norton 1984; Pais 1982; Rowe 2001; Sauer 1999; Stachel 1999;
Vizgin 2001), and “Hilbert’s Foundation of Physics …” (in this volume), as well as further references
cited in these works.
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2. THE CONTEXT

Before focussing on some minor yet significant details of the historical record, let me
briefly review the broader historical context. In 1907, Einstein first formulated his
equivalence hypothesis according to which no physical experiment can distinguish
between the existence of a homogeneous, static gravitational field in a Newtonian
inertial frame of reference and a uniformly and rectilinearly accelerated frame of ref-
erence that is free of any gravitational field. The hypothesis linked the problem of
generalizing the special theory of relativity to accelerated motion with the problem of
a relativistic theory of gravitation. In 1912, Einstein realized that such a relativistic
theory of gravitation could not be achieved using a scalar gravitational potential but
required the introduction of the metric tensor as the crucial mathematical object for a
generalized theory of relativity. Together with his mathematician friend Marcel
Grossmann, Einstein published an “Outline of a Generalized Theory of Relativity and
a Theory of Gravitation” in 1913 (Einstein and Grossmann 1913). The theory of this
“Outline” (

 

Entwurf

 

) has already many features of the final theory of general relativity
except for one “dark spot.” Einstein and Grossmann did not succeed in finding gravi-
tational field equations for the components of the metric tensor that were both gener-
ally covariant and acceptable from the point of view of Einstein’s understanding of
the requirements for a satisfactory theory of gravitation.

The final episode of Einstein’s path towards General Relativity began in the fall of
1915 when Einstein lost faith in the validity of the field equations of his “Outline”
and reverts to a reassessment of the mathematics of general covariance as developed
in the work of Riemann, Christoffel, Ricci and Levi-Civita. The final steps were taken
in four successive communications to the Prussian Academy of Sciences, all of them
presented for publication in the month of November 1915 (Einstein 1915a, b, c, d).
On November 4, Einstein advanced field equations that are based on the Ricci tensor
but that are not yet generally covariant (Einstein 1915a). Instead, by stipulation of a
restrictive condition on the admissible coordinates, he split off a part of the Ricci ten-
sor and equated the remaining part to an unspecified energy-momentum tensor as the
source of the gravitational field. In an addendum to this paper, presented a week later
on November 11 (Einstein 1915b), Einstein temporarily entertains the speculation
that all matter might be of electromagnetic origin. This assumption allowed him to
advance a generally covariant field equation of gravitation where the Ricci tensor is
directly set proportional to the energy-momentum tensor. Another week later, Ein-
stein presented a paper to the Berlin Academy in which he successfully computed the
anomalous advance of the perihelion of Mercury on the basis of his new equations
(Einstein 1915c). And yet another week later, Einstein realized that he can add a trace
term to the right-hand side of his field equations which turns them into what we now
refer to as the Einstein equations (Einstein 1915d).

David Hilbert’s path towards general relativity is a rather different one. Half a
generation older than Einstein, Hilbert in 1900 formulated his famous 23 problems of
mathematical research of the coming century to the International Congress of Mathe-
maticians in Paris. The sixth of these problems asked for an axiomatization of phys-
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ics. After working on the theory of integral equations in the first decade of the
century, Hilbert himself then turned to an intense study of all fields of theoretical
physics. In the course of his study of contemporary physics literature he soon became
interested in an attempt by the German physicist Gustav Mie to generalize Max-
wellian electrodynamics so as to turn it into a theory of matter. Mie’s idea was to take
Maxwellian electrodynamics in its variational formulation but to search for a general-
ized Lagrangian entering the action, keeping the requirement of Lorentz covariance
but allowing for the Lagrangian to depend explicitly on the electromagnetic vector
potential. Mie’s hope was to find a modified Lagrangian that would produce modified
Maxwell equations which, on microscopic scales, would allow for particle-like solu-
tions. Around that time, Hilbert also became interested in Einstein’s recent work on a
relativistic theory of gravitation and invited Einstein to give a series of lectures on his
new theory to the Göttingen mathematicians and physicists. After Einstein presented
his theory in Göttingen in July 1915, Hilbert left Göttingen for his summer vacations
and began pondering on Einstein’s “Outline” theory. Shortly after coming back to
Göttingen at the beginning of the winter term, Hilbert himself then presented a paper
to the Göttingen Academy of Sciences. In this communication, Hilbert presented a
theory of the “Foundations of Physics” which combined Mie’s idea of a generalized
electrodynamics with Einstein’s idea of a generally covariant theory of gravitation.

The dateline on Hilbert’s 

 

First Communication

 

 on the 

 

Foundations of Physics

 

(Hilbert 1915) says that it was presented to the Göttingen Academy of Sciences on 20
November 1915. The dateline on Einstein’s note on 

 

The Field Equations of Gravita-
tion

 

 (Einstein 1915d) says that it was presented to the Berlin Academy of Sciences on
25 November 1915. From a comparison of the two publications, it appears that Hil-
bert preceded Einstein with the publication of the final gravitational field equations of
general relativity by five days, notwithstanding the fact that both authors arrived at
these equations along very different routes.

The question as to where the correct field equations of gravitation are first found
in print is in need of some qualification. The gravitational field equations of general
relativity may be written in two very different yet essentially equivalent ways. Ein-
stein published his final field equations of 25 November (Einstein 1915d, 845),

(1)

as an explicit set of differential equations for the components of the metric tensor
 Using the Ricci tensor  as the differential operator acting on the metric and

the energy-momentum tensor in the source term on the right-hand side made sure
that his equations retained its form under arbitrary coordinate transformations, i.e.
made them generally covariant. Adding a trace term  where

 to the right-hand side of his equations in his last November paper did
not violate this feature. Hilbert published the gravitational field equations in implicit
form in terms of a variational principle. He axiomatically postulated an action inte-
gral (Hilbert 1915, 396)

Gim κ T im
1
2
---gimT–⎝ ⎠

⎛ ⎞ ,–=

gim. Gim

T im
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where  for spacetime coordinates  and
required that the Lagrangian  that enters into the action of his variational formula-
tion be invariant under arbitrary coordinate transformations. He also assumed that the
Lagrangian splits into the sum of two parts, a gravitational part given by the Riemann
curvature scalar and a matter part which he left unspecified except for the postulation
that it depend only on the components of the metric and the components of the elec-
tromagnetic vector potential and its first derivatives. This specification technically
renders Einstein’s equations equivalent to Hilbert’s action, except for some ambiguity
in the assumptions on how the source term is to be specified, i.e. on the fundamental
constitution of matter. Both Hilbert and Einstein had left the matter term undeter-
mined to some extent. Einstein had not specified his source term at all. Hilbert had
axiomatically required that the source term depend only on the electromagnetic vari-
ables and hence that all matter is of electromagnetic origin.

But several years ago it was pointed out (Corry, Renn and Stachel 1997) that a set
of proofs for Hilbert’s 

 

First Communication

 

 is extant in the Hilbert archives in Göt-
tingen. It bears a printer’s stamp of December 6, 1915, and differs in some significant
respects from the published version.

 

3

 

 The main difference pertains to a different
treatment of the energy concept that motivated an axiomatic restriction of the general
covariance of Hilbert’s theory and that was substantially rewritten for the published
version. In the published paper, the discussion of the energy concept no longer results
in the postulation of a restriction of the general covariance. It was also pointed out
that the proofs did not contain the explicit version of the gravitational field equations
in terms of the Einstein tensor as does Hilbert’s published paper. What we now call
the Einstein tensor is obtained by adding a trace term to the Ricci tensor, its covariant
divergence vanishes identically, and it is obtained from the explicit variation of the
gravitational part of Hilbert’s action integral. To be precise, in Einstein’s paper of 25
November the trace term was added on the right-hand side of the field equation to the
source term and not to the Ricci tensor on the left hand side and strictly speaking his
paper does not contain the Einstein tensor explicitly but this difference is a minor
detail since both variants are trivially equivalent. In view of the differences between
the proofs and the published paper general agreement seems to have been reached

 

4

 

about the conclusion that the proofs unequivocally rule out the possibility that Ein-
stein may have taken the clue of adding a trace term to his field equations of 11
November (Einstein 1915b) from Hilbert’s paper (1915). No agreement, however,
was reached on the question as to the path along which Hilbert arrived at his finally

 

3 Hilbert’s paper was eventually issued only on March 31, 1916, but off-prints of the final version were
available to Hilbert already by mid-February (Sauer 1999, note 74). Einstein’s November papers were
each published a week after their presentation to the Prussian Academy.

4 See (Corry 2004; Rowe 2001; Sauer 1999; Stachel 1999; Vizgin 2001) and also “Hilbert’s Foundation
of Physics …” (in this volume).
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published theory: by taking the main clues from Einstein’s paper, as suggested in
(Corry, Renn and Stachel 1997), or along an independent logic of discovery, as first
advocated in explicit response to this claim in (Sauer 1999). It also remains an open
question to what extent Einstein in those weeks of October and November 1915 had
heard directly or indirectly about Hilbert’s work on his theory and to what extent he
may have been influenced by what he heard, e.g. in entertaining temporarily the spec-
ulation that all matter is of electromagnetic origin.

To add to the complexity of the issue, it so happens that a portion of one sheet of
the extant proofs for Hilbert’s 

 

First Communication

 

 is missing.

 

5

 

 In view of this fact,
it seems worthwhile to discuss the question what part of the argument of the proofs is
missing and whether an answer to this question may possibly affect our assessment of
the Einstein-Hilbert competition in late 1915. In the following, I will argue that an
analysis of the internal structure of the text and argument of the proofs and the pub-
lished version of Hilbert’s paper shows that the missing piece in all probability did
not contain an explicit version of the Einstein tensor and its trace term. The analysis
rather suggests that it contained an explicit form of the Riemann curvature scalar and
the Ricci tensor as a specification of the Lagrangian in Hilbert’s variational principle.

3. WHAT IS MISSING IN THE PROOFS

Axiom I of Hilbert’s 

 

First Communication

 

, as presented on page 2 of his proofs,

 

6

 

introduces an action integral

 

7

 

(3)

where  and  is a Lagrangian density that
depends on the components of the metric  its first and second derivatives with
respect to the coordinates  of the spacetime manifold,  and

 respectively, and also depends on the components of the
electromagnetic vector potential  and its first derivatives  Specifi-
cally, the axiom demands that the laws of physics be given by the vanishing of the

 

5 See (Sauer 1999, note 75) and “Hilbert’s Foundation of Physics …” note 6 (in this volume).
6 Niedersächsische Staats- und Universitätsbibliothek (NSUB), Handschriftenabteilung, Cod. Ms. Hil-

bert 634, f.23-29. Facsimile versions of both Hilbert’s proofs and of the published version were made
available online by the Max Planck Institute for the History of Science, Berlin, on <http://
echo.mpiwg-berlin.mpg.de/content/relativityrevolution/hilbert>. A facsimile of the published version
is also available online from the website of the 

 

Göttinger Digitalisierungszentrum

 

 of the NSUB, see
<http://gdz.sub.uni-goettingen.de/gdz>.

7 The argument being partly one of textual exegesis, I am keeping strictly to Hilbert’s notation. He uses
an imaginary time-coordinate and, following standard usage of the time, refers to the Lagrangian den-
sity as a Hamiltonian function. Contrary to later and current usage, Hilbert and Einstein at the time
also consistently wrote contravariant indices of coordinate differentials as subscript indices. Hilbert
also uses subscript indices to denote partial coordinate derivatives without, however, indicating this
meaning by separating the index with a comma.
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variation of the action integral with respect to the fourteen potentials  and  for
some as yet unspecified function 

Axiom II, immediately following, then demands that  must be an invariant
under all coordinate transformations. Other than that, the Lagrangian  is left unde-
termined by the axioms.

On page 3, Hilbert writes down the “ten Lagrangian differential equations”

 

8

 

(4-pr)

which he calls the “fundamental equations of gravitation,” and the four Lagrangian
differential equations

(5-pr)

which he calls the “fundamental equations of electrodynamics or the generalized
Maxwell equations.” Hilbert then proceeds to discuss the concept of energy in the
theory by looking at what we would now call Lie variations of the action, i.e. varia-
tions of the metric that arise from pure coordinate transformations. In the course of
this discussion he introduces the notational “abbreviation” 

(4)

which he calls “the Lagrangian variational derivative of  with respect to ”
He observes that the fundamental equations of gravitation (4-pr) may now compactly
be written as

(8-pr)

Hilbert’s discussion of the energy concept in the proofs does not provide any further
specifications of the Lagrangian  although it does lead to a third axiom that
restricts the covariance of the generally covariant equations (4-pr), (5-pr), by
demanding that the physically admissible coordinates for the theory obey a set of
equations that are not generally covariant.

 

9

 

It is towards the end of the discussion of the problem of the energy concept and
the significance of his third axiom, which runs until the bottom of page 7, that we find
two passages missing in the proofs, since the top portion of the sheet that contains
pages 7and 8 was cut off.

 

10

 

 Without any further discussion of Hilbert’s treatment of

 

8 Hilbert tended to use equation numbers only for those equations that he actually referred to in his text.
I will use his own equation numbers whenever an equation was given one and indicate this fact by
adding “-pr” resp. “-pu” to the number, depending on whether it is the equation number used in the
proofs or the published version, respectively.
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the energy concept,11 I will assume that the missing portion on the top of page 7, i.e.
on the verso of the top of page 8, is not in any way relevant to the question under
investigation in this note. But what is missing on page 8?

On page 8 of the proofs, immediately following the excised portion, Hilbert
asserts: “Since  depends only on    the ansatz (17-pr) allows us to
express the energy  [...] solely as a function of the gravitational potentials  and
their derivatives, if only we assume  not to depend on but only on 

” In the next sentence, Hilbert states that he would make that latter assumption in
the following.

We observe that the quantities  and  had not been used earlier in the proofs,12

and we may conclude that  must have been introduced just before as a function of
the components of the metric and its derivatives only, and that  must have been
introduced just before as a function of the electromagnetic potential, its derivatives as
well as of the components of the metric and its first derivatives, although the depen-
dence of  on the derivatives of the metric is immediately assumed away for the rest
of the text. We also observe that the previous page has an equation that is numbered
(16-pr) and that the next line gives an equation that is numbered (18-pr). The equa-
tion with number (17-pr) is referred to a few pages later, on page 11, where Hilbert
writes that “because of (17-pr)” the fundamental equations of gravitation (8-pr) take
the form 

(26-pr)

and the fundamental equations of electrodynamics take the form

(27-pr)

Spelling out  in terms of the definition (4), eq. (26-pr) reads

9 Contrary to the discussion in (Logunov, Mestvirishvili and Petrov 2004), this condition is conceptu-
ally very different from what we now call a coordinate condition since it pertains to any possible
application of the field equations. In these volumes, such restricting equations are called “coordinate
restrictions” as opposed to “coordinate conditions.” Nonetheless, there is a significant difference
between Einstein’s use of “coordinate restrictions” prior to his final version of the general theory of
relativity and Hilbert’s third axiom in the proofs. Einstein used “coordinate restrictions” to derive field
equations that are covariant only under a correspondingly restricted group of coordinate transforma-
tions. Hilbert kept the generally covariant field equations as fundamental field equations and only pos-
tulated a limitation of the physically admissible coordinate systems.

10 For a description of the physical appearance of the proofs, see (Sauer 1999, note 75).
11 See (Sauer 1999) and “Hilbert’s Foundation of Physics …” (in this volume).
12 The choice of characters seems to have been motivated by alphabetical order. After denoting the

generic “Hamiltonian function” as  some invariant expression is denoted on page 4 as  Later,
on page 10, the electromagnetic field tensor is denoted by 
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(5)

Assuming that the missing piece introduced the quantities  and  by specifying 
as some function of these quantities,  and taking into account that

 was assumed not to depend on  and we conclude that,
in all probability, eq. (17-pr) must have been of the form:

(6)

with some constant  that may well have been set equal to 1. Clearly, Eq. (27-pr) is
consistent with this conclusion. We also note that later in the text the quantities 
and  are referred to as “invariants” (  on page 9 and on page 10,  on page 11).

Taking together these bits of information from the text of the proofs, we can draw
the following preliminary conclusions about the content of the missing piece:

1. It must have contained an equation of the form (6) that was given the number (17-
pr). 

2. The missing piece introduced a quantity  in such a way that the definition or
characterization of  whatever it was, implied that  is an
invariant and only depends on the components of the metric and its first and sec-
ond derivatives.

3. The missing piece introduced a quantity  in such a way that the definition or
characterization of  whatever it was, implied that  is
an invariant and depends on the components of the electromagnetic vector poten-
tial and its first derivatives as well as on the metric components and its first deriv-
atives.

It should be noted that these conclusions emerge from looking at the existing text of
the proofs alone, without taking recourse to the published version or any other histor-
ical source.

4. WHAT IS CONTAINED IN THE PUBLISHED VERSION

Let us now take further account of Hilbert’s published version of his First Communi-
cation (Hilbert 1915). As was indicated above, the published version differs signifi-
cantly from the proofs in several respects, the main difference being a completely
revised discussion of the energy theorem. Specifically, with respect to the gravita-
tional and electrodynamical field equations, however, the differences are not signifi-
cant, as we will see, apart from the fact that the explicit evaluation of the variational
derivative of the gravitational part of the Lagrangian  is found only in the published
version and not in the existing part of the proofs. Whether it may have been on the
missing part of the proofs will be discussed below.
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The formulation of the first two axioms is the same, and in the published version,
Hilbert again wrote down the fundamental equations (4-pr), and (5-pr), albeit in a
slightly different form as

(4-pu)

and

(5-pu)

The equivalence of eqs. (4-pr) and (5-pr), with (4-pu) and (5-pu) is, of course, com-
pletely trivial but the form (4-pu), (5-pu) allowed Hilbert to introduce the abbreviated
notation  and  already at this point as the left hand sides of the
“fundamental equations” (4-pu) and (5-pu).

The specification of the Lagrangian  in terms of a gravitational part  and an
electromagnetic part  appears twice in the published version. The first time the rel-
evant equation appears it is in a context that would fit quite naturally into the missing
piece of page 8 of the proofs. The relevant passage reads:

As far as the world function  is concerned, further axioms are needed to determine its
choice in a unique way. If the gravitational field equations are to contain only second
derivatives of the potentials  then  must have the form

(7)

where  is the invariant that derives from the Riemannian tensor (curvature of the four-
dimensional manifold)

(8)

(9)

and where  only depends on  (Hilbert 1915, 402)

Hilbert then adds the following sentence: “Finally, we will, in the following, make
the simplifying assumption that  does not depend on ” The physical size of the
missing piece allows for some ten lines of text or the equivalent of some smaller
number of lines of text plus a number of displayed equations, taking into account that
a displayed equation would take up more than a single line of text.13 In view of this
restriction, the passage in the published version is clearly too long to be inserted into

13 See (Sauer 1999, note 75), the length of the type area seems to vary slightly over the different pages of
the proofs.
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the missing piece of the proofs. However, we can easily cut down the passage to fit
into the size of the missing piece as, e.g., with the following German sentence:

Wir machen im folgenden den Ansatz

(10)

wo  die aus dem Riemannschen Tensor entspringende Invariante

(11)

(12)

bedeutet und  nur von  abhängt.14

It seems perfectly natural to assume that this passage or some very similar variant of
it was the missing piece on page 8 of the proofs. And, as already conjectured in
(Sauer 1999, note 82), Hilbert himself may have cut out this piece from his proofs,
perhaps to paste it into some other unknown manuscript of his, e.g. into the manu-
script for his revised version. 

As indicated above, the equation  appears at one other place in the
published version of Hilbert’s First Communication. This passage reads:

It remains to show directly how with the assumption

(20-pu)

the generalized Maxwell equations (5-pu) put forth above are entailed by the gravita-
tional equations (4-pu).

Using the notation introduced earlier for the variational derivatives with respect to the
 the gravitational equations, because of (20-pu), take the form

(21-pu)

The first term on the left hand side becomes

(13)

as follows easily without calculation from the fact that  apart from  is the only
tensor of second rank (“Ordnung”) and  the only invariant, that can be formed using
only the  and their first and second differential quotients  (Hilbert 1915,
404 f.)

14 “We now make the ansatz [...] where  is the invariant that derives from the Riemannian tensor [...]
and where  only depends on ”
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And after this assertion, Hilbert adds the following comment as to the apparent equiv-
alence of his equations to those published by Einstein:

The resulting differential equations of gravitation are, it seems to me, in agreement with
the broad (“großzügigen”) theory of general relativity established by Einstein in his later
papers. 

The reference to Einstein’s “later papers” is specified in a footnote by citing all four
of Einstein’s November memoirs (Einstein 1915a, b, c, d) including the last one that
was presented to the Berlin Academy only on 25 November (Einstein 1915d). The
question arises whether the missing piece of the proofs could have contained equa-
tion (13), i.e. the explicit form of the variational derivative for some gravitational
Lagrangian  Specifically under the assumption that  was defined or character-
ized as the Riemannian curvature scalar, it would then have displayed what we now
call the Einstein tensor with its trace term This reading would allow revival
of a speculation that a version of the theory as laid out in the proofs may then possi-
bly have inspired Einstein to make the transition of his field equations of his second
November memoir of 11 November 1915 (Einstein 1915b) to those of his final
November paper of 25 November 1915 (Einstein 1915d) by adding a similar trace
term to the matter term of his previous equation.

However, from the internal logic and structure of both the argument in the proofs
and in the published version, this conjecture seems highly unlikely for the following
reasons. In addition to equation (13) or some similar equation displaying the explicit
form of the variational derivative of the gravitational part of the Lagrangian, the miss-
ing piece must still have contained an equation of the form (6), as in (20-pu), and
some kind of characterization of the quantities  and  as discussed above on the
basis of the proofs alone. In addition, it must also have contained some kind of char-
acterization of the term  which appears in equation (13) but which had not
appeared in the proofs before. In view of the physical size of the missing piece, the
explicit form of the Ricci tensor  as in (12), could hardly have fitted on it in
addition to equation (20-pu), as well as equation (13). Therefore, the quantity  must
then have been defined or characterized without using its explicit form, maybe only
with words (“die aus dem Riemannschen Krümmungstensor  entspringende
Invariante ”).

However, there are at least two arguments against the assumption that the missing
piece contained equation (13) in addition to equation (20-pu) and some minimal
information needed to introduce  and 

1. Nowhere in the extant parts of the proofs does Hilbert calculate explicitly the
result of the variational derivative or argues on this level. Indeed, in and of itself
such an explicit calculation would be at odds with the general thrust of his com-
munication which is to draw quite general conclusions from combining varia-
tional calculus and invariant theory. And in the published version, the explicit
form of the variational derivative of the gravitational part of the Lagrangian is
clearly directly motivated by Hilbert’s comment on the presumed equivalence of

K . K
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his own equations with those of Einstein’s November memoirs, specifically as it
seems with the final ones of 25 November 1915.

2. The mathematical assertion captured by equation (13), i.e. the assertion that the
Einstein tensor  is obtained by a variation of the Riemann curvature
scalar  with respect to the metric  must have been given with even less
comments on how this result is obtained and on what assumptions are needed for
its validity, as were given in the published version. 

To elaborate on the second point, let me finally comment on the derivation of the Ein-
stein tensor from a variation of the Riemann curvature. As pointed out in (Corry,
Renn and Stachel 1997), the fact that Hilbert’s assertion quoted above about the
uniqueness of the Einstein tensor, if taken literally, is wrong, since there are many
invariants that are of second rank and “can be formed using only the  and their
first and second differential quotients.” However, earlier on, Hilbert had also men-
tioned the condition that second derivatives are to be contained in the gravitational
equations only linearly. This additional condition fixes the tensor to the form

 with some undetermined factor  This factor  is determined to be
equal to 1/2 if it is further assumed that the covariant divergence of the expression
vanishes, an assumption that is never mentioned explicitly in the published version,
although it is implied by the contracted Bianchi identities that follow from Hilbert’s
proto-version of Noether’s second theorem in his published communication (Sauer
1999, note 104 and p. 564; Logunov, Mestvirishvili and Petrov 2004). Corry, Renn
and Stachel (1997) also point out that, while Hilbert asserts that the result follows
“without calculation,” he does give a more explicit derivation of the Einstein tensor in
his 1924 republication of his Communications on the Foundations of Physics (Hilbert
1924).15 Nevertheless, we have contemporary evidence that may give a meaning to
Hilbert’s assertion. It is found in a letter by the mathematician Hermann Vermeil to
Felix Klein, dated 2 February 1918.16 In it Vermeil explicitly addressed the question
how the result can be obtained “without calculation.” The answer that he found goes
like this:

Assuming that

(14)

15 I disagree with the claim in (Corry, Renn and Stachel 1997) that the 1924 republication was primarily
motivated by Hilbert’s wish to correct some errors of his 1915 publication. As argued elsewhere
(Majer and Sauer 2005), it was on the contrary Hilbert’s intention to reaffirm his own priority of the
field equations after Einstein in his 1923 papers on Eddington’s unified field theory had arrived at
equations that were essentially equivalent to the gravitational field equations of 1915 in variational
form in the context of the unified field theory program.

16 NSUB Cod. Ms. Klein 22B, f. 28. This letter was discussed extensively at a history of mathematics
conference at Oberwolfach in May 2000 in which the Einstein-Hilbert competition was a central topic
of discussion. The argument is also presented, apparently without knowledge of Vermeil’s letter, in
(Logunov, Mestvirishvili and Petrov 2004, 611). For Vermeil’s role, see also the discussion in (Rowe
2001, 417f.).
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which, as discussed, follows from Hilbert’s assumptions if one also demands that sec-
ond derivatives occur only linearly, Vermeil evaluated  (see (4) for the sca-
lar  see (8), and obtained

(15)

Using  this turns into

(16)

where all terms on the second line do not produce terms of the form (14).
While this derivation shows that Hilbert’s claim in the published version about the

derivation of the Einstein tensor is correct (granting that the postulate that second
derivatives occur only linearly was implied) and credible, the question still remains as
to why Hilbert should have done this derivation and included its result into the proofs
without elaborating at all about the necessary steps and assumptions. Assuming that
Hilbert added the explicit evaluation of  into the published version after
seeing the explicit field equations of Einstein’s final November paper, on the other
hand, makes good sense. Let us not forget after all, that Hilbert in this context does
cite Einstein’s paper of 25 November.

5. CONCLUDING REMARKS

What was on the excised piece? Merely requiring continuity with the remaining text
constrains the possibilities quite considerably. It is highly unlikely that the missing
part contained the explicit result of a variational derivative of the action with respect
to the metric and specifically some version of the Einstein tensor. Consistency with
the remaining text rather leads virtually uniquely to the conclusion that on the miss-
ing piece Hilbert had specified the Lagrangian of his variational principle as a sum of
a gravitational part and a matter part, that he had further specified the gravitational
part as the Riemann curvature scalar, and that he did so by giving the Ricci tensor in
its explicit form.

It still remains true that the proofs of Hilbert’s First Communication on the Foun-
dations of Physics already contain the correct gravitational field equations of general
relativity in implicit form, i.e. in terms of a variational principle and the Hilbert
action. The variational formulation is fully equivalent to the explicit Einstein equa-
tions published by Einstein a few days later, although the theory of Hilbert’s proofs
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was not yet a fully generally covariant theory. It remains an interesting task to spell
out in detail a scenario by which Hilbert would have overcome the restriction implied
by the third axiom of his proofs following his own heuristics and logic of discovery.
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First proof of my first note.

The Foundations of Physics.

(First communication.)[1]

by

David Hilbert.

Presented in the session of 20 November 1915.

The far reaching ideas and the formation of novel concepts by means of which
Mie constructs his electrodynamics, and the prodigious problems raised by Ein-
stein, as well as his ingeniously conceived methods of solution, have opened new
paths for the investigation into the foundations of physics.

In the following — in the sense of the axiomatic method — I would like to
develop /essentially from three simple axioms a new system of basic equations of phys-
ics, of ideal beauty, containing, I believe, the solution of the problems presented. I
reserve for later communications the detailed development and particularly the spe-
cial application of my basic equations to the fundamental questions of the theory of
electricity.

Let  be any coordinates labeling the world’s points essentially
uniquely — the so-called world parameters. The quantities characterizing the events
at  shall be:

1) The ten gravitational potentials /first introduced by Einstein 
having the character of a symmetric tensor with respect to arbitrary transformation of
the world parameter 

2) The four electrodynamic potentials  having the character of a vector in the
same sense.

Physical processes do not proceed in an arbitrary way, rather they are governed by
the following two axioms: |
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Axiom I (Mie’s

 

1

 

 axiom of the world function): 

 

The law governing physical pro-
cesses is determined through a world function  that contains the following argu-
ments

 

:

(1)

(2)

 

where the variation of the integral

must vanish for each of the 14 potentials

 

 
Clearly the arguments (1) can be replaced by the arguments

(3)

where  is the subdeterminant of the determinant  with respect to its element
 divided by 

Axiom II

 

2

 

 (axiom of general invariance):

 

 The world function  is invariant
with respect to an arbitrary transformation of the world parameters 

 

Axiom II is the simplest mathematical expression of the demand that the inter-
linking of the potentials  is by itself entirely independent of the way one
chooses to identify the world’s points by means of world parameters.

The guiding motive for setting up my 

 

the

 

 theory is given by the following theorem,
the proof of which I shall present elsewhere.

Theorem I. If  is an invariant under arbitrary transformations of the four world
parameters, containing  quantities and their derivatives, | and if one forms from

 

1 Mie’s world functions do not contain exactly these arguments; in particular the usage of the argu-
ments (2) goes back to Born. However, what is characteristic of Mie’s electrodynamics is the intro-
duction and use of such a world function in Hamilton’s principle.

2 Orthogonal invariance was already postulated by Mie. In the axiom II established above, Einstein’s
basic idea fundamental

 

[2]

 

 

 

of general covariance finds its simplest expression, even if Hamilton’s prin-
ciple plays only a subsidiary role with Einstein, and his functions  are by no means invariants, and
also do not contain the electric potentials.

[2]
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the  variational equations of Lagrange with respect to each of the  quantities, then
in this invariant system of  differential equations for the  quantities there are
always four that are a consequence of the remaining  — in the sense that,
among the  differential equations and their total derivatives there are always four
linear and mutually independent combinations that are satisfied identically.

Concerning the differential quotients with respect to 

 

  

 

 as in (4) and
subsequent formulas, let us note once for all that, due to the symmetry in  on the
one hand and in  on the other, the differential quotients with respect to 

 

 

 

are to be multiplied by 1 resp.  according as  resp.  further the differ-
ential quotients with respect to  are to be multiplied by 1 resp.  resp.  accord-
ing as  and  resp.  and  or  and  resp. 
and 

Axiom I implies first for the ten gravitational potentials  the ten Lagrangian
differential equations

(4)

and secondly for the four electrodynamic potentials  the four Lagrangian differen-
tial equations

(5)

Let us call equations (4) the fundamental equations of gravitation, and equations
(5) the fundamental electrodynamic equations, or generalized Maxwell equations.
Due to the theorem stated above, the four equations (5) can be viewed as a conse-
quence of equations (4), that is, because of that mathematical theorem we can imme-
diately assert the claim 

 

that in the sense explained above electrodynamic phenomena
are effects of gravitation

 

. I regard this insight

 

 

 

as the simple and very surprising solu-
tion of the problem of Riemann, who was the first to search for a theoretical connec-
tion between gravitation and light.

Since our mathematical theorem shows us that the axioms I and II considered so
far can produce only ten essentially independent equations; and since, on the other
hand, | if general invariance is maintained, more than ten essentially independent
equations for the 14 potentials  are not at all possible; therefore—provided
that we want to retain the determinate character of the basic equation of physics cor-
responding to Cauchy’s theory of differential equations— the demand for four further
non-invariant equations in addition to (4) and (5) is imperative. In order to arrive at
these equations, I first put up a definition of the concept of energy.

To this end we polarize 

 

 

 

in the invariant  by an arbitrary contragredient
tensor  and thus form the expression
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where the abbreviation

has been used. Since polarization is an invariant process,  is an invariant. Now we
treat the expression  in the same way as an integrand of a variational problem
in the calculus of variations, when one wants to integrate by parts; thus we obtain the
following identity:

(6)

where we have put

and

(7)

as abbreviations. The expression  is nothing but the Lagrangian variational
derivative of  with respect to  which yields the gravitational equations (4)
when it is put equal to zero,

(8)

| and the expression  is a sum of differential quotients, so it has the character of a
pure divergence.

Now we use the easily proved fact that, if   is an arbitrary
contravariant vector, the expression

represents a symmetric contravariant tensor.
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If we substitute in the invariant expression  instead of  the special contra-
variant tensor  there arises again an invariant expression, namely

where the abbreviations

have been used. Now we treat the expression  in the same way as an integrand
of a variational problem in the calculus of variations, when one wants to integrate by
parts — but in such a way that in this procedure the first differential quotient  of
the  always remain unchanged, and only the second and third derivatives of the 
are included in the divergence; and moreover so that the auxiliary expressions
become invariant with respect to linear transformation

(9)

we thus obtain the following identity:

(10)

where we have put |

as an abbreviation.[3] The expression  is invariant under linear transformation and
with respect to the vector  it has the form
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where from (10)  and  are well-defined expressions. In particular it turns out, as
one can see, that:

(11)

where the differentiation denoted by  is total with respect to  but to be per-
formed in such a way that the electromagnetic potentials  remain unaffected.

Call the expression  the energy form. To justify this designation, I prove
two properties that the energy form enjoys.

If we substitute the tensor  for  in identity (6) then, together with (9) it
follows, provided the gravitational equations (8) are satisfied:

(12)

or

(13)

that is, we have the proposition:
Proposition 1: In virtue of the gravitational equations the energy form

 becomes a sum of differential quotients with respect to  that is, it acquires the
character of a divergence.

Had we gone a step further in the above treatment of the expression  that
led to (9) and converted in the usual way of the variational calculus also the first dif-
ferential quotient  of the  then the expression containing the  alone would |

[eq (14) missing][4] (14)

This theorem shows that the divergence equation corresponding to the energy the-
orem of the old theory

(15)

holds if and only if the four quantities  vanish, that is if the following equations
hold
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(16)

After these preliminaries I now put down the following axiom:
Axiom III (axiom of space and time). The spacetime coordinates are those spe-

cial world parameters for which the energy theorem (15) is valid.
According to this axiom, space and time in reality provide a special labeling of

the world’s points such that the energy theorem holds.
Axiom III implies the existence of equations (16): these four differential equa-

tions (16) complete the gravitational equations (4) to give a system of 14 equations
for the 14 potentials  the system of fundamental equations of phys-
ics. Because of the agreement in number between equations and potentials to be
determined, the principle of causality for physical processes is also guaranteed,
revealing to us the closest connection between the energy theorem and the principle
of causality, since each presupposes the other. To the transition from one spacetime
reference system to another one corresponds the transformation of the energy form
from one so-called “normal form”

to another normal form. |

[eq. (17) missing: ][4] (17)

Because  depends only on    therefore in ansatz (17), due to (13),
the energy  can be expressed solely as a function of the gravitational potentials 
and their derivatives, provided  is assumed to depend not on  but only on 

  On this assumption, which we shall always make in the following, the defi-
nition of the energy (10) yields the expression

(18)

where the “gravitational energy”  depends only on  and their derivatives, and
the “electrodynamic energy”  takes the form

(19)

which proves to be a general invariant multiplied by  
To proceed we use two mathematical theorems, which say the following:
Theorem II.  If  is an invariant depending on      then

the following is always identically true in all arguments and for every arbitrary con-
travariant vector 
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where |

Theorem III. If  is an invariant depending only on the  and their deriva-
tives and if, as above, the variational derivatives of  with respect to  are
denoted by  then the expression — in which  is understood to be any
contravariant tensor —

represents an invariant; if in this sum we substitute in place of  the particular ten-
sor  and write

where then the expressions

depend only on the  and their derivatives, then we have
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in the sense, that this equation is identically fulfilled for all arguments, that is for the
 and their derivatives.
Now we apply Theorem II to the invariant  and obtain

(21)

Equating to zero the coefficient of  produces the equation

| or

(22)

that is, the derivatives of the electrodynamic potentials  occur only in the combina-
tions

Thus we learn that under our assumptions the invariant  depends, other than on the
potentials  only on the components of the skew symmetric invariant tensor

that is, of the so-called electromagnetic six vector. This result here derives essentially
as a consequence of the general invariance, that is, on the basis of axiom II.

If we put the coefficient of  on the left of identity (21) equal to zero, we obtain,
using (22)
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This equation admits an important transformation of the electromagnetic energy.
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(25)

then this limit agrees exactly with what Mie has established in his electrodynamics:
Mie’s electromagnetic energy tensor is nothing but the generally
invariant tensor that results from differentiation of the invariant  with
respect to the gravitational potentials  in the limit (25) — a circum-
stance that gave me the first hint of the necessary close connection between Ein-
stein’s general relativity theory and Mie’s electrodynamics, and which convinced
me of the correctness of the theory here developed. |

It only remains to show directly from assumption (17) how the generalized Max-
well equations (5) developed above are a consequence of the gravitational equations
(4) in the sense given above.

By use of the notation just introduced for the variational derivatives with respect
to the  the gravitational equations acquire the form, due to (17)

(26)

If we further denote in general the variational derivatives of  with respect to the
electrodynamic potential  by

then the electrodynamic equations take the form, due to (17)
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III equation (20) holds identically with
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since of course

| and

Now we take into account that because of (22) we have

and thus obtain after suitably collecting terms

(30)

On the other hand we have

Due to (26) and (28) the first terms on the right is nothing else but  The last term
on the right proves to be equal and opposite to the last term on the right of (30); for
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turns out to be symmetric in  and the first factor under the summation sign in
(31) skew symmetric in 

Therefore (30) implies the equations

(32)

that is, from the gravitational equations (4) there follow indeed the four linearly inde-
pendent combinations (32) of the basic electrodynamic equations (5) and their first
derivatives. This is the entire mathematical expression of the general claim made
above about the character of electrodynamics as an epiphenomenon of gravitation. |

According to our assumption  should not depend on the derivatives of the 
therefore  must be a function of certain four general invariants, which correspond to
the special orthogonal invariants reported by Mie, and of which the two simplest
ones are these:

and

The simplest and most straightforward ansatz for  considering the structure of 
is also that which corresponds to Mie’s electrodynamics, namely

or, following Mie even more closely:

where  denotes any function of  and  are constants.
As one can see, the few simple assumptions expressed in axioms I, II, III suffice

with appropriate interpretation to establish the theory: through it not only are our
views of space, time, and motion fundamentally reshaped in the sense called for by
Einstein, but I am also convinced that through the basic equations established here
the most intimate, hitherto hidden processes in the interior of atoms will receive an
explanation; and in particular that generally a reduction of all physical constants to
mathematical constants must be possible—whereby the possibility approaches that
physics in principle becomes a science of the type of geometry: surely the highest
glory of the axiomatic method, which, as we have seen, here takes into its service the
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powerful instruments of analysis, namely the calculus of variations and the theory of
invariants.

EDITORIAL NOTES

[1] The following is a translation of the proofs of Hilbert’s first paper on the founda-
tions of physics, which are preserved at Göttingen in SUB Cod. Ms. 634. These
proofs comprise 13 pages and are complete, apart from the fact that roughly the
upper quarter of two pages (7 and 8) is cut off. The proofs are dated “submitted
on 20 November 1915.” The Göttingen copy bears a printer’s stamp dated 6
December 1915 and is marked in Hilbert’s own hand “First proofs of my first
note.” In addition, the proofs carry several marginal notes in Hilbert’s hand,
which are shown here in superscript italics. In contrast to the other source papers
in these volumes, this proof version of Hilbert’s paper has been formatted as far
as possible to recreate the original so that the author’s hand-written notes are evi-
dent. This paper was later published in a converted version in Nachrichten von
der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Math.-phys.
Klasse. 1915. Issue 8, p 395–407, (1. correction).

[2] The word “fundamental” should appear before “basic”. It is written correctly in
the printed version.

[3] The superscript  in the first occurrence of  in this equation is missing in the
original.

[4] For more detailed information on the missing piece of this document, see “Ein-
stein Equations and Hilbert Actions …” (in this volume).
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The vast problems posed by Einstein

 

1

 

 as well as his ingeniously conceived methods
of solution, and the far-reaching ideas and formation of novel concepts by means of
which Mie

 

2

 

 constructs his electrodynamics, have opened new paths for the investiga-
tion into the foundations of physics.

In the following—in the sense of the axiomatic method—I would like to develop,
essentially from two simple axioms, a new system of basic equations of physics, of
ideal beauty and containing, I believe, 

 

simultaneously

 

 the solution to the problems of
Einstein and of Mie. I reserve for later communications the detailed development and
particularly the special application of my basic equations to the fundamental ques-
tions of the theory of electricity.

Let  be any coordinates labeling the world’s points essentially
uniquely—the so-called world parameters (most general spacetime coordinates). The
quantities characterizing the events at  shall be:

1. The ten gravitational potentials  first introduced by Ein-
stein, having the character of a symmetric tensor with respect to an arbitrary
transformation of the world parameters 

2. The four electrodynamic potentials  having the character of a vector in the
same sense. |

Physical processes do not proceed in an arbitrary way, rather they are governed by
the following two axioms:

 

1

 

Sitzungsber. d. Berliner Akad

 

. 1914, 1030; 1915, 778, 799, 831, 844.
2

 

Ann. d. Phys

 

. 1912, Vol. 37, 511; Vol. 39, 1; 1913, vol. 40, 1.
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Axiom I (Mie’s axiom of the world function

 

3

 

): 

 

The law governing physical pro-
cesses is determined through a world function  that contains the following argu-
ments:

 

(1)

(2)

 

where the variation of the integral

must vanish for each of the fourteen potentials

 

 
Clearly the arguments (1) can be replaced by the arguments 

 

[1]

 

(3)

where  is the subdeterminant of the determinant  with respect to its element
 divided by 

Axiom II (axiom of general invariance

 

4

 

): 

 

The world function  is invariant with
respect to an arbitrary transformation of the world parameters 

 

Axiom II is the simplest mathematical expression of the demand that the inter-
linking of the potentials  is by itself entirely independent of the way one
chooses to label the world’s points by means of world parameters.

The guiding motive for constructing my theory is provided by the following theo-
rem, the proof of which I shall present elsewhere. |

Theorem I. If  is an invariant under arbitrary transformation of the four world
parameters, containing  quantities and their derivatives, and if one forms from

the  variational equations of Lagrange with respect to those  quantities, then in
this invariant system of  differential equations for the  quantities there are always

 

3 Mie’s world functions do not contain exactly these arguments; in particular the usage of the argu-
ments (2) goes back to Born. However, what is characteristic of Mie’s electrodynamics is precisely
the introduction and use of such a world function in Hamilton’s principle.

4 Orthogonal invariance was already postulated by Mie. In the axiom II formulated above, Einstein’s
fundamental basic idea of general invariance finds its simplest expression, even if Hamilton’s princi-
ple plays only a subsidiary role with Einstein, and his functions 

 

 

 

are by no means general invari-
ants, and also do not contain the electric potentials.

H ,
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four that are a consequence of the remaining —in this sense, that among the 
differential equations and their total derivatives there are always four linear and
mutually independent combinations that are satisfied identically.

Concerning the differential quotients with respect to    occurring in
(4) and subsequent formulas, let us note once for all that, due to the symmetry in 
on the one hand and in  on the other, the differential quotients with respect to 

 are to be multiplied by 1 resp.  according as  resp.  further the
differential quotients with respect to  are to be multiplied by 1 resp.  resp. 
according as  and  resp.  and  or  and  resp.

 and 
Axiom I implies first for the ten gravitational potentials  the ten Lagrangian

differential equations

(4)

and secondly for the four electrodynamic potentials  the four Lagrangian differen-
tial equations

(5)

We denote the left sides of the equations (4), (5) respectively by

for short.
Let us call equations (4) the fundamental equations of gravitation, and equations

(5) the fundamental electrodynamic equations, or generalized Maxwell equations.
Due to the theorem stated above, the four equations (5) can be viewed as a conse-
quence of equations (4), that is, because of that mathematical theorem we can
directly make the claim that in the sense as explained the electrodynamic phenomena
are effects of gravitation. I regard this | insight as the simple and very surprising solu-
tion of the problem of Riemann, who was the first to search for a theoretical connec-
tion between gravitation and light.

In the following we use the easily proved fact that, if   is an
arbitrary contravariant vector, the expression

represents a symmetric contravariant tensor, and the expression

n 4– n
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represents a covariant vector.
To proceed we establish two mathematical theorems, which express the follow-

ing:

Theorem II. If  is an invariant depending on      then the fol-
lowing is always identically true in all arguments and for every arbitrary contravari-
ant vector [2]

where

This theorem II can also be formulated as follows:
If  is an invariant and  and arbitrary vector as above, then the identity holds

(6)

| where we have put

with

and used the abbreviations:

J gμν, gl
μν, gkl

μν, qs, qsk,

ps:

∂J

∂gμν
-----------Δgμν ∂J

∂gl
μν

-----------Δgl
μν ∂J

∂gkl
μν

-----------Δgkl
μν+ +⎝ ⎠

⎛ ⎞

μ ν l k, , ,
∑

+
∂J
∂qs
--------Δqs

∂J
∂qsk
----------Δqsk+⎝ ⎠

⎛ ⎞

s k,
∑ 0,=

Δgμν gμm pm
ν gνm pm

μ+( ),
m
∑=

Δgl
μν gm

μν pl
m ∂Δgμν

∂wl
---------------,+

m
∑–=

Δglk
μν gm

μν plk
m glm

μν pk
m gkm

μν pl
m+ +( )

∂2Δgμν

∂wl∂wk
-------------------,+

m
∑–=

Δqs qm ps
m,

m
∑–=

Δqsk qsm pk
m ∂Δqs

∂wk
------------.+

m
∑–=

J ps

J∂
ws∂

--------- ps

s
∑ PJ ,=

[399]

P Pg Pq,+=

Pg pμν

gμν∂

∂
pl

μν

gl
μν∂

∂
plk

μν

glk
μν∂

∂
+ +⎝ ⎠

⎛ ⎞

μ ν l k, , ,
∑=

Pq pl ql∂
∂

plk qlk∂
∂

+⎝ ⎠
⎛ ⎞ ,

l k,
∑=



THE FOUNDATIONS OF PHYSICS (FIRST COMMUNICATION) 1007

The proof of (6) follows easily; for this identity is obviously correct if  is a
constant vector, and from this it follows in general because of its invariance.

Theorem III. If  is an invariant depending only on  and their derivatives,
and if, as above, the variational derivatives of  with respect to  are denoted
by  then the expression—where  is understood to be any contravariant
tensor—

represents an invariant; if we substitute in this sum in place of  the particular ten-
sor  and write

where then the expressions

depend only on the  and their derivatives, then we have

(7)

in the sense that this equation is satisfied identically for all arguments, that is for the
 and their derivatives.
For the proof we consider the integral

to be taken over a finite piece of the four dimensional world. | Further, let  be a
vector that vanishes together with its derivatives on the three dimensional surface of
that piece of the world. Due to  the last formula of the next page implies

this results in
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and due to the way the Lagrangian derivative is formed we accordingly also have

Introduction of  into this identity finally shows that

and therefore also that the assertion of our theorem is correct.
The most important aim is now the formulation of the concept of energy, and the

derivation of the energy theorem solely on the basis of the two axioms I and II.
For this purpose we first form:

Now  is a mixed tensor of fourth rank, so if one puts

the expression

(8)

becomes a contragredient vector.
Hence if we form the expression

then this no longer contains the second derivatives  and | therefore has the form
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where

is again a mixed tensor.
Now we form the vector

(9)

and obtain from it

(10)

On the other hand we form

then  is a tensor and the expression

(11)

therefore represents a contragredient vector. Correspondingly, as above, we obtain

(12)

Now we note the basic equations (4) and (5), and conclude by adding (10) and (12):

But we have

and thus, due to identity (6)
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| From this we finally obtain the invariant equation

Now we note that

is a skew symmetric contravariant tensor; consequently

(13)

becomes a contravariant vector, which evidently satisfies the identity

Let us now define

(14)

as the 

 

energy vector, then the energy vector is a contravariant vector, which moreover
depends linearly on the arbitrarily chosen vector  and satisfies identically for that
choice of this vector  the invariant energy equation

 

As far as the world function  is concerned, further axioms are needed to deter-
mine its choice in a unique way. If the gravitational field equations are to contain only
second derivatives of the potentials 

 

 

 

then

 

 

 

 must have the form

where  is the invariant that derives from the Riemannian tensor (curvature of the
four-dimensional manifold)
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and where  depends only on   

 

 

 

 Finally we make the simplifying
assumption in the following, that  does not contain the 

 

 |

 

Next we apply theorem II to the invariant  and obtain

(15)

Equating to zero the coefficient of  on the left produces the equation

or

(16)

that is, the derivatives of the electrodynamic potentials  occur only in the combina-
tions

Thus we learn that under our assumptions the invariant  depends, besides on the
potentials  only on the components of the skew symmetric invariant tensor

that is, of the so-called electromagnetic six vector. 

 

This result, which determines the
character of Maxwell’s equations in the first place, here derives essentially as a con-
sequence of the general invariance, that is, on the basis of axiom II

 

.
If we put the coefficient of  on the left of identity (15) equal to zero, we obtain,

using (16)

(17)

This equation admits an important transformation of the electromagnetic energy,
that is the part of the energy vector that comes from  Namely, this part results from
(11), (13), (14) as follows:

Kμν
∂

∂wν
----------

μκ

κ⎩ ⎭
⎨ ⎬
⎧ ⎫ ∂

∂wκ
----------

μν

κ⎩ ⎭
⎨ ⎬
⎧ ⎫

–
⎝ ⎠
⎜ ⎟
⎛ ⎞ μκ

λ⎩ ⎭
⎨ ⎬
⎧ ⎫ λν

κ⎩ ⎭
⎨ ⎬
⎧ ⎫ μν

λ⎩ ⎭
⎨ ⎬
⎧ ⎫ λκ

κ⎩ ⎭
⎨ ⎬
⎧ ⎫

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

κ λ,
∑+

κ
∑=

L gμν, gl
μν, qs, qsk.

L gl
μν.

[403]L

∂L

∂gμν
----------- gμm pm

ν gνm pm
μ+( )

μ ν m, ,
∑ ∂L

∂qs
--------qm ps

m

s m,
∑–

 
∂L

∂qsk
---------- qsm pk

m qmk ps
m qm psk

m+ +( )
s k m, ,
∑– 0.=

psk
m

∂L
∂qsk
---------- ∂L

∂qks
----------+⎝ ⎠

⎛ ⎞ qm 0=

∂L
∂qsk
---------- ∂L

∂qks
----------+ 0,=

qs

Mks qsk qks.–=

L
gμν qs,,

M Mks( ) Curl qs( ),= =

pm
ν

2
∂L

∂gμν
-----------gμm ∂L

∂qm
---------qν–

∂L
∂Mms
-------------Mνs

s
∑–

μ
∑ 0,= μ 1= 2 3 4, , ,( ).

L.



1012 DAVID HILBERT

Because of (16) and by noting (5) this expression becomes |

(18)

so because of (17) it equals

(19)

Because of the formulas (21) to be developed below we see from this in particular
that the electromagnetic energy, and therefore also the total energy vector  can be
expressed through  alone, so that only the  and their derivatives, but not the 
and their derivatives occur in it. If one takes the limit

in expression (18), then this limit agrees exactly with what Mie has proposed in his
electrodynamics: Mie’s electromagnetic energy tensor is nothing but the generally
invariant tensor that results from differentiation of the invariant  with respect to the
gravitational potentials  in that limit—a circumstance that gave me the first hint
of the necessary close connection between Einstein’s general relativity theory and
Mie’s electrodynamics, and which convinced me of the correctness of the theory here
developed.

It remains to show directly how with the assumption

(20)

the generalized Maxwell equations (5) put forth above are entailed by the gravita-
tional equations (4).

Using the notation introduced earlier for the variational derivatives with respect to
the  the gravitational equations, because of (20), take the form
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| as follows easily without calculation from the fact that  apart from  is the
only tensor of second rank and  the only invariant, that can be formed using only
the  and their first and second differential quotients,  

The resulting differential equations of gravitation appear to me to be in agreement
with the grand concept of the theory of general relativity established by Einstein in
his later treatises.5

Further, if we denote in general the variational derivatives of  with respect to
the electrodynamic potential  as above by

then the basic electromagnetic equations assume the form, due to (20)

(22)

Since  is an invariant that depends only on the  and their derivatives, by theo-
rem III the equation (7) holds identically, with

(23)

and

(24)

Due to (21) and (24), (19) equals  By differentiating with respect to  and

summing over  we obtain because of (7)

5 Loc. cit. Berliner Sitzungsber. 1915.
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since of course

| and[3]

Now we take into account that because of (16) we have

and then obtain by suitably collecting terms

(25)

On the other hand we have

The first term on the right is nothing other than  because of (21) and (23). The last
term on the right proves to be equal and opposite to the last term on the right of (25);
namely, we have

(26)

since the expression

is symmetric in  and the first factor under the summation sign in (26) turns out
to be skew symmetric in 

Consequently (25) entails the equation
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that is, from the gravitational equations (4) there follow indeed the four mutually
independent linear combinations (27) of the basic electrodynamic equations (5) and
their first derivatives. This is the exact mathematical expression of the statement
claimed in general above concerning the character of electrodynamics as a conse-
quence of gravitation. |

According to our assumption  should not depend on the derivatives of the 
therefore  must be a function of certain four general invariants, which correspond to
the special orthogonal invariants given by Mie, and of which the two simplest ones
are these:

and

The simplest and most straightforward ansatz for  considering the structure of 
is also that which corresponds to Mie’s electrodynamics, namely

or, following Mie even more closely:

where  denotes any function of  and  are constants.
As one can see, the few simple assumptions expressed in axioms I and II suffice

with appropriate interpretation to establish the theory: through it not only are our
views of space, time, and motion fundamentally reshaped in the sense explained by
Einstein, but I am also convinced that through the basic equations established here
the most intimate, presently hidden processes in the interior of the atom will receive
an explanation, and in particular that generally a reduction of all physical constants to
mathematical constants must be possible—even as in the overall view thereby the
possibility approaches that physics in principle becomes a science of the type of
geometry: surely the highest glory of the axiomatic method, which as we have seen
takes the powerful instruments of analysis, namely variational calculus and theory of
invariants, into its service.

EDITORIAL NOTES

[1] The index  of  in the denominator of the third equation is missing in the
original text.

[2] The subscript  in the denominator of  is missing in the original text.

[3] The subscript  in the term  is missing in the original text.
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In my first communication

 

1

 

 I proposed a system of basic equations of physics. Before
turning to the theory of integrating these equations it seems necessary to discuss
some more general questions of a logical as well as physical nature.

First we introduce in place of the world parameters  the most
general 

 

real

 

 spacetime coordinates  by putting

and correspondingly in place of

we write simply

The new —the gravitational potentials of Einstein—shall then
all be real functions of the real variables  of such a type that, in the
representation of the quadratic form

(28)

as a sum of four squares of linear forms of the  three squares always occur with
positive sign, and one square with negative | sign: thus the quadratic form (28) pro-
vides our four dimensional world of the  with the metric of a pseudo-geometry.
The determinant  of the  turns out to be negative.

 

1 This journal, 20 November 1915.
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If a curve

is given in this geometry, where  mean some arbitrary real functions of the
parameter  then it can be divided into pieces of curves on each of which the
expression

does not change sign: A piece of the curve for which

shall be called a 

 

segment

 

 and the integral along this piece of curve

shall be the 

 

length of the segment

 

; a piece of the curve for which

will be called a 

 

time line

 

, and the integral

evaluated along this piece of curve shall be the 

 

proper time of the time line

 

; finally a
piece of curve along which

shall be called a 

 

null line

 

.
To visualize these concepts of our pseudo geometry we imagine two ideal mea-

suring devices: the 

 

measuring thread

 

 by means of which we are able to measure the
length  of any segment, and secondly the 

 

light clock

 

 with which we can determine
the proper time of any time line. The thread shows zero and the light clock stops
along every null line, whereas the former fails totally along a time line, and the latter
along a segment. |

First we show that each of the two instruments suffices to compute with its aid the
values of the  as functions of  as soon as a definite spacetime coordinate sys-
tem  has been introduced. Indeed we choose any set of 10 segments, which all con-
verge on the same world point  from different directions, so that this endpoint
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assumes the same parameter value  on each. At this end point we have the equation,
for each of the 10 segments,

here the left-hand sides are known as soon as we have determined the lengths  by
means of the thread. We introduce the abbreviations

so that clearly

(29)

whereby also the condition on the directions of the chosen 10 segments at the point

is seen to be necessary.
When  has been calculated according to (29), the use of this procedure for any

11th segment ending at  would yield the equation

and this equation would then both verify the correctness of the instrument and con-
firm experimentally that the postulates of the theory apply to the real world.

Corresponding reasoning applies to the light clock. |
The axiomatic construction of our pseudo-geometry could be carried out without

difficulty: first an axiom should be established from which it follows that length resp.
proper time must be integrals whose integrand is only a function of the  and their
first derivatives with respect to the parameter; suitable for such an axiom would be
the property of development of the thread or the well-known envelope theorem for
geodesic lines. Secondly an axiom is needed whereby the theorems of the pseudo-
Euclidean geometry, that is the old principle of relativity, shall be valid in infinitesi-
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mal regions; for this the axiom put down by W. Blaschke2 would be particularly suit-
able, which states that the condition of orthogonality for any two directions—
segments or time lines—shall always be a symmetric relation.

Let us briefly summarize the main facts that the Monge-Hamilton theory of differ-
ential equations teaches us for our pseudo-geometry.

With every world point  there is associated a cone of second order, with vertex
at  and determined in the running point coordinates  by the equation

this shall be called the null cone belonging to the point  The totality of null cones
form a four dimensional field of cones, which is associated on the one hand with
“Monge’s” differential equation

and on the other hand with “Hamilton’s” partial differential equation

(30)

where  denotes the quadratic form

reciprocal to  The characteristics of Monge’s and at the same time those of Hamil-
ton’s partial differential equation (30) are the geodesic null lines. All the geodesic
null lines originating at one particular world point  generate a three
dimensional point manifold, which | shall be called the time divide belonging to the
world point  This divide has a node at  whose tangent cone is precisely the null
cone belonging to  If we transform the equation of the time divide into the form

then

is an integral of Hamilton’s differential equation (30). All the time lines originating at
the point  remain totally in the interior of that four dimensional part of the world
whose boundary is the time divide of 

After these preparations we turn to the problem of causality in the new physics.

2 “Räumliche Variationsprobleme mit symmetrischer Transversalitätsbedingung.” Leipziger Berichte,
Math.-phys. Kl. 68 (1916) p. 50.
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Up to now all coordinate systems  that result from any one by arbitrary trans-
formation have been regarded as equally valid. This arbitrariness must be restricted
when we want to realize the concept that two world points on the same time line can
be related as cause and effect, and that it should then no longer be possible to trans-
form such world points to be simultaneous. In declaring  as the true time coordi-
nate we adopt the following definition:

A true spacetime coordinate system is one for which the following four inequali-
ties hold, in addition to 

(31)

A transformation that transforms one such spacetime coordinate system into another
true spacetime coordinate system shall be called a true spacetime coordinate transfor-
mation.

The four inequalities mean that at any world point  the associated null cone
excludes the linear space

but contains in its interior the line

the latter line is therefore always a time line. |
Let any time line  be given; because

it follows that in a true spacetime coordinate system we must always have

and therefore that along a time line the true time coordinate  must always increase
resp. decrease. Because a time line remains a time line upon every coordinate trans-
formation, therefore two world points along one time line can never be given the
same value of the time coordinate  through a true spacetime transformation; that
is, they cannot be transformed to be simultaneous.

On the other hand, if the points of a curve can be truly transformed to be simulta-
neous, then after this transformation we have for this curve

xs,
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therefore

and here the right side is positive because of the first three of our inequalities (31); the
curve therefore characterizes a segment.

So we see that the concepts of cause and effect, which underlie the principle of
causality, also do not lead to any inner contradictions whatever in the new physics, if
we only take the inequalities (31) always to be part of our basic equations, that is if
we confine ourselves to using true spacetime coordinates.

At this point let us take note of a special spacetime coordinate system that will
later be useful and which I will call the Gaussian coordinate system, because it is the
generalization of the system of geodesic polar coordinates introduced by Gauss in the
theory of surfaces. In our four-dimensional world let any three-dimensional space be
given so that every curve confined to that space is a segment: a space of segments, as
I would like to call it; | let  be any point coordinates of this space. We now
construct at every point  of this space the geodesic orthogonal to it, which
will be a time line, and on this line we mark off  as proper time; the point in the
four-dimensional world so obtained is given coordinate values  In these
coordinates we have, as is easily seen,

(32)

that is, the Gaussian coordinate system is characterized analytically by the equations

(33)

Because of the nature of the three dimensional space  we presupposed, the
quadratic form on the right-hand side of (32) in the variables  is necessar-
ily positive definite, so the first three of the inequalities (31) are satisfied, and since
this also applies to the fourth, the Gaussian coordinate system always turns out to be
a true spacetime coordinate system.

We now return to the investigation of the principle of causality in physics. As its
main contents we consider the fact, valid so far in every physical theory, that from a
knowledge of the physical quantities and their time derivatives in the present the
future values of these quantities can always be determined: without exception the
laws of physics to date have been expressed in a system of differential equations in
which the number of the functions occurring in them was essentially the same as the
number of independent differential equations; and thus the well-known general
Cauchy theorem on the existence of integrals of partial differential equations directly
offered the rationale of proof for the above fact.

Now, as I emphasized particularly in my first communication, the basic equations
of physics (4) and (5) established there are by no means of the type characterized
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above; rather, according to Theorem I, four of them are a consequence of the rest: we
regarded the four Maxwell equations (5) as a consequence of the ten gravitational
equations (4), and so we have for the 14 potentials   only 10 equations (4) that
are essentially independent of each other. |

As soon as we maintain the demand of general invariance for the basic equations
of physics the circumstance just mentioned is essential and even necessary. Because
if there were further invariant equations, independent of (4), for the 14 potentials,
then introduction of a Gaussian coordinate system would lead for the 10 physical
quantities as per (33),

to a system of equations that would again be mutually independent, and mutually
contradictory, because there are more than 10 of them.

Under such circumstances then, as occur in the new physics of general relativity,
it is by no means any longer possible from knowledge of physical quantities in
present and past to derive uniquely their future values. To show this intuitively on an
example, let our basic equations (4) and (5) of the first communication be integrated
in the special case corresponding to the presence of a single electron permanently at
rest, so that the 14 potentials

become definite functions of  all independent of the time  and in addi-
tion such that the first three components  of the four-current density vanish.
Then we apply the following coordinate transformation to these potentials:

For  the transformed potentials   are the same functions of
 as the   of the original variables  whereas the  

for  depend in an essential way also on the time coordinate  that is, the
potentials   represent an electron that is at rest until  but then puts
its components into motion. |

Nonetheless I believe that it is only necessary to formulate more sharply the idea
on which the principle of general relativity3 is based, in order to maintain the princi-
ple of causality also in the new physics. Namely, to follow the essence of the new rel-
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ativity principle we must demand invariance not only for the general laws of physics,
but we must accord invariance to each separate statement in physics that is to have
physical meaning—in accordance with this, that in the final analysis it must be possi-
ble to establish each physical fact by thread or light clock, that is, instruments of

 

invariant

 

 character. In the theory of curves and surfaces, where a statement in a cho-
sen parametrization of the curve or surface has no geometrical meaning for the curve
or surface itself, if this statement does not remain invariant under any arbitrary trans-
formation of the parameters or cannot be brought to invariant form; so also in physics
we must characterize a statement that does not remain invariant under any arbitrary
transformation of the coordinate system as physically meaningless. For example, in
the case considered above of the electron at rest, the statement that, say at the time

 this electron is at rest, has no physical meaning because this statement is not
invariant.

Concerning the principle of causality, let the physical quantities and their time
derivatives be known at the present in some given coordinate system: then a state-
ment will only have physical meaning if it is invariant under all those transforma-
tions, for which the coordinates just used for the present remain unchanged; I
maintain that statements of this type for the future are all uniquely determined, that
is, the principle of causality holds in this form:

From present knowledge of the 14 physical potentials   all statements
about them for the future follow necessarily and uniquely provided they are physi-
cally meaningful.

To prove this proposition we use the Gaussian spacetime coordinate system.
Introducing (33) into the basic equations (4) of the first communication yields for the
10 potentials |

(34)

a system of as many partial differential equations; if we integrate these on the basis of
the given initial values at  we find uniquely the values of (34) for 
Since the Gaussian coordinate system itself is uniquely determined, therefore also all
statements about those potentials (34) with respect to these coordinates are of invari-
ant character.

The forms, in which physically meaningful, i.e. invariant, statements can be
expressed mathematically are of great variety.

First. This can be done by means of an invariant coordinate system. Like the
Gaussian system used above one can apply the well-known Riemannian one, as well
as that spacetime coordinate system in which electricity appears at rest with unit cur-
rent density. As at the end of the first communication, let  denote the function
occurring in Hamilton’s principle and depending on the invariant

3 In his original theory, now abandoned, A. Einstein (Sitzungsberichte der Akad. zu Berlin, 1914,
p. 1067) had indeed postulated certain 4 non-invariant equations for the  in order to save the cau-
sality principle in its old form.
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then

is the four-current density of electricity; it represents a contravariant vector and there-
fore can certainly be transformed to  as is easily seen. If this is done, then
from the four equations

the four components of the four-potential  can be expressed in terms of the 
and every relation between the  in this or in one of the first two coordinate sys-
tems is then an invariant statement. For particular solutions of the basic equations
there may be special invariant coordinate systems; for example, in the case treated
below of the centrally symmetric gravitational field  form an invariant sys-
tem of coordinates up to rotations.

Second. The statement, according to which a coordinate system can be found in
which the 14 potentials   have certain definite values in the future, or fulfill
certain definite conditions, is always an invariant and therefore a physically meaning-
ful one. The mathematically invariant expression for | such a statement is obtained by
eliminating the coordinates from those relations. The case considered above, of the
electron at rest, provides an example: the essential and physically meaningful content
of the causality principle is here expressed by the statement that the electron which is
at rest for the time  will, for a suitably chosen spacetime coordinate system,
also remain at rest in all its parts for the future 

Third. A statement is also invariant and thus has physical meaning if it is sup-
posed to be valid in any arbitrary coordinate system. An example of this are Ein-
stein’s energy-momentum equations having divergence character. For, although
Einstein’s energy does not have the property of invariance, and the differential equa-
tions he put down for its components are by no means covariant as a system of equa-
tions, nevertheless the assertion contained in them, that they shall be satisfied in any
coordinate system, is an invariant demand and therefore it carries physical meaning.

According to my exposition, physics is a four-dimensional pseudo-geometry,
whose metric  is connected to the electromagnetic quantities, i.e. to the matter, by
the basic equations (4) and (5) of my first communication. With this understanding,
an old geometrical question becomes ripe for solution, namely whether and in what
sense Euclidean geometry—about which we know from mathematics only that it is a
logical structure free from contradictions—also possesses validity in the real world.

The old physics with the concept of absolute time took over the theorems of
Euclidean geometry and without question put them at the basis of every physical the-
ory. Gauss as well proceeded hardly differently: he constructed a hypothetical non-
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Euclidean physics, by maintaining the absolute time and revoking only the parallel
axiom from the propositions of Euclidean geometry; a measurement of the angles of a
triangle of large dimensions showed him the invalidity of this non-Euclidean physics.

The new physics of Einstein’s principle of general relativity takes a totally differ-
ent position vis-à-vis geometry. It takes neither Euclid’s nor any other particular
geometry a priori as basic, in order to deduce from it the proper laws of physics, but,
as I showed in my first communication, | the new physics provides at one fell swoop
through one and the same Hamilton’s principle the geometrical and the physical laws,
namely the basic equations (4) and (5), which tell us how the metric —at the
same time the mathematical expression of the phenomenon of gravitation—is con-
nected with the values  of the electrodynamic potentials.

Euclidean geometry is an action-at-a-distance law foreign to the modern physics:
By revoking the Euclidean geometry as a general presupposition of physics, the the-
ory of relativity maintains instead that geometry and physics have identical character
and are based as one science on a common foundation.

The geometrical question mentioned above amounts to the investigation, whether
and under what conditions the four-dimensional Euclidean pseudo-geometry

(35)

is a solution, or even the only regular solution, of the basic physical equations.
The basic equations (4) of my first communication are, due to the assumption (20)

made there:

where

When the values (35) are substituted, we have

(36)

and for

we have

that is, when all electricity is removed, the pseudo-Euclidean geometry is possible.
The question whether it is also necessary in this case, i.e. whether—or under certain

[64]

gμν

qs

g11 1,= g22 1,= g33 1,= g44 1–=

gμν 0= μ ν≠( )

gK[ ]μν
gL∂

gμν∂
-------------+ 0,=

gK[ ]μν g Kμν
1
2
---Kgμν–⎝ ⎠
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gK[ ]μν 0=

qs 0= s 1 2 3 4, , ,=( )

gL∂
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------------- 0;=
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additional conditions—the values (35), and those values of the  resulting from
coordinate transformation of the latter, are the only regular solutions of the equations
(36) is a mathematical problem not to be discussed here in general. Instead I confine
myself | to presenting some thoughts concerning this problem in particular.

For this we return to the original world coordinates of my first communication

and give the corresponding meaning to the 
In the case of the pseudo-Euclidean geometry we have

where

For every metric in the neighborhood of this pseudo-Euclidean geometry the ansatz

(37)

is valid, where  is a quantity converging to zero, and  are functions of the  I
make the following two assumptions about the metric (37):

I. The  shall be independent of the variable 

II. The  shall show a certain regular behavior at infinity.

Now, if the metric (37) is to satisfy the differential equation (36) for all  then it
follows that the  must necessarily satisfy certain linear homogeneous partial dif-
ferential equations of second order. If we substitute, following Einstein4

(38)

and assume among the 10 functions  the four relations

(39)

then these differential equations become:

(40)

where the abbreviation

4 “Näherungsweise Integration der Feldgleichungen der Gravitation.” Berichte d. Akad. zu Berlin 1916,
p. 688.

gμν

[65]
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----------

s
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kμν 0,=



1028 DAVID HILBERT

has been used.
Because of the ansatz (38) the relations (39) are restrictive assumptions for the

functions  however I will | show how one can always achieve, by suitable infini-
tesimal transformation of the variables  that those restrictive assump-
tions are satisfied for the corresponding functions  after the transformation.

To this end one should determine four functions  which satisfy
respectively the differential equations

(41)

By means of the infinitesimal transformation

 becomes

or because of (37) it becomes

where I have put

If we now choose

then these functions satisfy Einstein’s condition (39) because of (41), and we have

The differential equations (40), which must be valid according to the above argument
for the  we found, become due to assumption I
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∂

∂  
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and, since assumption II—mutatis mutandis—allows the conclusion that the 
approach constants at infinity, it follows that these must be constant in general, that
is: By varying the metric of the pseudo-Euclidean geometry under the assumptions I
and II it is not possible to obtain a regular metric that is not likewise pseudo-Euclid-
ean and which also corresponds to a world free of electricity. |

The integration of the partial differential equations (36) can be performed in yet
another case, first treated by Einstein5 and by Schwarzschild.6 In the following I
present for this case a procedure that makes no assumptions about the gravitational
potentials  at infinity, and which moreover offers advantages for my later investi-
gations. The assumptions about the  are the following:

1. The metric is represented in a Gaussian coordinate system, except that  is left
arbitrary, i.e. we have

2. The  are independent of the time coordinate 

3. The gravitation  is centrally symmetric with respect to the origin of coordi-
nates.

According to Schwarzschild the most general metric conforming to these assump-
tions is represented in polar coordinates, where

by the expression

(42)

where  are still arbitrary functions of  If we put

then we are equally justified in interpreting  as spatial polar coordinates. If
we introduce  in (42) instead of  and then eliminate the sign  the result is the
expression

(43)

5 “Perihelbewegung des Merkur.” Situngsber. d. Akad. zu Berlin. 1915, p. 831.
6 “Über das Gravitationsfeld eines Massenpunktes.” Sitzungsber. d. Akad. zu Berlin. 1916, p. 189.

kμν

[67]

gμν
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1030 DAVID HILBERT

where  mean the two essential, arbitrary functions of  The question is
whether and how these can be determined in the most general way so that the differ-
ential equations (36) enjoy satisfaction. |

To this end the well-known expressions  given in my first communication
must be calculated. The first step in this is the derivation of the differential equations
for geodesic lines by variation of the integral

As Lagrange equations we obtain these:

here and in the following calculation the sign  denotes the derivative with respect to
 By comparison with the general differential equations of geodesic lines:

we obtain for the bracket symbols  the following values, whereby those that
vanish are omitted:

With these we form:

M r( ) W r( ), r .
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Because

we have

and if we put

where now  and  are the unknown functions of  we finally obtain

| so that the variation of the quadruple integral

is equivalent to the variation of the single integral

and leads to the Lagrange equations

(44)
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It is easy to convince oneself that these equations indeed imply that all  vanish;
they therefore represent essentially the most general solution of equations (36) under
the assumptions 1., 2., 3., we made. If we take as integrals of (44)  where 
is a constant, and  which evidently is no essential restriction, then for 
(43) results in the desired metric in the form first found by Schwarzschild

(45)

The singularity of the metric at  disappears only if we take  i.e. the
metric of the pseudo-Euclidean geometry is the only regular metric that corresponds
to a world without electricity under the assumptions 1., 2., 3.

If  then  and, for positive  also  prove to be places where
the metric is not regular. Here I call a metric or gravitational field  regular at
some place if it is possible to introduce by transformation with unique inverse a coor-
dinate system for which the corresponding functions  at that place are regular,
that is they are continuous and arbitrarily differentiable at the place and its neighbor-
hood, and have a determinant  that differs from zero.

Although in my view only regular solutions of the basic physical equations repre-
sent reality directly, still it is precisely the solutions with places of non-regularity that
are an important mathematical instrument for approximating characteristic regular
solutions—and in this sense, following Einstein and Schwarzschild, the metric (45),
not regular at  and  is to be viewed as the expression for | gravity of a
centrally symmetric mass distribution in the neighborhood of the origin7. In the same
sense a point mass is to be understood as the limit of a certain distribution of electric-
ity about one point, but I refrain at this place from deriving its equations of motion
from my basic physical equations. A similar situation prevails for the question about
the differential equations for the propagation of light.

Following Einstein, let the following two axioms serve as a substitute for a deriva-
tion from the basic equations:

The motion of a point mass in a gravitational field is described by a geodesic line,
which is a time line8.

The motion of light in a gravitational field is described by a geodesic null line.
Because the world line representing the motion of a point mass shall be a time

line, it is easily seen to be always possible to bring the point mass to rest by true
spacetime transformations, i.e. there are true spacetime coordinate systems with
respect to which the point mass remains at rest.

The differential equations of geodesic lines for the centrally symmetric gravita-
tional field (45) arise from the variational problem

7 To transform the locations  to the origin, as Schwarzschild does, is not to be recommended in
my opinion; Schwarzschild’s transformation is moreover not the simplest that achieves this goal.

8 This last restrictive addition is to be found neither in Einstein nor in Schwarzschild.
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and become, by well-known methods:

(46)

(47)

(48)

(49)

where  denote constants of integration. |
I first prove that the orbits in the - space always lie in planes passing

through the center of the gravitation.
To this end we eliminate the parameter  from the differential equations (47) and

(48) to obtain a differential equation for  as a function of  We have the identity
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where  and  denote constants of integration.
This provides the desired proof, and it is therefore sufficient for further discussion

of geodesic lines to consider only the value  Then the variational problem
simplifies as follows

and the three differential equations of first order that arise from it are |

(51)

(52)

(53)

The Lagrange differential equation for 

(54)

is necessarily related to the above equations, in fact if we denote the left sides of (51),
(52), (53), (54) with [1], [2], [3], [4] respectively we have identically

(55)

By choosing  which amounts to multiplying the parameter  by a con-
stant, and then eliminating  and  from (51), (52), (53) we obtain that differential
equation for  as a function of  found by Einstein and Schwarzschild,
namely:

(56)

This equation represents the orbit of the point mass in polar coordinates; in first
approximation for  with   the Kepler motion fol-
lows from it, and the second approximation than leads to the most shining discovery
of the present: the calculation of the advance of the perihelion of Mercury.

According to the axiom above the world line for the motion of a point mass shall
be a time line; from the definition of the time line it thus follows that always 
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We now ask in particular whether a circle, i.e.  can be the orbit of a
motion. The identity (55) shows that in this case—because of —equation
(54) is by no means a consequence of (51), (52), (53); the latter three equations there-
fore are insufficient to determine the motion; instead the necessary equations to be
satisfied are (52), (53), (54). From (54) it follows that |

 (57)

or that for the speed  on the circular orbit

(58)

On the other hand, since  (51) implies the inequality

(59)

or by using (57)

(60)

With (58) this implies the inequality for the speed of the mass point moving on a cir-
cle9

(61)

The inequality (60) allows the following interpretation: From (58) the angular
speed of the orbiting point mass is

So if we want to introduce instead of  the polar coordinates of a coordinate sys-
tem co-rotating about the origin, we only have to replace

After the corresponding spacetime transformation the metric

9 Schwarzschild’s (loc. cit.) claim that the speed of the point mass on a circular orbit approaches the
limit  as the orbit radius is decreased corresponds to the inequality  and should not be
regarded as accurate, according to the above.
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becomes

| Here the inequality  is satisfied due to (60), and since the other inequali-
ties (31) are satisfied, the transformation under discussion of the point mass to rest is
a true spacetime transformation.

On the other hand, the upper limit  found in (61) for the speed of a mass
point on a circular orbit also has a simple interpretation. According to the axiom for
light propagation this propagation is represented by a null geodesic. Accordingly if
we put  in (51), instead of the inequality (59) the result for circular light prop-
agation is the equation

together with (57) this implies for the radius of the light’s orbit:

and for the speed of the orbiting light the value that occurs as the upper limit in (61):

In general we find for the orbit of light from (56) with  the differential
equation

(62)

for  it has the circle  as a Poincaré “cycle”—corresponding to

the circumstance that thereupon  is a double factor of the right-hand side.

Indeed in this case—and correspondingly for the more general equation (56)—the
differential equation (62) possesses infinitely many integral curves, which approach
that circle as the limit of spirals, as demanded by Poincaré’s general theory of cycles.

If we consider a light ray approaching from infinity and take  small compared
to the ray’s distance of closest approach from the center of gravitation, then the light
ray has approximately the form of a hyperbola with focus at the center.10 |

r
r α–
------------ rd 2 r2 ϕd 2 r α–

r
------------ td 2–+

r
r α–
------------ rd 2 r2 ϕd 2 2αr  ϕd  td

α
2r
----- r α–

r
------------–⎝ ⎠

⎛ ⎞ td 2.+ + +

[75]g44 0<

1 3⁄

A 0=

r2 ϕd
pd

------⎝ ⎠
⎛ ⎞

2 r α–
r

------------ td
pd

------⎝ ⎠
⎛ ⎞

2

– 0;=

r
3α
2

-------=

v
1

3
-------.=

A 0=

ρd
ϕd

------⎝ ⎠
⎛ ⎞

2 1
B2
------ ρ2 αρ3;+–=

B
3 3

2
----------α= r

3α
2

-------=

ρ 2
3α
-------–

α



1038 DAVID HILBERT

A counterpart to the motion on a circle is the motion on a straight line that passes
through the center of gravitation. We obtain the differential equation for this motion if
we set  in (54) and then eliminate  from (53) and (54); the differential equa-
tion so obtained for  as a function of  is

(63)

with the integral following from (51)

(64)

According to (63) the acceleration is negative or positive, i.e. gravitation acts attrac-
tive or repulsive, according as the absolute value of the velocity

or

For light we have because of (64)

light propagating in a straight line towards the center is always repelled, in agreement
with the last inequality; its speed increases from 0 at  to 1 at 

When  as well as  are small, (63) becomes approximately the Newtonian
equation

10 A detailed discussion of the differential equations (56) and (62) will be the task of a communication
by V. Fréedericksz to appear in these pages.
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JOHN STACHEL

THE STORY OF NEWSTEIN
OR: IS GRAVITY JUST ANOTHER PRETTY FORCE?

1. 1. INTRODUCTION

In this paper I will argue for the following three theses:

1. The concepts of parallel displacement in Riemannian geometry and of a non-met-
rical affine connection were developed postmaturely (see Section 2): By the latter
third of the nineteenth century, all of the mathematical prerequisites for their
introduction were available, and it is a historical accident that they were not
developed before the second decade of the twentieth century (see Section 3).

2. The appropriate mathematical context for implementing the equivalence principle
is the theory of affine connections on the category of frame bundles, with the bun-
dle morphisms induced by diffeomorphisms on the base manifold (see the Appen-
dix).1 This theory allows a mathematically precise formulation of Einstein’s
insight that gravitation and inertia are “essentially the same [wesensgleich]” as he
put it (see Section 5). The absence of this context constituted a serious obstacle to
the development of the general theory of relativity—indeed an insurmountable
one to its development by the mathematically most direct route. Consequently,
Einstein was forced to take a detour through a long and indirect route from the
initial formulation of the equivalence principle in 1907 to the final formulation of
the field equations in 1915 (see Section 10). The detour involved focusing atten-
tion almost exclusively on the chrono-geometrical structure of spacetime, and to
this day, many discussions of the interpretation of the general theory, and of the
problem of quantum gravity, still reflect the negative consequences of this detour.

3. Had the concept of an affine connection been developed in a timely manner, the
affine formulation of Newtonian gravitation theory, which was actually developed
only after the formulation of general relativity,2 could have been developed
before the formulation of special relativity. From the outset, such a formulation
would have placed appropriate emphasis on the inertio-gravitational structure of

1 Insofar as needed for this paper, these concepts are briefly explained in the Appendix. A particularly
useful reference for a more extended discussion of most of these concepts is (Crampin and Pirani
1986).

2 See (Cartan 1923; Friedrichs 1927). Excerpts from Cartan can be found in this volume.
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spacetime and posed the question of its relation to the chronometry and geometry
of spacetime (see Sections 6 and 7). When special relativity, with its new chrono-
geometry, was developed, this context for gravitation theory would have made the
transition from the special to the general theory of relativity rather transparent,
thereby avoiding the negative consequences of the actual transition mentioned
above.
In order to vivify these rather abstract theses, I have created Isaac Albert Newstein

(= Newton + Einstein), a mythical physicist who combines Newton’s approach to the
kinematical structure of space and time (chronometry and geometry) with Einstein’s
insight into the implications of the equivalence principle for (Newtonian) gravitation
theory (see Section 7). He did this shortly after Hermann Weylmann (= Weyl + Grass-
mann), an equally mythical mathematician, formulated the concept of affine connec-
tion around 1880. Of course, Newstein had to adopt a four-dimensional treatment of
space and time in order to carry out his reformulation of Newtonian gravitation the-
ory; but, long before that, the concept of time as a fourth dimension had been intro-
duced in analytical mechanics by d’Alembert and Lagrange.

 

3

 

Continuing my mythical account, when in 1907 Einstein turned to the problem of
extending his original (later called special) theory of relativity to include gravitation,
Newstein had already shown how to describe the inertio-gravitational field by a non-
flat affine connection. Einstein’s problem was to combine this insight about the
nature of gravitation with the new chrono-geometrical structure of spacetime that he
had introduced in 1905. Once the problem is posed in this way, the step from New-
stein’s formulation of the gravitational field equations to the corresponding equations
of Einstein’s general relativity is a short one (see Section 8).

Of course, all of this is pure fable; but I believe that—in addition to their entertain-
ment value—such scientific fables are of real value for the history and philosophy of
science. First of all, they help us to combat the impression of inevitability often
attached to the actual course of historical development, the idea that the “discovery” of
a theory is just that: the bringing to light by the intellect of some pre-existing structure,
previously hidden but predestined to emerge sooner or later and enter into the scien-
tific corpus in just the form in which it actually did. Secondly, they help us to question
the thesis that the formulation of a theory is more-or-less independent of its mode of
discovery, including the peculiarities of the individual(s) who happened to “discover”
it and the process of negotiation that led to its assimilation into the body of accepted
knowledge by the scientific community. Such questions can lead to a more critical re-
examination of the current formulation(s) of the theory. We are bound to look more
critically at what actually happened, and at the accepted formulation(s) of a theory, if
we can produce one or more credible scenarios showing how things might have hap-
pened quite differently.

 

4

 

3 This is no myth. See my article on “Space-Time,” in (Stachel Forthcoming).
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2. POSTMATURE CONCEPTS AND THE ROLE OF ABSENCE IN HISTORY

Zuckerman and Lederberg have suggested that, just as there are premature discover-
ies, “there are postmature discoveries, those which are judged retrospectively to have
been ‘delayed’” (Zuckerman and Lederberg 1986, 629).

 

5

 

 I wish to apply the concept
of postmaturity to theoretical entities; but since, as noted above, the word “discovery”
might suggest a Platonist attitude to mathematical and physical concepts, I shall use
more epistemologically neutral phrases: “postmature development,” “postmature
concept,” “postmature theory,” etc. 

As the work of Zuckerman and Lederberg suggests, in retrospect one can see
that—like other forms of absence—the absence of a postmature concept can play a
crucial role in the dialectical interplay that shapes the actual course of historical
development. My use of word “dialectical” here is purposeful. The second chapter of
Roy Bhaskar’s book on dialectics (Bhaskar 1993)

 

6

 

 is entitled: “Dialectic: The Logic
of Absences.” He equates 

 

absence

 

 with what he calls 

 

real negation

 

, whose “primary
meaning is real determinate absence or non-being (i.e., including non-existence”
(Bhaskar 1993, 5). He describes real negation as: 

 

the central category of dialectic, whether conceived as argument, change or the augmen-
tation of (or aspiration to) freedom, which depends upon the identification and elimina-
tion of mistakes, states of affairs and constraints, or more generally ills—argued to be
absences alike (Bhaskar 1993, 393). 

 

Elsewhere I shall argue for this viewpoint with examples drawn from the history
of music as well as the history of science. But to return to the central concern of this
paper, my claim is that “affine connection” is a postmature concept, the absence of
which during the course of development of the general theory of relativity had a cru-
cial negative influence on its development and subsequent interpretation. Conversely,
the filling of that absence opened the way to a deeper understanding of the nature of
gravitation and of its relation to other gauge field theories of physics.

3. A LITTLE HISTORY

Gauss first developed the theory of curved surfaces embedded in Euclidean three-
space, including the concepts of intrinsic (or Gaussian) and extrinsic curvature. But
he defined these concepts in a way that did not depend on the concept of parallelism.

 

7

 

The development of differential geometry had proceeded quite far by the time Rie-

 

4 See (Stachel 1994a) and, for other examples from the history of relativity, (Stachel 1995). For some
further comments on alternative histories, see the final section, “Acknowledgements and a Critical
Comment.”

5 I am indebted to Gerald Holton for drawing my attention to this paper, which fills a gap in my earlier
presentations of Newstein’s story.

6 I regard Bhaskar’s work on critical realism as the most significant attempt at a modern Marxist
approach to the philosophy of science (see Stachel 2003a). For a critical introduction to Bhaskar’s
work, see (Collier 1994).
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mann introduced the concept of a locally Euclidean manifold with curvature varying
from point to point in 1854, first published in (Riemann 1868).

 

8

 

 So the idea of start-
ing with a geometrical structure defined in the infinitesimal neighborhood of a point
of a manifold and proceeding from the local to the global structure was quite familiar
by the last third of the nineteenth century. 

Similarly, discussions of the concept of parallelism had played a central role in
the development of non-Euclidean geometry in the first half of the nineteenth cen-
tury.

 

9

 

 Grassmann’s work on affine geometry had abstracted the concepts of parallel
lines, plane elements, etc., from their original three-dimensional, Euclidean con-
texts.

 

10

 

 Few were aware of the first (1844) edition of the 

 

Ausdehnungslehre

 

, or even
of the second version in 1862; but after the publication of the second edition of the
1844 version in 1878, knowledge of his work began to spread among mathemati-
cians, so that it was widely available to them by the last two decades of the century.

 

11

 

By this time, there was already a rich literature on the geometrical interpretation of
the principles of mechanics for systems with degrees of freedom based on

 

dimensional Riemannian geometry

 

.

 

12

 

In all this time no one applied Riemann’s approach to intervals to the concept of
parallelism. Karin Reich has drawn attention to the problem of the delay in the exten-
sion of the local approach in geometry to the concept of parallelism:

 

Parallelism was and is thus a central theme for the foundations of geometry. Yet it is
missing in Bernhard Riemann’s Habilitation Lecture “On the Foundational Hypotheses
of Geometry,” indeed the word parallel does not occur here. Also in the succeeding
period of rapidly occurring development of Riemannian geometry parallelism was not a
theme. Perhaps this is one of the reasons why Riemannian geometry was not uncondi-
tionally accepted by pure geometers (Reich 1992, 78–79).

 

13

 

7 Essentially, he defined the intrinsic curvature at a point of a surface in a way that seemed to depend on
the embedding of the surface—in terms of the radius of curvature of the sphere that best fits the sur-
face at the point in question—and then proved that the result really does not depend on the embed-
ding. See (Gauss 1902), and for a modern discussion (Coolidge 1940, Book III, chap. III, 355–387).

8 For the history of differential geometry, see (Struik 1933; Coolidge 1940; Laptev and Rozenfel’d
1996, sec. 1: “Analytic and Differential Geometry,” 3–26).

9 For the standard older historical-critical account of non-Euclidean geometry, see (Bonola 1955).
10 See (Grassman 1844; 1862; 1878), and for an English translation, (Grassmann 1995). For a survey of

publications using Grassmann’s approach, demonstrating that their number increased considerably
after 1880, see (Crowe 1994, chap. 4); by the end of the century, interest in Grassmann’s work was
comparable to that in Hamilton’s. Weyl was well aware of Grassmann’s work. Speaking of affine
geometry, he says: “For the systematic treatment of affine geometry with abstraction from the special
3-dimensional case, Grassmann’s “Lineale Ausdehnungslehre” (Grassmann 1844)... is the ground-
breaking work” (Weyl 1923, 325). In a recent discussion of Grassmann’s role as a forerunner of cate-
gory theory, Lawvere (Lawvere 1996) speaks of “the category A of affine-linear spaces and maps” as
“a monument to Grassmann” (p. 255). 

11 For a study of Grassmann and his influence, see (Schubring 1996).
12 See (Lützen 1995a; 1995b) for surveys of some of this work.
13 Readers of this work will realize the extent of my indebtedness to Karen Reich’s work. I also grate-

fully acknowledge several helpful discussions with Dr. Reich.
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Her retrospective critical judgement a century later is borne out by the contemporary
evaluations of those who filled that gap in 1916–1917: Hessenberg, Levi-Civita, Weyl
and Schouten.

Hessenberg’s paper (Hessenberg 1917) was actually the first such paper, dated
June 1916. It starts with a reference to relativity: “Because of the significance that the
theory of quadratic differential forms has recently attained for the theory of relativity,
the question of whether and how the elaborate and difficult formal apparatus of this
theory can be simplified, if not bypassed, gains new significance (p. 187).” Speaking
of “Christoffel’s well-known transformational calculus,” Hessenberg states that his
aim is to “replace [it] with a geometrical argument (p. 187).” He criticizes the “formal
methods of formation” of various quantities that occur because they do not bring out
“the essentially 

 

intuitive

 

 [

 

anschaulich

 

] 

 

meaning

 

 of the invariants and covariants
needed for the geometrical and physical applications” (p. 191). He stresses the role of
Grassmann. “Access [to their geometrical significance] is opened in a way that, to
me, seems surprisingly simple by means of Grassmann’s ideas” (p. 192).

Levi Civita’s paper (Levi Civita 1916), which is dated November 1916, also starts
with a reference to Einstein’s work: 

 

Einstein’s theory of gravitation ... regards the geometrical structure of space ... as
depending on the physical phenomena that take place in it ... The mathematical develop-
ment of Einstein’s magnificent conception ... involves as an essential element the curva-
ture of a certain four-dimensional manifold and the related Riemann symbols [i.e., the
curvature tensor] ... Working with these symbols in questions of such great general inter-
est has led me to investigate if it is not possible to simplify somewhat the formal appara-
tus that is usually used to introduce them and to establish their covariant behavior. Such
an improvement is indeed possible  ... [This work] started with that sole objective, which
little by little grew in order to make room for the geometrical interpretation [of the Rie-
mannian curvature]. At the beginning I thought to have found it in the original work of
Riemann ... ; but it is there only in embryo.  ... [O]ne gets the impression that Riemann
really had in mind that intrinsic and invariant characterization of the curvature, which
will be made precise here. On the other hand, however, there is not a trace, either in Rie-
mann or in Weber’s commentary, of those specifications (the concept of parallel direc-
tions in an arbitrary manifold and consideration of an infinitesimal geodesic quadrilateral
with two parallel sides) that we recognize to be indispensable from the geometrical point
of view (pp. 173–174).

 

Reich comments:

 

With this word “indispensible” Levi-Cività recalled Luigi Bianchi’s characterization of
Ricci’s absolute differential calculus. Bianchi had characterized this in 1901 as “useful
but not indispensable” (Reich 1992, 79–80).

 

Weyl (1918b) states:

 

The later work of Levi-Cività [1916], Hessenberg [1917], and the author [Weyl 1918a]

 

14

 

shows quite plainly that the fundamental conception on which the development of Rie-
mann’s geometry must be based if it is to be in agreement with nature, is that of the infin-
itesimal parallel displacement of a vector.

 

15

 

14 For a discussion of this and the succeeding editions of Weyl’s book, see the next section.
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After the introduction of Riemannian parallelism by Hessenberg and Levi-Civita
(and, again independently in (Schouten 1918)), it was but a brief and natural step to
its generalization. Since the abstraction (in the large) of affine parallelism from paral-
lelism in Euclidean geometry had already been made, the abstraction (in the small) of
affine parallelism from parallelism in a Riemannian manifold is immediately sug-
gested by the analogy. Indeed, Weyl took that step just a year later: In (Weyl 1918a)
he defines an affinely connected manifold.

 

16

 

 
The evidence thus indicates that both the Riemannian concept of parallelism and

its affine generalization were introduced 

 

postmaturely

 

. The absent concept of Rie-
mannian parallelism could have been filled at any time during the last third of the
nineteenth century, and followed quickly by the introduction of the concept of an
affinely connected manifold, since it is a natural generalization of the Grassmannian
“

 

lineale

 

 

 

Ausdehnungslehre

 

.” 
Indeed, Grassmann himself might have accomplished these tasks. Towards the

end of his life he learned about the work of Riemann and Helmholtz, and one of his
last publications (Grassmann 1877) discusses the relation of their work to his 

 

Aus-
dehnungslehre

 

. He discusses a method of introducing such non-linear geometries that
amounts essentially to defining them as subspaces of linear spaces of higher dimen-
sions. The path that Levi-Civita initially took to the definition of Riemannian paral-
lelism was based on embedding a Riemannian space in a Euclidean space of
sufficiently high dimension. Had Grassmann lived longer, it is conceivable that he
might have introduced the concept of affine parallelism by a similar method (see the
discussion in the Appendix). But he died in the same year that he wrote this paper; so
I have been forced to invent Weylmann, the mathematician who introduces the con-
cept of an affinely connected manifold around 1880, neither prematurely nor postma-
turely.

4. EQUIVALENCE PRINCIPLE AND AFFINE CONNECTION

It was Albert Einstein who first realized the profound significance of the equality of
inertial and gravitational mass. He soon began to speak of inertia and gravitation as
“

 

wesensgleich

 

”: essentially the same in nature. By an acceleration of the frame of ref-
erence, the division between inertial and gravitational “forces” can be altered, and
indeed by a suitably chosen acceleration the combination of both can even be made to
vanish at any point of spacetime. 

Einstein’s problem was to find the way to incorporate this physical insight into the
mathematical structure of gravitation theory. After the development of the concept of
affine connection, the way became clear: there is an inertio-gravitational field, repre-

 

15 Translated from (Weyl 1923, 202).
16 For references and discussion of the work of Levi-Civita, Hessenberg, Schouten and Weyl, see the

indispensible (Reich 1992). For the background to Weyl’s “Purely Infinitesimal Geometry,” see
(Scholz 1995). I am indebted to Dr. Erhard Scholz for a discussion of this work.
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sented mathematically by a symmetric connection in spacetime, which incorporates
this essential unity in its very nature. We can see the development of this insight by
looking at the various editions of Weyl’s 

 

Raum-Zeit-Materie

 

. In (Weyl 1918b), Levi-
Civita’s concept of parallel transport, based upon the embedding of a Riemann space
in a flat Euclidean space of higher dimension, is freed from this dependence by giv-
ing it an intrinsic definition. Weyl further states that the Christoffel symbols represent
the gravitational field. In (Weyl 1919)—which follows the argument of Weyl
(1918a)—the concept of parallel transport is freed from its dependence on the metric
field by the introduction of the concept of affine connection. Weyl (1921) refers to
this connection as the “guiding field” (

 

Führungsfeld

 

), incorporating the effects of
both gravitation and inertia on the motion of bodies.

Soon afterwards, Cartan (1923) drew the obvious conclusion: By incorporating
the equivalence of gravitation and inertia into Newton’s gravitation theory, it can be
formulated in terms of a Newtonian affine connection. Since then, starting with
(Friedrichs 1927) and culminating—but certainly not ending—in (Ehlers 1981), a
series of refinements of Cartan’s approach have brought the affine version of New-
ton’s theory to a state of considerable mathematical perfection. 

However, I shall not give the most, abstract, coordinate-free characterization of
the Newtonian affine connection based on the simplest set of axioms. For our pur-
poses, it will be more useful to show how, starting from the usual form of the Newto-
nian theory of gravitation, the components of the connection with respect to a
physically chosen basis may be defined, thus suggesting how Newstein could have
proceeded—had he only existed!

 

17

 

5. NEWSTEIN’S WORLD

We shall start from the usual formulation of Newtonian gravitation theory in some
inertial frame of reference (ifr, for short). Events in this frame are individuated with
the help of the Newtonian absolute time  (chronometry), and three Cartesian coordi-
nates (i.e, assuming Euclidean geometry), fixed relative to some choice of origin 
and of three mutually perpendicular axes.

 

18

 

 Since inertial and gravitational mass are
equal, if  represents the force/unit gravitational mass, the equation of motion of a
(structureless) particle will be

 (1)

where  is the acceleration of the particle with respect to the chosen ifr.

 

17 See (Stachel 1994b) for a somewhat more abstract discussion of spacetime structures in Newton-
Galilean and special-relativistic spacetimes (i.e., in the absence of gravity), and in Newtonian and
Einsteinian gravitational theories.

18 We assume units of time and distance fixed initially and used in all frames of reference, and shall use
vector notation, so that, for example, the displacement vector from the origin  the
velocity  the acceleration  etc, all with respect to the ifr, are denoted by
boldface symbols.

t
O

r x1 x2 x3, ,( ) ,=
v dr dt ,⁄= a dv dt ,⁄=

g

a g,=

a
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Now consider transformations to another frame of reference, moving linearly
with respect to the first: 

(2)

If the velocity vector  is 

 

constant

 

, then the transformation is to another
inertial frame of reference, and the equation of motion, eq. (1), is invariant under such
a transformation. That is, both  and  are invariant under such 

 

Galilei transforma-
tions

 

 from one inertial frame to another.
However, if  is 

 

not

 

 constant, then the transformation is to some linearly acceler-
ated (rigid) frame of reference, and differentiation of eq. (2) twice with respect to the
time gives

 (3)

In Newtonian mechanics, “true” forces, such as  are assumed to be the same in all
frames of reference. To compensate for the use of a non-inertial frame of reference,
so-called “inertial forces” appear in the equations of motion (such forces might better
be called “non-inertial”). Indeed, when we substitute eq. (3) in eq. (1), we get:

(4)

and  appears as such an “inertial force” in the equation of motion of a particle
with respect to a linearly accelerating frame.

But, one may ask, if we carry out measurements in some frame of reference, and
get an acceleration, let us say  for a test particle, how do we separate it into its
components, the “true force”  and the “inertial force”  Newton would not have
hesitated a moment in answering: Look for the sources of the gravitational force, and
use the inverse square law to compute the total  at the point where the test particle is
located. Alternatively, he might have proposed: Look at the center of mass of the
“system of the world” (i.e., the solar system) and see whether you are accelerating
relative to it to find 

But by the end of the nineteenth century, under the influence of Maxwell’s elec-
tromagnetic theory, the field point of view towards forces was beginning to prevail;
according to this viewpoint, one should look upon the gravitational field as the con-
veyor of all gravitational interactions between massive bodies. Accordingly, the local
gravitational field at a point in space (and an instant of time) should always be ascer-
tainable by means of local measurements in the neighborhood of that point. Now, in
the case of any other force but the gravitational, there would be no obstacle to sepa-
rating out the inertial from the non-gravitational effects. For electrically charged par-
ticles, for example, one would merely vary the ratio of electric charge to inertial
mass: The electric force would vary with this ratio, the inertial force would not. But
the ratio of gravitational charge (= gravitational mass) to inertial mass is just what

 

cannot

 

 be varied—the invariance of that ratio is the primary empirical basis of the
equivalence principle. 

So the answer to our question is: Once we adopt the field point of view about
gravitation, there is no way (locally) to distinguish inertial from gravitational effects.
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We have to recognize that there is an inertio-gravitational field, and that how this field
divides up into inertial and gravitational terms is not absolute (i.e., frame-indepen-
dent), but depends on the state of motion (in particular the acceleration) of the frame
of reference being used. Indeed, we see that, by choosing the value of  to coincide
numerically with the value of  at some point, we can make the total inertio-gravita-
tional field vanish at that point. Indeed, this is why we did not call it an inertio-gravi-
tational force: Although the values of their components with respect to some frame of
reference can change depending on the state of motion of that frame, non-vanishing
force fields at a point, such as the electric and magnetic fields making up the electro-
magnetic field, cannot be made to all vanish by any change of reference frame.

Another consequence of our new, equivalence-principle viewpoint is that a basic
distinction between inertial and linearly accelerated frames of reference is no longer
tenable. Any rigid non-rotating frame of reference is just as good as any other. 

Let us now inventory what is left after we adopt this new viewpoint:

1. the absolute time, assumed to be measurable by ideal clocks; its measurement is
unaffected by the presence of an inertio-gravitational field (compatibility of chro-
nometry with the inertio-gravitational field);

2. Euclidean geometry, which holds within each frame in the class of three-dimen-
sional, non-rotating frames of reference; it is assumed to be measurable with ideal
measuring rods; its measurement is unaffected by the presence of the inertio-grav-
itational field (compatibility of geometry with the inertio-gravitational field).

3. Since gravitation and inertia are no longer (absolutely) distinguished (i.e., gravity
is no longer regarded as a force), the set of “force-free” inertial motions is
replaced by a set of “force-free” inertio-gravitational motions. One of these is
determined by specifying a velocity vector at a point of space and an instant of
time. The vector is then the tangent to the “freely falling motion” through the point
at this instant.

4. While the inertio-gravitational field  is not absolute (i.e., it depends on the
frame of reference used, and only behaves like a vector with respect to transfor-
mations within a given frame of reference), its spatial derivatives  are
independent of the (non-rotating) reference frame. Physically, these differential
gravitational forces are usually designated as the tidal forces, since they are
responsible for the tides, among other effects. The matrix of these quantities
determines the relative acceleration of two freely falling test particles, i.e., the
acceleration of one particle with respect to the other. The components of the tidal
forces therefore may be evaluated by measurement of the components of this rel-
ative acceleration.

A
g

g r t,( )

∂mgn r t,( )
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6. THE NEWTONIAN CONNECTION

Now we are ready to make the transition to the four-dimensional point of view, in
which a point of spacetime is specified by the four coordinates  or

 for short, where  are the Cartesian coordinates of the point with
respect to some non-rotating frame of reference and  is the absolute time.19 We shall
refer to these as adapted coordinates for this frame of reference. The absolute time
gives a foliation of spacetime, i.e., a family of non-intersecting hypersurface that fills
the spacetime. In the adapted coordinate system the foliation consists of the hypersur-
faces  A vector is said to be space-like if it is tangent to a hypersurface of
the foliation; a vector is time-like if it is not space-like. Any curve, the tangent vector
to which is always time-like, is a time-like curve, with a similar definition for space-
like curves. In adapted coordinates a vector is time-like if it has a non-vanishing time
component, space-like if it does not. 

We can use any (three-)velocity field  to rig the hypersurfaces of constant
time: Define a time-like four-velocity field  with component = 1 and spatial
components equal to those of  in adapted coordinates. Thus,  defines a con-
gruence of time-like curves that fills spacetime. Indeed, we need merely select one
such time-like curve  and then parallel propagate it along each hypersurface

 to get this congruence. In particular, the paths of the points
 parametrized by the absolute time  constitute such a congru-

ence; Euclidean geometry holds for these spatial coordinates at all times. Thus we
have specified the chronometry and the geometry of the initial frame of reference
using the adapted coordinates. 
Any  field provides a rigging of each hypersurface (see the discussion of rigged
hypersurfaces in the Appendix). Just as a rigging was needed to go from the flat affine
connection of the enveloping space to the non-flat affine connection of a hypersurface
embedded in it, a rigging is needed here to relate the flat (Levi-Civita) connection on
each Euclidean hypersurface to the four-dimensional non-flat connection that we
want to define for spacetime as the mathematical representation of the inertio-gravita-
tional field.

Indeed, we can define a unique symmetric, four-dimensional affine connection on
the spacetime by requiring that it satisfy the following conditions:

1. The absolute time is the affine parameter for all time-like geodesic paths. A geo-
desic path that is time-like at any of its points is time-like at all its points.

2. There is a flat, Euclidean connection on each (three-dimensional) hypersurface of
the foliation. Hence, the Euclidean distance is the affine parameter for each space-
like geodesic path. A geodesic path that is space-like at any of its points is space-
like at all its points.

19 We shall designate a time component by a sub- or superscript “ ” and spatial components by sub- or
superscript “ ” or other lower-case Latin letters.

t x1 x2 x3, , ,( )
t r,( ) x1 x2 x3, ,

t

t ,
i j k…, ,

t const.=

v t( )
V t( ), t-

v t( ) V t( )

V t( )
t const=
x1 x2 x3, , const,= t ,

V t( )



THE STORY OF NEWSTEIN 1051

3. The three-dimensional and the four-dimensional treatments of the spatial geome-
try on each hypersurface are consonant with each other: The Euclidean (flat)
three-dimensional affine connection on each hypersurface of some frame of refer-
ence coincides with the connection induced on that hypersurface by the four-
dimensional connection when that hypersurface is rigged with any time-like 
field.20

4. Parallel transport of any space-like vector is path-independent. By picking an
orthonormal triad  of such vectors at some point on an initial hypersurface of
the foliation, and parallel transporting the triad along any time-like curve with
tangent vector  a frame of reference is generated: Once it is parallel trans-
ported to a point on another hypersurface of the foliation, the triad can be propa-
gated to any other point of the hypersurface by (path-independent) parallel
transport.

5. If we add any  to the triad field  now interpreted as four-vectors, we get a
four- dimensional frame of reference.21 In any such frame of reference, any path
that obeys the Newtonian gravitational equation of motion of a structureless test
particle shall be a time-like geodesic of the four-dimensional connection parame-
trized by the absolute time. The spatial projection of its four-dimensional tangent
vector onto any hypersurface of the foliation will coincide with the three-velocity
of the test particle on that hypersurface.

As indicated earlier, we have not attempted to give a minimal list of assumptions,
each of which is independent of the others; but rather, a physically intuitively plausi-
ble list. We now proceed to derive the components of the connection in some given
non-rotating frame of reference, i.e., using coordinates adapted to the tetrad of basis
vectors  that characterize this frame of reference. 

The equation of a geodesic in these coordinates is (see the Appendix):

(5)

where  is an affine parameter, i.e., the (four-dimensional) tangent vector to the
curve  is equal to  and the components of the connection are with
respect to the chosen four-dimensional frame of reference. If we consider time-like
geodesics, condition 1) requires that  be an affine parameter for all of them. The
four-velocity  will thus have components  in the adapted coordinate
system, where  is the three-velocity of the particle. Considering only the compo-
nent of eq. (5) for the moment, in adapted coordinates it takes the form:

20 If the requirement is fulfilled for one such field it is fulfilled for any such field, since two such fields
can only differ by a space-like acceleration vector field. So the transition from one non-rotating frame
of reference to another, which corresponds mathematically to a change of  field, does not affect
the result.

21 Note that any such  field commutes with the three  fields, which commute with each other, so
that they form a holonomic basis; so coordinates adapted to this basis will always exist.
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(5a)

and since the first term vanishes, the only way that eq. (5a) can hold for all values of
 is if  and  all vanish in the adapted coordinate system. In other words,

these are the mathematical conditions that assure the compatibility of the chronome-
try and the inertio-gravitational field. Physically, this means that an ideal clock mov-
ing around in the inertio-gravitational field will always measure the absolute time.

Conditions 2, 3, and 4 now demand that the three space-like vectors  which lie
along the coordinate axes and thus have components  in adapted coordinates, have
vanishing covariant derivates with respect to both the Euclidean (flat) three-dimen-
sional connection on each hypersurface, and the non-flat inertio-gravitational four-
dimensional connection. By a similar argument to that above, these conditions result
in the vanishing of  and  in the adapted coordinate system. In other words,
these are mathematical conditions that assure the compatibility of the geometry and
the inertio-gravitational field. Physically, this means that an ideal measuring rod
moving around in the inertio-gravitational field will always measure the Euclidean
distance.

Condition 5 now fixes the values of the only remaining non-vanishing compo-
nents of the affine connection,  in the adapted coordinate system. Returning to
eq. (5), its spatial components in the adapted coordinate system now take the form:

(5b)

all other terms in the equation vanishing because of the previously-established van-
ishing of the other components of the connection. We see that we need merely set:

(6)

in the adapted coordinates in order to have the geodesic equation coincide with the
equation of motion of a particle in the gravitational field 

We have now fixed all the components of the symmetric affine connection in the
adapted coordinate system. We need merely apply the general transformation law for
the components of the connection under a coordinate transformation 

(7)

to the equations for a linearly accelerated transformation (see eq. (2) of Section 5):

(8)

in order to see that the components of the connection transform correctly; i.e, that all
the components but  continue to vanish, and the  transform just like the com-
ponents of  under such a transformation (see Section 5, eq. (4)). If we carry out a
transformation to a rotating system of coordinates, the transformation of the compo-
nents of the connection introduces terms that correspond to the Coriolis and centripe-
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tal “inertial forces” that must be introduced in a rotating coordinate system. To get the
form of the components of the connection in an arbitrary coordinate system, one need
merely apply eq. (7) to an arbitrary coordinate transformation.

What about the tidal forces, which as mentioned above are absolute? They are
represented by the appropriate components of the Riemann tensor, which can be
computed from the Newtonian inertio-gravitational connection. Since they are com-
ponents of a tensor, they indeed possess an absolute character, in the sense that if the
components do not all vanish at a point, no change in frame of reference at that point
can make them all vanish. These components of the Riemann tensor enter into the
equation of geodesic deviation, which describes in four-dimensional tensorial form
the relative acceleration of two particles falling freely in the inertio-gravitational
field; but I shall not enter into details here.

Rather, I turn to the question of the field equations for the inertio-gravitational
field. The Newtonian field  obeys the field equation:

(9)

where  is the Newtonian gravitational constant,  is the mass density of the mate-
rial sources of the gravitational field, and  is the trace of the tidal force matrix.
If one works out the components of  the contracted Riemann or Ricci tensor, in
the adapted coordinates, it turns out that only  is non vanishing, and it equals

 So  and all other components =0 in the adapted coordinates.
The only remaining problem is to write this result as a tensorial equation, indepen-
dent of coordinate system; but this is easily solved by introducing a covariant vector
field  such that in adapted coordinates  The gravitational field
equations now take the tensorial form:

(10)

which is clearly of the same form in all coordinate systems.
In a more complete treatment,22 one would have to go a step further: the Newto-

nian gravitational field  can be derived from a gravitational potential function
 and this condition can be expressed intrinsically in terms of the prop-

erties of the corresponding Riemann tensor (the tidal force matrix introduced in Sec-
tion 5, which is closely related to certain components of the Riemann tensor,
becomes symmetric). Now  plays an important role in taking the Newtonian limit
of general relativity, but since we shall not discuss this issue, I can forego entering
into further consideration of details.

The non-dynamical Newtonian chrono-geometrical structures, consisting of the
absolute time and the relative spaces of the family of non-rotating frames of refer-
ence, are unmodified by the presence of gravitation. Mathematically, they are repre-
sented by a closed temporal one-form (the  introduced above) and a trivector field

22 See (Stachel 2003b) for such a treatment.
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whose transvection with the one-form vanishes (the  introduced above), from
which a degenerate (rank 3) spatial “metric” may be constructed 

However, the compatible flat inertial structure of Newton’s theory is modified. It
becomes a dynamical structure, the Newtonian inertio-gravitational field, which
remains compatible with the chrono-geometrical structures. Mathematically, it is rep-
resented by a symmetric affine connection (the Newtonian connection  discussed
above), which can be derived from a “connection potential” (the  discussed above).
Its contracted Riemann tensor obeys field equations that relate it to the masses acting
as its source (eq. (10) above). The compatibility of this connection with the chrono-
geometrical structure means, as noted earlier, that clocks and measuring rods freely
falling in the inertio-gravitational field still measure absolute temporal and spatial
intervals, respectively. Mathematically, this is expressed by the vanishing of the cova-
riant derivatives of the temporal one-form and degenerate spatial “metric” with
respect to the Newtonian connection.

7. SOME MYTHICAL HISTORY: NEWSTEIN MEETS WEYLMANN 

Once the concept of affine connection has been developed and the Riemann tensor
geometrically interpreted in terms of parallel transport around closed curves, this ver-
sion of Newton’s theory—which converts gravitation from a force that pulls bodies
off their (non-dynamical) inertial paths, into a (dynamical) modification of the (iner-
tial) affine connection—is almost immediately suggested by the equality of gravita-
tional and inertial mass. Indeed, shortly after the mythical mathematician Weylmann
formulated the concept of affine parallelism, his equally mythical physicist colleague
Newstein developed this reinterpretation of Newtonian gravitational theory. Brooding
on the equality of gravitational and inertial mass, he became convinced of the essen-
tial unity of gravitation and inertia. Originally, he expressed this insight in the usual
three-plus-one language of physics, treating space and time separately (see Section 5).
He considered uniformly accelerated frames of reference in the absence of gravitation
(the Newstein elevator!), and decided it was impossible to distinguish such a frame of
reference from a non-accelerated frame with a constant gravitational field. This led
him to consider transformations between linearly accelerated frames of reference. 

He was puzzled by the strange transformation law that he had to introduce for the
gravitational “force,” which no longer behaves like a vector under such transforma-
tions. At some point he turned to Weylmann, who soon realized that the gravitational
“force” transforms like the  components of a four-dimensional affine connection,
and that Poisson’s law for the gravitational potential could be written as an equation
linking the Ricci tensor of the connection with its material sources (see Section 6). In
the now-famous Newstein-Weylmann paper, the two developed a four-dimensional
geometrized formulation of Newtonian gravitation theory, which generalized Newto-
nian chrono-geometry to include linearly accelerated frames and a dynamized inertio-
gravitational connection field, but still included the concept of absolute time.
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(=δijeie j).

Γρσ
κ

φ

Γtt
m



THE STORY OF NEWSTEIN 1055

In so far as they took any notice of this work, their contemporaries regarded it as an
ingenious mathematical tour-de-force. But, since it had no new physical conse-
quences, it did not much impress Newstein’s positivistically-inclined physics col-
leagues. 

Weylmann analyzed the invariance group of the new theory, which is much wider
than that of the older Newtonian kinematics. The privileged role of the inertial frames
of reference in Newton’s theory, just beginning to be realized thanks to the work of
Lange and Neumann, was lost in the new interpretation of gravitation.While rotation
remained absolute (in the sense that all components of the connection representing
centrifugal and Coriolis forces could be made to vanish globally by a coordinate trans-
formation), all linearly accelerated frames of reference were now equal, and the signif-
icance of this occasioned a discussion among a few philosophers of science who
concerned themselves with the foundations of mechanics. Ernst Mach added a few
lines about Newstein to the latest edition of his Mechanik.

8. MORE MYTH: EINSTEIN CONFRONTS NEWSTEIN

Perhaps this is where Albert Einstein first read about Newstein’s work. At any rate, in
1907, pursuant to his commission to write a review article on the physical conse-
quences of his 1905 work on the relativity principle (now becoming known as the
theory of relativity),23 he turned his attention to gravitation, and (like Newstein) was
struck by the equality of gravitational and inertial mass. He realized that, as a conse-
quence, in Newtonian mechanics there is a complete equivalence between an acceler-
ated frame of reference without a gravitational field and a non-accelerated frame of
reference, in which there is a constant gravitational field. He soon generalized this to
what he later called the principle of equivalence: There is no physical difference
(mechanical or otherwise) between the two frames of reference.24 

Recalling what he had read about Newstein, Einstein realized that he had redis-
covered the loss of the privileged role of inertial frames once gravitation is taken into
account. Like Newstein, he became convinced that inertia-cum-gravitation must be
represented mathematically by an affine connection; but now this representation
somehow must be made compatible with the new chronogeometry he had developed
in his 1905 theory.25 He first tried to preserve the non-dynamical nature of this
chrono-geometrical structure—which Minkowski soon expressed in terms of a four-
dimensional pseudo-Euclidean geometry—by developing various special-relativistic
gravitational theories that incorporated the unity of gravitation and inertia by the very
fact that they were based upon an affine connection. But the Riemann tensor of the
inertio-gravitational connection in each of these theories was non-vanishing, while

23 For a translation of this paper, see (Stachel 1998).
24 Aside from the first sentence, this paragraph is a summary of the actual historical circumstances of

Einstein’s first work on gravitation, see (Einstein 1907). The fantasy begins in the next paragraph.
25 In the frame bundle language, the physically preferred subgroup of the general linear group had to be

changed from the Newtonian group to the Lorentz group.



1056 JOHN STACHEL

the metric-affine structure of Minkowski spacetime is flat. Physically, this meant that
the inertio-gravitational and chrono-geometrical structures were not compatible:
Good clocks and measuring rods, as defined by the chrono-geometrical structure, did
not keep the proper time or measure the proper length when moved about in the grav-
itational field. 

While this could be “explained away” as due to a universal distorting effect of
gravitation on all measuring rods and clocks, something about such an explanation
disturbed him. Since the effect was universal, the “true” Minkowski chronogeometry
could be shown to have no physically observable consequences.

Finally, he realized what was bothering him: This type of explanation was all too
similar to Lorentz’s interpretation of the Lorentz transformations: Galilean chrono-
geometry is the “true” one; but the universal effect of motion through the absolute
(aether) frame of reference exerts a universal effect on all physical processes that pre-
vents any physically observable consequences of this motion. What was the way out
of this new unobservability dilemma? 

Suddenly the answer struck him: If he required compatibility between the inertio-
gravitational and chrono-geometrical structures, the problem would disappear, just as
it had in Newstein’s reinterpretation of Galilean kinematics. Good measuring rods
and clocks, as defined by such a chrono-geometrical structure, would measure the
true proper lengths and times wherever they were placed in the inertio-gravitational
field. But there was a price to pay for this compatibility: The chrono-geometrical field
could no longer be flat. It would have a curvature attached to it in the Gaussian sense,
the one that Riemann originally had generalized from two to an arbitrary number of
dimensions. In this theory, the Riemann tensor would have two distinct (but compati-
ble) interpretations: as the curvature of a connection, associated with parallel trans-
port and the equation of geodesic deviation; and as the curvature of a pseudo-metric,
associated with the Gaussian curvature of each of the two-dimensional sections at
any point of spacetime. 

And of course, since metric and connection were now compatible, this implied
that the components of the connection with respect to any basis were numerically
equal to the Christoffel symbols of the metric with respect to that basis. And since the
connection is a dynamical field, the metric would also have to become a dynamical
field. In contrast to the Newsteinian case, where the chrono-geometry remained non-
dynamical, in the Einsteinian case, there are no non-dynamical spacetime structures.
The bare manifold remained absolute in a certain sense;26 but then, it had no physical
characteristics other than dimensionality and local topology unless and until the iner-

26 I say this because, in actual fact, the global topology of the manifold is not given before the metric-
cum-connection field, as implied in so many presentations of general relativity. One actually solves
the Einstein field equations on a small patch, and then looks for the maximal extension of that patch
compatible with the given metric. Certain criteria for compatibility must be given before the question
of maximal extension(s) becomes meaningful, of course. For discussion of this topic, see (Stachel
1986; 1987). 
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tio-gravitational cum chronogeometrical field was impressed upon it. Least of all do
the points of the manifold represent physical events before imposition of a metric.27

The new, dynamical theory of spacetime structures had a number of novel physi-
cal consequences, and Einstein soon became world-famous—but you know the rest
of the story.

9. SOME REAL HISTORY: EINSTEIN WITHOUT NEWSTEIN

Unfortunately, the last section was a historical fable, and the real Einstein had to
work out the general theory of relativity in the absence of the concept of affine con-
nection—an absence which, as suggested in Section 2, played a fateful role in the
actual development and subsequent history of the theory. It took Einstein without
Newstein seven years to develop the general theory of relativity after he had adopted
the equivalence principle as the key to a relativistic theory of gravitation. Rather than
tell the entire story of the many genial steps and equally numerous missteps on Ein-
stein’s road from special to general relativity,28 I shall here just highlight some of the
most fateful consequences of the absence of the connection.

First of all, it is important to realize that the tensor calculus, as originally devel-
oped by Christoffel, Ricci, Levi Civita and others, was a branch of invariant theory,
with only tenuous ties to geometry.29 Einstein’s introduction of the metric tensor field
as the mathematical representation of both the chrono-geometry of spacetime and the
potentials for the gravitational field did not carry with it most of the geometrical
implications that we take for granted today. Insofar as it did carry geometrical impli-
cations, notably in fixing the geodesics of the manifold, this had to do with the inter-
pretation of geodesics as the shortest paths (or rather longest, for time-like paths—the
twin paradox) in spacetime. The interpretation of geodesics as the straightest paths in
spacetime, more important for the understanding of the gravitational field—in partic-
ular, the interpretation of the Riemann tensor in terms of the equation of geodesic
deviation—had to await the work of Levi Civita and Weyl on parallelism discussed in
Section 3.30 Curvature, in other words, was given the Gauss-Riemann interpretation,
rather than the interpretation as the tendency of geodesics to coverge (or diverge),
leading to its association with tidal forces.

27 For discussion of the hole argument, which bears on this point, see (Stachel 1993) and references
therein.

28 See the first two volumes of this series on the development of general relativity. For earlier accounts
by this author and others, see (Stachel 1995) and the references therein.

29 “The calculus developed by Gregorio Ricci in the years 1884–1887 had its roots in the theory of
invariants, therefore it naturally lacked a geometrical outlook or interpretation, and was so intended
by Ricci” (Reich 1992, 79). For the history of the tensor calculus, see (Reich 1994).

30 Interestingly, this interpretation was anticipated by Hertz in his geometrical version of mechanics. See
(Hertz 1894) and, for a discussion of the 19th century tradition of geometrical interpretations of
mechanics, (Lützen 1995a; 1995b).
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It is often said that Einstein, with the help of Grossmann, found ready-to-hand the
mathematical tools he needed to develop general relativity: Riemannian geometry
and the tensor calculus. But this statement must be taken with a large grain of salt. It
would be more correct to say that he had to make do with the tools at hand, with
important negative consequences for the development of the theory, and—more
importantly for us now—with negative consequences for the interpretation of the the-
ory that continue to exert their effects to this day.31

To give two concrete examples of this negative influence on Einstein’s work:

1. Until late in 1915, he regarded the derivatives of the metric tensor, rather than the
Christoffel symbols, as the mathematical representative of the gravitational-cum-
inertial field.32 In Einstein 1915, he finally corrected this error:

These conservation laws [the vanishing of the covariant derivative of the stress-energy

tensor] previously misled me into regarding the quantities  as the

natural expression for the components of the gravitational field, although in the light of
the formulas of the absolute differential calculus it seems more obvious to introduce the
Christoffel symbols instead of these quantities. This was a fateful prejudice (Einstein
1915, 782).

The reason why this error was so fateful is that it mislead Einstein in his search
for the gravitational field equations, a search that took over two years after he had
adopted the metric tensor field as the mathematical representation of gravity.33

2. From 1912 onwards, Einstein expected that, in the Newtonian limit of general rel-
ativity, the spatial part of the metric field tensor would remain flat and that the

 component of the metric would reduce to the Newtonian gravitational poten-
tial. Correctly understood, in terms of a formulation of the theory taking the New-
tonian limit of both the connection and the metric, these expectations are fulfilled.
But one cannot properly take the Newtonian limit of general relativity without the
concept of an affine connection, and the corresponding affine reformulation of
Newtonian theory discussed in Section 6. Indeed, the problem of correctly taking
the Newtonian limit of general relativity only began to be solved in (Friedrichs
1927), and the process was not completed in all details until (Ehlers 1981). In the
absence of the affine approach, more-or-less heuristic detours through the weak-
field, fast motion (i.e., special-relativistic) limit followed by a slow motion
approximation basically out of step with the fast-motion approach, had to be used
to “obtain” the desired Newtonian results.34

31 Perhaps the first such negative influence on work done after the final formulation of the general theory
is the ultimate failure of Lorentz’s attempt to give a coordinate-free geometrical interpretation of the
theory. I thank Dr. Michel Janssen for pointing this out to me. For an account of Lorentz’s attempt, see
(Janssen 1992).

32 See (Einstein and Grossmann 1913, 7), and (Einstein 1914, 1058), for examples.
33 For details see vol. 1 of this series on the development of general relativity.
34 See (Stachel 2003b) for more details.

1 2⁄ Σ g
τμ

μ
∂gμν ∂xσ⁄

goo



THE STORY OF NEWSTEIN 1059

Einstein originally thought that he knew the form of the weak field metric in the
static case. It involved a spatially flat metric tensor field, with only the  compo-
nent of the metric depending on the coordinates. He used this form of the static met-
ric as a criterion for choosing the gravitational field equations: This form of the
metric had to satisfy the field equations, which led to a disastrous result: No field
equation based on the Ricci tensor had this form of the static metric as a solution, and
Einstein abandoned the Ricci tensor for over two years!35 Had he known about the
connection representation of the inertio-gravitational field, he would have been able
to see that the spatial metric can go to a flat Newtonian limit, while the Newtonian
connection remains non-flat without violating the compatibility conditions between
metric and connection. As it was, using the makeshift technique described above to
get the Newtonian result, he was amazed to find that the spatial metric is non-flat.
Even today, almost all treatments of the Newtonian limit of general relativity are still
based on this makeshift approach that employs only the metric tensor.

10. CONCLUSION

The moral of this story is that general relativity is primarily a theory of an affine con-
nection on a four-dimensional manifold, which represents the inertio-gravitational
field. The other important spacetime structure is the metric field that represents the
chrono-geometry; and the peculiarity of general relativity is that the compatibility
conditions between metric and connection—or in physical terms, between inertio-
gravitational field and chrono-geometry—uniquely determine the connection in
terms of the metric. In teaching the subject, emphasis should be put on the connection
from the beginning. This can be done easily by presenting the affine version of New-
tonian gravitation theory before discussing general relativity. But most textbooks still
start from the metric and introduce the connection later via the Christoffel symbols in
a way that does not stress the basic role of the connection.36 Now that gauge fields
have come to dominate quantum field theory, it is more important than ever to
emphasize from the beginning how general relativity resembles these Yang-Mills
type theories, as well as how it differs.37

35 For details, see (Stachel 1989; Norton 1984) and volume 1 of this series.
36 It is indicative of current interests that (Darling 1994), the only elementary mathematical textbook I

know that introduces the connection first, does not even mention the application to gravitation theory,
but concludes with a chapter on “Applications to Gauge Field Theory” (pp. 223–250). 

37 The basic difference is that the affine connection lives in the frame bundle (see Section h of the
Appendix), which is soldered to the spacetime manifold. The symmetries of the fibres are thus
induced by spacetime diffeomorphisms. On the other hand, the Yang-Mills connections live in fibre
bundles, the fibres of which have symmetry groups that are independent of the spacetime symmetries
(internal symmetries). For further discussion, see (Stachel 2005).
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ACKNOWLEDGEMENTS AND A CRITICAL COMMENT

I thank Dr. Jürgen Renn for a thoughtful reading of this paper, and many helpful sug-
gestions for its improvement. I thank Dr. Erhard Scholz for his careful critique of the
paper. While agreeing with its basic viewpoint, he made some critical comments on
my treatment of Grassmann and the mythical Weylmann. With his kind permission I
quote them:

The (historical) lineale Ausdehnungslehre was so much oriented towards the investiga-
tions of linear geometric structures and their algebraic generalization that there was a
deep conceptual gulf between Grassmann’s approach and Riemann’s differential geome-
try of manifolds, which could only be bridged after a tremendous amount of deep and
hard work. I do not see in Grassmann’s late attempt to understand the algebraic geometry
of curves and surfaces in terms of his Ausdehnungslehre a step that might have led him
even somewhat near to a generalization of parallel transport in the sense of differential
geometry. In “real history” there was no natural candidate for “Weylmann.”

..... So, in short, your Newstein paper is an interesting thought experiment discussing the
question of what would have happened if history had gone other than it did. In doing so,
and following your line of investigation, we might find more precise answers as to why
there was, e.g., still a long way to go from Grassmann to a potential “Weylmann.” This is
contrary to your intentions, I fear, but I cannot help reading your paper that way.

Rather than going contrary to my intentions, his remarks raise a most important ques-
tion that supplements my approach to alternate histories: Given that we can invent
various alternatives to the actual course of events, can one attach a sort of intrinsic
probability to these various alternatives? I mean probability in the sense of a qualita-
tive ranking of the probability of the alternatives rather than attaching a numerical
value to the probability of each. In a truly “postmature” case, the ranking of the actual
course of events would be lower than that of at least one of the alternatives. For
example, the probability of a direct mathematical route from Riemann’s local metric
to Levi-Civita’s local metrical parallelism would rank higher than the probability of
the actual route via physics through Einstein’s development of general relativity. Dr.
Scholz makes a strong case for ranking the probability of the actual course of events
from Grassmann’s affine spaces to Weyl’s affine connection higher than the probabil-
ity of the step from Grassmann to Weylmann in my myth. I shall not pursue this issue
further here, but again thank Dr. Scholz for comments that raise it in the context of
my paper.
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APPENDIX: RIEMANNIAN PARALLELISM
AND AFFINELY CONNECTED SPACES

I shall review the concepts of parallelism in Euclidean and affine spaces, and their
generalization to non-flat Riemannian and affinely connected spaces, respectively. I
shall emphasize material needed to understand the historical and mathematical dis-
cussion in the Sections 3–6 and Newstein’s mythical history in Section 7. Those
familiar with the mathematical concepts may refer to the Appendix as needed when
reading Sections 4–7.38 

a. affine and Euclidean spaces. The familiar concept of parallelism in Euclidean
space can easily be extended from lines to vectors: two vectors at different points in
that space are parallel if they are tangent to parallel lines. We say that two Euclidean
vectors are equal if they are parallel and have the same length as defined by the met-
ric of Euclidean space. But, as we shall soon see, the concepts of parallelism and
equality of parallel vectors retain their significance when we abstract from the metric
properties of Euclidean space to get an affine space. 

Figure 1: Any pair of non-parallel vectors  and  can be transformed into any other 
pair  and  by an (active) affine transformation.

The properties of Euclidean geometry may be defined as those that remain invari-
ant under transformations of the Euclidean group, consisting of translations

39 and of rotations  about any point in space.40 A translation is a
point transformation that takes the point  into the point  where  is any vec-
tor. A rotation is a point transformation with a fixed point  that takes the point

38 However, in contrast to more familiar treatments, I shall define connections in terms of frame bundles,
a concept that I shall introduce informally, following (Crampin and Pirani 1986, chaps. 13–15), which
may be consulted for more details.

39 I shall use the notation  to denote a group acting on a real dimensional space.
40 I shall give the active interpretation of all geometrical transformations: The transformations act on the

points of the space in question, taking each point into another one. The idea of defining a geometry by
the group of transformations that leave invariant all geometric relations goes back to (Klein 1872).
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 into the point  where  is an orthogonal transformation.
The translations are clearly metric-independent; but the orthogonal transformations,
being the linear transformations that preserve the distance between any pair of points,
clearly do depend on the metric.

 If we relax the condition that a linear transformation  preserve distances, and
merely demand that it have a non-vanishing determinant), then  the
group of general linear or affine transformations. Together with the translations, they
form the affine group that defines an affine geometry.41 Parallelism of lines and vec-
tors and the ratio of the lengths of parallel vectors (and hence the equality of two such
vectors) being invariant under the affine group, are meaningful affine concepts. The
(Euclidean) length of any vector is changed by an affine transformation with non-unit
determinant, so it is not a meaningful affine concept. 

Figure 2: Any pair of parallel vectors  and  can be transformed into any other pair 
of parallel vectors  and  with the same ratio by an (active) affine transformation.

In order to determine the action of an affine transformation  on any vector  at
some point of an dimensional affine space, we need merely define its action on a
basis or linear frame  at that point, consisting of  linearly-independent vectors:

(11)

where  is the new basis produced by the action of  on  and  is the matrix
representing the action of  on some basis. (Here and throughout, we have adopted
the summation convention for repeated indices, which range over the appropriate
number of dimensions—here )

 If we want to restrict ourselves to Euclidean geometry and the orthogonal group,
we may restrict ourselves to orthonormal bases or frames:

41 For a discussion of affine and metric spaces, with a view to the generalizations needed below, see
(Crampin and Pirani 1986, chaps. 1 and 7). For these generalizations, see chaps. 9 and 11.
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(12)

where the dot symbolizes the Euclidean scalar product of two vectors, and to orthog-
onal changes of bases:

 (13)

Figure 3: A (homogenous) affine transformation is defined by its action 
on a basis (or linear frame)  of the affine space.

Once we have chosen a basis at one point of an affine (or Euclidean) space, we can
take as the basis at any other point of space the set of basis vectors equal and parallel
to the original basis, thereby setting up a field of bases or linear frames over the entire
space. 

b. frame bundles. On the other hand, we can consider the set of all possible bases or
linear frames at a given point of space. As is clear from eq. (11), in an affine space
these frames are related to each other by the transformations of  The set of
all frames, together with the structure that the dimensional affine group imposes
on them, is said to form a fibre over the point in question. Similarly, in Euclidean
space, the set of all possible orthonormal frames at a point has a structure imposed on
it by  the dimensional orthogonal group (see eq. (13)).

The set of all possible frames at every point of a space together with the space
itself form a manifold that is called the bundle of linear frames or, more simply, the
frame bundle. This is a special case of the more general concept of a fibre bundle.42

The original space, which is affine or Euclidean in our examples but capable of gen-
eralization to any manifold, is called the base space of the fibre bundle; each fibre
also need not be composed of linear frames, but may have a more general structure
(below we shall consider fibres composed of tangent spaces). But there is always a
projection operation that takes us from any fibre of the bundle to the point of the base

42 For fibre bundles in general and the frame bundle in particular, see (Crampin and Pirani 1986,
chaps. 13 and 14).

ei e j⋅ δij,=

e j′ OOOO j
iei,       ei′ e j′⋅ δij.= =

eA

GL n R,( ).
n-

O n R,( ), n-



1064 JOHN STACHEL

space at which the fibre is located. A fibre bundle is called trivial if it is equivalent to
the Cartesian product of a base manifold times a single fibre with a structure on it.
The frame bundles we have been considering are trivial, since they are equivalent to
the product of an affine (or Euclidean) space times a frame fibre with the structure
imposed on it by the affine (or orthogonal) group.

Figure 4: The set of all possible frames  
at a point of the space forms a “fibre” over the point.

A cross-section of the frame bundle is a specification of a particular frame on
each fibre of the bundle, i.e., at each point of the base space (see Fig. 6). (The frames
must vary in a smooth way as we pass from point to point, but we shall not bother
here with such mathematical details.) In an affine (or Euclidean) space, the specifica-
tion of a linear (or orthonormal) frame on one fibre allows us to pick out a unique par-
allel cross section of the entire bundle. (The last sentence just repeats, in the language
of fibre bundles, something said earlier.) A change of frame on one fibre produces a
change of the entire parallel cross section that is induced by an affine (orthogonal)
transformation on the original fibre.

Figure 5: The fibres of a fibre bundle.

eA e′A e″A …, , ,
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Figure 6: A “cross-section” of a frame bundle is a choice 
of a particular frame on each fibre of the bundle.

c. parallelism in non-flat Riemannian spaces. Now consider three-dimensional
Euclidean space and some two-dimensional (generally curved) surface  in it. All
vectors that are tangent to  at one of its points  form a vector space  called
the tangent space to  at  The collection of all such tangent spaces for all points

 form a fibre bundle  called the tangent bundle. All vectors in  are
intrinsically related to 43 and we want to define the concept of parallelism for such
vectors in such a way that it will also be intrinsic to  We cannot simply take the vec-
tor at another point  of  that is parallel to a vector of  in the three-dimen-
sional Euclidean sense: in general, that vector will not even be in  see Fig. 7).

We can get an idea of how to proceed by considering the case when  is a plane.
The concept of parallel vectors at different points of the plane is clearly intrinsic to
the plane. Consequently, the tangent spaces at each point of the plane can be identi-
fied with each other in a natural way, as can pairs of orthonormal vectors

 that form a basis at each point of the plane considered as a two-dimen-
sional Euclidean space. Taken together with the unit normal vector  to the plane,
the  form a basis for the tangent space of the three-dimensional Euclidean space. 

43 These vectors can, for example, be defined as the tangent vectors to curves  lying entirely
in  We follow the usual terminology in distinguishing curves from paths, which are curves without
a parametrization 
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Figure 7: To define an intrinsic notion of parallelism within a surface  we cannot 
use vectors that are parallel to each other in the three-dimensional sense. While  lies 
in the tangent plane at  the three-dimensionally parallel vector  does not even lie 

in the tangent plane at 

Figure 8: If  and  are parallel vectors in the plane  and if parallelism is
intrinsic to  then they remain parallel even when  is bent (without distortion).
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Figure 9: In an affine space, choice of a frame on one
fibre picks out a unique parallel cross-section.

Figure 10: The tangent space  to a surface  at point  of the surface in 
Euclidean space is composed of all vectors tangent to the surface at that point. The 

unit normal to the tangent plane is designated by 

Now suppose we bend the plane without distorting its metric properties (i.e., the met-
rical relations between its points as measured on the surface), resulting in what is
called a developable surface.44 If we want the concepts of parallelism and straight
line to be intrinsic to a such a surface, they must remain the same for any surface
developed from the plane as they were for the plane itself. Thus, the basis vectors 

44 Such a process of bending leaves the intrinsic geometry of the surface unchanged, but changes its
extrinsic geometry. The intrinsic properties of any surface are those that remain unchanged by all such
bendings; its extrinsic properties are precisely those that depend on how the surface is embedded in
the enveloping Euclidean space.
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at different points of the surface must still be considered parallel to each other from
the intrinsic, surface viewpoint, even though they are not from the three-dimensional
Euclidean point of view. Consider two neighboring points on the surface  and

 In order to get from the tangent plane  at  to the tangent plane
 at  one must rotate the former through the angle  that takes  into 45

Thus, there must be an orthogonal transformation  differing from the identity 
only by an amount that depends on   and  or equivalently on  and

(14)

and depends linearly on 

Figure 11: In order to get from the tangent plane  at  to a neighboring tangent 
plane  at  we must carry out an orthogonal transformation 

 that depends on  and 

Due to the linearity of vector spaces, the effect of this orthogonal transformation
on any vector in the tangent plane to the surface can be computed once its effect on a
set of basis vectors  in the tangent plane is known.46 The change in each basis vec-
tor is given by:

(15)

45 The concept of parallelism in the Euclidean space allows us to draw the vector at  that is equal and
parallel to  at  and so define the angle  between  and 

46 Note that we need the normals  and  to define the orthogonal transformation between parallel
vectors lying in the tangent planes at  and  but since we are only interested in the change in vec-
tors lying in the surface we may omit  from explicit mention in eq. (5), since it is determined by the

 and the orthonormality conditions.
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where  are the elements of a matrix that determines the effect of the
infinitesimal rotation on the orthonormal basis vectors. 

Figure 12: The effect of  on any vector in  is determined by its effect on a set 
of basis vectors  of the space.

It is this connection between parallel vectors in neighboring tangent planes, given
by eqs. (14) and (15), that we shall preserve for all surfaces, in particular for those
that are not intrinsically plane. Since it was introduced by Levi-Civita (see Section 4),
it is often called the Levi-Civita connection. If two points  and  are not neighbor-
ing, we must choose some path  on the surface connecting  and  and break it
up into small straight line segments  If we move from  to 
along straight-line segment  we must rotate  at  through some small
angle  about the normal  at  in order to get the tangent plane  at 
For the next segment  we have to rotate the tangent plane  through an
angle  about the normal  at  in order to get the tangent plane  at 
We keep doing this until we reach the endpoint  Now we increase the number of
intermediate points indefinitely, and take the limit of this process so that the broken
straight line segments approach the curve. This defines the vector in  that is
parallel to one in  with respect to the path 

Note that we must add the last qualification because, unless  is a developable
surface, the resulting parallelism in general will be path dependent. We can see this
by looking at a small parallelogram with sides  and  Since

 and  are not in general parallel to each other, the correspondence
between vectors in the tangent planes  and  that is set up by going via

 is not in general the same as the one we get by going via 
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Figure 13: In general the vector  at  that is parallel to  at  depends on 
the path taken between  and 

Figure 14: We can see this by looking at the parallel transport of a vector  along the 
sides  and  of a small parallelogram.

d. the Riemann tensor. By carrying out the analysis of this parallelogram quantita-
tively, we can define the Riemann tensor of the surface.47 Take a vector  in 
and let the corresponding (i.e. intrinsically parallel) vector in  be  Then

 results from  by a rotation operation that acts on  we shall symbolize it by
the operator  (see eq. (14)), so that:

47 In the case of a two-dimensional surface, it reduces to a scalar  i.e., all non-vanishing components
of the Riemann tensor reduce to  But we prefer to keep the tensorial designation in view of the
impending generalization to higher dimensions.
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Here,  represents a first order infinitesimal rotation operator that depends linearly
on  Similarly, if  represents the displacement  then the change  in 
when we go from  to  is given by:

Then the change in  at  when we go via  first, then  (i.e., via  is
given by:

while, if we proceed in the reverse order (i.e., via  the change is given by:

Since  and  are vectors at the same point, their difference is a (second order
infinitesimal) vector  It indicates by how much the two vectors in  that are
parallel to  in  depending on which of the two paths is taken, differ from each
other:

Note the operator in parentheses is the same for all vectors in  since they are all
rotated by the same amount. And since  and  are linear in  respec-
tively, this operator is proportional to  Such an antisymmetric tenso-
rial product of two vectors is abbreviated as  and called a simple bivector; it
represents the (signed) area of the infinitesimal parallelogram with sides 
This second order infinitesimal term is also same for all vectors taken from  to 
along the sides of the parallelogram.48 So there must be a finite tensorial operator 
such that, when it operates on an area bivector  and a vector  it produces
the change in  when it is parallel transported around the area  Note that, to
the second differential order we are considering, it makes no difference whether we
parallel transport a vector from  to  in two different ways, and compare the
results in  or take it around the parallelogram and compare the result with the
original vector in  Further, the result is independent of the shape of the infini-
tesimal plane figure we carry it around so long as this has the same area as, and lies in
the plane defined by,  The tensorial operator  which operates on a bivec-
tor and a vector to produce another vector, is called the Riemann tensor; when it oper-
ates on an infinitesimal area element, it measures how much Riemannian parallelism

48 One should actually distinguish between  at  and  at  which is the result of parallel trans-
porting  at  along  But to the order we are considering, the difference may be neglected.
The more serious problem of whether the parallelogram resulting from these displacements actually
“closes” will be discussed later.
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on that surface element differs from flat, path-independent, parallelism, for which the
Riemann tensor would vanish.

Figure 15: The operator  operating on the area  and the vector  pro-
duces the change  in  when it is parallel transported around that area.

e. non-flat affine spaces. Our discussions of parallelism on a surface and of the Rie-
mann tensor made essential use of the metric of the enveloping Euclidean space. First
of all, this metric induced a notion of distance on the surface; but this is intrinsic to
the surface, and can be defined without using the fact that the surface is embedded in
a Euclidean space. More serious is the fact that we used the normals to the surface at
each point in order to develop the relation between tangent spaces at neighboring
points in terms of an orthogonal transformation (rotation through some angle). The
notions of orthogonality and angle are intrinsically metrical. 

Suppose we abstract from these metric concepts and consider an affine space, as
discussed above. Using only affine concepts, can we still define concepts of parallel-
ism and straight line on a surface in an affine space? The answer is yes, but we must
introduce a substitute for the unit normal field given naturally in a Euclidean space.

First of all, the concept of surface is independent of a metric, as are those of the
tangent space at each point of a surface, and (hence) of the tangent bundle. But now
we have no natural way of relating the tangent spaces at different point of the surface
by means of a general linear transformation. At each point of the surface, a basis in its
tangent space must be supplemented by a vector that does not lie in the tangent space;
i.e., a vector that takes the place of the normal vector to the surface in a Euclidean
space. Together with the chosen basis in the tangent space, this vector constitutes a
basis for the enveloping affine space. This vector field is said to rig the surface, and
the process is called rigging. Once the surface is rigged, one can carry out in an affine
space a procedure to relate neighboring tangent spaces that is entirely analogous to
the procedure used in the Euclidean case. The only difference is that, instead of the
infinitesimal orthogonal transformation  that carries the orthonormal basis at 
into the orthonormal basis at  one considers the infinitesimal general linear trans-
formation  that takes a basis for the enveloping affine space at  into the corre-
sponding basis at  Due to the linearity of vector spaces, carrying out the
transformation  on any vector in  yields the corresponding parallel vector in

 Such a connection between tangent spaces, which generalizes to surfaces in
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an affine space the Levi-Civita connection for surfaces in a Euclidean space, is called
a general linear connection. Once the connection is defined, everything proceeds in a
way that is entirely analogous to that for Euclidean spaces (see the previous subsec-
tion), up to and including the definition of the Riemann tensor operator.

Instead of eq. (15), giving the effect of an infinitesimal orthogonal transformation
(rotation) matrix on an orthonormal basis, we can now specify the effect on the vec-
tors in a tangent plane of an infinitesimal general linear transformation, by specifying
the infinitesimal general linear transformation matrix  that gives the effect of
this transformation on an arbitrary basis: 

(16)

f. covariant differentiation, geodesics. Once we have the concept of parallelism
along a path, we can define a derivative operation for a vector field on a surface. The
essence of the usual derivative operation for a vector field in Euclidean space consists
in comparing the value of the vector field  at some point with its values at some
neighboring points. But we can only compare vectors in the same tangent space: what
we actually do to compare vectors at two points  and  is to compare  with
the vector at  that is parallel to  We shall proceed in the same way on a sur-
face and compare values at two neighboring points  and 

since

where  represents the ordinary-derivative gradient operation; operating on a scalar
field  it gives the gradient vector field  but operating on a vector (or tensor)
field it does not produce another vector (or tensor) field. It must be supplemented by
the second term  for a vector (and similar terms for higher-order tensors). Since

 we can write the invariant combination as

Since  is also linear in  we can abbreviate the right-hand side as: 

The expression  represents an invariant directional derivative in the  direc-
tion. Since the result is linear in  there must be a tensorial operator  called the
covariant derivative operator, that operates on a vector to produce a mixed tensor 
with one covariant and one contravariant (i.e.,vectorial) place.

On a surface, we may generalize the concept of a straight line in an affine space to
that of a geodesic by requiring that the parallel transport of its tangent vector along a
geodesic remain the tangent vector. If  represents the tangent vector to the curve

 this means that a geodesic must satisfy the equation:

dL( ) B
A

δeB P′( ) dL( ) B
A eA.=

v
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P P dr:+
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∇∇∇∇v
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g. generalizations, intrinsic characterizations. Nothing in the discussion above
depends essentially on the number of dimensions being three, and it can be immedi-
ately generalized to dimensional metric and affine spaces, defined by the transla-
tion groups  and  and  and  respectively; and to their

dimensional sub-spaces. If  is less than  then there are  normals, and
 rigging vectors must be defined; but otherwise the discussion proceeds quite

analogously. Since any dimensional Riemannian or affinely-connected space can
be embedded in an dimensional Euclidean or affine space of sufficiently high
dimension (locally, if not globally), such embedding arguments can handle the
generic case. 

Of course, once the basic geometrical concepts have been grasped, an intrinsic
method of characterizing curved spaces, independently of any embedding in flat
spaces of higher dimension, is preferable. It is clear from the previous discussion how
to proceed. One must specify a connection between vectors in  and  that
defines when a vector in one is parallel to a vector in the other. In contrast to the order
in the previous embedding considerations, I shall first give the definition for a general
affine linear connection, and then indicate how to specialize it to a Riemannian or
Levi-Civita connection.

As indicated earlier (see discussion around eqs. (15) and (16) above), in order to
connect arbitrary vectors in the two tangent spaces, it suffices to indicate how sets of
basis vectors in the two tangent spaces are connected. Let  be a set of basis vec-
tors in  The changes in these basis vectors when we move to

 will be given by (generalizing eq. (6) above):

Our connection is linear in  so it suffices to know the change in  for a small
change in each of the basis directions,  where  is an infinitesimal of first
order. 

On the other hand  itself must be a linear combination of the basis vectors, so we
may decompose it into the infinitesimal changes in each of these directions:

Thus, specification of the set of quantities  at all points of the manifold fixes
the affine connection intrinsically.49 We call the  the components of the connec-
tion with respect to the basis 50 

If we now want to construct the parallelogram as described above in the definition
of the Riemann tensor, we must make sure that it “closes,” that is, that we reach the
same point if we parallel transport  along  as we do if we parallel transport 

t t∇⋅ 0.=

n-
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along  It is relatively simple to show that this will be the case if  is symmetric
in its two lower indices; we shall consider only such symmetric affine connections.51

The Riemann tensor operator  can now be defined in terms of its effect on the
basis vectors. If we transport  around an area defined by  then its change in
the  direction is given by  These are the components of the Riemann tensor
with respect to the basis  which can easily be related to the derivatives of the 
but we omit the details. For future reference, we note that  is antisymmetric in its
last pair of indices, and that if we contract its upper index with either of the last two
indices, say the second, we get (plus or minus) the Ricci tensor 

The covariant derivative operator will have components:

the components of the covariant derivative of a vector  for example, are:

The components of the geodesic equation in an adapted coordinate system are:

The components of the Riemann tensor with respect to a basis can be similarly calcu-
lated. 

Turning to Riemannian spaces, it is natural to demand that parallel transport along
any path preserve the length of all vectors. If we impose this condition on a symmet-
ric affine connection, we are led uniquely to the Levi-Civita connection discussed
above; but again we omit the details. 

For future reference, we also note that, just as in the case of a surface in a linear
(flat) affine space discussed above, a connection is induced on a hypersurface in a
non-flat affinely connected space if that hypersurface is rigged with an arbitrary vec-
tor field.52 

49 Note that these quantities transform as scalars under a coordinate transformation, but as tensors under
a change of basis. If we use the natural basis associated with a coordinate system (see the following
note) and carry out a simultaneous coordinate transformation and change of natural basis, they trans-
form under a more complicated, non-tensorial transformation law (see Section 6, eq. (7)).

50 Note that a basis need not be holonomic, i.e., coordinate forming. It will be if and only if the Lie
bracket of any pair of basis vectors vanishes. We shall only need holonomic bases, for which an asso-
ciated coordinate system exists, such that in this coordinate system  the coordinate components
of  are equal to  the Kronecker delta. Conversely, a basis is associated with any coordinate sys-
tem by the same relations.

51 If the parallelogram does not close, the antisymmetric part of  defines the so-called torsion tensor.
52 It is customary, when discussing spaces of more than three dimensions, to refer to subspaces of one

less dimension than that of the space as hypersurfaces. Thus, when the discussion is generalized to
more than three dimensions, “surfaces” become “hypersurfaces.”
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h. frame bundles and connections. We introduced the concept of affine connection
in the currently-habitual way, in terms of its local action on vector or frame fields in
some manifold. But a connection is more naturally introduced globally in terms of
the frame bundle over that base manifold (see Section b). A curve  in the base man-
ifold together with a frame field defined along the curve corresponds to a curve  in
the frame bundle; and conversely  projects down to  in the base manifold,
together with a frame field along the curve. Now a connection provides a rule for
defining such curves in the frame bundle: given a curve  in the base manifold
together with an initial frame at some point on the curve, parallel transport of the ini-
tial frame along the curve thus defines a unique curve  in the frame bundle. The
only thing we have to worry about is what happens if we change the initial frame by
the action of some element of the general linear group (see eq. (11)).The curve in
the frame bundle is then transformed into another curve that differs from the first only
by the same action of  on the frame at each point of the curve in the base manifold. 

We can use this idea to define a connection globally as a collection of curves in
the frame bundle, each passing only once through any fibre of the bundle, that satisfy
the following condition: if two such curves  and  project into the same curve 
in the base manifold, and hence have all of their fibres in common, then on each fibre
the frames on the two curves are related by the global application of the same 

 If we want to restrict the structure group of the frame fibres to some subgroup of
 then we must assure that the connection introduced is compatible with the

structure of this subgroup. For example, if we required compatibility with any of the
orthogonal or pseudo-orthogonal subgroups, the Levi-Civita connection would
result.53
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HERMANN GRASSMANN

ON THE RELATION OF NON-EUCLIDEAN
GEOMETRY TO EXTENSION THEORY

Originally published as Appendix 1 (1877) to “A New Branch of Mathematics: The
‘Ausdehnungslehre’ of 1844 and Other Works” (Chicago: Open Court, 1995),
pp. 279–280.

(Cf. §§15–23)[1]

To the detriment of science, the entire presentation in §§15–23 still remains almost
totally unnoticed. Neither Riemann in his Habilitationsschrift1 of 1854, �rst pub-
lished in 1867, nor Helmholtz,2 in his paper “Über die Tatsachen, welche der Geome-
trie zur Grunde liegen” (1868), nor even in his excellent lecture “Über den Ursprung
und die Bedeutung der geometrischen Axiome” (1876) mention it, even though the
foundations of geometry come into view much more simply than in those later publi-
cations.

In extension theory the straight line is quite special and, in contrast to Euclid, is
the foundation for geometric de�nitions. In §16 the plane is de�ned as a collection of
parallels that intersect a straight line, and space as a collection of parallels that inter-
sect a plane; geometry can proceed no further, but the abstract science is not so lim-
ited. Since all points of a straight line may be numerically derived from two of its
points, the straight line appears as a simple elementary domain of second order, and
correspondingly the plane as a simple elementary domain of third, and ultimately
space as one of fourth order.3

Thus for example the points of a plane are numerically derivable from three non-
collinear points, e.g. by numbers  Upon establishing a homogeneous equa-

1 Here is meant his Habilitationsrede “Über die Hypothesen, welche der Geometrie zu Grunde liegen,”
Ges. Werke 1st ed. p. 54ff, 2nd ed. p. 272ff.

2 The article appears in Gott. Nachr., 1878, pp. 193–221, cf. also Ges. wiss. Abh., vol. II., pp. 618–639.
The lecture is found in his Vortragen und Reden, vol. II., p. 1 ff; Braunschweig: 1884.

3 To forestall confusion, I observe that the displacements in a plane form an elementary extensive
domain of second order, those in space an elementary extensive domain of third order, and in general
the displacements in a simple elementary domain of -th order an elementary extensive domain
of n-th order.
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tion between these three numbers, the collection of points satisfying this equation is
reduced to a domain of second order. If this homogeneous equation is of first degree,
then the domain so defined is elementary, that is a straight line; if however that equa-
tion is of higher degree it forms a curved line for which only some of the longimetric
laws for the straight line are valid.

Turning to space, each of its points is numerically derivable from four points
forming a tetrahedron, by four numbers  If, among these magnitudes, there
exist two mutually independent homogeneous equations, neither of them of first
degree, we then obtain doubly curved lines for which again only a part of the longi-
metric laws are true.

Now if we proceed another step beyond space, as a domain of fourth order, to a
domain of fifth order (which does not exist geometrically), then one has five basis
numbers  and if a homogeneous equation of first degree holds between
them, then one returns to the simple elementary domain of fourth order, that is to
Euclidean space. On the other hand, upon imposing on them a homogeneous equa-
tion of higher degree one also produces elementary domains of fourth order, but ones
to which the Euclidean axioms no longer apply, and thus as it were to non-Euclidean
spaces;

 

4

 

 furthermore, one can proceed to an elementary domain of sixth order, and
between the six determining numbers assume two higher homogeneous equations to
obtain once more new elementary domains of fourth order,

 

5

 

 and can in this way form
an infinite sequence of non-Euclidean spaces, the equations of which immediately
illuminate the extent to which the Euclidean axioms apply.

Thus extension theory also provides a fully adequate and completely general
basis for these and similar considerations.

EDITORIAL NOTE

[1] The reference §§15–23 is to the body of Grassmann’s text, which has not been
reproduced in this book.

 

4 Thus for example resulting in Helmholtz’s spherical space if one assumes a certain homogeneous
equation of second degree between the five basis numbers mentioned above (or more generally a
curved space upon adoption of an equation of arbitrary degree).

5 One could perhaps call such a space doubly curved, in contrast to the (simple) curved space just men-
tioned.
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TULLIO LEVI-CIVITA

NOTION OF PARALLELISM ON A GENERAL
MANIFOLD AND CONSEQUENT GEOMETRICAL

SPECIFICATION OF THE RIEMANNIAN CURVATURE 
(EXCERPTS)

MEMORIA DI T. LEVI-CIVITA (PADOVA)

Originally published as “Nozione di parallelismo in una varietà qualunque e
conseguente specificazione geometrica della curvatura riemanniana” in Circolo
Matematico di Palermo. Rendiconti, Vol. 42, 1916, pp. 173–204. Received 24
December 1916. Author’s date: Padova, November 1916. The Introduction, §15, and
the Critical Note are translated here.[1]

INTRODUCTION

Einstein’s theory of relativity (now corroborated by the explanation of the famous
secular inequality, revealed by observations on Mercury’s perihelion, which was not
predicted by Newton’s law) considers the geometrical structure of space as very tenu-
ously, but nonetheless intimately, dependent on the physical phenomena taking place
in it, differently from classical theories, which assume the whole physical space as
given a priori. The mathematical development of Einstein’s grandiose conception
(which finds in Ricci’s absolute differential calculus its natural algorithmic instru-
ment) utilizes as an essential element the curvature of a certain four-dimensional
manifold and the Riemann symbols relative to it. Meeting these symbols—or, better
said, continuously using them—in questions of such a general interest, led me to
investigate whether it would be possible to somewhat reduce the formal apparatus
commonly used in order to introduce them and to establish their covariant behaviour.1

Some progress in this direction is actually possible, and essentially forms the con-
tent of sections 15 and 16 of the present paper, which, initially conceived with this

1 Cf. e.g. L. Bianchi, Lezioni di geometria differenziale, Vol. I (Pisa, Spoerri, 1902), pp. 69–72.
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only purpose, gradually expanded to make some room for the geometric interpretation
too.

At first, I thought I would undoubtedly find it [that interpretation] in Riemann’s
original works “

 

Über die Hypothesen welche [der] Geometrie zu Grunde liegen

 

” and
“

 

Commentatio Mathematica

 

…,”

 

2

 

 but only an embryo of it can be found there.
Indeed, on the one hand, looking closely at the quoted sources, one gets the impres-
sion that Riemann had actually in mind the characterization of the intrinsic and
invariant curvature that shall be specified here (sections 17–18). | On the other hand,
neither in Riemann nor in Weber’s explicative comment,

 

3

 

 is to be found a trace of
those specifications (notion of parallel directions on a general manifold and consider-
ation of a geodetic infinitesimal quadrangle with two parallel sides), that we shall rec-
ognize as indispensable from the geometrical point of view. Moreover, one cannot—
or at least, I was not able to—justify the formal step in terms of which, according to
Riemann, from the premises, which are impeccable, one should obtain an equiva-
lently impeccable final expression of the curvature.

I will present to the reader this doubt of mine, providing him with the elements
required to form an opinion in a final critical note.

The first and more extended part of the paper (sections 1–14) is devoted to an
introduction and an illustration of the notion of parallelism in a  with any metric.

One begins with the infinitesimal field, trying to characterize the parallelism of
two directions  through two very close points  and  To this purpose,
one should remember that any manifold  can be looked at as embedded in an
Euclidean space  of a sufficiently high number  of dimensions, and notice, first
of all, that, for any direction  of  through  ordinary parallelism would
require, in such a space,

for any  Now, parallelism in  is defined limiting oneself to require that the
condition be satisfied 

 

for all the  belonging to 

 

 (namely to the set of directions
of  tangent to  in 

In order to justify this definition, it should be noted that, while for an Euclidean
 it reproduces, as is necessary, the elementary behaviour, it has in any case an

intrinsic character, since it ultimately turns out to depend only on the metric of 
and not on the auxiliary ambient space  as well. Indeed, the analytic version of our
definition of parallelism is realized as follows: Once  is given general coordinates

 , let  be the increments corresponding to the displacement
from  to   the parameters of a generic direction  through  
those belonging to an infinitely close direction  through  The condition of
parallelism is expressed by the  equations

 

2 B. Riemann, 

 

Gesammelte mathematische Werke

 

 (Leipzig, Teubner, 1876), pp. 261–263, 381–382.
3 loc. cit.

 

2

 

pp. 384–389.
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(A)

where the  denote well-known Christoffel symbols.

Once the law by means of which one goes from one point to an infinitely close
point is acquired, one is provided with all the means required in order to perform the
transport of parallel directions along any curve  If  are its parametric
equations, | one only needs to consider in eqs. (A) the  and subordinately the

as assigned functions, the  as functions to be determined of the parameter  and
one has the ordinary linear system

reducible to a typical form (said “with hunched determinant”), which already
appeared in other researches and was the object of a systematic investigation by Mr.
Eiesland,

 

4

 

 Laura,

 

5

 

 Darboux,

 

6

 

 Vessiot.

 

7

 

Here is some geometrical consequence.
1. The direction through a generic point  parallel to a direction  through any

other point  depends in general on the path followed from  to  Independence
from the path is an exclusive property of Euclidean manifolds.

2. Along a given geodesic, directions of the tangents are parallel, a result that gen-
eralizes an obvious feature of the straight line in a Euclidean space (the one that
Euclid himself sets as a primordial intuitive notion of a straight line at the beginning
of 

 

Elements

 

).
3. The parallel transport along any path of two concurrent directions preserves

their angle. By this we obviously mean that the angle formed by two generic direc-

 

4 J. Eiesland, “On the Integration of a System of Differential Equations in Kinematics” 

 

American Jour-
nal of Mathematics

 

, vol. XXVIII (1906), pp. 17–42.
5 E. Laura, “Sulla integrazione di un sistema di quattro equazioni differenziali lineari a determinante

gobbo per mezzo di due equazioni di Riggati” 

 

Atti della Accademia delle Scienze di Torino

 

, vol. XLII,
1906–1907, pp. 1089–1108; vol. XLII, 1907–1908, pp. 358–378.

6 G. Darboux, “Sur certains systèmes d’equations linéaires

 

” Comptes rendu hebdomadaires des séan-
ces de l’Académie des Sciences

 

, t. CXLVIII (1er semestre 1909), pp. 332–335, and “Sur les systèmes
d’ équations différentielles homogènes” (

 

Ibid

 

., pp. 673–679 and pp. 745–754.
7 E. Vessiot, “Sur l’intégration des systèmes linéaires à déterminant gauche” 

 

Comptes rendus hebdoma-
daires des séances de l’Académie des Sciences

 

, t. CXLVIII (1er semestre 1909), pp. 332–335.
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tions through the same point is also the angle formed by their parallels through
another point. Taking into account the mentioned property of the geodesics, one
derives as a corollary that, along a geodesic, parallel directions are always equally
inclined with respect to the geodesic itself. If in particular one deals with a  this
condition is also sufficient; hence, for ordinary surfaces, parallelism along a geodesic
is equivalent to isogonality.

I am not specifying how the content is arranged in the various sections. A look at
the summary at the end of the paper will supply the necessary information.

[…]

§15.
2° ORDER DIFFERENTIALS - INVARIANT DETERMINATIONS -

RICCI’S LEMMA.

In a given investigation, let the independent variables, for instance  be
fixed. As is known from the calculus, it is always legitimate to consider the second
order differentials  as vanishing. Such a convention, however,
does not have an invariant character with respect to changes of variables. Indeed, if
the  are replaced by  independent combinations thereof  the
second differentials

(computed on the basis of the hypothesis  turn out to be in general differ-
ent from zero.

If to the variables a quadratic differential form is associated, referring for instance
to the metric of a  (in the notations of the preceding sections), the way to an
invariant characterization is facilitated. It is sufficient to assume the  (not vanish-
ing, but) defined as follows:

From the geodesic equations (sec. 7), multiplied by  it appears that such
 are those belonging to the variables along the geodesic through the generic

point  in the similarly generic direction  This geo-
metric interpretation guarantees a priori that the above convention has the desired
invariant character, making unnecessary a material check, which, on the other hand,
could be done straightforwardly.

Similarly for the superposition of two independent systems of increments  and
 one might set  but, while the invertibility of the increments 

V 2,
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and  has, as is easily checked, an invariant character, the same does not hold as far
as setting  is concerned. We shall replace them by:

(31)

which imply
(31’)

and contain, as a particular case, for  the previous expressions for the 
The invariance of eqs. (31) with respect to changes of variables can be derived

from the geometric interpretation as well. One only needs to observe that, writing
 (with  an infinitesimal constant), eqs. (31) become identical with eqs.

 so that they express how the  must be altered, as a consequence of the dis-
placement  | in order that they define directions parallel to one
another. This invariant property, besides verifying it directly, could be controlled with
an elegant formal device sketched by Riemann8 and made explicit by Weber.9

From eqs. (31), taking into account

it follows identically[2]

(32)

as well as

These relations are equivalent to the well-known result of the absolute differential
calculus that the covariantly derived system of the coefficients  of the fundamental
form vanish identically (Ricci’s lemma).

[...]

1. CRITICAL NOTE

We have already pointed out in sec. 15, the expressions (31)

8 loc. cit.2 p. 381.
9 loc. cit.2 p. 388.
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| of the second order differentials do not differ from those which are arrived at by
making Riemann’s comprehensive definition explicit.

From the same section it is also deduced that, with these expressions of the sec-
ond differentials, one has identically (Ricci’s lemma)

(48)
where

and  stand, of course, respectively for

In this context the meaning to be attributed to the trinomial considered by Rie-
mann:

seems unambiguous, and such meaning, by virtue of (48), implies necessarily

Riemann states10 instead that: “Haec expressio (that is  invenietur  
having the value (45)). Weber, in his elucidations, dwells on the way the second dif-
ferentials are introduced,11 but, after deriving their explicit expression, simply says:12

“woraus man leicht den Ausdruck erhält  
Probably, there is just some blemish in Riemann’s explicit expression for  that

obscures the concept. I flatter myself that I have substantially reconstructed such a
concept, but I was not able to adjust the symbol. If this can be achieved, it will be the
case to pay full tribute, on this point too, to Riemann’s genius.

10 loc. cit.2 p. 381
11 Adding, with no further justification, the supplementary conditions

 

By virtue of (48) (and provided the formulae are read as they are actually written) everything van-
ishes.

12 loc. cit.2 p. 388
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I shall end with an observation about the calculation of the curvature with refer-
ence to particular variables, which is indicated by Riemann13 and developed by
Weber.14 Here is, to begin with, what the matter is about.

Let us choose coordinates  such that, at a given point  all the
symbols

vanish (which is always possible, as was pointed out by Weber). Let us consider two
independent sets of differentials  considering | all the second differentials

 as vanishing. Let  and  denote the points of coordinates
 and  the coefficients of the squared line element in  Set, in

particular,

let us apply to the  the Taylor expansion with respect to the increments  up to the
second order. In such approximation one has

 and the second derivatives referring, of course, to  As shown by Weber, due to
the way the variables were fixed, special relations hold between the values of the sec-
ond derivatives of the  in  Taking them into account, one finds, with some
manipulation,

The sum can be looked at as the expression which, as the basis of formula (45), is
taken on by  when variables  specified as above are adopted.

Therefore, taking into account (47), we derive

(49)

which Riemann, in the quoted passage, states in words (multiplying both sides by 4,
in order to show up the area of the triangle  in the denominator).

13 loc. cit.2 p. 261
14 loc. cit.2 pp. 384–387
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I come, at last, to my point:
If  denotes the extremum of the line element  (corresponding to the

increments  eq. (49) can be written

(49’)

whereas eq. (46) (with an overall change of sign) reads

(46’)

As can be seen, the right-hand sides are in the ratio 1 to 3. The lack of coincidence is
manifestly due to the fact that the point  (fourth vertex of the parallelogrammoid),
which is reached through the invariant procedure, is well distinct from Riemann’s
point  analytically defined with reference to particular variables.

To localize the discrepancy about the formulae, it helps to work out our procedure
too (as is of course allowed given its invariant character) in Riemann’s special vari-
ables. | Eqs. (31) give then, in so far as they refer to the point 

but it does not follow that the higher differentials, such as  etc. must
vanish at the same point as well. Riemann’s calculation on the contrary is based on
the hypothesis that all differentials of an order higher than the first must vanish: a
legitimate hypothesis too, but not one endowed with an invariant character (with
respect to changes of variables). Therefore, it should not come as a surprise that the
results are different: one should rather notice the fortuitous analogy between formu-
lae  and  whose right-hand sides differ only by a numerical factor.

EDITORIAL NOTES

[1] This text has been translated by Silvio Bergia.
[2] In the original text, the index  is missing from the expression  in eq. (32).
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HERMANN WEYL

PURELY INFINITESIMAL GEOMETRY
(EXCERPT)

Originally published as “Reine Infinitesimalgeometrie” in Mathematische
Zeitschrift 2, 1918, pp. 384–411. Excerpt covers pp. 384–401.

1. INTRODUCTION: CONCERNING THE RELATION
BETWEEN GEOMETRY AND PHYSICS

The real world, into which we have been placed by virtue of our consciousness, is not
there simply and all at once, but is happening; it passes, annihilated and newly born
at each instant, a continuous one-dimensional succession of states in time. The arena
of this temporal happening is a three-dimensional Euclidean space. Its properties are
investigated by geometry, the task of physics by comparison is to conceptually com-
prehend the real that exists in space and to fathom the laws persisting in its fleeting
appearances. Therefore, physics is a science which has geometry as its foundation;
the concepts however, through which it represents reality—matter, electricity, force,
energy, electromagnetic field, gravitational field, etc.—belong to an entirely different
sphere than the geometrical.

This old view concerning the relation between the form and the content of reality,
between geometry and physics, has been overturned by Einstein’s theory of relativ-
ity.1 The special theory of relativity led to the insight that space and time are fused
into an indissoluble whole which shall here be called the world; the world, according
to this theory, is a four-dimensional Euclidean manifold—Euclidean with the modifi-
cation that the underlying quadratic form of the world metric is not positive definite
but is of inertial index  The general theory of relativity, in accordance with the
spirit of modern physics of local action [Nahewirkungsphysik], admits that as valid
only in the infinitely small, hence for the world metric it makes use of the more gen-
eral concept of a metric [Maßbestimmung] based on a quadratic differential form,
developed by Riemann in his habilitation lecture. | But what is new in principle in this
is the insight that the metric is not a property of the world in itself, rather, spacetime
as the form of appearances is a completely formless four-dimensional continuum in

1 I refer to the presentation in my book Raum, Zeit, Materie, Springer 1918 (in the sequel cited as
RZM), and the literature cited there.

1.
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the sense of analysis situs. The metric, however, expresses something real that exists
in the world, which produces physical effects on matter by means of centrifugal and
gravitational forces, and whose state is in turn determined according to natural laws
by the distribution and composition of matter. By removing from Riemannian geom-
etry, which claims to be a purely “local geometry,” [

 

Nahe-Geometrie

 

] an inconse-
quence still currently adhering to it, ejecting one last element of non-local geometry
[

 

ferngeometrisches Element

 

] which it had carried along from its Euclidean past, I
arrived at a world metric from which not only arises gravitation, but also the electro-
magnetic effects, and therefore, as one may assume with good reason, accounts for
all physical processes.

 

2

 

 According to this theory, 

 

everything real that exists in the
world is a manifestation of the world metric

 

; the physical concepts are none other
than the geometric ones. The only difference that exists between geometry and phys-
ics is that geometry fathoms in general what lies in the nature of the metric concepts,

 

3

 

whereas physics has to determine the law by which the real world is distinguished
among all the four-dimensional metric spaces possible according to geometry and
pursue its consequences.

 

4

 

In this note, I want to develop that 

 

purely infinitesimal geometry

 

 which, according
to my conviction, contains the physical world as a special case. The construction of
the local geometry proceeds adequately in three steps. On the first step stands the

 

continuum

 

 in the sense of analysis situs, without any metric—physically speaking,

 

the empty world

 

; on the second the 

 

affinely connected continuum

 

—I so call a mani-
fold in which the concept of infinitesimal parallel displacement of vectors is mean-
ingful; in | physics, the affine connection appears as 

 

the gravitational field

 

—; finally
on the third, the 

 

metric

 

 continuum—physically: 

 

the “aether,” 

 

whose states are mani-
fested in the phenomena of matter and electricity.

2. SITUS-MANIFOLD (EMPTY WORLD)

As a consequence of the difficulty in grasping the intuitive character of the continu-
ous connection by means of a purely logical construction, a completely satisfactory
analysis of the concept of an 

 

-dimensional manifold

 

 is not possible today.

 

5

 

 The fol-
lowing is sufficient for us: An -dimensional manifold refers to  coordinates

 of which each possesses at each point of the manifold a particular
numerical value: different sets of values of the coordinates correspond to different

 

2 A first communication about this appeared under the title “Gravitation und Elektrizität” in 

 

Sitzungs-
ber. d. K. Preuß. Akad. d. Wissenschaften

 

 1918, p. 465.
3 Naturally, traditional geometry leaves the path of this, its principal task, and immediately takes on the

less specific one by not making space itself anymore the object of its investigation, but the structures
possible in space, special classes and their properties they are endowed with on the basis of the space-
metric.

4 I am bold enough to believe that the totality of physical phenomena can be derived from a single uni-
versal world law of greatest mathematical simplicity.

5 See also H. Weyl, 

 

Das Kontinuum

 

 (Leipzig 1918), specifically pp. 77 ff.
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points; if  is a second system of coordinates then there exist between the
- and the -coordinates of the same arbitrary point regular relations

where  denote purely logically-arithmetically constructible functions; of these we
presuppose not only that they are continuous, but also that they posses continuous
derivatives

whose determinant does not vanish. The last condition is necessary and sufficient for
the affine geometry to be valid in the infinitely small, namely that there exist invert-
ible linear relationships between the coordinate differentials in the two systems:

(1)

We assume the existence and continuity of higher order differentials where required
during the course of the investigation. In any case, the concept of the continuous and
continuously differentiable point-function, if necessary also the  times con-
tinuously differentiable, has therefore an invariant meaning independent of the coor-
dinate system. The coordinates themselves are such functions. An -dimensional
manifold for which we regard no properties other than those lying within the concept
of an -dimensional manifold, we call—in physical terminology—an ( -dimen-
sional) 

 

empty world

 

. |
The relative coordinates  of a point  infinitely close to the point

 are the components of a 

 

line element

 

 in  or an 

 

infinitesimal displacement

 

 of  In going to a different coordinate system the formulae (1) apply for these
components, the  denoting the corresponding derivatives at the point  More
generally, on the basis of a definite coordinate system in the neighborhood of  any

 numbers   given in a definite order, characterize at the point  a

 

vector

 

 (or a 

 

displacement

 

) at  The components  respectively  of the same vec-
tor in any two coordinate systems, the “unbarred” one and the “barred” one, are
related by the same linear transformation equations (1):

Vectors at  can be added and multiplied by numbers; thus they form a “linear” or
“affine” totality [

 

Gesamtheit

 

]. With each coordinate system are associated  “unit
vectors”  at  namely those vectors which in the coordinate system in question
have the components
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x x
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Any two (linearly independent) line elements at  with the components  and
 respectively span a (two-dimensional) area element at  with the components

 

each three (independent) line elements  at  a (three-dimensional) vol-
ume element with the components

etc. A linear form depending on an arbitrary line- or area- or volume- or ... element at
 is called a linear tensor of order  respectively. By using a particular coor-

dinate system, the coefficients  of this linear form

| can be uniquely normalized through the alternation requirement; e.g., for the case
just written down this implies that the triple of indices  which arise through an
even permutation of itself corresponds to the same coefficient  whereas under
odd permutations the coefficient changes into its negative, that is

The coefficients normalized in this manner are called the components of the tensor in
question. From a scalar field  one obtains through differentiation a linear tensor field
of order  with the components

from a linear tensor field  of order , one of  order:

from one of order  a linear tensor field of order 
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..
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etc. These operations are independent of the coordinate system used.6

A linear tensor of the  order at  we will call a force acting there. Assuming a
definite coordinate system, such a force is thus characterized by  numbers 
which transform contragrediently to the components of the displacement under a
change to another coordinate system:

If  are the components of an arbitrary displacement at  then

 

is an invariant. By a tensor at  one generally understands a linear form of one or
more arbitrary displacements and forces at  For example, if we are dealing with a
linear form of three arbitrary displacements  and two arbitrary forces 

then we speak of a tensor of order 5, with the components  being covariant with
respect to the indices  and contravariant with respect to the indices  A dis-
placement is itself a contravariant | tensor of 1st order, the force a covariant one. The
fundamental operations of tensor algebra are:7

1. Addition of tensors and multiplication by a number;

2. Multiplication of tensors;

3. Contraction.

Accordingly, tensor algebra can already be constructed in the empty world—it does
not presuppose any metric [Maßbestimmung]—of tensor analysis, however, only that
of “linear” tensors.

A “motion” in our manifold is given, if to each value  of a real parameter is
assigned a point in a continuous manner; by using the coordinate system  the
motion is expressed by the formulae  in which the  on the right are to be
understood as function symbols. If we presuppose continuous differentiability, then
we obtain, independently of the coordinate system, for each point  of the
motion a vector at  with the components:

6 RZM, §13.
7 RZM, §6.

f ikl

f kl∂

xi∂
---------

f li∂

xk∂
---------

f ik∂

xl∂
----------;+ +=

1st P
n ξi,

ξi αkiξk.
k

∑=

ηi P,

ξiη
i

i
∑

P,
P.
ξ η ζ, , ρ σ:,

aikl
pqξiηkζlρpσq,∑

a
ikl pq.

[389]

s
xi,

xi xi s( ),= xi

P s( )=
P



1094 HERMANN WEYL

the velocity. Two motions, arising from one another through continuous monotonic
transformation of the parameter  describe the same curve.

3. AFFINELY CONNECTED MANIFOLD 
(WORLD WITH GRAVITATIONAL FIELD)

3.1 The Concept of the Affine Connection

If  is infinitely close to the fixed point  then  is affinely connected with  if
for each vector at  it is determined into which vector at  it will transform under
parallel displacement from  to  The parallel displacement of all vectors at 
from there to  must evidently satisfy the following requirement.

A. The transfer of the totality of vectors from  to the infinitely close point  by
means of parallel displacement produces an affine transformation of the vectors at 
to the vectors at  

If we use a coordinate system in which  has the coordinates   the coordi-
nates  an arbitrary vector at  the components  and the vector at  that
results from it through parallel displacement to  the components  then

 must therefore depend linearly on the  | 

 are infinitesimal quantities which depend only on the point  and the displace-

ment  with the components  but not on the vector  subject to parallel dis-
placement. From now on, we consider affinely connected manifolds; in such a mani-
fold, each point  is affinely connected to all its infinitely close points. A second
requirement is still to be imposed on the concept of parallel displacement, that of
commutativity.

B. If   are two points infinitely close to  and if the infinitesimal vector

 becomes  under parallel displacement from  to  and  becomes

 under parallel displacement to  then the points  and  coincide.

(An infinitely small parallelogram results.)

If we denote the components of  by  and those of  by  then the
requirement in question obviously implies that

(2)
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is a symmetric function of the two line elements  and  Consequently,  must
be a linear form of the differentials 

and the coefficients  the “components of the affine connection,” which depend only
on the location of  must satisfy the symmetry condition

Because of the way in which the infinitesimal quantities are dealt with in the for-
mulation of the requirement B, it could be objected that the latter lacks a precise
meaning. Therefore, we want to determine explicitly through a rigorous proof that the
symmetry of (2) is a condition independent of the coordinate system. For this pur-
pose, we make use of a (twice differentiable) scalar field  From the formula for the
total differential

we infer, that if  are the components of an arbitrary vector at  |

 

is an invariant independent of the coordinate system. We form its variation under a
second infinitesimal displacement  in which the vector  shall be displaced paral-
lel to itself from  to  and obtain

 

If we replace in this expression  again by  and subtract from this equation the
one obtained by interchanging  and  then the invariant

results. The relations

contain the necessary and sufficient condition that for any scalar field  the equation
 is satisfied.
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In physical terms, an affinely connected continuum is to be described as a world
in which a gravitational field exists. The quantities  are the components of the
gravitational field. The formulae, according to which these components transform in
changing from one coordinate system to another, we need not state here. Under linear
transformations the  behave with respect to  and  like the covariant compo-
nents of a tensor and with respect to  like the contravariant components, but lose this
character under non-linear transformations. However, the changes  which are
experienced by the quantities  if one arbitrarily varies the affine connection of the
manifold, form the components of a generally-invariant tensor of the given character.

What is to be understood by parallel displacement of a force at  from there to
the infinitely close point  results from the requirement that the invariant product of
this force and an arbitrary vector at  is preserved under parallel displacement. If 
are the components of the force,  those of the displacement, then8

yields the formula

| At each point  one can introduce a coordinate system  of a kind—I call it
geodesic at —such that in it, the components of the affine connection  vanish
at the point  If  are initially arbitrary coordinates that vanish at  and  des-
ignate the components of the affine connection at the point  in this coordinate sys-
tem, then one obtains a geodesic coordinate system  via the transformation

(3)

Namely, if we consider the  as independent variables and their differentials  as
constants, then one has in the sense of Cauchy at 

therefore,

Because of their invariant nature, the last equations in the coordinate system 
become:

8 In the following we will use Einstein’s convention that summation is always to be carried out over
indices which occur twice in a formula without our finding it necessary to always place a summation
sign in front of it.
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For arbitrary constant  these are, however, satisfied only if all the  vanish.
Therefore, through an appropriate choice of the coordinate system, the gravitational
field can always be made to vanish at a single point. Through the requirement of
“geodesy” at  the coordinates in the neighborhood of  are determined up to linear
transformation excluding terms of third order; i.e., if   are two coordinate sys-
tems geodesic at  and if the  as well as the  vanish at  then by neglecting
terms in  of order  and higher, linear transformation equations 
with constant coefficients  apply.

3.2 Tensor Analysis, Straight Line

Only in an affinely connected space can tensor analysis be fully established. If for
example  are the components of a order tensor field, covariant in  and con-
travariant in  then with the aid of an arbitrary displacement  and a force  at the
point  we form the invariant 

and its change under an infinitely small displacement  of the point  in which 
and  are displaced parallel with respect to themselves. We have

| and therefore

are the components of  order tensor field, covariant in  and contravariant in 
which arises from the given  order tensor field in a coordinate independent manner.

In the affinely connected space, the concept of straight or geodesic line gains a
definite meaning. The straight line arises as the trajectory of the initial point of the
vector which is displaced in its own direction keeping it parallel to itself; it can there-
fore be described as that curve the direction of which remains unchanged. If  are
the components of that vector, then during the course of the motion the equations

should always hold. The parameter  used in describing the curve can thus be nor-
malized in such a way that
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identically along  and the differential equations of the straight line are then

For each arbitrary motion  the left hand sides of these equations are the
components of a vector invariantly linked to the motion at the point  the accelera-
tion. Actually, if  is an arbitrary force at that point, which during the transition to
the point  is displaced parallel to itself, then

A motion, whose acceleration vanishes identically is called a translation. A straight
line—this is another way of grasping our above explanation—is to be understood as
the trajectory of a translation.

3.3 Curvature

If  and  are two points connected by a curve, and a vector is given at the first
point, then one can displace this vector parallel to itself along the curve from  to

 The resulting vector transfer is however in general not integrable; i.e. the vector |
which one ends up with at  depends on the path along which the transport takes
place. Only in the special case of integrability does it make sense to speak of the
same vector at two different points  and  these are understood to be vectors
which arise from one another under parallel transport. In this case, the manifold is
called Euclidean. In such a manifold, special “linear” coordinate systems can be
introduced which are distinguished by the fact that equal vectors at different points
have equal components. Any two such linear coordinate systems are related by linear
transformation equations. In a linear coordinate system the components of the gravi-
tational field vanish identically.

On the infinitely small parallelogram constructed above (§3, I., B.), we attach at
the point  an arbitrary vector with components  and in the first case displace it
parallel to itself to  and from there to  and in the second case first to  and
from there to  Since  and  coincide, we can form the difference of these
two vectors at this point and through this obviously obtain there a vector with the
components

From

it follows that
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and because of the symmetry of 

Therefore, we obtain

where the  are linear forms of the two displacements  and  or rather of the
area element spanned by them, independent of the vector  and with the components

(4)

(5)

If  are the components of an arbitrary force at  then  is | an invariant; con-
sequently,  are the components of a order tensor at  covariant in  and
contravariant in  the curvature. That the curvature vanishes identically is the neces-
sary and sufficient condition for the manifold to be Euclidean. In addition to the con-
dition of “skew” symmetry given beside (4), the curvature components satisfy the
condition of “cyclic” symmetry:

By its nature, the curvature at a point  is a linear map or transformation 
which assigns to each vector  there another vector  this transformation itself
depends linearly on an element of area at 

Accordingly, the curvature is best described as a “linear transformation-tensor of
order.”

In order to counter objections to the proof of the invariance of the curvature ten-
sor, which could be raised against the above considerations involving infinitesimals,
one uses a force field  and forms the change  of the invariant product 
in such a way that under the infinitely small displacement  the vector  is displaced
parallel to itself. Replacing in the expression obtained the infinitesimal displacement
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 with an arbitrary vector  at  one obtains an invariant bilinear form of two
arbitrary vectors  and  at  From this one forms the change which corresponds
to a second infinitely small displacement  by parallely taking along the vectors 
and  and replacing thereafter the second displacement by a vector  at  One
obtains the form

Through the interchange of  and  and subsequent subtraction, this yields, because
of the symmetry of  the invariant

and thus the desired proof has been completed.

4. METRIC MANIFOLD (THE AETHER)

4.1 The Concept of The Metric Manifold

A manifold carries at the point  a metric, if the line elements at  can be com-
pared with respect to their lengths. For this purpose, we assume the validity of the
Pythagorean-Euclidean | laws in the infinitely small. Hence, to any two vectors 
at  shall correspond a number  the scalar product, which is a symmetric
bilinear form with respect to the two vectors. This bilinear form is certainly not abso-
lute, but is only determined up to an arbitrary non-zero factor of proportionality.
Hence, it is actually not the form  that is given but only the equation

 two vectors which satisfy this equation are called perpendicular to one
another. We presuppose that this equation is non-degenerate, i.e. that the only vector
at  to which all vectors at  can be perpendicular is the vector. We do not how-
ever presuppose that the associated quadratic form  is positive definite. If it has
the index of inertia  and if  then we say in brief, the manifold at the
point considered is -dimensional. As a result of the arbitrary factor of propor-
tionality, the two numbers  are only determined up to their order. We now
assume that our manifold carries a metric [Maßbestimmung] at each point  For the
purpose of analytic representation, we consider (1) a definite coordinate system, and
(2) the factor of proportionality appearing in the scalar product and which can be
arbitrarily chosen at each point as fixed; with this, a “frame of reference”9 for the ana-
lytic representation is obtained. If the vector  at the point  with the coordinates 
has the components  and  the components  then one has

9 I thus differentiate between “coordinate system” and “frame of reference.”

dx ρ P,
ξ ρ P.

δ, ξ
ρ, σ P.

f iξ
i( )dδ f idδ ξi⋅ f id ξiδ f iδ ξid f i ξi.dδ+ + +=

d δ
f i,dδ

f iξ
i( )Δ f i ξi,Δ=

P P

[396] ξ, η
P ξ η,⋅

ξ η,⋅
ξ η⋅ 0;=

P, P 0
ξ ξ⋅

q, n q– p,=
p q+( )

p q,
P.

ξ P xi
ξi, η ηi,

ξ η⋅( ) gikξiηk

ik
∑= gki gik=( ),



PURELY INFINITESIMAL GEOMETRY (EXCERPT) 1101

where the coefficients  are functions of the  The  should not only be contin-
uous, but also be twice continuously differentiable. Since they are continuous and
their determinant  by assumption does not vanish anywhere, the quadratic form

 has the same index of inertia  at all points; therefore, we can describe the
manifold in its entirety as -dimensional. If we retain the coordinate system,
but make a different choice for the undetermined factor of proportionality, then
instead of the  we obtain for the coefficients of the scalar product the quantities

where  is a nowhere vanishing continuous (and twice continuously differentiable)
function of position.

According to the previous assumption, the manifold is only equipped with an
angle-measurement; the geometry which is solely based on this, would be described
as “conformal geometry”; it has, | as is well known, in the realm of two-dimensional
manifolds (“Riemannian surfaces”) experienced extensive development, because of
its importance for complex function theory. If we make no further assumptions, then
the individual points of the manifold remain completely isolated from one another
with respect to metrical properties. The manifold becomes endowed with a metric
connection from point to point, only when a principle exists for the transfer of the
unit of length from a point  to an infinitely close one. Instead, Riemann made the
much farther reaching assumption, that line elements can be compared not only at the
same location, but that they can be compared as to their lengths at two finitely distant
locations. But the possibility of such a “non-local geometric” comparison definitely
cannot be admitted in a purely infinitesimal geometry. Riemann’s assumption has
also entered the Einsteinian world geometry of gravitation. Here, this inconsequence
shall be removed.

Let  be a fixed point and  an infinitely close point obtained from  through
the displacement with the components  We assume a definite frame of reference.
In relation to the unit of length thus defined at  (as well as at all other points in the
space), the square of the length of an arbitrary vector  at  is given by

Now, if we transfer the unit of length chosen at  to  which we presuppose as
possible, the square of the length of an arbitrary vector  at  is given by

where  is a factor of proportionality deviating infinitesimally from  
must be a homogeneous function of degree  of the differentials  Namely, if we
transplant the unit of length chosen at  from point to point along a curve leading
from  to a finitely distant point  then on the basis of the unit of length so
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obtained at  we obtain for the square of the length of an arbitrary vector at  the
expression  multiplied by the factor of proportionality which results from the
product of the infinitely many individual factors of the form  which arise
each time that we move from one point on the curve to the next.

| In order that the integral appearing in the exponent makes sense,  must be a func-
tion of the differentials of the kind asserted.

If one replaces  by  then in place of  a different quantity 
will appear. If  denotes the value of this factor at the point  one must have

and this yields

(6)

Of the initially possible assumptions about  that it is a linear differential form, or
the root of a quadratic one, or the cubic root of a cubic one etc., only the first, as we
can now see from (6), has an invariant meaning. We have thus arrived at the following
result.

The metric of a manifold is based on a quadratic and on a linear differential form

(7)

However, conversely these forms are not absolutely determined by the metric, but
each pair of forms  and  which arise from (7) according to the equations

(8)

is equivalent to the first pair in the sense that both express the same metric. In this 
is an arbitrary, nowhere vanishing continuous (more precisely: twice continuously
differentiable) function of position. Into all quantities or relations which represent
metric relations analytically, the functions   must thus enter in such a way that
invariance holds (1) with respect to an arbitrary coordinate transformation (“coordi-
nate-invariant”), and (2) with respect to the replacement of (7) by (8) (“measure-
invariance”).

is a total differential. Hence, whereas in the quadratic form  a factor of propor-
tionality remains arbitrary at each location, the indeterminacy of  consists of an
additive total differential.
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A metric manifold we describe physically as a world filled with aether. The par-
ticular metric existing in the manifold represents a particular state of the world filling
aether. This state is thus to be described relative to a frame of reference through the
specification (arithmetic construction) of the functions   |

From (6) it follows that the linear tensor of  order with the components

is uniquely determined by the metric of the manifold; I call it the metric vortex. It is
the same, I believe, as what in physics one calls the electromagnetic field. It satisfies
the “first system of Maxwell’s equation”

Its vanishing is the necessary and sufficient condition for the transfer of length to be
integrable, i.e., for those conditions which Riemann placed at the foundations of met-
ric geometry to prevail. We understand from this how Einstein through his world
geometry, which mathematically follows Riemann, could only account for gravitation
but not for the electromagnetic phenomena.

4.2 Affine Connection of a Metric Manifold

In a metric space, in place of the requirement A imposed on the concept of paral-
lel displacement in §3, I., we have the more specific one

A*: that the parallel displacement of all vectors at a point  to an infinitely close
point  must not only be an affine but also a congruent transfer of the totality of
these vectors.

Using the previous notation, this requirement yields the equation

(9)

For all quantities  which carry an upper index  we define the “lowering” of the
index through the equations

(and the reverse process of raising an index through the inverse equations). Using this
symbolism, for (9) we can write

The last term is
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| and therefore
(10)

This equation can certainly be satisfied only if  is a linear differential form; an
assumption to which we were already driven above as the only reasonable one. From
(10) or

(10*)

follows, as a consequence of the symmetry property 

(11)

It turns out that on a metric manifold the concept of the infinitesimal parallel dis-
placement of a vector is uniquely determined through the requirements put for-
ward.10 I consider this as the fundamental fact of infinitesimal geometry, that with the
metric also the affine connection of a manifold is given, that the principle of transfer
of length inherently carries with it that of transfer of direction, or expressed physi-
cally, that the state of the aether determines the gravitational field.

If the quadratic form  is indefinite, then among the geodesic lines, the
null lines are distinguished as those along which the form vanishes. They depend
only on the ratios of the  but not at all on the  they are thus structures of con-
formal geometry.11

We had imposed certain axiomatic requirements on the concept of parallel trans-
port and shown that they can be satisfied on a metric manifold in one and only one
way. However, it is also possible to define that concept explicitly in a simple manner.
If  is a point in our metric manifold, then we call a frame of reference geodesic in

 if upon its use the  vanish at  and the  assume stationary values:

| D. For each point  there exist geodesic frames of reference. If  is a given vec-
tor at  and  is an infinitely close point to  then we understand by the vector
which arises from  through parallel transport to  that vector at  which has
the same components as  in the geodesic coordinate system belonging to  This
definition is independent of the choice of the geodesic frame of reference.

10 See also Hessenberg, “Vektorielle Begründung der Differentialgeometrie,” Math. Ann. vol. 78 (1917),
p. 187–217, especially p. 208.

11 With this comment, I would like to correct a mistake on page 183 of my book Raum, Zeit, Materie.
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It is not difficult to demonstrate the assertion contained in this explanation inde-
pendently of the train of thought followed here through direct calculation, and to
show by the same means that the process of parallel transport so defined is, in an arbi-
trary coordinate system, described by the equation

(12)

with the coefficients  to be taken from (11).12 But here, where the invariant mean-
ing of equation (12) is already established, we conclude more simply as follows.
According to (11), the  vanish in a geodesic frame of reference and the equations
(12) reduce to  Hence, the concept of parallel transfer that we derived from
the axiomatic requirements agrees with the one defined in D. Only the existence of a
geodesic frame of reference is left to be shown. For this purpose, we choose a coordi-
nate system , geodesic at  having the point  as its origin  If the unit
of length at  and in its vicinity is for the time being chosen arbitrarily, and if fur-
thermore the  denote the value of these quantities at  then one only needs to
complete the transition from (7) to (8) with

in order to obtain that, besides the  the  also vanish at  From this then fol-
lows—see (10*)—the geodesic nature of the frame of reference so obtained. The
coordinates of a frame of reference geodesic at  are in the immediate vicinity of 
determined up to terms of  order, leaving aside linear transformation, and the unit
of length up to terms of  order, leaving aside the addition of a constant factor.

12 In this one could follow the approach I have taken in RZM, §14.
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PRINCIPLE OF INERTIA AND NEWTONIAN GRAVITY

1. Newton’s foundation of classical mechanics rests on the concepts of absolute time
and absolute space. Thus, analytically, any event can be labelled in time and space pro-
vided a choice is made of an origin, a unit of time, and a frame of spatial coordinates.
For example, the frame might originate at the center of mass of the solar system and its
axes might point towards fixed stars. Of course, any other frame which is invariantly
related to this one would be also admissible. As is well known, the laws of mechanics
remain unaffected if the frame of spatial coordinates is made to undergo a rectilinear,
uniform translation with respect to Newton’s absolute space, keeping the absolute time
undisturbed. One is thus led to the notion of Galilean frames of reference.

The principle of inertia may be stated as follows: in absence of interactions with
other bodies, the velocity of a point mass remains constant in direction and magni-
tude in any Galilean frame. The fact that the validity of this principle in one Galilean
frame implies its validity in any other Galilean frame follows immediately from the
transformation laws governing these frames. Let us label a point in space by arbitrary
Cartesian coordinates,1 not necessarily orthogonal. Then the transformation laws are
as follows:

1 In the passage from orthogonal to general coordinates, the laws of classical mechanics retain their
form and the formulas of theoretical mechanics remain unchanged.
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where the coefficients are constants. One can now give an alternate formulation of the
principle of inertia. Two reference frames will be | said to be 

 

equivalent

 

 provided they
are equivalent in the usual geometric sense and motionless relative to each other.
Thus, the coordinate transformation between equivalent frames is given by:

Now, consider a moving point mass and attach to it, at each instant of time, a Galilean
frame which has that point as its origin.

 

2

 

 Then the principle of inertia can be stated as
follows: 

 

if a system of equivalent Galilean frames is attached to a moving point mass
as above, then, at any instant of time, the velocity of the point mass in the Galilean
frame corresponding to that instant is constant if the point mass is not subject to
interaction with other bodies.

 

2. Clearly, the structure of mechanics is based on two notions:

(i)The notion of a Galilean frame (which enables one to define the velocity of a
moving point mass);

(ii)The notion of equivalent Galilean frames (which enables one to state the princi-
ple of inertia).

It is important to note the advantage of the second formulation of the principle of
inertia: in essence, 

 

it uses the notion of equivalent Galilean frames only for those
frames whose origins are infinitesimally close

 

. All generalizations of classical or rela-
tivistic mechanics retain the notion of Galilean frames; it is the notion of equivalent
frames that has undergone modifications.

Let us continue to use the framework of classical mechanics with the notion of
absolute time (as measured by a unit which is fixed once and for all). We shall see
that a modification of the notion of equivalent frames will enable us to extend the
principle of inertia so that it incorporates not only isolated point masses but also 

 

point

 

2 That is, the point is the origin of the coordinate axes, and the instant, at which one examines it, is
taken to be the origin of time.

x′ a1x b1y c1z g1t h1+ + + +=

y′ a2x b2y c2z g2t h2+ + + +=

z′ a3x b3y c3z g3t h3+ + + +=

t′ t h,+= ⎭
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⎪
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⎪
⎪
⎫
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masses placed in a gravitational field

 

. Let us fix a Galilean frame and denote by 
the corresponding spatial triad of coordinates. Next, let us introduce a field of forces
analogous to a gravitational field, i.e., an acceleration field  Then, if the
velocity of a point mass w.r.t. the fixed Galilean frame is given by

at time  at time  the velocity will be

| At time  let us attach to the point mass a triad  which is equivalent to  in the
usual geometrical sense. Similarly, at time  let us attach a triad  These tri-
ads will define Galilean frames only if one specifies that they are in a rectilinear, uni-
form motion w.r.t.  When this is done, the resulting Galilean frames will have
origins

 and 

respectively. Denote by

 and 

the translation velocities of  and  w.r.t.  Then the velocity of the point mass
in the Galilean frame attached to it at time  has components

and in the Galilean frame attached at time 

Thus the components will not have changed if 

Consequently, 

 

the motion of an arbitrary point mass which is placed in the field of
forces described above will satisfy the principle of inertia provided two Galilean
frames with infinitesimally close origins,

 

 

 

are considered as equivalent if their triads  and  are equivalent in the usual geo-
metrical sense, and if  is in a rectilinear, uniform translational motion w.r.t.  with
velocity 

 

 Note that, again, we have used mutual relations only
between the infinitesimally close frames of reference.

T 0

X Y Z, ,( ).

u   v   w, ,

t , t td+

u X td+   v Y td+   w Z td .+, ,

[33]t , T T 0
t t ,d+ T′.

T 0.

x   y   z   t, , , x xd+   y yd+   z zd+   t td+, , ,

a   b   c,, , a′   b′   c′, ,

T T′ T 0.
t

u a–   v b–   w c,–, ,

t t ,d+

u X t a′–d+   v Y t b′–d+   w Z td c′– .+, ,

a′ a– X td=   b′ b– Y td= and  c′ c– Z td= ., ,

x   y   z   t;, , ,

x xd+   y yd+   z zd+   t t ,d+, , ,

T T′
T T′

X td Y td Z td, ,( ).
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3. One can express the same ideas in a way which is perhaps more intuitive, and
which has the advantage of being closer to the viewpoint adopted by Einstein than the
point of departure for his theory of | gravitation. Consider a point particle moving in
the field of forces discussed above and attach to it a spatial triad  originating at the
point and carried by it in a translational motion. At each instant of time, introduce a
Galilean reference frame consisting of a triad  which coincides with  at the
instant considered and which is in a rectilinear, uniform translational motion, with
the velocity which the particle has at that precise instant.3 Obviously, the velocity of
the particle w.r.t. these frames is zero. Thus, the motion of the point mass agrees with
the principle of inertia (constancy of velocity) if the successive Galilean reference
frames defined by the triads  are considered as equivalent, step by step. Clearly, the
constant velocity of the triad  corresponding to time  w.r.t. the triad  cor-
responding to time  is given by 

Consider for example the uniform field due to earth’s gravity and assume for a
moment that one can neglect the motion of the earth w.r.t. the absolute space. Choose
the -axis along the vertical upwards direction. Two triads,  and  associated
with instants of time  and  will be said to define two equivalent Galilean
frames of reference if  has a constant vertical velocity  w.r.t.  Thus, one can
attach a Galilean frame to each event  of space-time in such a way that all
the resulting frames are equivalent; given the frame associated with a particular event

 all others will be completely determined. In a general case, however,
such a situation does not occur: Whether two frames are equivalent or not will depend
on the space-time paths connecting their origins, since the notion of equivalence itself
has been introduced via a step by step procedure. We shall return to this fundamental
issue later on.

4. Let us say that the conditions determining the equivalence of two Galilean
frames with infinitesimal close origins define the geometrical4 properties of the
space-time. Thus, the gravitational phenomena are shifted from the domain of phys-
ics to that of geometry5 and the components  and  of the gravitational field
capture the basic geometrical structure of space-time.6 The relations

(1)

3 Actually, for the purposes for which the triad  has been used, one could have replaced it by  itself;
thus, as far as the velocity of a point at instant  is concerned,  plays the role of a Galilean triad.

4 Actually, these properties are geometrical as well as kinematical.
5 This is essentially another way of stating the equality of inertial and gravitational masses, or, the fact

that the gravitational field is kinematical (a field of accelerations) rather than dynamical (a field of
forces).

[34]

T
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which hold in orthogonal coordinates express the properties of this | structure.
Finally, the fundamental Poisson equation,

(2)

which, together with the above relations, yields a complete formulation of the laws of
Newtonian gravitation,7 shows that the matter density of a continuous medium is the
physical manifestation of a local geometrical property of space-time. Thus, we
recover some features of Einstein’s theory of gravity within the framework of classi-
cal mechanics itself. The only essential difference is the lack of relation between
gravitational and electromagnetic phenomena. But we have already recovered the
structure which intertwines space-time, geometry and matter.

5. All these considerations call for further remarks. Does the reduction of gravita-
tion to geometry occur only for a specific definition of the equivalence of two infini-
tesimally close Galilean frames? We shall examine this question in detail later. For
the time being, let me just say that the answer is in the negative. Let us consider two
Galilean frames with infinitesimally close origins which are equivalent in the sense of
section 3 above. Thus, the corresponding triads  and  with origins  and 
are parallel,  undergoing a uniform rectilinear translation w.r.t.  Let us now
replace  by  a triad which is fixed w.r.t.  has  as its origin, and is
obtained from  by a helicoidal displacement along the axis  the sense and
the magnitude of the displacement being fixed once and for all. Consider a point mass
which if freely falling in a gravitational field such that it finds itself at  at time 
and at  at time  Since the velocity of this point mass is almost colinear with

 at time  it will have the same components w.r.t. the frame  defined by
 as those w.r.t. the frame  defined by  Thus, if the motion of the point mass

obeys the principle of inertia when  and  are equivalent, it will continue to obey
this principle with the modified definition of equivalence. This example leads us to the
following conclusion: As far as the dynamics of a point mass is concerned, there
exists an infinite number of definitions of equivalence of Galilean frames whose ori-
gins are infinitesimally close.

6. One might expect that these conclusions would have to be modified for the
dynamics of material systems since the dynamics of a point mass neglects the impor-
tant issue of rotation. Consider a small spherical ball undergoing an absolute, uniform

6 In fact, as we shall see later, this structure requires the functions  only to be defined up to
arbitrary additive constants. This is because mechanical experiments performed inside a system which
is embedded in a uniform gravitational field cannot detect this field. In particular, if one assumes that
the gravitational field due to distant stars is uniform over the solar system, the laws of celestial
Mechanics governing the motion of sun and its planets remain unchanged.

7 In addition, we must assume that the functions  vanish at infinity.

X Y Z, ,

[35]

X∂
x∂

------- Y∂
y∂

------ Z∂
z∂

------+ + 4πρ– ,=

X Y Z, ,

T T′, M M′
T′ T( ).

T′ T″, T′, M′
T( ) MM′,

M t
M′ t t .d+

MM′ t t ,d+ S′
T′ S″ T″.

S S′
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rotation. The axis of rotation, along which its angular momentum points, should be |
considered as remaining equivalent to itself. Thus, our first convention by which spa-
tial directions remain parallel to themselves in the usual sense, appears to be the only
one that is permissible. However, it is simply too early to draw such a conclusion. In
fact, we shall see later on that this conclusion is premature and the high degree of
indeterminacy in the notion of equivalence persists in its entirety when one deals with
the laws of dynamics of material systems.8 However, to investigate this issue in a
fruitful way, it is important to note that the new viewpoint which we have now
adopted requires that the laws of mechanics should be formulated only locally. In
other words, we must go back to mechanics of continuous media. Indeed, we do not
have the notion of equivalence of two frames unless their origins are infinitesimally
close.

In order to facilitate the transition from Newtonian to relativistic mechanics, we
shall now formulate the equations of mechanics of continuous media using a 4-
dimensional manifold as the model for space-time.

FOUR DIMENSIONAL SPACE-TIME AND CLASSICAL DYNAMICS OF 
CONTINUOUS MEDIA

7. Let us adopt the viewpoint of classical mechanics. Space-time or the universe will
be represented by an affine manifold. By this, we mean the following. Let us call a
space-time vector a set consisting of two events (each located in time and space) one
of which is the origin of the vector and, the other, the extremity. In a Galilean frame
the components of a space-time vector are the four numbers 

obtained by subtracting the coordinates of the origin from those of the extremity. If
the components of two space-time vectors are identical in one Galilean frame, they
are identical in all Galilean frames. Thus, here we have a property of space-time vec-
tors which is independent of the Galilean frame used to represent these vectors math-
ematically. Vectors which have this property will be said to be equivalent. It is clear
that if two space-time vectors are equivalent to a third, they are equivalent to each
other. It is the existence of this notion of equivalence among space-time vectors that
we express when we say that space-time has an affine structure.

Of the four numbers, 

| which mathematically represent a space-time vector, the first will be referred to as
the time component and the remaining three will be called space components. Note
that the time component is independent of the choice of reference frame. The situation
is different for the spatial vector whose components in the coordinate triad  defin-

8 Except for one possible restriction; see section no. 16.

[36]

t′ t–   x′ x–   y′ y–   z′ z– ,, ,,

t′ t–   x′ x–   y′ y–   z′ z–, ,,

[37]

T
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ing the given Galilean frame are  and  the spatial vector depends
not only on the given space-time vector and the triad T but also on the velocity of this
triad w.r.t. the absolute space.

Let us now consider a point mass moving w.r.t. a Galilean frame. In this frame,
the components of the space-time vector joining the position of this point mass at
time  to that at time  are:

The vector itself does not depend on the Galilean frame. The same remarks hold
for the space-time vector

which is obtained by dividing the first space-time vector by . Finally, if we denote
the mass of the particle by  the space-time vector

is itself again independent of one’s choice of the frame of reference. This is the
energy-momentum vector. While its time component, the mass, is independent of the
choice of the frame of reference, its space-component, the momentum, does depend
on this choice.

We can now state the fundamental principle of particle dynamics: The time-deriv-
ative of the energy-momentum space-time vector is equal to the spatial force vector.
This statement contains both the principle of conservation of mass and the law relat-
ing force and acceleration.

8. Let us now consider a continuous medium equipped with a given Galilean
frame. Fix a 3-dimensional volume of space-time. As I have shown elsewhere,9 the
total mass contained in this volume is given by the integral

where  denotes the density and  denote the components of | the velocity of
each element of matter. Let us first assume that the matter is free of pressure as well
as stress. Then the  component of momentum of the same volume is given by the
integral

The  and the  components can be expressed similarly. Let us denote by

9 E. Cartan, Leçons sur les Invariants intégraux, Paris, Hermann, 1922, p. 35-37. [Translator’s note:
The integral is just  where  is the 4-momentum
density.]

x′ x– y′ y–, z′ z;–

t t td+
td   xd   yd   zd ., , ,

1   
xd

dt
-----   

yd
dt
-----   

zd
dt
-----, , ,

dt
m,

m   m
xd

dt
-----   m

yd
dt
-----   m

zd
dt
-----, , ,

pεabcd
a xbd xcd xd ,d∧ ∧∫∫∫ pa ρ ρu ρv ρw, , ,( )≡

ρ xd yd zd ρu yd z tdd ρv zd x tdd ρw xd y tdd–––∫∫∫
ρ u v w, , [38]

x

ρu xd yd z ρu2–d yd zd t ρuv–d zd xd t ρuw–d xd yd t .d∫∫∫
y z
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the integrands of these integrals. These are the four components of the energy-
momentum vector of an element of matter in the medium. Finally, let us denote by

 the components of the force per unit volume.
To obtain the equations of mechanics of continuous media, we proceed as fol-

lows. Consider a 4-dimensional domain of space-time and decompose it into world
tubes formed by elements of the matter under consideration, taken between time 
and  Thus the boundary of this domain consists of elements of matter at the
extremities  and  of the time interval. Now, the geometrical difference between
the energy-momentum vectors of a matter element evaluated at time  when the
element enters the domain, and at time  when it leaves, is given by a spatial vector
with components

In other words, the integral of the “energy-momentum 4-vector” over the bound-
ary of the domain is equal to the four dimensional integral of the “force 3-vector”
over the domain itself. This statement finds its expression in the following formulas:

(5)

where

| After some calculations and simplifications these equations yield the familiar
ones:

Π   Πx   Πy   Πz, , ,

X Y Z ,, ,

t1
t2.

t1 t2
t1,

t2,

X xd yd zd( ) t ,d
t1

t2∫ Y xd yd zd( ) t ,d
t1

t2

∫ Z xd yd zd( ) t .d
t1

t2

∫

Π′ 0=

Π′x X t xdd yd zd=

Π′y Y t xdd yd zd=

Π′z Z t xdd yd zd ,= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

Π′ ρ∂
t∂

------ ρu( )∂
x∂

-------------- ρv( )∂
y∂

-------------- ρw( )∂
z∂

---------------+ + + t xdd yd zd=

Π′x
ρu( )∂
t∂

-------------- ρu2( )∂
x∂

----------------- ρuv( )∂
y∂

------------------ ρuw( )∂
z∂

-------------------+ + + t xdd yd zd=

Π′y
ρv( )∂
t∂

-------------- ρuv( )∂
x∂

------------------ ρv2( )∂
y∂

---------------- ρvw( )∂
z∂

-------------------+ + + t xdd yd zd=

Π′z
ρw( )∂

t∂
--------------- ρwu( )∂

x∂
------------------- ρwv( )∂

y∂
------------------- ρw2( )∂

z∂
------------------+ + + t xdd yd zd .=

[39]
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Let us call exterior derivative10 the operation which enables one to convert an
integral over a closed -dimensional manifold to the integral over the -
dimensional manifold enclosed by the -manifold. Then the fundamental principle
of mechanics of continuous media can be stated as follows: The exterior derivative of
the energy-momentum field is equal to the product of with the force field.

9. In the above discussion, we had assumed the absence of pressure as well as
stress. However, the general case can be reduced to the one discussed above by defin-
ing the (generalized) momentum of an element of matter to be the vector whose com-
ponents are obtained by adding the following quantities to the components
introduced previously:

In the kinetic theory of gases, one can in effect consider pressure to be the flux of
momentum resulting from irregularities in the molecular velocities. On the other
hand, the quantities  introduced previously represent only an average velocity.

The usual equations of mechanics of continuous media can be | now recovered by
expanding equations (5):

10 See E. Cartan, Leçons sur les Invariants intégraux, Chapter VII, p. 65.

ρ∂
t∂

------ ρu( )∂
x∂

-------------- ρv( )∂
y∂

-------------- ρw( )∂
z∂

---------------+ + + 0=

ρ u∂
t∂

------ u u∂
x∂

------ v u∂
y∂

------ w u∂
z∂

------+ + +⎝ ⎠
⎛ ⎞ X=

ρ v∂
t∂

----- u v∂
x∂

----- v v∂
y∂

----- w v∂
z∂

-----+ + +⎝ ⎠
⎛ ⎞ Y=

ρ w∂
t∂

------- u w∂
x∂

------- v w∂
y∂

------- w w∂
z∂

-------+ + +⎝ ⎠
⎛ ⎞ Z .=

p p 1+( )
p

dt

pxx yd z tdd– pxy zd x tdd– pxz xd y tdd–

pyx yd z tdd– pyy zd x tdd– pyz xd y tdd–

pzx yd z tdd– pzy zd x tdd– pzz xd y t .dd–

u v w, ,
[40]

ρ∂
t∂

------ ρu( )∂
x∂

-------------- ρv( )∂
y∂

-------------- ρw( )∂
z∂

---------------+ + + 0,=

ρ u∂
t∂

------ u u∂
x∂

------ v u∂
y∂

------ w u∂
z∂

------+ + +⎝ ⎠
⎛ ⎞ pxx∂

x∂
----------

pxy∂

y∂
----------

pxz∂

z∂
----------+ + + X=

ρ v∂
t∂

----- u v∂
x∂

----- v v∂
y∂

----- w v∂
z∂

-----+ + +⎝ ⎠
⎛ ⎞ pyx∂

x∂
----------

pyy∂

y∂
----------

pyz∂

z∂
----------+ + + Y=

ρ w∂
t∂

------- u w∂
x∂

------- v w∂
y∂

------- w w∂
z∂

-------+ + +⎝ ⎠
⎛ ⎞ pzx∂

x∂
----------

pzy∂

y∂
----------

pzz∂

z∂
----------+ + + Z .=
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10. However, these equations are not complete. In effect, this is because we have
not taken into account the theorem11 of angular momentum which may be expressed
in the present framework as follows:

where the integrals on the right-hand side are taken over an arbitrary volume element
of space-time and those on the left hand side, on the 3-dimensional boundary of this
volume. These equations yield:

and they are satisfied trivially in absence of pressure. In the general case, they imply:

11. One can express the previous results using a simple vectorial notation. Let
 denote the 4-vectors whose components are, respectively,

   and  The last three are spatial
vectors. In this notation, the energy-momentum | of a particle of mass  is given by

Let us now denote by  the space-time point  Then the derivative
 of this point w.r.t. time is a space-time vector with components

Thus, the energy-momentum of the particle is given by

11 Note that the analytical formulation of this theorem does not require the restriction to rectangular
axes.

yΠz∫∫∫ zΠy– yZ zY–( )∫∫∫∫= dtdxdydz

zΠx∫∫∫ xΠz– zX xZ–( ) td xd yd zd∫∫∫∫=

xΠy∫∫∫ yΠx– xY yX–( ) td xd yd z,d∫∫∫∫=

yd Πz[ ] zd Πy[ ]– 0=

zd Πx[ ] xd Πz[ ]– 0=

xd Πy[ ] yd Πx[ ]– 0,=

pzy pyz– 0=

pxz pzx– 0=

pyx pxy– 0.=

e0   e1   e2   e3, , ,
1 0 0 0, , ,( ) , 0 1 0 0, , ,( ) , 0 0 1 0, , ,( ) , 0 0 0 1, , ,( ).

[41] m

m e0
xd
td

-----e1
yd
td

-----e2
zd
td

-----e3+ + +⎝ ⎠
⎛ ⎞ .

m t x y z, , ,( ).
dm dt⁄

1   
xd
td

-----   
yd
td

-----   
zd
td

-----, , ,⎝ ⎠
⎛ ⎞ .
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The points and the (free) vectors are “geometric forms” of order one. One can
also consider geometric forms of second order which represent systems of sliding
vectors. We shall denote by  the sliding vector whose origin lies at the space-
time point  and whose extremity is at the space-time point  This sliding vector
has ten plückerian coordinates which are the  determinants constructed from
the tableau

clearly,

Similarly, we shall denote by  the sliding vector obtained from the vector
which originates at the space-time point  and which is parallel to a given vector 
The plückerian coordinates of this vector are obtained from the tableau

where the second line contains the components of the vector e. Finally, | let us denote
by  the bivector whose ten coordinates are obtained from the tableau

of the components of the two free vectors  and 
In each of these cases, the sliding vector or the bivector under consideration may

be viewed as the (exterior) product of the two factors each of which is a first order
form (a point or a free vector). The product is distributive and antisymmetric.

12. The sliding vector whose origin lies at the space-time point  representing
the position of a point particle at a given instant of time and which carries the energy-
momentum of the particle can be expressed as

Therefore, the equation

m
md
td

--------.

mm′[ ]
m m′.

2 2×

1   t   x   y   z, , , ,

1   t′   x′   y′   z′;, , , ,

mm′[ ] m′m[ ].–=

me[ ]
m e.

1   t   x   y   z,, , , ,

0   θ   ξ   η   ζ,, , , ,

[42]

ee′[ ]

0   θ   ξ   η   ζ,, , , ,

0   θ′   ξ′   η′   ζ′,, , , ,

e e′.

m

m m md
td

-------- .

td
d

m m md
td

--------
⎩ ⎭
⎨ ⎬
⎧ ⎫

F[ ],=
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where  is the “force” sliding vector, contains, at once, the fundamental principle
of dynamics and the theorem of angular momentum. Indeed, it contains the ten equa-
tions

| 13. Let us now return to the mechanics of continuous media. Denote the energy-
momentum by a sliding vector  and the force per unit element of a 3-dimensional
volume by a sliding vector  Then the equations of mechanics are succintly cap-
tured in the single formula

(6)
Note that

and

The equation

yields

It is easy to verify that the coefficients of  and  vanish iden-
tically. If the elements of matter are subject to a torque, in addition to the force, one
has simply to add terms of the following form to the expression of the force:

This implies

F[ ]

md
td

------- 0,=

td
d

m
yd
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[43]

G
F.

G′ tFd[ ].=

G me0[ ]Π me1[ ]Πx me2[ ]Πy me3[ ]Πz,+ + +=

F me1[ ]X xd yd zd me2[ ]Y xd yd zd me3[ ]Z xd yd zd .+ +=

md e0 td e1 xd e2 yd e3 zd+ + +=

G′ me0[ ]Π′ me1[ ]Π′x me2[ ]Π′y me3[ ]Π′z+ + +=

+ e0e1[ ] td Πx xd Π–[ ] e0e2[ ] td Πy yd Π–[ ] e0e3[ ] td Πz zd Π–[ ]+ +

+ e2e3[ ] yd Πz zd Πy–[ ] e3e1[ ] zd Πx xd Πz–[ ] e1e2[ ] xd Πy yd Πx–[ ].+ +

e0e1[ ], e0e2[ ] e0e3[ ]

e2e3[ ]L xd yd zd e3e1[ ]M xd yd zd e1e2[ ]N xd yd zd .+ +
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Then the fundamental equation (6) continues to hold. Clearly, the basic equation
of dynamics can be recovered from equation (6) under the assumption that the matter
is contained in a very small spatial volume: in this approximation, one obtains

| 14. Equation (6) will enable us to obtain easily the equations of mechanics of
continuous media. Let us attach a variable Galilean frame to each point of space-
time. Denote by  the free space-time vectors which define the Galilean
frame attached to the point  As we move from a point  to an infinitesimally
nearby point  these vectors will change. However, the time component of  will
be always equal to 1, and those of  will always vanish. One will therefore
have the following formulae:12

(7)

where  are linear combinations of the differentials of the four functions which
label space-time points. Let us denote by

(8)

the free vector joining  and  Thus  is simply the infinitesimal time interval
between  and  Now, one can again obtain the following expressions:

and

It is only the expression of  that becomes more complicated because the free
vectors  are no longer fixed. One has:

12 As in section no. 1, the axes of coordinate frames are not necessarily orthogonal here.

pzy pyz– L,= pxz pzx– M,= pyx pxy– N.=

Gd tFd .=

[44]

e0 e1 e2 e3, , ,
m. m

m′, e0
e1 e2 e3, ,

e0d ω0
1e1 ω0

2e2 ω0
3e3+ +=

e1d ω1
1e1 ω1

2e2 ω1
3e3+ +=

e2d ω2
1e1 ω2

2e2 ω2
3e3+ +=

e3d ω3
1e1 ω3

2e2 ω3
3e3+ +=

ωi
j

md ω0e0 ω1e1 ω2e2 ω3e3+ + +=

m m′. ω0

m m′.

G me0[ ]Π me1[ ]Πx me2[ ]Πy me3[ ]Πz,+ + +=

F me1[ ]Xω1ω2ω3 me2[ ]Y ω1ω2ω3 me3[ ]Zω1ω2ω3.+ +=

G′
e0 e1 e2 e3, , ,
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The required equations now follow immediately. |

THE AFFINE CONNECTION OF SPACE-TIME AND CLASSICAL 
MECHANICS

15. Up to this point we have dealt with the usual notion of equality of space-time vec-
tors. However, the formulae obtained above would continue to be valid for an arbi-
trary definition of equality of two space-time vectors whose origins are
infinitesimally close: if a more general definition is used, equations (7) preserve their
form but with modified coefficients.13

Let us assume, as is indeed the case in applications, that the only volume force
present is the one due to gravity. If the definition of equivalence of two nearby
Galilean frames—or, equivalently, the definition of equality of two 4-vectors whose
origins are infinitesimally close—is so chosen as to cancel the gravitational forces,
the equations of dynamics would reduce to  Fix a Galilean frame and
choose for  and  vectors which remain equal, in the usual sense, to the
unit vectors of this frame. Set

and

Then, the equations of mechanics become

or, equivalently,

13 Note that, if we had attached a different Galilean frame, say,

 

at each world point, the formula (7) would have to be modified. In particular,  would have to be
replaced by 

G′ me0[ ]Π′ me1[ ] Π′x ω0
1Π ω1

1Πx ω2
1Πy ω3

1Πz+ + + +[ ]+=

               me2[ ] Π′y ω0
2Π ω1

2Πx ω2
2Πy ω3

2Πz+ + + +[ ]+

               me3[ ] Π′z ω0
3Π ω1

3Πx ω2
3Πy ω3

3Πz+ + + +[ ]+

+ e0e1[ ] ω0Πx ω1Π –[ ] e0e2[ ] ω0Πy ω2Π –[ ] e0e3[ ] ω0Πz ω3Π –[ ]+ +

+ e2e3[ ] ω2Πz ω3Πy–[ ] e3e1[ ] ω3Πx ω1Πz–[ ] e1e2[ ] ω1Πy ω2Πx–[ ].+ +

[45]

e0 e0 ue1,+= e1 e1,= e2 e2,= e3 e3,=

ω0
1

ω0
1 ω0

1 uω1
1 u .d+ +=

G′ 0.=
e0 e1 e2, , e3

ω0
1 X t ,d–= ω0

2 Y t ,d–= ω0
3 Z t ,d–=

ωi
j 0= i j, 1 2 3, ,=( ).

Π′ 0=     Π′x X td Π[ ]– 0=     Π′y Y td Π[ ]– 0=     Π′z Z td Π[ ]– 0=, , ,
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These are the equations of classical dynamics of a continuous medium subject to
a volume force which is proportional to the mass. To geometrize gravity, it suffices to
choose  to be the components of the acceleration due to gravity.

The result just obtained is completely analogous to the one which led directly to
the dynamics of a point particle. Indeed, the formulas

imply that two Galilean frames originating at  and  |    
 should be considered as equivalent if the corresponding triads  and  are

equivalent in the usual sense and  undergoes a rectilinear and uniform translation
of velocity  w.r.t. 

16. Let us adopt the convention that a given definition of the equivalence of
Galilean frames with infinitesimally close origins gives rise to a space-time affine
connection. It is now easy to see that the gravitational phenomena are compatible
with several distinct affine connections on space-time. It is important to note first that,
although the affine connection depends on the matter distribution in space, it does not
undergo a substantial change on introduction of a small mass in a given region of
space-time. If the entire system consists only of a small mass, the corresponding
affine connection will not depend upon the state of this mass. Any possible modifica-
tion in the affine connection has the effect that the following terms are added to the
expression of 

(9)

where  are the changes in the components  of the affine connection.
Thus, the only possible modifications are the ones which make the three terms in
parentheses vanish irrespective of the numerical values of the quantities which char-
acterize the state of the material medium.

Let us first consider the most general situation in which the affine connection per-
mits two Galilean frames, one with an orthogonal triad  and the other with a non-
orthogonal triad  to be equivalent. Let us assume—and it is permissible—that the

Π′ 0,=

Π′x ρX dtdxdydz[ ],=

Π′y ρY dtdxdydz[ ],=

Π′z ρZ dtdxdydz[ ].=

X Y Z, ,

e0d X td e1– Y td e2– Z td e3,–= e1d e2d e3d 0= = =

t x y z, , , t td+ , x x,d+ [46]y yd+ ,
z zd+ T T′

T′
X td Y td Z td, ,( ) T .

G′:

   me1[ ] ω0
1Π ω1

1Πx ω2
1Πy ω3

1Πz+ + +[ ]

+ me2[ ] ω0
2Π ω1

2Πx ω2
2
Πy ω3

2Πz+ + +[ ]

+ me3[ ] ω0
3Π ω1

3Πx ω2
3Πy ω3

3Πz+ + +[ ],
⎭
⎪
⎪
⎬
⎪
⎪
⎫

ω0
i ωi

j, ω0
i ωi

j,

T
T′,
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vectors  used in the equation (9) are still equal in the usual sense, i.e.,
when everything is referred back to a fixed Galilean frame. Set

The coefficients of the forms  are

In order to cancel the three terms in parentheses in equation (7), | one can treat
them as being independent and focus on one term at a time setting others equal to
zero. This yields

(10)

These equalities simply express the fact that the three quadratic differential forms

vanish identically. One can get the same result from the dynamics of a point particle:
the equality

as well as equations (7) continue to hold provided one adds to the coefficients 
the terms  satisfying:

for all values of the ratios of  On the other hand, the results would be
different if the components of pressure failed to be symmetric, as is the case when the
material is subject to a torque.14 In this case, expression (9) has to vanish even though

which implies, as is seen easily, that all the coefficients  must vanish leaving only
9 undetermined coefficients instead of 18. In this case, and this case only, does the
dynamics of continuous media impose conditions on the affine connection of space-
time which are stronger than those imposed by the dynamics of a point particle.

14 This occurs for a magnet placed in a magnetic field.

e0 e1 e2 e3, , ,
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j z.d+ + +=
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ρu2 pxx+ , ρuv pxy+ , ρuw pxz+ , …, ρw2 pzz.+

[47]

γ 00
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i ωi
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i xd
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----- ω2
i yd

td
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k
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17. Let us now suppose that the affine connection preserves the spatial metric, i.e.,
that a reference frame with an orthonormal triad cannot be equivalent to one with a
non-orthonormal triad. In this case, we can restrict our field of Galilean frames such
that the spatial vectors  are everywhere orthonormal. Then the relations (7)
continue to hold but with additional restrictions

| which are imposed by the conditions

Furthermore, the three quantities  and  are now
simply the components of the rotation necessary to make the triad  equivalent to

 Thus, the permissible modifications of the affine connection are dictated by the
same conditions as in section 16. However, since now

the number of arbitrary coefficients is reduced to four: we have:15

Furthermore, had the pressure not been assumed to be symmetric, the coefficient
 would have vanished.

18. We shall see later on how, following the viewpoint adopted in section 16 or 17
above, one can select among all affine connections compatible with experiments, a
specific one, which can be distinguished from others by its intrinsic properties. How-
ever, one may consider a theory in which the angular momentum of a typical element
of matter about a point located within the element is not negligible compared to its
linear momentum, or in which the stress within the medium manifests itself not only
via forces but also through torques. Under these conditions, the analytic expression of

 must contain terms such as  and  and hence the precise affine con-
nection of space-time would be determined only through experiments; the experimen-
tal data from mechanics would be compatible with only one definition of the
equivalence of two Galilean frames whose origins are infinitesimally close.

15 The geometric interpretation of these relations is straightforward.

e1 e2 e3, ,

ωi
i 0,= ωi

j ω j
i+ 0,=

[48]

ei( )2 1,= eie j 0= i j≠( ) i j, , 1 2 3., ,=
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3 ω3

2–= ω3
1 ω1
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i ω j
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j+ 0,= =
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1 r yd q z,d–= ω0

2 p zd r x,d–= ω0
3 q xd p y,d–=

ω2
3 ω3

2– p td h xd+= =      ω3
1 ω1

3– q td h yd+= =      ω1
2 ω2

1– r td h z.d+= =, ,

h

G e0ei[ ] eie j[ ]
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SPACE-TIME OF SPECIAL RELATIVITY AND ITS AFFINE CONNECTION

19. The theory of special relativity admits the same Galilean frames of reference as
classical mechanics. The essential difference lies in the transformation laws between
coordinates  which label an | event in one Galilean frame and coordinates

 which label it in another such frame. These laws are still linear, i.e., the
special relativistic space-time continues to be an affine space. However, the time
component  of a space-time vector is no longer an invariant. Instead, the invariant
quantity now is:

where  is the velocity of light in vacuum. As a consequence, the scalar product,
 of two vectors with components  and

 respectively, is also an invariant. In particular, if 
denote, as above, unit vectors attached to a Galilean reference frame, the following
relations hold:

(11)

20. Consider a variable Galilean frame which depends on one or more parame-
ters. For any infinitesimal variation of these parameters, one has:

(12)

where the  are linear in the differentials of the parameters and are constrained due
to equations (11). On differentiating (11) one easily obtains:

(13)

Thus, we are left with six independent quantities, which is precisely the number of
parameters required to fix the orientation of a Galilean frame.

In the above equations, the coefficients  and  represent, after change of
sign, the (infinitesimally small) uniform, translational velocity of the axes of the sec-
ond Galilean frame w.r.t. those of the first. Note that, in the limit as  tends to infin-
ity, equations (13) reduce to:

t x y z, , ,( )[49]
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| so that one recovers the law relating two infinitesimally close Galilean frames16 in
classical mechanics.

21. The particle dynamics. The notion of energy-momentum vector continues to
underlie the dynamics of a point particle in special relativity. This vector is now given
by

The rest mass  of the particle is, up to a multiplicative constant, the square root
of the scalar product of the energy-momentum vector with itself. More precisely, we
have:

This  is a number attached to each point particle like the usual mass in classical
mechanics.
The mathematical expression of the energy-momentum vector becomes more sym-
metric if one introduces the proper time  of the point particle, given by

For, the energy-momentum vector can now be written as

where  and  are independent of the reference frame.
The fundamental principle of mechanics can be now stated as follows: The deriv-

ative of the “energy-momentum space-time vector” w.r.t. the proper time equals the
“hyperforce” space-time vector

The hyperforce vector has an intrinsic significance, independent of the choice of a
reference frame: we have |

16 Here, as in section no. 17, the Galilean frames have orthogonal triads.

[50]
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Thus, the force, in the usual sense of the term, is given by the spatial component

of the hyperforce times  On the other hand, the constancy of the rest mass

introduces constraints among  and  since

we have

This relation expresses the fact that the infinitesimal work done by the force
equals the change in the quantity  The quantity

is the energy of the point particle. Indeed, if  is small compared to  in the first
approximation,  equals

or, equivalently,

22. The dynamics of continuous media. If we restrict ourselves to the special case
in which all volume forces are absent, the equations | of dynamics of continuous
media are essentially the same as in classical dynamics. Thus, we can introduce the
sliding vector representing the energy-momentum of an element of matter,

[51]
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[52]

G me0[ ]Π me1[ ]Πx me2[ ]Πy me3[ ]Πz,+ + +=
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and set its exterior derivative,  to be identically zero. If the medium is equipped
with a fixed Galilean frame, the components  can be again expressed
as:

The density  of the matter in its rest frame is given by:

where the right-hand side is essentially the scalar product of the vector
 with the vector  On simplifying, one obtains17

Thus, in absence of external forces, the equations of dynamics of continuous
media are identical to those of classical mechanics. Indeed, if a variable Galilean
frame is attached to each point of space-time, one would obtain

23. Let us investigate whether or not several distinct affine connections can be
compatible with experiments. In the passage from one | connection to another, the
components  and  undergo variations,  and  satisfying, of course, the
relations  and  Furthermore, these variations should be
such that the four terms

17 Note that, since the volume element  is independent of the choice of the reference
frame, the quantity  has an absolute, frame-independent significance. It is of course not so for the
apparent density 
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must vanish identically, irrespective of the state of the element of matter under con-
sideration. If the material medium is described using a fixed Galilean frame, one
finds, as in section 16, that the four quadratic forms

must vanish identically. One obtains the same expressions for  and  in terms of
four arbitrary coefficients  and  as in section 17.

Finally, had we enlarged our notion of mechanics of continuous media by allow-
ing terms of the form  and  in the expression of the energy-momentum
density, there would have remained no arbitrary coefficients: the affine connection of
space-time would have been completely determined experimentally.18

24. Gravitation in special relativity. In classical mechanics, the equations

defining the affine connection which enables geometrization of gravity, preserve their
form under the change of the Galilean frame of reference. In special relativity, one
may postulate that Newton’s law of gravity holds in the Galilean frame whose axes
point towards the fixed stars and have the centre of mass of the solar system as origin.
However, the law would not have the same form in other Galilean frames. On the
other hand, we may follow Einstein and postulate that the law of gravity should have
an invariant expression irrespective of the Galilean frame which is used.19 We are
then forced to modify the law itself. Nevertheless, let us note here that the resulting
geometrical | formulation of gravity due to Einstein is essentially similar to the one
mentioned in the beginning of this chapter.

25. The viewpoint of general relativity. Up to now, we have worked under the
assumption that there exist Galilean frames which can label points in the entire
space-time. At this point, however, it is clear how one can get rid of this assumption.

18 This is so if we simply allow torques to act on the elements of matter. For, in that case, the coefficient
 is necessarily zero, and, since  transform into one another as components of a 4-vector

under Galilean transformations, one is forced to conclude that  vanish.
19 The precise meaning of this phrase will become clear later on.
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Indeed, to formulate physical laws, it is sufficient that the following two conditions
are satisfied:

1) To measure quantities of physical interest, one has available a local reference
frame which plays the role of a true Galilean frame20 in a patch of space-time imme-
diately surrounding the observer, and

2) One knows the space-time connection, i.e., one knows how to compare the
observations carried out in two Galilean frames whose origins are infinitesimally
close. One may reformulate this condition by saying that one has to know the
Lorentz-Minkowski transformation required to make two frames coincide. Analyti-
cally, this means that one should know the coefficients in equations (8) and (12).

We shall now go on to the theory of manifolds with an affine connection. Applica-
tion of this theory to general relativity will follow. We shall also examine the way in
which the laws of electromagnetism serve to determine the affine connection of
space-time.

20 This is obviously not the place to enter into a discussion of practical difficulties which may arise in
assimilating a given reference system to a Galilean frame.
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electrodynamic explanation of 9, 29–30, 
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789, 859–860, 867, 872, 905–906, 908, 
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gravitational acceleration 79, 520
dependence on horizontal velocity com-
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superposition principle 676
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gravitational field equation 401, 559–560, 
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exact solutions of Einstein’s 168–169
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four-dimensional 48, 308, 628
in Mie’s theory 390, 629
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speed of light, dependence on 331, 333, 

341, 396–398, 489
time development, dependence on 536
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gravitational tensor 335, 337, 369, 391, 401, 
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gravitational wave 207, 322, 325, 327–329, 
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Hamilton-Jacobi equation 939–941
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transport 524
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Heaviside, Oliver 198, 234, 664, 794, 808
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871
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fundamental equations of gravitation 

1005
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648–649, 731–732, 750
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Le Sage, Georges-Louis 4, 105–109, 113, 

198, 848
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electron theory, see electron theory, 

Lorentz’s
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gravitational 197, 351, 376–377, 389–

390, 393, 415, 499, 526, 530, 534, 675, 
1048
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for non-Euclidean geometry 37
foundations of 31, 35, 133, 594, 625, 630, 

803, 841, 1055
generally relativistic theory of 28
heretical 3, 5–6
principles of 30, 798, 815, 1044
reversibility of the laws of 810
see also analytical mechanics, classical 

mechanics, continuum mechanics, New-
tonian mechanics, relativistic mechan-
ics, statistical mechanics

mental model 2
see also elevator model, gas model, 

Lorentz model, Newton’s bucket, um-
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electrodynamic worldview 235, 745, 885, 

894
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431–432, 435, 439–440, 446, 451, 464, 
470, 492, 496, 553, 563, 951, 1033, 1035–
1037, 1107–1111, 1113

Poisson equation 8, 49, 417, 807, 1054, 1111
four-dimensional 307, 310, 518

polarization 875, 914
Pomey, Jean-Baptiste 200
popular scientific literature 67, 69
postmature concept 1043

Poynting vector 220, 348
Prandtl, Ludwig 808
pressure

as intensive quantity 638–639
in continuous medium 1115
on a moving surface 291, 503
see also Poincaré pressure

probabilities, calculus of 776, 809–812, 822
projection operation 1063
Ptolemaic system 142, 255
Ptolemy, Claudius 208, 256
Pythagoras’s theorem 595

Q
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583–584, 589–591, 596, 601, 605–607, 
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976, 991, 1005, 1079, 1082, 1086–1088
Riemannian geometry 959, 1041, 1044
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spacetime vector 1112
equivalent 1112
type I and II 424

special theory of relativity 366, 399, 569, 
582, 586, 590, 594, 598–599, 605–610, 
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Trouton-Noble condenser 438
twin paradox 1057

U
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spacetime vector

vector addition 794, 796–797, 817
velocity 569, 1094

distribution 824, 826
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